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Abstract

Output regulation refers to the class of control problems in which some out-

puts of the controlled system must be steered to some desired references, while

maintaining closed-loop stability and in spite of the presence of unmeasured

disturbances and model uncertainties. While for linear systems the problem has

been elegantly solved in the 70s, output regulation for nonlinear systems is still

a challenging research field, and 30 years of active research left open many fun-

damental problems. In particular, all the regulators proposed so far are limited

to very specific classes of nonlinear systems and, even in those cases, they fail

in extending in their full generality the celebrated properties of the linear reg-

ulator. The aim of this thesis is to make a decisive step towards the systematic

extension of the output regulation theory to embrace more general multivari-

able problems. To this end, we touch here three fundamental pillars of regula-

tion theory: the structure of regulators, the robustness issue, and the adaptation

of the control system. Regarding the structural aspects, we pursue here a de-

sign paradigm that is complementary to canonical nonlinear regulators and that

trades a conceptually more suitable structure with a strong internal intertwining

between the different parts of the regulator. For what concerns robustness, we

introduce a new framework to characterize robustness of regulators relative to

steady-state properties more general than the usual requirement asking a zero

asymptotic error. We characterize in this unifying terms a large part of the ex-

isting approaches, and we end conjecturing that general nonlinear regulation
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admits no robust solution. Regarding the evolution of regulators, we propose an

adaptive regulation framework in which adaptation is used online to tune the

internal models embedded in the control system. Adaptation is cast as a general

system identification problem, allowing for different well-known algorithms to

be used.
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Sommario

Il termine “regolazione dall’uscita” (output regulation) si riferisce alla classe

di problemi della teoria del controllo in cui ad alcune uscite del sistema con-

trollato devono essere fatte inseguire delle traiettorie di riferimento desider-

ate, in presenza di incertezze sul modello e disturbi esterni non misurabili e

mantendendo la stabilità del sistema complessivo. Nonostante per la classe

dei sistemi lineari il problema sia stato elegantemente risolto negli anni 70, la

regolazione dall’uscita per sistemi nonlineari rappresenta ancora un campo di

ricerca alquanto ostico, in cui oltre trent’anni di ricerca attiva hanno lasciato

aperti molti problemi fondamentali. Tutte le soluzioni proposte fin’ora, infatti,

si limitano a classi specifiche di sistemi nonlineari, ed anche in tali casi fallis-

cono nell’estendere, nella loro interezza, le rinomate proprietà del regolatore

lineare. Lo scopo principale di questa tesi è fare un decisivo passo avanti verso

l’estensione sistematica della teoria della regolazione verso classi più generali

di sistemi nonlineari, sia dal punto di vista applicativo, sia da quello teorico.

A tal fine in questa tesi vengono toccati tre pilastri fondamentali della rego-

lazione: la struttura del regolatore, il problema della robustezza e la questione

dell’adattamento ed evoluzione del regolatore. Per quanto riguarda gli aspetti

strutturali, viene proposto un paradigma di progetto del regolatore comple-

mentare a quelli canonici, che presenta una struttura più consona ad eventuali

estensioni della teoria, al prezzo però dell’introduzione di un forte legame tra

le varie parti del regolatore, che rende impossibile il loro progetto sequenziale e
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separato. Per quanto riguarda la robustezza, viene introdotto un nuovo “frame-

work” in cui è possibile formalizzare e caratterizzare concetti di robustezza legati

alle performance dei regolatori relativamente a proprietà asintotiche più gener-

ali della condizione canonica richiedente un errore di regolazione nullo a regime.

Vengono dunque caratterizzati un questo framework diversi tra i regolatori svilup-

pati negli ultimi vent’anni, e viene proposta una congettura “negativa” che af-

ferma che nel caso nonlineare generale nessun regolatore è robusto. Per quanto

riguarda il progetto di regolatori che si auto-adattano, viene proposto un frame-

work teorico in cui il modello interno presente nel regolatore viene adattato on-

line in autonomia sulla base delle uscite misurabili. Il problema dell’adattamento

è posto come un probema di identificazione dinamica, permettendo l’utilizzo di

diverse tecniche esistenti.
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Notation

R set of real numbers

R+ set of non negative real numbers

R∗+ set of strictly positive real numbers

N set of natural numbers zero included

N∗ set of natural numbers zero excluded

C set of complex numbers

Z set of integer numbers

Q set of rational numbers

∈ belongs to

⊂ subset

⊃ superset

:= defined as

∀ for all

∃ there exists

A ∩B intersection of sets

A ∪B union of sets

A \B difference of sets

A±B set {a± b : a ∈ A, b ∈ B}
αA with α ∈ R, set {αa : a ∈ A}
∅ the empty set

A×B Cartesian product of sets

An n-fold product of the set A
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A closure of A

∂A boundary of A

intA interior of A

|S| when S is a set |S| := sups∈S |s|
B open ball of radius 1

αB open ball of radius α > 0

B closed ball of radius 1

αB closed ball of radius α > 0

En×m set of matrices with n rows and m columns and coeffi-

cients in E

| · | vector or matrix induced norm

| · |A inf
a∈A
| · −a|, distance from the set A

MT transpose matrix

M−1 inverse matrix

M † Moore-Penrose generalized inverse matrix

M−T (M−1)T

M ≥ 0 positive semi-definite matrix

M > 0 positive definite matrix

det(M) determinant of M

rank(M) rank of M

σ(M) spectrum of M

A⊗B Kronecker product of matrices

ImA image of A

KerA kernel of A

0n×m matrix of dimension n × m whose entries are all zeros.

When n = m we write 0n and when the dimension is

clear from the context the subscript is omitted and we

write simply 0

In n-dimensional identity matrix. When the dimension is

clear from the context the subscript is omitted and we

write simply I

diag(A1, . . . , An) block-diagonal matrix block diagonal elements the

square matrices A1, . . . , An
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col(A1, . . . , An) column concatenation of the elements Ai
col(A : A ∈ A) column concatenation of the elements A ∈ A. If A is

indexed by the set N we also write col(An : n ∈ N)

Hurwitz matrix matrix with all eigenvalues having strictly negative real

part

Schur matrix matrix with all eigenvalues having modulus strictly

lessthan 1

simply stable ma-

trix

matrix with all eigenvalues with zero real part and alge-

braic multiplicity 1

HC(n) subset of Rn of all the coefficients (c1, . . . , cn) of a Hurwitz

monic polynomial of dimension n, i.e. such that p(λ) :=

λn + cnλ
n−1 + · · · + c2λ + c1 has only roots with strictly

negative real part

(n,m)-prime form a triplet (A,B,C) in Rnm×nm × Rnm×m × Rm×nm defined

as

A =

(
0m(n−1)×m Im(n−1)

0m 0m×m(n−1)

)
B =

(
0m(n−1)×m

Im

)
C =

(
Im 0m×m(n−1)

)
If m = 1 we say that (A,B,C) is a triplet in prime form

of dimension n

f : A→ B a function from A to B

f |C with f : A → B and C ⊂ A, f |C is the restriction of f to

C

F : A⇒ B a set-valued map from A to B

domF the domain of F

ranF the range of F

suppF the support of f

f ∈ K f is a class-K function, i.e. f : [0, a) → R+ (a ∈ R∗+) is

continuous, strictly increasing and f(0) = 0

f ∈ K∞ f is a class-K∞ function, i.e. f ∈ K and f(x)→x→a ∞
f ∈ L f is a class-L function, i.e. f : R+ → R+ is continuous,

strictly decreasing and f(x)→x→∞= 0
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β ∈ KL β is a class-KL function, i.e. β(·, t) ∈ K for each t and

β(s, ·) ∈ L for each s

β ∈ KLL β is a class-KLL function, i.e. β(·, ·, t) ∈ KL for each t

and β(s1, s2, ·) ∈ L for each s1, s2

Cn The set of n-time continuously differentiable functions

(C0 is the set of continuous functions)

Lp Lebesgue space of functions for which the p-th power of

the absolute value is Lebesgue integrable

D+V (t) If V : R→ R, D+V (t) denotes the Dini derivative

D+V (t) := lim sup
h→0+

1

h

(
V (t+ h)− V (t)

)
.

If V is obtained by evaluating a function V : Rn → R
along a trajectory x(t, x0), by extension we let

D+V (x0) := lim sup
h→0+

1

h

(
V (x(t+ h, x0))− V (x(t, x0))

)

Lf(x)h(x) Lie derivative of h(x) along the vector field f(x), i.e.

Lf(x)h(x) :=
∂h(x)

∂x
f(x). If no ambiguity is present we

omit the argument of f , thus writing Lfh(x)

Lnfh(x) n-fold Lie derivative of h(x) along the vector field f(x),

i.e. Lnfh(x) := Lf (L
n−1
f h(x)), with L0

fh(x) = Lfh(x)

L
(xi)
gi M(x1, . . . , xk) With M : Rn1+···+nk → Rm×p, with ni,m, p ∈ N, is

a matrix-valued function and, for i = 1, . . . , k, gi :

Rn1+···+nk → Rni is a vector field, L(xi)
gi M(x1, . . . , xk) de-

notes the matrix whose (`, j)-th element is given by:

∂M`j(x1, . . . , xk)

∂xi
gi(x1, . . . , xk).

When there is no ambiguity, we just write

LgiM(x1, . . . , xk). If k = 1, n1 = n ∈ N and m = p = 1,

then, with x = x1, f = M and g = g1 we have

L
(x1)
g1 M(x1) = Lgf(x)
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|x|[t1,t2) when x(·) is a locally essentially bounded function

defined on R, for t1, t2 ∈ R we let |x|[t1,t2) :=

ess. supt∈[t1,t2) |x(t)|
|x|∞ when x(·) is a locally essentially bounded function de-

fined on R, we let |x|[t1,t2] := ess. supt∈R |x(t)|
x[i,j] when i, j ∈ N, i ≤ j, and x ∈ Rn, n ≥ j, we let x[i,j] =

(xi, xi+1, . . . , xj)

x(i,j) when i, j ∈ N, i ≤ j, and x is a j-times differentiable

function on R, we let x(i,j) := (x(i), x(i+1), . . . , x(j))

(xn)bn=a sequence xa, . . . , xb
(xn)n a sequence of elements xn indexed by n ∈ N
xn → x short for limn→∞ xn = x

lim supx if x : R→ Rn, short for lim supt→∞ x(t)

SF(X) whenF denotes a system and X a set, SF(X) is the set of

all the solutions toF originating inX . IfX is a singleton,

i.e. X = {x}, we write SF(x) in place of SF({x}). IfF is

a system with state x, we will also use x in place of F if

no confusion arises, i.e. we let SF = Sx
Rτ
F(X), ΩF(X) when F denotes a system, X ⊂ Rn a set, and τ > 0,

Rτ
F(X) is the τ -reachable set ofF from X , i.e.

Rτ
F(X) := {x ∈ Rn : x = ϕ(t), ϕ ∈ SF(X), t ≥ τ} .

As clearly Rτ
F(X) is decreasing in τ (in the sense of in-

clusion), then we can define the set

ΩF(X) := lim
τ→∞
Rτ
F(X) =

⋂
τ>0

Rτ
F(X),

which is called the Ω-limit set. If X is a singleton, i.e.

X = {x}, we writeRF(x) and ΩF(x) in place ofRF({x})
and ΩF({x}). If F is a system with state x, we will also

use x in place ofF if no confusion arises, i.e. we letRF =

Rx and ΩF = Ωx

xviii



Introduction

In 1857, a 21 years old Mark Twain was beginning his training as a steam-

boat pilot on the Mississippi river, under the command of Mr. Horace Ezra

Bixby. Several years later, while writing in the memoir “Life on the Missis-
sippi” (Twain, 1883) about how discouraging was to realize how much he had to

learn, he reported his mentor as saying:

“You only learn the shape of the river, and you learn it with such absolute
certainty that you can always steer by the shape that’s in your head, and
never mind the one that’s before your eyes.”

Mr. Bixby was arguing that any good pilot needs to perfectly know the shape of

the river, to avoid being fooled by darkness, mist or moonlight shadows during

nocturnal navigation. In its essence, Mr. Bixby’s intuition hides the Internal
Model Principle, informally stating that an internal representation of the “outside
world”, of the task being executed, and of the agent itself is necessary for a smooth
and robust operation. Not surprisingly, the concept of “internal model” and the

related principles pervade many fields of science (Huang et al., 2018), ranging

from biology (Sontag, 2003), cognitive science (Grush, 2004) and neuroscience

(Wolpert et al., 1998) to control theory and robotics (Isidori, 2017), and they are

intimately related with the concept of “knowledge” that lies at the base of any

adapting and learning process.
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Many studies in neuroscience support the idea that the behaviors of animals

and humans are regulated by internal models, refined day after day in the recur-

rent execution of “similar” tasks in “familiar” environments (Miall et al., 1993;

Wolpert et al., 1998; Schubotz, 2007). Sensorimotor integration, the transforma-

tion of sensory stimuli into motor actions, is perhaps the most well studied func-

tion of the nervous system with an internal model-based perspective (Miall et al.,

2000; Kawato et al., 2003; Jeannerod, 2006; Schubotz, 2007). Advanced motor

gestures, such as hitting a baseball or skiing on moguls, require an exquisite

spatio-temporal precision, that is simply not achievable by just sequencing fast

“reflexive” corrections (i.e. by pure feedback control) due to sensorimotor delays

and noise and limited resolution of the sensory apparatus (Wolpert et al., 1998).

A combination of sensory-driven feedback and predictive “feedforward” actions,

incorporating internal models of the environment, of the task, and of the sen-

sorimotor dynamics, is what makes all human-interest operations possible. The

internal model principle, moreover, is not confined to the sensorimotor domain,

yet it is thought as unifying concept to study higher cognitive and social abili-

ties, including for instance planning, reasoning, imitation and cooperation (Frith

et al., 2000; Grush, 2004; Schubotz, 2007).

The branch of control theory that developed around the concept of internal

model is known as “Output Regulation” (Isidori, 2017), and how internal models

can be constructed, adapted and exploited, in the formal context of nonlinear

output regulation is, in a nutshell, the subject of this thesis. The thesis is divided

in three parts: the first part, subdivided in three chapters, is dedicated to the

theory of output regulation; the second part, subdivided in two chapters, con-

cerns the relation between system identification and control, with an accent to

observer design; the last part, subdivided in two chapters, is dedicated to the

design of adaptive regulators.

The first chapter of the thesis aims at introducing the reader to the current

state of the art of output regulation, with an accent on the approaches that have

influenced more strongly our work. The second chapter focuses on the limits of

classical approaches and on the structural problems that necessarily arise in the

design of a regulator when we switch from linear to nonlinear systems. In par-

ticular, we point out as a “chicken-egg dilemma” arises in the solution of general

nonlinear regulation problems, stating that if we insist in separating a regulator

in an “internal model unit” and a “stabilizer” there is no way, in general, to tell
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which one has to be fixed first. We thus reinterpret previous approaches as at-

tempts to avoid dealing with the dilemma, trading feasibility with a consequent

loss of generality. In the last part of the chapter we give conditions under which

a so-called “post-processing” regulator exists that can deal with the chicken-

egg dilemma for classes of systems going beyond those treatable by the current

literature. The third chapter concerns instead the robustness issue. We ana-

lyze the necessary conditions (such as the internal model principle) of the exis-

tence of a regulator in case the exosystem is described by a differential inclusion,

thus extending the “non-equilibrium theory” of (Byrnes and Isidori, 2003). We

then propose a nonlinear regulator based on low-power high-gain observers and

on immersion arguments that can guarantee a certain degree of robustness for

particular classes of nonlinear problems, extending the “structural robustness”

framework of (Byrnes et al., 1997a). Lastly, we build a new formal framework

in which robustness of regulators can be characterized in topological terms and

relatively to arbitrary steady-state properties. We re-frame in this context many

well-known regulators and we point out how robustness of asymptotic regula-

tion is, in a general nonlinear case, idealistic.

The second part of the thesis is dedicated in presenting our approach to adap-

tation, with applications that, for simplicity, are directed towards the adaptive

observation theory. Adaptation and learning are approached as system identifi-
cation problems, in a deterministic setting tailored on control. To fix a common

playground in which control and identification can coexist, in the first chapter

of this second part we propose a framework where to reformulate the “recur-

sive” system identification problems in system theoretical terms, with a conse-

quent characterization of the identification algorithms in terms of stability the-

ory. In particular, fundamental notions and requirements are defined and then

proved to hold for some relevant classes of identification schemes, such as con-

tinuous and discrete least-squares, nonlinear “mini-batch” algorithms and recur-

sive wavelet expansions. Emphasis is put on “universal approximators” and, by

leveraging Wavelet theory, on the multiresolution aspect of learning: coarse traits

represent solid knowledge with slow learning dynamics, while details are more

volatile and subject to quicker change. What is interesting in multiresolution

itself, is that it also impacts in terms of analogy and generalization as, roughly,

the same “coarse” skills that allow Mark Twain to drive a boat on a river will be
useful to track a hiking trail. In the second chapter, the theory is applied to high-
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gain observers, where the problem of observing an unknown nonlinear system

in canonical form is taken on in the proposed framework.

The third part is dedicated to the design of adaptive solutions to output regu-

lation problems. Here the results of control theory and identification presented

in the previous chapters merge into control systems that learn, adapt and ex-

ploit an internal model of the world to achieve at best the regulation goal. In

the first chapter of this third part a general framework is proposed to deal with

nonlinear continuous-time regulation problems, and the concept of “class-type”
internal models is introduced to address the structural issues necessarily conceal-

ing behind the design of nonlinear internal models and feedback control. Some

cases studies that cover relevant classes of systems are then presented, showing

how the proposed framework can embrace state-of-art regulation problems and

more. The second chapter of this last part concerns, instead, a different approach

to output regulation for linear systems, where discrete-time identifiers are used

on top of a continuous-time internal model. In this framework the problem of

general multivariable adaptive linear regulation is solved, with a design that, up

to the author’s knowledge, is the first boasting such level of generality.

Overall, the approach to adaptive regulation pursued in this thesis is based

on an exquisite mixture of control and identification, all framed in the formal

framework of control theory and where the key to success has to be sought in the

synergistic design of the different components.
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Part I

Output Regulation
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1
Output Regulation of Linear and

Nonlinear Systems

In control theory the world is described in terms of systems of differential

equations, whose solutions model the time evolution of the different phe-

nomena that take place. The systems that populate the world are defined

by an internal state, containing all the information sufficient to describe the sys-

tem. The time evolution of the state may be affected by system’s inputs and may

be observed by the rest of the world throughout system’s outputs. Output reg-

ulation is the branch of control theory that studies how, given a system, some

of its inputs (the control inputs) can be chosen to make some of its outputs (the

regulated outputs) to follow given reference behaviors, despite the presence of ex-

ogenous antagonist inputs (the disturbances) affecting the system and without the

perfect knowledge of the controlled system itself. The act of making the regu-

lated outputs to follow the reference behaviors is called tracking, eliminating the

effect of disturbances from the regulated outputs is called disturbance rejection.

Output regulation refers thus to the simultaneous ability of tracking references
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while rejecting disturbances. the ability to achieve that goal “without the perfect
knowledge of the controlled system” is a fundamental property (real-world systems

cannot be known perfectly), which is referred to as robustness.
In line with the control theoretical vision of the world, the most interesting

class of output regulation problems is those where the references and the dis-

turbances are generate by an autonomous (i.e. without inputs) system, which is

generally referred to as the exosystem. The exosystem thus describes the struc-
ture of the outside world the controlled system interacts with. Locating the exact

birth of output regulation is not an easy task, though the first significant ex-

ample can be attributed to the famous PID (Proportional Integral Derivative)

controller, developed in the 30s and celebrated for its robustness property. The

PID is currently used to cope with constant references and disturbances, and its

robustness is a consequence of the fact that the integral term embeds an internal
model of the process that generates all the possible constant signals1, that is, an

integrator. It can be shown, indeed, that when the PID is applied, while the pro-

portional and derivative terms vanish with the regulation error, the integral term

converges to the ideal constant input (called the error-zeroing input) that makes

invariant the set in which perfect tracking takes place, and this convergence is

not affected by the plant’s parameters as far as stability is not broken (and this

is, in essence, robustness). This fact knew a rigorous generalization to arbitrary

linear controlled systems and exosystems (thus to arbitrary references and dis-

turbances described by finite combinations of harmonics) in the mid 70s, in the

seminal works of Francis and Wonham (Francis and Wonham, 1975, 1976; Fran-

cis, 1977). This result, known under the name of Internal Model Principle, is one

of the most popular principles in control theory, and informally states that every
linear regulator that solves the problem of linear output regulation robustly, neces-
sarily includes an internal model of the system that generates the ideal error-zeroing
input.

Interesting enough, for linear systems the aforementioned system that pro-

duces the error-zeroing input coincides with the exosystem (or, more precisely,

1As a matter of fact, if we define the system

η̇(t) = e(t),

where e(t) denotes the regulation error, then the integral term of the PID can be written as
kIη(t), for some kI ∈ R. When perfect tracking holds (i.e. e(t) = 0), then η fulfills η̇(t) = 0,
whose solutions are constants ranging in the whole R, as so does η(0).
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with its largest cyclic component). Although incredibly powerful and elegant,

this perfect matching between exosystem and internal model inexorably breaks

down as soon as nonlinearities come into play. As we will see in the next chap-

ters, the knowledge of the exosystem is far to be sufficient to fit into a nonlinear

internal model principle even for very simple systems. The goal of this chap-

ter is to introduce the reader to the state of the art of output regulation of linear

and nonlinear systems, presenting the main results and control designs currently

available in the literature.

1.1 Output Regulation of Linear Systems

This section is dedicated to a brief recap of the output regulation for linear sys-

tems, as it is instrumental to understand and interpret the nonlinear framework.

For brevity, we give here a simple reinterpretation of the main results of Francis,

Wonham and Davison (Francis and Wonham, 1975, 1976; Francis, 1977; Davi-

son, 1976), sometimes sacrificing rigor and generality to underline and magnify

the features of interest.

1.1.1 The Steady State of a Linear System

As a preliminary step we present here a characterization of the concept of steady
state for linear systems. We consider a cascade of the form (we omit here and

everywhere else the time dependency when not strictly necessary)

ẇ = Sw

ż = Fz + Σw,
(1.1)

of the system w onto the system z, where w takes values in Rnw , z ∈ Rnz , and

where S, F and Σ are matrices of appropriate dimensions with elements in R.

The cascade (1.1) is characterized by the following proposition.

Proposition 1.1. If and only if σ(S) ∩ σ(F ) = ∅, there exists Π ∈ Rnz×nw such that
the set

graph Π =
{

(w, z) ∈ Rnw+nz : z = Πw
}

= Im

(
Inw

Π

)
(1.2)
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is forward invariant2 for (1.1).

Proof. If and only if σ(S) ∩ σ(F ) = ∅, the Sylvester equation

ΠS − FΠ = Σ, (1.3)

admits a unique solution Π ∈ Rnz×nw . Let Π in (1.2) be the solution to (1.3). To

prove sufficiency, let v ∈ Im col(Inw ,Π). Then, for some w ∈ Rnw , v = col(w,Πw),

and using (1.3) yields(
S 0

Σ F

)
v =

(
Sw

Σw + FΠw

)
=

(
Sw

ΠSw

)
=

(
Inw

Π

)
Sw,

which, for the arbitrariness of v, proves that(
S 0

Σ F

)(
Inw

Π

)
⊂ Im

(
Inw

Π

)
.

Hence, forward invariance of (1.2) follows by (Basile and Marro, 1992, Thm.

3.2.4). To prove necessity, suppose that graph Π is forward invariant, and pick

an initial condition (w0, z0) ∈ graph Π. Then z0 = Πw0, and the unique solution

(w, z) to (1.1) originating at (w0, z0) necessarily satisfies z(t) = Πw(t). Hence, z

also fulfills

ż = Πẇ = ΠSw

and

ż = Fz + Σw = (FΠ + Σ)w.

From the arbitrariness of w, the latter equations yield (1.3), which implies σ(S)∩
σ(F ) = ∅. �

The result of Proposition 1.1 is particularly interesting when S is simply sta-

ble and F Hurwitz (see the notation section for the terminology). As a matter of

fact, if we define the error variable

z̃ := z − Πw,

2See Section A.2.
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then, in view of (1.3), we obtain

˙̃z = Fz + Σw − ΠSw = F z̃ + (FΠ + Σ− ΠS)w = F z̃,

i.e. the set (1.2) is also globally exponentially stable. As a consequence, asymp-

totically the state z(t) will approach the signal Πw(t), and we write, symbolically,

z(t)→ Πw(t). (1.4)

If S is simply stable, then w(t) is a linear combination of a finite number of

harmonics and Π always exists since σ(S) ∩ σ(F ) = ∅ trivially holds. In this

case the interpretation of (1.4) thus coincides with the usual notion of the steady
state of a linear system: a stable linear system excited by a linear combination of
harmonics, asymptotically oscillates as a linear combination of the same harmonics.

The function t 7→ Πw(t) represents, indeed, the forced response of the linear

system z and, in this respect, it is worth noting that Π might exist as well also if

F is not Hurwitz, as in view of Proposition 1.1 it suffices to have σ(S)∩σ(F ) = ∅
(thus, in particular, if F has all the eigenvalues with positive real part, Π will

always exist). This means that, if (1.1) is properly initialized in the set (1.2), the z

subsystem can have non-trivial bounded trajectories even if arbitrarily unstable.

Finally, we also underline how the necessity of the condition σ(S)∩ σ(F ) = ∅
for the existence of a steady state and for its attractiveness has the nice interpre-

tation of a non-resonance condition: if S and F share some eigenvalue, then, even

if both matrices are stable, there exist solutions that oscillate with an amplitude

increasing with time, and such trajectories explode to infinity, thus violating in-

variance of graph Π.

1.1.2 The Internal Model Principle

We present in this section a slightly informal adaptation of the linear internal

model principle. For further details, and a full rigorous treatise, the reader is

referred to (Francis and Wonham, 1975, 1976; Francis, 1977).

In this section we will consider a plant3 described by linear equations of the

3We will often use the historical term “plant” to refer to the controlled system.

11



form
ẋ = Ax+Bu+ Pw

y = Cx+Qw
(1.5)

with state x ∈ Rn, control input u ∈ Rm, measured output y ∈ Rny and with w ∈
Rnw that represent the exogenous signals acting on the system, such as references

and disturbances. The matrices A,B, P, C,Q are real matrices of appropriate

dimension. We associate to (1.5) the regulation errors

e := Cex+Qew ∈ Rne (1.6)

defined as the difference of the regulated outputs Cex and the references −Qew,

being Ce ∈ Rne×n and Qe ∈ Rne×nw such that ImQe ⊆ ImCe. Finally, we make the

assumption that the exogenous input w is generated by a linear exosystem of the

form

ẇ = Sw. (1.7)

In this framework, the (linear) output regulation problem reads as follows: find

a regulator of the form
ẋc = Acxc +Hcy

u = Kcxc +Kyy,
(1.8)

with xc ∈ Rnc for some nc ∈ N and Ac, Hc, Kc, Ky matrices of appropriate dimen-

sion, such that the closed-loop system (1.5), (1.7), (1.8) satisfies:

1. The origin of the subsystem (x, xc) with w = 0 is asymptotically stable.

2. Each solution to the closed-loop system (with w any solution to (1.7)) satis-

fies

lim
t→∞

e(t) = 0. (1.9)

Let z := (x, xc) and nz := n+ nc. Then, by defining

F :=

(
A+BKyC BKc

HcC Ac

)
Σ :=

(
P +BKyQ

HcQ

)

we obtain a cascade of the form (1.1). Let us assume that S is simply stable,

and suppose that the regulator xc solves the output regulation problem. Then

condition 1 implies that F is Hurwitz, so as there exits Π ∈ Rnz×nw satisfying
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the Sylvester equation (1.3), whose graph is asymptotically stable for the closed-

loop system (w, z). Let us partition Π as Π = col(Πx,Πc), with Πx ∈ Rn×nw

and Πc ∈ Rnc×nw . The Sylvester equation (1.3) implies that, by letting Γ :=

KcΠc +KyCΠx +KyQ, then necessarily

ΠxS = AΠx +BΓ + P (1.10)

holds. Condition 2, namely e(t)→ 0, also implies that

CeΠx +Qe = 0. (1.11)

Equations (1.10)-(1.11) are called the regulator equations, and what said until now

can be rephrased as: if xc solves the problem of output regulation then necessarily
there exists (Πx,Γ) ∈ Rnx×nw ×Rm×nw solving the regulator equations (1.10)-(1.11).

Now, the signal Γw(t) has to be interpreted as the ideal error-zeroing input,
i.e. the feedforward action that makes the set in which e vanishes invariant. By

definition of Γ, and by invariance of graph Π, if the regulator xc solves the output

regulation problem, then necessarily it must be able to generate all the possible

outputs u? of the system
ẇ = Sw

u? = Γw.
(1.12)

Although from the definition of Γ we have that, in principle, u? could be gener-

ated by only using the static component Kyy, this property would be lost at front

of any slight variation of any of the plant’s matrices from the nominal value used

to tune Ky (for further detail the reader is referred to (Francis, 1977)). Thus, if

a robust design is sought (i.e. a design that is still valid if some of the matrices

slightly deviate from the nominal value), then necessarily u? must be given by

the term Kcxc, and Kyy is rather to be compensated. As a consequence, the reg-

ulator xc must embed a subsystem that generates all the solutions to (1.12), and

this property is essentially what is known as the internal model principle.

1.1.3 The Linear Regulator

We present here a re-adaptation of the linear regulator originally proposed by

Davison in (Davison, 1976). The reader is referred to that paper for further de-
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tails. We consider the same class of systems (1.5), (1.6), (1.7), and from now on

we will assume the following:

Assumption 1.1. The following holds:

1. S is simply stable.

2. The pair (A,B) is stabilizable, the pair (C,A) is detectable and the following
non-resonance condition holds:

rank

(
A− λI B

Ce 0

)
= n+ nx, ∀λ ∈ σ(S).

3. The regulation error e belongs to the measured outputs y, i.e. we can write

C =

(
Ce

Ca

)
, Q =

(
Qe

Qa

)

for some Ca ∈ R(ny−ne)×n and Qa ∈ R(ny−ne)×n.

Remark 1.1. The assumption of S being stable is not necessary, unless bound-

edness of the closed-loop trajectories is explicitly included in the problem state-

ment. As a matter of fact, the linear regulation theory would equally work also if

S contains unstable modes, with the constraint (1.9) possibly implying the exis-

tence of unbounded closed-loop trajectories. Nevertheless, to be consistent with

the nonlinear regulation theory, and with the forthcoming adaptive results, we

decided to keep boundedness of w(t) as a standing assumption from the begin-

ning. 4

We augment the plant with the system

η̇ = Φη +Ge, (1.13)

with state η ∈ Rnη , being nη := nenw, and with

Φ :=



0 Ine 0 0 · · · 0

0 0 Ine 0 · · · 0
... . . . ...

0 Ine

−c0Ine −c1Ine · · · −cnw−1Ine


G :=



0

0
...

0

Ine
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where all the 0 block are of dimension ne and the coefficients ci are such that the

characteristic polynomial of S reads as

pS(λ) = λnw + cnw−1λ
nw−1 + · · ·+ c1λ+ c0. (1.14)

Remark 1.2. We observe that equation (1.14), expressing the fact that the charac-

teristic polynomial of the exosystem matrix S coincides with those of Φ, is what

confer the internal model property on the system (1.13). In fact, (1.14) implies that

any mode of the exosystem is also a mode of the system (1.13) when e = 0. 4

We refer to the system η as the internal model unit, as up to a change of coor-

dinates, and with e = 0, it coincides with ne copies of the exosystem (1.7).

Directly from point 2 of Assumption 1.1 it follows that the cascade (x, η) is

stabilizable. We then define a second system whose role is to stabilize the cascade

(x, η), when w = 0. For, we let nξ ∈ N and we define the system

ξ̇ = Aξξ +Hηη +Hyy

u = Kξξ +Kηη +Kyy,
(1.15)

with state ξ ∈ Rnξ , and where Aξ, Hη, Hy, Kξ, Kη, Ky are real matrices of appro-

priate dimension such that the matrix

F :=

A+BKyC BKη BKξ

GCe Φ 0nη×nξ
HyC Hη Aξ

 (1.16)

is Hurwitz.

The regulator xc := (η, ξ), depicted in Figure 1.1, has the form (1.8), and the

following proposition shows that it solves the output regulation problem for the

plant (1.5).

Proposition 1.2. Let Assumption 1.1 be fulfilled, then the regulator (1.13), (1.15)

solves the output regulation problem relative to the system (1.5), (1.6), (1.7).

Proof. By letting z := (x, η, ξ) and nz := n + nη + nξ, the closed-loop system has

the form (1.1), with F given as in (1.16) and Σ = col(P + BKyQ, GQe, HyQ).

As F is Hurwitz and S is simply stable, Proposition 1.1 yields the existence of a

matrix Π ∈ Rnz×nw such that graph Π is forward invariant for (w, z). Let partition
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ẋ = Ax+Bu+ Pw

e = Cex+Qew

ya = Cax+Qaw

ẇ = Sw

η̇ = Φη +Ge
e

ξ̇ = Aξξ +Hηη +Hyy
u = Kξξ +Kηη +Kyy,

ya

η
u

Figure 1.1: Block-diagram of the closed-loop system.

Π as Π = col(Πx,Πη,Πξ), with Πx ∈ Rn×nw , Πη ∈ Rnη×nw and Πξ ∈ Rnξ×nw , and let

Πe := CeΠx +Qe. Af F is Hurwitz, graph Π is also globally attractive and, hence,

it suffices to show that Πe = 0. Equation (1.3), in particular, gives

ΠηS = ΦΠη +GΠe.

Let us further partition Πη as Πη = col(Πη1 ,Πη2 , . . . ,Πηnw ), with the matrices Πηi

of appropriate dimension. From the structure of Φ, we obtain

ΠηiS = Πηi+1
, ∀i = 1, . . . , nw − 1, (1.17)

and

ΠηnwS =
nw∑
i=1

ci−1Πηi + Πe. (1.18)

Further developing (1.17) yields

Πηi = Πη1S
i−1, ∀i = 2, . . . , nw,
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and using (1.18) we obtain

Πη1S
nw = ΠηnwS =

nw∑
i=1

ci−1Πη1S
i−1 + Πe = Πη1

(
nw∑
i=1

ci−1S
i−1

)
+ Πe.

Solving for Πe yields

Πe = Πη1

(
Snw + cnw−1S

nw−1 + · · ·+ c1S + c0Inw
)
. (1.19)

In view of (1.14) and the Cayley-Hamilton Theorem, (1.19) implies

Πe = 0,

and the claim follows. �

We close the section, by briefly recalling the main properties of the linear

regulator (1.13), (1.15):

P1 Robustness: the linear regulator is structurally robust, namely output regu-

lation is achieved with the same regulator for any choice of P and Q and for

any perturbation of A, B and C that does not destroy closed-loop stability

and linearity. In particular, if A, B, and C are subject to parameter uncer-

tainties, then if closed-loop stability holds for a nominal triple (A,B,C), it

also holds for sufficiently small perturbations of it. Moreover, we observe

that P , Q, the solutions (Πx,Γ) of the corresponding regulator equations

(1.10)-(1.11), and the steady-state matrix Π, in general play no role in the

regulator synthesis, and the internal model unit depends exclusively on the

exosystem. This, in turn, allows us to conclude that, as long as closed-loop

stability is preserved, no perturbation of (A,B,C) can break the asymptotic

property of e = 0. For a more formal and in-dept discussion of robustness,

the reader is referred to Chapter 3.

P2 Necessity of the exosystem: on the other hand, the perfect knowledge of

the exosystem is a key requirement to ensure output regulation. The lin-

ear regulator gives, indeed, no robustness with respect to perturbations of

the exosystem, in the sense that any arbitrarily small perturbation of S will

reflect in a non-zero asymptotic error. We also observe that knowing the

17



exosystem does not mean knowing w(t), yet only knowing the class of sig-
nals to which the ideal error-zeroing input u? = Γw(t) will belong to. This fact

will be a key observation in the adaptive framework presented in Chapter

6.

P3 Independence of η from ξ: while the design of the stabiliser depends on

the internal model unit, as it is supposed to stabilize the cascade (x, η), the

design of the internal model unit η can be done beforehand and indepen-

dently on the stabiliser ξ (indeed η only depends on the exosystem). As we

will see in a while, this property that permits a sequential design of the reg-

ulator is inexorably lost if a general nonlinear regulator is sought. Linearity

is of course decisive in guaranteeing this independence; as a matter of fact,

while the matrices Φ and G do not depend on the definition of (1.15), the

matrices Π and Γ do. Linearity of the exosystem and of the plant, though,

imply that regardless what stabilizer is chosen, the ideal error-zeroing in-

put Γw will anyway satisfy (1.7), thus making the dependency on ξ fading

away.

P4 Multivariableness: The approach is structurally multivariable with the

only requirement (implicit in the non-resonance condition of Assumption

1.1) that the number of inputs is larger or equal than the number of regu-

lation errors. The multivariable case naturally motivates a regulator struc-

ture in which the internal model post-processes the error (see Figure 1.2),

namely internal models are put in cascade to the plant with the errors as

input.

Plant Int. Model

Stabilizer

e

u

η

Figure 1.2: Post-Processing Internal Model.
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1.2 Output Regulation of Nonlinear Systems

Output regulation of nonlinear systems is nowadays an active and definitely

open research field. This section is devoted to present, in simplest possible terms,

a state of the art of the most consolidated approaches to nonlinear output regu-

lation.

1.2.1 The Framework of Output Regulation

We consider continuous-time nonlinear systems described by differential equa-

tions of the form
ẋ = f(w, x, u)

y = h(w, x),
(1.20)

with state x ∈ Rn, control input u ∈ Rm, measured outputs y ∈ Rny and with

w ∈ Rnw that represents exogenous signals, such as references to be tracked and

disturbances to be rejected. As a standing assumption, in the whole chapter we

suppose that w is generated by an exosystem of the form

ẇ = s(w). (1.21)

Associated to (1.20), there is a set of ne > 0 regulation errors defined as

e = he(w, x), (1.22)

with he : Rnw × Rn → Rp, that represent the errors between the regulated vari-

ables and the corresponding references, or selected state variables on which the

steady state effect of the exogenous variables should be eliminated. As a second

standing assumption, we assume e to belong to the set of measurable outputs.

Namely, we suppose that h(w, x) = col(he(w, x), ha(w, x)), where ya = ha(w, x)

represents some additional measurements that are not required to vanish in

steady state but that can be useful for stabilization or other purposes. All the pre-

vious functions are assumed to be sufficiently smooth with a degree of smooth-

ness that will be clear from the context.

In this framework we define the problem of ε-approximate output regulation

19



as follows: find an output feedback regulator of the form

ẋc = ϕ(xc, y)

u = γ(xc, y),
(1.23)

possibly ε-dependent, with state xc ∈ Rnc , such that:

P1 Stability: The origin of the interconnection (1.20), (1.23) with w = 0 is

asymptotically stable with a domain of attraction X ×Xc ⊂ Rn × Rnc that

is an open neighborhood of the origin.

P2 Boundedness: There exists W ⊂ Rnw such that the closed-loop system

(1.20), (1.21), (1.23) is uniformly bounded from4 W ×X ×Xc.

P3 Regulation: Each solution to the closed-loop system (1.20), (1.21), (1.23)

originating in W ×X ×Xc satisfies

lim sup
t→∞

|e(t)| ≤ ε.

If X coincides with Rn, we say that the problem is solved globally, otherwise we

say that the problem is solved locally. If given each X ⊂ Rn it is possible to

find a possibly X-dependent regulator of the form (1.23) that solves the problem

in X , we say that the problem is solved semi-globally. If ε = 0, we refer to the

problem as the asymptotic output regulation problem, and a regulator that solves

it is called an asymptotic regulator or it is said to achieve asymptotic regulation for

(1.20), (1.21). Finally, we talk about the practical regulation problem whenever,

given any ε > 0, there exists a regulator of the form (1.23) that solves the ε-

approximate output regulation problem. Practical regulation is subject to the

same taxonomy in terms of local, global and semi-global terms.

1.2.2 A Brief Overview of Nonlinear Regulation: From Local to

(Semi-)Global

Nonlinear versions of the internal model principle have at first appeared in a

local setting in the seminal papers (Isidori and Byrnes, 1990; Huang and Rugh,

4Namely there exists a compact set M ⊂ Rnw+n+nc and a τ > 0 such thatRτ(w,x,xc)
(W ×X ×

Xc) ⊂M .
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1990; Huang and Lin, 1994). In (Isidori and Byrnes, 1990), in particular, the au-

thors presented necessary and sufficient condition for local regulation and pro-

vided an extension of the concept of steady state to nonlinear systems based

on the center manifold theory (Khalil, 2002). The early 90s knew a quite large

proliferation of local approaches to nonlinear output regulation, mainly based

on linearization (Huang and Lin, 1994; Huang, 1995; Byrnes et al., 1997a) or

feedback-linearization (Khalil, 1994), and with an ideal error-zeroing input that,

however, was still supposed to be generated by a linear system (see also (Byrnes

et al., 1997b) for a complete treatise of structurally stable local regulation in

this setting and (Marconi and Isidori, 2000) for a geometric perspective and for

a mixed design of feedforward actions and internal models). The late 90s and

early 2000s, instead, knew a considerable trend toward the extension of the local

approaches to global (Khalil, 1998; Serrani and Isidori, 2000) and semi-global

(Serrani et al., 2001; Isidori et al., 2002; Ding, 2003; Huang and Chen, 2004)

settings. All these designs, though, were based essentially on the same linear-

ity assumption of the internal model (Huang, 2001). A purely nonlinear theory

for non-local output regulation appeared only in 2003, in the pioneering papers

(Byrnes and Isidori, 2003, 2004), where the concept of nonlinear steady state

and a purely nonlinear internal model principle have been re-framed in the con-

text of non-equilibrium theory (Byrnes and Isidori, 2002; Byrnes et al., 2003).

The “Byrnes-Isidori” high-gain design proposed in (Byrnes and Isidori, 2004), in

particular, is one of the most celebrated regulator, which knew several further

developments (Delli Priscoli et al., 2006; McGregor et al., 2006; Isidori et al.,

2012; Forte et al., 2017), and which is still nowadays playing a key part in recent

advances. Few years later another milestone design, the Marconi-Praly-Isidori

regulator, appeared in (Marconi et al., 2007), leveraging the theory of nonlinear

Luenberger observers (Andrieu and Praly, 2006). This latter approach, less con-

structive yet more general than the Byrnes-Isidori one, has been complemented

in (Marconi and Praly, 2008a) in a constructive practical regulation framework,

and has been the main subject to recent extensions to some classes of multi-

variable nonlinear systems (Astolfi et al., 2013; Wang et al., 2016, 2017; Pyrkin

and Isidori, 2017). Another construction (that is referred here as the Chen-

Lu-Huang regulator), perhaps more general than the Byrnes-Isidori regulator,

even though applied to more restrictive class of plants, was proposed in (Lu and

Huang, 2015), based on the concept of steady-state generator (Huang and Chen,
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2004; Chen and Huang, 2005). Finally it is worth mentioning the quite recent

approach pursued in (Astolfi et al., 2015; Astolfi and Praly, 2017), where the reg-

ulator follows a (local) design paradigm closer to the linear perspective. We will

get back to these regulators in the chapters 2 and 3, when talking about post-

processing regulators and robustness, and we will instead give more technical

details about the works (Byrnes and Isidori, 2003; Marconi et al., 2007) in the

following section.

1.2.3 The Byrnes-Isidori and the Marconi-Praly-Isidori Regula-

tors

In this section we briefly present the two main approaches to nonlinear regu-

lation designs that have influenced this thesis most strongly. Contrary to the

linear setting, the nonlinear regulation theory has mainly developed around

Single-Input-Single-Output (SISO) systems, and designs for multivariable plants

usually consist in direct extensions of results originally given for the SISO case.

As done in the original works, in this section we thus present the results for

SISO nonlinear systems. For the related extensions to multivariable systems the

reader is referred to Section 1.2.4 thereafter, while for a more detailed treatise,

the reader is referred to the original papers (Byrnes and Isidori, 2003, 2004; Mar-

coni et al., 2007; Marconi and Praly, 2008a; Isidori, 2017).

The Framework

We restrict the focus on a subclass of nonlinear systems (1.20),(1.21) obtained

with u ∈ R and by partitioning the state x as x = (z, e), with z ∈ Rnz , nz := n− 1

and e ∈ R, where z and e satisfy following equations

ẇ = s(w)

ż = f(w, z, e)

ė = q(w, z, e) + b(w, z, e)u

y = e,

(1.24)

for some smooth functions f : Rnw+nz+1 → Rnz and q, b : Rnw+nz+1 → R. The state

e coincides with the regulation error, and it is the only output of the system.

Systems having the form (1.24) are called (SISO) normal forms. We assume in
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the following that b is bounded away from zero and it is sign-definite, i.e. there

exists b > 0 such that b ≤ b(w, z, e) in the whole state space. We shall also assume

that the initial conditions w(0) of the exosystem range in a compact invariant set

W ⊂ Rnw . It can be shown (see Byrnes and Isidori, 2003, Sec. V) that the system

(1.24) possesses a well-defined zero dynamics given by the system

ẇ = s(w)

ż = f(w, z, 0).
(1.25)

Common to all the three approaches there is the standing assumption of mini-
mum phase. This assumption comes in four main versions detailed below:

Assumption 1.2. (Weak Minimum Phase) There exists a compact set A ⊂ W × Rnz

which is locally asymptotically stable (LAS) for (1.25).

Assumption 1.3. (Weak Minimum Phase + LES) Assumption 1.2 holds with A that
is also locally exponentially stable.

Assumption 1.4. (Strong Minimum Phase) There exists a compact setA ⊂ W ×Rnz

such that the (w, z) subsystem of (1.24) is input-to-state stable (ISS) with respect to
A and relatively to the input e, namely there exist β ∈ LK and ρ ∈ K such that each
solution to (1.25) satisfies

|(w(t), z(t))|A ≤ β(|(w(0), z(0))|A, t) + ρ(|e|[0,t)). (1.26)

Assumption 1.5. (Strong Minimum Phase + Linear ρ) Assumption 1.4 holds with ρ
linear.

Remark 1.3. Clearly, Assumption 1.5 =⇒ Assumption 1.4 =⇒ Assumption

1.3 =⇒ Assumption 1.2. Nevertheless, there is a quite standard method that,

if the regulator achieve some given properties, allows to extend results proved

under Assumptions 1.5 or 1.4 to cases in which, respectively, only Assumptions

1.3 or 1.2 hold. This “standard machine” is based on the key observation that lo-

cal asymptotic stability implies local ISS (i.e. that Assumption 1.4 holds locally).

Thus, if the regulator can be tuned to ensure that the state e converges to an ar-

bitrarily small neighborhood in an arbitrarily small time, despite the (bounded)

value of z, then for initial conditions of (w, z) close enough to A, the fast tran-

sitory of e is not able to make (w, z) exit the set in which Assumption 1.4 holds,
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and the same argument used to prove the result under this latter assumption can

be used. Since LES also implies Assumption 1.5 locally, then the same arguments

can be translated to Assumptions 1.3 and 1.5. 4

Remark 1.4. Together with the SISO limitation, the assumption of minimum

phase is the main trait making abrupt the passage from the linear regulation

theory to the nonlinear counterpart. For the regulators presented in this sections,

the minimum phase assumption is asked to support a stabilization mechanism

strongly oriented towards “high-gain” techniques, for which a systematic theory

to deal with zero dynamics that are unstable relative to a set larger than the

origin does not exist yet. 4

The Byrnes-Isidori Regulator

The Byrnes-Isidori regulator has originally be presented in (Byrnes and Isidori,

2004). A semi-global practical result was given under Assumption 1.2, which

becomes asymptotic whenever Assumption 1.3 holds. Given a compact set Z ×
E ⊂ Rnz+1 of initial conditions, the regulator builds on the following standing

assumption:

Assumption 1.6. With Hw denoting the exosystem (1.21), the following hold:

1. ΩHw(W ) =
⋃
w∈W ΩHw(w),

2. The positive orbit of W × Z under the flow of (1.25) has compact closure and
A := Ω(1.25)(W × Z) ⊂ int(W × Z).

It is clear from (1.24) that the set of the possible ideal error-zeroing control

law are given by the functions5:

u? := −q(w, z, 0)

b(w, z, 0)
(1.27)

as (w, z) range in the set of solutions to (1.25) originating inA. A last assumption

is required, that reads as follows:

5In this respect, we notice that the result in (Byrnes and Isidori, 2004) was given with b = 1.
Nevertheless the result can be easily shown to apply to the case considered here.
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Assumption 1.7. There exists d ∈ N and φ : Rd → R, such that, for each solution6

(w, z) ∈ S(1.25)(A), the function u?(t) defined in (1.27) fulfills

u?(d) = φ
(
u?, u̇?, . . . , u?(d−1)

)
.

Remark 1.5. Assumption 1.7 extends the linearity assumption ubiquitous in the

previous frameworks (Huang, 2001) in which φ were a linear map. It asks that

the constrained system

ẇ = s(w)

ż = f(w, z, 0)
(w, z) ∈ A (1.28)

with output u? = −q(w, z, 0)/b(w, z, 0) is immersed into a system of the form

υ̇i = υi+1, i = 1, . . . , d− 1

υ̇d = φ(υ1, . . . , υd)

u? = υ1,

(1.29)

in the sense that each output produced by (1.28) can be reproduced by (1.29).

Checking such assumption requires the knowledge of all the solutions to (1.28),

and thus it might be impractical. Nevertheless, under the quite common (see

Section 1.2.4) further assumption that, for some sufficiently smooth map π :

W → Rnz , A = graph π, the above immersion condition is equivalent to ask

that the function c(w) := −q(w, π(w), 0)/b(w, π(w), 0) satisfy

Lds(w)c(w) = φ(c(w), . . . , Ld−1
s(w)c(w)),

thus making Assumption 1.7 a property of the exosystem, and creating a direct

link to the linear case. 4

We define the map τ : A → Rnw × Rnz as:

τ1(w, z) = −q(w, z, 0)

b(w, z, 0)
, τi(w, z) =

∂τi−1(w, z)

∂(w, z)

(
s(w)

f(w, z, 0)

)
, i = 2, . . . , d,

then the Byrnes-Isidori regulator is a system with state η ∈ Rd satisfying the

6We recall that wheneverF denotes a system and X a set, SF(S) denotes the set of solutions
toF originating in X (see the notation section).
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following equations
η̇ = Aη +Bφs(η) +Gv

u = Cη + v

v = −ke,
(1.30)

where (A,B,C) is a triplet in prime form of dimension d (see the Notation sec-

tion), φs : Rd → R is any Lipschitz function that agrees with φ on the set τ(A),

k > 1 is a control parameter, G := col(c1g, c2g
2, . . . , cdg

d), being g > 1 a sec-

ond control parameter, and (c1, . . . , cd) ∈ HC(d). The auxiliary input v = −ke is

a high-gain stabilizing component, while Cη = η1 must asymptotically generate

u?. The regulator (1.30) is characterized by the following result, which is adapted

from (Byrnes and Isidori, 2004, Prop. 1).

Proposition 1.3. (Byrnes and Isidori, 2004) Let W and Z be compact, and suppose
that Assumptions 1.2, 1.6 and 1.7 hold, the first with a domain of attraction including
W × Z. Pick any compact sets H ⊂ Rd and E ⊂ R. Then, there exist g? > 0 and,
for every g ≥ g? and ε > 0, a k?(g, ε) > 0 such that, if g ≥ g? and k ≥ k?(g, ε),
the positive orbit of W × Z × E × H under the closed-loop system (1.24), (1.30) is
bounded and there exists t̄ such that |e(t)| ≤ ε for all t ≥ t̄. If, in addition, A is also
locally exponentially stable for (1.25), then limt→∞ e(t) = 0.

The Marconi-Praly-Isidori Regulator

The Marconi-Praly-Isidori regulator was originally introduced in (Marconi et al.,

2007), under Assumption 1.2 and with b(w, z, e) = 1 (though, the results extend

with minor modification). The result is still semi-global, i.e. the initial condi-

tions of (1.24) are supposed to range in a given arbitrary compact set Z × E ⊂
Rnz+1. The regulator has state η ∈ Rd, d ∈ N and is described by equations of the

form
η̇ = Fη +Gu, η(0) ∈M
u = γ(η) + v

v = κ(e)

(1.31)

where (F,G) ∈ Rd×d × Rd×1, M ⊂ Rd, γ : Rd → R and κ ∈ R → R are all to

be fixed. Without any further assumptions (but with the functions s, f, q and b

sufficiently regular) the result of (Marconi et al., 2007) reads as follows.
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Theorem 1.1. (Marconi et al., 2007) There exists d ∈ N, a controllable pair (F,G) ∈
Rd×d × Rd×1, a continuous function γ : Rd → R and, for any compact set M ⊂ Rd, a
continuous function κ ∈ R → R, such that the regulator (1.31) solves the problem of
asymptotic output regulation for (1.24).

The stabilizing action v = κ(e) is in general nonlinear, and can be taken of

the form

κ(e) = −sign(e)α(|e|),

with α ∈ K∞. Furthermore, if Assumption 1.2 is substituted by Assumption 1.3,

then κ can be taken linear (Marconi et al., 2007, Thm. 3), i.e. so that

v = −ke

for large enough k > 0. Moreover, the same linear choice will guarantee practical

regulation when only Assumption 1.2 holds (Marconi et al., 2007, Thm. 2).

Remark 1.6. We observe that the structure of the Byrnes-Isidori internal model

unit (1.30) has the same form of usual high-gain observers (Khalil and Praly,

2013), where the output injection term is substituted by the stabilizing action v.

In the same way, the Marconi-Praly-Isidori regulator (1.31) has the same form

of the nonlinear Kazantzis-Kravaris/Luenberger observers (Andrieu and Praly,

2006), where again the output injection term is substituted by the stabilizing ac-

tion v. This is obviously not a coincidence, and the reason is that in a certain

time-scale the two internal model unit act as an observer for the process gener-

ating the ideal error-zeroing control law u?, and v is used as a proxy variable for

the output injection term. 4

1.2.4 Extensions and Further Developments

In the years after (Marconi et al., 2007) was published, the Marconi-Praly-Isidori

was subject to a number refinements: in (Marconi and Praly, 2008a) several exact

and approximate expressions of γ have been proposed in a complete framework

in which practical regulation can be solved. In (Delli Priscoli et al., 2008) the

same design was applied in presence of redundant measurements, in (Marconi

and Praly, 2008b) several issues concerning the design of the stabilizing action

κ have been considered while in (Isidori et al., 2010) sufficient conditions to be

27



allowed to take γ Lipschitz have been given. In (Isidori and Marconi, 2012) the

regulator was “shifted” to the regulation error, i.e. instead of v, the internal

model’s input was taken as e (we will get back to this issue in Chapter 2). The

Marconi-Praly-Isidori regulator was also extended to some classes of multivari-

able nonlinear systems: a first tiny extension of (Isidori and Marconi, 2012) to

multivariable square normal forms was given in (Astolfi et al., 2013), while in-

vertible multivariable systems have been considered in (Wang et al., 2016, 2017;

Pyrkin and Isidori, 2017).

The Byrnes-Isidori regulator was the subject to extensions mainly in adaptive

and robust contexts. In this respect, it is worth citing (Delli Priscoli et al., 2006),

where the regulator has been augmented with a basic adaptation mechanism,

(Isidori et al., 2012), where immersion arguments building on Assumption 1.7

have been used to deal with uncertain oscillators without adaptation (an exten-

sion of this will be the subject of Section 3.2), and (Forte et al., 2017), where a new

adaptive framework based on hybrid identification schemes has been proposed.

For what concerns extensions to multivariable systems, up to our knowledge

only the “trivial” case of square multivariable normal forms has been considered

in (McGregor et al., 2006).

Constructive Designs and the Nonlinear Regulator Equations

Although the Marconi-Praly-Isidori regulator is more general than the Byrnes-

Isidori one, in the sense that existence results are given without the immersion

Assumption 1.7, the Byrnes-Isidori design is way more “constructive”. As a mat-

ter of fact, if asymptotic regulation is sough, under Assumption 1.7 it is straight-

forward to design the regulator (1.30), whereas the is no clue, even under the

same assumption, in how to chose (1.31). When practical and approximate reg-

ulation problems are considered, moreover, the design of (1.30) is done at the

same way as the actual function φ of assumption 1.7 were known (Isidori et al.,

2012), whereas the constructive procedures for (1.31) proposed in (Marconi and

Praly, 2008a) are way more complex to implement, and demanding in terms of

computational workload.

Interesting enough, the majority of the constructive extensions of the two

regulators require a further common assumption, which is based on a nonlinear

version of the regulator equations (1.10)-(1.11), and that reads as follows:
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Assumption 1.8. There exist smooth maps π : dom π → Rnz and u? : domu? → R,
defined on open supersets domπ and domu? of W , solving the following equations

Lsπ(w) = f(w, π(w), 0)

0 = q(w, π(w), 0) + b(w, π(w), 0)u?(w).
(1.32)

Among the papers that require Assumption 1.8 we find almost all the design

before the papers (Byrnes and Isidori, 2003, 2004), that in addition ask u?(w) to

be generated by a linear system (Huang, 2001). Purely nonlinear designs that

require Assumption 1.8 are instead: the Chen-Lu-Huang regulator (Chen and

Huang, 2005; Lu and Huang, 2015), the (aforementioned) extensions (Isidori and

Marconi, 2012; Astolfi et al., 2013; Wang et al., 2016, 2017) of the Marconi-Praly-

Isidori regulator and the extensions (Isidori et al., 2012; Forte et al., 2017) of the

Byrnes-Isidori regulator.

Equations (1.32) are known as the nonlinear regulator equations (Isidori and

Byrnes, 1990) and they express the invariance of the set where e = 0. In this

respect, the function u? is the ideal error-zeroing control law, and in the output

regulation community it is referred to as the friend. The solution (π, u?) to (1.32)

plays a fundamental role and it typically complements one of the assumptions

1.2, 1.3, 1.4 or 1.5 by asking, in addition, that

A = graphπ, (1.33)

that in turn means that the asymptotic trajectories of the zero dynamics are of

the form

z(t) = π(w(t)).

This assumption is usually exploited for the design of the internal model unit,

as it is clear from (1.32) that u? is given by

u?(w) = −q(w, π(w), 0)

b(w, π(w), 0)
, (1.34)

i.e. the existence of π permits to express the error-zeroing control law as a func-

tion of exclusively w.

Although (1.34) simplifies considerably the problem, because it means that

the internal model has to generate signals that are only defined by the exosystem
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dynamics, it only holds under Assumption 1.8 and if (1.33) holds. These, in turn,

are very restrictive assumptions holding in systems that behave almost-linearly.

As a matter of fact, the minimum-phase assumptions 1.2-1.4 make reference to

an attractor that, in general, is the graph of a set-valued map (Byrnes and Isidori,

2003). The next theorem is the most general sufficient (though not necessary)

condition that we found under which we can claim that the steady-state map is

single-valued (which is obviously a necessary condition for having Assumption

1.8 and (1.33)). In the forthcoming theorem we make reference to a cascade of

the form

Σ :

{
ẇ = s(w)

ẋ = f(w, x)
(1.35)

with w ∈ Rnw , x ∈ Rn and with initial conditions that range in a compact set

W ×X ⊂ Rnw+n. We let Σw denote the (autonomous) subsystem w of Σ and we

make the following structural assumptions

Assumption 1.9. The following hold:

1. Σ is forward complete from W ×X .

2. W is forward invariant for Σw.

3. For every ε > 0 there exists δ > 0 such that, for every two solutions w1, w2 ∈
SΣw(W ), the following holds

|w1(0)− w2(0)| ≤ δ =⇒ |w1(t)− w2(t)| ≤ ε, ∀t ∈ R+.

Theorem 1.2. Consider the system (1.35) and suppose the Assumption 1.9 holds.
Suppose, moreover, that every two solutions (w1, x1), (w2, x2) ∈ SΣ(W ×X) fulfill7

lim sup
t→∞

|x1(t)− x2(t)| ≤ ρ

(
lim sup
t→∞

|w1(t)− w2(t)|
)

(1.36)

uniformly inW×X . Then there exist a compact set U ⊂ W and a continuous function
π : U → Rn such that the set graphπ is uniformly attractive for Σ from W ×X .

7We observe that the condition (1.36) is a contraction condition typical of systems possessing
incremental stability properties (see e.g. Lohmiller and Slotine, 1998; Angeli, 2002; Jouffroy and
Fossen, 2010).
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Proof. Clearly, invariance of W for the subsystem w and (1.36) imply that Σ

is uniformly eventually bounded from W × X . Thus (see Proposition 3.8) the

Ω-limit set ΩΣ(W × X) is compact, non-empty and uniformly attractive from

W ×X . let Π : dom Π ⊂ Rnw → Rn be the set-valued map

Π(w) := {x ∈ Rn : (w, x) ∈ ΩΣ(W ×X)} ,

then graph Π ⊂ A and U := dom Π ⊂ W are not empty and compact, and, hence,

Π is upper semicontinuous8 (see Aubin and Cellina, 1984, Cor. 1, Chap. 1). It

remains to show that Π is single-valued. Suppose the opposite, then there exist

w̄ ∈ Rnw and x̄1, x̄2 ∈ Rn such that (w̄, x̄1), (w̄, x̄2) ∈ graph Π and

x̄1 6= x̄2. (1.37)

As graph Π coincides with ΩΣ(W × X), then, by definition of Ω-limit set, for

i = 1, 2 there exist sequences ((wni , x
n
i ))n of (wni , x

n
i ) ∈ SΣ(W × X) and (tni )n of

tni ∈ R+ such that tni →∞ and

wni (tni )→ w̄, xni (tni )→ x̄i. (1.38)

We can write, for each n ∈ N,

|x̄1 − x̄2| = |x̄1 − xn1 (tn1 ) + xn1 (tn1 )− xn2 (tn2 ) + xn2 (tn2 )− x̄2|

≤ |x̄1 − xn1 (tn1 )|+ |x̄2 − xn2 (tn2 )|+ |xn1 (tn1 )− xn2 (tn2 )|.

Equation (1.38) implies that for each ε > 0 there exists n̄1(ε) ∈ N such that

n ≥ n̄1(ε) implies |x̄1 − xn1 (tn1 )|+ |x̄2 − xn2 (tn2 )| < ε/2, so that we can write

|x̄1 − x̄2| < ε/2 + |xn1 (tn1 )− xn2 (tn2 )| (1.39)

for n ≥ n̄1(ε). On the other hand, as tni → ∞, equation (1.36) implies that there

exists n̄2(ε) ∈ N such that, for all n ≥ n̄2(ε),

|xn1 (t)− xn2 (t)| ≤ ε/4 + ρ

(
lim sup
τ→∞

|wn1 (τ)− wn2 (τ)|
)

(1.40)

8Namely, for any w ∈ dom Π and any open set N containing Π(w), there exists a neighbor-
hood M of w such that F (M) ⊂ N .

31



for all t ≥ tni . Furthermore, for each n ∈ N,

lim sup
τ→∞

|wn1 (τ)− wn2 (τ)| = inf
t≥0

sup
τ≥t
|wn1 (τ)− wn2 (τ)| ≤ sup

τ≥max{tn1 ,tn2 }
|wn1 (τ)− wn2 (τ)|.

(1.41)

Let

ε := ρ−1(ε/4),

and let δ be the constant for which point 3 of Assumption 1.9 holds with such

choice of ε. Then, (1.38) implies that there exists n̄3(ε) ∈ N such that, for all

n ≥ n̄3(ε), it holds that

|wn1 (tn1 )− wn2 (tn2 )| ≤ δ,

so as point 3 of Assumption 1.9 implies that

sup
τ≥max{tn1 ,tn2 }

|wn1 (τ)− wn2 (τ)| ≤ ρ−1(ε/4).

Hence, by letting n̄(ε) := max{n̄1(ε), n̄2(ε), n̄3(ε)}, in view of (1.40)-(1.41) we ob-

tain

|xn1 (tn1 )− xn2 (tn2 )| ≤ ε/2

for all n ≥ n̄(ε), that in turn, in view of (1.39), implies

|x̄1 − x̄2| < ε.

For the arbitrariness of ε we thus conclude that |x̄1 − x̄2| = 0, that contradicts

(1.37). Hence we claim that x̄1 = x̄2 and, for the arbitrariness of (w̄, x̄i) we con-

clude that Π is single-valued. As Π is upper semicontinuous, then Π is continu-

ous and the claim of the theorem follows with π := Π. �
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2
Post-Processing Internal Models

The linear regulator, as presented in Section 1.1.3, follows a so-called post-
processing paradigm, in which the internal model unit is driven by the

regulation errors and the stabilizer is designed to ensure the closed-loop

stability. Interestingly enough, almost all the approaches to nonlinear regulation

show instead a complementary structure (referred to as pre-processing), in which

the stabilizer is driven by the regulation errors and the internal model unit by the

control input. In this chapter we discuss the main properties of the two classes of

regulators; we show that, on the first hand, the pre-processing designs are char-

acterized by some strong conceptual limitations preventing their applicability to

more general nonlinear systems and that, on the other hand, the post-processing

regulators, in principle not affected by such structural drawbacks, introduce an

intertwining between the internal model unit and the stabilizer that does not

permit a sequential design of the two units. We then present sufficient condi-

tions for the existence of a post-processing regulator for a class of multivariable

nonlinear regulation problems that cannot be solved, in their full generality, by

existing pre-processing regulators.

33



2.1 Pre-processing vs Post-processing

Most of the approaches to nonlinear regulation mentioned so far (see Section

1.2.2) are driven by the stabilizing action (v in (1.30) and (1.31)), i.e. by a part

of the control input. In fact, the regulators presented in Section 1.2.3 have a

common form of the kind
η̇ = Φ(η) +Gv

u = α(η) + v,
(2.1)

for some functions Φ and α that change for each design, and where v is a stabi-

lizing action depending on e. This is however not the case of the linear regulator

(see Section 1.1.3) that instead is directly driven by the unprocessed regulation

errors e and, at least in the state-feedback case, can be taken of the form

η̇ = Φη +Ge

u = K1η +K2x.
(2.2)

We call a regulator of this latter kind a post-processing regulator, as it directly

processes e. Conversely, we refer to the regulators that are driven by the input

as pre-processing regulators, as the error is pre-processed by the stabilizer be-

fore being accessed by the internal model unit. Figures 2.1 and 2.2 depict the

conceptual block diagrams of the two paradigms.

Plant Int. Model

Stabilizer

e

yu
η

Figure 2.1: Post-Processing Internal Model.

Int. Model + Plant

Stabilizer

η u e

v

Figure 2.2: Pre-Processing Internal Model.
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A part from their structural differences, pre- and post-processing schemes

also differ in terms of “design philosophy”: in post-processing regulators the

plant is augmented with the internal model unit; the stabilizer is designed to

stabilize the resulting cascade and to guarantees that the closed-loop system has

a well-defined steady state; finally, the properties of the steady-state regulation

error are inferred by the structure of the internal model. In pre-processing regu-

lators, instead, the internal model unit is designed to directly generate the ideal

error-zeroing control action (u?(w) in (1.32)) that makes the ideal steady state

in which e = 0 (π(w) in (1.32)) invariant. The stabilizer is then designed to en-

force the desired attractiveness properties of such ideal steady state. Thus, in

pre-processing schemes, the ideal steady states of the internal model unit and of

the stabilizer are fixed by the plant’s data (by the regulator equations). In post-

processing regulators, instead, the ideal steady state for the internal model unit

and for the stabilizer cannot be fixed a priori. In fact, since η is used for stabi-

lization purposes, and thus it is processed by the stabilizer, its ideal steady state

is strongly dependent on the particular instance of the stabilizer.

The pre-processing schemes have the interesting property that the roles of the

internal model unit and the stabilizer are neatly separated and the ideal steady

state of the closed-loop system is given by the problem statement. This higher
conceptual simplicity is, perhaps, the reason why most of the existing designs are of
the pre-processing schemes. Nevertheless, pre-processing regulators have some

structural limitations that prevent their application to larger classes of systems

of those treated until now, thus making their applicability to be restricted essen-

tially to minimum-phase square normal forms, where the only outputs usable

for feedback are the regulation errors themselves. In particular, it is not clear,

at a conceptual level, how a pre-processing regulator could deal in a system-

atic way with additional outputs not vanishing at the ideal steady sate in which

e = 0, or with an input dimension larger than those of the errors. If more in-

puts than errors are present, indeed, it is not clear how to extend the role of

the stabilizing action (v in (2.1)) to larger dimensions. If the stabilizing action

is taken of dimension equal to dim(e), then we must find a suitable selection of

the inputs to implement it, and this requires the adoption of necessarily non-

robust squaring down strategies. Conversely, if the stabilizing action is taken of

dimension dim(u), then it is not clear how to chose the dimension of the internal

model, which is fed by the stabilizing action: if the dimension is kept equal to

35



dim(e), then a squaring down is required; if, instead, the dimension of the inter-

nal model is taken to be equal to dim(u), then we need to add some redundant

internal models, leading to a system that is not stabilizable by error feedback

(as a simple linear example would show). On the other hand, there is not even

a clear road map to handle additional measured outputs that are necessary to

obtain closed-loop stability (or even minimum-phase) but that need not to van-

ish at the steady state. As a matter of fact, if they contribute to the stabilizing

action, then they must be filtered out by the stabilizer at the steady state for the

regulator to be consistent with the steady-state specifications.

These conceptual problems, in principle not present in regulators of the post-

processing type, recently motivated the community to look for post-processing

alternatives to the existing regulators. In (Isidori and Marconi, 2012) the authors

tried to “shift” the pre-processing Marconi-Praly-Isidori regulator to an equiv-

alent pre-processing design. The same regulator has been then subject to the

minor extension to multivariable square normal forms in (Astolfi et al., 2013).

In (Bin and Marconi, 2017b), the Byrnes-Isidori regulator has been shifted to a

post-processing version as well. However, no conceptual progress has been made

in terms of extension to larger classes of systems compared to pre-processing

schemes, and the obtained design are equivalent to the pre-processing counter-

parts. A different approach to the design of post-processing regulators is the

one adopted in (Astolfi and Praly, 2017) and in (Astolfi et al., 2015), where the

linear regulator is attached to a class of nonlinear systems. In particular, in (As-

tolfi and Praly, 2017) the authors showed that the output regulation problem

can be solved robustly by a post-processing regulator (an integral action) when-

ever the steady state is made of equilibria. In (Astolfi et al., 2015), the authors

extended the results to the case in which the steady-state signals are periodic,

obtaining, however, only an approximate result stating that the Fourier coeffi-

cients in the regulation errors corresponding to the frequencies embedded in the

internal model vanish at the steady state (this result is treated in a more general

envelope in Section 3.4).

In conclusion, almost the totality of nonlinear regulator designs presented so

far are of the pre-processing type, and the few existing post-processing examples

are either constructed by “shifting” an existing pre-processing regulator (thus

leading to no advantage) or are unable to give an asymptotic result if not under

very restrictive assumptions on the steady-state trajectories. The reason behind
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this fact has to be sought in the internal intertwining between the internal model

unit and the stabilizer that is structurally present in post-processing schemes

and that arises necessarily as far as nonlinear systems are concerned. We explore

this property in the next section.

2.2 The Chicken-egg Dilemma of Output Regulation

Post-processing design paradigms do not present, in principle, the main concep-

tual obstructions of pre-processing schemes. Nevertheless they come with other

structural features, not present in the pre-processing case, that make the bound-

ary between the roles of the internal model unit and the stabilizers to fade away,

thus invalidating the nice conceptual separation of the two subsystems and lead-

ing to a more challenging synthesis phase.

In post-processing regulators the stabilizer is designed to stabilize the cascade

of the plant and the internal model unit, by working on the available information

given by the plant output y and the internal model state η. It is thus easy to see

that the stabilizer strongly depends on the choice of the internal model unit.

On the other hand, at the steady state, the internal model unit has to generate

the input η? that, processed by the stabilizer together with the other steady-state

plant output y?, produces the ideal error-zeroing control action u?. This can be

seen by means of a simple example.

Example 2.1. Consider the system

ẇ1 = w2

ẇ2 = φ(w)

ė = u− w1

withw ∈ R2 and e, u ∈ R. By following the linear intuition, we define a candidate

internal model unit of the kind

η̇1 = η2 +G1e

η̇2 = φ̂(η) +G2e,
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with G1, G2 and φ̂ to be fixed, and we choose a stabilizing action of the form

u = k1e+ k2η, (2.3)

for some k1 ∈ R and k2 ∈ R1×2. It is clear from the equation of e that in order

to keep e to zero, asymptotically u must equal w1. Hence, (2.3) implies that the

ideal error-zeroing steady-state for η must satisfy

k21η
?
1 + k22η

?
2 = w1, η?2 = η̇?1, η̇?2 = φ̂(η?). (2.4)

These three constraints can be condensed in the following equation

k21φ̂(η?) + k22
∂φ̂(η?)

∂η1

η?2 + k22
∂φ̂(η?)

∂η2

φ̂(η?) = φ(w), (2.5)

which expresses the fact that the correct map φ̂ and the ideal steady state η? must

necessarily fulfill a condition strongly dependent onw and on the stabilizer gains

k21 and k22. If φ were linear, we could in principle take φ̂ = φ and play with η?

to have (2.5) fulfilled, by leveraging the fact that a weighted sum of sinusoids

is again a sinusoid at the same frequency. If φ is not linear, however, a general

solution in which φ̂ is not dependent on k2 is hard to imagine.

A possible way to proceed is to take k22 = 0 and k21 6= 0, thus obtaining from

(2.4)-(2.5)

φ̂(η?) =
1

k21

φ(k21η
?), η? =

w

k21

. (2.6)

We now notice that, by taking k21 = k1, and changing variables as η 7→ η̃ := η−η?

and e 7→ ε := e+ η̃1 yields

˙̃η = Mη̃ +B
(
φ̂(η̃ + η?)− φ(w)/k1

)
+Gε

ε̇ = (G1 + k1)ε+ η̃2 −G1η̃1,

with M := col((−G11), (−G20)), B := col(0, 1) and G := col(G1, G2). Assuming

for simplicity that φ is Lipschitz, (2.6) and k21 = k1 yield

|φ̂(η̃ + η?)− φ(w)/k1| =
1

k1

|φ(k1η̃ + w)− φ(w)| ≤ Lφ|η̃|

for some Lφ > 0. Hence, the gains G1 and G2 can be designed (for instance by
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high-gain arguments as in (Byrnes and Isidori, 2004)) to make the subsystem η̃

ISS relative to the origin and with respect to the input ε, and the gain k1 can be

taken sufficiently negative to induce a contraction in the closed-loop system, thus

solving the problem at hand. With this post-processing solution the intertwining

between the internal model and the stabilizer is clear: on the first hand, the

internal model must satisfy equation (2.6) with k21 = k1. On the other hand, the

stabilizer gain k1 must be taken large enough to stabilize the closed-loop system,

and how large depends on G1, G2 and Lφ, i.e. by the structure of the internal

model.

Interestingly enough, we also observe how choosing k21 = 1 instead makes φ̂

and η? in (2.6) to be independent on k1. Nevertheless (we leave the computations

to the reader and we refer to (Bin and Marconi, 2017b) for further details), if we

insist with a similar stabilization approach, the gains G1 and G2 turn out to be

necessarily proportional to k1, i.e. we obtain an internal model unit of the form

η̇1 = η2 +G′1v

η̇2 = φ(η) +G′2v

v = k1e,

for some G′1 and G′2, which is exactly the pre-processing Byrnes-Isidori regulator.

4

More in general, the intertwining between the internal model and the stabi-

lizer can be seen by considering a stabilizer of the generic form

ξ̇ = ϕ(ξ, y, η)

u = γ(ξ, y, η).

The ideal error-zeroing control action u?, as well as the ideal steady-state value

y? of the output y, are given by the plant’s data (by the regulator equations)

and, at the steady state, the stabilizer must necessarily fulfill a right-invertibility
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condition1 of the kind
ξ̇? = ϕ(ξ?, y?, η?)

u? = γ(ξ?, y?, η?)
(2.7)

a.e. for some ideal steady state trajectories ξ? and η?. The condition (2.7) clearly

underlines that the ideal steady state η? of the internal model, the ideal steady

state ξ? of the stabilizer, and the functions ϕ and γ, that are all unknowns of the

same equation, necessarily have to be fixed together at the same time, possibly

relying on the knowledge of y?. As η? must be a solution of the internal model

unit, we then see that the structure of the internal model becomes dependent on

the stabilizer. In (Bin and Marconi, 2018a,b) we called this intertwining between

the internal model unit and the stabilizer the “chicken-egg dilemma” of output

regulation to underline that, if we insist to separate a regulator in an internal model
unit and a stabilizer, then the two units cannot be designed by means of a sequential
strategy as in pre-processing schemes but, rather, they have to be co-designed.

In linear systems the chicken-egg dilemma is broken by linearity, as it im-

plies that, no matter how the stabilizer is chosen in the class of linear systems,

the steady-state closed-loop signals will have the same modes of the driving ex-

osystem. Therefore, choosing the internal model unit to embed such modes per-

mits to bypass the difficulties introduced by (2.7) as linearity ensures that, for

any possible ξ? and y?, the corresponding η? exists and is producible by a system

of appropriate dimension that contains the same frequencies of the exosystem.

Thus, all the possible uncertainties in the particular value of η? coming from the

chicken-egg dilemma will just reflect into the right initialization of the internal

model unit, by leaving its structure untouched. This last fact is, in a nutshell, the

only reason why the linear regulator is “robust”: all the considered uncertainties,
coming from plant’s uncertain parameters and from the chicken-egg dilemma, do not
change the structure of the “right” internal model unit to be implemented, but only its
correct initialization.

In the case of nonlinear system this fortunate conditions are far to be pos-

sible, and the chicken-egg dilemma has to be faced or avoided in some other

way. The most common way to avoid dealing with it is to go for pre-processing

1Calling (2.7) a right-invertibility condition is motivate by the fact that finding the set
{(ξ?, η?) : u? = γ(ξ?, y?, η?)} coincides with finding the graph of the right-pseudoinverse of
γ. This is better show in the case in which y? is not present in the second equation, i.e. when we
can write u? = γ(ξ?, η?). In such case, indeed, we can take (ξ?, η?) = γr(u?), with γr such that
γ ◦ γr is the identity.
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schemes, with the drawback, however, that only limited classes of systems can be

considered. In most of the primordial nonlinear output regulation literature (see

e.g. (Byrnes et al., 1997a; Huang and Chen, 2004; Huang, 2001) and all the suc-

cessive designs based on the same idea) the chicken-egg dilemma was avoided

by assuming that the steady-state signals are defined by an algebraic function

of the exosystem trajectory w(t) (i.e. essentially Assumption 1.8) and the ideal

error-zeroing control law u? can be written as u?(t) = c(w(t)) for some polyno-

mial functions c. In that case, for specific classes of systems (Byrnes et al., 1997b;

Huang, 2001) and with the exosystem that is linear, it can be shown that any η?

coming from the inversion (2.7) can be generated by a linear system (of dimen-

sion in general larger than those of the exosystem) and, thus, simple arguments

can be used to ensure asymptotic regulation. On the same line, in the frame-

work of (Astolfi and Praly, 2017) the chicken-egg dilemma is avoided thanks to

the assumption that all the possible steady states are equilibria (and thus (2.7)

has the easy solution of the integrator). In (Astolfi and Marconi, 2015) the au-

thors tried to extend the result of (Astolfi and Praly, 2017) to the case of periodic

steady states, and the construction of the regulator was possible only by sacrific-

ing asymptotic regulation, by giving a result that, in general, is only approximate

and not even practical.

In the next section we present some sufficient conditions under which a post-

processing regulator can be constructed in the context of (partial) normal forms

that can deal with non-square systems and can manage additional non-vanishing
outputs in a systematic way. These conditions presented are quite not construc-

tive in practice, as they require a level of detail about the system that is hard to

achieve. However the result show how in principle asymptotic post-processing

regulators can be constructed for classes of system that cannot be considered in

pre-processing schemes.

2.3 A Post-Processing Regulator for Multivariable Non-

linear Systems

This section contains unpublished original results, except for a very preliminary

idea appeared in (Bin and Marconi, 2017b). Motivated by the previous discus-

sion about the conceptual limitation of pre-processing approaches, we present
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here the construction of a regulator of the post-processing kind. We give suf-

ficient conditions for asymptotic regulation and we prove that, even if they are

not met, a practical regulation result of the same kind of those proved in (Isidori

et al., 2012) for the Byrnes-Isidori regulator holds. As we will further comment

in Section 2.3.3, the chicken-egg dilemma clearly manifests when the different

degrees of freedom of the regulator have to be chosen to fulfill the conditions

for asymptotic regulation. As opposite to regulators of the pre-processing type,

here we deal with non-square systems having more inputs than measured out-

puts, and we can handle additional measured outputs that are not vanishing at

the steady state. Even if conceptually interesting, the result however still limits

to a design procedure strongly based on a high-gain perspective, that remains

the major conceptual limitation of this approach.

2.3.1 The Framework

We consider controlled systems of the form

ẇ = s(w)

ẋ = f(w, x) + b(w, x)u

y =

(
e

ya

)
=

(
he(w, x)

ha(w, x)

)
,

(2.8)

where w ∈ Rnw , x ∈ Rn, u ∈ Rm, e ∈ Rne , ya ∈ Rna , y ∈ Rny (ny = ne + na) and

with s, f and b sufficiently smooth functions with the property that there exist

r > 0, a set of integers p1, . . . , pr > 0 satisfying p1 + · · ·+ pr = ny, a set of integers

N1, . . . , Nr > 0 satisfying p1N1 + · · · + prNr =: N ≤ n, and, for i = 1, . . . , r, a set

of Rpi-valued smooth functions2 {ξi1(w, x), . . . , ξiNi−1(w, x), ζ i(w, x)} with linearly

independent differentials fulfilling

∂ξ(w, x)

∂x
b(w, x) = 0, ∀(w, x) ∈ Rnw × Rn (2.9)

and that satisfy

ξ̇ = Fξ +Hζ (2.10a)

2With slight abuse of notation, in the following we will call with the same symbols ξ and ζ
both the functions ξ(w, x) and ζ(w, x) and the functions t 7→ ξ(w(t), x(t)) and t 7→ ζ(w(t), x(t)).
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ζ̇ = q(w, x) +B(w, x)u (2.10b)

y = TCξ (2.10c)

for some continuous functions q : Rnw × Rn → Rny and B : Rnw × Rn → Rny×m,

and where we let ξ := col(ξ1, . . . , ξr) ∈ RN−ny , ξi := col(ξi1, . . . , ξ
i
Ni−1) ∈ Rpi(Ni−1),

ζ := col(ζ1, . . . , ζr) ∈ Rny and where T ∈ Rny×ny is a known permutation matrix,

C := diag(C1, . . . , Cr) have the form

Ci :=
(
Ipi 0pi×pi(Ni−2)

)
and F ∈ R(N−ny)×(N−ny) and H ∈ R(N−ny)×ny are block lower-triangular matrices

whose diagonal blocks are given respectively by

Fii :=

(
0pi(Ni−2) Ipi(Ni−2)

0pi 0pi×pi(Ni−2)

)
, Hii :=

(
0pi×(Ni−2)

Ipi

)
.

According to the partition y = col(e, ya) we letCe ∈ Rne×(N−ny) andCa ∈ Rna×(N−ny)

be such that

TC =

(
Ce

Ca

)
.

For simplicity, we develop here the case in which T = Iny , i.e. we assume that

e = Ceξ = col(ξi1 : i = 1, . . . , re)

ya = Caξ = col(ξi1 : i = re + 1, . . . , r)

where re is such that p1 + · · · + pre = ne and ra := r − re (we also let Ne =

p1N1 + · · · + preNre and Na = N − Ne). We note though, that the result can be

easily extended to arbitrary T by means of a simple change of coordinates.

Remark 2.1. The class of systems considered includes multivariable normal forms

and partial normal forms (Isidori, 1999), with the latter that always exist locally

whenever (possibly after a preliminary feedback) the system (2.8) is a) strongly

invertible in the sense of (Hirschorn, 1979; Singh, 1981), and b) input-output lin-

earizable3 (Isidori, 1995). For what concerns the computation of the functions
3That is, there exists a state feedback control of the form u = α(w, x) + G(w, x)v, with v ∈

Rm an auxiliary input and G full rank, such that the resulting system has linear input-output
behavior from v to y.
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q(w, x) and B(w, x) in (2.10a)-(2.10c) in the context of partial normal forms, the

reader is referred to (Isidori, 1999; Wang et al., 2015a). 4

Remark 2.2. Differently from almost all the previous literature (see e.g McGre-

gor et al., 2006; Astolfi et al., 2013; Wang et al., 2016, 2017), we do not constraint

m = dim(u) to be equal to ne or ny, i.e. we consider a non-square system in which

the number of inputs can be larger than that of the outputs. Furthermore, we

structurally handle the feedback of additional outputs ya that do not need to

vanish at the steady state but that might be necessary to obtain the form (2.10a),

(2.10b), (2.10c) or to fulfil all the assumptions below. 4

We will construct the regulator based on a number of assumptions introduced

below:

Assumption 2.1. There exists a compact set A ⊂ Rnw+n, β ∈ KL, and a locally
Lipschitz ρ ∈ K, such that all the solution pairs (w, x, u) to (2.8) satisfy

|(w(t), x(t))|A ≤ β(|(w(0), x(0))|A, t) + ρ
(
|ξe|[0,t) + |ζe|[0,t)

)
, (2.11)

for all t ∈ R+ for which they are defined and with ξe := col(ξi : i = 1, . . . , re) and
ζe := col(ζ i : i = 1, . . . , re).

Assumption 2.2. There exists a C1 map P : Rnw+nx → Rny×ny and, for each compact
set X ⊂ Rn, a full-rank matrix L ∈ Rm×ny such that:

a. P(w, x) > 0 in W × Rn.

b. For all (w, x) ∈ W × Rn and all u ∈ Rm,

L
(x)
b(w,x)uP(w, x) = 0.

c. for all (w, z) ∈ W ×X

LTB(w, x)TP(w, x) + P(w, x)B(w, x)L ≥ I. (2.12)

Remark 2.3. As in the context of normal forms and partial normal forms, ξ and

ζ are combinations of derivatives of the output y, then Assumption 2.1 can be

seen as a uniform (in u) “output-input stability” (OIS) property, in the sense of

44



(Liberzon et al., 2002; Liberzon, 2004), of (w, x) relatively to the set A, that here

plays the role of a strong minimum-phase assumption. The same minimum-phase

assumption appeared for instance in (Wang et al., 2015a, 2016, 2017). However,

we stress that here the minimum phase is asked with respect to the whole set
of outputs (included those that do not need to vanish at the steady state) and,

thus, Assumption 2.1 is milder than usual minimum-phase assumptions, and

it can be possibly obtained by adding further measurements. We also observe

that the result presented here can be extended, in view of Remark 1.3, to the

case in which Assumption 2.1 holds only locally provided, however, that the IOS

property holds only with respect to e = ξe1. 4

Remark 2.4. Assumption 2.2 is a controllability assumption. As it will be clar-

ified later below the proof of Proposition 2.1 this assumption is implicated by

many customary assumptions made in the context of regulation and stabiliza-

tion of partial normal forms. 4

With d ∈ N, the regulator is a system with state η ∈ Rned described by the

following equations
η̇ = Φ(η) +Ge

u = L
(
Kξξ +Kζζ +Kηη1

) (2.13)

with Φ and G having the form

Φ(η) :=


0 Ine 0 · · · 0

0 0 Ine · · · 0

· · · · · · ·
0 0 0 · · · Ine

φ(η)

 , G :=


G1

G2

...

Gd


where φ : Rned → Rne is a bounded function satisfying

|φ(Rdne)| ≤ Cφ

or some Cφ > 0, and where Gi ∈ Rne×ne , Kξ ∈ Rny×(N−ny), Kζ ∈ Rny×ny and with

Kη ∈ Rny×nη that has the form

Kη =

(
K′η

0na×ne

)
, (2.14)
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for some K′η ∈ Rne×ne . All these degrees of freedom will be fixed later according

to Proposition 2.1.

Remark 2.5. We give here a partial state feedback result, that employs the auxil-

iary variables ξ and ζ (i.e. combinations of derivatives of the measured output

y). We notice though that a purely output-feedback regulator can be easily ob-

tained by augmenting (2.13) with a partial-state observer of the kind proposed

in (Wang et al., 2015a) (see also Teel and Praly, 1995). 4

Substituting the expression of u into the ζ subsystem of (2.8) yields

ζ̇ = q(w, x) +B(w, x)L(Kξξ +Kζζ +Kηη1). (2.15)

Let us define the error-zeroing set

O :=
{

(w, x) ∈ Rnw×nz : (w, x) ∈ A, ξe(w, x) = 0, ζe(w, x) = 0
}
.

Let qe and qa be functions with values in Rne and Rna respectively such that

q(w, x) = col(qe(w, x), qa(w, x)), and let denote for brevity

D(w, x) := B(w, x)L ∈ Rny×ny .

Let partition D(w, x), Kξ and Kζ as:

D :=

(
De,e De,a

Da,e Da,a

)
, Kξ :=

(
Ke,eξ Ke,aξ
Ka,eξ Ka,aξ

)
, Kζ :=

(
Ke,eζ Ke,aζ
Ka,eζ Ka,aζ

)
(2.16)

for some Di,j(w, x),Ki,jξ ,K
i,j
ζ ∈ Rni×nj , i, j ∈ {e, a}. Then, in view of (2.14), equa-

tion (2.15) gives

ζ̇e = qe(w, x) +De,e(w, x)
(
Ke,eξ ξ

e +Ke,aξ ξa +Ke,eζ ζ
e +Ke,aζ ζa +K′ηη1

)
+De,a(w, x)

(
Ka,eξ ξe +Ka,aξ ξa +Ka,eζ ζe +Ka,aζ ζa

)
.

(2.17)

In view of Assumption 2.1, by considering the restriction of this latter equation

on the error-zeroing setO, we obtain that invariance ofO is ensured only if there
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exists a function η?1 : A → Rdne satisfying

De,e(w, x)K′ηη?1(w, x) := −qe(w, x)−De,e(w, x)
(
Ke,aξ ξa(w, x) +Ke,aζ ζa(w, x)

)
−De,a(w, x)

(
Ka,aξ ξa(w, x) +Ka,aζ ζa(w, x)

)
(2.18)

for all (w, x) ∈ A. The existence of a unique solution to (2.18) in a neighborhood

of A is ensured by the following assumption.

Assumption 2.3. There exists ε > 0 and an open superset N1 of A such that

|minσ(De,e(w, x))| ≥ ε

for all (w, x) ∈ N1.

Under this assumption, if K′η is invertible, then (2.18) admits a unique solu-

tion given by

η?1(w, x) := (K′η)−1De,e|A(w, x)−1

(
− qe|A(w, x)

−De,e|A(w, x)
(
Ke,aξ ξa|A(w, x) +Ke,aζ |Aζ

a|A(w, x)
)

−De,a|A(w, x)
(
Ka,aξ ξa|A(w, x) +Ka,aζ |Aζ

a|A(w, x)
))

,

and that solution is bounded with a bound that depends on A, N1, ε and K′η.
The error-zeroing set O is a subset of A, and η?1 is only defined on A. Hence,

in order to exploit the existence of η?1, we need to introduce a further structural

assumption. With ϕ(w, x) ∈ Rna , we consider now the following equations in the
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unknowns λξ(w, x) ∈ RNa−na , λζ(w, x) ∈ Rna and υ1(w, x) ∈ Rne :

λξ(x,w) =

(
0

λaξ(w, x)

)
, λaξ(w, x) ∈ RNa−na

λζ(x,w) =

(
0

λaζ(w, x)

)
, λaζ(w, x) ∈ RNa−na

∂λξ(w, x)

∂w
s(w) +

∂λξ(w, x)

∂x
f(w, x) = Fλξ(w, x) +Hλζ(w, x)

∂λζ(w, x)

∂w
s(w) +

∂λζ(w, x)

∂x
f(w, x) = q(w, z) +B(w, z)L

(
Kξλξ(w, x)

+Kζλζ(w, x) +Kηυ1(w, x)
)

+ ϕ(w, x)

(2.19)

In view of the first two equations, the same arguments used above show that,

whenever De,e(w, x) and K′η are invertible, υ1 reads as

υ1(w, x) := (K′η)−1De,e(w, x)−1

(
− qe(w, x)− ϕe(w, x)

−De,e(w, x)
(
Ke,aξ λaξ(w, x) +Ke,aζ λaζ(w, x)

)
−De,a(w, x)

(
Ka,aξ λaξ(w, x) +Ka,aζ λaζ(w, x)

))
,

(2.20)

for all (w, x) for which it is defined and with ϕa such that ϕ = col(ϕe, ϕa) for

some suitable ϕe. We observe that, for ϕ = 0, equations (2.19), (2.20) have a

solution in O, and the solution (λξ, λζ , υ1) is such that υ1(w, x) = η?1(w, x) on O,

and the functions λξ and λζ equal the ideal steady state of the variables ξ and ζ

in which ξe = 0, ζe = 0 (i.e. the regulation error vanishes). In other words, the

solution (λξ, λζ , υ1) to (2.19) represents an extension to an open superset of O of

the ideal steady state values that (ξ, ζ, η?1) assumes on O. Hence, in particular, υ1

is a function defined also outsideO but that coincides with the ideal steady-state

control law η?1 on O. This in turn motivates the following Assumption.

Assumption 2.4. There exist an open superset N2 of A, a Lϕ > 0 and a function ϕ
satisfying

|ϕ(w, x)| ≤ Lϕ|(w, x)|A, (w, x) ∈ N2,
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such that (2.19) have a solution (λξ, λζ , υ1) defined in N2.

2.3.2 The Asymptotic Properties of the Regulator

With N1 and N2 the sets given respectively by Assumption 2.3 and 2.4, we let N
be any open set included in N1 ∩ N2. We observe that, under such assumptions,

the function υ1 is well-defined on N and unique. Thus, with d the same integer

appearing in the definition of (2.13), we can recursively define the functions:

υi(w, x) =
∂υi−1(w, x)

∂w
s(w) +

∂υi−1(w, x)

∂x

(
f(w, x) + b(w, x)υ1(w, x)

)
,

i = 2, . . . , d+ 1

υ(w, x) = col(υi(w, x) : i = 1, . . . , d).

(2.21)

We stress that, in view of (2.19)-(2.20), the functions υi all depend on the stabi-

lizer. We further observe that it follows from (2.17) and (2.18) that, in order to

ensure asymptotic regulation, the output η1 of the regulator (2.13) must be able

to generate all the signals in the set

H? :=
{
η1 : R→ Rne : η1(t) = η?1(w(t), x(t)), (w(0), x(0)) ∈ A

}
.

Assumptions 2.3 and 2.4, in turn, imply that η?1 coincides with the restriction of

the function υ1 on A, with υ1 that is defined in a neighborhoodN of A. With the

definition of υ given by (2.21), we thus can conclude that υ1 (and hence η?1) could

be generated by the output η1 of the regulator (2.13) whenever

φ(υ(w, x)) = υd+1(w, x), ∀(w, x) ∈ A. (2.22)

The condition (2.22) expresses the fact that the regulator (2.13) has the internal
model property, as it guarantees that the set H? is a subset of the outputs η1 pro-

ducible by (2.13). In general, however, υ and υd+1 are uncertain whenever the

plant functions f and g are, as indeed these quantities enter explicitly in (2.21).

This motivates introducing the following quantity

δ(w, x) := φ(υ(w, x))− υd+1(w, x), (2.23)
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which represents the internal model mismatch, i.e. the modeling error that the sys-

tem η of (2.13) attains on N in representing the process that generates υ1(w, x).

The closed-loop system reads as follows

Σcl :


ẇ = s(w)

ẋ = f(w, x) + b(w, x)L
(
Kξξ(w, x) +Kζζ(w, x) +Kηη1

)
η̇ = Φ(η) +Ghe(w, x).

(2.24)

The following proposition states the main properties of the regulator.

Proposition 2.1. Let W ⊂ Rnw , X ⊂ Rn be arbitrary compact sets and suppose that
Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then there exist a compact set H ⊂ Rned, a
α > 0, a g? > 0 and, for each g ≥ g? and ε > 0, matrices L, Kξ, Kζ , Kη, and Gi,
i = 1, . . . , d, such that:

1. the closed-loop system Σcl is uniformly bounded from W ×X ×H,

2. there exists t̄ such that Rτ
Σcl

(W ×X ×H) ⊂
(
O + εB

)
× Rned for all τ ≥ t̄,

3. each solution to Σcl satisfies

lim sup
t→∞

|e(t)| ≤ α

gd
sup

(w,x)∈A
|δ(w, x)| (2.25)

uniformly in the initial conditions in W ×X ×H.

2.3.3 Remarks on the Result

The claim of Proposition 2.1 states that the trajectories of the closed-loop sys-

tem originating in W × X × H are equibounded (item 1), that they converge to

an ε-neighborhood of A uniformly in the initial conditions (item 2), and that the

asymptotic bound on the regulation error is proportional to the worst-case inter-

nal model mismatch. Furthermore, as clarified in the proof, ε and the asymptotic

bound on the error can be reduced arbitrarily by adjusting g, and this makes the

result of the proposition a practical output regulation result. Since X is arbitrary,

moreover, the result is semiglobal in the plant’s initial conditions.

According to the proof of Proposition 2.1, the degrees of freedom that char-

acterize the regulator (2.13) are chosen by following a “high-gain” strategy. The

only parameters that are truly arbitrary are the order d of the internal model

50



and the bound Cφ on φ. Lower values of Cφ yield lower values of the high-gain

parameters g and `, but reduce the representation capabilities of the internal

model unit. As a matter of fact, point 3 of the proposition states that the asymp-

totic bound on the regulation error is related to the maximum value attained

by the mismatch (2.23) on the set A; thus if the bound of Cφ is too tight, such

error might be anyway non zero, even if υ and υd+1 are perfectly known. The

functions υ and υd+1 are obtained by the recursion (2.20), (2.21) and, hence, they

are strongly dependent on the plant’s and the exosystem’s functions s, f and

g, and on the control parameters Kξ, Kζ and Kη; therefore their perfect knowl-

edge cannot be assumed while fixing Cφ. This dependence between the internal

model unit and the stabilizer’s parameters is a manifestation of the “chicken-

egg” dilemma introduced in Section 2.2. The interplay between feedback and

internal model is way more evident when non-vanishing outputs are used for

stabilization, as they need to be compensated at the steady state by the output of

the internal model. In this respect we also note that, as it is the case of the linear

regulator, the feedback of auxiliary outputs might also have a simplifying effect

on the internal model.

The intertwining between internal model and the stabilizer, though, makes

the result of Proposition 2.1 not very constructive, as finding the “right” φ to

put in (2.13) might be very complicated. Though, Proposition 2.1 individuates

a clear sufficient condition for asymptotic regulation, given by equation (2.22),

which expresses in this setting the nonlinear version of the internal model prin-
ciple: the regulator must embed a copy of the process that generates the ideal

steady state control action (i.e. η?1 = υ1|A above) that makes the set in which the

error vanishes invariant.

We also observe that, even if the mismatch δ is not zero on A, the regulator

ensures practical regulation. As a matter of fact, for each ε > 0, choosing

g >
d

√
α sup(w,x)∈A |δ(w, x)|

ε
,

yields

lim sup
t→∞

|e(t)| < ε.

The difficulty of finding the right φ and the robustness issues related to its de-

pendency on the plant’s data motivated the research toward adaptive designs of
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regulators of the kind (2.13) presented in Chapter 6.

2.3.4 Proof of Proposition 2.1

We develop the proof in 3 sections. In the first we prove uniform boundedness

of the closed-loop system (i.e. point 1 of the proposition), in the second we prove

that the trajectories are uniformly attracted by an ε neighborhood ofO (i.e. point

2 of the proposition) and in the third section we prove the bound (2.25) (that is

point 3 of the proposition).

I. Uniform boundedness:
Let partition η as η = col(η1, . . . , ηd) and, for each ηi ∈ Rne , let partition ηi as

ηi = col(η1
i , . . . , η

re
i ) with ηji ∈ Rpj . Consider the change of coordinates:

∀i = 1, . . . , re :

{
ξi1 7→ χi1 := ξi1 + ηi1,

ξij 7→ χij := ξij, j = 2, . . . , Ni − 1

∀i = re, . . . , r : ξi 7→ χi := ξi.

e 7→ ē := e+ η1.

(2.26)

By letting χ := col(χ1, . . . , χr), with χi := col(χi1, . . . , χ
i
Ni−1), (2.26) can be com-

pactly rewritten as
χ := ξ + CT

e η1

ē = Ceχ.
(2.27)

From (2.13), and since by construction FCT
e = 0, we obtain

χ̇ = (F + CT
e G1Ce)χ+Hζ + CT

e (η2 −G1η1). (2.28)

We state now the following result, which is proved below this proof.

Lemma 2.1. For any G1 ∈ Rne×ne and ε > 0, there exists K ∈ Rp×(N−p) such that the
system (2.28) with output ē and with input ζ = ζ̄ + Kχ, being ζ̄ ∈ Rp an auxiliary
input, satisfies

|χ(t)| ≤ βχ(|χ(0)|, t) + a1

(
|ζ̄|[0,t) + |η|[0,t)

)
(2.29)

|ē(t)| ≤ βē(|χ(0)|, t) + ε|ζ̄|[0,t) + ε|η̃|[0,t) (2.30)
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for some βχ, βē ∈ KL and a1 > 0.

Pick (h1, . . . , hd) ∈ HC(d) and, with g > 0 a control parameter, let

Gi := gihiIne .

Let ∆(g) := diag(1, g, . . . , gd−1) and change variables as

η 7→ µ := ∆(g)−1η.

In the new variables we obtain

µ̇ = ∆(g)−1
(
A∆(g)µ+ Eφ(∆(g)µ) +G(ē− Γµ1)

)
with (A,E,Γ) a triplet in (d, ne)-prime form. Noting that:

∆(g)−1A∆(g) = gA

∆(g)−1E = g1−dE

∆(g)G = gR, R := col(hiIne : i = 1, . . . , d),

then, by letting M := A−RΓ, we obtain

µ̇ = gMµ+ g1−dEφ(∆(g)µ) + gRCeχ. (2.31)

Fix Cφ > 0 arbitrarily. As (h1, . . . , hd) ∈ HC(d), M is Hurwitz; since φ is bounded

by Cφ, then standard high-gain arguments (Khalil and Praly, 2013) can be used

to show that the system µ, seen as a system with input χ, fulfills

|µ(t)| ≤ βµ(|µ(0)|, t) +
a2

gd
Cφ + a2|ē|[0,t).

for some βµ ∈ KL and some a2 > 0. Thus, by letting βη = gd−1βµ, using the fact

that |η| ≤ gd−1|µ| and |η1| ≤ |µ|, we also obtain that the system η seen as a system

with input ē and output η1 fulfills

|η(t)| ≤ βη(|η(0)|, t) +
a2

g
Cφ + a2g

d−1|ē|[0,t)

|η1(t)| ≤ βη(|η(0)|, t) +
a2

gd
Cφ + a2|ē|[0,t)

(2.32)
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With ε be any small number so that

ε < ε?1 := a2,

being a2 the same as in (2.32), let K be the corresponding matrix produced by

Lemma 2.1, and change variables according to

ζ 7→ ζ̄ := ζ −Kχ. (2.33)

Then, the bounds (2.29)-(2.30) hold, and Assumption 2.1 also yields

|(w(t), x(t))|A ≤ β(|w(0), x(0)|A, t) + ρ
(
(1 + |K|)|χ|[0,t) + |η1|[0,t) + |ζ̄|[0,t)

)
(2.34)

Let

B :=
{

(w, x, η) ∈ Rnw+n : (w, x) ∈ A, χ(w, x) = 0, η = 0
}
,

then, in view of (2.29), (2.30), (2.32) and (2.34), the small-gain arguments of

(Jiang et al., 1994) can be used to show that the subsystem (w, x, η) fulfills

|(w(t), x(t), η(t))|B ≤ βB(|(w(0), x(0), η(0))|B, t) + ρB

(
|ζ̄|[0,t) +

Cφ
gd

)
, (2.35)

for some βB ∈ KL and some locally Lipschitz ρB ∈ K.

In view of (2.10b), ζ̄ fulfills

˙̄ζ = %(η, χ, ζ̄) + q(w, x) + Ω(w, x)u (2.36)

where

%(η, χ, ζ̄) := −K
(

(F + CT
e G1Ce)χ+Hζ + CT

e (η2 −G1η1)
)
.

With ` > 0 a design parameter to be fixed, in (2.13), let

Kξ := `K, Kζ := −`Ine , Kη := `KCT
e . (2.37)

In the new coordinates we have

u = `L
(
K(ξ + CT

e η1)− ζ
)

= −`Lζ̄
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and thus (2.36) yields

˙̄ζ = %(η, χ, ζ̄) + q(w, x)− `B(w, x)Lζ̄ . (2.38)

We fix ` on the basis of the following Lemma, whose proof is postponed at the

end of this proof.

Lemma 2.2. Consider an equation of the form (2.38). Under Assumption 2.2, for
each compact set W × X ⊂ Rnw+n there exist L and `?2(g) > `?1 such that, for all
` > `?2(g) and as long as (w, x) ∈ W ×X , the following holds4

|ζ̄(t)| ≤ βζ̄(|ζ̄(0)|, t) +
a3

`

(∣∣|(x,w)|A
∣∣
[0,t)

+ |χ|[0,t) + |η|[0,t) + sup
(w,x)∈A

|q(w, x)|

)
(2.39)

for some βζ̄ ∈ KL and a3 > 0.

In view of Lemma 2.2, by quite standard arguments (in this respect see for

instance (Byrnes et al., 2003; Isidori, 1995, 1999)) based again on the small-gain

arguments of (Jiang et al., 1994) can be used to show that for each compact set

W ×X of initial conditions there exist βC ∈ KL, ρC > 0, L and `?3(g) > `?2(g) such

that, for all ` > `?3(g), and with

C := O × {0}

=
{

(w, x, η) ∈ Rnw+n+ned : (w, x) ∈ A, χ(w, x) = 0, ζ(w, x) = 0 , η = 0
}
,

the following bound holds

|(w(t), x(t), η(t))|C ≤ βC(|(w(0), x(0), η(0))|C, t) +
ρC
`

(
1 +

Cφ
gd

)
. (2.40)

and thus the closed-loop system is forward complete and uniformly bounded

from W ×X × Rd×ne , and point 1 of the proposition follows.

II. Existence of a Steady State:
The equation (2.40) implies that, for each H ⊂ Rdne compact, the Ω-limit set

Ωcl(W × X × H) of the closed-loop system (2.8), (2.13) is compact, non-empty,

4We observe that the constant aζ and the function βζ might depend on ε produced by Lemma
2.1.
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uniformly attractive from W ×X ×H and invariant. Moreover, we can chose H

and ` such thatD := Ωcl(W×X×H) ⊂ W×X×H, so thatD is also asymptotically

stable. Furthermore, in view of (2.40), given any ε > 0, then for large enough `

(say ` > `?4(g) ≥ `?3(g)) we have

|(w(t), x(t), η(t))|C ≤ βC(|(w(0), x(0), η(0))|C, t) + ε,

so that also point 2 of the proposition holds.

III. Asymptotic Bound:
Note that in (2.37) Kη has the form (2.14), with K′η = `Q, for some Q ∈ Rne×ne

that, as detailed in the proof of Lemma 2.1, is invertible. Moreover, in view of

(2.40), `?4(g) can be taken such that, for all ` ≥ `?4(g), D ⊂ N . Therefore, by

assumptions 2.3, 2.4, the functions λξ, λζ and υ are defined on D and satisfy

(2.19), (2.20) and (2.21). Furthermore, as Kξ and Kζ depend linearly on `, the

function υ can be bounded uniformly on `.

Suppose now that (w, x) ∈ N and consider the change of variables:

ē 7→ ẽ := ē− υ1(w, x)

η 7→ η̃ := η − υ(w, x)

χ 7→ χ̃ := χ− CT
e υ1(w, x)− λξ(w, x)

ζ̄ 7→ ζ̃ := ζ̄ +K
(
λξ(w, x) + CT

e υ1(w, x)
)
− λζ(w, x)

noting that λeξ = 0 and λeζ = 0, then we obtain

ẽ = Ceχ− υ1(w, x) = Ceχ̃ (2.41)

and, in view of (2.28) and noting that Ceλξ = 0, FCT
e = 0 and CeC

T
e = Ine , we

also have
˙̃χ = (F + CT

e G1Ce +HK)χ̃+Hζ̃ + CT
e (η̃2 −G1η̃1). (2.42)

Thus, Lemma 2.1 can be used to show that, for each g > 0 and each ε > 0, K can

be taken so that there exist βχ̃, βẽ ∈ KL and q1 > 0 such that

|χ̃(t)| ≤ βχ(|χ̃(0)|, t) + q1

(
|ζ̃|[0,t) + |η|[0,t)

)
|ẽ(t)| ≤ β̃e(|χ̃(0)|, t) + ε|ζ̃|[0,t) + ε|η̃|[0,t).

(2.43)
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Let

µ̃ := ∆(g)−1η̃, (2.44)

the same argument used before in dealing with µ show that

˙̃µ = gMµ̃+ g1−dE
(
φ(∆(g)µ̃+ υ(w, x))− υd+1(w, x)

)
+ gRCeχ̃ (2.45)

Then, as φ is locally Lipschitz and bounded by Cφ, for some Lφ > 0 it holds that

|φ(∆(g)µ̃+ υ(w, x))− υd+1(w, x)|

≤ |φ(∆(g)µ̃+ υ(w, x))− φ(υ(w, x))|+ |φ(υ(w, x))− υd+1(w, x)|

≤ min{2Cφ, Lφgd−1|µ̃|}+ |δ(w, x)|

≤ Lφg
d−1|µ̃|+ |δ(w, x)|.

where δ is defined as in (2.23). Let δ̄ be a smooth function defined on N such

that
δ̄(w, x) = δ|A(w, x) ∀(w, x) ∈ A

|δ̄(w, x)| ≤ sup
(w,x)∈A

|δ(w, x)| ∀(w, x) ∈ Rnw+n.
(2.46)

Then the function δ(w, x)− δ̄(w, x) vanishes on A, so that we have

|δ(w, x)| = |δ(w, x)− δ̄(w, x) + δ̄(w, x)| ≤ |δ(w, x)− δ̄(w, x)|+ |δ̄(w, x)|

≤ γ
(
|(w, x)|A

)
+ sup

(w,x)∈A
|δ(w, x)|

for some γ ∈ K that can be taken locally Lipschitz in N .

Standard high-gain arguments thus can be used to prove that there exists

g?1 > 0 dependent on Lφ such that, for all g > g?1, the following estimate holds

|µ̃(t)| ≤ βµ̃(|µ̃(0)|, t) +
q2

gd

(
||(w, x)|A|[0,t) + sup

(w,x)∈A
|δ(w, x)|

)
+ q2|ẽ|[0,t).

for some βµ̃ ∈ KL and some q2 > 0. Thus, by letting βη̃ = gd−1βµ̃, using the fact

that |η̃| ≤ gd−1|µ̃| and |η̃1| ≤ |µ̃|, we also obtain that the system η̃ seen as a system
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with input ẽ and output η̃1 fulfills

|η̃(t)| ≤ βη̃(|η̃(0)|, t) +
q2

gd

(
||(w, x)|A|[0,t) + sup

(w,x)∈A
|δ(w, x)|

)
+ q2g

d−1|ẽ|[0,t)

|η̃1(t)| ≤ βη̃(|η̃(0)|, t) +
q2

gd

(
||(w, x)|A|[0,t) + sup

(w,x)∈A
|δ(w, x)|

)
+ q2|ẽ|[0,t).

(2.47)

Since
ξ = χ− CT

e η1 = χ̃− CT
e η̃1 + λξ(w, x)

ζ = ζ̄ +Kχ = ζ̃ +Kχ̃+ λζ(w, x)
(2.48)

and Ceλξ = λeξ = 0, Ceλζ = λeζ = 0, then

|ξe| ≤ |χ̃|+ |η̃1|

|ζe| ≤ |ζ̃|+ |K||χ̃|,

so that, for some q3 > 0, inside N Assumption 2.1 gives

|(w(t), x(t))|A ≤ β(|(w(0), x(0))|A, t)+q3

(
(1+ |K|)|χ̃|[0,t) + |ζ̃|[0,t) + |η̃1|[0,t)

)
. (2.49)

Thus, in view of (2.43), (2.47) and (2.49), by choosing g > g?, where

g? := max {g?1, d
√
q2q3} (2.50)

and choosing K using Lemma 2.1 with such a choice of G1 and with ε that satis-

fies

ε < ε? := min{ε?1, 1/q2},

then, as (2.43) does not depends on |(w, x)|A, applying the small-gain arguments

of (Jiang et al., 1994) twice yields the existence of a β̃1 ∈ KL and a constant q4 > 0

such that, by letting

ν(t) := max {|(w(t), x(t))|A, |χ̃(t)|, |η̃(t)|} (2.51)

then in N the following bound holds:

ν(t) ≤ β̃1(ν(0), t) +
q4

gd
sup

(w,x)∈A
|δ(w, x)|+ q4|ζ̃|[0,t). (2.52)

58



For what concerns ζ̃, instead, in view of (2.37) and (2.48), we have

u = L
(
Kξξ +Kζζ +Kηη1

)
= L

(
Kξ(χ̃− CT

e η̃1 + λξ(w, x)) +Kζ(ζ̃ +Kχ̃+ λζ(w, x)) +Kη(η̃1 + υ1(w, x))
)

= L
(
Kξ(χ̃− CT

e η̃1) +Kζ(ζ̃ +Kχ̃) +Kηη̃1

)
+ L

(
Kξλξ(w, x) +Kζλζ(w, x) +Kηυ1(w, x)

)
= `L

(
K(χ̃− CT

e η̃1)− Ine(ζ̃ +Kχ̃) +KCT
e η̃1

)
+ L

(
Kξλξ(w, x) +Kζλζ(w, x) +Kηυ1(w, x)

)
= `Lζ̃ + L

(
Kξλξ(w, x) +Kζλζ(w, x) +Kηυ1(w, x)

)
.

As a consequence, in view of (2.19), with % the same linear map as in (2.36), we

have

˙̃ζ = ζ̇ −K ˙̃χ− λ̇ζ(w, x)

= %(η̃, χ̃, ζ̃) + q(w, x) +B(w, x)u

−
(
q(w, x) +B(w, x)L

(
Kξλξ(w, x) +Kζλζ(w, x) +Kηυ1(w, x)

))
+ ϕ(w, x)

= %(η̃, χ̃, ζ̃) + ϕ(w, x)− `B(w, x)Lζ̃ .

Therefore, the same arguments as in Lemma 2.2 applied with q = ϕ (which, in

view of Assumption 2.4 is locally Lipschitz and satisfies ϕ|A = 0), show that

there exists `?(g) ≥ `?4(g) such that, for all ` ≥ `?(g), inside N it holds that

|ζ̃(t)| ≤ βζ̃(|ζ̃(0)|, t) +
q5

`
|ν|[0,t). (2.53)

and with q5 > 0 and βζ̃ ∈ KL such that

q5q4

`
< 1.

Therefore, standard small-gain arguments show that inside N , the following

bound holds:

lim sup
t→∞

max{ν(t), |ζ̃(t)|} ≤ q6

gd
sup

(w,x)∈A
|δ(w, x)|. (2.54)
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for some q6 > 0.

Now, to establish the bound (2.25), pick a point (w, x, η) inD. Then there exist

sequences ((wn, xn, ηn))n in SHcl(W ×X ×H) and (tn)n in R+ such that tn → ∞
and

(wn(tn), xn(tn), ηn(tn))→ (w, x, η). (2.55)

From point 2 of the proposition, proved above, for sufficiently large n we have

(wn(tn), xn(tn), ηn(tn)) ∈ N , and, hence, (2.54) holds. For each n, let χ̃n :=

χ̃(wn, xn), ζ̃n := ζ̃(wn, xn) and η̃n := ηn − υ(wn, xn). Then, the error at (w, x)

satisfies

e = he(w, x) = Ceξ(w, x) = Ceχ̃(w, x)− CeCT
e η̃1,

so as

|e| ≤ |χ̃|+ |η̃1| ≤ |χ̃− χ̃n(tn)|+ |η̃1 − η̃n1 (tn)|+ |η̃n1 (tn)|+ |χ̃n(tn)|

As χ̃(w, x) is continuous in (w, x), then, in view of (2.54) and (2.55), for each

ε > 0, there exists n?(ε) ∈ N such that n ≥ n?(ε) implies

|χ̃− χ̃n(tn)| = |χ̃(w, x)− χ̃(wn(tn), xn(tn))| ≤ ε/2

|η̃n1 (tn)|+ |χ̃n(tn)| ≤ ε/2 +
q6

gd
sup

(w,x)∈A
|δ(w, x)|.

By arbitrariness of ε and (w, x, η) ∈ D, we then conclude that

sup
(w,x,η)∈D

|he(w, x)| ≤ q6

gd
sup

(w,x)∈A
|δ(w, x)|, (2.56)

that, in view of the uniform attractiveness of D, implies (2.25). �

Proof of Lemma 2.1. Pick i ∈ {1, . . . , r} and, with ki > 0, define the matrix

Λi(ki) := diag(kNi−2
i Ipi , k

Ni−3
i Ipi , . . . , kiIpi , Ipi) and change coordinates as

χi 7→ zi := Λi(ki)χ
i .

With reference to the matrices defined in (2.10a)-(2.10c), noting that

Λi(ki)FiiΛi(ki)
−1 = kiFii
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Λi(ki)Hii = Hii

Λi(ki)C
T
i G1CiΛi(ki)

−1 = CT
i G1Ci

Λi(ki)C
T
i = kNi−2

i CT
i

then zi fulfills

żi = kiFiiz
i +Hiiζi + Λi(ki)

i−1∑
j=1

(
FijΛj(kj)

−1zj +Hijζj
)

+ CT
i G1Ciz

i + kNi−2
i CT

i (η2 −G1η1)

Let (αi1, . . . , α
i
Ni−1) ∈ HC(Ni − 1) and, with Di :=

(
−αi1Imi · · · − αiNi−1Imi

)
and

ζ̄ i ∈ Rmi , let

ζ i = ζ̄ i + kiD
izi . (2.57)

Since Fii + HiiD
i is Hurwitz, it can be shown that there exists k? > 1 such that,

for any ki > k?, the following holds

|zi(t)| ≤ b1e
−b2kit|zi(0)|+ b3k

Ni−3
(
|ζ̄|[0,t) + |η|[0,t)

)
+ b4k

Ni−3
i

i−1∑
j=1

kj

∫ t

0

e−b2ki(t−τ)|zj(τ)|dτ
(2.58)

for some b1, b2, b3, b4 > 0. We can partition ē as ē = col(ē1, . . . , ēre), with ēi :=

k2−Ni
i Ciz

i. Pick ε > 0 and pick i ∈ {1, . . . , r}. Suppose that, for each j = 1, . . . , i−
1, zj(t) fulfills

|zj(t)| ≤ hi1e
−hi2t|z(0)|+ hi3

(
|ζ̄|[0,t) + |η|[0,t)

)
(2.59)

for some hi1, h
i
2, h

i
3 ≥ 0. Then, by letting for convenience k̄i := max1≤j<i kj , (2.58)
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gives

|zi(t)| ≤ b1e
−b2kit|z(0)|+ b3k

Ni−3
(
|ζ̄|[0,t) + |η|[0,t)

)
+ b4k

Ni−3
i (i− 1)k̄i

(∫ t

0

e−b2ki(t−τ)hi1|z(0)|dτ

+

∫ t

0

e−b2ki(t−τ)hi3
(
|ζ̄|[0,τ) + |η|[0,τ)

)
dτ

)
≤
(
b1 +

2b4rk̄ih
i
1k

Ni−4

b2

)
e−b2kit|z(0)|

+

(
b3 +

2b4rk̄ih
i
3

b2ki

)
kNi−3
i (|ζ̃|[0,t) + |η̃|[0,t))

(2.60)

Fix

ki = max

{
k?, max

1≤j<i
kj,

r

ε

(
b3 +

2b4rh
i
3

b2

)}
. (2.61)

Then, in view of (2.60), the fact that (2.59) holds for j = 1, . . . , i− 1 implies that

the same bound also holds for j = 1, . . . , i, with

hi+1
1 := max

{
hi1, b1 +

2b4rh
i
1k

Ni−3

b2

}
hi+1

2 := min
{
b2ki, h

i
2

}
,

hi+1
3 := max

{
hi3,

r

ε
kNi−2

}
Moreover, noting that |ēi(t)| ≤ k2−Ni

i |zi(t)|, in view of (2.61), we have

|ēi(t)| ≤ qi1e
−qi2t|z(0)|+ ε

r

(
|ζ̄|[0,t) + |η|[0,t)

)
(2.62)

with qi1 := hi+1
1 k2−Ni

i and qi2 := hi+1
2 . Fix k1 so that

k1 ≥ max

{
k?,

b3r

ε

}
.

Then the sequence (2.61) is well-defined and (2.58) implies (2.59) for j < 2 and

(2.62) for i = 1, with h2
1 := b1, h2

2 := −b2k1 and q1
1 := b1k

2−N1 , q1
2 := b2k1. Hence,

by induction we conclude that, for each i = 1, . . . , r

|zi(t)| ≤ h̄1e
−h̄2t|z(0)|+ h̄3

(
|ζ̄|[0,t) + |η|[0,t)

)
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and for each i = 1, . . . , re,

|ēi(t)| ≤ q̄1e
−q̄2t|z(0)|+ ε

r

(
|ζ̄|[0,t) + |η|[0,t)

)
with h̄1 := hr+1

1 , h̄2 := hr+1
2 , h̄3 := hr+1

3 , q̄1 := qr1 and q̄2 := qr2. Noting that

|χ(t)| ≤
∑r

i=1 |χi(t)| ≤
∑r

i=1 |zi(t)|, |z(0)| ≤ kNr−1|χ(0)| and |ē(t)| ≤
∑re

i=1 |ēi(t)|,
then we obtain (2.29)-(2.30), with

βχ(s, t) := kNr−1rh̄1 exp(−h̄2t)s a5 := kNr−1rh̄3

βē(s, t) := req̄1 exp(−q̄2t)s

and the claim follows with

K :=
(
k1D

1Λ1(k1) · · · krD
rΛr(kr)

)
.

�

Proof of Lemma 2.2. Fix the compact sets W × X ⊂ Rnw+n and define the

function

V (w, x) =
√
ζ̄TP(w, x)ζ̄ (2.63)

on a neighborhood of W ×X . Point a of Assumption 2.2 implies the existence of

λ, λ̄ > 0 such that

λ|ζ̄| ≤ V (w, x) ≤ λ̄|ζ̄|

for all (w, x) ∈ W ×X . Taking the Dini derivative of V along the solutions of the

closed-loop system yields

D+V (w, x) =
1

2V (w, x)

(
− `ζ̄T

(
LTB(w, x)TP(w, x) + P(w, x)B(w, x)L

)
ζ̄

+ 2ζ̄TP(w, x)
(
ρ(η, χ, ζ̄) + q(w, x)

)
+ ζ̄
(
L(w)
s P(w, x) + L

(x)
f P(w, x) + L

(x)
b(w,x)uP(w, x)

)
ζ̄
)
.

Point c of Assumption 2.2 implies

ζ̄T
(
LTB(w, x)TP(w, x) + P(w, x)B(w, x)L

)
ζ̄ ≥ |ζ̄|2
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so as

−`ζ̄T
(
LTB(w, x)TP(w, x) + P(w, x)B(w, x)L

)
ζ̄ ≤ −`|ζ̄|2.

Let q̄(w, x) be any function that agrees with q on A and that satisfies |q(w, x)| ≤
sup(w,x)∈A |q(w, x)| for all (w, x) ∈ Rnw+n. Adding and subtracting 2ζ̄TP(w, x)q̄(w, x)

yields

2ζ̄TP(w, x)
(
ρ(η, χ, ζ̄) + q(w, x)

)
= 2ζ̄TP(w, x)

(
ρ(η, χ, ζ̄) + q̃(w, x) + q̄(w, x)

)
with q̃ := q − q̄. As P is continuous, ρ is Lipschitz and, as q̃ vanishes on A and it

is locally Lipschitz, then for some M1(g) > 0 we have

2ζ̄TP(w, x)
(
ρ(η, χ, ζ̄) + q(w, x)

)
≤M1(g)|ζ̄|

(
|η|+ |χ|+ |ζ̄|+ |(w, x)|A + sup

(w,x)∈A
|q(w, x)|

)
,

as long as (w, x) ∈ W×X . Point b of Assumption 2.2 implies thatL(x)
b(w,x)uP(w, x) =

0, so as by continuity of P , as long as (w, x) ∈ W ×X , we can write

ζ̄
(
L(w)
s P(w, x) + L

(x)
f P(w, x) + L

(x)
b(w,x)uP(w, x)

)
ζ̄ ≤M2|ζ̄|2

for some M2 > 0. Since
1

λ̄
≤ |ζ̄|
V (w, x)

≤ 1

λ
,

then there exist α1, α2(g) > 0 such that, as long as (w, x) ∈ W ×X , we have

D+V (w, x) ≤ (α2(g)− `α1)V (w, x) +α2(g)
(
|η|+ |χ|+ |(w, x)|A+ sup

(w,x)∈A
|q(w, x)|

)
,

and the result thus follows by taking, for some arbitrary ε ∈ (0, α1), `?2(g) :=

max{`?1, α2(g)/(α1 − ε)}. �

2.3.5 On the Controllability Assumption

Although Assumption 2.2 might seem to be constructed ad-hoc for the stabi-

lization problem inside Proposition 2.1, it turns out that it is general enough to

be actually implicated by many state-of-art assumptions routinely used in the

context of high-gain stabilization and regulation of multivariable systems. In
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the following we prove this fact for some relevant papers appeared in the litera-

ture. In this respect we notice that the following results give constructive proce-

dures to define the matrix L (P is not required to be known as it is not used by

the control) using only quantities that are known in the respective frameworks.

In the following we assume that B(w, x) is C1 and, for ease of notation, we let

x := (w, x).

Strong Invertibility in the sense of (Wang et al., 2015a) implies Assumption
2.2

Here we prove that the assumption of invertibility used, for instance, in the re-

cent papers (Wang et al., 2015a) and (Wang et al., 2016), implies Assumption

2.2.

Lemma 2.3. Suppose thatm = ny (i.e. B(x) is square),B(x) is bounded, L(x)
g(x)uB(x) =

0 for all x ∈ W × Rn, and there exists ε > 0 such that all its principal minors ∆i(x),
i = 1, . . . , r satisfy

|∆i(x)| ≥ ε, (2.64)

for all x ∈ W × Rn. Then Assumption 2.2 holds.

Proof. According to (Wang et al., 2015a, Lemma 1), if (2.64) holds then B(x) can

be written as

B(x) = EM(x)(I + U(x)),

with M(x) = M(x)T positive definite for all x ∈ W × Rn, U(x) a strictly upper

triangular matrix and with E a diagonal matrix satisfying EE = I . Lemma 2 of

(Wang et al., 2015a) shows that, if B(x) is bounded there exists c > 1 such that,

with C := diag(cm−1, cm−2, . . . , c, 1), we have

(I + U(x))C + C(I + U(x))T ≥ I.

Let

L := EC, P(x) := EM(x)−1E,

then, noting that

B(x)TEM(x)−1 = (I + U(x))TM(x)TETEM(x)−1 = (I + U(x))T
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then we have (note that by construction L = LT = EC = CE)

LTB(x)TP(x) + P(x)B(x)L = ECB(x)TEM(x)−1E + EM(x)−1EB(x)CE

= E
[
C(I + U(x))T + (I + U(x))C

]
E

≥ I,

for all x ∈ W × Rn. Thus, since EE = I , point c of Assumption 2.2 holds.

Furthermore, as M(x) > 0, then M(x)−1 > 0 as well and, hence, P(x) is positive

definite and point a holds. Finally, according to (Wang et al., 2015a, Lemma 3),

L
(x)
g(x)uB(x) = 0 implies L(x)

g(x)uM(x) = 0. Since

L
(x)
g(x)uM(x)−1 = −M(x)−1L

(x)
g(x)uM(x)M(x)−1 = 0,

then also point b holds, hence the result. �

Strong invertibility in the sense of (Wang et al., 2015b, 2017) implies Assump-
tion 2.2

Here we prove that the assumption of invertibility used, for instance, in the re-

cent papers (Wang et al., 2015b) and (Wang et al., 2017), implies Assumption

2.2.

Lemma 2.4. Suppose that m = ny (i.e. B(x) is square) and that there exist a nonsin-
gular matrix M ∈ Rm×m and a constant δ0 ∈ (0, 1) such that

max
Λ∈Rm×m
|Λ|≤1

∣∣∣(B(x)−M
)

ΛM−1
∣∣∣ ≤ δ0 (2.65)

holds for all x ∈ W × Rn, then Assumption 2.2 holds.

Proof. As (2.65) holds for all Λ ∈ Rm×m satisfying |Λ| ≤ 1, it holds in particular

for Λ = I , thus yielding

|B(x)M−1 − I| ≤ δ0.

Thus, for all p ∈ Rm and x ∈ W × Rn, it holds that

2pT
(
I −B(x)M−1

)
p ≤ |2pT (B(x)M−1 − I)p| ≤ 2|p|2 · |I −B(x)M−1|

≤ 2δ0|p|2 = pT (2δ0I)p.
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Therefore, we obtain

pT
(

2I −M−TB(x)T −B(x)M−1
)
p = 2pTp− 2pTB(x)M−1p

= 2p
(
I −B(x)M−1

)
p ≤ pT (2δ0I)p.

As it holds for all p ∈ Rm and x ∈ W × Rn then, necessarily

2I −M−TB(x)T −B(x)M−1 ≤ 2δ0I

and, thus, letting L := M−1 and P(x) := I/(2(1 − δ0)), yields the point c of

Assumption 2.2. Point a of the assumption follows by noting that δ0 ∈ (0, 1) and

point b is straightforward as P is constant in x. �

Positivity and negativity in the sense of (McGregor et al., 2006; Back, 2009;
Astolfi et al., 2013) imply Assumption 2.2

Going back few years we find other three papers in which a “negativity” or a

“positivity” assumption onB is made. The following lemma refers to (McGregor

et al., 2006, Ass. 4.4).

Lemma 2.5. Suppose that m = ny (i.e. B(x) is square) and that there exists M ∈
Rny×ny such that the following negativity condition holds:

B(x)M +MTB(x)T < 0 (2.66)

for all x ∈ W × Rn. Then Assumption 2.2 holds.

Proof. Let δ(x) := min σ(B(x)M + MTB(x)). Equation (2.66) implies, for any

p ∈ Rm and x ∈ W × Rn,

pT (δ(x)I)p = δ(x)|p|2 ≤ pT (B(x)M +MTB(x)T )p,

i.e.

MTB(x)T +B(x)M ≥ δ(x)I.

Thus Assumption 2.2 holds with L := M and P(x) := I/δ(x). �

The following results instead refers to the positivity assumption of (Astolfi

et al., 2013, Assumption 1).
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Lemma 2.6. Suppose that m = ny (i.e. B(x) is square) and that there exists K ∈
Rny×ny such that the following positivity condition holds:

B(x)K +KTB(x)T ≥ I (2.67)

for all x ∈ W × Rn. Then Assumption 2.2 holds.

Proof. The proof follows by noting that the hypotheses of Lemma 2.5 hold with

M = −K. �

Finally, the following lemma shows that also the quite intricate condition of

(Back, 2009, Ass. 3) implies Assumption 2.2.

Lemma 2.7. Suppose that m = ny (i.e. B(x) is square), and assume that there exist
a nonsingular matrix K, G− := diag(g−1 , . . . , g

−
m) and G+ := diag(g+

1 , . . . , g
+
m) such

that 0 < G− < G+ and that(
B(x)Kp−G−p

)T
Π2
(
B(x)Kp−G+p

)
≤ 0, (2.68)

for all p ∈ Rm and all x ∈ W ×Rn and where Π := 2(G+ +G−)−1. Then Assumption
2.2 holds.

Proof. Equation (2.68) implies (G− = (G−)T )

−KTB(x)TΠ2G+ −G−Π2B(x)K +KTB(x)TΠ2B(x)K +G−Π2G+ ≤ 0,

that in turn implies

M(x) := KTB(x)TΠ2G+ +G−Π2B(x)K > 0

for all x ∈ W × Rn. Noting that

Π2G+ = Π · 2(G+ +G−)−1G+ = Π · 2(G+ +G−)−1(G+ +G− −G−) = 2Π− Π2G−

G−Π2 = 2 ·G−(G+ +G−)−1Π = 2Π−G+Π2

then

M(x) = 2
(
KTB(x)TΠ + ΠB(x)K

)
−M(x)T
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Thus,M > 0 implies

KTB(x)TΠ + ΠB(x)K =
1

2

(
M(x) +M(x)T

)
> 0

and the claim follows with the same arguments of Lemma 2.5. �
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3
Robustness in Output Regulation

The most celebrated property of the linear regulator (see property P1 in

Section 1.1.3) is robustness to plant’s uncertainties. Namely, if the in-

ternal model unit is appropriately chosen, asymptotic regulation is en-

sured despite plant’s uncertainties that do not destroy linearity and closed-loop
stability, with the stabilizer chosen on the basis of the plant’s nominal value. The

whole nonlinear regulation theory developed so far (the regulators mentioned

in Section 1.2.3 included) failed to extend, in its full generality, this robustness

property and robustness itself, quite surprisingly, has been almost left out by

the majority of the output regulation literature of the last 20 years. This chapter

deals with the robustness issue in output regulation schemes. We fist analyze,

by means of a quite informal discussion, the reason why robustness is such a far

concept for nonlinear systems (Section 3.1). Then we present a (pre-processing)

regulator design based on low-power high-gain observers that extends to a class of

nonlinear systems the “structural robustness” properties of the local approach

of (Byrnes et al., 1997a) (Section 3.2). Then we present a framework in which

the usual notions of steady state and zero dynamics, as originally introduced in
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(Byrnes and Isidori, 2003), can be extended to the case in which the exosystem

is a differential inclusion, thus shifting the robustness issue to the exosystem

definition (Section 3.3). Finally, we present a new framework in which a general-

ized notion of robustness with respect to arbitrary topologies is defined relative

to arbitrary steady-state properties of the closed-loop trajectories (Section 3.4).

We review in this framework different existing regulators and we present new

results about robustness of post-processing schemes.

3.1 The Robustness Issue

This section contains some original considerations extracted by the tutorial pa-

per (Bin and Marconi, 2018b). For further details see also (Bin et al., 2018a) and

(Bin and Marconi, 2018a). While for linear systems the concept of robustness has

a clear and agreed meaning, for nonlinear system robustness is still quite a vague

concept that usually is treated in ad hoc manners. The reason of this fact is per-

haps that the type of plant’s perturbations captured by the concept of “structural
robustness” originally given by Francis and Wonham in (Francis and Wonham,

1975), that refers to perturbations obtained by changing the matrices entries, for

linear plants are general enough to include more “exotic” types of perturbations,

such as those framed in the context of differential topology (Hirsch, 1994). For

nonlinear plants, however, parametric uncertainties are way far to be sufficient

to describe the whole set of perturbations that may affect the plant’s functions,

and a general unifying concept of perturbation is probably not yet taken into

consideration. The first frameworks developed for nonlinear systems (see e.g.

Byrnes et al., 1997a,b), as well as the majority of the subsequent designs, just

focused on the extension of the parametric notion of perturbation and on the

corresponding generalization of the concept of “structural robustness”, with few

exceptions such as (Astolfi et al., 2015; Astolfi and Praly, 2017) in which the C1

topology was considered.

This considerable gap in the characterization of robustness that is present

between linear and nonlinear systems, led us to wonder two questions: What
would be the right way to extend the notion of “structural robustness” to nonlinear
systems? and Why robustness seems so far in nonlinear output regulation? While the

first section is answered thoroughly in Section 3.4, we focus here on an informal
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simple answer to the second, more conceptual, question.

The key point that makes linear systems so special is that they obey the su-

perposition principle and, as such, they do not distort linear input signals (i.e.

signals generated by linear exosystems). With reference to Section 1.1.3, super-

position principle means that if the linear stabilized plant (1.5), (1.13), (1.15) is

asymptotically stable, and it is excited by the input w produced by a linear ex-

osystem (1.7), at the steady state all the signals in the closed-loop will contain

exclusively the same harmonics of w(t). In other words, all the signals in the

closed-loop systems can be generated by the same linear process that generated

w(t), i.e. (1.7). As made clear in the nonlinear frameworks (and that is true also

in the linear case), the internal model should not be a model of the exosystem. Rather
it should be a model of any process that can generate the ideal error-zeroing control
law u?(t). The superposition principle implies that for linear systems u?(t) can be

generated by any process that has the same modes of the exosystem, and hence,

the fact that Φ replicates S turns out to be sufficient to ensure that η has the

internal model property. This, in turn, is also the reason why the same linear

regulator holds for any choice of the matrices P and Q in (1.5). For nonlinear

systems this fortunate relation between internal model and exosystem simply

does not hold, and seeking or trying to force it in nonlinear contexts results in

reductive and astray approaches1. This can be easily seen by considering the

following simple system2:

ẋ1 = x2 + x3

ẋ2 = −x1 − βx2 + εx3
1 + Pw + x3

ẋ3 = u− x1

e = x3

(3.1)

with β > 0 and ε ∈ R small numbers, P := (0 1), and where w is generated by

the following linear oscillator:

ẇ1 = w2

ẇ2 = −w1.

1In this respect, we observe that this is directly implied by Assumption 1.8, as u? is given as
a function of only w.

2Notice that letting z = (x1, x2) and e = x3 yields a system of the form (1.20).

73



Every regulator that ensures e(t) = 0 for all t ∈ R+, also must ensure ė(t) = 0

almost everywhere in R+. This means that u(t) must compensate, at the steady

state, the effect of x1(t) produced by the zero dynamics

ẇ1 = w2

ẇ2 = −w1

ẋ1 = x2

ẋ2 = −x1 − βx2 + εx3
1 + w1,

(3.2)

i.e. u? must equal the output x1 of (3.2) a.e. in R+. Therefore, any regulator

solving the problem must embed a suitable replica of (3.2) inside the control

loop to be able to generate u?(t) at the steady state. Nevertheless, no matter how

small β and |ε| are, for sufficiently large initial conditions of (w, x) the system

(3.2) admits chaotic solutions (see Sprott, 2010, Sec. 2.4). As a consequence, the

information given by the exosystem (a simple linear oscillator) is arbitrarily far

to be sufficient to individuate a model for the desired u?, that is potentially non-

periodic and has a chaotic attractor, and the role of the exosystem in generating

u?(t) confuses and melts with the residual dynamics of the plant (in this case the

dynamics of x1 and x2 restricted to the set in which x3 = 0). This example also

shows that Assumption 1.8 is very restrictive, since even a simple example like

(3.1) does not satisfy it outside a neighborhood of the origin3.

When (3.1) is linear (take ε = 0) and asymptotically stable, then the plant’s

residual dynamics, represented by the equations of x1 and x2 in (3.2), just act as

a linear filter on w1, with the only effect to change its phase and amplitude. That

means that no matter how we chose β > 0 or even add new linear terms to (3.1),

if ε = 0 and (x1, x2) is asymptotically stable, then u?(t) can be always produced

by the system
η̇1 = η2,

η̇2 = −η1

u? = η1

which is completely determined by the knowledge of the exosystem.

This example shows how in nonlinear systems the plant itself plays a strong

3To see this, note that if Assumption 1.8 holds, then u? is a function of w and, as such, must
be periodic. This however contradicts the fact that (3.2) has chaotic solutions for large enough
initial conditions.
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active part in the definition of the law u?(t), and hence, if a regulator is con-

structed to embed a copy of the process that generates u?(t) then any arbitrar-

ily slight perturbations in the plant, as well as in the exosystem, can in princi-

ple invalidate such an internal model, thus breaking the possibility of obtaining

asymptotic regulation. This leads us to conclude the following important, even

if straightforward, fact:

A regulator can in principle guarantee robust asymptotic regulation only
under perturbations of the plant or the exosystem that do not affect the
process that generates u?.

Therefore, looking for a nonlinear regulator that is robust with respect to arbi-

trary, even if small, perturbations of the plant is not conceptually different than

looking for a linear regulator that is robust also with respect to variations in the

exosystem matrix S, which is a property that also the linear regulator does not

have. This fact motivated the content of Section 3.4, where we formalize the fact

that the very special robustness property of the linear regulator is just a fortu-

nate consequence of linearity, and we conjecture that, in the general nonlinear

context, no regulator is robust.

3.2 Robust Internal Models by Immersion and the

Low-Power Construction

This section contains original results adapted by the author’s paper (Bin et al.,

2016). We propose a regulator that guarantees some form of robustness to a class

of parametric uncertainties. We first provide a procedure to immerse the (uncer-

tain) process that produces the error-zeroing control law u? into a known system

of higher order. Then we propose a design of the internal model unit based on

the low-power high-gain observers of (Astolfi and Marconi, 2015) to make the

implementation of internal model units of large dimension more convenient.

We follow here the same “structural robustness” concept of (Byrnes et al.,

1997a). The idea is to approach the design of “robust” regulators by assuming

that the whole uncertainty is concentrated in a fixed number of parameters of

the ideal internal model unit (that is, we assume that (1.7) holds with φ that

depends on some uncertain parameters); thus we define a simple procedure to
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immerse that uncertain ideal internal model in a larger system that does not de-

pend on the uncertain parameters. As the dimension of the new model might

increase considerably, we substitute the “high-gain” design (1.30) with an equiv-

alent “low-power high-gain” version, so as to avoid the power explosion of terms

of the form gi that, as g has to be chosen large, might result in infeasible practical

implementation.

3.2.1 Robustification by Immersion

Even though the considerations of Section 3.1 constitute a negative answer to

the robustness quest, for certain kind of problems robustness can be achieved

without adaptation by means of a design by immersion. Given two systems of the

form

ẋ = f(x)

y = h(x)

ẋ′ = f ′(x′)

y′ = h′(x′)

defined on the subsets X ⊂ Rn and X ′ ⊂ Rn′ , n, n′ ∈ N, with state x ∈ Rn and

x′ ∈ Rn′ and output y, y′ ∈ Rp p ∈ N, we define the concept of immersion of

systems as follows:

Definition 3.1. (Byrnes et al., 1997a) The system x is said to be immersed into x′ if
there exists a smooth mapping τ : X → X ′ satisfying τ(0) = 0 and

h(x1) 6= h(x2) =⇒ h′(τ(x1)) 6= h′(τ(x2))

for all x1, x2 ∈ X and such that

∂τ

∂x
f(x) = f ′(τ(x))

h(x) = h′(τ(x))

for all x ∈ X .

In other words, saying that x is immersed in x′ means to say that the output y

corresponding to each solution xwith values inX can be obtained as an output y′

of the system x′ on X ′. Immersion assumptions are at the base of many “robust”

approaches. For instance, nonlinear systems with parametric uncertainties have
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been considered in (Byrnes et al., 1997a) (see also (Byrnes et al., 1997b)), where

robustness is achieved by assuming that the (uncertain) process generating the

ideal error-zeroing control input u? is immersed into a linear system whose dy-

namics does not depend on the uncertain parameters. The same assumption

appeared for instance in (Khalil, 1998; Serrani and Isidori, 2000; Serrani et al.,

2001; Byrnes and Isidori, 2003; Huang and Chen, 2004), while immersion in a

known nonlinear system is exactly Assumption 1.7.

Here we start from Assumption 1.7, where however, φ is not known. We

assume thought that φ admits an affine parametrization in the unknown param-

eters, i.e. we can write

φ(·) = h(·) + θTψ(·), (3.3)

for some known h : Rd → R, ψ : Rd → Rp and p ∈ N and for some unknown θ ∈ Rp.

The idea is to find a new d′ ∈ N, larger than d, and φ′ : Rd′ → R, independent on θ,

such that Assumption 1.7 holds with (d, φ) substituted by (d′, φ′). In other words,

we want to immerse the unknown nonlinear system4

u?(d) = φ(u?(0,d−1))

into the known system

u?(d′) = φ′(u?(0,d′−1)).

The idea is not new in its essence. In (Isidori et al., 2012) the same idea has been

used to cope with an unknown linear φ with arbitrary dimension, while in (Forte

et al., 2013) the same idea has been extended to some nonlinear oscillators. Here

we provide a formal extension to (Forte et al., 2013).

The idea pursued here is illustrated in the following example

Example 3.1. Consider a linear oscillator of the form

ẋ1 = x2

ẋ2 = −γ2x1

(3.4)

with output

y = x1,

4Recall from the notation section that u?(i,j) := (u?(i), u?(i+1), . . . , u?(j)).

77



where the frequency γ ∈ R is an unknown parameter. Differentiating ẋ2 yields

ẍ2 = −γ2ẋ1.

As ẋ2 = ẍ1 and ẍ2 = x
(3)
1 , then we have(

ẍ1

x
(3)
1

)
= −γ2

(
x1

ẋ1

)
.

Hence, along each solution of (3.4) that does not originate in the origin (and thus

guarantee that x2
1 + ẋ2

1 > 0) we can write

γ2 = − ẍ1x1 + ẋ1x
(3)
1

x2
1 + ẋ2

1

.

Differentiating further x(3)
1 and substituting such expression of γ yields

x
(4)
1 =

ẍ1x1 + ẋ1x
(3)
1

x2
1 + ẋ2

1

ẍ1,

namely, by letting z := (x1, ẋ1, ẍ1, x
(3)
1 ), we have that the system (3.4) is immersed

into the following system:

ż1 = z2

ż2 = z3

ż3 = z4

ż4 =
z3z1 + z2z4

z2
1 + z2

2

z3

that has twice the dimension of the original system (3.4), but that does not de-

pend on the unknown parameter γ. The intuition is that, if we have a model of

the z system, we also have a model of any system obtained from (3.4) by letting

γ vary in R, without the need of knowing γ explicitly. 4

We extend now the idea illustrated in the previous example to more general

classes of systems. With reference to Section 1.2.3, suppose that Assumption 1.6

holds, and let

U? :=
{
u? given by (1.27) : (w, z) ∈ S(1.25)(A)

}
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be the set of all the possible error-zeroing inputs. We start from (3.3), by assum-

ing that all u? ∈ U? fulfill

u?(d) = h
(
u?(0,d−1)

)
+ ψ

(
u?(0,d−1)

)T
θ, (3.5)

with d, h, ψ, θ defined as above. Note that from the the smoothness of f , q and

b in (1.24), from the sign-definiteness of b and since A is compact and forward

invariant for (1.25), then for each d ∈ N there exists a compact set Ud ⊂ R such

that, for all u? ∈ U?,
u?(d)(t) ∈ Ud, ∀t ∈ domu?. (3.6)

For any d ∈ N, we then define Ud := U0 × · · · × Ud.

For i ∈ N we define the functions hj : Rd+j → R as:

h0
(
u?(0,d+j−1)

)
:= h

(
u?(0,d+j−1)

)
hj
(
u?(0,d+j−1)) :=

∂hj−1
(
u?(0,d+j−2)

)
∂u?(0,d+j−2)

u?(1,d+j−1), j = 1, . . . , i,

and, for each k = 1, . . . , p, we let ψkj : Rd+j → R be the functions

ψ0
k

(
u?(0,d+j−1)

)
:= ψk

(
u?(0,d+j−1)

)
ψjk
(
u?(0,d+j−1)) :=

∂ψkj−1

(
u?(0,d+j−2)

)
∂u?(0,d+j−2)

u?(1,d+j−1), j = 1, . . . , i,

where we let ψk denote the k-th component of ψ. We then let ψj := col(ψj1, . . . , ψ
j
p)

and
Hi

(
u?(0,d+i−1)

)
:= col

(
hj
(
u?(0,d+j−1)) : j ≤ i

)
Ψi

(
u?(0,d+i−1)

)
:= col

(
φj
(
u?(0,d+j−1))T : j ≤ i

)
.

Then we have the following result:

Proposition 3.1. Assume that there exist d, p ∈ N, smooth h : Rd → R and ψ : Rd →
Rp, and θ ∈ Rp such that, for all u? ∈ U?, (3.5) holds, and suppose that there exists
m ≥ p− 1 such that

rank Ψm(u) = p, ∀u ∈ Ud+m−1.

Then there exist d′ ∈ N and a locally Lipschitz φ′ : Rd′ → R, independent on θ, such
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that Assumption 1.7 holds.

Proof. Differentiating (3.5) m times and collecting the obtained equations yields

u?(d,d+m) = Hm(u?(0,d+m−1)) + Ψm(u?(0,d+m−1))θ.

Solving for θ leads to

θ = Ψm

(
u?(0,d+m−1)

)†(
u?(d,d+m) −Hm(u?(0,d+m−1))

)
. (3.7)

As Ψm has constant rank on the whole Ud+m−1, then the map

u ∈ Rd+m 7→ Ψm(u[1,d+m])
†(u[d+1,d+m+1] −Hm(u[1,d+m]))

is smooth in an open set containing Ud+m, and, thus, (3.7) is well defined along

each u? ∈ U?.
Taking the (m+ 1)-th derivative of (3.5) yields

u?(d+m+1) = hm+1

(
u?(0,d+m)

)
+ ψm+1

(
u?(0,d+m−1)

)T
θ,

and substituting (3.7) yields

u?(d′) = φ̄
(
u?(0,d′−1)

)
,

where d′ := d+m+ 1 and φ̄ : Ud+m → R is the function

u 7→ hm+1(u[1,d+m+1])+ψm+1(u[1,d+m+1])
T ·

·Ψm(u[1,d+m])
†(u[d+1,d+m+1] −Hm(u[1,d+m])).

The existence of a locally Lipschitz map φ′ : Rd′ → R that agrees with φ̄ on Ud+m

is then provided by the Kirszbraun theorem (see e.g. Federer, 1969, Theorem

2.10.43), and this concludes the proof. �

As a consequence of Proposition 3.1, we may end up with a pair (d, φ) such

that Assumption 1.7 holds and no uncertainty is present. This results in a con-

trol design that is robust in the canonical sense. Nevertheless, it comes with a

regression order d that might be very large. As the Byrnes-Isidori regulator is

build to implement, at a given time scale and in given coordinates, a high-gain
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observer (Gauthier and Kupka, 2001; Khalil and Praly, 2013) of the quantity u?,

large model dimensions d would lead to an explosion of the power of the high-

gain parameter (denoted by g in (1.30)), with consequent problems in terms of

peaking, noise amplification and implementation issues (Khalil and Praly, 2013),

(Astolfi et al., 2016). In the next section we present a regulator design in which

the high-gain internal model unit of the Byrnes-Isidori regulator is substituted

by a “low-power” version based on the recent low-power high-gain observers intro-

duced in (Astolfi and Marconi, 2015), resulting in the same asymptotic behavior

but without having to implement terms of the form gi with i > 2.

3.2.2 Low-Power High-Gain Internal Models

We consider here the same class of SISO normal forms (1.24) under Assumption

1.6 and with the following relaxation of Assumption 1.7.

Assumption 3.1. There exists d ∈ N, a locally Lipschitz function φ : Rd → R, a
δ̄ ∈ R+ and, for each u? ∈ U?, a continuous δ : R→ R, such that |δ|∞ ≤ δ̄ and

u?(d)(t) = φ
(
u?(t), u̇?(t), . . . , u?(d−1)(t)

)
+ δ(t).

We observe that the same assumption has been considered in (Isidori et al.,

2012) for the Byrnes-Isidori regulator, under the additional Assumption 1.8 and

with A = graphπ (in this case δ can be taken as δ(t) = ν(w(t)), for some ν : W →
R). In (Isidori et al., 2012), the authors showed that if ν 6= 0, then the following

asymptotic bound on the regulation error holds:

lim sup
t→∞

|e(t)| ≤ c

gd+1
|ν(W )|, (3.8)

with c > 0 a constant not depending on k or g. We will provide here an equivalent

result adapted to Assumption 3.1.

With (A,B,C) a triplet in prime form of dimension 2 and g > 0 a high-gain
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parameter, let

N := BTB ∈ R2×2

Γ :=
(
C 0 . . . 0

)
∈ Rd×(2d−2)

T := diag (C, . . . , C, I2) ∈ Rd×(2d−2)

D2(g) := diag(g, g2) ∈ R2×2.

Let Ud−1 ⊂ Rd be a compact set such that u?(0,d−1)(t) ∈ Ud−1 for all u? ∈ U? and

all t ∈ domu?. With r > 0 arbitrary, let φs : Rd → R be any bounded Lipschitz

function such that φs(u) = φ(u) for all u ∈ Ud−1 +rB and |φs(Rd)| ≤ Cφ, for some

Cφ > 0. For a η ∈ R2d−2 consider the partition η = col(η1, . . . , ηd−1) with ηi ∈ R2,

and let F : R2d−2 → R2d−2 be the linear map

F (η) := col
(
F1(η), . . . , Fd−1(η)

)
where the elements Fi(η) ∈ R2 are defined as

F1(η) := Aξ1 +Nη2

Fi(η) := Aηi +Nηi+1 +D2(g)Li(B
Tηi−1 − Cηi), i = 2, . . . , d− 2

Fd−1(η) := Aηd−1 +Bφs(Tη) +D2(g)Ld−1(BTηd−2 − Cηd−1),

with Li :=
(
`i1 `i2

)
∈ R1×2 coefficients to be designed. Finally let

G := col
(
D2(g)L1, 02×1, · · · , 02×1

)
∈ R2d−2.

Then we define the low-power high-gain regulator as a system with state η ∈
R2d−2 and input v, satisfying the following equations

η̇ = F (η) +Gv

u = Γη + v

v = −ke,
(3.9)

with k > 0 a further control parameter. Overall, the coefficients to be fixed

are the high-gain parameters g and k and the coefficients Li = (`i1 `i2) for

i = 1, . . . , d− 1. The existence of a choice for them, and the resulting asymptotic

properties of (3.9), are expressed by the following proposition:
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Proposition 3.2. With W ⊂ Rnw and Z ⊂ Rnz arbitrary compact sets, let Assump-
tions 1.6 and 3.1 bu fulfilled, with A that is also locally exponentially stable for
(1.25). Let E ⊂ R and H ⊂ R2d−2 be arbitrary compact subsets, then there exist
(`i1, `i2) ∈ R2, i = 1, . . . , d− 1, g? > 0, c > 0 and, for each g > g?, a k?(g) > 0, such
that for all g > g? and k > k?(g) the trajectories of the closed loop system (1.24), (3.9)

originating from W × Z × E ×H are bounded and such that

lim sup
t→∞

|e(t)| ≤ c

k gd
δ̄. (3.10)

Proof. Let O be an open set containing W × Z. Let us define recursively the

functions τi : O → R as

τ1(w, z) = −q(w, z, 0)

b(w, z, 0)

τi(w, z) =
∂τi−1(w, z)

∂w
s(w) +

∂τi−1(w, z)

∂z
f(w, z, 0), i = 2, . . . , d,

and let τ e : OA → R2d−2 be the function

τ e(w, z) := col
(
τ ei (w, z) : i = 1, . . . , d− 1

)
τ ei (w, z) := col

(
τi(w, z), τi+1(w, z)

)
.

The closed loop system (1.24), (3.9) is a system with unitary relative degree be-

tween the input v and the output e and zero dynamics described by

ẇ = s(w)

ż = f(w, z, 0)

η̇1 = Aη1 +Nη2 +D2(g)L1(τ1(w, z)− Cη1)

η̇i = Aηi +Nηi+1 +D2(g)Li(B
Tηi−1 − Cηi) i = 2, . . . , d− 2

η̇d−1 = Aηd−1 +Bφs(Tη) +D2(g)Ld−1(BTηd−2 − Cηd−1)

(3.11)

System (3.11) is characterized by the following lemma.

Lemma 3.1. There exists g? > 0 and a compact set B ⊂ Rnw+nz+2d−2 such that, for
all g > g?, B is asymptotically stable for (3.11) with a domain of attraction including

83



W × Z ×H. Moreover, there exists c0 > 0 such that the following bound holds:

|τ1(w, z)− Cη1| ≤
c0

gd
δ̄, ∀(w, z, η) ∈ B. (3.12)

The lemma is proved below this proof. The rest of the proof follows from

quite standard arguments. Consider the change of variables

η 7→ χ := η −G
∫ e

0

1

b(w, z, s)
ds,

which is well defined as b is sign definite and which transforms η to the system

χ̇ = F (χ) +G(τ1(w, z)− Cχ1) + ∆(w, z, e),

with

∆(w, z, e) := F

(
G(I − Γ)

∫ e

0

1

b(w, z, s)
ds

)
−G

(
q(w, z, e)

b(w, z, e)
+ τ1(w, z)

−
∫ e

0

1

b(w, z, s)2

(
∂b(w, z, s)

∂w
s(w) +

∂b(w, z, s)

∂f(w, z, e)

)
ds

)

that, in each compact subset of Rnw+nz+1 is linearly bounded by |e|. The equation

of e, instead, reads as

ė = q(w, z, e) + b(w, z, e)(Γχ+ v) + Λ(w, z, e) (3.13)

being

Λ(w, z, e) := b(w, z, e)ΓG

∫ e

0

1

b(w, z, s)
ds

that on each compact subset of Rnw+nz+1 is linearly bounded by |e|. Developing

further (3.13) yields

ė = b(w, z, e)

(
q(w, z, e)

b(w, z, e)
± τ1(w, z) + Γχ+ v

)
+ Λ(w, z, e)

= ρ1(w, z, e) + ρ2(w, z, e, χ) + Λ(w, z, e) + b(w, z, e)v,
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with

ρ1(w, z, e) := b(w, z, e)

(
q(w, z, e)

b(w, z, e)
+ τ1(w, z)

)
ρ1(w, z, e) := b(w, z, e)Γ

(
Γχ− τ1(w, z)

)
that vanish with (w, z, η) ∈ B, e = 0 and δ̄ = 0. In particular, in view of Lemma

3.1, for each compact subset of Rnw+nz+1 there exists M > 0 such that

|ρ1(w, z, e) + ρ2(w, z, e)| ≤M
(
|e|+ |(w, z, η)|B +

α3

gd
δ̄
)
.

Thus, by noting that the zero dynamics between the input v and the output e

coincide with (3.11) (with χ = η), and since A is locally exponentially stable,

standard high-gain arguments (see e.g. Byrnes et al., 2003; Isidori, 1995, 1999)

can be used to show that there exists k?(g) > 0 such that the claim holds. �

Proof of Lemma 3.1. Let

∆i(g) := g2−iD2(g)−1,

and with

∆(g) := diag
(
∆0(g), . . . ,∆d−1(g)

)
consider the change of variables

η 7→ ε := ∆(g)(η − τ e(w)) (3.14)

We start analyzing the dynamics of ε component-wise. Consider the partition

ε = col(ε1, . . . , εd−1), where for each i = 1, . . . , d − 1 we let εi = col(εi1, εi2) ∈ R2.

For i = 1 we have

ε̇1 = ∆0(g)(η̇1 − τ̇ e1 (w, z))

= ∆0(g)
(
Aη1 +Nη2 +D2(g)L1(τ1(w, z)− Cη1)− τ̇ e1 (w, z)

)
Noting that:

ηi = ∆i−1(g)−1εi + τ ei (w, z)
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∆i(g)A∆i(g)−1 = gA, ∀i = 0, . . . , d− 1

∆i(g)N∆i+1(g)−1 = gN, ∀i = 0, . . . , d− 2

g2−iC∆i(g)−1 = gC, ∀i = 0, . . . , d− 1

τ̇ ei (w, z) = τ ei+1(w, z) = Aτ ei (w, z) +Nτ ei+1(w, z), ∀i = 1, . . . , d− 2

then we obtain

ε̇1 = gAε1 + ∆0(g)
(
Aτ e1 (w, z) +N∆1(g)−1ε2 +Nτ e2 (w, z)− τ̇ e1 (w, z)

)
+ g2L1C∆0(g)−1ε1

= g(A+ L1C)ε1 + gNε2.

For i ∈ {2, . . . , d− 2}, instead:

ε̇i = ∆i−1(g)
(
Aηi +Nηi+1 +D2(g)Li(B

Tηi−1 − Cηi)− τ̇ ei (w, z)
)

= gAεi + gNεi+1 + g2−(i−1)Li(B
Tηi−1 − Cηi)

Since

BTηi−1 − Cηi = BT∆i−2(g)−1εi−1 − C∆i−1(g)−1εi +BT τ ei−1(w, z)− Cτ ei (w, z)

and, by construction,

BT τ ei−1(w, z)− Cτ ei (w, z) = 0

g2−(i−1)BT∆i−2(g)−1 = gBT

then we obtain

ε̇i = g(A− LiC)εi + gNεi+1 + LiB
T εi−1.

Finally, for i = d− 1, we have

ε̇d−1 = ∆d−2(g)
(
Aηd−i +Bφs(Tη) +D2(g)Ld−1(BTηd−2 − Cηd−1)− τ̇ ed−1(w, z)

)
= g(A− Ld−1C)εd−1 + gLd−1B

T εd−2

+ ∆d−2(g)
(
Aτ ed−1(w, z) +Bφs

(
T∆(g)−1ε+ Tτ e(w, z)

)
− τ̇ ed−1(w, z)

)
.

86



Noting that

τ̇ d−1
e (w, z) = Aτ ed−1(w, z) +Bτ̇d(w, z), (3.15)

and since Tτ e(w, z) = τ(w, z), then, by letting

τd+1(w, z) :=
∂τd(w, z)

∂w
s(w) +

∂τ(w, z)

∂z
f(w, z, 0),

we obtain

ε̇d−1 = g(A− Ld−1C)εd−1 + gLd−1B
T εd−2

+
1

gd−1
B
(
φs
(
T∆(g)−1ε+ τ(w, z)

)
− τd+1(w, z)

)
.

Hence, by letting for i = 1, . . . , d− 1, Ei ∈ R2×2, Qi ∈ R2×2

Σ :=

(
0(2d−1)×1

1

)
Ei :=

(
−`i1 1

−`i2 0

)
, Qi :=

(
0 `i1

0 `i2

)

and

M :=



E1 N 0 . . . . . . 0

Q2 E2 N 0
...

0
. . . . . . . . . . . . ...

... . . . Qi Ei N
. . . ...

... . . . . . . . . . . . . 0

... . . . Qd−2 Ed−2 N

0 . . . . . . . . . 0 Qd−1 Ed−1


,

the system ε can be compactly rewritten as

ε̇ = gMε+ g1−dΣ
(
φs
(
T∆(g)−1ε+ τ(w, z)

)
− τd+1(w, z)

)
. (3.16)

By using Lemma 1 in (Astolfi and Marconi, 2015), it is possible to show that we

can always choose the matrices Li such that M is Hurwitz. Let Ξ be a compact

set such that η ∈ H and (w, z) ∈ W × Z imply ε ∈ Ξ. As M is Hurwitz and,

by construction, φs is bounded by Cφ, then the reachable sets5 Rτ
(3.16)(Ξ) are uni-

formly bounded for each τ > 0, and we can assume without loss of generality

5See the notation section.
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thatRτ
(3.16)(Ξ) ⊂ int Ξ for sufficiently large τ > 0, as Cφ is independent on Ξ. This

in turn implies that the Ω-limit set B′ := Ω(3.11)(W ×Z ×Ξ) of the zero dynamics

(3.11) is compact invariant and (Assumption 1.6) included in int(W × Z × Ξ).

Point 1 of Assumption 1.6 also implies that for each (w, z, ε) ∈ B′, (w, z) ∈ A.

Add and subtract to (3.16) the term g1−dΣφ(τ(w, z)) to obtain

ε̇ = gMε+ g1−dΣ
(
φs
(
T∆(g)−1ε+ τ(w, z)

)
− φ
(
τ(w, z)

)
+ ν
)
.

with

ν := φ
(
τ(w, z)

)
− τd+1(w, z).

As A is asymptotically stable for the (w, z) subsystem of (3.11), then there exists

t̄ > 0 such that, for all t ≥ t̄, τ(w, z) ∈ Ud−1 + rB and from the properties of φs
we claim the existence of a Lφ > 0 such that, for all t > t̄,

|φs
(
T∆(g)−1ε+ τ(w, z)

)
− φ
(
τ(w, z)

)
| ≤ Lφ|T∆(g)ε| ≤ gd−1Lφ|ε|.

As M is Hurwitz, standard high-gain arguments (Gauthier and Kupka, 2001;

Khalil and Praly, 2013; Isidori, 2017) show the existence of a g? > 0 such that,

for all g > g?, the following estimate holds:

lim sup
t→∞

|ε(t)| ≤ α3

gd
lim sup
t→∞

|ν(t)|, (3.17)

uniformly in the initial conditions and for some α1, α2, α3 > 0 independent on g.

Pick now (w, z, ε) ∈ B′. By definition ofB′, there exists a sequence ((wn, zn, εn))n

in S(1.25)(W ×Z × Ξ) and a strictly increasing sequence (tn)n in R+ with tn →∞,

such that

(wn(tn), zn(tn), εn(tn))→ (w, z, ε). (3.18)

We thus have:

|ε| ≤ |ε− εn(tn)|+ |εn(tn)|

≤ |ε− εn(tn)|+ α3

gd
lim sup
t→∞

|φ(τ(wn(t), zn(t)))− τd+1(wn(t), zn(t))|

≤ |ε− εn(tn)|

+
α3

gd
lim sup
t→∞

(
|φ(w, z)− τd+1(w, z)|+ |φ(τ(wn(t), zn(t)))− φ(w, z)|+
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|τd+1(w, z)− τd+1(wn(t), zn(t))|
)

Due to (3.18), and since (w, z) ∈ A implies φ(w, z)− τd+1(w, z) = δ, then, for each

µ > 0 and each large enough n the previous inequality yields

|ε| ≤ µ+
α3

gd
δ̄,

and from the arbitrariness of µ we claim that

|ε| ≤ α3

gd
δ̄.

Let B be the compact set such that (w, z, η) ∈ B if and only if (w, z, ε) ∈ B′. Since

|τ1(w, z) − Cη1| ≤ |ε| a then the claim follows from the arbitrariness of (w, z, ε).

�

3.2.3 An Example

In this example the low-power high-gain observer regulator (3.9) and the de-

sign approach by nonlinear regression presented above are applied together to

address a robust output regulation problem. The control goal is to asymptoti-

cally reject, by means of the same regulator, a disturbance which can be indis-

tinguishably generated by uncertain linear, Duffing or Van der Pool oscillators.

To this end, the immersion argument introduced above is used to find a system

(with an overall order of d = 7) in which all the three uncertain oscillators can

be immerse, and the low-power high-gain regulator (3.9) is used to implement

an internal model unit of such system.

In this example we consider the following controlled plant:

ẋ1 = −2x1 + x3
2

ẋ2 = 2x2 − 2x1 + u− w1

where u is the control input,

e = x2

is the (measured) regulation error, and w1 is the exogenous disturbance, which is

assumed to be generated from a linear, a Duffing or a Van der Pool oscillator with
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unknown parameters. In particular, we can model w1 as the first component of

a system of the form

ẅ = αw + βẇ + υw3 + γw2ẇ (3.19)

which for different configurations of the parameters includes, among all the oth-

ers, also the dynamics of interest. To put the plant in the normal form (1.24) we

simply let z = x1 and we rewrite the plant as

ż = −2z + e3,

ė = 2e− 2z + u− w1.

Note that the steady state control law able to maintain the error to zero is exactly

u? = w1, which satisfies Assumption 1.7, with d = 2 and φ given by (3.19). By

following the same notation as in the first part of the section, we can express φ

as (3.3), with

ψ(u?, u̇?) :=


u?

u̇?

u?3

u?2u̇?

 θ :=


α

β

υ

γ

 .

The procedure detailed in Proposition 3.1 can be applied to construct a system

of dimension d = 7 into which (3.19) can be immersed. Hence, a regulator of the

form (3.9) is used to control the system, with an overall dimension of 2(d− 1) =

12. The controller design is completed by the choice v = −ke, where k > 0

is chosen large enough. Figure 3.1 shows the simulation results of the overall

closed-loop systems subject to a disturbance w1 which in the first 10 seconds is

produced by a sinusoid at frequency 3 rad/s (obtained from (3.19) with α = −9

and β = υ = γ = 0). At time t = 10s it switches to the output of a Duffing

oscillator obtained by letting α = 2, υ = −1 and β = γ = 0. Finally at time t =

20s it switches to the output of a Van der Pool oscillator obtained with α = −4,

β = 1, υ = 0 and γ = −1. In order to dominate the dynamics of the 7th derivative

of the considered exosystem, we used a gain g = 200.A standard high gain design

we would have had a term of gd = 2007, which is a 17-digit number.
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Figure 3.1: Simulation results.

3.3 Output Regulation with Set-Valued Exosystems

This section contains original results published in (Petit et al., 2018). Here we ap-

proach the problem of robustness from a different perspective: instead of mod-

eling the exosystem as an ordinary differential equation (ODE), we model it as

a differential inclusion (Aubin and Cellina, 1984; Aubin, 1991), i.e. in place of

ẇ = s(w), we write

ẇ ∈ S(w), (3.20)

with w ∈ Rnw and being S : Rnw ⇒ Rnw a set-valued map. The solutions to (3.20)

are absolute continuous functions (Aubin and Cellina, 1984) that, thus, need not

to be differentiable but, rather, admit a distributional derivative that in general

may differ among any two solutions. In particular w : [0, t] → Rnw is absolute

continuous if there exists a Lebesgue integrable function w′ : [0, t] → Rnw such

that we can write

w(t) = w(0) +

∫ t

0

w′(s)ds.

Then we say that w(t) solves (3.20) if w′(s) ∈ S(w(s)) a.e. in [0, t]. Clearly, system

(3.20) can generate a consistently larger multitude of signals than an ordinary

differential equation (which is obtained whenever S(w) = {s(w)} and when we

restrict to C1 functions). A relevant case for regulation, for instance, is the abil-

ity to model differential equations subject to uncertain time-varying parameters

(in this case S is a parametrized map), or exosystems with variable structure. For
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instance, let µ ∈ Rnµ be an unmodeled time-varying vector of unknown param-

eters and suppose we have an uncertain exosystem of the form

ẇ = s(w, µ). (3.21)

Suppose moreover that we know that µ ranges in a set M ⊂ Rnµ . Then, in place

of (3.21), we can consider (3.20) where

S(w) :=
{
w′ ∈ Rnw : w′ = s(w, µ), µ ∈M

}
.

Modeling the exosystem with a differential inclusion means translating the un-

certainties in the right internal model to use into uncertainties in the model of

the exogenous signals. At the analysis level, the exosystem is usually needed to

define fundamental notions such as the steady state and the zero dynamics of a

nonlinear system, moving the attention from “signals” to “systems”. Under a

synthesis point of view, the exosystem is generally exploited to identify an ideal

steady state in which the regulated variables vanish, and thus to chose the de-

grees of freedom of the regulator. In most of the designs (see Section 1.2.3), the

structure of the exosystem enters explicitly in the definition of the regulator, and

generally only a perfect knowledge of the exosystem dynamics can guarantee

asymptotic tracking. Nevertheless, as in this thesis we eventually look towards

regulator designs that can adapt at run time, it is worth wondering if adaptive

regulators will still be as tied to the model of the exogenous signals as non adap-

tive ones or if the hypothesis of the exosystem being an ODE could be weakened

in future.

As a first preliminary work, in this section we follow the line of (Byrnes and

Isidori, 2003), by extending the concepts of steady state and zero dynamics to

the case in which the exosystem has the form (3.20). We also give necessary

conditions for the solvability of the output regulation problem and we extend the

characterization in terms of zero dynamics and the notion of efficient controllers

as given in (Byrnes and Isidori, 2003).

In this section we will adopt the following additional notations: Lloc1 denotes

the space of functions that are locally in L1. With ẋ = f(x, u) a differential

equation with input, where x ∈ X and u ∈ U , being X and U vector spaces, we

denote by (t, x, u) 7→ φx(t, x, u) the value of the solution originating in x ∈ X
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at time t = 0 with input u. Moreover, for all fixed u and all X ⊂ X , we let

Sx(X, u) := {φx(·, x, u) : x ∈ X} be the set of all the solutions starting in X

driven by the input u. With F a set of functions from R+ to Rd, d ∈ N∗, and

with t ≥ 0, we denote by F|t the set of all functions obtained by restricting

an element of F to the interval [0, t]. We denote by AC(X ,Y) the set of all the

absolute continuous functions from X to Y . We denote by (tn)n ↗ a sequence of

tn ∈ R+ that are strictly increasing and limn→∞ tn =∞. Let x = (x1, x2, . . . , xm) ∈
Rn1 × Rn2 × . . .× Rnm , for i = 1, . . . ,m we denote by Prxi(x) := xi the projection

of x on Rni . For a set X ⊂ Rd and x ∈ Rd, we denote by TX(x) the tangent space

to X at point x. In the following we will also often call ϕx a solution to a system

with state x to avoid confusion between solutions and point while keeping the

notation simple.

3.3.1 Preliminaries

In this section we consider the following interconnection

ẇ ∈ S(w) (3.22)

ξ̇ = ψ(w, ξ) (3.23)

in which an autonomous differential inclusion with state w ∈ Rnw , nw ∈ N∗,
drives a nonlinear system with state ξ ∈ Rnξ , nξ ∈ N∗. We suppose that the initial

conditions of (3.22), (3.23) range in a compact subset W × Ξ ⊂ Rnw × Rnξ . We

assume that ψ : W ×Rnξ → Rnξ is locally Lipschitz and S : W ⇒ Rnw is Lipschitz

on W and has non-empty and compact values at each w ∈ W .

We shall introduce now the essential preliminary concepts instrumental for

the forthcoming analysis.

Preliminary definitions:

With N,M > 0, we define the set of admissible solutions of (3.22) as

Lw(w0) =
{
ϕw ∈ Sw(w0) : |ϕw|∞ ≤M and ∀ϕξ ∈ Sξ(Ξ, ϕw), |ϕξ|∞ ≤ N

}
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which is the set of all the bounded solutions to (3.22) which produce bounded

solutions to (3.23). For ease of notation, with Z ⊂ Rnw × Rnξ , we define the set

A(Z) =
{

(ϕξ, ϕw) ∈ AC(R+,Rnw × Rnξ) :

ϕw ∈ Lw(w0), ϕξ ∈ Sξ(ξ0, ϕw), (ξ0, w0) ∈ Z
}
.

which is the set of the admissible solutions to (3.22)-(3.23) from Z. With B a set of

functions from R+ into Rd, d ∈ N∗, we define the flow of B as the set-valued map

ΦB : R+ × Rd → Rd

ΦB(t, b0) =
{
b ∈ Rd : ∃ϕ ∈ B, ϕ(t) = b, ϕ(0) = b0

}
.

With ϕ ∈ B we define the ω-limit set of ϕ as the set

ω(ϕ) =
{
b ∈ Rd : ∃(tn)n ↗, ϕ(tn)→n→+∞ b

}
or equivalently ω(ϕ) = ∩t≥0Φϕ(t, ϕ(0)). Furthermore, we define the Ω-limit set of

B as

Ω(B) =
{
b ∈ Rd : ∃(tn)n ↗, ∃(ϕn)n, ϕ

n ∈ B, ϕn(tn)→ b
}
.

Let A be a set such that A = ∪ϕ∈B{ϕ(0)}. We shall say that the set A is Poisson
Stable if A = ω(B) = ∪ϕ∈Bω(ϕ). With A ⊂ Rd, we say A uniformly attracts B if

∀ε > 0, ∃T > 0, ∀ϕ ∈ B, ∀t > T, |ϕ(t)|A ≤ ε .

We say A is invariant for B if

∀t ∈ R+, ∀ϕ ∈ B, ϕ(t) ∈ A.

If the set B is clear from the context, we omit to mention it. When invariance or

attractiveness refer to the solutions to a differential equation (or inclusion), we

always refer to the set of complete solutions if not other set is mentioned.

Properties of Limit Sets:

We study now the asymptotic behavior of the admissible solutions to the inter-

connection (3.22), (3.23). Under mild existence and regularity assumptions, we
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show that the Ω-limit set of A(W × Ξ) is a well-defined compact set that uni-

formly attracts A(W × Ξ). This results are instrumental for the forthcoming

analysis in the context of output regulation. From now on, we assume W to be

invariant for (3.22) and we fix N > 0 in the definition of Lw(W ). We denote

with Φ the flow of the set A(W × Ξ). Finally, with slight abuse of notation, we

let Ω := Ω(A(W × Ξ)) and we make the following existence and admissibility

assumption:

Assumption 3.2. The following hold:

A1) For all w0 ∈ W , Lw(w0) is non empty.

A2) Sw(W ) = Lw(W )

A relevant case in which Assumptions A1-A2 hold is when the system (3.23)

is input-to-state-stable relatively to the origin and with respect to the input w.

In this case, indeed, there exist γ, ρ ∈ K∞ such that (Sontag, 1995)

∀ϕw ∈ Sw(W ), |ϕξ(t)| ≤ γ(|ϕξ(0)|) + ρ(|ϕw|∞)

for all ϕξ ∈ Sξ(Ξ) and for all t ∈ R+. Therefore, every pair (ϕw, ϕξ) is inA(W ×Ξ)

with M := maxw∈W |w| and N := ρ(M) + maxξ∈Ξ γ(|ξ|).
With the next theorem we show that under Assumption 3.2 the Ω-limit set

of A(W × Ξ) is a well-defined compact attractor for the admissible solutions to

(3.22), (3.23).

Theorem 3.1. Assume A1. Then Ω is non-empty, compact, and uniformly attracts
A(W ×Ξ). Moreover, Ω is the graph of an upper semicontinuous set-valued map and,
if in addition A2 holds, then Ω is invariant for A(Ω).

Before proving Theorem 3.1, we prove the following technical lemma.

Lemma 3.2. For all t ∈ R+ and any two solutions ϕ0
w ∈ Sw(W ) and ϕ1

w ∈ Sw(ϕ0
w(t)),

let ⊕t be the concatenation operator

ϕ0
w ⊕t ϕ1

w(s) := 1[0,t](s)ϕ
0
w(s) + 1]t,+∞[(s)ϕ

1
w(s− t)

Then ϕ0
w ⊕t ϕ1

w ∈ Sw(W ).
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Proof. Since, by definition, ϕiw, i = 0, 1, is absolutely continuous then it admits

derivative in Lloc1 such that

ϕiw(s) = ϕiw(0) +

∫ s

0

(ϕiw)′(u)du

and (ϕiw)′(s) ∈ S(ϕiw(s)) a.e., i = 0, 1. Then

ϕ0
w ⊕t ϕ1

w(s) = ϕ0
w(0) +

∫ s

0

(
1[0,t](u)(ϕ0

w)′(u) + 1]t,+∞[(u)(ϕ1
w)′(u− t)

)
du

and then

(ϕ0
w ⊕t ϕ1

w)′(s) = 1[0,t](s)(ϕ
0
w)′(s) + 1]t,+∞[(s)(ϕ

1
w)′(s− t)

which proves that ϕ0
w⊕tϕ1

w is absolutely continuous and satisfies (ϕ0
w⊕tϕ1

w)′(s) ∈
S(ϕ0

w ⊕t ϕ1
w) a.e. on R+. �

Proof of Theorem 3.1.
First we prove that Ω is compact. Boundedness follows from the definition of

Lw(W ), hence it suffices to prove it is closed. Let (wn, ξn)n∈N be a sequence in Ω

converging to (w, ξ). By definition of Ω, for all n ∈ N,

∃(tnk)k ↗,∃(ϕn,kξ , ϕn,kw )k∈N ∈ A(W × Ξ)N, (ϕn,kξ (tnk), ϕn,kw (tnk))→k→+∞ (ξn, wn).

We can index k on n to obtain for all n ∈ N

|(ϕn,kξ (tnk), ϕn,kw (tnk))− (ξn, wn)| ≤ 2−n

that in turn implies

|(ϕn,kξ (tnk), ϕn,kw (tnk))− (ξ, w)| ≤ 2−n + |(ξn, wn)− (ξ, w)|.

This shows that (ξ, w) ∈ Ω and thus Ω is closed, hence compact.

We now show uniform attractiveness of Ω for A(W × Ξ). By contradiction,

assume

∃ε > 0,∀T > 0, ∃t > T, ∃(ϕξ, ϕw) ∈ A(W × Ξ), |(ϕξ(t), ϕx(t))|Ω > ε.
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Then there exist a sequence (tn)n ↗ and a sequence (ϕnξ , ϕ
n
w)n∈N in A(W × Ξ)

such that

|(ϕnξ (tn), ϕnw(tn))|Ω > ε.

By definition ofA(W ×Ξ), (ϕnξ (tn), ϕnw(tn))n lives in a compact set and thus there

exists a subsequence which converges to (ξ, w), which is in Ω by definition. As

this is a contradiction and we claim the uniformly attractiveness of Ω.

We now show invariance of Ω for A(Ω). Pick arbitrarily (w0, ξ0) ∈ Ω and let

ϕw ∈ Sw(w0). We now show a element ϕξ ∈ Sξ(ξ0, ϕw) is defined at least on [0, T ],

where T > 0 does not depend on (w0, ξ0) picked in Ω. Consider ϕrefξ ∈ Sξ(Ξ, ϕw),

so as, by definition, |ϕrefξ |∞ ≤ N . Let η > 0 be such that Ω ⊂ ηB (with B the unit

open ball in Rnw+nξ). By the fact ψ is locally Lipschitz there exists T > 0 such

that ϕξ is defined on [0, T ] and ϕξ(t) ≤ η for all t ∈ [0, T ]. In fact Gronwall lemma

gives us :

∀t ∈ [0, T ], |ϕrefξ (t)− ϕξ(t)| ≤ |ϕrefξ (0)− ϕξ(0)|eLt (3.24)

where L is the Lipschitz constant of ψ on ηB. With

µ > max
{
|ϕrefξ (0)− ξ| : ξ ∈ Prξ(Ω)

}
,

let

T ∗ = min
ξ∈Prw(Ω)

{
1

L
ln

(
µ

|ϕrefξ (0)− ξ|

)}
,

which is non-negative by the choice of µ. Let us take η big enough to have

∀ξ ∈ Rnξ ,∀t ∈ R+, |ϕrefξ (t)− ξ| < µ⇒ |ξ| < η ,

which is possible as ϕrefξ has a compact positive orbit. In view of (3.24), if T < T ∗,

then |ϕrefξ (T ) − ϕξ(T )| < µ and |ϕξ(T )| < η. T ∗ is independent of (w0, ξ0) picked

in Ω. From now on we considered only maximal solutions that, in view of the

previous analysis are defined for T > T ∗. By definition of Ω, there exist (tn)n ↗
and (ϕnw, ϕ

n
ξ ) such that

(ϕnw(tn), ϕnξ (tn))→n→+∞ (w0, ξ0) .

By the hypotheses on S (see Aubin and Cellina, 1984, Thm. 1, ch. 2.4), for all
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n ∈ N, there exists ϕ̄wn ∈ Sw(ϕnw(tn)) such that

sup
t∈[0,T ∗]

|ϕ̄wn(t)− ϕw(t)| ≤ |ϕ̄nw(tn)− ϕw(0)|eαT ∗ .

By lemma 3.2, ϕnw ⊕tn ϕ̄wn ∈ Sw(W ) and, from the last estimate, we obtain

∀t ∈ [0, T ∗], ϕnw ⊕tn ϕ̄wn(tn + t)→n→+∞ ϕw(t) .

We now have to prove the same kind of result for the variable ξ. For all n ∈ N,

consider the solution ϕ̄nξ of (3.23) with initial condition ϕnξ (0) and input ϕ̄nw. Since

ϕnw ⊕tn ϕ̄nw ∈ Sw(W ) then, by using the fact that Sw(W ) = Lw(W ) and from the

definition of ϕ̄nξ , we deduce that ϕ̄nξ is defined on R+ and bounded by N . From

the Gronwall lemma we get

|φξ(t, ϕnξ (0), ϕ̄nw)− φξ(t, ξ0, ϕw)| ≤

(
|ϕnξ (0)− ξ0|+ LT ∗ sup

s∈[0,T ∗]

|ϕ̄nw(s)− ϕw(s)|

)
eLt

for all t ∈ [0, T ∗]. Hence, for all t ∈ [0, T ∗],

(ϕnw ⊕tn ϕ̄nw(tn + t), ϕnξ ⊕tn ϕ̄nξ (tn + t))→n→+∞ (ϕw(t), ϕξ(t))

and then (ϕw(t), ϕξ(t)) ∈ Ω. Since (ϕw(t), ϕξ(t)) ∈ Ω and T ∗ does not depends of

the element chosen in it, invariance is obtained by induction.

Finally, to prove Ω is the graph of an upper semi continuous map. Define

π(w) =
{
ξ ∈ Rnξ : (w, ξ) ∈ Ω

}
then π is well-defined and upper-semicontinuity follows from (see Aubin and

Cellina, 1984, Thm. 1, ch. 1). �

The following proposition also shows that Ω is the smallest set that has the

properties of Theorem 3.1.

Proposition 3.3. Assume Ω is not empty. Then Ω is the smallest closed set (in the
sense of inclusion) which uniformly attracts A(W × Ξ).

Proof. Assume a closed set K uniformly attracts A(W × Ξ). Pick a point ω ∈ Ω,

it suffices to prove that ω ∈ K. By definition there exist sequences (tn)n ↗ and
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(ϕnξ , ϕ
n
w)n∈N in A(W × Ξ) such that

(ϕnw(tn), ϕnξ (tn))→ ω

and, from uniform attractiveness of K,

∀ε > 0,∃T > 0,∀t ≥ T,∀(ϕξ, ϕw) ∈ A(W × Ξ), |(ϕw(t), ϕξ(t)|K ≤
ε

2
.

Fix ε > 0. Then, for n big enough,

d(ω,K) ≤ |(ϕnw(tn), ϕnξ (tn))− ω|+ |(ϕnw(tn), ϕnξ (tn)|K ≤
ε

2
+
ε

2
= ε.

For arbitrariness of ε > 0, we thus claim that |ω|K = 0, which proves ω ∈ K, as

K is closed. �

3.3.2 Necessary Conditions for Output Regulation

In this section, we show how the asymptotic characterization of the interconnec-

tions of the kind (3.22), (3.23) presented so far can be used to deduce necessary

conditions for the output regulation problem. In doing this we follows the line

of development of (Byrnes and Isidori, 2003).

We consider here systems of the kind

ẋ = f(w, x, u)

y =

(
e

ya

)
=

(
he(w, x)

ha(w, x)

)
=: h(w, x)

(3.25)

with state x ∈ Rn, control input u ∈ Rm, output y = (ya, e) ∈ Rna × Rne and with

w ∈ Rns that is generated by the exosystem

ẇ ∈ S(w) (3.26)

with initial conditions that range in a compact invariant set W ⊂ Rnw . As before,

we assume S : Rnw ⇒ Rnw to be Lipschitz on W with non-empty compact values

at each w ∈ W , and we assume that f and h are locally Lipschitz. As in the rest of

the text, the output e represents the system outputs that need to asymptotically

vanish, while ya is the set of measured outputs that might be needed for stabi-
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lization purposes but that are not required to vanish at the steady state. In this

framework the problem of semiglobal output regulation reads as follows: given a

compact set X ⊂ Rn of initial conditions for (3.25), find a controller of the form

η̇ = g(η, y)

u = γ(η, y)
(3.27)

with state η ∈ Rnη and with g : Rnη ×Rny → Rnη (ny := ne + na), γ : Rnη ×Rny →
Rm locally Lipschitz, and a compact set H ⊂ Rnη , such that, with K := h−1

e (0),

the closed-loop system
ẇ ∈ S(w)

ẋ = f(w, x, γ(η, hy(w, x)))

η̇ = ϕ(η, hy(w, x))

(3.28)

satisfies the following:

1. All the solutions to (3.28) originating in W ×X ×H are admissible.

2. K uniformly attracts A(W ×X ×H).

With ξ := col(x, η) and Ξ := X × H, the first requirement can be equivalently

expressed as Sw(W ) = Lw(W ). The second one, instead, requires the regulation

error e to vanish at the steady state.

As a consequence of Theorem 3.1 and Proposition 3.3 we obtain the following

necessary conditions for the solvability of the output regulation problem.

Proposition 3.4. Suppose the problem of output regulation is solvable on W × X .
Then there exists an upper semicontinuous set valued map

π : domπ ⊂ W ⇒ Rn

with compact graph, such that

a) graphπ ⊂ K.

b) For each (w, x) ∈ graphπ, the set of all input functions u ∈ Rm such that

S(w)× {f(x,w, u)} ⊂ Tgraphπ(w, x),

is non empty.
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Proof. Assume that the problem of output regulation is solved, i.e. points 1 and

2 of the definition hold. Point 1 implies Assumption 3.2 and, hence, Ω is well

defined and Theorem 3.1 holds. Let domπ := {w ∈ Rnw : (w, x, η) ∈ Ω}. From

the invariance of W it follows that domπ ⊂ W . For each w ∈ domπ, let

π(w) =
{
x ∈ Rn : (w, x, η) ∈ Ω

}
.

Then, π : domπ → Rn is well-defined and has compact graph. Upper semi-

continuity follows from Theorem 3.1. Thus, point a) of the claim follows from

Proposition 3.3.

By considering the restrictions of S, f and g to any open neighborhood of Ω

and applying (Aubin, 1991, Thm. 5.3.4) we obtain that

S(w)× {f(w, x, γ(η, hy(w, x)))} × {g(η, hy(w, x))} ⊂ TΩ(w, x, η).

Hence, with E(w, x) := {η ∈ R` : (w, x, η) ∈ Ω}, the set U(w, x) := {u ∈ Rm :

u = γ(η, hy(w, x)), η ∈ E(w, x), (w, x) ∈ graphπ} is precisely the (non-empty) set

of inputs for which point b) holds. �

Remark 3.1. If in addition we assume W to be Poisson Stable for A(W ×X ×H)

then domπ = W , as in the case in (Byrnes and Isidori, 2003). 4

3.3.3 Output Regulation and Zero Dynamics

In this section we extend the concept of zero dynamics as given in (Byrnes and

Isidori, 2003) to the case of exosystems given by a differential inclusion. Con-

sider the system
ż ∈ F (z, u)

y = H(z)
(3.29)

with z ∈ Rnz and y ∈ Rny . We say that Z ⊂ Rnz is a viability domain for (3.29) if,

for all z ∈ Z, there exists u such that F (z, u) ⊂ TZ(z). We define the regulation
map r : Z ⇒ Rnz as

r(z) = {u ∈ Rm : F (z, u) ⊂ TZ(z)} .

101



If the regulation map r(·) admits a selection α : Rnz → Rm such that the map

z 7→ F (z, α(z)) is sufficiently regular, then from from (Aubin, 1991, Thm, 5.3.4)

we obtain that Z is invariant for (3.29).

We say (3.29) possesses a well-defined zero dynamics if there exists a non-

empty closed subset Z in Rn such that

1. Z ⊂ H−1(0)

2. Z is a viability domain and the regulation map possesses a continuous se-

lection α such that z 7→ F (z, α(z)) is Lipschitz and has compact values.

3. If z0 ∈ Rnz , u0 : R+ → Rm and z ∈ Sz(z0, u0) are defined on an interval I

and such that u0 is C0 and

∀t ∈ I,H(z(t)) = 0

then

z0 ∈ Z and u0(t) = α(z(t)) a.e. on I

The above definition generalizes zero dynamics notion appearing in (Byrnes and

Isidori, 2003) and, in particular, the third condition ensures the uniqueness of

the selection α.

Consider now the system

ẇ ∈ S(w)

ẋ = f(w, x, u)

e = he(w, x)

(3.30)

and assume that (3.30) possesses well-defined zero dynamics. Let Ze denote

the zero dynamics kernel of (3.30) and let α : Rnw × Rn → Rm be the unique

continuous selection of the regulation map associated to Ze. Let A ⊂ W × Rn be

the (possibly empty) set for which all the solutions to the system

ẇ ∈ S(w)

ẋ = f(w, x, α(w, x))
(3.31)

originating in A are admissible. Then the following result holds.

102



Proposition 3.5. Assume (3.27) solves the problem of output regulation for (3.25),
(3.26) on W × X and suppose that (3.30) possesses a well defined zero dynamics.
Then,

1. Pr(w,x)(Ω) ⊂ A

2. Any trajectory inA(Ω) is Prξ-related to a trajectory of the zero dynamics system.

3. For any (x0, w0) ∈ Prξ(Ω) there exists ξ0 such that the response uδ of the system

ẇ ∈ S(w)

ẋ = f(x,w, α(x,w))

ξ̇ = ϕ(ξ, k(x,w))

uδ = α(x,w)− γ(ξ, k(x,w))

(3.32)

is define for all t ≥ 0 and identically zero.

Proof. The result directly follows from the properties of Ω with the same argu-

ments used in (Byrnes and Isidori, 2003, Prop. 6.1). �

3.3.4 Efficient controllers

Finally, in this section we restrict the focus on the case in which the map π

introduced in Proposition 3.4 is single valued. By borrowing the terminology

of (Byrnes and Isidori, 2003), we say that (3.27) is an efficient controller if it

solves the problem of output regulation and there exist two single-valued maps

$ : Prw(Ω(W ×X ×H))→ Rn and ρ : Prw(Ω(W ×X ×H))→ Rnη such that

Ω(W ×X ×H) = {(w, x, η) ∈ W × Rn × Rnη :

x = $(w) and η = ρ(w)}.

The following results hold :

Proposition 3.6. If (3.27) is an efficient controller, then $ and ρ are continuous.

Proposition 3.7. Suppose a controller of the form (3.27) is efficient and (3.25) pos-
sesses a well-defined zero dynamics. Then there exist $ : Prw(Ω(W ×X ×H))→ Rn

and ρ : Prw(Ω(W ×X ×H))→ Rnη such that
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1. graph$ is invariant for the set of solutions of (3.31) starting in W ×X . More-
over he($(w), w) = 0.

2. For any (w0, η0) ∈ {(w, η) ∈ Rnw ×Rnη : η = ρ(w)} the response of the system

ẇ ∈ S(w)

ẋ = ϕ(ξ, k(ν(w), w))

uδ = α(ρ(w), w)− γ(ρ(w), k(ν(w), w))

(3.33)

is defined for all t ≥ 0 and is identically equal to zero.

3.4 A Framework for Robustness in Output Regula-

tion

This section contains original contributions published by the author in (Bin et al.,

2018b). We do a step back to Section 3.1, and in particular to the question “what
would be the right way to extend the notion of “structural robustness” to nonlinear
systems?” that remained open. In this section we give an answer to that ques-

tion, by seeking a more abstract definition of robustness able to deal with more

general concepts of “perturbation” and with properties milder than asymptotic

regulation. The motivation behind the work presented in this section lies in

the fact that, while the concept of robustness defined by Francis and Wonham

for linear systems has a clear and well-defined meaning, the notion of robust-

ness in a nonlinear setting is still vague, and quite often “robustness results” are

claimed in ad-hoc contexts using custom definitions. As mentioned in Section

3.1, the “structural robustness” of (Byrnes et al., 1997a) extends the “paramet-

ric” interpretation of the notion of robustness given by (Francis and Wonham,

1976), while the perhaps more interesting notion of perturbation considered in

(Astolfi and Praly, 2017) refers to the “functional” nature of the same definition.

Although these two notions are equivalent for linear functions between finite-

dimensional vector spaces, they do not lead to equivalent notions if nonlinear

functions are considered. As a matter of fact, if f : Rn → Rn is linear, then fix-

ing a basis of Rn defines a function m that sends f to its matrix representation

F = m(f) ∈ Rn×n. We may consider parametric variations of f by “moving”

F = m(f) in Rn×n (thus obtaining the parametric interpretation of the perturba-
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tions of the linear plants, with a total of n2 parameters). If | · | is a norm on Rn×n,

these variations are quantified by looking at the norm |F−F ◦| of the deviation of

F relatively to its nominal value F ◦, so as variations in the same neighborhood of

F ◦ are quantified equally. If we induce a topology on the space F of linear maps

Rn → Rn by completing the collection of subsets of the form m−1(V ), where

V is a neighborhood in the topology induced by | · | on Rn×n, then we obtain a

topology on F which is equivalent to the one considered in (Astolfi and Praly,

2017) (i.e. the C1 topology (Hirsch, 1994)), and that is in direct relation with the

parametric interpretation of the matrix variations. If f is not linear, however,

this correspondence is not true anymore. For instance, consider the family F
of functions of the kind fµ(x) = µx2, with µ a parameter ranging in an interval

I ⊂ R. While for any µ1, µ2 ∈ I , fµ1 and fµ2 belong to the same class F , the func-

tion g(x) = fµ(x) + εx3, ε > 0, does not belong to F for any choice of µ ∈ I and

ε > 0. While fµ1 and fµ2 are obtained in the spirit of the “structural” notion of

(Byrnes et al., 1997a), g is obtained in the “differential topology” spirit of (Astolfi

and Praly, 2017), and they lead to totally different concept of variation.

In this section we present a unifying concept of robustness relying of a gen-

eral topological notion of “variation” that includes all the previous cases as par-

ticular examples. We also extend the notion of robustness to properties more

general than “asymptotic regulation”, by capturing in this way a wider variety of

“robust behaviors” exhibited by practical and approximate regulation designs.

We then review some of the main control approaches for linear and nonlinear

systems, by characterizing their robustness properties in terms of the proposed

framework. We show that the robustness property of the linear regulator can be

framed in this language and it naturally extends to a milder robustness condition

relative to the Fourier expansion of the regulation error when applied to nonlin-

ear systems (in this respect, we thus re-frame the result of (Astolfi et al., 2015) in

more abstract terms). We also review the general design of (Marconi et al., 2007)

for nonlinear systems and we show that robustness of asymptotic regulation does

not hold for smooth plant’s variations, while a practical regulation property does.

The section then concludes with a conjecture stating that, in a general nonlinear

context, asymptotic regulation is on its nature a fragile property that cannot be

achieved in a robust way with a finite dimensional regulator.
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3.4.1 The Framework

In this work we deal with a controlled system which is described by a nominal
model of the form

ẋ = f o(w, x, u)

y = ho(w, x)
(3.34)

where x ∈ Rn is the state, u ∈ Rm is the control input,y ∈ Rny , is the measured

output, and the functions (f o, ho) are supposed to be smooth enough. The mea-

sured output y is partitioned as y := col(e, ym) in which e ∈ Rne , with pe ≤ ny,

denotes a regulation error on which there are “asymptotic performance expecta-

tions", as detailed later, and ym ∈ Rny−ne are possible extra measurements.

The input w ∈ Rnw is supposed to be a bounded external signal that may

represent a reference to be tracked or a disturbance to be rejected. As in the rest

of the text, we suppose that w is generated by a nominal exosystem of the form

ẇ = so(w), (3.35)

although, most of the considerations reported below do not necessarily rely upon

this description.

System (3.34) represents a nominal model on which we argue that an output

feedback controller of the form

η̇ = φ(η, y)

u = θ(η, y)
(3.36)

with state η ∈ Rnη has been designed so that the resulting closed-loop system

satisfies certain properties. For instance, in the problem of asymptotic output
regulation, it is required that the trajectories of the resulting closed-loop system

(3.34)-(3.36) are bounded and the associated regulation error e(t) is asymptoti-

cally vanishing, while approximate regulation asks for a possibly non-zero asymp-

totic bound on the regulation errors that, though, enjoys a given meaning or sat-

isfies some optimality conditions (see e.g. Astolfi et al., 2015; Forte et al., 2017).

Here, we generically denote by P a property expected on the asymptotic regula-

tion error and we say that the “regulation objective P” is achieved by a regulator

(3.36) if the error trajectories associated to the closed-loop system asymptotically
satisfy the property P. Examples of properties are clearly “error identically zero”
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as in the asymptotic output regulation problem or “error with bounded ampli-

tude” in the approximate version.

The problem of designing a regulator so that a regulation objective P is ful-

filled assumes a conceptual and practical relevance as soon as robustness as-

pects are taken into account, namely as soon as the regulation objective must be

guaranteed not only in nominal conditions, namely when the regulated system

behaves as nominal dynamics (3.34), but also when parametric or structural un-

certainties are present. In this respect, in the following, we consider the case in

which the real (unknown) model of the controlled system has the form

ẇ = s(w)

ẋ = f(w, x, u)

y = h(w, x)

(3.37)

in which s, f and h are obtained by “perturbing” the nominal models (3.34),

(3.35). In the following, we denote F := (s, f, h) and we assume that F belongs

to a given function space F that includes the nominal value F ◦ := (s◦, f ◦, h◦).

We thus consider the problem in which the regulation objective P is required

to hold, not only for the nominal system (3.34), (3.35), but also for all possible

actual dynamics (3.37) that are “close enough” to (3.34), (3.35), in some sense

that will be made precise below. Namely, the property P is preserved under

plant perturbations.

We end the section by stating a fundamental (yet well known) fact. Consider

a system of the form

H : ż = g(z), (3.38)

defined over a normed vector space Z, with g a continuously differentiable func-

tion. Given any subset Z ⊂ Z, We say thatH is uniformly eventually bounded from

Z if exists τ ≥ 0 such that Rτ
H(Z) is bounded.

Proposition 3.8. ΩH(Z) exists and is closed. If H is uniformly eventually bounded
from Z, ΩH(Z) is compact, non empty, invariant, uniformly attractive from Z and is
the smallest (in the sense of inclusion) closed set with this latter property.

Proposition 3.8 is a direct consequence of the definition (see the Notation

section) and of the group property the flow of (3.38). Proposition 3.8, and in

particular the fact that ΩH(Z) is the smallest set with such properties, motivates
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referring to ΩH(Z) as the steady state locus of the trajectories of (3.8) originating

in Z.

3.4.2 A Definition of Robustness

The extended controlled plant, given by (3.37) is thus defined by the functions

F := (s, f, h) and the regulator (3.36) is designed to enforce a given property P on

the steady-state trajectories under the assumption that F equals a nominal value

F ◦ := (s◦, f ◦, h◦) and the initial conditions range in a nominal set W ◦
0 × X◦0 ⊂

Rnw × Rn. This yields a definition of the maps φ and θ in (3.36) and of a set

H0 ⊂ Rnη of initial conditions for η. In order to study the “robustness” features

of the regulator relatively to the property P and under variation of the plant’s

function F and of the initial set W0 ×X0, in the following we consider a closed-

loop system of the form

HF :

ẇ = s(w)

ẋ = f(w, x, θ(η, h(w, x)))

η̇ = φ(η, h(w, x)).

(3.39)

in the case in which the actual plant’s function F and the actual initial setW0×X0

possibly differ from the nominal values.

For simplicity, in the following we let x := (w, x) and n = dim(x) and

we denote by SF (X0 × H0) and ΩF (X0 × H0) the quantities SHF (X0 × H0) and

ΩHF (X0 × H0) obtained with a given F ∈ F and a given X0 ⊂ Rn. We let

X := K(Rn), with K(F) denoting the set of all the compact subsets ofF, and we

endow X with the Hausdorff topology6 τX . We consider functions F that belong

to the generic functional space F introduced above, that we equip with a topol-

ogy τF , and to compact sets of initial condition in X . The particular value of F
and τF will be specified later depending on the context. We equip the product

space F × X with the product topology τF×X and we make the notion of “per-

turbation” (F,X0) of (F ◦,X◦0) introduced in the previous section precise by the

6Namely, the topology induced by the distance function:

d(X1,X2) = max

{
sup

x1∈X1

inf
x2∈X2

|x1 − x2|, sup
x2∈X2

inf
x1∈X1

|x2 − x1|
}

for X1,X2 ∈ K(Rn).
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following definition.

Definition 3.2. (F,X0) ∈ F × X is called a perturbation of (F ◦,X◦0) if it belongs to
a τF×X -neighborhood of (F ◦,X◦0).

The regulation objective has been previously introduced throughout the in-

formal definition of a property P that we wish the trajectories of the closed-loop

system to asymptotically have. With S the set of all the functions R+ → Rn×Rnη ,

we can formally define the property P by associating to its informal statement

the subsetP ⊂ S given byP := {(x, η) ∈ S : P holds}. We then say that (x, η) ∈ S
has the property P if (x, η) ∈ P . To formally express what we mean by saying

that the property P should hold “asymptotically”, we restrict our attention to the

trajectories of (3.39) that originates in the attractor ΩF (X0×H0). In order to work

with a well-defined (in the sense of Proposition 3.8) set ΩF (X0×H0), we also need

as a basic robustness ingredient that the regulator (3.36) guarantees thatHF has

the desired boundedness properties for the considered perturbations. We put all

together within the following definition:

Definition 3.3. With (F,X0) ∈ F × X , we say that the regulator (3.36) achieves
the regulation objective P asymptotically at (F,X0) if HF is uniformly eventually
bounded from X0 ×H0 and (x, η) ∈ SF (ΩF (X0 ×H0)) implies (x, η) ∈ P .

Let V ⊂ F × X , then we say that V generates an equibounded family of sys-
tems7 if for every (F,X0) ∈ V the system HF defined as in (3.39) is uniformly

eventually bounded from X0 × H0 and there exists a compact set O ⊂ Rn such

that ΩF (X0 × H0) ⊂ O for all (F,X0) ∈ V . We define now a formal notion of

robustness for the regulator (3.36) associated to the property P.

Definition 3.4. We say that the regulator (3.36) is P-robust at (F ◦,X◦0) with respect
to τF if there exists a τF×X -neighborhood V of (F ◦,X◦0) that generates an equibounded
family of systems such that, for all (F,X0) ∈ V , the regulator achieves the regulation
objective P asymptotically at (F,X0).

3.4.3 Robustness in Regulators with Linear Internal Model

In this section we consider the class of regulators (3.36) obtained by partitioning

the state η as η = (ηim, ηs), with ηim ∈ Rnim and ηs ∈ Rns that satisfy the dynamic
7Equiboundedness is needed to avoid unfortunate limit cases in which there exists a sequence

((Fn,Xn
0 ))n in V such that the corresponding sequence (ΩFn(Xn

0 ×H0))n escapes to the horizon.
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equations
η̇im = Φηim +Ge

η̇s = φs(ηs, ηim, y)

u = θ(η, y).

η(0) ∈ H0 (3.40)

We will focus here on “smooth variations” of F . More precisely, with X ⊂ Rn

and U ⊂ Rm arbitrarily large compact sets, throughout this section we suppose

that F ranges in the set C1(X×U) of all the continuously differentiable functions

defined on X × U and with values in Rn × Rp. We endow C1(X × U) with the

weak topology (Hirsch, 1994) τC1 defined as follows: with ` := max{maxx∈X |x|,
maxu∈U |u|} and for any F ∈ C1(X × U) and ε > 0, an ε-neighborhood of F is

given as

Nε(F ) =
{
G ∈ C1(X×U) : max

p∈X×U
|F (p)−G(p)| < `ε,

max
p∈X×U

|F ′(p)−G′(p)| < ε
}
,

where F ′ and G′ denote the derivatives of F and G. We stress that X and U

are arbitrary and can be chosen large enough to encompass all the solutions of

interest. Restricting the functions F to X×U though allows us to consider a nicer

topology τC1 which is first-countable and metrizable rather than the alternative

strong topology (Hirsch, 1994).

Robustness of the Linear Regulator

We start considering the case in which F ◦ ∈ C1(X ×U) is linear and the linear

regulator (see Section 1.1.3) is used. The regulator is obtained from (3.40) by a)
letting H0 ∈ K(Rnη) be arbitrary, b) letting (φs(·), θs(·)) be linear functions whose

matrix representation with respect to a fixed basis of Rn × Rnη is of the kind

η̇s = Asηs +Bs1ηim +Bs2y

u = K1η +K2y,
(3.41)

c) choosing (Φ, G) as any controllable pair with Φ that has a characteristic poly-

nomial which coincides with the minimal polynomial of the corresponding ma-

trix representation of s◦(·) and, finally, d) by fixing As, Bs1, Bs2, K1, K2 so as to

stabilize the nominal system HF ◦ originating from X◦0 ×H0.
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We let FL ⊂ C1(X×U) be the set of all the linear functions in C1(X×U) and

we let

F :=
{
F ∈ FL : s = s◦

}
. (3.42)

We endow F with the subset topology τF derived by (C1(X×U), τC1) and we let

P0 the property

P0 = “ e = he(w, x) = 0 ”. (3.43)

The next result, that follows from (Davison, 1976), captures the main robustness

property of the linear regulator.

Proposition 3.9. The linear regulator (3.41) is P0-robust at (F ◦,X◦0) with respect to
τF .

Proof. The existence of a neighborhood N ◦ of F ◦ for which HF is uniformly

eventually bounded for each F ∈ N ◦ is a direct consequence of the definition of

τF and the continuity of the eigenvalues of the function F seen as maps F → R.

The fact that P0 holds as long as the trajectories are bounded follows from the

more general result of Proposition 3.10. �

Actually, a stronger result can be given: the P0-robustness property of Propo-

sition 3.9 is universal in X0, i.e. the same regulator achieves P0 for any initial con-

dition of the plant. Nevertheless, although the linear regulator is P0-robust for

“C1 variations” of linear functions that let s◦ unchanged, this property is a mere

consequence of linearity and it is broken by any slight nonlinear perturbation of

F or by any (even linear) perturbation of s. More precisely, if instead of (3.42) we

consider a larger sets of the kind F = FL or F =
{
F ∈ C1(X×U) : s = s◦

}
, en-

dowed with the correspondent subset topologies, then Proposition 3.9 does not

apply anymore and, as a simple counter-example can easily show, the property

of P0-robustness is lost.

Robustness in the PT Sense

The limits of the P0-robustness of the linear regulator motivate seeking for a

regulation objective P for which a regulator that is P-robust relatively to more

general topological spaces (F , τF) more likely could be constructed. As in (As-

tolfi et al., 2015; Astolfi and Praly, 2017), in this section we let F = C1(X ×U),

τF = τC1 and we consider a regulator of the kind (3.40) with (φ, θ) possibly non-
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linear and with nim = (2d + 1)ne, for some arbitrary d ∈ N. We then choose a

basis for Rn × Rnη in which (Φ, G) reads as

Φ =



0 I 0 · · · 0

0 0 I · · · 0
... . . . ...

0 I

−a1I −a2I . . . −a2d+1I


G =



0

0
...

0

I


(3.44)

with a1, . . . , a2d+1 chosen so that the characteristic polynomial of Φ is

pΦ(λ) = λ ·
d∏

k=1

(
λ2 + ω2

k

)
, (3.45)

where we let

ωk := 2πk/T (3.46)

for some T ≥ 0. For a given continuous function α : R+ → R, let

ck(α) :=

∫ T

0

α(ν)e−i2πkν/Tdν (3.47)

be the Fourier coefficient corresponding to the k-th harmonic 2πk/T and let

Qd :=
{
α : R→ R : ck(α) = 0, k = 0, . . . , d

}
be the subspace of the functions R→ R that have null harmonics at ωk = 2πk/T .

We define the regulation objective:

Pweak
T = “ η is not T-periodic or e ∈ (Qd)ne ”

and, with F ◦ ∈ C1(X×U) and X◦0 ∈ X , we make the following assumption

Assumption 3.3. There exists a τC1×X -neighborhood V of (F ◦,X◦0) that generates an
equibounded family of systems.

Then the following result holds:

Proposition 3.10. Suppose that Assumption 3.3 holds. Then the regulator is Pweak
T -

robust at (F ◦,X◦0) with respect to τC1 .
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Proof. Pick (F,X0) ∈ V and let (w, x, η) be any solution in SF (ΩF (X0×H0)). If η

is not T -periodic then Pweak
T trivially holds, so we assume η periodic. In view of

(3.44), if we partition η as η = col(η1, . . . , η2d+1) with η` = col(η`1, . . . , η`ne) ∈ Rne

for ` = 1, . . . , 2d + 1, then we have η̇` = η`+1 for all ` = 1, . . . , 2d and hence, for

each j = 1, . . . , ne we obtain

η
(2d+1)
1j + a2d+1η

(2d)
1j + · · ·+ a2η̇1j + a1η1j = ej. (3.48)

Integrating by parts, for k ∈ N and n = 1, . . . , 2d+ 1 we have

ck

(
η

(n)
1j

)
=

∫ T

0

η
(n)
1j (ν)e−i2πkν/Tdν

=
[
η

(n−1)
1j (t)e−i2πkt/T

]T
0

+
i2πk

T
ck

(
η

(n−1)
1j

)
.

As the first term is zero (η(n−1)
1j is T -periodic), then by induction on n we obtain

ck

(
η

(n)
1j

)
= λnkck (η1j) ,

with λk := i2πk/T . From (3.48) we thus obtain

ck(ej) =
(
λ

(2d+1)
k + a2d+1λ

(2d)
k + · · ·+ a2λk + a1

)
ck (η1j) .

Therefore, if k ≤ d, by definition of (a`)`, λk solves (3.45) and hence ck(ej) = 0

for all j = 1, . . . , ne, and the claim follows. �

Proposition 3.10 states that as long as a steady-state is defined, either the

closed-loop solutions converge to a solution where η is not periodic or asymptot-

ically e has null mean value and null harmonics at ωk, k = 1, . . . , d. We can refine

the result under additional assumption concluding PT -robustness where

PT = “ e ∈ (Qd)ne ”.

Let z := col(x, η) and let g : Rnw × Rn × Rnη → Rn+nη be such that (3.39) with

F = F ◦ can be rewritten as

ẇ = s(w), ż = g(w, z).
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Then the following holds:

Proposition 3.11. Assume that the z subsystem is 0-locally asymptotically stable
and the origin of the w subsystem is stable. Suppose, moreover, that there exists a
τC1×X -neighborhood V of (F ◦, {0}) such that for all (F,X0) ∈ V and all (x, η) ∈
SF (X0 × H0), w is T-periodic. Then the regulator is PT -robust at (F ◦, {0}) with
respect to τC1 .

Proof. It suffices to show that if z is 0-LES and w is periodic and sufficiently

small then the closed loop trajectories are periodic, since in this case the result

would follow from Proposition 3.10, as Pweak
T implies PT .

Since the z subsystem is 0-LES, standard Lyapunov arguments can be used to

show that, for each µ > 0 there exist z̄(µ), w̄(µ) > 0 such that each solution toHF ◦

satisfying |w|∞ ≤ w̄(µ) and |z(0)| ≤ z̄(µ) also satisfies |z|∞ ≤ µ. In particular,

the fact that the origin of the w subsystem is stable guarantees that this set of

solutions is not empty.

Let A := (∂g(0, 0))/(∂z) and B := (∂g(0, 0))/(∂w) and let g̃(w, z) := g(w, z) −
(Az +Bw). Let

g̃′(w, z) :=
∂g̃(w, z)

∂(w, z)
.

Since g̃′(0, 0) = 0 and g̃′(w, z) is continuous then lim(w,z)→0 g̃
′(w, z) = 0. Hence,

for all ε > 0, there exists δ(ε) > 0 such that |(w, z)| ≤ δ(ε) implies |g̃′(w, z)| ≤ ε.

Since, moreover, g̃′(w, z) is the (unique) linear map satisfying

lim
|h|→0

|g̃((w, z) + h)− g̃(w, z)− g̃′(w, z)|
|h|

= 0

with h ∈ Rnw+nz , then there exists a function ρ : Rnw+nz → Rnw+nz fulfilling

lim|h|→0 |ρ(h)|/|h| = 0 such that

g̃((w, z) + h)− g̃(w, z) = g̃′(w, z)h+ ρ(h). (3.49)

This, in particular, implies that for each ε > 0, there exists σ(ε) > 0 such that, for

all |h| ≤ σ(ε), |ρ(h)| ≤ ε|h|. Let

γ(ε) := max {δ(ε/2), σ(ε/2)/2} .

Then for all z1, z2 ∈ Rnz such that |z1| ≤ γ(ε) and |z2| ≤ γ(ε), we have |z2| ≤ δ(ε/2)

114



and |z1−z2| ≤ |z1|+|z2| ≤ σ(ε/2), and hence, in view of (3.49) computed at (w, z2)

and with h = z1 − z2, we obtain

|g̃(w, z1)− g̃(w, z2)| ≤ |g̃′(w, z2)| · |z1 − z2|+ |ρ(z1 − z2)|

≤ (ε/2)|z1 − z2|+ (ε/2)|z1 − z2| ≤ ε|z1 − z2|.

As HF ◦ is 0-LES, A is Hurwitz. Let P = P T > 0 be such that ATP + PA = −2I

and let

ε := 1/(2|P |
√

2), µ := γ(ε). (3.50)

With D ⊂ Rnz the domain of attraction of the exponential stability of the origin

of the z subsystem, let Z0 ⊂ Rnw be the maximal compact set such that Z0 ⊂
{z ∈ D : |z| ≤ z̄(µ)}, then Z0 has non-empty interior. Let W0 be such that any

solution to the w subsystem originating in W0 is T -periodic and fulfills |w|∞ ≤
w̄(µ) (which is not empty due to the assumptions). Then the projection of set

W0 × Z0 onto Rnw × Rn contains a τX -neighborhood of {0}.
Let V (z) := zTPz and pick a solution (w, z) toHF ◦ originating in W0×Z0. Let

U(t) := V (z̃(t)), z̃(t) := z(t+ T )− z(t), then, as w(t)− w(t+ T ) = 0, we have

U̇(t) = 2z̃(t)TP (Az̃(t) + g̃(w(t), z(t))− g̃(w(t), z(t+ T )))

≤ −|z̃(t)|2 + |2P |2 · |g̃(w(t), z(t))− g̃(w(t), z(t+ T ))|2.

Since |w(t)| ≤ w̄(µ) for all t ∈ R+ and |z(0)| ≤ z̄(µ), with µ given by (3.50),

then |z(t)| ≤ γ(ε) and |z(t+T )| ≤ γ(ε) with ε given by (3.50). Thus (3.49) implies

U̇(t) ≤ −|z̃|2 + |z̃|2/2 ≤ − |z̃|2/2 and this suffices to show that |z(t)−z(t+T )| → 0.

The analysis above suffices to conclude that, for each compact subsets ofW0×
Z0, any solution originating in the set ΩF ◦(W0 × Z0) is periodic. Robustness

with respect to changes of F in the topology τC1 follow from usual Lyapunov

arguments. �

Proposition 3.11 somewhat generalizes the result of (Astolfi et al., 2015),

where they give though a design of the stabilizer able to achieve 0-local exponen-

tial stability based on forwarding arguments. Another refinement of Proposition

3.10 is given as follows.

Proposition 3.12. Suppose that Assumption 3.3 holds for some τF×X -neighborhood
V of (F ◦,X◦0) and suppose that, for each (F,X0) ∈ V , the corresponding system (3.39)
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satisfies Assumption 1.9. Suppose in addition that, for each solution (w?, x?, η?) in
SF (ΩF (X0 ×H0)), w is T -periodic. Then the regulator is PT -robust at (F ◦,X◦0) with
respect to τF .

Proof. The result follows directly from Theorem 1.2. As a matter of fact, under

the assumptions of the proposition, Theorem 1.2 implies that for each (F,X0) ∈
V , ΩF (X0 ×H0) is the graph of a continuous function π : dom π ⊂ Rnw → Rn+nη ,

i.e. each (w?, x?, η?) ∈ SF (ΩF (X0 × H0)) is of the form (x?(t), η?(t)) = π(w?(t)).

As w? is T -periodic, then so is η?, and the claim follows from Proposition 3.10. �

Quasi-Periodic Robustness

We can deal with quasi-periodic responses in the same way as in the previous

section. In the following we use the same linear regulator as before, with (Φ, G)

given by (3.44) and with (3.45) that still holds, with the ωk’s that are though

arbitrarily chosen in R+ and where we also let for convenience ω0 := 0. With

α : R → R+ and for k = 0, . . . , d, let define the (generalized) Fourier coefficients

as

c′k(α) := lim
T→∞

1

T

∫ T

0

α(ν)e−iωkνdν

and let

Q′d :=
{
α : R→ R : c′k(α) = 0, k = 0, . . . , d

}
.

Proceeding as before, we let

Pweak
qp ; = “ η is not quasi-periodic or e ∈ (Q′d)ne ”.

Then the following result holds:

Proposition 3.13. Suppose that Assumption 3.3 holds. Then the regulator is Pweak
qp -

robust at (F ◦,X◦0) with respect to τC1 .

Proof. The proof follows from the same argument of those of Proposition 3.10

once noted that, for each n = 1, . . . , 2d + 1, each j = 1, . . . , ne and each k =

0, . . . , d, we have

c′k

(
η

(n)
1j

)
= lim

T→∞

1

T

∫ T

0

η
(n)
1j (ν)e−iωkνdν

= lim
T→∞

1

T

[
η

(n−1)
1j (t)e−iωkt

]T
0

+ iωkc
′
k

(
η

(n−1)
1j

)
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where the integrals converge whenever η is quasi-periodic and with the first term

that vanishes as η(n−1)
1j (t)e−iωkt is bounded and with iωk that solves (3.45) �

3.4.4 Robustness in Nonlinear Regulators

In this section we focus on output regulation for nonlinear systems. For simplic-

ity, we refer to the Marconi-Praly-Isidori regulator (Marconi et al., 2007), how-

ever the same conclusions apply to the Byrnes-Isidori one (Byrnes and Isidori,

2004) and to the related extensions. We also limit to the SISO case, in which

y = e and m = ny = 1, and where the state of the plant can be decomposed as

x = col(z, e), with z ∈ Rn−1, and with f(·) that is defined so as the plant has the

following structure
ż = g(w, z, e)

ė = q(w, z, e) + b(w, z, e)u
(3.51)

for some g : Rnw × Rn → Rn−1, q, b : Rnw × Rn → R and with h(w, x) = e. The

regulator design is made assuming that the initial conditions of (3.51) range in

an arbitrary compact setW×Z×E ⊂ Rnw×Rn, which we will assume fixed from

now on. In line with the previous sections, we let X ∈ K(Rnw×Rn) and U ∈ K(R)

be arbitrarily large compact sets such that W × Z × E ⊂ X and with U taken

sufficiently large to encompass all the solutions of interest. We also adapt the

definitions of C1(X ×U) and τC1 to this case accordingly. As basic assumptions

on the plant’s data, we assume the following

Assumption 3.4. W is invariant for the exosystem w and Assumption 1.2 holds

As the structure of (3.51), the invariance of W and the minimum phase as-

sumption are a properties of F = (s, f, h), we let F be the set of functions in

C1(X×U) for which these properties holds. The functions φ(·) and θ(·) of (3.36)

are chosen so as
η̇ = Fη +G

(
γ(η) + κ(e)

)
u = γ(η) + κ(e),

(3.52)

with H0 arbitrary, (F,G) a controllable pair and with nη ∈ N, γ : Rnη → R and

κ : R → R that are continuous functions chosen on the basis of W , Z, E and

F ◦ ∈ F by following the procedure of (Marconi et al., 2007). The set H0 ⊂ Rnη

is instead chosen arbitrarily. The main result of (Marconi et al., 2007) can be

framed in the language of this framework as follows:
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Proposition 3.14. Let τF be any topology containing {F ◦}. With P0 defined as in
(3.43), F ◦ ∈ F and X◦0 := W ◦

0 × Z◦0 × E◦0 ⊂ int(W × Z × E), the regulator (3.52) is
P0-robust at (F ◦,X◦0) with respect to τF .

In other words, Proposition 3.14, which is indeed the result of (Marconi et al.,

2007), states that the P0-robustness is proved only for perturbations of (F ◦,X◦0)

that keep F ◦ constant and X◦0 inside the set W × Z × E. As a matter of fact,

as X◦0 is in the interior of W × Z × E, we can always find a τX -neighborhood

of X◦0 that stays inside W × Z × E. Hence to construct the τF×X -neighborhood

V of Definition 3.4 we just need to find a τF-neighborhood (call it N ) of F ◦ for

which P0 holds. The result of (Marconi et al., 2007) states indeed that the choice

N = {F ◦} works. The fact that also slight C1 perturbations of F ◦ might destroy

the property P0 can be verified by means of simple counter examples. Even

though a general result on the fragility of P0 with respect to general C1 variations

is not known at present, we believe that it holds true. In particular, we are led to

believe that the property P0 is in its nature “nominal” and cannot be preserved,

in general, under arbitrary (even if small) variations. This belief is included as a

particular case in the forthcoming conjecture stated below.

Robustness to more general variations is instead possible when an “approxi-

mate” regulation goal is considered. More precisely, for any ε > 0, let

Pε = “ |e|∞ < ε ”.

Let τF be now the subset topology induced by (C1(X ×U), τC1), and let the reg-

ulator (3.36) be chosen so that Pε holds at (F ◦,X◦0), with F ◦ ∈ F and X◦0 ⊂
int(W × Z × E) compact. Then the following result comes from (Marconi et al.,

2007, Thm. 2) as a consequence of the continuity of F , γ and κ:

Proposition 3.15. The regulator (3.51) is Pε-robust at (F ◦,X◦0) with respect to τF .

3.4.5 In general, no regulator is P0-robust

In this chapter we dealt with the robustness issue in output regulation schemes,

by proposing a new milder definition of robustness relative to a steady-state

property that generalizes the classical regulation goal of reaching a steady state

in which the regulation errors are identically zero. We reviewed some of the

main regulation schemes in linear and nonlinear frameworks, by showing, in
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relevant cases, what kind of robustness properties are meet. Starting from the

special P0-robustness property of the linear regulator, throughout the milder PT -

robustness for nonlinear systems up to the weak robustness property of nonlin-

ear design of Proposition 3.14, we arrived to the claim that P0-robustness might

not be the most appropriate goal in general nonlinear regulation. We conclude

this discussion with a conjecture saying that, even if the exosystem is known,

no finite-dimensional regulator can guarantee asymptotic regulation under gen-

eral “C1 variations” of the plant: with s◦ the nominal (known) exosystem func-

tion and with X ∈ K(Rnw × Rn) and U ∈ K(Rm) arbitrary compact sets, let

F := {F ∈ C1(X × U) : s = s◦} and let τF be the subset topology derived by

(C1(X×U), τC1). Then we state the following

Conjecture 3.1. Let F ◦ ∈ F and X◦0 ∈ K(Rnw × Rn). Then no regulator of the kind
(3.36) is P0-robust at (F ◦,X◦0) with respect to τF .
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Conclusion

In this chapter we reviewed the state of the art of output regulation for non-

linear systems and we presented new contributions in terms of structural and

robustness aspects. On the structural side, we highlighted how the whole non-

linear regulation literature has avoided in these years dealing with the chicken-

egg dilemma, incurring in the structural obstructions of pre-processing schemes

or in approaches that sacrifice asymptotic regulation. We gave sufficient condi-

tions for the existence of a regulator of the post-processing type that overcomes

some of the main limitations of pre-processing schemes. The proposed regulator,

indeed, deals with more inputs than regulation errors and allows for additional

non-vanishing measured outputs to be used in the closed-loop stabilization. On

the robustness side, we proposed a framework in which robustness relatively to

a general notion of perturbation and to general steady-state properties can be

analysed. We re-stated in that framework some of the main existing results in

the filed of linear and nonlinear regulation, and we arrived to conjecture that, at

least for what concerns the “canonical” C1 perturbations, asymptotic regulation

is a fragile property that cannot be achieved robustly with a finite-dimensional

regulator. We also presented a regulator based on low-power high-gain observers

and a systematic procedure to deal with structural robustness for some classes of

problems, and we recover the main elements of the “non-equilibrium theory” of

output regulation of (Byrnes and Isidori, 2003) in the case of exosystems mod-

eled by differential inclusions.
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Output regulation is still quite an open problem, and the results presented

here are still far to be a definite answer. For instance, the post-processing de-

sign proposed in Section 2.3 guarantees asymptotic regulation only in the case

in which there actually exist a dimension d and a function φ such that the equa-

tion (2.22) holds. This condition, though, might not hold in general for any finite

d and, even if such d and φ existed, they are not easy to find at all. Moreover, un-

less some particular immersion properties hold, their use is not robust, as the

functions υi, i = 1, . . . , d + 1, strongly depend on the plant’s data. The next

chapters are dedicated to construct a framework in which adaptation can be sys-

tematically included in the design of regulators. In this way we aim at building

on the theory developed so far to create constructive regulator designs, that use

adaptation to deal with the chicken-egg dilemma and to confer on the control

system additional robustness properties.
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Part II

Identification and Control
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4
A Framework for Identifiers

System Identification is a classical branch of control theory, devoted to the

creation of mathematical models from observations (Ljung, 1999; Tangi-

rala, 2015). The interactions between system identification and control

have been present since the dawn of times, especially in adaptive control prob-

lems, and they have generated interesting contributions generally grouped un-

der the common name of “Identification for Control” (see e.g. (Gevers, 1993, 1996)

for an historical perspective and (Gevers, 2005; Hjalmarsson, 2005) for excellent

excursions on the results and open problems). The main aim of the literature

of identification for control is the synergistic co-design of control systems and

system identification schemes to create control solutions that can operate au-

tonomously. Inside this large field we find for instance the theory of dual control
(Feldbaum, 1960), in which the control laws have to be designed to pursue the

dual goal of achieving the desired closed-loop behavior and inducing in the sys-

tem the “right” movements allowing a meaningful identification of the dynam-

ics of interest; we also find the theory of iterative identification (Gevers, 1996), in

which phases of free evolution of the closed-loop system alternate with off-line
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identification phases; last but not least, we find the application of identification

to robust control (Hjalmarsson, 2005), where identification has the role of reduc-

ing the “uncertainty ellipsoid” where the true system lies inside the perturbation

radius in which the robust control system can guarantee the desired steady-state

performances.

The interaction among identification and robust control is perhaps the most

fortunate and developed field of identification for control, and, in general, the

community has mainly focused on stabilization problems leaving fields like ob-

servation and regulation barely unexplored from the system identification per-

spective and at the mercy of the adaptive control community. Nevertheless, the

ideas at the core of the synergistic design of identification and control reveal a

much deeper significance that makes it worth investigating in broader contexts.

In the adaptive designs presented in this thesis we chose to approach adaptation as
a system identification problem. On a theoretical side, this allows us to consider

more general concepts of “uncertainty” and of “model” than those typically con-

sidered in the adaptive control field, where the uncertainty is usually assumed

to be concentrated into a single parameter of known dimension. On the practical

side, in this way we have access to well-known and well-developed identification

techniques (parametric and not), that we can use (and inherit their robustness

properties) instead of relying on ad hoc adaptation laws, as it is instead typical

of adaptive control approaches.

As a preliminary work towards this goal, in this chapter we define a system

theoretical framework in which general “online” identification problems can be

cast, with the identification algorithms that are seen as dynamical systems and

treated in the context of nonlinear system theory (from now on we refer to these

systems as identifiers). Identification problems are cast as optimization problems

and the identifiers are asked to satisfy strong stability requirements with respect

to an ideal steady state defined by the optimal solution of the underlying iden-

tification problem. For simplicity, we develop the framework in a deterministic

setting, as the results we give here do not require any further characterization of

the errors.

The framework developed in this chapter will be used Chapter 5, where we

show how the identifiers that fit in the proposed framework can be used in con-

junction with a high-gain observer to design adaptive observers for nonlinear

systems, and in Chapters 6 and 7, where adaptive internal models will be de-
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veloped. In both the applications it is shown that the asymptotic control perfor-

mance (state estimation error in the case of observation and regulation error in

case of regulation) is directly related to the prediction performances of the iden-

tified model, evaluated along the ideal steady state of the overall system.

The identification framework proposed in this chapter is a hybrid systems
framework (see Goebel et al., 2012). In this way we can deal with both continuous-

time and discrete-time identification algorithms in a common formal playground.

In Sections 4.2 and 4.3 we show that ordinary least-squares problems fit into the

framework, in Section 4.4 we consider algorithms for nonlinear parametrizations

and in Section 4.5 we show how the proposed identifiers can be used to perform

an online multiresolution non-parametric wavelet identification.

This chapter contains original contribution submitted for publication in (Bin

and Marconi, 2018c). For what concerns the notation on hybrid system, we refer

to (Goebel et al., 2012) and to Appendix A. For what concerns the terminology

related to system identification we refer to (Ljung, 1999). We denote by 〈·, ·〉 the

canonical scalar product in L2(X ) and we equip L2(X ) with the norm | · | :=√
〈·, ·〉.

4.1 The Framework

In this section we give a formal definition of the class of identifiers that we will

treat in the rest of the chapter. We describe identifiers as hybrid dynamical sys-

tems and we express the main desired properties in terms of a requirement, the

identifier requirement, asking for strong stability properties with respect to an

ideal steady state defined by the underlying optimization problem.

4.1.1 Hybrid Identifiers

Let A and B be normed vector spaces and let α? and β? be hybrid inputs with

the same hybrid time domain and with values respectively in A and B. The

general problem that we consider in this section is to find a “good” prediction
model relating the values of α?(t, j) and β?(t, j) on the basis of their available

measurements. More precisely, we aim at finding a function A → B that, at each

(t, j) ∈ dom(α?, β?), produces a “good” guess β̂?(t, j) of the value of β?(t, j) given

the knowledge of α?(t, j). As usually done in system identification (Ljung and
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Söderström, 1985), we look for candidate functions inside a parametrized set of

functionsMwhose elements are indexed by a vector θ ranging in Rd, with d ∈ N∗

that is a degree of freedom called the model order. The set M is usually called

the model set and, by definition, it naturally induces a map Φ : Rd ×A → B such

that, as θ ranges in Rd, Φ(θ, ·) generates all the models inM. Thus, every possible

model φ that we consider is given by φ(·) = Φ(θ, ·) for some θ ∈ Rd. We refer to

Φ as the prediction model and, in the following, we make reference to Φ(θ, ·) to

denote a candidate model.

The choice of model order d, of the model setM and of the procedure used

to select θ is typically based on some a-priori knowledge of the signals α? and

β?. In control applications the signals α? and β? are usually defined by some

combinations of the plant’s state variables (this is for example the case of the

observer developed later in Chapter 5), and the aforementioned degree of free-

dom are decided by using the a priori knowledge of the plant. Here we “encode”

the available information on α? and β? by assuming that they are generated by a

hybrid inclusion of the form

Hw :

{
ẇ ∈ S(w) w ∈ Cw
w+ ∈ R(w) w ∈ Dw

(4.1)

with state w taking values in a normed vector spaceW and with output1

α? = α?(w), β? = β?(w) , (4.2)

being Cw and Dw closed subsets ofW and α? : W → A and β? : W → B locally

bounded functions. We refer to the process (4.1) as the exosystem. Throughout

the rest of the chapter we make the following standing assumption (Goebel et al.,

2012)

Assumption 4.1. Hw satisfies the hybrid basic conditions of Definition A.1.2, is for-
ward complete and W := Cw ∪ Dw is compact.

Once the model order d and the model set M are fixed, the problem boils

down to choose the particular value of the parameter θ for which the corre-

1With the aim of avoid introducing too many symbols, despite the slight abuse of notation,
we will denote with the same letters α? and β? both the hybrid arcs introduced above and the
functions in (4.2).
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sponding model Φ(θ, ·) ∈ M has the desired representation capabilities. Here

we restrict the attention to online algorithms (Ljung and Söderström, 1985), i.e.

processes that produce and adapt a guess of θ based on some measures that are

made available at run time on the signals α? and β?. We call processes of this

kind identifiers and we describe them as hybrid systems driven by the signals α?

and β?. What information is actually available on (α?, β?) depends on the defi-

nition of the particular underlying problem and the particular algorithm that is

implemented. For instance, a discrete-time identifier will typically work on sam-

ples of (α?, β?), that corresponds to the values (α?(tj, j), β
?(tj, j)), j ∈ N, while a

continuous-time identifier will more likely work on the values of (α?, β?) during

the flow intervals (i.e. those assumed at (t, j) with t ∈ (tj, t
j)).

To support the forthcoming application to adaptive observers design we fur-

ther complicate the problem by letting the measures of α? and β? available to

the identifier be corrupted by an additive unmodeled disturbance. Namely, we

suppose that the identifier has access to the hybrid signal (α, β), where

α(t, j) = α?(t, j) + δα(t, j)

β(t, j) = β?(t, j) + δβ(t, j),
(4.3)

being δ := (δα, δβ) a bounded hybrid input on A × B. In this respect we better

frame in the field of errors-in-variables identification (Söderström, 2007).

We define an identifier as a hybrid system of the form

Hz :

{
ż ∈ F (z, α, β) (z, α, β) ∈ Z ×A× B
z+ ∈ G(z, α, β) (z, α, β) ∈ Z ×A× B

(4.4)

with state z taking values in a normed vector space Z , input (α, β) given by (4.3),

output

θ = h(z), (4.5)

and where F,G : Z × A × B ⇒ Z and h : Z → Rd. To the identifier (4.4) we

associate the prediction model

Φ(θ, ·) ∈M,

which is such that, at each (t, j), β̂?(t, j) = Φ(θ(t, j), α?(t, j)) represents the iden-
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tifier’s best guess of β?(t, j) given α?(t, j). The overall system, obtained by inter-

connecting (4.1) and (4.4), and by letting (α, β) be defined by (4.2)-(4.3), reads as

follows

Hcl :

{
ẇ ∈ S(w)

ż ∈ F (z, α?(w) + δα, β
?(w) + δβ)

(w, z, δ) ∈ C ×A× B{
w+ ∈ R(w)

z+ ∈ G(z, α?(w) + δα, β
?(w) + δβ)

(w, z, δ) ∈ D ×A× B
(4.6)

where C := Cw ×Z and D := Dw ×Z .

Definition 4.1. The identifier (4.4) is said to be well-defined if it satisfies the hybrid
basic conditions of Definition A.1.2 and the overall system (4.6) is forward complete.

Even if Definition 4.1 involves the entire system (4.6), we remark that, in view

of Assumption 4.1, being well-defined is only a property of the identifier. The

flow and jump sets of (4.4) coincide with the whole state space Z and, hence,

the time domain of the solutions of the overall system is only decided by the

exosystem. This allows us to conclude that, for a well-defined identifier, (w, z, δ)

is a solution pair of Hcl, only if w is a solution of Hw. If the solutions of Hcl

are needed to satisfy certain constraints in terms of time domain, a clock can

be included in the exosystem description. More in general, in the rest of the

chapter, whenever we want to restrict the attention to the solutions of Hcl that

fulfills some given properties, we will refer to a suitably defined subset E of SHcl
that we call a restriction on Hcl.

4.1.2 The Identification Problem

We associate to system (4.6) the function ε : W × Rd → B given by

ε(w, θ) := β?(w)− Φ(θ, α?(w)) . (4.7)

For a given solutionw ofHw and a given (t, j) ∈ domw, ε(w(t, j), θ) represents the

prediction error obtained by the model Φ(θ, ·) ∈ M corresponding to the uncor-
rupted data pair (α?(w(t, j)), β?(w(t, j))). While the model setM can be defined

on the basis of the a priori knowledge of (4.1), the design of the identifier (4.4)

is usually cast as an optimization problem involving the minimization of some
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function of the history of the prediction errors (4.7) along the data set. By follow-

ing this line, with F(Rd) denoting the set of functionals Rd → R+, we associate

to each solution w to Hw a cost functional Jw : domw → F(Rd) of the form

Jw(θ)(t, j) :=

j−1∑
i=0

di,j
(
ε(w(ti, i), θ)

)
+

∫ t

0

cs,t
(
ε(w(s, js), θ)

)
ds+ ω(θ) (4.8)

with di,j, cs,t,B → R+, i, j ∈ N, s, t ∈ R, some user-defined positive functions

satisfying di,j(0) = 0, cs,t(0) = 0 and ω(0) = 0 that characterize the particu-

lar optimization problem. The summation and the integral terms penalize the

prediction error obtained by the model Φ(θ, ·) during the jump and flow times

respectively, while ω(θ) represents a regularization term. We associate to Jw the

optimum map (which is possibly set-valued) ϑ◦w : domw ⇒ Rd defined as

ϑ◦w(t, j) := arg inf
θ∈Rd

Jw(θ)(t, j) . (4.9)

We will refer to the pair (Hw, Jw) formed by an exosystem Hw of the form (4.1)-

(4.2) and a cost functional of the form (4.8) as an identification problem.

Once Jw is fixed, the design of the identifier is done so that its output θ min-

imizes (4.8) along the solutions of the overall system. Since the correct initial-

ization of the identifier (4.4) is not in general known, a point-wise minimization

is not in general feasible and a requirement in terms of an asymptotic optimal

behavior is more suitable. Moreover, as the identifier works on a perturbed data

set given by (α, β) rather than the “ideal” one corresponding to (α?, β?), it makes

sense to require to the identifier an additional robustness property with respect to

the disturbance δ. Under a system theoretical perspective, we look at the overall

system (4.6) as a system with input δ, and the aforementioned requirements are

seen as strong stability properties (also known as input-to-state stability (Son-

tag, 1989)) with respect to the input δ and relatively to an ideal optimal steady
state. This is formalized in the definition below, to which we refer as the identifier
requirement.

Requirement 4.1. The identifier (4.4)-(4.5) is said to fulfil the identifier require-

ment relatively to the identification problem (Hw, Jw) and under the restriction E ⊂
SHcl if it is well-defined and there exist Vz : Z → R+, σ, σ̄ ∈ K∞, ρ, κ1, κ2 ∈ K,
ν > 0 and, for each solution w of Hw an unique z? : domw → Z , such that for all
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(w, z, δ) ∈ E the following hold:

1) Optimality: The function θ? := h(z?) fulfills

θ?(t, j) ∈ ϑ◦w(t, j), ∀(t, j) ∈ dom z?.

2) Stability: with z̃ := z − z? it holds that

(a) For each (t, j) ∈ dom z̃

σ(|z̃(t, j)|) ≤ Vz(z̃(t, j)) ≤ σ̄(|z̃(t, j)|)

(b) For all (t, j) ∈ I(z̃)

Vz(z̃(t, j)) ≥ ρ(|δ(t, j)|) =⇒ D+Vz(z̃(t, j)) ≤ −νV (z̃(t, j))

(c) For all (t, j) ∈ Γ(z̃)

Vz(z̃(t, j + 1)) ≤ max{e−νVz(z̃(t, j)), ρ(|δ(t, j)|)}

3) Regularity: There exists T ≥ 0 such that

(a) For all (t, j) ∈ I(w, z)|≥T , ḣ(z(t, j)) exists and

|ḣ(z(t, j))− ḣ(z?(t, j))| ≤ κ1(|z(t, j)− z?(t, j)|)

(b) For all (t, j) ∈ Γ(w, z)|≥T

|h(z(t, j))− h(z?(t, j))| ≤ κ2(|z(t, j)− z?(t, j)|).

Point 1 of the identifier requirement asks that the steady-state trajectory z?

is optimal in the sense that the corresponding output θ? minimizes (4.8). Point

2 is instead an input-to-state stability (see Appendix A.2) requirement relatively

to the ideal steady state z?. The third point is a regularity requirement of the

output map along the solutions (also interpreted as a detectability property).

The third requirement typically is fulfilled under some persistence of excitation
(see the Proposition 4.1), and we observe that in a purely discrete-time identifier
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the condition 3.a) is always satisfied, while a purely continuous-time identifier

always satisfies 3.b). The restriction E has been introduced in the definition of

the requirement to take into account the cases in which the requirement can only

be achieved “locally” (both in the state and the disturbance). For instance, E can

be the set of the solution pairs of Hcl originating in a given set, or having a time

domain fulfilling some dwell-time conditions or satisfying some persistence of

excitation condition.

In the following sections we present examples of identifiers that fulfill the

identifier requirement: in sections 4.2 and 4.3 we address the case of linear

parametrizations with (4.8) that is a least-squares functional by means of a dis-

crete and continuous-time identifier respectively; in Section 4.4 we propose a

systematic procedure to fit mini-batch algorithms for nonlinear parametriza-

tions in the proposed framework; finally, in Section 4.5 we derive an universal
approximator using cascades of least-squares that leverage on the wavelets the-

ory and on the (bi)orthogonal multiresolution decomposition of the prediction

errors.

4.2 Discrete-Time Least-Squares Identifiers

In this section we consider a class of discrete-time regularized weighted least-
squares identifiers. For simplicity, we consider here a scalar case (i.e. we let in

(4.2) β?(w) ∈ R), however we observe that a multivariable identifier can be ob-

tained straightforwardly either as the composition of p single-variable identi-

fiers or, as in Sections 6.4 and 7.3, by properly augmenting the dimension of the

regressor. We consider the class of identification problems consisting of an ex-

osystem of the generic form (4.1), (4.2), a prediction model Φ(θ, ·) that is linearly
parametrized in θ and a cost functional of the form (4.8) that weights the squares

of the historical prediction errors obtained during jumps. More precisely, for

some d ∈ N, we let

Φ(θ, ·) = θTσ(·), (4.10)

with σ : A → Rd a user-defined locally Lipschitz function that plays the role of a

regressor vector. The cost functional is obtained by letting in (4.8): cs,t = 0 for all
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s, t ∈ R, ω(θ) = θTΩθ, with Ω ∈ Rd×d a positive semidefinite matrix, and

di,j(x) := µj−1−i|x|2,

with µ ∈ (0, 1) that plays the role of a forgetting factor. With such choices the cost

functional (4.8) reads as

Jw(θ)(t, j) =

j−1∑
i=0

µj−1−i∣∣β?(w(ti, i))− θTσ(α?(w(ti, i)))|2 + θTΩθ. (4.11)

The degrees of freedom left to the user are: the regression order d, the regressor

vector σ, the forgetting factor µ and the regularization matrix Ω. These parame-

ters can be chosen by the user to characterize the particular desired instance of

the least square problem. We define a least-squares identifier as a system of the

form (4.4), (4.5), with state space Z := Rd×d × Rd and with state z partitioned as

z := (R, ζ) with R ∈ Rd×d and fulfilling the equations

Hls :

{
Ṙ = 0

ζ̇ = 0

{
R+ = µR + σ(α)σ(α)T

ζ+ = µζ + σ(α)β
(4.12)

with flow and jump set given by Z ×A× B, and with output

θ = (R + Ω)†ζ, (4.13)

where ·† denotes the Moore-Penrose pseudoinverse on Rd×d. We endow Z with

the norm |z| := |R|+ |ζ|. For ease of notation, with δ = (δα, δβ) ∈ A× B, we let

Σ(w, δ) := σ(α?(w) + δα)σ(α?(w) + δα)T

γ(w, δ) := σ(α?(w) + δα)(β?(w) + δβ).
(4.14)

Then the overall system (4.1), (4.2), (4.12), (4.13) reads as

Hls
cl :


ẇ ∈ S(w)

Ṙ = 0

ζ̇ = 0

(w, z, δ) ∈ C


w+ ∈ R(w)

R+ = µR + Σ(w, δ)

ζ+ = µζ + γ(w, δ)

(w, z, δ) ∈ D

(4.15)
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where C := Cw ×Z ×A× B and D := Dw ×Z ×A× B.

As the pseudoinverse map is not in general continuous everywhere, the point

3) of the identifier requirement might not hold. As a matter of fact, if the state

(R, ζ) converges to a point, say (R?, ζ?), there is no guarantee that θ converges

to θ? := (R? + Ω)†ζ?. In order to overcome this issue, we define the following

persistence of excitation condition, where for a square matrix M , we let msv(M)

be the minimum non-zero singular value of M .

Definition 4.2. With J ∈ N and ε > 0, a complete hybrid input α : domα → A is
said to be (J, ε)-persistently exciting if

msv

(
j−1∑
i=0

µj−1−iΣ(α(ti, i), 0) + Ω

)
≥ ε, ∀j ≥ J.

In the following we will often abbreviate “(J, ε)-persistently exciting” by “(J, ε)-

PE” and for any (J, ε) ∈ N × R∗+ we let EJ,εPE ⊂ SHlscl be the set of solution pairs

(w, z, δ) of (4.15) for which α?(w) and α?(w) + δ are (J, ε)-PE. We observe that,

whenever J ′ ≤ J and ε′ ≥ ε, then EJ
′,ε′

PE ⊂ E
J,ε
PE .

Remark 4.1. It is worth noting that, even if the PE property is a property of a

hybrid arc α, it is strongly influenced by the parameters µ and Ω. As a matter of

fact, if Ω is chosen positive definite, then every hybrid input α is (0, ν)-PE, with

ν > 0 the real part of the minimum eigenvalue of Ω. In fact, by construction, the

sum

S(j) :=

j−1∑
i=0

µj−1−iΣ(α(ti, i), 0)

is positive semi-definite. Hence, if λ is an eigenvalue of S(j) + Ω and v is a

corresponding eigenvector, then (S(j) + Ω)v = λv, that implies S(j)v ≤ (λ− ν)v.

As S(j) is positive semi-definite, we get 0 ≤ vTS(j)v ≤ (λ−ν)vTv, which implies

λ ≥ ν, and this suffices to conclude msv(S(j) + Ω) ≥ ν. 4

Remark 4.2. The set EJ,εPE is defined as the set of all the solution pairs of (4.15) for

which both the ideal input α?(w) and the perturbed input α(w) = α?(w) + δα are

(J, ε)-PE. Nevertheless, by continuity of the function msv in Definition 4.2, it is

possible to conclude that if α?(w) is (J, ε)-PE and the disturbance δα is small

enough at the instants preceding a jump, then also the perturbed input α is

(J ′, ε′)-PE, for some J ′ ≥ J and ε′ ≤ ε. This in turn makes the PE condition a
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property of the exosystem. We also observe that, when applied to the adaptive

high-gain observer in Proposition 5.1, the disturbance δα equals x − x̂[1,n] and,

hence, standard high-gain arguments can be used to show that for g and λ suffi-

ciently large, at jump-times δα can be made small enough to make sure that if x

is (J, ε)-PE, then so is also x̂[1,n], thus reducing the PE condition to a property of

the plant. 4

Remark 4.3. We also observe that the PE condition of the input α? + δ (and thus

of α? if δ is sufficiently small at jumps) can be checked online by looking at the

matrix R(t, j) + Ω. As a matter of fact, it can be shown by the same arguments

of the forthcoming Proposition 4.1 that R + Ω converges exponentially to the

argument of msv(·) in Definition 4.2. Therefore, by continuity of msv, it follows

that α? + δα is (J, ε)-PE if and only if there exists ε′ ∈ R∗+ such that msv(R(tj, j) +

Ω) ≥ ε′ for all (t, j) ∈ Γ(R)|≥J . 4

With (r,N) ∈ (R+)2 we define the restriction Er,Nradt on Hls
cl as the set of solu-

tion pairs in SHls fulfilling the reverse average dwell-time condition (A.3) with

parameters (r,N). Then the following result holds.

Proposition 4.1. With Hw given by (4.1), (4.2) and Jw by (4.11), suppose that As-
sumption 4.1 holds and pick arbitrary (r,N) ∈ (R∗+)2 and (J, ε) ∈ N× R∗+. Then the
identifier (4.12), (4.13) fulfils the identifier requirement relatively to the identifica-
tion problem (Hw, Jw) with restriction EJ,εPE ∩ E

r,N
radt and with any κ1, with σ, σ̄ and κ2

linear and ρ locally Lipschitz.

We underline that the existence of the steady state z? such that point 1 of

the identifier requirement holds is guaranteed by construction. Point 2 requires

instead the time domain of the solutions to satisfy (A.3) and the persistence of

excitation condition is only needed to obtain the regularity requirement.

Proof of Proposition 4.1. Well-definiteness in the sense of Definition 4.1 is

clear. Pick a solution (w, z) ∈ SHlscl . Then, at each (t, j) ∈ dom(w, z), the set (4.9)

of minimizers of (4.11) is given by the set of θ that annihilate its gradient, i.e.

ϑ◦w(t, j) =
{
θ ∈ Rd : (R?(t, j) + Ω)θ = ζ?(t, j)

}
(4.16)
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where

R?(t, j) :=

j−1∑
i=0

µj−1−iΣ(w(ti, i), 0)

ζ?(t, j) :=

j−1∑
i=0

µj−1−iγ(w(ti, i), 0).

Let z? : dom z? = dom(w, z) → Z be defined as ζ?(t, j) := (R?(t, j), ζ?(t, j)). By

construction R? and ζ? satisfy Ṙ?(t, j) = 0 and ζ̇?(t, j) = 0 for all (t, j) ∈ I(w, z)

and
R?(t, j + 1) = µR?(t, j) + Σ(w(t, j), 0)

ζ?(t, j + 1) = µζ?(t, j) + γ(w(t, j), 0)
(4.17)

for all (t, j) ∈ Γ(w, z). Let z̃ = (R̃, z̃) := z − z?, then, in view of (4.15), (4.17), for

all (t, j) ∈ I(z̃), z̃ satisfies

|z̃(t, j + 1)| = |R̃(t, j + 1)|+ |z̃(t, j + 1)|

≤ µ|z̃(t, j)|+ |Σ(w(t, j), δ(t, j))− Σ(w(t, j), 0)|

+ |γ(w(t, j), δ)− γ(w(t, j), 0)|

As Σ and σ are locally Lipschitz and for all w ∈ W the quantities Σ(w, δ)−Σ(w, 0)

and γ(w, δ) − γ(w, 0) vanish for δ = 0, there exists a locally Lipschitz function

ρ ∈ K such that

|z̃(t, j + 1)| ≤ µ|z̃(t, j)|+ ρ(|δ(t, j)|).

Pick (r,N) ∈ (R+)2 arbitrary an define the virtual clock system{
τ̇ = 1 τ ∈ [0, N ]

τ+ = max{0, τ − r} τ ∈ [0, N ] .
(4.18)

Then in view of (Cai et al., 2008, Prop. 1.2) a solution (w, z, δ) ∈ SHlscl is in Er,Nradt if

and only if (w, z, δ) is a solution pair of the extended system (4.15), (4.18). Pick

(w, z, δ) ∈ Er,Nradt and, with

ω ∈
(
0, log µ−1

)
k ∈

(
0,

log µ−1 − ω
r

)
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consider the function

V (z̃, τ) := exp(−kτ)|z̃|.

then point 2.a) of the requirement holds with σ = exp(−kN) and σ̄ = 1. For all

(t, j) ∈ I(w, z), we have

D+V (z̃, τ) = −kV (z̃, τ),

while for all (t, j) ∈ Γ(w, z), noting that τ+ ≥ τ − r, we obtain

V (z̃, τ)+ ≤ µekrV (ã, τ) + ρ(|δ|).

as by definition we have

µekr ≤ µelog µ−1−ω ≤ e−ω,

then points 2.b) and 2.c) of the identifier requirement follow with ν := min{k, ω}
and ρ defined as above.

Point 1) of the identifier requirements follows from the fact that, in view of

(4.16) θ?(t, j) = (R?(t, j) + Ω)†ζ?(t, j) is in ϑ◦w(t, j). Point 3.a) follows directly by

the fact that the state is constant during flows and, hence, ḣ(z) = 0 in I(z). It

thus remains to prove point 3.b). We can write (we omit the time dependency)

|θ − θ?| ≤ |(R + Ω)†ζ − (R? + Ω)†ζ?|

≤ |(R + Ω)† − (R? + Ω)†||ζ?|+ |(R? + Ω)†||ζ − ζ?|

In view of (Campbell and Meyer, 2009, Thm. 10.4.5), we have

|(R + Ω)† − (R? + Ω)†| ≤ 3 max{|(R + Ω)†|2, |(R? + Ω)†|2}|R−R?|. (4.19)

If (w, z, δ) ∈ EPE , then for some (J, ε) ∈ N × R∗+ we have msv(R + Ω) > ε and

msv(R? + Ω) ≥ ε, and thus (4.19) implies

|θ − θ?| ≤
(
3 max{1/ε2, 1/ε′2}|ζ?|+ 1/ε

)
|z − z?|,

for all (t, j) ∈ dom(w, z)|≥T with T := J + tJ . Thus, noting that

|ζ?| ≤ 1

1− µ
sup
w∈W
|γ(w, 0)|,
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we obtain point 3.b) of the identifier requirement with κ2 linear, and this con-

cludes the proof. �

4.3 Continuous-Time Least-Squares Identifiers

In this section we present a continuous-time version of the discrete-time identi-

fier developed in the previous Section 4.2. Again we stick to the scalar case, i.e.

we assume β ∈ R, and we recall that a multivariable identifier can be obtained

straightforwardly either as the composition of p single-variable identifiers or, as

in Sections 6.4 and 7.3, by properly augmenting the dimension of the regressor.

We assume to have fixed the order d ∈ N of the model and a we pick the same

model structure of (4.10), i.e.

φ(·, θ) = θTσ(·) ,

with σ : A → R a known locally Lipschitz function. We consider a continuous-

time least-squares functional, obtained by letting in (4.8): di,j = 0 for all i, j ∈ N,

ω(θ) = θTΩθ, for some positive semi-definite Ω ∈ Rd×d, and

cs,t(·) := exp(−λ(t− s))| · |2,

for some λ > 0 that plays the role of a forgetting factor (i.e. λ is the continuous-

time analogous of µ of Section 4.2). We thus obtain the cost functional

Jw(θ)(t, j) = λ

∫ t

0

e−λ(t−s)∣∣β?(w(ti, i))− θTσ(α?(w(ti, i)))
∣∣2ds+ θTΩθ. (4.20)

The continuous-time analogous of (4.12)-(4.13) is obtained by letting in (4.4)-

(4.5), Z := Rd×d × Rd, by partitioning the state as z = (R, ζ), with R ∈ Rd×d and

ζ ∈ Rd, and by letting{
Ṙ = −λR + λσ(α)σ(α)T

ζ̇ = −λζ + λσ(α)β

{
R+ = 0

ζ+ = 0
(4.21)

with output

θ = (R + Ω)†ζ (4.22)
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where again ·† denotes the Moore-Penrose pseudoinverse. We endow Z with the

norm |z| = |R| + |ζ|. Then, with Σ(·) and γ(·) defined as in (4.14), the overall

system (4.1), (4.2), (4.21), (4.22) reads as

Hls
cl :


ẇ ∈ S(w)

Ṙ = −λR + λΣ(w, δ)

ζ̇ = −λζ + λγ(w, δ)

(w, z, δ) ∈ C


w+ ∈ R(w)

R+ = 0

ζ+ = 0

(w, z, δ) ∈ D

(4.23)

where C := Cw ×Z ×A× B and D := Dw ×Z ×A× B.

We introduce a persistence of excitation condition that is the continuous-time

analogous of Definition 4.2:

Definition 4.3. With (T, ε) ∈ R+×R∗+, a complete hybrid arc α : domα→ A is said
to be (T, ε)-persistently exciting if

msv

(∫ t

0

e−λ(t−s)Σ(α(s, js), 0)ds+ Ω

)
≥ ε, ∀t ≥ T.

For (T, ε) ∈ R+ × R∗+, we denote by E (T,ε)
PE ⊂ SHlscl the set of solution pairs

(w, z, δ) of (4.23) for which α?(w) and α?(w) + δα are both (T, ε)-PE. We also

observe that, whenever T ′ ≤ T and ε′ ≥ ε, E (T ′,ε′)
PE ⊂ E (T,ε)

PE . We also underline

that the continuous-time analogous of remarks 4.1, (4.2) and (4.3) can be stated

in this case.

With (ν,N) ∈ R+ × N we define the restriction Eν,Nadt on Hls
cl as the set of solu-

tion pairs in SHlscl fulfilling the reverse average dwell-time condition (A.2) with

parameters (ν,N). Then the following result holds.

Proposition 4.2. With Hw given by (4.1), (4.2) and Jw by (4.20), suppose that As-
sumption 4.1 holds and pick arbitrary (ν,N) ∈ R∗+×N∗ and (T, ε) ∈ R+×R∗+. Then
the identifier (4.21), (4.22) fulfills the identifier requirement relatively to the identifi-
cation problem (Hw, Jw) with restriction ET,εPE ∩ E

ν,N
adt and with any κ2, with σ, σ̄ and

κ1 linear and ρ locally Lipschitz.

We underline that, also in this case, the existence of the steady state z? such

that point 1 of the identifier requirement holds is guaranteed by construction.

Point 2 requires instead the time domain of the solutions to satisfy (A.2) and
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the persistence of excitation condition is only needed to obtain the regularity

requirement.

Proof of Proposition 4.2. Well-definiteness in the sense of Definition 4.1 is

clear. Pick a solution (w, z) ∈ SHlscl . Then, at each (t, j) ∈ dom(w, z), the set (4.9)

of minimizers of (4.20) is given by the set of θ that annihilate its gradient, i.e.

ϑ◦w(t, j) =
{
θ ∈ Rd : (R?(t, j) + Ω)θ = ζ?(t, j)

}
(4.24)

where

R?(t, j) := λ

∫ t

0

e−λ(t−s)Σ(w(s, js), 0)ds

ζ?(t, j) := λ

∫ t

0

e−λ(t−s)γ(w(s, js), 0)ds.

Let z? : dom z? = dom(w, z) → Z be defined as ζ?(t, j) := (R?(t, j), ζ?(t, j)). By

construction R? and ζ? satisfy R?(t, j + 1) = R?(t, j) and ζ?(t, j + 1) = ζ?(t, j) for

all (t, j) ∈ Γ(w, z) and

Ṙ?(t, j) = λR?(t, j) + Σ(w(t, j), 0)

ζ̇?(t, j) = µζ?(t, j) + γ(w(t, j), 0)
(4.25)

for all (t, j) ∈ I(w, z). Let z̃ = (R̃, z̃) := z − z?, then, in view of (4.23), (4.25), for

all (t, j) ∈ I(z̃), z̃ satisfies

D+|z̃(t, j)| = D+
(
|R̃(t, j)|+ |z̃(t, j)|

)
≤ −λ|z̃(t, j)|+ |Σ(w(t, j), δ(t, j))− Σ(w(t, j), 0)|

+ |γ(w(t, j), δ(t, j))− γ(w(t, j), 0)|

As Σ and σ are locally Lipschitz and for all w ∈ W the quantities Σ(w, δ)−Σ(w, 0)

and γ(w, δ) − γ(w, 0) vanish for δ = 0, there exists a locally Lipschitz function

ρ0 ∈ K such that

D+|z̃(t, j)| ≤ −λ|z̃(t, j)|+ ρ0(|δ(t, j)|).

141



Pick (ν,N) ∈ R+ × N arbitrary an define the virtual clock system{
τ̇ ∈ Fτ (τ) τ ∈ [0, N ]

τ+ = τ − 1 τ ∈ [1, N ] .
(4.26)

with

Fτ (τ) :=

ν τ ∈ [0, N0)

[0, ν] τ = N0

Then in view of (Cai et al., 2008, Prop. 1.1) a solution (w, z, δ) ∈ SHlscl is in Eν,Nadt if

and only if (w, z, δ) is a solution pair of the extended system (4.23), (4.26). Pick

(w, z, δ) ∈ Eν,Nadt and, with

ω ∈ (0, λ) k ∈
(

0,
λ− ω
ν

)
consider the function

V (z̃, τ) := exp(kτ)|z̃|.

then point 2.a) of the requirement holds with σ = 1 and σ̄ = ekN . Moreover, for

all (t, j) ∈ I(w, z), we have

D+V (z̃, τ) ≤ (kν − λ)V (z̃, τ) + ekNρ0(|δ|)

≤ −ωV (z̃, τ) + ekNρ0(|δ(t, j)|),

while, for all (t, j) ∈ Γ(w, z), noting that τ+ = τ − 1, we obtain

V (z̃, τ)+ = e−kV (ã, τ).

and hence it follows that there exists a locally Lipschitz ρ ∈ K such that then

points 2.b) and 2.c) of the identifier requirement follow with ν := min{k, ω}.
Point 1) of the identifier requirements follows from the fact that, in view of

(4.24) θ?(t, j) = (R?(t, j) + Ω)†ζ?(t, j) is in ϑ◦w(t, j). Point 3.b) follows directly

by the fact that the state is constant during jumps. It thus remains to prove

point 3.a) that, however, follows from the same arguments used in the proof of

Proposition 4.1. �
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4.4 Mini-Batch Identifiers for Nonlinear Parametriza-

tions

In this section we consider a class of discrete-time identification algorithms that

work on a “moving window” of prescribed size. More precisely, with M ∈ N an

arbitrary number denoting the size of the moving window and with ϕ a hybrid

arc taking values in an Euclidean space X , we define the window operator ωM
on ϕ as

ωM(ϕ)(t, j) :=


ϕ(tj−M , j −M)

ϕ(tj−M+1, j −M + 1)

. . .

ϕ(tj−2, j − 2)

ϕ(tj−1, j − 1)

 ∈ X
M .

With reference to the framework of Section 4.1, suppose that for some arbitrary

m, p ∈ N, with p ≤ m, A = Rm and B = Rp, and we assume that we are given:

• An exosystem Hw of the form (4.1)-(4.2) that generates the data α?(w) and

β?(w).

• A model order d ∈ N and a model setM containing prediction models of

the form Φ(θ, ·) with θ that ranges in Rd.

• A cost function Jw of the form (4.8) obtained with cs,t = 0 for all s, t ∈ R
and with di,j = 0 for all i, j ∈ N such that i < j −M , i.e.

Jw(θ)(t, j) :=

j−1∑
i=max{0,j−M}

di,j
(
ε(w(ti, i), θ)

)
, (4.27)

where we recall that (see (4.7))

ε(w, θ) := β?(w)− Φ(θ, α?(w)). (4.28)

• A continuous function G : AM × BM → Rd that satisfies

G
(
ωM(α?(w))(t, j), ωM(β?(w))(t, j)

)
∈ arg inf

θ∈Rd
Jw(θ)(t, j) . (4.29)
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Remark 4.4. The class of algorithms that we consider here include, for instance,

algorithms that are originally defined in a batch (or off-line) context and that

can be used online by running them at each new sample over the fixed amount

of data in the moving window. Many algorithms for nonlinear parametrizations

are of this kind; for instance the gradient descent techniques can be seen as mini-

batch algorithms of this kind working on windows of dimension M = 1. 4

Remark 4.5. The condition (4.29) is motivated by the fact that in view of (4.28),

the cost functional Jw given in (4.27) at a given (t, j) ∈ domw is only a function

of the windowed quantities ωM(α?(w))(t, j) and ωM(β?(w))(t, j). 4

We construct an identifier of the form (4.4)-(4.5), fitting in the framework of

Section 4.1, by letting Z := AM × BM , by decomposing the state as z := (χ, ξ),

with χ := (χ1, . . . , χM) ∈ AM , χi ∈ A, and ξ := (ξ1, . . . , ξM) ∈ BM , ξi ∈ B, and by

choosing F and G such that the following equations holds:

{
χ̇ = 0

ξ̇ = 0


χ+
i = χi+1, i = 1, . . . ,M − 1

χ+
M = α

ξ+
i = ξi+1, i = 1, . . . ,M − 1

ξ+
M = β

(4.30)

with flow and jump sets given by Z ×A× B and with output

θ = G(χ, ξ). (4.31)

We interconnect the identifier (4.30)-(4.31) with an exosystem of the form (4.1)-

(4.2), by letting α := α?(w) + δα and β := β?(w) + δβ, with δ = (δα, δβ) ∈ A× B a
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hybrid input, obtaining the composite system:

Hcl :


ẇ ∈ S(w)

χ̇ = 0

ξ̇ = 0

(w, z, δ) ∈ Cw ×Z ×A× B



w+ ∈ R(w)

χ+
i = χi+1, i = 1, . . . ,M − 1

χ+
M = α

ξ+
i = ξi+1, i = 1, . . . ,M − 1

ξ+
M = β

(w, z, δ) ∈ Cw ×Z ×A× B

(4.32)

For (r,N) ∈ (R+)2, we let Er,Nradt be the set for solution pairs of (4.32) that satisfy

the reverse average dwell-time condition (A.3). Then the following result holds:

Proposition 4.3. With Hw given by (4.1)-(4.2) and Jw by (4.27), suppose that As-
sumption 4.1 holds and pick arbitrarily (r,N) ∈ (R∗+)2. Then there exist κ2 ∈ K and
linear σ, σ̄, ρ ∈ K∞ such that identifier (4.30)-(4.31) satisfies the identifier require-
ment relative to the identification problem (Hw, Jw) with restriction Er,Nradt and with
any κ1 ∈ K.

Proof. The jump equation of the identifier (4.30) can be written in the compact

form as

z+ = Az +B

(
α

β

)
(4.33)

where A and B are suitably defined. Consider the following lemma, that is

proved at the end of this proof.

Lemma 4.1. Let A ∈ Rn, n ∈ N, be Schur. Then for any Q ∈ Rn symmetric and
positive definite there exists µ ∈ (0, 1) and an unique P ∈ Rn symmetric and positive
definite such that

ATPA− µP = −Q. (4.34)

Pick Q = QT > 0 arbitrarily and let µ ∈ (0, 1) and P = P T > 0 be produced

by Lemma 4.1, with A the same as in (4.33). Then we endow Z with the norm

|z|P :=
√
zTPz.
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For any w ∈ SHw and let z? be given by z? := (χ?, ξ?) with

χ?(t, j) := ωM(α?(w))(t, j), ξ?(t, j) := ωM(β?(w))(t, j).

Point 1 of the identifier requirement then follows directly by (4.29). Moreover,

we observer that z? satisfies

z?+ = Az? +B

(
α?(w)

β?(w)

)

with A the same as in (4.32). Pick (w, z, δ) ∈ SHcl and, with z? defined as above,

let z̃ := z − z?. Then as P > 0, there exist c and c̄ positive such that

c|z̃| ≤ |z̃|P ≤ c̄|z̃|. (4.35)

Moreover, for all (t, j) ∈ Γ(z̃) we have z̃+ = Az̃ + Bδ, so as, in view of (4.34), we

obtain

(|z̃|+P )2 = z̃TATPAz̃ + δTBPBδ + 2z̃TATPBδ

≤ µ|z̃|2P + |B|2|P ||δ|2 + |2z̃TATPBδ|.

With γ ∈ (µ, 1), pick

ε := c2(γ − µ).

Then in view of (4.35), the Young’s inequality gives

|2z̃TATPBδ| ≤ ε|z̃|2 +
|ATPB|2

ε
|δ|2 ≤ (γ − µ)|z̃|2P +

|ATPB|
c2(γ − µ)

|δ|2,

so as for some constant c1 > 0, we obtain

|z̃|+P ≤ γ|z̃|P + c1|δ|. (4.36)

On the other hand, for (t, j) ∈ I(z̃), we have

D+|z̃|P = 0,
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and the point 2 of the requirement for the solution pairs inside Er,NPE for some

fixed (r,N) ∈ (R∗+)2 follows from the same arguments used in Proposition 4.1.

Finally, the point 3.a of the identifier requirement holds for any κ1 by the fact

that θ̇ = 0 in I(w, z, δ), while point 3.b is a consequence of the continuity of G. �

Proof of Lemma 4.1. Let λ̄A be the eigenvalue of A with largest modulus. As A

is Schur, |λ̄A| ∈ [0, 1). Pick

µ ∈
(
|λ̄A|2, 1

)
and let F := A/

√
µ. Then

σ(F ) =
1
√
µ
σ(A)

and, hence, for all λF ∈ σ(F ), we have

|λ| ≤ |λ̄A|/
√
µ < 1,

i.e. F is Schur.

Pick arbitrarily Q ∈ Rn×n such that Q = QT > 0 and let Q0 := Qµ. As F is

Schur, there exists unique P = P T > 0 such that the Lyapunov equation

F TPF − P = −Q0

holds. Thus

ATPA− µP = µ
(
F TPF − µP

)
= −µQ0 = −Q

which is the claim. �

4.5 Wavelet Identifiers for Multiresolution Identifi-

cation

In this section we construct an identifier that performs a wavelet expansion of

the prediction model. The identifier is composed of a cascade of an arbitrary

number of least squares identifiers of the kind presented in Section 4.2. The cas-

cade structure of the identifier reflects the multiresolution nature of the wavelet

expansion: the first least squares stage captures the best representation at the

starting scale. All the other stages encode the information corresponding to
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the “detail” that is missing to the precedent stage to obtain a representation

of the prediction model at a finer scale. We suppose the reader to be familiar

with the wavelet theory. An essential review of the main tools used in this sec-

tion is reported in Appendix B. For the basic concepts on wavelets, Riesz bases

and biorthogonality we remind to (Daubechies, 1992; Walnut, 2002; Strang and

Nguyen, 1996; Christensen, 2008). For convenience, we consider again the single

variable case (i.e. β?(w) ∈ B = R in (4.2)), though we recall that an extension to

multivariable cases can be obtained by the composition of multiple single vari-

able identifiers. In the following we also let in (4.2) A = Rm, with m ∈ N arbi-

trary.

To support the subsequent construction, we assume the existence of a (vir-

tual) “true” model2 φ ∈ L2(Rm) relating the signals α?(w) and β?(w), i.e. we

suppose we can write β?(w) = φ(α?(w)). As the functions α? and β? are locally

bounded, Assumption 4.1 justifies restricting φ to the set Cc(Rm) of compactly

supported continuous functions Rm → R inside L2(Rm). As a first step, we fix

a GMRA (Vi)i associated to compactly supported scaling function Υ and wavelet

functions Ψh, h = 1, . . . , 2m − 1 (see Appendix B for details on the notation) and

we choose a “starting scale” i0 ∈ Z. In the usual interpretation, the orthogonal
projection Pi0φ of φ onto Vi0 represents the approximation of φ at scale i0. In

this construction i0 is the largest scale and, hence, Pi0φ represents the coarsest
attainable approximation of φ. According to (B.11), we can expand Pi0φ as

Pi0φ =
∑

k∈Hi0

ai0,kΥi0,k (4.37)

for some ai0,k ∈ R and where Hi0 ⊂ Zm is a finite (φ is compactly supported)

set such that3 suppφ ⊂ ∪k∈Hi0
supp Υi0,k and supp Υi0,k ∩ suppφ = ∅ whenever

k /∈ Hi0 . The coefficients ai0,k are, however, not known and in general they cannot

be computed as they would require the computation of the scalar product of φ

with the dual scaling function Υ̃i,k. Nevertheless, equation (4.37) is recognized

to be a linear regression fitting into the least squares framework introduced in

Section 4.2. As a consequence, a first least squares identifier of the form (4.12)-

(4.13), denoted by z0, can be used to find the best guess of the coefficients ai0,k.

2We stress though that φ needs not to actually exists and it is only needed to guide the iden-
tifier construction.

3supp f denotes the support of a function f .
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In constructing z0, we consider the symbolic relation

β? =
∑

k∈Hi0

ai0,kΥi0,k(α?),

that suggests to choose in (4.10) the regressor σ0 := col (Υi0,k : k ∈ Hi0) and to

design the identifier’s functions (to which we append the subscript 0 to distin-

guish from the successive stages) accordingly. Consistently with the framework

of Section 4.1, the identifier z0 works on the perturbed inputs

α0 := α? + δα, β0 := β? + δβ, (4.38)

with δ = (δα, δβ) an unmodeled disturbance. With d0 := |Hi0|, we write the

dynamics of z0 in the compact form

H0 :

{
ż0 = 0

z+
0 = F0(z0, α0, β0)

(4.39)

with state space Z0 := Rd0×d0 × Rd0 , flow and jump sets given by Z0 × Rm × R
and with output

θ0 = h0(z0),

where F0(z0, α0, β0) := µ0z0 + (σ0(α0)σ0(α0)T , σ0(α0)β0) and h0 defined according

to (4.13), with µ0 ∈ (0, 1) and Ω0 ∈ Rd0×d0 suitably chosen. The parameter θ0

produced by z0 corresponds thus to the best estimate of the coefficients ai0,k in

(4.37), and we can associate to z0 the prediction β̂i0 of β? given by

β̂i0 := Φi0(θ0, α0), with Φi0(θ0, ·) := θT0 σ0(·) ∈ Vi0

to which we refer as the best prediction at scale i0. The error of the prediction β̂i0 ,

called “prediction error at scale i0”, is defined as

ε̂i0 := β − β̂i0 ,

which can be seen as the best guess of the output εi0 of the “scale-i0 error model”

Ei0 := φ− Pi0φ. (4.40)
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To increase the resolution of the representation, we add a second least squares

stage, that we call z1, to obtain an approximation of φ at the finer scale i0− 1. We

proceed by considering the orthogonal projection of the scale-i0 error model Ei0

onto the subspace Wi0 = span{Ψh
i0,k

: k ∈ Zm, h = 1, . . . , 2m−1}, obtaining the

detail Qi0φ = Pi0−1φ − Pi0φ that is missing from Pi0φ to have the approximation

Pi0−1φ of φ at the finer scale i0 − 1. According to (B.11), we can write

Qi0−1φ =
2m−1∑
h=1

∑
k∈Ki0

bhi0,kΨh
i0,k

(4.41)

for some bhi0,k ∈ R and with Ki0 ⊂ Zm a finite set such that suppφ ⊂ ∪2m−1
h=1 ∪k∈Ki0

supp Ψh
i0,k

and supp Ψh
i0,k
∩ suppφ = ∅ for all k /∈ Ki0 and all h = 1, . . . , 2m − 1.

The design of the second least-square stage z1 is done by looking at (4.41) as a

linear regression of the form (4.10), with regressor σ1 := col(Ψh
`,k : k ∈ Ki0 , h =

1, . . . , 2m−1). As the model (4.41) relates the input α? to the error attained by the

approximation Pi0φ at scale i0, instead of (4.38) the identifier z1 processes the

inputs

α1 := α? + δα, β1 := εi0 + δβ = β? − β̂i0 + δβ,

with δ = (δα, δβ) the same as in (4.38) The identifier z1 is defined on the space

Z1 := Rd1×d1 × Rd1 , with d1 := 2m−1|Ki0 |, and its dynamics is described by

H1 :

{
ż1 = 0

z+
1 = F1(z0, z1, α1, β1)

with flow and jump set given by Z0×Z1×Rm×R, with state z1 ∈ Z1 and output

θ1 = h1(z1),

where, according to (4.12), F1(z0, z1, α1, β1) := µ1z1 + (σ1(α1)σ1(α1)T , σ1(α1)β1)

and h1 is defined as in (4.13), with µ1 ∈ (0, 1) and Ω1 ∈ Rd1×d1 suitably chosen.

With θi0−1 := col(θ0, θ1), we associate to the cascade of z0 and z1 the scale-
(i0 − 1) prediction model

Φi0−1(θi0−1, ·) := θT0 σ0(·) + θT1 σ1(·) ∈ Vi0−1, (4.42)
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which is composed of two contributions: θT0 σ0(α) gives as output β̂i0 , that is the

best guess of the output of the scale-i0 model Pi0φ, while θT1 σ1(α) gives as output

the best guess ε̂i0 of the error ε̂i0 attained by Pi0φ. In other words, z0 projects

the “real model” φ onto Vi0 , while z1 projects the error φ(·) − Φi0(θ0, ·) (which

is itself an approximation of Ei0 in (4.40)) onto Wi0 . As a consequence of the

(bi)orthogonal properties of the subspaces Vi0 and Wi0 , the prediction of (4.42),

that is

β̂i0−1 := β̂i0 + ε̂i0 ,

also represents the best guess of the output of the scale-(i0 − 1) model Pi0−1φ.

This construction procedure generalizes to arbitrary scale i0 − `, with ` ∈ N.

Once the identifier z` has been fixed to provide the best prediction β̂i0−` at scale

i0 − ` given by

β̂i0−` := Φi0−`(θ
i0−`, α),

with

Φi0−`(θ
i0−`, ·) :=

∑̀
i=0

θTi σi(·) ∈ Vi0−`

and with θi0−` := col(θ0, . . . , θ`), if more resolution is needed, a further least

squares stage z`+1 can be added as above: we consider the scale-(i0 − `) error

model

Ei0−` := φ− Pi0−`φ,

where Pi0−`φ is approximated at best by the prediction model Φi0−`(θ
i0−`, ·), and

we project Ei0−` onto the detail space Wi0−`, which coincides with span of the

scale-(i0 − `) wavelets Ψh
i0−`,k. In this way we obtain the detail Qi0−`φ at scale

i0 − ` that is the information missing to obtain a finer approximation Pi0−`−1φ at

scale i0 − `− 1. The expansion (4.41) generalizes to scale i0 − ` as follows

Qi0−`φ =
2m−1∑
h=1

∑
k∈Ki0−`

bhi0−`,kΨh
i0−`,k, (4.43)

with Ki0−` ⊂ Zm a finite set such that suppφ ⊂ ∪2m−1
h=1 ∪k∈Ki0−`

supp Ψh
i0−`,k and

suppφ ∩ sup Ψh
i0−`,k = ∅ for all k /∈ Ki0−` and all h = 1, . . . , 2m − 1. As (4.43)

is recognized to be a linear regression of the form (4.10), with regressor σ`+1 :=

col(Ψh
i0−`,k : k ∈ Ki0−`), we define z`+1 as an identifier of the form (4.12)-(4.13)
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z0
α

β

z1

β − β̂i0

β − β̂i0−1

· · ·
zni

α

β − βi+1

β̂i

Figure 4.1: Block-diagram of the cascade structure of the scale-i wavelet identifier.

working on the inputs

α`+1 := α? + δα, β`+1 := β? − β̂i0−` + δβ, (4.44)

with δ = (δα, δβ) the same as in (4.38), and defined on the state space Z`+1 :=

Rd`+1×d`+1 × Rd`+1 , being d`+1 := 2m−1|Ki0−`|. More precisely, by letting z`+1 :=

col(z0, . . . , z`+1), we define z`+1 as

H`+1 :

{
ż`+1 = 0

z+
`+1 = F`+1(z`+1, α`+1, β`+1)

with flow and jump set given by Z0 × · · · × Z`+1 × Rm × R and output

θ`+1 = h`+1(z`+1),

being F`+1(z`+1, α`+1, β`+1) := µ`+1z`+1 + (σ`+1(α`+1)σ`+1(α`+1)T , σ`+1(α`+1)β`+1),

with µ`+1 ∈ (0, 1) and Ω`+1 ∈ Rd`+1×d`+1 appropriately chosen.

In this way we can add an arbitrarily large number of least squares stages,

obtaining an identifier that is able to approximate φ at arbitrarily fine scale. By

adding ni ∈ N stages to the initial scale-i0 identifier z0 we obtain a scale-i (i =

i0 − ni) identifier having the form:

Hi :

{
ż` = 0

z+
` = F`(z`, α`, β`)

, ` = 0, . . . , ni (4.45)

with state zni := (z0, . . . , zni) defined on the state space Z := Z0 × · · · × Zni , with

flow and jump sets given by Z × Rm × R, and output

θi := col
(
h1(z1), . . . , hni(zni)

)
. (4.46)

Figure 4.1 depicts a block-diagram representation of the cascade structure of the
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identifier (4.45). We associate to Hi the corresponding scale-i prediction model

Φi(θ
i, ·) :=

ni∑
`=0

θT` σ`(·) ∈ Vi. (4.47)

We denote by Hcl
i the overall system obtained by the interconnection of the

exosystem (4.1)-(4.2) and the identifier (4.45), with α = α?(w) + δα and β =

β?(w) + δβ. In the same way as in Section 4.2, with (r,N) ∈ (R+)2 arbitrarily

chosen, we define the restriction Er,Nradt on Hcl to be the set of solution pairs in

SHcl that satisfy the reverse average dwell-time condition (A.3) with parameters

(r,N). Moreover, for arbitrary (J, ε) ∈ N × R∗+, we let EJ,εPE ⊂ SHcli be the set of

solution pairs of Hcl
i such that the inputs α?(w) and α?(w) + δα are (J, ε)-PE for

each stage z`, ` = 0, . . . , ni. Then, the following holds:

Lemma 4.2. with Hw given by (4.1), (4.2), suppose that Assumption 4.1 holds and
pick (r,N) ∈ (R+)2 and (J, ε) ∈ N × R∗+ arbitrarily. Then for each i ≤ i0 and each
w ∈ SHw(W ) there exists unique z?ni : R → Z such that the identifier (4.45) fulfills
the point 2 of the identifier requirement with restriction EJ,εPE ∩ E

r,N
radt, with σ, σ̄ linear

and ρ locally Lipschitz.

The proof of Lemma 4.2 follows from quite standard inductive arguments

used to study cascade interconnections of stable systems and it is thus omitted.

The main observation behind the proof is that if the lemma holds for a given

` ∈ {0, . . . , ni − 1}, then in view of (4.44) the stage z`+1 works on the inputs

α`+1 = α? + δα, β`+1 = β?`+1 + δ`+1
β

having defined

β?`+1 := β? − Φi0−`(θ
?i0−`, α?)

δ`β := δβ + Φi0−`(θ
?i0−`, α?)− Φi0−`(θ

i0−`, α? + δα),

with θ?i0−` := col(h1(z?1), . . . , h`(z
?
` )). From Proposition 4.1 it follows that, for

each solution pair in (w, zni , δ) ∈ E
(J,ε)
PE and all (t, j) ∈ dom(w, z`, δ)|≥J+tJ and

` = 1, . . . , ni − 1 we can bound δ`β as a function of |δ| and |z`−1 − z?`−1| only. Thus,

the overall cascade is a series interconnection of stable systems and the lemma is

proved by induction. Lemma 4.2 is used to identify, for each w ∈ SHw , a steady
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state trajectory z?` for each stage ` = 0, . . . , ni. From Proposition 4.1 it follows

that the system H0, given by (4.45)-(4.46) with i = 0, also satisfies the point 1 of

the identifier requirement relatively to the cost functional

J i0w (θ0)(t, j) =

j∑
i=0

µj−i|ε?i0(w(ti, i), θ0)|2 + θT0 Ω0θ0

ε?i0(w, θ0) := β?(w)− Φi0(θ0, α
?(w)).

(4.48)

Let θ?0 := h0(z?). Then from Proposition 4.1 also follows that H1 (obtained by

letting i = 1 in (4.45)-(4.46)) satisfies the point 1 of the identifier requirement

relatively to the cost functional

J i0−1
w (θi0−1)(t, j) = J i0w (θ0)(t, j) +

j∑
i=0

µj−i|ε?i0−1(w(ti, i), θ
?
0, θ1)|2 + θT1 Ω1θ1

ε?i0−1(w, θ0, θ1) := ε?i0(w, θ0)− θT1 φ1(α?(w)).

In general, for ` = 0, . . . , ni, we can define the recursion

J i0−`w (θi0−`)(t, j) = J i0−`+1
w (θi0−`+1)(t, j)

+

j∑
ν=0

µj−ν` |ε
?
i0−`(w(tν , ν), (θ?0, . . . , θ

?
`−1, θ`))|2 + θT` Ω`θ`

(4.49)

with θ?k := h(z?k) for k = 0, . . . , `− 1, with

ε?i0−`(w, θ0, . . . , θ`) :=

i0−`+1∑
k=i0

εk(w, θ
k)− θT` φ`(α?(w))

and originating from J i0w (i.e. with ` = 0) that is given by (4.48). By inductive

arguments, and in view of Lemma 4.2, it is thus possible to conclude the follow-

ing:

Proposition 4.4. Pick (r,N) ∈ (R+)2, (J, ε) ∈ N × R∗+ and i ∈ Z≤i0 arbitrarily
and, with Hw given by (4.1), (4.2), suppose that Assumption 4.1 holds and define
J iw by letting ` = ni in (4.49). Then the identifier (4.45)-(4.46) fulfills the identifier
requirement relatively to the identification problem (Hw, J

i
w) with restriction EJ,εPE ∩

Er,Nradt with any κ1, with σ, σ̄ and κ linear and ρ locally Lipschitz.
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Remark 4.6. It is worth noting that the same approximation attainable by the

identifier (4.45)-(4.46) at scale i could be in principle obtained by a single least

squares stage of the form (4.39) working on the linear regression (4.37) simply

by letting i0 = i (i.e. by directly starting from a finer scale). Nevertheless, the

cascade identifier (4.45) permits to add or remove detail stages without affecting

the state of the coarser stages (if not indirectly by inducing a transitory in the

system), and to separate the “learning dynamics” of each successive detail, that

are parametrized by µ`. Changing resolution when a single stage is used means

instead to perform a completely new experiment, thus directly inducing a new

transitory in the parameter estimation. We also note that we can pass from the

coefficients of the cascade identifier (4.45) to those of the corresponding single

stage identifier and vice-versa by means of the forward and inverse discrete wavelet
transforms (for further detail see e.g. (Strang and Nguyen, 1996; Walnut, 2002)).

4

Remark 4.7. We also observe that there is a “natural” ordering in the choice of

the forgetting factors µ`, ` = 0, . . . , ni, that consists of taking µ` ≥ µ`+1. In fact,

coarser scales (i.e. lower `) are usually associated to rougher, yet essential, traits;

finer scales correspond instead to more “volatile” details. Hence, the forgetting

factors µ` of coarser scales are naturally chosen larger than those at finer scales,

as the learning of fundamental rough traits, associated to long-term memory,

is slower to acquire and forget than details, associated instead to a short-term

memory. 4
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5
Adaptive High-Gain Observers via

System Identification Techniques

In this chapter we consider the problem of adaptive observers design by ap-

proaching adaptation as a system identification problem. We aim to de-

fine a co-design strategy for the observers and the identification algorithms

yielding adaptive solutions that make sense in a broad data-driven context and

that can be used for uncertainties more general than the usual parametric ones

treated in canonical adaptive control frameworks. We seek a design in which

adaptation can be cast and solved by different identification techniques, rather

than by ad hoc algorithms, and in which performances can be evaluated in a

system identification sense, without the conceptual need of a “true model” or a

“true parameter”. The attention for adaptive observation is strongly motivated

by the fact that, in a given time-scale and in given coordinates, output regula-

tion for nonlinear system is essentially an observation problem. Thus results

achieved in the simpler context of observation are then easily portable to a reg-

ulation context.
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The problem of designing adaptive observers for uncertain nonlinear sys-

tems boasts decades of active research. Most contributions developed in the 90s

and early 2000s have focused on single-input-single-output systems possessing

“canonical” forms, with the uncertainty that is concentrated into a set of finite

parameters of known dimension entering linearly in the system equations (see

e.g. (Bastin and Gevers, 1988; Marino and Tomei, 1992, 1995; Marino et al.,

2001)). Related extensions to multivariable systems and more general forms ap-

peared in (Besançon, 2000; Zhang, 2002). Adaptive observers designs for sys-

tems presenting a nonlinear parametrization in the uncertain parameters started

to appear only quite recently (see (Farza et al., 2009; Tyukin et al., 2013; Afri

et al., 2017; Besançon and Ţiclea, 2017) and the references therein). In partic-

ular, in (Farza et al., 2009) a general class of high-gain observers (Gauthier and

Kupka, 2001) was enriched with an adaptation mechanism of the kind of those

proposed in (Zhang, 2002); in (Tyukin et al., 2013), a fairly more general class

of nonlinear parametrization was considered for uniformly observable systems;

in (Afri et al., 2017) the theory of nonlinear Luenberger observers (Andrieu and

Praly, 2006) was applied to estimate the state and parameters of uncertain lin-

ear systems and, in (Besançon and Ţiclea, 2017), more general system exhibiting

nonlinearities both in the states and parameters are dealt with by using the same

arguments of (Besançon and Ţiclea, 2007) in dealing with non-uniformly observ-

able systems.

All the aforementioned approaches are strongly based on a classical “adap-

tive control” perspective, in which all the uncertainty is concentrated in a finite

set of parameters with known dimension, whose knowledge would result in the

knowledge of the true system to be observed. In line with the certainty equiv-

alence principle, the uncertainty is usually dealt with by using an estimate of

the true uncertain parameter, whose adaptation is carried out by ad hoc adap-

tation laws induced by a Lyapunov analysis or by immersion arguments. When

linear systems are considered, parametric uncertainties reflect into variations of

the plant’s matrices in the usual Euclidean topology. The interest on this kind

of perturbations is further motivated by the fact that such Euclidean topology is

equivalent to the (weak) C1 topology (Hirsch, 1994) in the space of linear maps.

When nonlinear systems are considered, instead, restricting the focus to para-

metric uncertainties is conceptually a strong limitation (Bin et al., 2018a) yield-

ing a quite non-standard topology in the space of the functions that define the
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plant.

Here we approach the problem of adaptive observer design under a different

perspective: instead of assuming that the state to be estimated is generated by

a process with known parametrization and unknown parameters, i.e. that there

is a true parameter to be found, we look at adaptation of the system’s model as a

system identification problem, in which a model relating the input-output signals

is inferred by the observations and adapted by using well known system iden-

tification techniques (Ljung, 1999; Ljung and Söderström, 1985; Sjöberg et al.,

1995). The design of the observer follows a canonical construction, and it is de-

signed so that the asymptotic observation error results to be directly related to

the prediction error of the identifier used along the observed system’s trajectories.

We specifically consider the observer design problem for continuous-time

nonlinear systems of the form1

ẋi = xi+1 i = 1, . . . , n− 1

ẋn = φ(x)

y = x1

(5.1)

with state x ∈ Rn, n ∈ N, output y ∈ R and with φ : Rn → R an unknown func-

tion. Our goal is to reconstruct at best the state x of (5.1) by processing the output

y and without the full knowledge of φ. For simplicity of exposition, we limit to

single-output systems in the simple form (5.1). Nevertheless, we notice that the

same arguments extend straightforwardly to more complex high-gain construc-

tions such as (Astolfi and Marconi, 2015; Astolfi et al., 2018) and to multiple out-

puts. We construct a systematic framework in which identification schemes and

high-gain observers (see e.g. (Gauthier and Kupka, 2001; Hammouri, 2007)) can

be co-designed to solve general instances of the adaptive observation problem

presented above. The chapter concludes with an example (Section 5.3), showing

how the different parts of the observer can be tuned and how the wavelet mul-

tiresolution approach developed in Section 4.5 can be effective in approximating

functions with unknown structure.

1We recall that any n-dimensional system that is uniformly observable in the sense of (Ham-
mouri, 2007, Thm. 2.2.1) is locally diffeomorphic to (5.1).
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5.1 The Observer’s Structure

We construct an adaptive observer for the system (5.1) by joining together a high-

gain observer and an identifier that fulfills the identifier requirement detailed in

Chapter 4. As a standing assumption on (5.1), we suppose the following:

Assumption 5.1. The initial conditions of (5.1) range in a compact invariant set
X ⊂ Rm and φ is C2 on an open set containing X .

We consider here the following class of identifiers{
ż = F (z, α, β) (x, α, β) ∈ Z × Rn × R
z+ = G(z, α, β) (z, α, β) ∈ Z × Rn × R

(5.2)

with Z an Euclidean space and output θ ∈ Rd given by

θ = h(z), (5.3)

that is obtained from (4.4)-(4.5) by letting A = Rn, B = R and F and G be

single valued maps. To (5.2)-(5.3) we associate a prediction model Φ(θ, ·) that

we assume to be C2. If φ were perfectly known, a high-gain observer would be

sufficient to have an asymptotic exact estimate of x. The role of the identifier is

to adapt a guess of φ on the basis of the available information. The relation

ẋn = φ(x)

in (5.1) is seen as a prediction error model, where x plays the role of the regressor,

φ of the “true model” and ẋn of its output. The identifier (5.2)-(5.3) is designed

by assuming to have available some measurements of the quantities α? = x and

β? = ẋn corrupted by an additive disturbance δ. In terms of Section 4.1, the

observed system (5.1) is seen as an exosystem of the form (4.1), with state w :=

x ∈ Rn =:W and output

(α?(w), β?(w)) := (x, φ(x)) = (x, ẋn). (5.4)

The prediction error (4.7) assumes the expression

ε?(w, θ) = φ(x)− Φ(θ, x). (5.5)
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The a priori knowledge of the possible class of functions to which φ and x belong

to may considerably help in finding an appropriate model setM and an appro-

priate parametrization Φ(θ, ·) of the elements of M. This qualitative a-priori

information also guides the designer in the definition of the cost functional (4.8)

and on the particular choice of the identification algorithm. For instance, if φ

is known to be linear, then a model set composed of prediction models of the

kind θTx, with θ ∈ Rd and d = n, and a least squares algorithm of the kind

of those proposed in sections 4.2 of (4.2) are natural choices. If very few infor-

mation is known about φ, an universal approximator approach of the kind of the

wavelet identifier proposed in Section 4.5 can be used. In any case, from now

on we assume that the identifier (5.2)-(5.3), the prediction model Φ(θ, ·) and a

cost functional Jw of the form (4.8) are fixed, and we denote byH(w,z) the system

composed by the exosystem Hw given by (5.1) and the identifier (5.2)-(5.3) ob-

tained by letting (α, β) = (α?(w), β?(w)) + δ, with (α?, β?) given by (5.4) and δ a

hybrid input with values in Rn × R. Then we assume the following:

Assumption 5.2. There exist non-empty E0 ⊂ SH(w,z)
, ν > 0, locally Lipschitz

κ1, κ2, ρ ∈ K and locally linear2 functions σ and σ̄ such that the identifier (5.2)-(5.3)

satisfies the identifier requirement relatively to the identification problem (Hw, Jw)

with restriction E0.

Assumption 5.3. With X the set for which Assumption 5.1 holds, there exist T > 0

and a compact set Z ⊂ Z such that, for each solution x of (5.1) originating in X ,
the corresponding trajectory z? for which the identifier requirement is satisfied fulfils
z?(t, j) ∈ Z for all (t, j) ∈ dom z?|≥T .

The observer subsystem is a hybrid version of a classical high-gain observer,

extended by one state. It is defined over the state space Rn+1 and its equations

read as follows:{
˙̂xi = x̂i+1 + cig

i(y − x̂1), i = 1, . . . , n
˙̂xn+1 = ψ(z, x̂) + cn+1g

n+1(y − x̂1){
x̂+
i = x̂i, i = 1, . . . , n

x̂+
n+1 = `(z, x̂)

with flow and jump set given by Rn+1 × Z . The coefficients ci’s are chosen so

2Namely that can be taken linear on each compact set.
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that the roots of λn+1 + cn+1λ
n + · · · + c2λ + c1 have negative real part and g > 0

is a control parameter to be fixed later. The intuitive reason to use an observer

extended of one state is that in this way x̂ gives a proxy for the data (x, ẋn) that

are needed by the identifier; an observer of order n could not produce a proxy

variable for ẋn.

The functions ψ and ` are defined as follows: let Φ′,Φ+ : Z×Rn×R be defined

as

Φ′(z, α, β) :=
∂Φ(h(z), α)

∂α
A

(
α

β

)
+
∂Φ(h(z), α)

∂z
F (z, α, β)

Φ+(z, α, β) = Φ
(
h(G(z, α, β)), α

)
where A ∈ Rn×(n+1) is the “shift matrix”, defined by letting Ai,i+1 = 1 for i =

1, . . . , n and zero otherwise. With X̂ ⊂ Rn+1 and Ẑ ⊂ Z arbitrary compact

subsets such that the sets X and Z defined in assumptions 5.1 and 5.3 satisfy

X ⊂ X̂ and Z ⊂ Ẑ, we define the functions Φ′s and Φ+
s to be any bounded

functions that agree respectively with Φ′ and Φ+ on Ẑ × X̂ . In particular, for

? ∈ {′,+} we ask for the existence of M > 0 such that

|Φ?
s(ν)| ≤M ν ∈ Z × Rn × R. (5.6)

The functions ψ and ` are thus chosen as

ψ(z, x̂) := Φ′s(z, x̂[1,n], x̂n+1),

`(z, x̂) := Φ+
s (z, x̂[1,n], x̂n+1),

being x̂[1,n] := col(x̂1, . . . , x̂n).

We complete the design by letting in (5.2)

α := x̂[1,n], β := x̂n+1,
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obtaining the overall system

ẋi = xi+1, i = 1, . . . , n− 1

ẋn = φ(x)
˙̂xi = x̂i+1 + cig

i(x1 − x̂1), i = 1, . . . , n
˙̂xn+1 = ψ(z, x̂) + cn+1g

n+1(x1 − x̂1)

ż = F (z, x̂[1,n], x̂n+1)
x+ = x

x̂+
i = x̂i, i = 1, . . . , n

x̂+
n+1 = `(z, x̂)

z+ = G(z, x̂[1,n], x̂n+1)

(5.7)

with flow and jump set given by Rn+1×Rn+1×Z . For simplicity, in the following

we let x := (x, x̂, z) and X := Rn+1 × Rn+1 × Z . With (λ,N0) ∈ R+ × N, we let

Eλ,N0

adt be the set of solutions of (5.7) that satisfy the average dwell-time condition

(A.2) with parameters (λ,N0).

5.2 Asymptotic Properties

According to A5.2, to each solution pair (x, z, δ) ∈ E0 is associated an optimal

trajectory z? for the identifier z such that the corresponding output θ? minimizes

pointwise Jw. In the overall system (5.7) the identifier can be seen as fed by the

ideal input (x, φ(x)) plus a disturbance given by δ = (x̂[1,n]−x, x̂n+1−φ(x)). Thus,

for each solution x of the overall system (5.7) such that (x, z, δ) ∈ E0, the quantity

ε?(x(t, j), θ?(t, j)) = φ(x(t, j))− Φ(θ?(t, j), x(t, j)), (5.8)

derived from (5.5), is well defined and corresponds to the optimal prediction

error of the identifier when acting on the unperturbed input x and when the

state estimate mismatch δ is zero. We let E1 be the set of solutions of (5.7) such

that, with δ = (x̂[1,n] − x, x̂n+1 − φ(x)), (x, z, δ) ∈ E0. Then the following result

holds:

Proposition 5.1. Under assumptions 5.1, 5.2 and 5.3 there exist g? > 0, λ?(g) > 0

and for each N0 ∈ N∗, a c > 0, such that for every g > g? and every λ ∈ (0, λ?(g)), all
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the solutions in E1 ∩ Eλ,N0

adt are bounded and satisfy

lim sup |x− x̂[1,n]| ≤ c lim sup |ε?(x, θ?)|.

Proposition 5.1 states that if the control parameter g is suitably chosen, then

for any solution of (5.7) along which the identifier satisfies the identifier require-

ment and the flows are persistent, the asymptotic estimation error is linearly

bounded by the prediction capabilities of the identifier evaluated along the ob-
served system’s trajectories. We observe how the ideas of the theory of dual con-

trol (Feldbaum, 1960) emerge under this simple design: the control parameter g

of the high-gain observer is chosen large enough to make sure that, despite the

initial error in the approximation of φ, the state estimate x̂[1,n] gets close enough

to the actual plant’s state x, allowing the identifier to work on data (α, β) that

are close enough to the ideal quantities (α?, β?). This in turn allows the identifier

to identify the function φ at meaningful points, so as the identified dynamics

reflects the actual underlying movements of the real plant. The strong stability

and regularity properties of the identifier requirements make sure that small es-

timation errors of the state reflect into small differences in the identified model

and the loop is closed by further asking the control parameter g to induce a con-

traction in of the nested relationship linking the identifier performances and the

quality of the state estimate.

Proof of Proposition 5.1. Boundedness of (x̂, z) for all the solutions in E1 fol-

lows by standard high-gain arguments in view of the boundedness property (5.6)

of ψ and ` and because of A5.3 and the stability property (point 2) of the iden-

tifier requirement. In particular the fact that ψ and ` are bounded allows us to

conclude that the trajectories of x̂ are uniformly ultimately bounded, i.e. there

exist a compact set X̂ ′ ⊂ Rn+1 containing X (with X the set of A5.1) and, for

each compact set X̂0 ⊂ Rn+1, a T > 0, such that every solution of the overall

system (5.7) with g > 0 and originating in X × X̂0×Z satisfies x̂(t, j) ∈ X̂ ′ for all

(t, j) ∈ dom x̂|≥T . On the other hand, we can see the identifier z as driven by the

ideal input (α?, β?) = (x, φ(x)) perturbed by the disturbance

δ =

(
x̂[1,n] − x

x̂n+1 − φ(x)

)
. (5.9)
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Then Assumption 5.2 ensures the existence, for every solution in E1, of a z? such

that the identifier requirement holds. As δ is eventually bounded, this and As-

sumption 5.3 imply the existence of compact sets X̃ ′ ⊂ Rn+1 and Z ′, Z̃ ′ ⊂ Z such

that

∀x ∈E1, ∃T > 0 s.t. ∀t+ j ≥ T

x̂(t, j) ∈ X̂ ′, δ(t, j) ∈ X̃ ′, z(t, j) ∈ Z ′, z(t, j)− z?(t, j) ∈ Z̃ ′
(5.10)

with δ given by (5.9) and where T can be taken the same for all x ∈ E1 that

originates in the same compact set.

Pick x ∈ E1, let θ? = h(z?) and change of variables as

χ̃i := g1−i(x̂i − xi), i = 1, . . . , n

χ̃n+1 := g−n(x̂n+1 − Φ(θ?, x))

z̃ := z − z?.
(5.11)

Let us denote x̃ := (x, χ̃, z̃). For i ∈ {1, . . . , n− 1} we have

˙̃χi = g(χ̃i+1 + ciχ̃1).

For i = n, adding and subtracting g1−nΦ(θ?, x) yields

˙̃χn = g1−n(x̂n+1 + cng
nχ̃1 − φ(x)

)
= gχ̃n+1 + cigχ̃1 − g1−nε?(x, θ?).

with ε? given by (5.8). Finally, for i = n+ 1, we obtain

˙̃χn+1 = gcn+1χ̃1 + g−n
(
ψ(z, x̂)− Φ′(z?, x, φ(x))

)
.

We observe that the new variables fulfill the following bounds

|x̂[1,n] − x| ≤ gn−1|χ̃|

|x̂n+1 − φ(x)| = |gnχ̃n+1 + Φ(θ?, x)− φ(x)|

≤ gn|χ̃|+ |ε?(x, θ?)|.

(5.12)

Furthermore, we can assume without loss of generality that the number T for

which (5.10) holds is the same for which the point 3 of the identifier requirement
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holds. Then, as κ1 is locally Lipschitz and z̃ ∈ Z̃ ′ in I(x̃)|≥T , the boundedness

(5.6) of ψ implies the existence of L > 0 such that, for all (t, j) ∈ I(x̃)|≥T

|ψ(z, x̂)− Φ′(z?, x, φ(x))|

= |Φ′s(z, x̂[1,n], x̂n+1)− Φ′(z?, x, φ(x))|

≤ L
(
|z − z?|+ |x̂[1,n] − x|+ |x̂n+1 − φ(x)|

)
≤ L

(
|z̃|+ gn|χ̃|+ |ε?(x, θ?)|

)
.

(5.13)

During jumps, instead, we have χ̃+
i = χ̃i for i = 1, . . . , n, while for i = n+ 1

χ̃+
n+1 = g−n

(
`(z, x̂)− Φ+(z, x, φ(x))

)
.

As κ2 is locally Lipschitz, the same arguments used above show that, for some

L > 0 that we take without loss of generality equal to those used in (5.13) (oth-

erwise change it with the maximum of the two), the following bound holds

|`(z, x̂)− Φ+(z, x, φ(x))| ≤ L
(
|z̃|+ |ε?(x, θ?)|

)
+ gnL|χ̃|. (5.14)

for all (t, j) ∈ Γ(x̃)|≥T .

We can thus write the dynamics of χ̃ using the following equations (for com-

pactness we omit the argument of ε?)

˙̃χ = gHχ̃+ g−nB(ψ(z, x̂)− Φ′(z?, φ(x))) +D(g)ε?

χ̃+ = Rχ̃+ g−nB(`(z, x̂)− Φ+(z, x, φ(x)))

with H a Hurwitz matrix (because of the choice of the coefficients ci), B :=

col(0, . . . , 0, 1) ∈ Rn+1, R := diag(In, 0), D(g) := col(0, . . . , g1−n, g−n) and with

the terms ψ(z, x̂)−Φ′(z?, φ(x)) and `(z, x̂)−Φ+(z, x, φ(x)) that satisfy the bounds

(5.13) and (5.14) in dom x̃|≥T . Consider the function

U(χ̃) :=
√
χ̃TPχ̃

where P = P T > 0 is the unique solution to the Lyapunov equation

HTP + PH = −I.
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Then there exists constants a1, a2 > 0 such that

a1|χ̃| ≤ U(χ̃) ≤ a2|χ̃|, |x− x̂[1,n]| ≤ gn−1|χ̃|. (5.15)

Furthermore, for any solution x ∈ E1 and all (t, j) ∈ I(x)

D+U(χ̃) =
1

2U(χ̃)

(
− g|χ̃|2 + 2g−nχ̃TPB(ψ(z, x̂)− Φ′(z?, φ(x))) + 2χ̃TPD(g)ε?

)
.

Using (5.13) and (5.15) yields, for all (t, j) ∈ I(x̃)|≥T ,

D+U(χ̃) ≤ (b2 − gb1)U(χ̃) + b2

(
g−n|z̃|+ g1−n|ε?|

)
,

with b1 := 1/(2a2) and b2 := L|P |
√

(2)/a1. Hence, in view of (5.15), choosing

g > g?1 := 2b1b2 yields

D+U(χ̃) ≤ −gb3U(χ̃) + b2

(
g−n|z̃|+ g1−n|ε?|

)
, (5.16)

with b3 := b1/2. On the other hand, using (5.14) and (5.15) yields

U(χ̃)+ := U(Rχ̃+ g−nB(`(z, x̂)− Φ+(z, x, φ(x))))

≤
√

2|P |
(
‖χ̃|+ g−n|`(z, x̂)− Φ+(z, x, φ(x))|

)
≤ b4U(χ̃) + b5g

−n(|z̃|+ |ε?|), (5.17)

for all (t, j) ∈ Γ(x̃)|≥T and with b4 :=
√

2|P |L/a1 and b5 := b4a1.

In view of Assumption 5.2, the functions σ, σ̄ and ρ of point 2 of the identifier

requirement can be taken linear on X̃ ′ and Z̃ ′ respectively. Therefore, (5.16) and

(5.17), give the existence of constants h1, h2, h3 > 0 such that, for all (t, j) ∈
I(x̃)|≥T

U(χ̃) ≥ h1 max
{
g−(n+1)Vz(z̃), g−n|ε?|

}
=⇒ D+U(χ̃) ≤ −gh2U(χ̃),

(5.18)

and for all (t, j) ∈ Γ(x̃)|≥T ,

U(χ̃)+ ≤ h3 max
{
U(χ̃), g−nVz(z̃), g−n|ε?|

}
. (5.19)
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Moreover, equations (5.12) and (5.15) imply that, δ defined in (5.9), satisfies

|δ| ≤ gn|χ̃|+ |ε?| ≤ gnU(χ̃)/a1 + |ε?|,

so that, under Assumption 5.2, point 2 of the identifier requirement implies that,

for some h4 > 0 and for all (t, j) ∈ I(x̃)|≥T ,

Vz(z̃) ≥ h4 max{gnU(χ̃), |ε?|}

=⇒ D+Vz(z̃) ≤ −νVz(z̃),
(5.20)

while for some h5 > 0 and all (t, j) ∈ Γ(x̃)|≥T

Vz(z̃)+ ≤ max{e−νVz(z̃), h5g
nU(χ̃), h5|ε?|}. (5.21)

Let define the function

W (χ̃, z̃) := max

{
U(χ̃),

Vz(z̃)

h4gn

}
,

and pick

g > g? := max{g?1, h1h4}. (5.22)

Let Iz(x̃) be the set of (t, j) ∈ I(x̃)|≥T such that Vz(z̃(t, j)) ≥ h4g
nU(χ̃(t, j)) and

let IU(x̃) := I(x̃)|≥T \ Iz(x̃). Pick (t, j) ∈ Iz(x̃), then W (χ̃, z̃) = Vz(z̃)/(h4g
n) and,

thus, the relation

W (χ̃, z̃) ≥ g−n|ε?|

implies Vz(z̃) ≥ h4 max{gnU(χ̃), |ε?|}. Hence (5.20) yields

D+W (χ̃, z̃) ≤ −νW (χ̃, z̃).

If instead (t, j) ∈ IU(x̃), then W (χ̃, z̃) = U(χ̃), and (5.22) implies that 1/h4 >

h1/g, that in turn yields

U(χ̃) >
Vz(z̃)

h4gn
> h1g

−(n+1)Vz(z̃).

Hence, if

W (χ̃, z̃) ≥ h1g
−n|ε?|,

168



it holds that U(χ̃) ≥ h1 max{g−(n+1)Vz(z̃), g−n|ε?|}, and thus (5.18) implies

D+W (χ̃, z̃) ≤ −gh2W (χ̃, z̃).

By putting all together, we thus conclude that for all (t, j) ∈ I(x̃)|≥T and with

h̄ := max{1, h3} and ν̄(g) := min{ν, gh2}, it holds that

W (χ̃, z̃) ≥ h̄g−n|ε?| =⇒ D+W (χ̃, z̃) ≤ −ν̄(g)W (χ̃, z̃). (5.23)

On the other hand, in view of (5.19) and (5.21), we obtain

W (χ̃, z̃)+ ≤ max
{
h3U(χ̃), h3h4

Vz(z̃)

h4gn
, h3g

−n|ε?|,

e−ν
Vz(z̃)

h4gn
, (h5/h4)U(χ̃), (h5/h4)g−n|ε?|

}
≤ q̄max

{
W (χ̃, z̃), g−n|ε?|

}
for all (t, j) ∈ Γ(x̃)|≥T and with q̄ := max{h3, h3h4, e

−ν , h5/h4}.
We observe that, as q̄ is not necessarily in [0, 1), W is not an ISS-Lyapunov

function (Cai and Teel, 2009). Nevertheless, by following (Cai et al., 2008), we

can augment the system (5.7) with a virtual clock subsystem with state τ ∈ R
satisfying {

τ̇ ∈ Fτ (τ) τ ∈ [0, N0]

τ+ = τ − 1 τ ∈ [1, N0]
(5.24)

with

Fτ (τ) :=

λ τ ∈ [0, N0)

[0, λ] τ = N0.

Then, by (Cai et al., 2008, Prop. 1.1), for any (λ,N0) ∈ R+ × N, every solution

x of the overall system (5.7) is in Eλ,N0

adt if and only if (x, τ) is a solution of (5.7),

(5.24). Pick υ ∈ (0, ν̄(g)) and let k and λ?(g) be such that

k ≥ υ + log q̄, λ?(g) ∈
(

0,
ν̄(g)− υ

k

]
.

Pick λ ∈ (0, λ?(g)], N0 ∈ N and define the function

V (χ̃, z̃, τ) := exp(kτ)W (χ̃, z̃).
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Let E be the set of solutions of the extended system (5.7), (5.24) such that, for

each (x, τ) ∈ E , x ∈ E1 ∩ E (λ,N0)
adt . Let x̃ be derived by x as before according to

(5.11), and let Ẽ be the set of solutions of the form (x̃, τ) such that (x, τ) ∈ E .

Then, for all (x̃, τ) ∈ E an for all (t, j) ∈ I(x̃, τ)|≥T , (5.23) implies

V (χ̃, z̃, τ) ≥ ekN0h̄g−n|ε?| =⇒ W (χ̃, z̃) ≥ h̄g−n|ε?|

=⇒ D+V (χ̃, z̃, τ) ≤ (kλ− ν̄(g))V (χ̃, z̃, τ)

=⇒ D+V (χ̃, z̃, τ) ≤ −υV (χ̃, z̃, τ).

Furthermore, for all (t, j) ∈ Γ(x̃, τ)|≥T ,

V (χ̃, z̃, τ)+ ≤ q̄ek(τ−1) max{W (χ̃, z̃), g−n|ε?|}

≤ max{q̄e−υ−log q̄V (χ̃, z̃, τ), q̄ekN0g−n|ε?|}

≤ max{e−υV (χ̃, z̃, τ), q̄ek(N0−1)g−n|ε?|}.

From these latter two relations, we thus conclude (see (Cai and Teel, 2009, Thm.

3.1)) that there exists c̄ > 0 such that

lim supV (χ̃, z̃, τ) ≤ c̄g−n lim sup |ε?|.

Since

|x− x̂[1,n]| ≤ gn−1|χ̃| ≤ gn−1U(χ̃)/a1 ≤ gn−1W (χ̃, z̃)/a1 ≤ gn−1V (χ̃, z̃, τ)/a1,

then

lim sup |x− x̂[1,n]| ≤ c̄/(a1g) lim sup |ε?| ≤ c lim sup |ε?|

with c := c̄/a1, and the claim follows. �

5.3 An Example

We present here an example in which the adaptive observer developed in Section

5.1 is used to estimate the state of the following system

ẋ1 = x2

ẋ2 = 5 sin(2x1) + 2x1 − x3
1.

(5.25)
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Figure 5.1: Scaling function and wavelet function.

It can be shown that for each initial condition x(0), there exists a compact set X

for which Assumption 5.1 holds. System (5.25) has the form (5.1) with n = 2 and

φ(x) = φ(x1) = 5 sin(2x1) + 2x1 − x3
1.

As a first step we construct and adaptive observer of the kind presented in Sec-

tion 5.1 with the identifier that performs a wavelet expansion of φ. As φ depends

only on x1, for simplicity of exposition we will use 1-dimensional wavelets, i.e.

in the identifier presented in Section 4.5 we let m = 1 and we consider functions

inside L2(R) that only depend on x1. We choose a biorthogonal B-spline con-

struction3 for the mother scaling and wavelet functions, that are represented in

Figure 5.1.

The results reported below are obtained along a solution of (5.25) originating

in x(0) = (−2.5, 3), with the observer parameters g = 30, M = 1000 and, to

underline how additional details reflect into the state estimation error, we have

implemented a wavelet identifier with growing resolution. In particular, for the

first 60 seconds no identifier is present, and the observer is implemented with

ψ = 0 and `(z, x̂) = x̂3. At time 60s the identifier switches to a single least-squares

stage z0 working at the initial scale i0 = 4, and the functions ψ and ` are chosen

accordingly. At time 120s a second stage, z1, is added to obtain a representation at

scale i1 = i0−1 = 3. At time 180s a third stage is added to reach a representation

at scale i2 = i0−2 = 2. At time 240s a last stage is added to reach a representation

3They can be obtained in MATLAB by using the command wavefun of the Wavelet Toolbox
and passing as argument the name ’bior3.5’.
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Figure 5.2: The first plot shows the time behavior of the state estimation error. The
other four plots show the time evolution of the outputs θ` of the least-squares stages of
the wavelet identifier.
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Figure 5.4: Estimation error and parameters evolution with a least square identifier.

173



at scale i3 = i0−3 = 1. The identifier samples and updates every T = 0.1 seconds.

To ensure the PE property of each stage we set the regularization matrices as

Ω` = 10−4Id` for ` = 0, . . . , 3. The forgetting factors µ` have been set to µ0 = 0.999,

µ1 = 0.998, µ2 = 0.997 and µ3 = 0.996. Figure 5.2 shows the time evolution of

the norm of the estimation error x(t) − x̂[1,2](t) and of the outputs θ`(t) of each

stage. We underline how different learning dynamics arise naturally between

two successive scales also with similar values of µ`. Figure 5.3 shows instead the

approximation of the function φ(x1) obtained with the prediction models at the

different scales i` = 4, 3, 2, 1. Each approximation is obtained by computing the

scale-i` prediction model (4.47) with the most recent value of θi` .

In the second simulation we suppose that all the uncertainty we have on φ

is concentrated to the coefficients multiplying the terms sin(2x1), x1 and x3
1. We

thus use a single least square identifier to estimate the uncertain parameters,

obtained by letting σ(x1) := col(sin(2x1), x1, x
3
1) in (4.10), d = 3 and µ = 0.9 in

(4.12) and Ω = 0 in (4.13). Figure 5.4 depicts the time evolution of the estimation

error x− x̂[1,2] and of the parameters θ obtained with this identifier, showing ho,

in this simpler case in which the uncertainty is concentrated in the parameters,

an asymptotically exact state estimation is achieved.
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Conclusion

This second part was dedicated to the development of a theory of adaptation

in which adaptation is seen as a system identification problem, and approached

in a hybrid system framework. Chapter 4 proposed a framework in which iden-

tification schemes can be described in a system theoretical envelope, and the

underlying optimization properties can be characterized in terms of a strong

stability requirement (the identifier requirement). Different cases of identifiers

fitting in the framework have been presented, form least squares algorithms to

nonlinear mini batch procedures and non-parametric wavelet decomposition.

Chapter 5 presented an approach to the problem of adaptive observers de-

sign that draws inspiration from the ideas of the literature of identification for

control and in which adaptation is approached in the framework of Chapter 4.

Differently from canonical adaptive observer designs, here we do not assume a

particular structure of the uncertainty and we do not propose an ad hoc adap-

tation mechanism, rather we allow for different parametric and non-parametric

system identification techniques to be applied. Differently from the works on

identification for control, we propose here a more system theory oriented trea-

tise of identifiers and we consider a nonlinear observation problem rather than

a linear robust stabilization one.

From the viewpoint of observation, the results presented in this chapter are

quite limited in scope, in the sense that they strongly rely on the structure of the

high-gain observers. Nevertheless, the underlying idea of studying the identifi-

cation schemes as hybrid systems and to use identifiers to perform adaptation in
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adaptive schemes represents an interesting approach that might lead to interest-

ing extensions and that is worth investigate further.

The focus on observers is motivated by the similarities that observation the-

ory shares with output regulation, and the material presented in these chapters

represent also a first brick towards the development of a theory of adaptive out-

put regulation that relies on system identification for adaptation. The applica-

tion to output regulation of the ideas presented so far is indeed the subject of the

forthcoming chapters.
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Part III

Adaptive Output Regulation
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6
Adaptive Output Regulation of

Nonlinear Systems

In the first part of the thesis we discussed how a chicken-egg dilemma neces-

sarily arises in the construction of nonlinear post-processing regulators. We

highlighted how complementary pre-processing paradigms can be used to

bypass the chicken-egg dilemma and to define regulators that do not suffer from

the intertwining between the internal model unit and the stabilizer, at the price,

however, of consistently reducing the class of systems that can be dealt with. On

the other hand, we observed that also the existing post-processing solutions are

far to give a definite answer to the problem and that, typically, in post-processing

regulators the need of avoiding the chicken-egg dilemma yields restrictive as-

sumptions on the exosystem or on the admissible steady state trajectories, and

leads to sacrifice asymptotic regulation for an approximate result. Nevertheless,

the nice intuition that can be drawn from the existing post-processing solutions,

and that coincides with the interpretation given in sections 2.2 and 3.1 of the

linear regulator, is that the internal model may be fixed a priori on the basis of
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the expected class of signals that it will have to generate at the steady state. The

stabilizer is then fixed at a second phase to stabilize the overall system, with the

(usually fragile) property that, if the ideal steady state of the internal model unit

actually is in the expected class, then asymptotic regulation can be claimed.

In this chapter we propose a framework based on a post-processing structure

leveraging on the aforementioned intuition, namely that the internal model can
be fixed in advance on the basis of the expected class of functions η? resulting after
considering all the possible plant’s and exosystem’s uncertainties and all the possible
choices of the stabilizer inside a prescribed set. We further observe that, from the

internal model’s viewpoint, the uncertainty on choice of the stabilizer (that is

present at the moment in which the structure of the internal model is fixed) has

the same effect of the uncertainties in the plant’s or exosystem’s model, as all of

them will anyway result in potential deviations from the “expected class” of the

actual ideal steady state that the internal model has to generate. This “expected

class” (from now on denoted by C?η ) of steady-state functions η? results thus from

an overall assessment about the knowledge of the plant and the exosystem, the

expected uncertainty in their models and the expected set of stabilizers that will

be adopted, all treated equally.

In the linear case C?η coincides with the set of solutions of a system that in-

cludes the modes of the exosystem, i.e. all the systems generating the possible

η? ∈ C?η are immersed into the linear regulator (1.13). This “immersion assump-

tion” is also what lies under all the nonlinear approaches claiming a certain de-

gree of “robustness’ (it is the case, for instance, of the “structurally stable” frame-

work of (Byrnes et al., 1997a,b) and of all the subsequent nonlinear extensions

of (Isidori et al., 2012; Forte et al., 2013; Bin et al., 2016), included the approach

presented in Section 3.2). Instead of assuming that we know a system whose set

of solutions include C?η , the idea is to use adaptation to take care of the overall

uncertainty characterizing C?η , in the same way as we did in chapters 4 and 5.

The key point of the proposed approach is that adaptation is cast as a system
identification problem defined on the closed-loop system trajectories. This, in-

deed, permits us to “shift” the problem of dealing with the uncertainty of η? to

the identification phase where, however, we can rely on well-known identifica-

tion algorithms that are naturally able to handle properly wide classes of signals,

thus making their application a perfect fit.

As a necessary compromise, though, the proposed approach is structurally

180



approximate, since from the identification viewpoint the assumption of the ex-

istence of a “true model” (and, by analogy, of asymptotic regulation) is quite

pointless. Consistently, our main result aims to relate the performances on the

regulation side with the performances of the corresponding identified model,

expressed in terms of the prediction error evaluated along the ideal error-zeroing

steady state. Asymptotic regulation, in turn, will follow only when a right model

exists that is in the “range” of the identifier used, and in this sense we observe

how this design philosophy matches with the properties mentioned before of the

other post-processing approaches.

In Section 6.1 we propose a general framework where post-processing adap-

tive internal model-based regulators can be constructed for multivariable non-

linear systems. The treatise in Section 6.1, and the related results, are deliber-

ately kept general enough to embrace a large spectrum of problems, at the cost

of bordering the tautology. In Sections 6.2, 6.3 and 6.4 we present some de-

sign examples showing how the general guidelines of Section 6.1 can be applied

to relevant classes of problems. In particular, we provide a systematic design

procedure for non-square minimum-phase normal forms (Section 6.2), we show

how additional non-vanishing outputs can be naturally handled in the frame-

work (Sections 6.3.1 and 6.3.2) and we provide an adaptive solution for general

multivariable linear systems (Section 6.4). For simplicity, all the results given

here refer to continuous-time systems. We underline, however, that this is just

for ease of exposition and all what is said here can be proved to hold if the iden-

tifier is a hybrid system of the kind fitting in the framework of Chapter 4. The

content of this chapter was the subject of the paper (Bin and Marconi, 2018a),

currently under review.

6.1 A Framework for Adaptive Regulation

In this section we deal with a general class of multivariable nonlinear systems of

the form
ẋ = f(w, x, u)

y = h(w, x)
(6.1)
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with state x ∈ Rn, control input u ∈ Rm, measured outputs y ∈ Rq and with

w ∈ Rnw produced by an exosystem of the form

ẇ = s(w), (6.2)

with initial conditions that are constrained to a compact invariant set W ⊂ Rnw .

Associated to (6.1), there is a set of p > 0 regulation errors defined as

e = he(w, x) (6.3)

with he : W×Rn → Rp. As customary, we assume e to belong to the set of measur-

able outputs, i.e. we suppose that q ≥ p and that h(w, x) = col(he(w, x), hm(w, x)),

where ym = hm(w, x) represents some additional measurements that are not re-

quired to vanish in steady state.

We build the design procedure within the non-equilibrium framework of

(Byrnes and Isidori, 2003) by assuming, for each w solution of (6.2) with w(0) ∈
W , the existence of a unique continuously differentiable functions x? : R → Rn

and an integrable function u? : R→ Rm solutions to the regulator equations

ẇ = s(w)

ẋ? = f(w, x?, u?)

0 = he(w, x
?).

(6.4)

In general, (x?, u?) are uncertain and strongly dependent on the regulated dy-

namics. We thus aim to develop a design paradigm not substantially relying

on their knowledge, by just assuming that the designer has some insight, better

specified later, on the structure of (6.4) to be able to calibrate the regulator. The

resulting framework leads necessarily to a regulation that is, in general, “approx-

imate" with the asymptotic bound on the regulation error that is also related to

the amount of information available on (x?, u?).
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Figure 6.1: Block-diagram of the regulator.

6.1.1 The Control Structure

The proposed post-processing control structure is sketched in Figure 6.1. The

internal model unit is a system of the form (compare with (1.13))

η̇ = Φ(η, z) +Ge, η ∈ Rdp (6.5)

with a virtual output

yη = Γ(η), yη ∈ Rpη (6.6)

where d, pη ∈ N, Γ : Rpd → Rpη and Φ(η, z) and G have the following structure

Φ(η, z) =



0 Ip 0 · · · 0

0 0 Ip · · · 0

· · · . . . ·
0 0 0 · · · Ip

ψ(η, z)


, G =


G1

G2

...

Gd



with ψ : Rd p × Z → Rp×dp and Gi ∈ Rp×p, i = 1, . . . , d, being Z a finite-

dimensional normed vector space. In referring to the state η of (6.5), we will

often use the partition η = (η1, . . . , ηd), with ηi ∈ Rp. The internal model is

parametrized by z that is the state of the identifier described by

ż = µ(z, η), (6.7)
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in which z : Z ×Rdp → Z , and whose role is detailed later. Finally, the stabilizer

is a system of the form
ξ̇ = ϕ(ξ, y, yη)

u = γ(ξ, y, yη),
(6.8)

with ξ ∈ Rnξ , nξ ∈ N, ϕ : Rnξ × Rq × Rpη → Rnξ and γ : Rnξ × Rq × Rpη → Rm.

The specific choice of the previous systems will be detailed in the next sec-

tions. For the time being, we just assume that the stabilizer and the internal

model, regardless their specific design, fulfill a steady state left-invertibility condi-

tion. As for (6.8), in particular, we assume that for each w : R→ W , x? : R→ Rn

and u? : R→ Rm solution of the regulator equation (6.4), and with y? := h(w, x?),

there exist unique y?η : R→ Rpη and ξ? : R→ Rnξ solution of

ξ̇? = ϕ(ξ?, y?, y?η)

u? = γ(ξ?, y?, y?η) .
(6.9)

Similarly, as far as the internal model is concerned, we assume that, given y?η,

there exist a unique η? : R→ Rpd fulfilling

y?η = Γ(η?), η?i = η̇?i−1, i = 2, . . . , d . (6.10)

These left-invertibility assumptions guarantee the existence of an ideal steady

state (ξ?, η?) for the stabilizer and the internal model that is compatible with

the regulation requirement e = 0. Consistently with the linear case, we ob-

serve that, in principle, the previous equations could be solved with y?η = 0

and η? = 0, namely with a vanishing steady state contribution of the internal

model. It is worth also remarking that (ξ?, η?) clearly depend on (ϕ, γ,Γ) and,

also with (ϕ, γ,Γ) known and fixed, they are, in general, unknown functions as

so are (x?, u?).

For η? to be a (steady-state) trajectory of the internal model in the closed-loop

structure, the function ψ(·, ·) and µ(·, ·) in (6.5), (6.7) should be ideally chosen so

that

η̇?d = ψ(η?, z?), (6.11)

for some z? : R→ Z solution of

ż? = µ(z?, η?) .

184



This, in fact, would guarantee that (x?(t), ξ?(t), η?(t), z?(t)) is a trajectory of the

closed-loop system associated to an identically zero regulation error. The design

of ψ and µ along this direction, however, hides the chicken egg-dilemma, as their

design is clearly affected by η?, which depends on (ϕ, γ,Γ) that, in turn, depend

on (ψ, µ) themselves.

6.1.2 A “Class-Type" Internal Model

Our design strategy pivots around the idea that (6.11) can be seen as a “predic-

tion model” relating the “next derivative” η̇?d to the “previous derivatives" η? of

the ideal steady state of the internal model, and that the design the identifier

(6.7) can be cast as an identification problem aimed to find the model that fits at

best those signals. Approaching the problem in this way, though, hides a num-

ber of problems. First, the signal η? involved in (6.11) is not known and thus it

is not clear on which data the identifier should work with. This problem will be

tackled in the next section by feeding the identifier with η as proxy variable of

η?. Furthermore, even if η? were known, the “next" derivative η̇? is not available

and there is not a clear way of expressing it as combination of known state vari-

ables without leading to an algebraic loop. This issue will be tackled by setting

up the identification problem not on ψ, but rather “one integrator away". More

in details, we consider an auxiliary system with state η̄ ∈ R(d−1)p (i.e. reduced by

a block of p components with respect to (6.5)), reading as

˙̄ηi = η̄i+1 +Gie, i = 1, . . . , d− 2

˙̄ηd−1 = φ(η̄, θ) +Gd−1e
(6.12)

where the matrices Gi are the same as in (6.5), φ : Rp(d−1) × Θ → Rp is a C1

function to be fixed (with Θ a normed vector space of finite dimension), and

θ = ω(z) (6.13)

is a virtual output associated to the identifier (6.7), defined by a C1 map ω : Z →
Θ to be fixed. The analysis of the previous section shows that, if (6.12) were

used in place of (6.5), then (x?, ξ?, η̄?, z?), in which η̄? = η?[1,d−1] where η? is the

same as in (6.10), would be a trajectory of the closed-loop system associated to a

185



regulation error identically zero provided that

η?d(t) = φ(η?[1,d−1](t), θ
?(t)) ∀ t ≥ 0 (6.14)

for some θ? : R → Θ such that θ? = ω(z?). The idea that is followed is then to

define the identification problem on the equation (6.14), instead of (6.11), and

to design the identifier (6.7), (6.13) to produce the θ? that guarantees the “best"

attainable prediction of η?d on the basis of η?[1,d−1]. The clear advantage of (6.14)

over (6.11), in fact, is that the former does not involve the knowledge of η̇?. The

design of the internal model unit (6.5) is then completed by defining ψ as

ψ(η, z) =
∂φ(η[1,d−1], θ)

∂η[1,d−1]

η[2,d] +
∂φ(η[1,d−1], θ)

∂θ

∂ω(z)

∂z
µ(z, η) (6.15)

so that t 7→ ψ(η(t), z(t)) equals the time derivative of t 7→ φ(η[1,d−1](t), θ(t)). In

this way, indeed, the virtual system (6.12) is immersed in the implemented in-

ternal model (6.5) that, thus, can generate each of its solutions.

Along this direction, and borrowing the notation typically adopted in the

identification literature (Ljung, 1999), we refer to the map φ(·, θ) as the predic-
tion model relating the “input data” η?[1,d−1] to the “output” η?d, and to the set

M := {φ(·, θ) : θ ∈ Θ} of all the obtainable candidate models as the corre-

sponding model set. The selection of (d,M), in turn, is where the “chicken egg-

dilemma" arises, as it clearly relies on the a priori information about the class

C?η of the signals η? which, in turn, depends on the choice of the stabilizer. To

break the loop and solve the dilemma, here we assume a priori that η? belongs

to a class C?η of functions, so as we can fix (d,M) and the adaptation algorithm.

This will result in a “class-type" internal model, which can lead to asymptotic

regulation only if a “real model” relating η?d and η?[1,d−1] exists and lies in M.

Possible examples of the class C?η are linear functions of w(t) (which is the case

of linear systems, see Remark 2), or polynomial functions of w(t), or simply in-

tegrable/differentiable functions of time. In a general multivariable nonlinear

context the fact that d and M can be taken so that (6.14) is fulfilled for some

member φ(·, θ) ofM is hard to be assumed due to the uncertainties in the (x?, u?),

highly uncertain, and in the stabilizer, yet to be fixed. Furthermore, even in the

fortunate case in which the ideal relation (6.14) can be fulfilled, this could re-

quire an unacceptable complexity, and an approximated model with a possibly
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lower d would be preferable. Overall, the a-priori guess of the class Cη, of d and

M is where the knowledge of the system and “the touch" of the designer come

into play, as better highlighted in Section 6.1.5.

6.1.3 The Design of the Identifier

By the previous section we assume that the dimension d of the internal model

and the model setM are fixed, and we shift our attention on the design of the

identifier. We introduce the “prediction error” corresponding to the model φ(·, θ)
as

ε(t, θ) := η?d(t)− φ(η?[1,d−1](t), θ)

and we look for an identifier (6.7), (6.13) able to select the best θ, say θ?, whose

corresponding model φ(·, θ?(t)) is, at each t, the “best” model in M relating η?d
and η?[1,d−1], minimizing in some sense ε. As customary in system identification,

the meaning of “best” in the model selection is based on the definition of a fitness
criteria assigning to each model φ(·, θ) ∈ M a suitable and comparable value. In

particular, with C0(Θ,R+) the space of continuous functions Θ → R+, to each

function η? : R→ Rpd we associate the map Jη? : R+ → C0(Θ,R+) given by

(
Jη?(θ)

)
(t) :=

∫ t

0

cε

(
t, s, |ε(s, θ)|

)
ds+ cr(θ), (6.16)

with cε : R+ × R+ × R+ → R+ and cr : Θ → R+ some user-defined positive

functions characterizing the particular overlying identification problem1. To Jη?
we associate the set-valued map ϑ◦η? : R+ ⇒ Θ defined as

ϑ◦η?(t) := argmin
θ∈Θ

(Jη?(θ))(t),

and we introduce the following requirement.

Requirement 6.1 (Identifier basic requirement). The identifier (6.7) is said to sat-
isfy the identifier basic requirement if for any integrable function η? : R→ Rd there
exists a unique function z? : R→ Z solution of

ż? = µ(z?, η?), z(0) = z?(0)

1More precisely, the integral term of (6.16) measures how well a given choice of θ fits the
historical data, while cr(θ) plays the role of a regularization factor.
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such that, with θ?(t) := ω(z?(t)), the following holds

θ?(t) ∈ ϑ◦η?(t).

The identifier basic requirement represents the elementary property that (6.7)

must have to be consistent with the system identification viewpoint of the prob-

lem and with the underlying optimization characterization. Further stability

properties can be added to the requirement if needed; in Section 6.2, for in-

stance, we will ask an additional strong stability property of the ideal steady-

state z? expressed in terms of an input-to-state stability (ISS) requirement. It is

worth noting that the identifier basic requirement is implied by the identifier

requirement of Section 4.1 (Requirement 4.1), namely each identifier fitting in

the framework of Chapter 4 fulfills the identifier basic requirement.

6.1.4 Selection of the Stabiliser and a Structural Result

The previous sections left open the design of the “innovation terms” Gi, i =

1, . . . , d, of the internal model and of the stabilizer, while identifying a class of

possible ideal steady states (x?, ξ?, η?, z?) associated to the dynamic blocks of Fig-

ure 6.1, with the last three functions that are still floating, as dependent on the

particular instance of the stabilizer. We observe that, in general, this ideal steady

state is not a trajectory of the closed-loop system due to the mismatch between

η?d and φ(η?[1,d−1], θ
?). In this respect it seems reasonable to look for a choice of

Gi and of the stabilizer to steer the closed-loop trajectories “close” to the above

steady state, where “how close” is related to the optimal value of the prediction

error. Towards this end, change variables as (x, ξ, η, z) 7→ (x̃, ξ̃, z̃, η̃), with

x̃ := x− x?, ξ̃ := ξ − ξ?,

z̃ := z − z?, η̃ := η − col
(
η?[1,d−1], φ(η?[1,d−1], θ

?)
) (6.17)

so that, by letting

ε? := η?d − φ(η?[1,d−1], θ
?)
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be the optimal prediction error achieved by the identifier, system (6.1), (6.5),

(6.7) and (6.8) in new coordinates read as

˙̃x = f̃(w, x̃, ξ̃, η̃, η?, ξ?)
˙̃ξ = ϕ̃(w, x̃, ξ̃, η̃, η?, ξ?)

(6.18)

and
˙̃ηi = η̃i+1 +Gie i = 1, . . . , d− 2

˙̃ηd−1 = η̃d +Gd−1e+ ε?

˙̃ηd = ψ̃(η̃, z̃, η?, z?, ε?) +Gde

(6.19)

and
˙̃z = µ̃(z̃, η̃, η?, z?, ε?), (6.20)

where, with E := col(0p, . . . , 0p,−Ip), we let

ψ̃(·) := ψ(η̃ + η? + Eε?, z̃ + z?)− φ̇(η?, z?)

µ̃(·) := µ(z̃ + z?, η̃ + η? + Eε?)− µ(z?, η?)

f̃(·) := f(w, x̃+ x?, γ(ξ̃ + ξ?, h(w, x̃+ x?), η̃1 + η?1))− f(w, x?, u?)

ϕ̃(·) := ϕ(ξ̃ + ξ?, h(w, x̃+ x?), η̃1 + η?1) − ϕ(ξ?, y?, η?1)

and e = h̃e(w, x̃) := he(w, x̃ + x?). As emphasized by the notation, we observe

that the system dynamics depends on (ξ?, η?, z?) which is floating with the stabi-

lizer. However, we also observe that, by using (6.4) and (6.15), all the previous

functions are vanishing at (x̃, ξ̃, η̃, z̃) = (0, 0, 0, 0) and ε? = 0 for all (ξ?, η?, z?).

This system is thus regarded as a system with state (x̃, ξ̃, η̃, z̃) perturbed by the

input ε?. An ISS property with respect to the disturbance ε? is thus the natural

requirement for the design of the Gi’s and of the stabilizer. For compactness we

let x̃ := col(x̃, ξ̃, η̃, z̃).

Requirement 6.2 (Stability requirement). We say that the stabilizer (6.8) and the
matrices Gi of (6.5) satisfy the stability requirement if system (6.18), (6.19), (6.20)

is practically ISS with respect to the input ε? with possible restrictions on the initial
conditions. Namely, there exist a setO ⊆ Rn×Rnξ×Rdp×Z , functions βs ∈ KL and
ρs ∈ K, and a positive νs such that for all initial conditions (x(0), ξ(0), η(0), z(0)) ∈ O
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the trajectories of (6.18), (6.19), (6.20) satisfy

|x̃(t)| ≤ βs(|x̃(0)|, t) + ρs(|ε?(t)|[0,t)) + νs .

Constructive designs that show how this requirement can be fulfilled are

postponed to the next sections, while the following theorem formalizes a direct

consequence of two requirements.

Theorem 6.1. Let the internal model, the identifier and the stabilizer be designed to
fulfill the requirements 6.1 and 6.2. Then there exists a class-K function ρe such that
the closed-loop trajectories originating from O are bounded and

lim sup
t→∞

|e(t)| ≤ ρe

(
lim sup
t→∞

|ε?(t)|+ νs

)
with O and νs introduced in Definition 6.2.

Theorem 6.1 states that a regulator constructed to satisfy the two require-

ments structurally achieves approximate regulation. The proof of the theorem is

a straightforward consequence of regularity of the function defining the plant’s

data and it is thus omitted. The requirement and the theorem are deliberately

formulated in a quite general way, as their aim is just to formalize the struc-

tural properties of the regulators constructed by following the procedure de-

tailed above. The presence of νs in the requirement makes it equivalent to a

requirement of ultimate uniform boundedness of the trajectories resulting, by

continuity, in the expected ultimate bounded of Theorem 6.1 on the error. The

constant νs was introduced to fit in the framework also “practical” stabilizers

that, even if the internal model and identifier are able to attain ε? = 0, thus mak-

ing (ξ?, η?, z?) a possible trajectory of the system, might not be able to steer the

closed-loop system to that ideal steady state. The performance of the regulator

is thus given by two factors: the performance of the internal model/identifier

(responsible for ε?) and those of the stabilizer (responsible for νs). Asymptotic

regulation is achieved if the identifier is able to reach a null prediction error

and the stabilizer is able to make the ideal state state (ξ?, η?, z?) attractive. The

general requirement of Definition 6.2 will be supported in Section 6.2 by a con-

structive high-gain design paradigm for the class of minimum-phase systems.
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6.1.5 Remarks on the Framework

We underline how the a priori knowledge on the system and its possible varia-

tions play a crucial role in the whole procedure, especially in the design guide-

lines of the internal model unit and the identifier detailed in Section 6.1.2 and

6.1.3. As a matter of fact, the more one knows about (x?, u?) and the stabilizer,

the more knows about the class C?η , the better is the attainable prediction error

and thus, according to Theorem 6.1, the lower is the steady state regulation error.

The selection of φ, in turn, comes from an overall assessment about the plant, the

exosystem, and the stabilizer without indeed relying on the perfect knowledge

of none of those systems. We emphasize how, in the actual perspective, also the

perfect knowledge of the exosystem dynamics loses importance in the design of

the internal model as, indeed, it is the knowledge of the whole system that is

necessary to extract information about the class C?η to which η? shall belong to.

In this respect, it is worth remarking that the lack of knowledge of η? is tightly

connected to the chicken-egg dilemma, since η? depends on the stabilizer not yet

fixed, and to the need of designing regulators that are not too “friend-centric”

according to the discussion in Section 2.2. We further emphasize that the “touch"

of the designer and her/his knowledge about the overall system (and potential

stabilizers) play a crucial role in identifying the right class C?η and consequently

fixing the right model set for φ. We also emphasize that the same dimension d

of the internal model is a crucial degree-of-freedom that can be played at this

stage, by trading off between asymptotic regulation requirements, which would

suggest large values of d, and issues related to the implementation and the re-

duction of the complexity, typically pushing for low values of d.

6.2 A High-Gain Strategy for the Stability Require-

ment

6.2.1 Design of the Adaptive Internal Model Unit

In this section we present a high-gain strategy for the design of the matrices Gi

and of the stabilizer to fulfill the ISS property of Theorem 6.1. We approach the

problem by first studying the interconnection (6.19)-(6.20) between the internal

191



model and the identifier, seen as a system with state (η̃, z̃) and with inputs e =

h̃e(w, x̃) and ε?. As a first step we reinforce the identifier basic requirement by

asking an additional strong stability property of the ideal steady-state z?.

Requirement 6.3 (Identifier strong stability requirement). The identifier (6.7) is
said to satisfy the identifier strong stability requirement if it satisfies the identifier
basic requirement and, in addition, there exist βz ∈ KL and ρz ∈ K such that, for
every integrable δ : R → Rpd, all the solutions of the system (6.7) with input η? + δ

satisfy
|z(t)− z?(t)| ≤ βz(|z(0)− z?(0)|, t) + ρz(|δ|[0,t))

for all t ∈ R+.

We observe how, for continuous-time identifiers, the identifier strong stabil-

ity requirement is essentially the same as the Requirement 4.1 of Chapter 4.

Hence, again, every identifier that fits in the framework of Section 4.1 also satis-

fies the identifier strong stability requirement.

The next Lemma claims that for an appropriate choice of the quantities Gi,

and with ψ(·, ·) fulfilling certain properties, the system (6.19)-(6.20) can be ro-

bustly stabilized by the input-output pair (e, η̃1). The design of the Gi is done

following a standard high-gain paradigm (Gauthier and Kupka, 2001; Byrnes

and Isidori, 2004) by letting

Gi := hig
iIp , i = 1, . . . , d (6.21)

where g ≥ 1 is a tuning parameter to be fixed and h1, . . . , hd ∈ R are such that

the roots of the polynomial p(s) := sd + h1s
d−1 + · · · + hd−1s + hd have negative

real part.

Lemma 6.1. Suppose that there exists a Lψ > 0 such that

|ψ̃(η̃, z̃, η?, z?, ε?)| ≤ Lψ
(
|η̃|+ |z̃|+ |ε?|

)
for all (η?, z?) and (η̃, z̃, η?). Assume that the identifier fulfills the identifier strong
stability requirement. Then there exist g? > 0, ρi > 0, πi > 0 and βi ∈ KL, such
that for all g ≥ g? the trajectories of the system (6.19)-(6.20) with the Gi’s fixed as in
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(6.21) and with the input e chosen as

e = ẽ− η̃1 (6.22)

where ẽ is an auxiliary input, satisfy

|(z̃(t), η̃(t))| ≤ βi(|(z̃(0), η̃(0))|, t) + ρi|ẽ|[0,t) + πi|ε?|[0,t)

for all t ∈ R+.

The proof of the lemma follows from the results of Section 5.1 and it is thus

omitted. The high value of g is chosen in order to decrease the asymptotic gain

between the input z̃ and the state η̃ of the system (6.19) and thus to impose a

small gain condition in the interconnection with (6.20). Furthermore, we observe

that the globally Lipschitz property of ψ̃ required in the Lemma can be simply

obtained by assuming a locally Lipschitz property and saturating the right-hand

side of (6.15) with a saturation level fixed according to the set where φ̇(η?, z?)

is expected to range. This, however, requires an a priori knowledge of bounds

of (η?, z?), which can be seen as quantitative manifestation of the chicken-egg

dilemma. We now shift the attention to system (6.18), regarded as a system with

input η̃ and, with an eye to (6.22), output

ẽ = he(w, x̃+ x?) + η̃1 .

The overall closed-loop system is thus given by the interconnection of system

(6.19)-(6.20), with input (ẽ, ε?) and output η̃, and system (6.18), with input η̃ and

output ẽ. It comes thus natural to design the stabilizer to induce a small-gain

condition in the aforementioned interconnection. In this direction we state the

forthcoming proposition, where we make reference to a set X̃0 × Ξ̃0 of initial

conditions for (x̃, ξ̃), in order to take into account local or semiglobal (relatively

to the error-zeroing manifold) contexts. The sets X̃0 and Ξ̃0 are obtained by first

fixing a set of initial conditions for (x, ξ) of the form X0 × Ξ0, and then taking

X̃0× Ξ̃0 be the union of all the points of the form (x(0)−x?(0), ξ(0)−ξ?(0)) where

(x(0), ξ(0)) ∈ X0 × Ξ0 and (x?(0), ξ?(0)) are obtained by any pair of functions

(x?, ξ?) coming from the regulator equations (6.4) and the invertibility condition

(6.9), with w(·) that ranges in the set of the solutions of the exosystem originating
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in W .

Proposition 6.1. Let the matrices Gi be fixed according to Lemma 6.1 and let X0 ×
Ξ0 ⊂ Rn × Rnξ . Suppose that the stabilizer is fixed so that the trajectories of (6.18)

originating from X̃0 × Ξ̃0 satisfy, for all t ∈ R+, the practical ISS condition

|(x̃(t), ξ̃(t))| ≤ β′s
(
|(x̃(0), ξ̃(0))|, t) + ρ′s(|η̃|[0,t)

)
+ ν

for some βs ∈ KL, ρ′s ∈ K, and positive ν, and, moreover,

lim
t→∞

sup |ẽ(t)| ≤ ρ′′s lim
t→∞

sup |η̃(t)|+ ν

for some positive ρ′′s such that ρ′′sρi < 1. Then, the stabilizer and the matrices Gi fulfil
the stability requirement with O = X0 × Ξ0 × Rdp ×Z .

The proof of the theorem follows by classical small gain arguments and it

thus omitted.

6.2.2 Design of a Stabilizer for Minimum-Phase Normal Forms

In this section we show how for the class of minimum-phase systems that possess

a normal form a stabilizer can be constructed to fulfil the assumptions of Propo-

sition 6.1. We consider a subclass of systems (6.1) with state x = col(x0, χ, ζ)

satisfying the following equations

ẋ0 = f0(w, x) + b(w, x)u (6.23a)

χ̇ = Fχ+Hζ (6.23b)

ζ̇ = q(w, x) + Ωu (6.23c)

and with regulation errors given by

e = Cχ ,

where ζ ∈ Rp, χ = col(χ1, . . . , χp) with χi ∈ Rniχ , i = 1, . . . , p (where n1
χ+· · ·+npχ =

nχ), F := diag(F1, . . . , Fp) ∈ Rnχ×nχ and H := diag(H1, . . . , Hp) ∈ Rnχ×p with

Fi :=

(
0niχ−1 Iniχ−1

0 01×(niχ−1)

)
, Hi :=

(
0(niχ−1)×1

1

)
.
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and C := diag(C1, . . . , Cp), with

Ci :=
(

1 01×(niχ−1)

)
.

The χ subsystem is described by p chain of integrators with ζ entering on the

last equation and regulation errors given by the first component of each chain

χi. The control input u takes values in Rm, with m ≥ p, the functions f0, b and

q are sufficiently smooth functions and Ω ∈ Rp×m, denoting the so-called “high-

frequency matrix”, is full row-rank. The form (6.23) is indeed representative of

many frameworks addressed in literature. For instance, systems having a well-

defined vector relative degree with respect to the input-output pair (u, e) and

admitting a canonical normal form fit in the proposed framework. In this case the

x0 dynamics in (6.23) does not depend on u and, when e = 0, it represents the

zero dynamics of the system relative to the indicated input-output pair. On the

other hand (6.23), with a different structure of χ and of the matrices F and H, is

also representative of systems that are “just” (globally) strongly invertible in the

sense of (Hirschorn, 1979; Singh, 1981) and feedback linearizable with respect

to the input-output pair (u, e) and, as such, can be transformed in partial normal
form, see (Wang et al., 2015a). In this case the dynamics (6.23b)-(6.23c) are the

partial normal form of the systems and the subsystem (6.23a) is indeed the whole

systems (i.e. x = x0). In the following we assume that ym = col(χ, ζ), namely,

as χ and ζ are linear combinations of the error and its time derivatives, and we

look for a partial state feedback solution. A pure error feedback regulator only

processing e can be obtained by replacing the time derivatives with appropri-

ate estimates by using state standard high-gain techniques (see Teel and Praly,

1995) not here presented. We consider system (6.2), (6.23) under the following

assumptions.

Assumption 6.1. For each solution w : R → W to (6.2) with w(0) ∈ W , there exist
x?0 : R+ → Rn and u? : R+ → Rm such that, with x?(t) := (x?0(t), 0, 0), the following
hold

ẋ?0 = f0(w, x?) + b(w, x?)u?

0 = q(w, x?) + Ωu? .

Assumption 6.2. There exist a locally Lipschitz ρ0 ∈ K and β0 ∈ KL, such that, for
any solution (w, x) : R+ → W × Rn to (6.2), (6.23) with w(0) ∈ W , the following
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estimate holds

|x0(t)− x?0(t)| ≤ β0

(
|x0(0)− x?0(0)|, t

)
+ ρ0

(
|(χ, ζ)|[0,t)

)
for all t ≥ 0 and for all locally bounded u(·).

Assumption 6.3. There exists a full-rank matrix L ∈ Rm×p satisfying

LTΩT + ΩL ≥ Ip .

The equations of (x?, u?) in Assumption 6.1 are the specialization of the reg-

ulator equations (6.4) to this particular class of systems, Assumption 6.1 is thus

necessary according to (Byrnes and Isidori, 2003). Assumption 6.2, on the other

hand, asks for uniform detectability of (6.23), with the adjective “uniform” that

refers to the fact that condition (6.2) is required to hold for all possible u (see

Liberzon et al., 2002). In case of systems with canonical normal form in which

(6.23a) does not depend on u, this assumption boils down to a conventional

minimum-phase requirement, typically assumed in the pertinent literature. Fi-

nally, Assumption 6.3 is a robust stabilizability requirement, easily generalizable

as in Section 2.3 whenever the high-frequency matrix Ω is state dependent (not

done here for ease of exposition). As a first step, we let in (6.6)

Γ(η) := η1

and, as customary in the context of minimum-phase systems, we look for a

semiglobal stabilization strategy based on high-gain techniques. In particular,

with X ⊂ Rn an arbitrary compact set, we consider the class of linear static sta-

bilizers

u = L
(
K1χ+K2ζ +K3η1

)
, (6.24)

with K1 ∈ Rp×(nχ−p), K2 ∈ Rp×p, K3 ∈ Rp×p gains to be fixed and with L ∈ Rm×p

fulfilling Assumption 6.3. For a given w(t) ∈ W , let x?(t) denote the correspond-

ing function defined by Assumption 6.1. In view of Assumption 6.2 and from

(6.24) and the choice of Γ above, y?η = Γ(η?) must satisfy

− q(w, x?) = ΩLK3y
?
η. (6.25)

196



In order to obtain differentiability of y?η, we constraint K3 to be non singular, so

that ΩLK3 is invertible (the invertibility of ΩL is implied by Assumption 6.3).

By merging (6.25) with the actual knowledge about x? and q, a class C?η for the

η? can be guessed and, according to Section (6.1.2), an appropriate choice of the

dimension d of the internal model and of a model setM (and hence a structure

for φ) can be derived. An identifier of the form (6.7) that satisfies the strong

stability requirement can be then fixed, so as the internal model can be fixed

according to Lemma 6.1. As for the stabilizer inside the class (6.24), it turns out

that the gain matrices K1, K2 and K3 can be fixed so that the ISS requirement

of Proposition 6.1 is fulfilled with ν = 0. This is formalized in the following

proposition.

Proposition 6.2. Suppose that assumptions 6.1, 6.2 and 6.3 hold and let X ⊂ Rn

be compact. Then there exist K1, K2 and an invertible K3 such that the hypotheses of
Proposition 6.1 hold with ν = 0 along all the solutions satisfying x(t) ∈ X .

We observe that the result holds only as long as the trajectories of the plant

remain in the (arbitrary) compact setX . Standard high-gain arguments typically

used in the semiglobal stabilization literature, here omitted for reasons of space,

can be used to show that the control parameters in (6.24) can be chosen to ensure

such a boundedness property, thus completing the result.

Proof of Proposition 6.2. For each i = 1, . . . , p, consider the change of variables

χi1 7→ χ̃i1 := χi1 + η̃i1,

χij 7→ χ̃ij := χij, j = 2, . . . , niχ
(6.26)

and let χ̃ := col(χ̃1, . . . , χ̃p), with χ̃i := col(χ̃i1, . . . , χ̃
i
niχ

). In the new variables, we

have

ẽ := e− η̃1 = Cχ̃ .

Moreover, from (6.19) we obtain

˙̃χ = (F + gh1C
TC)χ̃+Hζ + CT (η̃2 − gh1η̃1) . (6.27)

The following result is an adaptation of Lemma 2.1.

Lemma 6.2. For any ε > 0, there exist K ∈ Rp×nχ , with KCCT invertible, βχ, β̃e ∈
KL and aχ > 0 such that (6.27) with ζ = ζ̃ + Kχ̃, being ζ̃ ∈ Rp an auxiliary input,
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satisfies

|χ̃(t)| ≤ βχ(|χ̃(0)|, t) + aχ

(
|ζ̃|[0,t] + |η̃|[0,t]

)
|ẽ(t)| ≤ β̃e(|χ̃(0)|, t) + ε|ζ̃|[0,t] + ε|η̃|[0,t] .

We keep ε as a degree of freedom for now, and, with K produced by Lemma

6.2, we change variables according to

ζ 7→ ζ̃ := ζ −Kχ̃ . (6.28)

In view of (6.23c), ζ̃(t) fulfills

˙̃ζ = δ(η̃, χ̃, ζ̃) + q(w, x) + Ωu (6.29)

where

δ(η̃, χ̃, ζ̃) := −K
(

(F + gh1C
TC +HK)χ̃+Hζ̃

+ gCT (η̃2 − h1η̃1)
)
.

With ` > 0 a design parameter to be fixed, in (6.24), let

K1 := `K, K2 := −`Ip, K3 := `KCCT .

In view of Lemma 6.2, K3 is invertible. Moreover exists `?1 > 0 such that for all

` > `?1 |K−1
3 | ≤ 1. Developing (6.24) yields

u = −`L
(
ζ −Kχ−KCCTη1

)
= −`Lζ̃ + LK3y

?
η

In view of (6.25), substituting this latter relation in (6.29) yields

˙̃ζ = δ(η̃, χ̃, ζ̃) + q̃(w, x, x?)− `ΩLζ̃ .

where q̃(w, x, x?) := q(w, x)− q(w, x?). We will fix ` later according to the follow-

ing Lemma, that is adapted from Lemma 2.2.

Lemma 6.3. There exist βζ ∈ KL, aζ > 0 `?2 > `?1 such that, for all ` > `?2 and as long
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as x(t) ∈ X , the following holds

|ζ̃(t)| ≤ βζ(|ζ̃(0)|, t) +
aζ
`

(
|x̃0|[0,t) + |χ̃|[0,t) + |η̃|[0,t)

)
. (6.30)

As (w, x) ∈ W×X , there exists a01 > 0 for which the function ρ0(·) of Assump-

tion 6.2 fulfills ρ0(|(χ, ζ)|[0,t)) ≤ a01(|χ|[0,t) + |ζ|[0,t)). By letting a02 := (1 + |K|)a01,

in view of (6.26), (6.28), Assumption 6.2 yields

|x̃0(t)| ≤ β0(|x̃0(0)|, t) + a02|χ̃|[0,t) + a01

(
|η̃|[0,t) + |ζ̃|[0,t)

)
and, as a trivial small-gain condition between χ̃ and x̃ holds, as long as x(t) ∈ X ,

we obtain

|(x̃0, χ̃)| ≤ β0χ(|(x̃0(0), χ̃(0))|, t) + a03

(
|ζ|[0,t) + |η̃|[0,t)

)
|ẽ| ≤ β̃e(|(x̃0(0), χ̃(0))|, t) + ε

(
|ζ|[0,t) + |η̃|[0,t)

) (6.31)

for some β0χ ∈ KL and a03 > 0. Thus, standard small-gain arguments can be

used to claim that, for any ` > `?3 := max{`?2, aζa03}, the following estimate holds

|(x̃0, χ̃, ζ̃)| ≤ βx(|(x̃0(0), χ̃(0), ζ̃(0)|, t) + ax|η̃|[0,t) (6.32)

for suitable βx ∈ KL and ax ∈ R+. Small-gain arguments can be also used to

show that, in view of (6.32), equations (6.30) and (6.31) imply the existence of a

`?4 ≥ `?3 (possibly dependent on ε) such that, for all ` > `?4, the following holds

|x̃(t)| ≤ βx(|x̃(0)|, t) + ax|η̃|[0,t)
|ẽ(t)| ≤ βe(|x̃(0)|, t) + ae(`, ε)|η̃|[0,t)

as far as x ∈ X , with βe ∈ KL and ae(`, ε) > 0 which can be made arbitrarily

small by opportunely reducing ε and consequently increasing `. In particular, it

can be shown that for any ρi > 0 there exists ε? and `?(ε) ≥ `?4 such that, for any

ε < ε? and ` > `?(ε), ae(ε, `)ρi < 1, and this concludes the proof. �
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6.3 Examples of Designs

In this section we present two examples showing how in the context of the frame-

work proposed Section 6.1 we can deal with additional outputs not vanishing at

the steady state, thus complementing the more general approach developed in

Section 2.3 for the non-adaptive case. The first example is academic and it is

aimed at showing how systems that cannot be stabilized by error feedback (and

thus cannot be dealt with by using a pre-processing approach) can be regulated

if additional measurements are present. The second example is an application to

the control of the lateral dynamics of the VTOL (Vertical Take-Off and Landing

aircraft). The purpose is to show how we can regulate the system by using state

feedback and, mainly, to give an example on how the identification problem can

be approached.

6.3.1 Dealing with Additional Non-Vanishing Outputs

In this section we present an example showing how the high-gain strategy pre-

sented in the previous sections can be easily extended to deal with additional

outputs that need not to vanish at the steady state. We consider the system

ẋ1 = f1(x1) + γ1(w, x2) + x3

ẋ2 = γ2(w, x) + u1 + u2

ẋ3 = γ3(w, x)− b(w)u1 + (1− b(w))u2

(6.33)

with regulation error

e := x2,

with γi locally Lipschitz functions and with b differentiable. We observe that

if we choose the functions γi so that ∂γ2(0)/∂xi = 0, i = 1, 3, then we lose de-

tectability from e of the linear approximation of (6.33) at 0. Thus, e is not enough

to stabilize (6.33), and additional outputs are needed. We specifically assume to

have available for feedback the other two variables, i.e. ym := col(x1, x3), that,

however, do not to vanish at the ideal steady state in which e = 0. We also observe

that a control strategy based on a preliminary inner-loop that uses ym to reduce

to the case of Section 6.2 is hard to imagine, as u1 and u2 affect both the equa-

tions of ẋ2 and ẋ3, and they both must be used in case x3 is pre-stabilized. We
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observe, thus, that this case does not fit into any of the previous pre-processing

frameworks.

In the rest of the section we build a regulator based on Proposition 6.1. For,

we suppose to know a function κ such that

(s1 − s2)(f1(s1)− f1(s2) + κ(s2)− κ(s1)) ≤ 0. (6.34)

We change coordinates as

ζ2 := x3 + x1 + κ(x1), ζ1 := x2, p := x1,

transforming (6.33) to

ṗ = g(w, p, ζ1) + ζ2, ζ̇ = ρ(w, p, ζ) +B(w)u

with ρ, g and B reading as

g(w, p, ζ1) := −p+ f1(p)− κ(p) + γ1(w, ζ1)

ρ(w, p, ζ) :=

(
γ2(w, (p, ζ1, ζ2 − p− κ(p)))

γ3(w, (p, ζ1, ζ2 − p− κ(p))) + (1 + κ′(p))(g(w, p, ζ1) + ζ2)

)

B(w) :=

(
1 1

−b(w) 1− b(w)

)
.

With α > 0 fulfilling

4α > 1 + sup
w∈W

(1 + b(w))2

, let

L :=

(
α2 0

0 α

)
, S(w) :=

(
1 + b(w)2 b(w)

b(w) 1

)
.

Then the high-frequency matrix B(w) fulfills

LTB(w, x)TS(w) + S(w)B(w, x)L =

(
2α2 α(1 + b(w))

α(1 + b(w)) 2α

)
=: M(w).

(6.35)
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As 2α2 > 0 and

detM(w) = 4α3 − α2(1 + b(w))2 = α2(4α− (1 + b(w))2)

> 4α2 + α2

(
4 sup
w∈W

(1 + b(w))2 − (1 + b(w))2

)
> 4,

then by definition of α, M(w) is positive definite and there exists m > 0 such

that, for all x ∈ R2,

xTM(x)x ≥ m|x|2. (6.36)

With yη a virtual input and k a control parameter, consider the control law

u = −kL

(
ζ1 + yη

ζ2

)
=

(
−kα2(ζ1 + yη)

−kαζ2

)
.

It can be shown that this control law ensures bounded solutions semi-globally,

with the domain of validity that increases with k. In these variables, the regulator

equations give

ζ?1 = 0

ṗ? = g(w, p?, 0) + ζ?2

ζ̇?2 = ρ2(w, p?, ζ?)− b(w)u?1 + (1− b(w))u?2

0 = ρ1(w, p?, ζ?) + u?1 + u?2.

from which we deduce

y?η = −u?1/(α2k), u?2 = −kαζ?2 ,

i.e.
ζ̇?2 = ρ2(w, p?, ζ?) + b(w)ρ1(w, p?, ζ?)− kαζ?2
y?η =

(
ρ1(w, p?, ζ?)− kαζ?2

)
/(α2k).

From the latter equations, and by letting, as in Section 6.2, yη = Γ(η) := η1, we

can thus infer a possible class C?η of ideal steady states for η defined by η?1 = y?η

and η?i = η̇?i−1. We then fix the identifier degrees of freedom and the matrices Gi

by following the guidelines of Section 6.1.3 and Lemma 6.1, thus obtaining the
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ideal steady state z? as detailed in Section 6.1.3. Consider the change of variables

p̃ := p− p?, η̃ := η − col
(
η?[1,d−1], φ(η?[1,d−1], θ

?)
)

ζ̃2 := ζ2 − ζ?2 , z̃ := z − z?, ζ̃1 := ζ1 + η̃1

that yields
˙̃p = g̃(w, p̃, ζ̃, p?) + ζ̃2

η̃ = Φ̃(η̃, z̃, η?, z?, ε?) +Gζ̃1

z̃ = µ̃(z̃, η̃, η?, z?)

ζ̃ = ρ̃(w, p̃, ζ̃, p?, ζ?)− kB(w)Lζ̃

with ρ̃ and g̃ that, in view of (6.34), fulfill

|ρ̃(w, p̃, ζ̃, p?, ζ?)| ≤ r1(|ζ̃|+ |p̃|+ |η̃[1,2]|)

p̃g̃(w, p̃, ζ̃, p?) ≤ −1

2
|p̃|+ 1

2
r2(|ζ̃1|+ |η̃1|) +

1

2
|ζ̃2|

(6.37)

for some r1, r2 ∈ K that are locally Lipschitz. Thus, as S(w) > 0, quite standard

high-gain arguments can be used to show that, considering the function

V := |p̃|+
√
ζ̃TS(w)ζ̃ ,

and noting that (6.35), (6.36) imply−k2ζ̃TS(w)B(w)Lζ̃ ≤ −km|ζ|2, then, in view

of (6.37), for each compact set of initial conditions X ⊂ R3, we can find k? > 0

such that, for all k > k?, the hypotheses of Proposition 6.1 hold with ν = 0, which

in turn yields the result of Theorem 6.1 with νs = 0.

6.3.2 Application to the Control of the VTOL

In this section we present an application to the regulation of the lateral position

of the VTOL aircraft. The aim of this example is to show how the design of the

identifier can be approached in the high-gain setting developed in the previous

sections (again in presence of additional output variables not necessarily van-

ishing at the steady state). For compactness we disregard the equations of the

vertical dynamics, as it can be controlled in a separate control loop. The dynam-

ics of the lateral (x1, x2) and angular (x3, x4) positions of the VTOL aircraft can
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be described by the equations (Isidori et al., 2003)

ẋ1 = x2

ẋ2 = q(w)− g tanx3 + v

ẋ3 = x4

ẋ4 = Bu .
(6.38)

withM > 0 the VTOL mass, g > 0 the gravitational constant andB = 2LJ−1 > 0,

with L > 0 the length of the wings and J the moment of inertia (typically uncer-

tain). The input u is the force on the wingtips, v is a vanishing input taking into

account the (controlled) vertical dynamics and q(w) := M−1q0(w), with q0(w)

that is the lateral force produced by the wind. The control goal is to eliminate

the wind action from the lateral position dynamics, i.e. the regulation error is

defined as e(t) = x1(t). We also suppose to have available for feedback the entire

state, namely y = x. We stress that, although it is usually the case in practice

to have the whole state available for feedback, previous output regulation so-

lutions (see e.g. (Marconi and Praly, 2008a)) allow to use only e as a control

variable. Here instead we take advantage from the additional information. Let

w(t) be generated by an exosystem of the form (6.2). The corresponding solu-

tion (x?, u?) to the regulator equations fulfil x?1 = x?2 = 0, x?3 = tan−1(q(w)/g),

x?4 = gLsq(w)/(g2 + q(w)2) and

u? =
g

B

(
L2
sq(w)

g2 + q(w)2
− 2(Lsq(w))2q(w)

(g2 + q(w)2)2

)
.

We consider the change of coordinates x 7→ χ, where

χ1 := x1, χ2 := x2,

χ3 := −g tanx3 + q(w), χ4 = Lsq(w)− gx4/(cosx3)2

that yields
χ̇1 = χ2

χ̇2 = χ3

χ̇3 = χ4

χ̇4 = b(w, χ)− Ω(w, χ)u

with b(w, χ) and Ω(w, χ) given by

b(w, χ) := L2
sq(w)− 1

g
(χ4 − Lsq(w))2 sin

(
2 tan−1

(
q(w)− χ3

g

))
Ω(w, χ) := gB

(
cos

(
tan−1

(
q(w)− χ3

g

)))−2

.
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With yη an auxiliary input, c ∈ R4 and k, ` > 0 design parameters we think of a

control law of the kind

u = `
(
c1k

4(x1 + yη) + c2k
3x2 + c3k

2(−g tanx3) + c4k(−gx4/ cos2 x3)
)
.

that in the χ coordinates reads as

u = `
(
c1k

4(χ1 + yη) + c2k
3χ2 + c3k

2χ3 + c4kχ4 − c3k
2q(w)− c4kLsq(w)

)
.

Therefore the ideal steady-state value of y?η is given by

y?η :=
c3

c1k2
q(w) +

c4

c1k3
Lsq(w) +

1

c1`k4
Ω(w, 0)−1b(w, 0) . (6.39)

We approach the design of the internal model unit by letting as before yη = η1,

with η1 the first component of an adaptive internal model unit of the form (6.5),

with the order d, the function φ(η, θ) and the identifier subsystem z that are

chosen on the basis of the class C?η of functions that, in view of (6.39), are linear

combinations of q̇(w), q(w) and Ω(w, 0)−1b(w, 0). For clarity of exposition, details

on the choice of φ are postponed to the end of the section. Once fixed φ, we

fix the matrices Gi and ψ according to Lemma 6.1 and, in the following, we

approach the design of k and ` so as to fulfill the hypotheses of Proposition 6.2.

For, we define η̃ according to (6.17) and, with c ∈ R4 chosen so that c4 = 1 and

p(s) := s3 + c3s
2 + c2s+ c1 is an Hurwitz polynomial, we further change variables

as χ 7→ (χ̃, ζ̃), with

χ̃1 := χ1 + η̃1, χ̃2 := k−1χ2

χ̃3 := k−2χ3, ζ̃ := k−3χ4 + c1χ̃1 + c2χ̃2 + c3χ̃3 .

In the new coordinates we obtain

˙̃χ = kMχ̃+ f(χ̃, ζ̃, η̃)
˙̃ζ = −`kΠ(w, χ̃, ζ̃, η̃)ζ̃ + ∆(w, χ̃, ζ̃, η̃)

where M is Hurwitz,

f(χ̃, ζ̃, η̃) := col(η̃2 −G1η̃1 +G1χ̃1, 0, kζ̃),
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being G1 is the same matrix of the internal model unit (6.5) and

Π(w, χ̃, ζ̃, η̃) := Ω
(
w, (χ̃1 − η̃1, kχ̃2, k

2χ̃3, k
3(ζ̃ − cT[1,3]χ̃))

)
∆(w, χ̃, ζ̃, η̃) := cT[1,3]

(
kMχ̃+ f(χ̃, ζ̃, η̃

)
+ k−3b

(
w, (χ̃1 − η̃1, kχ̃2, k

2χ̃3, k
3(ζ̃ − cT[1,3]χ̃))

)
− k−3Π(w, χ̃, ζ̃, η̃)Ω(w, 0)−1b(w, 0) .

For any choice of G1, there exists Lf > 0 such that

|f(χ̃, ζ̃, η̃)| ≤ Lf (|χ̃|+ |η̃|+ k|ζ̃|).

Moreover, Π(w, χ̃, ζ̃, η̃) depends on (χ̃, ζ̃, η̃) only throughout χ̃3 and it is bounded

by above and below in each compact subset of Rnw ×R4 ×Rd and ∆(w, χ̃, ζ̃, η̃) is

locally Lipschitz and vanishes when (χ̃, ζ̃, η̃) = 0, for any w ∈ Rnw . By standard

high-gain arguments, it is thus possible to conclude that, for any compact subset

X ⊂ R4, there exist k?, `?(k) > 0 such that for all k > k? and ` > `?(k) the

assumptions of Proposition 6.1 hold with ν = 0.

We propose now a design example for the internal model unit and the iden-

tifier in the case in which q(w(t)) is a quasi-periodic signal characterized by a

stronger dominant frequency component and weaker higher harmonics, and the

goal is to learn and compensate the dominant harmonic. We first observe that the

constants that multiply the terms Lsq(w) and Ω(w, 0)−1b(w, 0) in the expression

(6.39) of y?η are much smaller than those multiplying q(w). In order to simplify

the problem, and to have better insight on y?η, we thus approximate the class C?η
as

C?η ≈ Ĉ?η := {η? : y?η = η?1 = αq(w) , η̇?i = η?i+1 , α ∈ (0, 1)}

(we assumed without loss of generality that k2 > c3/c1). The approximate class

Ĉ?η contains thus signals with the same frequency content of q(w). In order to fix

the identifier, we infer a prediction error model of the kind

ÿ?η = −θy?η , θ ∈ R ,

which captures the dynamical model of a single harmonic. In view of the dis-

cussion developed in Section 6.1, we choose the order of the internal model as
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Figure 6.2: Simulation results: figure (a) shows the error trajectory with and without
(i.e. with uη = 0) adaptive internal model unit. Figure (b) instead shows the comparison
between the steady state regulation error when adaptation is used and when instead
ψ(η, θ) = 0. Figure (c) shows the trajectory of the parameter θ(t).

d = 2 + 1 = 3 and we use a continuous-time least-squares identifier of the kind

introduced in Section 4.3, with d = 1 and σ(η) := η1. This yields a function φ

given by

φ(η, θ) = θη1.

We conclude the design by defining ψ by any opportunely saturated version

of (6.15) and, as mentioned before, by designing the matrices Gi according to

Lemma 6.1. Figure 6.2 shows the result of a simulation obtained with M =

5 ·104Kg, L = 2m, J = 1.25 ·104Kg/m2 and where we let q0(w) = 2 ·107w1 +106w3,

with w ∈ R4 that is generated by the system

ẇ1 = w2 ẇ3 = w4

ẇ2 = −w1 ẇ4 = −4w3 .
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with initial condition w(0) = col(1,−1, 0,−1). Thus q0(w) is a periodic signal

with a dominant harmonic at frequency 1 rad/s and such that q(w) = q0(w)/M

has the same order of magnitude of the weight of the VTOL. The control pa-

rameters have been chosen as: G1 = 15, G2 = 75, G3 = 125, k = 170, ` = 250,

λ = 0.2 and Γ = 10−8. Figure (b) shows how the dominant component of q(w)

is “learned”, thus leading to a considerable compensation of the corresponding

harmonic in the regulation error, in which only high frequency components can

be observed.

6.4 Adaptive Regulation of Linear Systems via Slow

Identifiers

In this section we consider the problem of adaptive output regulation for gen-

eral multivariable linear systems. Unlike the design examples proposed so far,

in this case we do not rely on a “high-gain” strategy to fit into the hypotheses

of Theorem 6.1 and, rather, we leverage on the separation of the time-scales ob-

tained by letting the identifier to be slow enough compared to the controlled

plant. We postpone a literature overview of adaptive output regulator designs

for linear systems to Section 7.1, where the problem is taken on in a more general

envelope. Here we consider systems of the form

ẇ = Sw

ẋ = Ax+Bu+ Pw

e = Cex+Qew

(6.40)

with w ∈ Rnw , x ∈ Rn, u ∈ Rm, e ∈ Rp, being n, nw,m, p, q ∈ N such that

m ≥ p, and with S that is an unknown matrix. For simplicity, we address the

state feedback case, as output feedback can be obtained by means of the same

arguments, and we assume that S is simply stable and (A,B) is stabilizable. By

following the procedure of Section 6.1, we exploit linearity to fix the structure

of the internal model unit and the stabilizer. In particular, in view of Section

1.1.3, we let in (6.5), (6.6) d = nw + 1, Γ(η) = η, Gd = Ip and Gi = 0 for i =

1, . . . , d − 1. We then fix the class of stabilizers (6.8) as the class of static state-
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feedback control laws of the kind

u = Kxx+Kηη (6.41)

with K :=
(
Kx Kη

)
to be fixed. To set up the identification problem, we let the

model setM be the set of functions φ : Rp(d−1) → Rp of the form

φ(η[1,d−1], θ) = (θT ⊗ Ip)η[1,d−1],

and we fix a multivariable version of the continuous-time least-squares identifier

introduced in Section 4.3, with nθ := dim(θ) = d−1, σi(η) = ηi for i = 1, . . . , d−1,

and with

σ(η) := col
(
σ1(η)T , . . . , σd−1(η)T

)
and λ > 0 that is a small number to be tuned. By following Section 6.1.2, we

consider an expression of ψ obtained according to (6.15), obtaining a function of

the form

ψ(η, z) := λρ0(z, η) + (θT ⊗ Ip)η[2,d], (6.42)

for some ρ0. Here, however, instead of (6.42) we implement the following modi-

fied function:

ψ(η, z) := λρ(z, η) + (pE(θ)
T ⊗ Ip)η[2,d],

where ρ is a bounded function obtained by saturating ρ0, E is a compact convex

set to be fixed and pE denotes any Lipschitz selection of the projection map from

Rnθ onto E . We can write the internal model unit in the compact form

η̇ = Ψ(θ)η +Ge+ λGρ(z, η), (6.43)

for some Ψ : Rnθ → Rpd×pd and, by letting ξ := col(x, η), for appropriate Pξ, ` and

ρξ we can write the closed-loop system (4.21), (4.22), (6.40), (6.41), (6.43) as

ż = λ`(z, η),

ẇ = Sw

ξ̇ = (Aξ(θ) +BξK)ξ + Pξw + λρξ(z, ξ)

(6.44)
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where

Aξ(θ) :=

(
A 0

GCe Ψ(θ)

)
, Bξ :=

(
B

0

)
.

Let ΘH be the set of θ for which Aξ(θ) + BξK can be made Hurwitz (i.e. for

which the non-resonance conditions hold). It can be shown that Rnθ \ ΘH is

of null Lebesgue measure, so that we can find arbitrarily large compact sets E
inside ΘH. In the following we denote by Āξ the unconstrained map Aξ obtained

with pE(θ) = θ. Fix ε, r > 0 such that r > ε and θ̄ ∈ ΘH arbitrarily, and let

K ∈ Rm×(n+pd) be such that Āξ(θ̄) + rI + BξK is Hurwitz2. Then the eigenvalues

of Āξ(θ̄) + BξK have real part smaller than −r. Moreover, with µ̄ the eigenvalue

of Āξ(θ̄) +BξK with largest real part, we observe that the map

θ 7→ Λ(θ) := max
µ∈σ(Aξ(θ)+BξK)

|<[µ̄]−<[µ]|,

where <[µ] denotes the real part of µ, is continuous. Therefore, since the differ-

ence (Āξ(θ̄) + BξK)− (Aξ(θ) + BξK) = Āξ(θ̄)− Aξ(θ) is a function only of θ − θ̄,

there exists a non-empty compact convex set E ⊂ ΘH such that θ̄ ∈ E and, for all

θ ∈ E and all µ ∈ σ(Aξ(θ) +BξK), we have |<[µ]−<[µ̄]| ≤ r − ε, and hence

<[µ] = <[µ̄] + (<[µ]−<[µ̄]) ≤ −r + (r − ε) ≤ −ε.

We remark that the procedure described above leads to a local existence result

of E , once fixed K, ε and r. Nevertheless, r can be taken arbitrarily large, thus

potentially allowing E to be taken arbitrarily large. We also observe that the

boundedness of ρ implies that the trajectories of the closed-loop system (6.44)

are uniformly ultimately bounded.

The only parameter that remains to fix is λ. We approach its design by noting

that low values of λ induce a small gain condition in the interconnection of the

systems z and (w, ξ), and in a consequent separation of the time-scales. Let Π(θ)

be the unique (smooth in θ) solution to the Sylvester equation Π(θ)S − (Aξ(θ) +

BξK)Π(θ) = Pξ. Then, when λ = 0, the subsystem (w, ξ) of (6.44) has a globally

exponentially stable attractor given by the graph of w 7→ Π(θ)w. Let Πη(θ) ∈
Rpd×nw be such that Π can be partitioned as Π = col(Πx,Πη) for some Πx(θ) ∈
Rn×nw . Then, when ξ = Π(θ)w, the input to the identifier is η = Πη(θ)w. Let

2This is possible as stabilizability of (Āξ(θ), Bξ) implies those of (Āξ(θ) + rI,Bξ).
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Πηi(θ) ∈ Rp×nw , i = 1, . . . , d, be such that we can write Πη = col(Πη1 , . . . ,Πηd).

The structure of Ψ(θ) gives

ΠηiS = Πηi+1
, i = 1, . . . , d− 1

Πηi = Πη1S
i−1 i = 1, . . . , d.

(6.45)

As d− 1 = nw, by letting ci, i = 1, . . . , nw be such that

snw + cnw−1s
nw−1 + . . .+ c1s+ c0 (6.46)

coincides with the characteristic polynomial of S, from (6.45) and by the Cayley-

Hamilton Theorem we also have

Πηd = Πη1S
d−1 = Πη1S

nw = −Πη1

nw∑
i=1

ci−1S
i−1

= −
nw∑
i=1

ci−1Πη1S
i−1 = −

nw∑
i=1

ci−1Πηi .

(6.47)

Since the input to the least squares identifier (4.21)-(4.22) in the reduced system

reads as

η[1,d−1] = col(Πη1(θ), . . . ,Πηd−1
(θ))w, ηd = Πηd(θ)w, (6.48)

then (6.47) implies that the least squares problem (4.20) with Ω = 0 has a global

solution given by

θ◦ := − col(c0, . . . , cnw−1).

The quantity θ◦ is also the unique minimum along the solutions that satisfy the

following strong persistence of excitation property:

Definition 6.1. With εR > 0 the input η is said to have the εR-strong persistence

of excitation property if there exists T > 0 such that, along the solutions to (4.21),
(4.22) with input (6.48), it holds that minσ(R(t)) ≥ εR for all t ≥ T .

Clearly, if η has the εR-strong persistence of excitation property it also has the

persistence of excitation property of Definition 4.3 for t ≥ T . Thus, Proposition

4.2 and the continuity of R as a function of η can be invoked to claim that the

identifier (4.21) with input (6.48) is such that θ → θ◦. Suppose that θ◦ ∈ E , then

by definition of Ψ, G and Πη, and by using again (6.45) and the Cayley-Hamilton
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Theorem, we obtain that, if θ = θ◦, then the quantity Πe := CeΠx +Qe fulfills

Πe(θ
◦) = Πηd(θ

◦)S −
d−1∑
i=1

θ◦iΠηi+1
(θ◦)

= −
d−1∑
i=1

(ci−1 + θ◦i )ΠηiS = 0.

Moreover, we observe that Π is continuous in θ and that the function ρξ in (6.44)

is vanishing in z = z? (where θ? = θ◦ is constant), locally Lipschitz with a Lips-

chitz constant possibly depending on the particular εR for which Definition 6.1

holds, and it is multiplied by λ in the equation of ξ̇. Therefore, standard small-

gain arguments and Proposition 4.2 can be used to show that, if λ is taken suf-

ficiently small, then the stability requirement holds with ε? = 0 and with ν = 0

along the solutions for which η has the strong persistence of excitation property

with a fixed εR. We summarize the result in he following proposition.

Proposition 6.3. The closed-loop system (4.21), (4.22), (6.40), (6.41), (6.43) has
bounded trajectories. If in addition there exists c ∈ E such that (6.46) holds, then
for any εR > 0 there exists λ? > 0 such that, for all λ ∈ (0, λ?), any solution of the
closed-loop system for which η has the εR-strong persistence of excitation property also
fulfills

lim
t→∞

e(t) = 0.
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7
Adaptive Output Regulation for

Linear Systems via Discrete-Time
Identifiers

This chapter presents a different approach to the problem of output regula-

tion for linear multivariable systems that relies on discrete-time identifiers. Other

than the usage of discrete-time identifiers, which turns the closed-loop system

into a hybrid system, the proposed approach differs from the adaptive frame-

work of the previous sections by the fact that also the stabilizer depends on the

identifier’s state. In the general nonlinear terms of Section 6.1, having a stabi-

lizer that depends on the identifier would result in a problematic invertibility

condition taking place instead of (6.9), with a chicken-egg dilemma that would

have to be extended to include also the identifier. Nevertheless, the assumption

of linearity provides a powerful way to break the chicken-egg dilemma and al-

lows us to consider more flexible stabilization procedures that also involve the

identifier’s state.
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The focus to linear systems is further motivated by the fact that, up to our

knowledge, no adaptive design is known that can overcome uncertainties in the

exosystem in a general multivariable and not necessarily minimum phase case

(except for the design of Section 6.4). We present here a simple solution to

this problem, with a regulator that is based on the classical design presented

in Section 1.1.3, in which and identifier adapts the internal model frequencies

in a data-driven fashion. We approached the problem in the same philosophy

of the previous chapters, strongly inspired by the intuition of dual control and

iterative identification: the closed-loop system alternates continuous-time flows

to jump times in which the adaptation of the internal model parameters takes

place; the stabilizer is designed to ensure that, for each “guess” of the internal

model parameters, the closed-loop system has a well-defined (quasi) steady-state

that attracts the solutions during the successive flow time. The temporal distance

between two successive jumps is taken large enough to let the closed-loop trajec-

tories to get close to the steady-state. The identifier is designed independently

from the underlying problem and, interestingly enough, it is built to fit in the

same framework of Section 4.1 and to fulfill the same conditions of the identifier

requirement (see requirement 4.1). Linearity then plays a crucial role in making

sure that the identification problem solved by the identifier makes sense for each

sequence of quasi steady-states and, in particular, that an unique solution exists

despite the fact that each quasi steady state depends on the (wrong) previous

guess of the parameters.

This section contains original results submitted for publication in (Bin et al.,

2018c).

7.1 Previous Designs of Adaptive Linear Regulators

The general problem of designing a regulator that ensures asymptotic regulation

for linear systems in presence of uncertainties in the exosystem is still open, and

the existing results only cover limited classes of plants or exosystems. Single-

input single-output (SISO) linear systems have been considered in (Marino and

Tomei, 2003; Marino and Santosuosso, 2007) using adaptive observers. In the

first work the order of the exosystem is known, in the second the knowledge of

its upper bound is sufficient. In both the papers, though, the plant’s matrices are
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assumed to be perfectly known, so as robustness relative to exosystems perturba-

tions is traded for those relative to the plant. For what concerns adaptive designs

for multivariable linear systems, strongly minimum-phase normal forms have

been considered in (Muzimoto and Iwai, 2007), while state-feedback tracking

for more general linear systems has been studied in (Bado and Ichikawa, 2006).

Other approaches have been developed in the context of nonlinear systems. Non-

linear systems in output feedback form driven by uncertain linear exosystems

have been considered for instance in (Nikiforov, 1998; Ding, 2003), where adap-

tive backstepping techniques are used. Nonlinear minimum-phase SISO normal

forms have been considered in many papers. For example, in (Serrani et al.,

2001) an ad hoc adaptation algorithm is constructed based on Lyapunov argu-

ments, in (Delli Priscoli et al., 2006) adaptation is carried out by using the theory

of adaptive observers, in (Isidori et al., 2012) unknown linear exosystems are im-

mersed into larger parameterless nonlinear exosystem whose dynamic is known

and that can be dealt with in a nonlinear regulation setting. The same idea was

applied to a class of uncertain nonlinear exosystems in (Forte et al., 2013; Bin

et al., 2016). Finally, in (Forte et al., 2017; Bin and Marconi, 2017a, 2018a) adap-

tation is cast as a system identification problem, and parameter estimation is

performed by any continuous- or discrete-time algorithm satisfying some strong

stability properties.

In this chapter we consider the output regulation problem for general multi-

variable linear systems, with the reference signals and the disturbances that are

generated by an unknown exosystem. We endow the linear regulator of Davison

(1976) with a discrete-time identification unit which adapts the internal model

on the basis of the closed-loop measurable states. The identification algorithm

implements a recursive least-squares scheme of the kind presented in Section

4.2. The regulator is designed to ensure the existence of a “temporary” steady

state between two successive updates of the identifier, despite the possible wrong

value of the estimated parameters. Even if the regulator errors do not vanish in

this temporary steady state, the controlled plant still oscillates with the same

modes of the exosystem, thus unveiling to the identifier the unknown frequency

content of the external excitation. This, in turn, allows the identifier to eventu-

ally estimate the “right” parameters, no matter how “wrong” are the temporary

steady states, as long as the dimension of the internal model is sufficiently large

and a persistency of excitation condition is fulfilled. Moreover, the regulator
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corresponding to the “right” parameter has the internal model property, and it

thus guarantees asymptotic regulation. In this respect, we observe that the pro-

posed approach can be framed in a “dual control” perspective (see e.g. Feldbaum

(1960); Gevers (2005)), where the regulator plays the double role of inducing

the right dynamics making the identification of the unknown parameters possi-

ble, and then stabilizing the “right” steady state when the parameter is correctly

estimated.

7.2 Problem Formulation

We consider linear systems of the form

ẋ = Ax+Bu+ Pw +Mν

y = Cx+Qw +Rν
(7.1)

where x ∈ Rn is the state, u ∈ Rm the control input, y ∈ Rny the measured

outputs and (w, ν) ∈ Rnw×Rnν represent exogenous signals acting on the system,

such as references to be tracked and disturbances to be rejected. In particular,

w(t) represents the “modeled’ part of the exogenous signals, and we suppose that

it belongs to the family of solutions of an exosystem of the form

ẇ = Sw, (7.2)

with unknown state matrix S and with a dimension nw ∈ N that is upperbounded

by a known integer d ∈ N. The signal ν(t), instead, is a bounded hybrid input

representing unknown unmodeled disturbances, i.e. disturbances acting on the

plant whose nature is not known and that are not supposed to be generated by

any external process. We associate to (7.1) a further set of outputs e ∈ Rne ,

ne ∈ N, defined as

e = Cex+Qew +Neν. (7.3)

We refer to the quantity e as the regulation errors. They represent those outputs

on which the effect of the exosystem must be ideally removed such as, for in-

stance, tracking errors. More precisely, we seek an output feedback regulator of
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the form
ẋc ∈ Fc(xc, y) (xc, y) ∈ Cc
x+
c ∈ Gc(xc, y) (xc, y) ∈ Dc

u = γ(xc, y) ,

(7.4)

with state xc taking values in an Euclidean space Xc, ad where Cc, Dc ⊂ X , such

that all the solutions to the closed-loop system (7.1), (7.4) are bounded and it

has the ε-approximate regulation property for some ε > 0, i.e. any solution also

satisfies

lim sup |e| ≤ ε.

We say that (7.1), (7.4) has the asymptotic regulation property if it has the 0-

approximate regulation property. On the system (7.1), (7.3) we make the fol-

lowing assumptions:

Assumption 7.1. The regulation errors are included in the measured output, i.e.
y = col(e, ym) for some ym ∈ Rnm , nm := ny − ne.

Assumption 7.2. (A,B) is stabilizable, (C,A) is detectable, rankB = m ≥ rankCe =

ne.

Assumption 7.3. The solutions of (7.2) range in a compact set W ⊂ Rnw and |W | is
known.

Assumptions 7.1 and 7.2 are close to being necessary if a robust asymptotic

regulation result is sought. As a matter of fact, readability in the sense of (Fran-

cis and Wonham, 1975) of e from y is proved in (Francis and Wonham, 1975) to

be necessary to obtain a structurally stable solution in the case in which (7.2) is

known. If readability holds, on the other hand, we can always change coordi-

nates to have Assumption 7.1 fulfilled. Furthermore, as in the classical solution

of (Davison, 1976), we will augment the plant (7.1) with an internal model unit
that is driven by the regulation errors. Then Assumption 7.2 turns out to be

necessary to have stabilizability and detectability of the resulting cascade. Re-

garding Assumption 7.3, this assumption limits the size of the initial conditions

of w and requires S to be stable though not typically Hurwitz. The set W can be

arbitrarily large as soon as |W | is known. This latter quantity represents a con-

stant that must be dominated by some control parameters. Thus, in this sense,

the forthcoming result could also be rephrased by fixing the control parameters

and adjusting the “admissible” W accordingly.
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plant

ẇ = Sw

Int. Model Unit

identifier

Int. Model Block

Stabiliser

e
w θ (η, e)

ym

(η, θ)
u

Figure 7.1: Block-diagram of the closed-loop system.

7.3 The Regulator Structure

In this section we construct a regulator of the form (7.4) that guarantees closed-

loop stability and, under suitable persistence of excitation, has the ε-approximate

regulation property with ε that is proportional to lim sup |ν|. The regulator con-

sists of two main blocks: the internal model block and the stabilizer (see Figure

7.1). The internal model block is itself composed of two subsystems: the internal
model and the identifier. The internal model is a system driven by the regulation

errors and it replicates the structure proposed by Davison in (Davison, 1976).

The spectrum of the internal model’s state matrix is adapted by the identifier to

match the modes of the unknown exosystem (7.2). The identifier is a discrete-

time system built to solve asymptotically an optimization problem defined on

the time evolution of the state of the internal model and the regulation errors.

Under suitable persistence of excitation and if ν = 0 it turns out that the iden-

tifier optimal trajectory is uniquely determined and the corresponding internal

model includes all the exosystem’s modes, so as asymptotic regulation is achiev-

able. The stabilizer is a subsystem that processes all the measured signals and

robustly stabilizes the cascade of the plant and the internal model block. In the

rest of the section we detail all these three components.
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7.3.1 The Internal Model Unit

With d any known upper bound on nw = dimw, the internal model unit is a

system with state η ∈ Rned satisfying the following equations

η̇ = Φ(θ)η +Ge

η+ = η
(7.5)

where

Φ(θ) :=

(
0ne(d−1)×ne Ine(d−1)

θT ⊗ Ine

)
G :=

(
0ne(d−1)×ne

Ine

)
and with θ ∈ Rd that is a parameter adapted by the identifier. The characteristic

polynomial of Φ(θ) reads as

ϕΦ(θ)(λ) =
(
λd − θdλd−1 − · · · − θ2λ− θ1

)ne
, (7.6)

so as, if S were known, the internal model of (Davison, 1976) could be obtained

by letting the components of θ to be the coefficients of any polynomial that has

the eigenvalues of S as roots. We then let Q be the set

Q :=

{
θ ∈ Rd : rank

(
A− λI B

Ce 0

)
< n+ ne, λ ∈ σ(Φ(θ))

}
,

and we pick a compact set satisfying

E ⊂ Rd \ Q.

The existence of a non-empty set E satisfying the above property, which in gen-

eral has to be assumed, is in turn necessary for the solvability of the problem.

As a matter of fact, as shown for instance in (Isidori, 2017, Lem. 4.1), for the

regulation problem to have a solution for a given exosystem (7.2), Rn \ Q must

contain at least one θ ∈ Rd such that σ(S) = σ(Φ(θ)). Moreover, we have the

following sufficient condition.

Lemma 7.1. Suppose that Assumptions 7.1-A7.2 hold and assume that the set of
λ ∈ C for which the transfer function Ce(A − λI)−1B loses rank is finite. Then for
each r ≥ 0, Rd \ (Q+ Br) is closed and not empty.
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Proof. Let

F (λ) :=

(
A− λI B

Ce 0

)
.

We first prove that the set U := {λ ∈ C : rankF (λ) < n + ne} is finite. Pick

λ ∈ C/σ(A). Then A− λI is invertible and the matrix

M(λ) :=

(
In 0n×ne

Ce(A− λI)−1 −Ine

)

is well-defined and full rank. Thus

rankF (λ) = rank(M(λ)F (λ))

= rank

(
A− λI B

0ne Ce(A− λI)−1B

)
≥ n+ rank(Ce(A− λI)−1B).

By assumption, as rankB ≥ ne, the number of λ ∈ C for which rank(Ce(A −
λI)−1B) < ne is finite. Since σ(A) has at most n elements, then we conclude

that U is finite. Let Pd denote the set of monic polynomials of degree d with

coefficients in R. Each element of Pd can be written as pa(s) = sd + ads
d−1 + · · ·+

a2s + a1, for some a ∈ Rd, so as there is a natural isomorphism ι : Rd → Pd,
a = col(a1, . . . , ad) 7→ pa(s). Let P (λ) ⊂ Pd denote the set of polynomials in Pd

that have λ as a root. Suppose λ ∈ R, each element in P (λ) can be univocally

written as

pa(s) = (s− λ)(sd−1 + ad−1s
d−2 + · · ·+ a2s+ a1)

= sd + (ad−1 − λ)sd−1 + · · ·+ (a1 − a2λ)s− a1λ,

so as ι−1(P (λ)) is the (d−1)-dimensional affine subspace of Rd given by ι−1(P (λ)) =

{(−λa1, a1 − λa2, . . . , ad−2 − λad−1, ad−1 − λ) ∈ Rd : (a1, . . . , ad−1) ∈ Rd−1}. If in-

stead λ ∈ C/R, in the same way as before it can be seen that ι−1(P (λ)) is a (d−2)-

dimensional affine subspace of Rd. As Q can be written as Q = {θ ∈ Rd : ι(θ) ∈
P (λ), λ ∈ U} = ∪λ∈U ι−1(P (λ)), then Q is the union of a finite number of affine

subspaces of Rd of dimension d−1 or d−2. Pick r > 0 arbitrarily and notice that

the set Q+ Br is open as it is a union of open sets. Hence Rd \ (Q+ Br) is closed
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and it remains to show that it is not empty. We thus notice that for each λ ∈ U we

can write ι−1(P (λ)) = xλ + ImAλ, for some xλ ∈ Rd and Aλ ∈ Rd×(d−1). Pick any

λ ∈ U and define the set S := {xλ + y + v ∈ Rd−1 : y ∈ ImAλ, v ∈ (ImAλ)
⊥}. We

now show that S∩(Rd\(Q+Br)) 6= ∅. For, let Uλ ⊂ U be the set of µ ∈ U such that

ImAλ ⊆ ImAµ. Then for each µ ∈ Uλ, each y ∈ ImAλ, and with p = xλ+y+v ∈ S,

in view of (Deutsch, 2001, Thm. 4.9), we have

|p|ι−1(P (µ)) = inf
z∈ImAµ

|xµ + z − xλ − y − v| = |(xµ − xλ)′ − v′|

where (xµ − xλ)
′ and v′ denote the projection of xµ − xλ and v onto (ImAµ)⊥.

Hence, for each v ∈ (ImAλ)
⊥ fulfilling |v′| > r + maxµ∈Uλ |xµ − xλ| we obtain

|p|ι−1(P (µ)) ≥ |v′| − |(xµ − xλ)
′| > r, and this in turn shows that, for every y ∈

ImAλ and for sufficiently large v, p = xλ + y + v ∈ Rd \ (∪µ∈Uλι−1(P (µ)) + Br).
Pick now µ ∈ U \ Uλ and fix a v ∈ (ImAλ)

⊥ satisfying the above bound, then

ImAλ ∩ (ImAµ)⊥ 6= ∅ and we get

|p|ι−1(P (µ)) = inf
z∈ImAµ

|xµ + z − xλ − y − v| = |(xµ − xλ)′′ − y′′ − v′′|

with (xµ−xλ)′′, y′′ and v′′ the projections of xµ−xλ, y and v onto (ImAµ)⊥. Hence

choosing y so that |y′′| > r + maxµ∈U\Uλ |xµ − xλ| + |v′′| yields |p|ι−1(P (µ)) > r, and

this in turn proves that there exists a p ∈ S satisfying p ∈ Rd \ (Q + Br). Hence

the claim. �

Lemma 7.1 implies that for any r > 0 and any sufficiently large compact set

Θ ⊂ Rd, the set
{
θ ∈ Rd : |θ|Q ≥ r

}
∩Θ is compact and not empty, thus qualifying

as a possible choice of E . The definition of E is justified by the following fact:

Lemma 7.2. Let rankB ≥ rankCe = ne. Then the pair((
A 0

GCe Φ(θ)

)
,

(
B

0

))
(7.7)

is stabilizable/controllable for all θ ∈ E if and only if (A,B) is stabilizable/controllable.
Moreover, the pair ((

C 0

0 I

)
,

(
A 0

GCe Φ(θ)

))
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is detectable/observable for all θ ∈ Rd if and only if (C,A) is detectable/observable.

Lemma 7.2 is based on the PBH test (Isidori, 2017), and its proof is a straight-

forward consequence of the definition of Q and it is thus omitted. In the forth-

coming sections we will force θ to range in the set E . Although this limits the

number of internal models that can be eventually implemented, it also guaran-

tees that the cascade of the plant and the internal model is stabilizable indepen-

dently of the identifier trajectories.

7.3.2 The Identifier

The identifier subsystem is a multivariable version of the discrete-time least-

squares identifier introduced in Section 4.2. We will recall its construction here-

after. The identifier measures two inputs, α and β, at the jump times and it tries

to infer a model relating the two inputs on the basis of the observed samples. The

model is a linear regression of order d and the parameter is chosen to minimize a

cost function that weights a sum of historical prediction errors produced by the

candidate model. At the end of the section we will interconnect the identifier

with the internal model, obtaining a hybrid system that acts as a feedforward

generator during flows and optimizes its internal model during jumps.

In the following we identify (Rne)d with Rned and, for each of its elements p,

we let p1, . . . , pd denote the elements of Rne such that p = col(p1, . . . , pd). Then we

define the matrix

γ(p) :=
(
p1 p2 · · · pd

)T ∈ Rd×ne .

Let α and β be hybrid inputs taking values in Rned and Rne respectively. We

define the identifier subsystem as a discrete-time system defined on the state

space Z × Rd, where Z := Rd×d × Rd, and with state z := (R, v) ∈ Z and θ ∈ Rd

satisfying the following equations
Ṙ = 0

v̇ = 0

θ̇ = 0


R+ = µR + γ(α)γ(α)T

v+ = µv + γ(α)β

θ+ ∈ pE(R
†v),

(7.8)

with output θ, where ·† denotes the Moore-Penrose pseudoinverse, µ ∈ (0, 1) is a

design parameter and pE(·) is the projection map θ 7→ pE(θ) := arg infθE∈E |θ− θE |.
We endow Z with the norm |(R, v)| :=

√
|R|2 + |v|2.
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We recall that the identifier (7.8) is constructed to asymptotically find the

“best” linear model relating the regressor input α and the input β. More precisely,

we associate to (7.8) the prediction model β̂ : E × Rned → Rne given by

β̂(θ, α) := (θT ⊗ Ine)α =
d∑
i=1

θiα
i (7.9)

and the corresponding prediction error ε : E × Rned × Rne → Rne given by

ε(θ, α, β) := β − β̂(θ, α) = β − (θT ⊗ Ine)α.

For fixed θ, the prediction model β̂(θ, α) represents the identifier’s guess of β

given α. The identifier is constructed to choose θ so that the guess β̂(θ, α) is the

best possible among all those producible by d-dimensional linear models of the

form (7.9). As in Section 4.1, “best” is defined relatively to a cost functional that

weights the prediction performance of the candidate models on all the historical

data. More precisely, with A(Rd,R+) the set of functions Rd → R+, we associate

to each input (α, β) a function Jα,β : dom(α, β)→ A(Rd,R+) defined by

Jα,β(θ)(t, j) :=

j−1∑
i=0

µj−1−i ∣∣ε(θ, α(ti, i), β(ti, i)
)∣∣2 . (7.10)

At a given (t, j) ∈ dom(α, β), the best linear model is the one given by (7.9) with

θ minimizing Jα,β(t, j). We associate to (7.10) the following (set-valued) map

θ◦α,β(t, j) := arg min
θ∈Rd
Jα,β(θ)(t, j) , (7.11)

whose value at each (t, j), contains the “optimal” parameters θ that minimize

(7.10).

We recall that the intuition behind the definition of the identifier (7.8), in

relation to the minimization problem (7.10), resides in the fact that the optimal

trajectory (7.11) can be proved to satisfy

θ◦α,β(t, j) =
{
θ ∈ Rd : R?(t, j)θ = v?(t, j)

}
, (7.12)
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being

R?(t, j) :=

j−1∑
i=0

µj−i−1γ(α(ti, i))γ(α(ti, i))T

v?(t, j) :=

j−1∑
i=0

µj−i−1γ(α(ti, i))β(ti, i)T .

(7.13)

As stated in more general terms in the forthcoming proposition, it can be shown

that z? := (R?, v?) is a solution to the subsystem z of (7.8) which is also (robustly)

asymptotically stable. It is worth noting, moreover, that while the definition of

(7.10) requires in principle the knowledge of an unbounded number of samples,

in view of (7.13), the information that is necessary to define (7.12) can be en-

coded in the finite dimensional quantities R? and v?, and this permits to track

the optimal trajectory (7.11) with a finite-dimensional system (as it is (7.8)).

When we will interconnect the identifier and the internal model, the inputs

(α, β) will be set to some functions of the state η and the regulation error e.

These signals, in turn, carry some “ideal” information about w(t), that is useful

to infer the right model, corrupted by some additional disturbances given by

transitory artifacts and residual noise dependent on ν(t). To take into account

this situation in the characterization of the properties of the identifier (7.8), we

consider inputs (α, β) given by α = α∗+δα, β = β∗+δβ, with (α∗, β∗) an ideal input

and δ = (δα, δβ) an additive disturbance, thus fitting exactly in the framework of

Section 4.1. The following proposition expresses the optimality of the identifier

(7.8) with respect to the cost functional Jα?,β?(θ)(t, j) when δ = 0 and the robust

stability properties of the optimal trajectory in case of δ 6= 0.

Proposition 7.1. The following hold:
1. For each z1 := (R1, v1), z2 := (R2, v2) ∈ Z and each (α1, β1), (α2, β2) ∈ Rdne ×

Rne there exists ρ > 0 such that, with (δα, δβ) := (α1, β1) − (α2, β2) and, for
i = 1, 2, z+

i := (µRi + γ(αi)γ(αi)
T , µvi + γ(αi)βi), it holds that

|z+
1 − z+

2 |2 ≤ µ2|z1 − z2|2 + ρ|(δα, δβ)|2,

where, for i = 1, 2, we let z+
i := (µRi + γ(αi)γ(αi)

T , µvi + γ(αi)βi).

2. For each hybrid input (α?, β?) : dom(α?, β?) → Rdne × Rne there exists z? :=

(R?, v?) : dom(α?, β?)→ Z such that (z?, (α?, β?)) is a solution pair to the sub-
system z to (7.8) and the corresponding “unconstrained output” θ?un := (R?)†v?
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satisfies
θ?un(t, j) ∈ θ◦α?,β?(t, j).

The proof of Proposition 7.1 follows directly from the arguments used to

prove Proposition 4.1. Although Proposition 7.1 guarantees that for every input

(α, β) = (α?, β?) + (δα, δβ) there exists a “optimal trajectory” (z?, θ?un) such that,

for any selection θ? of pE(θ?un), ((z?, θ?), (α?, β?)) solves (7.8) and is asymptotic

stable (with δ = 0), it is not in general true that z → z? implies θ → θ?, due

to the pseudoinverse operator that is not, in general, continuous. To recover

this “detectability” property, as well as to ensure single-valuedness of (7.11), we

associate to the input α the following persistence of excitation condition:

Definition 7.1. With J ∈ N and ε > 0, a complete hybrid input α : domα → Rned

is said to be (J, ε)-persistently exciting if, for all integers j ≥ J

minσ

(
j−1∑
i=0

µj−1−iγ(α(ti, i))γ(α(ti, i))T

)
≥ ε . (7.14)

Remark 7.1. This definition of persistence of excitation is stronger than those

given in Section 4.2. As a matter of fact, in Definition 4.2, the matrix involved

in the PE condition was allowed not to be full rank. Instead (7.14) implies that,

for sufficiently large times, the regressor matrix is positive definite. This tighter

condition is motivated by Lemma 7.3, in which (7.14) is proved to imply that the

solution map (7.12) is single valued. 4

In the following we will often abbreviate “(J, ε)-persistently exciting” with

“(J, ε)-PE”. Lemma 7.3 relates persistence of excitation of α with those of α?

and, thus, with single-valuedness of the map θ◦α?,β?(t, j), when the disturbance

δα is small enough at the jump times. Lemma 7.4, instead, links persistence of

excitation and “detectability” from the output θ.

Lemma 7.3. Let α, α? and δα be bounded hybrid inputs defined over the same time
domain and such that α = α? + δα. Then for any ε > 0 there exists δ̄ > 0 such that,
if α is (J, ε)-PE for some J ∈ N and |δα(tj, j)| ≤ δ̄ for all j ≥ J , then there exists
(J ′, ε′) ∈ N×R∗+ such that α? is (J ′, ε′)-PE. Moreover, θ◦α?,β?(t, j) is a singleton for all
(t, j) ∈ domα? such that j ≥ J ′.

Proof. Let `∞ be the space of bounded sequences s = (sn)n∈N and, for s ∈ `∞,

let |s|n1,n2 := supn1≤n≤n2
|sn|. Let φ(α) := col(α(t0, 0), α(t1, 1), . . . ) ∈ `∞ and, for
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k, j ∈ N, let Σj
k : `∞ → Rd×d be the function

s 7→ Σj
k(s) :=

j−1∑
i=k

µj−i−1γ(si)γ(si)
T .

For any two q1, q2 ∈ Rned there exists c0 > 0 such that |γ(q1)γ(q1)T−γ(q2)γ(q2)T | ≤
c0|q1 − q2|. As a consequence, for each two s1, s2 ∈ `∞ there exists c0 > 0 such

that, for each k, j ∈ N, we have

|Σj
k(s1)− Σj

k(s2)| =
j−1∑
i=k

µj−i−1(γ(s1
i )γ(s1

i )
T − γ(s2

i )γ(s2
i )
T )

≤

(
j−1∑
i=k

µj−i−1

)
c0|s1 − s2|k,∞.

Noting that

j−1∑
i=k

µj−i−1 ≤
j−1∑
i=0

µj−i−1 =

j−1∑
`=0

µ` ≤
∞∑
`=0

µ` =
1

1− µ
,

we thus obtain

|Σj
k(s1)− Σj

k(s2)| ≤ c1|s1 − s2|k,∞, (7.15)

for each k, j ∈ N and with c1 := c0/(1−µ). As the mapR ∈ Rned×ned 7→ minσ(R) ∈
R+ is continuous, for every υ > 0 there exists rυ > 0 such that

|Σj
0(φ(α))− Σj

0(φ(α?))| ≤ rυ

=⇒ |minσ(Σj
0(φ(α)))−minσ(Σj

0(φ(α?)))| ≤ υ.
(7.16)

As Σj
0 has symmetric positive semi-definite values then

minσ(Σj
0(φ(α?))) = |minσ(Σj

0(φ(α?)))|

=
∣∣minσ(Σj

0(φ(α)))−
(

minσ(Σj
0(φ(α)))−minσ(Σj

0(φ(α?)))
)∣∣

≥
∣∣|minσ(Σj

0(φ(α)))| − |minσ(Σj
0(φ(α)))−minσ(Σj

0(φ(α?)))|
∣∣. (7.17)

Noting that Σj
0(φ(α)) is exactly the matrix appearing in (7.14), and since α is

(J, ε)-PE, then minσ(Σj
0(φ(α))) > ε. Pick ε′ < ε and υ ∈ (0, ε− ε′) arbitrarily. Thus

if for some J ′ ≥ J we have |Σj
0(φ(α))− Σj

0(φ(α?))| ≤ rυ for all j ≥ J ′, then (7.16)
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and (7.17) give

minσ(Σj
0(φ(α?))) ≥ ε− υ ≥ ε′,

for all j ≥ J ′, that is the first claim. We thus have to show that (7.16) holds for

sufficiently small δ̄. Note that, for each j > J

|Σj
0(φ(α))− Σj

0(φ(α?))| ≤ µj−J |ΣJ
0 (φ(α))− ΣJ

0 (φ(α?))|+ |Σj
J(φ(α))− Σj

J(φ(α?))|.
(7.18)

As the first term of (7.18) is a constant multiplied by µj , and µ < 1, we claim the

existence of J ′ ≥ J such that in (7.18) we have that µj−J |ΣJ
0 (φ(α))−ΣJ

0 (φ(α?))| ≤
rυ/2 for all j ≥ J ′. Moreover, in view of (7.15), |φ(δα)|J,∞ = |φ(α) − φ(α?)|J,∞ ≤
rυ/(2c1) implies |Σj

J(φ(α)) − Σj
J(φ(α?))| ≤ rυ/2 for all j ≥ J . Thus (7.18) yields

(7.16) for all j ≥ J ′. This in turn proves the first claim, with δ̄ := rυ/(2c1).

To see that θ◦α?,β?(t, j) is single valued, notice that it is the set of θ in which the

gradient of (7.10) vanishes, which is given by (7.12)-(7.13) with (α?, β?) in place

of (α, β). In view of (7.13), v?(t, j) ∈ ImR?(t, j). Thus, noting that for j ≥ J ′,

R?(t, j) = Σj
0(φ(α?)) is nonsingular, then (7.12) is a singleton and the second

claim follows. �

Lemma 7.4. Let (z1, (α1, β1)) and (z2, (α2, β2)) be solution pairs to (7.8) with the
same time domain. Suppose that, for i = 1, 2, αi is (Ji, εi)-PE, for some (Ji, εi) ∈
N×R∗+ and let θi := pE(Ri(t, j)

†vi(t, j)). Then there exists J ∈ N and a ≥ 0 such that

|θ1(t, j)− θ2(t, j)|2 ≤ a|z1(t, j)− z2(t, j)|2,

for all (t, j) ∈ dom z satisfying j ≥ J .

Proof. For sake of readability, we will omit the time dependency. By letting

θui (t, j) := Ri(t, j)
†vi(t, j), then for suitable selections s1

E and s2
E of pE , we obtain

|θ1 − θ2|2 = |s1
E(θ

u
1 )− s2

E(θ
u
2 )|2 = |s1

E(θ
u
1 )− θu1 + θu1 − θu2 + θu2 − s2

E(θ
u
2 )|2

≤ inf
θE∈E
|θu1 − θE |2 + inf

θE∈E
|θu2 − θE |2 + |θu1 − θu2 |2

≤ 3|θu1 − θu2 |2 = 3|R†1v1 −R†2v2|2

≤ 3|R†1 −R
†
2|2|v1|2 + 3|R†2|2|v1 − v2|2.

In view of (Campbell and Meyer, 2009, Thm. 10.4.5), we have |R†1 − R†2|2 ≤
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9 max{|R†1|4, |R
†
2|4}|R1 −R2|2, which yields

|θ1 − θ2|2

≤ 3 max{9 max{|R†1|, |R
†
2|}4|v1|2, |R†2|2}|z1 − z2|2

(7.19)

By direct solution we obtain, for i = 1, 2

Ri(t, j) = µjRi(0, 0) +

j−1∑
k=0

µj−1−kγ(αi(t
k, k))γ(αi(t

k, k))T . (7.20)

Since µ < 1 the first term of (7.20) vanishes exponentially with j. Thus using

the fact that αi is (Ji, εi)-PE, the same arguments of Lemma 7.3 can be used to

show that (7.20) implies that for any ε′i ∈ (0, εi), there exists J ′i ≥ Ji such that,

for all (t, j) ∈ domRi such that j ≥ J ′i , minσ(Ri(t, j)) ≥ ε′i. As a consequence, by

letting J := max{J ′1, J ′2} and ε := min{ε′1, ε′2}, we obtain |Ri(t, j)
†| ≤ 1/ε for all

(t, j) ∈ domR such that j ≥ J . Thus the result follows from (7.19) by noting that

boundedness of (αi, βi) for i = 1, 2 implies those of vi. �

With the above definitions in mind, we interconnect the identifier (7.8) and

the internal model (7.5) by letting θ in (7.5) be the same state variable of (7.8),

and by letting in (7.8) α = η and β = GT η̇ = (θT ⊗ Ine)η + e, i.e.
Ṙ = 0

v̇ = 0

θ̇ = 0


R+ = µR + γ(η)γ(η)T

v+ = µv + γ(η)
(
(θT ⊗ Ine)η + e

)
θ+ ∈ pE(R

†v).

(7.21)

7.3.3 The Stabilizer

The stabilizer is defined as the composition of a continuous-time output feed-

back controller for the cascade (x, η, z) and a clock subsystem that activates the
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update law of the identifier. It reads as follows:{
τ̇ = 1

ξ̇ = Hξ(θ)ξ +Hy(θ)y +Hη(θ)η

(τ, ξ, y, η) ∈ [0,T]× Rnξ+ny+ned{
τ+ = 0

ξ+ = ξ

(τ, ξ, y, η, θ) ∈ [T,T]× Rnξ+ny+(ne+1)d

(7.22)

with state (τ, ξ) ∈ R× Rnξ , nξ ∈ N, and output

u = Dξ(θ)ξ +Dy(θ)y +Dη(θ)η . (7.23)

The parameters T,T > 0 define the jump times, while T must be taken suffi-

ciently large to achieve closed-loop stability (see Proposition 7.2), T is only con-

strained to be larger or equal to T. In this way the update law can be triggered

with non-periodic timing strategies in the limits of the stability constraints. The

subsystem ξ is instead a continuous-time system that is designed to stabilize the

closed-loop system during flows and with w = 0. More precisely, (7.22)-(7.23) is

designed so that:

P1. Hξ, Hy, Hη, Dξ, Dy and Dη are locally Lipschitz functions of θ.

P2. The matrix

F (θ) =

A+BDy(θ)C BDη(θ) BDξ(θ)

GCe Φ(θ) 0

Hy(θ)C Hη(θ) Hξ(θ)

 (7.24)

is Hurwitz for all θ ∈ E .

Remark 7.2. We remark that, in view of Lemma 7.2, P1 and P2 can be always

achieved. As a matter of fact, θ is available for feedback and the only matrix in

the equations of (x, η) that depends on θ is Φ(θ), whose dependency is smooth.

4

229



7.3.4 The Overall Regulator

The overall regulator, obtained by interconnecting the subsystems (7.5), (7.21),

(7.22), (7.23), is thus a hybrid system described by the following equations
τ̇ = 1

η̇ = Φ(θ)η +Ge

Ṙ = 0, v̇ = 0, θ̇ = 0

ξ̇ = Hξ(θ)ξ +Hy(θ)y +Hη(θ)η

(τ, η, R, v, θ, ξ, y) ∈ [0,T]× Rned ×Z × Rd+nξ+ny

τ+ = 0

η+ = η

R+ = µR + γ(η)γ(η)T

v+ = µv + γ(η)
(
(θT ⊗ Ine)η + e

)
θ+ ∈ pE(R

†v)

ξ+ = ξ

(τ, η, R, v, θ, ξ, y) ∈ [T,T]× Rned ×Z × Rd+nξ+ny

(7.25)

with input y and with output

u = Dξ(θ)ξ +Dy(θ)y +Dη(θ)η . (7.26)

7.4 Asymptotic Properties of the Regulator

We let for convenience w := (w, τ), χ := (x, η, ξ) and

sw(w) := col(Sw, 1)

gw(w) := col(w, 0)

Gz(z, χ) := {µR + γ(η)γ(η)T} × {µv + γ(η)((θT ⊗ Ine)η + e)}

E(θ) := col(P +BDy(θ)Q,GQe, Hy(θ)Q)

L(θ) := col(M +BDy(θ)R,GNe, Hy(θ)N).
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Then, the closed loop system given by (7.1), (7.5), (7.21), (7.22), (7.23) reads as

follows
ẇ = sw(w)

χ̇ = F (θ)χ+ E(θ)w + L(θ)ν

ż = 0

θ̇ = 0


w+ = gw(w)

χ+ = χ

z+ = Gz(z, χ)

θ+ ∈ pE(R
†v)

(7.27)

with flow and jump sets given by C := W × [0,T] × Rnχ × Z × Rd × N and

D := W × [T,T]×Rnχ ×Z ×Rd ×N , being nχ := nx + ned+ nξ and N ⊂ Rnν an

arbitrarily large compact set. In the definition of C and D we restricted the flow

and jump sets of (w, ν) to the compact set W ×N . In this way we consider only

solutions for which w(t) ∈ W and ν(t) ∈ N . Since W is assumed to be forward

invariant for the exosystem (7.2), we maintain completeness of the solutions for

all inputs ν satisfying ν(t, j) ∈ N .

As long as nw ≤ d, the Cayley-Hamilton theorem guarantees the existence of

ω ∈ Rd such that the exosystem’s state matrix S satisfies

Sd − ωdSd−1 − · · · − ω2S − ω1I = 0 . (7.28)

As mentioned in the previous sections, if the internal model unit (7.5) is imple-

mented with θ = ω, for any ω for which (7.28) holds, then asymptotic regulation

is achieved. As we constrained θ to range in E , we will eventually rely on the

following assumption:

Assumption 7.4. There exists ω ∈ E such that (7.28) holds.

The following Proposition, which is the main result of the chapter, states the

main asymptotic properties of the proposed regulator.

Proposition 7.2. Suppose that Assumptions 7.1 and 7.3 hold and let (7.22) be chosen
such that P1 and P2 hold. Then there exists T?

1, such that if T ≥ T?
1, all the solutions

of (7.27) are bounded. If in addition Assumption 7.4 holds, for any ε > 0 there exist
T?

2 ≥ T?
1 and ν, c ≥ 0 such that, if T ≥ T?

2, for each complete solution pair to (7.27)

for which η is (J, ε)-PE, for some J ∈ N, and |ν|∞ ≤ ν̄ the following holds

lim sup |e| ≤ c lim sup |ν| . (7.29)
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With reference to the proof of Proposition 7.2 (that is below this paragraph),

we note that boundedness of the trajectories is obtained if T is larger than a quan-

tity that only depends on the closed-loop system’s data and that can be fixed after

the regulator is designed. The bound (7.29) is instead more complex. It is in fact

a property guaranteed just along the trajectories for which η is (J, ε)-PE, for some

(J, ε) ∈ N × R∗+, and only if T is larger and lim sup |ν| is smaller than constants

that, in general, depend on ε. Therefore the bound (7.29) is local in ν(t), with

the same constants, though, that work for any trajectory for which η is (J ′, ε′)-PE

with J ′ ∈ N and ε′ ≥ ε. We also remark that there is no uniformity in the con-

vergence (7.29), as the convergence rate strongly depends on the particular J for

which the (J, ε)-PE condition holds. This, however, matches with the intuition

that the correct adaptation can take place only after the input signal to the iden-

tifier becomes sufficiently informative. Therefore, uniformity in the choice of

T?
2 and in the convergence (7.29) is possible only inside the class of solutions to

the closed-loop system that are (J, ε)-PE with the same J and ε. Finally we note

that if ν = 0, i.e. if no unmodeled disturbances are present, then (7.29) implies

asymptotic regulation, i.e. e(t, j)→ 0.

Proof of Proposition 7.2. The existence of T?
1 such that for T ≥ T?

1 the maximal

trajectories of (7.27) are complete and bounded follows from standard “slow-

switching” arguments (see for instance (Hespanha and Morse, 1999)) once noted

that F (θ) and E(θ) are bounded uniformly in θ and boundedness of η implies

those of z. In proving the second claim, we articulate the discussion in the fol-

lowing 4 points.

1) Quasi steady state of the stabilized cascade χ
We prove now that during the flow intervals the system χ evolves towards a

“quasi” steady state determined by w and parametrized by θ. As F (θ) is Hurwitz

for each θ ∈ E , there exist Lipschitz maps P : E → Rnχ×nχ and Π : E → Rnχ×nw ,

with P (·) having symmetric and positive definite values, that are point-wise so-

lutions to

F (θ)TP (θ) + P (θ)F (θ) = −Inχ
Π(θ)S = F (θ)Π(θ) + E(θ) .
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Define the function

V (w, χ, z, θ) :=
(
χ− Π(θ)w

)T
P (θ)

(
χ− Π(θ)w

)
.

Then, by letting σ := min{λ ∈ R : λ ∈ σ(P (θ)), θ ∈ E} and σ̄ := max{λ ∈ R :

λ ∈ σ(P (θ)), θ ∈ E}, simple computations show that V fulfills σ|χ − Π(θ)w|2 ≤
V (w, χ, z) ≤ σ̄|χ− Π(θ)w|2 in the whole state space and

LFV (w, χ, z, θ) ≤ −λV (w, χ, z, θ) + r0|ν|2 (7.30)

for all (w, χ, z, θ) such that (w, χ, z, θ) ∈ C, with F := (Sw, F (θ)χ + E(θ)w +

L(θ)ν, 0) and with λ > 0. On the other hand, for all (w, χ, z, θ) ∈ D and with

(w+, χ+, z+, θ+) = (w, χ,Gz(z, χ), (µR + γ(η)γ(η)T )†(µv + γ(η)(θT ⊗ I)η + e)) we

obtain

V (w+, χ+, z+, θ+) ≤ σ̄|χ− Π(θ+)|2

≤ σ̄
(
|χ− Π(θ)w|2 + |Π(θ)w − Π(θ+)w|2

)
≤ r1V (w, χ, z, θ) + r2|θ − θ+|2

(7.31)

with r1 = σ̄/σ and with r2 > 0 properly chosen by using the fact that w ∈ W ,

θ+ ∈ E and Π(·) is Lipschitz on E .

2) Properties of the identifier
We show now that if the flow is long enough the distance of χ to its quasi steady

state at jump times, where adaptation takes place, is sufficiently small to con-

clude that if η is persistently exciting, then the identification problem associ-

ated to the steady-state signals has an unique optimum. Let Πx(θ) ∈ Rnx×nw ,

Πη(θ) ∈ Rnη×nw and Πξ(θ) ∈ Rnξ×nw be such that Π(θ) = col(Πx(θ),Πη(θ),Πξ(θ))

and, for i = 1, . . . , d, let Πηi(θ) be such that Πη(θ) = col(Πη1(θ), . . . ,Πηd(θ)). As a

consequence of the structure of the matrix Φ(θ), we have{
Πηi(θ)S = Πηi+1

(θ), i = 1, . . . , d− 1

Πηd(θ)S = (θT ⊗ Ine)Πη(θ) + Πe(θ)
(7.32)
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with Πe(θ) := CeΠx(θ) +Qe. Equation (7.32) also yields

η = Πη(θ)w + δα

(θT ⊗ Ine)η + e = Πηd(θ)Sw + δβ

where δα := η−Πη(θ)w and δβ := (θT ⊗Ine)(η−Πη(θ)w)+(e−Πe(θ)w) that satisfy

|(δα, δβ)|2 ≤ r3V (w, χ, z, θ) + r4|ν|2, (7.33)

with r3 := (1 + |Ce|2 + |E|2ne)/σ and r4 := |Ne|2. The identifier subsystem

can be thus seen as a system with input (α, β) = (α? + δα, β
? + δβ), where

(α?, β?) = (Πη(θ)w,Πηd(θ)Sw) and (δα, δβ) defined as before. This yields two

consequences:

1) Single-valued Optimum: As ν(t, j) ∈ N for each solution pair to (7.27), and

λ and r1 in (7.30)-(7.31) are constants, we can assume without loss of general-

ity that T?
1 is chosen large enough so that (7.30)-(7.31) can be turned, by us-

ing standard average dwell-time conditions (Cai et al., 2008; Liberzon et al.,

2014), to a ISS-Lyapunov function (Cai and Teel, 2013). This in turn implies

the existence of a ∆0 > 0, depending on E and N , such that, for each solution

pair ((w, χ, z, θ), ν) to (7.27) there exists s̄1 > 0 such that |χ(t, j)| ≤ ∆0 for all

(t, j) ∈ dom(w, χ, z, θ)|≥s̄1 . Thus, in particular there exists ∆1 > 0 such that

|(α(t, j), β(t, j))| = |(η(t, j), (θ(t, j)T ⊗ Ine)η(t, j) + e(t, j))| ≤ ∆1 for all (t, j) ∈
dom(w, χ, z, θ)|≥s̄1 . Also, as W and E are compact, there exists ∆2 > 0 such

that |(α?(t, j), β?(t, j))| = |(Πη(θ(t, j))w(t, j),Πηd(θ(t, j))Sw(t, j))| ≤ ∆2 for all

(t, j) ∈ dom(w, χ, z, θ). Suppose that α = η is (J, ε)-PE, for some (J, ε) ∈ N× R+.

Then, in view of Lemma 7.3, there exist (J ′, ε′) ∈ N × R>0 and δ̄ > 0, depending

on E ,N and ε, such that |(δα(tj, j), δβ(tj, j))| ≤ δ̄ for all j ≥ J implies that (α?, β?)

is (J ′, ε′)-PE. Equation (7.30) gives

V (w(tj, j), χ(tj, j), z(tj, j), θ(tj, j)) ≤ V̄ e−λT + r0|ν|2∞/λ

for all j ∈ N such that tj + j ≥ s̄1 and with V̄ := σ̄(∆2
0 + |Π(E)|2|W |2). Therefore,

as long as

|ν|∞ ≤ ν̄ := δ̄

√
1

3
max

{
λ

r0r3

,
1

r4

}
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T ≥ T?
ε := max

{
T?

1, (1/λ) log
(
3V̄ r3/δ̄

2
)}

then (7.33) implies that every solution pair ((w, χ, z, θ), ν) to (7.27) with T ≥ T?
ε

for which η is (J, ε)-PE fulfils |(δα(tj, j), δβ(tj, j))| ≤ δ̄ for all j ≥ J such that

tj + j ≥ s̄1. Noting that (J, ε)-PE implies (j, ε)-PE for all j ≥ J , we thus conclude

that there exists a J2 ≥ max{J, J ′, infj∈N tj + j ≥ s̄1} such that α? = Πη(θ)w is

(J2, ε
′)-PE, and the map θ◦α?,β?(t, j) is a singleton for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄2 ,

having denoted s̄2 := tJ2 + J2.

2) Stability: In view of the aforementioned bounds ∆1 and ∆2 on (α, β) and

(α?, β?), Proposition 7.1 implies that, with the same ρ > 0, for each solution

pair ((w, χ, z, θ), ν) to (7.27) there exist z? : dom(w, χ, z, θ)→ Z such that, for all

(t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄2) and with z̃ := z − z?, we have

|z̃+|2 ≤ µ2|z̃|2 + ρr3V (w, χ, z, θ) + ρr4|ν|2, (7.34)

where we omitted the argument (t, j) and we let z̃+ := z̃(t, j+1). In the following,

for an arbitrary ε > 0, we let Sε be the class of the solution pairs ((w, χ, z, θ), ν) to

the closed-loop system with T ≥ T?
ε and such that α is (J, ε)-PE for some J ∈ N.

We stress that the above discussion, and thus in particular, that α? = Πη(θ)w is

(J2, ε
′)-PE and θ◦α?,β?(t, j) is a singleton for t+ j ≥ s̄2, holds for all such solutions,

with only J2 and s̄2 that possibly depend on the particular solution. In the fol-

lowing we will make reference to the solution-dependent quantities introduced

above (such as J2 and s̄2) with the remark that they are meant to be defined in

the same way as before and they refer to the particular solution considered.

3) (J, ε)-PE and Assumption 7.4 yield the internal model property
We show now that the single-valued solution to the identification problem asso-

ciated to the quasi steady-state inputs is independent on θ and coincides with ω

of (7.28). In view of Assumption 7.4, there exists ω ∈ E such that (7.28) holds.

As a consequence, (7.32) yields

Πηd(θ)S = Πη1(θ)S
d = Πη1(θ)

(
ωdS

d−1 + · · ·+ ω2S + ω1I
)

(7.35)

Then, for any solution pair ((w, χ, z, θ), ν) to the closed-loop system, (7.32) and
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(7.35) yield

|β?(tj, j)− (ωT ⊗ Ine)α?(tj, j)|

=
∣∣∣(Πηd(θ(t

j, j))S − Πη1(θ(t
j, j))(ωdS

d−1 + · · ·+ ω1I)
)
w(tj, j)

∣∣∣
= 0

for all (tj, j) ∈ dom(w, χ, z, θ). By definition of Jα?,β? in (7.10), this also implies

thatJα?,β?(ω)(t, j) = 0, and thus that ω ∈ θ◦α?,β?(t, j), for all (t, j) ∈ dom(w, χ, z, θ).

Pick ((w, χ, z, θ), ν) ∈ Sε, as α? is (J2, ε
′)-PE and θ◦α?,β?(t, j) is single valued for all

(t, j) ∈ dom(w, χ, z, θ)|≥s̄2 , then necessarily

θ◦α?,β?(t, j) = {ω} ⊂ E , ∀(t, j) ∈ dom(w, χ, z, θ)|≥s̄2 . (7.36)

A further consequence of (7.32) is that

Πe(ω) = Πηd(ω)S − (ωT ⊗ Ine)Πη(ω)

= Πη1(ω)
(
Sd − ωdSd−1 − · · · − ω1I

)
= 0.

(7.37)

so as if lim sup |χ−Π(ω)w| is proportional to lim sup |ν|, then (7.29) is proved. In

the next paragraph we show that this is the case whenever T is sufficiently large.

4) Large T yields small gain
Finally, we show here that if the jump times are distant enough, a small-gain like

condition holds, and “modulo ν”, θ tends to the optimum ω and χ to the error-

zeroing steady state Π(ω)w. Thus the claim of the proposition follows. Pick

((w, χ, z, θ), ν) ∈ Sε. As ω ∈ E , in view of (7.36) and of Proposition 7.1, for all

(t, j) ∈ dom(w, χ, z, θ)|≥s̄2 we have ω = θ?(t, j), with θ?(t, j) the unique element

of pE(R?(t, j)†v?(t, j)). Then Lemma 7.4 can be invoked to claim the existence of

J3 ≥ J2 and r5 ≥ 0, depending on ε, such that, with s̄3 := tJ3 + J3, the following

holds

|θ(t, j)− ω|2 ≤ r5|z̃(t, j)|2 (7.38)

for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄3 . As a consequence of (7.38) and (7.34), for all

(t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3), we obtain

|θ − θ+|2 = |θ − ω + ω − θ+|2 ≤ |θ − ω|2 + |θ+ − ω|2 ≤ r5

(
|z̃|2 + |z̃+|2

)
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≤ r6|z̃|2 + r7V (w, χ, z, θ) + r8|ν|2,

with r6 := r5(1 + µ2), r7 := r5ρr3, r8 := r5ρr4 and where again we omitted the

argument (t, j) and we let θ+ := θ(t, j + 1) and z̃+ := z̃(t, j + 1). We further

develop (7.31) to obtain, for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3)

V (w+, χ+, z+, θ+) ≤ r9V (w, χ, z, θ) + r10|z̃|2 + r11|ν|2,

being r9 := r1 + r2r7, r10 := r2r6 and r11 := r2r8. In summary, for all (t, j) ∈
dom(w, χ, z, θ)|≥s̄3 such that t ∈ (tj, tj+1) we have:

V̇ (w, χ, z, θ) ≤ −aV (w, χ, z, θ) + r0|ν|2, D+|z̃|2 = 0 (7.39)

and for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3)

V (w+, χ+, z+, θ+) ≤ r9V (w, χ, z, θ) + r10|z̃|2 + r11|ν|2

|z̃+|2 ≤ µ2|z̃|2 + ρr3V (w, χ, z, θ) + ρr4|ν|2,
(7.40)

where we omitted the argument (t, j) and we let (w+, χ+, z+, θ+, z̃+) := (w(t, j +

1), χ(t, j + 1), z(t, j + 1), θ(t, j + 1), z̃(t, j + 1)). We then have the following:

Lemma 7.5. There exist c0 ≥ 0 and T?
2 ≥ T?

ε , independent on J3, such that for any
solution pair in Sε with T ≥ T?

2

lim sup(V (w, χ, z, θ) + |z̃|2) ≤ c0 lim sup |ν|2.

Lemma 7.5 (proved at the end of this proof) implies in particular

lim sup |χ− Π(θ)w| ≤ c1 lim sup |ν|

lim sup |θ − ω| ≤ c2 lim sup |ν|

for c1 :=
√
c0/σ and c2 :=

√
r5c0. In view of (7.37), Πe(ω) = 0, so that

|e| = |e− Πe(ω)w|

≤ |Ce||χ− Π(ω)|+ |Ce||w||Π(θ)− Π(ω)|+ |Ne||ν|.

As Π(·) is Lipschitz on E , this suffices to conclude (7.29), with c := |Ce|c1 +
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|Ce||W |LΠc2 + |Ne|, where LΠ is the Lipschitz constant of Π on E . The result of

the Proposition follows then from the arbitrariness of ε. �

Proof of Lemma 7.5. Pick any k ∈ (0, a) and q ∈ (µ2, 1), and let

`1 ∈ (0, q − µ2) , `2 ∈ (1, q/(µ2 + `1)) .

then 0 < `1 < 1, `2 > 1 and (`1 + µ2)`2 < q < 1. Let

ψ ≥ r10/`1, T?
2 := max

{
T?
ε ,

1

k
log

(
r9 + ρr3ψ

q

)}
(7.41)

pick in the jump set of (7.27) T ≥ T ≥ T?
2 and let

h ∈ (0, log(`2)/T). (7.42)

Define the function

W (w, χ, z, θ, z̃) := ekτV (w, χ, z, θ) + ψe−hτ |z̃|2.

Then, clearly,

V (w, χ, z, θ) + |z̃|2 ≤ max{1, ehT/ψ}W (w, χ, z, θ, z̃). (7.43)

Pick a solution (w, χ, z, θ) ∈ Sε with T ≥ T ≥ T?
2. Then, using (7.22), for all

(t, j) ∈ dom(w, χ, z, θ)|≥s̄3 such that t ∈ (tj, tj+1), (7.39) yields (we omit the time

dependency)

Ẇ (w, χ, z, θ, z̃) ≤ −aWW (w, χ, z, θ, z̃) + r12|ν|2, (7.44)

with aW := min{a−k, h} and r12 := ekTr0. As τ+ = 0, for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3),
instead, (7.40) yields

W (w+, χ+, z+, θ+, z̃+) = (r9 + ρr3)V (w, χ, z, θ) + (r10 + ψµ2)|z̃|2 + r13|ν|2,

with r13 := r11 + ρr4ψ. As for each (t, j) ∈ Γ(dom(w, χ, z, θ)), necessarily, T ≤
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τ(t, j) ≤ T, we get

W (w+, χ+, z+, θ+, z̃+) ≤ (r9+ρr3ψ)e−kTekτV (w, χ, z, θ)+(r10+ψµ2)ehTe−hτ |z̃|2+r13|ν|2.

(7.41)-(7.42) and T ≥ T?
2 gives:

(r9 + ρr3ψ)e−kT ≤ (r9 + ρr3ψ)e−kT?2 ≤ q

(r10 + ψµ2)ehT ≤ ψ(r10/ψ + µ2)`2c ≤ ψq,

so that we obtain

W (w+, χ+, z+, θ+, z̃+) ≤ qW (w, χ, z, θ, z̃) + r13|ν|2, (7.45)

and the claim follows from (7.43), (7.44) and (7.45). �

7.5 An Example

We consider here a plant of the form (7.1) with

A =

 1 1 1

−1 0 1

1 1 0

 , B =

0 0

0 1

1 2

 .

The control goal is to drive y1 := x2 to a desired set point y?1 chosen by the

user and to make y2 := x3 follow a sinusoid y?2(t) at any desired frequency, de-

spite the disturbances Pw(t) acting on the system. We suppose that w(t) is a

combination of a constant term, a harmonic at the same frequency of y?2(t) and

a third unknown harmonic. The disturbance Pw(t) and the references y?1 and

y?2(t) can be thus modeled as outputs of an exosystem of the form (7.2) with

S := blkdiag(S1, S2, S3), where

S1 = γ1

(
0 1

−1 0

)
, S2 = γ2

(
0 1

−1 0

)
, S3 = 0
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Figure 7.2: Simulation results: The first plot shows the time evolution of the state x, the
second plot the regulation error e(t), the third plot is a zoom on the regulation error at a
scale of the order of 10−10 and the last plot shows the evolution of the parameters θ.

and with γ1, γ2 ∈ R∗+ and e2 := y2 − y?2, that are obtained as in (7.3) with the

choice

Ce =

(
0 1 0

0 0 1

)
Qe :=

(
0 0 0 0 −1

−1 0 0 0 0

)

and noting that different set-points y?1, as well as different amplitudes and phases

for y?2(t) can be obtained by changing the initial conditions of w and need not to

be known at the design stage. The amplitude and the phase of the disturbance

Pw(t) depends, other on w(0), on the matrix P which is not known by the de-

signer. It is worth noting that if we let x∗ := Πw and u∗ := Γw be the corre-
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sponding steady state functions such that e∗ := Cex
∗ +Qew = 0, then, by letting

x̃ := x− x∗, we obtain that e = 0 and u = u? imply1

˙̃x1 = x̃1 ,

so that the plant considered is not minimum phase relatively to the graph of Π

and, as a consequence, this example does not fit in the frameworks addressed in

the existing literature. In the simulation, for simplicity, we used a state-feedback

stabilizer, i.e. we assumed y = col(e, x1) and u = K(θ)y with K(θ) properly

designed. Figure 7.2 shows the result of a simulation of the proposed control

system implemented with d = 5, µ = 0.9 and with T = 30s. In the simulation we

let y∗2 = 5, γ1 = 1, γ2 = 2, w(0) = col(1,−1, 0, 1, y∗2), x(0) = col(5,−10, 10) and

P =

 1 1 0 1 −1

−1 0 0 1 1

0 0 1 0 0

 .

1This can be verified by noting that Π and Γ fulfill the regulator equations ΠS = AΠ +BΓ +P
and 0 = CeΠ +Qe, and that e = 0 implies x̃2 = x̃3 = 0.
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Conclusion

This last part of the thesis was dedicated to the design of adaptive regula-

tors for multivariable systems, by leveraging on the post-processing regulator

of Chapter 2 and on the identification framework of Chapter 4. In particular,

Chapter 6 presented a general post-processing design procedure hinging on a

“non-equilibrium” framework (Byrnes and Isidori, 2003), in which the regulator

equations (6.4) are allowed to admit solutions (x?, u?) that are not necessarily

dependent only on the exosystem variables. The uncertainties typically char-

acterizing (x?, u?) and the need to face the chicken-egg dilemma motivated the

adoption of an adaptive internal model, in which adaptation is cast as an iden-

tification problem. The chicken-egg dilemma is taken on by moving the overall

uncertainty on (x?, u?) (coming from the uncertainties in the plant and exosys-

tem and form the fact that the stabilizer is still floating when the structure of the

internal model is fixed) to the identification level, where algorithms can be de-

veloped to deal with it. In line with the identification viewpoint, we considered

a more suitable approximate, rather than asymptotic, regulation objective, and

the prediction error ε of the identified model was shown in Theorem 6.1 to be di-

rectly related to the bound on the asymptotic regulation error, with asymptotic

regulation that is obtained only in the idealistic case in which a “true model”

exists in the model set. General requirements are introduced to guide the design

of the identifier (Requirements 6.1 and 6.3) and the other degrees of freedom

related to stabilization (Requirement 6.2), with the performances of the final
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regulator that result to be dependent on the “quality” of the internal model, in-

fluencing ε?, and that of the stabilizer, influencing the asymptotic distance to the

ideal steady state (Theorem 6.1).

We presented some representative design examples to illustrate how the pro-

posed framework can embrace different regulation problems. A high-gain strat-

egy was proposed to systematically deal with the class of systems possessing a

(partial) normal form, with the dimension of the input not necessarily equal to

those of the regulation errors. Two examples have been given to show how ad-

ditional measured outputs can be easily included in the stabilization loop, thus

showing how in this post-processing approach we can solve problems that do not

fit in the previous pre-processing framework (even in the non-adaptive case). Fi-

nally, we presented a possible (continuous-time) least-squares approach to the

problem of adaptive regulation for general multivariable linear systems, based

on the separation of the time-scales of the learning dynamics and the system

evolution.

Chapter 7 proposed a different adaptive solution for linear systems, by using

discrete-time identifiers and a regulator that is also identifier-dependent. Inter-

estingly enough, even if in different terms, the main requirement on the iden-

tifier was to be slow enough, as it happened for the approach of Section 6.4. As

a matter of fact, we have shown that if the identifier is slow enough the regula-

tor ensures boundedness of the closed-loop trajectories and, if an upper bound

on the order of the exosystem is known, then along the solutions that satisfy a

persistence of excitation condition asymptotic regulation is achieved. We also

showed robustness of the proposed scheme to sufficiently small unmodeled dis-

turbances.

The material presented is far from being a complete answer to the problem of

multivariable nonlinear output regulation, which is definitely an open and chal-

lenging research field. The strength of the framework of Section 6.1 is that the

solution to the regulator equations are just used in a “qualitative" way in order

to select the most appropriate internal model and identifier, this being in sharp

contrast with existing design principles that have definitely a “friend-centric"

nature. Moreover, many research directions are open by the proposed vision.

Large emphasis has to be put in better supporting the identifier and stability re-

quirements so as to enlarge the class of systems that can be dealt with by using

the general approach of Section 6.1. For what concerns the identification prob-
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lem, a road that is definitely worth to investigate is the adoption of universal
approximators (such as Wavelets and Neural Networks), which permit to further

weaken the chicken-egg dilemma, dealing to practical regulation without virtu-

ally any a-priori knowledge on the system.
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Conclusions and Future Directions

In this thesis we dealt with the problem of output regulation for nonlinear

systems under different points of view, and the presented results touched

various fundamental pillars of the theory. The first part was dedicated to

the contributions concerning the robustness issue and the structural properties

of the nonlinear regulators. We presented a broad introduction to output regu-

lation for linear and nonlinear systems (Chapter 1), highlighting the main limits

and drawbacks of the state-of-art solutions and proposing a new high-level vi-

sion on the problem (chapters 2 and 3). The re-formalization of the concept of

robustness given in Section 3.4 provides a formal playground in which the ro-

bustness issues relative to arbitrary asymptotic properties can be analyzed in a

generalized framework. This opens new questions about robustness, a topic that

constituted the most celebrated property of the linear regulator and that was al-

most forgotten in most of the recent nonlinear literature. At a conceptual level,

though, the most important contribution of the three chapters is perhaps the

general vision presented about the problem, which leaded us to formulate the

chicken-egg dilemma and to become aware of the fact that the community was

essentially avoiding to face the problem. We thus presented sufficient conditions

for the existence of regulators of the post-processing type (Section 2.3), by show-

ing how with very few additional effort we could deal with additional measured

outputs and control inputs, thus overcoming one of the most annoying concep-

tual limitations of the existing approaches. Even if it is true that the regulator
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presented in Section 2.3 does not provide conditions easy enough to qualify as

“constructive”, the overall insight on the problem permitted us to realize that

the chicken-egg dilemma could be dealt with using adaptation.

In this direction, Chapter 4 presented an original framework where to cast

adaptive control problems in system identification terms, maintaining a formal

control theoretical playground. For clarity of exposition,in Chapter 5 we chose

to focus on an adaptive observation problem, as anyway the problem considered

owns the same essential features of the adaptive output regulation problem. In

these chapters the main conceptual contribution was the way we looked at sys-

tem identification schemes in terms of (hybrid) systems, by re-framing the es-

timation phase in terms of a stability property with respect to an ideal optimal

steady state defined by the inputs. Thus, we have shown how the identifiers

fitting in the proposed framework can be co-designed with high-gain observers

with the resulting state estimation error that is directly related to the predic-

tion capabilities of the identified model. This latter result is in perfect line with

the system identification viewpoint, in which no such thing as a “true model”

usually exists, and where, by analogy, the property of asymptotic state estima-
tion (or later regulation) is idealistic and somewhat pointless. The “identifier

requirement”, namely the stability and regularity properties asked to an identi-

fier to work in the proposed framework, was supported by different examples,

thus showing how that requirement is not so restrictive and, on the contrary, fits

nicely on the usual properties (such as the persistence of excitation) observed in

the identification algorithms. Moreover, interestingly enough, the same identi-

fier requirement comes out as a sufficient condition in all the approaches con-

sidered in the chapters 5, 6 and 7, although coming from different thoughts.

Chapter 6 is where the vision of Chapter 1 and the theory of Chapter 4 merge

in a framework for adaptive nonlinear output regulation problems. The concep-

tual contribution of this chapter was the intuition that the chicken-egg dilemma

could be faced by means of adaptation, as anyway from the identification view-

point there is no much difference between plant’s or exosystem’s uncertainties

and the indeterminateness coming from the chicken-egg dilemma. The gen-

eral framework proposed at the beginning of the chapter consists of a generic

guideline and a meta-result that, however, is quite tautological (on the other

hand the more one the discussion is general the less one can conclude). Never-

theless, the guidelines were applied to state-of art classes of problems, such as
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minimum-phase (partial) normal forms, and to problems not solved yet, such

as general multivariable linear systems and non-square multivariable (partial)

normal forms. Finally, Chapter 7 presented an alternative and more powerful

approach to the problem of adaptive output regulation for linear systems that

uses discrete-time identifiers. Interestingly enough, the identifier was designed

by following the same guidelines presented in Chapter 4, and the key to stability

was, as in the other approaches, a separation of the time-scales of the learning

dynamics and the controlled system’s evolution.

Overall, the thesis started from the simple and plain problem and solution

of the linear case and ended in the quite complex and intricate problem of the

general nonlinear case, showing how the linear problem was just the tip of the

iceberg and how the interplay of identification and control presented as a quite

natural solution to deal with the increasing complexity that goes with the in-

creasing generality.

Where are we going?
The work presented in this thesis leaves perhaps more open questions than the

answered ones, and “what will be the future of output regulation?” is a challenging

point that, however, deserves a little of introspection. If we look at the prob-

lem in a single-experiment perspective, i.e. we seek for designs that care about

the results one might have by performing “isolated experiments” (essentially all

the existing literature so far), the research challenges are the old ones: we need

more advanced observers and stabilization techniques to deal with larger classes

of systems. In recent years the regulation theory has been extended on networks

(see e.g. Wieland et al., 2011; Isidori et al., 2014), and we are at the dawn of

output regulation of hybrid system (Marconi and Teel, 2013; Cox et al., 2013;

Carnevale et al., 2016), which represent, perhaps, the most probable subject of

the closest future. Hybrid systems are interesting per se, and also the linear

case is still an open, very challenging, problem, sharing many crucial features of

nonlinear continuous-time systems as, for instance, the fact that the exosystem

is in general far to be sufficient for the design of the internal model (Carnevale

et al., 2016). Moreover, hybrid systems also candidate as a nice mathematical

playground in which multiple-experiment problems (see below) can be described.

Another hot point concerning the single-experiment class of problem is the “co-
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design” of stabilizers and internal model units so as to solve the chicken-egg

dilemma. We used adaptation in this thesis, though that is not the unique way to

proceed, and a systematic procedure for the synergistic design of the two units is

a definitely open research field, still completely unexplored. For what concerns

the design of adaptive regulators, we have just hit the surface of the problem,

and a lot of work is needed (just think that before the regulators proposed in

the last part of the thesis also the general linear case was open). Nevertheless,

the main criticism that people usually moves to the adaptive approaches is that

the heavy additional complexity that they introduce is not worth with respect

to the relatively-small additional performance that it guarantees. As a matter of

fact, phrases of the kind: “it is sufficient to take the gains large enough to obtain the
same asymptotic bound” are very often stated when debating about the effective

(dis)advantage of adaptation. Those critics are probably true, but they hold true

because of the conceptual limits of the a single-experiment perspective, in which

a single “MATLAB simulation” exhausts the whole spectrum of the applications

of interest. Thus an interesting milestone in the future research on output reg-

ulation will be to switch from a single to a multi-experiment perspective, where

complex real world problems can be faced by “concatenating” different regula-

tion problems and by developing a “theory of concatenation” to do that in au-

tonomy. Multi-experiment means that we can endow a control system with the

ability to store different internal models and a “logic” (that is an internal model

itself) allowing to switch from one internal model to another to accomplish an

uncountable number of complex tasks. In this perspective, adaptation is key,

as new internal models need to be grown, tuned and deleted in autonomy, and

the “logic” that allows to build complex behavior out of their composition has

to be learned from observations. If a distinction between stabilizer and internal

model unit is done, this also means that the stabilizer must evolve with the in-

ternal model, for instance the “control gains” can be taken ever smaller as the

knowledge on the task to execute and of the environment grows. This in turn

is consistent with our everyday experience: the first time we perform a motor

task we move very rigidly (the “high-gain” prevails), as soon as we get familiar

with the right movements to perform, we go open-loop and a high-gain feedback

is not needed anymore (a guy that, by following the single-experiment perspec-

tive, insists on taking the gains high, instead of using adaptation, will perform

worse). In this perspective the integration of hybrid systems in the regulation
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framework seems to be necessary, as it directly enters in what would be a more

suitable representation theory of complex tasks, for which a single ODE, such as

an exosystem, is reductive. The quest of extending the theory of representation

of the outside world also motivates looking towards a stochastic framework, so as

we can represent “partial”, “approximate” or “high-level” information about the

outside world without capturing all the determinism. In other words,we can go

beyond the concept of “periodicity” for a more suitable notion of “recurrence”

of tasks.

In conclusion, we can say that output regulation for nonlinear systems is

very far to be a closed problem, and the new mathematical tools represented

by (stochastic) hybrid systems project us towards a new representation theory

and an underlying multi-experiment perspective that is by now essentially un-

explored. This, in turn, motivates the need of a copious amount of research, with

a ever more high impact in both theoretical an practical terms.
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A
Hybrid Systems

In this appendix we very briefly collect the main notions and notations about

hybrid systems borrowing the formalism and the framework from (Goebel et al.,

2012). For basic concepts about hybrid systems the reader is referred to (Goebel

et al., 2012; Goebel and Teel, 2006; Cai et al., 2007, 2008). We also report the

main notions of stability theory used in the text.

A.1 Hybrid Systems

Let X be a normed vector space. We represent hybrid systems on X by means of

the following differential and difference inclusions (Goebel et al., 2012):

H :

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(A.1)

where x ∈ X is the state, F,G : X ⇒ X denote respectively the flow and jump
maps and C,D ⊂ X are the flow and jump sets. The set C defines the region of
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the state space where the trajectories may evolve according to

ẋ ∈ F (x).

The set D is instead the region in which the trajectories can jump according to

x+ ∈ G(x).

A.1.1 Hybrid Time Domains, Hybrid Arcs and Solutions

The solutions of (A.1) are defined on hybrid time domains:

Definition A.1. A subset E ⊂ R+ ×N is called a compact hybrid time domain if E
can be written as

E :=
J−1⋃
j=0

(
[tj, tj+1]× {j}

)
,

for some finite sequence 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is called a hybrid time domain if
for all (T, J) ∈ E , the set E ∩ ([0, T ]×{0, 1, . . . , J}) is a compact hybrid time domain.

If E ⊂ R×N is a hybrid time domain and (t, j), (s, i) ∈ E , we write (t, j) ≺ (s, i)

if t+ j < s+ i. The symbols ≺, =, � and � are defined in a similar way. We will

also frequently use the shortcut 0 = (0, 0). With T ∈ R+ we let E|≥T := {(t, j) ∈
E : t + j ≥ T}, supt E := sup{t ∈ R+ : (t, j) ∈ E} and supj E := sup{j ∈ N :

(t, j) ∈ E}.
Hybrid arcs are functions defined on hybrid time domains. Given a hybrid arc

ϕ : domϕ→ X and a (t, j) ∈ domϕ, we let

tj := inf
t∈R

(t, j) ∈ domϕ

tj := sup
t∈R

(t, j) ∈ domϕ

jt := inf
j∈N

(t, j) ∈ domϕ

jt := sup
j∈N

(t, j) ∈ domϕ.

We denote by Γ(ϕ) the set of (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ and by

I(ϕ) the set of (t, j) ∈ domϕ such that t ∈ (tj, t
j) and we let

length(ϕ) := supt domϕ+ supj domϕ.
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If ϕ : domϕ→ X is a hybrid arc converging to a point ϕ̄ ∈ X , we write ϕ(t, j)→
ϕ̄ as a shortcut for

lim
(t,j)∈domϕ
t+j→∞

ϕ(t, j) = ϕ̄.

We also write

lim supϕ

as a short for

lim sup
(t,j)∈domϕ
t+j→∞

ϕ(t, j).

If (ϕn)n is a sequence of hybrid arcs such that the sequence (graphϕn)n con-

verges to the graph graph ϕ̄ of a hybrid arc ϕ̄, then we write

ϕ̄ = gph-limn→∞ ϕ
n.

We say that the hybrid arc ϕ fulfills an average dwell-time condition (Hespanha

and Morse, 1999) with parameters (λ,N0) ∈ R+ × N if

∀(t, j), (s, i) ∈ domϕ,

(s, i) ≺ (t, j) =⇒ j − i ≤ λ(t− s) +N0.
(A.2)

he condition (A.2) ensures persistence of flow intervals in ϕ. We say that a hybrid

arc ϕ satisfies a reverse average dwell-time condition (Hespanha et al., 2005) with

parameters (r,N) ∈ (R+)2 if

∀(t, j), (s, i) ∈ domϕ,

(s, i) ≺ (t, j) =⇒ t− s ≤ r(j − i) +N.
(A.3)

The reverse average dwell-time condition (A.3) ensures persistence of jumps.

We say that a sequence (ϕn)n of hybrid arcs ϕn : domϕn → X is locally even-
tually bounded if for any m > 0 there exists a compact set X ⊂ X and n0 >∈ N
such that ϕn(t, j) ∈ K for all n > n0 and all (t, j) ∈ domϕn with t + j < m. The

sequence is said to be eventually bounded if there exists a compact set X ⊂ X and

n0 >∈ N such that ϕn(t, j) ∈ K for all n > n0 and all (t, j) ∈ domϕn.

A solution to a hybrid system of the form (A.1) is a hybrid arc satisfying the

following definition:
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Definition A.2 (Solution to a hybrid system). A hybrid arc ϕ : domϕ → X is a
solution to (A.1) if ϕ(0) ∈ C ∪ D and

1. For all j ∈ N such that Ij := {t ∈ R+ : (t, j) ∈ domϕ} has non-empty interior

ϕ(t, j) ∈ C ∀t ∈ int Ij

ϕ̇(t, j) ∈ F (ϕ(t, j)) a.e. in Ij.

2. For all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ

ϕ(t, j) ∈ D

ϕ(t, j + 1) ∈ G(ϕ(t, j)).

We call a solution maximal if it cannot be extended further and complete if

its time domain is unbounded. For a hybrid system H, SH(X) denotes the set of

all the maximal solutions of H originating in X ⊂ X . We say that H is forward
complete fromX ⊂ X if every maximal solution originating inX is complete. Let

x ∈ SH and

V : X → R.

We define the Dini derivative of V along the flow of (A.1) at (t, j) ∈ I(x) as

D+V (x(t, j)) = lim sup
h→0+

1

h

(
V (x(t+ h, j))− V (x(t, j))

)
and we often omit (t, j) and write D+V (x) when obvious. We also let

V̇ (x) := D+V (x)

whenever lim sup can be substituted with lim. We also use the short notation

x(t, j)+ := x(t, j + 1),

whenever (t, j) ∈ Γ(x).
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A.1.2 Nominal Well-Posedness and the Hybrid Basic Conditions

Nominal well-posedness, as defined in (Goebel et al., 2012), is essentially a se-

quential compactness requirement on the set of solutions of a hybrid system.

Definition A.3. A hybrid system H is called nominally well-posed if the follow-
ing holds: for every graphically convergent sequence1 (ϕn)n of solutions to H with
ϕn(0)→ ξ ∈ X ,

1. if the sequence (ϕn)n is locally eventually bounded then the sequence (length(ϕn))n

is either convergent or properly divergent to∞ and

ϕ = gph-limn→∞ ϕ
n

is a solution to H with ϕ(0) = ξ and length(ϕ) = limn→∞ length(ϕn).

2. If the sequence (ϕn)n is not locally eventually bounded then there exists a m ∈
R∗+ for which there exists (tn, jn) ∈ domϕn such that limn→∞ |ϕn(tn, jn)| = ∞
and

ϕ = (gph-limn→∞ ϕ
n) |t+j<m

is a maximal solution to H with length(ϕ) = m and

lim
t→supt dimϕ

|ϕ(t, supj domϕ)| =∞.

The following conditions (Goebel et al., 2012) are basic regularity conditions

on the data that allow to conclude nominal well-posedness of a hybrid system:

Definition A.4. A hybrid system of the form (A.1) is said to satisfy the hybrid basic

conditions if:

1. C and D are closed.

2. F is outer semicontinuous2 and locally bounded relative to C, C ⊂ domF , and
F (x) is convex for every x ∈ C.

1i.e. the sequence of sets obtained by taking the graphs of the elements of the sequence of
solutions converges in the usual set-theoretical sense.

2A set-valued map M : X ⇒ X is outer semicontinuous in X if, for all x ∈ X and all
sequences (xn)n and (yn)n such that xn → x, yn ∈M(xn) and yn → y, we have y ∈M(x).
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3. G is outer semicontinuous and locally bounded relative to D, and D ⊂ domG.

Theorem A.1. If (A.1) satisfies the hybrid basic conditions then it is nominally well-
posed.

A.1.3 Hybrid Systems with Inputs

Let U be a normed vector space, a hybrid input (Cai and Teel, 2009) u : domu→ U
is defined as a Lebesgue measurable and locally essentially bounded hybrid arc.

We write a hybrid system with input as3

Hu :

{
ẋ ∈ F (x, u) (x, u) ∈ C
x+ ∈ J(x, u) (x, u) ∈ D

(A.4)

Definition A.5. With x : domx → X and u : domu → U , a pair (x, u) is called a
solution pair to (A.4) if domx = domu, (x(0), u(0)) ∈ C ∩ D and

1. For almost all (t, j) ∈ I(x, u), (x(t, j), u(t, j)) ∈ C and ẋ(t, j) ∈ F (x(t, j), u(t, j)).

2. For all (t, j) ∈ Γ(x, u), (x(t, j), u(t, j)) ∈ D and x(t, j + 1) ∈ G(x(t, j), u(t, j)).

With slight abuse of notation, we let SHu(X) denote the set of all maximal

solution pairs of (A.4) with x(0) ∈ X . For a hybrid input u and a time instant

(t, j) ∈ domu, we let

|u|(t,j) := max

 ess. sup
(s,i)∈domu/Γ(u)
(0,0)�(s,i)�(t,j)

|u(s, i)|, sup
(t,j)∈Γ(u),

(0,0)�(s,i)�(t,j)

|u(s, i)|


and we let

|u|∞ = |u|(t,j)

whenever t+ j →∞.

A.2 Stability Notions

In this section we will recall the main definition related to stability theory. We

will consider both autonomous systems of the form (A.1), referred to as H, and
3For basic literature on hybrid systems with input and notions about input-to-state stability

we refer to (Cai and Teel, 2009, 2013).
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systems with inputs (A.4), referred to as Hu, and we will make reference to the

stability properties of a given closed set A ⊂ X .

Definition A.6 (Invariance notions). Given a hybrid system H, the set A is said to
be:

• Weakly forward invariant if for every x0 ∈ A there exists at least a complete
solution x ∈ SH(x0) such that x(τ) ∈ A for all τ ∈ domx.

• Weakly backward invariant if for every x0 ∈ A and every T > 0, there exists a
least one x ∈ SH(A) such that x(t0, j0) = x0 for some (t0, j0) ∈ domx fulfilling
t0 + j0 ≥ T and such that x(t, j) ∈ A for all (t, j) � (t0, j0).

• Weakly invariant if both weakly forward and backward invariant.

• Forward invariant if for every x0 ∈ SH(A), x(τ) ∈ A for all τ ∈ domx.

• Backward invariant if for every x0 ∈ A, every solution x of H that fulfills
x(t0, j0) = x0 for some (t0, j0) ∈ domx also fulfills x(t, j) ∈ A for all (t, j) �
(t0, j0).

• Invariant if both forward and backward invariant.

Definition A.7 (Attractiveness notions). Given a hybrid system H and a subset
X ⊂ X , the set A is said to be:

• Pre-attractive fromX if every x ∈ SH(X) is bounded and if complete |x(t, j)|A →
0.

• Attractive from X if pre-attractive from X andH is forward complete from X .

• Uniformly pre-attractive if pre-attractive from X and for each ε > 0 there
exists T > 0 such that, for all x ∈ SH(X) with length(domx) ≥ T , it holds that
|x(t, j)|A ≤ ε for all (t, j) ∈ domx|≥T .

• Uniformly attractive from X if uniformly pre-attractive from X and H is
forward complete from X .

Definition A.8 (Stability notions). Given a hybrid systemH, the set A is said to be:

• Stable if for every ε > 0 there exists δ > 0 such that x ∈ SH(A + δB) implies
|x(t, j)|A ≤ ε for all (t, j) ∈ domx.
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• Pre-asymptotically stable from X if stable and pre-attractive from X .

• Uniformly pre-asymptotically stable from X if stable and uniformly pre-
attractive from X .

• Asymptotically stable from X if stable and attractive from X .

• Uniformly asymptotically stable from X if stable and uniformly attractive
from X .

As for continuous-time systems (see the notation section), for τ ≥ 0, we define

the τ -reachable set of H from a subset X ⊂ X as

Rτ
H(X) :=

{
x̄ ∈ X : x̄ = x(t, j), x ∈ SH(X), (t, j) ∈ domx|≥τ

}
,

and the Ω-limit set of X as

ΩH(X) := lim
τ→∞
Rτ
H(X),

which also can written as

ΩH(X) =
⋂
τ>0

Rτ
H(X)

=
{
x̄ ∈ X : xn(tn, jn)→ x̄, xn ∈ SH(X), (tn, jn) ∈ domxn, tn + jn →∞

}
.

A system H is said to be uniformly eventually bounded from X if there exist a

compact set K ⊂ X and τ ≥ 0 such that

Rτ
H(X) ⊂ K.

We have an analogous of Proposition 3.8 for hybrid systems (which is a direct

consequence of (Goebel et al., 2012, Prop. 6.26)):

Proposition A.1. Let H be nominally well-posed, then ΩH(X) exists and is closed.
If H is uniformly eventually bounded from X , ΩH(X) is compact. If there exists at
least a complete solution inside SH(X), then ΩH(X) is non empty, weakly backward
invariant and uniformly pre-attractive from X (and it is the smallest (in the sense of
inclusion) closed set with this latter property). If in addition ΩH(X) ⊂ intX , then it
is stable, and hence pre-asymptotically stable.
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Definition A.9. A continuous function $ : X → R+ is said to be a proper indicator

for A if $(A) = {0} and if $(x)→∞ as |x|A →∞.

Definition A.10 (Input-to-state stability). Given a hybrid system with input Hu of
the form (A.4), Hu is said to be input-to-state stable (ISS) with respect to the set A
and relative to the input u if there exists a proper indicator $ of A, β ∈ KLL and
ρ ∈ K such that, for all (x, u) ∈ SHu , the following bound holds

$(x(t, j)) ≤ max
{
β($(x(0)), t, j), ρ(|u|(t,j))

}
,

for all (t, j) ∈ dom(x, u).
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B
Elements of Wavelet Theory

In this appendix we report the main elements behind the wavelet decom-

position in Hilbert spaces. The content related to bases and approximation is

mainly taken from (Deutsch, 2001; Christensen, 2008). The content about basic

wavelet theory, a part from some easy derivations, is taken from (Daubechies,

1988; Daubechies and Lagarias, 1991; Daubechies, 1992; Daubechies and La-

garias, 1992; Cohen et al., 1992; Strang and Nguyen, 1996; Walnut, 2002). In the

rest of the section H will denote a (possibly infinite-dimensional) Hilbert space,

〈·, ·〉 will denote an inner product on H and | · | a norm induced by the inner

product.

B.1 Elements of Hilbert Spaces

B.1.1 Orthonormal Bases in Hilbert Spaces

The usual concept of orthonormal bases in finite-dimensional spaces can be eas-

ily defined also for the infinite-dimensional case. A crucial difference though, is
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that usually bases in infinite-dimensional spaces come with an infinite number

of elements.

Definition B.1. Let {ek}∞k=1 be a sequence of elements of H.

• The sequence {ek} is said to be a (Schauder) basis forH if for each f ∈ H there
exists an unique sequence {ck}∞k=1 of scalars such that

f =
∞∑
k=1

ckek (B.1)

• A basis {ek} is said to be an unconditional basis if (B.1) converges uncondi-
tionally for any f ∈ H.

• A basis {ek} is an orthonormal basis if 〈ei, ej〉 = δi,j .

Remark B.1. The “=” in (B.1) is to be intended in the sense that the series∑∞
k=1 ckek is convergent with sum f , i.e.∣∣∣∣∣f −

n∑
k=1

ckek

∣∣∣∣∣→ 0 as n→∞ .

4

Orthonormal bases admit the following characterization

Theorem B.1. The following are equivalent:

1. {ek}∞k=1 is an orthonormal basis for H.

2. ∀f ∈ H, f =
∑

k〈f, ek〉ek.

3. ∀f ∈ H,
∑

k |〈f, ek〉|2 = |f |2. (Parseval’s Equation)

4. 〈f, ek〉 = 0 ∀k ∈ N =⇒ f = 0.

5. span{ek} = H.

Therefore if {ek} is an orthonormal basis then each f ∈ H has the unique
expansion

f =
∞∑
k=1

〈f, ek〉ek . (B.2)
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Moreover it can be proved that (B.2) converges unconditionally.

When H is a functions pace an important class of basis for H is those ob-

tained by taking functions that are translated (and possibly dilated) copies of a

single given function. Translations and dilations of a function are given by the

following operators

Definition B.2 (Dilation & Translation). LetH be a space of functions f : I ⊆ Rd →
R, d > 0. Let a ∈ R and k ∈ Zd, then we define the operators

• Dilation Operator: Daf(x) := a1/2f(ax).

• Translation Operator: Tkf(x) := f(x− k).

Definition B.3 (Orthonormal basis of translates). Let H be a space of functions
Rd → R, d > 0. An orthonormal basis of translates for H is a basis of the form
{Tkg(x)}k∈Zd , with g ∈ H.

B.1.2 Riesz Bases in Hilbert Spaces

If a Hilbert space H has an orthonormal basis then, as stated by the following

theorem, it has an infinite number of orthonormal bases all linked by unitary

operators.

Theorem B.2. Let {ek}k∈N be an orthonormal basis for H, then all the orthonormal
basis of H are given by sequences of the form {Uek}k∈N, with U : H → H a unitary
operator.

Unitary operators are bijective and isometric, and hence the above theorem

is quite intuitive. In general we can think to transform a basis by a bijective

operator that is not necessarily an isometry. In this way we obtain new objects

that are non-orthonormal bases.

Definition B.4 (Riesz Bases). A Riesz basis forH is a family of the form {Uek}k with
{ek}k an orthonormal basis and U : H → H a bounded bijective operator.

As for orthonormal bases also for a Riesz basis {hk}k, for each f ∈ H, there

exists a unique family of scalars {ck}k such that f =
∑

k ckhk.
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Theorem B.3. Let {hk}k be a Riesz basis forH then there exists a unique Riesz basis
{h̃k}k for H such that for all f ∈ H

f =
∑
k

〈f, h̃k〉hk (B.3)

and the series (B.3) converges unconditionally.

The unique Riesz basis {h̃k}k is called the dual basis of {hk}k and if {hk}k is

given by {hk}k = {Uek}k, with {ek}k an orthonormal basis of H and U : H → H
a bounded bijective operator, then

{h̃k}k = {(U−1)∗hk}k

where (U−1)∗ denotes the adjoint of U−1. Moreover it can be shown that the dual

of {h̃k}k is {hk}k, hence they are usually referred to as a pair of dial Riesz bases. A

pair of dual Riesz bases have a nice property called the biorthogonality:

Definition B.5 (Biorthogonal sequences). Two sequences {hk}k and {gk}k in a
Hilbert space are said to be biorthogonal if

〈hk, gj〉 = δk,j .

The following result says that dual Riesz bases are biorthogonal

Theorem B.4. Let {hk}k and {h̃k}k be a pair of dual Riesz bases of H, then

(a) {hk}k and {h̃k}k are biorthogonal

(b) for any f ∈ H
f =

∑
k

〈f, h̃k〉hk =
∑
k

〈f, hk〉h̃k

(c) There exist A,B > 0 such that the following Frame Condition is satisfied

A|f |2 ≤
∑
k

|〈f, hk〉|2 ≤ B|f |2 (B.4)

for all f ∈ H.

The Frame condition generalizes the Parseval’s equation and it can be proved

that the maximum A and the minimum B for which (B.4) holds are given by A =
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1/(|U−1|2) and B = |U |2. It is easy to se how Riesz bases generalize orthonormal

bases, if U is unitary then necessarily |U | = 1 and |U−1| = 1 and (B.4) reduces

to the Parseval’s Equation (point 3 of theorem B.1). Thus {hk}k is orthonormal

and hk = h̃k. Finally there is the following characterization for Riesz bases of

translates in L2.

Theorem B.5. Let φ(x) ∈ L2(R) be compactly supported, let {Tkφ(x)}k∈Z be a Riesz
basis for S ⊂ L2(R), if there exists φ̃(x) ∈ L2(R) such that {Tkφ̃(x)}k∈Z is biorthogo-
nal to {Tkφ(x)}k∈Z then

(a) for every f ∈ S
f(x) =

∑
k∈Z

〈f, Tkφ̃〉Tkφ(x) .

(b) for every f ∈ S there exist A,B > 0 such that

A|f |2 ≤
∑
k∈Z

|〈f, Tkφ̃〉|2 ≤ B|f |2 .

B.2 Best Approximations in Hilbert Spaces

Definition B.6 (Best Approximation). Let A ⊂ X be a subset of a pre-Hilbert Space
X and let x ∈ X . An element a ∈ A is called a best approximation to x from A if

|x|A = |x− a|.

We denote the (possibly empty) set of all best approximation to x from A as

PA(x) := {a ∈ A : |x|A = |x− a|} .

The map PA is called the Metric Projection onto A. For subspaces of Hilbert

Spaces there is the following characterization

Proposition B.1. Let A be a subspace of a Hilbert spaceH, then for all x ∈ H, PA(x)

has exactly one element and

(a) x = PA(x) + PA⊥(x) (or equivalently PA + PA⊥ equals the identity on H).

(b) H = A⊕ A⊥.
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(c) a ∈ PA(x) ⇐⇒ x− a ∈ A⊥ ⇐⇒ 〈x− a, a〉 = 0.

Furthermore, if A is a finite-dimensional subspace of H, the following holds

Proposition B.2. Let A be a n-dimensional subspace of H, let {y1, . . . , yn} be a basis
for A. Then, for all x ∈ H

PA(x) =
n∑
i=1

αiyi

where α1, . . . , αn are the unique solution to the normal equations

n∑
i=1

αi〈yi, yj〉 = 〈x, yj〉, j = 1, . . . , n (B.5)

If in particular {y1, . . . , yn} is an orthonormal system, then αi = 〈x, yi〉, and

PA(x) =
n∑
i=1

〈x, ai〉ai . (B.6)

For infinite-dimensional subspaces of H the following similar result holds.

Theorem B.6. Let M be a complete subspace ofH and let E be an orthonormal basis
for M , then for all x ∈ H

PM(x) =
∑
e∈E

〈x, e〉e . (B.7)

The following result, known as the “Reduction Principle”, says that given a

subset M of H and a subset K of M , then to find the projection of a point x ∈ H
onto K one can consider the composition of a projection of x to M and a new

projection onto K, and these projections commute.

Theorem B.7 (Reduction Principle). Let K be a convex subset of H and M be any
closed subset of H containing K, then for every x ∈ H

(a) PK(x) = (PK ◦ PM)(x) = (PM ◦ PK)(x).

(b) |x|2K = |x|2M + |PM(x)|2K .
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B.3 Basics of Wavelet Analysis

B.3.1 Generalized Multiresolution Analysis

We denote by Cc(R) the set of all compactly supported continuous functions R→
R. A relevant framework in which biorthogonal wavelets can be defined is the

so-called Generalized Multiresolution Analysis (GMRA) (see for instance (Walnut,

2002)):

Definition B.7 (Generalized Multiresolution Analysis). A GMRA on R is a se-
quence of subspaces (Vi)i∈Z of L2(R) satisfying the following properties:1

a) For all i ∈ Z, Vi ⊂ Vi−1.

b) For any f ∈ Cc(R) and every ε > 0, there exists i ∈ Z and a function g ∈ Vi

such that |f − g| ≤ ε.

c) ∩i∈ZVi = {0}.

d) f ∈ Vi if and only if f(2i·) ∈ V0.

e) There exists a function υ ∈ L2(R), called the scaling function such that V0 =

span{υ(· − k)}k∈Z and {υ(· − k)}k∈Z is a Riesz basis for V0.

For a function f ∈ L2(R) and with i, k ∈ Z, we define the function fi,k ∈ L2(R)

as

fi,k(s) = 2−i/2f(2−is− k).

If υ is a scaling function of a GMRA (Vi)i∈Z, then we have (Walnut, 2002, Lem.

10.17) that

Vi = span{υi,k}k∈Z

and {υi,k}k∈Z is a Riesz basis for Vi. As the family {υ(· − k)}k∈Z is a Riesz basis

of V0, it admits a dual basis {υ̃(· − k)}k∈Z. If such a dual basis is itself the scaling

function of a GMRA (Ṽi)i∈Z we say that the GMRAs (Vi)i∈Z and (Ṽi)i∈Z are dual to

each other.

1In the literature the nesting order is taken in both the directions, in the sense that some
authors (e.g. (Walnut, 2002)) use higher values of i to denote higher resolutions (i.e. Vi ⊂ Vi+1),
some other (e.g. (Daubechies, 1992)) use the opposite. We chose this latter convention according
to (Daubechies, 1992).
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With i ∈ Z and f ∈ L2(R) we define the projection operator Pi and the detail
operator Qi as

Pif :=
∑
k∈Z

〈f, υ̃i,k〉υi,k, Qif := Pi−1f − Pif

and the same object are defined for the dual basis

P̃if :=
∑
k∈Z

〈f, υi,k〉υ̃i,k, Q̃if := P̃i−1f − P̃if.

For a given i ∈ Z, Qi+1f represents the additional detail that is needed to obtain

a finer approximation Pif of f at scale i starting from a coarser approximation

Pi+1f at scale i+ 1. Moreover, for every f ∈ Cc(R),

lim
i→−∞

|Pif − f | = 0,

so as for each f ∈ Cc(R) and ε > 0 there exists i? ∈ Z such that, for all i ≤ i?, the

function f̂i ∈ Vi given by

f̂i := Pif =
∑
k∈Z

ai,kυi,k, ai,k := 〈f, υ̃i,k〉, (B.8)

satisfies

|f − f̂i| ≤ ε.

We also observe that if υ has compact support, then the sum in (B.8) has finite
terms for each i ∈ Z.

B.3.2 Biorthogonal Wavelets

We can univocally associate to the scaling functions υ and υ̃ respectively, two

functions ψ and ψ̃ in L2(R), referred to as the wavelet functions, that, with Wi :=

span{ψi,k}k∈Z and W̃i := span{ψi,k}k∈Z, fulfill the following properties (see (Wal-

nut, 2002, Lem. 10.24)):

a) ψ ∈ V−1 and ψ̃ ∈ Ṽ−1.

b) {ψ0,k}k∈Z and {ψ̃0,k}k∈Z are biorthogonal.

c) {ψ0,k}k∈Z is a Riesz basis for W0 and {ψ̃0,k}k∈Z for W̃0.
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d) For all k, ` ∈ Z, 〈ψ0,k, υ̃0,`〉 = 0 and 〈ψ̃0,k, υ0,`〉 = 0.

e) For all f ∈ Cc(R), Q0f ∈ W0 and Q̃0f ∈ W0.

Directly from the definition of Pi and Qi we obtain that, for all i, i0 ∈ Z such that

i < i0, the following holds

Pif = Pi0f +

i0∑
`=i+1

Q`f, P̃if = P̃i0f +

i0∑
`=i+1

Q̃`f

Moreover, it can be shown that, for any f ∈ Cc(R), the details at scale i can be

expressed as combinations of wavelets. Namely

Qif =
∑
k∈Z

〈f, ψ̃i,k〉ψi,k, Q̃if =
∑
k∈Z

〈f, ψi,k〉ψ̃i,k. (B.9)

As a consequence, we obtain the following representation2

Pif =
∑
k∈Z

ai0,kυi0,k +

i0∑
`=i+1

∑
k∈Z

b`,kψ`,k (B.10)

where, for k ∈ Z and ` = i+ 1, . . . , 0,

ai0,k := 〈f, υ̃i0,k〉 b`,k := 〈f, ψ̃`,k〉.

Moreover, the projection at scale i− 1 is given by

Pi−1f = Pif +
∑
k∈Z

bi,kψi,k.

From the definition of Riesz basis, there exists an orthonormal basis {ek}k∈Z of

V0 and a bounded bijective operator U : L2(R) → L2(R) such that υ0,k(·) =

Uek(·). Hence, for all k, ` ∈ Z, we obtain δk,` = 〈ek, e`〉 = 〈U−1υ0,k, U
−1υ0,`〉 =

〈υ0,k, (U
−1)∗U−1υ0,k〉, having denoted with (U−1)∗ the adjoint operator of U−1.

Hence, with C := (U−1)∗U−1, if we define the scalar product 〈·, ·〉C on L2(R)

given by 〈f, g〉C := 〈f, Cg〉, we have δk,` = 〈υ0,k, υ0,`〉C . Namely, {υ0,k(·)}k∈Z is an

orthonormal basis for V0 with respect to the scalar product 〈·, ·〉C . In the same

way we obtain that {υi,k(·)}k∈Z is an orthonormal with respect to 〈·, ·〉C basis for

2A similar relation clearly also holds for P̃if , however we will omit that for compactness.
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Vi. Moreover, as a consequence of property d) of the wavelet function, for each

i, `, k ∈ Z we have

〈ψi,k, υi,`〉C = 〈ψi,k, CD−iυ0,`〉 = 〈D−iψ0,k, D−iυ̃0,`〉

= 〈ψ0,k, υ̃0,`〉 = 0

that is, {ψi,k(·)}k∈Z and {υi,k(·)}k∈Z are orthogonal with respect to 〈·, ·〉C . There-

fore, we can write Vi ⊥ Wi and Vi−1 = Vi⊕Wi, where orthogonality is with respect

to the scalar product 〈·, ·〉C . We also have Vi−1 ⊥ Wi−1, that implies Wi ⊥ Wi−1.

As a consequence, in the scalar product 〈·, ·〉C , we have

Vi = V0 ⊕

(
0⊕

`=i+1

W`

)
,

which means that once a “coarse” representation of a compactly supported con-

tinuous f ∈ L2(R) is given, in terms of P0f(·) ∈ V0, a “finer” representation

can be obtained by adding the details Qif(·) ∈ W0 that belong to a subspace

which is orthogonal to V0. The same can be iterated to find a finer representation

Pi−1f(·) ∈ Vi starting a coarser representation in Vi and always looking for the

additional detail inside an orthogonal subspace. According to (B.9), the details

that must be added at each stage can be written as a linear combination of scaled

and translated version of the wavelet function. Moreover since Cc(R) is dense in

L2(R) we also have

L2(R) = cl

(
V0 ⊕

(
0⊕

`=∞

W`

))
.

Therefore, given any f ∈ L2 and any ε > 0, there exists i? > 0, such that, for

every i ≤ i? the function Pif(·) given by (B.10) satisfies |f − Pif | ≤ ε.

B.3.3 Wavelets in Higher Dimension

The wavelet theory can be extended to deal with functions in L2(Rm) with m > 1

by considering the tensor product of m GMRAs (see (Daubechies, 1992)). More

precisely, we define the subspaces Vi, i ∈ Z as

V0 := V0 ⊗ V0 ⊗ · · · ⊗ V0
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= span{Υ(x) := υ(x1)υ(x2) · · · υ(xm) : υ ∈ V0}

and

f ∈ Vi ⇐⇒ f(2i·) ∈ V0.

hen (Vi)i∈Z forms a GMRA in L2(Rm) (i.e. satisfying analogous properties of

Definition B.7), with Υ playing the role of a scaling function. Since {υ(· − k)}k∈Z
is a Riesz basis for V0, the scaling function

Υ(x) := υ(x1 − k1)υ(x2 − k2) · · · υ(xm − km), k := (k1, . . . , km) ∈ Zm,

is a Riesz basis for V0. Moreover, the functions

Υi,k(x) := υi,k1(x1) · · · υi,km(xm), k ∈ Zm

form a Riesz basis for Vi.

In the same way we construct the dual GMRA (Ṽi)i∈Z and its scaling function

Υ̃. Furthermore, we construct a set of 2m−1 wavelet functions Ψh
i,k, i ∈ Z, k ∈ Zm,

h = 1, . . . , 2m − 1, by all the possible combinations of products of the form

g1(x1)g2(x2) · · · gm(xm)

with g`(x`) taking the value υi,k`(x`) or ψi,k`(x`), except for the case in which

g`(x`) = υi,k`(x`) for all ` = 1, . . . ,m. Namely we set

Ψ1
i,k(x) := ψi,k1(x1)υi,k2(x2) · · · υi,km(xm)

Ψ2
i,k(x) := υi,k1(x1)ψi,k2(x2)υi,k3(x3) · · · υi,km(xm)

· · ·

Ψ2m−1
i,k (x) := ψi,k1(x1)ψi,k2(x2)ψi,k3(x3) · · ·ψi,km(xm)

Directly from the definition we obtain

Vi−1 = Vi−1 ⊗ · · · ⊗ Vi−1 = (Vi ⊕Wi)⊗ · · · ⊗ (Vi ⊕Wi)

= (Vi ⊗ · · · ⊗ Vi)⊕

(
2m−1⊕
h=1

Zhi

)
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having defined

Z1
i := Wi ⊗ Vi ⊗ Vi ⊗ · · · ⊗ Vi

Z2
i := Vi ⊗Wi ⊗ Vi ⊗ · · · ⊗ Vi
. . .

Zmi := Vi ⊗ Vi ⊗ · · · ⊗ Vi ⊗Wi

Zm+1
i := Wi ⊗Wi ⊗ Vi ⊗ · · · ⊗ Vi

. . .

Z2m−1
i := Wi ⊗Wi ⊗ · · · ⊗Wi,

i.e. the subspaces Zhi are obtaining by taking the tensor product of all the possible

combinations of m subspaces in {Vi,Wi}. A similar decomposition works for

Ṽi−1 as well, by opportunely defining the subspaces Z̃hi .

We construct a set of basis functions for each of the subspaces Zhi by taking

the tensor product of m functions in the corresponding order. Namely, we let

Ψ1
i,k(x) := ψi,k1(x1)υi,k2(x2) · · · υi,km(xm)

Ψ2
i,k(x) := υi,k1(x1)ψi,k2(x2)υi,k3(x3) · · · υi,km(xm)

. . .

Ψ2m−1
i,k (x) := ψi,k1(x1)ψi,k2(x2)ψi,k3(x3) · · ·ψi,km(xm).

Hence, defined

Wi := ⊕2d−1
h=1 Zhi ,

we obtain

Vi = span{Υi,k(·)}k∈Zm

Wi = span{Ψh
i,k(·)}k∈Zm,h=1,...,2m−1

and, for any i, i0 ∈ Z such that i < i0, we can express the projection of a F ∈
Cc(Rm) onto Vi with the following expansion, that generalizes (B.10)

Pif =
∑
k∈Zm

ai0,kΥi0,k +
2m−1∑
h=1

i0∑
`=i+1

∑
k∈Zm

bhi,kΨh
`,k (B.11)
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In the general case, in the wavelet expansion (B.11) the sum in k ranges over the

whole set Zm. Hence, even for fixed scale i, (B.11) might consist of infinite terms.

Nevertheless, if compactly supported biorthogonal Wavelet and Scaling functions

are used, the expansion (B.11) can be reduced to a finite sum whenever f has

bounded support.

B.4 Smoothness, Compact Support and Approxima-

tion

The multiresolution analysis introduced in the previous section is a strong tool

to construct biorthogonal and orthonormal scaling functions and wavelet bases.

However nothing is said about the smoothness, the support and the approxima-

tion capabilities of the basis functions that can be constructed. The importance

of a bounded support is clear. In fact, even for fixed i, the sum (B.11) runs over

infinite terms, since k varies in Zm. In practice, if one wants to approximate a

function f having bounded support with a finite number of basis functions, then

necessarily the basis functions must have bounded support. In this way, indeed,

one can restrict k to range in a bounded subset of Zm since only finitely many

basis functions will have a support intersecting those of f .

Moreover, in some applications, some regularity constraints are needed for

the basis functions Υi,k and Ψh
i,k. Therefore the question whether there exist

wavelet basis having at the same time compact support and the desired smooth-

ness properties is crucial.

B.4.1 Smooth, Compactly Supported, Orthonormal Wavelet Bases

There are several choices of scaling functions that generate a valid orthonor-

mal GMRA (for instance the piece-wise linear GMRA, the band-limited GMRA,

which is constructed by using the sinc function, the Meyer GMRA and the Spline

GMRA, etc.), however usually they are not smooth and compactly supported

at the same time. For instance the Meyer wavelets are C∞ but they have infi-

nite support, the spline constructions yield wavelet in Ck, with k depending on

the polynomial order, but they do not have compact support. Nevertheless, in

(Daubechies, 1988), Ingrid Daubechies presented a class of compactly supported
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wavelet basis constructing a valid orthonormal GMRA and characterized by a ar-

bitrarily high regularity.

The family of Daubechies bases are characterized by the fact that, for each

N ∈ N, there exist mother scaling and wavelet functions (denoted by υN and ψN )

generating an orthonormal GMRA that have N vanishing moments and that are

supported in [0, 2N − 1]. The definition of such functions cannot be obtained

analytically, they are constructed by solving the so-called two-scales equation (see

e.g. Daubechies, 1992; Strang and Nguyen, 1996). The regularity properties are

thus given in terms of vanishing moments and there are many results providing

an estimate of the maximum derivative for each resulting wavelet basis and of

its Hölder exponent.

In general, it can be proved that a wavelet ψ(x) generating a valid GMRA

necessarily satisfies ∫
R
ψ(x)dx = 0 . (B.12)

Equation (B.12) is called the 0-th moment of ψ(x). In the same way, one defines

the k-th moment of ψ(x) as ∫
R
xkψ(x)dx . (B.13)

Then the family of bases introduced by Daubechies have the property that for

each N ∈ N there exist a wavelet basis that satisfies (B.13) with k = N and

with support equal to [0, 2N − 1]. The way moments are linked to smoothness

is unfortunately a one side implication given by the following theorem (Walnut,

2002)

Theorem B.8. Let ψ be such that for some N ∈ N, both xNψ(x) and ωN+1ψ̂(ω) (with
·̂ denoting the Fourier Transform of ψ) are L1(R). If {ψj,k(x)}j,k∈Z is an orthonormal
system then (B.13) hold for each k = 0, . . . , N .

Saying ωN+1ψ̂(ω) ∈ L1 is to be interpreted as a smoothness property, in fact

((Walnut, 2002, Theorem 9.3)) ωN+1ψ̂(ω) ∈ L1 implies that ψ(N+1)(x) is uniformly

continuous. Unfortunately the inverse implication does not hold, in the sense

that if (B.13) holds for some k > 0 then ψ(k)(x) might not even exist. Never-

theless, many different results exist (see e.g. Daubechies, 1992; Daubechies and

Lagarias, 1991; Daubechies, 1992; Gripenberg, 1996) about the regularity prop-

erties of the Daubechies wavelets. Let α = n + β, with n ∈ N and β ∈ [0, 1)

and define the function class Cα to be the set of functions f which are n-times
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differentiable and such that the n-th derivative f (n) is Hölder continuous with

exponent β, namely

|f (n)(x1)− f (n)(x2)| ≤ c|x1 − x2|β

for all x1, x2 ∈ R. Then it turns out that ψ3 is continuously differentiable (or

more precisely is C1.0878), and the first Daubechies wavelet which is twice con-
tinuously differentiable is ψ6 and in general, asymptotically, we have the rela-

tion

υN , ψN ∈ CµN ,

with µ ≈ 0.2.

Another important aspect of vanishing moments concerns the approximation

capabilities for finite j in the expansion (B.10). The following theorem (Walnut,

2002) says that wavelet basis constructed with wavelet functions having many

vanishing moments yield better approximations, in the sense that the coefficients

bj,k of the expansion (B.10) decay rapidly as i decreases.

Theorem B.9. With N ∈ N, assume that f ∈ CN(R) and that f (N) ∈ L∞(R).
Assume that ψ has compact support and∫

R
xmψ(x)dx = 0, 0 ≤ m ≤ N − 1

and that
∫
R |ψi,k(x)|2dx = 1 for all i, k ∈ Z, then there exists C, depending on N and

f , such that
|〈f, ψi,k〉| ≤ C2iN2i/2 (B.14)

for all i, k ∈ Z.

Finally there’s another result relating the number of vanishing moments with

the approximation of polynomials.

Theorem B.10. Let υ(x) be a compactly supported scaling function associated with
a GMRA and let ψ(x) be the corresponding mother wavelet. If ψ(x) has N vanishing
moments then for every polynomial p(x) of degree p ≤ N − 1 there exist coefficients
ak, k ∈ Z such that ∑

k∈N

akυ(x− k) = p(x) .
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B.4.2 Smooth, Compactly Supported Biorthogonal Wavelets

Biorthogonal Wavelets address many of the issues of orthonormal bases. Relax-

ing the tight constraint of orthonormality, indeed, yields basis functions that can

easily have compact support and high regularity as well as symmetry properties.

Moreover, in general, the basis {Tkυ(x)}k and {Tkυ̃(x)}k can also have different

smoothness and support. The most famous class of biorthogonal wavelets is

those obtained as combinations of B-Spline functions (Cohen et al., 1992). A

B-Spline of order n is a piecewise-polynomial function obtained by the (n)-fold

convolution of the indicator function

s1(x) =

1, x ∈ [0, 1)

0, otherwise

For instance the 2nd order B-spline is given by the piece-wise linear function

s2(x) = (s1 ? s1)(x) =

1− (|x| − 1), x ∈ [0, 2)

0, otherwise

B-Splines have the following interesting properties

• supp sm(x) = [0,m]

• sm(x) =
x

m− 1
sm−1(x) +

m− x
m− 1

sm−1(x− 1)

• sm(x) ∈ Cmax{0,m−2}, in particular

(sm)′(x) = sm−1(x)− sm−1(x− 1)

• sm satisfies he two-scales equation

sm(x) =
m∑
k=0

21−m

(
m

k

)
sm(2x− k)

B-Splines can be used to construct biorthogonal scaling functions and wavelets

generating valid dual GMRAs having compact support and arbitrarily regularity.
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The scaling function υ(x) and those generating the dual GMRA υ̃(x) can also be

given by different Splines.
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