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Introduction

This thesis is about simple random walks on some classes of lattice graphs in two dimen-

sions, with a set of directed edges whose orientation is chosen either deterministically or

randomly. We are mainly concerned with the type problem, that is to determine whether

the simple random walk on such graphs is recurrent or transient.

Our starting point is a paper of 2003 by Campanino and Petritis [1]: the authors

were concerned with the study of type and speed of a simple random walk (Mn)n≥0 on

partially directed versions of the square grid lattice. More precisely, for any y ∈ Z they

required all the horizontal edges leading out from vertexes (x, y), x ∈ Z to be oriented in

the same direction, specified by a {−1, 1}-valued variable εy: to the right if εy = 1 and

to the left if εy = −1 (alternatively, we say that “level y” is oriented, respectively, to the

right and to the left). All the vertical edges remain unoriented. Their main result is that

if (εy)y∈Z is a family of i.i.d. Rademacher random variables, then M is ε-a.s. transient,

that is
∞∑
n=1

P0(Mn = (0, 0) | σ{εy|y ∈ Z}) <∞ a.s.

After the work of Campanino and Petritis, their model and related ones have been

further investigated by different authors: just to cite some of the papers that have

appeared in recent years, in [12] and [11] a functional central limit theorem for the random

walk is established; in [3] the authors obtain a local limit theorem for the probability

of return to the origin, while in [13] the range of the walk is analyzed. In [2] the type

problem is solved for a class of orientations given by periodic functions, whereas in [22]

the a.s. transience is generalized to a certain class of stationary orientations. In [4] the
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authors analyze a more general model, where the probability of staying on one oriented

line is non-constant. One common feature of these papers is that they all deal with

directed version of the square grid lattice.

In this thesis we start instead by considering a different model, where the underlying

graph is a honeycomb lattice. We recall that a honeycomb lattice is a sub-graph of the

square grid obtained by eliminating a periodic set of vertical edges (see figure 1).

Figure 1: The randomly oriented lattice Hε.

Precisely, the honeycomb lattice is H := (Z2, E), where E = E1\E2 with E1 the set

of nearest neighbor bonds in Z2 and

E2 :={((2j, 2k), (2j, 2k + 1))| j, k ∈ Z}

∪{((2j, 2k + 1), (2j, 2k))| j, k ∈ Z}

∪{((2j + 1, 2k + 1), (2j + 1, 2k + 2))| j, k ∈ Z}

∪{((2j + 1, 2k + 2), (2j + 1, 2k + 1))| j, k ∈ Z}.

Analogously to the square grid case, we let the horizontal levels be oriented by a

family (εy)y∈Z of {−1, 1}-valued variables, while the vertical edges remain unoriented:

we call the resulting randomly oriented graph Hε. Our aim is to solve the type problem

for the simple random walk on this graph, under different assumptions on the sequence

ε.
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One important tool in the analysis of the Campanino and Petritis model is the de-

composition of the random walk into two components, a vertical motion and a horizontal

one, such that on a certain sequence of random times it reproduces the law of the process.

This decomposed walk encodes important information of the actual walk: in particular

its recurrence behavior is the same as the actual random walk. However when deal-

ing with the honeycomb lattice, the principal issue stems from the lack of decoupling

between vertical and horizontal components of the walk that is instrumental in the afore-

mentioned papers: here, the vertical skeleton of the walk is not -as in the square grid

case- a one dimensional simple symmetric random walk, but a Markov process of order

2.

The first result of our work is theorem 1 in Chapter 1, which states that, if ε is a

sequence of i.i.d. Rademacher random variables, then the random walk on Hε is ε-a.s.

transient. This is obtained by using local limit estimates for Markov chains as established

in [15], instead of local limit estimates for i.i.d. variables (as they have been used e.g. in

[1]); and also a Tauberian theorem to generalize standard results for the simple random

walk in Z to the vertical skeleton of Hε, while some technical issues require to specialize

the arguments of Campanino and Petritis to the new setting.

In Chapter 2 we consider a class of directed honeycomb lattices where a certain degree

of periodicity in the orientations of the levels is assumed: first, in theorem 2 we show

that if the sequence (εy) is deterministic and periodic, and such that
∑

y εy = 0, then the

random walk is recurrent; then, we introduce random perturbations around the origin

that decay polynomially according to an exponent β and, depending of the value of β,

we classify the type of the walk. Again, our results extend those obtained for the square

grid oriented lattice (cfr. [2]). Here, mainly due to the lack of a reflection principle

for the vertical skeleton, we develop a new technique to tackle the problem: the main

idea is to exploit the periodicity of the orientations by means of a conditional local limit

theorem for the occupation times of the vertical skeleton. 1

Finally, we consider a model where the orientations are ergodic and non periodic,

1These results have been accepted for publication in Markov Processes & Related Fields.
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but the random walk is nonetheless a.s. recurrent: this shows in particular that the

a.s. transience in the i.i.d. setting can’t be generalized to the ergodic setting without

assuming further hypothesis on the mixing rate of ε (cfr. [22]).

The results of Chapter 1 and 2 can be seen as a first step toward the generalization

of the work of Campanino and Petritis to a larger class of partially directed graphs.

Moreover, as we observe in appendix A, a simple reformulation of our theorems relates

them to a conjecture (see [10]) involving the oriented square grid where both the vertical

and horizontal levels are oriented. It turns out that, if the levels in one coordinate are

randomly oriented by Rademacher random variables and in the other coordinate are

alternate, the simple random walk is a.s. transient.

In this thesis we also consider the type problem for some so-called revolving random

walks: this name comes from the fact that they are simple random walks on (deter-

ministic) directed version of the two-dimensional square grid lattice that, because of the

direction imposed by the oriented edges, are bound to revolve clockwise.

The first graph of this kind that we introduce, which we call G1, is in fact a square grid

where the horizontal levels are oriented according to the deterministic function ε(y) = 1

if y ≥ 0, and ε(y) = −1 otherwise, while the vertical edges stay unoriented (see figure

2(a)). The simple random walk on this graph was already known in the literature: it

appeared for the first time in [1], where it is shown to be transient. Then, it has been

studied again in [19] and [20]: the authors were mainly concerned about one-dimensional

oscillating random walks and in fact they notice that the simple random walk on G1,

seen at the times of consecutive returns to the x-axis, exhibits an oscillatory behavior.

Interestingly, in the same work they introduce a new directed graph, that we shall call

G2: precisely, G2 is obtained from G1 by redefining only the orientations of the edges

leading out from x-axis, that is, ((v1, 0), (w1, w2)) with v1 = w1 and w2 = ±1 is an edge

if and only if w2 = −1 and v1 = w1 > 0, or w2 = 1 and v1 = w1 < 0, or w2 = ±1 and

v1 = w1 = 0 (see figure 2(b)). Although it is obtained by a simple modification of G1,

the analysis of its type turns out to be more delicate and the authors conjectured that

this revolving random walk is in fact recurrent.
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(a) Graph G1

(b) Graph G2

Figure 2: The transient graph G1 is represented in figure (a), and the recurrent graph

G2 in figure (b): the arrows indicate the orientation of the corresponding edges. At the

right sides, a realization of 5000 steps of the corresponding random walks is shown.

In Chapter 3 we confirm their conjecture 2: the idea of our proof is to use the

2All the results presented in Chapter 3 are from a joint work with Yuval Peres, Principal Researcher
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Lyapunov function method (cfr.[20], Thm.2.5.2, p.53). To do so, we start considering a

process W which is the continuous-time analogous of the simple random walk on G2, and

show that W is recurrent: then, the analysis of this process leads us to find an appropriate

Lyapunov function, whose expectation can be computed easily in the continuous case,

and finally develop an approximation technique to estimate it in the discrete setting.

To complete the analysis, we obtain also a local limit theorem for the return proba-

bility to the origin of the random walk on G1, showing that it is asymptotic to a constant

times n−3/2 and giving, in particular, a new proof of transience.

at Microsoft Research, Redmond, and Yiping Hu, Ph.D. student from the University of Washington,

Seattle. A preprint of our work is currently available on arXiv at https://arxiv.org/abs/1807.03498

https://arxiv.org/abs/1807.03498


Chapter 1

Random walks on randomly

oriented honeycomb lattices

A directed (or equivalently, oriented) graph is a pair G = (V,E), where V is a denumer-

able set of vertexes and E ⊂ V×V is a set of directed edges. Let d+u := |{x ∈ V|(x, u) ∈

E}| and d−u := |{x ∈ V|(u, x) ∈ E}| be, respectively, the inwards degree and the outwards

degree of u ∈ V and assume the graph is locally finite, i.e. d+u , d
−
u <∞, ∀u ∈ V.

Definition 1. The simple random walk on G started at v0 ∈ V is a Markov chain

(Mn)n∈N with state space V and M0 = v0, and transition probabilities given by

P(Mn+1 = v|Mn = u) =


1
d−u

if (u, v) ∈ E,

0 otherwise.

Definition 2. We say that a state x ∈ V is recurrent if
∑∞

n=1 Px(Mn = x) = ∞.

Otherwise, the state is said to be transient.

Recurrence and transience are class properties (see e.g. [18], prop. 21.3), meaning

in particular that for an irreducible Markov chain either all states are recurrent, or

transient: we say, respectively, that the chain is recurrent, or transient.

Consider now the directed graph Hε which we defined in the introduction, where

ε = (εy)y∈Z is a sequence of {−1, 1}-valued variables. Note that for each vertex v of Hε

11



12 Random walks on randomly oriented honeycomb lattices

we have dv := d+v = d−v = 2. Then the simple random walk M on Hε has the following

transition probabilities

P(Mn+1 = v|Mn = u) =


1
2

if (u, v) is an allowed edge of Hε,

0 otherwise.

We shall assume M0 = (0, 0). Observe that M is necessarily a non reversible irreducible

Markov chain.

Suppose ε = (εy)y∈Z is a random sequence: in this case we call ε the random environ-

ment. We are interested in the type problem for the simple random walk on Hε under

different hypothesis on ε.

We shall always assume all the random variables we use to be defined on the same

probability space (Ω,A,P).

The main result of this Chapter is the following:

Theorem 1. Let ε = (εy)y∈Z be a sequence of i.i.d. Rademacher random variables. Then

the simple random walk M on Hε is ε-a.s. transient.

1.1 Decomposition of the random walk

We want to decompose the random walk in two components, that encode respectively the

vertical and the horizontal motion of the process, following the technique implemented

in [1] in the case of a partially directed square grid lattice, but considering instead the

honeycomb lattice.

Let ξ be a geometric random variable with values in {0, 1, 2, ...} and success proba-

bility 1
2
; we want to interpret ξ as the number of consecutive horizontal steps that the

random walk performs between two successive vertical steps. In particular, we notice

that the two vertical steps share the same direction (both upward, or both downward)

if and only if ξ has an odd outcome (cf. figure 1), which happens with probability

P(ξ is odd) =
∞∑
m=0

P(ξ = 2m+ 1) =
1

2

∞∑
m=0

(
1

2

)2m+1

=
1

3
.
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With this observation in mind, we want to define a discrete time process that records

only the successive vertical movements of M .

Definition 3. The vertical skeleton of M is the process Y defined by

Yk :=
k∑
i=1

νk, (1.1)

for every k ≥ 0, where (νk)k≥0 is a {+1,−1}-valued Markov chain with v0 = 1 and

transition matrix:

πν :=

 q 1− q

1− q q

 , with q =
1

3
.

Remark 1. Y is not a Markov chain. However, by a standard dilation of the state space

into Z×{−1, 1} we can turn it into a Markov chain (Yn, νn)n≥0, defined by the following

transition probabilities:

p(y,1),(y+1,1) = p(y,−1),(y−1,−1) =
1

3

p(y,1),(y−1,−1) = p(y,−1)(y+1,1) =
2

3

for any y ∈ Z, and P((Y0, ν0) = (0, 1)) = 1. Note that (y, 1) corresponds to the state

of Y being at y after an upward step, while (y,−1) is the state of Y being at y after a

downward step.

The next lemma 1 implies in particular the recurrence of the vertical skeleton: this

result will be used extensively in our work.

Lemma 1. We have, as n→∞

P0(Y2n = 0) ∼ C√
n
,

where C is a positive constant.

Proof. The result follows directly by the application of a local limit theorem for Markov

chains (th.3 in [15]) to the process ν.
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Now we want to complete our decomposition by defining the process that represents

the abscissa of the random walk (Mn)n≥0 immediately after the n-th vertical movement

has been performed.

Definition 4. Let n ≥ 0. We define the occupation measure ηn at y ∈ Z by

ηn(y) :=
n∑
k=0

1{Yk=y}.

Definition 5. Let (ξ
(y)
i )i≥1, y∈Z be a family of i.i.d. geometric random variables with

values in {0, 1, 2, ...} parameter p = 1
2
. We call embedded random walk the process

(Xn)n≥0 defined by

Xn :=
∑
y∈Z

εy

ηn−1(y)∑
i=1

ξ
(y)
i , (1.2)

with the convention that
∑

i vanishes whenever ηn−1(y) = 0.

Let n > 1 and

Tn := n+
∑
y∈Z

ηn−1(y)∑
i=1

ξ
(y)
i

be the time just after the random walk M has performed its n-th vertical move. Then

it’s straightforward to see that

MTn = (Xn, Yn).

(See figure 3 for an illustration of the decomposition)

Now denote by σn the sequence of consecutive returns to 0 of Y : note that by lemma

1 we have σn <∞ almost surely ∀n. Obviously, MTσn = (Xσn , 0).

Consider the following sigma-algebras

G :=σ(εy, y ∈ Z),

Fn :=σ(νk, k ≤ n)

and F ∨ G = σ(F ∪ G), where F = ∨nFn. The next lemma 2 links the transience of

(Xσn)n≥0 to the transience of the original random walk.
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Lemma 2. We have
∞∑
n=0

P0(Xσn = 0 | F ∨ G) <∞ a.s =⇒
∞∑
l=0

P0(Ml = (0, 0) | F ∨ G) <∞ a.s .

Proof. (See [1], lemma 2.3)

Figure 3: The first steps of a realization of the simple random walk on Hε started at (0, 0),

assuming ε0 = ε1 = 1 and ε−1 = −1. The decomposition into vertical skeleton Y and

embedded random walk X gives here the following: (X0, Y0) = (0, 0), (X1, Y1) = (1, 1),

(X2, Y2) = (1, 0), (X3, Y3) = (4,−1).

To conclude the section we derive the explicit expression for the characteristic function

of the embedded random walk, a useful tool in the proof of theorem 1.

Definition 6. Let n ∈ N, y ∈ Z and define

m(y)
n,o :=

n∑
k=0

1{Yk=y,νk=νk+1},

and

m(y)
n,e :=

n∑
k=0

1{Yk=y,νk 6=νk+1}.

Note that ηn(y) = m
(y)
n,o + m

(y)
n,e, and so we can split the embedded random walk Xn

as follows

Xn =
∑
y∈Z

εy

m
(y)
n−1,o∑
i=1

ξ
(y)
i,o +

m
(y)
n−1,e∑
i=1

ξ
(y)
i,e

 ,

where ξ
(y)
i,o and ξ

(y)
i,e are two independent families of i.i.d. random variables, that have the

following laws:

P(ξ
(y)
i,o = 2k + 1) = P(ξ = 2k + 1 | ξ is odd) = 3P(ξ = 2k + 1) = 3

(
1

2

)2k+2

(1.3)
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for every k ∈ N, and

P(ξ
(y)
i,e = 2k) = P(ξ = 2k | ξ is even) = 3

(
1

2

)2k+2

. (1.4)

We shall call a random variable odd geometric if its law is given by (1.3), while (1.4)

defines what we call an even geometric random variable.

Lemma 3. We have

χo(θ) := E(exp(iθξ
(y)
1,o )) =

3eiθ

4− e2iθ

and χe(θ) := E(exp(iθξ
(y)
1,e )) = e−iθχo(θ), for every θ ∈ R.

Proof. By (1.3) we have

χo(θ) := =
∑
k≥0

eiθ(2k+1)P(ξ1,o = 2k + 1) =
3eiθ

4

∑
k≥0

eiθ(2k)
(

1

2

)2k

=
3eiθ

4− e2iθ
,

and similarly by (1.4), χe(θ) = 3
4−e2iθ .

Lemma 4. The characteristic function of Xn is

E(exp(iθXn)) = E

(∏
y∈Z

χo(θεy)
m

(y)
n−1,oχe(θεy)

m
(y)
n−1,e

)
.

Proof. By lemma 3

E(exp(iθXn)) =E

E

exp(iθ
∑
y∈Z

εy

ηn−1(y)∑
i=1

ξ
(y)
i ) | Fn ∨ G


=E

E

∏
y∈Z

exp(iθεy

ηn−1(y)∑
i=1

ξ
(y)
i ) | Fn ∨ G


=E

E

∏
y∈Z

exp(iθεy(

m
(y)
n−1,o∑
i=1

ξ
(y)
i,o +

m
(y)
n−1,e∑
i=1

ξ
(y)
i,e )) | Fn ∨ G




=E

E

∏
y∈Z

exp(iθεy

m
(y)
n−1,o∑
i=1

ξ
(y)
i,o ) exp(iθεy

m
(y)
n−1,e∑
i=1

ξ
(y)
i,e ) | Fn ∨ G




=E

(∏
y∈Z

χo(θεy)
m

(y)
n−1,oχe(θεy)

m
(y)
n−1,e

)
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1.2 Proof of almost sure transience

Let mo and me be, respectively, the mean of an odd geometric and of an even geometric

random variable. We follow the strategy of [1] and define, for n ≥ 0, the following

families of events:

An,1 := { max
0≤k≤2n

|Yk| < n
1
2
+δ1}, δ1 > 0

An,2 := {max
y∈Z

η2n−1(y) < n
1
2
+δ2}, δ2 > 0

An := An,1 ∩ An,2

Bn := An ∩ {|
∑
y∈Z

εy(mom
(y)
2n−1,o +mem

(y)
2n−1,e)| > n

1
2
+δ3}, δ3 > 0

where δ1, δ2 and δ3 are positive integers that will be chosen later. Observe that, for every

n, An ∈ F2n and Bn ⊂ An, Bn ∈ F2n ∨ G. Thus, we can write

pn = pn,1 + pn,2 + pn,3,

where

pn = P(X2n = 0, Y2n = 0)

pn,1 = P(X2n = 0, Y2n = 0, Bn)

pn,2 = P(X2n = 0, Y2n = 0, An/Bn)

pn,3 = P(X2n = 0, Y2n = 0, Acn).

In order to prove transience, we will provide estimates of, respectively, pn,1, pn,2 and pn,3,

from which we will deduce that pn is summable. Then the result will follow at once

thanks to the following lemma.

Lemma 5. If
∑

n≥0 pn <∞, then (Mn)n≥0 is a.s. transient.

Proof. From the trivial upper bound

∑
n≥0

P(Xσn = 0) =
∑
n≥0

P(Xσn = 0, Yσn = 0) ≤
∑
n≥0

P(X2n = 0, Y2n = 0),
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we deduce that
∑

n≥0 P(Xσn = 0) <∞ and hence also∑
n≥0

P(Xσn = 0 | Fn ∨ G) <∞ a.s.

By lemma 2, this implies the a.s. transience of (Mn)n≥0.

1.2.1 Estimate of pn,1

Define

N+
o :=

2n∑
k=1

1{εYk=1}1{νk=νk+1},

N+
e :=

2n∑
k=1

1{εYk=1}1{νk 6=νk+1},

N−o :=
2n∑
k=1

1{εYk=−1}1{νk=νk+1},

N−e :=
2n∑
k=1

1{εYk=−1}1{νk 6=νk+1},

and

∆n,o := N+
o −N−o ,

∆n,e := N+
e −N−e ,

Σn,o := N+
o +N−o ,

Σn,e := N+
e +N−e ,

Observe that

mo∆n,o +me∆n,e =
∑
y∈Z

εy(mom
(y)
2n−1,o +mem

(y)
2n−1,e)

and Σn,o + Σn,e = 2n.

Let (ξk)k≥1 be a sequence of geometric random variables with values in {0, 1, 2, ...}

and success probability 1/2, and (ξk,o)k≥1 and (ξk,e)k≥1 be two families of, respectively,

odd geometric and even geometric independent random variables (the families are inde-

pendent also of each other). Moreover let ξo and ξe be respectively a odd geometric and

a even geometric random variable, and define s2o := σ2(ξo), s
2
e := σ2(ξe).
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Lemma 6. We have

E(exp(tX2n) | F2n ∨ G) = exp

(
t(mo∆n,o +me∆n,e) +

t2

2

(
s2oΣn,o + s2eΣn,e

)
+O(t3n)

)
.

Proof. Consider the generating function φo(t) = E(exp(tξo)) = 3et

4−e2t , defined in t ∈

]−∞, ln 2[, the largest domain in which φo(t) <∞. We have

φo(t) =
∑
k≥0

P(ξo = k)etk =
∑
k≥0

P(ξo = k)

(
1 + kt+

(kt)2

2
+O(t3)

)
=1 + E(tξo) +

1

2
E
(
(tξo)

2)+O(t3)

= exp

(
tmo + t2

s2o
2

+O(t3)

)
(1.5)

Analogously, we define φe(t) to be the generating function of ξe, and observe that

φe(t) = exp

(
tme + t2

s2e
2

+O(t3)

)
. (1.6)

Also note that φe(t) is finite if and only if t ∈]−∞, ln 2[. Finally, by (1.5) and (1.6) we

have

E(exp(tX2n) | F2n ∨ G) = E

(
exp(t

2n∑
k=1

1{εYk=1}ξk − t
2n∑
k=1

1{εYk=−1}ξk) | F2n ∨ G

)

=E

N+
o∏

k=1

exp(tξk,o)

N+
e∏

k=1

exp(tξk,e)

N+
o +N−o∏

k=N+
o +1

exp(−tξk,o)
N+
e +N−e∏

k=N+
e +1

exp(−tξk,e) | F2n ∨ G


=φo(t)

N+
o φe(t)

N+
e φo(−t)N

−
o φe(−t)N

−
e

= exp
(
t(mo(N

+
o −N−o ) +me(N

+
e −N−e ))

+t2
(
s2o
2

(N+
o +N−o ) +

s2e
2

(N+
e +N−e )

)
+O(t3n)

)
= exp

(
t(mo∆n,o +me∆n,e) +

t2

2
(s2oΣn,o + s2eΣn,e) +O(t3n)

)
.

Proposition 1. For large n, on the set Bn, we have

P(X2n = 0 | F2n ∨ G) = O(exp (−nδ′))

for any δ′ ∈]0, 2δ3[.
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Proof. Using Markov inequality, we have for t < 0

P(X2n = 0 | F2n ∨ G) ≤P(X2n ≤ 0 | F2n ∨ G)

=P(tX2n ≥ 0 | F2n ∨ G)

=P(exp(tX2n) ≥ 1 | F2n ∨ G)

≤E(exp(tX2n) | F2n ∨ G).

For 0 < t < ln 2, we obtain analogously the same bound

P(X2n = 0 | F2n ∨ G) ≤P(X2n ≥ 0 | F2n ∨ G)

≤E(exp(tX2n) | F2n ∨ G).

Then by lemma 6 we obtain

P(X2n = 0 | F2n ∨ G) ≤ exp

(
t(mo∆n,o +me∆n,e) +

t2

2

(
s2oΣn,o + s2eΣn,e

)
+O(t3n)

)
≤ exp (t(mo∆n,o +me∆n,e)

+
t2

2
max{s2o, s2e}(Σn,o + Σn,e) +O(t3n)

)
= exp(t(mo∆n,o +me∆n,e) + t2s2n+O(t3n)),

where s := max{so, se}. Then, for the case mo∆n,o + me∆n,e > n
1
2
+δ3 we choose t =

−nδ3−
1
2

2s2
and get

P(X2n = 0 | F2n ∨ G) ≤ exp

(
−n

2δ3

2s2
+
n2δ3−1s2n

4s4
+O((nδ3−

1
2 )3n)

)
= exp

(
−n

2δ3

4s2
+O(n3δ3− 1

2 )

)
.

Finally, for the case mo∆n,o +me∆n,e < −n
1
2
+δ3 we choose t = nδ3−

1
2

2s2
and get exactly the

same bound.

Corollary 1. ∑
n∈N

pn,1 <∞.
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Proof. Observe that

P(X2n = 0, Y2n = 0, Bn | F2n ∨ G) ≤ 1BnP(X2n = 0 | F2n ∨ G). (1.7)

In proposition 1 we proved that, on Bn, P(X2n = 0 | F2n ∨ G) = O(exp (−nδ′)) for

δ
′ ∈]0, 2δ3[. Then, taking expectations on both sides of (1.7) we obtain

pn,1 ≤ E(O(exp (−nδ′))1Bn) = O(exp (−nδ′))E(1Bn) ≤ O(exp (−nδ′)).

Thus, pn,1 is summable.

1.2.2 Estimate of pn,2

Lemma 7. We have

P(X2n = 0 | F2n ∨ G) = O
(

1√
n

)
.

Proof. In the proof of lemma 4 we saw that the conditional characteristic function of

X2n with respect to F2n ∨ G takes on the following form:

φ(θ) := E(exp(iθX2n) | F2n ∨ G) =
∏
y∈Z

χo(θεy)
m

(y)
2n−1,oχe(θεy)

m
(y)
2n−1,e .

We have, by the inversion formula

P(X2n = 0 | F2n ∨ G) =
1

2π

∫ π

−π
φ(θ)dθ.

By lemma 3 we have

r(θ) := |χe(θ)| = |χo(θ)| =
3√

17− 8 cos(2θ)
.

Thus

1

2π

∫ π

−π
φ(θ)dθ ≤ 1

2π

∫ π

−π

∏
y∈Z

|χo(θεy)|m
(y)
2n−1,o |χe(θεy)|m

(y)
2n−1,edθ

=
1

2π

∫ π

−π

∏
y∈Z

|χo(θεy)|η2n−1(y)dθ

=
1

2π

∫ π

−π
r(θ)

∑
y∈Z η2n−1(y)dθ

=
1

2π

∫ π

−π
r(θ)2ndθ.
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Now we use the parity of r(θ) and the fact that r(θ) < 1 in θ ∈]0, π[∪]π, 2π[ to bound

with K < 1 the function r(θ) in the interval [π
4
, 3
4
π] ∪ [−π

4
,−3

4
π]. We obtain

P(X2n = 0 | F2n ∨ G) ≤ 1

π

∫ π
4

0

r(θ)2ndθ +
1

π

∫ 5π
4

π

r(θ)2ndθ +O(K2n)

=
2

π

∫ π
4

0

r(θ)2ndθ +O(K2n).

Now, we have r(θ) = 1− 8
9
θ2 +O(θ3) and so for large n∫ π

4

0

r(θ)2ndθ ∼
∫ π

4

0

(
e−

8
9
θ2
)2n

dθ ∼
∫ ∞
0

(
e−

16
9
nθ2
)
dθ ∼ c√

n
,

with c =
√

9π
16

.

The next result is the analogous to proposition 4.6 in [1]; the proof doesn’t require

any modification when switching to our framework. However we include it due to a

simplification that we achieve by applying the Cauchy-Schwarz inequality.

Proposition 2. For large n, we have

P(An\Bn | F2n) = O(n−
1
4
+

2δ3+δ1
2 ).

Proof. To simplify the notation, let η̂2n(y) := mom
(y)
2n−1,o + mem

(y)
2n−1,e. The required

probability is an estimate, on the set An, of P(|
∑

y∈Z εyη̂2n−1(y)| ≤ n
1
2
+δ3 | F2n). Now

let G be a centred Gaussian random variable with σ = n
1
2
+δ3 , independent (conditionally

on F) of εyη̂2n−1(y) for every y ∈ Z. By lemma 3.2 in [2] we have the following inequality

P

(∣∣∣∣∣∑
y∈Z

εyη̂2n−1(y)

∣∣∣∣∣ ≤ n
1
2
+δ3 | F

)
≤ cP

(∣∣∣∣∣∑
y∈Z

εyη̂2n−1(y) +G

∣∣∣∣∣ ≤ n
1
2
+δ3 | F

)
,

where the constant c is independent of n.

Let

χ2(t) :=E

(
exp

(
it
∑
y∈Z

εyη̂2n−1(y)

)
| F2n

)
=
∏
y∈Z

cos(tη̂2n−1(y)),

where we used the fact that, conditionally on F2n,
∑

y∈Z εyη̂2n−1(y) is the sum of i.i.d.

symmetric Bernoulli random variables. Then, let

χ3(t) := E (exp(itG) | F2n) = E (exp(itG)) = exp

(
−1

2
t2n1+2δ3

)
.
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Thus,

P

(
exp

(
it
∑
y∈Z

εyη̂2n−1(y) +G

)
|F2n

)
= χ2(t)χ3(t),

because, conditionally on F2n, the variables
∑

y∈Z εyη̂2n−1(y) and G are independent.

Now we use the Plancherel formula (see e.g. [7]) and obtain

P

(∣∣∣∣∣∑
y∈Z

εyη̂2n−1(y)

∣∣∣∣∣ ≤ n
1
2
+δ3 | F2n

)
=
n

1
2
+δ3

π

∫
sin(tn

1
2
+δ3)

tn
1
2
+δ3

χ2(t)χ3(t) ≤ Cn
1
2
+δ3I,

where C is a positive constant and I =
∫
χ2(t)χ3(t)dt.

Fix bn = nδ4

n
1
2+δ3

, for some δ4 > 0 and split the integral I into I1 + I2, the first part for

|t| < bn, the second for |t| > bn. We have

I2 =

∫
|t|>bn

χ2(t)χ3(t)dt ≤ C

∫
|t|>bn

exp

(
−t

2

2
n1+2δ3

)
dt√
2π

=
C

n
1
2
+δ3

∫
|s|>nδ4

exp

(
−s2

2

)
ds√
2π
≤ 2

C

n
1
2
+δ3

1√
2π

exp
(
−n2δ4

2

)
nδ4

,

because for a standard normal distributed random variable X and for x > 0 we have

P(X ≥ x) ≤ 1
x

1√
2π

exp
(
−x2
2

)
.

Now, we need to estimate I1. Of course we have

I1 =

∫
|t|≤bn

χ2(t)χ3(t)dt ≤
∫
|t|≤bn

∏
y∈Z

| cos (tη̂2n−1(y)) |dt.

Note that for |x| ≤ π
2

we have | cos(x)| ≤ exp(−x
2

2
). By choosing δ3 > δ4 + δ2, we

can ensure that tη̂2n−1(y) < 1 < π
2

for every y and sufficiently large n, and hence by

Cauchy-Schwarz inequality∫
|t|≤bn

∏
y∈Z

| cos (tη̂2n−1(y)) |dt ≤
∫
|t|≤bn

∏
y∈Z

exp

(
−
t2η̂22n−1(y)

2

)
dt

=

∫
|t|≤bn

exp

−t2
2

n
1
2+δ1∑
y=0

η̂22n−1(y)

 dt

≤
∫
|t|≤bn

exp
(
−ct2n

3
2
−δ1
)
dt

≤
√

π

cn
3
2
−δ1

= O(n−
3
4
+
δ1
2 ),
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where c is a positive constant. Finally, putting all together, we have

O(n
1
2
+δ3(I1 + I2)) = O(n

1
2
+δ3I1) = O(n

1
2
+δ3n−

3
4
+
δ1
2 )) = O(n−

1
4
+

2δ3+δ1
2 ).

Corollary 2. ∑
n∈N

pn,2 <∞.

Proof. We have

pn,2 =P(X2n = 0, Y2n = 0, An\Bn)

=E(1Y2n=0E(1An\Bn1X2n=0 | F2n))

=E(1Y2n=0E(E(1An\Bn1X2n=0 | F2n ∨ G) | F2n))

=E(1Y2n=0E(1An\BnP(X2n = 0 | F2n ∨ G) | F2n))

=O
(
n−

1
2n−

1
2n−

1
4
+

2δ3+δ1
2

)
=O(n−

5
4
+

2δ3+δ1
2 ).

Where we used the estimates of lemma 1, lemma 7 and proposition 2. Now it’s enough

to choose 2δ3 + δ1 <
1
2
.

1.2.3 Estimate of pn,3

Notice that Acn = Acn,1 ∪ Acn,2. We are going to provide exponential estimates of both

P(Acn,1 | Y2n = 0) and P(Acn,2 | Y2n = 0).

Lemma 8. We have, for large n and for every t > 0

E(etY2n) ∼ c

(
q cosh t+

√
q2 cosh2 t− (2q − 1)

)2n

,

with c > 0.

Proof. We have, by the Markov property,

Eν0(etY2n) = etν0
∫
πν(ν0, dy1)e

ty1

∫
πν(y1, dy2)e

ty2 · · ·
∫
πν(y2n−1, dy2n)ety2n . (1.8)



Proof of almost sure transience 25

It is now easy to see that can compute the quantity (1.8) by means of the 2n-th power

of the matrix

πν,t :=

 qet (1− q)e−t

(1− q)et qe−t


with q = 1

3
. which has the following eigenvalues

λ1,2(t) = q cosh t±
√
q2 cosh2 t− (2q − 1).

By the spectral decomposition (e.g. see lemma 12.2 in [18]), we know that

(πν,t)
2n ∼ λ2n1 (t)h1h

T
1

for large n, where λ1 is the largest eigenvalue and h1 represents the (column) eigenvector

associated with λ1. Hence for large n

E(etY2n) =
∑

y∈{1,−1}

(πν,t)
2n(ν0, y) ∼ cλ2n1 (t), c > 0.

The following is an analogous to the classical reflection principle for simple symmetric

random walk.

Lemma 9. Let n ∈ N, y ∈ Z. We have

P( max
0≤k≤2n

Yk = y, Y2n = 0) ≤ 2P(Y2n = 2y).

Proof. Consider a path in {max0≤k≤2n Yk = y, Y2n = 0} and reflect it when it visits y for

the last time, say at time ny, before returning to the origin (see figure 4). Note that the

original path changes direction at time ny, which happens with probability 2/3, while

the reflected one keeps straight (in this case the probability is 1/3); this implies that the

probability of the original path is 2 times the probability of the reflected one. Then the

result follows by noting that the reflected path belongs to the event {Y2n = 2y}.

Proposition 3. For large n, there exists δ > 0 such that

P(Acn,1 | Y2n = 0) = O
(
exp

(
−nδ

))
.
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Figure 4: The reflection principle for the vertical skeleton Yn. The probability of the

path reflected at time ny (after ny the reflected path is represented by the dashed line)

is half the probability of the original one.

Proof. Let an = [n
1
2
+δ1 ]; we have

P( max
0≤k≤2n

Yk ≥ an | Y2n = 0) =
∑

y∈{an,an+1,...,n}

P(max0≤k≤2n Yk = y, Y2n = 0)

P(Y2n = 0)

The estimate for P(min0≤k≤2n Yk ≤ −an | Y2n = 0) can be obtained by the same argu-

ment, so we shall omit it. By lemma 9∑
y∈{an,an+1,...,n}

P( max
0≤k≤2n

Yk = y, Y2n = 0) ≤2
∑

y∈{an,an+1,...,n}

P(Y2n = 2y)

=2P(Y2n ≥ 2an)

=2 inf
t>0

P(exp(tY2n) ≥ exp(2tan))

≤2 inf
t>0

E(etY2n)

e2tan
.

By lemma 8, we have that for large n

E(etY2n) ∼c
(
q cosh t+

√
q2 cosh2 t− (2q − 1)

)2n

.

Now by the Taylor expansion at t = 0, and substituting q = 1
3
, we have

q cosh t+

√
q2 cosh2 t− (2q − 1) =

2 +
√

7

6
+ st2 + o(t2) < 1 + st2,
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with s = 1
6

+ 1
3
√
7
, where the inequality holds for t ≤ t∗ for sufficiently small t∗: whence

E(etY2n) < c(1 + 2nst2) < c exp(2nst2). So for large n

inf
t>0

E(etY2n)

e2tan
< c inf

t>0,t≤t∗
exp(−2tan) exp(2nst2) = c exp

(
− a2n

2sn

)
= c exp

(
−n2δ1

2s

)
,

where in the first equality we used the fact that the minimum is attained at t = an
2ns

.

Then, putting all together and using lemma 1, we obtain

P(Acn,1 | Y2n = 0) = O
(
nn

1
2 exp

(
−n2δ1

2s

))
.

Let σa,a the time of first return to state a ∈ Z×{−1, 1} of the Markov chain (Yn, νn)

starting at a.

Lemma 10. We have

E(e−tσa,a) ∼ exp(−c
√
t),

with c > 0, i.e.

lim
t→0

E(e−tσa,a)

exp(−c
√
t)

= 1.

Proof. By the local limit theorem for Markov chains ([15], lemma 14) we have

p(2n)a,a := Pa((Y2n, ν2n) = a) ∼ C√
n

as n → ∞ with C > 0. This implies, by the Tauberian theorem ([7], p.447, th.5), that

there exists C1 > 0 such that

Ga,a(s) :=
∞∑
k=0

p(k)a,as
k ∼ C1√

1− s

as s → 1. Then, using a standard result from the theory of Markov chains (see, for

instance, [24], th.1.38), we see that as s→ 1

E(sσa,a) = 1− 1

Ga,a(s)
∼ 1− c

√
1− s,

where c = C−11 . Finally, if we write s = e−t, we have for t→ 0

E(e−tσa,a) ∼ 1− c
√

1− e−t ∼ 1− c
√
t ∼ e−c

√
t.



28 Random walks on randomly oriented honeycomb lattices

Proposition 4. There exist δ′ > 0 such that for large n

P(Acn,2 | Y2n = 0) = O
(

exp(−nδ′)
)
.

Proof. We have

P(Acn,2 | Y2n = 0) = P
(

max
y∈Z

η2n−1(y) ≥ n
1
2
+δ2 | Y2n = 0

)
≤
∑
y∈Z

P
(
η2n−1(y) ≥ n

1
2
+δ2

)
P(Y2n = 0)

.

On the other hand we have

P (η2n−1(y) ≥ an) ≤ P
(
η2n−1(y, 1) ≥ an

2

)
+ P

(
η2n−1(y,−1) ≥ an

2

)
. (1.9)

Now let σ
(k)
a,a be the time of k-th return to point a for the process (Yn, νn)n≥0 starting at

a. Observe that

P (η2n−1(a) ≥ an) ≤ Pa
(
σ(banc)
a,a ≤ 2n

)
(1.10)

and consider the first term at the right hand side of (1.9). Notice that by lemma 10,

E(e−tσa,a)m ∼ exp(−cm
√
t) for every m ∈ N; then, for C > 1 there exists t∗ s.t. for every

t < t∗,

E(e−tσa,a)m ≤ C exp(−cm
√
t). (1.11)

Hence, by (1.10) and (1.11), we have for sufficiently large n

P
(
η2n−1(y, 1) ≥ an

2

)
≤ inf

t>0
Py
(

exp
(
−tσ([an

2
])

(y,1),(y,1)

)
≥ exp(−2nt)

)
≤ inf

t>0
exp(2nt)

(
E
(

exp
(
−tσ(1)

(y,1),(y,1)

)))[an
2
]

≤C inf
t>0,t<t∗

exp
(

2nt− an
2
c
√
t
)

=C exp

(
−c

2a2n
32n

)
=C exp

(
−c′n2δ2

)
with c′ = c2

32
, where we used the fact that the minimum is attained at t =

(
can
8n

)2
.

Since we can provide, with the same procedure, an exponential estimate also for the

rightmost term in (1.9), and using lemma 1, we finally obtain

P(Acn,2 | Y2n = 0) ≤
∑
y∈Z

P
(
η2n−1(y) ≥ n

1
2
+δ2

)
P(Y2n = 0)

= O
(
nn

1
2 exp(−cnδ2)

)
.
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Corollary 3. ∑
n∈N

pn,3 <∞.

Proof. Combining proposition 3 and 4, we know that for large n

P(Acn | Y2n = 0) = O(exp(−nmin{δ,δ′})).

Then the result follows by the trivial majorization

pn,3 := P(X2n = 0, Y2n = 0, Acn) ≤ P(Y2n = 0, Acn) ≤ P(Acn | Y2n = 0).

The a.s. transience now follows from pn = pn,1 + pn,2 + pn,2 together with lemma 5.





Chapter 2

Periodic orientations with random

perturbations

In the previous Chapter we showed that if the levels of the lattice are oriented according to

i.i.d. Rademacher random variables then, due to the presence and level of fluctuations,

the random walk exhibits almost sure transient behavior. Now we want to introduce

a class of periodic orientations such that the fluctuations are absent and deduce the

recurrence of the walk; later, we will also introduce random perturbations in the periodic

orientations, and characterize the problem of type for a larger class of randomly oriented

graphs.

2.1 Recurrence of the honeycomb lattice with peri-

odic orientations

Let Q > 1 be an even integer and f : Z −→ {−1, 1} a Q-periodic function such that

Q−1∑
k=0

f(k) = 0. (2.1)

Accordingly, let Hf be the oriented honeycomb lattice whose vertical edges are unoriented

and the horizontal ones are oriented according to the value of f : that is, if f(y) = 1 then

31
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the horizontal edges leading out from vertexes (x, y), x ∈ Z, are right-directed, otherwise

they are left-directed (cf. figure 5). Note that Hf is not a random graph. As before, we

consider the simple random walk M on Hf and decompose it into the vertical skeleton

Y and the embedded random walk X.

Theorem 2. The simple random walk on Hf is recurrent.

In order to take advantage of periodicity, we begin by analyzing the occupation times

of the vertical skeleton restricted to ZQ.

Figure 5: The lattice Hf with alternate orientations, i.e. f(y) = (−1)|y| and so the

horizontal orientations have period Q = 2.

2.1.1 The vertical skeleton in the periodic case

Let ZQ = Z/Q and, for every y ∈ Z, we write y = y mod Q. Define for every n > 0

Wn := (Yn−1, νn−1;Yn, νn)

and

W n := (Y n−1, νn−1;Y n, νn), (2.2)

where Y n = Yn mod Q, and W0 := (−1,−1; 0, 1) , W 0 := (−1,−1; 0, 1).
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Lemma 11. The process (W n)n≥0 is a one-class recurrent Markov chain with period 2.

Its stationary distribution π is defined as followsπ(y, ν; y′, ν ′) = 2
3

1
2Q

if ν 6= ν ′, y′ = y + ν ′

π(y, ν; y′, ν ′) = 1
3

1
2Q

if ν = ν ′, y′ = y + ν ′
(2.3)

Proof. It is easy to verify that (Y n, νn)n≥0 is a Markov chain with 2Q elements and period

2, and that its stationary distribution is π̃(y, ν) = 1
2Q

, ∀(y, ν) ∈ ZQ × {−1, 1}. Then

(Y n, νn;Y n+1, νn+1)n≥0 is again a MC and its stationary distribution π can be derived

from π̃; since ∑
(y,ν)∈ZQ×{−1,1}

π̃(y, ν)p(y,ν),(y′,ν′) = π̃(y′, ν ′)

and

p(y,ν;y′,ν′),(y′,ν′,y′′,ν′′) = p(y′,ν′),(y′′,ν′′)

then we shall define

π(y, ν; y′, ν ′) := π̃(y, ν)p(y,ν),(y′,ν′).

In fact we have

π(y′, ν ′; y′′, ν ′′) =π̃(y′, ν ′)p(y′,ν′),(y′′,ν′′)

=
∑

(y,ν)∈ZQ×{−1,1}

π̃(y, ν)p(y,ν),(y′,ν′)p(y′,ν′),(y′′,ν′′)

=
∑

(y,ν)∈ZQ×{−1,1}

π(y, ν; y′, ν ′)p(y,ν;y′,ν′),(y′,ν′,y′′,ν′′)

The other statements are also easy to verify.

Note that Wn encloses the information of the last three movements of the verti-

cal skeleton Yn: the reason for considering such a process, and its analogous W n in

(ZQ × {−1, 1})2, is that we will need to control the number of times (Yn)n≥0 “changes

direction” at a certain level before it returns to the origin. Then by taking advantage

of the periodicity of the orientations, we will be able to bound the difference between

the number of steps to the right and to the left of the embedded random walk Xn,
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distinguishing between the odd-valued and the even-valued steps, and to deduce that

the probability of Xn returning to 0 is of order n−1/2 for a set of paths with positive

probability, which will imply the recurrence of M .

We begin by defining the following functionals of W.

Sn,e :=
2n∑
i=1

fe(W i) :=
2n∑
i=1

f(Y i−1)1{νi−1 6=νi},

Sn,o :=
2n∑
i=1

fo(W i) :=
2n∑
i=1

f(Y i−1)1{νi−1=νi}.

Moreover for every n ∈ N define the event

Zn := {W2n = W0} = {W 2n = W 0, Y2n = 0} (2.4)

Proposition 5. Let C > 0. We have, for sufficiently large n

P(|Sn,e|+ |Sn,o| ≤ C
√
n | Zn) ≥ δC > 0.

Proof. To simplify our notation, we identify the states ofW n with the integers {1, 2, ..., 4Q},

with arbitrary order. Accordingly we define

π = (π1, ..., π4Q)

to be the vector where the i-th component is the value that the stationary distribution

takes at state i, and the occupation measure

ηn = (ηn(1), ..., ηn(4Q)),

where ηn(i) :=
∑n

k=0 1{Wk=i}, for 1 ≤ i ≤ 4Q. By definition we have

Sn,e =

4Q∑
i=1

uiη2n(i) = uηT2n,

where u ∈ {−1, 0, 1}4Q is the vector such that ui equals to the value that fe takes on the

i-th state. Analogously, let v ∈ {−1, 0, 1}4Q such that Sn,o = vηT2n and w ∈ {−1, 1}4Q



Recurrence of the honeycomb lattice with periodic orientations 35

such that Y2n =
∑2n

i=1 νi = wηT2n . Note that u, v, w are linearly independent vectors and

that we have

u(2nπ)T = v(2nπ)T = w(2nπ)T = 0, (2.5)

by (2.3).

Let c > 0. By the multidimensional local limit theorem for the random vector η2n

(lemma 16 in [15]) we know that there exist a lattice Z ⊂ Z4Q of dimension r, r ≥ 1,

and a constant c′ > 0 dependent of c, such that

P(η2n = x,W 2n = W 0) ≥
c′

nr/2
, (2.6)

for large n and for all x ∈ Z such that |xi− πi| ≤ c
√
n, 1 ≤ i ≤ 4Q. Hence, by (2.6) and

(2.5), and taking c = C
4Q
, we have

P(|Sn,e|+ |Sn,o| ≤ C
√
n;Zn) ≥P

(
|η2n(i)− πi| ≤ c

√
n,∀i;Zn

)
=

∑
x∈Z,wxT=0,
|xi−πi|≤c

√
n,∀i

P(η2n = x,W 2n = W 0)

≥|{x ∈ Z,wxT = 0, |xi − πi| ≤ c
√
n,∀i}| c

′

nr/2

=C ′
n(r−1)/2

nr/2
≥ C ′√

n
, (2.7)

with C ′ > 0. Finally by (2.7) and lemma 1

P(|Sn,e|+ |Sn,o| ≤ C
√
n|Zn) ≥ P(|Sn,e|+ |Sn,o| ≤ C

√
n,Zn)

P(Y2n = 0)
≥ δC > 0.

2.1.2 Proof of recurrence

In order to prove recurrence it is enough to show that
∑∞

k=1 P(Xk = 0, Yk = 0) = ∞,

since
∞∑
k=1

P(Mk = (0, 0)) ≥
∞∑
k=1

P(Xk = 0, Yk = 0).
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Define a set of constrained paths

Constr(n, f) := {(γ, q) : {−1, 0, 1, ..., 2n} −→ Z× {−1, 1} s.t. ∀i, γ(i) = γ(i− 1)± 1,

(γ(−1), q(−1); γ(0), q(0)) = (γ(2n− 1), q(2n− 1); γ(2n), q(2n)) = W0,∣∣∣∣∣
2n∑
i=1

f(γi−1)1{qi−1 6=qi}

∣∣∣∣∣+

∣∣∣∣∣
2n∑
i=1

f(γi−1)1{qi−1=qi}

∣∣∣∣∣ ≤ C
√
n

}
.

If we prove that ∀(γ, q) ∈ Constr(n, f)

P(Xn = 0 | (Yi, νi) = (γ(i), q(i)) ∀i ≤ n) ≥ c√
n

(2.8)

then the recurrence of the random walk will follow. In fact, if this is the case, thanks to

(2.8) and to proposition 5 we would have for large n

P(X2n = 0, Y2n = 0) ≥P
(
X2n = 0,Zn, |Se(n)|+ |So(n)| ≤ C

√
n
)

=
∑

(γ,q)∈Constr(n,f)

P(X2n = 0 | (Yi, νi) = (γ(i), q(i)) ∀i ≤ 2n)

× P((Yi, νi) = (γ(i), q(i))∀i ≤ 2n)

≥ c√
n

∑
(γ,q)∈Constr(n,f)

P((Yi, νi) = (γ(i), q(i))∀i ≤ 2n)

=
c√
n
P(|Se(n)|+ |So(n)| ≤ C

√
n,Zn)

≥c
′

n
,

with c, c′ > 0, and so

∞∑
n=1

P(X2n = 0, Y2n = 0) ≥ C ′′
∞∑
n=1

1

n
=∞.

To prove (2.8) we proceed as follows. Let N+
e and N−e be, respectively, the number

of right (left) directed even steps of the embedded random walk up to time 2n, and

N+
o , N

−
o the analogous quantities for the odd steps. Observe that Sn,e = N+

e −N−e and

Sn,o = N+
o −N−o . In particular, for all (γ, q) ∈ Constr(n, f) we have

|N+
e −N−e |+ |N+

o −N−o | ≤ C
√
n. (2.9)
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Lemma 12. There exist positive constants C1, C2, C3, with C2 < C3, such that for every

(γ, q) ∈ Constr(n, f) and n ∈ N we have

E(X2n|(Yi, νi) = (γ(i), q(i)) ∀i ≤ 2n) ≤ C1

√
n

and

C2n ≤ σ2(X2n|(Yi, νi) = (γ(i), q(i))∀i ≤ 2n) ≤ C3n.

Proof. By (2.9)

E(X2n|(Yi, νi) = (γ(i), q(i))∀i ≤ 2n) =E(ξ1,e)(N
+
e −N−e ) + E(ξ1,o)(N

+
o −N−o )

≤max{E(ξ1,o),E(ξ1,e)}C
√
n.

On the other hand, the conditional variance of X2n is, by independence, the sum of the

variances of the even and odd geometric random variables, and so since both of them

have finite variance we obtain the result.

Proposition 6. There exists c > 0 such that, for every (γ, q) ∈ Constr(n, f) and suffi-

ciently large n, we have

P(X2n = 0|(Yi, νi) = (γ(i), q(i)) ∀i ≤ 2n) ≥ c√
n
.

Proof. Fix (γ, q) ∈ Constr(n, f); from now on every probability will be taken condition-

ally to {(Yi, νi) = (γ(i), q(i))∀i ≤ 2n}, although, in order to simplify the notation, we

will sometimes omit to write it.

Let (ξk)k≥1 be a sequence of random variables such that for every k, ξk represents the

k-th step of the embedded random walk Xn. On {(Yi, νi) = (γ(i), q(i)) ∀i ≤ 2n} we have

X2n =
2n∑
k=1

ξk =

N+
e∑

i=1

ξi,e +

N+
o∑

i=1

ξi,o −
N+
e +N−e∑

i=N+
e +1

ξi,e −
N+
o +N−o∑

i=N+
o +1

ξi,o,

and for every k let ak := E(ξk), b
2
k := σ2(ξk) and

An :=
2n∑
k=1

ak, B2
n :=

2n∑
k=1

b2k.
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First, we are going to show that∣∣∣∣BnP(X2n = 0)− 2√
2π
e−

1
2(AnBn )

2
∣∣∣∣→ 0, (2.10)

as n→∞. Then, thanks to the lemma 12, we complete the proof.

To prove (2.10), we wish to generalize a classical approach due to Gnedenko (cfr [8]).

Let φξk(t) = E(eitξk), and φX2n(t) = E(eitX2n) = φ∑2n
k=1 ξk

(t) =
∏2n

k=1 φξk(t), and precisely

φX2n(t) =χe(t)
N+
e χo(t)

N+
o χe(−t)N

−
e χo(−t)N

−
o ,

where we recall that

χo(t) =
3eit

4− e2it

and χe(t) = e−itχo(t). In particular note that |χo(t)| = |χe(t)| = |χo(−t)| = |χe(−t)| = 1

for t = 0 and t = π, and < 1 otherwise. Now, since
∑∞

k=−∞ P(X2n = 2k)ei2kt = φX2n(t),

if we integrate both sides of this equation from −π/2 to π/2 we obtain πP(X2n = 0) =∫ π
2
−π
2

φX2n(x)dx. Then

πP(X2n = 0) =
1

Bn

∫ πBn
2

−πBn
2

φX2n(t/Bn)dt =
1

Bn

∫ πBn
2

−πBn
2

eit
An
Bn φXn−An

Bn

(t)dt.

The following equality is easily proved for every z ∈ R.

1√
2π
e−

1
2
z2 =

1

2π

∫
e−itz−

t2

2 dt.

In particular, in our case, we take z := −An
Bn
. We write

Rn := 2π

[
Bn

2
P(X2n = 0)− 1√

2π
e−

1
2
(An
Bn

)2
]

= J1 + J2 + J3 + J4, (2.11)

where

J1 =

∫ A

−A
eit

An
Bn

[
φX2n−An

Bn

(t)− e−
t2

2

]
dt

J2 =−
∫
|t|>A

eit
An
Bn
− t

2

2 dt

J3 =

∫
εBn<|t|<πBn/2

eit
An
Bn φX2n−An

Bn

(t)dt

J4 =

∫
A<|t|<εBn

eit
An
Bn φX2n−An

Bn

(t)dt
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So to complete the proof we must show that these quantities tend to 0 as n → ∞ and

for sufficiently large A and small ε.

First, we show that the sequence (ξk)k≥1 satisfies the Lyapunov condition with δ = 1,

that is

lim
n→∞

1

B2+δ
n

2n∑
k=1

E|ξk − ak|2+δ = 0.

In fact, by the previous lemma, B2
n ∼ Cn with C > 0 and the ξk’s clearly have finite

moment of the third order, so for appropriate C ′ > 0

1

B3
n

2n∑
k=1

E|ξk − ak|3 ∼
1

Cn3/2

2n∑
k=1

E|ξk − ak|3 ≤
C ′n

n3/2
∼ C ′

n1/2
.

Then by the central limit theorem we have that, as n→∞,

φX2n−An
Bn

(t)→ e−
t2

2 ,

which implies |J1| → 0.

We have

|J2| ≤
∫
|t|>A
|e−it

An
Bn ||e−

t2

2 |dt =

∫
|t|>A
|e−

t2

2 | ≤ 2

A
e−

A2

2

and so by choosing a sufficiently large A we can make J2 arbitrarily small.

For every k, φξk(t) is either χe(t), χe(−t), χo(t) or χo(−t). Since for ε < |t| < π/2

we have |φξk(t)| < 1, we can find c > 0 such that |φξk(t)| ≤ e−c < 1 for every k. Then, if

εBn < |t| < πBn/2, we have

|φX2n−An
Bn

(t)| =
2n∏
k=1

|φξk−ak(t/Bn)| =
2n∏
k=1

|e−iakt/Bn||φξk(t/Bn)|

=
2n∏
k=1

|φξk(t/Bn)| ≤
2n∏
k=1

e−c = e−2cn,

which tends to 0 as n→∞. This implies |J3| → 0 as n→∞.

On the other hand, by Taylor expansion at t = 0

|φX2n−An
Bn

(t)| =
2n∏
k=1

|φξk−ak(t/Bn)| =
2n∏
k=1

∣∣∣∣1− σ2
kt

2

2B2
n

+ o

(
t2

B2
n

)∣∣∣∣ .
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Now, if |t| ≤ εBn for sufficiently small ε, we have

|φX2n−An
Bn

(t)| <
2n∏
k=1

∣∣∣∣1− σ2
kt

2

4B2
n

∣∣∣∣ < 2n∏
k=1

e
−σ

2
kt

2

4B2
n = e−t

2/4.

Then

|J4| ≤ 2

∫ εBn

A

e−t
2/4dt < 2

∫ ∞
A

e−t
2/4dt,

where the right hand side tends to 0 as A → ∞. So we can make |J4| arbitrarily

small.

The proof of recurrence is now complete.

2.2 Periodic orientations with random perturbations

Let f : Z→ {−1, 1} be again a Q-periodic function such that Q > 1 is a even integer and

f satisfies (2.1). In this section we consider the honeycomb lattice where the horizontal

orientations are prescribed by a random perturbation of f , namely a sequence of random

variables ε = (εy)y∈Z defined by

εy := (1− λy)f(y) + λyεy, (2.12)

where ε = (εy)y∈Z is a sequence of i.i.d. Rademacher random variables, λ = (λy)y∈Z is a

{0, 1}-valued sequence of independent random variables, independent of ε, such that

P(λy = 1) =
c

|y|β
(2.13)

for some constants c, β and large |y|.

Theorem 3. If β < 1 the random walk Mn is (εy, λy)-a.s.transient.

Theorem 4. If β > 1 the random walk Mn is (εy, λy)-a.s.recurrent.

Proof of theorem 3. To prove a.s. transience, we can follow the same technique

we used for the case of an i.i.d. random environment. So we define, for n ≥ 0, the
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following families of events:

An,1 := { max
0≤k≤2n

|Yk| < n
1
2
+δ1}, δ1 > 0

An,2 := {max
y∈Z

η2n−1(y) < n
1
2
+δ2}, δ2 > 0

An := An,1 ∩ An,2

Bn := An ∩ {|
∑
y∈Z

εy(mom
(y)
2n−1,o +mem

(y)
2n−1,e)| > n

1
2
+δ3}, δ3 > 0

Now, it is clear that many of the estimates that we did in the proof of theorem 1 still hold:

in fact, according to [2], we only need to provide an estimate on An\Bn, conditionally

to F2n. This estimate is given by the following result: 1

Proposition 7 (Proposition 3.2, [2]). For all β < 1, there exists a δβ > 0 such that,

uniformly in F2n, for all large n

P(An\Bn | F2n) = O(n−δβ).

Then, exactly as in the case of i.i.d. random environment, we show that P(Xn =

0, Yn = 0) is summable and prove the a.s. transience.

Proof of theorem 4.

To prove a.s. recurrence we need to show that
∑

n≥0 P(X2n = 0, Y2n = 0 | G) = ∞.

We know from Borel-Cantelli lemma that

w := max{|y| such that λy = 1}

is ε-a.s. finite, i.e. there exists L ∈ N such that for almost every realization of ε we have

L <∞ and wQ < L. (2.14)

From now on we fix ε0, one of such realizations, and consider all the probabilities as taken

conditionally to ε0, although for simplicity we will often omit to write it. Our strategy

1In [2] the graphs considered are partially directed square grids. However the same proof applies in

the current framework without changes, and therefore we omit it.



42 Periodic orientations with random perturbations

is to control the time spent by the random walk within the strip {y ∈ Z||y| ≤ L}, while

we apply proposition 5 to control the fluctuations outside the strip, where the levels are

periodically oriented.

Let

S
≤L
n,e :=

2n∑
i=1

1{νi−1 6=νi,|Yi|≤L}εYi ,

S
≥L
n,e :=

2n∑
i=1

1{νi−1 6=νi,|Yi|≥L}εYi ,

S≤Ln,e :=
2n∑
i=1

1{νi−1 6=νi,|Yi|≤L}f(Y i),

S≥Ln,e :=
2n∑
i=1

1{νi−1 6=νi,|Yi|≥L}f(Y i).

Note that S≥Ln,e = S
≥L
n,e . Moreover let

Sn,e = S
≤L
n,e + S

≥L
n,e ,

Sn,e = S≤Ln,e + S≥Ln,e .

In a completely analogous way we define the quantities corresponding to the odd steps:

S≤Ln,o , S
≥L
n,o , S

≤L
n,o , S

≥L
n,o , Sn,o, Sn,o.

Lemma 13. We have

|Sn,e| ≤ 2
2n∑
i=1

1{|Yi|≤L} + |Sn,e|,

|Sn,o| ≤ 2
2n∑
i=1

1{|Yi|≤L} + |Sn,o|.

Proof. We have

|Sn,e| =|S
≤L
n,e + S

≥L
n,e |

=|S≤Ln,e − S≤Ln,e + S≤Ln,e + S
≥L
n,e |

=|S≤Ln,e − S≤Ln,e + Sn,e|

≤|S≤Ln,e − S≤Ln,e |+ |Sn,e|

≤2
2n∑
i=1

1{|Yi|≤L} + |Sn,e|.
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The same argument proves the analogous majorization for Sn,o.

We shall denote again by Zn the event defined in (2.4).

Lemma 14. There exists a constant c′ > 0 such that for every n ∈ N

E

(
2n∑
i=1

1{|Yi|≤L} | Zn

)
≤ c′
√
n.

Proof. We have

E

(
2n∑
i=1

1{|Yi|≤L} | Zn

)
=

2n∑
i=1

P(|Yi| ≤ L | Zn) =
L∑

k=−L

2n∑
i=1

P(|Yi| = k | Zn).

By the local limit theorem (theorem 3 in [15]) applied to the Markov chain (νn)n≥0, we

deduce that P0(Yi = k) is majorized by c√
i

for an appropriate constant c > 0 independent

of k and for all sufficiently large i; Then we can find c′ > 0 large enough such that

P0(Yi = k) ≤ c′√
i

for all i > 0. Hence

2n∑
i=1

P(Yi = k | Zn) ≤
∑2n

i=1 P0(Yi = k)Pk(Y2n−i = 0)

P0(Zn)

≤C
√
n

∫ 2n

t=0

1√
t(2n− t)

dt = C
√
n

[
arcsin

(
t− 2n

2n

)]2n
0

≤ c′
√
n.

Proposition 8. We have

P(|Sn,e|+ |Sn,o| ≤ C
√
n | Zn) ≥ KC,L > 0

with C > 0 and sufficiently large n.

Proof. By lemma 13 we have for large n

P
(
|Sn,e|+ |Sn,o|√

n
≤ C | Zn

)
≥P

(
4
∑2n

i=1 1{|Yi|≤L} + |Sn,e|+ |Sn,o|√
n

≤ C | Zn

)

≥P

(
|Sn,e|+ |Sn,o|√

n
≤ C/2,

∑2n
i=1 1{|Yi|≤L}√

n
≤ C/2 | Zn

)
.
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Now, by proposition 5

P
(
|Sn,e|+ |Sn,o|√

n
≤ C/2 | Zn

)
≥ δC > 0

and by the Markov inequality together with lemma 14

P

(∑2n
i=1 1{|Yi|≤L}√

n
≤ C/2 | Zn

)
≥ δ′C,L > 0,

where both δC and δ′C,L tend to 1 as C grows to infinity. So if we take a sufficiently

large C s.t. δC′,L > 1− δC , the intersection between these two events will have positive

probability.

In analogy with the argument used in the periodic case, we define the following set

of constrained paths

Constr(n, f) := {(γ, q) : {−1, 0, 1, ..., 2n} −→ Z× {−1, 1} s.t. ∀i, γ(i) = γ(i− 1)± 1,

(γ(−1), q(−1); γ(0), q(0)) = (γ(2n− 1), q(2n− 1); γ(2n), q(2n)) = W0,∣∣∣∣∣
2n∑
i=1

1{qi−1 6=qi}εγi

∣∣∣∣∣+

∣∣∣∣∣
2n∑
i=1

1{qi−1=qi}εγi

∣∣∣∣∣ ≤ C
√
n

}
.

We have

P(X2n = 0, Y2n = 0) ≥P
(
X2n = 0,Zn, |Se(n)|+ |So(n)| ≤ C

√
n
)

=
∑

(γ,q)∈Constr(n,f)

P(X2n = 0 | (Yi, νi) = (γ(i), q(i)) ∀i ≤ 2n)

× P((Yi, νi) = (γ(i), q(i))∀i ≤ 2n).

Then by propositions 6 and 8, proceeding as in the proof of theorem 2, we show recurrence

for the random walk conditionally to the realization ε0 of the environment. But since

the choice of ε0 is arbitrary, with the only requirement that (2.14) is satisfied, and since

this happens for a.e. realization, we proved a.s. recurrence.
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2.3 Example of recurrence with non-periodic ergodic

orientations

One question that one may ask, is whether it is possible to generalize the transience

result obtained in theorem 1 to an ergodic sequence of random variables. In this section

we shall construct a counterexample. In our model the sequence of orientations is in fact

ergodic and non-periodic, but the simple random walk on the corresponding oriented

lattice is nonetheless recurrent for almost every realization of the environment.

Remark 2. In [2] the authors give an example of a square lattice with non-periodic orien-

tations such that the simple random walk is recurrent. The construction is deterministic

and is done by starting with alternate orientations, and then recursively introducing

some defects, i.e. levels where the orientation is opposite with respect to the one pre-

scribed by f(x) = (−1)|x|; the recurrence is thus proved by exploiting the sparsity of

these defects together with the recurrence of the periodically oriented square grid. We

will take inspiration from this approach to prove our result.

Theorem 5. For every n ∈ N define the function Zn : Z −→ {−1, 1} by

Zn(y) =

−1 if y ∈ {in|i ∈ Z},

1 otherwise.

(2.15)

Let T := (Tn)n∈N be a sequence of independent random variables, with

P(Tn = j) =
1

n
(2.16)

for every n and j ∈ N, 0 ≤ j < n.

Then there exists a strictly increasing sequence of prime numbers a := (ak)k≥1 ↑ ∞

with a1 > 2, such that the honeycomb lattice where each horizontal level y is oriented

randomly according to

εa(y) :=

(−1)|y|
∏∞

k=1 Zak(y + Tak) if Zak(y + Tak) = 1 except for finitely many k’s

1 otherwise

(2.17)
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is recurrent for almost every realization of T . Moreover εa := (εa(y))y≥0 is an ergodic

sequence of random variables.

Remark 3. Note that we can choose the sequence an to grow sufficiently fast, so that the

infinite product in (2.17) involves almost surely only a finite number of factors different

from +1.

Let ε0 be the alternate sequence, i.e. ε0a(y) := (−1)|y| for every y. For m ∈ Z, m > 0

define εma = (εma (y))y∈Z by

εma (y) := ε0a(y)
m∏
k=1

Zak(y + Tak) (2.18)

for every y. Then, for almost every realization of T, εa(y) = limm→∞ ε
m
a (y); based on

this observation, in figure 6 we illustrate how to construct iteratively the sequence εa

starting from ε0.

We begin by showing a crucial property of the sequences εma .

Lemma 15. If a := (ak)k≥1 ↑ ∞ is a strictly increasing sequence of prime numbers such

that a1 > 2, then for every m ∈ N and for every realization of T , εma is a sequence of

period 2
∏m

i=1 ai =: Rm and
∑Rm−1

y=0 εma (y) = 0.

Proof. The case m = 0 is trivial since the orientations are alternate.

Assume the result holds for m > 0 and fix a realization T̃ of T .

Consider the dynamical system on ZRm given by the map Φ(x) = x+am+1 mod Rm.

Let O
(m+1)
x0 := {x0 + jam+1 mod Rm|j ∈ N} be the orbit of x0. Since am+1 and Rm are

co-primes, we have

|O(m+1)
x0

| = Rm (2.19)

for every x0 ∈ Z, and so in particular (2.19) holds for x0 = −T̃am+1 . Since by (2.18)

the sequence εm+1
a is obtained from εma by changing the sign of εma (y) if and only if

y ∈ {jam+1− T̃am+1|j ∈ Z}, then (2.19) implies by induction that the sequence εm+1
a has

period Rm+1 = Rmam+1, and satisfies

Rm+1−1∑
y=0

εm+1
a (y) =

Rm+1−1∑
y=0

εma (y)−
Rm−1∑
y=0

εma (y) =

Rm+1−1∑
y=0

εma (y).
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On the other hand, again by induction

Rm+1−1∑
y=0

εma (y) =

Rmam+1−1∑
y=0

εma (y) = am+1

Rm−1∑
y=0

εma (y) = 0,

which completes the proof.

Figure 6: Construction of ε1a starting from the alternate sequence ε0a, assuming a1 = 3

and T1 = 0: at the left hand side we consider the alternate sequence and select all the

levels that are multiples of a1; then we switch the orientation of the selected levels to

obtain ε1a, shown at the right hand side. Note that the period of ε1a is 2a1 = 6.

We are ready to prove theorem 5. We divide the proof into two parts: first we observe

that the sequence is ergodic; then we show the recurrence of the walk.

Proof of ergodicity. Let Ψn :=
∏n

k=1 Zak and denote by G the group addition on

Ψn, that is the transformation that adds +1 to each component of x = (x1, x2, ..., xn) ∈
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Ψn, and let P be the product of n independent uniform distributions, i.e. P = P1⊗...⊗Pn
where Pk is the uniform distribution on {0, 1, ..., ak − 1} for every k. Since a = (ak)k∈N

is a sequence of primes, the orbit of any point x ∈ Ψn covers all the space, whence

lim
k→∞

1

k

k∑
i=1

h(Gi(x)) = E(h) (2.20)

for all x ∈ Ψn and for every measurable function h.

Now let Ψ :=
∏∞

k=1 Zak , and consider the system (Ψ, G, P ), where G is the group

addition on Ψ and P = ⊗∞k=1Pk. Let (Xk)k≥1 be a family of independent random variables

such that for each k, Xk is distributed according to Pk, and define X = (X1, X2, ...).

Suppose that there exists an invariant set I such that 0 < P (I) < 1 and let

f := 1I . Clearly f is bounded in L1(Ψ). For each n define the function fn(X) :=

E(f(X)|X1, ..., Xn). It is easy to see that fn is a bounded martingale in L1(Ψ) and by

Doob theorem

lim
n→∞

fn(X) = f(X) (2.21)

a.s. and, by the dominated convergence theorem, in L1. On the other hand, by (2.20)

we have that for every n

lim
k→∞

1

k

k∑
i=1

fn(Gi(X)) = E(fn(X)) (2.22)

a.s. and, again by the dominated convergence theorem, in L1. Then by (2.21) and (2.22)

we get

lim
k→∞

1

k

k∑
i=1

f(Gi(X)) = E(f(X)) (2.23)

in L1(Ψ). Finally, by invariance of I, we have limk→∞ E| 1
k

∑k
i=1 1I(G

i(X)) − P (I)| =

limk→∞ E|1X∈I − P (I)| 6= 0 which is absurd.

Proof of recurrence. Let (cn)n∈N ↑ ∞ and k ∈ N. By theorem 2 we know that

the random walk on the lattice oriented according to εka is recurrent, and in particular

∃L(εka) <∞ such that on that lattice

L∑
i=1

P0(Mi = 0) > ck (2.24)
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for all L ≥ L(εka).

Let δ < 1, x ∈ Z and consider the following event:

Ea,x :=
∞⋂
k=1

{{jak − Tak |j ∈ Z} ∩B(k)
x,δ = ∅}, (2.25)

where B
(k)
x,δ := {x − aδk, x − aδk + 1, ..., x + aδk}. Let’s show that Ea,x occurs for some x,

with probability 1. To this purpose note that

P(Ec
a,0) = P

(
∞⋃
k=1

{{jak − Tak |j ∈ Z} ∩B(k)
0,δ 6= ∅}

)
≤

∞∑
k=1

2aδk
ak

. (2.26)

By choosing an increasing sequence of primes (ak)k∈N that grows sufficiently fast, we can

ensure that P(Ec
a,0) ≤ c < 1; whence P(Ea,0) > 0, and by the ergodic theorem we have

lim
N→∞

1

N

N∑
x=1

1Ea,x(ω) = lim
N→∞

1

N

N∑
x=1

1Ea,0(S
x(ω)) = P(Ea,0) > 0,

a.s., where S : Z→ Z is the shift map. Then with probability 1 we can find x0 ∈ Z such

that Ea,x0 occurs, and consider the simple random walk M started at (0, x0). For every

k, the first aδk levels around x0 are oriented according to εk−1a , by (2.25) and lemma 15;

therefore, if

aδk ≥ L(εk−1a ), (2.27)

we have by (2.24)

∞∑
i=1

P(0,x0)(Mi = (0, x0)) ≥
aδk∑
i=1

P(0,x0)(Mi = (0, x0)) > ck−1.

Note that, possibly after modifying (ak)k∈N to a new sequence of primes (a′k)k∈N, with

a′k ≥ ak ∀k, we can ensure that (2.27) is satisfied for every k, and since (cn)n∈N ↑ ∞ we

deduce the recurrence of the random walk.





Chapter 3

Revolving random walks on oriented

square grids

3.1 Introduction

In this Chapter we study the recurrence/transience behavior of the simple random walk

on two partially directed versions of the two-dimensional square grid (see figure 7). 1

The first graph is G1 = (Z2,E1), with edge set E1 satisfying that a directed edge

(v, w) = ((v1, v2), (w1, w2)) ∈ E1 if and only if (w1, w2) = (v1, v2 ± 1), or (w1, w2) =

(v1 + 1, v2) and v2 = w2 ≥ 0, or (w1, w2) = (v1 − 1, v2) and v2 = w2 < 0. The second

graph we consider is G2 = (Z2,E2), and can be obtained with a slight modification

of G1 by redefining only the orientations of the edges leading out from x-axis, that

is, ((v1, 0), (w1, w2)) ∈ E2 with v1 = w1 and w2 = ±1 if and only if w2 = −1 and

v1 = w1 > 0, or w2 = 1 and v1 = w1 < 0, or w2 = ±1 and v1 = w1 = 0.

Graph G1 appeared for the first time in [1], where its transience was proved by com-

puting the characteristic function of the corresponding embedded random walk. Then,

more recently, graph G1 was reintroduced together with G2 in [19] [20]: the authors

1All the results presented in this Chapter are from a joint work with Yuval Peres, Principal Researcher

at Microsoft Research, Redmond, and Yiping Hu, Ph.D. student from the University of Washington,

Seattle. A preprint of our work is currently available on arXiv at https://arxiv.org/abs/1807.03498
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(a) Graph G1 (b) Graph G2

Figure 7: The graph G1 in figure (a) is transient, whereas graph G2 in (b) is recurrent.

The arrows indicate the orientation of the corresponding edges.

were mainly concerned with oscillating random walks on the line (and on simplexes of

half lines), and they observe that the random walks on these two-dimensional graphs, at

the times of successive returns to x-axis, have an oscillatory behavior. However, while

they give a new proof of the transience of G1, graph G2 turns out to be more delicate,

and they conjecture the recurrence of the graph. Our main result is a proof of their

conjecture:

Theorem 6. The simple random walk on graph G2 is recurrent.

In order to prove the result, we shall start by considering a continuous analogue of

the random walk which is recurrent, and apply the Lyapunov method together with an

approximation technique to deduce the same result in the discrete framework. Here by

Lyapunov method we mean the application of the following theorem (for a reference to

it with several examples of its use we refer to [20].)

Theorem 7 (Lyapunov function recurrence criterion). An irreducible Markov chain Xn

on a countable space Σ is recurrent if and only if there exists a function f : Σ→ R+ and



Introduction 53

a finite set A 6= ∅, A ⊂ Σ, such that ∀x ∈ Σ\A

E[f(Xn+1)− f(Xn)|Xn = x] ≤ 0 (3.1)

and f(x)→∞ as x→∞.

Let’s start by defining the aforementioned continuous analogue of the random walk

on G2 and prove its recurrence.

Let m ∈ R+ and (BR
t )t≥0 be the one-dimensional standard Brownian motion starting

at 0 with a reflecting barrier at 0 to stay in positive real line. We define a continuous-

time process (Wt)t≥0 := (W
(1)
t ,W

(2)
t )t≥0 on R2, together with a sequence of random times

(Un)n≥0 in the following recursive manner: we set U0 := 0 and W0 := (−m, 0) as the

initial position; for every n ≥ 1,

Un := min{t > Un−1 + |W (1)
Un−1
|;BR

t = 0}

and

Wt :=

(t− U2n +W
(1)
U2n
, BR

t ) if t ∈ [U2n, U2n+1) for some n ≥ 0,

(−t+ U2n−1 +W
(1)
U2n−1

,−BR
t ) if t ∈ [U2n−1, U2n) for some n > 0.

Clearly, WUn = (W
(1)
Un
, 0) for every n and its x-coordinate W

(1)
Un

changes sign alternately.

It turns out that it suffices to keep track of |W (1)
Un
| at these returns to x-axis, since

the recurrence of Wt would follow immediately from the recurrence of |W (1)
Un
|. To this

purpose, we define HB
n := |W (1)

Un
| and call this discrete-time process (HB

n )n≥0 on R+ the

continuous ladder height process. (cfr. figure 8)

The ladder height process is itself a Markov chain and has a nice representation as

the product of i.i.d. random variables ηn’s defined by

HB
n := ηnH

B
n−1 = m

n∏
i=1

ηi = exp

(
logm+

n∑
i=1

log ηi

)
(3.2)

for n ≥ 1. One way to understand log ηi’s is through the decomposition of each step

of ladder height process into two parts, one from the starting point on x-axis to y-axis
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(0,0)(-m,0) H B
1

Figure 8: Illustration of the first step of the ladder height process.

and the other from y-axis back to x-axis. Let Z be a standard folded normal random

variable, i.e. the absolute value of a standard normal random variable, and Th a Lévy

random variable independent of Z, i.e. the hitting time at 0 for a standard Brownian

motion started at h > 0. Then by decomposing we have

HB
1

d
= T√mZ

d
= (
√
mZ)2T1 = mZ2T1 (3.3)

and thus η1
d
= Z2T1 (see e.g. [6] p.170). On the other hand T1 =d 1/|Z|2, since for a > 0

P(T1 > a) = P(max
t≤a

Bt < 1) = P(
√
a|Z| < 1) = P(1/|Z|2 > a)

by reflection principle.

It follows that log η1 is symmetric and, in particular, has mean zero: therefore by

Chung-Fuchs theorem (see [5], th.4.2.7)
∑n

i=1 log ηi is recurrent. By (3.2) this implies

the recurrence of the ladder height process and hence the recurrence of the continuous

walk Wt.

The structure of the Chapter is as follows: in Section 3.2, we show how to adapt the

argument above to the discrete setting and prove recurrence for the random walk on G2;

then, in section 3.3 we analyze the simple random walk on G1, showing in particular its

transience.

3.2 Recurrence of G2

Consider the simple random walk (Mn)n≥0 = (M
(1)
n ,M

(2)
n )n≥0 on the graph G2. For

simplicity we assume the random walk starts at (M
(1)
0 ,M

(2)
0 ) = (−m, 0) for some fixed
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m ∈ Z+ and use the notation Pm to make explicit the dependence on initial position.

Sometimes we might want to start at (M
(1)
0 ,M

(2)
0 ) = (0, h) for some h ∈ Z+, in which

case we write Ph. Analogous to the Brownian motion case, we can consider the discrete

time ladder height process (Hn)n≥0 with the state space N. More rigorously, we define

Hn := |M (1)
τn | for n ≥ 0, where {τn}n≥0 is a sequence of stopping time defined recursively

as follows: τ0 := 0 and for n ≥ 1,

τn := inf{i > τn−1;M
(2)
i = 0 and M

(1)
i M (1)

τn−1
≤ 0}.

In the following, we will stick to the convention that logH1 = 0 when H1 = 0 for

simplicity. We also define for n ≥ 1,

σn := inf{i > τn−1;M
(1)
i = 0} (3.4)

and Vn := |M (2)
σn |. Note that τn−1 < σn ≤ τn for any n ≥ 1. With this definition, in anal-

ogy with the decomposition (3.3) in the continuous setting, we can further decompose

each step Hn of the ladder height process into two parts, one starting from (M
(1)
τn−1 , 0)

to the (0, Vn) and the other from the (0, Vn) to (M
(1)
τn , 0). Under Pm, we should always

consider H1, H1/m and V1 as playing the same role as HB
1 , η1 and

√
2mZ in the contin-

uous case respectively. Furthermore under Ph, the correspondence is between H1 and its

continuous analogue h2T1/2. Note that the extra constants
√

2 and 1/2 come from the

fact that the continuous analogue of the random walk in question should be constructed

from a Brownian motion with twice the quadratic variation of a standard one.

It is not hard to see that the process H is a Markov chain in its own right starting

at H0 = m and has the same recurrence property as the original chain M . The main

difficulty in the combinatorial setting, however, is that the identity Em log(H1/m) = 0

only holds in the asymptotic sense. In fact, one can show that

Em log(H1/m)→ Em log η1 = 0

when m → ∞, with the help of some Donsker-type arcsine laws (see [21], Prop.5.27,

p.137). Unfortunately, this result is not sufficient to prove the recurrence. Hence instead
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of logH1, we consider a modified function
√

logH1 with the same convention at zero as

above. Using the inequality
√

1 + x ≤ 1 + 1
2
x − 1

16
x2 for x ∈ [−1, 1], we obtain on the

event {1 ≤ H1 ≤ m2} that

√
logH1 =

√
logm+ log(H1/m) =

√
logm

√
1 +

log(H1/m)

logm

≤
√

logm

{
1 +

log(H1/m)

2 logm
− 1

16

[
log(H1/m)

logm

]2}

≤
√

logm+
logH1 − logm

2
√

logm
− (logH1 − logm)2

16(logm)3/2
.

Taking expectation, we get

Em
√

logH1 ≤
√

logm+
Em (logH1 − logm)

2
√

logm
− Em (logH1 − logm)2

16(logm)3/2

+
Em
[
(logH1 − logm)2 ;H1 > m2

]
16(logm)3/2

+ Em
[√

logH1;H1 > m2
]

≤
√

logm+
Em (logH1 − logm)

2
√

logm
− Em (logH1 − logm)2

16(logm)3/2

+ 2Em
[
log2H1;H1 > m2

]
=:
√

logm+ ε1(m)− ε2(m) + ε3(m). (3.5)

Once we show that ε1(m) + ε3(m) � ε2(m) for large enough m by giving reasonable

bounds on their asymptotics, we can conclude
√

log x is a Lyapunov function for (Hn)n≥0

and apply theorem 7 to prove the recurrence. Let us make a few comments about these

errors before we proceed. The first order error ε1(m) comes from the approximation

of random walks with Brownian motions, the main difficulty we mentioned above, and

its upper bound will be the main focus in this section. The approximation techniques

we apply will be local central limit theorems and the Euler-Maclaurin formula. The

second order term ε2(m) is the reason behind our choice of function and it quantifies the

amount we are able to exploit from using a concave function of logH1. Observe that

Em (logH1 − logm)2 ≥ Varm(logH1), and we will show later in section 3.2.3 that the

variance on the right hand side is uniformly bounded away from zero for all m > 0. For

the truncation error ε3(m), one should expect logH1 to be concentrated around logm,
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and we will show in section 3.2.3 with Chernoff bounds that ε3(m) decays polynomially

and thus negligible compared to ε2(m) when m goes to infinity.

In order to estimate ε1(m), it is more convenient to consider the decomposition de-

scribed by the random variables Vn’s, see (3.4) for definition and the subsequent discus-

sion of continuous analogues. Then

Em(logH1) =
∞∑
h=1

Em(logH1|V1 = h)Pm(V1 = h)

=
∞∑
h=1

[
2 log h+ Eh(logH1/h

2)
]
Pm(V1 = h)

=2Em(log V1) +
∞∑
h=1

[Eh(logH1)− 2 log h]Pm(V1 = h), (3.6)

so it suffices to estimate the corresponding approximation errors

Em(log V1)− E log(
√

2mZ) = Em(log V1)− (logm)/2 + γ/2 (3.7)

and

Eh(logH1)− E log(h2T1/2) = Eh(logH1)− 2 log h− γ, (3.8)

where γ is the Euler constant, Z and T1 are defined in the paragraph above (3.3), and

we use the result E log T1 = −2E(logZ) = γ + log 2.

To this end, we define pm,h := Pm(V1 = h) to be the probability that the random walk

starting from (−m, 0) hits the y-axis at point (0, h) and qh,l := Ph(H1 = l) the probability

that the random walk started at (0, h) hits the x-axis at point (l, 0) for m,h, l ∈ Z+. Let

fm(x) := log(x)√
πm
e−

x2

4m and gh(x) := log x h
2
√
πx3/2

e−
h2

4x be functions define on R+. Then we

can rewrite and decompose two errors as follows:

Rf (m) :=
∞∑
h=1

log h pm,h −
∫ ∞
0

fm(x)dx =
∞∑
h=1

[log h pm,h − fm(h)] +
∞∑

h=m1/2+δ

fm(h)

+

m1/2+δ∑
h=1

fm(h)−
∫ m1/2+δ

1

fm(x)dx

+

(∫ m1/2+δ

1

fm(x)dx−
∫ ∞
0

fm(x)dx

)

=: I1 + I2 + I3 + I4 (3.9)
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and

Rg(h) :=
∞∑
l=1

log l qh,l −
∫ ∞
0

gh(x)dx =
∞∑
l=1

[log l qh,l − gh(l)] +
h2−δ∑
l=1

gh(l)

+

(
∞∑

l=h2−δ

gh(l)−
∫ ∞
h2−δ

gh(x)dx

)
+

(∫ ∞
h2−δ

gh(x)dx−
∫ ∞
0

gh(x)dx

)
=: J1 + J2 + J3 + J4, (3.10)

where δ > 0 is sufficiently small.

3.2.1 Local limit theorems

Throughout this section we shall denote the usual one-dimensional simple random walk

on Z by S. We want to establish a local limit theorem for pm,h and qh,l. First, we shall

prove the following:

Lemma 16. We have

pm,h := Pm(V1 = h) =
1√
πm

e−
h2

4m +O

(
1√
mh2

∧ 1

m3/2
+
e−

h2

8m

m1−δ

)
.

Figure 9: The modified graph G′2
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Proof. Our approach is based on the fact that conditioned on the number of vertical steps

before hitting y-axis, the vertical movement has the same law as S. To calculate the

probability of n vertical steps, we hope to interpret the number of vertical steps before

hitting y-axis as the sum of m i.i.d. geometric random variables, i.e. Gp,m :=
∑m

i=1 gi,

with success probability p = 1/3 and values in {0, 1, 2, . . . }. The intuition is almost

correct except that on graph G2, only vertical steps are allowed at ordinate zero. For

this reason, we modify the transition probability of S by ignoring the origin as follows:

p(1,−1) = p(1, 2) = 1/2 and p(−1, 1) = p(−1,−2) = 1/2, and write S ′ for the resulting

random walk. We also consider a 2D modification, the random walk (M
′(1)
i ,M

′(2)
i )i≥0 on

an oriented graph G′2 where all the horizontal edges are to the right and all points on

x-axis are ignored (see figure 9). Precisely, G′2 = (V′,E′2) has vertex set V′ = Z2\Z×{0},

and E′2 consists of all edges leading to the nearest neighbors upward, downward and to

the right. Then the intuition of geometric random variables holds for the random walk

on G′2, noting that the conditional law of vertical movements has the same law as S ′. For

the process (M
(1)
i , |M (2)

i |)i≥0, define p′m,h analogously as the probability that the random

walk started at (−m, 1) hits the y-axis at point (0, h) for m,h ∈ Z+. Then

pm,h = p′m,h =
∞∑
n=h

(P1(S
′
n = −h) + P1(S

′
n = h))P(Gp,m = n)

=
∞∑
n=h

P0(Sn = −h)P(Gp,m = n) +
∞∑
n=h

P0(Sn = h− 1)P(Gp,m = n)

=: p
(1)
m,h + p

(2)
m,h.

We will focus on p
(1)
m,h, as p

(2)
m,h can be treated analogously. Let δ > 0, we split the sum

into two parts

p
(1)
m,h =

∑
|n−2m|≤m1/2+δ

P0(Sn = h)P(Gp,m = n) +O

 ∑
|n−2m|>m1/2+δ

P(Gp,m = n)

 , (3.11)

and notice that the second term in (3.11) decays exponentially fast by Chernoff bound.
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Then, by applying the local limit theorem (see e.g. [17], p.36 2) to S we obtain

p
(1)
m,h =

∑
|n−2m|≤m1/2+δ

[
pn(h) +O

(
1

m3/2

)]
P(Gp,m = n) +O(e−cm

2δ

)

=

[
p2m(h) +O

(
1

m3/2
+
e−

h2

8m

m1−δ

)] ∑
|n−2m|≤m1/2+δ

P(Gp,m = n) +O(e−cm
2δ

)

=

[
p2m(h) +O

(
1

m3/2
+
e−

h2

8m

m1−δ

)]
,

where we define pn(h) := 1√
2πn

e−
h2

2n and use the fact that if |n − 2m| ≤ m1/2+δ then

pn(h) = p2m(h) +O
(
e−

h2

8m

m1−δ

)
by first order approximation. We conclude by noting that

the same proof would go through if we apply instead the LLT in [17], eq. (2.4) on

p.25.

Now we consider the second part of our decomposition and prove a local limit theorem

for qh,l.

Lemma 17. We have

qh,l := Ph(H1 = l) =
h

2
√
πl3/2

e−
h2

4l +O
(

1

l3/2h
∧ h

l5/2
+

h

l2−δ
e−

h2

8l

)
.

Proof. Let Gp,n :=
∑n

k=1 gk, with gk’s i.i.d. geometric random variables with success

probability p = 2/3 and values in {0, 1, 2...}. Decomposing and conditioning on the

number of vertical steps n, we have

qh,l =
∞∑
n=h

P0(Sn = h;Sk > 0, ∀1 ≤ k ≤ n)P(Gp,n = l)

=
∞∑
n=h

h

n
P0(Sn = h)P(Gp,n = l),

by the Ballot theorem (see e.g. [5], p.202 thm.4.3.2). Now, let δ > 0 and split the sum

into two parts as follows

∑
|n−2l|≤l1/2+δ

h

n
P0(Sn = h)P(Gp,n = l)+O

 ∑
|n−2l|>l1/2+δ

P(Gp,n = l)

 . (3.12)

2This LLT and the following ones are stated for aperiodic random walks, but it is not difficult to

deduce the analogue for bipartite walks, see e.g. pp. 26-27 of the cited book.
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Notice that

P(Gp,n = l) =

(
n+ l − 1

l

)
pn (1− p)l =

n

l
P(G1−p,l = n), (3.13)

so for the second term of (3.12), we have∑
|n−2l|>l1/2+δ

P(Gp,n = l) =
∑

|n−2l|>l1/2+δ

n

l
P(G1−p,l = n)

≤E
[
G1−p,l; |G1−p,l − 2l| ≥ l1/2+δ

]
=O(e−cl

2δ

),

for appropriate c > 0 by the Chernoff bound. By (3.13) again, we can rewrite the first

term of (3.12) as ∑
|n−2l|≤l1/2+δ

h

l
P0(Sn = h)P(G1−p,l = n)

and apply the local limit theorems and first order approximation as before.

Thanks to lemma 16 and lemma 17 we can estimate the errors I1 and J1:

I1 =
∞∑
h=1

log hO

(
1√
mh2

+
e−

h2

8m

m1−δ

)
= O

(
logm

m1/2−2δ

)
. (3.14)

Here in the second term of the summation, we used a uniform bound for all h ≤ m1/2+δ

and an integral to bound the sum for h ≥ m1/2+δ, where the error is monotone in h.

Similarly, we have

J1 =
∞∑
l=1

log lO
(

1

l3/2h
+

h

l2−δ
e−

h2

8l

)
= O

(
log h

h1−3δ

)
, (3.15)

where in the second term of the (3.15) we used a uniform bound for all l ≥ h2−δ and an

integral to bound the sum for l ≤ h2−δ.

For errors I2 and J2, as in the case h ≥ m1/2+δ (and, respectively, l ≤ h2−δ) mentioned

above, it is straightforward to give exponential bounds with integrals:

I2 = O
(
e−cm

2δ
)

(3.16)

and

J2 := O
(
e−ch

δ
)

(3.17)

for some c > 0.
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3.2.2 Euler-Maclaurin approximation

In this section we apply the Euler-Maclaurin formula to bound I3 and J3. We recall here

the general formula (see e.g. [16]): let n, p ≥ 1 be two integers, and a, b ∈ R with a < b.

For any φ ∈ Cp[a, b] we have

[
b∑
i=a

φ(i)−
∫ b

a

φ(x)dx

]
=

p∑
j=1

Bj

j!

[
φ(j−1)(x)

]b
a

+ r(p, a, b), (3.18)

where Bj are the Bernoulli coefficients and r(p, a, b) is the remainder of order p. In our

case we will need only a first order approximation, for which the following bound on the

remainder is known

r(1, a, b) ≤ C(b− a) max
a≤x≤b

|φ′(x)|, (3.19)

with C > 0 a positive constant. Moreover we recall that B1 = −1/2.

Recall that fm(x) := log(x)√
πm
e−

x2

4m and f ′m(x) =
(
1
x
− x log x

2m

)
1√
πm
e−

x2

4m . Hence, by the

Euler-Maclaurin formula (3.18)

I3 ≤
(1/2+δ) log2m∑

k=0

2k+1∑
h=2k

fm(h)−
∫ 2k+1

2k
fm(x)dx


≤

(1/2+δ) log2m∑
k=0

[
fm(2k) + fm(2k+1)

2
+ rk

]
= O

(
logm

m1/2−2δ

)
, (3.20)

where rk := r(1, 2k, 2k+1) and the last equality follows from (3.19), since

|rk| ≤ C2k max
2k≤x≤2k+1

|f ′m(x)| ≤C2k max
2k≤x≤2k+1

(
1

x
+
x log x

2m

)
1√
πm

e−
x2

4m

≤C2k
(

1

2k
+

2k+1(k + 1)

2m

)
1√
πm

=O
(

1√
m

+
22kk

m3/2

)
.

Let gh(x) := log x h
2
√
πx3/2

e−
h2

4x and g′h(x) =
(

1− 3 log x
2

+ h2 log x
4x

)
h

2
√
πx5/2

e−
h2

4x . By the
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Euler-Maclaurin formula (3.18),

J3 =
∞∑

k=(2−δ) log2 h

2k+1∑
l=2k

gh(l)−
∫ 2k+1

2k
gh(x)dx


≤

∞∑
k=(2−δ) log2 h

[
gh(2

k) + gh(2
k+1)

2
+ r̃k

]

=
∞∑

k=(2−δ) log2 h

O
(
hk

23k/2
+

h3k

25k/2

)
= O

(
log h

h2−
5δ
2

)
, (3.21)

where we use the fact that

|r̃k| ≤C ′2k
(

1 +
3(k + 1)

2
+
h2(k + 1)

2k+2

)
h

2
√
π25k/2

=O
(
hk

23k/2
+

h3k

25k/2

)
.

We conclude this section by noting that the bounds on errors I4 and J4 follow from

direct calculation:

|I4| =
∫ 1

0

fm(x)dx+

∫ ∞
m1/2+δ

fm(x)dx = O
(

1√
m

)
(3.22)

and

|J4| =
∫ h2−δ

0

gh(x)dx = O
(
e−ch

δ
)
. (3.23)

3.2.3 Proof of recurrence

In this section, we complete the proof of recurrence. By the formulas (3.7), (3.8), (3.9)

and (3.10) and the estimates (3.14), (3.15), (3.16), (3.17), (3.20), (3.21), (3.22) and

(3.23), we get

Rf (m) := Em(log V1)− (logm)/2 + γ/2 = O
(

1

m1/2−3δ

)
and

Rg(h) := Eh(logH1)− 2 log h− γ = O
(

1

h1−3δ

)
,



64 Revolving random walks on oriented square grids

where γ is the Euler constant. Then, by (3.6) and lemma 16

Em(logH1) =2Em(log V1) +
∞∑
h=1

[Eh(logH1)− 2 log h]Pm(V1 = h)

= logm+O
(

1

m1/2−3δ

)
+
∞∑
h=1

O
(

1

h1−3δ

)
Pm(V1 = h)

= logm+O
(

1

m1/2−3δ

)
,

so we’ve shown

ε1(m) :=
Em (logH1 − logm)

2
√

logm
= O

(
1

m1/2−4δ

)
. (3.24)

For the truncation error ε3(m), we have by lemma 16 and lemma 17

ε3(m) =
∞∑

l=m2

log2 l Pm(H1 = l) =
∞∑

l=m2

∞∑
h=0

log2 lpm,hqh,l

≤
∞∑

l=m2

log2 l

 ∑
h≤
√
mlδ

pm,hqh,l +
∑

h>
√
mlδ

pm,h


≤

∞∑
l=m2

log2 l

 ∑
h≤
√
mlδ

O
(

1√
m

h

l3/2

)
+O

(
e−cl

2δ
)

=
∞∑

l=m2

log2 lO
( √

m

l3/2−2δ

)
= O

(
log2m

m1/2−4δ

)
, (3.25)

where for h >
√
mlδ, we apply Chernoff bounds by viewing pm,h as the sum of the

absolute value of m many i.i.d random variables, each of which has the same law as the

convolution of geometrically many Bernoulli distributions.

Finally, for the numerator in ε2(m), we have

Em (logH1 − logm)2 ≥ Varm(logH1) ≥ Varm(E[logH1 | V1]). (3.26)

To estimate the rightmost term, we notice that by lemma 16 for any a > b > c > 0, there

exist p1, p2 > 0 such that Pm(V1 ≥ a
√
m) ≥ p1 and Pm(b

√
m ≥ V1 ≥ c

√
m) ≥ p2 for large

enough m. By the above estimate on Rg(h), we obtain that on the event {V1 ≥ a
√
m},

E[logH1 | V1] ≥ 2 log a+ γ + logm+O
(

1

m(1−3δ)/2

)
. (3.27)
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Similarly on {b
√
m ≥ V1 ≥ c

√
m},

E[logH1 | V1] ≤ 2 log b+ γ + logm+O
(

1

m(1−3δ)/2

)
. (3.28)

Then, by the formula Var(X) = 1/2E(X −X ′)2, where X ′ is an independent copy of X,

and taking X = E[logH1 | V1], we obtain thanks to (3.27) and (3.28)

Varm(E[logH1 | V1]) ≥ 4p1p2(log a− log b)2 +O
(

1

m(1−3δ)/2

)
,

for large enough m. Hence, we get

ε2(m) :=
Em (logH1 − logm)2

16(logm)3/2
≥

4p1p2(log a− log b)2 +O
(

1
m(1−3δ)/2

)
16(log(m))3/2

(3.29)

for large m.

We finish our proof of recurrence with (3.5), (3.24), (3.25) and (3.29).

3.3 Transience of G1

Throughout this Section we denote by M the simple random walk on G1. Our main

result is a local limit theorem for the return probabilities of M ; a new proof of transience

will be obtained as a corollary.

Let Tn be the time just after the n-th vertical step of M , and consider the usual

decomposition into vertical skeleton and embedded random walk

MTn = (Xn, Yn), (3.30)

such that Y is the simple random walk on Z and X0 := 0, Xn :=
∑n−1

i=0 ξi for n > 0, where

ξi is the random variable representing the horizontal steps that M performs between the

i−th and the i + 1-th vertical step; note that |ξi| is a geometric random variable with

success probability p = 2/3, and sgn(ξi) is determined by Yi. We shall prove the following.

Theorem 8. We have for large n

P0 (MT2n = (0, 0)) ∼ 1

2
√
πn3/2

.
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Proof. Let σ be the first time that Y visits −1 and let α < 1. We have

P0(σ > 2nα|Y2n = 0) = O
(

1

n
α
2

)
(3.31)

for large n; in fact by standard properties of the simple random walk in Z

P0(σ > 2nα, Y2n = 0) =
nα∑
k=0

P0(Y1 ≥ 0, Y2 ≥ 0, ..., Y2nα−1 ≥ 0, Y2nα = 2k;Y2n = 0)

=
nα∑
k=0

P0(Y2n−2nα = 2k)P0(Y1 ≥ 0, Y2 ≥ 0, ..., Y2nα−1 ≥ 0, Y2nα = 2k)

≤O
(

1√
n

)
P0(Y1 ≥ 0, Y2 ≥ 0, ..., Y2nα−1 ≥ 0) = O

(
1

n
1+α
2

)
.

Define

A+
n := |{0 ≤ j < 2n|Sj ≥ 0}|

to be the amount of time spent by the vertical skeleton on the non-negative axis up to

step 2n. Let 1/2 < δ < 1. We have

P0(X2n = 0, Y2n = 0) =
∑
m≥1

∑
|k−n|≤n1/2+δ

P0(X2n = 0, Y2n = 0, A+
n = k, σ = 2m− 1)

(3.32)

+
∑

|k−n|>n1/2+δ

P0(X2n = 0, Y2n = 0, A+
n = k). (3.33)

We begin by estimating (3.32); to this purpose we split again the sum into two parts,

one for 1 ≤ m ≤ nα and the other for m > nα, and apply the modified Chung Feller

theorem (see theorem 2.3.1 in [14]) to the vertical skeleton after the first time it goes

below the origin.
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We obtain

nα∑
m=1

∑
|k−n|≤n1/2+δ

P0(X2n = 0, Y2n = 0, A+
n = k, σ = 2m− 1)

=
nα∑
m=1

∑
|k−n|≤n1/2+δ

P0(X2n = 0 | Y2n = 0, A+
n = k, σ = 2m− 1)

× P0(A
+
n = k|σ = 2m− 1, Y2n = 0)P0(σ = 2m− 1 | Y2n = 0)P0(Y2n = 0)

∼ 1

2
√
πn3/2

P0(σ ≤ 2nα | Y2n = 0)
∑

|k−n|≤n1/2+δ

P0(X2n = 0 | Y2n = 0, A+
n = k)

∼ 1

2
√
πn3/2

∑
|k−n|≤n1/2+δ

P(X2n,k = 0), (3.34)

with X2n,k :=
∑k−1

i=0 ξi −
∑2n−1

i=k ξi for 1 ≤ k ≤ 2n, where (ξi)i≥0 is a sequence of i.i.d.

geometric random variables with success probability p = 2/3 and values in {0, 1, 2, ...}.

Let mn,k := E(X2n,k) = k − n and sn := σ2(X2n,k) = 2nσ2(ξ1).

Then, by means of a local limit theorem for independent (not necessarily identically

distributed) random variables (e.g. here we use [23], Chapter VII, theorem 5, p.197), we

obtain

∑
|k−n|≤n1/2+δ

P(X2n,k = 0) =
∑

|k−n|≤n1/2+δ

[
p
mn,k,sn
n (0) +O

(
1

n

)]

=
∑

|j|≤n1/2+δ

[
p0,snn (j) +O

(
1

n

)]

=1 + o(1) +O
(

1

n1/2−δ

)
, (3.35)

where p
mn,k,sn
n (x) = 1√

2πsn
e−

(x−mn,k)
2

2sn .

Similarly

∑
m≥nα+1

∑
|k−n|≤n1/2+δ

P0(X2n = 0, Y2n = 0, σ = 2m− 1, A+
n = k)

=O
(

1

n3/2

)
P0(σ > 2nα | Y2n = 0)

∑
|k−n|≤n1/2+δ

P(X2n,k = 0) = O
(

1

n
3+α
2

)
, (3.36)
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by equations (3.31), (3.35) and because by the Chung Feller theorem we have that

P0(A
+
n = k|σ = 2m,Y2n = 0) = O

(
1
n

)
when m ≥ nα and |k − n| ≤ n1/2+δ. Therefore,

the term (3.32) is asymptotic to 1
2
√
πn3/2 for large n.

Finally, it remains to bound (3.33); to this purpose we use large deviation. Consider

the trivial bound

∑
|k−n|>n1/2+δ

P0(X2n = 0, Y2n = 0, A+
n = k) ≤

∑
|k−n|>n1/2+δ

P(X2n,k = 0),

and for k ≥ 0 define X̂2n,k := X2n,k −mn,k. We have

P
(
X̂2n,k ≥ n1/2+δ

)
= inf

t>0
P(etX̂2n,k ≥ etn

1/2+δ

)

≤ inf
t>0

E(etX̂2n,k)

etn1/2+δ

= inf
t>0

(
2e−t/2

3−et

)k (
2et/2

3−e−t

)2n−k
etn1/2+δ

=O
(
e−

n2δ

3

)
, (3.37)

since, by Taylor expansion(
2e−t/2

3− et

)k (
2et/2

3− e−t

)2n−k

= 1 +
3n

4
t2 +O(nt3),

and then we use the fact that the minimum is attained at t∗ = 2
3
n−1/2+δ. Analogously

we obtain

P
(
X̂2n,k ≤ −n1/2+δ

)
= O

(
e−

n2δ

3

)
. (3.38)

Then, by (3.37) and (3.38)

∑
|k−n|>n1/2+δ

P(X2n,k = 0) =
∑

|k−n|>n1/2+δ

P
(
X̂2n,k = − (k − n)

)
= O

(
ne−

n2δ

3

)
.

This completes the proof.

Corollary 4. The random walk on graph G1 is transient.
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Proof. By the transience of (X, Y ), we can find C > 0 such that
∑

n P0(Xn = x, Yn =

0) ≤ C <∞ for every x ∈ Z. Whence∑
i

P0(Mi = 0) =
∑
n

∑
x≥0

P0(Xn = −x, Yn = 0)(1/3)x ≤ C
∑
x≥0

(1/3)x <∞.

Remark 4. By a slight modification of the above argument one can actually extend the

limit theorem to most of the points z = (z1, 0) ∈ Z2 with |z1| ≤ n except for a subset of

size o(n), and obtain P0 (MT2n = z) ∼ 1
2
√
πn3/2 . Similarly, for |z1| > n+n1/2+δ with δ > 0,

the probability is exponentially small.

Remark 5. With analogous but more involved calculations, a local limit theorem for

the original chain M of the form P0(M2n = 0) ∼ C
n3/2 , C > 0 can be established.





Appendix A

The square grid with oriented

horizontal and vertical levels

Consider a square grid lattice where all the lines, both horizontal and vertical, are ran-

domly oriented. Precisely, let (εy)y∈Z, (ζx)x∈Z be two independent families of {−1, 1}-

valued random variables, independent of each others: let the horizontal levels be oriented

according to (εy), while the vertical ones according to (ζx). We denote this random graph

by Fε,ζ .

Of course, the recurrence behaviour of Fε,ζ depends of the distribution of (εy) and

(ζx). If, for example, both sequences are deterministic and alternately oriented, we obtain

the so-called Manhattan lattice, which is known to be recurrent (see [9]). However, if

(εy) and (ζx) are chosen to be both Rademacher i.i.d. sequences, the type problem is

still open. In fact, N-G. Plantard proposes the following conjecture (see [10]):

Conjecture 1. If (εy) and (ζx) are Rademacher i.i.d. sequences, independent of each

other, then the simple random walk on Fε,ζ is a.s. transient.

The goal of this section is to show that, by using the techniques developed in Chapters

1 and 2, we can determine the type for the simple random walk on a certain class of Fε,ζ .

Precisely, we claim the following.

71
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Figure 10: The random graph Fε,ζ , where we take (ζx)x∈Z to be the alternate sequence.

Theorem 9. Let ζ := (ζx)x∈Z be the deterministic alternate sequence, i.e. ζx = (−1)|x|

∀x ∈ Z.

(i) If ε := (εy)y∈Z is a sequence of i.i.d. Rademacher {−1, 1}-valued random variables,

then the simple random walk on Fε,ζ is a.s. transient.

(ii) Let Q > 1 be an even integer. If ε := (εy)y∈Z is a deterministic sequence with

period Q and such that
∑Q

y=1 εy = 0, then the simple random walk on Fε,ζ is recurrent.

(iii) If εβ := (εy,β)y∈Z is the sequence of random variables defined in (2.12), then the

simple random walk on Fεβ ,ζ is a.s. transient if β < 1, and a.s. recurrent if β > 1.

Proof. (i) We want to apply the technique used in the proof of theorem 1, and so we

start dividing the random walk into two components X and Y . Note that, because the

vertical edges are alternate, in the present case the vertical skeleton takes the following

form (cfr. figure 10 above)

Yn :=
n∑
i=1

νi, n ≥ 1,
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where (νi)i≥0 is a MC with transition matrix

πν =

 q 1− q

1− q q

 , with q =
2

3
.

(Observe that this is the same process we obtained in the honeycomb lattice, except that

there we had q = 1
3
.)

The embedded random walk takes also the usual form (1.2), that is

Xn :=
∑
y∈Z

εy

ηn−1(y)∑
i=1

ξ
(y)
i .

Moreover, the dependencies between X and Y are the usual ones: when consider-

ing the embedded random walk conditioned to the vertical one, we need to distinguish

between even and odd geometric random variables to track the horizontal steps.

Therefore, we can show a.s. transience by just repeating verbatim the proof of theo-

rem 1.

(ii),(iii). Similarly, the results follow by repeating verbatim the proofs of theorems 2,

3 and 4 of Chapter 2.

Remark 6. Notice that the recurrence of the Manhattan lattice can be viewed as a

particular case of theorem 9.(ii), when Q = 2.
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