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A B S T R A C T

Nowadays, numerical models aid significantly the engineers in the structural
assessment of ordinary and monumental existing masonry buildings. Indeed,
these models can be used to predict the structural response to extraordinary loads,
and so to evaluate the main weaknesses and the safety of a masonry structure.
Nevertheless, given the deep complexities and uncertainties which characterize
the geometry of historic buildings and the mechanical response of masonry, the
computational analysis of masonry structures is still a challenging task.

In this thesis, some recent advances in computational analysis of masonry
structures are presented. Essentially, after a comprehensive review of the exist-
ing modeling strategies for masonry structures, the advancements pursued in the
framework of (i) mesh generation procedures for historic monumental buildings,
(ii) analysis of seismically interacting structures, (iii) analysis of leaning historic
structures, and (iv) block-based modeling of masonry structures, are shown and
discussed.

Particularly, with reference to the first point, two mesh generation procedures
are proposed to transform 3D point clouds into 3D solid finite element mod-
els of historic monumental buildings. The first novel approach proposed, called
CLOUD2FEM, consists in the slicing and subsequent stacking of the geometry,
which can also be extremely complex. The resulting mesh contains all the in-
formation to be used within the finite element method, guaranteeing the semi-
automatic generation of a reliable model. The second approach proposed, called
watertight meshing, considers the structure as a watertight surface and eventually
fills the volume through existing mesh processing tools. This approach represents
a very fast solution for the direct and fully automatic mesh generation of a ge-
ometrically irregular masonry buildings, even though not always applicable, e.g.
in case of inner spaces, rooms, furniture, etc.

Concerning the second point, a computational procedure based on the use of
nonlinear static analyses is developed to assess the response of seismically inter-
acting historic masonry structures. This procedure firstly requires the execution
of a modal analysis on a 3D finite element model of the whole structure to de-
fine the modes which involve the dynamic response of each unit and their modal
shapes. The latter are then fitted to define the load patterns to be applied on each
unit through pushover analyses.

Regarding the third point, a computational procedure based on upper-bound
finite element limit analysis is developed to undertake stability analysis of geo-
metrically complex leaning historic masonry structures. This procedure permits
to estimate the structural health condition of a historic structure by comparing
the critical inclination angle against the actual one.

Finally, a damaging block-based model formulated in the context of contact me-
chanics is developed for the computational analysis of masonry structures. The



model is validated through the comparison against in-plane and out-of-plane ex-
perimental tests on masonry walls, as well as cyclic pushover tests on a full-scale
masonry house. In addition, the developed block-based model is also used to
investigate the response of historic barrel vaults undergoing differential settle-
ments.
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1
I N T R O D U C T I O N

Masonry structures represent a large part of the existing constructions in the
world. A great part of the historic architectural heritage consists of monumental
masonry structures (buildings, towers, castles, churches, mosques, temples, etc.).
Furthermore, ordinary residential buildings are typically made of masonry in
several countries. As it can be noted in Figure 1, considerable differences appear
between monumental and ordinary buildings, in terms of material, geometry and
structural details.

(a) (b)

Figure 1: Examples of (a) monumental and (b) ordinary masonry structures.

It is well known that unreinforced masonry (URM) structures, although classi-
cally suitable to withstand gravitational loads, are sensibly vulnerable if subjected
to extraordinary actions such as earthquakes. Indeed, the structural response to
this kind of actions is often characterized by the arising of cracks in the ma-
sonry and/or partial (or even full) collapses even for seismic events of moderate
intensity if compared to other structural typologies like as reinforced concrete
or steel buildings. Given the heterogeneity of masonry, made of blocks usually
bonded with mortar, cracks typically run along the mortar joints, even if the case
of cracked blocks is possible as well depending on the relative strength prop-
erties of the two basic components (i.e. mortar and blocks). Indeed, alternative
solutions to the unreinforced one have been developed over the centuries, aimed
at improving the properties of ductility and dissipation as well as the strength, as
the confined or reinforced masonry. Despite that, this thesis focuses only to the
unreinforced masonry solution.

In the last half-century, the scientific community devoted a consistent effort to
the computational analysis of masonry structures. The main objective at the basis
of this topic is that, if a mechanical model is found to be able to simulate the
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structural response of masonry structures, it can be used to predict the structural
response to extraordinary loads and, therefore, to evaluate the main weaknesses
and safety of a masonry building. Although new masonry buildings can be de-
signed and computationally analyzed, this approach has been mainly oriented to
the assessment of the near-collapse behavior of existing masonry buildings, given
their widespread dissemination and their weak structural response.

However, given the deep complexities and uncertainties which characterize the
geometry of buildings (especially historic ones) and the mechanical response of
masonry, the computational analysis of masonry structures is still a challenging
task. Indeed, several open issues arise when dealing with numerical modeling of
masonry structures. Among them, the following open issues appear particularly
stimulating:

(i) How to create the mesh of a structure if its geometry is extremely complex
and irregular, as for historic masonry buildings?

(ii) How to perform the seismic analysis of historic masonry buildings which
are typically composed of several interacting units?

(iii) How to evaluate the stability of leaning masonry structures with irregular
geometries?

(iv) How to accurately and efficiently represent the complex mechanical behav-
ior of masonry?

In such framework, this thesis proposes some wide-ranging advances in the
computational analysis of masonry structures to fill the aforementioned gaps. Es-
sentially, the advancements pursued in the framework of mesh generation pro-
cedures for historic monumental buildings, analysis of seismically interacting
structures, analysis of leaning historic structures, and block-based modeling of
masonry structures, are shown and discussed.

Firstly, a comprehensive review of the existing modeling strategies for masonry
structures is given in Chapter 2, together with a novel classification of these
strategies, which proposes four main categories: block-based models, continuum
models, geometry-based models, and macroelement models. Each category is
comprehensively reviewed and the future challenges of computational analysis
of masonry structures are also discussed.

Then, two mesh generation procedures are proposed in Chapter 3 to trans-
form 3D point clouds into 3D solid finite element models of historic monumental
buildings. The first novel approach proposed, called CLOUD2FEM, consists in
the slicing and subsequent stacking of the geometry, which can also be extremely
complex. The resulting mesh contains all the information to be used within the
finite element method, guaranteeing the semi-automatic generation of a reliable
model. The procedure is applied on a real case study (a medieval masonry fortress
damaged by an earthquake) and validated. The second approach proposed, called
watertight meshing, considers the structure as a watertight surface and eventually
fills the volume through existing mesh processing tools. This approach represents
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a very fast solution for the direct and fully automatic mesh generation of a ge-
ometrically irregular masonry buildings, even though not always applicable, e.g.
in case of inner spaces, rooms, furniture, etc. The procedure is applied on a me-
dieval ruined masonry leaning tower. The accuracy of the geometry of the mesh
generated appears suitable for structural purposes.

Additionally, a computational procedure based on the use of nonlinear static
analyses is presented in Chapter 4 to assess the response of seismically interact-
ing historic masonry structures. The proposed procedure firstly requires the exe-
cution of a modal analysis on the 3D finite element model of the whole structure
to define the modes which involve the dynamic response of each unit and their
modal shapes. The latter are then fitted to define the load patterns to be applied
on each unit through pushover analyses. The pushover curves obtained for each
unit are then converted into capacity curves to finalize the seismic assessment.
The effectiveness of the proposed procedure is shown through an application to
a medieval fortress significantly damaged by an earthquake.

Furthermore, a computational procedure based on upper-bound finite element
limit analysis is presented in Chapter 5 to undertake stability analysis of lean-
ing historic masonry structures. This outcome permits to estimate the structural
health condition of a historic structure by comparing the critical inclination angle
against the actual one. To demonstrate the effectiveness of the automated proce-
dure, a medieval ruined masonry leaning tower is investigated, evaluating the
failure mechanisms with collapse inclination angles.

Finally, a damaging block-based model formulated in the context of contact
mechanics is presented in Chapter 6 for the computational analysis of masonry
structures. The model is validated through the comparison against in-plane and
out-of-plane experimental tests on masonry walls, as well as cyclic pushover tests
on a full-scale masonry house. In addition, the developed block-based model is
also used to investigate the response of historic barrel vaults undergoing differ-
ential settlements.

On a final note, it has to be pointed out that the wide-range advances car-
ried out in this thesis, even though unconnected at first glance, can be linked
together to obtain an innovative framework for the numerical analysis of ma-
sonry structures. Indeed, the mesh generation approaches developed in Chapter
3 can be utilized within the structural analysis procedures proposed in Chapter
4 and Chapter 5. Moreover, although merely used on rather simple structures so
far, the block-based model presented in Chapter 6 could be utilized, in theory,
within the structural analysis procedures developed in Chapter 4 and Chapter 5

for monumental historic buildings.





2
M O D E L I N G S T R AT E G I E S F O R M A S O N RY S T R U C T U R E S

In this chapter, a comprehensive review of the existing modeling strategies for masonry structures,
as well as a novel classification of these strategies are presented. Although a fully coherent colloca-
tion of all the modeling approaches is substantially impossible due to the peculiar features of each
solution proposed, this classification attempts to put in order the wide scientific production on this
field. The modeling strategies are herein classified into four main categories: block-based models,
continuum models, geometry-based models, and macroelement models. Each category is compre-
hensively reviewed. The future challenges of computational analysis of masonry structures are also
discussed.

2.1 introduction

In this chapter, a comprehensive review of the existing modeling strategies for
masonry structures is presented and a classification of these strategies is pro-
posed. This classification of modeling strategies for masonry structures consists
of the four following categories (Figure 2): block-based models (BBM), continuum
models (CM), geometry-based models (GBM), and macroelement models (MM).
This classification, although a fully coherent collocation of all the modeling ap-
proaches is substantially impossible due to the peculiar features of each solution
proposed, attempts to put in order the wide scientific production on this field.

Firstly, the main mechanical and geometrical challenges of masonry structures
are briefly discussed in Section 2.2. Then, the limitations and possibilities of
analysis approaches (i.e. step-by-step analysis and limit analysis) for masonry
structures are pointed out in Section 2.3. The proposed classification of modeling
strategies for masonry structures is presented in Section 2.4. Each category is
then comprehensively reviewed (BBM in Section 2.5, CM in Section 2.6, GBM in
Section 2.7, and MM in Section 2.8) and the limitations and possibilities of each
strategy are deeply discussed. In the conclusions (Section 2.9), a summary of the
pros and cons of each category is given and a discussion on future challenges of
computational analysis of masonry structures is held.
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Figure 2: Modeling strategies for masonry structures.
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2.2 mechanical and geometrical challenges

A reliable simulation of the mechanical response of an existing masonry structure
should be based on reliable mechanical properties characterized through experi-
mental tests and on detailed geometrical and structural surveys.

This section aims to briefly highlight the main mechanical and geometrical
challenges which arise when dealing with masonry structures. Further aspects
on this topic can be found in [1, 2].

2.2.1 Masonry mechanical behavior

Masonry is a very complex material from a mechanical point of view. It is com-
posed of blocks usually bonded with mortar. Blocks are typically made of quasi-
brittle materials such as building stones, fired and non-fired bricks. Blocks are
assembled with a certain pattern, which is called “bond”. This makes masonry
an heterogeneous material. As highlighted in [1], the term “masonry” actually
refers to a very wide category of building materials (Figure 3), with different
mechanical features and peculiarities.

(a) (b) (c)

Figure 3: Examples of masonry: (a) brick masonry, (b) stone masonry and (c) Inca’s ma-
sonry (dry stone masonry).

The overall masonry response is governed by the mechanical properties of its
components (block and mortar) and the bond between them. Masonry compo-
nents are generally characterized by a quasi-brittle response in tension and com-
pression. In particular, the compressive behavior is characterized by much higher
values of strength and fracture energy with respect to the tensile behavior. Beyond
the nonlinearity showed by the masonry components, the bond between blocks
and mortar is usually very weak, characterized by a normal stress-dependent
cohesive-frictional behavior in shear and a cohesive behavior in tension (with
essentially irrelevant cohesion in case of dry stone masonry) [2]. Therefore, the
overall response of masonry is highly nonlinear.

Masonry is an anisotropic material [3]. Anisotropy can be observed in the elas-
tic behavior (elastic anisotropy), in the strength properties (beyond the difference
between compressive and tensile strengths, distinctive of quasi-brittle materials,
it shows also different strengths along with different directions, i.e. strength ani-
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sotropy), and in the post-peak response (brittleness anisotropy). In particular, reg-
ular brick masonry usually shows significant anisotropic properties. Conversely,
anisotropy in random stone masonry, although a significant difference in com-
pressive and tensile strengths is always observed, could be less significant (e.g. in
terms of elasticity, strengths, and brittleness) than in regular brick masonry, given
the lack of periodicity in the material.

The interpretation of the mechanical behavior of masonry could be based on
different scales, typically the scale of the material [3, 4, 5] and the scale of the
structural element [6, 7, 8, 9, 10]. For both cases, the description of the mechanical
behavior has to be generally defined in terms of stiffness, strength and ductility.
Figure 4 shows the limit strength domains of masonry at the scale of the material
(Figure 4(a)) and at the scale of the pier (Figure 4(b)) for plane stress states.

(a) (b)

Figure 4: Failure modes and limit domains of masonry: (a) scale of the material and (b)
scale of the pier, from [7].

Failure mechanisms in masonry are usually complex and articulated. Typical
failure modes of masonry at a two-block masonry assemblage scale are sketched
in Figure 5. At a structural scale, some examples of masonry failure are depicted
in Figure 6.



2.2 mechanical and geometrical challenges 9

(a) (b) (c)

(d) (e)

Figure 5: Masonry failure mechanisms (at a two-block masonry assemblage scale, from
[11]): (a) block-mortar bond tensile failure, (b) block-mortar bond shear sliding,
(c) diagonal masonry cracking, (d) masonry crushing, and (e) block and mortar
tensile cracking.

2.2.2 Experimental characterization of masonry

The experimental characterization of masonry mechanical properties is still a
challenging task. Indeed, although several experimental tests and set-ups have
been proposed in the last decades, their reliability and reproducibility are still
object of debate [13, 14].

Basically, the experimental characterization of masonry could be done at differ-
ent scales, as shown in Figure 7: masonry components (block, mortar and block-
mortar bond), wallets (small masonry assemblages), panels (real-scale masonry
walls), and buildings (full-scale masonry structures).

When dealing with existing masonry buildings, in-situ tests should be used to
mechanically characterize the structure [16, 17]. However, in-situ testing is usually
characterized by larger difficulties and limitations than laboratory testing. This
leads, in general, to greater uncertainties on the characterized mechanical prop-
erties. Even, merely non-destructive tests could be used in historic monumental
buildings to guarantee their conservation and authenticity [18, 19]. To limit the
invasiveness, together with experimental tests, also indirect methods have been
proposed in the literature [20] to assign mechanical properties to masonry which
are based on a qualitative interpretation of its main features (such as quality of
mortar joints, effectiveness of in-plane and transversal interlocking, bond). Any-
way, a limited mechanical information can be generally obtained on this kind of
masonry structures.
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(a) (b) (c) (d)

Figure 6: Masonry failure mechanisms (at a structural scale): (a) diagonal cracking, (b)
sliding, (c) crumbling, and (d) crushing (from [12]).

(a) (b) (c) (d)

Figure 7: Experimental characterization of masonry at different scales: (a) masonry com-
ponents testing (from [13]), (b) wallets testing (from [15]), (c) panels testing (from
[15]), and (d) building testing (from [15]).

2.2.3 Structural details

In masonry structures, structural details play a fundamental role in the mechani-
cal response. Indeed, the toothing between orthogonal walls (Figure 8), the qual-
ity of connection with horizontal diaphragms, the flexibility of horizontal di-
aphragms, the interaction with adjacent buildings, etc., could considerably affect
the structural behavior of masonry buildings [21].

In general, the structural details also depend on the historical evolution of the
building, in terms of restorations, additions of parts, destination changes, dam-
ages and repairs, etc. The knowledge of these aspects could be challenging for
historic structures, as they are the result of a subsequent superimposition of mod-
ifications along with the centuries. Indeed, the setting up of an effective knowl-
edge procedure when dealing with masonry cultural heritage assets is related
not only to the cost-benefit optimization (with respect to the reliability of the
final outcome), but also to the minimization of invasiveness on the construction,
with the aim of its conservation [22]. Beyond the traditional approaches proposed
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(a) (b)

Figure 8: Example of corner between two orthogonal masonry walls (one leaf running
bond walls): (a) toothing texture, and (b) without-toothing texture of the corner.

in standards or guidelines for the seismic assessment of existing buildings (e.g.
at international levels, Eurocode 8 - Part 3 [23] and ASCE/SEI 41/06) or, more
specifically, of heritage structures [24, 25], literature proposals to improve the
knowledge phase have been recently developed [26, 27].

2.2.4 Geometrical challenges

In some cases, the definition of the geometry of the structure could be challenging
as well, especially for historic monumental buildings characterized by complex
and irregular geometries. In these cases, an accurate geometrical and structural
survey is required.

One first issue concerns the identification of the structure (i.e. the load-bearing
system) within the building geometry. This non-trivial operation has to be carried
out by the analyst basing on the knowledge of the building.

Another issue regards the employability of the geometry in structural anal-
ysis purposes. The geometry of these structures can be manually drawn on a
computer-aided design (CAD) environment basing on the geometric survey. The
CAD-based geometry can be directly used within simplified structural analysis
frameworks, such as the one proposed in [28]. However, the employability of this
CAD-based geometry in mesh-based structural analysis could be problematic. In-
deed, the discretization process of these geometries is usually accompanied by
mesh errors, compatibility problems, excessively refined meshes, etc. Several ap-
proaches which use as input 3D point clouds for the automatic mesh generation
of historic building have been recently proposed in [29, 30, 31, 32] to deal with the
aforementioned issues. The development and the optimization of these methods
is still an on-going process.

2.3 analysis approaches

The collapse or near-collapse response of masonry structures can be investigated
following two main ways: (i) incremental-iterative analyses and (ii) limit analysis-
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based solutions. In this section, the main features of these two analysis approaches
are briefly recalled.

2.3.1 Incremental-iterative analyses

In incremental-iterative analysis procedures, the evolution of the equilibrium con-
ditions of a structure subjected to certain actions is investigated step-by-step. The
loading and the structural response are divided into a sequence of intervals, in-
crements or “steps”. Iterations are hence carried out to reach equilibrium within
each step. These procedures allows to account for mechanical nonlinearity, which
is fundamental and mandatory to be considered for a reliable assessment of the
collapse and near-collapse behavior of masonry structures. Although few exam-
ples of linear elastic models have been developed for the preliminary assessment
of historic masonry structures [33, 34], their effectiveness in investigating the fail-
ure mode and the safety of these structure is substantially limited.

As the aim of these analyses consists in studying the collapse behavior of ma-
sonry structures, large displacements could occur and, therefore, geometrical non-
linearity could play a non-marginal role and should be included in the computa-
tions.

Incremental-iterative analyses could be classified in nonlinear static and non-
linear dynamic (time history) analyses:

(i) Nonlinear static analysis. In nonlinear static analyses, the structure is step-by-
step subjected to certain actions until its critical and post-critical conditions.
The pseudo-time in which the structural response evolves does not repre-
sent any physical characteristics. Simulations can be performed in either
load control or displacement control, and in event-by-event damage control
(e.g. sequentially linear analysis [35, 36]).

Given the mechanical nonlinearity assumed for the material, nonlinear dif-
ferential equations have to be solved. These equations can be transformed
in nonlinear algebraic equations and solved within a numerical framework.
Typically, the nonlinear equations are step-wise linearized and resolved fol-
lowing an iterative procedure. Among the most famous iterative procedures
are: the Picard iteration (or direct iteration) method, the Newton-Raphson
iteration methods, and the Riks methods (the interested reader is referred
to [37] for more information about iterative procedures).

These kind of analyses are typically used to simulate quasi-static experi-
mental tests on masonry structures and to perform the so-called pushover
analysis. Pushover analysis is a very common and standardized procedure
to assess the seismic behavior of a masonry structure, which is subjected
to a monotonically increasing displacement of a control node given a load
pattern of horizontal forces kept constant in shape during the analysis.

(ii) Nonlinear dynamic (time history) analysis. In nonlinear time history analysis
(also called transient nonlinear analysis), the structure is step-by-step sub-
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jected to time-dependent actions and the structural response evolves in the
actual time, accounting for inertial and damping effects as well.

Time integration methods are employed to approximately satisfy the equa-
tions of motion during each time step of the analysis. These methods may
be classified as either explicit or implicit [38]. An explicit method is labeled
as one in which the new response values calculated at each step depend
only on quantities obtained in the previous step. Conversely, in an implicit
method the expressions giving the new values for a given step include val-
ues which pertain to that same step. Therefore, trial values of the unknowns
must be assumed and refined by successive iterations. Among the most fa-
mous time integration methods are the following: Euler-Gauss procedure,
Newmark Beta methods, second central difference formulation, linear ac-
celeration procedures [38]. In any case, a large body of literature has been
written on this topic and the interested reader is referred to [38] for more
details.

Nonlinear time history analyses can simulate the effects of dynamic actions
(e.g. earthquakes, impacts, explosions, etc.) on masonry structures. Indeed,
the possibility to account for time-dependent loads allows to simulate the
response of the structure against, for instance, a real accelerogram. Shaking
table experimental tests on masonry structures can be analyzed as well.
Occasionally, dynamic analysis can be also used for simulating quasi-static
tests and processes, by applying, for example, loads in a very slow way.

2.3.2 Limit analysis-based solutions

Heyman [39] firstly applied limit theorems of plasticity to masonry structures,
adopting the following three hypotheses:

(i) masonry has no tensile strength,

(ii) the compressive strength of masonry is infinite,

(iii) sliding of one masonry block upon another cannot occur.

These hypotheses, together with the negligibility of elastic strains, allowed the
formulation of the static theorem (lower-bound limit analysis) and the kinematic
theorem (upper-bound limit analysis) for masonry structures.

The smart Heyman’s rigid no-tension model has been widely used and fruit-
fully applied in analyzing the stability of masonry systems [40]. Firstly, these
assumptions allowed simple graphic statics solutions for the stability analysis of
masonry vaults [41], and kinematic analysis of common seismic failure modes of
masonry buildings [42]. Secondly, the Heyman’s hypotheses established a solid
base for the formulation of modern computational limit analysis-based methods.
These numerous methods (that will be discussed in the following) are based on
either the static theorem [43] or the kinematic theorem [44], and the problem
can be formulated as solution of an optimization problem (using or not genetic
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algorithms), of nonlinear differential equations, of linear or sequential linear pro-
gramming, etc.

One of the main disadvantages of limit analysis-based solutions consists in
the fact that their output is limited to the collapse multiplier and the collapse
mechanism, and no information is available on the ultimate displacement and/or
post-peak response, which appear fundamental in widely adopted displacement-
based seismic assessment procedures for masonry structures.

2.4 modeling strategies

In this section, a classification of the modeling strategies for masonry structures
is proposed. This classification is focused on the ways masonry and/or masonry
structures are modeled. Therefore, the analysis approaches discussed in Section
2.3 can be, in principle, applied to each modeling strategy category.

Each modeling strategy has some peculiar appealing features, which, in gen-
eral, could have a specific area of application. Furthermore, depending on the
scale of representation conceived in the numerical strategy, different scales of ma-
terial testing (Figure 7) could be used to calibrate the mechanical parameters of
the model, see Section 2.2.2.

Although each modeling solution which can be found in the scientific literature
presents original and peculiar features, making the classification non-trivial and
non-fully coherent, our aim consists in trying to make some order on the wide
scientific production on this field [45, 46, 47].

The present classification proposes four main categories of modeling strategies
for masonry structures (Figure 2):

(i) Block-based models. Masonry is block-by-block modeled and, therefore, the
actual masonry bond can be accounted for. The block behavior can be con-
sidered rigid or deformable, whereas their interaction can be mechanically
represented by means of several suitable formulations, that are reviewed in
Section 2.5.

(ii) Continuum models. The masonry material is modeled as a continuum de-
formable body. The nonlinear constitutive law adopted for the material can
be defined either through (i) direct approaches, i.e. by means of constitutive
laws calibrated, for example, on experimental tests, or through (ii) homog-
enization procedures and multi-scale approaches, where the constitutive law of
the material (considered as homogeneous in the structural-scale model) is
deduced from an homogenization process which relates the structural-scale
model to a material-scale model (representing the main masonry hetero-
geneities) of a representative volume element (RVE) of the structure. In this
cases, the solution of structural-scale problems could be formulated in a
multi-scale framework. These continuum models are reviewed in Section
2.6.
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(iii) Geometry-based models. The structure is modeled as a rigid body. The geom-
etry of the structure represents the main (or even the only) input of these
modeling strategies. The structural equilibrium and/or collapse are inves-
tigated through different procedures. Typically, these methods implement
limit analysis-based solutions (see Section 2.3.2), which can be based on ei-
ther static or kinematic theorems. Although these models could, in some
respects, be considered as continuum models (see category (ii)), it should
be remarked that the present category is based on the assumption of rigid
body. The geometry-based models are reviewed in Section 2.7.

(iv) Macroelement models. The structure is idealized into panel-scale structural
components (macroelements) with a phenomenological or mechanical-based
nonlinear response. Typically, two main structural components may be iden-
tified: piers and spandrels. The subdivision of the structure into panel-scale
portions is an a priori operation made by the analyst who interprets the
structural conception of the building. Although these models could, in some
respects, be considered continuum approaches, the main difference with the
models in (ii) is that the constitutive law of macroelements attempts to repro-
duce the mechanical response of panel-scale structural components, while
the constitutive law of the models in (ii) tries to reproduce the mechanical
behavior of the masonry material. Macroelement models are reviewed in
Section 2.8.

In the following, each category is comprehensively reviewed, showing the lim-
itations and possibilities of each approach, accounting for new and recently pro-
posed solutions. In this spirit, the following sections could be seen as an updating
of well-known review papers [45, 46] on this field.

2.5 block-based models

Block-based models represent the masonry behavior at the scale of the main het-
erogeneity of the material, characterized by blocks assembled by mortar (or dry)
joints, which governs the main aspects of its mechanical and failure response. In-
deed, these models can account for the actual masonry bond, which substantially
controls the anisotropy and the failure pattern of the material.

The first example of nonlinear block-based model dates probably back to 1978,
thanks to the pioneering work by Page [48], where masonry is considered as an
assemblage (that will be called “textured continuum” in the following) of elastic
brick elements acting in conjunction with linkage elements simulating the mortar
joints which have limited shear strength depending upon the bond strength and
the level of compression. From that work, several block-based models have been
developed and proposed.

The main positive features of the block-based modeling strategy category can
be summarized as:



16 modeling strategies for masonry structures

• Representation of the actual masonry bond and many structural details (e.g.
toothing of corners between orthogonal walls, see Figure 8);

• Easy mechanical characterization from small-scale experimental tests;

• Clear representation of the failure modes, which do not need demanding in-
terpretation. Indeed, detailed insights on the weakest parts of the structure
can be found, helping the designing of strengthening devices;

• Anisotropy intrinsically accounted for in the definition of the actual ma-
sonry bond;

• 3D models can account for, at the same time, the in-plane and out-of-plane
responses of masonry walls (and their interactions [49]);

• The interaction between orthogonal walls if subjected to horizontal loads (in
terms, for example, of vertical reaction transfer) is intrinsically accounted for
in 3D models.

Conversely, the main negative features of the block-based models can be sum-
marized as:

• The main issue of these models resides in their huge computational de-
mand. This well-known problem [45, 46], typically limits the applicability
of these modeling strategies to panel-scale structures. Indeed, few exam-
ples of applications on full-scale masonry structures can be found in the
literature [50, 51]. However, given the continuous power increment of the
computational facilities, this problem could be less significant in the near
future;

• 2D models unlikely show a reliable out-of-plane response;

• The actual bond of existing masonry structures is often non-completely
know. Therefore, the block-by-block discretization could be approximated
in those cases;

• The assembly of the model is usually a time-consuming and complex oper-
ation, which limits the use of these modeling strategies to academic studies
and very few high-level consultancy groups.
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Figure 9: Examples of block-based models.
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In this section, block-based models are classified into different subcategories
depending on the way the interaction between blocks is formulated (Figure 9):

1. Interface element-based approaches;

2. Contact-based approaches;

3. Textured continuum-based approaches;

4. Block-based limit analysis approaches;

5. Extended finite element approaches.

Each subcategory is then exhaustively reviewed in the following.

2.5.1 Interface element-based approaches

A first nonlinear interface-based model to simulate the collapse behavior of ma-
sonry structures appeared in [52], where the mortar joints were modeled with
zero-thickness interface elements and the masonry units (which were considered
as expanded to account for the geometry of the mortar joints) were modeled with
smeared crack elements, within a FE approach (Figure 10). In particular, a dilatant
interface plasticity-based constitutive model capable of simulating the initiation
and propagation of interface fracture under combined normal and shear stresses
was developed.

Figure 10: Example of a pioneering interface-based model [52].

An important improvement of this approach has been proposed by Lourenço &
Rots [53]. In particular, they developed a multi-surface interface-based model in
which all the nonlinearities (including also crushing) were concentrated in the in-
terfaces. This permitted to increase the efficiency of the model, in the framework
of softening plasticity. Such a model [53] has been diffusely used in the years that
followed, and is still today utilized for many applications on masonry structures
[54, 55]. For example, an interesting application of this interface model has been
conducted in [56] for historic non-regular stone masonry shear walls. Further-
more, an extension of the interface model developed in [53] to the cyclic behavior
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of masonry shear walls has been presented and validated in [57], fully-based on
the plasticity theory.

A cyclic mortar joint interface model based on damage mechanics has been de-
veloped by Gambarotta & Lagomarsino [58]. In particular, the constitutive equa-
tion of the interface is postulated in terms of two internal variables representing
the frictional sliding and the mortar joint damage. The interface model exhibits
a brittle response under tensile stresses and is characterized by frictional dissipa-
tion together with stiffness degrading under compressive stresses (Figure 9).

Other approaches, based on cohesive interfaces with damage and friction have
been presented in [59, 60, 61], which were suitable for the simulation of masonry
shear walls.

Additionally, several strategies have been based on the assumption of rigid
blocks which interact through nonlinear springs simulating the response of ma-
sonry joints as well as crushing. This is the case, for example, of the model devel-
oped by Malomo et al. [62] within the framework of the so-called applied element
method. Although similar, in principle, to the rigid body spring model (RBSM)
developed by Casolo [63] (which is, however, used without accounting for the
actual masonry bond and, so, the spring linear and nonlinear properties have to
be homogenized), in [62] the block-by-block modeling is pursued for the analysis
of the in-plane cyclic behavior of masonry walls.

All references described up unto this point are conceived for the analysis of
2D problems, typically in-plane problems. This aspect, as discussed above, con-
siderably limits the applicability of the modeling strategies to real problems. To
overcome this issue, several 3D models have been developed [64, 65, 66] to deal
with real case studies as well. Primarily, two different interface elements have
been developed specifically for 3D analysis of masonry structures.

Firstly, an extension of the Lourenço & Rots [53] multi-surface interface model
to the 3D case, accounting also for geometrical nonlinearity, has been developed
by Macorini and Izzudin [67]. In particular, a co-rotational approach has been
employed in [67] for the interface element, which shifts the treatment of geomet-
ric nonlinearity to the level of discrete entities, and enables the consideration of
material nonlinearity within a simplified local framework employing first-order
kinematics (Figure 9). This approach has been extensively used for real applica-
tions [68, 69] by using partitioning routines [70, 71]. Moreover, the interface model
presented in [67] has been further developed for simulating the cyclic response of
masonry structures [50] by using a damage-plasticity approach.

Secondly, another interface constitutive model has been developed in [72] and
coupled with elasto-plastic block elements for the explicit cyclic analysis of 3D
masonry walls. This interface model has been broadly used for studying several
aspects of the mechanics of masonry walls [73, 74, 49, 75].
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2.5.2 Contact-based approaches

Block-based modeling strategies based on contact mechanics are widely used
for the accurate modeling of masonry structures. Basically, rigid or deformable
(linear or nonlinear) blocks interact following a frictional or cohesive-frictional
contact definition. Although several in-house formulations have been developed
and validated (see for instance [76, 77]), three main families of contact-based
approaches can be found.

Firstly, a wide family of modeling approaches has been based on the distinct
element method (DEM), also called discrete element method in the literature
[78], originally proposed by Cundall & Stack [79] for the analysis of granular
assemblies and implemented in the UDEC code [80]. DEM approaches are based
on contact penalty formulations and explicit integration schemes. In this context,
several applications have been conducted on real masonry structures [81, 82, 83,
84, 85, 86, 87, 88, 89, 90] using rigid or linear elastic blocks (Figure 9).

Secondly, an implicit approach which considers the deformability of blocks is
the so-called discontinuous deformation analysis (DDA) [91]. DDA fulfills con-
straints of no tension between blocks and no penetration of one block into an-
other. Also, Coloumb’s law is fulfilled at all contact positions for both static and
dynamic computations [92].

Thirdly, another family is based on the non-smooth contact dynamics (NSCD)
method, developed by Jean [93] and Moreau [94] and characterized by a direct
contact formulation, in its non-smooth form, implicit integrations schemes, and
energy dissipation due to blocks’ impacts. This approach, although successfully
applied to several real case studies [95, 96, 97, 98], appears limited to dry stone ma-
sonry structures, as it seems still not capable in representing cohesive responses
of the mortar joints.

Although the approaches belonging to the aforementioned three families are
generally rather fast and permit full-scale applications as well, they cannot prop-
erly account for masonry crushing, which can be, in some cases, crucial in the
mechanical response of masonry structures. To this aim, other approaches have
been developed to account for block nonlinearity in tension and compression
(Figure 11).

In the framework of the so-called finite-discrete element method (FDEM) [99],
Smoljanović et al. [100] developed a code for the computational analysis of dry
stone masonry structures [100] and extended it to 3D structures in [101]. Addi-
tionally, they implemented the nonlinear response of blocks in [102] to account
for masonry crushing and block fragmentation (Figure 11(a)).

Finally, a very recent 3D block-based model with contacting damaging blocks
has been developed and validated in [11], where the mortar layers are explicitly
modeled in the block mesh. This model, based on implicit integration schemes,
contact penalty method, compressive and tensile damage for the blocks, and
rigid-cohesive-frictional contact behavior, provided very accurate results for the
in-plane and out-of-plane response of masonry panels. Moreover, the model pre-
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sented in [11] has been extended to the cyclic behavior of full-scale masonry
structures (Figure 11(b)) in [51].

(a) (b)

Figure 11: Examples of contact-based approaches which include masonry crushing [102,
51].

2.5.3 Textured continuum-based approaches

The main idea of block-based textured continuum models [48] is to have, in a
FEM framework with nonlinear elements, blocks and joints modeled separately
without any interface between them, allowing for nonlinear deformation charac-
teristics of the two materials as well as failure of the blocks, the mortar, or the
mortar joints by bond.

An example of a pioneering mesh discretization of this kind of approaches is
shown in Figure 9 (see Ali & Page [103]), in which the FEs with block properties
are distinguished from the ones with mortar (or more correctly mortar joint)
properties. In particular, the model used in [103] uses a strength criterion for
crack initiation and propagation, and the smeared crack modeling technique for
reproducing the effects of the crack.

More recently, a block-based textured continuum model which discretizes both
units and mortar-joints with continuum elements, making use of a tension/com-
pression damage model, has been developed in [104]. Particularly, in [104] the
damage model has been refined to properly reproduce the nonlinear response
under shear and to control the dilatancy. Another solution, based on a enriched
kinematic damage model, has been proposed in [105].

A very innovative approach to mechanically model the nonlinear response of
mortar joints has been lately presented in [106], where a microstructured 3D
composite interphase formulation based on a multiplane cohesive-zone model
has been proposed. Basically, a multiscale modeling strategy for the constitutive
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law of mortar joints has been adopted, allowing to conduct a consistent and
reproducible calibration procedure of the mortar joint parameters.

2.5.4 Block-based limit analysis approaches

Block-based limit analysis represents an accurate and robust approach for the
prediction of collapse load and failure mechanism of masonry structures. Several
2D and 3D approaches have been developed along the last two decades (Figure
9), generally based on either static or kinematic theorems of limit analysis, even
if the implementation of friction in the computations is usually non-conservative
with respect to the limit analysis theorems.

The first block-based limit analysis approach applied to masonry assemblages
is probably the one developed by Baggio & Trovalusci [107], where the solution
of the limit analysis problem in the presence of friction at interfaces between
rigid blocks, i.e. a nonlinear programming problem, is obtained by solving a
preliminary problem of linear programming, corresponding to a linearized limit
analysis in the presence of dilatancy at the interfaces [108].

Another approach has been developed by Ferris & Tin-Loi [109], where the
computation of the collapse loads of discrete rigid block systems, characterized
by nonassociative friction and tensionless contact interfaces, is formulated and
solved as a special constrained optimization problem, i.e. the so-called mathemat-
ical program with equilibrium constraints.

Furthermore, Sutcliffe et al. [110] developed a technique for computing the
lower bound limit loads in unreinforced masonry shear walls under conditions
of plane strain. By using a Mohr–Coulomb approximation of the yield surfaces,
the numerical procedure proposed in [110] computes a statically admissible stress
field via linear programming and finite elements. By imposing equilibrium, an ex-
pression of the collapse load is formed by imposing equilibrium, and the solution
obtained is a rigorous lower bound on the actual collapse load.

Later, Orduña & Lourenço [111, 112] proposed a solution procedure for the
non-associated limit analysis of rigid block masonry assemblages, incorporating
non-associated flow rules and a coupled yield surface.

Moreover, a formulation for limit analysis of masonry block structures with
non-associative frictional joints, using linear programming, has been proposed
in [113], extended to 3D structures accounting for torsional effects in [114], and
optimized using cone programming in [115]. In these approaches, rigid blocks
interact via no-tension contact surfaces with Coulomb friction.

Conversely, the approach proposed and developed by Milani [116], based on
3D FE upper bound limit analyses of in- and out-of-plane loaded masonry walls,
implements interfaces with a Mohr–Coulomb failure criterion with tension cut-
off and cap in compression for mortar joints, whereas a Mohr–Coulomb failure
criterion is adopted for bricks. Therefore, mortar joint cohesion and masonry
crushing are accounted for in this approach. Other direct applications of this
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model can be found in [117, 118], whereas applications within homogenization
procedures are going to be discussed in the following section.

Although block-based limit analysis approaches have been also applied to real
structures, e.g. masonry bridges in [119], their computational demand appears
particularly high, preventing their use for large-scale masonry structures.

2.5.5 Extended finite element approaches

Very recently, few block-based models formulated in the framework of the ex-
tended finite element method (XFEM) have been proposed [120, 121] (Figure 9).

Particularly, Abdulla et al. [120] proposed a 3D model which includes surface-
based cohesive behavior to capture the elastic and plastic behavior of masonry
joints and a Drucker-Prager plasticity model to simulate crushing of masonry
under compression (Figure 9).

Furthermore, XFEM is adopted in [121] to model the cracking behavior and the
compressive failure of masonry in infill panels, and the discrete interface element
is employed to simulate the behavior of the masonry mortar joints and the joints
at the frame-to-infill interface (Figure 9).

Although only two models have been proposed so far in this subcategory, these
approaches can represent a powerful alternative for block-based analysis of ma-
sonry structures.

2.6 continuum models

In continuum approaches, masonry is modeled as a continuum deformable body
(Figure 12). This category of modeling strategies has the advantage that the mesh
discretization does not have to describe the main heterogeneities of masonry, and,
hence, can have dimensions which can be significantly greater than the block size.
So, the computational effort of these approaches is, in general, lower than block-
based approaches. However, given the complexities of masonry from a mechan-
ical point of view (Section 2.2), the definition of suitable homogeneous constitu-
tive laws for masonry is a challenging task, and can be pursued either through (i)
direct approaches, i.e. by means of constitutive laws calibrated, for example, on ex-
perimental tests, or through (ii) homogenization procedures and multi-scale approaches,
where the constitutive law of the material (considered as homogeneous in the
structural-scale model) is derived from an homogenization process which relates
the structural-scale model to a material-scale model (representing the main ma-
sonry heterogeneities). The homogenization process is typically based on refined
modeling strategies (e.g. block-based models) of a representative volume element
(RVE) of the structure.
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Direct approaches
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Figure 12: Examples of continuum models.

2.6.1 Direct approaches

Direct continuum models rely on continuum constitutive laws which can, some-
how, approximate the overall mechanical response of masonry. In these approaches,
the mechanical properties (elastic parameters, strength domain, etc.) could be
calibrated through experimental tests or other data (e.g. experimentally-derived
analytical strength domains), without resorting to RVE-based homogenization
procedures.

Several formulations, with different levels of approximation, have been devel-
oped and tested on real applications. Indeed, although the mechanical properties
of the homogeneous model should be, in theory, rigorously deduced from homog-
enization theories, many simplified approaches have been successfully applied on
interesting case studies.
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One first family of direct approaches consists in a drastic idealization of the ma-
sonry mechanical behavior, i.e. masonry is conceived as a perfectly no-tension ma-
terial. Generally, perfectly no-tension material means an isotropic medium inca-
pable of sustaining tensile stresses but, otherwise, linear-elastic [122]. This radical
hypothesis, although sustained by the fact that the mechanical characterization
of masonry is very challenging especially in the tensile regime, can be a valuable
basis for preliminary structural analyses [123]. Nevertheless, the hypothesis of no-
tension material has been widely used in the analysis of the stability of masonry
vaults and domes [39, 40], in the framework of geometry-based models (Section
2.7).

In [123], an approximate, piecewise-linear description of perfectly no-tension
material behavior has been developed, leading to a very simple formulation of
the discretized boundary value problem in finite terms. Later, Angelillo [124]
proposed a FE solution based on a complementary energy theorem for elastic no-
tension bodies. The solution relies on a problem of minimization of a quadratic
function with equality and inequality constraints. Starting from an elementary
stress field, an optimal approximate solution (safe in the spirit of limit analysis)
is reached. Other solutions of the FE analysis of no-tension structures can be
found in [125, 126, 127]. More recently, Bruggi [128] proposed a FE analysis
of no-tension structures as a topology optimization problem. Then, Bruggi &
Taliercio [129] proposed a non-incremental energy-based algorithm to define the
distribution and the orientation of an equivalent orthotropic material, minimizing
the potential energy so that to achieve a compression-only state of stress.

Although the cited no-tension approaches represent elegant solutions for such
a complex problem, their applicability to real case studies is still limited. Indeed,
all the aforementioned approaches are limited to 2D problems and only very
recently 3D no-tension structures have been investigated [130]. However, these
approaches cannot simulate the post-peak behavior of masonry structures, which
is a strong limitation in the field of seismic assessment of structures. Moreover,
although the assumption of null tensile strength can be considered, in general,
conservative, this could lead to failure mechanisms which are not coherent with
the ones experimentally observed, given that in reality the tensile strengths of
masonry are non-zero.

Other direct continuum models for masonry structures rely on continuum
nonlinear constitutive laws based either on fracture mechanics (smeared crack
models), on damage mechanics, or on plasticity theory. Several smeared crack
[131, 132], plastic [133], damage [134], and plastic-damage [135, 136] models have
been primarily developed for the FE analysis of concrete structures. However,
their usability for the simulation of the collapse or near collapse behavior of ma-
sonry structures presents some limitations, mainly due to the multi-level aniso-
tropy (elastic, strength and brittleness anisotropies, see Section 2.2) of masonry
and its heterogeneity introduced by mortar joints. A pioneering test of the accu-
racy of smeared crack models for masonry structures is reported in [137]. While
the model adopted in [137] showed good performance with respect to flexure-
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dominated behavior, it showed problems in capturing the brittle shear behavior
of masonry panels.

Although non-fully coherent with masonry mechanics, smeared crack and iso-
tropic damage and plastic-damage models have been extensively used for ana-
lyzing masonry structures [138], mainly due to their efficiency, their diffusion in
commercial FE codes, and the relatively few mechanical parameters to character-
ize.

Particularly, the utilization of these nonlinear models has been found especially
indicated for the analysis of historic monumental structures, given their limited
computational effort and their capability to represent complex and large-scale 3D
geometries. In addition, historic buildings are usually characterized by multi-leaf
irregular randomly-assembled masonries, which are often impossible to represent
block-by-block and to mechanically characterize, given also the strict limitations
for destructive in situ tests on historic buildings [139]. Indeed, poor information
is usually available on the mechanical properties of historic masonries, favoring
the use of isotropic nonlinear models. Many applications of isotropic smeared
crack, damage and plastic-damage models have been successfully conducted on
historic towers [140, 141, 142, 142], churches and temples [143, 144, 145, 146],
palaces [147, 148, 30, 149], and masonry bridges [150, 151]. In particular, most
of the applications on historic monumental structures rely on 3D models (Figure
13), as the structural behavior is rarely representable by 2D models, given the
complex and irregular geometries of these buildings (Section 2.2).

(a) (b) (c)

(d)

Figure 13: Examples of direct continuum isotropic approaches applied on historic monu-
mental structures [140, 149, 144, 151].
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Although each reliable damage model has to conceive a regularization of the
fracture energy, which is usually normalized on a characteristic dimension of
the element, very coarse meshes could lead to unsafe results as they are not
able to essentially represent the damage pattern and the stress redistribution. An
enhancement of the aforementioned constitutive models could be represented by
the use of crack-tracking algorithms, originating from the analysis of localized
cracking in quasi-brittle materials, which ensure mesh-bias independency of the
numerical results and the realistic representation of propagating cracks in the
numerical simulation of fracture in quasi-brittle materials [152, 153].

However, when dealing with periodic well-organized masonry, the assump-
tion of only one tensile strength value (that governs the tensile response in each
direction) risks to be too simplistic. To this aim, some orthotropic nonlinear con-
stitutive laws have been developed and applied on masonry structures.

A first example of orthotropic plasticity model with softening has been pro-
posed in [154], while in [155] the ability of that continuum model to represent
the inelastic behavior of orthotropic materials is shown, and a set of experimental
tests to characterize the constitutive behavior of masonry is proposed, demon-
strating the capability of the model to reproduce the strength behavior of different
masonry types.

Successively, the effect of anisotropy has been introduced in [156] by means of
fictitious isotropic stress and strain spaces. The material properties in the fictitious
isotropic spaces are mapped into the actual anisotropic space by means of a
consistent fourth-order tensor. The advantage of the model is that the classical
theory of plasticity can be used to model the nonlinear behavior in the isotropic
spaces.

Later, an orthotropic damage model specifically developed for the analysis of
brittle masonry subjected to cyclic in-plane loading has been described in [157].
Different elastic and inelastic properties have been assumed along the two natural
axes of the masonry (i.e. the bed joints and the head joints directions) also as
principal axes of damage.

More recently, Pelà et al. [158, 159] proposed an orthotropic damage model for
the analysis of masonry structures, in which the orthotropic behavior is simulated
through the concept of mapped tensors from the anisotropic field to an auxiliary
workspace. The model affords the simulation of orthotropic induced damage,
while also accounting for unilateral effects, thanks to a stress tensor split into ten-
sile and compressive contributions. The damage model has also been combined
with a crack-tracking technique [160] to reproduce the propagation of localized
cracks in the FE problem.

Although the described direct continuum anisotropic approaches (Figure 12)
represent scientifically sound solutions, their application on real case study has
been limited by the fact that their computational effort and the number of material
properties to be mechanically characterized is substantially higher than isotropic
approaches.

Additionally, other solutions adopt an homogeneous FE model of the structure,
but, instead of a proper continuum, they use alternative solutions to describe
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the nonlinear behavior of masonry. For example, Reyes et al. [161] proposed
a numerical procedure for fracture of brickwork masonry based on the strong
discontinuity approach, accounting for the anisotropy of the material.

Other approaches, based on FE limit analysis, conceive the homogeneous struc-
tural-scale model made of rigid or deformable elements, placing nonlinear inter-
faces in between the elements, where plastic dissipation can occur. Dealing with
historic full-scale buildings, FE limit analysis approaches have been successfully
applied [162, 32] by using averaged mechanical properties, without using a rigor-
ous homogenization procedure.

Finally, other approaches based on systems of springs [163, 164] can be fully
characterized through a suitable calibration of linear and nonlinear spring prop-
erties.

These latter approaches (FE limit analysis and spring-based approaches) can be
considered borderline in the context of continuum models (as they have interfaces
between elements or spring systems instead of a proper continuum). However,
given that they eventually behave as a continuum (where all the deformabilities
and nonlinearities are lumped in the interfaces/springs) and the structure is
effectively discretized by means of a continuum mesh, their classification in this
category could be considered legitimate.

2.6.2 Homogenization procedures & multi-scale approaches

The constitutive law of the homogeneous structural-scale model which tries to
represent masonry can be deduced from homogenization processes, typically
based on RVEs. The definition of a proper RVE is essential, as it should be statis-
tically representative of the material-scale heterogeneity under study, embodying
the characteristic material heterogeneities. To this aim, several RVEs geometries
have been proposed, to account for different periodic and non-periodic patterns
of masonry (Figure 14).

Given the mechanical complexity of masonry, in terms, for example, of ani-
sotropy, a very wide family of continuum approaches rely on homogenization
procedures and multi-scale approaches [170]. Basically, three main families of ap-
proaches could be distinguished (Figure 15):

(i) A priori homogenization approaches (Figure 15(a)), which typically rely into
two steps: in the first step, (a priori) RVE-based homogenization is per-
formed to deduce the mechanical properties of the structural-scale material;
the second step relies into the introduction in the structural-scale model of
the homogenized mechanical properties.

(ii) Step-by-step multi-scale approaches (Figure 15(b)), in which the overall behav-
ior at the structural scale is step-by-step determined by solving a boundary
value problem (BVP) on the RVE for each integration point of the structural-
scale model. In this way, an estimation of the expected average response to
be used as constitutive relations in the structural-scale model is step-by-step
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(a) (b) (c)

(d) (e)

Figure 14: Examples of RVEs adopted for the derivation of homogenized masonry mechan-
ical properties [165, 166, 167, 168, 169].

obtained. In these approaches, the heterogeneity of masonry is not directly
accounted for in the structural-scale model, being explicitly accounted for
into the material-scale RVE.

(iii) Adaptive multi-scale approaches (Figure 15(c)), in which the material-scale
model is adaptively inserted and resolved on the structural-scale model,
thus establishing a strong coupling between the two scales.

2.6.2.1 A priori homogenization approaches

Although a priori homogenization approaches typically consists of two steps (i.e.
in the first step the mechanical properties are deduced through an homogeniza-
tion process, and in the second step homogenized properties are introduced in the
structural scale model), most of the solutions provided in the literature focused
on the first step, while only few approaches dealt with both steps.

The deduction of homogenized constitutive laws for the analysis of hetero-
geneous quasi-brittle materials, such as masonry, can be based on closed-form
(analytical), quasi-analytical, and numerical methods.

A pioneering contribution on the mathematical description of the macroscopic
behavior of brick masonry has been given in [174]. Successively, Anthoine [165]
rigorously derived the in-plane elastic characteristics of masonry through homog-
enization theory. Briccoli Bati et al. [175] applied a material-scale model for the de-
termination of the overall linear elastic mechanical properties of a simple texture
of brick masonry. In the framework of the Cosserat continuum models, Masiani
& Trovalusci [176] studied the case of 2D periodic rigid block assemblies joined
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(a)

(b) (c)

Figure 15: Homogenization procedures and multi-scale approaches: (a) a priori homoge-
nization [171], (b) step-by-step multi-scale [172], and (c) adaptive multi-scale
[173] approaches.

by linear elastic mortar joints, deducing the structural-scale model characteriza-
tion of the equivalent medium by equating the virtual stress power of the coarse
model with the virtual power of the internal actions of the discrete fine model.
An extension to the 3D case has been analyzed in [177]. Further approaches for
the derivation of homogenized elastic properties of masonry can be found in
[178, 179, 180, 181, 182, 167].

Other approaches, beyond the definition of elastic properties, attempted to de-
rive masonry strength domains (both in-plane and out-of-plane) [183]. For exam-
ple, in [184], a structural-scale strength criterion for in-plane masonry response
is derived through a continuum model. Zucchini & Lourenço [185, 186] derived
both elastic moduli and failure surfaces through a linear and nonlinear homog-
enization procedures. Wei & Hao [187] develop a continuum damage model for
masonry accounting for the strain rate effect, using a homogenization theory im-
plemented in a numerical algorithm. Stefanou et al. [168] provided a straight-
forward methodology for the estimation in closed-form of the overall strength
domain of an in-plane loaded masonry wall by accounting for the failure of its
bricks.
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Most of the existing models for masonry concerned periodic material-scale
textures. Cecchi & Sab [188] analyzed non-periodic masonries, typical of historic
buildings, by means of a perturbation approach, while Cavalagli et al. [166, 189]
used a random media material-scale approach.

Moreover, several approaches for the derivation of the homogenized failure
surfaces for masonry have been based on FE limit analysis [190, 191, 192, 169,
193, 194]. For example, in [190] a simple material scale model for the homoge-
nized limit analysis of in-plane loaded masonry has been proposed. In particular,
a linear optimization problem is derived on the RVE in order to recover the ho-
mogenized failure surface of the brickwork, under plane stress conditions. One of
the main benefits of these approaches relies on the fact that, once homogenized
the masonry properties in terms of elastic moduli and strength domain (so, they
are a priori defined), they can be directly implemented in structural-scale models
(Figure 16), to solve real case studies [195, 196].

(a) (b)

Figure 16: Examples of homogenized FE limit analysis approaches [195, 196].

The same benefit can be observed in RBSM approaches [197, 198, 199, 171],
where the linear and nonlinear properties of the springs between rigid elements,
which do not represent the actual masonry bond, can be a priori homogenized
(Figure 17). Once determined the homogenized properties, they can be directly
used for structural applications [171].

(a) (b)

Figure 17: Examples of homogenized RBSM approaches [199, 171].
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2.6.2.2 Step-by-step multi-scale approaches

Plenty of step-by-step multi-scale approaches can be found in the scientific litera-
ture, which may differ in terms of:

• Continuum type adopted in the structural-scale model (Cauchy continuum,
Cosserat continuum, etc);

• Type of homogenization procedure (first or second order computational
homogenizations, transformation field analysis (TFA), etc);

• Type of modeling of the RVE (i.e. modeling strategy adopted for the material-
scale model, e.g. block-based models).

These approaches typically rely on step-by-step and point-by-point transitions
between the structural-scale model and the material-scale model, and vice-versa.
Multi-scale computational homogenization methods are traditionally implemented
within the FEM framework and, so, also called FE2 approaches. Most of these ap-
proaches are based on FE first-order homogenization schemes.

In this context, Cauchy continuum models have been classically adopted in
structural-scale models, which are recovered applying periodic homogenization
techniques for the simulation of in-plane behavior of masonry structures (Figure
15(b)).

A pioneering computational homogenization method has been proposed by
Papa [200], where a unilateral damage model for masonry based on a homoge-
nization procedure has been developed, and by Luciano & Sacco [201, 202], where
a damage model for periodic masonry has been developed from a material-scale
heterogeneity analysis. Around that time, Gambarotta & Lagomarsino [203] con-
sidered an equivalent stratified medium made up of mortar joints and brick units
layers, adopting the damage constitutive laws both for the bricks and the mor-
tar joints developed in [58]. Successively, a continuum framework has been de-
veloped for modeling of inelastic behavior of structural masonry in [204]. This
formulation incorporated the anisotropic material characteristics and addressed
both stages of the deformation process, i.e. those associated with homogeneous
as well as localized deformation mode. Calderini & Lagormarsino [205] obtained
homogenized in-plane constitutive equations, in terms of mean-stress and mean-
strain. Different in-plane damage mechanisms have been considered, being the
damage process governed by evolution laws based on an energetic approach and
on a non-associated Coulomb friction law. Later, Zucchini & Lourenço [206] pro-
posed an improved material-scale model for masonry homogenization in the non-
linear domain, incorporating suitably chosen deformation mechanisms coupled
with damage and plasticity models.

Sacco [207] proposed a multi-scale procedure based on a micromechanical anal-
ysis of the damaging process of the mortar material, assuming linear elastic
blocks. In this case, a nonlinear homogenization procedure based on TFA has
been proposed, making use of the superposition of the effects and the FE method.
An improvement of this approach has been developed by Marfia & Sacco [208],
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where an extension of the TFA-based homogenization procedure to the case of
nonuniform eigenstrain, as well as the use of nonlinear behavior of blocks in the
material-scale model has been implemented.

In first-order computational homogenization schemes, where the formulation
relies on the first gradient of the kinematics field, two main limitations could
arise.

The first limitation is linked to the principle of separation of scales, which
enforces the assumption of uniformity upon the structural-scale fields attributed
to each RVE. Indeed, this assumption is not totally effective in structural-scale
parts where high deformation gradients are present in the relative RVE.

The second limitation derives from the cohesive (quasi-brittle) response of ma-
sonry, i.e. due to the fact that softening effects arise in the stress–strain relation-
ships. Being the characteristic lengths of the structural- and material-scales non-
intrinsically accounted for in classical Cauchy continuum models, mesh-sensiti-
vity issues tend to arise when material softening behavior appears. In order to
overcome such a drawback, nonlocal approaches, higher-order continuum mod-
els, as well as regularization processes can be adopted to guarantee problem ob-
jectivity.

A simple way to overcome localization problems consists in following a regu-
larization process, for example, in terms of fracture energy. A classical first order
computational homogenization together with a regularization procedure based
on the fracture energy of the material-scale model has been proposed in [172]. In
this approach, a generalized geometrical characteristic length takes into account
the size of the structural-scale element as well as the size of the RVE, ensuring
objectivity of the dissipated energy at the structural-scale.

Massart et al. [209] proposed an enhanced multi-scale model using nonlocal
implicit gradient isotropic damage models for both the constituents, describing
the damage preferential orientations and employing at the macroscopic scale an
embedded band model.

A second-order computational homogenization of periodic masonry has been
proposed by Bacigalupo & Gambarotta [210, 211]. This computational procedure
has been derived assuming an appropriate representation of the material-scale
displacement field as the superposition of a local structural-scale displacement
field and an unknown material-scale fluctuation field accounting for the effects
of the heterogeneities.

Other approaches have been based on the adoption of Cosserat continuum
models at the structural-scale. Generally, this allowed to account for a internal
length of the material and to overcome localization problems [212]. Salerno &
de Felice [213] investigated on the accuracy of various identification schemes for
Cauchy and Cosserat continua, showing that micro-polar continuum better repro-
duces the discrete solutions, in the case of non-periodic deformation states, due
to its capability to take scale effects into account. Alternatively, Casolo [214] con-
sidered isotropic linear elastic models both for the brick and the mortar and used
a computational approach to identify the homogenized elastic tensor of the equiv-
alent Cosserat medium. In addition, Addessi et al. [215] developed a structural-
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scale Cosserat continuum, which automatically accounts for the absolute size of
the masonry components, derived by a rational homogenization procedure based
on TFA. Another homogenization method for the Cosserat continuum has been
presented by De Bellis & Addessi [216]. Finally, Addessi & Sacco [217] developed
a nonlinear constitutive law for the material-scale model, which includes damage,
friction, crushing and unilateral contact effects for the mortar joints. The nonlin-
ear homogenization has been performed employing the TFA technique, properly
extended to the structural-scale Cosserat continuum.

Although the multi-scale approaches mentioned earlier where focused on the
in-plane response of masonry walls, also the out-of-plane analysis of masonry
structures is an interesting issue, especially from a earthquake engineering point
of view. To this aim, Mercatoris & Massart [218] presented a multi-scale frame-
work for the failure of periodic quasi-brittle thin planar shells, using a shear-
enhanced element with the Reissner- Mindlin description and employing it for
the failure of out-of-plane loaded masonry walls. Furthermore, a computational
homogenization approach for the analysis of general heterogeneous thick shell
structures, with special focus on periodic brick-masonry walls has been proposed
in [219].

A very efficient multilevel approach has been developed by Brasile et al. [220,
221]. Although this approach could be considered borderline in a multi-scale
framework (being rather a multilevel approach), the strategy proposed in [220,
221] is based on an iterative scheme which uses two different (local and global)
masonry models simultaneously. The former is a fine block-based model and
describes the nonlinear mechanical response including damage evolution and
friction toughness phenomena. The latter is a linearized FE approximation of the
previous model, defined at the rough scale of the wall and used to accelerate
the iteration. The proposed iterative scheme proved to be efficient and robust for
in-plane nonlinear analysis of masonry façades.

2.6.2.3 Adaptive multi-scale approaches

A second multi-scale strategy consists in the use of the so-called adaptive multi-
scale methods [222, 223, 173, 224] (Figure 15(c)). In these approaches, a first-order
homogenized model initially represents the masonry response until a threshold
criterion is reached. For instance, such a criterion could be able to account for
the onset of damage propagation. After reaching the threshold, the area of inter-
est is replaced by an heterogeneous material-scale description able to represent
the high localized deformation without the mesh-dependency of the first-order
theory.

2.7 geometry-based models

In geometry-based models, the structure is modeled as a rigid body. The geome-
try of the structure represents the main (or even the only) input of these model-
ing strategies. These approaches typically investigate the structural equilibrium
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and/or collapse through limit analysis-based solutions (Figure 18), which can be
based on either static or kinematic theorems. Although typically based on limit
analysis and on the Heyman’s rigid no-tension model [39], these approaches have
been formulated following several innovative solutions.

Geometry-based models (GBM)
Static theorem-based

Kinematic theorem-based

Block et al. (2006)

Block & Ochsendorf (2007)

Angelillo (2015)

O’Dwyer 
(1999)

Block & Lachauer (2014)

Chiozzi et al. (2017)

Chiozzi et al. 
(2018a)

Marmo & Rosa� 
(2017)

Fraternali (2010)

Chiozzi et al. (2018b)

Figure 18: Examples of geometry-based models.

2.7.1 Static theorem-based approaches

As shown by Heyman in [39], applications of the static theorem of limit analysis
on real masonry structures were possible by simple graphic statics [39, 41]. Partic-
ularly, static theorem-based approaches (Figure 18) appear specially suitable for
the investigation of the equilibrium states in masonry arches, vaults and domes
(i.e. masonry vaulted structures). In general, these approaches can provide the
range of possible equilibrium states of the vaulted structure, bounded between
two extreme equilibrium conditions.

A first computational development for the equilibrium analysis of masonry
vaults has been proposed by O’Dwyer [225], where, after the decomposition of
the vault into an optimized system of arches in equilibrium, a procedure for the
application of the static theorem to vaults and domes has been presented. Another
computational approach, called funicular model, for the assessment of masonry
structures based on the well-known analogy between the equilibrium of arches
and that of hanging strings has been presented in [226]. Further, a computational
tool for the real-time limit analysis of 2D vaulted masonry structures has been
presented by Block et al. [227].
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An innovative approach for the equilibrium analysis of vaulted masonry struc-
tures, called thrust network analysis (TNA), has been proposed by Block & Och-
sendorf [228]. The TNA method, based on a duality between geometry and in-
plane forces in networks, finds possible funicular solutions under gravitational
loading within a defined envelope, generating compression-only vaulted surfaces
and networks. In this way, the range of possible equilibrium states of the vault,
bounded by a minimum and maximum thrust, can be obtained. A nonlinear ex-
tension of TNA has been presented in [229] for the application on Gothic masonry
vaults, while in [230] TNA is extended with the use of structural matrix analysis
and efficient optimization strategies. Finally, an extension of TNA with joints con-
sideration has been provided in [231].

Another interesting thrust network approach has been developed by Frater-
nali [232], where the equilibrium problem of unreinforced masonry vaults is in-
vestigated through polyhedral stress functions. The masonry vault is conceived
as a no-tension membrane carrying a discrete network of compressive singular
stresses, through a non-conforming variational approximation of the continuous
problem. The geometry of the thrust surface and the associated stress field are
determined by means of a predictor–corrector procedure based on polyhedral
approximations of the thrust surface and membrane stress potential. Another ap-
proach which considers masonry vaulted structures as unilateral membrane has
been proposed by Angelillo et al. [233] and by Angelillo [234], where the dis-
crete network of singular stresses has been defined basing on the Airy’s stress
formulation [235].

Finally, a reformulation of the original version of the TNA [228] by discarding
the dual grid and focusing only on the primal grid, thus significantly enhancing
the computational performances, has been proposed by Marmo & Rosati [236].
In [236], TNA is also extended by including horizontal forces in the analysis as
well as holes or free edges in the vault. A further application on masonry helical
staircases has been presented in [237].

In summary, static theorem-based approaches appear particularly attractive for
the assessment of the statical safety of masonry vaulted structures. Indeed, if
compression-only networks can be found within the boundaries of a vault, then
the vault will stand in compression. Moreover, if the solution lie within the mid-
dle third of the section, any tension (and, therefore, any hinges) will be present
in the section. This easy and powerful concept for understanding the stability
and proximity to collapse of such structures has been formerly expressed by Hey-
man [39]. However, only few of the above-mentioned approaches can account for
horizontal actions (such as seismic actions [236]), and no one could account for
the interaction with the bearing structures (e.g. bearing walls), whose deforma-
tions could induce damage and equilibrium changes in the vaulted structure, as
evidenced in [238] for earthquake actions.
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2.7.2 Kinematic theorem-based approaches

Kinematic theorem-based limit analysis approaches have been widely used in the
last decades for the fast and effective assessment of existing masonry buildings.
Giuffrè [239] proposed a kinematic limit analysis approach for studying the seis-
mic vulnerability of masonry buildings based on their decomposition into rigid
blocks, following failure mechanisms actually observed in existing masonry build-
ings in Italy. Given the simplicity and effectiveness of the approach proposed by
Giuffrè, it has been adopted in the Italian code [240, 24, 241, 242]. Figure 19 shows
few examples of collapse mechanisms to be accounted for in the seismic assess-
ment of masonry churches through kinematic limit analysis, from [24]. Kinematic
linear and nonlinear (in which the displacement capacity of the structure until
collapse is also evaluated) are commonly used in the professional practice for the
safety assessment of existing masonry buildings [241].

Figure 19: Examples of collapse mechanisms to be accounted for in the seismic assessment
of masonry churches through kinematic limit analysis [24].

Basically, in all these cases, the collapse mechanisms to be analyzed are a pri-
ori determined, on the basis of recurring failure mechanisms actually observed.
However, in the context of static theorem-based approaches, the collapse multi-
plier evaluated in this way is not necessarily the lower one, given, for instance,
peculiar features of the geometry of the structure.

To this aim, more advanced computational static theorem-based approaches
have been developed to precisely evaluate the collapse multiplier and the col-
lapse mechanism of masonry structures (Figure 18). Milani [243] developed a
simple discontinuous upper bound limit analysis approach with sequential lin-
ear programming mesh adaptation to analyze the actual failure mechanisms of
masonry double curvature structures. Very recently, Chiozzi et al. [244] proposed
a genetic algorithm for the limit analysis of masonry vaults based on an upper
bound formulation. Given a masonry vault geometry, that can be represented by
a non-uniform rational B-spline (NURBS) parametric surface, and a NURBS mesh
of the given surface, each element of the mesh is a NURBS surface itself and can
be idealized as a rigid body. The initial mesh is adjusted by means of a genetic
algorithm in order to enforce that element edges accurately represent the actual
failure mechanism. This approach has also been validated for the out-of-plane col-
lapse behavior of masonry walls [245]. Finally, an automatic upper bound adap-
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tive limit analysis program for masonry churches, called UB-ALMANAC, has
been proposed in [28]. A NURBS mesh is directly prepared within a CAD envi-
ronment based on the 3D geometrical model of the whole church. Limit analysis
is then performed automatically under the desired horizontal loads distribution,
using the kinematic theorem of limit analysis with dissipation allowed only along
interfaces and progressive adaptation of the mesh through a genetic algorithm,
leading to a quick estimation of the first activating failure mechanism and the
most vulnerable part of the church.

Although these approaches cannot provide the displacement capacity of a ma-
sonry structures, they are very powerful for the fast and effective evaluation of
the main vulnerabilities of a masonry building.

2.8 macroelement models

In macroelement models (Figure 20), the structure is idealized into panel-scale
structural components with a phenomenological or mechanical-based nonlinear
response. Typically, two main structural components may be identified: piers and
spandrels.

These approaches are mainly focused on the analysis of the global seismic re-
sponse of masonry buildings. Indeed, macroelement models are generally based
on the assumption that any activation of local failure mode, mainly associated
with the out-of-plane response of masonry walls, is prevented [246]. In this frame-
work, the global seismic response is, therefore, strictly related either to the in-
plane capacity of walls or to the load transfer due to the presence of diaphragms.
In these approaches, global analyses (incremental-iterative static and/or dynamic)
are typically conducted on 3D models, to account for load transfer between the
bearing walls due to an horizontal action.

In these modeling approaches, the structural components (piers and spandrels)
need to be a priori identified, on the basis of damage observations on real build-
ings. Indeed, earthquake-damage observations showed that cracks and damages
are usually concentrated in piers and spandrels. Piers are the vertical resisting
elements which carry either vertical or horizontal loads. Conversely, spandrels
are the horizontal parts of the structure between two vertically aligned openings,
which couple the response of contiguous piers when horizontally loaded. Al-
though the identification of masonry piers and spandrels [247, 248, 249, 250, 251,
252, 253, 254, 255] may result easy and rather trivial in case of masonry façades
with regularly distributed openings (e.g. for regular ordinary masonry structures,
see Figure 1(a)), it becomes more complex in case of irregularly arranged open-
ings, being substantially impossible for very complex geometries (e.g. for historic
monumental masonry structures, see Figure 1(b)).

Macroelement models are the most widely diffused modeling strategies par-
ticularly for the seismic assessment of masonry structures, substantially the only
one used by practitioners. Indeed, their very limited computational effort (also in
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Figure 20: Examples of macroelement models.

case of 3D structures), coupled with the easy and quick definition of the model
and mechanical properties, leaded their widespread dissemination.

However, being the macroelement models one of the most simplified approaches
to analyze masonry structures (Figure 2), they present, together with their man-
ageable computational effort, also some drawbacks. In particular, they usually
assume that any activation of local (out-of-plane) failure mode is prevented. This
decoupling assumption, although local failure modes can be separately assessed
through kinematic limit analysis (see Section 2.7.2), could lead to conventional
estimate of the seismic capacity, as in reality out-of-plane and in-plane damages
can simultaneously arise [49]. Additionally, macroelement models cannot metic-
ulously account for structural details, such as the toothing between orthogonal
walls. Finally, the a priori idealization of the structure in piers and spandrels
could lead to the definition of a mechanical system that could be far from the
actual one, particularly for the case of very irregular opening layouts. Therefore,
a certain level of expertise is anyway requested to the analyst.

Although most of macroelement models are equivalent beam-based [256], sev-
eral spring-based approaches have also been recently developed. Either equiv-
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alent beam-based or spring-based approaches (Figure 20) are reviewed in the
following.

2.8.1 Equivalent beam-based approaches

The idealization of masonry panels as nonlinear beams represent the most com-
mon assumption in the so-called “equivalent frame models”. A pioneering equiv-
alent beam-based model has been proposed by Tomaževič [257]. The so-called
POR method [257] was based on crude mechanical assumptions, i.e. in-plane
damage for horizontally loaded masonry façades was only due to shear forces in
the piers, while both spandrels and nodal regions were considered rigid and fully
resistant. This simple mechanical description, based on simplified elasto-plastic
relationships to describe beam nonlinearity, provided sufficient reliability only
in the case of buildings with weak piers and strong spandrels. Successively en-
hancements were presented in [250], implementing the flexibility and the limited
strength of masonry spandrels.

Other more advanced equivalent beam-based models [258, 259, 260, 261, 262,
263, 264] proposed the idealization the masonry structure as an assemblage of
pier and spandrel beam elements, linked by rigid links (Figure 20) which repre-
sent the nodes between piers and spandrels (i.e. zones in which seismic damage is
rarely observable). These models rely on the phenomenological nonlinear elasto-
plastic constitutive laws adopted for the beam elements.

Later, Grande et al. [265] proposed a simple beam FE for the nonlinear analysis
of masonry structures, based on three parts: two rigid offsets, able to simulate
the very stiff behavior of the masonry pier-lintel intersections, and a flexible cen-
tral part. Furthermore, special shear interfaces were also introduced in the model
to account for the shear failure. Another 2-node force-based beam FE has been
formulated in [266], where the resultant stress components were exactly interpo-
lated along the beam axis, performing analytical integration (without resorting
to a fiber approach). The beam FE was composed of a central flexible element,
characterized by a no-tension constitutive relationship, and a lumped nonlinear
shear hinge. A further beam FE has been proposed in [267], where both flexu-
ral and shear plastic lumped hinges were inserted at the two nodes of the beam,
following a classical elastic-plastic constitutive relationship. Finally, Liberatore &
Addessi [268] developed a 2-node force-based beam FE consisting of a central
linear elastic element, two flexural hinges and a shear link with elastic-perfectly
plastic behavior, determined by a predictor–corrector method.

A 2D nonlinear beam with lumped plasticity that assumes a bi-linear relation
with cut-off in strength (without hardening) and stiffness decay in the nonlinear
phase has been proposed in [251], as implemented in the Tremuri software [269].
Being the latter particularly efficient for monotonic actions, more recently the
formulation of this nonlinear beam has been refined by Cattari and Lagomarsino
[270] through a piecewise-linear behavior. In particular, such refined constitutive
law allows the description of the nonlinear response until very severe damage
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levels (from 1 to 5), through progressive strength degradation in correspondence
of assigned values of drift.

The model includes also an accurate description of the hysteretic response for-
mulated through a phenomenological approach, to capture the differences among
the various possible failure modes (flexural type, shear type or even hybrid) and
the different response of piers and spandrels, which revealed particularly efficient
in performing nonlinear dynamic analyses [271].

Finally, a very advanced equivalent beam-based macroelement has been re-
cently proposed by Raka et al. [272] for the nonlinear static and dynamic anal-
ysis of masonry buildings. The beam formulation considered axial, bending, and
shear deformations within the framework of the Timoshenko beam theory. In
particular, a phenomenological cyclic law for the beam section, accounting for the
shear panel response, has been coupled with a fiber-based model that accounts
for the axial and bending responses. Although the model accuracy is strongly
dependent on the fiber and shear constitutive laws adopted, the formulation pro-
posed in [272] is general and versatile.

2.8.2 Spring-based approaches

Alternatively to the use of equivalent beam elements, several macroelement mod-
els have been formulated by implementing nonlinear springs (Figure 20), within a
fictitious frame, to approximate the in-plane nonlinear response of masonry walls
and façades.

A pioneering application of a spring-based macroelement model has been pre-
sented in [273], adapting a model with nonlinear shear springs in series with
rotational springs originally developed, in the 1980s, for the in-plane analysis
of reinforced concrete walls. The proposed formulation for the analysis of ma-
sonry structures included an axial spring, three shear springs, and two rotational
springs to simulate the axial, bed joint sliding, diagonal tension, and rocking/toe
crushing failure modes experimentally observed on masonry pier tests.

In [274] and [275] a two-node element capable to represent the in-plane cyclic
behavior of a whole masonry panels has been proposed aimed to describe both
the shear behavior and the coupled axial-flexural one at the two nodes thanks
to a bed of spring and two additional internal degree of freedom. In particular,
the shear stress-strain cyclic relation has been derived by the macroscopic inte-
gration of the continuum model developed in [203]. Some aspects of this original
formulation were further improved by Penna et al. [276] including a nonlinear de-
grading model for rocking damage, which permits to keep into account the effect
of limited compressive strength. The latter model has also been implemented in
the Tremuri software [251].

An interesting advance in the context of spring-based macroelement models
has been developed by Caliò et al. [277], where piers and spandrels where ideal-
ized through equivalent discrete elements made of nonlinear springs to simulate
the in-plane nonlinear response of masonry walls. The basic panel element is
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represented by an articulated quadrilateral constituted by four rigid edges con-
nected by four hinges and two diagonal nonlinear springs. Each side of the panel
can interact with other panels by means of a discrete distribution of nonlinear
springs. The reliability of the proposed approach has been evaluated by means
of nonlinear incremental-iterative static analyses performed on masonry struc-
tures. In [277] (and also in [278] for infilled frame structures), such a modeling
approach has been used to directly represent piers and spandrels through basic
panel elements. Nevertheless, given the versatility of the approach, such a mod-
eling strategy has been used in [163, 164, 279] to simulate the masonry material
response (and, so, not only the structural components response), see Section 2.6.1.

Another spring-based approach has been presented in [280], where each struc-
tural component has been described through multi-spring nonlinear elements
connected by rigid links. In particular, nonlinear springs were placed at the two
ends of the piers and spandrels for describing the flexural behavior and in the
middle for representing the response in shear. The other parts were constituted
of rigid links. Specific hysteretic rules for the degradation of stiffness and strength
were also used for modeling the structural response under cyclic loading.

Aghababaie Mobarake et al. [281] proposed a basic panel element made-up of
six sub-elements including upper and lower rigid beams and right, left (bilateral)
and X-bracing nonlinear trusses, with four nonlinear zero-length sub-elements
between the upper and lower beams and truss sub-elements. Each pier, spandrel
and node between them is idealized by using a single proposed basic panel
element. The approach proposed in [281] provided a rather simple and efficient
platform for nonlinear static and dynamic analyses by considering the in-plane
behavior of masonry panels.

Finally, a very recent and simplified solution has been presented by Xu et al.
[282], where the masonry façade is considered as an integral unit, rather than
composed of independent piers and spandrels. According to the strategy pro-
posed in [282], the masonry façade is modeled by means of two vertical springs
and a horizontal nonlinear spring that governs the wall shear response. The hys-
teretic behavior is governed by a group of control parameters, that depend on
the distribution of openings and/or confining elements as well as on the dimen-
sions, material properties and boundary conditions of the façade. The extremely
simplified modeling strategy proposed in [282] could represent a complementary
approach for the analysis of masonry structures subjected to horizontal cyclic
loadings.

2.9 conclusions

In this chapter, a comprehensive review of the existing modeling strategies for
masonry structures, as well as a classification of these strategies, has been pre-
sented. The classification of modeling strategies for masonry structures consisted
of four categories (Figure 2): block-based models, continuum models, geometry-
based models, and macroelement models. Although a fully coherent collocation
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of all the modeling approaches was substantially impossible due to the peculiar
features of each solution proposed, this classification attempted to put in order
the wide scientific production on this field.

From the comprehensive review of modeling strategies for masonry structures
carried out in this chapter, the following conclusions can be drawn:

• Block-based models could represent the most accurate strategy to analyze
the mechanical response of masonry structures. Several applications showed
the potentialities of BBM to investigate the structural behavior of large-scale
structures (specifically for contact-based approaches), with irregular and
complex geometries as well. However, although the area of application of
BBM appears theoretically large, their high computational demand strictly
limits their employment to very important case studies and academic works.
Anyway, they could be adopted to gain in-depth insights on specific features
of the mechanics of masonry structures, and to provide reference solutions
for more simplified approaches (e.g. MM).

• Continuum models represent widely used solutions for the structural anal-
ysis of masonry buildings. Concerning direct approaches, isotropic sme-
ared crack and plastic-damage constitutive laws have been widely used
for the structural assessment of historic monumental structures. Indeed,
these approaches often represent the only suitable strategy to deal with
such complex structures. However, the results obtained should be carefully
interpreted, as they could sensibly overestimate, for example, the ultimate
displacement capacity. Although no-tension continuum approaches seem to
fail in a proper mechanical analysis of masonry structures, other simplified
approaches, such as homogenized FE limit analysis and homogenized dis-
crete approaches, appear particularly suitable for the structural assessment
of full-scale masonry structures, even though the difficulties in the homoge-
nization processes. Concerning multi-scale approaches, although very smart
solutions have been proposed, they present some limitations. In particular,
most of them have been tested only on 2D panel-scale masonry structures,
with very few exceptions (see for example [220, 221]). Eventually, the so
called FE2 methods appears computational demanding. Indeed, although
theoretically more efficient than BBM, the fact that their are usually imple-
mented in homemade codes sensibly limits their efficiency and optimiza-
tion. So far, no example of 3D computational homogenization method ex-
ists, being all the approaches developed in the last decades limited to 2D
problems. Furthermore, being these approaches based on the mechanical
response of the periodic RVE, the possibility of accurately represent specific
structural details appears rather limited.

• Geometry-based models, although typically based on limit analysis solu-
tions, can provide very useful outcomes. On the one hand, static theorem-
based computational approaches represent effective solutions (substantially
the only ones) for the investigation of the equilibrium states (and, there-
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fore, the safety) in masonry vaulted structures. On the other hand, static
theorem-based computational approaches appear especially suitable to pre-
dict the collapse mechanism (and the collapse multiplier) in complex ma-
sonry structures. These results, although non-comprehensive, represent a
fundamental information in the mechanical analysis of masonry structures.

• Macroelement models mostly represent the only modeling strategy man-
ageable by practitioners. Nevertheless, their reliability should be further im-
proved by accounting for structural details (e.g. toothing between orthogo-
nal walls) and the interaction between out-of-plane and in-plane damages.
Anyway, MM are limited to the seismic assessment of ordinary masonry
structures.

In summary, although significant advances have been made in the context of
modeling strategies for masonry structures, each computational solution shows
specific limitations and a restricted area of application. Therefore, the choice of
the most suitable modeling strategy should be formulated depending on the fea-
tures and the complexity of the structure under investigation, the output required,
the data available, and the expertise level.

Finally, the use of 3D models, which can represent the 3D features of a masonry
structure, appears particularly indicated for the seismic assessment of masonry
buildings to account for the geometric irregularities and the structural details
which usually characterize ordinary and monumental buildings.
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M E S H G E N E R AT I O N P R O C E D U R E S F O R H I S T O R I C
S T R U C T U R E S

In this chapter, two mesh generation procedures are proposed to transform 3D point clouds into 3D
solid FE models of historic monumental buildings. The first procedure, called CLOUD2FEM, con-
sists in the slicing and subsequent stacking of the geometry. The second procedure, called watertight
meshing, considers the structure as a watertight surface and eventually fills the volume.

3.1 introduction

Historic structures are characterized by an enormous complexity in terms of
geometry, material properties, loads and boundary conditions (see Section 2.2).
In most cases, direct continuum-based methods have been used to model these
structures [46], see Section 2.6.

However, the numerical modeling of historic monumental buildings is still
a challenging task for contemporary civil engineers. One of the main reasons
for this is that, due to the complex geometry of such historic structures, it is
unavoidable to resort to a fully 3D modeling that is often performed using the
computer-aided design (CAD).

In general, CAD-based modeling is an expensive and complex process, often
manually carried out by the user. This inevitably leads to the introduction of
geometric simplifications (defeaturing) or interpretations.

In order to reduce the time that the user has to spend to reproduce the complex
geometry of these structures, a precious support can be supplied by automatic
advanced survey techniques such as terrestrial laser scanner (TLS) [283] and ter-
restrial photogrammetry [284], which can generate 3D detailed point clouds in a
rapid way. Although the TLS is still today an expensive survey technique, in com-
parison with closed range photogrammetry systems [285], its usage is showing a
high growth coupled with a continuous technological development. In particular,
in the field of architectural heritage several TLS and photogrammetric applica-
tions have been performed: from simple documentation [286] to monitoring the
condition of historic buildings, and also in order to support restoration works or
structural checks [287]. An example is reported in [288], where a detailed geo-
metric survey of a Portuguese castle is conducted by means of the laser scanning
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technique, allowing for a precise characterization of dimensions and disposition
of the masonry blocks used for the FE discretization. Another example is shown
in [289], where the significant deformation of a Spanish church has been surveyed
by means of TLS: the 3D structural model has been created in a CAD environment
using the results of the laser scanner survey. Thereby, the current deformation of
the church has been directly considered in the structural analyses.

Several studies tried to transform 3D points clouds in FE models [290], but
in most cases the output was partial or dramatically simplified. For instance, in
[291] an example of FE analysis of a historic theater is performed using laser
scanning data limited to the inner surfaces of the building. Massive structures,
such as masonry bridges can also be investigated by summing the laser scanner
survey information to those obtained by ground penetrating radar and as a result
generate a fine picture of the external and internal features [292]. Here, the cloud
simplification lies on the sampling of some points that are useful to reconstruct
the geometry by means of regular shapes. Other interesting contributions are
proposed in [293, 294], where an attempt to precisely capture the geometry of
the building through the automatic reconstruction of its boundary is presented.
Moreover, in [295] a point-based voxelization method to automatically transform
point cloud data into solid models for computational modeling is developed. The
method constructs a triangular irregular network (TIN) mesh by means of a voxel
grid bounding the cloud region. The resulting model captures the 3D features of
the survey, but does not capture the whole structure, since it is designed for
façades only.

Furthermore, a method for the direct transfer of high accuracy TLS-based 3D
models to a FE structural analysis software, subsequently employed to interpret
and verify structural health of the historic building, has been recently presented
in [296]. Additionally, Fortunato et al. [145] developed a CAD-based model of
a historic structure starting from very dense outlines obtained by point cloud
slices. Subsequently, the analysis has been developed in a nonlinear framework,
in which the behavior of the structure is investigated under seismic loads.

One of the most frequent problems when dealing with complex historic build-
ings is the impossibility to generate “watertight surfaces” from the point cloud of
the surveyed object. Thereby, it is not possible to directly transform the TIN mesh
surfaces into solid geometry and consequently into a FE mesh, as done, for in-
stance, for human organs and agricultural objects in [297] and for Michelangelo’s
David in [298].

In this chapter, two mesh generation procedures to transform 3D point clouds
into 3D solid FE models of historic monumental buildings are proposed. Firstly,
a semi-automatic procedure, called CLOUD2FEM, to transform 3D point clouds
of complex objects into a 3D FE model is presented in Section 3.2. The procedure
is then applied on a real case study (a medieval masonry fortress damaged by
an earthquake) and validated. Secondly, a simplified and rapid procedure for the
automatic transformation of point clouds (surveyed on historic structures) to 3D
FE meshes, passing from the concept of watertight mesh, is proposed in Section
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3.3 through the application on a medieval ruined masonry tower. The accuracy of
the geometry of the mesh generated appears suitable for structural purposes.

3.2 cloud2fem

In this section, a semi-automatic procedure to transform 3D point clouds of com-
plex objects to 3D FE models (CLOUD2FEM) is presented and validated. In sum-
mary, the surveyed point cloud is firstly processed by standard operations, i.e.
reduction of points’ density and generation of the TIN mesh. Then, the TIN mesh
is broken down in 2D sub-domains by slicing it perpendicularly to the vertical di-
rection with a certain step. The boundary polygons, which enclose the outer and
inner points of each slice, are computed by means of concave hull algorithms, gen-
erating filled regions. Afterwards, each slice is transformed into a digital image
composed of pixel with a certain resolution. As the digitalization is performed of
a fixed region of space, the slices are stackable and the subsequent stacking oper-
ation generates voxels. Finally, each voxel is converted into an 8-node hexahedral
FE and, hence, the structure is completely discretized as a unique continuum
composed by evenly spaced hexahedral elements.

3.2.1 Proposed procedure

Given an accurate description of a complex geometry, the CLOUD2FEM proce-
dure allows the reconstruction of the original 3D geometry by means of a partic-
ular discretization.

In order to apply the procedure, some preliminary (common) operations may
be required to improve the reconstruction quality and to reduce the error propa-
gation due to the registration of large and complex point clouds. The point clouds
can rarely be directly transformed into a complete 3D model without user inter-
vention: the complex shape of the geometry, the irregularly distributed spatial
points and the missing faces are critical aspects that usually prevent the automa-
tion of the process.

3.2.1.1 CLOUD2FEM conceptual work-flow

The CLOUD2FEM procedure is synthesized in the flowchart of Figure 21. The in-
put data consists of generic point clouds, merged into a single point data file for
the whole building surveyed. The work-flow begins with a 3D analysis divided
into sequential steps. Most of the operations here described are completely auto-
mated (highlighted in green in the flowchart) using different algorithms. At the
end of this first part, the building is described with a dataset of slices, each one
containing bi-dimensional points. These are subsequently analyzed individually
in a 2D environment , and this phase includes some semi-automatic or manual
analysis (highlighted in orange in the flowchart). All data are georeferenced using
a unique local or global reference system. Therefore, final datasets are stackable.
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Each pixel grid, obtained from the corresponding slice, contributes to the creation
of the voxel model.
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Figure 21: Flowchart for the CLOUD2FEM procedure: completely automated procedures
(green) and semi-automated or manual procedures (orange).

3.2.1.2 Slice generation from the point cloud

Point cloud slicing is a common procedure to extract sections and details from
large point cloud databases. CAD-based procedures are often used to transform
sliced points into line-based models using automated procedures based on seg-
mentation or using a manual extraction of profiles, e.g. see [283] for the processing
of building façades. Upon this condition, the point cloud is conceived as a stack-
ing layer sequence of planar points. In Figure 22, a simple geometry is illustrated
and referenced to the Cartesian system, where the axis Z is the principal direction
of the stacking sequence (Figure 22(c)). The structure is subdivided by subsequent
section planes Πzj , each one characterized by an incremental z-coordinate of ∆z.
Then, all of the points within the range [zj −∆z/2, zj +∆z/2] are projected to the
mid-plane Πzj (see Figure 22(d)).

Therefore, it is possible to reduce a 3D problem to a 2D problem. By means
of a parsing algorithm, which walks through the dataset and separates points
belonging to each slice, it is possible to generate a number of 2D layers describing
the whole structure when they are stacked together. This model is composed from
slices containing only points with variable (x,y) coordinates and a constant zj
coordinate. The distance between two adjacent slices has to be chosen according
to the desired final resolution of the FE model.

It is possible to operate on each slice independently with effective techniques
with a linear work-flow using software packages for the management of spatially-
referenced data, e.g. geographic information systems (GIS). The pattern of points
located on the Πzj plane is generated from the points belonging to each section
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Figure 22: Visualization of the stacking layer sequence concept: (a) point cloud survey of
external façades, (b) point cloud survey of internal surfaces, (c) illustration of
the m-th slice, and (d) Πzj layer.

of ∆z thickness. A sequence of points at a constant interval and high density is
placed along the lines contained in each slice. A boundary polygon that encloses
the points can be computed using a concave or convex hull algorithm [299].

In the case of a building, the slices contain two principal profiles. The first is
made by connecting the points that belong to the external point cloud (consider,
for instance, the survey of the external façade of a building, see Figure 22(a)) The
second is made by connecting the points that belong to the internal point cloud
(consider, for instance, the survey of the internal rooms of a building, see Figure
22(b)).

The first result in a filled geometry (external) which envelops the whole build-
ing. This might also be composed of several islands that represent the outside
face of the building walls.

Similarly, the second produces a boundary polygon (internal) that is computed
selecting only the points acquired in the internal rooms. It is important to empha-
size that also this polygon, in the same way as the external one, is created using
a concave hull algorithm [300], enveloping the point selection from the outside.



50 mesh generation procedures for historic structures

Additionally, this polygon may also be composed of several islands representing
the various rooms of the building.

Once the two polygons with filled geometry are created, one external and one
internal, a filled polygon is obtained by subtracting the second from the first for
each slice of the building, describing the entire structure.

3.2.1.3 FE model generation from slices

Once created the slices, a discretization procedure is introduced to set up the
desired FE model. Firstly, discretization is performed on the 2D sections, and,
then, they are used to build the 3D discretized model. By using the computed
tomography (CT) approach [301], each slice is idealized as a digital image, with
a certain resolution, composed of picture elements (pixels), so the stacking of
these slices generates the volume elements (voxels). This procedure allows the
reconstruction of the original 3D geometry by stacking all of the slices, obtaining
a complete volumetric representation of the object by acquiring a contiguous set
of slices.

The original polygon is then described by a N×M pixel matrix corresponding
to a grid of pixels with a particular resolution. With reference to Figures 22(c)
and 23, the pixel value will be, for instance in an 8-bit grayscale, 255 for the filled
area and zero for empty spaces. This transformation is performed automatically
for each slice with a fixed region preserving the output resolution. Therefore, all
of the grids are aligned, and the voxel model is generated by stacking them in
the original order, following their coordinates. It is worth noting that the voxels
are not only placed along the internal and external profiles as proposed by other
techniques [295, 293, 294].

(a) (b) (c)

Figure 23: Two dimensional images obtained by slicing the structure illustrated in Fig-
ure 22: m, n and r represent three generic slices located at the zm, zn and zr
coordinates respectively. (a) Πzm, (b) Πzn, and (c) Πzr .

Voxels, as represented in Figure 24(a), define a particular grid structure that
possesses the following features:
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• Πzj planes are chosen with the normal along Z that is the building construc-
tion direction: features, layers and openings are conceived by a stacking of
elements (i.e. bricks) along the Z direction;

• ∆z is chosen according to the building complexity along the Z direction;

• ∆x and ∆y are chosen according to the in-plane complexity and are totally
independent of ∆z;

• The stacking procedure is here proposed as a linear stacking of contigu-
ous slices, but can be, in general, considered as interpolated along the Z
direction (i.e. considering more slices at a time);

• The resulting discretized volume does not need any particular further ad-
justment “to fill” the structure.
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Figure 24: Voxel representation and FE transformation: {i, j, k} and {X, Y, Z} are the
indexes of the voxels’ 3D matrix and the global coordinates of the struc-
ture, respectively. The coordinate k ′ means k ′ = R− k, where R is the third
size (along Z) of the voxels’ 3D matrix (N ×M × R). (a) Voxel indexes, and
(b) hexahedral elements.

The resulting dataset is simple and easy to use with the FE technique: each
voxel is automatically transformed into an 8-node hexahedral FE. By using a
common space-partitioning data structure (KD-TREE), the scheme represented in
Figure 24(a) is transformed into a FE structure (Figure 24(b)) by simply generating
the connectivity structure of each element.

In theory, this operation can be performed for each voxel value (in this case,
zero or 255) or only for a certain value of the voxel, i.e. only those with a value
equal to 255. Therefore, it is possible to easily describe a database of multiple
properties of objects by setting multiple values for the voxel. For instance, if a
particular voxel value corresponding to a particular material is assumed, it is
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therefore possible to describe, in addition to the geometry, also multiple mechan-
ical properties.

With these features, the resulting discretized geometry already contains all of
the information to be used within the FE model, including the mechanical proper-
ties associated with the material features. The proposed method guarantees, with
a simple procedure, the construction of a fine discretized geometry and, then, an
automatic generation of a reliable FE solid model. Dealing directly with the defi-
nition of FE nodal coordinates and with the FE connectivity matrix, the proposed
method is generally customized to work with any commercial FE software. This
rational organization is certainly a key novelty introduced by the method.

Figure 25 illustrates the FE mesh obtained by applying the CLOUD2FEM pro-
cedure to the structure represented in Figure 22. As can be noticed, as long as the
surface is regular and parallel to the axis directions, the resulting mesh precisely
matches the original geometry (Figure 25(a)), but when the surface is irregular
(curved) or not planar to an axis direction, the resulting FE mesh is a jagged rep-
resentation of the original geometry (Figure 25(b)). Despite this fact, it is always
possible to improve the mesh accuracy using a smoothing method to reduce the
faceting, see Figure 25(c). Concisely, these methods are linear low-pass filters that
remove high curvatures variations (jag) and have to be chosen in order to not
produce shrinkage [302].

(a) (b) (c)

Figure 25: FE mesh obtained by applying the procedure to the structure represented in
Figure 22. (a) External restitution, (b) internal restitution, and (c) smoothed
internal restitution.

3.2.2 Application to a medieval castle: The San Felice sul Panaro fortress, Italy

In order to show the capabilities of the proposed mesh generation procedure
(CLOUD2FEM), an application to a real case study, i.e. the San Felice sul Panaro
fortress, is presented and discussed. Particularly, a brief description of the case
study is given in the following.

The San Felice sul Panaro fortress (Figure 26(a)) is a monumental historic ma-
sonry building located near the city of Modena, in San Felice sul Panaro (Italy).
The monument is a typical example of fortified medieval architecture, composed
by a massive quadrilateral plan with an inner yard and five towers (Figure 26(b)).
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Four towers are located at the corners, while another one is placed on the north
fortress façade. The S-E tower is called Mastio because of its dominant dimensions
compared to the rest of the building (Figure 26(a)).

(a)

N 

(b)

Figure 26: San Felice sul Panaro fortress: (a) photo and (b) schematic plan.

The San Felice sul Panaro fortress exhibited a complex historical evolution dur-
ing the centuries. The main construction stages of the fortress historical evolution
can be summarized as follows:

– lower parts of Mastio and North Tower and curtain walls: XIV century;

– upper parts of Mastio and North Tower and other towers: XV century;

– roofings and internal structures: from XVI to XVIII centuries;

– modern interventions (such as concrete curbs on minor towers and Mastio’s
trunk reinforcement): XX century.

3.2.2.1 Emilia earthquake damage

In 2012, the San Felice sul Panaro fortress was hit by the Emilia earthquake
with two magnitude peaks of MW = 5.86 (May 20th) and MW = 5.66 (May
29th) [303]. The epicenters of the first (May 20th) and the second (May 29th)
main shocks were located at about ten and five kilometers far from the fortress,
respectively. After such a seismic sequence, the collapse of the four minor towers’
roofs was observed and cracks of different relevance appeared on all the fortress
structural elements extensively, see Figure 27. In [304], an accurate description of
the monument damage mechanisms is reported.
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(a)

(b)

Figure 27: San Felice sul Panaro fortress after Emilia earthquake (2012): (a) South front,
and (b) North front.
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3.2.2.2 Survey of the fortress

After first-aid structural interventions aimed to preserve the building were per-
formed, the municipality of San Felice sul Panaro commissioned a fine survey
of all the external and internal surfaces of the damaged building by using TLS
(Figure 28) in order to acquire a snapshot of the post-earthquake condition of the
structure and to measure its complex geometry.

The survey was performed by ABACUS s.a.s., using a FARO Focus 3D X 330

laser scanner and a total station Trimble S6. The survey has become more complex
after the earthquake, because of the presence of debris in some interior rooms.
Numerous targets were then placed, for precise identification of correlation points
between scans, for both the exterior and the interior of the fortress.

A closed polygonal topographic network was prepared, to detect the position
of each target using the total station. This network has been properly calculated
and compensated. Subsequently, 163 point clouds have been acquired by different
scanning positions using the laser scanner. These scans were aligned to the topo-
graphic network through correlation with the reference targets, resulting in mil-
limetric precision. Finally, the aforementioned clouds were merged into a unique
cloud containing more than 40 million points (Figure 28(a)), which as been then
used to generate a global TIN mesh (Figure 28(b)).

(a) (b)

Figure 28: TLS survey: (a) point cloud, and (b) TIN mesh.

3.2.3 Generation and validation of the Mastio FE model

To preliminary assess the capability of the CLOUD2FEM procedure, attention is
initially focused on the generation and validation of the Mastio FE model [29].

As shown in Figure 29, the tower is composed of six layers of different kinds:
cross-vaults, wood slabs with old and remodeled structures. Each level is then
characterized by irregular dimensions and thickness. By inspecting the south
front illustrated in Figure 29(a), it is shown how the seismic shock hit and dam-
aged the tower by producing a lateral and torsional oscillation and residual
displacements on the actual configuration. Openings are placed irregularly on
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the structure and also have irregular shapes and sections (Figure 29(c) and Fig-
ure 29(d)). Summing up, the structure is anything but regular.

(a) (b) (c) (d)

Figure 29: Mastio of the San Felice sul Panaro fortress: (a) South front, (b) east front, (c) E-
W section, and (d) S-N section.

3.2.3.1 Generation of the Mastio FE model

In order to simplify this initial point cloud, a new dataset has been generated
with a point sampling obtained through a Poisson-disk distribution (sampling
procedure in Figure 21). The result was a new point cloud reduced to 3.2 million
points, with a regular spatial sampling of 0.05 m, suitable for further analysis.

The next operation was to clean the point cloud (3D point cleaning in Figure 21),
mainly removing all neighbor points not belonging to the building of interest. In
fact, other surrounding buildings were acquired during the initial scan, in order
to align all of the different point clouds. These buildings were removed from the
point cloud, reducing it further down to 1.9 million points.

From the point cloud, a subset of 0.8 million points related to the Mastio has
been extracted and analyzed, see Figure 30(a). As represented in Figure 30(b),
the survey finely describes every single feature of the structure. The point cloud
has a very heterogeneous density, primarily related to the distance between the
single scan positions and the object acquired. Figure 31(a) represents the points
that are located within the range [zj −∆z/2, zj +∆z/2], at a given zj coordinate.
In Figure 31(a), the lower left corner is magnified to show the original point cloud
density.

The special conditions of the building must be considered. Regarding the ex-
terior part of the model, there were problems with the roofs that were partially
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(a) (b)

Figure 30: 3D models for Mastio tower: (a) points, and (b) TIN mesh.

collapsed, and these were covered with large plastic tarpaulins in order to avoid
water infiltration. Furthermore, in the surroundings and in the internal courtyard
of the building, there were piles of rubble and debris. All of these elements hide
the actual geometry of the building from the laser scanner point of view. In fact,
in the 3D point cloud, these elements are acquired and then intrinsically fused
with the proper model of the building, and there is no automatic procedure to
perform a full cleaning in advance.

The point cloud is a 3D model. However, it is necessary to build a model
that consists of continuous surfaces in order to define the exterior and interior
shell of the structure (mesh and polygonal model in Figure 21), through TIN

(a) (b)

Figure 31: First part of the slicing work-flow (3D data): the magnified portion shows the
uneven density of the raw data. (a) Points within the ∆z increment, and (b) final
processed slice of points.
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mesh or NURBS surfaces. After having obtained the shell of the structure, it is
possible to define the volume of the structure to be filled with voxels following
the other steps, which will be listed later. In order to create a volume model, the
structure would need to be filled with more voxels, having to solve non-trivial
problems for areas in shadow with respect to scan positions. In correspondence
to these positions, the data are missing. Therefore, holes remain in the model
they cannot be filled. This issue is overcame by analyzing the model slice by
slice. In this study, the polygonal model has been realized using the TIN mesh
(Figure 30(b)). Considering the points (x,y, z) in space, the conjunction between
them is realized with lines forming adjacent triangles in order to represent the
object with a continuous surface.

The mesh consists of a total of 4.8 million triangles. This model describes all of
the surfaces surveyed with the laser scanner, but it cannot be considered a correct
closed model from the topological point of view, consider for instance the roof
surface in Figure 30.

During the laser scanner acquisition, there was furniture in different rooms, as
well as rubble and debris in some areas. Each disturbing element increases the
complexity of the building, as illustrated in Figure 31.

By inspecting every single slice in a GIS software, it appears very easy to find
and properly clean every slice from points that do not belong to the building,
even though they have been inevitably acquired during the scanning. However,
by creating a concave hull that envelopes the internal points from the outside, the
presence of internal debris or any furniture located inside the room is irrelevant,
because each new shape is based on the peripheral points. This operation is
fundamental to obtain a closed shape for each slice, directly using the geometry
provided from the previous step, without any smoothing.

This part of the procedure is semi-automatic. Some manual intervention ap-
pears essential at this stage for an accurate separation between internal points
and external points. This is especially true with data from complex buildings,
such as the one analyzed. Anyway, the proposed work-flow aims at minimizing
manual intervention in terms of time in order to maximize the efficiency of the
procedure itself.

Based on the Mastio geometry properties, a fine description of the tower is
obtained by slicing the tower height with a ∆z = 0.2 m, which corresponds, more
or less, to three layers of bricks and two layers of mortar. On the other hand, the
resolution of each slice is set to have ∆x = ∆y = 0.115 m, which corresponds to
the short dimension of the brick (half-brick).

The resulting stacking sequence is composed of 153 horizontal slices, where
each one is represented by a N×M grid of 116× 107 pixels. Figures 31 and 32

illustrate the i-slice representative of a generic section.
The structure has been entirely described by using five different materials,

whose mechanical properties are set according to [242], see Table 1. Figure 33

shows the representation of a generic section where the user can visualize and set
the material properties based on his knowledge, which might have been acquired
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(a) (b) (c)

Figure 32: Second part of the slicing work-flow (2D data). (a) Internal (red), external
(green), (b) filled slice, (c) bitmap: 116 × 107 pixels.

Table 1: Mechanical characterization of the materials by color.

Material Color Elastic Modulus Poisson’s Coefficient Density

(0–255) (MPa) (-) (kg/m3)

Masonry 255 1500 0.20 1800

Reinf. Masonry 150 1900 0.20 1800

Terrain 125 – – –

Timber 100 8000 0.37 415

Air 0 – – –

from direct inspection or available images. The resulting 3D matrix is visualized
by plotting its pattern by means of RGB colors in Figure 34.

Voxels are plotted by transforming row and column indexes to a unitary coor-
dinate. Then, the generation of the 8-node hexahedral element-based FE model
is done according to the instructions given in Figure 24 by associating their co-
ordinates respectively to the ∆x, ∆y, ∆z volume. It is important to notice that
the 3D matrix contains volumes for any arbitrary index (i, j, k) combination, i.e.
values are also assigned to empty spaces (surrounding air, terrain, etc). The user
can choose, according to the FE model purposes, to filter out some of the values.
For instance, here, the voxels corresponding to the air and terrain properties are
excluded by not being processed during the mesh generation procedure. The fi-
nal mesh is then characterized by 745,668 nodes and 661,105 elements, see Figure
35(a).

3.2.3.2 Structural analyses and validation

The FE model generated through the proposed procedure is used within a struc-
tural analysis framework. In order to assess the accuracy of the proposed model,
a linear natural frequency analysis (eigenvalue analysis) is performed.
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(a) (b) (c)

Figure 33: Examples of bitmap slices: (a) 42nd slice, (b) 84th slice, and (c) 128th slice.
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Figure 34: Visualization of the 3D material matrix: voxels possess unitary dimension. Five
materials (colors) are used to represent the structure according to the mechani-
cal characterization given in Table 1.

In particular, a comparison is performed using a very accurate FE model ob-
tained through a precise CAD approach based on the same laser scanner dataset,
see Figure 35(b). The CAD-based model consists of tetrahedral four-node ele-
ments, counting 54,340 nodes and 215,938 elements.

The linear natural frequency analysis is a common tool for the characterization
of the structural dynamic behavior and also used for historic masonry structures.
The natural frequencies and the natural modal shapes of vibration, which are
the characteristics of the structure, are given by the solution of the eigenvalue
problem KΦ = λMΦ, where M is the mass matrix, K is the stiffness matrix, λ is
an eigenvalue and Φ is its relative natural modal shape of vibration (eigenvector).
The eigenvalue problem does not fix the absolute amplitude of the vector Φ, but
only its shape.

It is evident that both M and K are highly conditioned by the correct represen-
tation of the geometry and by the accurate mass and stiffness distribution along
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Figure 35: FE discretization comparison, colors are set according to the material proper-
ties: gray and red colors are used to illustrate the masonry and the reinforced
masonry elements, respectively. (a) CLOUD2FEM discretization, and (b) CAD-
based discretization.

the structure. Table 2 summarizes the computed mass and the overall dimensions
for both models. By inspecting Table 2, it is clear that the application of the pro-
posed technique produces a FE model that describes the main features of the
building geometry and its mass distribution.

Table 2: Mass, overall dimensions and center of mass height.

Model Mass Max Dimensions hg

(tons) {L×B×H} (m) (m)

CAD 3055.78 9.97 × 9.97× 30.64 13.67

Voxel 3032.11 9.90 × 9.80 × 30.60 14.07

Table 3 collects the obtained results in terms of computed frequencies and com-
puted errors. It appears that, for the first six modes, the computed error is always
less than 4%, and it is less than 0.1% for the fundamental modes (Mode 1 and
Mode 2). Figure 36 illustrates the first modal shape, where colors are associated
with the magnitude of the computed amplitude (normalized). Concerning the
overall response, modal shapes are in good agreement, see Table 2.

This description obviously introduces a higher number of degrees of freedom
(dof): the voxel model counts 2,237,004 dofs, whereas the CAD-based model enu-
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Table 3: Mastio natural frequencies. Comparison between the voxel-based model and the
CAD-based model.

Mode Voxel fr. (Hz) CAD fr. (Hz) Error (%) Mode descr.

1 1.9131 1.9137 0.031% 1st bend. mode (E-W)

2 1.9276 1.9289 0.067% 1st bend. mode (N-S)

3 4.5437 4.4253 2.675% tors. mode

4 7.0804 7.3518 3.692% 2nd bend. mode (E-W)

5 7.1654 7.3665 2.730% 2nd bend. mode (N-S)

6 8.1623 8.0055 1.959% axial mode

merates 163,020 dofs. Despite the larger number of dof, the proposed procedure
allows to transform the user time into computational time. Moreover, a more
effective FE model prone to optimizing the computational cost, preserving the
accuracy, might be obtained by coarsening the resolution of the voxels. The voxel
discretization introduces a simplified description of the geometry and leads to
a fine FE model able to precisely capture the geometry features and the corre-
sponding mass properties. The mechanical properties are defined by a punctual
characterization, which leads to a very accurate description of the structure, since
each voxel can be automatically associated with a particular property definition,
whereas for the CAD-based model each material or property needs a partition of
the whole solid model.

3.2.3.3 Mesh optimization

Here, an optimization of the Mastio FE model depicted in Figure 35(a) is pro-
posed. In particular, a coarser model, characterized by a vertical slicing step
equal to 0.25 m with also a slice resolution of 0.25 m, is developed through the
CLOUD2FEM procedure.

The coarser mesh is then characterized by a considerable reduction of dofs
(443,076). More precisely, it counts 147,692 nodes and 118,554 elements. A com-
parison of the two voxel-based meshes is shown in Figure 37. By inspecting Figure
37 and Table 4, appears clear that the two models are equivalent from a structural
point of view.

Table 4: Mass, overall dimensions and center of mass height.

Model Mass Max Dimensions hg

(tons) {L×B×H} (m) (m)

Voxel 3032.11 9.90 × 9.80 × 30.60 14.07

Voxel coarser 3081.99 10.00 × 10.00 × 30.50 13.89
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Figure 36: Mode 1: bending modal shape. Displacements magnitude. (a) Voxel fre-
quency = 1.9131 Hz, and (b) CAD frequency = 1.9137 Hz.

However, to assess the accuracy of the coarser model, a natural frequency
analysis is carried out. Table 5 collects the results obtained in terms of computed
frequencies and computed errors. It appears that the computed error is always

Table 5: Mastio natural frequencies. Comparison between two resolutions of voxel-based
models.

Mode Voxel fr. (Hz) Voxel coarser fr. (Hz) Error (%) Mode descr.

1 1.9131 1.8635 2.592% 1st bend. mode (E-W)

2 1.9276 1.8705 2.962% 1st bend. mode (N-S)

3 4.5437 4.4004 3.154% tors. mode

4 7.0804 6.6999 5.374% 2nd bend. mode (E-W)

5 7.1654 6.7792 5.390% 2nd bend. mode (N-S)

6 8.1623 7.8249 4.133% axial mode

less than 5.5% for the first six modes. Figure 38 illustrates the modal shapes 2 and
5 of the voxel model (Figure 38(a) and Figure 38(c), respectively) and of the voxel
coarser model (Figure 38(b) and Figure 38(d), respectively). Consequently, the
coarser model appears structurally equivalent to the reference one [305]. In this
way, it can be utilized to carry out advanced numerical analyses with a reasonable
computational cost.
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(a) (b)

Figure 37: FE mesh discretizations: (a) voxel discretization, and (b) voxel coarser discretiza-
tion.

3.2.4 Generation and validation of the whole fortress FE model

In order to extensively test the CLOUD2FEM procedure and to show its capabili-
ties and reliability, an application to the whole San Felice sul Panaro fortress has
been carried out [30].

3.2.4.1 Generation of the whole fortress FE model

Following the work-flow in Figure 21, 121 digital slices of the whole fortress have
been generated from the point cloud and, then, stacked. A vertical gap ∆z = 0.25
m coupled with a bi-dimensional resolution in the horizontal plane of 0.25 cm
×0.25 m has been chosen, as suggested in Section 3.2.3.3. Indeed, the resolution
0.25 ×0.25 ×25 m was found to be the best compromise between results accuracy
and computational effort.

Although this mesh size does not accurately reproduce every small architec-
tural detail, it guarantees a good accuracy in terms of global structural response.
Figure 39 shows some examples of digitalized slices of the fortress and a sketch
of their stacking sequence.

The resulting mesh, depicted in Figure 40, is characterized by 409,300 hexaedral
FEs (each one 0.25× 0.25× 0.25 m) and 1,512,444 dofs. Four different materials
have been used, whose mechanical properties have been set according to [242]
and are collected in Table 6. In Figure 40, the Mastio’s trunk top part is depicted
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(a) (b) (c) (d)

Figure 38: Comparison of modal shapes: (a) mode 2 voxel mesh (1.9276 Hz), (b) mode
2 voxel coarser mesh (1.8705 Hz), (c) mode 5 voxel mesh (7.1654 Hz), and (d)
mode 5 voxel coarser mesh (6.7792 Hz).
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Figure 39: Examples of digitalized slices of the fortress and their stacking.

with a different color because it is composed by reinforced masonry due to the
presence of steel tie-rods added in the 90s.

Modeling the floors and vaults has always been a very significant issue when
dealing with numerical models of masonry structures. Following the proposed
strategy, floors and vaults are automatically meshed through a jagged representa-
tion of the original geometry. Anyway, it is always possible to improve the mesh
accuracy using a smoothing method to reduce the faceting, as presented in [305].
Nevertheless, in order to assess the global behavior of a historic structure, the ge-
ometrical accuracy of the raw mesh can be considered satisfactory even if vaults
are present, as in the current case (Figure 40).

In the past, the fortress was surrounded by a moat. Therefore, the ground
level is located at two different altitudes: inner ground level, located at 0.00 m
(assumed as origin of the reference system), and outer ground level, located
at −3.50 m. The boundary conditions account for this difference: all the nodes
located at the moat level have clamped boundary conditions applied, whereas
the elements located into the courtyard have been modeled through an elastic
material to take into account the presence of the terrain. For all of the following
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Table 6: Materials mechanical properties [242].

ID Material Young’s modulus Shear modulus Density

[MPa] [MPa] [kg/m3]

1 Masonry 1500 625 1800

2 Reinf. masonry 1900 792 1800

3 Timber 8000 2918 415

4 Terrain 935 316 1200

analyses, these boundary conditions have been considered. Moreover, roofing
structures have been modeled as concentrated mass.

3.2.4.2 Structural analyses and validation

In this section, few preliminary structural analyses are conducted to verify the
usability of the model.

It should be pointed out that historic buildings are often composed of several
adjacent structures built in different eras. Their structural response is, therefore,
influenced by the interaction of adjacent parts. To account for this interaction and
aiming at obtaining the simplest FE model, in this study such interaction is sim-
ply modeled by modifying the material properties of the connection zone. The
introduced structural connections are shown (in red) in Figure 40. Indeed, con-
nections between adjacent structures are here simply inserted by manipulating
the 3D voxels-based matrix, or, equivalently, a layer of 3D FE between adjacent
structures.

Since historic monumental buildings are characterized by great dimensions,
the 3D domains associated to the connections are in most cases negligible in
comparison to the global volume. Moreover, masonry buildings are characterized
in the majority of cases by orthogonal walls, resulting in a mesh grid which is well
oriented and with evenly spaced nodes. Therefore, the identification and selection
of the layer of elements associated to the connection is rather easy. However, in
the uncommon case of diagonal connections, or when walls are not parallel to the
digitalization directions, a local re-meshing can be used to model the connections.

In general, the mechanical behavior of connections varies from a compression
stress state (closing of connections) to a tensile stress state (opening of connec-
tions), given the unilateral response of masonry. Plausibly, in compression stress
states the connections tend to have the same mechanical behavior of the sur-
rounding material. Conversely, in a tensile stress state the connections behavior
is largely affected by the quality of the masonry toothing between adjacent struc-
tures. In the following, three connection levels are distinguished: high quality
connections (Fully connected), absence of toothing between structures (Not con-
nected), and an intermediate level (Partially connected). Assuming, for simplicity,
that the connections have an isotropic behavior, the simplified mechanical charac-
terization of the three connection levels is sketched in Table 7.
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Figure 40: San Felice sul Panaro fortress FE mesh. Structural connections are highlighted
in red. The magnified portion shows the mesh discretization.

A numerical assessment of the effect of connections characterization on the dy-
namic behavior of the fortress has been conducted by means of natural frequen-
cies analyses. In particular, two different connections configurations have been
considered: Fully connected and Not connected (e.g. without any toothing) adjacent
structures.

Due to its nonlinear character, the pounding between adjacent structures cannot
be contemplated in these linear analyses. Indeed, in a Not connected configuration
adjacent structures behave as isolated and independent structures.

The influence of connections on the dynamic behavior has been assessed by
comparing results between the two connections configurations in terms of natu-
ral frequencies and modal shapes. In particular, results of the first nine natural
frequencies of the fortress are reported in Table 8 for the two connections config-
urations. As it can be noted, the structural effect of connections on the dynamic
behavior of the fortress remains rather limited, with a percentage variation of the
natural frequencies under the 16%.

Figure 41 shows the comparison between the modal shapes of mode 2 (Mastio’s
bending mode) for the Fully connected and Not connected configurations. As it can
be observed, this modal shape does not essentially change between the two cases.
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Table 7: Connections simplified mechanical characterization: Econ and Gcon are the
Young’s modulus and shear modulus of the connection, respectively, while Em
and Gm are the Young’s modulus and shear modulus of the masonry, respectively.

Closing of connection

Econ = Em

Gcon
= Gm Fully connected

= Gm/γGc with γGc > 1 Partially and Not connected

Opening of connection

Econ

= Em Fully connected

= Em/γEt with γEt > 1 Partially connected

� Em Not connected

Gcon

= Gm Fully connected

= Gm/γGt with γGt > 1 Partially connected

� Gm Not connected

Conversely, Figure 42 shows the comparison between the modal shapes of
mode 3. The modal shape’s change is significant: in the Not connected configu-
ration also the East curtain wall is activated.

Similarly, in the comparison between the modal shapes of mode 6 (Mastio’s
torsional mode), depicted in Figure 43, it is clear the modal shape’s change con-
cerning the North tower.

In this study, preliminary linear static analyses have been also utilized to test
the usability of the numerical model generated through the CLOUD2FEM proce-
dure.

For the sake of brevity, the attention is focused on the preliminary structural re-
sponse of the Mastio and its interaction with adjacent structural elements. For sim-
plicity, horizontal forces proportional to the Mastio’s first bending modal shape
in E-W direction (mode 2, Figure 41), with a maximum horizontal acceleration
equal to 0.3g, have been applied together with vertical dead loads.

After the analysis of the masonry toothing between Mastio and its adjacent
structures, considering also the fortress historical evolution, three different con-
nections levels have been assumed along the connection zones between Mastio
and its adjacent structures, as reported in Figure 44. With reference to Figure 44,
the portion A has been supposed as Partially connected with reduction factors (see
Table 7) γEt = γGt = 1.6 due to its quite good masonry toothing, the portion B as
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Table 8: Results of the first nine natural frequencies of the fortress and relative variation
for the two connections configuration.

Mode Fully connected Not connected % Var.

freq. [Hz] freq. [Hz]

1 2.2231 1.9809 -10.895

2 2.4278 2.0500 -15.561

3 4.0917 3.8555 -5.773

4 4.4717 3.8857 -13.105

5 4.8790 4.2838 -12.199

6 4.9832 4.5906 -7.878

7 6.8285 6.3173 -7.486

8 7.3270 6.9297 -5.422

9 8.1807 7.9072 -3.343

(a) (b)

Figure 41: Mode 2: (a) Fully connected configuration (2.4278 Hz), and (b) Not connected
configuration (2.0500 Hz).

Partially connected characterized by a poor toothing quality with γEt = γGt = 10,
and the portion C Not connected since the absence of toothing between the parts
is clear. Finally, for simplicity, it has been assumed γGc = 1 for all the portions.

The results of the linear static analysis for a West directed force are depicted
in Figure 45 for the South front and in Figure 46 for the North front. As it can
be easily realized, in this case the connections tend to be in compression and,
hence, these results refer to the condition of connections closing. In particular,
concerning the South front, the stress states in terms of normal vertical stress
component and in-plane tangential stress component are depicted in Figures
45(a) and 45(b), respectively. As it can be noticed, the recovered stress fields are
well represented over the structural domain and are not influenced by the jagged
representation of the geometry.
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(a) (b)

Figure 42: Mode 3: (a) Fully connected configuration (4.0917 Hz), and (b) Not connected
configuration (3.8555 Hz).

(a) (b)

Figure 43: Mode 6: (a) Fully connected configuration (4.9832 Hz), and (b) Not connected
configuration (4.5906 Hz).

Moving to the Mastio’s North front, Figure 46 shows the comparison between
the stress state (reported in Figure 46(a) in terms of maximum principal stress)
and the crack pattern which is characterized by a curved crack, highlighted by
a dotted line in Figure 46(a) and by arrows in Figure 46(b). As it can be noted,
they are in good agreement: the emphasized crack is almost perpendicular to the
grater maximum principal stress’ spatial vectors.

The results of the linear static analysis for an East directed force are shown
in Figure 47 for the South front and in Figure 48 for the North front. As it
can be easily argued, in this case there is an opening of connections since the
joint between the Mastio and its adjacent structure is in a tensile stress state.
Similarly to the previous case, a comparison between linear static analysis results
is proposed in terms of maximum principal stress and the crack pattern suffered
by the structure. Regarding the South front, the stress state is shown in Figure
47(a) and the crack pattern in Figure 47(b).
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Figure 44: San Felice sul Panaro fortress FE mesh. Detail of Mastio’s connections.

Segments AB, CD, EF and GH shown in Figure 47(a) correspond to the major
cracks of the Mastio’s South front indicated by arrows in Figure 47(b). As it
can be noted, the maximum principal stresses are almost perpendicular to the
highlighted segments (Figure 47(a)). In this sense, it can be stated that the stress
state and the crack pattern shown in Figure 47 are in good agreement. Moreover, it
can be noticed that prolonging these segments they all run into point O. Thereby,
an hypothetic point between O and O ′ can be considered as the center of rotation
for a plausible overturning mechanism.

Concerning the Mastio’s North front, the linear static analysis results relative
to a East directed force are shown in Figure 48. In particular, the distribution of
the maximum principal stresses is shown in Figure 48(a) and the crack pattern in
Figure 48(b). Also in this case there is a good agreement between the maximum
principal stresses distribution and the cracks suffered by the Mastio’s trunk.

As already mentioned, one of the features of the proposed modeling strategy
is its ability to give a fine geometrical representation of the whole building, in-
cluding the secondary structural elements. Among these, Figure 49 focuses the
attention on the stiffening walls located in the Mastio’s top. In particular, Figures
49(a) and 49(b) show the maps of the vertical stress component due to a horizon-
tal East directed and West directed force, respectively, and Figures 49(c) and 49(d)
show the crack pattern. Inspecting Figures 49(a) and 49(b) reveals the presence
of compression and tensile stress peaks at the base of the E-W directed stiffening
walls. This is in good agreement with the crack pattern suffered by these stiffen-
ing walls (Figure 49(c)), where a sub-horizontal crack is clearly evident (Figure
49(d)).

In summary, the FE model generated through the CLOUD2FEM procedure
appeared rather employable in the framework of numerical analysis, and it seems
suitable to be used in more advanced nonlinear analyses to assess, for instance,
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Figure 45: Linear static analysis results relative to a West directed force, South front: (a)
vertical stress (Pa), and (b) tangential stress (Pa).

the seismic response of historic structures. The favorable application on the San
Felice sul Panaro fortress, which embodies all the typical complexities of historic
monumental buildings, represented a positive outcome of the proposed mesh
generation procedure. The FE model of the fortress in its post-quake condition
has been adopted by Bassoli et al. [306] for the ambient vibration-based FE model
updating of an earthquake-damaged masonry tower (i.e. the Mastio of the San
Felice sul Panaro fortress), investigating the mechanical properties of the tower
and the level of connections with the rest of the fortress in the current damaged
state. In [306], to fully characterize the actual behavior of the tower in operational
condition, mesh elements corresponding to the damaged masonry have been
identified and different material properties have been assigned to them. This
allowed to account for the effect of damage and cracks, which appeared essential
in the calibration process. Further applications of the FE model presented here
are shown in Chapter 4.
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Figure 46: Comparison between linear static analysis results relative to a West directed
force and the crack pattern suffered by the structure during the Emilia earth-
quake, North front: (a) maximum principal stress (Pa), and (b) crack pattern.
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Figure 47: Comparison between linear static analysis results relative to a East directed force
and the crack pattern suffered by the structure during the Emilia earthquake,
South front. Segments AB, CD, EF and GH correspond to the major cracks. (a)
Maximum principal stress (Pa), and (b) crack pattern.
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Figure 48: Comparison between linear static analysis results relative to a East directed force
and the crack pattern suffered by the structure during the Emilia earthquake,
North front: (a) maximum principal stress (Pa), and (b) crack pattern.
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Figure 49: Comparison between numerical results and the crack pattern on Mastio’s top
stiffening walls. (a) East horizontal force: vertical stress (Pa). (b) West horizontal
force: vertical stress (Pa). (c) Mastio’s top. (d) Particular of the crack pattern
related to the red highlighted square in Figure 49(c).
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3.3 watertight meshing

In this section, a simple approach for processing point clouds (surveyed on his-
toric structures) is proposed for their automatic transformation to 3D FE meshes,
following the concept of watertight mesh. Watertight means that the mesh on all
the surfaces is complete, so that the volume is fully enclosed. This approach ap-
pears appealing for historic ruined structures, which are generally characterized
by the absence of inner spaces, furniture, doors and window frames etc. The pro-
posed mesh generation approach treats historic structures similar to 3D objects
such as stone sculptures, building ornamental components etc and follows an
akin concept of digital reproduction of 3D objects from 3D scanning to 3D print-
ing. However, in this instance, instead of using the mesh to perform 3D printing,
its usage is aimed for structural analysis purposes (i.e. FE mesh made of 3D solid
elements).

The proposed procedure requires a point cloud of the historic structure under
study. The point cloud could be the output of either terrestrial laser scanning
or close-range photogrammetry. These survey techniques generate dense clouds
of 3D points, generally characterized by several millions of points for full-scale
buildings.

Often, a few preliminary and standardized operations on the point cloud dataset
may be required to facilitate the subsequent operations. Firstly, a specific algo-
rithm [46] is used to populate a new dataset of points with a sampling generated
according to a Poisson-disk distribution. The resulting reduced point cloud is
characterized by a regular spatial sampling, which can be chosen depending on
the level of detail desired for the case at hand. Millimetric details are generally
negligible to analyze the structural behavior of historic constructions. Moreover,
the point cloud has to be cleaned mainly by removing all neighbor points, which
are not relevant to the structure. Although this operation is manual, it is easy to
implement and substantially fast.

Afterward, a TIN mesh is generated based on the point cloud (in the condition
after sampling and cleaning). The TIN mesh is created by linking triplets of
nodes to form non-overlapped triangles. Ideally, if every portion of the object’s
surface is meticulously surveyed, this mesh could be already watertight. However,
this never occurs for large-scale and complex structures since their surfaces are
continuous with the terrain. Furthermore, few parts of the object’s surface are
commonly missing, due to access difficulties during the survey.

Since the aim is to obtain a watertight mesh, further processing of the data is
necessary. Thus, the Poisson surface reconstruction [307] can be adopted. Poisson
surface reconstruction is a well-known computer graphics technique for creating
watertight surfaces from oriented point samples acquired with 3D range scan-
ners. This algorithm expresses surface reconstruction as the solution of a Poisson
equation. Therefore, Poisson reconstruction considers all the data at once, creat-
ing very smooth surfaces that robustly approximate noisy data [307], suffering,
however, from a tendency to over-smooth the data. All these operations are basi-
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cally common and standardized, and they can be conducted by means of any 3D
mesh processing software.

Once the watertight mesh has been obtained, it can be directly exploited for
setting up the 3D FE mesh. The main aim is to generate a final mesh that will be
robust when used for FE calculations. Although an adaptive (skin) mesh could
be used in areas where more detail is desired, it is even more important to have
a final (solid) mesh with appropriate topology. To this aim, three alternative
operations are suggested herein.

In the first case, the triangles which constitute the watertight mesh are directly
transformed into FE triangles. Then, the triangles are transformed into solid 4-
nodes tetrahedral FEs filling the whole volume by means of automatic advancing
front methods which are already implemented in most commercial software pack-
ages (see for example the one implemented in Abaqus [308]). This operation is
fully automatic, and therefore, extremely fast. In addition, it does not introduce
any further geometric approximation. Nevertheless, being the watertight mesh
not conceived for FE analysis, this approach could lead to excessively distorted
FEs and, therefore, it could fail. In most cases, few local manual refinements could
overcome this drawback, but sometimes the simple regularization of the metrics
on the surface (watertight mesh) cannot lead to a good (undistorted) solid mesh.
This aspect mainly depends on the mesh generation software that can or cannot
employ robust mesh generation procedures.

In the second case, the volume defined by the watertight mesh is filled by vox-
els, using well-known and established voxelization algorithms (see for instance
[309]). The outcome strictly relies on the adopted voxel dimension, which can be
chosen depending on the case at hand. In this case, the voxel model is nothing
more than a 3D matrix in which the value 1 refers to the structure and the value
0 represents voids, as well as the information of the voxel dimensions. There-
fore, their transformation to 8-nodes hexahedral FEs is a simple, common and
standardized operation, see Section 3.2. The voxel dimension should represent
a good compromise between geometric accuracy and computational effort of FE
analyses. Given a watertight mesh, its voxelization is always possible and the gen-
eration of the FE mesh is guaranteed. Therefore, although the voxelized model
is generally rougher than the one obtained through direct transformation of the
watertight mesh, the voxelization of the domain represents a robust and always
guaranteed approach for the FE mesh generation.

In the latter case, the watertight mesh is processed by means of a retopology
algorithm (see for example [310]) to generate a coarser representation of the sur-
face [311]. This kind of algorithms are able to re-mesh a surface into a triangular
mesh, with a certain resolution chosen by the user, using unified local smoothing
operators that optimize both the edge orientations and vertex positions in the
output mesh [310]. Then, the triangles are transformed into solid 4-nodes tetrahe-
dral FEs. Therefore, the problem dimensions, as well as the number of solid FEs,
are broken down thanks to the reduction of the triangles of the watertight mesh.
This operation produces a further approximation of the surface depending on the
resolution of the triangles chosen.
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In a case where the surveyed structure presents several inner spaces (e.g. rooms)
and the presence of furniture, doors and windows, i.e. the TIN mesh cannot
become watertight anyway, other semi-automatic mesh generation approaches
(e.g. the CLOUD2FEM procedure, Section 3.2) can be employed. Indeed, although
the CLOUD2FEM procedure is more laborious than the proposed one, being
not completely automatic, it always guarantees the mesh generation of the 3D
geometry. In Figure 50, a general flowchart for the FE mesh generation from
point clouds of historic buildings is shown.
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Figure 50: Exploiting point clouds of historic constructions for structural purposes: A gen-
eral flowchart for FE mesh generation.

3.3.1 Application to a ruined leaning tower: The SW tower of Caerphilly castle, UK

The watertight meshing procedure just proposed is applied to a significant case
study, which represents a geometrically irregular historic structure, to show the
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procedure potentialities: the SW ruined leaning tower of Caerphilly castle, UK
(Figure 51).

Caerphilly castle is a medieval fortification in Caerphilly, South Wales, UK. The
castle was constructed by Gilbert de Clare in the 13th century [312] and it is the
second largest in the UK. The tower has been in a ruined and leaning condition
for several centuries [312, 313].

(a) (b)

(c) (d)

Figure 51: Southwest tower of Caerphilly castle. (a) Historic drawing. (b), (c), (d) Photos of
the leaning tower in its actual condition.

The tower is approximately 17 m tall. It used to have a circular ground plant
of approximately 9 m in diameter. Today, the inclination of the tower is approxi-
mately 10 degrees. For the sake of comparison, the campanile of Pisa is 55.86 m
tall and leans at an angle of 5.5 degrees. The southwest tower is made of stone ma-
sonry with a fully irregular texture. No information is available about masonry
material properties, soil stratigraphy and foundations. However, medieval forti-
fied structures were generally characterized by particularly shallow foundations.
According to Renn [312], the deterioration subsequent leaning of the tower was
probably the result of subsidence caused by de-watering in the 18

th century, as
there is no evidence of deliberate destruction having been ordered.

In 2014, a detailed survey of the southwest tower commissioned to document
its health condition [313]. A total of 27 scans were surveyed using a FARO focus
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3D X130 terrestrial laser scanner. The inclinometer, altimeter, compass, clear con-
tour and clear sky were also activated and far distance deactivated. A series of
scans have been taken from points on the ground around the base of the tower.
During the scanning, challenges were mainly due to scaffolded areas around the
tower and the presence of tourists. The complexity of the geometry also proved
challenging in the placement of targets. Twelve spherical targets used to locate
the scans.

3.3.2 Generation of the case study FE model

Here, the FE mesh generation of the SW tower of Caerphilly castle is shown.
Figure 52 presents the main outcomes of the mesh generation operations con-
ducted on the case study. Figure 52(a) shows the initial point cloud and Figures
52(b),52(c) show the TIN mesh. As it can be observed, several portions of the
structure surface are lacking due to the aforementioned drawbacks in the sur-
veying operations. However, the main geometric features of the structure were
successfully collected. The Poisson surface reconstruction has been conducted
on the case study data set. Figures 52(d),52(e) show the resulting watertight mesh
consisting of triangles, where it is superimposed on the TIN mesh of the previous
step. As can be noted, the watertight mesh reasonably approximates the original
TIN mesh. The level of approximation introduced in the geometry in this circum-
stance appears to be included, in the authors’ opinion, within the engineering
tolerance.

On the one hand, the FE model of the case study obtained through voxeliza-
tion is shown in Figure 52(f), where the value 0.175 m has been adopted as
voxel dimension. On the other hand, Figure 52(g) shows the solid FE model ob-
tained through the direct transformation. In this case, no excessive distortion
arose. Therefore, this latter model has been herein preferred over the voxelized
model since it does not introduce further geometric approximations, as voxeliza-
tion does. The mesh consists of 28,738 nodes and 145,893 4-nodes tetrahedral FEs.
In Figure 52(h), all the nodes of the bottom part of the mesh have been projected
to a horizontal plane to allow the easy setup of the boundary conditions in the
model. Finally, the solid mesh (Figure 52(i)) obtained through retopology [310]
(with an average size of the side of the triangles equal to 60cm) consists of 5,639

nodes and 27,114 tetrahedral FEs. As can be noted, the mesh is characterized by a
largely reduced number of solid FEs. Nevertheless, it is still suitable for structural
purposes.

The application of the generated mesh (Figure 52) for the stability analysis of
leaning historic masonry structures is shown in Chapter 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 52: Points cloud manipulation and mesh generation. (a) Rough points cloud. (b),(c)
Tower’s TIN mesh. (d),(e) Superposition of TIN mesh and watertight mesh. (f)
Example of voxelization of the domain. (g) Transformation of the watertight
mesh into a tetrahedral mesh. (h) Solid FE mesh with base nodes projected on
a common plane. (i) Solid mesh obtained through retopology.
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3.4 conclusions

In this chapter, two mesh generation procedures (CLOUD2FEM and watertight
meshing) have been proposed to transform 3D point clouds into 3D solid FE
models of historic monumental buildings.

The CLOUD2FEM procedure generates solid FE meshes through a slicing of
the initial point cloud and the subsequent stacking of the geometry. The resulting
mesh contains all of the information to be used within the FE method, includ-
ing the mechanical properties associated with the material features, guarantee-
ing the automatic generation of a reliable FE model. An increase of the level
of automation in the mesh generation process is observed and a large reduc-
tion in the required time in comparison to CAD-based modeling procedures is
achieved. The validation of the strategy has been performed on the San Felice
sul Panaro fortress, which embodies all the typical complexities of monumental
historic buildings.

The watertight meshing procedure considers the structure as a watertight sur-
face and eventually fills the volume. Although not always applicable to historic
buildings, e.g. in case of inner spaces, rooms, furniture, doors, windows, etc., this
procedure represents a very fast solution for the direct and fully automatic mesh
generation of a geometrically irregular masonry building.





4
A N A N A LY S I S P R O C E D U R E F O R S E I S M I C A L LY
I N T E R A C T I N G S T R U C T U R E S

The damage occurred due to past earthquakes highlighted that the seismic behavior of historic
masonry structures characterized by an aggregation of units with an own seismic behavior (e.g.
palaces, fortresses, castles, etc.) is strongly affected by their dynamic interaction. At present, no
codified and operational tools are available to perform the seismic assessment of such mutually
interacting structures. This chapter introduces a numerical procedure based on the use of nonlinear
static analyses to fill this gap. The proposed procedure firstly requires the execution of a modal
analysis on a 3D finite element model of the whole structure to define the modes which involve the
dynamic response of each unit and their modal shapes. The latter are then fitted to define the load
patterns to be applied on each unit through pushover analyses. The pushover curves obtained for
each unit are then converted into capacity curves to finalize the seismic assessment. The effectiveness
of the proposed procedure is shown through an application to a medieval fortress significantly
damaged by the 2012 Emilia earthquake (Italy). The results achieved are promising and support
the possible extension of the procedure to other typologies of complex historic structures composed
by various interacting units.

4.1 introduction

This chapter deals with the seismic assessment of mutually interacting historic
masonry structures carried out through nonlinear static analyses. This kind of
structures is characterized by a seismic behavior which is ruled by the structural
response of the many interacting units forming the whole building. This interac-
tion can be relevant especially if the units are characterized by various architec-
tural features that lead to different dynamic properties, stiffness and strength of
the units. Such typology includes a huge number of examples: a bell tower incor-
porated in a church, monumental palaces which are often the result of subsequent
additions of structural units, and fortified constructions (as fortresses and castles),
which are usually formed by towers connected through curtain walls (Figure 53).

Although the activation of local mechanisms is significant (e.g. mainly inter-
esting out-standing portions such as battlements), the assessment of the global
response is equally relevant. The chapter focuses the attention only to the latter,
particularly referring to the case of fortresses.
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(a) (b)

Figure 53: Examples of two Emilian fortresses: (a) Vignola fortress, and (b) Castello Estense
in Ferrara.

The vulnerability of fortresses was strongly highlighted by the 2012 Emilia
earthquake [304]. In fact, such typology is particularly frequent in that area and
offered several examples of severe damage, pointing out the complexity in in-
terpreting their seismic behavior. A classification of the recurrent seismic dam-
age mechanisms was originally proposed in [304], based on observed damage
and typical configurations. In particular, the main observed mechanisms were: (i)
damage mechanisms due to the interaction between the towers and the fortress’
curtain walls; (ii) damage mechanisms involving the main body of the towers;
(iii) damage mechanisms involving the upper parts of the towers; (iv) damage
mechanisms at the level of the roofs. Starting from the proposal of [304] for the
Emilia fortresses, further damage mechanisms were then added in [314], corrobo-
rated by the damage collected for a large number of cases hit by other past Italian
earthquakes.

The seismic assessment of such complex structures poses several critical issues.
The first problem deals with the definition of the best modeling choice to be
adopted that has to balance the need of a reasonable computational effort with
that of guaranteeing a reliable assessment capable to catch the interaction effects.
The second problem is instead connected to the lack of tools and standardized
procedures to perform the seismic analysis and verification of such complex ma-
sonry structures. While Standards [242] are more oriented to ordinary buildings,
Recommendations addressed to monumental assets (i.e. [24]) in general state a
series of general principles and indications for possible methodologies of analy-
sis, without however prescribing operational tools or indicating specific models
and standardized procedures.

In this context, this study aims to overcome the aforementioned lack of oper-
ational tools by proposing a procedure for the seismic assessment of mutually
interacting masonry structures based on the use of nonlinear static analyses. The
required steps of the procedure are explained in Section 4.2. The procedure is
then applied to a case-study, i.e. the San Felice sul Panaro fortress already pre-
sented in Section 3.2.2. It is worth to note that the procedure uses a 3D FE solid
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model of the entire structure (Section 4.3). Therefore, in the whole model the
dynamic interactions among the different units of the entire asset are explicitly
accounted for. Furthermore, the use of efficient numerical algorithms keeps bear-
able the computational effort (Section 4.4). The comparison between the occurred
damage and the one predicted - in terms of crack pattern and ductility demand
obtained by the analyses - allowed to validate the procedure (Section 4.5).

4.2 seismic assessment through nonlinear static analyses

4.2.1 Modeling issues

The seismic assessment of complex monumental assets can be pursued by follow-
ing two different approaches that affect also the choice in the modeling strategies:
(i) the decomposition of the whole asset into different units (e.g. on the basis
of historical and constructive features) by performing separate verifications, or
(ii) the realization of a unique global model of the entire asset, performing the
pushover analyses and, consequentially, make the verification through the capac-
ity curve representative of the overall global seismic behavior. In principle, both
alternatives can be considered reliable and have to be chosen depending on the
specific features of the examined asset, on its complexity (that can make feasible
only few alternatives) and on its expected structural behavior. However, they both
present pros and cons.

Regarding the first approach, the difficulties are mainly related to the need of
defining a “border” for the asset and for each unit and consequentially the “equiv-
alent” boundary conditions for each modeled unit. Then, obviously, the analysis
of the monument decomposed in independent units is not able to consider the
possible interaction effects between the different parts, unless in an approximate
and conventional way. Conversely, the second approach implicitly considers these
interactions, although affected by computational effort complications induced by
the modeling of the whole structure.

Even both alternatives can be pursued, the second one is considered the most
reliable for the fortresses which this study focuses on. In fact, this kind of struc-
tures are characterized by an aggregation of adjacent units (e.g. towers, curtain
wall, buildings, etc.), which interact due to mutual boundary conditions. The ef-
fects of adjacent buildings on the seismic behavior of a masonry tower have been
discussed in [141], where the seismic behavior of a tower has been found to be con-
siderably influenced by the presence of adjacent buildings. Particularly, in [141] it
has been shown that the results obtained by numerical models which accounted
for the adjacent parts were in good agreement with the damaged condition of an
actual non-isolated tower that suffered an earthquake. However, the definition of
equivalent boundary conditions to simulate the adjacent parts appears non-trivial
and generally excessively approximated for this kind of structures. Therefore, the
application of conventional boundary conditions on each unit of the structure
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appears inadequate and a comprehensive model of the whole structure is more
appropriate to investigate its seismic behavior.

Historic monumental structures are usually characterized by huge dimensions
and complex and irregular geometries. These features contribute in making the
numerical modeling a challenging task. The use of 3D solid continuum models
allows to keep limited the computational effort, see Chapter 2.

The 3D solid geometry of these structures is usually developed in a CAD en-
vironment, which is generally an expensive and complex process with inevitable
geometrical simplifications. However, recent mesh generation procedures allow
to semi-automatically transform 3D point clouds, e.g. surveyed through TLS, into
solid numerical models, see Chapter 3.

4.2.2 Issues on analysis’ methods

Once defined the most suitable numerical model, a further critical issue deals
with the procedure for the analysis and verification, which is not manageable a
priori. At present, Standards and Recommendations [242, 24] do not suggest a
well-established procedure for the assessment of such complex structures. Linear
analyses or methods based on the local verification of stress states can produce
very conventional assessments since the redistribution effects are very significant.
Furthermore, linear analyses need the adoption of a behavior factor which would
be completely conventional for non-standard typologies as the one examined, be-
ing the values recommended in codes only calibrated for ordinary new buildings.

Thus, the use of nonlinear procedures appears essential to obtain more reli-
able results. In this framework, the options are two: nonlinear dynamic analyses
(NLDA) and nonlinear static analyses (NLSA) based on the pushover framework.

NLDA are the most advanced analysis method today available. However, this
procedure is not only computationally demanding, but it also presents some
drawbacks. Only few numerical models allow to run time history analyses espe-
cially for masonry structures, due to the complexity of defining cyclic constitutive
models and viscous damping models, see Chapter 2. Moreover, the computational
effort required in so complex models is not usually feasible even with very power-
ful computers. Finally, but not secondary, the interpretation of the huge amount
of information of the NLDA results is not straightforward aiming at carrying out
a performance-based assessment [47].

For these reasons, the use of NLSA is considered an effective tool [47] and it
represents the most widespread method to study the global response of existing
buildings, as well.

The main assumption of pushover-based methods is that the structure vibrates
predominantly in a single mode. For this reason, NLSA is usually based on the
application of a unique force distribution (for example proportional to masses
or proportional to masses per height). Then, most Standards propose to apply at
least two different load patterns (LP) or a combination of force distributions to
approximately consider the evolution of inertial forces which depends on the
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progressive degradation of the structure. However, the use of a single LP on
the whole model risks to be too conventional in a pushover analysis framework.
Indeed, it could fail in activating the nonlinear behavior of all the units in the
aggregate. For example, when the most vulnerable units of the structure exhibit a
nonlinear behavior, the others can almost remain in the elastic field. Furthermore,
this assumption may not be fulfilled, especially in high-rise buildings, where
higher modes effects may be important along their height [315]. However, both
in low-rise buildings (like the majority of ordinary masonry structures) and in
more complex structures (like the monumental ones) higher modes effects may
be significant, due to the presence of in-plan irregularities (which induce torsional
effects) or flexible diaphragms (then, the first mode does not activate all the walls).
Other strategies in the field of NLSA as the multimodal or adaptive approaches
have been mostly developed for other structural types (reinforced concrete and
steel buildings) and their application to masonry is still under investigation even
for simple structures [316, 317].

The second problem is connected to the availability of robust criteria to define
proper performance levels on the pushover curve in case of complex masonry
buildings. In the case of other typologies, e.g. RC buildings, the structural ele-
ments are usually modeled without a post-peak strength degradation and the
seismic verification is developed through local safety checks. This procedure is
not suitable for unreinforced masonry buildings, since their structural elements
often present a significant strength degradation that needs an analysis involving
the building in its entirety.

Finally, in order to evaluate the seismic demand corresponding to the attain-
ment of the different performance levels, the NLSA needs a procedure to compare
the capacity with a response spectrum. To this aim, firstly, the pushover curve rep-
resentative of the behavior of the multi-degree of freedom (MDOF) system has
to be transformed into the capacity curve of the equivalent single-degree of free-
dom (SDOF) one and, then, a procedure to properly reduce the elastic spectrum
has to be adopted. Concerning the latter issue, several methods are proposed in
literature and Standards (as the coefficient method in [318], the N2 method in
[319], the capacity spectrum method (CSM) in [320]). Recent works highlighted
how, among them, in case of structures characterized by a short period as the
masonry structures the N2 Method risks to produce assessment not conservative
[321]. Therefore, in Section 4.5 of this chapter the adoption of the CSM has been
favored.

4.2.3 Adopted procedure

In order to face the aforementioned issues and to provide a first contribution to
overcome the lack of operational tools identified in literature, this study proposes
a procedure for the seismic assessment of irregular complex structures together
with a first application to the case of fortresses. The procedure follows five steps:
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1. Generation of a FE model of the whole aggregation of units aimed at explic-
itly capturing the mutual interaction effects;

2. Execution of a modal analysis to define the modes involving the dynamic
response of all the units and their modal shapes;

3. Fitting of the modal shapes to define the LP distribution to be applied to
each unit that may vary in plan and height;

4. Execution of a series of pushover analyses (for each unit) by applying to
the whole numerical model the force distribution obtained from the modal
shapes identified in point 3, which generally involves only one unit;

5. Conversion of the pushover curve of each unit in the capacity curve repre-
sentative of the equivalent SDOF system and then finalization of the seismic
verification.

Figure 54 sketches the proposed procedure, applied to the San Felice sul Panaro
fortress (Section 3.2.2), which is the structure analyzed in this chapter.

It has to be pointed out that the subdivision in the various units presupposes
the analyst’s interpretation of the global modal configurations. However, the few
practical guidelines listed below can help in the definition of the different units:

• for the standardized building typology object of this study (fortified build-
ings, e.g. castles, fortresses, and citadels), the post-earthquake damage sys-
tematically highlighted their propensity to exhibit an independent dynamic
behavior of the towers, which are affected by the dynamic interactions
with the adjacent structural bodies [314, 304]. This dynamic behavior is
mainly due to: i) the architectural transformations occurred over the cen-
turies which led to the actual structural configuration, mostly formed by
towers connected through massive defensive walls; ii) the different dynamic
properties, stiffness and strength which characterize the different units, thus
determining these significant dynamic interactions. In this case, the experi-
ence from the damage observed after past earthquake can primarily address
the analyst in the identification of the units;

• more in general, when there is no evidence of the dynamic behavior by the
post-earthquake damage or for other building typologies (such as aggre-
gates, monumental palaces or bell towers incorporated in a church) which
are not characterized by recurring and standardized architectural configu-
rations, identifying the various units can be not so trivial. However, also in
these cases, a deepen preliminary analysis on the historical transformations
faced over the-centuries and the analysis of their peculiar constructive fea-
tures (also through in-situ investigations) can help the analyst to identify
the various units and outline the most reliable hypotheses on their mutual
interaction.
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Figure 54: Sketch of the proposed procedure.

4.3 numerical modeling of the case study

The procedure has been then applied to the medieval fortress in San Felice sul
Panaro (Section 3.2.2), significantly damaged by the 2012 Emilia earthquake. The
finite element model of the fortress in San Felice sul Panaro has been developed
by means of a non-standard mesh generation procedure called CLOUD2FEM,
as showed in Section 3.2.4. In this section, the FE mesh generation of the case
study is briefly revisited to account for the before-quake condition of the structure.
Furthermore, the description of the adopted constitutive law for masonry, as well
as the verification of the consistency of its mechanical parameters, are reported.
Finally, the load pattern implementation and the analysis algorithm adopted are
discussed.
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4.3.1 FE mesh generation

As anticipated in Chapter 3, the municipality of San Felice sul Panaro commis-
sioned a laser scanner survey of the fortress to acquire a detailed snapshot of its
condition in the aftermath of the 2012 Emilia earthquake, see Section 3.2.2.2.

Although the survey and, hence, the generated model were based on the after-
quake condition of the structure, it was possible to include the collapsed portions
of the fortress in the FE model to obtain its before-quake condition. Indeed, by
processing the 2D slices in a voxel framework, the lacking parts of the structure
have been geometrically modeled with reference to a before-quake documenta-
tion (drawings, plans and photos). Figure 55 shows two examples of processed
slices in which the geometry of the minor towers’ crowning (collapsed due to the
seismic events) has been recreated with a reasonably good approximation. Such
an operation was facilitated by the peculiar mesh regularity, which helped the
user in the geometrical reconstruction.

Figure 55: Example of processed slices to include the collapsed parts of the structure in the
model.

Figure 56 shows the obtained 3D FE model of the fortress. The whole model
counts 526,985 nodes and 424,096 eight-node hexahedral elements. As can be
noted from the magnified portion, the adopted discretization is quite fine aiming
at investigating the fortress global structural behavior. Indeed, all the structural
elements of the fortress present at least 2-3 hexahedral elements along the walls’
thickness. Exception is made for the minor towers crowing’s walls, where in some
portions only one element along the thickness is present. However, following the
aforementioned scope, this condition can be tolerated.

Aiming at assessing the behavior under horizontal loading of masonry build-
ings, timber decks and masonry vaults have been found to significantly influence
the overall response of a structure [47]. On the one hand, due to the well-known
difficulties in modeling such horizontal elements, equivalent diaphragms can be
used to model them. On the other hand, the utilized mesh generation approach
automatically generates jagged 3D geometries of such elements. Such approxi-
mations, once again, can be considered satisfactory aiming at investigating the
global structural response.

The effectiveness of the model generated is also shown in [306], where the
model, in the after-quake condition, has been updated with ambient vibration
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Figure 56: 3D finite element model of the fortress. The magnified portion shows the
adopted discretization.

data measured on the Mastio. Indeed, the capability of adequately reproduce
the first five natural frequencies and modal shapes of the Mastio showed the
reliability of the FE model.

The fortress under study is a very complex building composed by several ma-
terials. For simplicity, four different material properties have been identified and
implemented in the FE model (i.e. masonry, timber, reinforced concrete and ter-
rain). Particularly, the last three materials have been assumed linear elastic, for
simplicity. Conversely, the nonlinear behavior of masonry is described in the fol-
lowing, adopting a continuum model. It has to be noticed that, in order to do not
alter the linear dynamic response of the structure (e.g. in terms of participating
masses), the terrain, which is present in the courtyard of the building (with a level
at approximately 3.50 m higher than the external one), has been considered with
a very small density.

The model is assumed on a fix base. Indeed, although for massive structures
as the fortresses the soil-structure interaction could be significant [322, 323], this
assumption is considered reliable for the San Felice sul Panaro case study, since
the soil underneath the fortress has not a poor quality and no damage caused by
soil-structure interaction problems has been highlighted on the structure.

4.3.2 Constitutive model for masonry

In this study, the isotropic plastic-damage constitutive model developed by Lee
and Fenves [136] for quasi-brittle materials is adopted for masonry. In the follow-
ing, the main features and parameters involved in the model are recalled. For the
reader’s convenience, a summary of the model equations, accounting for the role
of the parameters involved, is given in the Appendix A.

Two independent scalar damage variables are supposed. Particularly, one scalar
damage variable for the compressive behavior (0 6 dc < 1) and one for the
tensile behavior (0 6 dt < 1) are employed. According to the concepts of ef-
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fective stress and strain decomposition, the stress-strain relations under uniaxial
compression, σc, and tension, σt, are:

σc = (1− dc)E0 (εc − ε
p
c ) , σt = (1− dt)E0

(
εt − ε

p
t

)
, (1)

where E0 is the initial Young’s modulus of the material, εc and εt are the uniaxial
compressive and tensile strains, and εpc and εpt are the uniaxial compressive and
tensile plastic strains (Figure 57). In particular, the curves shown in Figure 57

denote the main input data required by the model.

(a) (b)

Figure 57: Plastic-damage constitutive law for masonry: (a) compressive and (b) tensile
uniaxial stress-strain relationships.

The constitutive model is formulated in the context of non-associated plasticity
[136]. Therefore, the plastic potential is characterized by the dilatancy angle ψ,
generally assumed equal to 10

◦ for masonry [324], and by a smoothing param-
eter ε usually assumed equal to 0.1 [325]. A multiple-hardening Drucker-Prager
type surface is assumed as yield surface. This surface is specified by the ratio
fb0/fc0 between the biaxial fb0 and uniaxial fc0 initial compressive strengths
and a constant ρ, which represents the ratio of the second stress invariant on the
tensile meridian to that on the compressive meridian at initial yield. The values
fb0/fc0 = 1.16 and ρ = 2/3 are typically adopted for masonry [325].

Reference to the Italian code [242, 241] has been made to set the mechanical
properties of the material (clay brick and lime mortar masonry). The value 1500

MPa has been adopted as Young’s modulus of masonry.
The adopted compressive and tensile uniaxial stress-strain relationships are

shown in Figure 58, leading to an indirect definition of the fracture energies in
tension and compression, see the Appendix A. Particularly, the values 2.40 MPa
and 0.12 MPa have been assumed as uniaxial compressive and tensile strengths,
respectively [242, 241].

The evolution of the scalar damage variables dt and dc, as function of the
uniaxial strains, has been kept substantially proportional to the decay of the uni-
axial stresses (Figure 58), as adopted in several numerical campaigns of masonry
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Figure 58: Uniaxial behavior and damage evolution for the compressive and tensile
regimes.

structures [325, 141]. Although stress states in fortified masonry structures are
usually far from compressive failures in static conditions, when these structures
are pushed horizontally their compressive stresses significantly increase. There-
fore, compressive softening is herein accounted for.

A summary of the adopted mechanical parameters is collected in Table 9. The

Table 9: Masonry mechanical parameters. E is the Young’s modulus, ν is the Poisson’s ratio,
w is the material density and VP is the viscosity parameter used in the analysis.

E [MPa] ν w [kg/m3] ε [\] ψ [\] fb0/fc0 [\] ρ [\] VP [\]

1500 0.2 1800 0.1 10
◦

1.16 2/3 0.002

effectiveness of the constitutive model employed for masonry and of the mechan-
ical parameters assumed with respect to the consequent strength predictions at
the scale of masonry panels is shown in the following section.

4.3.3 Mechanical parameters consistency

The definition of reliable mechanical properties for existing masonry structures is
a challenging task. This is even more complex when dealing with historic struc-
tures, where in situ destructive tests are limited or often forbidden. Therefore,
reference to literature or codes material properties is usually undertaken. In par-
ticular, [241] provides mechanical properties for several representative masonry
typologies which can be found on the Italian territory. However, such parame-
ters (e.g. shear strength) are referred to the scale of masonry panels rather than
the scale of the material, as contemplated instead in continuum FE formulations.
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Thereby, the evaluation of the consistency of the adopted mechanical parameters
with consolidated panel-scale strength criteria appears of primary importance.

To this aim, a simple benchmark of a masonry panel (Figure 59) has been mod-
eled. The numerical outcomes obtained on the benchmark have been compared
with well-known shear-strength criteria, as the ones contemplated in the Italian
code [242, 24].

(a) (b) (c)

Figure 59: Benchmark used for the verification of the mechanical parameters: (a) 3D mesh,
examples of (b) tensile and (c) compressive damage contour plots at failure
(σ/fm= 0.43).

Figure 59(a) shows the mesh used and its geometrical dimensions. Blue line el-
ements in Figure 59(a) represent rigid links. The implemented mesh corresponds
to the discretization adopted in the fortress model. The masonry panel has been
subjected to vertical compressive normal stress coupled with shear stress. Several
simulations have been carried out with different values of the vertical normal
stress in order to simulate the whole strength domain of the panel. Typical tensile
and compressive damage contour plots at failure are shown in Figure 59(b) and
Figure 59(c), respectively.

Numerical findings, in terms of ultimate shear, have been compared with two
well-known shear strength domains, which are contemplated in the Italian code
[242, 241, 24], see Figure 60. In particular, the Turnsek-Cacovic [326] criterion
with the modification then introduced in [327], see (2), and the criterion based on
the failure due to combined compressive and bending stress, see (3), have been
considered:

Vu=
1.5τ0Bt
b

√
1+

σ

1.5τ0
(2)

Vu=
σB2t

2

(
1−

σ

0.85fm

)
1

B/2

(3)

where Vu is the ultimate shear, τ0 is the masonry shear strength without vertical
normal stresses (the value 0.08 MPa has been assumed according to [242] for clay
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Figure 60: Ultimate shear comparison between strength domains for masonry panels and
the results of FE simulations.

brick masonry with weak mortar and quite regular texture), B is the length of
the panel, t is the thickness of the panel, σ is the average normal vertical stress
and b is a corrective coefficient assumed equal 1. As can be noted in Figure 60, a
good agreement between the FE results and the Turnsek-Cacovic shear-strength
criterion can be observed. It has to be pointed out that the criterion defined in (3)
is based on the conservative hypotheses of no-tension material and stress-block
behavior in compression. Therefore, the slight overestimation of the numerical
results with respect to (3) for very low or very high compressive stress appears
reasonable and expected.

Generally, constitutive models which show softening behavior and stiffness
degradation suffer from convergence issues in implicit analysis programs. A com-
mon stratagem to overcome some of these difficulties consists in using a vis-
coplastic regularization of the constitutive law, which leads the consistent tan-
gent stiffness of the softening material to become positive for suitably small-time
increments.

The adopted isotropic damage-plasticity model is regularized using viscoplas-
ticity, i.e. eventually permitting stresses to be outside of the yield surface. The
regularization is governed by the viscosity parameter (VP), which represents the
relaxation time of the viscoplastic system. A small value of the VP, compared to
the characteristic time increment, usually helps to improve the convergence of the
model in the softening regime, without compromising results.

To evaluate the sensitivity of the numerical results to the VP value, a prelimi-
nary sensitivity analysis was performed on the FE model of the SW tower, which
was extracted from the whole model. The LP defined in Section 4.4 for the SW
tower was considered in the analyses. The results of the sensitivity analysis, in
terms of pushover curves and tensile damage contour plots, are shown in Figure
61, whereas the times required by the numerical analyses are collected in Table 10.
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Furthermore, the influence of the mesh size is shown in Figure 61, where a finer
mesh, generated by subdividing each 8-node hexahedral element into four FEs
the with orthogonal vertical planes (in order to preserve the same geometrical
features), is considered.

Figure 61: Sensitivity analysis on viscosity parameter and mesh size. The tensile damage
contour plots are referred to a top horizontal displacement equal to 0.08 m.

By inspecting Figure 61 and Table 10, the REF analysis (VP=0.002) appears the
best compromise between results accuracy and computational effort. This value,
indeed, is used in all the computations herein presented. Although faster (Ta-
ble 10,), greater VP values, e.g. 0.02, lead to a considerable overestimation of the
shear force (Figure 61) together with a more spread distribution of the tensile
damage, which makes the cracking pattern sensibly unrealistic (Figure 61). Con-
versely, localized cracks (usually defined by a single row of solid FEs) and similar
cracking patterns are recorded for analyses with VP equal to 0.002 and smaller
values. These analyses are also characterized by similar pushover curves, i.e. by
small differences in the maximum shear force registered, which, in the Authors
opinion, are included in between the constitutive law approximations. Analyses
with VP values lower than 0.002 are, however, characterized by a sensibly higher
computational demand. Emblematic is the case with VP equal to zero, i.e. no vis-
coplastic regularization is adopted. Indeed, in this case, although in the first part
of the response the pushover curve appears quite close to the REF one, divergence
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Table 10: Times required by the numerical analyses. (x) on a commercial laptop equipped
with a processor Intel®Core™ i7-6500U CPU @ 2.50GHz and 16GB RAM.

Analysis VP Time required(x)

REF 0.002 00:41:05

FINER MESH 0.002 11:28:44

VP=0 0 Diverged

VP=0.00002 0.00002 04:38:13

VP=0.0002 0.0002 03:09:56

VP=0.02 0.02 00:27:12

is prematurely achieved. Finally, no particular influence of the mesh size on the
pushover curve and on the cracking pattern is recorded.

4.3.4 Load application and analysis procedure

The FE model depicted in Figure 56 has been imported into the software Abaqus
Standard [308], which has been used to perform the pushover analyses. The Ital-
ian Tier-1 cluster (GALILEO), devoted to scientific computing on the basis of
national and European proposals (recently introduced in CINECA), has been ex-
ploited to conduct the simulations. Particularly, an 8-nodes supercomputer (RAM
128 GB per node) with two 8-cores Intel Haswell (2.40 GHz per node) has been
utilized. Each pushover analysis lasted for 24 hours.

A two-step analysis approach has been implemented. Firstly, gravitational loads
are applied to the structure. Secondly, non-uniform-distributed element-based
horizontal loads have been applied through user-defined subroutines, following
the LPs defined from the modal analysis.

To compute the solution up to the collapse of the structure (also in case of
softening), a quasi-static direct-integration dynamic analysis algorithm has been
adopted [308]. This algorithm allows to analyze quasi-static responses in which
inertia effects are essentially introduced to regularize unstable behaviors. The Au-
thors experienced a better performance of this algorithm, specifically in the soften-
ing regime, with respect to more common arc length procedures. Geometric non-
linearity has been considered in the analyses to account for large-displacement
effects.

4.4 application of the proposed procedure

As highlighted by the interpretation of the surveyed damage pattern [304], the
San Felice sul Panaro fortress (Section 3.2.2) is composed of an aggregation of
units (towers, curtain walls and recently added buildings) which exhibited an
own behavior although strongly influenced by their mutual interaction. In the
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following sections, the steps of the procedure are hereinafter illustrated referring
to the units identified in Figure 62.

Figure 62: Identification of the main units in the San Felice sul Panaro fortress.

4.4.1 Definition of the load patterns

Once realized the 3D model of the whole structure, the procedure requires to
perform a modal analysis to define the modes involving the dynamic response of
all the units and their modal shapes.

To this aim, the identification of the main units of the structure (see Figure 62

for the case under study) is firstly required. Then, a modal analysis is performed
(Figure 63) and each unit mass participant factor e∗ (computed with reference
to the mass of the unit under investigation) is evaluated (Table 11). Thereby, the
modes which activate a significant mass with respect to each examined unit are
so considered to define the load patterns. Therefore, rather than considering the
modes with a significant participant mass with respect to the global structure,
the ones which activate a significant mass with respect to each examined unit
are here evidently preferred. Table 11 presents in particular: the units under
investigation (use Figure 62 for the ID number); the selected mode/modes for
each unit, together with the main direction/directions in which the mode is
activated; the analyses’ directions; and the mass participant factor e∗ (computed
with reference to the mass of the unit under investigation).

For each unit, only the modes involving its dynamic response have been con-
sidered and, for each mode, the so obtained modal shapes have been fitted with
exponential, polynomial and linear functions, which vary in plan and height.

Table 12 collects the main dynamic parameters of the first twelve modes in
terms of period T and participant mass in the x and y directions (Mx and My,
respectively). Furthermore, the main units activated by each mode are identified
(the identification number of units refers to Figure 62). It is worth noting that
the modes of the Mastio (1 and 2 in Table 12) are coherent with the ones ob-
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Figure 63: Modal shapes of the selected modes for each examined unit.

tained from the dynamic identification [39], performed on the Mastio after the
earthquake.

Figure 64 shows the modal shape in plan and a sketch with the 3D LPs ap-
plied in the pushover analyses for some units of the fortress. Figure 65 collects
the functions fitted from the modal shapes, showing the selected mode with its
main direction (the axes are indicated in Figure 62), the functions fitted from the
maximum and minimum modal displacements assumed for the force distribution
in the nonlinear pushover analyses (where z is the vertical axis), and the function
and a sketch of the LP applied in plan. As one can see from the table, three kinds
of LPs have been applied in plan (constant, parabolic and linear trapezoidal), with
a vertical outline which varies in height.

As it is possible to see from Figure 64 and from Figure 65, the applied distribu-
tion varies only in height while it remains constant in plan for some units (such
as the Mastio), whereas for other units (such as the West unit), it varies both in
height and in plan.

More specifically, Figure 65 collects: the kind of LP applied in plan (distin-
guishing between constant, parabolic and linear trapezoidal); the examined unit
(Mastio, W unit, N-E tower, S-W tower, N-W tower, N tower); the selected modes
with its main direction/directions; and the expressions of the functions used for
the LP, fitted from the selected modal shapes. It has to be pointed out that for
those modes characterized by significant displacements both in the x and y direc-
tions (i.e. modes 4, 6, 8, 9 and 12), the pushover analyses have been performed by
simultaneously applying the x and y component of the LP.
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Table 11: Values of the participant mass fractions e∗ obtained for each unit.

Unit Modes (direction) Analysis e∗

Mastio (n. 4) 2 (y) W 0.486

1 (x) S 0.554

2 (y) E 0.559

1 (x) N 0.511

N tower (n. 1) 6 (x+y) E+S 0.529

6 (x+y) W+N 0.498

8 (x+y) E+N 0.471

8 (x+y) W+S 0.521

SW tower (n. 3) 9 (x+y) W+N 0.543

NE tower (n. 5) 4 (x+y) W+N 0.618

W unit (n. 6) 3 (y) E 0.174

3 (y) W 0.326

NW tower (n. 2) 12 (x+y) E+N 0.555

Table 12: Dynamic parameters of the first twelve modes.

Mode 1 2 3 4 5 6

T [s] 0.470 0.431 0.284 0.251 0.227 0.216

Mx [%] 32.4 0.9 0 6.1 0.3 3.9

My [%] 0.9 34 8.1 1 6.8 2.6

Involved units 4 4 6 5 4-5-9 1

Mode 7 8 9 10 11 12

T [s] 0.209 0.199 0.186 0.182 0.166 0.162

Mx [%] 0 16.4 4.4 0 4.5 1.5

My [%] 0 7.8 8.2 0.5 3.8 6.8

Involved units 1-7-9 1 3 1-3-5-7 2-3-6 2
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Figure 64: Identification of the main units in the San Felice sul Panaro fortress.



102 an analysis procedure for seismically interacting structures

Figure 65: Functions of the LPs applied to the different units of the fortress.
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4.4.2 Nonlinear static analyses results

Once evaluated the LPs (Figure 65), the procedure has been firstly applied to the
Mastio to verify its effectiveness. The results have been compared with those
obtained by applying a unique load proportional to the height to the whole
fortress; the latter is consistent with that usually proposed in codes [242]. The
results were compared in terms of damage pattern (Figure 66), pushover curves
(Figure 67(a)) and capacity curves (Figure 67(b)) showing a quite good agreement.

(a) (b)

Figure 66: Comparison in terms of damage pattern obtained applying a unique LP: (a) to
the whole fortress, and (b) only to the Mastio.

(a) (b)

Figure 67: Comparison in terms of (a) pushover curves and (b) capacity curves obtained
applying a unique LP to the whole fortress (curves in black) and only to the
Mastio (curves in gray).
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However, by applying a unique LP to the whole fortress, only the nonlinear
response of the Mastio (which is the first unit to be damaged) is activated (Figure
66), while the response of the other minor towers is substantially still linear elastic.
This is highlighted from the simulated damage pattern in Figure 66(a) obtained
by applying the force distribution to the whole fortress, where it is evident that
the main damage is concentrated in the Mastio, while the other towers and the
adjacent unit are interested only by a very light damage.

Furthermore, in Figure 67 the curves are rather akin in terms of stiffness and
they differ of less than 10% in terms of maximum strength. The base shear is
evaluated at the base of the Mastio for both analyses, for the sake of comparison.
Then, it is possible to observe that, when the LPs are applied to the whole fortress
(black curves in Figure 67), the softening effect is less pronounced.

Nonlinear static analyses have been then carried out in both the directions +/-
X and +/- Y, as indicated in Figure 62. From the results, the following data have
been extracted:

i the global shear at the base of the whole fortress, expressed as function of
the average displacement at the top level of each unit;

ii the displacements of several nodes evenly placed along the height of each
unit at the beginning of the response, thus representative of an elastic phase.
These values allowed calculating the participation coefficient and the partic-
ipation mass necessary to transform the pushover curves into the capacity
curves of the equivalent SDOF system.

Starting from these data, the pushover curves (V − d) of each unit have been
obtained and then converted into the corresponding capacity curve (V∗ − d∗),
following the general principles of [319], adopted in [242] as well, and based on
the evaluation of the participation coefficient Γ and the mass M∗ of each unit (see
Eq. (4)), where φi is the ith component of the eigenvector representative of the
first modal shape and mi is the correspondent modal mass). Hence, the capacity
curve was obtained by dividing the displacement d by Γ(d∗ = d/Γ) and the base
shear by the product ΓM∗(V∗ = V/(ΓM∗)), where Γ and M∗ were related to the
unit under investigation.

Γ =

∑
miφi∑
miφ

2
i

=

∑
miφi∑
miφ

2
i

(4)

4.5 validation of the proposed procedure

This section presents the results of the application of the proposed procedure
to the examined case study, in terms of comparison between the seismic demand
and the system capacity. In particular, in this case, the seismic demand came from
the records of the SAN0 station from the ITACA network, which was very near
to the Fortress. Two seismic shocks of comparable entity occurred in May 2012.
However, no near-field records of the first shock were available. Hence, in the
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examined case, the actual records that hit the monument on the 29
th May 2012

was considered as seismic action.
Figure 68 shows (a) the localization of the SAN0 station with respect to the

Fortress, and (b) the comparison (in terms of acceleration-displacement response
spectra) of the two components North-South (NS) and East-West (EW) of the
actual record of the 29

th May 2012.

(a) (b)

Figure 68: (a) Localization of the SAN0 station. (b) Comparison in terms of acceleration-
displacement response spectra between the NS and the EW components of the
actual 29

th May 2012 seismic event (from SAN0 station - ITACA network).

The results were interpreted in terms of expected ductility demand µPP, rep-
resentative of the ductility reached by the different units during the 2012 earth-
quake. This parameter has been assumed as reference to estimate the entity of the
damage level attained together with its qualitative comparison with the actual one
occurred. Indeed, it is expected that the units with higher values of ductility de-
mand would correspond to the ones characterized by a more significant damage
(in terms of spread and gravity of the cracks).

4.5.1 Assessment of the expected seismic demand

The first step to evaluate the ductility demand was the estimation of the seismic
demand dPP expected from the 2012 earthquake. This latter was evaluated by ap-
plying CSM [320], since recent studies proved that other methods of verification
proposed in literature and in Standards (as the N2 method [319]) cannot consid-
ered equally reliable for masonry structures, such as the examined one [47].

The CSM is based on the use of overdamped reduced spectra, computed using a
reduction coefficient (ξ) aimed to conventionally take into account the progressive
nonlinear response trough the concept of hysteretic damping for ductility values
higher than 1. In the examined case, the overdamped response spectrum has been
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evaluated on the basis of the well-known reduction law, adopted in [242] as well:

ξ = ξel + ξmax

(
1−

1

µβ

)
(5)

where ξel is the elastic damping (assumed equal to 5%); ξmax is the maximum
hysteretic damping (assumed equal to 20%); µ is the ductility computed starting
from the displacement associated to the considered limit state, calculated once
converted the capacity curve in the equivalent bi-linear; β is a coefficient herein
assumed equal to 0.6. The latter value is compatible with the ones traditionally
assumed for masonry structures [328]. It is worth noting that the evaluation of
the bi-linear curve from the capacity curve is not strictly necessary to apply the
CSM but only to evaluate the ductility µ.

Therefore, once evaluated the capacity curve for each unit, the expected seismic
demand dPP was evaluated as the spectral displacement obtained comparing
the capacity curve with the overdamped response spectrum generated from the
actual records of May 2012.

Figure 69 shows, by way of example in the case of the Mastio, the comparison
between the capacity curve of the system (in black) and the actual overdamped
spectrum (through the continuous grey). In this case, the response spectrum is
the one obtained considering the EW component of the record (grey dotted line
in the figure), properly overdamped as above described, that is starting from a
period corresponding to ductility values higher than 1.

Figure 69: Comparison between the capacity curve of the system and the actual over-
damped spectrum (EW component of the record) for the estimation of the ex-
pected seismic demand.

Although the use of a real response spectrum can be conventional in the ap-
plication of the CSM (due to its irregular shape), is has been considered more
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representative with the aim of validation being more representative to the real
event that hit the structure.

It has to be pointed out that, in the CSM method framework, the seismic assess-
ment has been developed:

i in the X and Y directions for the units where the LP applied in the pushover
analyses pushed the unit in those directions one at a time;

ii with respect to the resultant axis of the two forces’ distributions applied
simultaneously along the orthogonal axes X and Y. In this case, the values
of shear and displacement obtained from each pushover have been projected
with respect to the above-mentioned axes.

4.5.2 Definition of the ductility demand and comparison with the actual damage

Once evaluated the demand displacement dPP, it was necessary to estimate a con-
ventional yielding point dy to convert the dPP into the expected ductility demand
to provide an estimate of the comparison with the actual damage level occurred.
To this aim, a bi-linear curve was defined according to the principles proposed
for masonry structures by [34] and assuming an initial stiffness which was repre-
sentative of the actual one of each unit. Then, the actual ductility demand µPP is
computed as µPP = dPP

dy
.

Table 13 presents a summary of the results obtained for all the units (identified
by the numbers of Figure 62), in terms of:

i period which defines the initial elastic branch of the bi-linear curve (T∗);

ii value of the calculated ductility demand µPP, obtained alternatively com-
paring the capacity curve of each unit with the overdamped response spec-
trum obtained from the NS or EW component of the actual record.

Moreover, an empirical Damage level graduated according to the EMS98 scale
[329] has been assigned to each unit, distinguishing between the one occurred in
the main body of the unit (D) and the one interesting the tower top parts (D).
In particular, concerning the assignment of D, the criteria summarized in Table
14 have been adopted, while for the top parts (D) the damage level has been
assigned depending on the seriousness and extent of the damage interesting
towers corbels, battlements and roofs. The qualitative correspondence between
the obtained ductility level µPP and the empirical damage level assigned has
been assumed as further factor for assessing the reliability of numerical analysis
performed. In fact, values of µPP higher than 1 indicated the structural response
progressed in the nonlinear field and increasing values should be associated to
more significant and spread damage.

Figure 70 indicates, on the fortress plan, the damage levels (D [329] and D)
associated to each unit and the maximum ductility demands obtained from the
procedure. The number in red identifies the different units (as in Figure 62).
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Table 13: Results of the proposed procedure validation.

Unit N Dir. T*[s] µPP[-] (NS rec.) µPP[-] (EW rec.)

Mastio 4 W 0.379 3.373 1.192

S 0.471 3.229 2.397

E 0.466 3.306 2.484

N 0.419 3.383 1.417

North tower 1 E+S 0.120 0.768 0.831

W+N 0.176 1.312 1.309

E+N 0.219 1.409 1.159

W+S 0.0844 1.548 1.172

S-W tower 3 W+N 0.182 1.046 1.048

N-E tower 5 W+N 0.306 4.911 0.957

N-W tower 2 E+N 0.127 1.088 0.674

West unit 6 W 0.518 4.207 3.843

E 0.509 3.590 3.253

As one can see from Figure 70, it is clear that referring to the damage in the
top parts (D), damage mechanisms due to the interactions with the roof are
present in almost all towers (sometimes the roofs even collapsed). Instead, the
damage interesting the tower main body is more differentiated. In particular, from
the observation of the post-earthquake damage (confirmed also by the damage
pattern numerically simulated), it appears that two different situations occurred:

i the damage occurs first in the top parts; hence, the forces in the pushover
are not able to further increase and the tower main body is not damaged,
remaining almost in the elastic phase. This for example happened in N-W
and S-W towers (respectively, units 2 and 3 in Figure 62);

Table 14: Criteria for the definition of the damage level D [329] expressed in Figure 70.

Damage Level Observed damage

D2 Visible cracks. However, the structure preserves its
structural functionality but is close to the attainment
of its maximum shear strength

D3 Significant and spread cracks. The structure has
reached the maximum resistance to horizontal actions
and present permanent deformations

D4 Partial local collapse, due to the in-plane behavior of
the units

D5 The unit is near to the collapse
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Figure 70: Damage levels associated to the tower main bodies (D) and top parts (D) and
maximum obtained ductility demands, identified on the fortress plan.

ii the damage occurs first in the tower main body and then it spreads across
the top parts. This latter happened in the Mastio, the N-E tower and the N
tower (units 4, 5 and 1 respectively in Figure 62).

Interpreting the results in light of these two possible occurred situations, one
can observe that there is a good correspondence between the level of damage
and the highest value of maximum expected ductility demand µPP. In fact, the
first condition is associated to a minor level of ductility (N-W and S-W towers
reach a maximum ductility level equal to 1.088 and 1.048, respectively), whereas
the second one corresponds to higher level of expected ductility. This latter is for
example the case of the North tower (with a maximum ductility level in the most
punitive direction equal to 1.548), of the N-E tower (with a maximum ductility
equal to 4.911) and of the Mastio (with maximum ductility level in the most
punitive direction equal to 3.383).

Furthermore, the comparison with the actual damage occurred after the 2012

earthquake highlighted a very good correspondence with the one numerically
simulated. Hence, the obtained results confirmed the proposed procedure relia-
bility. Figure 71 and Figure 72 show the damage contour plots in terms of tensile
damage (dt), extracted at the maximum expected ductility demand (performance
points), for some units of the fortress. For the sake of comparison, photos of the
actual crack pattern experienced by the structure due to the 2012 Emilia earth-
quake are reported as well. A very good agreement between the simulated crack
pattern and the actual one is observed in terms of both damage level and crack
location.
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Figure 71: Comparison between the actual damage pattern and the simulated one for some
units of the fortress at the performance point: Mastio (S dir.), N tower (W+S dir.)
and SW tower (W+N dir.).
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Figure 72: Comparison between the actual damage pattern and the simulated one for some
units of the fortress at the performance point: Mastio (E dir.), NE tower (W+N
dir.) and NW tower (E+N dir.).
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4.6 conclusions

The seismic assessment of interacting structural units in complex historic ma-
sonry constructions is a very difficult task, not manageable a priori through well-
defined procedures of analysis and verification. As a first attempt to provide
operative tools, this study proposed a procedure for the seismic assessment of
such complex structures.

The procedure requires: a numerical model of the entire aggregation of units,
in order to explicitly consider the interaction effects among these latter; the execu-
tion of a modal analysis to define the modes involving the dynamic response of
each unit and their modal shapes; the execution of a series of pushover analyses
(one for each unit) by applying time by time the load pattern fitted according to
the identified modal shapes; the conversion of the pushover curve of each unit
into the corresponding capacity curve of the equivalent SDOF system, in order to
perform the seismic verification.

The procedure has been then applied to a case-study, the medieval fortress
in San Felice sul Panaro, significantly damaged by the 2012 Emilia earthquake.
The results are good in terms of comparison between the damage experienced by
the structure and the one predicted (evaluated computing a ductility demand
required by the actual seismic event), showing the potential of the proposed
procedure. Given such promising results, the application of the procedure could
be extended in the future to other kinds of complex monumental structure (e.g.
palaces in aggregate).



5
A N A N A LY S I S P R O C E D U R E F O R L E A N I N G S T R U C T U R E S

This chapter introduces an automatic, powerful and easy to use procedure for undertaking stabil-
ity analyses of leaning historic masonry structures, based on an upper bound FE limit analysis
(FELA) approach. The procedure proposed here consists of a two-step FELA that reduces drastically
optimization variables assuming only active few elements inside a restricted processing zone. To
generalize the Heyman’s intuition to complex real geometries, the use of a 3D upper bound FELA
with a recursive kernel of variables reduction becomes necessary for a precise evaluation of the limit
inclination that makes the structure collapse under gravity loads. This outcome permits to estimate
the structural health condition of a historic structure by comparing the critical inclination angle
against the actual one. To demonstrate the effectiveness of the automated procedure, the southwest
leaning tower of the Caerphilly castle (Wales, UK) is investigated and failure mechanisms with col-
lapse inclination angles are evaluated through FELA. The proposed procedure presents a high degree
of automation at each operational level and, hence, could be effectively used to assess the stability of
historic structures at a national scale and provide useful information to asset owners to classify the
structural health condition of leaning historic masonry structures in their care.

5.1 introduction

Leaning historic masonry structures are fascinating to observe. Perhaps the most
famous examples include the Pisa [1, 330] and the Ghirlandina towers [331]. The
reason why historic masonry structures lean is a complex area of study and have
stimulated the interest of the scientific community for over a century [332]. Due
to their narrow foundations, tall and slender historic masonry structures such as
towers, whose height is much greater than their width, are generally more prone
to lean. Two major reasons why masonry towers tilt are: (a) lack of foundation
strength; and (b) lack of foundation stiffness aggravated by progressive soil creep
phenomena [332]. Several advanced soil-structure interaction models have been
developed to study these phenomena [332]. However, such models require the
setting of a numerous amount of mechanical parameters; most of them correlated
with in-depth in-situ soil tests. Furthermore, they do not allow for a rapid check
on the structural condition of the structure.

Heyman [333] was probably the first to study analytically the safety of lean-
ing towers by assuming masonry as a rigid material unable to withstand tensile
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stresses. Such simplification allowed deriving a quite simple differential equa-
tion describing the crack curve delimiting the failure mechanism and providing
very useful hints on the limit inclination angle associated with the collapse of the
structure. However, the hypothesis of rectangular full or thin-walled sections and
the absence of any irregularity along the height represent a remarkable limita-
tion of the approach, since in practice it is not realistic. Vertical walls of towers
vary considerably in thickness and they often present irregular openings [1]. Fur-
thermore, historic towers, or other height-prevalent historic structures (e.g. walls
in churches, curtain-defensive walls etc.), frequently stand in a ruined condition,
and have been subjected to unforeseen load events (e.g. bombing, successive de-
molitions, sabotages, raids etc.) over the centuries [334]. Often, such structures
suffered alternations and today, only a few portions of the original structure re-
main standing. Consequently, the geometry of these structures is generally ex-
tremely complex and irregular (see for instance [335]). Their complex geometries
suggest to consider advanced methods of analysis where the actual 3D geometry
of the structure is accounted for in the calculations [336].

One of the first challenging tasks that appears when dealing with the numerical
modeling of this kind of structures lasts in acquiring their 3D geometric features.
The use of automated surveying techniques, such as terrestrial laser scanning and
close-range photogrammetry which produce dense point clouds, appears partic-
ularly suitable for obtaining the geometry and the mesh of historic structures, as
pointed out in Chapter 3.

Once the mesh is available (see Chapter 3), it can be used within several compu-
tational tools for the structural analysis of historic masonry buildings, see Chapter
2.

Another issue is how to determine the maximum inclination angle that leads to
the collapse of a tower due to the loss of stability under the application of gravity
loads. Concerning a no-tension material with rectangular cross section, Heyman
[333] was able to analytically determine the collapse inclination angle and the
corresponding crack pattern shape. Unfortunately, an analytical approach for real
irregular geometries is hardly applicable, and an automatic procedure is needed.

To deal with such key issue, and following the Heyman’s work [333], the use
of a two-step 3D upper bound FELA on the mesh of the actual geometry is
conducted and the critical condition (i.e. maximum inclination capacity) of a
leaning historic masonry structure is evaluated.

The procedure is indeed an upper bound limit analysis with FE discretization
obtained by means of tetrahedron rigid elements and rigid-perfectly plastic inter-
faces exhibiting frictional behavior and very low cohesion (i.e. mimicking a quasi
no-tension material with friction).

Considering that FE meshes obtained, for instance, from the watertight mesh-
ing procedure (Section 3.3) would be constituted by hundreds of thousands of
elements and interfaces, the limit analysis problems derived would be charac-
terized by millions of variables, i.e. in practice impossible to solve even with
super-computers.
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An alternative to parallelization is proposed here, which is essentially a master-
slave approach conceived with the aim of reducing drastically the total number of
optimization variables. The procedure is based on the hypothesis that the tower
collapses for the plasticization of few elements located in a limited processing
zone, which is a-priori established in the first step. Elements with centroids in-
side the processing zone are assumed potentially active. The rest of the mesh is
excluded from computations and it is treated as a single rigid body characterized
by six degrees of freedom (i.e. three centroid velocities and three rotation rates).
The solution of the linear programming problem found in the first step provides
a more accurate estimation of the potential interfaces undergoing plasticization.

In the second step, the processing zone is further reduced to those elements
whose interfaces exhibit meaningful inelastic deformation rates plus few contigu-
ous ones, to further drop-down the optimization variables. Conversely, the failure
surface linearization on the active interfaces is refined to obtain more accurate es-
timates of the collapse multiplier. The master-slave kernel is then coupled with
a sequential linear programming algorithm to deal with the linearization of the
normalization condition equation, which results nonlinear due to the assumption
of the inclination angle at failure as collapse multiplier.

The outcome obtained with the limit analysis permits to practically estimate
the structural health condition of a leaning historic structure, e.g. by comparing
the maximum critical inclination angle against the actual one. Since the compu-
tational approach proposed herein presents a high degree of automation at each
operational level, its usage could be addressed to the stability analysis of historic
structures at a national scale. In particular, this approach could be beneficial for
asset managers, which want to classify the structural condition of leaning historic
assets in their care and devise action plans for their survival.

In this research, the southwest leaning ruined masonry tower of the Caerphilly
castle (Section 3.3.1) is employed as a case study to demonstrate the effectiveness
of the proposed approach.

5.2 limit analysis of leaning structures

The stability assessment of 3D masonry structures having complex geometry by
means of limit analysis can be performed with 4-nodes rigid infinitely resistant
tetrahedrons and triangular interfaces where plastic dissipation can occur. The
utilization of interfaces has proved to be effective for cohesive frictional materials
[337, 338, 190, 195], even if yield lines are fixed and re-meshing would be required.
However, the utilization of rigid elements reduces to a great extent the optimiza-
tion variables, which is desired in case of complex geometries. The following
formulation permits the flow rule to be violated in the discontinuities preserving,
nevertheless, the upper bound property of the solution. The discontinuity occurs
at the common edge between two adjacent tetrahedrons. To be kinematically ad-
missible, the normal and tangential velocity jumps across the discontinuity must
satisfy the flow rule.



116 an analysis procedure for leaning structures

5.2.1 Finite element limit analysis 3D model

The kinematic variables of a tetrahedron E are the three centroid velocities (uEx ,
uEy, uEz ) and the three rotation rates (ΦEx ,ΦEy,ΦEz ) around the centroid (Figure 73).
Jump of velocities [U (P)] at a point P = (xP,yP, zP) on an interface I between two
adjoining elements M and N are evaluated as follows:

[
UMP −UNP

]
= UMG −UNG +RM

(
P−GM

)
−RN

(
P−GN

)
(6)
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(7)

[U (P)] must be written in the local coordinate system of the interface rI1 −

rI2 − s
I as ∆U (P) =

[
∆r1 ∆r2 ∆s

]T
= RI [U (P)], where ∆r1, ∆r2 and

∆s are the velocity jumps (two tangential and mutually orthogonal and one
perpendicular to the interface, see Figure 73) in the local coordinate system and
RI is the rotation matrix of the local frame of reference with respect to the global
one.

Figure 73: Interface I between two adjoining elements M and N, stress acting on the inter-
face and local frame of reference (left); jump of velocities of nodes of the same
interface in the local frame of reference (right).

Let’s tIT =
[
τI1 τI2 σIs

]
denotes the stress vector with normal and tangen-

tial components acting along local axes rI1
(
τI1
)
, rI2

(
τI2
)

and sI
(
σIs
)
, see Figure

73.
On the interface I of the area Ω connecting nodes 1-2-3 (Figure 73), assuming

for the masonry material a linearized strength domain in the local coordinate

system constituted by mI planes (qI plane of equation Aq
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C
qI

I 1 6 qI 6 mI), see Figure 74, and introducing fields of plastic multipliers at
the interface (one for each linearization plane), it can be easily shown that power
dissipated is the following:

PI =
Ω

3

mI∑
qI

(
λ̇I,1
qI

+ λ̇I,2
qI

+ λ̇I,3
qI

)
C
qI

I (8)

where λ̇I,j
qI

is the qI plastic multiplier of node j.
Associated flow rule constraints are imposed again on interface nodes in the

following form:

∆U
(
Pj
)
=

mI∑
qI

λ̇
I,j
qI

[
A
qI

r1 A
qI

r2 AσIs

]T
(9)

The external power dissipated can be written as Pex =
(
PT0 + λPT1

)
v, where P0

is the vector of permanent loads, λ is the load multiplier for the structure exam-
ined, P1 is the vector of variable loads and v is the vector of assembled centroid
elements velocities. As the amplitude of the failure mechanism is arbitrary, the
additional classic normalization condition PT1v= 1 is also added, reducing thus
the external power to linearity.

Formally, the linear programming problem obtained is classic, and relies into
the constrained minimization of the total internal power dissipated minus the
power dissipated by external loads which do not depend by λ:


min

{
Pin,ass
I λ̇I,assT −PT0v

}
such that

{
AeqU = beq

λ̇I,ass>0

(10)

where U is the vector of global unknowns which collects the vector of elements
centroids velocities (v) and rotations (Φ) of masonry elements and the vector of
assembled interface plastic multiplier rates (λ̇I,ass). λ̇I,ass is the vector of assem-
bled plastic multipliers of the interfaces. Also, Aeq and beq are the overall con-
straints matrix and vector and collect normalization condition, velocity boundary
conditions and plasticity normality rules on interfaces.
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5.2.2 Master-Slave optimization procedure

Aiming at reducing the numerous amount of optimization variables involved
in the limit analysis computations, a master-slave approach is herein proposed.
Indeed, considering that the FE model studied (Figure 52(h)) is constituted by
145,893 elements and approximately 170,000 interfaces and assuming rigid ele-
ments (i.e. those with six degrees of freedom to determine) and interfaces obeying
a rough linearization of the Mohr-Coulomb failure criterion with tension cut-off
with only 5 plastic multipliers (at least in the first step, as it will be explained later
on), the limit analysis problem derived would be characterized by slightly less
than 2 million variables. This is certainly a linear programming problem which
requires the utilization of either super-computers or parallelization, with consid-
erably long computational times or out-of-memory issues to tackle. In order to
circumvent such problems and reduce the huge computational effort required,
the two-step procedure shown in Figure 74 adopted. Substantially, a rough ap-
proximation of the Mohr-Coulomb failure surface with tension cut-off is utilized
in Step 1 to reduce the computational burden. This approximation is constituted
by only 5 planes. Step 1 is used to roughly identify the active failure mechanism
and to proceed to Step 2 using a new active zone band, closer to the actual one. In
Step 2, a more refined discretization of the failure domain is utilized to determine
with higher accuracy the active failure surfaces inside each interface.

Figure 74: Two-step master-slave approach adopted.

In the Step 1, a processing zone is a-priori established, assuming only active
interfaces between two distances z1 and z2 from the ground. All elements with
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centroids inside such region are assumed potentially active and any interface in-
volving at least one of such elements is also considered active. Regions outside
the interval z1-z2 are assumed to behave kinematically as a rigid block, fully
characterized by the knowledge of the position of the centroid and six degrees
of freedom (3 rotations around the centroid and 3 velocities of the centroid). All
interfaces outside the established processing zone are indeed not active and con-
tiguous elements cannot separate in any manner. Being rigid elements, they are
therefore constrained to move as part of the same rigid body. Therefore, the slave
region is treated as the assemblage of few single rigid elements with complex ge-
ometry, so the finite element nodes on the edges between the meshed region and
the rigid bodies are the slave nodes being dependent on the degrees of freedom
expressed at the centroids of the rigid bodies.

Although this assumption is arbitrary, the user generally knows in advance the
nature of the expected failure mechanism. For the problem under investigation, a
failure mechanism characterized by a shear-flexural hinge located near the base is
expected. The exclusion of the mesh on the upper part does not preclude in any
manner a correct estimation of failure loads and collapse mechanisms. In Step 1,
there is also no need to refine the linearization of the failure surface assumed for
the interfaces, because the aim is only to identify possible sub-regions of active
interfaces. In this manner, the obtained linear programming problem contains
a reasonable total number of optimization unknowns. The width of the active
region can be properly tuned to obtain problems that are computationally more
sustainable for the available computers.

Once the exact regions of active interfaces are known (from the solution of the
linear programming problem in Step 1), the processing zone is again reduced
in Step 2 to further drop-down the optimization variables. Generally, authors
experienced that such new processing zone found in Step 1 should be slightly
enlarged including 2 or 3 rows of neighbouring inactive elements with the aim
of compensating potential inaccuracies of the procedure due to, for example, the
rough discretization adopted for the failure surfaces of the interfaces in Step 1.
The strong reduction of the active interfaces in Step 2 allows for a refinement of
the linearization of the interfaces failure surfaces, with the possible inclusion of a
compression cut-off, although this is not essential for such kind of problems.

In Step 1, computations are performed assuming 129,872 slave elements, 4

master regions of rigid blocks and a total number of active elements equal to
16,021, as depicted in Figure 75 (active elements are indicated in orange in the
picture). Such a choice leads to tackle a linear programming problem constituted
by about 14,000 interfaces and around 160,000 optimization variables. As it will be
discussed later on in this chapter, the evaluation of the ultimate inclination can be
assimilated to the study at collapse of the same structure resting on a tilting plane.
Such problem becomes nonlinear, due to the presence of a few nonlinearities.

A sequential linear programming (SLP) strategy is therefore adopted, lineariz-
ing the nonlinear constraints and repeating a sequence of few linear program-
ming iterations, typically 4-5. On a work station equipped with 32 in-parallel
processors and CPLEX solver [339], Step 1 within the SLP procedure is solved
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Figure 75: Two-step master-slave approach. Slave elements: 129,872, Master regions: 4, To-
tal #elements: 16,021.

in less than 3 hours. The rough identification of the processing zone reduces fur-
ther the number of active elements to about 4,000, with less than 5,000 active
interfaces. Assuming a quite refined linearization of the failure surface for the
interfaces with 25 planes, the total number of optimization variables involved is
roughly 150,000, comparable with those utilized in Step 1 and hence, with similar
processing times needed.

5.2.3 Limit analysis on a tilting plane

The limit inclination angle of a masonry structure (i.e. the angle which leads the
collapse of the structure under gravity loads only) can be computed within a
mathematical programming FE procedure. This is a particular type of limit state
problem, where the collapse of a structure resting on a tilting plane is determined
by progressively increasing the inclination of the base plane from the horizontal
direction (i.e. by increasing the angle ϑ, see Figure 76) up to collapse. In this
framework, the collapse multiplier adopted is ϑ, i.e. the limit inclination angle of
the tilting base.

External loads (due exclusively to gravity) are the components of the gravity
load which act perpendicular and tangential to the tilting base. The progressive
rotation of the tilting plane results into a decrease of the vertical load and an
increase of the horizontal one, according to the decomposition of the gravity
loads W into the horizontal component (Wsinϑ) and the vertical component
(Wcosϑ) respectively, Figure 76.

If the inclination angle of the tilting plane ϑ is assumed to play the role of the
collapse multiplier in the limit analysis problem (10), it is worth noting that there
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Figure 76: Limit analysis strategy for evaluating the collapse inclination of a 3D structure.

is no way to deal with it using linear programming routines, because the normal-
ization condition becomes nonlinear. Obviously, the external power dissipated
(which contains only loads dependent upon the collapse multiplier) is nonlinear.
In limit analysis, loads are applied contemporaneously and a snapshot of the
situation is provided at failure via the solution of a constrained minimization
problem.

In such a particular case, Pex =

(
PT0 + ϑ

PT1 (ϑ)
ϑ

)
v, where again P0 stands for

the vector of loads not dependent on ϑ, PT1 is the vector of all loads dependent
on ϑ and v is the vector of assembled velocities at the centroid of the elements.
The normalization condition is obviously PT1 (ϑ)

ϑ v = 1, which is clearly a nonlinear
function.

Such nonlinearity has the consequence that the obtained mathematical pro-
gramming problem is nonlinear. Almost identical to (10), such nonlinear program-
ming problem (where the nonlinear normalization condition is put in evidence)
can be written as follows:


min

{
Pin,ass
I λ̇I,assT −PT0v

}
such that


AeqU = beq

PT1 (ϑ)
ϑ v− 1 = 0

λ̇I,ass>0

(11)

The nonlinear programming problem (11) can be solved by means of two dis-
tinct possible approaches: a) using a standard nonlinear programming (NLP) rou-
tines, and b) implementing a sequential linear programming SLP procedure, lin-
earizing the nonlinear normalization condition. This last approach is preferred
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here, and it is worth mentioning that the linearization of the nonlinear equation
can be written as follows:

(
PT1 (ϑ0)

ϑ0
v0− 1

)
+

dPT1 (ϑ)
dϑ ϑv −PT1 (ϑ) v

ϑ2

∣∣∣∣∣∣ ϑ = ϑ0

v = v0

ϑ = 0 (12)

where subscript 0 indicates the solution of the previous iteration. The starting
point selected at the beginning of the SLP procedure when linearizing Equation
(12) coincides with an inclination angle of the tilting plane equal to ϑ = 0. There-
fore, the limit inclination angle of the structure is evaluated as the sum of the
limit inclination angle of the tilting plane ϑ and of the actual inclination of the
structure. As a matter of fact, the evaluation of the actual inclination of the struc-
ture is not an easy task, because it depends on the in-plane direction along which
the inclination is evaluated.

For the case study at hand, plotting the in-plane position of nodes belonging
to two horizontal planes as shown in Figure 77, and assuming that the vertical
distance between the two planes is known, it is possible to estimate easily the
out-of-plane inclination of the tower along the different in-plane directions con-
sidered. Such inclination, as it will be explained later on in this chapter, varies

Figure 77: Evaluation of the actual inclination of the structure along different in-plane
directions.

typically between about 10
◦ to about 2

◦, passing from a direction almost parallel
to y to the horizontal direction, respectively. Authors experienced that the SLP ap-
proach converges very quickly, with stabilization of the collapse inclination angle
of the tilting plane after few iterations (3-5).

A final issue to tackle is the choice of the in-plan direction of the horizontal
load, namely the angle Ψ ′ shown in Figure 76. In general, the angle Ψ ′ cannot
coincide with Ψ, the angle identifying the direction of plane Π (the angle 90

◦- Ψ
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identifies on the other hand the direction of the cylindrical hinge around which
the tower rotates during the collapse under self-weight).

Authors experienced that it is necessary to scan angles Ψ ′ within the range -
10
◦-100

◦ to obtain in output angles Ψ between 0
◦ and 90

◦. Then, the identification
of the Ψ associated with the minimum of the collapse inclination of the tower can
be obtained by a simple spline interpolation of the different angles Ψ obtained by
limit analysis computations.

5.3 results and discussion

Limit analyses are performed on the actual 3D geometry of the structure (Figure
52(h)) which is derived from the laser scanning survey. The material of the tower,
or more precisely all interfaces between adjoining tetrahedrons, was assumed
to obey a Mohr-Coulomb criterion with tension cut-off, with mechanical proper-
ties approximating reasonably a continuum almost unable to withstand tensile
stresses. In particular, considering that the tower is severally deteriorated and
in agreement with consolidated literature [162], cohesion c and tensile strength
ft were kept constant through the tower and equal to 0.02 MPa. The assump-
tion of small but non-zero values of cohesion and tensile strength improves the
numerical stability of the linear programming solver and at the same time does
not drastically increase failure multipliers. In such problems, indeed, almost all
the stabilizing contribution is provided by gravity loads and internal dissipation
turns out to play a negligible role on the increase of the collapse multiplier.

Stability problems, such as the leaning historic masonry structures, are gov-
erned by geometry. Mechanical properties of the masonry tower were not avail-
able. Material properties assumed based on authors experience and from codes of
practice. Thus, the friction angle φ of masonry has been set equal to 25

◦, a value
very similar to that assumed in the Italian code for the evaluation of the ultimate
base-sliding shear for piers. Such value of the friction angle allows avoiding the
formation of failure mechanisms due to sliding of macro-parts, which are unlike
in such kind of limit analysis problems. The choice to remove the cap in compres-
sion (see Figure 74) has been made for a twofold reason: first of all, to limit as
close as possible the optimization variables and second because the collapse of a
tower after having reached the limit inclination angle occurs without evidence of
crushing near the compressed toe.

According to the two-step master-slave procedure proposed in the previous
Sections, in Step 1 a rough linearization with 5 planes (and hence 5 plastic mul-
tipliers is adopted), whereas in Step 2 a piecewise linear approximation with 25

planes (24 for the pure Mohr-Coulomb strength domain, 6 per quadrant and 1 for
the tension cut-off) is assumed. The SLP procedure is here utilized to deal with
the nonlinearity presented in such special limit analysis problem.

The resultant limit inclination angles of the structure so obtained varying the
direction of the tilting plane are depicted in Figure 78 and compared with its
actual inclination (thick black line), computed as shown in Figure 77. The col-
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lapse mechanism of the structure for a horizontal direction corresponding to the
smallest limit inclination (Ψ = 60◦) is highlighted in Figure 79.

Figure 78: Comparison between actual inclination and limit inclination of the structure for
several horizontal directions of the rocking direction.

From a careful analysis of the numerical results obtained, the following consid-
erations can be drawn:

1. The tower is at present in a state not far from its collapse state. In particular,
for a direction of the rocking plane Π roughly within the range: 60◦ 6
Ψ675◦, an additional inclination of 1.5◦ would lead to the collapse of the
structure, see Figure 78. Considering the recent wetting-drying cycles which
the structure has been subjected to, a careful analysis of the most suitable
interventions to preclude rocking failure would be needed.

2. Crack pattern found by means of the limit analysis simulation correspond-
ing to Ψ = 60◦ (Figure 79) shows the clear formation of a cylindrical rota-
tional hinge near the base. The plasticization band is relatively narrow and
tends to follow the geometric irregularities of the structure near the base,
passing through the weakest transversal sections. The definition of a cylin-
drical hinge is therefore in principle not proper, because of both the finite
thickness of the band and the not straight configuration of the plasticization
zone.
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Figure 79: Collapse mechanism (with indication of the plastic processing zones) in the
horizontal direction corresponding to the smallest limit inclination (Ψ=60

◦).

3. The concentration of all the plastic flow near the base, in agreement with
intuition, indirectly confirms that the master-slave approach proposed is
fully consistent with the real behavior.

4. Once the exact shape of the crack at the base is known, the failure mech-
anism is clearly identified and hand calculations (or assisted by a CAD
program) can be performed to evaluate the position of the center of grav-
ity of the macro-part subjected to rocking. In this way, the estimation of the
collapse inclination angle is very straightforward and provides a further val-
idation of the procedure proposed, as well as a ready to use instrument by
common practitioners involved in the safety assessment of leaning historic
masonry structures.

5.3.1 Verification of the procedure: Enlarged active volume and single-step analysis

Additional limit analyses have been conducted to show the reliability of the as-
sumption of rigid bodies (master-slave approach) by employing different sizes
of the processing zones (Step 1), in order to check the convergence of the limit
analysis solution (see Mesh #1 and Mesh #2 in Figure 80).
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Figure 80: Different sizes of the processing zones (Step 1) tested to check the convergence
of the limit analysis solution (middle and right) and coarse mesh (left) utilized
to solve the LP problem (single-step approach). Present Mesh refers to the pro-
cessing zone depicted in Figure 75.

Particularly, Mesh #1 is characterized by an enlargement of the processing zone,
with respect to the one employed in the previous sections (Present Mesh in Fig-
ure 80), which represents the largest active volume employable for the computers
at disposal. Conversely, Mesh #2 (Figure 80) represents a restriction of the pre-
vious processing zone, which also excludes interfaces where plastic dissipation
occurred in the Present Mesh (Figure 79). In addition, the mesh obtained through
retopology (Coarse Mesh in Figure 80) has been utilized to solve the LP problem
in the framework of a single-step analysis, i.e. without master-slave approach.

Figure 81 shows the comparison among collapse inclinations of the structure at
several horizontal directions of the rocking direction, with different meshes/pro-
cessing zones tested. Furthermore, Figure 82 shows the comparison between the
collapse deformed shapes of the coarse mesh (top) and Mesh #1 (bottom) in
the horizontal direction Ψ=60

◦. For the sake of brevity, the failure mechanism
of Mesh #2, which is completely different from the others (characterized by a
sub-horizontal crack surface), is not reported.

As can be noted in Figure 81, a very good agreement is achieved in terms of
collapse inclinations between Mesh #1 and the Present Mesh. Conversely, Mesh
#2 radically overestimates the collapse inclinations of the structure. Indeed, the
excessive restriction of the active volume, i.e. the exclusion of interfaces where
plastic dissipation occurs, is responsible for the increase of the load carrying ca-
pacity of the structure, as well as a different failure mechanism. Moreover, the
collapse inclinations evaluated through the Coarse Mesh (single-step analysis),
although slightly overestimated due to the coarser mesh adopted, are in a rea-
sonable agreement with the ones obtained with Mesh #1 and the Present Mesh,
confirming the reliability of the two-step approach proposed.

Additionally, the failure mechanisms collected in Figure 82 further validate
the one obtained with the Present Mesh (Figure 79). Indeed, they substantially
show the same failure mechanism with plastic dissipation essentially in the same
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Figure 81: Comparison among collapse inclinations of the structure at several horizontal
directions of the rocking direction and with the different meshes/processing
zones tested.

zones (compare Figure 82 with Figure 79), although the failure mechanism ob-
tained with the Coarse Mesh (Figure 82, top) is computed through a single-step
approach (fully active volume). Therefore, this outcome further confirms the effec-
tiveness of the master-slave approach proposed and the choice of the processing
zone adopted for the Present Mesh (Figure 75).

Finally, Table 15 collects the computational times required to solve the limit
analysis problems. The following considerations can be drawn:

1. The time needed to solve the problem with the Present Mesh is around 18

hours, considerably less than the time needed by Mesh #1. Therefore, the
Present Mesh, which is more accurate than the Coarse mesh (Figure 80),
appears a suitable compromise to speed up computations with a precise
geometric and mechanical approximation of the real situation.

2. Step 2 requires generally more time to be performed, because of the uti-
lization of several planes to approximate interfaces failure surface. Mesh #2

requires the same time for Step 1 and Step 2 because of the too restricted
processing zone in Step 1, which does not allow to find a plausible failure
mechanism.
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Figure 82: Comparison between collapse deformed shapes (with indication of the plastic
processing zones) for the coarse mesh (top) and Mesh #1 (bottom), in the hori-
zontal direction corresponding to the smallest limit inclination (Ψ=60

◦).

5.3.2 Verification of the procedure: Nonlinear finite element analysis

A further verification of the proposed structural analysis approach is achieved
by means of the comparison with the results of a nonlinear finite element tilting
plane incremental analysis. In this analysis, the isotropic plastic-damage model
adopted in Chapter 4 and described in Chapter A is used for masonry.

Reference to the Italian code has been made to set the mechanical properties of
the material (cluttered stone masonry), which are collected in Table 16. In particu-
lar, the general mechanical parameters for quasi-brittle materials have been kept
the same of Chapter 4. Furthermore, the tensile strength has been kept equal to
the value used in the FELA, whereas the evolution of the scalar damage variables
dt and dc has been kept substantially proportional to the decay of the uniaxial
stresses, as adopted in several numerical campaigns [141] (Table 16).

Dead load is initially applied to the structure through an incremental proce-
dure, considering clamped boundary conditions at the base. Then, a pattern of
imposed displacements, which simulates a tilting plane, is incrementally applied
at the base of the structure. Abaqus Standard [308] has been used to conduct
the simulation. Geometric nonlinearity has been considered to account for large-
displacement effects, which, in this case, are expected to play a fundamental role.

Figure 83 shows the tensile damage (dt) contour plot obtained with a nonlinear
finite element tilting plane incremental analysis. In particular, Figure 83 refers to
the condition in which the base inclination of the tower equals the limit inclina-
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Table 15: Times required to solve the limit analysis problems. (a) CPLEX solver on a work
station equipped with 64bit 2x16GB DDR4 RAM (16 slots). Computations are re-
ferred to the evaluation of the collapse inclination for 7 tilting directions. Compu-
tations include also pre-processing phases, such as identification of the interfaces
and assemblage of the equality and inequality constraints.

Solution of the LA problem(a) hh:mm:ss

Step 1 Step 2

Present Mesh 06:12:44 12:01:05

Mesh 1 15:48:09 33:19:52

Mesh 2 03:31:28 03:27:02

Coarse Mesh (single-step analysis) 21:25:13

tion computed through FELA, in the horizontal direction with the smallest limit
inclination (Ψ = 60◦).

Figure 83: Tensile damage contour plot obtained with a nonlinear finite element tilting
plane analysis, in the condition of a base inclination of the tower equal to the
limit inclination computed through FELA, in the horizontal direction with the
smallest limit inclination (Ψ = 60◦).

As can be noted, the crack pattern in Figure 83 is in good agreement with the
collapse mechanism observed with FELA (Figure 79 and Figure 82). Indeed, all
of the failure mechanisms are governed by the overturning of the highest part of
the tower with a detachment from the remaining part, which pseudo-horizontally
runs from one side of the tower to the opposite one. Although the crack pattern in
Figure 83 also shows a pseudo-vertical crack along the central part of the tower’s
trunk, it does not cross the thickness of the wall (Figure 83). Therefore, such crack
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Table 16: Mechanical properties adopted for masonry in the FELA and in the continuum
plastic-damage models. E is the Young’s modulus, ν is the Poisson’s ratio, and w
is the density.

FELA model

Tensile strength ft [MPa] Cohesion c [MPa] Friction angle φ

0.02 0.02 25
◦

Continuum plastic-damage model

E [MPa] ν w [kg/m3] ε [\] ψ [\] fb0/fc0 [\] ρ [\]

870 0.15 1900 0.1 10
◦

1.16 2/3

Tensile uniaxial behavior | Compressive uniaxial behavior

Stress [MPa] Inel. strain dt [\] | Stress [MPa] Inel. strain dc [\]

0.02 0 0 | 1.0 0 0

0.001 0.0001 0.95 | 1.1 0.001 0

| 0.05 0.007 0.95

does not appear essential in the main failure mechanism of the tower. Rather, this
vertical crack develops after the formation of the horizontal main fissure, being
the result of large-displacement effects.

Finally, it should be pointed out that the evaluation of the limit inclination angle
by means of the standard nonlinear finite element tilting plane analysis herein
adopted is non-trivial and, in facts, requires specific interpretation of the results.
Therefore, further studies on this topic are needed. Consequently, the proposed
FELA approach appears more robust than standard nonlinear FE methods, being
able to directly compute the limit inclination angle of a masonry structure.

5.4 conclusions

In this chapter, the use of an actual geometry-based mesh in a multi-step upper
bound limit analysis with automatic variables reduction, has been proposed for
the stability analysis of leaning historic masonry structures.

Following the Heyman’s intuition, the use of 3D FELA on a mesh of the actual
geometry is implemented to evaluate the critical condition (i.e. maximum incli-
nation capacity) of a leaning historic masonry structure. In this way, the struc-
tural health condition of a historic structure is evaluated by comparing the maxi-
mum critical inclination angle against the current one. A recursive identification
of the processing zone has been proposed, excluding from computations all those
elements which do not undergo plastic deformation. The automatic procedure
adjusts iteratively the processing zone, progressively restricting the analysis to
the few elements interested by the failure mechanism and considering the other
portions outside the processing zone as rigid blocks. Also, a sequential linear
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programming kernel has been adopted to linearize the normalization condition,
which becomes nonlinear if the inclination angle at failure is considered as col-
lapse multiplier.

To demonstrate the effectiveness of the automated procedure, the SW lean-
ing ruined tower of the Caerphilly castle has been employed as a case study. It
emerged that the tower in its actual condition is not far from its collapse. Indeed,
an additional inclination of the structure by 1.5◦ appears to be critical. In this limit
condition, the collapse mechanism of the structure has been found in agreement
with intuition, i.e. it consists in the overturning of the main leaning part of the
structure. The results have been further validated by means of the comparison
with the outcomes of single-step analyses (fully active volume) and nonlinear FE
analyses.

The procedure proposed herein is characterized by a high degree of automation
at each operational level. Such approach could be effectively utilized to assess the
stability of historic structures at a national scale and provide useful information
to engineers and managers to classify the structural health condition of historic
assets in their care.

Although the procedure proposed represents a novel solution for evaluating
the stability of extant masonry structures, it could be enriched with an adaptive
mesh enhancement in the framework of a multi-step strategy.





6
D A M A G I N G B L O C K - B A S E D M O D E L I N G

In this chapter, a damaging block-based model is proposed for the numerical analysis of the me-
chanical response of masonry structures. Two main versions of this model are proposed. In the first
case, the model is characterized by textured units, consisting of one brick and few mortar layers,
represented by 3D solid FEs obeying to plastic-damage constitutive laws in tension and compres-
sion. Textured units are assembled by means of zero-thickness rigid-cohesive-frictional interfaces,
based on the contact penalty method. Experimental-numerical comparisons are provided for the in-
plane and out-of-plane behavior of masonry panels. In the second case, solid 3D FEs governed by a
plastic-damage constitutive law in tension and compression are used to model the blocks (in this case
without mortar layers), while a cohesive-frictional contact-based formulation is developed to simu-
late their cyclic interaction. The use of tests on small-scale specimens to calibrate the mechanical
properties of the numerical model is presented and discussed. The tests belong to a comprehensive
experimental campaign performed on calcium silicate brick masonry. The calibrated models are used
to simulate in-plane and out-of-plane cyclic tests on masonry walls made of the same material,
as well as a quasi-static cyclic pushover test on a full-scale terraced masonry house. Finally, the
effects of differential settlements on historic masonry barrel vaults are investigated through the sec-
ond version of the model proposed. Firstly, the numerical model is used to simulate an experimental
campaign on a scaled pointed barrel vault (representative of a typology of late-medieval barrel vaults
in Scotland) under non-uniform differential settlement. Then, further analyses are carried out to
gain insight on the effects of several plausible uniform and non-uniform settlement patterns on
representative historic barrel vaults.

6.1 introduction

In the context of block-based models, the development of a novel model whose
mechanical setting could be exclusively based on small-scale specimen tests of
masonry components (i.e. mortar and brick) and small masonry assemblages,
without using spread mechanical properties, such as the masonry compressive
strength, was considered. Furthermore, the idea of developing a 3D solid model
able to account for, at the same time, the in-plane and out-of-plane response of
masonry elements (since, in practice, they can be coupled) was also contemplated.

To pursue this goal, a novel numerical approach to model masonry is conceived
(Section 6.2). In particular, a 3D detailed block-based model for the in-plane and
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out-of-plane numerical analysis of masonry structures is proposed in this chapter.
In this modeling approach, textured units consisting of one brick and few mortar
layers are explicitly modeled using 3D solid FEs obeying to plastic-damage con-
stitutive laws conceived in the framework of nonassociated plasticity. Particularly,
two plastic-damage models with distinct parameters are assumed for brick and
for mortar, both in tension and compression regimes. This permits to represent
the brick and mortar behavior when cracking and/or crushing occur.

Textured units are assembled, accounting for any actual 3D through-thickness
arrangement of masonry, by means of zero-thickness rigid-cohesive-frictional in-
terfaces based on the contact penalty method. In the pre-failure contact behavior,
all the significant linear elastic deformability of the system is addressed to the
3D brick and mortar FEs, being negligible the contact deformations. The inter-
faces are characterized by a Mohr-Coulomb failure surface with tension cut-off.
The post-failure contact behavior is defined by an exponential coupled cohesive
behavior in tension and a cohesive-frictional behavior in shear, accounting for the
brick-mortar bond failure both in tension and shear.

The coupling of contact-based rigid-cohesive interfaces with 3D nonlinear-da-
maging textured units (which explicitly account for the mortar layers) to model
masonry appears a novelty in the scientific literature. This novel modeling ap-
proach can, in fact, be fully characterized by the properties obtained on small-
scale specimen tests on brick and mortar (stiffness, compressive and tensile re-
sponses) and on small masonry assemblages (tensile and shear responses of the
mortar-brick bond).

To reach this goal, this chapter introduces an contact-based constitutive behav-
ior, obtained by an ad-hoc modification of the standard surface-based contact be-
havior implemented in Abaqus [308]. Contextually, an ad-hoc automatic subrou-
tine (UFIELD, see Abaqus [308]) is implemented to reproduce a Mohr-Coulomb
failure surface with tension cut-off.

The contact behavior appears consistent with experimental outcomes on small-
scale masonry specimens. Experimental-numerical comparisons are provided for
the in-plane and out-of-plane behavior of masonry panels. The direct character-
ization of all the model mechanical properties from small-scale tests on brick,
mortar and brick-mortar bond and their clear mechanical meaning constitute an
appealing quality of the model proposed.

Moreover, this model is further extended to analyze the cyclic response of full-
scale masonry structures (Section 6.3). Aiming to obtain a model with an afford-
able computational effort for full-scale structures and to facilitate the definition of
the contact cyclic mechanical response, this second version of the modeling strat-
egy consists of expanded blocks, so without an explicit 3D definition of the mortar
layers. Solid 3D finite elements governed by a plastic-damage constitutive law in
tension and compression are used to model the blocks and a cohesive-frictional
contact-based formulation is developed to simulate their interaction, accounting
for the sliding and the separation of the blocks also in the cyclic regime. The
capability of explicitly representing structural details (e.g. running bonds) and
any in-plane and through-thickness texture of masonry, which appears essential
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to study the response of masonry structures, is guaranteed by the block-based
modeling approach.

A strategy for the comprehensive mechanical characterization of the mechani-
cal properties of the numerical model from small-scale experiments is also dis-
cussed. In particular, an experimental campaign on calcium silicate masonry
small-scale specimens is used to calibrate the mechanical properties of the model.
These mechanical properties are used to simulate in-plane and out-of-plane cyclic
tests on masonry walls made of the same material, as well as a cyclic pushover
test on a full-scale terraced masonry house. The efficiency of the contact-based
formulation and the potentialities and the accuracy of the model herein proposed
are discussed.

Finally, the effects of differential settlements on historic masonry barrel vaults
are investigated (Section 6.4) through the second version of the block-based model
proposed. Firstly, the numerical model is used to simulate an experimental cam-
paign of a scaled pointed barrel vault (representative of a typology of late-me-
dieval barrel vaults in Scotland). The numerical results validate the experiments
in terms of crack pattern and transverse-longitudinal deformation profiles. This
makes possible further analyses to gain an insight on the effects of several plau-
sible uniform and non-uniform settlement patterns on a representative historic
barrel vault. Various settlement patterns are simulated investigating the complex
failure mode of the vault.

6.2 detailed block-based modeling of masonry

In the modeling approach herein proposed, the brick-mortar bond failures (Fig-
ures 5(a),5(b) are accounted for by brick-mortar contact cohesive behavior, whereas
the combined mechanisms involving also brick and mortar (Figures 5(c),5(d),5(d))
are accounted for by the nonlinear behavior of brick and mortar FEs. Therefore,
brick and mortar crushing and cracking, although characterized by a complex
evolution of micro-cracks, are represented by the inelastic behavior of brick and
mortar FEs [11].

Textured units composed of 3D solid FEs (Figure 84) with brick properties (red
elements in Figure 84) and mortar properties (grey elements in Figure 84) are
conceived and they are assembled by means of zero-thickness contact interfaces
(green surfaces in Figure 84). For single leaf masonry panels, the textured unit
concerns one brick as well as one head joint and one bed joint (Figure 84). Brick
and mortar FEs are characterized by distinct nonlinear plastic-damaging behavior,
both in tension and compression regimes.

Each mortar layer is continuously linked to a brick and separated by contact
from other bricks. This reduces considerably the number of contact definitions
(instead of considering all the two interfaces of a mortar layer), and therefore
the computational cost of the model, without compromising the model accuracy.
Indeed, the fact that a brick-mortar bond failure occurs in the upper or lower
bond of a mortar layer does not affect the mechanical response of masonry.
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Figure 84: Detailed micro-modeling approach. An example of textured unit mesh is given
in the picture.

Contact penalty method is enforced in the zero-thickness interfaces between
the textured units. Traditional point-against-surface contact method is considered
[340]. The penalty stiffness is assumed to keep insignificant the penetration of the
elements and to guarantee good convergence rates of simulations (compared, for
example, with Lagrange multipliers methods [340]). In this study, penalty stiff-
ness is assumed to be equal to 500 times the representative stiffness of underlying
elements. In the pre-failure of interfaces, all the significant deformability of the
system is addressed to the 3D FE part.

Dilatancy plays an important role in the mechanical behavior of masonry [324],
although it is still currently object of investigation and debate [106, 341], and its
characterization is complex as it is influenced by several mechanical factors (e.g.
materials micro-structure, geometrical imperfections, etc). Experimental charac-
terizations of dilatancy by van der Pluijm [324] show that the dilatancy ratio is
significantly influenced by the type of interface failure. Particularly, the magni-
tude of dilatancy turns out to be substantially higher when the crack crosses
mortar (and/or units), compared to the dilatancy measured when detachment of
the brick-mortar interfaces occurs (bond failure), which is considerably smaller.

In the modeling approach herein proposed, contact behavior is conceived with-
out a dilatant behavior, whereas dilatancy is considered in the 3D nonlinear FEs
in the framework of nonassociated plasticity [136]. This approach, although sim-
plified, appears to be consistent with the experimental outcomes, i.e. significant
dilatant behavior only occurs when mortar (and/or units) undergoes failure.

The main idea at the base of the setting of the parameters is that the contact
properties are based on brick-mortar bond tests (tensile failure and shear sliding),
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whereas the properties of the mortar and brick FEs are based on tests on the
single components. Although the experimental data available makes non-trivial
the separation of the two problems, this assumption, in the Authors opinion,
appears reasonable and leads to a rationally easy setting of the parameters.

6.2.1 Brick-mortar contact behavior

In the normal direction, the contact stress σ is computed by means of the linear
relationship:

σ = knpenaltyu , (13)

where knpenalty is the penalty stiffness in normal direction and u is the normal
displacement. Through the contact penalty method, this relation is assumed to
be valid also for tensile stresses until the contact tensile strength ft is reached,
see Figure 85(a). As can be noted in Figure 85(a), penetration can occur between
elements. However, although no procedures to remove penetration have been
implemented, by using quite high penalty stiffnesses (i.e. equal to 500 times the
stiffness of the underlying elements) the penetration between elements has been
found negligible. Furthermore, the penalty stiffness adopted has been found a
good compromise between convergence and accuracy (i.e. negligible penetration).

In the shear direction, the tangential slip δ is linearly related to the interface
shear stress with the relation:

τ = kspenaltyδ, (14)

where kspenalty is the penalty stiffness in shear. This relation is valid until the
shear stress equals the shear strength fs, see Figure 85(b). The contact shear
strength fs is assumed to be dependent on the contact stress:

fs(σ) = −tanφ σ+ c, (15)

where c is the cohesion and tanφ is the initial friction of the shear response.
Contact failure occurs, i.e. the process of degradation begins, when the contact

stresses at a point satisfy a failure criterion. Particularly, failure is supposed when
the maximum contact stress ratio intersects a Mohr-Coulomb failure surface with
tension cut-off. This simple criterion can be expressed as:

max
{ 〈σ〉
ft

,
τ

fs (σ)

}
= 1 , (16)

where the symbol 〈x〉 = (|x|+ x)/2 denotes the Macaulay bracket function. The
Macaulay brackets are used to signify that a purely compressive stress state does
not induce contact failure. A sketch of the failure surface adopted for the contact
behavior is shown in Figure 86. Once contact failure is reached, cohesive contact
behavior in tension and cohesive-frictional contact behavior in shear is activated.
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(a) (b)

Figure 85: Contact pre-failure behavior: a) normal behavior and b) shear behavior.

After reaching tensile strength ft, contact cohesive behavior is activated in
normal direction and the stress σ decreases with an increasing separation u, while
at u = uk stress ends to be transmitted, see Figure 87(a). The stress follows the
relationship:

σ =

{
(1−Q) ft, u < uk

0, u > uk
, (17)

where Q is an exponential scaling function defined as:

Q =
1− e

−ζ
uMAX
uk

1− e−ζ
, (18)

being ζ a non-dimensional brittleness parameter and uMAX the maximum sepa-
ration ever experienced by the contact point. The cohesive behavior is only acti-
vated for tension, whereas for pure compression stress states no failure is consid-
ered at the contact level (see Figure 86).

Concerning the shear behavior, when the shear stress τ reaches the shear stren-
gth fs(σ), a simplified cohesive-frictional behavior is activated, and the contact-
ing surfaces start sliding. After failure the shear stress is composed of a cohesive
term (1−H) fs (σ) and a frictional one Hµ 〈−σ〉 (Figure 87(b)), according to the
relationship:

τ =

{
(1−H) fs (σ) +Hµ 〈−σ〉 , δ < δk

µ 〈−σ〉 , δ > δk
, (19)
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Figure 86: Contact failure surface: Morh-Coulomb surface with tension cut-off (τ1 and τ2
are the shear stress components along two orthogonal directions in the plane of
the interface).

where δk is the ultimate slip of the cohesive behavior, µ is the frictional coefficient
and H is an exponential scaling function defined as:

H =
1− e

−ξ
δMAX
δk

1− e−ξ
, (20)

being ξ a non-dimensional brittleness parameter and δMAX the maximum slip
ever experienced by the contact point.

(a) (b)

Figure 87: Post-failure contact behavior: (a) tensile response and (b) shear response.

It has to be pointed out that the two variables Q and H are forced to assume
the same value at any step of the analysis (Q = H). This means that the damage
evolution of Mode I and Mode II are fully coupled. Therefore, the degradation
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of cohesion in tension degrades the cohesion in shear and vice versa. Although
this adoption can be considered approximated, it is, however, more realistic than
considering independent the two phenomena. In particular, the two variables Q
and H can increase from 0 to 1 only. Indeed, the degradation of the cohesion
is an irreversible process. Once the maximum degradation has been reached,
the cohesive contribution to the tensile and shear stresses is zero, and the only
contribution to the shear stresses is from the frictional term.

The interface behavior is based on large displacements. In particular, the finite-
sliding tracking approach implemented in Abaqus [308], which allows for arbi-
trary separation, sliding, and rotation of the surfaces, is adopted.

6.2.1.1 Comparison between experimental and numerical results for small-scale ma-
sonry specimens

Experimental tests conducted by van der Pluijm in [324, 342] on small-scale ma-
sonry specimens, composed of two bricks jointed together by a mortar joint, were
used as reference to compare with numerical outcomes and to tune the brittle-
ness parameters ζ and ξ. As in [324, 342] the tensile and shear failures were
only observed in the brick-mortar interfaces, linear elastic behavior for brick and
mortar has been assumed. The mechanical properties adopted in the numerical
simulations are collected in Table 17. Figure 88 shows the comparison between
experimental and numerical results for small scale masonry specimens subjected
to tension (Figure 88(a)) and shear (Figure 88(b)).

Table 17: Mechanical properties for small-scale masonry specimens.

Mortar properties Contact properties

E [MPa] 2970 Tensile behavior Shear behavior

ν [\] 0.15 ft [MPa] 0.28 tanφ [\] 1.01

uk [mm] 0.20 c [MPa] 0.87

Brick properties ζ [\] 4.38 δk [mm] 0.4

E [MPa] 16700 ξ [\] 1.1

ν [\] 0.15 µ [\] 0.73

The tensile properties of the interface are assumed to be consistent with the
fracture energy of the brick-mortar interface in tension (Mode I), which in [342]
is equal to GintI = 12.0N/m. Indeed, once the tensile strength ft and the displace-
ment uk are fixed, which can be defined directly from the experimental envelope
(Figure 88(a)), the brittleness parameter ζ is chosen so that the area under the
curve in Figure 87(a) equals GintI .

Analogously, the shear properties of the interface are assumed to be consistent
with the Mode II-fracture energy of the brick-mortar interface, which, in [324],
follows the relation GintII = 130σ+ 58N/m (with σ in MPa). In this case, tanφ ,



6.2 detailed block-based modeling of masonry 141

(a) (b)

Figure 88: Comparison between experimental and numerical results for small-scale ma-
sonry specimens: (a) tensile behavior (experimental envelope (grey area) and
numerical response (red line)) and (b) shear behavior (experimental envelopes
(grey areas) and numerical responses (blue, green and orange lines) for three
different levels of initial compression: 0.1, 0.5 and 1.0 MPa).

c, δk, and µ are defined directly from the experimental outcomes [324], whereas
the brittleness parameter ξ is chosen to be the best approximation of GintII for the
three experimental curves in Figure 87(b).

Finally, as can be observed in Figure 88, the tensile (Figure 88(a)) and shear
(Figure 88(b)) contact behaviors here proposed appear in good agreement with
the experimental results obtained in [324, 342]. It has to be pointed out that the
shear stiffness which can be read in Figure 88(b) is given by the deformability of
the 3D FEs (in this case mainly to the mortar FEs) and not by the deformability
of the interfaces, which can be considered rigid-cohesive.

6.2.2 Brick and mortar nonlinear behavior

Tensile and compressive plastic-damage nonlinear behavior is assumed for brick
and mortar, based on the plastic-damage model developed by Lee and Fenves
[136] for quasi-brittle materials. For the reader’s convenience, a summary of the
model equations, accounting for the role of the parameters involved, is given in
the Appendix A. The general parameters for quasi-brittle materials [343] adopted
in the model are shown in Table 18, in agreement with those chosen in Chapter 4.

Table 18: General parameters for quasi-brittle materials.

ε [\] ψ [\] fb0/fc0 [\] ρ [\] VP [\]

0.1 10
◦

1.16 2/3 0.002
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6.2.3 Numerical results

Experimental-numerical comparisons for the in-plane and out-of-plane behaviors
of masonry panels are here provided to show the effectiveness and the accuracy
of the model proposed. The detailed micro-model herein proposed has been im-
plemented in Abaqus Standard [308]. Geometric nonlinearity is considered in all
the analyses to account for large-displacement effects.

Experimental tests conducted by Vermeltfoort and Raijmakers [344] and by
Chee Liang [345] are considered for the in-plane and out-of-plane response of
masonry panels, respectively. Mechanical properties utilized for the in-plane and
out-of-plane benchmarks are collected in Table 19. When more than one value is
given in the same cell of the table, the first value refers to the in-plane benchmark,
whereas the second one refers to the out-of-plane benchmark. In general, the
tensile response of masonry joints is defined in terms of the tensile strength and
fracture energy in tension (Mode I), whereas the shear response of masonry joints
is defined in terms of friction, cohesion, residual friction and Mode II-fracture
energy. It appears clear that uk and ζ will be derived from the value of fracture
energy in tension (Mode I), whereas δk and ξ will be derived from the value
of Mode II-fracture energy. To this aim, the brittleness parameters ζ and ξ have
been kept equal to the ones of Section 6.2.1.1, and the values uk and δk have
been chosen so that the fracture energy values were satisfied. Reference to [346]
has been made to define the uniaxial inelastic stress-strain relationships. The
evolution of the degradation damage scalar variables dt and dc has been kept
substantially proportional to the decay of the uniaxial stresses, as successfully
experienced is several numerical campaigns [325, 141].

Concerning the in-plane benchmark, the mechanical properties for brick, mor-
tar and brick–mortar interfaces employed in the analyses (Table 3) were reported
in previous research [104, 53, 67]. In addition, the tensile strength of mortar has
been assumed with reference to the results on mortar prisms obtained in the
experimental campaign carried out in the TU Delft laboratories in 1991 [342].

Concerning the out-of-plane benchmark, the material parameters used for the
interfaces elements (Table 19) are equivalent to the values used in [67] for the
same wall. The elastic stiffness of brick and mortar were not investigated by
Chee Liang [345]. Therefore, the Young’s modulus of mortar has been assumed
according to [346], whereas the Young’s modulus of brick has been kept the same
as that shown in [342], being the materials of the same type. The other properties
are the same to the in-plane benchmark.
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Table 19: Mechanical properties utilized for the in-plane and out-of-plane benchmarks.
When more than one value is given in the same cell, the first value refers to the in-
plane benchmark, whereas the second one refers to the out-of-plane benchmark.

Contact mechanical properties

Tensile behavior Shear behavior

ft [MPa] 0.20, 0.12 tanφ [\] 0.75, 0.58

uk [mm] 0.36 c [MPa] 0.22

ζ [\] 4.38 δk [mm] 0.4

ξ [\] 1.1

µ [\] 0.75, 0.58

Mortar mechanical properties

E [MPa] 850, 2300

ν [\] 0.15

Tensile uniaxial behavior Compressive uniaxial behavior

Stress [MPa] Inel. strain dt [\] Stress [MPa] Inel. strain dc [\]

1.5 0 0 7.8 0 0

0.1 0.002 0.95 8.2 0.002 0

0.4 0.015 0.95

Brick mechanical properties

E [MPa] 16700

ν 0.15

Tensile uniaxial behavior Compressive uniaxial behavior

Stress [MPa] Inel. strain dt [\] Stress [MPa] Inel. strain dc [\]

3.5 0 0 11.0 0 0

0.3 0.002 0.95 11.5 0.001 0

0.6 0.007 0.95
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6.2.3.1 In-plane response

Results obtained by Vermeltfoort and Raijmakers [344] in shear tests on single-leaf
panels are here considered. The identical wall specimens, named J4D, J5D and
J7D in [344], with a length (990 mm) to height (1000 mm) ratio of approximately
1 were considered (Figure 89). They are characterized by 18 brick layers of which
2 were fixed to steel beams so as to keep the top and bottom edges of the element
straight during the test (green zones in Figure 89(a)). Each brick is 204 × 98 ×50

mm, whereas the bed and head mortar joints are 12.5 mm thick. Particularly,
the masonry panels were initially preloaded with a vertical top pressure, Pv=0.3
MPa for J4D and J5D and Pv=2.12 MPa for J7D. Then a horizontal load was then
applied in the plane of the walls at the top edge under displacement control up
to collapse, see Figure 89(a).

During the tests, first, horizontal cracks appeared at the top and bottom of the
walls. Then, cracks started to develop diagonally along the bed and head mortar
joints and through the bricks, up to failure. The experimental response was char-
acterized by a softening branch that started when diagonal cracks appeared in
the center of the specimens.

The wall is modeled here using the detailed micro-modeling approach pre-
sented in the previous sections. The analyses followed the two-step boundary
conditions depicted in Figure 89(a). The assembly of textured units employed in
the numerical model is highlighted in Figure 89(b).

(a) (b)

Figure 89: In-plane response of masonry wall panels [347]: (a) boundary conditions and
(b) assembly of textured units employed in the numerical model.

Figure 90 provides experimental-numerical comparisons: the experimental load-
displacement curves for J4D, J5D and J7D walls are compared with the numerical
results carried out using a textured unit mesh composed of 20 hexahedral 8-nodes
FEs. In this figure, the numerical predictions reported by Lourenço & Rots [53]
and by Macorini & Izzuddin [67] are also shown. A good agreement between
experimental and numerical results can be observed up to collapse, including ini-
tial stiffness, maximum capacity and the post-peak response of the panels. Also,
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the predictions of the proposed modeling approach are generally close to those
reported in [53, 67] for all the considered walls, with the current predictions of
the post-peak response for wall J7D better than the one obtained in [53].

Figure 90: Experimental – numerical comparisons of the load – displacement curves for
the masonry wall panels loaded in plane.

The discretization of the textured units is explicitly chosen by the user. The role
of the mesh size is shown in Figure 91(a), in which the influence of mesh refine-
ment on the load-displacement curves is collected. The results obtained using a
textured unit mesh consisting of 20 hexahedral 8-nodes FEs (coarse mesh) and a
textured unit mesh consisting of 108 hexahedral 8-nodes FEs (fine mesh) are com-
pared. As can be noted, very small discrepancies emerged. Thereby, mesh depen-
dency appears negligible, also thanks to the regularization of the fracture energy
in the continuum plastic-damage model. This aspect is particularly appealing as
the analyses with the coarse mesh presented a computational cost considerably
smaller than the fine mesh.

Figure 91(b) shows the influence of the nonlinear behavior of textured units
on the load-displacement curves. As can be noted, the fact of accounting for
the cracking and crushing of textured units significantly affects the post-peak
behavior (Figure 91(b)), whereas the hypothesis of linear elastic textured units
slightly overestimates the peak load. Basically, it is expected that the differences
in considering or not the nonlinear behavior of textured units would increase by
increasing the vertical pressure as well as the interlocking of the masonry texture
(e.g. for multi-leaf walls).
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(a) (b)

Figure 91: Load — displacement curves for Pv = 2.12 MPa: (a) investigation of the mesh
dependency and (b) influence of the nonlinear behavior of the textured units.

Finally, Figure 92 shows the deformed shape and crack pattern in the masonry
wall panel obtained from the numerical model, in terms of tensile damage con-
tour plot (Figure 92(a)), compressive damage contour plot (Figure 92(b)), and
interfaces which exhibited failure (Figure 92(c)). Also, numerical results are com-
pared with the experimental crack pattern experienced in [344] (Figure 92(d)). As
can be noted in Figure 92, these predictions are in good agreement with the ac-
tual crack pattern. Particularly, the interfaces which exhibited failure are placed
along the panel diagonal. Furthermore, few textured units experienced tensile
failure in the central part of this diagonal (Figure 92(a)), representing brick and
mortar cracking. In addition, few textured units also showed crushing in the two
extremities of the diagonal (Figure 92(a)). These features have also been experi-
enced by the experimental tests [344], see for example Figure 92(d), confirming
the good accuracy of the model proposed. Finally, these predictions are also in
good agreement with the main crack paths and with the numerical results re-
ported in [53, 67].
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(a) (b)

(c) (d)

Figure 92: Comparison of the panel’s crack pattern: (a) tensile damage contour plot, (b)
compressive damage contour plot, (c) interfaces which exhibited failure and (d)
experimental crack pattern for the specimen with Pv=2.12 MPa (J7D in [347]).
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6.2.3.2 Out-of-plane response

Numerical analyses are also carried out to assess the effectiveness of the detailed
block-based approach developed to investigate the out-of-plane behavior of ma-
sonry panels. Comparisons are carried out against the experiments performed by
Chee Liang [345].

The out-of-plane behavior of a solid wall, simply supported along its four
edges and subjected to bi-axial bending, is considered, and reference is made to
experiments on two identical specimens: wall 8 and wall 12 in [345]. The single-
leaf masonry wall panels were 1190mm high, 795mm wide and 53mm thick. The
dimensions of the brick were 112 × 53 × 36 mm and the thickness of the mortar
joints were 10 mm. The two specimens were loaded up to collapse by applying a
uniform out-of-plane pressure through an air-bag sandwiched between the wall
and a stiff reacting frame. Another stiff steel frame was connected to the wall
on the other side, so as to prevent out-of-plane displacements and provide fixed
supports along the four edges. The crack pattern experienced by the two wall
specimens [345] is shown in Figure 93.

(a) (b)

Figure 93: Experimental crack pattern: (a) photos of the failure of Wall 8 and Wall 12 from
[348] and (b) sketch of the crack pattern of Wall 12.

To compute the solution up to the collapse of the panel (also in case of soft-
ening), a quasi-static direct-integration dynamic analysis procedure has been
adopted [308]. This algorithm permits to study quasi-static responses in which
inertia effects are introduced primarily to regularize unstable behaviors. The Au-
thors experienced a better performance of this algorithm, specifically in the soft-
ening regime, with respect to more common arc length procedures.

Figure 94 provides the numerical-experimental comparisons in terms of lateral
pressure-transversal displacement curves, where the textured unit mesh com-
posed of 20 hexahedral 8-nodes FEs, shown in Figure 91(a), has been imple-
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mented. Although the through-thickness discretization may play a certain role,
especially in the out-of-plane analysis of multi-leaf walls [349], the utilization of
two 8-nodes hexahedral FEs through-thickness appears sufficiently accurate for
the case under study.

Figure 94: Comparison of the lateral pressure – out-of-plane displacement curves.

The experimental results reported in [345] consist of a partial load-displacement
curve for wall 8 and the maximum capacity for the walls 8 and 12. Good agree-
ment between the numerical and experimental results can be observed. The maxi-
mum lateral pressure obtained with the proposed model appears very close to the
experimental capacity [345], to the collapse pressure determined in [116] through
a 3D limit analysis approach and to the numerical curve obtained in [67]. Partic-
ularly, the curve obtained with the proposed approach very well fits the partial
load-displacement curve for wall 8. Additionally, Figure 95 provides the com-
parison between the experimental and numerical out-of-plane deflections at the
instant, shown in Figure 94 by means of a green point and a magenta point, with
lateral pressure equal to 20 kN/m2, i.e. at an instant slightly prior to failure. Here
again, a good numerical-experimental agreement is achieved in terms of out-of-
plane deflections.

Finally, Figure 96 shows the crack pattern obtained by means of the proposed
model, in terms of deformed shape at collapse (Figure 96(a)), out-of-plane dis-
placement contour plot (Figure 96(b)), tensile damage contour plot (Figure 96(c))
and compressive damage contour plot (Figure 96(d)). By comparing the numer-
ical crack pattern of Figure 96 with the experimental one (Figure 93), it can be
noted that the actual failure mechanism, although slightly different in the two
walls, is qualitatively represented by the numerical model proposed. Particularly,
the large vertical crack that runs in the middle of the panel crossing head mortar
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Figure 95: Comparison between experimental and numerical out-of-plane deflections
when the lateral pressure is equal to 20 kN/m2, see the green and magenta
points in Figure 108.

joints and bricks as well as the diagonal cracks observed in the tests are well rep-
resented. Indeed, as can be noted in Figure 96(c), tensile damage is experienced
in the central part of the textured units which are placed in the central vertical
part of the wall, in agreement with the actual vertical cracks experienced by both
walls (Figure 93) which alternatively crosses the bricks.

6.2.4 Discussion of the results

Summing up, although this model accounts for a very detailed description of
masonry constituents and is characterized by a larger complexity with respect
to existing numerical models, its computational demand appears reasonably ac-
ceptable. Indeed, as shown in Table 20, the computational time needed in the
simulations are, after all, moderate. Even, the 3D detailed micro-model proposed
appears faster than other more standard 2D micro-modeling approaches, see in
[172] the time needed for the same in-plane benchmark, based on well-known in-
terface elements [53]. Therefore, the contact-based formulation proposed appears
preliminarily efficient.

Table 20: Times required to conduct the analyses. (b) utilizing a commercial laptop
equipped with a processor IntelrCoreTM i7-6500U CPU @ 2.50GHz and 16GB
RAM.

Simulation Time required(b) (hh:mm:ss)

In-plane coarse mesh (Pv=0.30MPa) 00:06:33

In-plane coarse mesh (Pv=2.12MPa) 00:07:18

In-plane fine mesh (Pv=2.12MPa) 00:23:20

Out-of-plane 00:09:11
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(a) (b)

(c) (d)

Figure 96: Crack pattern obtained from the proposed model: (a) deformed shape, (b) out-
of-plane displacements contour plot and (c) tensile and (d) compressive damage
contour plots at the end of the simulation.
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6.3 cyclic response of full-scale masonry structures

In this section, following an approach akin to the one proposed in Section 6.2
and aiming to extend it to the cyclic behavior, a damaging block-based model is
developed for the numerical analysis of the cyclic behavior of full-scale masonry
structures.

The interaction between adjacent blocks (which do not include any mortar
layer in this version of the model) is formulated in a contact-based framework
accounting for cohesion and friction, whereas the blocks follow a continuum
plastic-damage constitutive law [136] both in tension and compression (Figure
97). As the mortar layers are not explicitly modeled, the use of expanded blocks
is adopted (Figure 97), as commonly employed in block-based models [53, 67].

Figure 97: Node-against-surface contact approach adopted in the damaging block-based
modeling.

The adopted contact formulation conceives contact pairs composed of one
slave face and one master face (Figure 97), following the traditional node-against-
surface approach [350]. In particular, the nodes of the slave face contact the sur-
face of the master face (Figure 97). Therefore, contact is enforced at discrete points,
which are the nodes of the slave face. After the assembly of the blocks, the contact
pairs between adjacent blocks are defined by means of fully automatic contact de-
tection algorithms [308]. A finite-sliding formulation, which allows for arbitrary
separation, sliding, and rotation of the surfaces, is adopted [308]. The cohesive
contact behavior is governed by an ad-hoc modification of the standard surface-
based contact behavior available in Abaqus [308]. In this context, an ad-hoc auto-
matic subroutine is implemented to reproduce a Mohr-Coulomb failure surface
with tension cut-off.

The sliding between blocks is conceived without a dilatant behavior, whereas
dilatancy is considered in the 3D nonlinear FEs used for the blocks, in the frame-
work of nonassociated plasticity [308].

The formulation of the proposed model allows for a direct setting of the me-
chanical parameters from small-scale experimental tests on masonry specimens.
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The main idea at the base of this setting is that the properties of the cohesive-
frictional behavior between blocks are based on brick-mortar bond tests (tensile
failure and shear sliding), whereas the properties of the block 3D FEs are based
on tests on masonry wallets and on tests on single bricks.

In the following, the description of the contact mechanical behavior, the block
nonlinear behavior, as well as the strategy suggested for the mechanical charac-
terization of the model mechanical properties from small-scale tests on masonry
are illustrated.

6.3.1 Cyclic contact behavior

In the normal direction, the contact stress σ is computed by means of a pressure-
overclosure relationship in compression and a linear elastic relationship in ten-
sion:

σ =

{
Pressure − overclosure relationship, u < 0

Knnu, u > 0
(21)

where Knn is the cohesive stiffness in normal direction and u is the normal dis-
placement (separation). The pressure-overclosure relationship represents the ap-
proach used to enforce the contact constraints. Several numerical strategies have
been proposed to deal with the contact constraints [340]. The most common ap-
proaches are Lagrange multiplier methods and penalty methods. Lagrange mul-
tiplier methods introduce additional multipliers to enforce directly and exactly
the contact constraint, whereas penalty methods avoid the need for additional
variables by introducing an approximation of the constraint condition. In this
study, the Lagrange multiplier approach implemented in Abaqus (hard contact)
is adopted [308]. Relationship (21) is assumed to be valid for tensile stresses until
the tensile strength ft of the contact behavior is reached, whereas it is always
valid in the compressive regime.

In the shear direction, the tangential slip δ is linearly related to the contact
shear stress τ with the relation:

τ = Kssδ, (22)

where Kss is the cohesive stiffness in shear. This relation is valid until the contact
shear stress equals the shear strength fs, see Equation (15).

Therefore, contact failure is supposed when the contact stresses at a point
intersects a Mohr-Coulomb failure surface with tension cut-off, see Equation (16).
A sketch of the failure surface adopted for the contact behavior is shown in Figure
86. Once contact failure is reached, cohesive behavior in tension and cohesive-
frictional behavior in shear is activated.

The maximum value of the stress in the post-peak regime, in a contact point, is
described in tension by the relationship:

σ =

{
(1−D) ft, u0 < u < uk

0, u > uk
, (23)
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and in shear by the relationship:

τ =

{
(1−D) fs (σ) +Dµ 〈−σ〉 , δ0 < δ < δk

µ 〈−σ〉 , δ > δk
, (24)

where the degradation scalar variable D is defined as:

D= max


1− u0

uMAX

(
1− 1−e

−ζ
uMAX−u0
uk−u0

1−e−ζ

)

1− δ0
δMAX

(
1− 1−e

−ξ
δMAX−δ0
δk−δ0

1−e−ξ

) , (25)

being µ the residual friction, u0 and δ0 the separation and the slip at the limit
of the linear elastic behavior in tension and shear, respectively, uMAX and δMAX
the maximum separation and the maximum slip ever experienced by the contact
point, respectively, uk and δk the ultimate separation and the ultimate slip of the
cohesive behavior, respectively, ζ and ξ non-dimensional brittleness parameters
in tension and shear, respectively.

Figure 98: Contact normal cyclic behavior.
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Figure 99: Contact shear cyclic behavior. Two unloading-reloading paths are indicated:
ABCDEF in the shear softening stage, GHIL in the final shear friction stage.
D’ and D" are the values assumed by the degradation scalar damage variable D
when reaching the point A and the point D, respectively
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From equations (23), (24) and (25) it appears clear that the cohesive behavior in
tension and shear is governed by the same degradation scalar variable D. Indeed,
the damage evolution in tension and shear are fully coupled, i.e. the degradation
of cohesion in tension degrades the cohesion in shear and vice versa.

Figures 98 and 99 show the contact normal and shear cyclic behavior, respec-
tively. The monotonic behavior is depicted by means of black thick lines. Dealing
with the tensile contact behavior (Figure 98), if a degraded contact point with
0 < D < 1 undergoes unloading, the unloading path will be characterized by a
linear branch with a degraded stiffness (1−D)Knn until the stress state reach
compression. In the compression regime, the behavior is fully governed by the
pressure-overclosure relationship adopted, which is completely independent by
the state of degradation of the cohesion.

As can be noted in Figure 99, the contact shear cyclic behavior appears more
complex than the normal one, as it is also governed by friction. If a degraded
contact point (0 < D < 1), e.g. point A in Figure 99, undergoes unloading, the
unloading path will be characterized by a bi-linear branch. The first segment will
be defined by the initial stiffness Kss and by a stress drop equal to two times the
maximum frictional contribution, i.e. 2µ 〈−σ〉 . Therefore, the length of the first
segment, e.g. AB in Figure 99, will be equal to AB=2µ 〈−σ〉

√
1+ 1

K2ss
. The second

segment, conversely, will be characterized by a degraded stiffness (1−D)Kss
until the reaching of point C (Figure 99), which represents the specular point
of A in Figure 99. From this point forward, the cohesive exponential behavior
is re-established, and the contact point further degrades (for example, moving
from point C to point D in Figure 99). If a fully degraded contact point (D =

1), e.g. point G in Figure 99, undergoes unloading, the unloading path will be
characterized by a bi-linear branch, in which the first segment will be defined by
the initial stiffness Kss and by a stress drop equal 2µ 〈−σ〉 , whereas the second
segment will be characterized by an horizontal line, purely governed by friction.

The contact shear cyclic behavior proposed has been found to be consistent
with the experimental results obtained by Atkinson et al. [351] on small-scale
masonry samples, as well as with the numerical results found by Gambarotta &
Lagomarsino [58], as shown in Figure 100.

6.3.2 Block nonlinear behavior

The isotropic plastic-damage nonlinear behavior based on the constitutive model
developed by Lee and Fenves [136] for quasi-brittle materials is assumed for
blocks. The general parameters adopted in the model for the block are shown
in Table 18. For the reader’s convenience, a summary of the model equations,
accounting for the role of the parameters involved, is given in the Appendix A.
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Figure 100: Cyclic shear behavior of masonry joints: Comparison between experimental
tests (old bricks specimen in [351]) and numerical response.

6.3.3 Mechanical characterization of the model from small-scale experimental test

The proposed numerical model allows for a direct and easy setting of the mechan-
ical parameters. The strategy that can be used for the mechanical characterization
of the model based on monotonic small-scale experimental tests on masonry wal-
lets and components is summarized in Figure 101. The main idea at the base of
this setting is that the properties of the contact cohesive-frictional behavior be-
tween blocks are based on brick-mortar bond tests, whereas the properties of the
block 3D FEs are based on tests on masonry wallets and blocks.

The contact shear behavior can be completely defined by shear tests on masonry
triplets (Figure 101). The output of experimental tests on triplets (at least with 3

different levels of pre-compression) in terms of cohesion (c), initial friction (tanφ)
and residual friction (µ) can be directly used as mechanical properties in the
numerical model. Moreover, the ultimate slip of the cohesive behavior (δk) and
the brittleness parameter ξ can be calibrated in order to better fit the post peak
behavior of the tests, as well as to better approximate the Mode II fracture energy.
Finally, the shear cohesive stiffness (Kss) can be determined by fitting the initial
linear branch of the shear-slip curve. Indeed, in the simulation of these tests, the
deformability of the blocks plays a marginal role.

The contact normal characterization needs even less parameters (Figure 101).
As a matter of fact, the compressive contact behavior does not need any parameter
to be characterized. The tensile cohesive behavior can be characterized by bond
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Figure 101: Strategy for the mechanical characterization of the model from small-scale
experimental tests on masonry components and assemblages.

wrench tests, in terms of tensile strength (ft), and out-of-plane bending tests
which can be used to characterize the Mode I fracture energy and, also, can be
used to verify the tensile strength measured by wrench tests. From the Mode
I fracture energy, the ultimate separation of the cohesive behavior (uk) and the
brittleness parameter ζ can be calibrated. The cohesive stiffness in the tensile
direction Knn represents a further component of deformability in the normal
direction, which acts only in the tensile regime. Although the Young’s modulus
of masonry in compression could be, in theory, different from the one in tension,
no deep experimental investigation has been conducted on this topic. Therefore,
the use of a stiff value of Knn, considerably stiffer than Kss (e.g. Knn = 10Kss),
is suggested.

Dealing with the block mechanical properties, the continuum isotropic elas-
tic properties as well as the compressive and tensile uniaxial nonlinear curves
need to be characterized (Figure 101). As in the compressive regime the contact
formulation does not account for any failure as well as any deformability, the
compression tests on masonry wallets can be used to characterize the block elas-
tic properties, in terms of Young’s modulus E and Poisson’s coefficient ν, as well
as the compressive nonlinear behavior of the blocks. Therefore, the elastic and
compressive responses of blocks is related to masonry properties. Conversely, the
tensile nonlinear behavior of the blocks is deduced from tests on blocks (e.g. 3-
points bending tests, see Figure 101), and, therefore, is related to a block property.
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As one can note, the proposed numerical model shows, beyond the deforma-
bility of the continuum isotropic blocks, an additional deformability in the shear
behavior due to the cohesive stiffness Kss (considering negligible the deforma-
bility due to Knn). Therefore, dealing with a masonry panel, the overall shear
modulus G evaluated with the proposed model will be lower than the one pre-
dicted with an isotropic continuum model with the same parameters E and ν.
Of course, masonry is not an isotropic material and the relationship between
the three elastic constants is, in general, not valid. Indeed, by using the measured
values of E and ν in a continuum model, the value of G will be, in general, overes-
timated. In addition, the values of E and G generally adopted in equivalent frame
models [352] (see Section 2.8) for the simulation of masonry structures often lead
to values of ν which have no mechanical meaning (even ν > 0.5). Therefore, the
use of an additional deformability in the shear behavior (governed by Kss) allows
the proposed model to overcome this limitation of continuum isotropic models.
In particular, the authors experienced that the overall shear stiffness of masonry
walls is generally gathered with a good accuracy by the proposed model utilizing
the cohesive stiffness Kss calibrated in triplet tests.

Finally, it has to be pointed out that the characterization of the mechanical
parameters of the model can be fully described by monotonic tests on small-scale
masonry specimens (and components), even if the model is suitable for cyclic
simulations. This aspect constitutes a further appealing feature of the proposed
model.

6.3.4 Experimental campaign

Extensive testing programs to characterize the behavior of masonry structures
from a material to a structural level have been carried out at the laboratory of
Delft University of Technology since 2014 [15]. At material level (small-scale tests),
destructive laboratory tests were performed on both existing and replicated ma-
sonry specimens [353]. At structural level, several in-plane and out-of-plane tests
on single piers have been performed [348]. Furthermore, the campaign compre-
hended also two quasi-static cyclic pushover tests on full-scale two-story high
assembled structures [347]. All the tests considered have been conducted by us-
ing the same calcium silicate brick masonry.

6.3.4.1 Small-scale tests

Many small-scale tests on masonry samples (wallets, triplets, couplets) and on
masonry components (brick and mortar) have been performed at the Stevin II
laboratory at the Delft University of Technology [353, 354]. All the tests consid-
ered were performed on replicated calcium silicate brick masonry [354], made
of 210 × 71 × 102 mm bricks. Standardized monotonic destructive material tests
for the characterization of masonry have been conducted and the experimental
set-ups and results were collected in [354]. Particularly, compression tests on ma-
sonry wallets, brick and mortar specimens, bending tests on masonry wallets,
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brick and mortar specimens, bond wrench tests on masonry couplets, and shear
tests on masonry triplets have been performed.

6.3.4.2 In-plane cyclic tests on masonry walls

Seven 2.75 m high masonry walls made of calcium silicate brick masonry have
been built and tested under in-plane cyclic loading. Two height/width aspect
ratios (0.7 and 2.5) and two different configurations (i.e. cantilever and double
clamped walls) were considered. In addition, different vertical pressure values
have been initially applied to the walls. The used set-up provided a uniform
vertical pressure and a horizontal imposed displacement on the top of the walls.
A sketch of the set-up employed for the in-plane tests is shown in Figure 102(a).
A quasi-static cyclic pushover test was performed on each wall in displacement
control. Further details are collected in [348].

6.3.4.3 Out-of-plane cyclic tests on masonry walls

Four walls were also tested in the out-of-plane direction by applying a quasi-
static cyclic loading using a system of airbags. Two different configurations (i.e.
one-way and two-way spanning configurations) were considered. The tests were
performed by employing a system of coupled airbags on both sides of the wall
to apply a uniform pressure. The difference between the loads measured on both
sides is the total out-of-plane load acting on the wall. A sketch of the set-up used
in the tests (e.g. for the two-way spanning walls) is shown in Figure 102(b). The
interested reader is referred to [348] for further details.

(a) (b)

Figure 102: Sketch of the set-up used for the (a) in-plane and (b) out-of-plane tests on
walls.

6.3.4.4 Cyclic pushover test on a masonry full-scale terraced house

The extensive experimental campaign conducted in Delft also included a terraced
house typology, which was representative of the masonry constructions built in
the Netherlands during the period 1960-1980. Two terraced houses (one made
of calcium silicate bricks and the other of calcium silicate elements) were built
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and tested through a quasi-static cyclic pushover loading [15]. In this study, ref-
erence to the calcium silicate brick masonry terraced house is made [347]. The
construction is characterized by the presence of large daylight opening in the
facades. Consequently, the load-bearing structure is composed of very slender
piers and long transversal walls (Figure 103). The masonry bricks were laid using
a stretcher bond and allowing for the interlocking of the bricks at the corners of
the transversal walls and the piers (Figure 103). Each floor consisted of two sepa-
rated prefabricated concrete slabs spanning between the load-bearing transversal
walls. A braced steel tower was built to apply the cyclic horizontal loading to the
house. A quasi-static cyclic pushover test was performed on the terraced house.
The test was performed in displacement control with the additional condition of
maintaining equal the forces applied at the two floor levels through four actua-
tors (two per each floor). For the reader convenience, reference to [347] is made
for further details.

(a) (b)

Figure 103: Calcium silicate brick masonry terraced house: (a) sketch of the geometry and
(b) photo.

6.3.5 Mechanical properties calibration

The mechanical characterization of the proposed damaging block-based model
has been performed following the scheme depicted in Figure 101, thanks to the
small-scale monotonic tests performed on calcium silicate brick masonry at the
TU Delft [354] (briefly described in Section 6.3.4).

An example of calibration of the contact mechanical properties for the shear be-
havior is shown in Figure 104. The experimentally-determined values of cohesion
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(c), initial friction (tanφ), and residual friction (µ) have been directly implemented
in the numerical model, whereas the ultimate slip of the cohesive behavior (δk)
and the brittleness parameter ξ have been calibrated to better fit the curves in
Figure 104(b). In particular, the value of Kss has been chosen to represent the
average of the initial experimental branches.

(a) (b)

Figure 104: Shear tests on triplets: (a) experimental (top) and numerical (bottom) samples
and (b) experimental-numerical shear stress – relative displacement of the cen-
tral brick curves for three different level of pre-compression.

Figure 105 shows the mechanical characterization of the compressive nonlin-
ear behavior of the blocks by means of compression tests on masonry wallets.
The numerical model is not able to directly simulate the formation of vertical
cracks through-thickness of the blocks (Figure 105(a)). However, the continuum
damage formulation of the blocks allows to phenomenologically represent the
peak and post-peak compressive behavior of masonry (Figure 105(b)) by show-
ing a widespread distribution of compressive damage into the numerical model
(Figure 105(c)).

The mechanical parameters calibrated from small-scale tests specimens and,
then, used in the numerical simulation of panel-scale and full-scale structures
are collected in Table 21. The tensile and compressive post-peak behavior of
the blocks is described by means of a linear softening branch (Table 21), which
characterize the brittleness of the material, leading to a value 0.41 N/mm of
tensile fracture energy, and to a value 11.22 N/mm of compressive fracture energy,
being the characteristic length related to the hexahedral finite elements (55 mm x
55 mm x 80 mm) used throughout this study, defined as specified in the Appendix,
equal to 55 mm. The tensile and compressive scalar damage variables, which in



6.3 cyclic response of full-scale masonry structures 163

(a) (b) (c)

Figure 105: Compression tests on masonry wallets: (a) experimental failure, (b)
experimental-numerical normal stress – vertical displacement curves, (c) and
compressive damage contour plot.

theory can assume any value from 0 to 1, have been limited to 0.9 to increase
the numerical convergence of the simulations (Table 21), as commonly carried
out when using plastic-damage constitutive laws [325, 141]. For this reason, as
well as the limitation of the softening regime to a residual value of stress (for the
same purpose), the post-peak branch in Figure 105(b) is characterized by a (small)
residual strength.

6.3.6 Numerical results and discussion

In this section, the results of the performed numerical simulations are critically
compared with the experimental outcomes. In particular, two tests of in-plane
cyclic loaded walls (with two height/width aspect ratios, i.e. 0.7 and 2.5), one
two-way bending cyclic out-of-plane test of a wall, and one cyclic pushover test
on a terraced masonry house have been simulated. For the sake of consistency, all
the simulations have been conducted by using the mechanical properties collected
in Table 21, and the discretization of the block shown in Figure 97.

A quasi-static direct-integration implicit dynamic analysis algorithm [308] has
been adopted in the simulations. Geometric nonlinearity has been considered in
the analyses to account for large-displacement effects.

6.3.6.1 In-plane cyclic behavior of walls

The cyclic in-plane tests COMP-2 (slender wall, height/width aspect 2.5) and
COMP-6 (thick wall, height/width aspect 0.7) [348] have been considered and
simulated. Both walls are characterized by a cantilever configuration. The walls
have been modeled through the damaging block-based model herein presented,
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Table 21: Mechanical parameters utilized in the numerical simulations.

Contact mechanical properties

Tensile behavior Shear behavior

ft [MPa] 0.12 tanφ [\] 0.52

uk [mm] 1.0 c [MPa] 0.11

ζ [\] 8 δk [mm] 1.0

Knn [N/m3] 75·10
9 ξ [\] 4

µ [\] 0.55

Kss [N/m3] 7.5·10
9

Block mechanical properties

Young’s modulus [MPa] 4800

Poisson’s ratio [\] 0.17

Tensile uniaxial behavior Compressive uniaxial behavior

Stress [MPa] Inel. strain dt [\] Stress [MPa] Inel. strain dc [\]

1.5 0 0 6.8 0 0

0.1 0.001 0.9 0.9 0.006 0.9

by considering a continuum quasi-rigid element on the top to prevent the warp-
ing of the wall, following the constraints of the experimental set-up.

The pseudo-time-history of the top displacement experimentally recorded has
been applied to a top node of the model (in the center of the quasi-rigid element),
and the pseudo-time-history of the resultant of the base shear has been measured.

Concerning the slender wall COMP-2 test, the comparison between experimen-
tal and numerical shear force against measured net displacement curves is shown
in Figure 106, where the numerical monotonic response of the wall is collected
as well. The experimental and numerical crack patterns are shown in Figure 107,
where the numerical one is taken at the instant represented by the green circle in
Figure 106. A good agreement between the results is observed, particularly for the
prediction of the maximum shear load. In this regard, the cyclic and monotonic
simulations presented practically the same maximum shear force. The experimen-
tal test showed a crack pattern characterized by the combination of rocking and
sliding (Figure 107(a)) that gives a non-negligible energy dissipation (Figure 106).
Although this aspect was not fully captured by the model, where almost-pure-
rocking was recorded in the first cycles (Figure 106), dissipation occurred in the
model for wider cycles due to masonry crushing (Figure 107(c)), see Figure 106.

Conversely, the thick wall COMP-6 (whose shear force against displacement
curves are depicted in Figure 108, experimental and numerical crack patters in
Figure 109, and compressive and tensile damage contour plots Figure 110) was
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Figure 106: Shear force vs measured net displacement of the slender wall COMP-2: com-
parison between experimental and numerical (cyclic and monotonic) results.

mainly characterized by shear failure (Figure 109(a)). The hysteretic behavior of
the wall has been excellently predicted by the model, in terms of maximum shear
force (Figure 108), energy dissipation (Figure 108) and crack pattern (Figures
109(a)-109(b). The deformed horizontal displacement contour plot of Figure 109(b)
has been taken at the instant represented by the green circle in Figure 108. It is
worth to note that, although taken at an almost-null top horizontal displacement
(Figure 108), significant residual horizontal displacements are recorded at the two
sides of the wall, which determine the formation of wide x-shaped shear cracks
(Figure 109(b)).

Likewise, residual horizontal displacements have also been recorded during
the experimental test. The numerical cyclic analysis diverged before the full-
simulation of the experimental loading path (the non-simulated path has been
reported in Figure 108 through a gray color), since two half-bricks at the base of
the wall slid off as shown in Figure 109(b). It should be noted, anyhow, that the
simulation of the considered test is extremely challenging given the co-existence
of different failure mechanisms, and damage both along mortar joints (opening
and sliding, Figure 109(b)) and in the bricks (crushing and splitting, Figure 110).
Also in this case, the in-plane cyclic and monotonic simulations presented a very
similar maximum shear force.

To evaluate the sensitivity of the model to the main mechanical properties,
several monotonic analyses have been performed on the COMP-6 configuration
and the results have been compared (Figure 111). In particular, the results of the
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(a) (b) (c)

Figure 107: Slender wall (COMP-2) crack pattern: (a) photos of the cracked wall, (b) exper-
imental crack pattern and (c) numerical compressive damage contour plot.

“Reference” analysis, conducted with the mechanical properties collected in Table
21, have been compared with the analyses “PAR_A” (characterised by doubled
values of ft and uk), “PAR_B” (doubled values of c and δk), “PAR_C” (doubled
values of tanφ and µ), “PAR_D” (doubled values of fc and Gf), and “PAR_E”
(doubled values of all the aforementioned parameters), in terms of shear force
against horizontal displacement curves and crack patterns (Figure 111).

The overall behavior of PAR_A and PAR_D appears akin to the Reference one,
whereas PAR_B and PAR_C show a considerable greater maximum shear capac-
ity. In particular, all the analyses showed a shear failure in the wall, exception
made for PAR_B which initially showed a bending failure and, subsequently, a
sudden shear failure just before a horizontal top displacement of 10 mm. This phe-
nomenon is highlighted in the shear-displacement curve of Figure 111 by a signif-
icant drop of the PAR_B curve. Conversely, the response of PAR_E is completely
different, characterized by a bending failure and with a considerably greater shear
capacity. Therefore, a significant influence on the shear response of the wall of the
contact shear cohesion c and δk, as well as contact frictional contributions tanφ
and µ is observed, as expected. A completely different parameters setting, e.g.
PAR_E, gives also a completely different response of the wall, confirming the
relevance of the use of correct material parameters.
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Figure 108: Shear force vs measured net displacement of the thick wall COMP-6: compari-
son between experimental and numerical (cyclic and monotonic) results.
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(a)

(b)

Figure 109: Thick wall (COMP-6) crack pattern comparison: (a) photo of the cracked wall
and (b) deformed horizontal displacement contour plot in meters.
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(a) (b)

Figure 110: (a) Compressive and (b) tensile damage contour plots for the thick wall
(COMP-6) at the end of the simulation.

Figure 111: Sensibility analysis on the main mechanical parameters of the model. The hor-
izontal displacement contour plots have been taken at a horizontal displace-
ment of 10 mm.
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6.3.6.2 Out-of-plane cyclic behavior of walls

The two-way spanning out-of-plane cyclic test COMP-11 conducted on a 3.874

× 2.765 × 0.102 m calcium silicate brick masonry wall has been considered and
simulated. It has to be pointed out that the experimental set-up conceived for this
test needed a considerable level of complexity in order to perform a cyclic out-
of-plane test. Indeed, after the application of a vertical pressure (0.05 MPa) to the
wall, a constant pressure was applied by the airbag on one side of the wall and
a varying pressure by the airbag on the other side of the wall. The pressure in
the airbag on the active side was adjusted to achieve the target deformation of a
selected set-point; the pressure on the opposite side (passive side) remained con-
stant during each test. Therefore, the set-up allowed for a displacement-controlled
test.

To be able to reproduce numerically this complex loading protocol, a non-
standard analysis procedure has been conceived and followed. Firstly, a uniform
horizontal pressure is monotonically applied to one side of the wall and the equi-
librium is investigated through the aforementioned quasi-static implicit dynamic
algorithm. The solution is computed until a target displacement (the same con-
sidered in the experimental test). Then, a restart of the analysis is carried out: the
previous analysis step is ended and a new step which consider a uniform horizon-
tal pressure with an inverted sign is computed. In this way, the cyclic out-of-plane
response of the wall is analysed.

The comparison between experimental and numerical lateral force against out-
of-plane displacement curves for COMP-11 specimen is shown in Figure 112,
where the numerical monotonic out-of-plane response is collected as well. The
experimental and numerical crack patterns are shown in Figure 113, where the
numerical one is taken at the instant represented by the green circle in Figure
112. A good agreement between the numerical and experimental outcomes is
observed. The peak loads are well predicted by the numerical cyclic analysis for
the first cycles. Then, the numerical model showed a greater degradation than the
experimental test. The analysis has been stopped in correspondence of the green
circle in Figure 112, as, notwithstanding the change in direction of the horizontal
pressure, the wall was continuing to deform in the same direction, suggesting the
collapse of the wall.

It has to be pointed out that, although the model carefully simulates the exper-
imental set-up, the presence of the airbags in the two sides of the wall definitely
increases the stability of the wall. In addition, unlike the in-plane benchmarks, a
considerable difference between the cyclic and monotonic numerical responses is
observed in terms of peak loads. Nevertheless, a sensible difference in peak loads
is also observed in the experimental test between positive and negative responses
[348], suggesting that the cyclic loading can influence the magnitude of the peak
loads.

An excellent agreement is observed from the comparison of the crack patterns
in Figure 113. The model appears able to well-represent the failure mode of the
two-way spanning wall (Figure 113), characterized by diagonal cracking from the
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Figure 112: Experimental and numerical lateral force against out-of-plane displacement
curves for COMP-11 specimen.

wall edges to the center of the panel, and horizontal cracks at the wall base, at an
intermediate height, and at the top of the wall [348]. Indeed, most of the cracks
are predicted with a very high accuracy.

6.3.6.3 Cyclic behavior of a full-scale masonry structure

The quasi-static cyclic pushover test conducted on the terraced masonry house
shown in Figure 103 has been modeled and simulated. Numerical cyclic and
monotonic analyses have been performed on a half-house model, given the sym-
metry of the structure and of the loading conditions. The numerical results in
terms of base shear against horizontal displacement of the top floor have been
collected and compared with the experimental ones in Figure 114. The “numeri-
cal cyclic actual” analysis (Figure 114) has been conducted by imposing the actual
time-history of the horizontal displacement measured at the two floor levels. Dif-
ferently, the “numerical cyclic reduced” analysis consisted of a reduced number
of cycles. Particularly, a set of equal forces has been monotonically applied to
the two floors of the structure until the top floor reached a target displacement
and, then, the analysis has been stopped. Successively, a restart analysis has been
performed by inverting the sign of the forces. This procedure has been repeated
a certain number of times by increasing the magnitude of the top target displace-
ment. Finally, also monotonic analyses have been performed in two directions.
The crack pattern of the “numerical cyclic reduced” analysis are collected and
compared with the experimental cracks in Figure 115, while the tensile and com-
pressive damage contour plots at the end of the simulation are shown in Figure
116. The deformed shape and the tensile and compressive damage contour plots
for the positive and negative “numerical monotonic” analyses are collected in
Figure 117 and Figure 118, respectively.
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(a) (b)

(c) (d)

Figure 113: Out-of-plane benchmark crack pattern comparison. Specimen COMP-11 crack
pattern after removing the airbags: (a) photo and (b) sketch. Numerical crack
pattern: (c) front and (d) back views.

An overall positive correspondence between experimental and numerical curves
can be observed in Figure 114. The “numerical cyclic actual” analysis is untimely
stopped due to divergence in the solution of the continuum nonlinear equations
in a single block. Differently, although ended for the same reason, the “numer-
ical cyclic reduced” analysis was able to proceed further, until significant top
displacements (e.g. ±60 mm). Anyhow, the prediction of the peak shear force for
both cases is in good agreement with the experimental one (Figure 114). Interest-
ingly, for the “numerical cyclic reduced” analysis a degradation of the shear force
is observed in the positive direction for subsequent cycles, while no particular
degradation is observed in the negative direction. This aspect appears particu-
larly valuable as it is also an experimental trend (Figure 114), determined by the
different width of the two piers of the house [347]. Furthermore, concerning the
monotonic response of the model, in the positive direction the shear base is char-
acterized by a peak load, followed by a significant softening until about +20 mm
and, then, by a plateau, while in the negative direction, once reached the peak
load, it remains practically constant. The differences in the peak load between
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Figure 114: Terraced house base shear – horizontal displacement experimental-numerical
comparison.

the numerical cyclic and monotonic responses are irrelevant for the negative di-
rection, while they are significant in the positive direction, suggesting that the
failure mechanism which occurs in the positive direction is influenced and de-
graded by a cyclic action, whereas the one which occurs in the negative direction
appears independent from that.

The actual crack pattern experienced by the structure appears very complex
and characterized by a combination of in-plane and out-of-plane failure mecha-
nisms [347]. The comparison of the “numerical cyclic reduced” deformed shapes
with the actual crack pattern shows the very good accuracy of the model which
accounts for the main failures of the structure (Figure 115). Particularly, the shear-
vertical crack experienced by the structure in the wider (left) pier (see Figure 115,
top) is well-predicted by the model which shows a series of contact shear failures
as well as a vertical distribution of tensile damage in the blocks (Figure 115, top),
standing for a vertical crack which crosses the blocks as well (which is an exper-
imental outcome too). Besides, the interaction of the piers with the transversal
walls, due to the running bond texture, is fairly captured by the model. The dif-
ferent failure mechanism that develops in the piers for the two loading directions
can be clearly observed also by comparing the deformed shapes of the model in
the positive (+50 mm) and negative (–50 mm) directions (Figure 115 and Figure
116 for the cyclic analyses, and Figure 117 and Figure 118 for the monotonic anal-
yses): while the wider (left) pier shows a shear-vertical failure in the lower level
when loaded in a positive direction, it shows a completely different mechanism,
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i.e. almost-pure rocking, when loaded in a negative direction. This also explains
the different post-peak direction observed for the two loading directions. Again,
the role of the transversal walls and their connection to the piers appears crucial
in the structural response.

Finally, the cyclic evolution of the resultant of the vertical reaction for the walls
of the structure depending on the horizontal displacement of the second floor is
shown in Figure 119 for the “numerical cyclic reduced” analysis. This outcome
allows to further investigate the cyclic response of the structure. Indeed, the cyclic
redistribution of the vertical load between the transversal wall W1 (W2) and the
pier P1 (P2), see Figure 119, appears particularly interesting, as, for instance,
the first floor is connected in no way with the piers and it only stands on the
transversal walls. Therefore, the load transfer passes through the corner, thanks
to the toothing of the walls. In the negative direction, the vertical load is mainly
borne by W1 and P2 (Figure 119). In particular, by increasing the top displacement
in the negative direction, the vertical load is gradually transferred from W2 to P2

and at about –20 mm the vertical load is completely transferred and the wall W2

is completely unloaded. Conversely, in the positive direction the vertical load
is mainly borne by W2 and P1 (Figure 119). If the load transfer between P2

and W2 follows a regular evolution, suggesting the activation of a pure rocking
mechanism, the load transfer between P1 and W1 appears more complex in the
positive direction, where the unloading path is different from the loading one
(Figure 119). Once more, this aspect suggests a more complex failure mechanism
in the positive direction.
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Figure 115: Numerical cyclic reduced analysis: deformed shapes and comparisons with
the actual crack pattern. The numerical plots are taken in correspondence of
the two green circles in Figure 114, for a top displacement ±50 mm, whereas
the photos are taken during the last cycle of the experimental test.



176 damaging block-based modeling

Figure 116: Numerical cyclic reduced analysis: tensile and compressive damage contour
plots at the end of the simulation.

Figure 117: Numerical monotonic simulation in the positive direction: deformed shape at
+50mm (left) and tensile and compressive damage variables contour plots.
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Figure 118: Numerical monotonic simulation in the negative direction: deformed shape at
-50mm (left) and tensile and compressive damage variables contour plots.

Figure 119: Numerical cyclic reduced analysis: resultant of the vertical reaction for the
walls depending on the horizontal displacement of the second floor.
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6.4 historic barrel vaults undergoing differential settlements

Masonry vaults have been an efficient and fire-proof roofing method in pre-
modern structures, reaching a wide variety of configurations that may not always
be easy to understand in terms of performance and safety. The study of simple
barrel vaults can provide a base for the understanding of load paths under vari-
ous support conditions, letting insight to be built for more complex forms (cross
vaults, net vaults etc). Gothic barrel vaults in particular are formed by the extru-
sion of an arch (generatrix) along a linear distance (directrix). As with any arch
based construction, the vault produces an outward thrust along its edge and there
are several mechanisms for absorbing this thrust. One is to make the wall exceed-
ingly thick or add buttresses. Alternatively, a more elegant method is to build two
or more vaults parallel to each other, canceling mutually the forces of their out-
ward thrust. However, the amount of thrust also depends on the shape of the arch.
For example, in [355], Romano and Ochsendorf showed that pointed vaults gen-
erate significantly smaller lateral thrust to their support than semi-circular ones
and thus this shape can be used to build higher and more slender walls. Further-
more, pointed arches can span larger distance with the same structural thickness.
By decreasing the lateral thrust at the wall, larger windows can be built to allow
for more light in the building.

Although a lot of thought and wisdom has been put into the design of arches
and vaults, unfortunately, today, most of the existing historic masonry vaults
stand in a damaged (cracked) condition. The main reasons of such damage arise
from aging of material, soil subsidence, support failure due to poor foundations.
Earthquakes can also induce significant damage to masonry vaults [356], as the
oscillations can produce relative displacements between the vaults’ abutments
[238]. In general, although masonry vaults have great strength to vertical uniform
loads, their capability to withstand differential settlements of the abutments is
extremely low. Differential settlements can derive from masonry material or soil
degradation (e.g. due to stress concentrations, non-uniform soil stratigraphy, etc.).
However, the challenge faced during structural inspection is that although the
effects of an on-going process of deformation are clear (visible cracks) on the
vault, the nature and origin of the on-going settlement may remain unknown to
the surveyor.

Today, several numerical tools are available for the structural analysis of vaults
(Chapter 2).

Geometry-based approaches (Section 2.7) can follow the lower-bound (static
approach [228, 232, 236]) or the upper-bound (kinematic approach [357, 243]) the-
orems of limit analysis. These approaches are considerably effective to evaluate
the stability of vaults and domes. However, their capability to analyze vaults un-
dergoing differential settlements is still under investigation.

Continuum approaches (Section 2.6) consider masonry as a homogeneous ma-
terial in which the constitutive law is described in a phenomenological way
[238, 358, 145]. These approaches can support any kind of boundary conditions
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at the vault’s abutments. However, the reliability of continuum constitutive laws
for historic masonry vaults is still under study.

Finally, block-based approaches (Section 2.6) consider the structure as an as-
sembly of separate blocks which can interact through specific laws. This approach
represents the most accurate analysis tool [359, 90, 89, 360], even if the descrip-
tion of a historic vault block-by-block is still challenging and computationally
demanding.

In this section, the effects of differential settlements on historic masonry bar-
rel vaults are investigated. An efficient 3D non-standard contact-based distinct
blocks model, based on the advances presented in the previous sections (6.2-6.3),
is implemented to reproduce experiments on a scaled pointed barrel vault spec-
imen (representative of late medieval barrel vaults from Scotland), under non-
uniform differential settlement [361]. The choice of Scottish vaults is because they
follow a specific typology during 15

th century and they are plain yet very well
built. Firstly, the numerical model is used to simulate the experimental campaign.
The numerical results validate the experiments in terms of crack pattern and
transverse-longitudinal deformation profiles. This makes possible further analy-
ses to gain an insight on the effects of several plausible uniform and non-uniform
settlement patterns on a representative historic barrel vault. Various settlement
patterns were simulated and the complex failure mode of the vault investigated.
This study could help analysts in understanding the nature of on-going deforma-
tion processes in historic masonry vaults and consequently in assisting engineers
in the design of strengthening strategies.

It is well-known that size effects arise when cohesion and friction between
blocks is conceived. Furthermore, the structural response could be also affected
by the variation of the density of the material, when friction between blocks is
supposed. However, full-scale experimental tests on masonry vaults are often
prohibitive due to high costs of materials and equipment [362]. Therefore, scale
models are usually adopted for the qualitative understanding of the structural
response of masonry vaults. Indeed, the experimental set-up considered in this
study aimed to qualitatively understand the mechanics of Gothic barrel vaults un-
dergoing non-uniform settlements, without quantitative conclusions. Particularly,
the experimental test considered in this study has been found to be appealing to
evaluate the potentialities of the block-based modeling approach which accounts
for both cohesion and friction between blocks. Indeed, if the numerical results
are found to be consistent with the experimental outcomes of the test on a scale
model, it is reasonable to assume that the numerical approach can be used for
quantitative predictions on full-scale actual masonry vaults as well.

6.4.1 Scottish Gothic vaults

Barrel vaults in collegiate (private) churches in late-medieval Scotland (15 cen-
tury) are a quite well-defined group in terms of their character, design and struc-
tural scheme (Figure 120), so they are a comprehensive typology and case study.
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They may have origins in secular architecture, especially castles and tower-houses
[363], where usually their spatial articulation and decoration (ribs) would denote
higher status, but strength and fire-proofing were equally attractive. When ap-
plied to single volume churches though, the scheme does not borrow the solid
envelope that contained the thrust very effectively there but relies on buttresses
to let windows, which usually open below springing level, so the geometry of the
barrel is not disturbed. Their geometric study [364, 365] shows pointed profiles
largely generated within an equilateral triangle. Parallel ribs divide them into
bays and often mask construction breaks (as was found during the repair works
in Bothwell in 2014-16, Figure 120(a)). Consequently, there is no roof truss above
them and flagstones cover the vault, laid directly on a rubble fill on the extrados
or possibly diaphragm walls (called frenelli in Italy), adding a substantial load on
the vault.

(a) (b)

(c) (d)

Figure 120: (a) The earliest (Bothwell 1398) and (b) latest (Ladykirk 1500) examples of
barrel vaults in late-medieval Scotland churches. (c) Crack pattern in Bothwell
due to deformation in the South wall from [366] and its appearance at the
East end of the interior (following repairs in 2016), (settlement caused at the
right-hand corner).

Considering the construction evolution since the earliest (1398) to the latest
(1500) examples, it can be observed that pier buttresses contain the thrust and
become thicker and safer towards the end of the period (e.g. Ladykirk, Figure
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120(b)). Construction also improves in its visual expression, using polished ashlar
(Crichton in 1449, Seton in 1478). Measured surveys [364] have shown precision in
the execution of the form and very little deformation. This was not the case of the
Bothwell church though (Figure 120(a)), which has suffered differential settlement
on its South side (Figure 120(c)), as the foundations had slipped outwards and
the clay under the south-east corner had settled significantly, and had to undergo
repair and bracing (2014-16). The horizontal spread component of this vault was
examined first [365] in an experimental and analytical program of a homogeneous
model and then the vertical settlement only in a masonry-replica model [366],
showing the vulnerability of the scheme to such instability. The two damage
patterns were quite similar as well, which makes repair to a certain extent easier
to plan.

6.4.2 Experimental tests

An attempt was made to construct a representative in geometry model of the
barrel vault in the quire (choir) of Bothwell. A measured survey of the vault was
carried out by the church once realized its geometry was slightly skewed and
cracks started opening due to settlement over the years across the less braced
South edge. A 1/12 scale was chosen for the construction of the model in the
laboratory as it was convenient for the shaping of the blocks and the experimental
set-up. To focus on the study of the original form of the Bothwell barrel vault, its
shape was kept simple and symmetric. This resulted in a model of an interior
span equal to 508 mm and a rise of 317 mm, keeping the length of the vault as
1,400 mm. The vault was composed of a series of equal in size varnished wooden
units, bonded by a lime-based mortar. The length of the wooden blocks scaled a
representative block of the original vault and the height to width ratio was 2/3.
Mortar was composed of 3:1 (sand-lime). Then, glue and water were added. This
mixture was used in previous experiments involving cross vaults [362] and it has
been found to be convenient for construction reasons [366].

The model vault was subjected to a vertical displacement of one of the corners
producing a linear displacement along its edge (Figure 121(a)). The right side of
the vault was fixed while the left back corner was pinned so that the rest of the
left side of the vault could rotate freely, following displacement imposed at the
left front corner. Such experimental procedure has been designed to represent
asymmetric differential settlement which often occurs in such structures. The
vault was subjected to asymmetric settlement until collapse, which occurred at
displacement of the left-hand corner of 132 mm or 42% of the rise of the vault.

During testing, a crack appeared after a settlement of 30 mm spreading longitu-
dinally from the left front edge of the vault (Figure 121(b)) and in the next stages
the crack propagated quickly until the mid-span of the vault. At a settlement of 45

mm, the section of the vault along the crack began to separate and deflect visibly,
while a diagonal shear crack began to form at the intrados, starting from the back-
right edge and spreading at roughly 45 degrees angle towards the apex. This was
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(a)

(b) (c) (d)

Figure 121: (a) Experimental set-up and cracks observed in the experiment: (b) initial
cracks and crack pattern at the end of the test - (c) corner view and (d) top
view [366].

accompanied by a crack along the apex spreading longitudinally from the back
edge of the vault. At a settlement of 75 mm, the two cracks met, forming a hinge
at the apex with the resulting triangular portion of the vault detaching from the
lower vault structure. The test was continued until full collapse of the structure.
Several small longitudinal cracks developed from the front of the vault near the
apex. As the vault approached full collapse, a crack formed on the front extrados
of the vault of the right side near the springing and propagated down the entire
length, forming a hinge. In addition, another diagonal crack formed beginning at
the front of the vault at 45 degrees angle. This joined with a longitudinal crack on
the extrados and progressed to meet the first diagonal crack at the apex. Figures
121(c)-121(d) show the diagonal crack just before the vault collapsed.
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6.4.3 Numerical strategy and verification

The experimental test above-described is modeled through the numerical ap-
proach presented in Section 6.3. The assembly of the blocks used to model the
Gothic barrel vault is shown in Figure 122(a) and the adopted mesh (which has
been found by a good compromise between accuracy and computational effort,
see Section 6.2) is shown in Figure 122(b).

(a)

(b)

Figure 122: Contact-based distinct block model of the vault: (a) assembly of the blocks, and
(b) and adopted mesh.

The block-based model herein adopted concerns expanded blocks (which ac-
count for the mortar layer thickness as well) assembled by zero-thickness contact-
based interfaces. Therefore, mortar layers are not explicitly modeled in this nu-
merical approach, similarly to other well-known modeling strategies [53]. How-
ever, the vault’s key was realized in the physical model through a thick wedge-
shaped mortar layer, see Figure 121(b). This geometric feature could not be finely
represented by the numerical model, given the assumption at the basis of the
modeling approach (i.e. any mortar layer explicitly modeled). Therefore, an ap-
proximation on the geometry of the vault’s key was needed, and fictitious wedge-
shaped blocks in the key stone were conceived.

In general, the model can be characterized by a nonlinear plastic-damage be-
havior of the block, as pursued in Sections 6.2-6.3 to reproduce the response of
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brick. However, since in this case the experimental set-up was made by timber
blocks, for simplicity the blocks have been described by means of an isotropic
linear elastic material law, adopting the values 520 kg/m3, 9 GPa and 0.25 for
density, Young’s modulus and Poisson’s coefficient, respectively. Since the exper-
imental campaign [366] did not investigate the mechanical response of mortar
joints, the mechanical characterization of the contact behavior has been primarily
carried out using the parameters calibrated in Sections 6.2-6.3 from small-scale
tests. In particular, three different settings (S1, S2 and S3) of the main mechanical
parameters, i.e. ft in tension and c in shear, have been considered by keeping
constant the ratio ft/c = 1.5, which appears quite a common value as per [324].
In particular, the values of ft and c in S2, which seem rather realistic, have been
reduced four times (S1) and increased five times (S3) to realize their influence in
the global structural response. The mechanical parameters used in the numerical
simulations are collected in Table 22.

Table 22: Mechanical parameters used in the numerical simulations. When more than one
value is given in a cell, the first value refers to the simulation S1, the second to
S2 and the third to S3.

Tensile behavior Shear behavior

ft [MPa] 0.0075, 0.03, 0.15 c [MPa] 0.005, 0.02, 0.1

uk [mm] 1.0 tanφ [\] 0.5

ζ [\] 8 δk [mm] 1.0

Knn [N/m3] 75·10
9 ξ [\] 4

µ [\] 0.5

Kss [N/m3] 7.5·10
9

Given that no mechanical characterization was available for the mortar used
in the experiments, the linear elastic material properties adopted for the blocks
have been also used for the wedge-shaped blocks in the key stone, for simplicity.
However, other preliminary analyses were performed, by using typical values of
mortar Young’s modulus from the literature, showing a negligible influence of
this aspect on the mechanical response of the vault.

The model in Figure 122(b), after the application of the gravity load, had a
non-uniform vertical settlement imposed on its left side, following the scheme
depicted in Figure 121(a). The settlement has been incrementally applied to the
base nodes of one side of the vault, while clamped boundary conditions have been
considered for the nodes of the other side of the vault. Basically, the constraints
adopted in the model attempted to follow those of the experimental test, which
had no diaphragms on either end (arches) and no dead load was applied in the
test during the settlement (apart from the vault’s own weight).

The node displacements at the extrados of the front (see Figure 121(a) for
reference) end of the vault, as well as the apex displacements of the whole vault,
have been recorded and compared with the experimental data (Figure 123).
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Figure 123 compares the experimental and numerical deformation of the front
end and the apex vertical displacement at three subsequent vertical settlements
(i.e. 45mm, 75mm and 132mm) showing good agreement. In particular, the three
different parameter settings (S1, S2 and S3) show very slight differences, suggest-
ing that the absolute values of tensile strength and cohesion of the interfaces do
not considerably influence the failure mode and the crack pattern of the vault
subjected to differential settlements, giving robustness to the adopted modeling
approach.

The numerical crack pattern at the end of simulation S2 (vertical settlement
equal to 132 mm) is shown in Figure 124, and is in good agreement with the
actual one (Figure 121). Only few small deviations can be noted, as the one on the
left of the apex, where the experimental test shows a fast-developing detachment
[366] while in the numerical model this failure is smoother and results suggest the
generation of a hinge (Figure 123). Also, in all of the simulation, upwards vertical
displacements of the apex are recorded in the sections close to the back end of the
vault (Figure 123), while the experimental profile shows upwards displacement
only for large settlements (e.g. 132 mm). To this regard, it has to be pointed out
that the experimental recording of displacements by means of the total station
(Figure 121(a)) was challenging or impossible for the points close to the back end
of the vault due to the set-up. Therefore, all things considered, the FE model can
be considered validated by the good match.

6.4.4 Further numerical insights

Further analyses were carried out to gain insight on the effects of several plausible
uniform and non-uniform settlement patterns on a representative historic barrel
vault model. In particular, vertical, horizontal, diagonal, inward and outward
settlements are considered. The representative mechanical setting S2 has been
adopted in all the analyses. The failure modes are summarized in Figure 125

(uniform settlements) and Figure 126 (non-uniform settlements) according to the
imposed settlement pattern (left column in Figure 125 and Figure 126).

In general, the failure modes of uniform settlements (Figure 125) could be also
suitably predicted by an arch model, as, in this case, the bonding of the struc-
ture along the longitudinal axis plays a marginal role. Conversely, the masonry
bonding plays a fundamental role in non-uniform settlements, leading to complex
crack patterns (Figure 126).

As expected, uniform horizontal settlements (outward and inward, Figure 125)
lead to symmetric crack patterns. In particular, diffuse longitudinal cracks are
recorded in the extrados close to the abutments and in the intrados close to the
apex for an outward settlement. Quite the opposite is recorded for an inward
settlement. More localized cracks are observed in the other cases (Figure 125 and
Figure 126).

As can be noted in Figure 126, the failure modes of non-uniform vertical, out-
ward horizontal and outward diagonal settlements are quite similar. On the one
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hand, this pools the effects of these settlements and simplifies the detection, as the
exactness on the origin of the settlement is less required. On the other hand, how-
ever, an accurate knowledge on the active settlement appears more complicated
as these three settlements have similar effects.

Different failure modes are, instead, observed for non-uniform inward hori-
zontal and inward diagonal settlements Figure 126. Indeed, although they are
both characterized by an inward horizonal component of the settlement, the non-
uniform inward diagonal settlement shows a crack in the extrados of the fixed
side, while the non-uniform horizontal settlement shows a crack in the extrados
of the active side.

Obviously, the described scenario could be further enriched by analysing other
cases with different settlements and/or by considering also more complex bound-
ary conditions to account for the effect of adjacent structural elements. By way of
example, the presence of a diaphragm wall along the back end of the vault could
be simulated by adopting, for simplicity, clamped boundary conditions in the
nodes on the back side (Figure 125). The crack pattern of the analysis with fixed
back non-uniform vertical settlement is depicted in Figure 125. As can be noted,
although quite similar to the crack pattern of the non-uniform vertical settlement
simulation (Figure 126), several cracks arise close to the clamped side. In partic-
ular, this outcome was not visible in the non-uniform vertical settlement (Figure
126), suggesting that the effect of a diaphragm wall on the damage pattern of a
vault could result in cracks in the proximity of the diaphragm wall (Figure 125). A
similar damage pattern was observed in Bothwell (Figure 120(a)) in the West side
close to the West diaphragm wall, indicating a complex and sensible interaction
of the vault with adjacent vertical structures.
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(a)

(b)

(c)

Figure 123: Comparison between experimental and numerical deformation of the front
end (left) and apex vertical displacement (right) at three subsequent vertical
settlements: (a) 45mm, (b) 75mm and (c) 132mm.
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(a)

(b)

(c)

Figure 124: Numerical crack pattern at the end of simulation S2: (a) vertical displacement
contour plot, (b) main failures in a top view and (c) interfaces which exhibited
failure of the vault side opposite to the settlement.
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Figure 125: Summary of crack patterns for uniform settlements.
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Figure 126: Summary of crack patterns for non-uniform settlements.
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Figure 127: Fixed back non-uniform vertical settlement crack pattern.

6.5 conclusions

In this chapter, a novel damaging block-based model to mechanically analyze
masonry has been proposed. Two main versions of the model has been developed
and validated.

According to the first version of the modeling approach proposed, masonry
is represented by textured units consisting of one brick and few mortar layers
composed of 3D solid FEs obeying to plastic-damage constitutive laws. This
permits to represent the brick and mortar mechanical behavior when cracking
and/or crushing occur. Textured units are assembled, accounting for any actual
3D through-thickness arrangement of masonry (including walls with openings,
multi-leaf walls, etc.), by means of zero-thickness cohesive-frictional interfaces
based on the contact penalty method. This permits to account for the brick-mortar
bond failures both in tension and shear.

The contact behavior appeared to be consistent with experimental outcomes
on small-scale masonry specimens. The results of numerical analyses carried out
to investigate both the in-plane and the out-of-plane responses of brick-masonry
panels up to collapse has been presented and compared with experimental out-
comes. From this comparison, it was shown that the use of the proposed mod-
eling approach allows the accurate representation of the masonry behavior both
in the in-plane and out-of-plane responses. The results achieved demonstrate the
significant potential of the proposed approach.
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According to the second version of the modeling approach proposed (which
substantially represented an extension of the first version to the cyclic behav-
ior), solid 3D FEs governed by a plastic-damage constitutive law in tension and
compression have been used to model the blocks (without mortar layers), while
a cohesive-frictional contact-based formulation has been developed to simulate
their cyclic interaction.

The mechanical characterization of this model can be easily carried out, as
it requires only simple monotonic tests on small-scale masonry specimens. A
strategy for the comprehensive mechanical characterization of the mechanical
properties of the numerical model from these small-scale experiments has been
proposed.

A comprehensive experimental campaign on calcium silicate brick masonry
specimens has been used to validate the proposed calibration procedure, and to
assess the accuracy of the modeling approach at structural level. Once defined
the mechanical parameters from small-scale tests, they have been used in the
simulation of in-plane and out-of-plane cyclic tests on masonry walls made of the
same material. An overall good agreement between the numerical results and the
experimental outcomes has been observed both in the in-plane and out-of-plane
responses. This allowed to validate the model as well as the strategy proposed
for its mechanical characterization.

Furthermore, a cyclic pushover test on a full-scale terraced masonry house has
been simulated using the same mechanical parameters calibrated from small-scale
tests. Good results have been obtained, showing the reliability of the model. Given
the accuracy of the model and its capability to explicitly account for structural de-
tails such as running bonds, toothing between walls, the actual masonry texture,
etc, which can be crucial in the structural response, the model can also be used
to interpret the results of full-scale complex experimental tests.

Finally, the efficiency of the model is also shown by its limited computational
effort. Indeed, although a full-scale terraced masonry house has been considered,
all the analyses have been performed on a commercial laptop in a reasonable
amount of time. By way of example, the average time needed for the mono-
tonic pushover analyses on the full-scale terraced house, carried out on a laptop
equipped with a processor IntelrCoreTM i7-6500U CPU @ 2.50GHz and 16GB
RAM, was 2 hours and 9 minutes.

Therefore, although some further advances in the robustness of the solving
algorithm should be developed, the model here proposed represents an efficient
and reliable tool to analyse the cyclic behavior of masonry structures.

Finally, the second version of the model proposed have been used to evaluate
the effects of differential settlements on historic masonry barrel vaults. A 3D
block-by-block model has been developed to reproduce experiments on a scaled
pointed barrel vault specimen, representative of late medieval barrel vaults in
Scotland, undergoing non-uniform differential settlement.

Firstly, good agreement is observed between the experimental and numerical
results in terms of crack pattern and transverses-longitudinal deformation pro-
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files, capturing the major longitudinal cracks close to the applied settlement and
also those at the other end of the vault.

Then, further analyses have been carried out to gain insight on the effects of
several plausible uniform and non-uniform settlement patterns. All the failure
modes have been collected according to the imposed settlement pattern. This
summary of results, although preliminary, could help analysts in understanding
the nature of the on-going deformation process in historic masonry vaults. The
design of strengthening strategies can be made in the spirit of the “minimum
intervention” principle to guarantee conservation is precise to the problems ad-
dressed or even considering not canceling a deformation if it is proved to repre-
sent a significant phase or inherent design fault of the vault.

Further aspects, such as the influence of the nonlinear behavior of the units,
the dead load and the thickness of the vaults, the masonry bonding as also the
segmentation of a vault (as masked by the ribs in Bothwell) should be investigated
and collected in a more comprehensive matrix.

On a final note, it has to be pointed out that the assemblies of blocks studied
in this chapter have been manually built. This operation, although rather simple
for periodic regular textures, may become very time consuming for complex or
irregular textures (e.g. vaults). To this aim, automatic routines (e.g. UEL [308])
could be used to directly generate the assembly of blocks.





7
C O N C L U S I O N S

In this thesis, some recent advances in computational analysis of masonry struc-
tures have been presented. In particular, this thesis attempted to fill the gap in
the following open issues which arise when dealing with numerical modeling of
masonry structures: (i) How to create the mesh of a structure if its geometry is
extremely complex and irregular, as for historic masonry buildings? (ii) How to
perform the seismic analysis of historic masonry buildings which are typically
composed of several interacting units? (iii) How to evaluate the stability of lean-
ing masonry structures with irregular geometries? (iv) How to accurately and ef-
ficiently represent the complex mechanical behavior of masonry? Essentially, the
advancements pursued in the framework of mesh generation procedures for his-
toric monumental buildings, analysis of seismically interacting structures, anal-
ysis of leaning historic structures, and block-based modeling of masonry struc-
tures, have been shown and discussed.

Firstly, a comprehensive review of the existing modeling strategies for masonry
structures has been presented (Chapter 2), together with a novel classification of
these strategies. This classification consisted of four categories (block-based mod-
els, continuum models, geometry-based models, and macroelement models) and
attempted to put in order the wide scientific production on this field, although
a fully coherent collocation of all the modeling approaches was substantially im-
possible due to the peculiar features of each solution proposed.

Then, two mesh generation procedures have been proposed (Chapter 3) to
transform 3D point clouds into 3D solid finite element models of historic monu-
mental buildings. The first approach, called CLOUD2FEM, consisted in the slic-
ing and subsequent stacking of the geometry. An increase of the level of automa-
tion in the mesh generation process has been observed and a large reduction in
the required time in comparison to CAD-based modeling procedures has been
achieved. The validation of the method has been performed on the San Felice
sul Panaro fortress, which embodies all the typical complexities of historic mon-
umental buildings. The second approach, called watertight meshing, considered
the structure as a watertight surface and eventually fills the volume. Although
not always applicable to historic buildings, e.g. in case of inner spaces, rooms,
furniture, doors, windows, etc., this procedure represented a very fast solution
for the direct and fully automatic mesh generation of a geometrically irregular
masonry building.

Additionally, a computational procedure based on the use of nonlinear static
analyses has been developed (Chapter 4) to assess the response of seismically in-
teracting historic masonry structures. The procedure required a numerical model
of the entire aggregation of units (to explicitly consider the interaction effects
among these latter), the execution of modal analysis to define the modes involv-
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ing the dynamic response of each unit and their modal shapes, the execution of a
series of pushover analyses (one for each unit) by applying time by time the load
pattern fitted according to the identified modal shapes, and the conversion of the
pushover curve of each unit into the corresponding capacity curve of the equiv-
alent SDOF system, to perform the seismic verification. The procedure has been
then applied to a case-study, the medieval fortress in San Felice sul Panaro, signif-
icantly damaged by the 2012 Emilia earthquake. The results were good in terms
of comparison between the damage experienced by the structure and the one pre-
dicted (evaluated computing a ductility demand required by the actual seismic
event), showing the potential of the proposed procedure. Given such promising
results, the application of the procedure could be extended in the future to other
kinds of complex monumental structure (e.g. palaces in aggregate).

Furthermore, a computational procedure based on upper-bound finite element
limit analysis has been developed (Chapter 5) to undertake stability analysis of
leaning historic masonry structures, estimating their critical inclination angle. To
demonstrate the effectiveness of the procedure, the SW leaning ruined tower of
the Caerphilly castle has been employed as a case study. It emerged that the
tower in its actual condition is not far from its collapse. Indeed, an additional
inclination of the structure by 1.5◦ appears to be critical. The proposed procedure
is characterized by a high degree of automation and could be effectively utilized
to assess the stability of historic structures at a national scale and provide useful
information to engineers and managers to classify the structural health condition
of historic assets in their care. Although the procedure proposed represents a
novel solution for evaluating the stability of extant masonry structures, it could
be enriched with an adaptive mesh enhancement in the framework of a multi-step
strategy.

Finally, a damaging block-based model formulated in the context of contact
mechanics has been developed (Chapter 6) for the computational analysis of ma-
sonry structures. The model has been validated through the comparison against
in-plane and out-of-plane experimental tests on masonry walls, as well as cyclic
pushover tests on a full-scale masonry house. In addition, the developed block-
based model has been also used to investigate the response of historic barrel
vaults undergoing differential settlements. The proposed damaging block-based
model appeared effectively efficient, accurate and versatile. Furthermore, the ca-
pability of explicitly accounting for structural details such as running bonds,
toothing between walls, the actual 3D masonry texture, etc, appears crucial in
the structural analysis of masonry structures.

Although apparently disconnected, the different advances achieved in this the-
sis can be combined together to provide an advanced framework for the com-
putational analysis of masonry structures. Basically, the outcomes of the mesh
generation procedures proposed in Chapter 3 can be used within the structural
analysis procedures proposed in this thesis, as shown in Chapter 4 and Chapter
5. Furthermore, although the block-based model presented in Chapter 6 has been
only utilized on relatively simple structures so far, it could be used, in theory,
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within the structural analysis procedures developed in Chapter 4 and Chapter 5

for monumental historic buildings.
Future developments of the computational tools presented in this thesis could

include:

• The mesh generation procedures (Chapter 3) could be coupled with the
block-based model developed in Chapter 6. Particularly, the solid volume
obtained by these procedures could be automatically filled, by means of ad-
hoc routines, with certain periodic textures of solid blocks, following the
mechanical formulation of the block-based model of Chapter 6. However,
this approach could result extremely computational demanding for the con-
temporary workstations when dealing with large-scale historic structures.

• The block-based model of Chapter 6 could be easily extended to the analysis
of FRP- and FRCM-strengthened masonry structures. Indeed, the contact-
based interface formulation developed in Chapter 6 appears particularly
favorable to model the bond behavior between masonry and the reinforce-
ment.

• The contact-based interface formulation developed in Chapter 6 could be
also utilized to analyze the displacement capacity of masonry structures
with pre-assigned collapse mechanisms (deduced, for instance, from the
outcomes of limit analysis).





A
P L A S T I C - D A M A G E M O D E L

The main features of the plastic-damage model developed by Lee and Fenves
[136] are here summarized. Isotropic degradation damage is assumed and, if a
scalar degradation damage variable 0 6 d < 1 is used to represent the isotropic
damage and the concepts of strain decomposition and effective stress are em-
ployed, then the Cauchy stress tensor σ becomes:

σ=(1− d)σ=(1− d)E0 (ε−ε
p) , (26)

where σ is the effective stress tensor, E0 is the initial undamaged elastic stiffness
tensor, ε is the strain tensor and εp is the plastic part of the strain tensor.

The plastic strain rate is obtained from a plastic potential Φ defined in the
effective-stress space:

˙εp=λ̇
∂Φ (σ)

∂σ
, (27)

where λ̇ is the plastic multiplier (λ̇ > 0). To control dilatancy, a nonassociative
flow rule is considered. Particularly, the plastic strain rate is obtained by a flow
rule generated by a Drucker-Prager type plastic potential, which, in terms of
effective stresses, has the form:

Φ=

√
(εft0tanψ )2 + 3J2 (σ) +

1

3
I1 (σ) tanψ , (28)

being I1 the first invariant of the stress tensor, J2 the second invariant of the stress
deviator, ft0 the initial uniaxial tensile strength, ε a smoothing constant generally
assumed equal to 0.1 [325], and ψ the dilatancy angle of the quasi-brittle material,
typically assumed equal to 10

◦ in agreement with experimental evidences and
previous numerical models [325, 141].
The stress admissibility condition reads as:

F (σ, fft, ffc) 6 0, (29)

where fft and ffc are uniaxial tensile and compressive strength functions depend-
ing on two hardening variables kt and kc:

fft (kt) = [1− dt (kt)] fft (kt) , ffc (kc) = [1− dc (kc)] ffc (kc) , (30)

being fft (kt) and ffc (kc) the uniaxial tensile and compressive strengths in the
effective-stress responses and the scalar damage variables dt (kt) and dc (kc)

functions of the hardening variables. The degradation damage variable d in (26)
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is then written as a function of the stress state and the scalar damage variable dt
and dc as:

d = 1− (1− stdt) (1− scdc) . (31)

where st and sc are functions of the stress state that are introduced to model
stiffness recovery effects associated with stress reversals. Assuming that the ma-
terial fully recovers the compressive stiffness, they are defined according to the
following relationships:

st = 1−H(σuniaxial), sc = 1− (1−H(σuniaxial)) (32)

where

H(σuniaxial) =

1 if σuniaxial > 0

0 if σuniaxial < 0
(33)

being σuniaxial the uniaxial stress (positive in tension). Assuming, for instance,
an initially undamaged material in compression (dc = 0), the degradation dam-
age variable d becomes

d = 1− (1− (1− (1−H(σuniaxial)))dt) (34)

where in tension H(σuniaxial) = 1 and, therefore, d = dt (as expected); whereas
in compression H(σuniaxial) = 0 and, therefore, d = 0, the material fully recov-
ers the compressive stiffness (which in this case is the initial undamaged stiffness,
E = E0). Furthermore, d in (31) fulfils the condition 0 6 d < 1 and equals dt
when dc = 0 (uniaxial tensile case) and dc when dt = 0 (uniaxial compressive
case). Consequently, the uniaxial strength functions (30) can be written as:

fft = (1− d) fft, ffc = (1− d) ffc. (35)

Being k = [kt,kc]
T , the plastic-damage model employs the yielding surface

(Figure 128) proposed in [135] and further developed in [136], which has, in the
effective-stress space, the form:

F =
1

1−α

[
αI1 (σ) +

√
3J2 (σ) +β (k) 〈σmax〉− γ 〈−σmax〉

]
+ ffc (kc) = 0, (36)

where σmax is the algebraically maximum principal stress in the effective-stress
space, α and γ are dimensionless constants and β (k) is a function of the hard-
ening variables. The constant α depends on the ratio fb0/fc0 between the bi-
axial initial compressive strength fb0 and the uniaxial initial compressive stren-
gth fc0 through the relationship α = [(fb0/fc0) − 1]/[2 (fb0/fc0) − 1]. Typically,
fb0/fc0 = 1.16, which implies α = 0.12 [135]. The constant γ appears only in
triaxial compression and is defined as γ = 3(1− ρ)/(2ρ− 1), where the constant ρ
represents the ratio of the second stress invariant on the tensile meridian to that
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(a) (b)

Figure 128: Plastic-damage model yielding surface in: (a) plain stress and (b) the deviatoric
plane.

on the compressive meridian at initial yield. Typically, ρ = 2/3, which leads to
γ = 3 [135]. Finally, β (k) is assumed to depend on the hardening variables by the
relationship β (k) = −ffc (kc) /fft (kt) (1−α) − (1+α).

The evolution of the hardening variables is expressed in terms of the eigenval-
ues of the effective stress and plastic strain rate tensors, collected, respectively, in

σ̂ and ̂̇εp, as:

k̇ = λ̇h
(
σ̂,k,gt,gc

) ∂Φ(σ̂)
∂σ̂

=h
(
σ̂,k,gt,gc

) ̂̇εp, (37)

being

h(σ̂,k,gt,gc) =

[
r(σ̂)fft(kt)/gt 0 0

0 0 (1− r(σ̂))ffc(kc)/gc

]
, (38)

where the scalar quantity r(σ̂) is a weight factor (0 6 r 6 1) defined as r(σ̂) =∑3
i=1 〈σ̂i〉∑3
i=1 |σ̂i|

, and the quantities gt and gc are the dissipated energy densities in

tension and compression, respectively. These are derived from the tensile Gt and
compressive Gc fracture energies, which are primary mechanical properties of
the material, following the relationships:

gt = Gt/leq, gc = Gc/leq, (39)

being leq the localization zone size (characteristic length) defined as

leq = αh
√
Ve = αh(

nρ∑
ρ=1

nξ∑
ξ=1

nη∑
η=1

detJwρwξwη), (40)



202 plastic-damage model

where wρ,wξ and wη are the weight factors of the Gaussian integration scheme,
J the Jacobian of the transformation, Ve the element area and αh a modification
factor that depends on the typology of the finite element used. In this way, the
mesh size does not significantly influence the material response.

Generally, the values of the fracture energies (Gt and Gc), which are primary
material parameters that have to be inputted in the model, can be defined either in
a direct way, i.e. by directly specifying their values, or in an indirect way, i.e. by the
point-by-point specification of the inelastic stress-strain uniaxial curves in tension
and compression. Typically, the point-by-point specification of the inelastic stress-
strain uniaxial curves in tension and compression is preferred as it allows to
specify a residual strength (both in tension and compression) which greatly helps
the convergence of the solving algorithm in case of softening
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element analysis of dry stone masonry structures,” Engineering structures,
vol. 52, pp. 89–100, 2013.
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