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Abstract 

Lipid metabolic reprogramming is an established hallmark of cancer development, which 

among others includes a distinct fatty acid biosynthesis and metabolism due to the 

enhanced cellular growth and proliferation of cancer cells. Cell membranes are built by 

phospholipids, which are fatty acid-containing lipid species. Alterations to the fatty acid 

content may influence the membrane properties, such as fluidity, permeability and 

membrane lipid-related signaling, thus favoring tumor growth, progression and metastasis. 

The membrane remodeling is highly affected by the intracellular lipid pool, which in turn 

depends on both the endogenously produced fatty acids and their dietary intake. Key 

enzymes that are involved in lipid biosynthesis, show increased activity along tumor 

development and progression. Some chemotherapeutics have also been reported to 

influence the characteristics of the plasma membrane, while the final outcome of chemical 

exposure depends on membrane-related signaling (e.g. lipid rafts involving the death 

receptor pathway).  

The first part of the present thesis aimed at the in vitro evaluation of the effects of the 

compound [Cu(TPMA)(Phenanthroline)](ClO4)2, a novel copper complex, on the cell 

viability and membrane fatty-acid lipidome. The copper complex was studied in vitro as a 

free compound or under an encapsulated form within polymeric nanoparticles in the 

neuroblastoma derived cell line NB100 cell line and breast carcinoma cell line MCF7. Its 

cytotoxicity was determined and the cell death pathways were analyzed with parallel 

monitoring of caspase activation. The membrane fatty acid composition was examined in 

cells treated with the half maximal effective concentration (EC50) of copper complex. 

Inhibitors of apoptosis and necroptosis and scavengers of oxidative stress were tested to 

evaluate their protective effect against copper’s cytotoxicity and membrane lipidome 

alterations. The copper complex exerted oxidative stress-mediated cytotoxicity and 

induced apoptosis and necroptosis in both cell lines. Membrane remodeling took place 

upon treatment with the copper complex with a specific increase of saturated fatty acids 

(SFA) and a decrease of monounsaturated fatty acids (MUFA), but not polyunsaturated 

fatty acids (PUFA). Assessment of the stearoyl-CoA desaturase (SCD1) activity in the 

presence of copper complex using a cell-free assay showed no enzymatic inhibition of 

MUFA biosynthesis and therefore no metabolic involvement to the observed membrane 

remodeling. Cells pre-treatment with apoptosis inhibitor and ROS scavengers prevented 
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both the cytotoxicity and the changes on fatty acid composition, suggesting a correlation 

between membrane remodeling and the cytotoxic mechanism caused by the complex. 

Palmitic acid supplementation influenced the cell response to copper complex exposure by 

enhancing its cytotoxic effect. Finally, encapsulation of the complex in polymeric 

nanoparticles protected the cell viability and prevented any changes on membrane fatty 

acid composition.   

The second project undertaken within the frame of this thesis involved the monitoring of 

fatty acid composition of erythrocyte membrane at different stages of tumor occurrence 

and at early points of tumor occurrence after administration of iron nanoparticles (Fe-NPs) 

and bleomycin. The animal model studied consisted in the tumor-bearing SCID mice, 

xenografted with the human glioblastoma U87MG cell line, while non-xenografted SCID 

and healthy Swiss mice were used as controls. Late stage tumor-bearing mice were 

characterized by statistically significant increase of SFA, accompanied by a decrease in 

total PUFA, unsaturation and peroxidation indices. Fe-NPs caused a notable membrane 

remodeling in healthy Swiss mice, characterized by lower SFA and PUFA levels and higher 

MUFA content. Although both relative amounts of ω-6 and ω-3 PUFA families decreased, 

their ratio (ω-6/ω-3) appeared to be increasing in Fe-NPs treated Swiss mice, compared to 

the untreated group. Tumor-bearing mice did not show altered fatty acid profile under any 

treatment. Bleomycin did no exert any significant effect on erythrocyte membrane 

lipidomic profile of either the tumor-bearing mice or the healthy ones. However, co-

treatment of tumor diseased mice with Fe-NPs and bleomycin led to a decrease of the ω-

6/ω-3 ratio in erythrocyte membranes. Erythrocyte membrane fatty acid analysis may 

provide insights on the endogenous fatty acid metabolism through the relative proportion 

of SFA to MUFA, while the effect of high oxidative stress can be depicted through the 

PUFA consumption and the consequent membrane remodeling. Since the fatty acids are 

part of our dietary intakes, their balance can also impact the drug outcomes and tumor 

progression.  

In conclusion, we could demonstrate through these studies that fatty acid-based membrane 

lipidomics can be a valuable tool for evaluating the nutritional conditions and metabolic 

status of an organism. Indeed, by enabling the monitoring of selected fatty acid alterations, 

this method can contribute to the development of multi-targeted antitumoral approaches 

through customized cell membrane rearrangement. 
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1. Introduction  

 

1.1 Fatty acid-based membrane lipidomics 

 

1.1.1 Plasma membrane 

The cell membrane is crucial for the organization and function of every living cell. It 

constitutes the physical and semi-permeable barrier separating the intracellular from the 

extracellular environment, thus circumscribing the cellular content [1]. The plasma 

membrane is involved in every aspect of cellular fate, from cell division to programmed 

cell death [2-4]. Besides its structural role, it is involved in the regulation of transmembrane 

transport of small molecules either through passive or active mechanisms. Cell membrane 

also participates in various cellular processes such as cell adhesion, recognition and 

signaling [1, 5]. 

 

1.1.1.1 Structure 

The plasma membrane is a dynamic, complex structure of lipids and proteins in a fluid 

state, organized in the well-known mosaic model, according to which most of its molecules 

are able to move about in the plane of the membrane [6]. The most abundant membrane 

lipid species are the amphipathic glycerol-based phospholipids, which spontaneously form 

the lipid bilayer due to the hydrophobic effect [7]. Therefore, the major core of a biological 

membrane is self-organized, with the hydrophobic tails being eliminated from water and 

facing each other, while the polar headgroups form an ionic surface interacting with water 

(see Figure 1.1). Cholesterol is another major lipid component of the plasma membrane, 

which is embedded in the phospholipid bilayer and contributes to its fluidity [8]. 

Transmembrane or anchored integral proteins are also found in the membrane assembly 

and they are connected to phospholipids mainly by noncovalent interactions [9]. Membrane 

protein-lipid interaction has been recently reported to have a significant effect on the 

stabilization of membrane protein oligomers and on cell susceptibility to aberrant protein 

oligomers [10, 11]. Peripheral proteins are bound to the integral ones at specific binding 

sites [9]. Membrane protein molecules are mediating almost all membrane-related 
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functions, such as transport of specific molecules, detection and transduction of chemical 

signals [1, 12]. In addition, the plasma membranes may also contain glycolipids and 

glycoproteins, whose carbohydrates components play a significant role in cell-cell 

interaction processes [13, 14].   

 

Figure 1.1: Schematic diagram of the structure of a typical biological membrane. The phospholipid 

bilayer, the main matrix of all cellular membranes, is made of two phospholipid leaflets whose fatty 

acyl tails form the hydrophobic core of the bilayer; their polar, hydrophilic head groups face the 

aqueous cytoplasm and extracellular environment. Integral proteins are embedded in the bilayer 

and peripheral ones are mainly associated with the membrane by specific protein-protein 

interactions. Oligosaccharides bind to membrane proteins and lipids, forming glycoproteins and 

glycolipids, respectively (Lodish H et al., 2000, Molecular Cell Biology, New York: W. H. 

Freeman, 4th edition). 

 

As mentioned above, the fundamental matrix of the plasma membrane is the lipid bilayer, 

which is formed by phospholipids. Every phospholipid molecule is made of a hydrophilic 

head and a hydrophobic tail, as shown in Figure 1.2. The backbone of membrane lipids can 

be either the glycerol or the sphingosine, thus respectively forming the 

glycerophospholipids (GPLs) or the sphingophospholipids (SPLs). Within an individual 

glycerophospholipid, fatty acyl chains are attached to the C1 and C2 carbon atoms, while 

a phosphate group is attached to the C3 carbon atom of the glycerol molecule. Variable 
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polar groups are attached to the phosphate, such as choline, ethanolamine, serine, and 

inositol. Based on the type of polar head the major structural lipids in eukaryotic 

membranes are the phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidic acid (PA) when no 

polar group is attached to the phosphate. Sphingomyelin (SM) consists of a phosphocholine 

polar group and it is among the few phospholipids that contain a sphingosine molecule as 

a backbone, in the amine group of which a fatty acid is attached. The relative distribution 

of the phospholipids varies within the different cell types and tissues. However, PC is the 

most abundant (>50%) phospholipid in eukaryotic membranes.  

 

 

Figure 1.2: Common structures of glycerophospholipids (GPLs) with a glycerol backbone and 

sphingomyelin as a representative of a sphingophospholipid (SPLs). Modified from Lordan R et 

al., 2017, Molecules, MDPI. 

 

The phospholipids are asymmetrically distributed between the two leaflets of the 

membrane bilayer. The outer layer contains mainly PC and SM, whereas the inner leaflet 

consists mainly of PE and PS. The asymmetric lipid distribution between the two leaflets 
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contributes to curvature stress in biological membranes, which is useful for the membrane 

budding, fission and fusion [15] as well as the conformation of membrane proteins and 

modulation of their function. Polar lipid heads are involved with strong electrostatic 

interactions and hydrogen bonds with amino acid residues the interface surface of the 

membrane proteins and the charge and aqueous their microenvironment can affect the 

activity of peripheral membranes proteins [15-17]. The hydrophobic domain is a 

diacylglycerol (DAG) made of long fatty acid chains that usually range from 14 to 24 

carbon atoms. The fatty acid tails can be either unsaturated (with one or more cis double 

bonds) or saturated (without any double bonds). Usually, within the hydrophobic domain, 

one chain is unsaturated and the second one saturated. Both the length and saturation degree 

of the fatty acid chains can influence the packing of the phospholipid molecules against 

one another, thus affecting the fluidity of the lipid bilayer. Considering the variety of 

phospholipids’ headgroups and their combination with several different fatty acids, the 

content of individual phospholipid species can be relatively diverse. This results in 

increasing membrane’s flexibility and may be needed for the numerous processes in which 

phospholipids have been reported to be involved [18].  

 

1.1.1.2 Physicochemical properties 

The plasma membrane is characterized by various physicochemical properties, such as the 

membrane thickness, lipid packing, fluidity, elasticity, permeability, flipflop, protein 

activity, fusion, blebbing and the structure and function of lateral and transmembrane 

domains. The kind of lipids building the biological membrane is a parameter that affecting 

most of these properties. However, it is reported that the physical properties of any lipid 

mixture are a collective property determined by the single lipid components [19]. The 

plasma membrane is constituted of a large variety of lipid molecules, each of them having 

different physical properties. As a result, every lipid moiety contributes collectively to the 

final properties of the membrane assembly. Several biophysical and biochemical studies 

on membrane lipids in parallel with genetic manipulation of membrane lipid composition 

have indicated that the Lα state of the membrane bilayer is required for cell viability and 

that cells adjust their lipid content in response to external factors in order that the collective 

property of the membrane exhibits the Lα state [19].  



Introduction 

 

5 
 

The physical and chemical properties of the membrane influence several cellular processes, 

thus suggesting that the lipids are not only structural components, but they also have a 

dynamic role in cell function [20, 21]. A key factor affecting the physicochemical 

properties of the membrane is the type of fatty acid moieties that are present to the 

phospholipid molecules [22]. The fluidity of the hydrophobic domains of the phospholipids 

is a function of the fatty acid chain structure and temperature [23], as depicted in Figure 

1.3. At a given temperature the fluidity of the hydrocarbon core of the membrane bilayer 

increases with higher content of unsaturated alkyl chain or with smaller alkyl chain length. 

Most phospholipid molecules have one cis-unsaturated fatty acyl chain, which enables 

them fluid at room temperature. Higher temperature leads to increased mobility of the fatty 

acid chains, which in turn increases the fluidity and the space occupied by the hydrophobic 

domain of lipids. 

 

 

Figure 1.3: The structure of fatty acid chain influences the membrane fluidity. Saturated fatty acids 

form a more rigid and less fluid lipid bilayer due to the tight packing of the straight chains. The 

double bonds of unsaturated fatty acids create a bend in the fatty acid tail, thus leading to increased 

membrane fluidity. Modified from Jich et al. (2010) [24]. 

 

1.1.2 Membrane fatty acids 

As mentioned above the major building block of membrane assembly is the phospholipid 

molecule whose hydrophobic tail contains usually two long fatty acid chains. The fatty 

acids (FA) are aliphatic chains with a carboxylic acid group (-COOH) at the end of the 

chain. Fatty acids naturally occurring in phospholipids commonly have a chain of 14 to 24 

carbons (usually unbranched and even-numbered), which may be saturated or unsaturated. 
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Odd-numbered fatty acids are most frequent in bacteria and lower plants or animals [25]. 

In eukaryotes, the fatty acid chains are esterified to the positions C1 and C2 of the L-

glycerol, as depicted in Figure 1.2. The acyl chain can vary in length and degree of 

unsaturation, thus affecting the properties of each moiety. 

 

1.1.2.1 Nomenclature 

For the precise description of a fatty acid molecule, the length of the alkyl chain, the number 

of double bonds and their exact position along the hydrocarbon chain must be defined. The 

exact annotation suggests the biological reactivity of each fatty acid moiety as well as of 

the lipid-containing the specific fatty acid molecule. There are several different naming 

systems used for the fatty acids [26, 27]. Amongst them are: 

Trivial nomenclature 

It involves the use of non-systematic historical names which are commonly used in 

literature. Most of the common FA have trivial names in addition to their systematic names. 

Trivial names do not contain any pattern or clue to the structure and they typically derive 

from a common source of the compound or the source from which it was originally isolated.  

Systematic nomenclature 

The systematic (or IUPAC) names follow the nomenclature rules of the International Union 

of Pure and Applied Chemistry. In the IUPAC system, carbon atoms numbering starts from 

the carboxylic acid end and the rest positions in the chain are denoted with reference to it. 

Double bonds are labelled with cis-/trans- or E-/Z- notation, respectively. These names 

describe the structures in detail and give a clear description of the FA chains. The 

systematic name used for a fatty acid is derived from the name of its parent aliphatic chain 

by substituting the suffix -e with -oic. For example, the C18 saturated fatty acid is called 

octadecanoic acid since its parent hydrocarbon is the octadecane. The C18 fatty acids that 

have one, two and three double bonds are named octadecenoic, octadecadienoic and 

octadecatrienoic acid, respectively. In the case of ionized or esterified fatty acids, it is more 

suitable to name them according to their carboxylate form: for instance, stearate or 

octadecanoate, instead of stearic or octadecanoic. 
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Shorthand nomenclature 

This is another systematic way of naming the fatty acids. It is a carboxyl-reference system 

that indicates the number of carbons, the number of double bonds and the positions of the 

double bonds, counting from the carboxyl carbon (which is numbered 1, as in the IUPAC 

system). Lipid names take the form C:D, where C is the number of carbon atoms and D is 

the number of double bonds in the FA. For example, the notation 18:0 denotes a C18 fatty 

acid with no double bonds, whereas 18:2 signifies that there are two double bonds. This 

notation is sometimes puzzling since different FA can have the same shorthand 

nomenclature, like positional or geometrical isomers. Consequently, it is usually paired 

with an ∆x term, where x is a number representing the position of the double bond (xth 

carbon-carbon bond), counting from the carboxylic acid end. Each double bond is preceded 

by a cis-/trans- notation, indicating the configuration of the molecule around this bond. For 

instance, cis-Δ9 stands for a cis double bond between the carbon atoms 9 and 10; trans-Δ5 

stands for a trans double bond between carbon atoms 5 and 6. 

omega-reference system 

The omega-x (ω−x or n-x) nomenclature does not provide names for individual 

compounds. It is applied when double bonds are present and indicates the position of the 

double bond closest to the omega carbon, which is numbered 1 in this case. According to 

the "omega nomenclature", as omega carbon is designated the terminal methyl carbon. This 

system is useful for the categorization of FA by their physiological properties since there 

are significant differences between omega-3 and omega-6 counterparts. For example, 

linoleic acid is classified as a ω−6 or omega-6 FA, and so it shares some properties with 

other members of the ω-6 family. The omega position of the first double bond is also 

helpful to avoid confusion in case of positional isomers (fatty acids differing just in the 

position of double bonds). Sometimes, the shorthand nomenclature contains the positioning 

of the first double bond from the omega end written in parenthesis, instead of the ∆x term.  
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Table 1.1: List of main fatty acids naturally present in eukaryotic membranes, described by their 

shorthand, trivial and systematic nomenclature and their omega annotation. The melting point for 

each FA is also reported (values retrieved from https://pubchem.ncbi.nlm.nih.gov); na: not 

available. 

C:D 
Trivial name 

(x-acid) 

IUPAC name 

(x-acid) 
ω-n 

Melting 

point (°) 

Saturated Fatty Acids 

14:0 Myristic Tetradecanoic / 53.9 

16:0 Palmitic Hexadecanoic / 61.8 ­ 63 

18:0 Stearic Octadecanoic / 68.8 - 72 

20:0 Arachidic Eicosanoic / 75.4 

Monounsaturated Fatty Acids 

16:1 Sapienic 6Z-hexadecenoic ω-10 na 

16:1 Palmitoleic 9Z-hexadecenoic ω-7 -0.1 

18:1 Oleic 9Z-octadecenoic ω-9 13.4 – 16.3 

18:1 Vaccenic 11Z-octadecenoic ω-7 39 

20:1 Gondoic 11Z-eicosenoic ω-9 na 

Polyunsaturated Fatty Acids 

18:2 Linoleic 9Z,12Z-octadecadienoic ω-6 -8.5 

18:3 α-Linolenic 9Z,12Z,15Z-octadecatrienoic ω-3 -16.5 

18:3 γ-Linolenic 6Ζ,9Ζ,12Ζ-octadecatrienoic ω-6 -11 

20:3 Dihomo-γ-linolenic 8Z,11Z,14Z-eicosatrienoic ω-6 na 

20:4 Arachidonic 5Z,8Z,11Z,14Z-eicosatetraenoic ω-6 -49 

20:5 EPA 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic ω-3 -54 

22:5 DPA 7Z,10Z,13Z,16Z,19Z-docosapentaenoic ω-3 na 

22:6 DHA 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic ω-3 -44 

 

 

1.1.2.2 Classification 

In general, fatty acids can be divided according to a) the chain length into short (C2-8), 

medium (C8-10) and long (>C12), b) the degree of saturation into saturated and 

unsaturated, c) the biological value into essential and non-essential and d) the chain 

structure into aliphatic, branched and cyclic. Membrane fatty acids, which consist the 

hydrophobic domain of phospholipids, contain long aliphatic alkyl chains, with an even 

number of carbon atoms, typically atom ranging between 14 and 24. For this reason, further 

description of fatty acid classification in this chapter will concern only their saturation 

degree and their biological significance. 
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The hydrocarbon chain of membrane fatty acids can vary in the number of double bonds 

and thus be classified into saturated or unsaturated. The differences between saturated and 

unsaturated fatty acids, as well as the variation in geometry of unsaturated FA, determine 

the properties of membrane structure, thus influencing its microdomain organization and 

altering numerous cellular processes [21, 28]. 

Saturated fatty acids 

Saturated fatty acids (SFA) do not contain any double bond along the alkyl chain. The term 

‘saturated’ is used because all the carbon atoms contain as many hydrogen atoms as 

possible. The general formula of SFA is CH3(CH2)nCOOH. The lack of any double bonds 

or other functional groups enable these fatty acids to be nearly chemically inert and thus 

subject to drastic chemical conditions, such as temperature and oxidation. In Figure 1.3, 

the structures of two representative members of the SFA family are depicted. 

 

 

Figure 1.3: Molecular structure of representative members of saturated fatty acids (SFA) family. 

Palmitic (16:0) and stearic (18:0) acid are characterized by straight chains that differ in length by 

two carbon atoms. 

 

 Palmitic (16:0) and stearic (18:0) acid are the two most commonly occurring SFA. As 

shown in Table 1.1, the long SFA are characterized by high melting points, which means 

that they are in the solid state at room temperature. This physicochemical behavior is a 

consequence of their molecular structure (straight shape chains) that contributes to the high 

packing of SFA in phospholipid bilayer. 
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Unsaturated fatty acids 

The hydrocarbon chain of unsaturated fatty acids (UFA) may contain one or more double 

bonds. Unsaturated fatty acids exhibit the positional and geometrical isomerism at the 

double bonds, which are characterized by cis-configuration in the majority of naturally 

occurring UFA. According to the number of double bonds, the unsaturated fatty acids can 

be further divided into mono- and polyunsaturated FA. 

• Monounsaturated Fatty acids (MUFA) 

Monounsaturated FA contain only one double bond along the alkyl chain. The 

general formula of MUFA is CH3(CH2)xCH=CH(CH2)yCOOH. The position of the 

unique double bond can vary a lot. The presence of the double bond increases the 

FA fluidity since a double bond in the cis configuration provokes a bend in the alkyl 

chain, as shown in Figure 1.4. This bending leads to a total spatial width of 0.72 nm 

for a cis-MUFA compared to the 0.32 nm one that characterizes the saturated 

structures. 

 

 

Figure 1.4: Molecular structure of representative members of monounsaturated fatty acids 

(MUFA) family. The formation of a double bond in Δ9 position creates a bend to the chain 

of palmitoleic (16:1-c9) and oleic (18:1-c9) acid. 

 

Unlike the SFA that have the tendency to pack in a membrane structure, MUFA 

cause a higher molecular disorder due to their three dimensional shape. As a 

consequence, their presence in membrane assembly influences its fluidity and 

permeability [28]. MUFA have a lower melting temperature than SFA and they are 

in liquid state at normal temperature and semisolid or solid when refrigerated. 

Amongst the most common MUFA members are the palmitoleic acid (16:1,cis-∆9), 

oleic acid (18:1,cis-∆9) and vaccenic acid (18:1,cis-∆11). 
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• Polyunsaturated Fatty acids (PUFA) 

Polyunsaturated FA contain two or more cis double bonds, which are usually 

separated from each other by a single methylene group (methylene-interrupted 

unsaturation) and have the general formula -C-C=C-C-C=C-. PUFA, as unsaturated 

fatty acids, have a more extended shape than SFA due to the presence of double 

bonds that increase the bending of the hydrocarbon chains. Therefore, PUFA have 

significantly lower melting points compared to other FA families, as presented in 

Table 1.1. PUFAs are important structural components and contribute to membrane 

fluidity and selective permeability [29]. The higher the degree of unsaturation in 

FA (more double bonds), the more susceptible they are to lipid peroxidation, 

whereas UFA can be protected from lipid peroxidation by antioxidants [30, 31]. 

Polyunsaturated fatty acids are usually divided into omega-6 (ω-6) and omega-3 

(ω-3) series, based on the distance between the final methyl group and the closest 

double bond in the chain. Thus, starting the numbering from the omega carbon, the 

first double bond is at the position C6 and C3 for the ω6 and ω3 family, respectively. 

Figure 1.5 shows the molecular structure of representative members of each PUFA 

family.  

 

 



Introduction 

 

12 
 

Figure 1.5: Molecular structure of representative members of polyunsaturated fatty acids 

(PUFA) family. PUFA have an extended shape due to the multiple double bonds and are 

generally divided into omega-6 and omega-3, based on the distance between the final 

methyl group and the closest double bond in the chain. 

 

Geometrical isomerization 

The double bond in unsaturated fatty acids can be either in cis or trans configuration (Z- or 

E-, respectively, according to IUPAC notation). In the cis configuration the two alkyl 

groups (R1 and R2) are on the same side of the double bond, where in trans geometry they 

are on the opposite sides (Figure 1.6). In eukaryotes, the double bond of unsaturated fatty 

acids has prevalently cis geometry. During fatty acid biosynthesis, the insertion of cis 

double bonds is catalyzed by desaturases, which act in a regioselective and stereospecific 

way [32]. The trans geometry is not naturally present since these eukaryotic enzymes are 

not capable to form trans double bonds or catalyze their cis-trans isomerization. The loss 

of the natural cis geometry changes dramatically the molecular shape of the fatty acid chain, 

thus affecting several membrane properties, such as the diameter, fluidity and permeability 

[33, 34]. For instance, elaidic acid (9trans-18:1), which is the geometrical isomer of oleic 

acid (9cis-18:1), is characterized by linear alkyl chain instead of the typical bending 

structure of MUFA, as shown in Figure 1.6.  

 

 

Figure 1.6: Example of geometrical cis-trans isomerization in fatty acids. The configuration of the 

double bond influences the shape of the alkyl chain; cis geometry produces a kink in the molecule, 

while trans geometry favors a linear carbon chain. 

 

Trans fatty acids (TFA) usually originate from processed food products (deodorized or 

partially hydrogenated) [35, 36]. Another dietary source of TFA is the consumption of dairy 

products and meat due to the microbial biohydrogenation that takes place in the stomach 
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of ruminants [37]. Contrary to eukaryotes, some Gram-negative bacteria have the ability of 

endogenous  cis–trans isomerization  as a response to environmental stress conditions [38]. 

In eukaryotic cells, the conversion of the natural cis fatty acids to their trans isomers may 

occur endogenously under stress condition and involves a thiyl radical catalytic mechanism 

[39-41]. 

 

1.1.2.3 Biosynthetic vs essential fatty acids 

Mammals can synthesize saturated and monounsaturated fatty acids, but they are unable to 

synthesize FA containing more than one double bond (PUFA). Indeed, they lack the 

enzyme system that is responsible for the introduction of a double bond in a 

monounsaturated alkyl chain. Consequently, the fatty acids not being synthesized by the 

organism should be supplied through diet and are known as essential or semi-essential FA.  

 

De novo biosynthesis 

In adult humans, the de novo synthesis of fatty acids is taking place mainly in the liver, 

adipose tissue and lactating breast [42]. The fatty acids that contain up to 16 carbon atoms 

are synthesized by the fatty acid synthase (FAS). FAS is a cytoplasmic enzyme that is 

composed of two similar subunits (~250 kDa each) and acts as a multifunctional complex. 

It is characterized by seven different enzymatic activities within two catalytic centers. Fatty 

acid synthesis by FAS is initiated by the condensation of an acetyl-CoA and malonyl-CoA 

molecule, while NADPH serves as the reductant in this process. The addition of a two 

carbon-unit from malonyl-CoA is repeated seven times in a cyclic manner, thus leading 

eventually to the production of the saturated C16 fatty acid (palmitic acid) [43-45]. Due to 

the mechanism of their de novo biosynthesis, most of the natural FA have an even number 

of carbon atoms. The palmitic acid is the starting point for the biosynthesis of other fatty 

acids, which is catalyzed by a set of microsomal enzymes generating modified alkyl chains; 

elongated or desaturated ones (see Figure 1.7). The fatty acids produced by FAS, as well 

as those originated from the diet, can be further elongated into very-long chain fatty acids 

(VLCFA) containing more than 18 carbon atoms. The overall elongation reaction takes 

place mainly in the endoplasmic reticulum (ER) by four membrane-bound enzymes. The 

enzymatic steps involved in this process are similar to the synthesis of palmitate since 
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malonyl‐CoA and NADPH are respectively used as an intermediate and reductant. The 

proteins performing the successive steps of VLCFA extension are individual molecules, 

which could be physically associated, contrary to the FAS multi-enzyme complex [46, 47]. 

Three of the four enzymatic activities in VLCFA elongation are localized to the 

cytoplasmic side of ER membranes, while the enzyme performing the third step is 

suggested to be embedded in the membrane [48].  In humans, seven enzymes (ELOVL 1–

7) have been identified with the ability to elongate the >16C fatty acid chains into VLCFA 

[49]. Despite the capability of all the seven elongation enzymes to catalyze the 

condensation reaction in the elongation cycle, they are characterized by differential 

substrate specificity and tissue distribution [50]. In addition, palmitate and other long FA 

can be further processed by acyl-CoA desaturases that can modify the structure and 

properties of long-chain fatty acids by introducing a double bond at a specific position on 

the acyl chain [51]. An ER-bound enzymatic complex including NADH-cytochrome b5 

reductase, cytochrome b5 and a desaturase catalyzes the desaturation. These enzymes use 

molecular oxygen, as an electron acceptor, while in this case the NADH is the reducing 

agent. [52-54]. Mammalian cells express three different desaturases that are generally 

divided into two distinct families: stearoyl-CoA desaturases (SCDs) [55] and fatty acid 

desaturases (FADS) [56]. Human desaturases catalyze the introduction of a double bond at 

specific positions (Δ9, Δ6 and Δ5) into the saturated fatty acyl-CoA chain. SCDs, also 

known as Δ9 desaturases, catalyze the insertion of a single double bond at the carbon C9 

(counting from the carboxylic acid group). The oleic and palmitoleic acids are the main 

products of SCDs synthesized by the desaturation of the SFA stearic and palmitic, 

respectively. In humans, two SCD isoforms (SCD1 and SCD5) have been identified, with 

the SCD1 being the most commonly expressed among tissues [57]. FADS1 and FADS2, 

which respectively have Δ5- and Δ6-desaturase activities are mainly involved in the PUFA 

biosynthetic pathways, as described later in this paragraph. However, FADS2 can 

potentially also act on palmitic forming the sapienic acid (cis-6 hexadecenoic), which is 

reported to be the most abundant fatty acid in human sebum [58]. The formed MUFA may 

undergo further elongation by the previously-mentioned elongation system. For example, 

palmitoleic (C16-Δ9) can be converted to the cis-vaccenic (C18-Δ11) and oleic (C18-Δ9) 

to gondoic acid (C20-Δ11). Consequently, this chain extension ‘shifts’ the position of the 

double bond by two carbon atoms, since the elongation occurs in the carboxyl terminus. 

Finally, it is worth mentioning that the intracellular fatty acid pool is enriched not only by 
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the endogenously synthetized FA but also by those obtained through the dietary habits of 

each individual.  

 

 

Figure 1.7: The biosynthesis pathways of SFA and MUFA family. Palmitic acid is synthesized by 

recurring reactions catalyzed by the enzymatic complex FAS. Elongases (elo) or desaturases 

(des6/9) can further modify the alkyl chain of palmitic acid and its downstream products.  SFA: 

saturated fatty acids; MUFA: monounsaturated fatty acids; FAS: fatty acid synthase. 

 

Essential fatty acids 

Despite their ability to synthesize saturated and monounsaturated fatty acids, animals are 

not capable to produce de novo polyunsaturated FA because they lack the required enzyme 

system that further desaturases oleic acid (18:1-Δ9) into linoleic acid (LA, 18:2-ω6) and α-

linolenic acid (ALA, 18:3-ω3) [59]. Therefore, these two PUFA moieties are considered as 

dietary essential fatty acids as they cannot be endogenously synthesized. However, they 
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themselves or their metabolic derivatives play an important role in human health and 

development by being involved in numerous biological functions [60, 61]. For instance, 

arachidonic acid (20:4-ω6), a metabolic derivative of linoleic acid, is the precursor 

molecule for the synthesis of prostaglandins by the cyclooxygenase enzyme system and 

leukotrienes by the lipoxygenase pathway in leucocytes [62]. The other members of PUFA 

family can be provided either through the dietary intake or synthesized from the 

nutritionally essential fatty acids (LA and ALA). LA and ALA are the starting points of 

PUFA biosynthesis in humans and can be further modified by the activity of desaturases 

and elongases, as depicted in Figure 1.8 [63]. As previously mentioned, PUFA can be 

divided into the omega-6 and omega-3 families, based on the position of the double bond 

closest to the methyl end of the alkyl chain. The precursors of these families (LA for ω-6 

and ALA for ω-3) can be transformed to more highly unsaturated FA by a series of common 

elongation and desaturation reactions in ER [64]. FADS1, FADS2 are the key desaturases 

in PUFA biosynthesis. For example, arachidonic acid (ARA), a long-chain ω-6 PUFA, is 

synthesized from LA, through the following successive reaction steps: the addition of a 

double bond by Δ6-desaturase to form γ-linolenic acid (GLA, 18:3-ω6), the elongation of 

GLA to form dihomo-γ-linolenic acid (DGLA, 20:3-ω6) and finally the addition of another 

double bond by Δ5-desaturase to form eicosatetraenoic acid (ARA, 20:4-ω6) [65]. Similar 

desaturation and elongation steps are utilized for the formation of eicosapentaenoic acid 

(EPA, 20:5-ω3), a member of omega-3 family. In higher eukaryotes for the synthesis of 

DHA, a downstream derivative of EPA, the latter is elongated to DPA-ω3 which is further 

elongated into tetracosapentaenoic acid (TPA, C24:5-ω3) and then TPA is desaturated to 

form ω3-tetracosahexaenoic acid (THA, C24:6-ω3) by a Δ6-desaturase. Finally, the THA 

undergoes beta-oxidation in peroxisomes to form the DHA-ω3 [66, 67]. On the contrary, 

lower eukaryotes are able to elongate the EPA-ω3 into DPA-ω3 and then desaturate the 

latter into DHA-ω3 by the Δ4-desaturase, an enzyme that is not present in mammals [68]. 

PUFA family members, such as ARA and DHA are considered as semi-essential fatty 

acids, since they can be synthesized endogenously by their precursors (LA or ALA). Semi-

essential FA turn into essential ones in case their precursors are missing from the diet. 

Interestingly, in vitro studies in glioma cells have shown that the occurrence of double 

bonds with trans configuration in PUFA influences the metabolic fate of the latter by 

affecting the processes of desaturation and elongation in the fatty acid chain [69, 70]. 
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Figure 1.8: PUFA biosynthesis in mammals. Linoleic (LA) and α-linolenic (ALA) acids are 

respectively the precursors of omega-6 and omega-3 family. LA and ALA are further converted to 

long chain fatty acids using a series of desaturation and elongation reactions in the endoplasmic 

reticulum. The final products of omega-6 and omega-3 biosynthetic pathways, DPA-ω6 and DHA-

ω3, respectively, are formed by β-oxidation in peroxisomes. Modified from Lauritzen et al. (2001) 

[71]. elo: elongase, des5/6: Δ5-/6-desaturase. 
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1.1.3 Membrane role in cell proliferation and survival related signaling 

 

Membrane lipids can affect both the 3D structure and the function of membrane-associated 

protein molecules through the protein-lipid interactions and the lipids’ self-association 

properties. The chemical and structural characteristics of phospholipids, such as the type 

of polar head, the alkyl chain length and unsaturation degree, can influence the specific 

protein-lipid interactions. Moreover, the lipids organization within the membrane assembly 

plays an important role regarding several of its properties, such as its fluidity, thickness 

and packing, also affecting the function of membrane proteins [19]. 

Besides serving as the building blocks of cellular membranes, fatty acids also contribute to 

the modulation of intracellular signaling pathways related to cell proliferation and survival 

[72]. Diverse external stimuli can induce the hydrolysis of sphingolipids or 

glycerophospholipids and lead to the formation of biologically active lipids, which can 

function as second messengers in the regulation of cell viability, mobility and inflammation 

[73]. Such examples of messenger lipids are the sphingosine 1-phosphate (S1P), lyso-

phosphatidic acid (LPA), inositol-trisphosphate (IP3) and DAGs, amongst others [74, 75]. 

The lipid signaling molecules can either get easily released from the membrane and act 

through membrane-related receptors [76], or can remain in the membrane and recruit 

cytosolic proteins [77]. LPA can also be formed extracellularly by the secreted 

phospholipase A2 (PLA2) or the lysophospholipase autotaxin (ATX), thus exerting both 

autocrine and paracrine signals [73, 78]. Since the membrane remodeling process, known 

as Lands’ cycle [79] takes place constantly, the composition of the intracellular lipid pool 

influences the phospholipids turnover and their fatty acid content. LPA contains one acyl 

chain that can belong to any family SFA, MUFA or PUFA, with the palmitoyl group (16:0-

LPA) being the most prevalent [78]. However, the acyl chain’s length and the unsaturation 

degree have been reported to affect the affinity of LPA receptor and its ligand [80], while 

only unsaturated FA containing-LPA was able to induce chemotaxis of immature dendritic 

cells [81]. 

The biological properties of the individual FA moieties also play significant role in the fatty 

acylation of proteins, such as the N‐myristoylation and S‐palmitoylation.  Fatty acylation 

is a post-translational modification regulating protein function (protein-protein and protein-

lipid interactions) as well as its intracellular trafficking and localization [82]. A profound 

example is the WNT proteins, which participate in the development and tissue homeostasis 
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related signaling [83]. The optimal function of WNT proteins requires their post-

translational S-palmitoleoylation by the membrane-bound O-acyltransferase porcupine 

[84]. Interestingly, β-catenin, a downstream transcriptional factor of Wnt pathway, is 

protected from proteasomal degradation by unsaturated fatty acids [85]. 

PUFAs also serve as precursors for the eicosanoid synthesis [62]. Eicosanoids are lipid 

mediators that regulate a wide range of physiological processes [86, 87] and therefore have 

profound effects on various pathological conditions [88]. In particular, ARA and EPA are 

released from cell membrane by phospholipases (mainly cPLA2) and then serve as the 

substrates of cyclooxygenase 1 (COX1) and lipoxygenase1 (LOX1). COX and LOX 

enzymes are responsible for the synthesis of prostaglandins and leukotrienes, respectively 

[89]. Eicosanoids usually interact with plasma or nuclear membrane receptors and are key 

effector molecules in inflammation, autoimmunity and cancer [89, 90]. Furthermore, the 

release of ω-6 PUFA from membrane favors the activation of signaling pathways related 

to cell proliferation and apoptosis [91, 92]. 

Finally, cardiolipin is a dimeric phospholipid in the inner mitochondrial membrane that 

undergoes continuous remodeling. Its participation in signaling platforms during the 

induction of apoptosis has been indicated by influencing the activity of the pro-apoptotic 

Bcl-2 proteins as well as the autoprocessing of caspase-8 [93]. Cardiolipin’s acyl chain 

composition is known to affect several aspects of mitochondrial function. In particular, the 

binding of cytochrome c in the inner mitochondrial membrane is influenced by the 

characteristics (length and saturation level) and oxidative state of cardiolipin’s acyl chains 

[94].  
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Figure 1.9: Examples of fatty acids’ multifaceted contribution to intracellular signaling processes 

and regulation of apoptosis; (a) Mitochondrial membrane composition affects the sensitivity to 

apoptotic signals; (b) Acylation of WNT protein triggers its secretion and thus activates the 

WNT˗β-catenin pathway; (c) Extracellular phospholipase autotaxin (ATX) releases 

lysophosphatidic acid (LPA) facilitating the autocrine signalling through LPA receptors (LPARs). 

Activation of the AKT signaling through the production of the second messengers PIP3 

(phosphatidylinositol-3,4,5-trisphosphate); (d) Arachidonic acid serves as the substrate for 

prostaglandin E2 production leading to the regulation of inflammation and immune response. 

Modified from Röhrig F. et al. (2016) [72] 

 

 

1.2 Membrane lipidome in cancer  

Metabolic reprogramming is an established hallmark of cancer that facilitates tumor growth 

[95, 96]. The deregulation of cellular metabolism and the acquisition of new metabolic 

features enable the cancer cells to sustain the continuous cellular growth and proliferation 

and effectively support their dissemination [97]. Cancer metabolic modifications include 

altered glucose metabolism, enhanced pentose phosphate pathway, elevated amino acid and 

lipid metabolism, increased mitochondrial biogenesis and macromolecules biosynthesis, 

amongst others [98-100]. Cancer cells are characterized by increased lipid metabolism due 
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to their elevated proliferation rate [101]. Lipids are the major building blocks of membrane 

and play an important role in energy storage and cell signaling. Consequently, the actively 

proliferating tumor tissues require higher amounts of lipids to satisfy their structural and 

functional needs [102, 103]. 

 

1.2.1 Altered fatty acid synthesis in cancer 

Cancer development is characterized by a distinct lipid metabolism as well as a fatty acid 

one [95, 103]. It is well known that the transformation of membrane lipid composition 

affects its fluidity, permeability as well as membrane lipid-related signaling, and can give 

favorable signals for tumor growth, progression and metastasis [72, 96, 97]. Membrane 

remodeling is affected by the intracellular lipid pool, which depends on both the 

endogenous fatty acid biosynthesis and the dietary intake, especially for the essential 

polyunsaturated fatty acid (PUFA) supply. Thus, membrane fatty acid composition is 

influenced by a combination of stabilized nutritional conditions and metabolic status [104]. 

Tumor initiation and propagation are characterized by an altered activity of enzymes 

involved in lipid biosynthesis, such as fatty acid synthase (FASN) and desaturases (SCD1, 

FADS1, FADS2). Indeed, together with the corresponding fatty acids, the increased 

enzymatic activities are pointed as significant markers of tumor presence and growth [42, 

72, 105, 106]. 

Fatty acid synthase (FASN) is the major lipogenic enzyme in humans since it is responsible 

for the de novo fatty acid synthesis. The upregulation of the endogenous fatty acid 

production has been reported by numerous studies [102, 103]. More particularly, 

overexpression and enhanced activity of FASN has been detected in various types of 

cancer, such as breast, ovarian, colorectal and prostate [42, 107, 108] [109-114]. 

Furthermore, elevated levels of FASN expression have been associated with poor prognosis 

and tumor aggressiveness [115-118]. Some studies support the hypothesis that the 

overexpression of Fasn gene may lead to neoplastic or malignant cell transformation by 

enhancing the lipogenesis along with increased cell growth and proliferation [119]. The 

expression of FASN is also elevated in proliferating fetal cells, thus suggesting that 

stimulated FASN activity might correspond to a less differentiated cell phenotype in tumor. 

[120]. Moreover, interaction between fatty acid synthase and human epidermal growth 

receptor 2 (HER2) in osteosarcoma cells has been reported [121]. FASN inhibition induces 
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programmed cell death in both in vitro and in vivo cancer models and suppresses the 

overexpression of the HER2/neu (erbB-2) oncogene and tyrosine-kinase activity in breast 

and ovarian cancer [122, 123]. FASN activity leads to the synthesis of the palmitic acid 

which besides its role in energy metabolism exerts pleiotropic effects on cellular function, 

as summarized in Figure 1.9 [42]. 

 

 

Figure 1.9: FASN-catalyzed synthesis of palmitic acid plays an important role in tumorigenesis. 

Palmitate is either incorporated in more complex lipid structures or conjugated to proteins. Its 

presence regulates the proper localization and function of several receptors that are involved in 

oncogenic signaling platforms. Modified from Jones et al. (2015) [124]. 

 

Palmitate can be incorporated to more complex lipids, such phospholipids, thus facilitating 

the membrane synthesis and cellular growth. In addition, it can be conjugated to proteins 

leading to their post-translational acylation, which in turn determines protein’s localization 

and function [84, 125]. Correlation between palmitic acid occurrence and the proper 

function of important oncogenic signaling platforms, like the PI3K/AKT/mTOR pathway,  

has also been reported [124]. 
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The significance of stearoyl-CoA (SCD1) in tumor development has also been thoroughly 

studied, since accumulation of monounsaturated fatty acids (MUFA) is a main feature in 

metabolic deregulation [126-129]. Being a key enzyme in lipogenesis regulation and 

responsible for MUFA synthesis, SCD1 activity supports the rapid cell growth and 

proliferation in cancer [42]. Furthermore, it contributes to the evasion of apoptosis, as well 

as to the tumor cell initiation and transformation, since it is involved in intracellular 

signaling, such as the PI3K-Akt and AMPK pathway [128, 130, 131]. Several studies have 

reported elevated expression levels of SCD1 desaturase in diverse types of cancer, such as 

breast, lung and prostate [132-136]. Inhibition of SCD1 activity not only reduces lipid 

biosynthesis, but also blocks cell cycle progression and induces cell apoptosis [137, 138]. 

On the contrary, dietary supplementation with oleic or palmitoleic, which are the metabolic 

products of SCD1, reversed cell proliferation blockage and restored intracellular lipids 

[137]. Examination of the mechanisms accompanying SCD1-mediated cancer progression 

by Chen et al. revealed a crosstalk between upregulated ceramide biosynthesis and SCD1 

inhibition in in vivo models of colorectal cancer [126]. Aiming at revealing the mechanisms 

underlying the cancer stemness, Noto et al. proved that SCD1 interacts with the Hippo 

signaling pathway. In particularly, it regulates the activity of YAP and TAZ through the 

Wnt/β-catenin pathway, thus contributing to the propagation of lung cancer stem cells 

[127]. Spheroids formed in primary cell cultures derived from lung adenocarcinoma 

patients express higher levels of SCD1 in comparison to the adherent cells [128]. In line 

with these findings, higher levels of unsaturated lipids were detected in ovarian cancer stem 

cells compared to non-stem cancer cells and were positively correlated with in vitro sphere 

formation efficacy and in vivo tumor initiation [128, 139]. Desaturases expression is 

controlled by the nuclear factor kappaB (NF-kB) and in turn their activity affects the NF-

kB pathway [139]. Moreover, Zhang et al. showed that the epidermal growth factor 

receptor (EGFR) binds and phosphorylates the SCD1 at Y55. This EGFR kinase activity is 

proved to be important for SCD1’s protein stability, intracellular MUFA levels and lung 

cancer growth [129]. The same group also proved a positive correlation between EGFR 

activation, SCD1 protein expression, SCD1 Y55 phosphorylation and poor patient 

prognosis in patients with non-small cell lung cancer [129]. High levels of SCD1 

expression have also been correlated with low overall survival in breast cancer and 

hepatocellular carcinoma patients [140, 141]. Overall, stearoyl-CoA desaturase-1 has been 

characterized as a central regulator in the orchestration of the complex metabolic and 

signaling events that govern cancer cells [131, 142]. Igal RA has reviewed numerous 
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experimental, clinical and epidemiological data on the role of SCD1 activity in tumor 

phenotype and has hypothesized a model for its implication in cancer, as presented in 

Figure 1.10.  

 

 

 

Figure 1.10: A hypothetical mechanism for the crosstalk between oncogenic signals and metabolic 

pathways controlled by SCD1 in cancer onset and progression. MUFA, monounsaturated fatty 

acids; SFA, saturated fatty acids; SCD, Stearoyl-CoA Desaturase. Modified from Igal RA (2016). 

 

According to this hypothesis, SCD1 may regulate important signaling pathways that are 

involved in the survival and proliferation of tumor cells and supports the concept of the 

dynamic interplay between oncogenic signals and metabolic pathways. The enhanced 

desaturase activity leads to increased MUFA to SFA ratio in plasma membrane, thus 

influencing the fluidity of non-raft microdomains. These relatively more fluid membrane 

microdomains may favor the oncogenic transformation through the modulation of signaling 

platforms, such as the PI3K/Akt, mTORC, AMPK and Wnt pathways [143-146]. In 

addition, the conversion of SFA into MUFA by the SCD1 might have a protective impact 

on cancer cells by preventing lipotoxicity events caused by SFA excess that would lead to 

cell stress response and the consequent programmed cell death [147, 148]. 
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Other enzymes, involved in endogenous FA biosynthesis, have been reported to be 

important in tumorigenesis. For instance, the ATP citrate lyase (ACLY), which is activated 

by Akt, has been proved to be crucial for tumor development and progression in in vitro 

and in vivo studies [149, 150]. The acetyl-CoA carboxylase (ACC) induces cancer growth 

in prostate cancer cells [151]. Furthermore, the sterol regulatory element-binding proteins 

(SREBPs), which are transcription factors controlling the expression of genes involved in 

FA synthesis, are overexpressed in cancer [42, 152]. Both SREBP and ACC are suppressed 

by AMPK [153]. Finally, cancer cells form more lipid droplets than normal cells [154]. 

Finally, it is worth noting that fatty acid synthesis in cancer cells is mainly regulated 

through hormones or oncogene signaling, and not by the diet like in the case of lipogenic 

tissues. Although cancer cells are able to incorporate exogenous fatty acids, they are 

characterized by a highly active de novo fatty acid biosynthesis. This increased FA 

production could be attributed to the limited availability of nutrients in tumor 

microenvironment.  

 

1.2.2 Fatty acid composition of tumor patients’ erythrocytes 

As described previously, the fatty acids exert multifaceted roles on the development and 

progression of cancer [72]. In this regard, several studies have examined the association 

between the fatty acid composition in human tissues and the risk of tumor occurrence [133, 

155, 156]. The families of SFA and MUFA may be considered as markers of FA metabolic 

turnover, since they are endogenously synthesized. On the other hand, PUFA could 

represent the dietary FA intake since they are either essential or semi-essential lipid species 

[104]. Being an easily withdrawn human tissue, blood has been often examined for its fatty 

acid composition. The Table 1.2. summarizes the results of studies analyzing the 

correlation between RBC membrane FA content and tumor risk. Although some 

controversies arised among the reported findings, some trends can be presumed in the FA 

composition of erythrocyte’s phospholipids and cancer risk. Increased levels of oleic, SFA 

and omega-6 PUFA content show a positive correlation with tumor occurrence. In contrast, 

EPA, DHA and total omega-3 PUFA content are inversely associated to cancer risk. 

 



Introduction 

 

26 
 

Table 1.2: Summary of published studies examining the association between fatty acid composition 

in erythrocyte’s membrane and tumor risk. DGLA, dihomo-γ-linolenic acid; DHA, 

docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acids; GLA, γ-linolenic acid; LA, 

linoleic acid; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, 

saturated fatty acids. 

Cancer 

type 

Positive 

correlation 

Negative 

correlation 
N 

Country/

State 
Reference 

Breast 
Oleic 

MUFA 

PUFA total 

SFA/MUFA 
71 Italy Pala et al. [157] 

Breast 

Palmitic 

Palmitoleic 

Vaccenic 

GLA  

EPA 

PUFA-ω3 

SFA/MUFA 

322 China Shannon et al. [158] 

Breast 
SFA 

SFA/PUFA-ω3 

EPA 

DHA 

PUFA-ω3 

103 Japan Kuriki et al. [159] 

Breast - 
LA 

Arachidonic 
46 Russia Zaridze et al. [160] 

Colorectal 

(adenoma) 

Oleic 

DGLA 

EPA 

DHA 
328 France Cottet et al. [161] 

Colorectal 

(adenoma) 
Arachidonic EPA 904 Tennessee Rifkin et al. [162] 

Colorectal - PUFA-ω3 13 Italy Coviello et al. [163] 

Colorectal 

Palmitic 

SFA 

SFA/PUFA 

Arachidonic 

DHA 

PUFA total 

74 Japan Kuriki et al. [164] 

Colorectal - EPA 61 Japan Okuno et al. [165] 

Gastric - 
DHA 

PUFA-ω3  
179 Japan Kuriki et al. [166] 

Gastro-

intestinal 

Stearic 

DHA 

PUFA-ω3 

Oleic 

LA 

MUFA 

50 China Lin et al. [167] 

Multiple 

myeloma 

SFA 

PUFA-ω6 

MUFA 

PUFA-ω3 

trans FA 

43 Poland Jurczyszyn et al. [168] 

Ocular 

melanoma 
- Stearic/Oleic 19 UK Aclimandos et al.[169] 

Skin SCC Arachidonic 
Palmitic 

Palmitoleic 
335 Arizona Harris et al. [170] 

Various Oleic Stearic 255 Kansas Mikirova et al. [171] 

Various - Stearic/Oleic 60 UK Wood et al. [172] 

 

A parallel analysis of breast tissue and erythrocytes FA composition of women with breast 

cancer indicated a positive association regarding the long-chain PUFA-ω3, while no 

significant correlation was revealed for their diet-derived precursor, alpha-linolenic acid 

[173]. Furthermore, the examination of the breast adipose tissue indicated that linoleic and 

arachidonic acid were increased in women with breast cancer compared to control group 

[174]. Another comparative study examined the differences on the tumor tissue’s FA 
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content between patients with metastatic and non-metastatic colorectal cancer [175]. 

Notarnicola et al. showed that metastatic patients were characterized by lower levels of 

EPA and higher percentages of GLA in tumor tissues. However, no significant differences 

were revealed in their RBC membrane profiles. Finally, both the white blood cells (WBC) 

and the red blood cells of chronic leukemia patients presented lower saturation indices 

(stearic:oleic) than controls [176]. Similarly reduced saturation index has been also found 

in malignant liver neoplasms [177]. 

 

1.2.3 Antineoplastic agents affecting membrane’s structure and properties 

Like other xenobiotics, several antineoplastic agents have been recently reported to 

influence the physical and functional properties of the plasma membrane, such as fluidity 

and composition [178-181]. The changes in plasma membrane characteristics trigger the 

activation of signaling pathways that in turn influence the cell fate [179]. Since 

chemotherapy-induced cell death is mediated via signaling through plasma membrane (e.g. 

lipid rafts involving the death receptor pathway), attention has been given to the changes 

that membranes undergo upon cellular death [178, 181]. Therefore, affecting the 

metabolism of plasma membrane’s building blocks might influence the tumor cellular 

growth and the related lipid signaling. For example, it has been reported that the regulated 

biosynthesis of SFA and MUFA can influence the biophysical properties of the tumor cell 

membrane and thus the signaling pathways related to cellular growth and survival [3, 182-

185]. 

Cisplatin, a common antitumoral drug, has been proven to induce membrane fluidification 

and clustering of lipid rafts and Fas death receptors in human colon cancer cells [186, 187]. 

All these effects were reversed in cisplatin treated cells when membrane-stabilizing agents 

were used, without affecting the drug uptake and its DNA cleavage efficacy [187]. In 

addition to altered membrane fluidity, cisplatin as well as gemcitabine treatment promoted 

the intracellular acidification through the inhibition of NHE1 (Na+/H+ membrane 

exchanger-1), which led to the aSMase (acid sphingomyelinase) activation and the 

subsequent ceramides formation [187-189]. Liang et al. demonstrated a positive 

association between membrane saturation degree and resistance to cisplatin treatment in 

lung adenocarcinoma cells [190]. Many chemotherapeutics, such as doxorubicin, 

tamoxifen and 3,6-dihydroxyflavone, have been also indicated to influence membrane’s 
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fluidity with consequent effects on their cytotoxicity [191-198]. Interestingly, a cross talk 

between chemical-induced cellular membrane effects and drug’s main mechanism has been 

suggested to be important for the final outcome of chemical exposure [180].  

Bleomycin is another widely known antineoplastic agent known to react with the 

membrane lipids [199-201]. Its therapeutic use is based, alike the famous cisplatin 

chemotherapy, on its ability to cleave DNA [202, 203]. However, such metallo-antibiotics 

mediate oxidation of other cellular molecules, such as lipid peroxidation [204, 205]. More 

specifically, bleomycin has been found to induce in vitro a profound membrane remodeling 

at the level of the fatty acid constituents, which includes an increase of saturated fatty acid 

(SFA) content with a parallel decrease of monounsaturated and polyunsaturated fatty acids 

(MUFA and PUFA) [199]. Furthermore, studies on liposomes made of SFA, MUFA and 

PUFA-containing phospholipids have shown the occurrence of lipid isomerization, as well 

as the PUFA consumption, under biomimetic conditions of free radical and oxidative stress 

[200]. Differential fatty acid distribution in phospholipids has been also observed in 

hepatocellular and colorectal cancer cells treated with non-toxic doses of 5-fluorouracil and 

doxorubicin. In particular, chemotherapeutics-treated cells showed lower levels of SFA and 

higher content of PUFA in both cell lines [206]. Modifications of the membrane structure 

have been reported in minerval (2-hydroxyoleic acid)-treated cells [207, 208]. Minerval is 

a potential antitumoral drug that, contrary to conventional strategies, serves as a 

membrane’s structure modifier by increasing the propensity of phospholipid bilayer to 

assemble into nonlamellar phases [208]. This reorganization leads to the localization of 

PKC (protein kinase C) to the membrane and subsequent cellular growth arrest through 

p21 activation [208]. Llado et al. proposed that minerval-induced membrane reorganization 

induces the aggregation of Fas death receptors, thus leading to the activation of the extrinsic 

pathway of programmed cell death [207]. 

 

1.2.4 Fatty acid supplementation in cancer prevention and co-adjuvant treatment 

According to the available epidemiological data, the elevated consumption of fish oil as 

well as the dietary PUFA-ω3 supplementation decrease the risk of various cancer types, 

such as breast, prostate, pancreatic and colorectal [209-213]. The low PUFA-ω3 to PUFA-

ω6 ratio has also been associated to increased cancer incidence [214]. On the contrary, a 

meta-analysis of numerous epidemiological studies, including 900,000 subjects, proved 
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that the high consumption of total, saturated and trans fatty acids increase ovarian risk 

[215]. Several in vitro and in vivo studies have been carried out aiming to elucidate the 

mechanisms underlying PUFA’s protective role against cancer [216, 217]. These 

mechanisms involve a big range of target molecules with various effects on cellular 

survival, proliferation and inflammation [218]. For instance, PUFA-ω3 supplementation 

alters the size and composition of membrane lipid rafts which in turn affects the function 

of lipid rafts proteins and the associated downstream signaling [219]. 

 

 

Figure 1.11: Hypothetical mechanisms for tumor promotion and suppression by PUFA-ω6 and 

PUFA-ω3, respectively. Dietary modulation of ω-6/ω-3 ratio may reduce the PLA2-catalyzed 

release of ARA and the production of the pro-inflammatory eicosanoids, that are involved in tumor 

initiation and progression. Modified from Larsson (2004) [218] 

 

More particularly, DHA exerts its anti-proliferative properties by inducing the ROS 

production and subsequent apoptosis, suppressing the Wnt/β-catenin pathway, and 

decreasing the production of pro-angiogenic factors in pancreatic cancer cells [220-222]. 

Hawkins et al. have proved a positive correlation between the number of double bonds and 

PUFA-induced apoptosis of leukemic and pancreatic cancer cells [223]. In the case of colon 
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cancer, dietary fish oil supplementation is accompanied by limited synthesis of secondary 

bile acids, which are implicated in the colon carcinogenesis and their levels have been 

found increased in tumor patients [224, 225]. Furthermore, animal models that received a 

PUFA- ω3 enriched diet showed lower activity of PLA2 and COX-2 in colonocytes, thus 

limiting the ARA release and prostaglandins synthesis, respectively [224, 226, 227]. 

PUFA-ω3 have also been proved to suppress the expression and activity of proteins that 

are involved in cell proliferation and apoptosis, such as the protein kinase C, Ras, Bcl-2 

and insulin-like growth factor-II in cell lines and animal models [217]. Based on the 

demonstrated protective effects of the essential PUFA-ω3 against cancer in animal and cell 

culture models and the fact that Western diet includes an unbalanced omega-6 to omega-3 

ratio, the clinical use of ω-3 supplementation for tumor prevention has been suggested 

[228-230]. 

Furthermore, the consumption of PUFA-ω3 has been proposed as a potential adjuvant and 

nutritional support for the cancer patients since they exhibit a particular metabolism and 

have specific nutritional requirements [231, 232]. FA administration (mainly EPA and 

DHA) aims at weight loss stabilization, limitation of side effects, nutritional status 

improvement, as well as enhancement of tumor treatment outcome [228]. As far as the 

pharmacological success is concerned, PUFA-ω3 have gained attention thanks to their 

effect on inflammatory and immune response [233]. Furthermore, dietary enrichment of 

PUFA-ω3 may reduce the proportion of PUFA-ω6 and limit the synthesis of the pro-

inflammatory eicosanoids [228]. DHA supplementation in breast cancer patients 

undergoing anthracycline treatment improved the overall survival and the side effects 

tolerance [234]. Lipid replacement therapy (LRT), as suggested by Nicolson, involves the 

use of membrane lipids along with antioxidants as food supplements to replace damaged 

lipids [235]. Cells have the ability of rapid membrane remodelling that gives them the 

opportunity to alter the phospholipid composition based on the intracellular FA pool [79]. 

Impaired lipids can originate from intracellular ROS reactivity and alter membrane 

properties, such as fluidity, thus impeding its proper function like ion exchange, transport, 

enzymatic activity [236]. The substitution of oxidatively damaged membrane lipids with 

unoxidized ones contributes to the repaired structure and function of cellular membranes. 

LRT has been proved efficient on patients with chronic fatigue and fibromyalgia syndrome 

[229, 237]. Colodny et al. conducted a clinical study that examined the efficacy of lipid 

replacement therapy on decreasing the chemotherapy-induced side effects. Human subjects 
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consumed Propax with NTFactor®, which is a commercially available food supplement 

that contains essential fatty acids and antioxidants, amongst others. Patients with advanced 

colon, pancreatic or rectal cancer that received Propax before and during chemotherapy 

demonstrated fewer incidences of fatigue, nausea and other quality life indicators [238].
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2. Materials and methods 

2.1 Materials 

2.1.1 Reagents 

Cu-TPMA-Phen was prepared by Fantoni N. et al. at School of Chemical Sciences, Dublin 

City University (DCU) according to published procedure [239]. Polymeric nanocontainers 

and encapsulated form of Cu-TPMA-Phen were prepared by Toniolo G. at the Institute of 

Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”. Cell viability was measured 

using the colorimetric CellTiter 96®Aqueous One Solution Cell Proliferation Assay 

(Promega). The CellTiter 96® Aqueous One Solution Reagent contains the tetrazolium 

compound 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2Htetrazolium (MTS), and an electron coupling reagent (1methoxy phenazine 

methosulfate—PMS). The activity of caspases -8, -9, -3/7 was evaluated using the 

luminescent assays Caspase-Glo™ 8 and Caspase-Glo™ 9 Caspase-Glo™3/7 (Promega 

Corporation, Fitchburg, Wisconsin, USA). Morphological membrane changes were 

detected using Annexin V-EGFP/PI detection kit (Biovision, Mt. View, CA, USA). The 

human neuroblastoma-derived NB100 cell line [20] and the MCF7 cell line (ATCC number 

HTB-22™) were from long term culture in the Department of Experimental, Diagnostic 

and Specialty Medicine, University of Bologna, IT. U87MG brain glioblastoma was 

obtained from the American Type Culture Collection (ATCC). RPMI 1640, Fetal Bovine 

Serum (FBS), L-Glutamine and penicillin-streptomycin solution were purchased from 

Sigma-Aldrich (San Louis, MO, USA). Trypsin/EDTA was from BioWhittaker Europe, 

Verviers, Belgium. Trypan blue (BioWhittaker, Vervies, Belgium) was used for the cell 

viability evaluation during standard cell seeding. Flasks and plates were from Falcon 

(Franklin Lakes, NJ, USA). All the other cell culture reagents were from Sigma-Aldrich. 

The water used was prepared by the device Milli-Q (Millipore, Milford, MA USA) and 

was acquired at a resistance value of 18 ΜΩ at the source. Silica TLC plates were purchased 

from Macherey-Nagel. Chloroform, n-hexane, methanol and phosphate buffer were 

purchased from Sigma-Aldrich (San Louis, MO, USA). All compounds were used without 

further purification. Other reagents used were from Merck (Darmstadt, Germany), Carlo 

Erba (Milano, Italy) and Sigma-Aldrich. 
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2.1.2 Instruments 

Cell viability was evaluated by measuring absorbance at 492 nm by a microtiter plate reader 

Multiskan EX (ThermoLabSystems, Basingstoke, UK). Phase contrast microscopy was 

carried out with a Wilovert Standard PH 20 (HUND, Wetzlar, Germany) and a digital 

camera from Motic Microscopes, China. Protein concentration and NADPH-cytochrome c 

reductase activity were measured by the spectrophotometer UVICON 860 (Kontron 

Instruments, Milano, IT). For the luminescence acquisition the luminometer Fluoroskan 

Ascent FL (Labsystem, FI) was used. Flow cytometry analysis was performed on a 

FACSaria BD Analyser using FACSDiva software (Becton, Dickinson and Company, 

Franklin Lakes NJ, USA). Fatty acid analysis was performed on a 6850 Series II gas 

chromatography apparatus using ChemStation software (Agilent 6850, Milan, IT). 

 

2.2 Methods 

2.2.1 Cell cultures  

The activity of Cu-TPMA-Phen was assayed on NB100 cells that derived from a human 

primary neuroblastoma [20]. Cells were cultured as a monolayer at 37 °C in a humidified 

atmosphere at 5% CO2 in complete medium (RPMI 1640 supplemented with 10% heat-

inactivated FBS, 2 mM L-Glutamine, 100 units/mL Penicillin, 0.1 mg/mL Streptomycin). 

Cultures were maintained in the log phase of growth with a viability >95% and checked 

for the absence of Mycoplasma infection. The viability was checked before each 

experiment by Trypan blue dye exclusion. Before any treatment cells were incubated for 

24 h.  

 

2.2.2 Cell viability assay  

Cell viability was evaluated using the colorimetric CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay. Cells (2×104/well) were seeded in 96-well microtiter plates in 100 

µL of complete medium. After 24 h, the cells were incubated in the absence or in the 

presence of Cu-TPMA-Phen at various concentrations in complete medium. After the 

indicated times, 20 µL/well of the kit solution was added. After 1-2 h of incubation at 37 
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°C, the absorbance at 492 nm was measured by a microtiter plate reader Multiskan EX 

(Thermo Labsystems, Helsinki, Finland). In continuous incubation experiments, cells were 

exposed to Cu-TPMA-Phen for 24, 48 and 72 h at a concentration ranging from 0.1 to 30 

µM. In pulse and chase experiments, cells were treated with Cu-TPMA-Phen for 2 h at a 

concentration ranging from 0.1 to 100 µM and then incubated in complete medium for a 

total time of 24 and 48 h. Half-maximal effective concentration (EC50) was determined by 

standard slope analysis without normalization.  

 

2.2.3 Evaluation of apoptosis  

The cell death pathway (apoptotic vs necrotic) was assessed using a flow cytometry 

AnnexinV/PI detection kit and by a luminescent reagent detecting caspase activity [240].  

For flow cytometry experiments, cells (2×105/3ml) were seeded in 25-cm2 flasks and, after 

24 h incubation with 5 µM Cu-TPMA-Phen, the cells then, were treated with Annexin 

VEGFP and PI and analysed by flow cytometry. The apoptotic (AnnexinV+/PI−), necrotic 

(AnnexinV−/PI+) and late stage apoptotic cells (AnnexinV+/PI+) were counted by the 

instrument and reported on scatter plots. The caspase-3/7 activity was assessed by the 

luminescent Caspase-Glo™3/7 Assay. Briefly, cells (2×103/well) were seeded in 96-well 

microtiter plates in 100 µL of complete medium. After 24 h, cells were treated with 5 μΜ 

Cu-TPMA-Phen. After further 24 h incubation, 100 µL/well of caspase kit reagent was 

added. After 20 min the luminescence was measured by a Fluoroskan Ascent FL (Thermo 

Labsystems), and the values were normalized to cell viability. The morphological features 

of the treated cells were analyzed through phase contrast microscopy, directly in 96-well 

plate, using an inverted microscope Nikon Eclipse TS100 (Nikon, Melville, NY, USA).  

 

2.2.4 Microsomes isolation 

The microsomal membrane fraction was isolated by sequential centrifugation. For this 

purpose, >2×108 NB100 cells were cultured in near confluent monolayer. The followed 

steps for the extraction and isolation of microsomes (crude endoplasmic reticulum) are 

described below: 

Sample homogenization  

1. Cell detachment with trypsin/EDTA using standard procedures. 
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2. Cell centrifugation at 600 × g for 5 min. 

3. Washing of cell pellet with 1 mL ice-cold PBS. 

4. Cell centrifugation at 600 × g for 5 min (at 4 °C) and measurement of packed cell 

volume (PCV). 

5. Discard of the supernatant. Cell pellet resuspension in cold 1 × Hypotonic 

Extraction Buffer equivalent to 3 times the PCV and cell incubation for 20 min at 

4 °C (cell swelling). 

6. Cell centrifugation at 600 × g for 5 min. Supernatant removal by aspiration. 

Measurement of the new PCV.  

7. Addition of a volume of the 1 × Isotonic Extraction Buffer equivalent to 2 times 

the «new» PCV volume and transfer to a 7 mL Dounce homogenizer. 

8. Cell breakage with 10 strokes of the Dounce homogenizer. 

9. Addition of more 1 × Isotonic Extraction Buffer (1.5 mL per mL of PCV). 

Pipetting of the cell slurry up and down several times for full suspension of the 

homogenate. 

Endoplasmic reticulum isolation 

1. Transfer of the homogenate to a microcentrifuge tube and vortex for 30 s, 

followed by incubation on ice for 1 min.  

2. Centrifugation at 10.000 × g for 15 min, at 4 °C. 

3. Transfer of the supernatant to a new, pre-chilled microcentrifuge tube and 

centrifugation at maximum speed (>100.000 × g) for 60 min, at 4 °C. Following 

centrifugation, discard of the supernatant, taking care to preserve only the light 

beige/pink opalescent (microsomal) pellet. 

4. Washing of the pellet gently with 1× Isotonic Extraction Buffer (500 μL per mL 

of PCV) and discard of excess buffer.  

5. Resuspension of the microsomal pellet in ice-cold 1× Isotonic Extraction Buffer 

(500 μL per mL of PCV) and determination of the total microsomal protein 

concentration.  

The microsomal solution was aliquoted and stored at -80 °C. 
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Buffer Recipes 

Isotonic Extraction Buffer 1× Hypotonic Extraction Buffer 1× 

HEPES, 10 mM (pH 7.8) HEPES, 10 mM (pH 7.8) 

Sucrose, 250 mM EGTA, 1 mM 

EGTA, 1 mM KCl, 25 mM 

KCl, 25 mM Protease inhibitors (1%) 

Protease inhibitors (1%)  

 

 

2.2.5 Protein concentration 

Protein concentrations were determined by the method of Bradford. Protein calibration 

curve was prepared with known concentrations of bovine serum albumin (BSA) solution.  

 

Figure 2.1: BSA calibration curve for the calculation of protein concentration.  

 

2.2.6 Microsomes activity 

The functionality of isolated microsomes was evaluated by measuring the activity of 

NADPH cytochrome c reductase, which is widely used as an endoplasmic reticulum 

marker. The activity of this enzyme in purified microsomes was determined using the 

Cytochrome c Reductase Assay Kit, SIGMA. It is a colorimetric method, which depends 

on the reduction of cytochrome c by NADPH-Cytochrome c reductase in the presence of 

NADPH. The reduced cytochrome c results in the formation of distinct bands at 550 nm 
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and the rate of absorbance (550 nm) increase is estimated. The calculated activity of 

NADPH cytochrome c reductase at the extracted microsomes was 0.261 units/mL. 

 

Figure 2.2: Cytochrome c reductase (NADPH) activity for the analysis of functionality of extracted 

crude endoplasmic reticulum (microsomes).  

 

2.2.7 SCD1 activity assay 

The reaction mixture for the stearoyl-CoA desaturase activity included the following: 60 

μM stearoyl-CoA, 2 mM NADH in 10 mM potassium phosphate (pH 7.2), 0.1 M potassium 

phosphate (pH 7.2), and 100 μg of microsomal protein in a final volume of 100 μl. The 

microsomal fractions were incubated with the reaction mixture at 37 °C for 10 min under 

shaking. The reaction was terminated by the addition of isopropanol. The mixture was then 

evaporated, and the reaction products were trans-esterified for the consequent analysis with 

gas chromatography. SCD1 activity was estimated using the product-to-precursor fatty acid 

ratio, [oleic (18:1-Δ9) / stearic (18:0)] [241, 242]. 

 

2.2.8 Phospholipid Extraction 

To analyze the effect of Cu-TPMA-Phen treatment on membrane fatty acids, 0.8×106 cells 

were seeded in 25 cm2 flasks in 5 mL of complete medium. After 24 h of incubation, 

medium supplemented with 5 μΜ Cu-TPMA-Phen was added. Cells were harvested and 

washed twice with ice-cold PBS. The cell pellet was resuspended in 1 mL milli-Q H2O and 

centrifuged at 14.000 rpm for 15 min at 4 °C. For mice RBC analysis, blood was withdrawn 

from deeply ether-anaesthetized animals and collected in K2EDTA treated tubes. 200 µL 

whole blood from mice were centrifuged at 4.000 rpm for 5 min at 4 °C to remove plasma 
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fraction. The red blood cell (RBC) pellet was then resuspended in pure water and 

centrifuged at 14.000 rpm for 15 min at 4 °C. In both cases, membrane pellets were 

dissolved in chloroform:methanol (2∶1) and Folch extraction method followed.  

 

2.2.9 Thin layer chromatography 

Lipid extract was examined by thin layer chromatography to determine the purity of the 

phospholipid fraction. Silica plates were used as the stationary phase, while the solvent 

system n-hexane/diethyl ether/acetic acid (70:30:1) consisted the mobile phase. Standard 

reference molecules were used for the recognition of phospholipids, cholesterol, 

triglycerides and cholesteryl esters in the lipid extract. TLC plates were stained with ceric 

ammonium molybdate solution (CAM) and spots were formed after heating. 

 

2.2.10 Gas chromatographic fatty acid analysis 

Fatty acid derivatization 

The phospholipid extracts were treated with 0.5 M KOH in methanol for 10 min at room 

temperature under stirring for the derivatization of fatty acid residues of the phospholipids 

into their corresponding fatty acid methyl esters (FAME). The acyl-CoA moieties were 

treated with trimethylsulfonium hydroxide (TMSH) in methyl tert-butyl ether (MTBE) 

anhydrous (1:2) at 120 °C for 3 min [243]. After transesterification, FAME were extracted 

with n-hexane; n-hexane phase was dehydrated with anhydrous Na2SO4, evaporated and 

analyzed in GC.  

 

GC parameters 

FAME were analyzed by gas chromatography (Agilent 6850, Milan) equipped with a 60 m 

x 0.25 mm x 0.25 μm (50%cyanopropyl)-methylpolysiloxane column (DB23, Agilent, 

USA), a flame ionization detector (FID), with injector temperature at 230 °C and split 

injection 50:1. Oven temperature started from 165 °C, held for 3 min, followed by an 

increase of 1 °C/min up to 195°C, held for 40 min, followed by a second increase of 10 

°C/min up to 240 °C, and held for 10 min. A constant pressure mode (29 psi) with helium 
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as a carrier gas was used. Methyl esters were identified by comparison with the retention 

times of commercially available standards or trans fatty acid references, obtained as 

described elsewhere [244]. The list of the examined FAME (corresponding to 

chromatographic peak areas >97%) in membrane PL are reported as % relative percentages 

of GC area. 

 

Figure 2.3: Representative GC chromatogram of FAME for fatty-acid based membrane lipidomic 

analysis.  

 

The detection and quantitation limit were determined by comparing measured signals from 

the chromatograms of samples with known low concentrations of analyte with those of 

blank samples. For the detection limit, the acceptance criterion was a signal/noise ratio of 

minimum 3:1, while for the quantitation limit the acceptance criterion was a signal/noise 

ratio of minimum 10:1. 
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Fatty acid indices calculation 

Membrane’s desaturation degree and susceptibility to peroxidation were estimated using 

the Unsaturation Index (UI) and Peroxidation Index (PI), respectively. The indices were 

calculated using the following formulas [245, 246]: 

 

Unsaturation Index (UI) = (% monoenoic × 1) + (% dienoic × 2) + (% trienoic × 3) + (% 

tetraenoic × 4) + (% pentaenoic × 5) + (% hexaenoic × 6) 

Peroxidation Index (PI) = (% monoenoic × 0.025) + (% dienoic × 1) + (% trienoic × 2) + 

(% tetraenoic × 4) + (% pentaenoic × 6) + (% hexaenoic × 8) 

 

Quantification 

The external standardization method was applied for the GC quantification and it was 

performed within the linear range of response. Calibration curves (GC area vs FA 

concentration) were obtained using standard solutions of known concentration for each FA 

moiety. Calibration curves were considered linear when the coefficient factor R2 was equal 

to or greater than 0.995. Representative calibration curves are depicted below: 
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Figure 2.4: Calibration curves of four representative fatty acid methyl esters (FAME): (A) the 

saturated methyl palmitate (16:0); (B) the monounsaturated methyl oleate (18:1 c9); (C) the ω6 

polyunsaturated methyl linoleate (18:2 ω6) and (D) the ω3 polyunsaturated methyl-(22:6 ω3). 

 

Analyte’s concentration was calculated by the following expression: 

 

𝐶𝑥 =
𝐶𝑠𝑡𝑑 × 𝐴𝑥

𝐴𝑠𝑡𝑑
 

 

where, 

Cx: the concentration of the x-FA in the sample 

Cstd: the concentration of the x-FA in the standard solution 

Ax: the area of the x-FA from the sample chromatogram 

Astd: the area of the x-FA from the standard chromatogram 
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2.2.11 Animal studies  

Mice were housed at SOL-GEL laboratory, Institute of Nanoscience and Nanotechnology 

at the National Centre for Scientific Research "Demokritos". Female severe combined 

immunodeficient (SCID) mice and normal healthy Swiss mice were housed in groups of 

three per cage under positive pressure in polysulfone type IIL individual ventilated cages 

(Sealsafe, Tecniplast, Buguggiate, Italy). Room temperature and relative humidity were 24 

± 2 °C and 55 ± 10 % respectively. All animals in the facility were screened regularly 

according to the Federation of European Laboratory Animal Science Associations’ 

recommendations and were found free of the respective pathogens. Mice had ad libitum 

access to water and food. SCID mice were inoculated with U87MG human brain 

glioblastoma cells as previously described [247]. Humane endpoints were predetermined 

(tumor volume over 1,2 cm, severe compromise of the welfare of the animals, and body 

weight loss over 20%). The tumor volume and mice weight were monitored once a week 

with an automatic caliper and scale. The tumor volume, body weight, and the survival rate 

were calculated at different time intervals. Ethical statement: All protocols were approved 

by the General Directorate of Veterinary Services Athens, Greece according to Greek 

legislation (Presidential Degree 160/1991) in compliance with the European Economic 

Community Directive 609/1986, and Law 2015/1992 for the protection of vertebrate 

animals used for experimental or other scientific purposes, 123/1986.  

  

2.2.12 Xenografts model construction  

U87MG brain glioblastoma cells were cultured as monolayers at 37 °C in a humidified 

atmosphere of 5% (v/v) CO2 and 95% relative humidity. Cells were seeded in 75 cm2 

plastic tissue culture flasks and cultured in DMEM supplemented with 10% FBS, washed 

with phosphate buffered saline (PBS) and were harvested by trypsinization with 0.05% 

(w/v) trypsin in PBS containing 0.02% (w/v) EDTA. SCID mice were xenografted at two 

weeks of age with U87MG cells subcutaneously on the right side of the thorax. Tumors 

were inoculated after injection of 6x106 U87MG cells in SCID mice, which were 

previously grown in DMEM. 
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2.2.13 Statistical analysis  

Statistical analysis was conducted using GraphPad Prism 7.02 software for Windows, 

GraphPad Software, La Jolla California USA. All measurements were performed in 

replicates and the data were expressed as the mean ± standard deviation (SD). Statistical 

significance was based on 95% confidence intervals (p≤0.05). 

Comparison of two groups 

For the comparison of two groups, an unpaired Student’s t-test was employed to analyze 

the data.  

Comparison of three or more groups 

For the comparison of three or more groups, data were analyzed by one-way analysis of 

variance (ANOVA) combined with either Tukey’s posthoc test or Dunnett's multiple 

comparison tests for the statistically significant results. 

Curve fitting and EC50 calculation 

For cell viability curves, experimental values were fitted to a nonlinear regression model. 

Half-maximal effective concentration (EC50) was determined by standard slope (Hill factor 

1.0) analysis without normalization using log[concentration] vs response equation. 

Cell viability curves comparison 

Comparison of diverse cell viability curves was conducted with F test (sum-of-squares). 

The statistically significant difference between the EC50 values was evaluated based on the 

obtained p-value.
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3. The copper complex: Cu-TPMA-Phen 

3.1 Background and Objectives 

The project described in the present chapter was performed in collaboration with the groups 

of Prof. Dr. A. Kellett at School of Chemical Sciences, Dublin City University (DCU) and 

Dr. E. Efthimiadou at the Institute of Nanoscience and Nanotechnology, N.C.S.R. 

“Demokritos”. The overall goal of this research project was to develop novel copper 

complexes and study their cytotoxic properties in relation with their effect on cell 

membrane lipidome. The chemical compound here studied and its encapsulated form in a 

drug delivery system were respectively provided by our collaborators at DCU and at the 

NCSR “Demokritos”. The below-described research activities were carried out in the 

laboratory of Prof. Dr. A. Bolognesi in the Department of Experimental, Diagnostic and 

Specialty Medicine (DIMES) at University of Bologna and in the CNR/spin-off company 

Lipinutragen. 

The novel copper complex developed at DCU was envisioned to be a gene silencing agent 

by acting as a chemical nuclease. Thanks to their intrinsic redox properties, the copper 

complexes are interesting compounds for oxidative-based therapeutic strategies [248, 249]. 

Among antitumoral active metallodrugs, copper(II)-complexes are of particular interest 

since they can become redox-active upon their in vivo reduction to Cu(I) [250, 251]. In 

parallel, when combined with DNA binding properties, they can mediate oxidatively-

induced DNA-strand breaks and eventually result in genome damage and instability [252-

254]. Although copper is essential for cellular redox metabolism, its homeostasis must be 

fine-tuned since free copper ions can catalyze the generation of reactive oxygen species 

(ROS), such as superoxide (O2·ˉ) and hydroxyl (·OH) radicals. Indeed, Cu(I) is unstable 

under physiological conditions and it is oxidized into Cu(II) by O2 or H2O2 via the Fenton 

reaction (Figure 3.1). As a consequence, the formed ROS cause oxidative stress to cells 

thus resulting in the damage of various biomolecules such as DNA, proteins and lipids 

[255]. Among the non-specific strategies for cancer chemotherapy, chemical agents with 

the ability to cleave DNA are widely used, such as cisplatin (metal-containing compound) 

and bleomycin (metal-binding site containing compound) [256, 257]. Based on their 

biological and chemical properties, copper complexes can act as artificial metallo-
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nucleases (AMNs) for specific gene disruption and therefore represent promising 

anticancer agents [254, 258]. 

 

 

Figure 3.1: Fenton reaction; copper(I) is oxidized by oxygen to copper(II), forming superoxide and 

hydroxyl radicals in the process. 

 

Like other xenobiotics, AMNs have been recently reported to influence the characteristics 

of the plasma membrane, such as fluidity and composition [188, 259]. The changes in 

plasma membrane characteristics trigger the activation of signaling pathways that in turn 

influence the cell fate [179]. Since chemotherapy-induced cell death is mediated via 

signaling through plasma membrane (e.g. lipid rafts involving the death receptor pathway), 

attention has been given to the changes that membranes undergo upon cellular death [178, 

181]. Moreover, it has been suggested that a cross talk between chemical-induced cellular 

membrane effects and DNA damages may be important for the final outcome of chemical 

exposure [180]. Cell membranes are built by phospholipids, which are fatty acid-

containing lipid species responsible for the membrane’s structural, organizational and 

functional properties. The fatty acids and their metabolism are of vital significance for 

cancer cells [105, 260]. Indeed, because of their active proliferation, cancer cells need a 

substantial amount of newly biosynthesized lipids. Consequently, affecting the metabolism 

of these building blocks might influence the tumor cellular growth and the related lipid 

signaling. For example, it has been reported that the regulated biosynthesis of SFA, such 

as palmitic acid (16:0) or stearic acid (18:0), and their subsequent desaturation to MUFA 

(palmitoleic acid (delta-9 16:1) and oleic acid (delta-9 18:1)), can influence the biophysical 

properties of the tumor cell membrane and thus the signaling pathways related to cellular 

growth and survival [3, 182-185]. Since the fatty acids are part of our dietary intakes, their 

balance can also impact the drug outcomes and interactions with other organelles. In this 

regard, fatty acid-based membrane lipidomics could in principle represent a valuable tool 
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in cancer therapy by providing insights on how the rearrangement of cell membranes of a 

tumor cell population might enhance the outcome of a given treatment [185, 235].  

In the present research project, the novel Cu(II) complex [Cu(TPMA)(Phen)](ClO4)2 was 

studied being used both as a free compound and under an encapsulated form within 

polymeric nanoparticles, thus allowing for the comparison with the free drug. In vitro 

experiments were carried out in the neuroblastoma derived cell line NB100 and in the 

breast carcinoma cell line MCF7. The cytotoxicity of both free and encapsulated complex 

was determined and the cell death pathways were analyzed with parallel monitoring of 

caspase activation. NB100 cells were treated with EC50 (half maximal effective 

concentration) doses of copper complex and membrane fatty acids were analyzed by gas 

chromatography. Inhibitors of apoptosis and necroptosis and scavengers of oxidative stress 

were tested to evaluate their protective effect against copper’s cytotoxicity and membrane 

remodeling. Finally, we were interested to test whether fatty acid supplementation could 

influence the cell response to copper complex exposure. 

 

 

3.2 Molecular structure  

In the current project, we studied the biological effects of the synthetic chemical nuclease 

[Cu(TPMA)(Phen)](ClO4)2 (Cu-TPMA-Phen)], where TPMA = tris-(2-

pyridylmethyl)amine and Phen = 1,10-phenanthroline) (Figure 3.2). The above-reported 

complex was synthesized and characterized by Fantoni et al., following a rational design 

so that it combines the following characteristics: a) the catalytic stabilizing effect of TPMA 

for effective intercalation to DNA [261-263] and b) the oxidation properties of copper(II) 

phenanthroline for potent DNA scission [263-265]. Since Cu-TPMA-Phen is a metal-

containing chemical that induces DNA cleavage, it may belong to the group of AMNs that 

exert cytotoxic effects against human cancer cells [266, 267]. 
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Figure 3.2: (A) Molecular structure of [Cu(TPMA)(Phen)](ClO4)2 (Cu-TPMA-Phen)], where 

TPMA = tris-(2-pyridylmethyl)amine and Phen = 1,10-phenanthroline), synthesized by Fantoni et 

al., (B) Schematic representation of DNA cleavage by the copper complex. 

 

 

3.3 Effects on cell viability  

3.3.1 Cytotoxicity 

Neuroblastoma cells (NB100) were exposed to different concentrations of the complex Cu-

TPMA-Phen (0.1-30 μΜ) for 24, 48 and 72 h. Cell toxicity of free Cu-TPMA-Phen was 

determined using an MTS cell viability assay. Dose-dependent curves were derived (Figure 

3.3A) and the half maximal effective concentration (EC50) values were calculated (Figure 

3.3C). The EC50 was 4.2 μΜ (R2 = 0.97) after 24 h of continuous incubation with the 

complex. Longer incubation times resulted to slightly lower EC50 values, 3.0 μΜ and 2.8 

μΜ for 48 and 72 h, respectively. Cell viability was also evaluated in a pulse and chase 

experiment, in which NB100 cells were treated for 2 h with various concentrations of Cu-

TPMA-Phen (1-100 μΜ), then washed and incubated with complete medium for 24, 48 

and 72 h (Figure 3.3B). The concentrations effective to reduce cell viability by 50% are 

reported in Figure 3.3C. It should be noted that 2 h of exposure to the complex can be 

enough to ensure a strong cytotoxicity. In fact, the comparison of EC50 calculated for 

continuous and pulse and chase experiments shows only one log difference.  
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Figure 3.3: Cytotoxic effect of Cu-TPMA-Phen on NB100 cells; (A) Cell viability curves for 

NB100 cells continuously exposed to different doses of Cu-TPMA-Phen for 24, 48 and 72 h; (B) 

Cell viability pulse and chase curves of NB100 cells exposed at various doses of Cu-TPMA-Phen 

for 2 h and then incubated in complete medium for 24, 48 and 72 h. Cell viability was measured by 

MTS assay and expressed as a percentage of untreated cells. The results in A and B panels are 

presented as the means ± SD of three independent experiments performed in triplicate; (C) Half 

maximal effective concentration (EC50) values were calculated by non-linear regression with 

standard slop analysis.  
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3.3.2 Evaluation of cell death  

To further study the induced cell death pathway, cytofluorimetric analysis through Annexin 

V/PI double staining of NB100 cells treated with Cu-TPMA-Phen was carried out. This 

analysis indicated that NB100 cells treated for 24 h with 5 μΜ Cu-TPMA-Phen underwent 

apoptotic cell death. Treated and untreated cells were stained with Annexin V-EGFP and 

Propidium Iodide (PI) to differentiate apoptosis versus necrosis. Annexin V-EGFP detects 

the externalization of phosphatidylserine in apoptotic cells, while PI stains necrotic cells. 

After treatment with 5 μΜ Cu-TPMA-Phen for 24 h, 59% of the cell population was in late 

apoptosis (Annexin V+/PI+) and 5% of cells underwent necrotic death (Annexin V−/PI+), 

as depicted in Figure 3.4A. The low number of necrotic cells measured in our experiments 

can represent an advantage for a possible therapeutic use of this complex. In fact, necrosis, 

contrary to apoptosis, causes inflammation that can be responsible for unwanted toxicity 

towards surrounding normal tissue [268]. In parallel, cell morphology was analyzed by 

phase-contrast microscopy on NB100 cells incubated with 5 μΜ Cu-TPMA-Phen for 24 h. 

Treated cells showed typical apoptotic morphological features, as shown in Figure 3.4B. 

Finally, to confirm the apoptotic cell death pathway, the caspase 3/7 activity was assessed 

in NB100 cells treated with 5 and 10 μΜ Cu-TPMA-Phen for 24 h in comparison with 

untreated (control) cells (Figure 3.4C). At both concentrations, caspases 3/7 were strongly 

activated in Cu-TPMA-Phen treated cells, reaching values higher than 300% of that of 

control cells.  
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Figure 3.4: Cytotoxic effect of Cu-TPMA-Phen on NB100 cells; (A) The cell death pathway 

triggered by 5 μΜ Cu-TPMA-Phen was evaluated on NB100 cells after 24 h of treatment by 

AnnexinV/PI staining and flow cytometry analysis. FITC-A channel is used for the detection of 

Annexin V-EGFP fluorescence. PE-A channel is used for the detection of PI fluorescence. 

Representative plots of AnnexinV/PI staining of are shown; apoptotic cells (Q4, AnnexinV+/PI−), 

necrotic cells (Q1, AnnexinV−/PI+) and late-stage apoptotic cells (Q2, AnnexinV+/PI+); (B) 

Morphological analysis of NB100 cells treated with 5 μΜ Cu-TPMA-Phen for 24 h, using phase-

contrast microscopy (400×); (C) Caspase 3/7 activation in NB100 cells exposed to 5 and 10 μΜ 

Cu-TPMA-Phen for 24 h. The expression of activated caspases is reported as a percentage of 

untreated cell values. Means ± S.D. of three independent experiments, each in triplicate, are given. 

Statistical significance was determined by unpaired t-test (**** p < 0.0001). 
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3.3.3 Caspase activation 

Caspases are proteolytic enzymes with an important role in the regulation of apoptosis 

[269]. To further characterize the cell death induced by Cu-TPMA-Phen, the initiator 

caspases -1, -2, -8 and -9 and the executioner caspases -3, -7 were evaluated at different 

time points (2, 4, 8, 16 and 24 h) after Cu-TPMA-Phen treatment. Interestingly, the 

activation of all tested caspases was increased only after 8 h of cell incubation with the 

copper complex compared to untreated cells (Figure 3.5).  

 

Figure 3.5: Caspase activation in NB100 cells treated with 5 μΜ Cu-TPMA-Phen. Caspase-1, -2, 

-8, -9 and -3/7 activation was determined at 2, 4, 8, 16 and 24 h as described in Materials and 
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Methods. Caspase activity is expressed as fold increase to control for caspase-1 and -2, and as 

percentage of control for caspase-8, -9 and -3/-7. Control values were obtained from cultures grown 

in the absence of copper complex. Mean values ± SD are reported. Cell viability was evaluated at 

the same time points. Statistical significance was determined by unpaired t-test (* p < 0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001). 

 

In particular, Cu-TPMA-Phen induced a strong activation of all the apical caspases (-1, -2, 

-8 and -9) in a linear manner, reaching about 1600% (for caspase -1, -2) and 440% (for 

caspase -8, -9) of controls after 24 hours of incubation. Caspase -8 and -9 represent the 

initiator caspases for the extrinsic and intrinsic apoptotic pathway, respectively. The 

extrinsic pathway of apoptosis is activated through the binding of a ligand to the membrane 

death receptor which in turn leads the dimerization and activation of caspase-8. The 

intrinsic pathway is activated by various cellular stresses and involves the mitochondrial 

release of cytochrome c and the formation of the apoptosome, which leads to the activation 

of caspase-9 [270].  The activated form of both caspases (-8, -9) cleave and activate in turn 

the executioner caspases, such as caspase -3 and -7 (Figure 3.6). In the present case, Cu-

TPMA-Phen treatment led to notable augmentation of caspase -3/-7 activity compared to 

untreated cells (~2900%). Besides its categorization to the group of apical caspases, 

caspase-2 is not involved in the cleavage and activation of downstream executioner 

caspases.  The activation of caspase-2 has been attributed to diverse stress signals, such as 

DNA damage, metabolic imbalance, endoplasmic reticulum (ER) stress and others [271, 

272].  Caspase -1 is known to be activated by inflammasomes and trigger pyroptosis; a 

process of programmed cell death that involves cell lysis and extracellular release of 

cytosolic contents, thus leading to the activation of an inflammatory cascade [273]. ROS 

have been recently reported as activating signals for inflammasomes, through MAPK-

ERK1/2 pathway [274].  
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Figure 3.6: Molecular pathways of caspases activation in programmed cell death, such as apoptosis 

and pyroptosis. Intrinsic apoptotic pathway is activated by various stress signals and involves 

cytochrome c release from mitochondria and apoptosome formation, thus leading to activation of 

initiator caspase-9. Extrinsic apoptotic pathway is activated by the binding of death ligand to the 

receptor and leads to initiator caspase-8 activation. Activation of effector caspase-3, -6, and -7 

follows. Inflammasome formation induces caspase-1 activation, which leads in pyroptosis. 

 

3.3.4 Protection by inhibitors/scavengers 

Inhibitors of apoptosis, necroptosis and oxidative stress were tested to evaluate their 

protective effect against Cu-TPMA-Phen cytotoxicity. Cell viability was evaluated using 

NB100 cells pretreated for 3h with 100 µM pan-caspase inhibitor Z-VAD, 100 µM 

necrostatin-1 (Nec-1), 1000 U/ml catalase (CAT), 1 mM sodium pyruvate (NaPyr), 1 mM 

N-acetyl-cysteine (NAC) and then treated with 5 and 10μΜ Cu-TPMA-Phen for 24 h. The 

inhibitor Z-VAD exerted a protective role against copper complex’s cytotoxicity since we 

observed almost full recovery of cell viability when cells were pre-treated with it. Similar 

protective effect was observed when cells were treated with the necroptotic inhibitor Nec-

1 (Figure 3.7A). In these experiments, Nec-1 was able to protect NB100 cells from the 

damage induced by the Cu-TPMA-Phen at a similar level as Z-VAD, thus suggesting that 
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both apoptosis and necroptosis are involved in its cytotoxic mechanism. Necroptosis is a 

recently identified programmed cell death and consists a form of regulated necrosis, which 

depends on the receptor-interacting serine-threonine kinase RIPK1 and RIPK3. Nec-1 

inhibits necroptosis through the inhibition of RIPK1 [275]. It has been demonstrated that 

ROS have a highly important role in the process of necroptosis downstream of RIPK1 

activation [276]. Moreover, necroptotic cell death has been associated with the occurrence 

of excessive DNA damage [277]. Catalase, that enzymatically reduces the hydrogen 

peroxide, protects the cell fate. Sodium pyruvate, which is known to have protective effects 

against hydrogen peroxide toxicity in human neuroblastoma cells [278], showed no 

protection in this case. On the other hand, N-acetyl-cysteine (NAC), which 

increases glutathione levels and thus its antioxidant effects [279], protects the cell viability 

(Figure 3.7B). These results suggest that cytotoxicity of copper complex is mediated 

mainly through oxidative stress and subsequent apoptosis and necroptosis in neuroblastoma 

cells. Phase-contrast microscopy was applied for the morphological analysis of NB100 

cells treated under the conditions described above (Figure 3.7C). While 24-h incubation 

with Cu-TPMA-Phen at EC50 doses, induces cellular death and the formation of apoptotic 

bodies, the pre-treatment with inhibitors of apoptosis/necroptosis and scavengers of 

oxidative stress, rescues the cells from the complex’s cytotoxic effects and cell morphology 

remains similar to untreated cells. 
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Figure 3.7: Protective effect against copper complex’s cytotoxicity by inhibitors of apoptosis and 

necroptosis and scavengers of oxidative stress; (A) NB100 cells were pretreated for 3h with 100 

µM pan-caspase inhibitor (Z-VAD), 100 µM necrostatin-1 (Nec-1), ) and then treated with 5 and 

10 μΜ Cu-TPMA-Phen for 24 h; (B) NB100 cells were pretreated for 3h with 1000 U/ml catalase 

(CAT), 1 mM N-acetyl-cysteine (NAC), and then treated with 5 and 10 μΜ Cu-TPMA-Phen for 24 

h; (C) Morphological analysis of NB100 cells treated under the with conditions mentioned above, 

using phase-contrast microscopy (400×). Values represent mean ± SD of three independent 

experiments, each in triplicate. Statistical significance was determined by unpaired t-test (**** p < 

0.0001). 
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3.4 Effects on membrane lipidome 

 

3.4.1 Membrane fatty acid analysis of copper treated cells 

Based on the cytotoxicity parameters identified above, NB100 cells were treated with 5 μΜ 

of Cu-TPMA-Phen for 24 h (N=6) and underwent fatty acid-based membrane lipidomic 

analyses. The fatty acid residues present in membrane phospholipids were isolated, 

derivatized to fatty acid methyl esters (FAME) and analyzed by gas chromatography (GC). 

GC separation led to the identification and quantification of fatty acid isomers. Membrane 

fatty acid-based lipidomics analysis on NB100 after 24-h treatment revealed a significant 

increase of saturated fatty acids (SFA) (p<0.0001) accompanied by a parallel decrease of 

their monounsaturated (MUFA) counterparts (p<0.0001) (Figure 3.8A). The family of 

polyunsaturated fatty acids (PUFA) did not show significant alterations between treated 

and untreated cells. In particular, the main members of the SFA family, palmitic (16:0) and 

stearic (18:0) acids, are significantly increased (Figure 3.8B), whereas the main members 

of the MUFA family, palmitoleic (9c-16:1), vaccenic (11c-18:1) and oleic (9c-18:1) acids 

showed significantly decreased levels in NB100 cells exposed to Cu-TPMA-Phen (Figure 

3.8C). The enzymatic activity of stearoyl-CoA desaturase (SCD1) can be estimated by the 

product-to-precursor fatty acid ratio [241, 242]. SCD1, also named as delta-9 desaturase, 

catalyzes the conversion of saturated fatty acids (palmitic acid 16:0, or stearic acid 18:0) 

into monounsaturated fatty acids (palmitoleic acid 16:1, or oleic acid 18:1). In Cu-TPMA-

Phen treated NB100 cells, the SCD1 activity was 2-fold decreased (p<0.0001) (Figure 

3.8D). The detailed values of the analyzed fatty acid methyl esters (FAME) and the 

corresponding indices are presented later in this chapter in Tables 3.1 and 3.2, respectively. 
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Figure 3.8: Fatty acid-based membrane lipidomics on NB100 cells treated with 5 μΜ free Cu-

TPMA-Phen for 24 h; (A) Relative distribution of fatty acid families, SFA: saturated fatty acids, 

MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids; (B) Palmitic (16:0) and 

stearic (18:0) acids trends in treated cells; (C) Palmitoleic (9c-16:1), vaccenic (11c-18:1) and oleic 

(9c-18:1) patterns in treated cells; (D) Estimation of delta-9 desaturase (des9) activity by the ratio 

palmitoleic/palmitic and oleic/stearic. Values represent mean ± SD (n=6). Statistical significance 

was calculated with unpaired t-test * (p < 0.05), ** (p < 0.01), **** (p < 0.0001). 

 

The membrane lipidomic experiments were carried out also in the breast cancer-derived 

MCF7 cell line. The aim of this was to ascertain that the above-described membrane 

remodeling is not specific for the neuroblastoma cell line NB100 but can be extended to 

other cancer models. MCF7 cells were exposed to 10 μΜ Cu-TPMA-Phen (~ EC50 value) 

and membrane fatty acid analysis followed. Interestingly, Cu- TPMA-Phen showed a 

similar effect on cell membrane for both cell lines, although MCF7 and NB100 are cells of 

different origin, carcinoma, and neuroblastoma, respectively (Figure 3.9).  
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Figure 3.9:  Fatty acid-based membrane lipidomics on MCF7 cells treated with 10 μΜ free Cu-

TPMA-Phen for 24 h; (A) Relative distribution of fatty acid families, SFA: saturated fatty acids, 

MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids; (B) Palmitic (16:0) and 

stearic (18:0) acids trends in treated cells; (C) Palmitoleic (9c-16:1), vaccenic (11c-18:1) and oleic 

(9c-18:1) patterns in treated cells; (D) Estimation of delta-9 desaturase (des9) activity by the ratio 

palmitoleic/palmitic and oleic/stearic. Values represent mean ± SD (n=6). Statistical significance 

was calculated with unpaired t-test * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). 

 

The results obtained from the cell viability experiments and death pathways analysis 

together with the values obtained from membrane fatty acid-based lipidomics suggested an 

interesting behavior arising from oxidative conditions typically associated with copper 

complex exposure [254, 280]. In fact, cell membranes exposed for 24 h to the free Cu-

TPMA-Phen did not show a diminution of the PUFA residues of phospholipids. Lipid 

peroxidation and the subsequent PUFA decrease is the typical response of cellular 

membranes to such oxidizing molecules [204, 281]. Thus, the expected chemical reactivity 
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of Cu-TPMA-Phen towards lipid molecules was not observed. Instead, the increase of SFA 

was associated with MUFA diminution, which is distinct from oxidative response. Indeed, 

MUFA decrease cannot be induced by oxidation while the PUFA levels remain unchanged. 

Therefore, our hypothesis is that this MUFA diminution may be attributed to a “metabolic” 

rather than a “chemical” oxidative effect of Cu-TPMA-Phen. Since SFA are less 

susceptible to peroxidation, higher saturation degree in membrane contributes to higher 

protection from ROS [282]. Furthermore, the increase of SFA in membrane phospholipids 

is known to change membrane properties toward less permeability and fluidity [23]. Such 

changes can in turn trigger several signals that lead to programmed cell death, as reported 

in the case of supplementation with palmitic acid of NB100 cells [20]. Our interest was 

further focused to get a deeper insight into the reasons of such a membrane remodeling 

upon cell treatment with toxic concentrations of the copper complex (Figure 3.10). SFA 

and MUFA are metabolically connected through the enzyme stearoyl-CoA desaturase 

(SCD1), which is responsible for the insertion of a double bond at C9 position by catalyzing 

the reduction of SFA to MUFA [241].  

 

Figure 3.10: Hypotheses for the molecular base of membrane remodeling upon cell treatment with 

EC50 value of Cu-TPMA-Phen; Hypothesis A: enzymatic inhibition of stearoyl-CoA desaturase 

(SCD1) that catalyzes the conversion of SFA to MUFA; Hypothesis B: Association of membrane 

remodeling with cytotoxic effects of the copper complex and the consequent induction of apoptosis.  
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The inhibition of desaturase is known to induce cancer cell death and is indeed inspiring 

new pharmacological strategies in anticancer therapy [138]. On the other hand, the 

molecular basis of such membrane remodeling could be possibly associated with the 

observed apoptotic fate, since the interplay between cell membrane composition and 

cellular death is well known [178]. 

 

3.4.2 Time-course lipidomics 

To better evaluate the connection between the cytotoxic events and membrane fatty acid 

remodelling, we performed time course membrane lipidomics in copper complex-treated 

cells and correlated these results with the cell viability and caspase activation in a time-

dependent manner. More specifically, NB100 cells were treated with 5 μΜ Cu-TPMA-

Phen for 2, 4, 8, 16 and 24 h. Cells were harvested at these time points and membrane 

lipidomic analysis was carried out. The fatty acid content of treated cells was compared to 

the one obtained from untreated cells at the same incubation periods. The results are 

presented as % difference of control cells. Time-course membrane lipidomics revealed a 

gradual membrane remodelling upon copper complex treatment (Figure 3.11). The relative 

distribution of total SFA increased significantly in Cu-TPMA-Phen treated NB100 cells at 

the time point of 16 h (p<0.0001). However, stearic (18:0) acid was characterized by a 

significant increase after 4 h-treatment (p<0.05). Moreover, the treated cells showed higher 

% difference for stearic than palmitic (16:0) acid. Total MUFA content was significantly 

lower after 8 h-treatment (p<0.05), reaching a 25% decrease after 24 h-treatment 

(p<0.0001). All the members of MUFA family followed the same decreasing trend, thus 

indicating a global alteration pattern. Although not significant, the PUFA were 

characterized by a slightly increasing trend along treatment time. Interestingly, the 

membrane remodeling was observed even at the very early time points, having an evident 

trend after 8 h incubation. Comparison of the time-course lipidomic changes with the 

corresponding curves for cell viability and caspase activation drives to the conclusion that 

membrane remodelling takes place prior to the detected cytotoxic effects of Cu-TPMA-

Phen. Indeed, cell viability at 8 h is still 100% compared to control cells and caspases 

activation is detected only after 8 h-monitoring. 
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Figure 3.11: Time-dependent membrane remodeling in NB100 cell line treated with 5 μΜ Cu-

TPMA-Phen. Values are expressed as % difference to untreated cells and represent mean ± SD, 

(N=3). Statistical significance was calculated with unpaired t-test * (p < 0.05), ** (p < 0.01), *** 

(p < 0.001), **** (p < 0.0001). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, 

PUFA: polyunsaturated fatty acids. 
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3.4.3 Membrane fatty acid analysis after inhibitors/scavengers pre-treatment 

The observed membrane remodeling could be indirectly caused because of the complex’s 

cytotoxicity since it is well known the interplay between membrane remodeling and cell 

death. To examine a possible connection between the cytotoxic events and fatty acid 

changes, we performed lipidomic analysis in the presence of Cu-TPMA-Phen in cells that 

were pre-treated with apoptosis inhibitor (Z-VAD) and oxidative stress scavengers 

(catalase and N-acetyl-cysteine). Previous results showed that the Z-VAD and the 

scavengers (catalase and NAC) had a protective effect against Cu-TPMA-Phen cytotoxicity 

(Figure 3.7). In these experiments, NB100 cells were pretreated for 3 h with Z-

VAD/catalase/NAC and then incubated for 24 h in the presence of the copper complex at 

the EC50 concentration. Fatty acid analysis revealed that cell viability protection by 

apoptosis inhibitor and catalase prevented the membrane remodeling, which is induced in 

NB100 cell line after Cu-TPMA-Phen treatment. On the contrary, pre-incubation with 

NAC led to significant differences in fatty acid composition in copper complex treated 

cells. In particular, total MUFA were slightly decreased (p<0.05), while PUFA family 

showed a similar decrease (p<0.05). However, the observed differences in membrane 

lipidome were not so profound compared to the changes characterizing the NB100 cells 

incubated with the Cu-TPMA-Phen without any pre-treatment. Furthermore, the different 

effect on fatty acid composition, after cell pre-treatment with NAC, could be attributed to 

the fact that NAC shows slightly lower protection of cell viability compared to Z-VAD and 

CAT (Figure 3.7). The above results lead us to the conclusion that the membrane 

remodeling is possibly correlated to the cytotoxic mechanism of the copper complex. 
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Figure 3.12: Changes of membrane fatty acids after pre-treatment with inhibitor of apoptosis and 

ROS scavengers. NB100 cells were pretreated for 3 h with 100 µM pan-caspase inhibitor (Z-VAD), 



The copper complex: Cu-TPMA-Phen 
 

64 
 

1000 U/ml catalase (CAT), 1 mM N-acetyl-cysteine (NAC) and then treated with 5 μΜ Cu-TPMA-

Phen for 24 h. Fatty acid-based membrane lipidomics followed for treated and untreated cells. 

Values represent mean ± SD (n=3). Statistical significance was calculated with unpaired t-test * (p 

< 0.05), *** (p < 0.001). 

 

 

3.5 Cell-free SCD1 activity assay 

The plasma membrane remodeling, which took place after cell treatment with Cu-TPMA-

Phen, could suggest a possible inhibition of stearoyl-CoA desaturase (SCD1). Since SFA 

and MUFA are metabolically connected through the SCD1 desaturase, we hypothesized 

that the copper complex could provoke the inhibition of this enzyme. Indeed, within the 

catalytic area of the desaturase, there is a highly conserved histidine-box that coordinates 

with a di-iron center. Thus, the copper of the complex could, in theory, substitute the iron 

in the active site. To test this hypothesis, we developed a cell-free assay to assess the SCD1 

enzymatic activity in the presence of Cu-TPMA-Phen. SCD1 is a transmembrane enzyme, 

located on the endoplasmic reticulum (ER), with its catalytic area towards the cytoplasm. 

For the assay, we isolated microsomes (extracted forms of ER) from NB100 cell line by 

sequential centrifugation and resuspension in 0.1 M potassium phosphate buffer (pH 7.2). 

Protein concentrations were determined by the method of Bradford. The reaction mixture 

for the stearoyl-CoA desaturase activity included the following: 60 μM stearoyl-CoA, 2 

mM NADH in 10 mM potassium phosphate (pH 7.2), 0.1 M potassium phosphate (pH 7.2), 

and 100 μg of microsomal protein in a final volume of 100 μl. Reactions were performed 

at 37 °C for 10 min under shaking. The positive control included all the above-mentioned 

components. As a negative control, this reaction was performed in the presence of the 

commercially available inhibitor of the desaturase, MF-438 (Calbiochem). Finally, another 

reaction including the copper complex was performed. The enzymatic activity was 

estimated by the ratio of oleic (18:1c9) to stearic (18:0), representing the conversion rate 

of the saturated fatty acid to its monounsaturated counterpart [241, 242]. In the presence of 

Cu-TPMA-Phen, it was calculated a ratio of 1.16, which was identical to the control sample 

(ratio 1.18). In the presence of MF-438 inhibitor, the ratio was decreased to 0.72, proving 

the SCD1 enzyme’s inhibition, since less oleic but more stearic were observed at the end 

of the reaction compared to control sample. The above result suggests that the previously 
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noted increase of SFA of Cu-TPMA-Phen-treated cells cannot be attributed to a specific 

inhibition of this desaturase. 

 

Figure 3.13: Cell-free assay for SCD1 activity; (A) Scheme of the enzymatic reaction catalyzed by 

stearoyl-CoA desaturase (SCD1); (B) SCD1 activity was tested in microsomes extracted from 

NB100 cell line in the presence of 5 μΜ Cu-TPMA-Phen. The commercial inhibitor (MF-438) for 

SCD1 was used as a negative control. SCD1 activity was estimated using the product-to-precursor 

fatty acid ratio (oleic/stearic). Values represent mean ± SD (N=3). Statistical significance was 

calculated with unpaired t-test ** (p < 0.01). 

 

 

3.6 Fatty acids supplementation 

Finally, based on the above-mentioned membrane lipidomics results, we were interested to 

test whether a tailored fatty acid supplementation can influence the cell response to Cu-

TPMA-Phen exposure. We used palmitic and oleic acid since the previous membrane 

lipidomics results showed that both fatty acids were significantly changed upon copper 

complex treatment. Fixed concentrations of 50 μΜ palmitic and 100 μΜ oleic acid, which 

are non-toxic doses [20], were used for simultaneous cell treatment with increasing 

concentrations of Cu-TPMA-Phen (0.3-100 μΜ). Cell viability was determined 24 h after 

cell treatment (Figure 3.14). The obtained results suggest that palmitic acid 

supplementation may have an additive, but not synergistic, cytotoxic effect with Cu-
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TPMA-Phen on NB100 cells, since co-treatment results in slightly higher cytotoxicity 

(p=0.0189). In the case of oleic acid supplementation, the cell viabilities curves showed no 

significant difference (p=0.0905). 

 

 

Figure 3.14: Effects of fatty acid supplementation on Cu-TPMA-Phen induced cytotoxicity. 

NB100 cells were exposed to different doses of Cu-TPMA-Phen for 24 h. Culture medium was 

supplemented with either 50 μΜ palmitic acid (PA) or 100 μΜ oleic acid (OL). Cell viability was 

measured by MTS assay and expressed as a percentage of untreated cells. The results are presented 

as the means ± SD of three independent experiments performed in triplicate. Comparison of cell 

viability curves was conducted with F test (sum-of-squares). 

 

Subsequently, we were interested to study the effect of 100 μΜ oleic acid supplementation 

on the fatty acid content of NB100 cells, which were co-treated with 5 μΜ Cu-TPMA-Phen 

(Figure 3.15A). However, in this case we determined the total fatty acid content of the cells, 

which represents not only the membrane phospholipid fatty acid content but also the one 

of triglycerides (TG), that were formed upon oleic acid supplementation as shown by thin 

layer chromatography (TLC) (Figure 3.15B). Interestingly, oleic acid shows higher levels 

in the case of co-treatment compared to its administration alone. A hypothesis could be 

drawn that the increased levels of oleic acid detected in the supplemented cells treated with 

the copper complex could belong mostly to TG, thus not affecting either the membrane 

content and cell viability. 
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Figure 3.15: (A) Saturated and monounsaturated fatty acid analysis of NB100 cells co-treated with 

5 μΜ Cu-TPMA-Phen and 100 μΜ oleic acid. Values represent mean ± SD (N=3); (B) Formation 

of triglycerides as revealed by thin layer chromatography (TLC) when oleic acid is present. Lane 

1: untreated cells, lane 2: 100 μΜ oleic acid, lane 3: 5 μΜ Cu-TPMA-Phen and lane 4: 5 μΜ Cu-

TPMA-Phen plus 100 μΜ oleic acid. CE: cholesteryl esters; CO: cholesterol; PL: phospholipids; 

TG: triglycerides. 

 

 

3.7 Drug encapsulation in pH-sensitive polymeric nanoparticles 

 

3.7.1 Cytotoxicity of encapsulated Cu-TPMA-Phen 

Cell viability assays were performed to assess the toxicity effect of Cu-TPMA-Phen when 

the latter is encapsulated in pH-sensitive nanocarriers. The encapsulation of this complex 

in nanocontainers was carried out as described in by Toniolo et al. (2018). The resulting 

viability curves were compared to those obtained after treatment with free Cu-TPMA-Phen 

in the same concentration range, 0.1-30 μΜ, as shown in Figure 3.16A. Incubation with 3, 

10 and 30 μΜ Cu-TPMA-Phen for 24 h results in significantly different viability between 

cells treated with free and encapsulated complex (p< 0.0001, 3 and 10 μΜ and p< 0.01, 30 

μΜ).  Analogous experiments were carried out for 48 h, resulting also in significant 

changes between the free and encapsulated form of the complex (Figure 3.16B). However, 

it should be considered that these differences do not indicate a lower activity of the NCs 

because the maximum release is at pH 4.0, which is a condition easily obtainable in cancer 
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microenvironment, but quite far from cell culture conditions. These differences in 

cytotoxicity can be attributed to the less amount of bioavailable drug. In fact, as described 

by Toniolo et al., only 1/3 of Cu-TPMA-Phen is released from nanocontainers at the 

physiologic pH 7.4, which is similar to cell culture conditions. 

 

 

Figure 3.16: Dose-dependent response of NB100 cells treated with free or encapsulated Cu-TPMA-

Phen for 24 and 48 h, panel A, and B, respectively. Cell viability was estimated with MTS assay. 

The results are presented as the means ± S.D. of three independent experiments performed in 

triplicate, representing the percentage of control values obtained from cultures grown in the absence 

of the complex. Statistical analysis was performed with unpaired t-test ** (p < 0.01), **** (p < 

0.0001). 
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3.7.2 Membrane lipidomics of encapsulated Cu-TPMA-Phen 

Membrane lipidomics analysis was also performed on NB100 cells treated with 5 μΜ of 

encapsulated Cu-TPMA-Phen in pH-sensitive nanocarriers. In this case, the impact on 

membrane lipidome presents no significant differences between untreated and treated cells 

(Figure 3.14A, B, C, D). 

 

 

Figure 3.17: Fatty acid-based membrane lipidomics on NB100 cells treated with 5 μΜ 

encapsulated Cu-TPMA-Phen for 24 h; (A) Relative distribution of fatty acid families, SFA: 

saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids; (B) 

Palmitic (16:0) and stearic (18:0) acids trends in treated cells; (C) Palmitoleic (9c-16:1), vaccenic 

(11c-18:1) and oleic (9c-18:1) patterns in treated cells; (D) Estimation of delta-9 desaturase (des9) 

activity by the ratio palmitoleic/palmitic and oleic/stearic. Values represent mean ± SD (n=6). 

Statistical significance was calculated with the unpaired t-test. des9: Δ9-desaturase activity. 
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In this work, we observed the absence of effects of the copper complex when encapsulated 

in pH-sensitive nanocarriers, which do not release sufficient drug doses for membrane 

remodeling, but also suggests further studies on the control of oxidative effects by drug 

delivery in sense of enhanced tumor targeting [283]. In Tables 3.1 and 3.2, the detailed 

values of the analyzed fatty acids and their indices are presented, respectively. 

 

Table 3.1: Relative percentages (% rel) and indices of membrane fatty acids methyl esters (FAME) 

of NB100 cells treated with 5 μΜ free or encapsulated Cu-TPMA-Phen. P-value represents the 

comparison among all the groups after conducting one-way ANOVA test. Stars indicate the 

statistically significant difference (Dunnett's multiple comparison test) between each treated group 

and the control cells (n=6); * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). 

FAME Control 
Free 

Cu-TPMA-Phen 

Encapsulated 

Cu-TPMA-Phen 
p-value 

SFA 

16:0 20.43 ± 1.28 22.86 ± 2.21* 20.54 ± 0.78 0.0412 

18:0 10.85 ± 1.64 20.05 ± 1.71**** 11.45 ± 1.42 < 0.0001 

20:0 0.27 ± 0.20 0.46 ± 0.04* 0.19 ± 0.02 0.0060 

MUFA 

16:1c6 1.52 ± 0.09 1.32 ± 0.10** 1.47 ± 0.07 0.0065 

16:1c9 5.54 ± 1.05 3.72 ± 0.73** 5.08 ± 0.81 0.0133 

18:1c9 37.17 ± 1.52 28.13 ± 0.99**** 36.80 ± 1.20 < 0.0001 

18:1c11 9.62 ± 1.34 7.10 ± 0.92** 9.35 ± 1.52 0.0138 

20:1c11 1.29 ± 0.29 0.94 ± 0.20 1.35 ± 0.32 0.0700 

PUFA ω6 

18:2 2.20 ± 0.23 2.40 ± 0.43 2.29 ± 0.34 0.6369 

20:2 0.39 ± 0.06 0.43 ± 0.08 0.40 ± 0.07 0.5248 

20:3 0.58 ± 0.06 0.81 ± 0.12** 0.61 ± 0.08 0.0021 

20:4 4.06 ± 0.73 4.51 ± 1.08 4.13 ± 0.78 0.6950 

PUFA ω3 

18:3 0.09 ± 0.02 0.12 ± 0.03 0.09 ± 0.02 0.0840 

20:5 0.81 ± 0.20 0.99 ± 0.26 0.85 ± 0.17 0.3822 

22:5 1.94 ± 0.12 2.22 ± 0.22* 2.01 ± 0.16 0.0485 

22:6 2.23 ± 0.64 2.78 ± 0.83 2.35 ± 0.63 0.4525 

Total trans 

18:1 0.63 ± 0.10 0.66 ± 0.06 0.64 ± 0.06 0.8524 

18:2 0.22 ± 0.04 0.25 ± 0.04 0.22 ± 0.04 0.5132 

20:4 0.16 ± 0.04 0.23 ± 0.06* 0.17 ± 0.02 0.0583 
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Table 3.2: Indices of membrane fatty acids methyl esters (FAME) of NB100 cells treated with 5 

μΜ free or encapsulated Cu-TPMA-Phen. P-value represents the comparison among all the groups 

after conducting one-way ANOVA test. Stars indicate the statistically significant difference 

(Dunnett's multiple comparison test) between each treated group and the control cells (n=6); * (p < 

0.05), ** (p < 0.01), **** (p < 0.0001). des9: Δ9-desaturase activity. 

Index Control 
Free 

Cu-TPMA-Phen 

Encapsulated 

Cu-TPMA-Phen 
p-value 

SFA 31.55 ± 2.48 43.38 ± 0.92**** 32.17 ± 1.82 < 0.0001 

MUFA 55.14 ± 4.05 41.22 ± 2.60**** 54.05 ± 3.71 < 0.0001 

PUFA 12.29 ± 1.99 14.27 ± 2.94 12.74 ± 2.18 0.4137 

PUFA ω6 7.22 ± 1.06 8.16 ± 1.72 7.43 ± 1.26 0.5408 

PUFA ω3 5.07 ± 0.94 6.12 ± 1.24 5.31 ± 0.92 0.2789 

SFA/MUFA 0.58 ± 0.08 1.06 ± 0.06**** 0.60 ± 0.07 < 0.0001 

ω6/ω3 1.44 ± 0.07 1.33 ± 0.05* 1.40 ± 0.03 0.0219 

total trans 1.01 ± 0.13 1.13 ± 0.13 1.04 ± 0.10 0.2812 

des9 (16:1/16:0) 0.27 ± 0.07 0.16 ± 0.02** 0.25 ± 0.04 0.0062 

des9 (18:1/18:0) 3.54 ± 0.77 1.42 ± 0.17**** 3.28 ± 0.53 < 0.0001 

 

 

3.8 Conclusions 

In the present research project, the novel Cu(II) complex [Cu(TPMA)(Phen)](ClO4)2 was 

studied being used both as a free compound and under an encapsulated form within 

polymeric nanoparticles, thus allowing for the comparison with the free drug. In vitro 

experiments were carried out in the neuroblastoma derived cell line NB100 cell line and 

breast carcinoma cell line MCF7. The cytotoxicity of both free and encapsulated complex 

was determined and the cell death pathways were analyzed with parallel monitoring of 

caspase activation. Inhibitors of apoptosis, necroptosis and scavengers of oxidative stress 

were tested to evaluate their protective effect against copper’s cytotoxicity. NB100 cells 

were treated with EC50 doses of copper complex and membrane fatty acids were isolated, 

derivatized and analyzed by gas chromatography. As expected, membrane remodeling took 

place upon treatment with the copper complex prior to cell viability decrease. The observed 

changes in fatty acid composition included significant increase of SFA and diminution of 

MUFA, while PUFA levels did not alter. Since, SFA and MUFA are metabolically 

connected through the SCD1 desaturase activity, we hypothesized that the copper complex 

could provoke the inhibition of this enzyme. To test this hypothesis, we developed a cell-
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free assay to assess the SCD1 enzymatic activity in the presence of copper complex. On 

the other hand, the observed membrane remodelling could be indirectly caused because of 

complex’s cytotoxicity since it is well known the interplay between membrane remodelling 

and cell death. To examine a possible connection between the cytotoxic events and fatty 

acid changes, we performed lipidomic analysis in the presence of complex in cells that 

were pre-treated with apoptosis inhibitor and ROS scavengers. To further study this 

phenomenon, we performed time course lipidomics in complex-treated cells and correlated 

these results with the cell viability and caspase activation at the same time points. Finally, 

we were interested to test whether a tailored fatty acid supplementation could influence the 

cell response to copper complex exposure. 

The main results include: i) oxidative stress-mediated cytotoxicity of copper complex and 

subsequent apoptosis and necroptosis in neuroblastoma cells, ii) membrane remodeling of 

treated cells with a specific increase of saturated fatty acids (SFA) and a decrease of 

MUFA, but not PUFA in both NB100 and MCF7 cell lines; iii) possible correlation of 

membrane remodeling with the cytotoxic mechanism of the copper complex, iv) 

elimination of the drug’s effects on cell viability and membrane lipidome when Cu-TPMA-

Phen is encapsulated in pH-sensitive polymeric nanoparticles, due to drug’s delayed release 

and reduced bioavailability.  
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4. Membrane remodeling in tumor-bearing mice models 

4.1 Background and Objectives  

The project described in the present chapter was performed in collaboration with the group 

of Dr. E. Efthimiadou at the Institute of Nanoscience and Nanotechnology, N.C.S.R. 

“Demokritos”. The overall goals of this research project were to a) evaluate the erythrocyte 

membrane fatty acid remodeling in normal and tumor-bearing mice at different stages of 

tumor occurrence and b) study the erythrocyte membrane fatty acid composition in normal 

and tumor-bearing mice, after administration of iron oxide nanoparticles and bleomycin. 

The mice models here studied were constructed, hosted and treated by our collaborators at 

the NCSR “Demokritos”. Whole blood was collected in EDTA-treated tubes and shipped 

within 2 days in the laboratory of the CNR/spin-off company Lipinutragen where the 

erythrocyte membrane fatty acid analysis was carried out. 

Lipid metabolic reprogramming is an established hallmark of cancer development [96], 

which among others includes a distinct fatty acid biosynthesis due to the rapid proliferation 

of cancer cells [103, 105]. Indeed, key enzymes that are involved in lipid biosynthesis, such 

as fatty acid synthase (FASN) and desaturases (SCD1, D5D, D6D), show increased activity 

in tumor development and propagation. These elevated enzymatic activities along with the 

corresponding fatty acids are thus pointed as markers of tumor presence and growth [42, 

72, 105, 106]. It is well known that the fatty acid composition of the cellular membrane 

affects its fluidity, permeability as well as membrane lipid-related signaling. Alterations to 

the fatty acid content and consequently to the membrane properties might give favorable 

signals for tumor growth, progression and metastasis [72, 142, 284]. The membrane 

remodeling is highly affected by the intracellular lipid pool, which in turn depends on both 

the endogenous fatty acid biosynthesis and their dietary intake, especially in the case of the 

essential polyunsaturated fatty acids (PUFA) [285]. Several independent studies have 

revealed apparent correlations between the erythrocyte membrane phospholipid fatty acid 

concentrations and tumor risk [157, 158, 161-163]. Furthermore, differences on the fatty 

acid composition of tumor colorectal tissues has been reported between patients with and 

without metastasis, suggesting that membrane lipid remodeling could affect the cellular 

function and influence tumor cell metastasis [175]. 
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One of the first discovered antitumoral drugs known to react with the membrane lipids was 

bleomycin (BLM) [199-201]. Bleomycin is a widely known antineoplastic agent, used to 

treat Hodgkin's lymphoma, non-Hodgkin's lymphoma, testicular, ovarian, head 

and cervical cancer among others [202]. Its therapeutic use is based, alike the famous 

cisplatin chemotherapy, on its ability to cleave DNA [202, 203]. Inhibition of DNA, RNA 

and protein synthesis by bleomycin has also been reported [203]. Studies have proved that 

DNA strand breaks induced by bleomycin rely on oxygen and metal ions. More 

specifically, it has been suggested that bleomycin chelates metal ions (mainly iron), 

producing a pseudoenzyme that reacts with oxygen to produce superoxide and 

hydroxide free radicals, as shown in Figure 4.1 [286, 287]. Its abilities to chelate redox-

active metal-centers (i.e. Fe(III) or Cu(II)) as well as binding to DNA, enable metallo-

bleomycin to the artificial metallo-nucleases (AMN) category [202]. Moreover, such 

metallo-antibiotics mediate oxidation of other cellular molecules, such as lipid 

peroxidation [204, 205]. 

 

 

Figure 4.1: The free radical pathway generated by iron-bleomycin complex induces DNA and lipid 

damage. 

 

Iron oxide nanoparticles find several medical applications, such as in the field of 

diagnostics (e.g. Magnetic Resonance Imaging - MRI) and therapeutics (e.g. hyperthermia-

based cancer treatment) [288]. They may also serve as drug carriers for specific drug 

delivery, as well as nano-adjuvant for vaccine and antibody production [289]. Despite their 

low toxicity, iron nanoparticles can be degraded in vivo, thus leading to increased iron 

https://en.wikipedia.org/wiki/Free_radicals
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levels in tissues [290]. The biodistribution of these biodegradation-produced iron ions can 

be then regulated by either ferritin or transferrin, which are the two main iron–binding 

proteins [291, 292]. High levels of intracellular iron have been implicated in the iron-

induced lipid peroxidation, since the free iron ions can react with superoxide or hydrogen 

peroxide to form hydroxyl radicals [293]. 

In the present project, we used a mouse xenograft model, consisting of a severe combined 

immunodeficient (SCID) female mouse, inoculated with the human glioblastoma U87MG 

cell line. Fatty acid composition of erythrocyte membrane was monitored: a) at different 

stages of tumor occurrence and b) at early points of tumor occurrence after administration 

of iron nanoparticles, bleomycin or combination of the latter two. Non-xenografted SCID 

mice that underwent the same treatment with the xenografted ones served as the control 

sample. In parallel, healthy Swiss mice were used for comparison with the tumor-bearing 

SCID mice. 

 

 

4.2 Erythrocyte membrane fatty acid analysis 

4.2.1 Healthy Swiss vs control SCID mice 

Comparison of healthy Swiss and control SCID mice was performed to evaluate the impact 

of the immunodeficiency to the obtained results, later presented in this chapter. Although 

it was not among the main aims to deepen into the differences between these two mice 

models, an initial evaluation of the distribution of the RBC membrane fatty acid families 

in these two animal models was carried out, prior to the examination of the membrane fatty 

acid distribution during the tumor progression in the immuno-deficient model of SCID 

mice. To our knowledge, the erythrocyte membrane fatty acid composition of SCID mice 

has not been evaluated before. For this reason, we performed an initial RBC fatty acid 

analysis aiming at a) the monitoring of fatty acid composition during ageing in both control 

SCID and normal Swiss mice and b) the comparison between these two animal models. 

The % relative distributions of the analyzed fatty acid moieties are reported in Table 4.1. 
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Table 4.1: Relative percentages (% rel) of fatty acids methyl esters (FAME) from red blood cell 

(RBC) membrane of normal healthy Swiss mice and control SCID mice at different age points (4 

weeks and 17 weeks). P-value represents the comparison between young (4 weeks) and old (17 

weeks) mice of each group after conducting unpaired t-test (n=3 for normal Swiss and n=2 for 

SCID mice). 

FAME 
Normal 

Swiss-4w 

Normal 

Swiss-17w 
p-value 

Control 

SCID-4w 

Control 

SCID-17w 
p-value 

SFA 

14:0 0.09 ± 0.13 0.61 ± 0.18 0.3270 0.57 ± 0.06 0.55 ± 0.14 0.9075 

15:0 0.75 ± 0.36 0.56 ± 0.24 0.9054 0.15 ± 0.04 0.15 ± 0.02 >0.9999 

16:0 28.63 ± 0.75 28.38 ± 0.80 0.9994 35.38 ± 0.46 31.78 ± 0.55 0.0377 

17:0 0.29 ± 0.21 0.43 ± 0.10 >0.9999 0.17 ± 0.00 0.16 ± 0.02 >0.9999 

18:0 13.15 ± 0.58 10.57 ± 1.01 0.2690 10.73 ± 0.09 12.11 ± 0.47 0.1022 

MUFA 

16:1c6 0.57 ± 0.15 0.27 ± 0.02 0.0713 0.23 ± 0.02 0.23 ± 0.05 >0.9999 

16:1c9 1.82 ± 0.66 3.09 ± 0.55 0.2269 1.66 ± 0.36 2.89 ± 0.38 0.1426 

18:1c9 15.03 ± 0.96 18.06 ± 1.66 0.4361 15.87 ± 0.95 19.09 ± 1.20 0.1701 

18:1c11 2.67 ± 0.08 3.26 ± 0.03 0.0012 2.70 ± 0.06 2.46 ± 0.07 0.1213 

20:1c11 0.54 ± 0.12 0.39 ± 0.02 0.2181 0.48 ± 0.02 0.39 ± 0.04 0.1425 

PUFA ω6 

18:2 10.63 ± 0.32 12.27 ± 1.28 0.6759 11.22 ± 0.30 11.67 ± 0.25 0.3683 

18:3 0.10 ± 0.14 0.16 ± 0.04 0.9999 0.05 ± 0.05 0.16 ± 0.02 0.1462 

20:2 0.59 ± 0.09 0.39 ± 0.04 0.2793 0.55 ± 0.02 0.39 ± 0.07 0.1386 

20:3 1.44 ± 0.18 1.35 ± 0.05 0.8947 1.22 ± 0.01 1.14 ± 0.13 0.5880 

20:4 14.50 ± 1.07 13.34 ± 1.51 0.9082 11.53 ± 0.99 10.40 ± 0.95 0.4968 

PUFA ω3 

18:3 0.25 ± 0.20 0.24 ± 0.07 0.9286 0.18 ± 0.04 0.18 ± 0.00 0.8995 

20:5 0.63 ± 0.04 0.52 ± 0.14 0.7063 0.43 ± 0.03 0.42 ± 0.03 0.9098 

22:5 0.82 ± 0.15 0.70 ± 0.11 0.8803 0.89 ± 0.05 0.67 ± 0.04 0.0663 

22:6 6.46 ± 0.30 5.35 ± 0.48 0.2110 5.70 ± 0.08 4.84 ± 0.30 0.1091 

trans 

18:1 0.22 ± 0.31 nd 0.6568 nd nd - 

18:2 0.26 ± 0.37 nd 0.6611 0.10 ± 0.00 0.10 ± 0.01 0.6985 

20:4 0.56 ± 0.41 0.20 ± 0.04 0.5000 0.20 ± 0.03 0.24 ± 0.04 0.6513 

 

The comparison between young (4 weeks) and old (17 weeks) mice of each model showed 

no significant difference on the RBC membrane fatty acid composition during ageing. A 

significant change found concerns the 17-weeks old control SCID mice, whose palmitic 

acid (16:0) was slightly decreased (p=0.0377) in contrast to the 4-weeks old SCID mice. 

Despite this diminution of palmitic acid, the fatty acid families and indexes were not 
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influenced. Furthermore, 17-weeks old Swiss mice have higher levels of vaccenic acid 

(18:1c11) opposite to the young ones (p=0.0012). Based on the few alterations detected, 

we consider that the ageing process is not the main factor for potential changes on 

membrane lipidome in the present case. As already mentioned, it was not the scope of this 

project to detail the differences between healthy Swiss and control SCID mice, however 

some interesting information was obtained related to the immunodeficient phenotype. The 

examined mice models (control SCID and healthy Swiss) are characterized by different 

erythrocyte membrane fatty acid profiles. Palmitic (16:0), stearic (18:0) and arachidonic 

(20:4ω6) are among the fatty acids with the most notable variation among the two models 

(Table 4.1), thus affecting the total SFA and PUFA values (Table 4.2). These differences 

could indicate that the immunodeficient phenotype may contribute to the final erythrocyte 

membrane remodeling. For following comparisons, the fatty acid families and indices that 

characterize normal healthy Swiss and control SCID mice at different age points (4- and 

17-weeks old) are presented in Table 4.2. 

 

Table 4.2: Relative percentages (% rel) of fatty acid methyl esters (FAME) families and indices of 

normal healthy Swiss and control SCID mice at different age points (4 weeks and 17 weeks). P-

value represents the comparison between young (4-weeks) and old (17-weeks) mice of each group 

after conducting unpaired t-test (n=3 for normal Swiss and n=2 for control SCID mice). SFA: 

saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UI: 

unsaturation index; PI: peroxidation index. 

 
Normal 

Swiss-4w 

Normal 

Swiss-17w 
p-value 

Control 

SCID-4w 

Control 

SCID-17w 
p-value 

SFA 42.91 ± 1.41 40.55 ± 1.69 0.3594 46.99±0.35 44.75±0.93 0.1529 

MUFA 20.63 ± 1.49 25.07 ± 2.18 0.3192 20.94±1.20 25.06±1.60 0.1756 

PUFA 35.42 ± 1.15 34.18 ± 0.69 0.9623 32.07±0.85 30.00±0.48 0.1685 

PUFA ω-6 27.26 ± 0.97 27.46 ± 0.42 >0.9999 24.86±0.65 23.89±0.77 0.4339 

PUFA ω-3 8.17 ± 0.21 6.73 ± 0.53 0.1602 7.21±0.20 6.11±0.29 0.0891 

ω-6/ω-3  3.34 ± 0.07 4.11 ± 0.32 0.6196 3.45±0.01 3.93±0.31 0.2671 

SFA/MUFA 2.10 ± 0.22 1.64 ± 0.21 0.7962 2.25±0.15 1.80±0.15 0.1625 

total trans 1.56 ± 0.05 0.20 ± 0.04 0.0006 0.30±0.03 0.34±0.05 0.5636 

UI 152.47 ± 5.58 146.79 ± 4.57 0.8856 135.06±3.01 128.63±0.47 0.1692 

PI 133.73 ± 5.94 119.99 ± 8.77 0.5387 114.39±4.76 101.76±1.50 0.1268 
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4.2.2 Tumor-bearing mice at different stages 

We used an experimental animal model, which was the severe combined immunodeficient 

(SCID) mouse xenografted with a human tumor cell line (glioblastoma U87MG). Such 

human xenografts are widely used in clinical research for the assessment of anticancer 

therapeutics [294, 295]. The diseased model was followed up at different ages (4-, 5- and 

17-weeks old) and was compared with no tumor-diseased SCID mice. Particularly, the 

erythrocyte membrane fatty acid profiles of these animals were monitored at different ages 

in order to track potential RBC membrane profile changes that could mirror the fatty acid 

remodeling and metabolism. 

The flowchart of the protocol used in this study is described in Figure 4.2. Human tumor 

xenograft was obtained by inoculating U87MG human brain glioblastoma cells 

subcutaneously in two weeks old SCID mice. Approximately 2 weeks post-injection, the 

first set of animals was sacrificed (group 3, four-weeks-old). The second set of tumor-

bearing mice was sacrificed one week later (group 4, five-weeks-old) and the third set after 

84 days (group 5, seventeen-weeks old). The group 3 and 4 are referred as the early stage 

of tumorigenesis hereinafter, while the group 5 as the final stage of tumor presence when 

all tumor-bearing mice are characterized by very poor conditions. In parallel, we evaluated 

the fatty acid content of membrane phospholipids in control SCID mice without tumor 

implantation, four-weeks-old (group 1) and seventeen-weeks old (group 2), to identify 

potential differences with tumor-bearing animals. Since in the present study human 

xenograft are selected and tumors originate by exogenously inoculation with human cancer 

cells, tumor tissues were not analyzed, following an approach described for a genetically 

engineered mouse [295]. The fatty acid-based membrane lipidomic study was performed 

using membrane phospholipids isolated from red blood cells (RBCs) with published 

procedures [296]. As shown in Figure 4.2, the extracted RBC phospholipids were 

transformed into fatty acid methyl esters (FAME) under known conditions [297]. FAMEs 

were analyzed by gas chromatography (GC) in order to identify saturated (SFA) and 

unsaturated (MUFA and PUFA) fatty acids, the latter being recognized as positional and 

geometrical isomers [246].  
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Figure 4.2: Flowchart for the analysis and quantification of membrane fatty acid moieties in 

erythrocytes of control SCID mice; group 1: 4-weeks old; group 2: 17-weeks old; and tumor-

bearing SCID mice; group 3: 4-weeks old; group 4: 5-weeks old; group 5: 17-weeks old. 

 

After better understanding the present experimental model (described in section 4.2.1), we 

proceeded with the membrane lipidomic analyses in tumor-bearing mice at an early stage 

of tumorigenesis (4- and 5-weeks old mice) and at a final stage of tumor progression (17-

weeks old tumor-bearing mice). In the present study, the erythrocyte membrane was 

utilized for the examination of fatty acid composition, since it is an easily withdrawn 

biological specimen. Red blood cells are increasingly gaining attention as an interorgan 

communication system, since their crosstalk with other tissues has been revealed [298, 

299]. RBCs structure and function are affected by the presence of ROS, but they also 

participate in the control of redox regulation [91, 299-301]. Recent works suggest that the 

RBC, as a “circulating” cell that is sensing the microenvironment found in all tissues, could 

be considered as a “reporter cell” for the antioxidant status of the other tissues [302-304]. 

Indeed, it has been reported that erythrocyte and liver cells have similar membrane fatty 
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acid composition [305] and mean lifetime (120 and 180 days, respectively). Thus, the fatty-

acid based membrane lipidomics of erythrocytes can serve as a useful tool for the 

extrapolation of information, especially when combined with other relevant metabolic and 

cellular assays [306].  

In Table 4.3, the fatty acids are grouped into families of SFA, MUFA and PUFA 

(graphically represented in Figure 4.3A), trans fatty acids (TFA) (graphically represented 

in Figure 4.3B), as well as into PUFA ω-3, PUFA ω-6 and their ratio. In Table 4.3 the 

calculated indices of unsaturation (UI) and peroxidation (PI) are also reported [246, 307]. 

 

Table 4.3: Relative percentages (% rel) of fatty acid families and indices of erythrocytes obtained 

from control SCID mice (4 weeks and 17 weeks) and tumor-bearing mice at different age points (4 

weeks, 5 weeks and 17 weeks). P-value represents the comparison among all the groups after 

conducting a one-way ANOVA test among all the groups (n=3). 

 
Control 

SCID-4w 

Control 

SCID-17w 

Tumor 

SCID-4w 

Tumor 

SCID-5w 

Tumor 

SCID-17w 
p-value 

SFA 46.99±0.35 44.75±0.93 42.16±0.03 42.54±1.07 57.86±0.44 <0.0001 

MUFA 20.94±1.20 25.06±1.60 20.08±0.08 19.53±0.77 15.54±3.34 0.0658 

PUFA 32.07±0.85 30.00±0.48 37.09±0.13 36.58±0.01 26.60±3.58 0.0190 

PUFA ω-6 24.86±0.65 23.89±0.77 28.56±0.04 27.48±0.04 21.21±3.47 0.0960 

PUFA ω-3 7.21±0.20 6.11±0.29 8.54±0.09 9.11±0.03 5.39±0.94 0.0054 

ω-6/ω-3 3.45±0.01 3.93±0.31 3.35±0.03 3.02±0.01 4.05±1.02 0.5875 

SFA/MUFA 2.25±0.15 1.80±0.15 2.10±0.01 2.18±0.14 3.89±0.76 0.0281 

Total trans 0.30±0.03 0.34±0.05 0.55±0.11 1.36±0.32 0.32±0.07 0.0074 

UI 135.06±3.01 128.63±0.47 159.61±0.53 156.82±0.63 109.00±10.19 0.0014 

PI 114.39±4.76 101.76±1.50 142.52±0.60 140.68±0.24 92.10±13.59 0.0053 

 

The following differences emerged from the comparison between control and tumor-

bearing SCID mice at different time points: 

i. Erythrocyte membrane lipidome profiles showed increased levels of SFA during 

tumor propagation. In particular, the relative percentage of SFA reached ca 58% 

over the total fatty acid composition in late-stage tumor-bearing mice, which is the 

highest SFA percentage found compared to both control SCID and early-stage 
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tumor-bearing mice (ca 42%, p<0.0001). As shown in Table 4.4, all the members 

of the SFA family follow this increasing trend in late-stage diseased SCID mice. 

On the contrary, the fatty acid moieties of MUFA family were decreased in the 

same animals, however not significantly. Consequently, the ratio of SFA/MUFA 

was increased at the erythrocytes of late-stage tumor mice, while the same ratio was 

decreased in the corresponding control SCID mice (p=0.028). 

 

ii. In addition to the above membrane remodeling, PUFA levels were significantly 

decreased in 17-weeks old tumor-bearing SCID mice (p=0.0019). Late stage 

diseased mice were characterized by smaller PUFA content in RCB membrane 

phospholipids compared to the young (4- and 5-weeks old) tumor-bearing age mice 

(p=0.0071 and p=0.0085, respectively). Notably, the PUFA levels in 4-weeks old 

control SCID mice were found much lower compared to corresponding tumor-

bearing and they were even fewer in 17-weeks old control mice, not significantly 

though. Both the families of omega-6 and omega-3 PUFA showed a decreasing 

pattern for late-stage tumor mice, without alterations at their in-between ratio 

(ω6/ω3).  

 

iii. ARA and DHA (members of the ω-6 and ω-3 PUFA families, respectively) show 

also significant depletion in tumor-bearing SCID mice after 17-weeks disease 

progression (p=0.0333 and p=0.0027, respectively), as represented in Figures 4.3D 

and 4.3E. Remarkably, in all cases, the PUFA changes did not involve the ω-6 

precursor linoleic acid (LA: 9cis, 12cis-C18:2), showing only a decreasing trend at 

the late-stage tumor-bearing mice (Tables 4.1 and 4.4 for control and tumor-bearing 

SCID mice, respectively). 

 

iv. The indexes of unsaturation and peroxidizability are significantly decreased (UI and 

PI; p=0.0014 and p=0.0053, respectively) (Table 4.3). It is worth mentioning that 

the neither in SCID mice nor in healthy Swiss mice the UI and PI indexes were 

found significantly affected by the age (Table 4.1).  

 

v. The level of TFA show also an interesting trend for tumor-bearing SCID mice, as 

they increase significantly in 5-weeks old tumor-bearing mice and then they 
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decrease again in 17-weeks old ones (p=0.0074) (Table 4.3 and Fig. 4.3B). No 

significant changes were revealed regarding the control SCID mice.   

 

 

 

Figure 4.3: (A) Fatty acid composition grouped into families SFA, MUFA and PUFA of 

erythrocyte membrane at early and late stage of control SCID and tumour-bearing mice; 

comparison among control (4 weeks and 17 weeks old; group 1 and group 2, respectively) and 

diseased mice (4 weeks old, 5 weeks old and 17 weeks old; group 3, group 4 and group 5, 

respectively); (B) Total trans fatty acids isomers of erythrocyte membrane among control SCID 
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(group 1 and group 2) and tumour-bearing mice (group 3, group 4 and group 5); (C) LH (18:2 ω-

6) levels for the five distinct mice groups; (D) ARA (20:4 ω-6) levels for the five distinct mice 

groups; (E) DHA (22:6 ω-3) levels for the five distinct mice groups. Values represent mean ± SD 

(n=3). * (p< 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). 

 

As far as the comparison between tumor diseased and healthy Swiss mice is concerned, we 

observed the following: 

i. 4-weeks old tumor-bearing mice showed an erythrocyte membrane lipidomic 

profile quite similar to the one characterizing the healthy Swiss mice at early age 

points (comparison between Table 4.3 with Table 4.2, respectively). The relative 

distribution of fatty acid families (SFA, MUFA and PUFA) was rather comparable 

in the RBC membrane obtained from young mice of both models.  

 

ii. The UI and PI indexes of 4-weeks old diseased SCID mice were more comparable 

to the ones of Swiss healthy than to those of control SCID mice (Tables 4.3 and 

4.2).  

 

iii. The total TFA were decreased during aging only in the case of healthy Swiss mice 

(p=0.0006, Table 4.2). 

 

During tumor progression, the levels of erythrocyte membrane SFA increase, indicating 

their availability from the de novo fatty acid biosynthesis machinery. Indeed, many studies 

report an enhanced fatty acid synthase (FASN) activity in tumor progression [308-311], 

accompanied by an increase of desaturase activity [142], although this latter process was 

not observed in our animal model. In late stage tumor-bearing SCID mice, the SFA increase 

is accompanied by a diminution of PUFA, which are essential or semi-essential molecules 

and are not produced by endogenous biosynthetic pathways. The variation in PUFA levels 

among the different SCID mice (group 1 vs 3 and group 3 vs 5) is interesting, since there 

are numerous original publications and literature reviews discussing the role of PUFA in 

cancer risk [312] and tumor progression [313]. According to the above results, we could 

consider a significant distinction of PUFA levels during tumor progression; increased at 

early stages in tumor-bearing SCID mice and then lowered as the tumor progresses (Table 

4.3). This PUFA diminution could be probably attributed to  lipid peroxidation in cell 
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membranes [104, 314], since tumor tissue is characterized by enhanced oxidative stress 

[315]. ARA (20:4-ω6) and DHA (22:6-ω3), which are the major long chain PUFA 

counterparts in the membrane, are prone to oxidation and showed a significant decrease in 

late-stage tumor-bearing mice. However, it is notable that the levels of LA, which is the ω-

6 precursor, were not significantly altered (Table 4.4). Thus, the hypothesis that oxidative 

processes are localized to tissues rich in ARA and DHA, which are more oxidizable 

molecules, can be fostered. PUFA play also an important role in lipid signaling. For 

instance, the arachidonic acid moieties are removed from membrane phospholipids by the 

enzyme PLA2, giving rise to signaling cascades that are known to lead to apoptosis evasion 

and tumor progression [312, 316]. Overall, both oxidative and signaling processes may 

contribute to the lower quantity of PUFA observed in membrane remodeling during cancer 

progression. 

Another process that is correlated with the oxidative stress and particularly the reactivity 

of the free radicals is the geometrical cis-trans lipid isomerization [314, 317]. As observed 

in the membranes of our animal models of study, the trans fatty acid levels changed 

significantly in the 5-week old tumor-bearing mice and this could be related to an increased 

radical -induced fatty acid isomerization. On the contrary, at the early (4-weeks) and late 

(17-weeks) tumor stages, a lesser isomerizing effect was detected (Table 4.3 and Figure 

4.3b). Indeed, the involvement of trans fatty acids (TFA) in cancer is still controversial 

[318] and no conclusive explanation can be given to this point for the pattern observed. 

The similarities found between tumor-bearing SCID and healthy Swiss mice cannot be 

currently explained, and further investigation has to be carried out for the elucidation of 

this observation. 

 

Table 4.4. Relative percentages (% rel) of fatty acids methyl esters (FAME) from red blood cell 

(RBC) membrane of tumor-bearing mice at different age points (4 weeks, 5 weeks and 17 weeks). 

P value represents the comparison among all the groups after conducting one-way ANOVA test in 

parallel with multiple comparisons of all groups (n=3). 

FAME 
Tumor 

SCID-4w 

Tumor 

SCID-5w 

Tumor  

SCID-17w 
p-value 

SFA 

14:0 0.31 ± 0.02 0.33 ± 0.02 0.54 ± 0.05 0.0103 

15:0 0.36 ± 0.05 0.46 ± 0.06 0.09 ± 0.07 0.0142 

16:0 28.61 ± 0.07 29.23 ± 0.91 38.52 ± 1.90 0.0053 

17:0 0.33 ± 0.01 0.45 ± 0.01 0.32 ± 0.04 0.0357 
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FAME 
Tumor 

SCID-4w 

Tumor 

SCID-5w 

Tumor  

SCID-17w 
p-value 

18:0 12.56 ± 0.06 12.08 ± 0.23 18.39 ± 2.02 0.0267 

MUFA 

16:1c6 0.26 ± 0.01 0.37 ± 0.08 0.22 ± 0.07 0.2394 

16:1c9 1.47 ± 0.21 1.37 ± 0.05 1.15 ± 0.65 0.8269 

18:1c9 16.05 ± 0.06 15.41 ± 0.53 12.10 ± 2.75 0.2525 

18:1c11 1.94 ± 0.08 1.99 ± 0.12 1.81 ± 0.11 0.4285 

20:1c11 0.37 ± 0.01 0.40 ± 0.01 0.24 ± 0.03 0.0089 

PUFA ω6 

18:2 10.97 ± 0.12 11.61 ± 0.07 9.67 ± 2.05 0.5189 

18:3 0.18 ± 0.01 0.09 ± 0.09 0.02 ± 0.03 0.1602 

20:2 0.35 ± 0.03 0.33 ± 0.02 0.35 ± 0.15 0.9857 

20:3 1.26 ± 0.10 1.26 ± 0.01 0.80 ± 0.08 0.0088 

20:4 15.81 ± 0.04 14.20 ± 0.09 10.07 ± 2.01 0.0463 

PUFA ω3 

18:3 0.19 ± 0.03 0.26 ± 0.07 0.17 ± 0.04 0.3714 

20:5 0.52 ± 0.03 0.53 ± 0.04 0.32 ± 0.07 0.0443 

22:5 0.76 ± 0.06 0.72 ± 0.05 0.87 ± 0.18 0.5865 

22:6 7.07 ± 0.03 7.60 ± 0.01 4.04 ± 0.74 0.0064 

trans 

18:1 0.20 ± 0.03 0.24 ± 0.07 0.03 ± 0.04 0.0379 

18:2 0.28 ± 0.01 0.44 ± 0.09 0.14 ± 0.05 0.0437 

20:4 0.07 ± 0.07 0.68 ± 0.15 0.15 ± 0.05 0.0134 

 

 

4.2.3 Tumor-bearing SCID mice treated with iron nanoparticles and bleomycin 

Previous research activity of CNR/Lipinutragen group has revealed the effects of 

bleomycin on the membrane lipidome of the neuroectodermal NTera2 tumor cell line and 

on biomimetic models (liposomes) [199, 200]. Our aim was to transfer the above studies 

to our in vivo model, which is a SCID mouse xenografted with the human glioblastoma 

U87MG cell line. In particular, 4-weeks old tumor-bearing SCID mice were randomly 

divided into four groups; Group 1 (control group) received normal saline, Group 2 received 

3 mg/kg (0.6 mg/mL) Fe3O4 metallo-nanoparticles (Fe-NPs) suspended in saline, Group 3 

received 15 mg/kg (3mg/mL) bleomycin and lastly, Group 4 received Fe-NPs plus 

bleomycin (co-treatment at the same concentrations as for groups 3 and 4). All 

administrations were performed intravenously. Animals were sacrificed 24 h after drug 

administration, red blood cells were isolated from whole blood and analyzed for assessing 

the membrane fatty acid composition, as depicted in Figure 4.4.  



Membrane remodeling in tumor-bearing mice models 
 

86 
 

 

Figure 4.4: Protocol outline for the analysis and quantification of membrane fatty acid moieties in 

erythrocytes of tumor-bearing SCID mice after treatment with iron nanoparticles (NPs), bleomycin 

or combination of the them. 

 

Tumor-bearing SCID mice that underwent any treatment (Fe-NPs, Bleomycin, Fe-

NPs/Bleomycin) were characterized by an erythrocyte membrane lipidomic profile similar 

to untreated tumor-bearing SCID mice. The only significant difference observed was in the 

case of tumor-bearing SCID mice treated with the combination Fe-NPs/bleomycin, during 

which the ω-6/ω-3 ratio in RBC membrane was lower (p<0.05) compared to all other 

groups (Figure 4.5, Table 4.5). As far as the bleomycin is concerned, its administration 

(either alone or combined with Fe-NPs) did not provoke any alterations on erythrocytes 

membrane fatty acid composition. 
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Figure 4.5: (A) Relative (%) distribution of fatty acid families in erythrocyte membranes of 4-

weeks old tumor-bearing SCID mice treated with 3 mg/kg iron nanoparticles (Fe), 15 mg/kg 

bleomycin (Bleo) and the combination of them (Fe/Bleo) at the same concentrations. (B) 

Distribution of ω6 and ω3 polyunsaturated fatty acids and their ratio in erythrocyte membranes of 

4-weeks old tumor-bearing SCID mice treated with Fe-NPs/Bleomycin. Fatty acid analysis was 

performed 1-day post-treatment. Values represent Mean ± SD (n=3). SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. Statistical significance 

was tested with the unpaired t-test. 
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Table 4.5: Erythrocyte membrane fatty acid composition of tumor-bearing SCID mice (4 weeks 

old) treated with Fe nanoparticles [3 mg/kg], bleomycin [15 mg/kg] and the combination of them 

at the same concentrations. The variance of each fatty acid among the different groups was studied 

with the ANOVA test. Multiple comparison test was applied to compare the differences among the 

distinct groups (* control vs x-treated, * Fe-NPs vs bleomycin, * Fe-NPs vs Fe-NPs/bleomycin, * 

Bleomycin vs Fe-NPs/bleomycin). 

FAME 

(% rel) 
Control Fe-NPs Bleomycin 

Fe-NPs/ 

Bleomycin 

ANOVA 

(p-value) 

SFA 42.16 ± 0.03 42.45 ± 1.78 43.10 ± 2.78 41.64 ± 0.21 0.8689 

MUFA 20.08 ± 0.08 18.51 ± 1.43 16.79 ± 1.49 19.26 ± 0.91 0.1572 

SFA/MUFA 2.10 ± 0.01 2.30 ± 0.18 2.60 ± 0.37 2.17 ± 0.11 0.2487 

PUFA 37.09 ± 0.13 37.28 ± 3.34 38.70 ± 1.86 38.18 ± 0.40 0.8649 

PUFA ω6 28.56 ± 0.04 28.62 ± 2.58 29.78 ± 1.53 28.33 ± 0.33 0.8122 

PUFA ω3 8.54 ± 0.09 8.67 ± 0.79 8.92 ± 0.49 9.84 ± 0.13 0.1379 

ω6/ω3 3.35 ± 0.03 3.30 ± 0.09 3.34 ± 0.16 2.88 ± 0.04*/*/* 0.0080 

total trans 0.55 ± 0.11 1.75 ± 0.86 1.41 ± 0.39 0.93 ± 0.54 0.3283 

UI 158.52 ± 0.43 156.32 ± 15.02 162.46 ± 8.60 166.56 ± 0.48 0.7199 

PI 141.79 ± 0.53 140.90 ± 17.63 149.31 ± 8.40 153.93 ± 1.14 0.6012 

 

 

4.2.4 Healthy Swiss mice treated with iron nanoparticles and bleomycin 

In parallel, the above-mentioned treatments were performed under the same conditions in 

healthy Swiss mice. Again, 4-weeks old Swiss mice were randomly divided into four 

groups; Group 1 (control group) received normal saline, Group 2 received 3 mg/kg (0.6 

mg/mL) Fe3O4 metallo-nanoparticles (Fe-NPs) suspended in saline, Group 3 received 15 

mg/kg (3mg/mL) bleomycin and lastly, Group 4 received Fe-NPs plus bleomycin (co-

treatment at the same concentrations as for groups 3 and 4). All administrations were 

performed intravenously. Animals were sacrificed 24 h after drug administration, red blood 

cells were isolated from whole blood and analyzed for assessing the membrane fatty acid 

composition, as depicted in Figure 4.6.  
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Figure 4.6: Protocol outline for the analysis and quantification of membrane fatty acid moieties in 

erythrocytes of healthy Swiss mice after treatment with iron nanoparticles (NPs), bleomycin or 

combination of the them. 

 

Healthy Swiss mice treated with Fe nanoparticles were characterized by a significantly 

different membrane lipidomic profile, compared to untreated or any other treated group, as 

shown in Figure 4.7A-C. In comparison to control Swiss mice, the Fe-NPs treated group 

showed lower SFA (p < 0.01) and PUFA (p < 0.001) content, whereas the MUFA members 

were increased (p < 0.001) 24 h after iron nanoparticles administration. Regarding the 

PUFA, both ω-6 and ω-3 family members were significantly decreased (p < 0.01 and 

p < 0.001, respectively). However, Swiss mice that were treated with Fe-NPs showed 

higher ω-6/ω-3 ratio with respect to untreated ones (p < 0.05), thus indicating an extended 

consumption of PUFA-ω3 members compared to the ω6 (Figure 4.7D). Consequently, the 

observed membrane remodeling led to the diminution of both unsaturation (UI) and 

peroxidation (PI) indices (p < 0.01 and p < 0.001, respectively).  
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Figure 4.7: (A-C) Relative (%) distribution of fatty acid families (SFA, MUFA and PUFA) in 

erythrocyte membranes of 4-weeks old normal Swiss mice treated with 3 mg/kg iron nanoparticles 

(Fe), 15 mg/kg bleomycin (Bleo) and the combination of them (Fe/Bleo) at the same concentrations. 

(D) Distribution of ω6 and ω3 polyunsaturated fatty acids and their ratio in erythrocyte membranes 

of 4-weeks normal Swiss mice treated with Fe-NPs. Fatty acid analysis was performed 1-day post-

treatment. Values represent Mean ± SD (n=3). SFA, saturated fatty acids; MUFA, monounsaturated 

fatty acids; PUFA, polyunsaturated fatty acids. Statistical significance was tested with the unpaired 

t-test. * (p< 0.05), ** (p< 0.01), *** (p< 0.001). 

 

Iron mediates the formation of reactive oxygen species (ROS) through the catalytic 

decomposition of hydrogen peroxide (Fenton reaction), which in turn lead to the damage 

of biomolecules, including lipids, proteins and DNA [293]. Oxidative damages to cellular 

components play a key role in tumor initiation and propagation. Studies on experimental 

animals have indicated that excess of iron accumulation in the liver and kidney causes 

oxidative tissue damages and is associated with cancer development in the respective organ 
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[319-322]. Interestingly, when Fe-NPs were administered simultaneously with bleomycin 

there was no alteration of membrane fatty acid composition, as compared to untreated mice 

(Table 4.6). The quenching of Fe-NPs effect on membrane lipidome could be probably due 

to the coordination of iron with bleomycin, since the latter acts as an iron chelator [323, 

324]. Consequently, this binding maybe blocks iron’s ability to catalyze the formation of 

free radicals. 

Although recent studies have shown that the bleomycin-iron complex can also interact with 

the membrane lipids due to its lipophilic characteristics [199, 200], we did not observe any 

similar effect on our in vivo models. More specifically, bleomycin has been found to induce 

in vitro a profound membrane remodeling at the level of the fatty acid constituents, which 

includes an increase of saturated fatty acid (SFA) content with a parallel decrease of 

monounsaturated and polyunsaturated fatty acids (MUFA and PUFA) [199]. Furthermore, 

studies on liposomes made of SFA, MUFA and PUFA-containing phospholipids have 

shown the occurrence of lipid isomerization, as well as the PUFA consumption, under 

biomimetic conditions of free radical and oxidative stress. In the present case, neither 

healthy Swiss mice, nor tumor-bearing SCID mice were characterized by such an 

eryhtrocyte membrane remodeling 24 h after bleomycin administration (Tables 4.5 and 

4.6).  

 

Table 4.6: Erythrocyte membrane fatty acid composition of healthy Swiss mice (4-weeks old) 

treated with Fe nanoparticles (3 mg/kg), bleomycin (15 mg/kg) and the combination of them at the 

same concentrations. The variance of each fatty acid among the different groups was studied with 

the ANOVA test. Multiple comparison test was applied to compare the differences among the 

distinct groups (* control vs x-treated, * Fe-NPs vs bleomycin, * Fe-NPs vs Fe-NPs/bleomycin, * 

Bleomycin vs Fe-NPs/bleomycin). 

FAME 

(% rel) 
Control Fe-NPs Bleomycin 

Fe-NPs/ 

Bleomycin 

ANOVA 

(p-value) 

SFA 42.91 ± 1.41 36.74 ± 1.98** 40.50 ± 0.45 41.85 ± 0.25* 0.0053 

MUFA 20.63 ± 1.49 33.56 ± 2.36*** 22.41 ± 0.65*** 21.63 ± 1.27*** 0.0001 

SFA/MUFA 2.10 ± 0.22 1.10 ± 0.13*** 1.81 ± 0.07** 1.94 ± 0.11** 0.0005 

PUFA 35.42 ± 1.15 29.08 ± 0.38*** 36.09 ± 0.77*** 35.60 ± 1.33*** 0.0003 

PUFA ω6 27.26 ± 0.97 23.34 ± 0.12** 28.08 ± 0.60** 27.52 ± 1.23** 0.0018 

PUFA ω3 8.17 ± 0.21 5.74 ± 0.44*** 8.02 ± 0.20*** 8.08 ± 0.37*** 0.0002 

ω6/ω3 3.34 ± 0.07 4.09 ± 0.35* 3.50 ± 0.05 3.41 ± 0.21* 0.0225 
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FAME 

(% rel) 
Control Fe-NPs Bleomycin 

Fe-NPs/ 

Bleomycin 

ANOVA 

(p-value) 

Total trans 1.04 ± 0.74 0.62 ± 0.19 0.99 ± 0.40 0.93 ± 0.20 0.7776 

UI 151.42 ± 5.36 128.14 ± 3.09** 153.24 ± 2.85** 152.38 ± 4.14** 0.0006 

PI 133.03 ± 5.69 90.01 ± 7.64*** 131.81 ± 3.85*** 132.77 ± 5.31*** 0.0002 

 

Apart from the lipid peroxidation process, ROS production can induce the interconversion 

of the cis unsaturated fatty acids to their corresponding trans geometrical isomers. This 

process is catalyzed by thiyl radicals, which are generated endogenously under stress 

conditions [317, 325]. In this study, we did not observe significant changes on trans 

isomers. The total content of trans FA in healthy Swiss mice treated with Fe-NPs was 

decreased, not significantly though. These preliminary observations also suggest a different 

effect of iron nanoparticles on erythrocyte fatty acids composition between healthy and 

tumor-bearing mice. However, further investigation is needed to better evaluate the 

obtained results. 

 

 

4.3 Conclusions 

In the present research project, we monitored the fatty acid composition of erythrocyte 

membrane phospholipids during tumor development. The membrane lipidomic profiles 

were analyzed in tumor-bearing SCID mice, xenografted with the human glioblastoma 

U87MG cell line, at early and late stages of tumor progression. Regarding the membrane 

fatty acid remodeling, late stage, and early stage tumor-bearing mice showed significant 

differences. Specifically, they were characterized by statistically significant increase of 

SFA, accompanied by a decrease in PUFA (both ω-6 and ω-3 counterparts), unsaturation 

index (UI) and peroxidation index (PI) at late tumor progression. In parallel, we also 

studied the effect of iron nanoparticles and bleomycin administration at early stage of tumor 

occurrence in the same animal model, as well as in healthy Swiss mice. Bleomycin did no 

exert any significant effect on erythrocyte membrane lipidomic profile of either the tumor-

bearing or the healthy mice. Co-treatment of tumor diseased mice with Fe-NPs and 

bleomycin led to lower ω-6/ω-3 ratio in erythrocyte membrane. Iron nanoparticles caused 

a notable membrane remodeling in healthy Swiss mice, characterized by lower SFA and 



Membrane remodeling in tumor-bearing mice models 
 

93 
 

PUFA levels and higher MUFA content. Although both ω-6 and ω-3 PUFA families were 

decreased, their ratio (ω-6/ω-3) was found increased in Fe-NPs treated Swiss mice, 

compared to the untreated group. In this study, the erythrocytes were used as ‘reporter cells’ 

to evaluate the fatty acid composition of tumor-bearing mice, since they can be indicative 

of the membrane exposure to the redox status. The effect of high oxidative stress can be 

depicted through the PUFA consumption and the consequent membrane remodeling. As a 

result, fatty acid-based membrane lipidomics could be a valuable tool, which allows the 

follow-up of fatty acid alterations and contribute to the development of multi-targeted 

antitumoral approaches.  
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7. Abbreviations 

ACC Acetyl-CoA carboxylase 

ACLY Adenosine triphosphate (ATP) citrate lyase 

ALA α-linolenic acid 

ARA Arachidonic acid 

CAT Catalase 

Co-A Coenzyme A 

Cu-TPMA-Phen [Cu(TPMA)(Phen)](ClO4)2, TPMA = tris-(2-pyridylmethyl)amine, 

Phen = 1,10-phenanthroline 

DAG Diacylglycerol 

DHA Docosahexaenoic acid 

DGLA Dihomo-gamma-linolenic acid 

DPA Docosapentaenoic acid 

EC50 Half-maximal effective concentration 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol tetraacetic acid 

EPA Eicosapentaenoic acid 

ER Endoplasmic reticulum 

FA Fatty acids 

FAME Fatty acid methyl esters 

FADS Fatty acid desaturase 

FASN Fatty acid synthase 

Fe-NPs Iron nanoparticles 

GC Gas chromatography 

GLA γ-linolenic acid 

GPL Glycerophospholipids 

HDFM Hyperspectral dark field microscopy 

LA Linoleic acid 

MCF7 Michigan Cancer Foundation-7, breast cancer cell line 

MTBE Methyl tert-butyl ether 

MUFA Monounsaturated fatty acids 

NAC N-acetyl-cysteine 

NADH Nicotinamide adenine dinucleotide 
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NADPH Nicotinamide adenine dinucleotide phosphate 

NB100 Neuroblastoma-derived cell line 

NCs Nanocontainers 

NEC-1 Necrostatin-1 

PBS Phosphate buffered saline 

PC Phosphatidylcholine 

PE Phosphatidylethanolamine 

PI Peroxidation index 

PLA2 Phospholipase A2 

PS Phosphatidylserine 

PUFA Polyunsaturated fatty acids 

RBC Red blood cell 

ROS Reactive oxygen species 

SCD Stearoyl-CoA-desaturase 

SCID Severe combined immunodeficiency 

SFA Saturated fatty acids 

SM Sphingomyelin 

SPL Sphingophospholipids 

SREBP Sterol regulatory element-binding protein 

TG Triglycerides 

TMSH Trimethylsulfonium hydroxide solution 

TFA Trans fatty acids 

U87MG Uppsala 87 Malignant Glioma 

UFA Unsaturated fatty acids 

UI Unsaturation index 

VLCFA Very long chain fatty acids 

Z-VAD N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone 
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