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Abstract

In the continuous research for more targeted therapies, a full comprehension of molecular
biorecognition phenomena, involving small molecules and biological targets, is pivotal to clarify
pathophysiological mechanisms and rationally develop new and more effective drugs. The
investigation of such interactions requires the development and application of advanced analytical
approaches to profile the binding partners. Several analytical techniques have been applied over the
years to elucidate different aspects of biomolecular phenomena, both in solution or involving target
immobilization. The selection of the most suitable and informative approach depends on the issue to
be addressed and, usually, the combination of several techniques may help better elucidating the
phenomenon.

In the current dissertation, approaches based on mass spectrometry (MS), circular dichroism (CD)
spectroscopy and surface plasmon resonance (SPR) biosensing have been used, both individually or
in combination, to investigate two targets of pharmaceutical interest, namely human serum albumin
(HSA) and human cholinesterases (ChEs). HSA, the most abundant plasma protein, plays a key role
in a broad range of biological functions. Furthermore, HSA is used in clinical practice to treat
different diseases, such as hypovolemia, hypoalbuminemia and sepsis and its integrity (or alteration
of) also reflects the health status of the subject. Indeed, in circulatory system, it could undergo
structural modifications which, from one side, may be studied as biomarker or prognostic features
and, on the other hand, may trigger pathological paths. For this reason, the elucidation of the
connection between HSA modifications, biological functions and the pathogenic role of altered
HSA is crucial to be investigated. In this scenario, the binding capacity of pharmaceutical-grade
HSA for intravenous infusion was studied implementing and employing a CD spectroscopy-based
assay. The work focused on the investigation of the impairment of the binding capacity caused by
commonly added stabilizers, i.e., N-acetyltryptophan and sodium octanoate, in the formulation.
Results showed an altered binding capacity at site Il caused by the presence of octanoate. The work
also highlighted that, because of the high affinity binding of octanoate, its removal cannot be
achieved by simple ultrafiltration or simple dialysis. Furthermore, SPR- and affinity
chromatography-MS-based assays enabled an initial characterization of the interaction between an
altered form of the protein, i.e. glycated HSA, and the receptor for advanced glycation end products
(RAGE). The multimethodological approach provided further insights into such interaction, laying
the groundwork for subsequent studies on the interaction between RAGE and circulating early and
end glycation products formed under diabetic conditions.

Concerning ChEs, these enzymes have been widely studied as molecular targets in drug discovery

for Alzheimer’s disease. In particular, according to cholinergic hypothesis, the inhibition of ChEs
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has represented and still represents the main strategy to temporally counteract cognitive
impairment. In this context, both in solution functional assays and a tailored SPR-based assay were
used for the identification of new potential inhibitors and for the affinity and kinetic studies on
known ligands, respectively. The new developed SPR-based assay nicely complemented classic
inhibition studies, providing further key elements for ranking new inhibitors, which can be
classified not only on the basis of their potency but also on the basis of their Kinetic parameters
including residence time.

Overall, the tailored analytical strategies developed and applied in the projects reported in the
current dissertation have contributed to elucidating biorecognition events and/or uncover alterations
of such mechanisms which may result in pathological mechanisms. The final goal of elucidating
some biorecognition events, indeed, is to provide pivotal information which can help the
development of new and more effective drugs towards more targeted therapies.



Outline of the thesis

The current thesis includes the collection of studies carried out during the PhD program, aimed at
investigating biorecognition events involving two pharmaceutically relevant targets, namely HSA
and ChEs. The dissertation is divided in three main parts.

Part | briefly outlines the complex correlation between in vitro and in vivo activity. The opening
chapter | focuses on the study of biorecognition phenomena. In particular, recent ligand—receptor
theories, which better explain in vivo activity, are discussed. These novel approaches, which
consider biological systems as open-systems characterized by a fluctuation of ligands, may give a
better picture of the conditions encountered in the human body. In this context, in vitro on- and off-
rate constants proved to correlate better than the affinity data with in vivo activities [1]. Therefore,
the interest in robust methodologies able to provide kinetic information on drug binding events is
growing. In this chapter, examples of analytical techniques employed over the years to structurally
and functionally characterize bioactive molecules have been also discussed with particular focus on
SPR, CD and MS techniques, which are the main analytical approaches used in the studies carried
out during my PhD. Chapter 2 reports the aims of the thesis.

Following the introductory part, the thesis reports the main studies carried out during the PhD
program, most of which has been published in peer-reviewed journals. Each original article has
been reprinted without modification with publishers’ permission, when I am the first author, while
it has been adapted, when my contribution to the work concerned only a part of the treated aspects.
The readers, who would like to obtain further information about the studies, are invited to directly
refer to published articles.

More in detail, the reports on the experimental work have been divided into two parts according to
the two target macromolecules investigated, i.e. HSA and ChEs.

Part 11 collects HSA studies. Chapter 3 provides a brief overview of this target with a particular
focus on the biological functions relevant for the reported studies. The structural modifications that
circulating HSA could undergo as a result of pathological conditions, such as high level of
oxidative stress and inflammation (e.g. cysteinylation, glycation, oxidation) and the analytical
strategies developed over the years to identify these modifications are discussed. The last part of
this chapter also comments the connection between structural changes and pathological processes.
Chapter 4 contains the results from the study focused on the impairment of binding capacity of a
pharmaceutical-grade HSA, which is triggered by stabilizers added when it is formulated for
intravenous infusion, by means of a CD spectroscopy-based assay. Stabilizers clearance by two

different purification methods, namely ultrafiltration and dialysis, is also discussed in the light of



the assessment of the availability of HSA binding sites obtained by the method proposed. Chapter
5 reports the investigation of the binding between a form of glycated HSA, recently released on the
market, and the extracellular region (VC1) of the human RAGE. The study has been carried out by
SPR and affinity chromatography coupled to MS with a tailored multimethodological approach
aiming at investigating such interaction and shedding light on complex interacting ligands.

Part 111 focuses on cholinesterase enzymes. Chapter 6 provides a brief overview of AChE and
BuChE enzymes (enzyme structure, biological function and their role as therapeutic targets for the
treatment of neurodegenerative disorders, such as Alzheimer’s disease) as well as of the marketed
cholinesterase inhibitors, since most of the drugs released on the market for treating AD symptoms
belongs to this class of compounds. Moreover, the new rational strategy, namely multi-target-
directed ligands, developed for countering the multifactorial etiology of AD, is also presented.
Chapter 7 presents the development of a new SPR sensing surface to study binding affinity and
kinetic parameters for the interaction of human AChE and known inhibitors. The suitability of the
developed hAChE-based surface to obtain additional elements (kon, Kofr, residence time) which may
aid the selection of favorite chemical scaffolds, is discussed. Chapter 8 and 9 deal with the results
achieved in the screening of two new classes of MTDL compounds, namely donepezil-lipoic acid
hybrids and tacripyrimidines hybrids, by using the classic in solution Ellman’s method [2]. These
compounds have been designed to exert multiple functions including ChEs inhibition. In particular,
the design of the former class aims at achieving anticholinesterase and antioxidant activities in a
single molecule, while the second class of derivatives aims at achieving cholinesterase inhibition
and calcium channels modulation. To assess whether the rational design was successful, the
investigation of the inhibitory potency toward cholinesterase enzymes and the definition of SARs
are key steps along the characterization of the biological profile of these new classes of derivatives
as well as for the selection of the most promising hybrids. Results of such studies are discussed
together with those achieved by other research groups on the other designed properties.

At the end of the third part, a brief conclusion is reported aimed at summing up all the findings and

the future perspectives sketched out by the current dissertation.
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In vitro studies to predict in vivo activity



Chapter 1

Analytical strategies for monitoring biorecognition phenomena

1.1 From in vitro studies to in vivo efficacy of drugs

Biorecognition phenomena between complementary chemical species underpin all physiological
and pathological processes. The study of the different interactions which occur in biological
systems, such as protein—protein, RNA-ribosome, DNA-—protein, enzyme-substrate,
antigen—antibody, enables the comprehension of the complex mechanisms underlining living
systems [3].

Corpora non agunt nisi fixate. This iconic sentence, which transposes in a more contemporary
expression means ‘‘a substance will not exert its physiological activity unless it is bound to the
target”’, was coined at the end of the 20™ century by Paul Ehrlich and is a cornerstone of modern
molecular medicine and pharmacology [4]. This concept points out the importance of studying the
interactions in terms formation/disruption events since the biological effect modulated by a ligand
to its target depends on the formation of the binary complexes. Similarly, a drug exerts a
pharmacological effect as long as it is bound to its target, making the information on drug—target
interaction important to help the prediction of in vivo drug action. As a result, during the early
stages of drug discovery, many efforts are focused on the optimization of the selectivity and the
affinity of drugs candidates toward their targets. Target affinity is usually assessed performing
either a direct measurement of the binding or, indirectly, measuring the modulation of the target
activity as a result of the binding (e.g. enzymatic activity assays).

Typically, these in vitro studies are carried out in closed system-based conditions (Fig. 1a) in which,
throughout the experiment, the concentration of binding partners is treated as invariant [1]. In this
scenario, assays can only partially mimic what happens in real systems, in which the interaction
process is dynamic and the exposure time of the ligand to its target is limited in time and floating
over time. In such static systems, drug-target binary complex is commonly quantified in terms of
equilibrium dissociation constant (Kp). Kp is defined as the concentration of a substance necessary
to bind 50% of macromolecular target population. This parameter is not up to the nature of
interactants (ligand—receptor, ligand—enzyme, ligand—ion channel) and it is measured at the steady
state, in which the concentration of both molecules is kept constant over the period of analysis.

Similarly, for inhibitor—target studies, the inhibitory constant (K;), measured in equilibrium



conditions, represents the concentration of inhibitor capable to inhibit of 50% the biological activity
of an enzyme.

Besides these parameters act as guides during drug discovery route to predict the in vivo behavior of
drugs, they can only provide a clue of the in vivo effectiveness. Indeed, the closed system-based
conditions can only partially reflect the dynamic process to which drugs are subjected in the human
body, where their concentration fluctuates over time both locally and globally [1]. In vivo,
compounds undergo different interactions besides the primary target, such as binding to serum
proteins. Similarly, several steps such as absorption, distribution metabolism and excretion
(ADME) rule the drug fate, thus influencing the concentration of compound that reaches the
primary target-harboring tissue and, as a consequence, the rate of the interaction. In this scenario,
the human body is better described as an open system (Fig. 1a) in which the local concentration of
the ligand as well as the time window in which it is available for the interaction with the target

change over time.
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Figure 1| Kinetic aspects of ligand—target binary interactions. (a) Representative picture of a closed and an open
system. The former is characterized by constant concentrations of reactants enabling the formation of a real equilibrium
between free and bound drug. The latter, more representative of the real conditions in the human body, is characterized
by a fluctuation of the ligand as a result of multiple factors including absorption, distribution, metabolism and excretion.
(b) Schematic simple 1:1 interaction for the receptor (R) and its ligand (L) characterized by a one-step mechanism with
the corresponding formation/disruption Kinetic constants. (c) Schematic 1:1 ligand—receptor interaction characterized by
a two-step mechanism with the corresponding formation/disruption kinetic constants. In this case, the binding between
the two interactants induces the isomerization of the receptor. The ks and k, constants represent further association and
dissociation rate parameters respectively, which account for the reversible conformational transition of the complex.

Reprinted with permission from [5].



From this perspective, the time-dependent variation of the ligand concentration is an important
parameter that should be considered for better mimicking in vivo biomolecular interactions. In this
context, the possibility of assessing the steady state affinity constant on the basis of individual
Kinetic rate constants (K, = k/k,) can provide further insights into the affinity—activity

relationship. Kinetic rate constants, namely association (ko,) and dissociation (ko) rate constants,
seems to better correlate with in vivo activities [5]. Therefore, in addition to affinity and inhibitory
potency, kinetic binding data are increasingly recognized as key parameters to be considered in the
optimization of a lead compound [6,7]. As examples of hit compounds selected on the basis of their
target binding Kkinetic properties, the fast off-rate dopamine D, antagonist JNJ-37822681 (treatment
of schizophrenia and bipolar disorder) [8] and inhibitors of the colony-stimulating factor 1 receptor
(target in oncology and rheumatoid arthritis) [9] can be mentioned. The importance of considering
kinetic parameters is exemplified by the experimental proof that chemical entities with the same
affinity but different on- and off-rates may display different biological activities. This is exemplified
by some muscarinic M3 antagonists, used in therapy as bronchodilators, which display similar
affinities but different kinetic rates and duration of action: atropium (Kp = 0.2 nM; kon = 1.5 x 10°
M™min™; kot = 0.27 min™) and ipratropium (Ko = 0.2 nM; Kon = 0.5 x 10° M min™; ket = 0.07 min™)
[10]. Notably, quantification of ko for ligand—target complexes grants easy access to residence time
(r = 1/kott), Which corresponds to the reciprocal of the dissociation rate constant and represents the
time that a drug ‘resides’ in the target. Indeed, r parameter results a more critical tool when
structure—kinetic relationship (SKR) studies are performed [11]. Therefore, we are witnessing
growing interest in robust methodology able to provide kinetic information on drug binding events
already at early steps in the drug discovery process. Among these methodologies, surface plasmon
resonance (SPR) based assays, radioligand binding/competition assays, biolayer interferometry and
Kinetic probe competition assays (kPCA) based on the time-resolved fluorescence energy transfer
(TR-FRET) are worth to be mentioned [10,12,13].

The access to kinetic parameters (and to residence time) acquires even more importance when
interactions involve more than a single reaction step such as in the case of target isomerization
induced by the binding. Taking the example of the most common 1:1 interaction between a ligand
and its target (Fig. 1b-c), in pharmacology two situations are usually observed. In the simplest case
(Fig.1b) the interaction is characterized by association and dissociation both in one single step (Fig.
1b). Herein, on- and off- rates (in the figure labeled k; and k,, respectively) directly refer to
formation and disruption events. In the second case (Fig. 1c), the interactions between the two
binders (RL complex) envisages a rearrangement into a conformation, in the figure named R*L,

characterized by a greater stability and higher affinity [14]. The additional isomerization reaction
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implies that these two interactants cannot directly decouple. In this case, also known as two-state
reaction, the ko is made from all microscopic rate constants involved in the reaction, also
accounting for forward and reverse isomerization steps (in the figure ks and ki, respectively) (Eq.
1).
ko= k, k,

FF ™ (ky + k3 + ky)
In medicinal chemistry, efforts to obtain the majority of details regarding a selective interaction

(1)

increase the success rate of better performing drug candidates. Of course, the in vivo duration of
drug action as well as its pharmacodynamic efficacy depend on multiple variables in addition to
molecular drug—target interactions. However, the combination of primary measurements of potency
and drug-target affinity (ICso or Kp values) with metrics such as residence time and kinetic data,
provides additional information during SAR studies, enhancing the connection of in vitro
measurements and in vivo effect. In this scenario, the development and application of advanced
analytical strategies enabling monitoring, directly or indirectly, biomolecular interactions are key
aspects to elucidate specific features which underpin biomolecular phenomena and to favor the

rational development of new and more efficient drugs.

1.2 Analytical methods for rationalizing binding events
The employment of analytical techniques and the development of experimental methods to
rationalize binding events constitute a connection bridge between pharmacological hypothesis and
the comprehension of specific network of communication, eventually resulting in the discovery of
new drugs with better therapeutic properties. The investigation of biological systems to clarify the
role of biological targets and their behavior upon interaction with ligands requires the development
and application of advanced analytical approaches to profile the binding partners. Indeed, an in-
depth characterization of structural and functional features of biological targets is pivotal to define
the relationship between the tridimensional conformation of a macromolecule and its function. In
drug discovery, the characterization of the ligand-target interaction may highlight the key amino
acids involved in the binding and help the rational design of new ligands. Moreover, investigation
of biorecognition phenomena using a set of different binders may facilitate the definition of the
chemical space to be further investigated along the lead optimization phase. In this context, the
determination of thermodynamic and kinetic data using in vitro systems mimicking physiological
setting enables to better predict the ligand behavior at the target in vivo.
Over the years, different analytical techniques have been employed to characterize ligand—target
interactions, both in solution or upon target immobilization. Each of these may enable the
investigation of different aspects of biomolecular phenomena. The selection of the most suited
11



approach depends on the specific aspect to be investigated and requires an in-depth knowledge of
the specific features of each method. Moreover, the use of orthogonal analytical techniques within a
multimethodological approach ensures complementary information which may facilitate the
understanding of the phenomenon.

Among the multitude of techniques, for their wide use in drug discovery we can quote X-ray
crystallography [15,16], nuclear magnetic resonance (NMR) [17,18], mass spectrometry (MS) [19-
25] circular dichroism spectroscopy (CD) [26—29], equilibrium dialysis [30,31], ultrafiltration [32]
and ultracentrifugation [33,34], fluorescence spectroscopy [35,36], affinity separation approaches
such as high-performance affinity chromatography (HPALC) [37-40] and affinity capillary
electrophoresis (ACE) [41-44], quartz crystal microbalance (QCM) [45,46], microscale
thermophoresis (MST) [47-49], isothermal titration calorimetry (ITC) [50-52] and biosensors
based on different technologies such as surface acoustic wave (SAW) [53,54] or surface plasmon
resonance (SPR) [55-60]. In structural field, in recent years cryo-electronic microscopy (cryo-EM)
[61,62] has become a valid label-free method to obtain details of macromolecule structures. This in
solution technique is based on the rapid cooling of biomolecules to cryogenic temperatures. The
formation of amorphous solids by means of a vitrification process enables the retention of native
structures. Biomolecules are then screened by electron diffraction patterns (particles distribution,
orientation and concentration) obtaining highly-informative 3D models.

MS is a powerful technique employed at different stages of the drug discovery path. For instance, it
is used to qualitatively and quantitatively identify known and unknown chemical entities, to
investigate the purity of synthesized compounds and to elucidate structural and functional
properties of biomolecules [19,21]. Besides providing specific sequence and exact mass of
molecules, MS is a robust and reliable tool for studies on macromolecular systems. Non-covalent
biomolecular assemblies, from small molecule—protein/nucleic acid interactions to macromolecular
complexes, can be investigated as well as affinity values (Kp), stoichiometry and target specificity
of the binding can be assessed. Moreover, MS enables the localization of the binding site by epitope
mapping approaches or allows to evaluate structural modifications of macromolecules. In some
cases, e.g. using ion mobility, MS can also provide details regarding binding-induced
conformational changes [20,21]. The versatility of the technique, the possibility of identifying and
separately quantifying several compounds in a single scan as well as the high automation granted by
the modern MS platforms confer to MS a great potential for rapid, sensitive and high throughput
analyses.

Toward the characterization process, CD spectroscopy is undoubtedly the technigue of choice when

conformational details of free or bound molecules are required (Fig. 2), granting the determination
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of the absolute configuration of chiral chemical entities or achiral molecules in a chiral environment
[63]. Intrinsic chirality of compounds, or the asymmetric arrangement of atoms upon binding can be
used to obtain details on the interaction, also when crystal structures or data from in silico studies
are lacking. Secondary structure studies (Fig. 2) are usually employed as ‘‘quality control’’ for
elucidating batch-to-batch the correct protein folding. Besides this application, secondary structure
analysis is also employed to investigate biological processes, such as the relationship between
protein conformational changes and pathological conditions. Indeed, changes in the secondary
structure of proteins or peptides may influence their functionality and, in some cases, play a role in
the pathogenesis of different disorders such as neurodegenerative diseases like Alzheimer’s and
Parkinson’s diseases or amyotrophic lateral sclerosis. In AD, for instance, analyses carried out in
aqueous solution confirmed that amyloid beta protein shifts from mainly a-helix conformation to -

sheet conformation, responsible for amyloid plaques aggregation and disease progression [64—66].
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Figure 2| Typical CD spectra of proteins secondary structures. Typical a-helical (red), random coil (green), p-

sheet (light blue) secondary structures. Reprinted with permission from [67].

CD technique also enables the assessment of thermodynamic parameters [26]. In particular, the
induced CD (ICD) phenomenon, which arises when the interaction between a guest and its host
perturbs the symmetry of the system (as a consequence of conformational changes), can be
exploited to this purpose. ICD can be a valid tool to investigate ligand-target binding events,
providing the assessment of the binding mode(s) as well as the determination of the binding
parameters. Since ICD signal arises as a consequence of the complex formation, ICD monitoring
allows to extrapolate specific information on the absolute configuration of chiral molecules along

with how the two interactants involved in the binding are mutually oriented. Furthermore, ICD
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studies can provide affinity constants, accounting for possible simultaneous competitors. Moreover,
the technique ensures monitoring the formation of the ligand—target complex without interfering
with the in solution equilibrium process.

Among analytical techniques enabling kinetic evaluation, SPR- or SAW-based biosensors as well as
QCM are extensively used. Indeed, these techniques share the potential to monitor formation and
disruption events in real-time, extrapolating kinetic parameters (Kon, ko) besides thermodynamic
data (Kp). Despite each method possesses its own specific physical transducer, they all feature
anchorage of the ligand (usually the macromolecule) on a surface and flowing of the analytes (such
as drugs) on the immobilized ligand. In detail, SPR detects shifts in the refractive index of the
sensing medium near the surface layer (Fig. 3), SAW monitors changes in acoustic waves
characteristics, i.e. frequency and amplitude, and QCM recognizes changes in frequency and
dissipation of a quartz crystal resonator. Among these, SPR has assumed a central role over the last

decades for monitoring biomolecular interactions.
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with gold film
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Analyte flow 3

—

Figure 3 | sSPR biosensing. At a specific angle of incident, a portion of the light energy couples with the electron of the
metal surface layer. The defined SPR angle at which resonance takes place is dependent on the refractive index of the
material near the metal surface. After biomolecular interaction, shift in the reflected light can be detected and the

magnitude is directly related to the amount of ligand—analyte complex.

SPR biosensing allows retrieving information about the complex formation without the need of any
labeling, providing qualitative information (yes/no binding) as well as quantitative thermodynamic
and kinetic data. SPR phenomenon (Fig. 3) takes place when a beam of incident light hits a metal
surface (typically a gold surface), located at the interface between two materials characterized by
diverse refractive indices. At a specific angle of incidence, a portion of the light energy couples

with the electrons of the metal surface layer. The defined SPR angle at which resonance takes place
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depends on the refractive index of the material near the metal surface. Since changes in the
refractive index are directly related to the mass of the sensing medium near the surface, changes in
the reflected light, resulting from the biomolecular interactions, can be detected and the
formation/disruption events easily assessed. Moreover, dissociation rate constant of a drug—target
complex grants easy access to residence time (t), which is a useful tool in combination with
functional data for a better prediction of the in vivo activity of a drug toward a specific target. SPR
biosensing approaches are also developed to achieve preliminary information on the ADME
behavior for new chemical entities. In this context, different experimental set-ups have been
developed over the years to investigate the binding to two of the major abundant proteins in plasma,
namely human serum albumin (HSA) and al-acid glycoprotein (AGP) [59]. The versatility of the
methodology grants the investigation of either simple protein/protein or protein/small molecule (<
200 Da) binding as well as monitoring interactants in physiological environments (i.e. human
plasma/serum). The low amount of sample required for screening makes SPR a suitable choice
when a low amount of one/both interactants is available. Furthermore, the highly automated and
integrated instrumentation minimizes operator procedures, thus improving the throughput and
facilitating the screening of series of compounds during drug selection phase.

Recently, the integration of in silico approaches with structural and functional studies has reduced
time-consuming steps/studies in drug discovery programs [68,69]. Computational methods can be
used at different stages: from target recruitment, to hit-to-lead process up to optimization of
compounds. The possibility of calculating free energy of reactions or simulating molecular
dynamics of macromolecules assists the prioritization process. In the fragment-based lead discovery
and design, the virtual screening favors and speeds up the rational design of new therapeutic

molecules and pharmacological probes, easing the efforts of synthetic chemists [70].
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Chapter 2

Scope of the thesis

Biorecognition phenomena between complementary chemical species underpin all physiological
and pathological processes. The investigation of such phenomena requires the development and
application of advanced analytical approaches to profile the binding partners. Within the variety of
analytical methods developed and employed over the years to elucidate different aspects of
biomolecular phenomena, a case-by-case selection must be done on the basis of the specific system
under study and the information to be retrieved. Moreover, it is worth taking into consideration that
the combination of different techniques may promote a better comprehension of a studied
biomolecular system [71]. Keeping in mind these considerations, the main purpose of the here
presented work was the development and application of tailored methodologies to investigate
biorecognition phenomena involving two pharmaceutically relevant targets, namely human serum
albumin (HSA) and human cholinesterases (ChEs).

HSA is the most abundant protein in plasma, playing a significant role in several biological
functions. In particular, the ability of binding many endogenous and exogenous compounds has
been widely studied since it strongly influences the bioavailability and pharmacokinetics of drugs
[59]. Furthermore, HSA is used in clinical practice to treat different diseases, such as hypovolemia,
hypoalbuminemia and sepsis and its integrity (or alteration of) also reflects the health status of the
subject. Indeed, HSA could undergo several structural modifications in bloodstream. For instance,
oxidation and glycation (promoted by high levels of oxidative stress and inflammation) not only
may affect its biological functions but also might lead to activation of pathological events. For this
reason, the comprehension of the connection between HSA modifications, biological functions and
pathogenic role of altered HSA is crucial to be studied.

In this context, impairment of binding capacity upon structural modification as well as the possible
role of such forms as mediators of pathological events is worth to be investigated. Concerning the
former aspect, since quality of HSA administered as biological drug might have health implications,
the impairment of the binding capacity of a pharmaceutical-grade HSA, clinically administered by
infusion, will be investigated. A CD spectroscopy-based assay will be employed in the attempt of
elucidating the effect of stabilizers, which are required for HSA pasteurization, on HSA binding
capacity, also offering a useful analytical method to monitor their clearance. On the other hand,

concerning the pathological implications of HSA alteration, HSA glycation will be considered with
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particular focus of its interaction with RAGE, due to the important pathological path in which this
receptor seems to be involved.

Concerning the second selected target, inhibition of cholinesterase enzymes, namely
acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), has been one of the most
investigated strategies pursued in the field of drug discovery for Alzheimer’s disease (AD).
Notwithstanding a number of alternative and potentially more effective strategies are under
investigation, inhibition of cholinesterases is still a valid therapeutic way to enhance, although
temporally, patient’s quality of life. According to the so-called multi-target-directed ligand (MTDL)
strategy, anticholinesterase activity is combined with other activities at other identified key targets
for AD in order to achieve a single compound with multiple actions. Thus, in the context of drug
discovery for AD, analytical strategies based on in solution assays will be employed to investigate
new MTDLs designed to act as ChE inhibitors.

In parallel, strategies involving target immobilization will be developed to complement classic in
solution assay. In particular, a SPR-based assay will be developed to help the prioritization of
favorite chemical scaffolds by complementing inhibitory data with affinity and Kinetic parameters.
Combination of functional and binding data should reduce the attrition rate in the early phase of

drug discovery.
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Chapter 3

Introduction

3.1 General remarks

Human serum albumin (HSA) is the most abundant plasma protein in humans, representing more
than 50% of the total protein content in bloodstream. Its high concentration (~ 600 uM) and net
negative charge modulate fluid distribution between compartments, accounting for ~70% to colloid
osmotic pressure [1]. Beside oncotic properties, HSA exerts a broad range of biological functions
including antioxidant activity, inflammatory and immunological modulation, stabilization of
hemostatic and endothelial functions and the carrier role for a vast variety of ligands [2]. Recent
surveys have highlighted that almost half of all developing new drugs are withdrawn before
marketing, because of absorption, distribution, metabolism, excretion, toxicity (ADMET) issues [3].
Since, ADMET profile and the therapeutic activity of drugs depend on the circulating free fraction,
binding to serum proteins, including binding to HSA, is a crucial parameter in the drug discovery
process [4]. Moreover, because of the ability of HSA to bind a variety of structurally different
endogenous and exogenous compounds, competition of new drug candidates for the same binding
site of marketed drugs is also a key aspect to be evaluated during drug development.

Due to its biological functions, pharmaceutical-grade HSA for infusion is widely used in clinical
practice to treat different diseases, such as hypovolemia, hypoalbuminemia, shock, acute respiratory
distress syndrome, burns, hemorrhage and hemodialysis [5,6]. Moreover, it is usually part of the
therapy for the treatment of acute liver failure and chronic liver diseases, which are characterized by
a strong impairment of albumin metabolism [7,8]. HSA is proposed as biomarker for several
diseases [9], namely rheumatoid arthritis, cancer, obesity related to post-menopause, ischemia or
altered glycemic values-based diseases. Indeed, HSA could undergo structural modifications in the
bloodstream, including cysteinylation, oxidation, glycation and truncation both at the N- and C-
terminal. For instance, pathological conditions characterized by high levels of oxidative stress and
inflammation, e.g. cirrhosis and diabetes mellitus, are known to induce structural changes, which, in
some cases, affect HSA non-oncotic functions [10]. Some of these altered forms of HSA seem
playing a role in the progression and/or complication of some important diseases, making the
elucidation of the relationship between HSA modifications, biological functions and pathogenic
role of altered HSA, crucial to be understood [2,11]. For instance, some chronic complications of
diabetes have been related to the increased levels of protein glycation which occurs as a

consequence of the higher levels of glucose in the blood of these patients. In this context,
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monitoring variations in glycation has been proposed as possible biomarker in patients suffering
from diabetes [12-14]. In this scenario, analytical methods to investigate structural features and
functional properties, which are strictly connected with protein integrity, e.g. binding capacity, are
of relevance in clinical research and in the early stages of drug discovery.

The huge amount of biological functions exerted by HSA in many physiological and pathological
setting makes albumin one of the most investigated proteins. Nevertheless, its role in the
modulation of many processes has not been completely clarified. For this reason, HSA still remains
an intriguing object of research.

3.2 Albumin structure

HSA biosynthesis starts in the hepatocytes with the production of pre-pro-albumin. This form is
subsequently modified into pro-albumin and cleaved of the N-terminal oligopeptide in endoplasmic
reticulum and in Golgi apparatus, respectively. HSA is released with a daily rate of 10-15 g/day
into the bloodstream, where it remains with a relatively long half-life time (~20 days) [1]. The
mature plasma protein is composed by 585 residues and has a molecular weight of 66438 Da.
Protein high solubility is granted by the presence of several ionizable amino acid residues, e.g.
lysines, arginines and glutamic acids, with a net negative charge. Furthermore HSA structure is
characterized by the presence of a single tryptophan residue (Trp214) which ensures fluorescence
studies [9]. The protein is composed by 17 cysteines-based disulfide bonds, which increase protein
stability and flexibility. Cysteine at position 34 is the only cysteine residue not involved in disulfide
bridges, constituting the larger reservoir of thiols in plasma [15]. This residue acts as radical
scavenging in circulatory system and can bind different endogenous ligands, e.g. nitric oxide (NO)
and metal ions. Moreover, free Cys34 may interact with different circulating molecules and, in a
limited extent, with other circulating HSA molecules, forming protein dimers [16].

HSA secondary structure displays the typical features of a-helix-rich proteins (~68 % o helices
content) [17]. HSA consists of three homologous domains (I, Il, I11), which are divided into two
sub-domains, labeled A and B which contain 6 and 4-helices, respectively. In solution, the six
subdomains, namely 1A (residues 1-112), IB (residues 113-195), IIA (residues 196-303), 1I1B
(residues 304-383), 1A (residues 384-499) and I11B (residues 500-585) assemble asymmetrically,
in the so-called heart-sharp conformation [18,19] (Fig. 4). Nevertheless, the huge flexibility of this

macromolecule makes HSA conformation easily changeable [19].
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Figure 4| Three-dimensional structure of albumin. Heart-sharp conformation of HSA caused by subdomains
disposition: 1A (red), IB (brown), I1A (light green), I1B (dark green), I11A (blue), I11B (cyan).

3.3 Structural modifications of circulating HSA

HSA undergoes several changes which may affect protein structure and conformation. Among
them, the most common and investigated are cysteinylation, truncation at the N- and C- terminal,
oxidation and glycation.

Oxidation of HSA, which is promoted by reactive oxygen species (ROS), chemical products
derived from lipid peroxidation, ascorbic acid and hydroxyl radicals formed via Fenton reaction,
can affect protein integrity and functionality [20]. Oxidation of Cys34 represents the major
alteration of circulating HSA and despite this process occurs in physiological conditions, it is
enhanced by increased oxidative stress and age. In about 20-30 % of the circulating protein, this
residue is involved in mixed disulfide bonds with another cysteine residue or glutathione residue.
These modifications, i.e., cysteinylation or glutathionylation, lead to the formation of a reversibly
oxidized form of HSA which is also known as non-mercaptoalbumin 1 (HNAZ1). Almost 5 % of the
total content of HSA in plasma undergoes irreversible oxidation into sulfinic or sulfonic acid,
forming the so-called non-mercaptoalbumin 2 (HNAZ2). Cys34 acts as antioxidant compound
towards NO and other radicals as well as it displays binding capacity for different ligands (metal
ions, NO, drugs). For this reason, its alterations may cause an impairment of HSA redox potential
and functionality [9,21]. Moreover, oxidation of Cys34 by other cysteines promotes N-
homocysteinylation of Lys525, which has been related to the onset of pathological states such as
thrombogenesis or production of antibodies against the modified albumin form [22-24]. Less
frequently, oxidative modifications may involve lysine, arginine or methionine residues. Oxidation
of these amino acids, such as arginine at position 410, has been shown to possibly increase the rate
of HSA clearance [25,26].
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The truncations at the N- and C- terminal are other common modifications. Since the N-terminal
domain of HSA is able to bind circulating free metal ions, the removal of asparagine—alanine
residues impairs HSA scavenging activity towards circulating metal ions [15,27]. On the other
hand, the truncation at C- terminal decreases protein half-life time, from 20 days to less than 80 h
[28].

Circulating glycated HSA is the result of physiological non-enzymatic glycation of the native
protein by reducing sugars. This modification, which accounts for almost 10 % of the total HSA
content in healthy people, increases 2 or 3 times in case of diabetes mellitus. Indeed, despite this
process is physiological and increases in aging, it results much faster under diabetic conditions
defined by chronic hyperglycemia. Moreover, because of HSA long half-life and high
concentration, as compared to other proteins, glycated HSA is proposed as a possible biomarker for
diabetes control [29]. Initially chemically reversible Schiff bases and Amadori adducts are formed.
The formation of the early glycation adducts involves several lysines, such as Lys525 (as prevalent
site of glycation), Lys199, Lys281, Lys489, and arginine residues (e.g. Arg410) [20,30]. Overtime,
these products slowly undergo further rearrangements, e.g. oxidation, degradation and dehydration,
resulting in the irreversible formation of the so-called advanced glycation end products (AGES)
[31]. Glycation process modifies the structure of the protein. Moreover, since this process may
involve aminoacid residues located in or near HSA binding sites, it also may compromise HSA
binding capacity for endogenous and exogenous compounds [32].

Besides these common modifications, it is worth mentioning also dimerization, nitration and

nitrosylation [2].

3.4 HSA biological functions

Albumin displays important biologic functions, which can be divided into oncotic and non-oncotic.
Indeed, HSA plays an important role as fluid modulator through body compartments and regulates
~70-80 % of the oncotic pressure in plasma. This function is granted for two-thirds by the osmotic
effect, which is related to its molecular weight, while for one-third by Gibbs-Donnan effect. Indeed,
in physiological conditions the net negative charge of HSA recalls positively charged ions (e.g.
sodium and water) inside intravascular compartments. As a result of its osmotic effect, HSA is
widely used in clinical practice as plasma expander, e.g. in case of hypovolemic shock [33].

HSA also owns different non-oncotic properties which, in most of the cases, are strictly connected
to its peculiar structure (Fig. 5) [9,10].

HSA remarkable binding capacity reflects its organization in multidomains. Under physiological

conditions, the protein binds a huge variety of endogenous ligands, such as fatty acids, ions,
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hormones as well as exogenous compounds, i.e. drugs and their metabolites [10]. Moreover, HSA is
also responsible for bilirubin binding, favoring its clearance [1]. Over the years, aloumin binding
sites have been widely investigated. According to the classification proposed by Sudlow, HSA has
two major binding sites for drugs (sites I and 11) located in sub-domains 1A and I11A, respectively.
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Figure 5| HSA biological functions and binding properties. On the right column, HSA oncotic and non-oncotic
biological functions are listed while the left panel lists the most common classes of endogenous and exogenous ligands.
Reprinted with permission from [34].

Site I, which is larger and more flexible than site 11, enables the binding of heterocyclic compounds,
e.g. warfarin or phenylbutazone [35]. Site Il, smaller and less adaptable, is called indole-
benzodiazepine binding site and hosts aromatic or indole-compounds, like diazepam or L-
tryptophan. Recently, a third binding site (site 111), allosterically coupled with the other two, has
been identified in sub-domain IB [36]. Site Il is considered a promiscuous pocket, on the basis of
its different ligand recognition capacity: among its binders, biliverdin, bilirubin and several
anticancer agents are included. HSA binding capacity promotes drugs solubility, thus enabling their
transport to the sites of action. Moreover, the great capacity of the main binding sites to
discriminate stereoisomers makes binding of drugs highly influenced by stereochemistry [37].

Another important function of HSA is its antioxidant activity. Cys34 represents the major reservoir
of thiols in plasma (~ 80%), acting as scavenger for ROS. The pronounced antioxidant capacity
displayed by this residue is related to the low pKj, of the corresponding thiol group (about 5.0), in

contrast to the pK, of the other aminothiols (cysteine and glutathione residues). As consequence, at
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physiological pH, Cys34 predominantly exists as thiolate anion, which grants the peculiar
nucleophilic reactivity against metals and oxygen/nitrogen reactive species [38]. HSA scavenger
activity is also assisted by aminoacidic residues (methionines) and the ability of the N-terminal
portion to chelate iron and copper ions, inhibiting their involvement in the formation of hydroxyl
radicals via Fenton reaction [15].

HSA is also considered an important modulator of prostaglandins bioavailability, resulting in the
activation of inflammatory response promoted by immune system [39]. Moreover, the ability of
Cys34 to bind NO seems to prevent its rapid inactivation prolonging its antiplatelet effect and the
antithrombotic activity [40]. Finally, HSA is involved in immune response to both Gram-positive
and Gram-negative bacteria due to protein interaction with some components located on the
bacteria surface. This event promotes the interaction with the Toll-like receptor 4, thus modulating
albumin anti-inflammatory activity [41].

The relationship between HSA structure and physiological properties requires the development of
different analytical strategies capable of correlating structural and functional features. The
following section briefly resumes the principal analytical techniques employed over the years in the
structural characterization of HSA as well as binding capacity and antioxidant activity as main non-

oncotic properties.

3.5 Analytical strategies for HSA characterization

Structural and functional integrity of HSA have been widely investigated over the years. In
particular, because of its important physiological role, many efforts have been made to develop
tailored strategies capable to identify and quantitate altered HSA structures. Among analytical
methods used to highlighting HSA structural integrity, methods focused on the qualitative and
quantitative investigation of the most frequent and abundant HSA alterations are particularly
relevant. Among chromatographic techniques, ion exchange chromatography (IEC), size exclusion
chromatography (SEC) and reverse-phase chromatography (RP-LC), all coupled with UV or MS
detection, represent the most commonly used approaches. For instance, IEC strategy is suitable to
investigate HSA isoforms arising from altered Cys34 oxidative state [43,44]. On the other hand,
SEC is useful to highlight the formation of dimers and aggregates thanks to its ability to resolve
different compounds as function of their hydrodynamic volume. For example, a SEC-based method
has been applied to evaluate the formation of dimeric products in the presence of high levels of
oxidative stress or as function of temperature [44]. Hyphenation of RP-LC with MS grants analyses
of HSA modifications by both top-down and bottom-up approaches [46] which allowed the study of

HSA truncation, cysteinylation and glycation [2]. For instance, many studies have been carried out
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using RP-LC-MS in order to obtain information concerning HSA glycation extent or preferential
glycation sites involved in the process [46,47]. Besides chromatographic methods, HSA alterations
can be investigated using capillary zone electrophoresis (CZE), in which analytes are separated on
the basis of their charge, shape and size [48]. Moreover, this technique allows performing analyses
in physiological-like environment (i.e. agueous solutions).

HSA conformational changes are usually investigated by means of spectroscopic techniques,
namely circular dichroism (CD) and fluorescence spectroscopies [2]. CD method has been widely
used to evaluate HSA secondary structure along with functional features resulting from several
different conditions: high temperature, pro-oxidant compounds, addition of stabilizers in the
pharmaceutical-grade HSA or sugar concentration during in-vitro glycation process [49]. Instead,
HSA fluorescence, which is granted by the presence of a single tryptophan residue (Trp214), has
been used to assess stability and isomers conformation as well as to investigate conformational
changes involving domain I, where Trp214 is located [50].

Many efforts in the development of analytical strategies have been also made to assess HSA
binding capacity and antioxidant activity. Over the years, drug binding to HSA has been measured
by several techniques. Among them, it is worth mentioning equilibrium dialysis, ultrafiltration
(UF), high performance affinity chromatography (HPAC), Hummel-Dreyer method, affinity
capillary electrophoresis (ACE), capillary electrophoresis-frontal analysis (CE-FA), ultrafast
affinity extraction, spectroscopic approaches and surface plasmon resonance (SPR) [2]. In
particular, HPAC enables the quantitative determination of drug—HSA binding on the basis of
retention time. Indeed, drugs with stronger affinities towards immobilized HSA will show higher
retention times compared with drugs characterized by lower affinities. Frontal affinity
chromatography (FAC) and/or zonal elution chromatography enable the determination of
association constants, granting precision, low-time consuming and reduced sample handling
[51,52]. The main drawback of the technique is the huge amount of analyte consumption for
analyses, representing a limitation when low quantities are extracted from biological samples.
Conversely, SPR-based technology enables affinity and Kinetic estimation of binding events using
small quantities of materials. The interaction is monitored in real-time and the high automation
grants time saving [53,54]. Indeed, different compounds can be screened using the same HSA
sensing surface granting a fast screening process. Moreover, altered HSA isoforms as well as
albumins from different species can be immobilized onto SPR platforms. In the first case, SPR
approach may favor the correlation between structural modifications and HSA binding properties.
In the latter, it may underline the species-dependent binding, pointing out the caution necessary

before the extrapolation of data for clinical studies [55,56]. Besides conformational analysis, CD

29



spectroscopy has been widely employed to investigate ligand—HSA interactions. The achievement
of affinity binding constants relies on the onset of induced circular dichroism (ICD): a typical CD
signal peculiar of the complex. Similarly, well-characterized ICD markers can be exploited for
competition studies at the main binding sites of HSA, disclosing the binding site as well as the
binding mode of compounds [37,57]. HSA binding capacity as function of structural modifications
(e.g. glycation) has been recently questioned by several research groups [58,59]. Moreover, a CD
spectroscopy-based assay to investigate the impairment of HSA binding properties resulting from
stabilizers addition, namely sodium octanoate and N-acetyltryptophan, is presented in the chapter 4.
In addition to HSA binding capacity, HSA antioxidant activity is one of the mostly studied non-
oncotic functions. HSA antioxidant capacity is strictly connected to protein structure, mostly
depending on the presence of a free thiol group at the Cys34 residue and on the N-terminal binding
capacity towards free ions. As a consequence, structural changes triggered by pro-oxidant
microenvironment can deeply affect this function [48]. Analytical approaches used to assess
antioxidant properties of HSA include Ellman’s assay, albumin cobalt binding assay (ACB),
oxygen radical absorbance capacity assay (ORAC) and 3,3’,5,5’-tetramethylbenzidine (TMB)-
based assay [2]. ACB assay tests the binding capacity of the N-terminal portion of the protein
towards cobalt ions (Co) by means of a colorimetric reaction. This approach is employed in clinical
practice to investigate the level of ischemia modified aloumin (IMA) in circulating aloumin pool,
which reflects, in turn, a decrease in HSA antioxidant activity. IMA levels have also been proposed
as biomarkers for acute coronary syndrome. Newly, ACB-based method has been employed to test
antioxidant capacity of pharmaceutical-grade HSA [60]. Another colorimetric reaction, based on the
interaction between free thiol groups and a chromogenic agent, is Ellman’s assay. This method is
indirectly used to test HSA scavenger activity on the basis of the availability of Cys34 residues to
form a colorimetric complex with 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) [61]. For instance,
this approach enables the evaluation of antioxidant activity as function of structural changes
triggered by in vitro glycation and oxidation processes. Moreover it can be used to compare
circulating HSA scavenger activity between healthy control subjects and diabetic patients [62,63].
Finally, ORAC and TMB assays can evaluate HSA antioxidant capacity towards peroxyl radicals

and hydroxyl radicals respectively of pharmaceutical formulations and altered proteins [60].

3.6 Clinical implications of modified circulating HSA
Circulating HSA could undergo structural modifications in the bloodstream, such as oxidation,
cysteinylation and glycation, which may affect its physiological functions. Moreover, a significant

decrease in physiological aloumin amount has been related to an increasing hazard of morbidity and
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mortality in renal and liver diseases, rheumatoid arthritis, ischemia, cancer and hypoalbuminemia
[9]. In this scenario, modifications of HSA structure may reflect pathological conditions of human
body, resulting in a possible use of HSA as prognostic biomarker in diseases, such as kidney, liver
failure and aging (Fig. 6) [2].

Oxidative stress increases with aging, thus promoting HSA oxidation and, as consequence, a
decrease of the native isoform. Impairment in the overall redox state directly contributes to elderly-
related complications, such as an increasing risk of cardiovascular pathologies [65]. Oxidative
stress and oxidized HSA have also been related to renal diseases. For example, a significant
oxidation of HSA is encountered in primary nephrotic syndrome [66].
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Figure 6| Clinical implication of the equilibrium between physiological and modified HSA. HSA alterations as

prognostic biomarkers in several diseases. Reprinted with permission from [64].

Circulating levels of HNAs (1 and 2) are considered important biomarkers of the oxidative stress
status of patients which are submitted to hemodialysis. Moreover, the total fraction of HNA
(HNA1+ HNAZ2) is strongly tied to the decrease of creatinine clearance. In the end-stage renal
disease, an increased level of cysteinylated HSA has been observed. These high levels, in turn,
promote oxidative stress. Moreover, alteration of the native HSA affects its vasculoprotective
properties, promoting cardiovascular complications in hemodialysis patients [64]. Impaired HSA
functions have been reported during end-stages of renal failure, e.g. binding capacity at site 11 of the

protein. Moreover, the alterations of the N-terminal portion of the protein, which also occur under
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these conditions, contribute to increase the levels of IMA which, in turn, enhances the incidence
percentage of coronary heart disease [12].

Oxidative stress also plays a key role in the pathogenesis of liver diseases, such as cirrhosis [34].
This pathology alters not only the content of aloumin as a consequence of a reduced production in
the liver, but also HSA structural quality. Indeed, increased levels of HNA1 and HNA2 along with
the carbonylated HSA have been detected in cirrhotic patients. In particular, these modified
isoforms increase in case of decompensated cirrhosis and in patients which suffer of acute-on-
chronic-liver failure [67]. In case of decompensated cirrhosis and severe alcoholic hepatitis, an
increase of HSA dimers, C- and N-terminal truncations and cysteinylation have been also reported.
The quantification of all these altered isoforms favors the estimation of the residual native HSA in
plasma, which has been shown to be a better predictor of patient survival after 1-year instead of
albumin content (currently considered in clinical practice) [68]. Cirrhosis also increases IMA ratio
which, in turn, enhances the severity of cirrhosis itself and leads to many complications. In this
scenario, the carrier function for fatty acids and site-Il ligands as well as the antioxidant activity
have been shown to be considerably impaired.

Finally, circulating glycated HSA increases in diabetic conditions and serum levels of glycated
HSA have been proposed as a better short-term indicator of diabetes than glycated hemoglobin.
Concerning its involvement in pathological processes, recent evidence suggests that advanced
glycation end products (AGEs) may play a role in the onset of diabetic complications including
retinopathy, nephropathy and cardiomyopathy. Similarly, RAGE activation by AGEs seems to be
involved in the ethiopathogenesis of some chronic diabetes complications. This observation has
recently increased the interest and the efforts towards the investigation of such interaction [69,70].
In this context, a multimethodological strategy to investigate the binding of glycated HSA with

RAGE is presented in chapter 5.
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Chapter 4

New insights into the altered binding capacity of pharmaceutical-
grade human serum albumin: site-specific binding studies by induced

CD spectroscopy
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Bartolini. Journal of Pharmaceutical and Biomedical Analysis (2018), 162(5): 171-178. Doi
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Abstract

The ADMET profile of drugs is strongly affected by human serum albumin (HSA), due to its
leading role as carrier of poorly soluble compounds in plasma; a critical assessment of the binding
capacity of HSA and the evaluation of binding competition between drugs are therefore pivotal for
a reliable pharmacokinetic and pharmacodynamic characterization. In clinical practice, a potential
source of impairment in the binding properties of HSA is the use of octanoate and N-
acetyltryptophan as stabilizers during the production of pharmaceutical-grade HSA for infusion (i-
HSA), which is currently administered in the treatment of a growing range of pathological
conditions. The peculiar sensitivity of circular dichroism (CD) spectroscopy towards the
stereochemical features of high-affinity binding events is herein exploited to achieve a site-specific
assessment of the effect of stabilizers on the binding properties of i-HSA. The binding affinity and
capacity of fatty-acid-free HSA towards site-selective induced circular dichroism (ICD) markers for
the three high-affinity binding sites of HSA was compared to that of i-HSA submitted to
ultrafiltration and dialysis to remove both stabilizers. Results showed a considerable impairment of
the binding capacity of i-HSA at site Il and a relatively lower influence on the binding properties of
site 1. Ultrafiltration proved to be ineffective in depleting octanoate, while the proposed dialysis
protocol, which involves a pH-induced reversible unfolding of the protein, resulted in a total
clearance of both stabilizers, confirmed by the full restoration of the binding properties of HSA at
all binding sites. The outcomes of this study proved that CD spectroscopy is a suitable technique to
evaluate the binding properties of i-HSA, ensuring an assessment of the availability of the binding
sites and the possibility of monitoring the clearance of stabilizers. Eventually, the proposed method
for their depletion might constitute a connection bridge between albumin in vitro studies and its

clinical applications.
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4.1 Introduction

Human serum albumin (HSA) is the major plasma protein in humans, constituting more than 50%
of the total protein content in plasma [2]. Due to its high concentration (~ 40 g/L) and its net
negative charge, HSA contributes to ~ 70 % of the total osmotic pressure, regulating the distribution
of plasma fluids between compartments. Besides its oncotic properties, HSA owns other important
biological functions, defined as non-oncotic, related to its unique binding capacity for a huge
variety of endogenous and exogenous compounds and to its antioxidant activity (both direct and
mediated by the transport of free radical scavengers), as well as to its role in the inflammatory and
immunological modulation, stabilization of hemostatic and endothelial functions and control of
extracellular pH [3,4]. The structure of HSA consists of three homologous domains, each formed by
two sub-domains (IA-B, 1IA-B and I11A-B) [2,5]. At least three main binding sites for drugs
(labeled I-111) and seven binding sites for long-chain fatty acids have been identified and thoroughly
investigated over the years, unveiling the complex network of interactions that regulates the
properties of HSA as a carrier protein [6-9]. The binding to HSA modulates the solubility of drugs
in plasma and influences their ADMET profile and therapeutic activity; therefore, the
characterization of drug—HSA binding is pivotal for a full pharmacokinetic and pharmacodynamic
evaluation [10].

The beneficial effects of the administration of HSA by intravenous infusion have been highlighted
in several clinical settings, such as hypovolemia, hypoalbuminemia, burns, hemorrhage and
hemodialysis, as well as liver diseases characterized by an altered albumin metabolism [11]. The
production of pharmaceutical-grade HSA is based on the isolation and purification of the protein
from the plasma of donors, a process that includes a pasteurization step to inactivate viruses. The
denaturation of HSA during the heat treatment (60 °C for 10 hours) is avoided by the addition of
sodium octanoate and N-acetyltryptophan as thermal and antioxidant stabilizers, respectively [12].
A recently published crystal structure of the ternary complex of HSA with octanoate and N-acetyl-
L-methionine shows that octanoate has a different binding pattern compared to long-chain fatty
acids [13]. Octanoate binds at drug binding sites | and Il of HSA, since the limited extension of its
aliphatic chain prevents a full interaction with the main fatty acid binding sites; its binding modes
are largely superimposed with those of site I- and site Il-selective HSA ligands. Binding assays

using fluorescent probes indicated site Il as the primary binding site (K, = 1.5 x 10° M, in

agreement with previous reports [14] and site | as the secondary binding site (K, = 2.0 x 10° M7h.

N-acetyl-L-tryptophan also binds to site Il, although its affinity is significantly lower (K, = 9.1 x
10* M) [12].
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The presence of stabilizers in pharmaceutical-grade HSA can alter its non-oncotic properties with
respect to the native protein [15,16]; such effects have also been observed in vivo, with a marked
increase of the free circulating concentration of naproxen (a site Il ligand) in patients treated with
HSA for infusion [17]. Moreover, the long-term administration of pharmaceutical-grade HSA might
increase the health risks related to the toxicological profiles of octanoate and N-acetyltryptophan,
which have been deemed as pathogenic factors in patients with liver diseases and linked to hepatic
encephalopathy and renal tubular toxicity [18]. Attempts at addressing these concerns are mainly
devoted to the identification of alternative stabilizers [19] and to the development of depletion
devices to remove stabilizers before infusion. A recent evaluation of several commercial adsorbents
for the depletion of octanoate and N-acetyltryptophan from pharmaceutical-grade HSA showed that
the simultaneous removal of both stabilizers cannot be fully achieved when a single adsorbent is
employed in depletion devices for the purification of HSA formulations before infusion [16].

In the present article, a binding affinity assay based on circular dichroism (CD) spectroscopy was
employed to gain further insight into the effect of octanoate on the binding properties of HSA at its
drug binding sites, exploiting the peculiar sensitivity of CD spectroscopy toward the stereochemical
features of high-affinity binding events; the assay could be applied to monitor the depletion of
stabilizers from pharmaceutical-grade HSA, whose binding properties after ultrafiltration and
dialysis were compared to those of fatty-acid-free HSA, used as reference.

The efficiency in the removal of stabilizers was quantified by HPLC-UV analysis, while the HSA
binding affinity of selected site-specific markers (warfarin for site I, diazepam for site Il and
biliverdin for site I11) was determined by means of induced CD measurements. Moreover, to
enlarge the comprehension of site-11 binding impairment caused by the strong modulation of
octanoate, ketoprofen, which interacts with site Il in a different binding mode as compared with
diazepam [20], was also considered. The proposed approach should ensure a trustworthy
monitoring of the binding properties of HSA, offering a deeper insight in the stabilizer cleaning

process and supporting the selection of the optimal removal strategy.
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4.2 Experimental section

4.2.1 Materials

Essentially fatty-acid-free HSA (f-HSA; product code A1887), biliverdin hydrochloride (BLV),
rac-warfarin sodium salt (WRF), rac-ketoprofen (KPF), octanoic acid, N-acetyl-DL-tryptophan
(NAT), formic acid (FA), trifluoroacetic acid (TFA), potassium dihydrogen phosphate (KH2PQOy),
dipotassium hydrogen phosphate trihydrate (K;HPO, - 3 H,0O), disodium hydrogen phosphate
(Na;HPOQ,), sodium chloride (NaCl), potassium chloride (KCI) and activated charcoal were
purchased from Sigma-Aldrich (Milan, Italy).

Diazepam (DZP) was kindly supplied by Prof. Lucacchini (University of Pisa, Italy).
Pharmaceutical-grade HSA for infusion (i-HSA) was a 200 g L' solution form (Albital®; Kedrion
Biopharma, Barga, Italy) containing sodium octanoate (16 mM) and N-acetyltryptophan (16 mM)
as stabilizers.

Cellu-Sep® T4 regenerated cellulose tubular membranes with a 50 kDa molecular weight cut-off
(MWCO) were supplied by Membrane Filtration Products, Inc. (Seguin, USA).

Amicon® Ultra 0.5 mL centrifugal filters with a 50 kDa MWCO were purchased from Millipore
Merck (Darmstadt, Germany).

HPLC-grade (> 99.9%) 1-propanol (1-PrOH), methanol (MeOH) and acetonitrile (ACN) were
supplied by Honeywell (Milan, Italy).

Aqueous solutions were obtained using deionized water purified by a Milli-Q purification system
(Millipore, Milford, MA, USA).

Buffers were filtered through 0.22 um membrane filters (Millipore, Milford, MA, USA) before use.
Spectroscopic measurements were carried out using high-performance quartz (QS) cells purchased
from Hellma Analytics (Mullheim, Germany).

HSA samples prepared from f-HSA and i-HSA and used in the study are summarized in Table 1.

Table 1| List of all HSA samples employed in the study.

o Experimental
HSA sample Description

section
i-HSA pharmaceutical-grade HSA for infusion 4.2.1
i-HSAe i-HSA after ultrafiltration 422
i-HSAgia i-HSA after dialysis 423
f-HSA fatty-acid-free HSA 4.2.1
s-HSA f-HSA with the addition of octanoic acid and NAT 4.2.3
S-HSAyia s-HSA after dialysis 423
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4.2.2 Ultrafiltration

Ultrafiltration (UF) was performed with a Varifuge 3.0 r centrifuge (Heracus Sepatech, Hanau,
Germany). 500 pL of i-HSA were ultrafiltered using Amicon Ultra centrifugal filters, which were
washed with 1 mL Milli-Q water before use to remove glycerol from filter membranes. Each UF
cycle was performed at room temperature, setting 4000xg for 15 min. After each cycle, 400 uL of
phosphate buffered saline solution — PBS (pH 7.4) containing Na;HPO,4 (10 mM), KH,PO, (1.8
mM), KCI (2.7 mM) and NaCl (137 mM) — were added before resubmitting the solution to the
following UF cycle. The residual content of NAT and octanoate in the ultrafiltered i-HSA samples
(i-HSAur; Table 1) was monitored by HPLC-UV analysis on filtrates (see Section 4.2.4). Non-
specific binding (NSB) to filter membranes was evaluated with a blank solution containing NAT
and octanoate at the same concentrations. The concentration of each stabilizer in the receiver
chamber was then quantified, and NSB was calculated by applying the following formula:

: (2)

where C; is the concentration of the stabilizer in the loading chamber and C; is its concentration in
the filtrate.

NSB = =L

14

4.2.3 Dialysis

Dialysis was carried out at room temperature on two different freshly prepared samples (Table 1): i-
HSA diluted in deionized water at 500 puM and a solution containing f-HSA dissolved at 500 uM in
deionized water with octanoic acid (2.7 mM) and NAT (2.7 mM), labeled s-HSA. Aliquots of 3.0
mL of each solution were transferred into 24-cm Cellu-Sep T4 tubular membranes and submitted to
the dialysis procedure which consisted of fifteen steps (I-XV) of 2 h each, against 2 L of freshly
prepared buffer, under gentle stirring. In detail, steps I-I111 were conducted in PB (pH 7.4; 10 mM);
steps IV-IX were carried out in PB (pH 3.0; 10 mM):1-PrOH 80:20 (v/v) with 4 g of activated
charcoal; step X was performed against PB (pH 3.0; 10 mM):1-PrOH 90:10 (v/v) with the addition
of 4 g of activated charcoal; steps XI-XII were conducted in PB (pH 3.0; 10 mM); step XIII was
carried out in PB (pH 4.6; 10 mM); steps XIV—XV were performed in PB (pH 7.4; 10 mM).

At the end of the procedure, dialyzed i-HSA (i-HSAgia, Table 1) and dialyzed s-HSA (s-HSAgial,
Table 1) were spectrophotometrically quantified by a direct calibration method. For this purpose, a
stock solution of f-HSA (15 uM) was prepared in PB (pH 7.4; 67 mM) and subsequently diluted in
a series of two-fold dilutions (from 15 to 0.94 uM). A calibration curve was then derived by linear
regression (y = a x + b; a = 31848.0; b = 0.00082; R? = 0.9993) based on the molar concentration

of samples and the corresponding maximum absorbance at 280 nm (A,g,, 1 cm pathlength).
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To exclude the presence of stabilizers in the i-HSAgia Sample, the protein was removed by
precipitation and the supernatant was analyzed by HPLC-UV (see Section 4.2.4). In detail, 400 pL
of ice cold ACN were added to 100 pL of i-HSAgia; the sample was vigorously vortexed for 1 min
and centrifuged at 13000xg for 10 min at 4 °C; the concentration of stabilizers in the supernatant
was then quantified.

4.2.4 HPLC-UV analysis

HPLC-UV analyses were carried out using a Zorbax Eclipse XDB-C18 column (150%2.1 mm, 3.5
pm 1.D.; Agilent, Walbronn, Germany) on a Jasco PU-2089 Plus HPLC system (Tokyo, Japan)
equipped with a CO-2067 Plus column thermostat. Data were processed using the ChromNAV

software package (Jasco, Tokyo, Japan).

4.2.4.1 Quantitative determination of N-acetyltryptophan

The quantitative determination of NAT was performed setting the column temperature at 40 °C, the
flow rate at 0.3 mL min~' and the detection wavelength at 280 nm; an injection volume of 50 L
was used. Mobile phases A — H,O:ACN:FA:TFA (99:1:0.1:0.025, v/v/vlv) — and B —
ACN:H,0O:FA:TFA (99:1:0.1:0.025, v/viviv) — were employed to develop a gradient: the starting
condition A-B (80:20, v/v) was kept for 4 min, then the percentage of mobile phase B was linearly
incremented to 40% (v/v) in 2 min. The column was equilibrated with the mobile phase
composition of the starting condition for 10 min before the next injection.

The stock solution of NAT (4.0 mM) was prepared in methanol. Standard solutions were prepared
by diluting the stock solution in PBS (concentration range: 2.50-254 uM). Each standard solution
was injected in duplicate; the derived average peak areas (in pV min) were plotted against the
corresponding NAT concentration (in uM) to obtain the calibration curve by linear regression
(y = ax+ b; a=54470; b = 127000; R? = 0.9999).

The quantification limit (LOQ, S/N = 10) was determined by performing LC-UV analysis on

incremental dilutions of standard solutions and applying the formula:
LOQ = 10—, ©)
Op

where a is the slope and g, is the standard deviation of the y-intercept of the regression curve. The
LOQ value resulted to be 1.78 uM.

4.2.4.2 Quantitative determination of octanoate
The quantitative determination of octanoate was performed in isocratic mode using a
MeOH:H,0:TFA (70:30:0.1, v/v/v) mobile phase at a flow rate of 0.3 mL min~'. Analyses were
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performed setting the column temperature at 40 °C and the detection wavelength at 214 nm; an
injection volume of 50 pL was used.

The stock solution of octanoic acid (32 mM) was prepared in DMSO. Standard solutions were
prepared by diluting the stock solution in PBS (concentration range: 0.0625-8.00 mM). Standard
solutions were analyzed in duplicate; the derived average peak areas (in uV min) were plotted
against the corresponding octanoate concentration (in mM) to obtain the calibration curve by linear
regression (y = a x + b; a = 478000; b = —22980; R? = 0.9993). The LOQ value was derived as
described in Section 4.2.4.1 and resulted to be 42 uM.

4.2.5 CD spectroscopy studies

All measurements for CD spectroscopy studies were performed on a Jasco J-810 spectropolarimeter
(Tokyo, Japan) at room temperature. Samples were prepared by dilution from fresh stock solutions
of HSA and of the selective ICD markers for its three drug binding sites: WRF (site 1), DZP (site
I1), KPF (site 11) and BLV (site Ill). The final concentration of organic modifier (1-PrOH or
DMSO) in the samples never exceeded 0.5% (v/v) and 1% (v/v), respectively. Solutions containing
BLV were protected from direct exposure to ambient light throughout the experiments.

Near-UV CD measurements were carried out using a 50 nm min™* scanning speed (20 nm min ™" for
WRF), a 2 nm spectral bandwidth, a 2 s data integration time, a 0.2 nm data pitch and an
accumulation cycle of 3; spectral ranges were defined to include the peculiar ICD bands of each
complex: 360-300 nm for WRF-HSA (1.« = 308 nm), 350-250 nm for DZP-HSA (A,.x = 316
nm), 400-250 nm for KPF-HSA (A,ax = 340 nm) and 450-250 nm for BLV-HSA (A2« = 385
nm). Far-UV CD measurements were carried out in the 260-195 nm spectral range using a 20 nm
min~' scanning speed, a 2 nm spectral bandwidth, a 2 s data integration time, a 0.2 nm data pitch
and an accumulation cycle of 3. Spectra were processed using the Jasco Spectra Analysis software
(Tokyo, Japan) and plotted using the Bezier smoothing algorithm provided by the Gnuplot software

(version 5.2.2, http://gnuplot.sourceforge.net).

4.2.5.1 Affinity studies with ICD markers

The determination of the affinity constants for the three drug binding sites of HSA was carried out
by near-UV CD measurements on equimolar (1:1) mixtures of the protein with the corresponding
ICD marker in PB (pH 7.4; 67 mM).

Stock solutions of f-HSA, i-HSAyur and i-HSAgia Were prepared in PB (pH 7.4; 67 mM) at a final

concentration of 500 uM. Stock solutions of ICD markers were prepared as follows: WRF (10 mM)
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in PB (pH 7.4; 67 mM); DZP (5 mM) in PB (pH 7.4; 67 mM)—(1-PrOH) (75:25, v/v); BLV (2 mM)
in PB (pH 7.4; 67 mM)-DMSO (62:38, V/v).

Five 1:1 mixtures were analyzed for each marker—HSA complex; the pathlength and the initial
concentration of analytes were changed simultaneously, while keeping their product constant. QS
quartz cells with 10, 5, 2, 1 and 0.5 cm pathlengths were used, while concentrations were defined
based on the binding properties and spectroscopic response of each complex: 5.0, 10, 25, 50 and
100 uM for WRF-HSA and DZP—(i-HSAug) complexes; 1.5, 3.0, 7.5, 15 and 30 uM for BLV-HSA
and other DZP—-HSA complexes. All markers were either non-chiral or used as racemic mixtures, so
the ICD spectra of the marker—HSA complexes were obtained by subtraction of the CD spectrum of
the protein from the CD spectra of the 1:1 mixtures.

The chemical equilibrium of the marker—HSA binding interaction was evaluated using a Benesi-
Hildebrand mathematical method [21,22] based on the absolute values of maximum intensity for

the ICD bands (|AA;nq| at A.x). FOr interactions exhibiting a 1:1 stoichiometry, the concentrations

of ligand and protein at equilibrium are equal ([L] = [P]) and the association constant is K, = %
The initial concentration of the protein ([P],) can then be expressed as a function of the
concentration of the ligand—protein complex at equilibrium ([LP]):

[P], = [LP] + [P] = [LP] + %21, 4)

Ka
The ICD signal is proportional to the concentration of the marker—protein complex; the combination

of Equation 4 with the Beer—Lambert law gives:

[P], = [A4jngl + [AAjndl (5)
O™ |aginal L Ka |Agingl 1’

where Ag;,q is the absolute value of the induced molar differential extinction coefficient for the

binding complex (in M cm™) and [ is the pathlength (in cm). By setting x = \/|A4;,4//1 and

dividing both terms by x, a linear Benesi-Hildebrand equation is obtained:

1 1
= x + / : 6
y [Aginal |Agingl - Ka (6)

where y = [P],/x.

The values of Ag;,q and K, for each marker—HSA complex were calculated from the slope (m =

! ) and intercept (q = ;> of Equation 6, as obtained by linear regression from the
|Aging| |Agingl - Ka

average x and y data of two independent assays (n = 2). The uncertainties of Ag;,q and K, were

determined by propagation of the standard deviations of m and g values for the corresponding

Benesi-Hildebrand equations.
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4.2.5.2 Binding to HSA site |1

The different binding capacities of f-HSA, i-HSAur, s-HSA, i-HSAgia and s-HSAi, at site Il were
evaluated by near-UV CD measurements on their equimolar mixtures (1:1, 50 uM) in PB (pH 7.4;
67 mM) with two site 11-specific ICD markers, namely DZP and KPF. Spectra were recorded using
a QS quartz cell with a 1 cm pathlength. The ICD spectra of the marker—-HSA complexes were
obtained by subtraction of the CD spectrum of the protein from the CD spectra of the 1:1 mixtures.

4.2.5.3 Secondary structure analysis

Far-UV CD measurements for the analysis of the secondary structure of HSA were performed on f-
HSA, i-HSAuF, i-HSAgia and s-HSAgia samples (5 uM) in PB (pH 7.4; 67 mM) using a QS quartz
cell with a 0.05 cm pathlength.
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4.3 Results and discussion

4.3.1 Depletion of N-acetyltryptophan and octanoate by ultrafiltration

Ultrafiltration (UF) is a common procedure used for protein concentration, buffer exchange and
desalting. In the current study, UF was employed in the attempt to remove NAT and octanoate
excess from i-HSA. The process was monitored by quantitating, after each UF cycle, the stabilizers
concentration in the receiver chamber by means of the HPLC-UV methods described in Section
4.2.4. The optimized analytical approach allowed a fast determination of NAT and octanoate,
whose chromatographic retention times were 4.0 (k = 2.9) and 3.8 min (k = 2.2), respectively. The
assessment of UF efficacy was carried out by monitoring the residual concentration of each
stabilizer in the i-HSA solution over 20 UF cycles (Fig. 7). Each stabilizer was quantified in the
solutions collected in the receiver chamber, taking the effect of NSB on filter membranes into
account.

100 4
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Figure 7| Progressive depletion followed by HPLC-UV analysis. Progressive depletion of N-acetyltryptophan (solid
line) and octanoate (dotted line) from i-HSA by ultrafiltration.

N-acetyltryptophan and octanoate are present at the same declared starting concentration (16 mM),
but the efficacy of UF was significantly different for the two stabilizers, as expected by their
different binding affinities to HSA [12,13]. While the residual concentration of NAT fell below 1%
after 12 cycles and reached 0.4% after 20 cycles, the removal of octanoate was significantly more
difficult (Fig. 7) in agreement with data presented by Harm et al. [16]. The low removal efficiency
is consistent with both the high affinity of octanoate for HSA and the high binding capacity of
HSA. Based on the analysis of the concentration of octanoate in the receiver chamber after the first
cycle of UF, only 10.7% of the stabilizer results to be free in solution, while the remaining fraction
is bound to HSA.
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4.3.2. Site-specific ICD markers as a tool for monitoring the removal of octanoate

CD spectroscopy can provide valuable information on both the structural features and the affinity of
binding interactions in near-physiological conditions; the relatively higher information content that
can be obtained through in solution CD binding assays represents an advantage over other popular
techniques, such as isothermal titration calorimetry, fluorescence spectroscopy and surface plasmon
resonance biosensing. Specifically, CD spectroscopy is a powerful technique for the investigation
of the binding properties of HSA, thanks to the high degree of stereospecificity displayed by its
main drug binding sites. The eventual onset of an induced circular dichroism (ICD) signal can be
exploited to evaluate the binding parameters of a ligand—HSA complex and the bound conformation
of the ligand; conversely, ligands with well-characterized ICD spectra can be used as selective
markers to investigate the competition for the binding sites of HSA by other small molecules [21].
The availability of specific ICD markers for the three drug binding sites of HSA allowed a thorough
comparison of the binding properties of samples derived from i-HSA with those of f-HSA by means
of CD affinity studies. The simultaneous determination of K, and Aeg;,q Vvalues by the Benesi-
Hildebrand method allows a reliable evaluation of the binding affinity and capacity of HSA at each
binding site, with the additional advantage of monitoring highly stereoselective binding events;
nevertheless, it must be noted that the reliability of ICD affinity studies using this approach strongly
depends on the nature of the binding complex under investigation. Indeed, the analysis must be
carried out on strictly equimolar marker—protein mixtures in a concentration range where the
binding complex is not close to saturation and the resulting 1CD signal is sufficiently intense to be
accurately monitored; situations where these requirements are not fulfilled will lead to significant

errors in the estimation of binding affinities.

Table 2| Affinity constant (K, ), induced molar differential extinction coefficients (Ag;,q) and linear
regression parameters of the Benesi-Hildebrand equations for the binding of site-specific 1CD
markers to f-HSA, as obtained by CD spectroscopic analysis (n = 2). Affinity data available from

literature are also listed for comparison.

Marker Site K, (M?) ﬁsi": Auna m q R? Lit?: ature Ka
(M7 em™)  (nm) (M™) for HSA
WRF | (8.62+0.81)x10" 1.84+0.05 308 (5.44+0.13)x10" (251+0.09)x10° 0.9982 1.1x10°(a)
DzP Il (1.09+0.15)x10° -7.45+0.14 316 (1.34+0.03)x10" (350+0.21)x10™* 0.9989 6.6 x 10° (b)
BLV I (1.93+045)x10° 62.1+15 385 (1.61+0.04)x107% (9.12+0.95)x10° 0.9982 1.5x10°(c)

(a) determined by surface plasmon resonance biosensing [23].
(b) determined by equilibrium dialysis [24].
(c) determined by HSA fluorescence quenching [25].
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The calculated K, values for the marker—(f-HSA) complexes (Table 2) were found to be in good
agreement with affinity values determined with orthogonal techniques, showing that the ICD
approach can provide accurate estimates for the affinity of small molecules to HSA.

The Ag;,q obtained from the slopes of the Benesi-Hildebrand equations highlighted that the
presence of octanoate in the i-HSAyr samples affects the binding of markers [14]: the binding
capacity of site 11 was found to be significantly lower in i-HSAyr than in f-HSA (Table 3).

Table 3| Affinity constant (K, ), induced molar differential extinction coefficients (Ag;,q) and linear
regression parameters of the Benesi-Hildebrand equations for the binding of site-specific 1ICD
markers to i-HSAuyg, as obtained by CD spectroscopic analysis (n = 2). K, and Ag;,q Vvalues for f-

HSA are also listed for comparison.

WRF I (1.07+0.23)x 10° 2.58+0.13 308  (3.87+0.19)x10" (1.90+0.15)x 10° 0.9927 8.62 x 10° (1.84)
DzP Il (3.60£10.00)x10" -1.73+0.06 316  (5.77+0.21)x10* (1.26+1.72)x10* 0.9961 1.09 x10° (—7.45)
BLV I (3.36+0.93)x 10° 62.0+ 1.4 385  (1.61+0.04)x107 (6.93+0.88)x10° 0.9985 1.93 x 10°(62.1)

The strong decrease of Ag;,q observed for the DZP—(i-HSAyug) complex (Fig. 8) is consistent with a
mechanism of direct binding competition between octanoate and DZP at site Il: indeed, the
presence of a high-affinity competitor (octanoate) in the i-HSAyr sample breaks one of the
requirements of the Benesi-Hildebrand approach, i.e. the equimolar ratio between the ligand and the
available binding sites. The saturation of the ICD signal for the DZP-HSA complex is therefore
reached at a lower concentration, resulting in a significant overestimation of K, and a marked

increase of the uncertainty for the values derived by linear regression analysis.
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Figure 8| Benesi-Hildebrand curves. Benesi Hildebrand curves for the ICD affinity studies on 1:1 mixtures of f-HSA
(solid lines), i-HSAyr (dotted lines) and i-HSAg;. (dashed lines) with site-specific ICD markers. (A) WRF (site |; 4.«

=308 nm). (B) DZP (site II; A, = 316 nm). (C) BLV (site 11I; A, = 385 nm). x = /|AAingl/L ;v = [Plo/x .
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The binding capacity of i-HSA at site Il is heavily influenced by the efficiency of the purification
method used for the removal of stabilizers. CD measurements on i-HSAyr samples subjected to 8
UF cycles yielded a lower Ag;,4 value (—0.86 + 0.06 M cm ') than samples obtained after 20 UF
cycles (—1.73 + 0.06 M' cm'). These results confirm that UF is only partially successful in
depleting octanoate from i-HSA samples due to the high affinity of octanoate to HSA.

The presence of octanoate influenced the binding properties of site | as well, although the K, and
Ag;nq values of WRF-HSA complexes increased going from f-HSA to i-HSAyr (Fig. 8). Previous
studies on the effect of stabilizers on the binding properties of HSA at site | reported a small
reduction in the fluorescence emission of WRF bound to excess HSA in the presence of octanoate
[13]. Considering the racemic nature of the marker, the behavior observed in the ICD affinity assay
might be explained by a change in the binding enantioselectivity for the two enantiomers of WRF
[26], resulting in a variation of the overall ICD signal of the mixture. The analysis of BLV-HSA
complexes, on the other hand, showed minor differences between the binding properties of f-HSA
and i-HSAyr (Fig. 8). Therefore, the presence of octanoate in i-HSAyr does not seem to interfere
significantly with the binding capacity of site I11.

The results of ICD affinity assays strongly support the usefulness of site 11-specific ICD markers to
monitor the removal of octanoate from i-HSA and the recovery of its optimal binding capacity. Site
I1-specific ICD markers are ideal in this framework thanks to the strong stereospecificity observed
at this site and the strong modulation of its binding properties displayed by octanoate. An additional
proof of the usefulness of site Il-specific ICD markers for this application was given by the
observation that the binding of DZP to s-HSA (where octanoate is added to f-HSA) displays a

similar reduction in the intensity of ICD response compared to i-HSAyur (Fig. 9A).
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Figure 9| ICD spectra for site-11 specific markers. ICD spectra for the 1:1 mixtures (50 uM) of HSA samples with

site 11-specific ICD markers (solvent: PB 67 mM pH 7.4; cell pathlength: 1 cm). (A) DZP. (B) KPF. Solid: f-HSA.
Dotted: i-HSAyE. Short-dashed: i-HSAg;,. Long-dashed: s-HSA. Dash-dotted: s-HSAgia.
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The binding impairment at HSA site Il caused by the presence of octanoate was further investigated
using an additional site Il-specific ICD marker, i.e. KPF. An even more dramatic effect was
observed: the presence of octanoate in i-HSAyr and s-HSA caused the complete disappearance of
the peculiar negative ICD band of the complex at around 340 nm (Fig. 9B) [27]. The different
extents of the binding impairment at site Il triggered by octanoate can be explained by the
differences in the binding modes of benzodiazepines and non-steroidal anti-inflammatory drugs
[20,28]; the evidence of competition by octanoate for both classes of drugs gives additional strength
to the choice of site-11 specific ICD markers as excellent tools in the evaluation of the effect of
stabilizers on the binding properties of i-HSA.

4.3.3 Removal of stabilizers by dialysis

The efficiency in the removal of stabilizers, quantified by HPLC-UV analysis (Fig. 1), revealed that
ultrafiltration was ineffective in depleting octanoate (residual concentration 80 % after 20 cycles)
due to its strong affinity with HSA [13,14]. Analogous results were obtained by means of adsorbent
devices and common protocols of equilibrium dialysis, in which octanoate bound to the protein
proved to be 27 + 3 % and 17 + 6 % of its starting concentration in i-HSA, respectively [16].
Aiming at improving the removal of octanoate, a more drastic and extensive protocol of dialysis
was performed, which allowed to exploit the reversible unfolding of HSA as a function of pH [29].
Dialysis was carried out on i-HSA and s-HSA. Initial steps were performed at pH 7.4 to eliminate
excess of octanoate and NAT, similarly to UF. Then, the pH of dialysis buffer was decreased to 3.0,
where HSA undergoes a reversible transition from its physiological fold (normal or N form; pH 8-
4.3) to a transiently unfolded conformation characterized by a larger solvent-accessible surface area
and a partial loss of a-helical structure (fast-migrating or F form; pH 4.3-2.7) [2]. Moreover,
octanoate is mostly protonated in this acidic environment (pK, = 4.9), and the adsorption of
octanoic acid by charcoal further promotes the dissociation of octanoate from HSA [30].
Subsequent dialysis steps carried out against buffer with increasing pH values enabled protein
refolding to the N form.

The initial HSA concentration submitted to dialysis proved to be crucial to obtain a successful
removal of stabilizers: since the solubility of the F form is significantly lower than the N form [2],
different concentrations were tested to avoid protein precipitation at pH 3.0, which hampered the
efficient extraction of octanoic acid (data not shown). Based on this experimental evidence, i-HSA
and s-HSA solutions were dialyzed at an initial concentration of 500 puM. At the end of the
procedure, i-HSAgia and s-HSAga were spectrophotometrically quantified and the final

concentrations ranged from 80 to 85% (w/w) of the initial amount.
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The secondary structure of i-HSAgia and s-HSAgix was investigated by CD spectroscopy to verify
the recovery of the physiological conformation of HSA after dialysis; the excellent agreement of the
recorded spectra with those of f-HSA and i-HSAur (Fig. 10), which displayed the typical features of
a-helix-rich proteins with negative bands centered at 208 and 222 nm [31], confirmed that the

secondary structure of HSA was completely restored after dialysis.
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Figure 10| Secondary structure spectra. Far-UV CD spectra (in molar units per residue) of f-HSA (solid), i-HSAyr
(short-dashed), i-HSAia (dotted) and s-HSAgia (long-dashed). Solvent: PB 67 mM pH 7.4. Cell pathlength: 0.05 cm.

The binding capacity for DZP and KPF at site Il was analyzed to verify the total removal of
stabilizers from dialyzed samples. The excellent overlapping of the ICD spectra obtained with i-
HSAGia, S-HSAgia and f-HSA (Fig. 9) proved the successful removal of octanoate. LC-UV analysis

excluded the presence of octanoate at detectable concentrations.

Table 4| Affinity constant (K, ), induced molar differential extinction coefficients (Ag;,q) and linear
regression parameters of the Benesi-Hildebrand equations for the binding of site-specific 1ICD
markers to i-HSAia, as obtained by CD spectroscopic analysis (n = 2). K, and Ae;,q values for f-

HSA are also listed for comparison.

Marker Site K, (M™) 7A£i"d7 Amax m q R2 Ka (A%ina)
(Mtem™  (nm) for f-HSA

WRF | (9.91+£1.24)x 10" 1.89+0.05 308 (529%0.15)x10" (2.31+0.11)x10™° 0.9975 8.62 x 10* (1.84)

DzP Il (1.71+£028)x10° —-7.02£0.13 316 (1.42+0.03)x10" (2.88+0.21)x10™ 0.9991 1.09 x 10° (~7.45)

BLV Il (558+068)x10° 66.5+05 385 (1.50+0.01)x107% (5.19+0.30)x 10> 0.9998 1.93 x 10°(62.1)

51



8ind (mdeg)

3
2 -
T T
e N
. \
Lo =a N
4 RN
L [ S
i W NN
SN :
RSN,
Tl N
"u_\: \\
0 > =
T T T T
300 310 320 330 340
A (nm)

350

Oing (mdeg)

1
B
0 — -_:
A
\‘ 7
4\ Y
\ ."7
- 4 N S
N R
% T g
> 4
3 -
74 T T T T
300 310 320 330 340 350
A (nm)

6ind (mdeg)

30 4

20 1

7 A\
(PPN
LAY
.’1.{' ’ Y
‘o kL
i 3
h¥ ¥
7 .
& “
k)
—
T T T T
350 370 390 410 430 450
A (nm)

Figure 11| ICD spectra of site-specific markers. 1CD spectra for the 1:1 mixtures of i-HSAg;, with site-specific ICD
markers, as measured using different cell pathlengths (solvent: PB 67 mM pH 7.4). (A) WRF, site | marker. Solid: 100
uM (0.5 cm). Long-dashed: 50 uM (1 ¢cm). Dash-dotted: 25 uM (2 cm). Short-dashed: 10 uM (5 ¢m). Dotted: 5 uM (10
cm). (B) DZP, site Il marker. Solid: 30 uM (0.5 cm). Long-dashed: 15 uM (1 cm). Dash-dotted: 7.5 uM (2 cm). Short-
dashed: 3 uM (5 cm). Dotted: 1.5 uM (10 cm). (C) BLV, site 1l marker. Solid: 30 uM (0.5 cm). Long-dashed: 15 uM
(1 cm). Dash-dotted: 7.5 uM (2 cm). Short-dashed: 3 uM (5 cm). Dotted: 1.5 uM (10 cm).
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4.4 Conclusions

A full characterization of the ADMET profile of a drug requires a comprehensive study of plasma
bioavailability, which is strongly affected by the binding to serum proteins. The presence of fatty
acids or the addition of stabilizers in pharmaceutical formulations may compete with the binding of
drugs to HSA, causing an impairment in the assessment of the binding capacity. Analytical
approaches able to quantify binding parameters, detect concomitant interactions and provide a
deeper insight on the availability of the binding sites offer clear advantages toward a better
characterization of drug—target interactions; the application of CD spectroscopy to binding affinity
studies has an enormous potential in this respect. Indeed, the highly stereoselective responses of
well-characterized ICD markers allow the direct assignment of the observed signal to a specific
binding event, a feature that other biophysical techniques cannot provide.

The comparison between the binding parameters (Kj,, Ag;,q) achieved for all site-specific 1ICD
markers (warfarin, diazepam, biliverdin) and those obtained for fatty-acid-free HSA proved the
inefficiency of ultrafiltration in removing octanoate, which affected the binding capacity at site |1
and, to a lesser extent, at site I. Conversely, the proposed dialysis protocol, that involves the
reversible unfolding of the protein in acidic conditions, successfully granted both stabilizers
depletion. The reversible conformational transition of HSA, from the N to the F form, proved to be
necessary to remove octanoate strongly bound to HSA. The recovery of binding capacity of HSA
was further verified for all site-specific ICD markers as a proof of the totally restored availability of
the binding sites, enhancing previous results reported in the literature based on different purification
methods such as marketed adsorbent devices or common protocols of equilibrium dialysis.

The use of CD spectroscopy guaranteed a thorough site-specific assessment of the availability of
the high-affinity binding sites, as well as to verify the recovery of the physiological conformation of
HSA after removal of the stabilizers. The approach proposed proved to be trustworthy for studying
drug—HSA interactions, when the modulation of the binding properties needs to be assessed. The
clear competition displayed by octanoate at site Il makes site-1l specific ICD markers excellent
tools in the evaluation of the effect of stabilizers on the binding properties of i-HSA, providing an
easy method to monitor the depletion of stabilizers from pharmaceutical-grade HSA submitted to
different purification methods. In the attempt to develop more efficient devices for the removal of
stabilizers, the proposed ICD approach might be employed as a method to selectively monitor the
full availability of the binding sites of HSA after purification, thus ensuring further progress in the

connection between in vitro studies and the use of HSA in clinical applications.
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Chapter 5

Characterization of the interaction between glycated HSA and the
receptor for advanced glycation end products (RAGE) by SPR and
affinity-MS spectrometry

Abstract

Due to RAGE role as pattern recognition receptor and its involvement in pathological setting of
many chronic diseases, many efforts have been made to define structural requirements for RAGE
binding and activation. The current lack of a clear picture is partially related to AGEs heterogeneity.
Based on these premises, the current study aimed to investigate the interaction between the VCI1,
i.e. RAGE ectodomain, and a form of glycated albumin (HSAgly), recently released on the market,
by a tailored multimethodological strategy able to provide affinity parameters along with structural
features for VC1 recognition. Four sites of glycation, including glycation at K525, were identified
by 2D-LC-ESI-MSMS while top down LC-MS approach allowed the definition of glycation extent.
The ability of the HSAgly to interact with VC1 was confirmed by surface plasmon resonance (SPR)
studies using a HSAgly sensing surface and affinity proteomics employing a purposely developed
VC1 column. The related steady state dissociation constant (Kp) highlighted a moderate affinity
between the two interactants while displacement studies using chondroitin sulphate, a known
RAGE binder, validated the VC1-HSAgly interaction assessed by the SPR-based assay. The
combination of epitope extraction method with LC-MSMS analysis allowed further insights into the
region(s) of HSAgly involved in the binding. Specifically, preliminary outcomes of these analyses
highlighted that glycation at K525 and subdomain IA may be important for VC1 biorecognition.
The study is still in fieri. However, so far obtained outcomes showed that the proposed
multimethodological strategy can be a suitable approach to shed light on requirements for VC1
biorecognition and it may be further employed to investigate the interaction with different glycated

interactants including AGEs.
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5.1 Introduction

Circulating glycated human serum albumin (HSA) is the result of the non-enzymatic glycation of
the native protein by reducing sugars, mainly glucose, over the course of albumin life-time. The
glycation process initially leads to the formation of chemically reversible Schiff bases and Amadori
adducts, which are also known as early stage glycation products. Amadori adducts slowly undergo
further irreversible rearrangements such as dehydration, oxidation, polymerization and intra/inter
molecular crosslinking, which result in the formation of the so-called advanced glycation end
products (AGES), a generic name indicating the heterogeneous class of products resulting from this
process. Early glycation products can also undergo oxidation, i.e. glycoxidation reaction, forming
advanced glycoxidation products. In addition to this complex framework, AGEs can also directly
derive from irreversible reactions between proteins and glucose-based reactive dicarbonyls (e.g.
methylglyoxal) [1]. Protein glycation occurs at a limited extent in healthy subjects and glycation
products accumulate with aging, contributing to the aging process itself. However, in specific
pathological conditions, such as in diabetes, this process is accelerated [2]. Indeed, the main
hallmark of diabetes is the dysregulation of plasma glucose levels, which strongly influences
protein glycation rate and AGEs formation [3]. Since HSA is the most abundant circulating protein
in plasma, accounting for more than 50 % of the total plasma protein content, and its primary
structure contains aminoacid residues targeted by glycation, i.e. arginine and lysine residues, this
protein is highly sensitive to glycation and albumin-derived AGEs are commonly found in human
body [4].

AGEs are considered as biomarkers of several diseases including kidney failure, arteriosclerosis,
cancer or Alzheimer’s disease. Moreover, emerging data suggest that AGEs play a role in the onset
of diabetic complications such as nephropathy, retinopathy and cardiomyopathy, acting as
pathogenic factors and/or as damaging-intermediates [2,5]. In this scenario, structural
characterization of the different AGEs, their quantification along with the elucidation of their role in
pathological conditions constitute an emerging need of paramount importance [6].

AGE accumulation-related damages arise from multiple pathological mechanisms including loss of
proteins function, proteins dysregulation, aggregation and signaling mediated by the activation of
receptors such as the receptor for advanced glycation end product (RAGE) [7,8]. RAGE is a
transmembrane receptor which belongs to the immunoglobulin superfamily and plays a role in
innate immunity and inflammatory response [9]. It consists of an extracellular region, which is
composed by one ligand-binding V-type Ig domain and two Ig-like constant domains (C1 and C2),
a transmembrane domain and a cytosolic signal-transducing tail. The V and C1 domains form an

integrated structural unit (VC1) involved in the binding of the majority of RAGE ligands including
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AGEs [10,11]. Recent studies have suggested that the activation of RAGE by AGEs plays a role in
the pathogenesis of some chronic diabetes complications [7]. Despite the advances in the
understanding of AGE-RAGE axis, the pathological role of specific AGEs as well as AGEs
structural requirements for AGE-RAGE interaction and RAGE activation still mostly remain
unclear. The lack of a clear picture is partially related to AGEs heterogeneity, their chemical and
metabolic instability along with the negligible amounts of circulating AGEs and complexity of
biological matrices from which they need to be isolated [7]. In vitro studies involving RAGE are
most commonly performed using BSA- or HSA-derived AGEs as reference ligands. However,
BSA-AGEs and HSA-AGEs are commonly prepared in house by in vitro glycation [11-14] and the
obtained AGE mixtures are usually employed without any further characterization of the formed
AGEs species. This lack of a detailed knowledge on the AGE species used for binding experiments
dramatically hampers the comprehension of the biorecognition phenomenon, preventing the rational
design of new RAGE antagonists.

In this scenario, the use of structurally well characterized ligands seems to be compulsory. With this
in mind, we decided to investigate glycated HSA-RAGE interaction in order to possibly highlight
the structural features involved in such interaction.

To achieve this goal the binding between VC1 from human RAGE, expressed by Degani et al.[15],
and a form of glycated albumin, recently released on the market (HSAgly), was studied. LC-MS
was employed to define glycation sites on the commercial product, a prerequisite for the
comprehension of the observed recognition phenomenon. Taking advantages of peculiar features of
SPR [16,17], a HSAgly-sensing surface was employed to estimate binding affinity towards VC1. A
competition assay involving the reference RAGE binder chondroitin sulphate [18,19] was used to
further validate the binding between VC1 and HSAgly. Affinity chromatography coupled with mass
spectrometry (affinity-MS) approach [20] was further developed in order to highlight the region(s)
of the protein scaffold involved in such interaction. The outcome of the current study is the
development of a multimethodological strategy to characterize HSAgly—VC1 binding with the aim

of getting to elucidate molecular basis of AGE-RAGE interactions.
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5.2 Experimental section

5.2.1 Materials

Glycated human serum albumin lyophilized powder (product code A8301) and trypsin from bovine
pancreas were purchased from Sigma-Aldrich (Milan, Italy). Human recombinant RAGE
ectodomain, i.e.VVC1, was expressed in Pichia Pastoris and was kindly supplied by Prof. Popolo
(University of Milan, Italy) [15].

Analytical grade racemic warfarin sodium salt (rac-WRF), chondroitin sulphate sodium salt from
shark cartilage (CND), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), potassium
dihydrogen phosphate (KH,PO,), disodium hydrogen phosphate (Na;HPO,), sodium chloride
(NaCl), polyoxyethylenesorbitan monolaurate (p-20), formic acid (FA), trifluoroacetic acid (TFA),
ammonium bicarbonate (AMBIC, NH4;HCO3), sodium bicarbonate (NaHCO3), ammonium acetate
(NH4OAC), sodium hydroxide (NaOH), sodium acetate (NaOAc), ethylenediaminetetracetic acid
(EDTA), dithiothreitol (DTT) and iodoacetamide (IAA) were supplied by Sigma-Aldrich (Milan,
Italy). HPLC-grade (> 99.9%) acetonitrile (ACN) was supplied by Honeywell (Milan, Italy).
Research-grade CM5 sensor surface, N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide (EDC), N-
hydroxysuccinimide (NHS), ethanolamine hydrochloride (pH 8.5, 1 M), CNBr-activated
sepharose™ 4B were purchased from GE Healthcare Bio-Sciences (Uppsala, Sweden). 2,5-
Dihydroxybenzoic acid (DHB) and super 2,5-dihydroxybenzoic acid (SDHB) were supplied by
Bruker Daltonics (Bremen, Germany).

Amicon® Ultra 0.5 mL centrifugal filters (50 kDa MWCO) were supplied by Millipore Merck
(Darmstadt, Germany).

Mobicol-Classic columns (cod.1002) and filter (small) 35 um pore size (cod. M513515) were
purchased from MoBiTec GmbH (Géttingen, Germany).

Deionized water was obtained by Milli-Q system (Millipore, Milford, MA, USA) and all aqueous

solutions were filtered through 0.22 um membrane filters before use.

5.2.2 Surface plasmon resonance-based analyses

SPR measurements were carried out on a Biacore™ X100 system (GE Healthcare Bio-Sciences,
Uppsala, Sweden) provided with an in-line degasser and thermostated at 25°C. Data elaboration
was performed using Biacore™ X100 2.0 evaluation software and GraphPad Prism 6.0 software
(GraphPad Software Inc.).
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5.2.2.1 Preparation and validation of HSAgly-biosensing surface

For the preparation of HSAgly-functionalized surface, HSAgly was solubilized in NaOAc buffer
(0.01 M) at various pH (pH range 4.0-5.5) at a 30 ug mL™ concentration in order to test the
electrostatic pre-concentration over the chip surface (pH scouting). Ligand pre-concentration was
evaluated by injecting stock solutions at different pH values at 5 uL min™ for a contact time of 180
s, using as running buffer phosphate buffered saline solution (PBS) (pH 7.4), which contains
Na;HPO,4 (10 mM), KH,PO, (1.8 mM), KCI (2.7 mM) and NaCl (137 mM). After each injection,
the baseline was restored injecting twice a NaOH solution (0.05 M) at the same flow rate and
setting 20 s as contact time. The NaOAc (pH 4.5; 0.01 M) proved to be the best immobilization
condition and was used for HSAgly immobilization. HSAgly was immobilized on a carboxymethyl
dextran CM5 sensor chip through amine coupling reaction [21]. Briefly, the sensor surface was
activated by flushing a freshly prepared mixture of EDC (0.4 M) and NHS (0.1 M) for 7 min at flow
rate of 10 pL min™. Then, a solution of HSAgly 30 pg mL™ in NaOAc (pH 4.5; 0.01 M) was
injected until the required amount of immobilized protein was obtained, i.e. 5500 response units
(RUs). After the immobilization step, residual active esters were quenched by treating the surface
with a solution of ethanolamine hydrochloride (1 M; pH 8.5) which was injected for 7 min at the
same flow rate. Besides the flow cell with immobilized HSAgly (active flow cell), to account for
non-specific binding events, a reference flow cell was prepared using the same protocol apart from
HSAgly injection. Finally, sensor surface was allowed to stabilize overnight by flowing PBS buffer
to obtain a steady baseline.

Before further use, the functionality of the HSAgly-sensing surface was verified using rac-WRF as
test compound. Analysis conditions were set as follow: PBS (pH 7.4) with the addition of p-20 0.05
% (v/v) was used as running buffer, 75 uL min™ as flow rate and 45 s and 60 s as association and
dissociation time, respectively. rac-WRF was dissolved directly in running buffer (600 uM), diluted
in three-fold serial dilutions (from 30.0 to 0.50 uM) and injected over the surface. Data achieved

were processed as described in Section 5.2.2.4.

5.2.2.2 Analysis of VC1-HSAgly binding

Affinity assays were carried out in multi-cycle kinetic (MCK) mode employing HEPES (0.02 M),
NaCl (0.15 M), EDTA (50 uM) and p-20 0.05 % (v/v) (pH 7.1), labeled HEPES buffered saline
(HBS-E-T), as running buffer. HSAgly—-VC1 affinity studies were performed setting the flow rate at
20 pL min™. Stock solution of VC1 1.00 mg mL™ in HEPES buffered saline (pH 7.1) without
EDTA and p-20 (HBS) was diluted in running buffer by two-fold serial dilutions from 4.00 uM to

0.016 uM and injected in ascending order over the sensing surface. The contact time and the
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dissociation time were set at 300 s and 1300 s, respectively. At the end of each injection, NaOH
(0.05 M) was injected twice (contact time = 20 s) in order to re-establish the baseline before starting
a new cycle. In between VC1 cycles, blank injections of running buffer were made to monitor
baseline stability and to enable double-reference subtraction [22]. VC1-HSAgly affinity studies
were carried out in duplicate. Data achieved were processed as described in Section 5.2.2.4.

5.2.2.3 SPR-based displacement assay using chondroitin

A 1.0 mM stock solution of chondroitin sulphate from shark cartilage (CND) (Sigma-Aldrich) was
prepared in running buffer (HBS-E-T, pH 7.1) while VC1 stock solution, which consisted of 1.00
mg mL™? in HBS (pH 7.1), was diluted at 2 pM in HBS-E-T (pH 7.1). VC1-CND mixtures at
increasing concentrations of CND (1 uM, 2 uM, 5 uM) and constant concentration (1 uM) of VC1
were also prepared in running buffer in order to obtain final [CND]/[VC1] molar ratios equal to 0/1,
1/1, 2/1 and 5/1. Moreover, in order to account for possible CND direct binding to HSAgly, a CND
solution at the highest used concentration (5 uM) was also prepared in running buffer (blank
solution). Displacement experiments were performed injecting the CND/VC1 mixtures and the
CND blank solution over the HSAgly-sensing surface in the following experimental conditions:
flow rate 10 L min™, contact time and dissociation time 240 s and 800 s, respectively. At the end
of each injection, NaOH (0.05 M) was injected for 20 s in order to re-establish the baseline before

the next cycle.

5.2.2.4 SPR data analysis

The binding capacity of immobilized HSAgly was questioned injecting rac-WRF as reference
compound. The experimentally determined Rmax, Which corresponds to the maximal response (RU)
achievable, was compared with the theoretical value, calculated as follow (Eq. (7)):

MW,
Rpax = Waly: * RUimmobilized * Stoichiometry (7)
igan
Sensorgrams dataset for both rac-WRF and VC1 binding to HSAgly were processed according to
the same protocol. Firstly, SPR responses were double corrected for responses obtained from both
reference channel and blank injections [22]. Then, responses recorded at the steady state were
plotted against concentration. The equilibrium dissociation constant (Kp) of the ligand—-HSAgly

complex was extrapolated assuming a 1:1 isotherm binding model, as defined in Eqg. (8):
Req = (Rmax * €)/(Kp + ¢) + Rpuik ®)
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where ¢ (M) is analyte concentration, R.q and Rp,.x (RU) correspond to SPR responses at the
steady state and upon ligand saturation respectively and Ry refers to the response resulting from
the bulk contribution of analyte solutions (RU).

VC1-HSAgly binding analysis was repeated in duplicate and each dataset was independently fitted
in the theoretical binding model. Achieved K; values were averaged and reported with the

corresponding standard deviation (xSD).

5.2.3 HSAgly-VCl1 interaction studies by affinity-MS approach

5.2.3.1 HSAgly in solution tryptic digestion.

Trypsin stock solution (1.0 mg mL™) was prepared dissolving trypsin in HCI (2 mM). The solution
was stored at -20°C until use. A 2.0 mg mL™ stock solution of HSAgly was prepared by dissolving
the lyophilized powder in ultrapure water. Working solution was prepared by diluting HSAgly
stock solution 0.5 mg mL™ in AMBIC (pH 8.5; 0.05 M). 800 pL of HSAgly working solution were
treated with 40 uL of DTT (0.1 M, in AMBIC pH 8.5; 0.05 M) and incubated at 56 °C for 30 min,
under gentle shaking (600 rpm). Afterwards, 40 pL of freshly prepared IAA solution (10 mg mL™
in AMBIC pH 8.5; 0.05 M) were added and the solution was incubated for 40 min in the dark at
room temperature. Lastly, 8 uL of trypsin stock solution were added and the sample was incubated
overnight at 37 °C, under shaking (600 rpm). Digestion was stopped by rapidly freezing the
solution at -80°C. In the digested samples, the final concentration of each component resulted:
HSAgly 0.45 mg mL™, DTT 4.50 mM, iodoacetamide 0.45 mg mL™ and trypsin 0.01 mg mL™.
HSAgly/trypsin ratio (p/p) was 45:1.

HSAgly peptides were analyzed by 2D-LC-ESI-MSMS (Section 5.2.4.3) and were used for affinity-
MS analysis (Section 5.2.3.3).

5.2.3.2 Preparation and validation of immobilized VC1 affinity column

VC1 stock solution (1.00 mg mL™ in HBS) was ultrafiltered (UF) for buffer exchanging. HBS was
replaced with sodium bicarbonate (0.2 M) and NaCl (0.5 M) (pH 8.3) (coupling buffer). UF was
carried out with a Varifuge 3.0 R centrifuge (Heracus Sepatech, Hanau, Germany). 150 uL of VC1
stock solution were diluted up to 500 pL with the coupling buffer and submitted to UF using
Amicon Ultra centrifugal filters membranes. Four UF cycles were performed setting 6000xg for 15
min at 25 °C. At the end of each cycle, an aliquot of 400 uL of coupling buffer was added before
resubmitting the solution to UF.

VC1 immobilization onto sepharose beads was carried out via amine coupling following a previous

developed protocol [23]. Briefly, 30 mg of dry CNBr-activated sepharose beads were transferred
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into an empty spin column (Mobicol-Classic, MoBiTec GmbH, Gottingen, Germany) with a
volume of 800 pL in which a small lower filter of 35 um was inserted to avoid bead leakage. The
beads were pre-treated with 0.5 mL of HCI (0.1M) for 15 min, under shacking (450 rpm). Beads
were washed ten times with 0.4 mL NaOAc (pH 4.0; 0.2 M) containing NaCl (0.5 M) (washing
buffer) and ten times with 0.4 mL of coupling buffer (pH 8.3). At the end of the washes, coupling
buffer was drained and 127.8 uL of VC1 sample, now diluted in coupling buffer at 0.88 mg mL™,
was transferred into the column and incubated with activated beads for 3 h at room temperature,
under gentle shacking (450 rpm). The ratio (w/w) VC1/beads was chosen according to previous
developed protocols for which 3.75 pg of target ligand were added for each mg of beads [23]. A
blank column was also prepared following the same experimental procedure (except for VC1
addition) in order to account for non-specific interactions. After immobilization, the coupling buffer
was drained and columns (test column and blank column) were washed ten times with 0.4 mL of
washing buffer and ten times with 0.4 mL of blocking buffer, i.e. ethanolamine (0.2 M) and NaCl
(0.5 M) (pH 8.3) to remove the unbound receptor. Then, an aliquot of 0.4 mL of blocking buffer
was added and columns were incubated 3 h at room temperature, under shacking, to quench residual
active cyanate esters. Finally, columns were washed 20 times with 0.4 mL AMBIC (pH 8.5; 0.05
M).

To test VC1 functionality after immobilization, the binding to HSAgly was verified. To this aim, 30
uL of a 2 mg mL™ HSAgly solution in AMBIC (pH 8.5; 0.05 M), corresponding to 60 ng of
HSAgly, was added to the VC1-beads and incubated overnight at room temperature, under gentle
shacking. The theoretical ratio (w/w) HSAgly/VC1 was 0.5. Afterwards, the supernatant was
drained, and the column was washed 40 times with 0.4 mL of ammonium acetate (pH 7.2; 0.05 M).
Last wash was subjected to Matrix-Assisted Lased Desorption/lonization Mass Spectrometry
(MALDI-TOF MS) analysis to confirm the absence of unbound protein or other contaminants.
Finally, the bound fraction was eluted with 0.3 mL of H,O:FA (99.9:0.1 v/v). and was analyzed by
MALDI-TOF MS as described at Section 5.2.4.1.

5.2.3.3 VC1-HSAgly binding studies by epitope extraction method

The characterization of the interaction between HSAgly and VC1l-based column was studied
following the epitope extraction method [23,24]. Briefly, the column was washed ten times with 0.4
mL of AMBIC (pH 8.5; 0.05 M), last wash was drained. 60 ug of tryptic digested HSAgly [0.45 mg
mL™ in AMBIC (pH 8.5; 0.05 M)] (Section 5.2.3.1) were transferred into the VC1 column and
incubated overnight at room temperature, under gentle shacking (450 rpm). The tryptic

peptides/VVC1 ratio (w/w) was 0.5. After overnight incubation, the supernatant containing unbound
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peptides was collected and the column was washed 40 times with 0.4 mL of ammonium acetate (pH
7.2; 0.05 M). Last wash was analyzed by MALDI-TOF MS to confirm the total clearance of
unbound peptides. Bound peptides were eluted with 0.3 mL of H,O:FA (99.9:0.1 v/v). An identical
experiment was performed on a blank column to account for non-specific interactions with
sepharose beads. The protocol (Fig. 17-A) was repeated in duplicate for two freshly prepared VC1
and blank columns. All collected fractions (unbound and bound) were analyzed by HPLC-ESI-
MSMS (Section 5.2.4.4) and data were processed as described in Section 5.2.4.5.

Elution fractions were also resubmitted to trypsin digestion (Fig. 17-B). Briefly, both fractions were
diluted 1:2 (v/v) in AMBIC (pH 8.5; 0.5M), treated with 10 uL of DTT (0.1 M) in AMBIC (pH 8.5;
0.5 M), incubated at 56 °C for 30 min, under agitation (600 rpm), further treated with 10 uL of IAA
[10 mg mL™ in AMBIC (pH 8.5; 0.5 M)] and incubated 40 min in the dark at room temperature.
Finally, 5 pL of trypsin (1 mg mL™) in HCI (2 mM) were added to each sample and they were
incubated overnight at 37°C, under shacking (rpm 600). All digested fractions collected from VC1
and blank columns were dried at room temperature by a SpeedVac vacuum concentrator,
resolubilized in bidistilled water and analyzed by HPLC-ESI-MSMS (5.2.4.3). Data were processed

as described in Section 5.2.4.4.

5.2.4 MS-based analysis

5.2.4.1 MALDI-TOF MS detection

MALDI-TOF MS analyses were performed with a Brucker Autoflex Smartbeam linear TOF mass
spectrometer (Bruker Daltonics, Bremen, Germany) equipped with external scout fully automated
X-Y target stage MALDI pulsed collision gas. A nitrogen UV laser (Amax = 337 nm) was used and
ions were generated by 10 laser shots for 0.5-1 s at 30 V and extracted at 15 V. MS spectra were
recorded setting 10 laser shots for each scan and accumulating 30-60 scans. Mass range was set at
0-70 kDa m/z for the detection of intact HSAgly (Section 5.2.3.2) and at 0-7 kDa when HSAgly
tryptic peptides were analyzed (Section 5.2.3.3). A freshly prepared 50 mg mL™ SDHB solution in
ACN:H,0O:TFA (50:49.9:0.1 v/v) was used as matrix solution for the MS analysis of intact HSAgly
while a 20 mg mL™ DHB in ACN:H,O:TFA (50:49.9:0.1 v/v) was used for the analysis of the
digested peptides. In both cases, 0.5 uL of matrix solution was mixed with 0.5 pL of sample
solution. The mixture was lodged on the MALDI target plate and the drop was allowed to dry at
room temperature. MS analyses were performed using a 20 kV acceleration voltage and 1.5 kV
detector voltage. Spectra were processed by Bruker Daltonic flexAnalysis software 3.3.80.0 and
corresponding evaluation program was used for mass calculation, data calibration and processing.

Spectra were re-elaborated by mMass software (version 5.5.0). Before measurements, external
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calibration was carried out using monoisotopic masses of the singly protonated ions of human
angiotensin |, angiotensin Il, neurotensin, bradykinin, bovin insulin -chain (oxidized) and bovin

insulin.

5.2.4.2 LC-ESI-MS characterization of HSAgly

10 pL aliquots of HSAgly dissolved at 0.1 mg mL™ in bidistilled water were analyzed by LC-MS
approach using an Agilent 1200 HPLC system (Walbronn, Germany) and a monolithic CIMac C4
Analytical column (5 mm x 53 mm LD.; pores size 1.3 um). Mobile phases A
[water/acetonitrile/FA (99:1:0.1, v/v/v)] and B [water/acetonitrile/FA (2:98:0.1, v/v/v)] were used
to develop a gradient as follow: 30%—-70% B, 10 min; 70%—-20% B, 1 min; 20% B, 1 min. The
column was re-equilibrated with the starting conditions of analysis for 3 min before the next
injection. Flow rate was set at 0.4 mL min™ and the injection volume was 3 pL. MS analyses were
performed on a Q-TOF Micro quadrupole time-of-flight (Q-TOF) hybrid analyzer (Micromass,
Manchester, UK) equipped with a Z-spray electrospray ion source (ESI). Analysis parameters were
set as follow: source temperature 120°C, capillary voltage 3.5 kV, cone voltage 45 V. The scan time
and the interscan time were set at 2.4 s and 0.1 s, respectively. The cone gas flow was set at 120 L/h
and the desolvation gas at 500 L/h. Mass chromatograms were recorded in total ion current (TIC)
within 1000-1700 m/z range. The HSA baseline-subtracted spectrum (m/z 1000-1500) was
deconvoluted onto a true mass scale using the maximum entropy (MaxEntl)-based software
supplied with MassLynx 4.1 software. The abundance of single isoforms was calculated as the ratio
between their fractional intensity and the sum of the intensities of all isoforms, expressed as

percentage. Data were analyzed by Microsoft Excel software.

5.2.4.3 2D-LC-ESI-MSMS analysis of HSAgly

A 2D chromatographic approach was used to resolve the HSAgly peptides obtained from the tryptic
digestion. The first dimension consisted of reverse phase liquid chromatography (RP-LC) analyses
performed on Jasco PU-1585HPLC system (Jasco Corporation, Tokyo, Japan) equipped with a
Rheodyne 7281 injection valve (50 puL sample loop). The peptide separation was carried out by
using a Zorbax Extend-C18 RP column (5 um, 250 mm x 4.6 mm 1.D.; column porosity 100 A).
Mobile phases A [water/acetonitrile (98/2) (v/v), adjusted to pH 10.0 using ammonium hydroxide]
and B [acetonitrile/water (98/2) (v/v), adjusted to pH 10.0 using ammonium hydroxide] were used
for gradient development. The solvent gradient was set as follow: 2%-70% B, 20 min; 70% of B, 2
min. The column was equilibrated for 10 min before the next injection. The analysis flow rate was

0.5 mL min™. The chromatogram was monitored at 214 nm and the eluate was collected every 2
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min into 1.5 mL Eppendorf tubes. Samples were dried under vacuum and reconstituted in 50 pL of
water for subsequent second dimension analyses as describe in the Section 5.2.4.4.

5.2.4.4 LC-ESI-MSMS analysis

LC-ESI-MSMS analysis was carried out by using an Agilent 1200 Series (Walbronn, Germany)
equipped with a CO-2067 Plus Jasco column oven and a G1329A Agilent autosampler. Analyses
were performed on Aeris Peptide XB-C18 (3.6 pm; 150 x 2.1 mm 1.D.; column porosity 100 A) at
40 °C. Mobile phases A [water/acetonitrile/FA (99:1:0.1) (v/v)] and B [acetonitrile/water/FA
(99:1:0.1) (v/v)] were used to develop a gradient set as follow: 0-5% B, 1 min; 5-40% B, 59 min;
40-70% B, 5 min. Column was re-equilibrated with the starting conditions for 12 min before the
next injection. The injection volume was 50 pL.

MS analyses were performed on a QTOF spectrometer (Micromass, Manchester, UK) equipped
with a Z-spray ion source. The source temperature was set at 120 °C, the desolvation temperature at
280 °C, the capillary voltage at 3.0 kV, and the cone voltage at 35 V.

Peptides endowed with 2, 3 and 4 charges with m/z values within 600-1900 and an intensity higher
than 10 counts/sec were selected for fragmentation and MSMS analyses. Scan time was 1 s for the

parent ion and 1 s for the MSMS ions. Collision energy was selected using charge state recognition.

5.2.4.5 Data processing

Raw files from LC-ESI-MSMS analyses were processed using Mascot Distiller 2.5.1.0 (Matrix
Science, London, UK), a software program that reduces MS raw data to high-quality peak lists for
database searching. Data bank search was performed on the human SWISSPROT database
(2018_10; 558590 sequences; 200544181 residues; http://www.uniprot.org) allowing five missed
cleavages. The precursor and fragment ion tolerance were 0.5 and 0.3 Da, respectively. Cysteine
carbamidomethylation was selected as fixed modification while methionine oxidation, cysteine
sulfonylation, cysteine trioxidation, lysine and arginine glycation were selected as variable

modifications.
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5.3 Results and discussion

5.3.1 Characterization of HSAgly by LC-ESI MS and 2D-LC-ESI-MSMS

The lack of a clear picture concerning AGE-HSA-RAGE interaction is partially related to AGE-
HSA heterogeneity. Indeed, the use of not well-characterized albumin-AGEs in in vitro studies
hampers the identification of structural requirements for interaction and RAGE activation. To
partially overcome this problem, we focused our attention on a commercially available glycated
HSA (HSAgly), which has been recently released on the market, as possible reference compound
for interaction studies. Based on the vendor specifications, the commercial HSAgly was produced
by reaction with glucose as reducing sugar. Hence, it is expected to present fructosyl-lysines in its
structure. Nevertheless, no other information is available from the supplier and the glycation extent
as well as the specific aminoacid residues involved in glycation were unknown. For this reason,
before studying HSAgly—VC1 interaction, the structure of the commercial product was investigated
by both top-down and bottom-up approaches.

At first, the glycation extent of the protein was determined by analyzing the intact protein by LC-
ESI-MS. The protein was resolved by RP chromatography. From the multicharged mass spectrum
acquired under the HSAgly chromatographic peak, the deconvoluted ESI-MS spectrum was
derived, enabling the evaluation of protein micro-heterogeneity. Along with the native unmodified
protein, other modified isoforms were detected and the most abundant were the cysteinylated and
glycated forms. Focusing on the glycated isoforms, their relative abundance was calculated, as

reported in Fig. 12. The overall aloumin glycation was found to be 51.4 %.
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Figure 12| Representative deconvoluted ESI-MS spectrum for HSAgly. The HSAgly micro-heterogeneity was
identified by LC-ESI-MS (see Section 5.2.4.2). In addition to the native HSA, isoforms displaying cysteinylation at the
cysteine-34 residue (HSA+ Cys), glycation with different hexose molecules (HSA + nHex), and combination of both
(HSA+ cys + nHex) were detected. The insert table lists the glycation state along with the relative abundance (%)

calculated for the various glycated isoforms.
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To identify sites of glycation, a two-dimensional liquid chromatography separation coupled with
mass spectrometry detection (2D-LC-ESI-MSMS) was employed. 2D separation prior to MSMS
analysis facilitates the resolution of complex mixtures, offering advantages in terms of sensitivity
[25]. This method previously proved to be suitable for the analysis of the glycated proteome
notwithstanding the complexity of clinical samples and the low abundance of in vivo glycated
proteins [26]. Tryptic mixture was first resolved in basic conditions, eluates were collected every 2
min, dried under vacuum, reconstituted in water and analyzed by ESI-MSMS in acidic conditions.
The databank search confirmed a 75 % coverage of HSAgly sequence. The 2D-LC-MSMS
approach allowed the identification of four glycated residues: K137, K414, K525, K574 (Table 5).
No carboxymethyl/carboxyethyl lysines (CML/CEL), which are the most abundant AGEs in vivo
[27], were detected by 2D-LC-ESI-MSMS analysis, pointing out the early glycation state of the

commercial product.

Table 5. Tryptic peptides of HSAgly, containing glycated residues on their sequence, identified by
2D-LC-ESI-MSMS. The corresponding observed m/z value, molecular weight (MW), retention time
(RT) and sequence with the glycated residues involved along with Mascot search score are reported.

Peptide Observed m/z Peptide MW tgr(min) Score’ Sequence

137-144 609,57 1217,13 19.48 42 K.KYLYEIAR.R + [+162.1256 at N-term]
413-428  867.39 1801.73 24.53 50 K.KVPQVSTPTLVEVSR.N [+162.1256 at K2]
525-534 646,19 1290,36 20.53 43 K.KQTALVELVK.H + [+162.0528 at N-term]
574-585 652,86 1303,70 26.66 41 K.KLVAASQAALGL.+ [+162.0528 at N-term]

%t stands for retention time. "Score is derived from Mascot database and is based on the calculated probability,
P, that the observed match between the experimental data and the database sequence is a random event. Score
greatest than 35 indicates high probability of identity.

Among the found glycated residues, K525, which is the most common glycated lysine residue of
albumin both in in vitro glycation and in clinical samples, was detected [2]. In particular, clinical
studies showed that glycation at K525 accounts for 33% of the total glycated HSA in patients with
unstable blood glucose and that K137, K414, K574 are common glycation sites, frequently detected
in HSA from diabetic patients [2,26,28]. The similarity between the glycation pattern observed in
the commercial HSAgly and diabetic patients makes the former a good reference compound to

correlate the role of early glycated albumin with RAGE activation in diabetes.

5.3.2 Biosensing surface preparation and validation
HSAgly sensing surface was prepared via amine coupling reaction. The covalent binding between
the amine groups of lysines on the surface of target molecule and the carboxymethyl dextran layer

is the most commonly used approach for target immobilization on sensor chips. Indeed, thanks to
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the high stability and high surface density, this strategy has been previously exploited to investigate
binding parameters of small molecules to HSA [29-31].

To assess the best immobilization conditions, a pH scouting procedure was carried out by diluting
HSAgly in several immobilization solutions at different pH. To obtain an adequate pre-
concentration of the protein over the surface, immobilization buffer requires a pH above the
isoelectric point (pl) of the dextran layer and below pl of the protein. pH scouting evaluation
showed that the NaOAc (pH 4.5; 0.01 M) solution granted the best conditions for immobilization,
providing a stable, high and time-dependent pre-concentration of the protein over the surface (data
not shown).

For HSAgly immobilization the surface was activated by treatment with EDC/NHS mixture prior
injection of a HSAgly solution to reach an immobilization level of 5500 RUs (Fig. 13). According
to classic amine coupling protocol, residual active esters were quenched by flushing a solution of
ethanolamine hydrochloride (pH 8.5; 1 M) [22] and the sensing surface was stabilized overnight in
PBS. The overnight stabilization is required to stabilize the baseline and remove the residual
HSAgly not covalently bound to the surface. Final immobilization level resulted 5000 RUs,
approximatively corresponding to a surface density of 5.0 ng mm™ [21].
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Figure 13| Sensorgram of HSAgly immobilization to a CM5 sensor chip. HSAgly was immobilized according to
amine coupling procedure which involves (1) activation of the sensor surface by EDC/NHS mixture, (2) injections of a
HSAgly solution in NaOAc (pH 4.5; 0.01 M), (3) quenching of residual activated esters by treatment with an
ethanolamine solution. After overnight stabilization the surface density was estimated to be about 5.0 ng mm™
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After covalent immobilization, the validation of the sensing surface is required to assess if the
covalent anchorage to the surface has preserved target binding properties. To evaluate HSAgly
functionality, rac-WRF, which is one of the mostly used markers to assess HSA binding capacity at
binding site | [31], was used as test compound. The measured Kp value (11.5 x 10 M) resulted in
agreement with previously reported SPR analysis of the interaction of rac-WRF and HSA [31].
Altogether, the comparison between the experimental Rmax value with the theoretical maximal
response and the affinity for rac-WRF confirmed that the functionality of the surface was
maintained.

It is worth to note that commercial HSAgly is in an early stage of glycation (see Section 5.3.1). This
fact may explain the comparable binding capacity of HSAgly and native protein. The obtained Kp
resulted in agreement with affinity values reported by Joseph K.S et al. [32] for WRF-HSAgly and
WRF-HSA, quantified by high performance affinity chromatography (HPAC).

5.3.3 Characterization of VC1-HSAgly binding by SPR

SPR biosensing is the gold standard method to real time monitor biorecognition phenomena. This
highly informative technique allows easy access to affinity and kinetic data on complex
formation/disruption [33]. Despite the great interest on RAGE-AGE interaction, a limited amount
of SPR-based studies are available in the literature [13,14,34]. In the current work, SPR biosensor
was used to investigate HSAgly binding to the ectodomain VC1 of RAGE. HSAgly was chosen as
immobilized target instead of VC1 because of the lack of commercially well-characterized AGE-
albumin binders to validate the VC1-sensing surface after immobilization. Conversely, using the
opposite system (immobilization of HSAgly) the resulting sensing surface could be validated (see
Section 5.3.2).

VC1 (MW= 28 kDa measured by ESI-MS) was firstly diluted in HBS-E-T at 1 uM and injected
over HSAgly sensing surface. The obtained double-reference corrected sensorgram resulted well
discernable from background noise confirming the interaction between the two biomolecules. To
our knowledge, this is the first time that the interaction between VC1 and this form of commercially
glycated albumin was analyzed and, as consequence, no data are available regarding the affinity of
the complex and the range of concentrations for VC1-HSAgly affinity studies. The higher tested
concentration was 4.00 uM, because responses recoded at higher concentrations resulted
compromised, making unreliable the sensorgrams related to the binding event. Possible explanation
of that may be high steric hindrance, crowding and possible aggregation at the functionalized

surface when high concentrations were used [22].
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VC1-HSAgly affinity analysis were carried out diluting VC1 in HBS-E-T in two-fold serial
dilutions from 4.00 uM to 0.016 uM. All measured interactions reached the steady-state condition
within the selected injection and dissociation time, i.e. 300 s and 1300 s, respectively (Fig. 14-A).
Two injections of regeneration solution (NaOH, 0.05 M) were required to re-establish the baseline
condition. Responses recorded at equilibrium were plotted against concentration and the
equilibrium dissociation constant (Kp) was calculated applying a 1:1 binding model (Fig. 14-B)
resulting in the averaged value of (6.05 + 0.96) x107 M (n= 2).

Moreover, preliminary evaluation of association and dissociation events suggested a slow
interaction, which required a long VCL1 injection (300 s) before reaching the steady state as well as
a long dissociation time (1300 s) to allow the disruption event.
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Figure 14| SPR sensorgrams and corresponding 1:1 isotherm for VC1-HSAgly interaction. A) Different VC1
concentrations (0.016-4.00 uM) were injected in ascending order over the sensing surface. Increasing concentrations
(0.016, 0.031, 0.063, 0.125, 0.250, 0.500, 1.00, 2.00, 4.00) are denoted by different shade of blue (from light to dark).
Kp value for VC1-HSAgly complex was extrapolated by plotting the double-reference corrected responses (RUS)
recorded at the equilibrium as function of VC1 concentration. A simple 1:1 binding model, which fitted the

experimental data, was applied, according to Eq. (8).

To our knowledge, no affinity datum is available from literature regarding the interaction of VC1
with this form of glycated albumin. Hence, to further validate the VC1-HSAgly binding, a SPR-
based displacement assay was performed using CND, a selective RAGE binder, as displacing agent.
Affinity for the CND—RAGE interaction has been previously assessed by Mizumoto S. et al. by a
SPR-based approach, which highlighted a Kp value of (3.06 + 1.63) x 10" M [18,19]. On the other
hand, CND is not a HSAgly binder, as proved by our studies. Indeed, injection of CND over the

HSAgly-sensing surface did not result in any significant interaction. This finding makes CND a

suitable agent for displacement studies.
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Displacement study was carried out monitoring VC1-HSAgly binding as a function of increasing
concentrations of CND (Fig. 15). A concentration-dependent competition of CND towards HSAgly-
VC1 binding was observed, inferring a specific interaction involving overlapped binding sites.
Indeed, solutions of [CND]/[VC1] molar ratios of 1/1, 2/1, 5/1 reduced SPR response of the
VC1-HSAgly complex recorded in the absence of CND ([CND]/[VCL1] = 0/1) by 15.1 %, 31.8 %,
66.7 %, respectively (Fig. 15).

25001
— [CNDJ/[VC1] 0/1
— [CNDJ/[VC1] /1
— [CNDJ/[VC1] 2/1
[CNDJ/[VC1] 5/1
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Figure 15| SPR-based displacement assay for the VC1-HSAgly interaction. Competition assay was carried out
injecting CND/VC1 mixtures at increasing stoichiometry molar ratios. Reference SPR response in the absence of CND
is depicted as black line while signals recorded at increasing [CDN]/[VC1] ratios are depicted as green lines of

decreasing shades as detailed in the graph.

Results proved VC1-HSAgly interaction is specific and can be hampered by a VC1 known RAGE
binder.

Commercial glycated albumin is an early stage glycation product as compared to AGEs and, as
consequence, it is unrepresentative of advanced glycation end products which may form in vivo in
severe hyperglycemia. Nevertheless, preliminary data obtained by the SPR-based assay allowed to
make some considerations on the binding of this early stage product with VC1, thus laying the basis

for subsequent investigations on AGE-RAGE interaction.

5.3.4 HSAgly-VCl1 interaction studies by affinity-MS approach

The immobilization strategy chosen for affinity-MS approach envisaged VC1 covalent
immobilization onto CNBr-activated sepharose beads pre-packed into a microcolumn. Moreover,
the strategy enabled to reduce VC1 consumption, usually higher when the receptor is selected as

analyte instead of as immobilized target. Covalent immobilization of VC1 onto CNBr-activated
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sepharose beads through amine coupling [23] granted VCL1 stability, enabling the reusability of the
VC1-based column for multiples analyses. The effectiveness of immobilization procedure was
confirmed by affinity-MS approach (Fig.16) [20].

g p == [M+H]*
3;‘};‘ Incubation ,-g%% 1-Wash 5 MALDI-TOF MS
o, L 2-Elution L' Analysis [M+H]2*
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3 X J :
HSAgly VC1 column Bound fraction

miz

Figure 16| Schematic representation affinity-MS approach used to test VC1 column functionality. The method
briefly consisted of incubation of the intact HSAgly, the removal of unretained protein (or peptides) as well as washing
steps to remove not specifically bound analytes, the disruption of the binding complex by acidic conditions, the
collection of the bound fraction and the analysis by MALDI-TOF MS.

In order to validate the VC1 column, the interaction with HSAgly was studied. In the preliminary
set up of the method, the effectiveness of washing steps was confirmed by analyzing washings by
MALDI-TOF MS and confirming the absence of any protein in the last wash (Fig. 17-B). In the
optimized procedure, HSAgly was added to the VC1 column and incubated overnight, unbound
fraction was washed and, finally, HSAgly—VC1 binding was disrupted in acidic condition. The
eluted fraction was collected and analyzed by MALDI-TOF MS (Fig. 17-A).
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Figure 17| Comparison of MALDI-TOF MS spectra obtained by Affinity-MS approach for VC1 column
validation. A) Elution of bound fraction was analyzed by MALDI-TOF MS and HSAgly intact protein was recorded
(black spectrum). Monocharged ion [M+H] * = 66925.4 Da, doubly charged ion [M+2H]*" = 33480.4 Da and triply
charged ion [M+3H] ** = 22369.3 Da were detected, validating VC1 column. B) The flip spectrum (blue) corresponds to
the analysis of the last washing step. The absence of any residual unbound protein or contaminant confirmed that

washing protocol was efficient in removing any unbound analyte from the column before elution.
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The detection of the intact protein in the bound fraction confirmed the binding of HSAgly with
immobilized VC1, supporting the results achieved by SPR-based assay. Most importantly, the
retained binding capacity of VC1 towards HSAgly confirmed that VC1 was functional after
immobilization. A blank column was also prepared following the same procedure and was used as

negative control for the determination of non-specific interactions.
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Figure 18| Schematic representation of the tailored epitope extraction method described in Section 5.2.3.3.
Epitope extraction method was exploited to isolate tryptic peptides of HSAgly involved in the binding with VC1. A)
Supernatant (unbound) and elution (bound) were directly analyzed by LC-ESI-MSMS. B) Supernatant (unbound) and
elution (bound) were re-digested with trypsin before analysis by LC-ESI-MSMS.
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Once assessed the functionality of immobilized VC1, the column could be applied to further
studies, in particular to the determination of the protein region involved in HSAgly—VC1
recognition. To this purpose, the so-called epitope extraction method was applied [23,35]. This
approach has been set up to identify the epitope involved in antigen-antibody interaction. Briefly,
the method consists of target (i.e., antibody) immobilization onto a microcolumn packed with
sepharose beads, the incubation of the peptide mixture derived from proteolytic digestion of the
ligand protein, the isolation of the bound peptides, their elution and the identification of the epitope
sequence by MS analysis of the eluates [23,24,35,36]. Herein, a slightly modified set up was used to
identify the surface region of HSAgly involved in the binding with VC1 receptor to shed light on
protein structural requirements necessary for HSAgly—VC1 recognition.

In Figure 18 the tailored experimental workflow for epitope extraction method is reported. In detail,
the peptide mixture obtained by tryptic digestion of HSAgly was overnight incubated on VC1 and
blank columns. The unbound peptides were collected and the columns were washed. Before eluting
the bound peptides, the effectiveness of washing procedure was assessed by MALDI-TOF MS
analysis of the last washing. Finally, the bound fraction was eluted in acidic conditions and
analyzed by LC-ESI-MSMS. Figure 19 shows the chromatographic profile of the bound fraction
collected from the VC1 column in comparison with the bound fraction collected from the blank
column. The absence of significant signals in the bound fraction of the blank column highlighted

negligible non-specific interactions between HSAgly peptides and sepharose beads.
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Figure 19| LC-ESI-MSMS total ion chromatogram of the bound fractions eluted from VC1 and blank columns.
Bound fractions eluted from A) VC1 and B) blank column were analyzed. Retention time values are displayed on
relative peak apexes. The peak at 42.80 min was identified as peptide [287-311]. High MW peptides, for which further
studies were required, were eluted at higher retention time and their corresponding peaks are pointed out. Analysis

conditions are reported in Section 5.2.4.4.
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The LC-MSMS analysis of the bound fraction and the following MASCOT database search allowed
the identification of only one peptide, namely peptide [287-311] eluting at 42.8 min (Table 6). The
good score ensured the peptide identification.

Bound fraction also contained high MW (HMW) peptides, which eluted with longer retention times,
which were not selected from further fragmentation. The experimental set-up, indeed, involves the
fragmentation of [M+2H]*, [M+3H]*" and [M+4H]* ions (Section 5.2.4.4) while these HMW
peptides are characterized by a higher charge state. As example, Fig 20-A shows the multicharged
mass spectrum acquired under the peek apex eluting at 52.77 min and the corresponding

deconvolution spectrum (Fig. 20-B).

Table 6. Characteristics of the peptide [287-313] identified by the epitope extraction method as
interactant with VC1. Mascot search score is also reported.

Peptide Observed m/z Peptide MW tg (min) Score” Sequence

287-313 992.2 2973.33 42.7 63 K.SHCIAEVENDEMPADLPSLAADFVESK.D

%tg stands for retention time. °Score is derived from Mascot database and is based on the calculated probability, P,
that the observed match between the experimental data and the database sequence is a random event. Score
greatest than 35 indicates high probability of identity.
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Figure 20| ESI-MS analysis of high MW peptide eluted at 52.77 min and found in bound fraction. A) Multi-
charged mass spectrum, acquired on peak apex eluting at 52.77 min, and B) corresponding deconvoluted ESI-MS

spectrum. For analyses condition see Section 5.2.4.4.

In order to identify these HMW peptides, the bound fraction was re-digested to get peptides with
lower MW and facilitated their identification by subsequent LC-ESI-MSMS analysis (Fig. 18-B).
This approach led to the identification of a number of peptides which are summarized in Figure 21.

Among glycated peptides identified by 2D-LC-MSMS, only the one containing K525, the most

common lysine residue involved in glycation reaction of albumin [1], was identified in the bound
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fraction. This suggest that this residue (and region of the protein around this region) is the most
likely involved in the interaction with VC1.

It should be also mentioned that tryptic digestion makes available for the interaction also peptides
otherwise not exposed on the protein surface. This explains the identification of a number of
peptides which are not located at the protein surface. Although they clearly cannot play a role in the
biorecognition of VC1 when the protein if correctly folded, it cannot be excluded at this stage of the
study that these peptides may be involved in the stabilization of the interaction between AGE-
albumins which are characterized by an extensive alteration of the native structure including
dimerization, oligomerization and misfolding. Furthermore, interaction of VC1 with these
embedded peptides also opens the possibility of identifying structure requirements for binding to
VCL.

Finally, among HSA domains, the subdomain IA is that with the higher degree of identified amino
acid sequence (63%). This observation suggests this region may be the most likely involved in the
interaction with VCL1.
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Figure 21| Aminoacidic sequence and tridimensional structure of the HSAgly highlighting bound peptides
identified by epitope extraction procedure. A) Aminoacidic sequence of HSAgly. The peptides identified by LC-ESI-
MSMS after the re-digestion of the bound fraction are depicted in bold (red). B) HSAgly tridimensional structure in
which regions corresponding to peptides identified in the bound fraction are highlighted in red. The glycated peptide
corresponding to sequence [525-534], detected in the bound fraction, is depicted in light green. Identified peptides from
bound fraction cover 63% of aminoacidic sequence of subdomain 1A.
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5.4 Conclusions and perspectives

In the current study we set up a multimethodological strategy to investigate the binding between the
ectodomain of human RAGE, i.e. VC1, expressed in Pichia Pastoris by Degani et al. [15], and a
glycated albumin recently released on the market. The interest on such ligand arises from its
commercial availability and its similarity in terms of glycation pattern and glycation degree with the
average glycated HSA forms found in diabetic patients. Indeed, 2D-LC-ESI-MSMS analysis
allowed the identification of four site of glycation, among which the residue K525, i.e. the most
commonly glycated lysine residue detected in glycated albumins both obtained by in vitro glycation
and found in diabetic patients.

Although HSAgly is not an advanced glycation end product, SPR-biosensing studies using a
HSAgly-sensing surface highlighted HSAgly can interact with VC1 with a moderate affinity (Kp =
6.05x10") and with a slow association and dissociation rate. Observed interaction was confirmed to
be specific as proved by displacement studies with a well-known RAGE binder, i.e. chondroitin.
Application of affinity-proteomics, involving the use of a purposely developed VC1l-affinity
column and subsequent MS analysis of the retained protein or peptides, allowed further insights into
HSAgly—VC1 biorecognition. In details, the study identified the glycated peptide [525-534], with
glycation at residue K525, as the only glycated peptide of HSAgly able to interact with VC1.
Furthermore, and quite interestingly, preliminary results also highlighted a possible involvement of
the area including subdomain IA in VC1 biorecognition (63% coverage of the subdomain). This
area does not contain glycated lysine residues. This observation, if confirmed by further studies,
may open new considerations on a possible more complex biorecognition pattern.

The identification of peptides normally embedded into the protein as possible interactants of VC1
arises from the exposure of these peptides upon protein denaturation prior to tryptic digestion.
Although interesting information on the structural requirements for VC1 binding may be obtained
from the analysis of these peptides, they obviously cannot contribute to VC1 recognition by native
HSAgly. Therefore, to overcome the latter limitation, further experiments, which will include
analysis of peptides obtained from HSAgly digestion in non-denaturing conditions, will be carried
out.

As general consideration, the outcomes of this study showed that combination of VC1-affinity
column for interactants isolation, HPLC-ESI-MSMS for the identification of the binding region(s)
along with SPR technology for affinity quantification of the binding complex, may be a useful
strategy to elucidate structural requirements for VC1 binding. In particular, the proposed approach
may be further employed to investigate the interaction between VC1 and in vitro aloumin-AGEs

formed at different stages of glycation, including the forms more representative of diabetes
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conditions. Finally, the availability of increasing information on biorecognition mechanisms
involving RAGE, or its ectodomain VC1, although partial, are useful to start fulfilling the gap
between circulating glycated species (either early glycation products or end products) and the
pathological pathways triggered by RAGE activation.
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Human cholinesterases
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Chapter 6

Introduction

6.1 General remarks

Cholinesterase (ChE) is a generic name for a family of enzymes implicated in the hydrolysis of the
neurotransmitter acetylcholine (ACh) both in the central and in the peripheral nervous system.
These serine hydrolases play a key role in the catalysis of ACh into choline and acetic acid, thus
promoting the termination of the neurotransmission at cholinergic synapses and the restoration of
the resting state [1] (Fig. 22).
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Figure 22| Graphical representation of biological mechanisms involved in ACh neurotransmission. After the
synthesis of ACh in the cytosol of pre-synaptic cholinergic neurons, the neurotransmitter is incorporated into synaptic
vesicles. Due to depolarization induced by calcium ions, ACh exocytosis releases ACh into synaptic cleft. The
neurotransmitter can bind two different receptors, namely nicotinic and muscarinic receptor, thus promoting ACh-based
cascade response. The role of AChE grants ACh hydrolysis with the subsequent reuptake of acetate and choline into the

pre-synaptic neurons. Reprinted with permission from [1].

Cholinesterase includes two types of enzymes, namely acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE), which are located ubiquitously through human body regulating
different functions. The former, which is the most abundant enzyme belonging to this family, is

located both in central and peripheral neurons. [2]. BUChE, also known as plasma cholinesterase, is
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predominantly located in liver, blood plasma and central nervous system where it is associated with
glial cells. In the nervous system, it directly acts as co-regulator of ACh levels in brain, although to
a lesser extent compared with AChE [3]. Since ACh plays a key role in cognitive process,
impairment of the cholinergic system is considered an important hallmark in dementia including
Alzheimer’s disease (AD).

AD is a progressive age-related neurological syndrome, marked by a gradual memory loss.
Pathological hallmarks of AD include neuronal death, decrease of ACh levels with consequent
impairment of the central cholinergic tone and accumulation of plaques in the brain (especially
amyloid-beta aggregates).

Inhibitors of AChE (AChEIs) represent the major class of compounds released on the market and
approved to treat AD with the aim of increasing ACh levels by reducing AChE hydrolysis rate.
Nevertheless, current marketed inhibitors can only temporally reduce cognitive deficits, thus
enhancing the quality of life [4]. Recently, the possibility of hitting BuChE instead of/or
simultaneously with AChE for the treatment of AD and related dementias has been highlighted.
Compounds with risen selectivity for BuChEg, e.g. cymserine-like molecules, or dual inhibitors
towards both ChEs, e.g. rivastigmine, revealed potential beneficial effects in AD treatment and
related dementias. Therefore, efforts in the design of new dual inhibitors towards AChE and BuChE
are increasing with the purpose of developing new and more efficient treatment options [3].

Despite the continuous progress in the comprehension of the multiple networks involved in AD, this
form of dementia represents one of the major public health concerns [5]. Indeed, the increasing
number of patients and the lack of effective treatment for cure challenge medicinal chemists to
design new chemical scaffolds. Several hypotheses have been suggested to rationalize clinical
failure. Among these, the multifactorial nature of AD along with the various molecular targets
involved have been proposed as reasons for clinical withdrawn of drug candidates [6]. This
knowledge has laid the foundation of a novel design strategy, the so-called multi-target-directed
ligands (MTDLs). This rational strategy aims to synthesize heterogeneous class of compounds
which are able to simultaneously target more than a single molecular target in the pursuit of the
development of new molecules endowed with better pharmacological effect [7-9]. Advantages in
using multipotent drugs with respect to the administration of a combination of drugs are also
ascribed to the decrease of drug—drug interactions and the simplification of ADMET studies.

In this scenario, continuous efforts in developing chemical entities are paralleled by the efforts in
developing analytical strategies able to better assess drug-target interaction. Concerning the
identification of new ChE inhibitor in the early phase of the drug discovery process, in solution

assays to assess the half-maximal inhibitory concentration (I1Csp) and the binding mode (reversible
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or pseudo-irreversible; competitive, non-competitive or mixed type) are the most common
approaches [10]. In particular, 1Csp is the classical parameter which is quantified to rank inhibitors
during first screening and SAR studies. Recently, the interest in the development of highly-
informative screening methodology is rising. In particular the availability of robust methodologies
which can provide kinetic information on drug binding events, thus providing additional
information which may better predict the in vivo duration of action may help the correct
prioritization of favorite chemical scaffolds to be further developed, thus reducing the attrition rate
in the first phased of the drug discovery process.

6.2 Structure and catalytic function of AChE

The main biological function of AChE is the termination of impulse transmission by the rapid
hydrolysis of ACh (into choline and acetate) at cholinergic synapses (Fig. 23). In physiological
conditions, its role as serine hydrolase is marked by highly significant activity, getting closer to the
limit of diffusion-controlled reaction. Indeed, almost 25000 molecules of ACh neurotransmitter are
hydrolyzed per second by each enzyme [11].

AChE secondary structure is formed by 14 o helices which centrally encircle 12 stuck parallel and
antiparallel B sheets, thus conferring to the molecule a ellipsoid-like form [12]. Typical feature of
AChE structure is a narrow and ~20 A deep gorge which extends for half the enzyme length and
widens near the base. The wall of the gorge is lined by 14 aromatic residues, highly conserved
across the species [12].

Early kinetic studies showed that AChE active site is formed by two main subsites, namely esteratic
and anionic subsites. The esteratic subsite acts as catalytic machinery and contains three amino
acids which forms the so-called catalytic triad: serine at position 200 (Ser200), histidine at position
440 (His440) and glutamate at position 327 (Glu327) of AChE backbone (the amino acid
numbering in this section, if not otherwise specified, refers to AChE from Torpedo californica, as
first form of AChE to have been crystallized) [13]. Corresponding amino acids forming the catalytic
triad in human AChE are Ser203, His447 and Glu334 [14].

Substrate hydrolysis starts with the nucleophilic substitution promoted by the serine residue towards
the ACh carbonyl group, forming the so-called tetrahedral intermediate which has the oxygen of the
carbonyl group of the neurotransmitter negatively charged. This intermediate further undergoes the
breakup between acetyl- and choline moieties, thus resulting in the release of choline. Finally, the
hydrolysis of the acyl-based intermediate with AChE grants the displacement of acetic acid, thus
restoring the resting state of AChE (Fig. 23). The proximity of His440 increases the nucleophilicity

of serine residue, thus enhancing the reaction. Instead, Glu327 grants the stabilization of the
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transition through hydrogen bond. Similarly, His440 favors the nucleophilic attack by water
molecule due to its acid-base catalyst function (Fig. 23) [15,16].
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Figure 23| Mechanism of ACh degradation promoted by the so-called catalytic triad. Reprinted with permission
from [4].

The anionic subsite, also known as choline-binding pocket, is an uncharged lipophilic portion able
to interact with choline via the charged quaternary nitrogen moiety. Among amino acidic residues
which constitute this site, tryptophan at position 84 (Trp84) plays a key role in the choline binding.
Experimental evidence has also proved that its replacement with an alanine residue decreases the
activity rate of more than three thousand times [17-19]. Moreover, the permanent dipole displayed
by AChE is aligned with the active-site gorge, suggesting that the electrostatic field facilitates the
substrate guidance down the aromatic gorge to the active site [20]. This mechanism may also
explain the fast interaction between AChE and cationic molecules.

In addition to the catalytic center, AChE holds an additional binding site, the so-called peripheral
anionic site (PAS) [21]. PAS is involved in the binding with ACh as well as with other ligands
which can modulate AChE activity in an allosteric way. Binding of the natural substrate (at high
concentration) to PAS also determine AChE activity inhibition [22,23].

ACh substrate is larger than the narrowest part of gorge. For this reason, fluctuations of gorge wall
are required to allow substrate guidance down this portion and subsequent interaction with the
active site. Since the early 1990s, molecular dynamics simulations and X-ray crystallography

studies indicated the presence of the so-called backdoor, a channel located at the thin part of the
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gorge, adjacent to the active site, probably involved in the transit of substrate, solvent and products
by its constant fluctuation between opening and shutting state. This evidence may explain the high
turnover of AChE [24-26].

Despite AChE is encoded from a single gene, it exists in several polymorphism of quaternary
structures as consequence of different mMRNA splicing and diverse subunits combination. Catalytic
subunits, which can also differ in glycosylation extent, can oligomerize thus forming dimmer- or
tetramer-based globular structures, namely G1, G2 and G4. These structures can be further divided
depending on their amphiphilicity [27,28]. In the brain of healthy subjects, the G4 quaternary
structure is the most abundant. However, in elderly people and especially AD patients, G4 form
progressively decreases while G1 form seems to have growing importance both in ACh hydrolysis

at cholinergic neurons and disease progression [29].

6.3 Alzheimer’s disease

Alzheimer’s disease (AD) is the most frequent form of neurodegenerative disorder. This incurable
age-related dementia is usually diagnosed in people over 65 years of age even if, in case of early-
onset AD, it arises much earlier [30]. Due to aging increase in the world population, AD is
becoming significantly much more common. It is estimated that in 2050 AD will affect 1 in every
85 people [5].

Since its discovery, three main hallmarks have been underlined: (i) the neurodegeneration of the
central nervous system which particularly affects the cholinergic tone, (ii) the extracellular deposits
of protein aggregates of human beta-amyloid (AP) peptides, i.e. senile plaques, (iii) the intracellular
formation of protein deposits, i.e. neurofibrillary tangles. Over the years, different theories have
been postulated, e.g. the amyloid cascade hypothesis, the cholinergic hypothesis and the
hyperphosphorylation hypothesis [31-34]. Recently, the understanding that not only a single theory
but combinations of multifactorial events contribute in disease etiology is widely accepted. Indeed,
many factors are thought to play a role in the pathogenesis of the disease including inflammation,
overproduction of free radicals induced by oxidative stress, mitochondrial failure, metal
dyshomeostasis, cholesterol-based lipid rafts [35]. The consciousness that further potential targets
are engaged in the progression of AD shows that polypharmacological treatment is likely a more
promising strategy to be pursued for drug research. Nowadays, only palliative drugs aimed at
alleviating AD symptoms and countering memory loss have been released on the market.
Nevertheless, drug development for AD therapies is steadily increasing and several potential

compounds are in different stages of clinical trials, namely phases I, 11, 11l (Fig. 24) [5].
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Figure 24| Chemical compounds in clinical trials for AD therapy in 2018. Currently 112 agents are under

investigation in clinical trials: 26 agents in phase Ill, 65 agents in phase Il, 23 agents in phase I. Reprinted with
permission from [5].

6.3.1 AD treatment: targeting AChE

In terms of clinical therapy, the rational design which has so far generated the majority of drugs
released on the market is based on the cholinergic hypothesis, postulated over 20 years ago [32].
The hypothesis is based on the evidence that AD patients, compared with healthy elderly subjects,
have a significant decrease of the enzyme responsible for ACh synthesis, namely choline
acetyltransferase (ChAT) and of the corresponding neurotransmitter. Indeed, these reductions have
been observed in AD brain, especially in the cholinergic forebrain area and their projections to the
cerebral cortex, as a result of a significant loss of cholinergic neurons [36]. Coupled with the latter,
a decrease of AChE levels, in particular the G4 form, occurs and it is partially due to the overall
loss of cholinergic activity. The formation of plaques and tangles as well as the progression of the
disease correlate with these losses [37]. Moreover, it has been reported that AChE may act as
molecular chaperone promoting the aggregation of beta-amyloid (AB) peptides. In particular, the
recognition site for AB seems to be PAS [38,39]. Although the cholinergic impairment only

partially accounts for some clinical aspects of the pathology, cholinergic hypothesis has promoted
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the research and the development of drugs targeting the cholinergic system. In this scenario,
compounds which target muscarinic or nicotinic receptors as well as compounds which indirectly
increase ACh levels in the synaptic cleft by inhibiting the activity of AChE have been widely
studied and are still under investigation [1].

Inhibitors of AChE (AChEIs) were the first class of drugs successfully released on the market for
treating AD symptoms (Fig. 25). Currently, four AChEIs have been approved by the U.S. Food and
Drug Administration (FDA) for pharmacologic therapy, namely tacrine, donepezil, rivastigmine and
galantamine [4]. All these inhibitors are involved in the centrally inhibition of AChE, thus
increasing ACh availability in the brain. From a symptomatic point of view, they can temporally
improve memory and cognitive performance in subjects with mild to moderate AD, enhancing their
quality of life. Despite they belong to the same drug class, i.e. inhibitors of AChE, they differ in
many aspects, from adverse effects to inhibition modes (reversible or pseudo-irreversible;
competitive, non-competitive or mixed type). A different pharmacological response induced by
these inhibitors is usually observed across AD patients, thus requiring case-by-case custom dosing

and treatment.
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Figure 25 | Chemical structures of AChE inhibitors approved for AD treatment.

Tacrine (Fig. 25) is a reversible inhibitor towards both AChE and BuChE. Tacrine hydrochloride
(Cognex®, Park-Davis) was the first drug approved (in 1993) for treating AD. Nowadays, its
administration has been abandoned due to hepatotoxicity (~50 % of patients) and gastrointestinal
side effects [40]. Nevertheless, tacrine has been employed as reference compound in the
development of further AChEIs and many tacrine analogues are involved in preclinical and clinical
trials [41]. In recent years, tacrine-based structures are also used in the rational design of hybrids

based of MTDLs strategy [42—44]. An example is also reported in chapter 9.
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Donepezil hydrochloride (Aricept®, Eisai-Pfizer) was the second marketed drug for treating AD.
Donepezil (Fig. 25) is a reversible inhibitor highly selective for AChE beyond BuChE: indeed, the
affinity to the former target is almost one thousand greater. This inhibitor binds both the catalytic
and the peripheral anionic site exerting a mixed type inhibition towards AChE. Moreover, it seems
involved in the delaying of amyloid plaques accumulation [45,46]. Although donepezil is usually
prescribed to patients with mild/moderate AD, clinical evidence has shown that it can ameliorate
cognition also in patients affected by severe AD [47]. Donepezil has long duration of action and a
long half-life time (~70 h), thus allowing once-daily dose. Side effects are much less severe
compared to tacrine and include nausea, diarrhea, abdominal pain and bradycardia [4]. Currently,
the drug is on the market as oral tablets (5 or 10 mg) and transdermal patches [48]. For a long time,
donepezil has been the most administered drug for AD treatment. Nowadays, the treatment with
other FDA-approved drugs is growing. Moreover, donepezil-based hybrids have been recently
developed according to the MTDLs approach [49,50]. An example is also presented in chapter 8.
Rivastigmine (Exelon®, Novartis) is a pseudo-irreversible inhibitor, acting at the central nervous
system, that displays activity towards both AChE and BuChE (Fig. 25). In particular, the inhibition
of central BUChE is thought to contribute the efficacy of AD treatment [51]. Interestingly, it
exhibits selectivity for the G1 form versus G4 of both ChE. Rivastigmine belongs to carbamate-
based AChEI class of inhibitors. The inhibition mode consists of the carbamoylation of Ser200
within the catalytic triad [4] leading to the formation of a carbamoylated adduct. Although covalent,
inhibition by rivastigmine is reversible, owning a short half-life time (~1.5 h) [52]. Its efficiency is
comparable with that of donepezil even if it results less tolerated when administered at high doses
[51]. Adverse reactions are typically those common for all cholinergic drugs such as diarrhea,
nausea, anorexia. Rivastigmine is marketed in oral formulations or transdermal patches [53]. The
administration regimen requires a gradual dosing increase: usually from 1.5 mg twice a day to 6.0
mg twice a day in case of severe AD. A remarkable feature is its different metabolism, which is not
relied on hepatic isoenzymes, but granted by cholinesterase hydrolysis. As consequence, in case of
liver or Kkidney failure, no adjustment of the dosing is required. Furthermore, rivastigmine
constitutes one of the pharmacologic approaches for Parkinson’s disease and Lewy bodies [51].
Galantamine (Reminyl®, Janssen) is a natural compound isolated from Galanthus woronowii plant
(Fig. 25). It is a tertiary alkaloid able to interact with both the anionic subsite and the aromatic
residues along the gorge, resulting in a reversible competition, selective for AChE [54].
Galantamine is proposed for treating mild to moderate AD. Besides, this inhibitor acts as allosteric
modulator for nicotinic receptors of cholinergic neurons. Indeed, it binds a different site compared

to those of ACh and nicotinic agonists, enhancing the activity of nicotinic receptors when ACh is

90



bound. This dual mechanism grants additional benefits for AD treatment since a loss of nicotinic
receptors also occurs in severe AD [55]. Galantamine shows about ~8h of half-life time in plasma
and high bioavailability. It is administered twice/day and the treatment usually starts from 4 mg up
to 12 mg. The positive symptomatic effects in terms of cognition, memory and behavior seem to be
retained for 3-6 months. Instead, adverse effects include gastrointestinal symptoms [55].

Besides these ChE inhibitors, it is worth mentioning that also a non-competitive antagonist for N-
methyl-D-aspartate receptor (NMDA), namely memantine, was approved by FDA for treating
moderate to severe AD [56].

Despite it is not related to the aim of the present dissertation, it is worth mentioning that other
design strategies based on cholinergic hypothesis have been explored to overcome clinical failure.
In particular agonists for M; muscarinic and nicotinic receptors, located on membranes of post-
synaptic neurons, along with antagonists for M, receptors, located on membranes of pre-synaptic
neurons have been widely investigated. The rationale relies on the importance of finding other
strategies to enhance cholinergic tone, by prolonging receptors activation in the former case or, in
the latter, by increasing synaptic levels of ACh [57,58]. Indeed, AChE inhibition grants the
prolonging of ACh life-time, only for a short period [1]. Furthermore, attempts to promote ACh
synthesis have been achieved by dosing ACh precursors, e.g. choline [59]. Despite many limits
have been reported so far for all these compounds, such as low bioavailability, limited efficacy and
several side effects, the pursuit of non-inhibitor AChE molecules constitutes an important area of

investigation.

6.3.2 AD treatment: the role of BuChE

Butyrylcholinesterase (BUChE) is the sister enzyme of AChE, with whom shares 65% of homology.
It is a non-specific cholinesterase able to hydrolyze different choline esters besides ACh. Moreover,
compared to AChE it has different topology in terms of Kkinetic, location and activity. It
ubiquitously exists throughout the human body even if it is predominantly situated in human liver,
pancreas, blood and central nervous system. In the brain it is mainly detected in glial and
endothelial cells [3,60]. It is able to catalyze butyrylcholine faster compared to ACh substrate,
hence the name. Currently, BUChE role still remains unclear since butyrylcholine is not a
physiological constituent of the brain and since subjects which have a silent form of this enzyme
show analogues functions compared to healthy people.

In healthy people the 90% of ACh hydrolysis depends on the activity of AChE, mainly located in
neurons. BuChE has a lower concentration than AChE also displaying a more restricted distribution

in the central nervous system. Nevertheless, it has been shown that the 10-15% from all cholinergic
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neurons in amygdala and hippocampus contain BUChE instead of AChE as synaptic enzyme
involved in ACh metabolism. BuChE has proved to compensate AChE functions in case of AChE
failures. In particular, it shows a remarkable activity at high substrate concentrations, interesting
fact since these two ChEs have different Kinetic responses as function of ACh concentrations.
Indeed, AChE decreases its efficiency in case of neurotransmitter excess, while BUChE becomes
highly efficient, thus supporting AChE activity. Similar to its ‘‘sister’’, BuChE exists in different
isoforms and, among them, the G4 form is the most abundant in the brain of healthy people whereas
the G1 form becomes more important in AD [61].

Owing to its low expression in the central nervous system, the importance of central BuChE has not
been considered at first. However, different studies confirmed its remarkable role in the brain, in
particular regarding the co-regulation of ACh levels in AD. Indeed, if the abundance ratio of
BuChE to AChE is almost 0.3 in normal conditions, in the case of AD this value increases to 11 in
cortical areas [60]. With AD progression, AChE activity is reduced of almost 55%—65%. In these
conditions, ACh hydrolysis is almost exclusively carried out by BuChE which becomes of
functional importance. The alteration in AChE/BuUChE ratio affects ACh metabolism, thus
contributing to cholinergic failure [60]. The association of BUChE to AD has been investigated in
several ethnic groups. Outcomes of these studies have underlined how this enzyme may promote
the risk of late-AD onset, both alone or in synergic association with a variant form (i.e. K variant),
in particular in humans who carry the apolipoprotein E4 allele (ApoE4) [62,63]. Moreover, BUChE
co-localizes with amyloid plaques, dystrophic neurons and neurofibrillary tangles, which constitute
the main hallmarks of AD. Moreover, studies carried out comparing the brains (temporal cortex) of
demented and normal subjects demonstrated that Ap peptides found in patients had a BuChE-based
reactivity 6 times higher compared to non-demented individuals [64]. However, controversial in
vitro and in vivo studies have been reported regarding BuChE role in promoting or inhibiting
amyloid fibril formations [65].

Due to BUChE central activity in the hydrolysis of ACh as well as its involvement in the disorder
progression, this enzyme has been proposed as a viable therapeutic target for treating AD. In
particular, according to cholinergic hypothesis, inhibitors of BUChE should prolong ACh activity at
synaptic clefs, thus ameliorating AD-related symptoms, with particular beneficial effect in patients
with moderate-to-severe forms of AD-type dementia [66]. Among drugs approved by FDA for AD
treatment, already discussed in the previous paragraph, rivastigmine acts as dual inhibitor for both
ChEs. Moreover, its inhibition role towards BuChE seems to have an additional role in protecting
the formation of AP plaques [51]. As consequence, the clinical therapy with rivastigmine provides

long-term symptomatic effects in the treatment of subjects with AD-related dementia.
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In this scenario, various selective BuChE inhibitors have been recently developed as potential
candidates for AD treatment [65]. Nevertheless, the interest in designing selective inhibitors for

BuChE seem a viable and promising strategy.

6.3.3 AD treatment: multi-target-directed ligands (MTDLs)

Over the years, the accumulating insights into the pathogenesis and the progression of AD have
highlighted the multifactorial nature of this disorder, promoted by several elements such as genetic,
environmental and endogenous factors. The multiple etiologies include protein misfolding and
aggregation, formation of free radicals induced by oxidative stress, neuroinflammatory processes,
mitochondrial anomalies, cholesterol-based lipid rafts, calcium dyshomeostasis [35]. The
complexity of the picture has been proposed as one of the possible reasons why the currently
available drugs have turned out to be palliative instead of healing. In this scenario, alongside drug
development focuses on agents able to specifically counteract amyloid and tau aggregation, a
rational approach based on the ‘‘one molecule multiple targets’” concept has increasingly attracted
the attention of medicinal chemists. The rational design to obtaining ligands towards multiple
targets, is usually based on the synthesis of new compounds by combining distinct known
pharmacophores selective for different targets. This approach, which should lead to the
identification of the so-called multi-target-directed ligands (MTDLSs), can be considered closely
related to the known multiple-medication therapy (MMT), well-accepted in clinical [67]. Indeed,
the use of MMT to treat AD, i.e. memantine (NMDA antagonist) in combination with AChEI, has
already shown additional benefits with respect to the use of single drugs, ameliorating tolerance and
effectiveness of the treatment [68]. MTDLs strategy may thus provide advantages over the MMT
approach. Indeed, the administration of a single drug, which possesses multiple biological
properties, may limit drug—drug interaction, facilitate ADMET studies and simplify therapeutic
regimen.

In this scenario, MTDLs have emerged as an intriguing drug discovery avenue to treat AD and
several MTDLs have been recently developed [69]. So far, the most common strategy has been
based on the synthesis of compounds endowed with inhibitory potency towards ChE in combination
with different activities towards one of the multiple targets involved in AD etiology.

In the MTDLSs rational design context, the first strategy has been focused on the synthesis of the so-
called dual binding sites AChEIs, aimed at simultaneously interacting with AChE catalytic and the
peripheral site [69]. These AChEIs might mitigate cognitive impairment by restoring cholinergic
activity and, most importantly, might reduce AP aggregation, important mechanism involved in

AD, through the interaction with PAS. In this class of compounds, AP2238 was the first developed
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dual inhibitor towards AChE which successfully displayed inhibitory potency along with the
capacity of countering Ap protein misfolding and aggregation [70]. Since then, a variety of dual
inhibitors has been synthesized [69]. Nevertheless, it is worth to remark that compound capacity to
bind both CAS and PAS is a not sufficient condition to call them MTDLs. Dual site inhibitors,
however, can be considered MTDLs if their peripheral binding allows slowing and countering Af
assembly.

Thenceforth, hybrids able to simultaneously interact with different targets involved in AD etiology
have been developed. Among these, active molecules towards other neurotransmitter systems,
besides the cholinergic one, have been considered. Indeed, the neuropsychiatric abnormalities
observed in AD patients are not related only to the huge loss of cholinergic neurons but also to
impairment in the serotoninergic, noradrenergic and glutamatergic systems. For instance, AD-
related serotoninergic failures steam from raphe atrophy and lead to depression and psychosis. AD-
related noradrenergic failures is related to locus ceruleus atrophy and lead to depression [71,72]. In
this context, rational design strategies aiming at combining inhibitors of AChE with: (i) inhibitors
of monoamine oxidase (MAO), namely dual AChE/MAO inhibitors, (ii) inhibitors of serotonin
transporter (SERT), i.e. AChE/SERT, (iii) agonists or antagonists exerting a modulation on the
serotoninergic or histaminergic pathways, have been widely investigated [73].

Another widely investigated class of MTDLs is constituted by multifunctional compounds endowed
with anti-AChE activity and antioxidant properties. Indeed, molecules able to contrast oxidative
damage and, in the meantime, enhance cholinergic tone have emerged as promising multipotent
compounds [74]. An example of donepezil-lipoic acid hybrids is presented in chapter 8.

One of the major class of MTDLs designed for AD treatment is represented by AChEIls endowed
with the capacity of regulating calcium homeostasis. Indeed, since the connection between calcium
dyshomeostasis and AD etiology is well-supported [75], different AChE inhibitors also possessing
a moderate ability to block calcium channels have been developed [73]. An example of hybrids
synthetized with this dual goal is presented in chapter 9.

However, the mentioned class of multifunctional compounds only account for a small part of all
MTDLs strategies investigated over recent years. Indeed, it is worth to mention that several other
MTDLs designed to hit different targets such as amyloid peptide production and aggregation, tau
hyperphosphorylation and aggregation, metal dyshomeostasis, neuroinflammation and
mitochondrial disfunction have been developed. Further details can be retrieved in some recent
reviews [69,73,76,77].

Regardless of the rationale which promotes design strategies, synthesis of new lead compounds

requires, in parallel, the development of analytical methods to assess drug-target interaction. To
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rank AChE/BuChE inhibitors, definition of the inhibitory potency by classic in solution assay
(Ellman’s assay) [78] is the mostly used approach. Recently, accessing kinetic information on drug
binding events at initial stages of the drug discovery process is gaining increasing interest among
pharmaceutical chemists. The possibility of counting on additional information which may better
predict the in vivo duration of action (e.g. kinetic constants and residence time), indeed, facilitates
the prioritization process and the selection of favorite chemical scaffolds.

With this regard, following chapters include different studies carried out during my PhD program
and based on the characterization of different AChE/BUChE inhibitors. In particular, classical in
solution assay and a developed SPR-based assay, which proved to be a suitable approach for nicely

complement classic inhibition studies, have been employed.
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Chapter 7

Combination of human acetylcholinesterase and serum albumin
sensing surfaces as highly informative analytical tool for inhibitor

screening

Edoardo Fabini*, Anna Tramarin*, Manuela Bartolini. Journal of Pharmaceutical and
Biomedical Analysis (2018), 155: 177-184. Doi 10.1016/j.jpba.2018.03.060. [1].

Abstract

In the continuous research for potential drug lead candidates, the availability of highly informative
screening methodologies may constitute a decisive element in the selection of best-in-class
compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed
and employed to investigate interactions between human recombinant AChE (hAChE) and four
known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was
functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity.
Binding affinities and, for the first time, kinetic rate constants for all drug—hAChE complexes
formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and
fast-reversible binders according to respective target residence time. Combining data obtained on
drug-target residence time with data obtained on serum albumin binding levels, a good correlation
with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes
of this work demonstrated that the developed SPR-based assay is suitable for the screening, the
binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed
ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE
interaction as compared with other proposed and published methods. Eventually, the determination
of residence time in combination with preliminary ADME studies might constitute a better tool to

predict in vivo behaviour, a key information for the research of new potential drug candidates.

*These authors contributed equally to the work
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7.1 Introduction

Acetylcholinesterase (AChE) is the most abundant cholinesterase in the human body. Via fast
hydrolysis of the neurotransmitter acetylcholine (ACh), it plays a crucial role in terminating
cholinergic neurotransmission both in the central and in the peripheral nervous system [2]. Since
ACh is directly involved in cognitive processes, alteration of cholinergic system is encountered as
upstream or downstream hallmark in many neurodegenerative disorders, including Alzheimer’s
disease (AD), a progressive age-related pathology characterized by a progressive memory loss
which parallels a decrease of the central cholinergic tone, neuronal death and deposition of
aggregated proteins inside and outside neurons [3]. Thus, according to the cholinergic hypothesis
inhibition of centrally active AChE has been studied as the first avenue to contrast cognitive
impairment [4].

AChE inhibitors (AChEI) constitute the largest class of marketed drugs approved for AD treatment
and are one of the largest neurological drug class in terms of overall retail spending in several West
Countries [5]. Although current marketed drugs mainly exert a symptomatic effect [6], numerous
new inhibitors, which combine primary anti-cholinesterase activity with a secondary
pharmacological activity (inhibition of amyloid peptide aggregation) are under investigation to find
effective disease-modifying agents [7]. Besides application in AD, peripherally active AChEI are
used to increase neuromuscular transmission in the treatment of myasthenia gravis. Quaternary-
ammonium derivatives such as pyridostigmine and neostigmine are orally administered to
ameliorate muscular weakness while edrophonium, a short acting AChEI, is used as diagnostic tool
[8].

In vitro drug efficacy is classically quantified in terms of equilibrium dissociation constant (Kp) and
half-maximal inhibitory concentration (1Csp); parameters usually determined in closed systems with
invariant concentrations of both ligand and target. However, in living organisms, the target is
exposed to continuous fluctuation of ligand concentration, and pharmacological effects are rather
dependent on the stability of complexes that the drug forms with primary and secondary targets
along with its metabolic stability and serum protein binding [9,10]. In this scenario, characterization
of binding mechanisms and determination of kinetic parameters are key elements. Especially,
quantification of dissociation rate constant (k.¢) for drug-target complexes allows to estimate
residence time (¢ = 1/kor), which has recently emerged as critical feature of many best-in-class
compounds [11]. = has been proposed as a better means to correlate in vitro affinities to in vivo
activities with respect to classical approach [9]. Therefore, accessing kinetic information on drug
binding events at initial stages of the drug discovery process is gaining increasing interest among

medicinal chemists [12].
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Among methods used for kinetic evaluations, surface plasmon resonance (SPR) biosensing has now
assumed a central role. Fast, high-throughput and highly-informative assays can be developed to
monitor interaction between unlabeled interactants in real-time [13]. When SPR biosensing assays
are properly designed and trained operators are on the task, technology can be used at many stages
of the drug discovery route, from fragment-based screening campaigns to hit-to-lead optimization
[14,15].

Considering the huge amount of research conducted in the AD field, kinetic studies on inhibitor—
AChE interaction are quite scarce and overlooked. Limited examples presented in the literature
employ AChE from mouse [16] or Torpedo Californica [17] because of the high cost of the human
recombinant isoform; however, species-related differences in bindings are well known and such
studies are of limited applicability. Moreover, other proposed methods exploit web tools and
mathematical treatment of enzymes kinetic to obtain indirect quantification of molecular binding
events [18].

In the present study, human recombinant AChE was for the first time tethered to a commercially-
available sensing surface and the SPR-based assay was exploited to measure kinetic rate constants
of binding events with the marketed reversible AD drugs donepezil, galantamine and tacrine.
Former two are rapidly reversible drugs approved by the U.S. Food and Drug Administration
(FDA) and the European Medicines Agency (EMA); while the latter was the first AChEI approved
for AD treatment now withdrawn from the market [19-21]. To enlarge the screening window
edrophonium, a peripherally active competitive AChEI characterized by an inhibitory potency in
the micromolar range and fragment-like molecular weight (166 g/mol) was also considered.
Compounds were selected to span inhibitory potencies over three orders of magnitude and differ in
their mode of action (competitive and mixed type inhibitors) to ensure a case-insensitive evaluation
system. Binding affinities, determined by SPR approach, were compared with 1Csy values
determined by classical in solution assay (Ellman’s assay) [22]. Additionally, taking advantage of a
fast and previously validated screening methodology, SPR platform was employed to estimate
binding affinity toward human serum albumin (HSA) for the selected inhibitors. HSA constitutes
approximately 50 % of total serum protein content and markedly influences the pharmacokinetic
(PK) profile of a compound entering human body [23]. The small time consumed to asses this
parameter might be rewarding in the further stages of the drug development process, where poor PK
still constitutes an important attrition factor [23-26]

The method proposed here has the advantage of accessing kinetic parameters of AChEI-AChE
interactions quickly and easily with respect to other proposed strategies. Moreover, the screening

methods can be implemented at early stages of drug discovery where, traditionally, only inhibition
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potency is determined. Outcomes from this study aim to constitute a proof of concept of the high
information content achieved when target-based and HSA-based SPR-biosensing assays are

combined.
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7.2 Experimental section

7.2.1 Materials

Human recombinant acetylcholinesterase (hAChE) (EC 3.1.1.7) lyophilized powder, fatty-acid free
human serum albumin (HSA) A3782 lyophilized powder, S-acetylthiocholine iodide (ACTh), 5,5’-
dithio-bis(2-nitrobenzoic acid) (DTNB; Ellman’s reagent), tacrine hydrochloride, donepezil
hydrochloride, edrophonium chloride, (S)-warfarin and Triton X-100 were purchased from Sigma-
Aldrich (Milan, Italy). Galantamine hydrobromide was obtained from Tocris Cookson (UK).
Research-grade CM5 sensor chip, N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-
hydroxysuccinimide (NHS) were purchased from GE Healthcare Bio-Sciences (Uppsala, Sweden).
N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), ethylenediaminetetraacetic acid
(EDTA), sodium chloride, potassium dihydrogenphosphate, dipotassium hydrogenphosphate
trihydrate, polyoxyethylenesorbitan monolaurate (p-20), Tris(hydroxymethyl)aminomethane
(TRIS), sodium acetate were also purchased from Sigma-Aldrich (Milan, Italy). Deionized water
was obtained by Milli-Q system (Millipore, Milford, MA, USA). All solutions were filtered with
0.22 um membrane filters (Millipore, Milford, MA, USA) before use.

7.2.2 Buffer preparation

For enzymatic activity assay, potassium phosphate buffer (0.1M, pH 8.0)—PB was employed.
Running buffer used for hAAChE immobilization had the following composition: HEPES (0.01M)
NaCl (0.15 M) EDTA (0.003 M) (pH 7.4)—HBS. Running buffer used to study inhibitor—-hAChE
interactions had the following composition: KH,PO,4 (0.1M) K,HPO, (0.1M) with the addition of p-
20 0.025% (v/v) (pH 8.0)—PB-T. For HSA immobilization and inhibitors binding analysis the
following buffer was employed: Na,HPO, (3.2 mM) KH,PO, (0.5 mM) KCI (1.3 mM) NaCl (135
mM) with 0.05% (v/v) p-20 (pH 7.4)—PBS-T.

7.2.3 Sample preparation

hAChE stock solution was prepared dissolving hAChE lyophilized powder in PB (pH 8.0; 0.1 M)
with the addition of Triton X-100 1% (v/v). To test hAChE activity and the inhibition capacity of
the selected compounds, the stock solution was further diluted in PB (pH 8.0; 0.1 M) containing
0.1% (v/v) Triton X-100. For SPR immobilization, hAChE stock solution was diluted in phosphate
buffer (pH 5.0; 0.1 M) containing 0.33% (v/v) Triton X-100. Stock solutions of edrophonium (6
mM), tacrine (4 mM), galantamine (3 mM) and donepezil (3 mM) were prepared in bidistilled

water. (S)-warfarin was dissolved in PBS-T in order to obtain a stock solution of 600 uM.
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7.2.4 In solution enzymatic activity assay

Enzymatic assays were carried out on a Jasco V-530 double beam spectrophotometer equipped with
a HAAKE DC30 thermostating system (Thermo Haake, Germany) and data were processed with
GraphPad Prism 4.03 software (GraphPad Software Inc.).

Enzymatic activity in the absence and in the presence of inhibitor were spectrophotometrically
assessed using the Ellman’s method [22]. Assay solution (1 mL) consisted in: PB (pH 8.0; 0.1 M),
0.02 unit/mL hAChE, 550 uM substrate (ATCh) and 340 uM DTNB. Solutions were incubated at
37°C for 20 min before the addition of the substrate. Hydrolysis rate was quantified by measuring
changes in the absorbance at 412 nm for 3 min at 37°C.

In the case of inhibition studies, five increasing concentrations of tested inhibitor were assayed
(n=3) to obtain percent inhibition in the range of 20-80%. Blank solutions containing all
components except hAChE were prepared in parallel to account for the non-enzymatic hydrolysis of
the substrate. 1Cso values for selected inhibitors were determined by plotting the percentage of
inhibition as function of the decimal log of the tested inhibitor concentration.

7.2.5 Surface plasmon resonance-based analyses

SPR analyses were performed using Biacore™ X100 system (GE Healthcare Bio-Sciences,
Uppsala, Sweden) equipped with an in-line degasser and thermostated at 25 °C. SPR data reduction
and processing were performed with Biacore™ X100 2.0 evaluation software or Scrubber2
BioLogitech® 2008 software.

7.2.5.1 hAChE immobilization and binding analysis

For preparation of hAChE-functionalized surface, enzyme stock solution was diluted to 53.3
units/mL in potassium phosphate buffer (0.1 M) at various pH values (pH range 4.0-6.0) and
percentage of Triton X-100 (0.33-1% v/v). Each sample was injected at 10 uL/min for 30 s, and
electrostatic pre-concentration at the surface was evaluated. hAChE sample diluted in potassium
phosphate buffer (pH 5.0; 0.1 M) containing 0.33% (v/v) Triton X-100 was immobilized through
amine-coupling procedure, employing HBS as running buffer [27]. Briefly, sensor surface was
activated with a 7-min injection (10 pL/min) of EDC (0.4 M)-NHS (0.1 M) (1:1 v/v) mixture and
enzyme was injected until an adequate immobilization level of 7000 Response Units (RU) was
obtained. Then, quenching of residual active esters on the surface was performed by overnight
flowing of TRIS buffer saline: TRIS (0.05 M)-NaCl (0.1 M) (pH 8.0). A reference channel was

prepared employing the same protocol apart from enzyme injection. Apparent surface binding
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capacity after immobilization process was estimated employing donepezil as test compound
according to Eq. (9) (see Section 7.2.5.3).

Binding studies were carried out in multi-cycle kinetic (MCK) mode employing 75 pL/min as flow
rate. Injections of running buffer were interspersed among inhibitor injections and used as ‘blank’
for double-referencing purposes [28]. Inhibitor—hAChE interactions were monitored using PB-T
(pH 8.0; 0.1 M) as running buffer. Stock solutions of the selected drugs were directly diluted in
running buffer to obtain a series of dilutions centered around the reported K; values [29]. In details,
edrophonium 60.0-0.6 uM; donepezil 600-3 nM; galantamine 30.0-0.3 uM; tacrine 8.0 uM-0.1 uM.
For edrophonium and donepezil contact time and dissociation time were set at 60 s and 180 s,
respectively. For galantamine and tacrine a 60s-association and a 120s-dissociation steps were set.

Each interaction was analyzed at least in duplicate.

7.2.5.2 HSA surface preparation and binding analysis

HSA-functionalized surface was prepared according to previously published protocols [26,30-32].
Briefly, HSA was diluted at 30 ug/mL in sodium acetate buffer (0.01 M; pH 5.0) and was
immobilized onto CM5 sensor surface exploiting amine-coupling chemistry and employing PBS-T
as running buffer. At the end of the immobilization protocol, the functionalized surface was allowed
to stabilize overnight. After stabilization, an immobilization level of 7000 RU was obtained.
(S)-warfarin was used as reference compound in order to test surface functionality. (S)-warfarin
stock solution was prepared directly in running buffer and injected in a three-fold dilution series
from 30 to 0.4 uM. Inhibitor-HSA interaction was monitored in PBS-T, injecting each compound in
a three-fold dilution series (from 100 uM to 1.2 uM). Binding studies for drug-HSA complexes

were carried out setting association and dissociation time to 45 s, with a flow rate of 75 pL/min.

7.2.5.3 Data evaluation
Apparent surface binding capacity after immobilization was estimated according Eq. (9):
Rmax = MWoanaiyte / MWiigand * RUimmobilized * StOiChiometl‘y (9)

Each set of sensorgrams was processed according to the same procedure. SPR responses obtained in
the active channel were corrected for the response obtained in the reference channel and
subsequently subtracted of the responses from blanks in order to obtain double-referenced
sensorgrams [28]. Corrected responses recorded at steady-state were plotted against the
concentration injected and non-linear regression analysis was used to extrapolate the equilibrium
dissociation constant (Kp). For inhibitor—-hAChE interaction, a model accounting for one binding

site (i=1), defined by Eq. (10) was employed:
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_ Rmax(C/ KDi)
==, 1+C / Ko

(10)

where ¢ (M) is the inhibitor concentration, Req (RU) is the response at the steady-state and Rmax
(RU) is the maximal response.

For inhibitor—HSA interactions Eq. (10) was also employed, posing i=2. Inclusion of a secondary
binding site accounts for the unspecific binding to HSA likely happening at the high inhibitor
concentration employed for the study. Primary Kp extrapolated by this approach was then converted
into percentage of drug bound to HSA according to the procedure reported in [31].

For kinetic analysis, sensorgrams were globally fitted to a theoretic model describing a simple,
reversible 1:1 binding event (Eq. (11)). Association (ko,) and dissociation (ko) rate constants for

inhibitor—hAChE reaction were extrapolated according to the integrated rate Eq. (12):

ko

[A]+[B] =— [AB]
ALk
[AB] — [AB]eq (1_ e—(kon[B]+k0f‘f)t ) (12)

where kon is expressed in M~'s ™" and ko is expressed ins .
According to 1:1 binding model, the Kp value is equal to the ratio between off- and on-rate
constants, as shown in Eq. (13).

Kb = Kofi/Kon (13)
On the basis of the applied theoretical model, target residence time (z), expressed in s, is defined as
the inverse of dissociation rate constant [12] as described in Eq. (14):

= 1/ko (14)
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7.3 Results and discussion

7.3.1 Optimization of immobilization and SPR analysis conditions

Amine-coupling can be considered as the first choice for ligand immobilization when protein—small
molecules interactions want to be investigated by SPR sensing approach. Stable and high-density
surfaces can be generated, and reliable data can be produced even for low molecular weight
analytes. However, it is crucial that ligand binding properties are unaltered upon anchorage to
dextran matrix. Coupling condition, which envisage acidic, low-ionic-strength solutions, might
result too harsh when an intrinsically unstable enzyme like hAChE is engaged. Thus, for this study
a series of tailor-made immobilization conditions were explored. Each coupling solution was
evaluated both for its pre-concentration efficiency through pH-scouting procedure and for its
residual enzymatic activity after incubation in each coupling buffer. This latter step is essential to
verify whether hAChE retains most of its catalytic activity upon exposure to the coupling condition,
thus being immobilized in its active form.

Supplementing coupling solution with a non-ionic detergent might reduce reaction efficiency but
resulted essential to maintain enzyme stability. Indeed, dilution in phosphate buffer without Triton
X-100 determined a significant and fast loss of enzyme activity over short time (data not shown). P-
20, a common non-ionic detergent routinely supplemented in SPR running buffer, resulted less
efficient than Triton X-100 in stabilizing hAChE (p-20 supplemented solution lost 90% of activity
within an hour). Based on these results addition of Triton X-100 to AChE solutions was considered
essential to maintain enzyme functionality and consequently produce a functional sensing surface.
Concerning pHs, AChE optimum working and storage pH is 7.4-8 or above, depending on the
enzyme source; pH values lower than 6.5 seem to reduce not only enzyme activity but also enzyme
stability [33]. Nonetheless, covalent immobilization at pH 5.0 of hAChE monolithic supports for
enzymatic studies was previously achieved with good results [34]. Hence, hAChE stock solution
was diluted either in 10 mM sodium acetate buffer or in phosphate buffer (0.1 M) at various pH
values (pH range 4.0-6.0).

Each sample was injected at 10 puL/min for 30 s and electrostatic pre-concentration at the surface
was evaluated. To assess the activity loss upon dilution in the immobilization buffer, hAChE
solutions used for the pH scouting procedure were further diluted in the activity assay buffer (PB
pH 8.0; 0.1 M) and residual activity was evaluated by Ellman’s assay [22] . Buffer type resulted to
affect enzyme activity with PB performing slightly better than acetate buffer at the same pH value
(15% difference in activity). When hAChE was dissolved in PB (pH 5.0; 0.1 M) supplemented with

0.33 % (v/v) Triton X-100, highest residual activity was observed and the enzyme could be
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efficiently pre-concentrated. Consequently, this condition was chosen to carry out the
immobilization procedure on SPR platform.

hAChE stock solution (1716 U/mL) was diluted into the former buffer (53.3 U/mL) and 25 units of
active enzyme were injected over the activated surface until an immobilization level of 7000 RUs
was achieved. Then, deactivation was attained switching running buffer to TBS. Primary amine of
TRIS (0.05 M) provided a milder means to quench residual active esters with respect to classical
injection of ethanolamine (pH 8.0; 1 M). After an overnight stabilization in TBS, 5500 RUs,
corresponding to a surface density of 5.0 ng/mm? [27], were stably coupled to the surface (minimal
baseline drift was observed, i.e., <0.3 RU/min). Surface binding capacity was estimated to be
approximately 20 % of theoretical Rmax EQ. (9). Despite this might seem a low value, expected Rmax
after amine-coupling is usually around 50 % of theoretical. Due to the random orientation of ligand
on the surface, binding site accessibility might be hampered when covalent bond formation occurs
in their immediate proximity [27]. Moreover, apparent activity showed by our sensing surface is
comparable to data presented in the literature where AChE from other species was tethered to

dextran matrices [17,35] or others solid supports [29,34].

7.3.2 Determination of thermodynamic and Kkinetic parameters of inhibitor—-hAChE
interaction

Having established hAChE could endure coupling condition, a series of well characterized hAChE
inhibitors (Fig. 26) were employed to test binding performances of the immobilized enzyme.
Selected compounds are all drugs used either in AD treatment or myasthenia gravis diagnosis for
which bioavailability data and administration regimens are available, so that our results can be

compared to well-established parameters.
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Figure 26| Structure of the selected hAChE inhibitors. Molecular weights are reported under the corresponding

compound.
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Concerning the mechanism of action, tacrine and donepezil are mixed-mode competitors, i.e., they
are reported to bind both the hAChE catalytic site and the peripheral anionic binding site (at high
concentration) while galantamine and edrophonium are substrate-competitive inhibitor.
Edrophonium is also characterized by a low molecular weight (166 g/mol). Overall, molecular
weights range from 166 g/mol to 379 g/mol and inhibitory potencies span over four orders of
magnitude.

To assess whether the hAChE sensing surface was suitable to discriminate among the different
inhibitors, stock solutions were diluted in running buffer and presented to the hAChE-
functionalized surface. Resulting sensorgrams were discernible from background noise for all
employed concentrations and useful data could always be retrieved (Fig. 27). Binding affinities
were compared with inhibitory potencies (ICso values) determined by a classical in solution assay
[22] and employing the same hAChE used for hAChE immobilization and inhibitor solutions used

for SPR interaction analysis.
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Figure 27| Affinity and kinetic studies of the four selected inhibitors binding to immobilized hAChE chip surface.
Double-referenced sensorgrams (main) and equilibrium responses (inset) of inhibitors-hAChE interactions. The
injected inhibitor concentrations were: 3.0, 15.0, 30.0, 60.0, 300.0 and 600.0 nM for donepezil (A); 0.1, 0.4, 2.0, 4.0 and
8.0 uM for tacrine (B); 0.3, 1.0, 3.0, 6.0 and 30.0 uM for galantamine (C); 0.6, 1.8, 3.0, 6.0, 12.0, 30.0 and 60.0 uM for
edrophonium (D). Kinetic rate constants were extrapolated applying a theoretic reversible 1:1 binding model (light) to
experimental data (dark). Kp for each inhibitor—hAChE complex, was extrapolated plotting corrected responses (RU) at

steady-state against concentration and fitting experimental data to Eq. (10).
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The measured inhibition potencies (Table 7) were in good agreement with those reported in the
literature as well as with previously determined inhibition constant (Ki), which were calculated

under the same experimental conditions [29,34].

Table 7| Half-maximal inhibitory concentrations (ICso) determined by in solution assay,
equilibrium dissociation constants (Kp), kinetic rate constants (Kon, Kof), dissociation constants
measured via Kinetic analysis (Kof/kon) and residence time (t) determined by SPR analysis on
hAChE-inhibitor complexes. The reported values are the mean of at least two independent
measurements. Data are reported with corresponding standard deviation (+ SD). Inhibition

constants (K;) are also reported for comparison purposes.

Inhibitor 1Cso (M) Ki (M) ? Kp (M) Kon (M5 Kot (51 KoiiKon (M) T(s)

Edrophonium (7.30+0.35)+10° (1.6340.23)+10° (2.2841.07)+10° (1.07+0.54)+10° (2.521.37)*10" (2.39+0.78)*10° 3.96
Tacrine  (4.01+0.10)+107 (1.5120.16)*10°" (3.61£2.92)+10” (1.460.56)+10° (3.5820.71)*10" (2.55+0.49)*107 2.79
Donepezil  (2.03£0.13)10% (2.05+0.33)+107° (4.34+2.68)+10° (1.81+0.08)*10° (4.97+1.49)e10% (2.7440.70)-10° 20.12

Galantamine (2.00+0.23)+10° n.d.” (3.94+0.61)°107  (9.4620.92)+10" (2.48+0.53)+102 (2.61+0.30)+107 40.32

# Inhibition constants (K;) reported in literature and calculated using the same experimental conditions [29].
®n.d., not determined.

All monitored interactions (Fig. 27) reached steady-state conditions within the chosen injection time
and equilibrium dissociation constant (Kp) could be extrapolated. In agreement with the Ki values
for the enzyme in solution [29] (Table 7), the strongest binder was identified in donepezil, which
showed a Kp = (4.34 + 2.68) 10~ M; the weakest binder was identified in edrophonium whose Kp
was (2.28 + 1.07) « 10 M. The latter value also agrees with recent published data obtained by in
solution isothermal titration calorimetry (ITC) studies (edrophonium Kp = 1.4 £ 0.4 uM), strongly
suggesting immobilization did not hamper hAChE binding activity [36].

Concerning reactions profiles, complexes of edrophonium-hAChE and tacrine-hAChE both
showed rapid on-/off-rates resulting in squared-shaped sensorgrams, while complexes of
galantamine-hAChE and donepezil-hAChE displayed significantly slower dissociation events.
Sensorgrams quality allowed applying a global kinetic fitting procedure to each data set. All
monitored interactions were analyzed employing a simple, reversible, 1:1 binding model (Eq. (10))
that gave in return reasonable numerical values. Association and dissociation rate constants values

for edrophonium and tacrine (Table 7) were in good agreement with those reported in literature and
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achieved by stopped-flow fluorescence titration in which both compounds showed rapid kinetics
[37]. The slight differences in kon and affinity values with respect to those obtained by fluorescence
titration might be ascribed to the different enzyme origin (mouse vs human).

Because of the limited number of tested compounds and different chemical structures
structure/Kinetic relationships cannot be derived. The lower off-rates displayed by galantamine and
donepezil (slower dissociation) may be partially ascribed to the high stability and
thermodynamically favorite conformations resulting from their binding to hAChE, as recently

rationalized by molecular dynamic studies [38,39].

10 nM 100 nM
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Figure 28| Kinetic chart for tested inhibitors. Plot of association (k,n) rate constants as function of dissociation rate

constants (k) of hAChE inhibitors. Dotted lines (iso-affinity line) refer to Ky values calculated from kinetic analysis
(koff/kon)-

Dissecting Kp values in their individual on-/off-rate constants provides further insight into the
different inhibitor—-AChE interactions (Fig. 28). For instance, galantamine and tacrine show rather
similar thermodynamic Kp and they lay on extremely close iso-affinity lines; however, the stability
of the two inhibitor-hAChE complexes diverges, with respective ko values differing more than one
order of magnitude. This is not surprising, since chemical entities with similar affinities for the
target molecule in vitro can show large difference in both ko, and K values. Such differences might
reflect differences in binding modes, thereby also differences in their in vivo efficacy. Resolving
Kinetic rate constants make possible to differentiate otherwise undistinguishable compounds
providing an additional layer of discrimination when chemical series are tested. Moreover, desired
therapeutic effect (short or long action) might be better correlated to fast or slow interaction

profiles, so that a good balance between therapeutic and adverse effects can be achieved [9].
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The possibility of relating kinetic aspects (Kp=Kow/kon) with experimental thermodynamic

parameters, i.e. Kp calculated from the total Gibbs free-energy change (AG) (Kp = e“®RT = (-

T4S)RT) 1401, provides a deeper characterization of biomolecular equilibria. However, the amount of
AChE required for in vitro thermodynamic studies, among which ITC is the most commonly used
approach [41], is not compatible with the extremely high cost of recombinant hAChE. As
consequence, experimental thermodynamic data available from literature have been obtained using
less expensive non-human AChE isoforms, such as AChE from Electric eel or Torpedo Californica.
Specifically, thermodynamic parameters for the same set of inhibitors object of this study were
assessed by Draczkowski et al. (2016) using ITC and AChE from Electric eel [42]. However, as
stated by the authors [42], ITC thermodynamic data did not well correlate with the experimental
inhibition constants as they were compromised by a low Wiseman factor ¢ [43], which flatted the

experimental AGs (range from —39.5 to —42.9 kJ/mol), and, consequently, the related Kp values.

7.3.3 Drug-target residence time and early pharmacokinetic estimation

Binding affinities values measured via kinetic analysis (Kp = Kqfi/kon) Were in excellent agreement
with affinity constants determined via equilibrium studies. Moreover, maximal responses (Rmax),
refractive index corrections (RI) and residual plots inspection all indicates goodness of fit by our
kinetic model. Based on these premises, dissociation rate constants were used to calculate residence
time. The four drugs showed different z (Table 7) and could be ranked in two main groups: (i) fast-
reversible binders with residence time lower than 5 s, i.e tacrine (2.79 s) and edrophonium (3.96 s)
and (ii) slow-reversible binders, i.e. donepezil (20.12 s) and galantamine (40.32 s). As first
approximation, all molecules showed quite rapid escape from their respective binding site(s) on
hAChE. This could be expected when an enzyme that assumes a crucial role as terminator of signal
transduction is targeted for inhibition and adverse effects can arise if inhibitory effect prolongs
extensively [44,45].

Looking at duration of action for the selected drugs in vivo, a good correlation with target residence
time was found. Edrophonium action only lasts 1.2-2.3 min after i.v. administration [46] and
tacrine, among anti-AD drugs, has the shortest duration of action (administration: 4 times/day), in
agreement with the kinetic classification. On the other hand, galantamine (twice per day) and
donepezil (once daily), both have a lower frequency of suggested administration to AD patients, in
agreement with their longer residence time. However, pharmacologic effect and length of action for
administrated drugs arise from the combination of binding kinetic to the primary target and
adsorption, distribution, metabolism and excretion (ADME) profile. Binding to serum proteins

represents an important aspect in determining ADME profile of a molecule entering human body.
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HSA is the most abundant among circulating protein and plays a central role as transporter of many
endogenous and exogenous poorly soluble compounds [23].

Thus, as a proof of concept that combination of residence time and HSA binding might represent a
better predictive parameter, the propensity of the four selected drugs to interact with immobilized
HSA was estimated through SPR technology. Binding to HSA was rapid and reversible (Fig. 29), as
expected when transport proteins are involved in complex formation; additionally, interactions
exceeded 1:1 stoichiometric ratio and a binding model accounting for two independent binding sites
was employed. This is not surprising since the same molecule can occupy multiple binding sites on
HSA, namely at low concentrations binding sites with high affinity and low capacity, at higher
concentration binding sites with lower affinity but higher capacity [31,32,47]. Primary affinity
measured for the different compounds was converted into bound percentage assuming physiological
concentration of the protein (680 uM) and 10 uM of compounds.
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Figure 29| Drugs—human serum albumin (HSA) interaction studies. Double-referenced sensorgrams (upper panel)
and equilibrium responses (lower panel) for inhibitor—HSA interactions. All compounds are tested in a three-fold
dilution series: (S)-warfarin 30 uM to 0.4 pM; inhibitors from 100 uM to 1.2 uM. Corrected responses (RU) at steady-

state were fitted to Eq. (10) considering two equivalent binding sites (i =2).
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Interestingly, results (Table 8) showed that galantamine did not significantly interact with HSA,
while the other inhibitors showed high affinity toward the immobilized plasma protein. Bound
percentage for donepezil and galantamine were also comparable to pharmacokinetic data obtained
in clinical studies [48]. Galantamine is reported to have ~18 % plasma protein binding percentage
and serum half-life of 7h; on the other hand, donepezil has a plasma protein binding percentage of
~96 % and serum half-life of 70 h [48]. Likely, the significant binding of donepezil to HSA, may
preserve it from enzymatic and non-enzymatic degradation and excretion enhancing its plasma
stability and duration of action. This good correlation further indicates that measuring binding
affinity towards immobilized HSA constitutes a good approximation of in vivo inhibitor binding to
the human serum proteins and may offer a good estimation of its fate after adsorption.

Table 8| Primary equilibrium dissociation constants (Kp) determined for drug—HSA complexes by
SPR analysis. Results are listed with corresponding standard error (+ SE). Percentage bound values

(% bound) to HSA were obtained according to the procedure described in [31].

Drug Kp (uM) % Bound
Edrophonium 4.23+2.07 94.4
Tacrine 4.40+1.08 94.2
Donepezil 2.00+0.22 97.2
Galantamine n.d.? n.d.?
(S)-Warfarin 1.40+0.34 98.0

2.d., not determined.
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7.4 Conclusions

When enzymes are targeted for inhibition, drug discovery campaigns are usually conducted
employing functional assays, where the main focus is on increasing inhibition potency. However,
within the same chemical series is not unusual to have compounds with comparable 1Csy values and
same inhibition mode, for which a clear prioritization criterion is hard to identify. In this context,
having additional elements to discriminate between chemical entities becomes a clear advantage.
Dissociation rate constant (Kor), or its reciprocal term residence time (z) of inhibitor—enzyme
complexes, might provide further insight on target-inhibitor interactions, thus aiding the selection
process. Moreover, 7 is a valid parameter in systems where drug concentration fluctuates over time,
as in in-vivo settings. At present day there is no simple and cost-effective method to resolve kinetic
interactions of hAChE inhibitors with their target.

In the present study, an SPR-based biosensing assays has been developed to quantify binding
affinities and kinetic rates constant for hAChE—inhibitors binding events. The use of a custom
coupling solution ensured immobilization of the enzyme in its active form and resulting sensing
surface was amenable to measure binding affinities ranging over three orders of magnitude. As test
analytes, widely characterized anti-AChE drugs, differing for potencies (Ki ranging from 107 to
10" M) inhibition mode (competitive or mixed mode) and molecular weight (from 166 to 379
g/mol) were employed. Thermodynamic and Kkinetic parameters were accurately extrapolated even
for edrophonium (fragment-like molecular weight), suggesting the suitability of the method even
for fragment-based drug discovery campaigns. Determination of the kinetic rate constants under
same experimental conditions for all marketed anti-AChE drugs used in AD constitutes a first of its
kind study and provide a better comparison of their kinetic behavior, which allowed their
classification into two main classes: slow-dissociating and fast-dissociating reversible inhibitors.
Moreover, SPR technology was employed to determine binding level toward immobilized HSA in
an easy and fast fashion with the aim of roughly predicting the pharmacokinetic behavior.
Combination of data on the primary target with data on HSA found good correlation with drug
potency and administration regimens in therapeutic routine.

Application of the proposed method offers a solution to implement inhibition data, traditionally
obtained when new hAChE inhibitors are tested, with deeper information on the intrinsic drug—
target interaction and preliminary pharmacokinetic data. Parameters such as kes and bound
percentage to serum proteins can be easily obtained, and favorite chemical scaffolds can be

prioritized counting on additional information with respect to what is traditionally considered.
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Chapter 8

Multi-target-directed ligands for AD treatment: inhibitory potency

evaluation of donepezil-lipoic acid hybrids

This chapter is adapted from:

Bruna S. Terra, Pedro H.C. da Silva, Anna Tramarin, Lucas L. Franco, Elaine F.F. da Cunha,
Fernando Macedo Junior, Teodorico C. Ramalho, Manuela Bartolini, Maria Laura Bolognesi,
Angelo de Fatima. Two novel donepezil-lipoic acid hybrids: synthesis, anticholinesterase and
antioxidant activities and theoretical studies. Journal of Brazilian Chemical Society (2018), 29:
738-747. Doi 10.21577/0103-5053.20170196. [1].

Abstract

Alzheimer disease (AD) is a complex disease related to multiple pathogenic mechanisms. A
strategy to develop effective drugs is based on the so-called multi-target-directed ligands (MTDL)
by using hybrid compounds. So, in the present study, we analyzed two hybrids, containing the
indanone-piperidine moiety of donepezil, a drug approved for the treatment of AD, and the lipoic
acid scaffold, an antioxidant compound endowed with neuroprotective effects. The latter hybrid
displayed moderate inhibitory activity against human AChE and greater activity against human
BuChE. The selectivity for BuChE was further rationalized by theoretical study. Importantly,
studies carried out by other groups involved in the project showed that the second hybrid had a
good antioxidant activity, exhibiting better ability in scavenging 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radicals than lipoic acid.
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8.1 Introduction

In the continuous research of more efficient drugs for treating Alzheimer disease (AD), the so-
called multi-target-directed ligands (MTDLs) approach represents an intriguing strategy [2]. This
method builds on the development of a single drug that can simultaneously interact with different
targets. The advantages of this polypharmacological strategy, when compared with the
administration of a combination of multiple drugs, are the reduction of the risk of drug-drug
interactions and a simplification of the pharmacokinetic and pharmacodynamic studies. Moreover,
the success rate of the treatment of a complex disease of the elderly, as AD, should be higher [3]. In
this context, MTDLs design approach may offer advantages in drug discovery due to multiple
targets involved in AD etiology. Near the formation of amyloid plaques, neurofibrillary tangles and
the decrease of cholinergic tone and ACh levels, an extensive oxidative stress has been observed
which is a result of an altered balance of formation of reactive oxygen species (ROS) versus
scavenging activity [4,5]. The production of ROS is also related to calcium homeostasis; the
misbalance of calcium influx affects the mitochondrial enzymes and ROS production is a normal
part of the electron transport chain. However, excessive levels of these species damage proteins,
lipids and nucleic acids [6].

Donepezil, a palliative drug approved in 1996, is indicated for the treatment of mild and moderate
forms of AD [7]. Its structure represents an attractive starting point for the rational design of new
MTDLs that can inhibit acetyl-(AChE) and butyryl-(BuChE) cholinesterases and, at the same time,
interact with other targets involved in AD onset and progression [8]. Many prototypes for new
drugs based on the hybridization strategy have been developed starting from donepezil fragments,
i.e. indanone-piperidine moiety or piperidine-benzyl fragment [9]. Furthermore, donepezil hybrids
with tacrine [10,11], diaminobenzyl group, ferulic acid [12], coumarin [13] among others have been
prepared. Hybrids containing the piperidine-benzyl moiety of donepezil and lipoic acid (LA) (Fig.
30) were described by several groups [14,15]. The hybrids showed activity against cholinesterase
(ChE) enzymes, antagonism toward o1 receptors, f-secretase inhibition and antioxidant activity.

LA is a natural disulfide compound present in almost all foods from animal and vegetable sources.
LA and its reduced form, dihydrolipoic acid (DHLA) (Fig. 30), play an important role in
pathological conditions characterized by oxidative stress such as: (i) scavenger of ROS, (ii) capacity
to increase the level of reduced glutathione and other antioxidant enzymes, (iii) downregulation of
the inflammatory processes, (iv) scavenging of lipid peroxidation products, (v) redox active
transition metal chelation, (vi) increase of ACh production by activation of choline acetyltransferase
[16,17]. On the basis of such activities, LA can exert beneficial effects in AD, possibly stabilizing
cognitive functions [18]. Thus, LA is a good prototype to design new hybrids to combat AD, and
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previously developed LA hybrids maintained the antioxidant activity and showed other beneficial
activities such as inhibition of AChE and BuChE as well as neuroprotective and anti-inflammatory
activity [19,20].

MOH MOH

3-S SH SH
LA DHLA

Figure 30| Chemical structures of lipoic acid (LA) and of dihydrolipoic acid (DHLA).

In 2005, Rosini et al. [18] reported the synthesis of lipocrine, an LA-tacrine hybrid, which further

inspired the development of other hybrids featuring an LA fragment connected with Nl-ethyI-Nl-(Z-
methoxy-benzyl)-hexane-1,6-diamine moiety or with rivastigmine. Although there are works
involving the hybridization of the benzyl-piperidine moiety of donepezil with LA, to our
knowledge, there is no report on the hybridization of the indanone-piperidine moiety with LA.

In this context, two hybrids containing the indanone-piperidine moiety of donepezil and the LA
scaffold were designed and synthesized by the research group of Angelo de Fatima with the aim of
achieving new MTDLs for the treatment of AD [1]. The newly synthesized hybrids were
investigated by us in terms of anticholinesterases activity towards both human AChE (hAChE) and
BuChE (hBuChE), using classic in solution approach [21]. The purpose of inhibition studies was
the quantification of hybrids inhibition potency as well as the assessment of retained inhibition

capacity of these compounds when the pharmacophore of donepezil was combined with LA.
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8.2 Experimental section

8.2.1 Materials

Human recombinant acetylcholinesterase (hAChE) (EC 3.1.1.7) Ilyophilized powder,
butyrylcholinesterase (E.C. 3.1.1.8) from human serum (hBuChE), S-acetylthiocholine iodide
(ACTh), butyrylthiocholine iodide (BTCh), respectively). 5,5’-dithio-bis(2-nitrobenzoic acid)
(DTNB; Ellman’s reagent), donepezil hydrochloride, dipotassium hydrogenphosphate trihydrate,
potassium dihydrogenphosphate and Triton X-100 were purchased from Sigma-Aldrich (Milan,
Italy). HPLC grade methanol (MeOH) was supplied by Honeywell (Milan, Italy). Plasma from
human prepared from pooled human blood was purchased from Sigma-Aldrich (Milan, Italy).
Deionized water was obtained by Milli-Q system (Millipore, Milford, MA, USA). All solutions
were filtered with 0.22 um membrane filters (Millipore, Milford, MA, USA) before use.

All compounds (Fig. 31) (compound 1 and 2) and lipoic acid were synthesized by Bruna Terra
under the supervision of Prof. Angelo de Fatima and were characterized by ‘*H NMR, *C NMR, IR
and ESI-MS [1].

Donepezil fragment

directlyl l with linker <X/\/NH2>
(0] (0]
MeO O
Meom 7]/\/\/(; s § ﬁ E iN\/\N
MeO o MeO H
1 5=s

2

Figure 31| Chemical structures of hybrids 1 and 2. Schematic design strategy for the synthesis of compound 1 and 2

performed by Terra et al.

8.2.2 Determination of inhibitory effect on AChE and BuChE activity

The capacity of hybrids and donepezil to inhibit AChE activity was assessed using the Ellman’s
method [21]. Initial rate assays were performed at 37 °C with a Jasco V-530 double beam
Spectrophotometer by following the rate of increase in the absorbance at 412 nm for 3 min. AChE

stock solution was prepared by dissolving hAChE in phosphate buffer (0.1 M; pH = 8.0) containing
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Triton X-100 0.1%. Stock solution of BUChE was prepared by dissolving the lyophilized powder in
an aqueous solution of gelatine 0.1%. The final assay solution consisted of a phosphate buffer (pH
= 8.0; 0.1 M), with the addition of 340 uM DTNB, 0.02 unit/mL of hAChE or hBuChE and 550 uM
of substrate ATCh or BTCh, respectively. Stock solutions of hybrid 2 were prepared in methanol
and diluted in methanol, while donepezil was solubilized in water and dilutions were prepared in
water. Five different concentrations of inhibitor were selected in order to obtain inhibition of the
enzymatic activity comprised between 20 and 80%. 50 uL aliquots of increasing concentration of
inhibitor were added to the assay solution and pre-incubated for 20 min at 37 °C with the enzyme
before the addition of the substrate. Assays were carried out with a blank containing all components
except AChE or BUChE in order to account for the non-enzymatic reaction. The reaction rates were
compared and the percent inhibition due to the presence of inhibitor was calculated. Each
concentration was analyzed in duplicate, and 1Cs values were determined graphically from log
concentration—% inhibition curves (GraphPad Prism 4.03 software, GraphPad Software Inc.).

8.2.3 Evaluation of the formation of LA- and hybrid 2-albumin adducts by LC-MS

The reactivity of synthesized compounds to form mixed disulfides with proteins was tested by
assessing the capacity of LA and hybrid 2 to form covalent adducts with aloumin, which is the most
abundant protein in plasma. 10 mM LA and hybrid 2 stock solutions were prepared in methanol.
Aliquots of stock solutions were added to pooled human plasma to reach a final concentration of
180 uM. Plasma with the addition of an equal amount of solvent was used as blank sample. All
solutions were incubated for 3 h at 37 °C, under gentle shaking (400 rpm) using a Thermomixer
(Eppendorf, Milan, Italy). Afterwards, they were diluted in deionized water (1:100) and analyzed by
LC-MS using the analytical method previously developed by Naldi et al. [22].
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8.3 Results and discussion

To determine the potential interest of the new donepezil-LA hybrids for the treatment of AD, the
inhibitory potency toward hAChE and hBuChE was assessed by Ellman’s method [21]. Results,
expressed as half maximal inhibitory concentration (ICsp) values, i.e. the 1Csq that reduces the
cholinesterase activity by 50%, are listed in Table 9. In particular, anti-BuChE activity has recently
raised interest because it was shown that with AD progression, BUChE activity in specific brain
regions increases while AChE activity is greatly reduced [23]. Conversely to donepezil, which is an
AChE selective inhibitor, hybrid 2 showed to be a selective BuChE inhibitor. Hybrid 1 was scarcely
soluble in the assay conditions. At the highest tested concentration (50 mM) hybrid 1 did not
significantly inhibit ChE enzymes.

0 O
(0]
MeO
MeO O
M@“@M .
MeO S MeO H MeO
O S-g
1 2 Donepezil N\_@

Table 9] Anticholinesterases activity of hybrids 1, 2 and the reference compound Donepezil

Compound |C50a hAChEb M) |C50a hBUCth M) BuChE/AChE
+SEM +SEM
1 n.a.° n.a. --
2 171+ 10 629+54 0.37
Donepezil 0.0203 + 0.0013 7.13 £0.19 351

b
aICSO: inhibitory concentration; SEM stands for standard error of the mean; “n.a. stands for not active
(% inhibition <10%) at the highest concentration achievable (50 uM) in the assay conditions.

In order to prove the rationale of these compounds, their antioxidant activity was tested by other
coauthors by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay [42]. LA, selected
as reference compound, confirmed its weak DPPH radical scavenging activity compared to the
corresponding reduced form, i.e. dihydrolipoic acid (DHLA), in agreement with data reported in
literature (half maximal effective concentration, ECsy >> 100 uM [24], ECso > 500 uM [25,26]).
Compound 1 displayed a similarly weak antioxidant profile of LA, exhibiting a scavenging activity
lower than 50% at the maximum tested concentration. Conversely, compound 2 showed a
concentration-dependent DPPH scavenging activity with an ECso of 300 uM. Notwithstanding the

still weak scavenging activity of 2, since the antioxidant property of LA and related hybrids is
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granted by the 1,2-dithiolane moiety, which is maintained in all tested compounds, other studies
need to be performed to better understand the observed trend, e.g. by assessing any chemical
instability in the assay conditions.

The reactivity of synthesized compounds to form mixed disulfides with proteins was evaluated by
assessing the possible formation of covalent adducts between the dithiolane ring of both LA and
hybrid 2 with albumin, which was selected as reference protein as the most abundant protein in
plasma [22]. LC-MS analysis showed that no structural modification of albumin (no adduct was
formed) occurred upon 3h-incubation at 37°C (data not shown) when concentrations equals to the
ICso value of 2 were used. These data are in agreement with the high administration dosage
suggested for LA (300-600 mg) and the absence of any record on immunogenicity at the
recommended dosages [27,28].

Docking studies on these novel hybrids with both hAChE and hBuChE were also performed by
coauthors and provided further insights into their binding mode and their potential binding sites. For
complete results and discussion of these sections as well as for hybrids synthesis details, please

refer to the original article [1].
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8.4 Conclusions

In this work, two donepezil-LA hybrids containing the indanone-piperidine moiety of donepezil,
namely compound 1 and compound 2, were designed and synthesized by the group of Angelo de
Fatima with global yields of 42% and 19%, respectively. Anticholinesterase studies performed by
us highlighted that hybrid 2 was a selective BUChE inhibitor even if less potent than donepezil.
Moreover, integration of these results with antioxidant activity and docking studies carried out by
the other research groups involved in the project provided further insights into the behavior of these
compounds. Indeed, combination of inhibitory studies with molecular modeling investigation
highlighted hybrids binding mode and their binding site on ChE. In particular, the lower activity
observed was ascribed to the loss of the interaction with Trp86A, an amino acid of the AChE
catalytic site, when the benzyl moiety of donepezil was replaced by LA. Moreover, the selectivity
of 2 toward hBuChE may be explained by the larger gorge of this enzyme, which can better
accommodate hybrid 2. Finally, and quite interestingly, hybrid 2 showed better scavenging ability
toward DPPH radicals than LA. The combined anti-ChE and antioxidant properties exhibited by the
hybrid 2 confirmed its potential as anti-AD agent also suggesting further studies on donepezil-LA
hybrids.
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Chapter 9

Multi-target-directed ligands for AD treatment: inhibitory potency

evaluation of tacrine-dihydropyrimidine hybrids

This chapter is adapted from:

Mourad Chioua, Eleonora Buzzi, Ignatio Moraleda, Isabel Iriepa, Maciej Maj, Artur Wnorowski,
Catia Giovannini, Anna Tramarin, Federica Portali, Lhassane Ismaili, Pilar Léperz-Alvarado,
Maria Laura Bolognesi, Krzysztof Jozviak, J. Carlos Menéndez, José Marco-Contelles, Manuela
Bartolini. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed
ligands for Alzheimer's disease. European Journal of Medicinal Chemistry (2018), 155: 839-846.
Doi 10.1016/j.ejmech.2018.06.044. [1].

Abstract

Notwithstanding combination of cholinesterase (ChE) inhibition and calcium channel blockade
within a multitarget therapeutic approach is envisaged as potentially beneficial to confront
Alzheimer’s disease (AD), this strategy has been scarcely investigated. To explore this promising
line, a series of 5-amino-4-aryl-3,4,6,7,8,9-hexahydropyrimido[4,5-b]quinoline-2(1H)-thiones
(tacripyrimidines) were designed by juxtaposition of tacrine, a ChE inhibitor (ChEl), and 3,4-
dihydropyrimidin-2(1H)-thiones, as efficient calcium channel blockers (CCBs). In agreement with
their design, all tacripyrimidines, except the unsubstituted parent compound and its p-methoxy-
derivative, acted as moderate to potent CCBs with activities generally similar or higher than the
reference CCB drug nimodipine and were modest-to-good ChE inhibitors. Most interestingly, the
3’-methoxy-derivative emerged as the first well balanced ChEI/CCB inhibitor, acting as low
micromolar hChE inhibitor (3.05 uM and 3.19 uM on hAChE and hBuChE, respectively) and
moderate CCB (30.4 % at 1 uM) with no significant hepatotoxicity toward HepG2 cells and good

predicted oral absorption and blood brain barrier permeability.
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9.1 Introduction

Alzheimer's disease (AD) is a devastating, age-related neurodegenerative disorder [2] which has
become a major and rising public health concern because of the high costs related to the
management of the increasing number of AD patients, who have no effective treatment for cure.
Clinical failure has been partially ascribed to the complexity of AD pathology, which features a
multifaceted interplay of several factors, whose exact role is not yet fully understood [3]. This
observation has laid down the basis for the current interest in the so-called Multitarget Directed
Ligands (MTDLs), a heterogeneous class of compounds that are designed to simultaneously address
more than one pathological event [4,5]. Based on this strategy, a number of MTDLs have been
developed by modification of commercial drugs and active scaffolds [4-12]. Among those, tacrine-
based multitarget derivatives have been shown to be able to hit several key targets involved in AD
and exert multiple beneficial activities both in vitro and in vivo. Indeed, the high ligand efficiency
has made tacrine scaffold an ideal starting point for designing and achieving highly active MTDLS
[9-11].

Based on these considerations, some years ago Joseé Marco-Contelles et al. designed a class of
MTDs called tacripyrines (I Fig. 32) by juxtaposition of tacrine and nimodipine, as reference
molecules endowed with anticholinesterase and calcium antagonism profile, respectively, for the
treatment of AD [13,14]. The most interesting tacripyrine, i.e., (x)-p-methoxytacripyrine (Fig. 32),
showed high selectivity toward AChE, moderate inhibition of calcium intake after potassium
stimulation in SHSY5 cells, weak inhibition of the pro-aggregating action of hAChE on AP peptide,
and moderate inhibition of AP self-aggregation (34.9 %) [14,15]. Interest on calcium channel
blockers (CCBs) is based on the fact that calcium levels regulate neuronal plasticity underlying
learning and memory and neuronal survival. Dysregulation of the intracellular calcium homeostasis
in AD is thought to play a role in neuron degeneration and death [16,17]. Consequently, blocking
the entrance of Ca?* through L-type voltage-gated calcium channels is considered a valuable
strategy to prevent neuronal damage in AD [18,19]. Furthermore, CCBs have been shown to
improve cerebrovascular perfusion and attenuate amyloid-B-induced neuronal decline and
neurotoxicity, improve cell survival in the presence of AB in vitro, and exert neuroprotective effects
in animal models [20-22]. These beneficial effects have been confirmed in clinical trials for the
CCBs nimodipine and nilvadipine, which have reached phase Il (ClinicalTrials.gov identifier
NCT02017340).

With these premises in mind and in the attempt of balancing the anticholinesterase and Ca-
antagonism activities by increasing CCB activity, MTDs tacripyrimidines (Il, Figure 32) were

designed by Contelles and coworkers by focusing again on tacrine scaffold as a template for
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cholinesterase (ChE) inhibition and on the well-known capacity of 3,4-dihydropyrimidin-2(1H)-
thiones (111, Figure 32) to act as efficient calcium channel blockers [23,24]. Furthermore, very
promisingly, dihydropyirimidine-thiones were recently shown to exert neuroprotective activity
toward AB-induced toxicity in a yeast model for proteinopathies, likely by attenuating the metal-
mediated toxicity of Ap [25].

In this context, the newly synthesized tacripyrimidines were investigated by us in terms of
inhibitory activity toward both human ChE enzymes. Moreover, for the most interesting derivatives
the mode of interaction with human AChE (hAChE) was studied by Prof. Isabel Iriepa and

coworkers.

OMe
NH,
Et0,C | N
»
N N
H
Tacripyrines (1) (£)-p-Methoxytacripyrine
X X
NH>
CN
HN = —— HN
A A | — Ao
S N N
H Friediander- > 1 N
Tacripyrimidines (Il) type reaction i

Figure 32| Structure of tacripyrines (1), (x)-p-methoxytacripyrine, and retrosynthetic analysis of the synthesis of

tacripyrimidines (I1).
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9.2 Experimental section

9.2.1 Materials

Human recombinant acetylcholinesterase (hAChE) (EC 3.1.1.7) Ilyophilized powder,
butyrylcholinesterase (E.C. 3.1.1.8) from human serum (hBuChE), S-acetylthiocholine iodide
(ACTh), butyrylthiocholine iodide (BTCh), 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB; Ellman’s
reagent), tacrine hydrochloride, dipotassium hydrogenphosphate trihydrate, potassium
dihydrogenphosphate and Triton X-100 were purchased from Sigma-Aldrich (Milan, Italy).
Deionized water was obtained by Milli-Q system (Millipore, Milford, MA, USA). All solutions
were filtered with 0.22 um membrane filters (Millipore, Milford, MA, USA) before use.

All compounds (Fig. 33) were synthetized by Contelles and coworkers and were characterized by
'"H NMR and **C NMR [1].

R NH»> R
X S%\NH |\\ AICI,
| P NaOCH: % CICH,CH,CI
EtOH cN MW
x_-CN HN 95°C
reflux + 2\ | .
CN S ” NH,  (from 3a-l)
1a-l 3a-l 4a-l

4a (X= H), 4b (4'-Me), 4c (3'-Me), 4d (4'-OMe), 4e (3'-OMe), 4f (2'-OMe), 49 (3',4'-OCH?0-)
4h (4-NMe,), 4i (4'-F), 4j (4'-Cl), 4k (4'-Br), 41 (4-NO,)

Figure 33| Synthesis of tacripyrimidines 4a-I. For synthesis procedure, *H NMR and **C NMR please refer to original
article [1].

9.2.2 Inhibition of human AChE and BuChE activities

The capacity of tested compounds to inhibit hAChE and hBuChE activity was assessed using the
Ellman’s method [26]. Initial rate assays were performed at 37 °C with a Jasco V-530 double beam
Spectrophotometer: the rate of increase in the absorbance at 412 nm was followed for 3 min.
hAChE stock solution was prepared by dissolving human recombinant AChE lyophilized powder in
0.1 M phosphate buffer (pH = 8.0) containing Triton X-100 0.1 %. Stock solution of BUChE from
human serum was prepared by dissolving the lyophilized powder in an aqueous solution of gelatine
0.1 %. Stock solutions of inhibitors (1 or 2 mM) were prepared in methanol. Five increasing
concentrations of the inhibitor were used, able to give an inhibition of the enzymatic activity in the
range of 20-80 %. The assay solution consisted of a 0.1 M phosphate buffer (pH = 8.0), with the
addition of 340 mM DTNB, 0.02 unit/mL of hAChE or hBChE and 550 uM of substrate (ATCh or

BTCh, respectively). 50 uL aliquots of increasing concentration of the tested compound were added
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to the assay solution and preincubated for 20 min at 37°C with the enzyme, followed by the
addition of substrate. Assays were carried out with a blank containing all components except
enzymes in order to account for the non-enzymatic reaction. The reaction rates were compared and
the percent inhibition due to the presence of tested inhibitor at increasing concentration was
calculated. Each concentration was analysed in triplicate, and 1Csy values were determined
graphically from log concentration—inhibition curves (GraphPad Prism 4.03 software, GraphPad

Software Inc.). Each 1Cs value was determined from at least two independent experiments.

9.2.3 Kinetic studies for inhibition of human AChE activity by compounds 4k and 4e

The mode of inhibition of compounds 4k and 4e and the corresponded was assessed by building
Lineweaver-Burk double reciprocal plots at relatively low concentration of substrate (0.11-0.55
mM) and using the same experimental conditions used to assess hAChE activity see Section 9.2.2).
The plots were assessed by a weighted least square analysis that assumed the variance of v to be a
constant percentage of v for the entire data set. Data analysis was performed with GraphPad Prism
4.03 software (GraphPad Software Inc.). To confirm the mode of inhibition, Dixon plots were
obtained by plotting 1/v versus inhibitor concentration [27].

K’i (dissociation constant for the enzyme-substrate-inhibitor complex) value was determined by

plotting the apparent 1/Vimax, app Versus inhibitor concentration [27,28].
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9.3 Results and discussion

9.3.1 Inhibition of cholinesterases

With compounds 4a-l in hand, we first addressed their hChE inhibition capacity, following
Ellman’s protocol [28]. As shown in Table 10, most of tacripyrimidines 4a-l are hAChEI with 1Csg
values ranging from 3.05 uM (4e) to 31.0 uM (4i), with the exception of tacripyrimidine 4k
(hAChE: 1Csp= 0.0373 uM), the most selective and potent hAChEI within the series. On the basis
of the inhibitory potencies, some structure—activity relationship (SAR) could be drawn.
Tacripyrimidines bearing strong electron-donor (4’-NMe; for 4h; 2°-OMe for 4f) or electron-
withdrawing (4°-NO, for 4l) substituents, and moderate electron-donor (4’-Me for 4b) or electron-
withdrawing (4’-F for 4i) substituents, regardless of their location at the aromatic ring, were the
weakest hAChEIs. Among tacripyrimidines bearing a methoxy group, the most potent was
compound 4e, followed by 4d and 4f, position C3’ being clearly preferred to C2’ and C4’. This
observation is also confirmed by the comparison of compound 4b (4’-Me) and 4c (3’-Me). Not
surprisingly, the three most potent hAChEIs were the 5-amino-4-(3-bromophenyl)-3,4,6,7,8,9-
hexahydropyrimido[4,5-b]quinoline-2(1H)-thione (4k), bearing a moderate electron-withdrawing
substituent (Br) at C’3, followed by compound 4e (3°-OMe), which was 81.8-fold less potent, and
tacripyrimidine 4j (C’4-Cl). Interestingly, compound 4k was a 9.4-fold more potent inhibitor than
tacrine.

By comparing the inhibition rate of the compounds belonging to the tacripyrimidine series to
reference compounds, it can be concluded that 4k, the most potent AChEI in the tacripyrimidine
series, is 10-fold more potent than tacrine in inhibiting hAChE, and it is also about 35 folds more
potent than the best tacripyrine (p-methoxytacripyrine - p-MT, Table 10).

Concerning inhibition of hBuChE, tacripyrimidines 4a-I showed significant selectivity for hBuChE,
with the exception of compounds 4g, 4h, and 4k (which showed a reverse trend), with 1Cso values
spanning more than four orders of magnitude, i.e., varying from 0.372 uM (4j, the most potent
hBuChEI within the series) to 154 uM (4h). Compound 4e (3’-OMe) exerted a balanced inhibition
of both ChEs, in the micromolar range. Regarding the SAR for BUChE inhibition, almost similar
trends were observed. Indeed, the most potent electron-donor substituents (4’NMe, in 4h; 3°.4’-
OCH0- in 4g, and 2’-OMe in 4f) afforded the poorest hBuChEIs, C’3 being a preferred position
for a better hBuChE inhibition (compare compounds 4b and 4c for the Me group), although
location at C’4 is also favored (compare compounds 4d-e for the OMe motif). Compared with

tacrine, compound 4j was a 9.3-fold less potent hBuChEL.

135



Table 10| ICso (uM) for the inhibition of hAChE and hBuChE by tacripyrimidines 4a-1 and tacrine.
Calcium intake blockade induced by tacripyrimidines 4a-1 and nimodipine was tested by coworkers

and values are reported for comparison purposes [1].

NH,
®
N
Tacrine

Compound R hAChE? hBuChE?* calcium intake blockade

ICso (M) £ SEM | ICso (uM) £ SEM | (%) = SEM"
4a H 10.8+0.9 5.68 £0.38 10.58 +£1.78™°
4b 4’-Me 238+14 3.47+£0.15 14.69 + 3.77
4c 3’-Me 101+£11 2.65+0.25 40.01 £4.45
4d 4’-OMe 7.64+£0.43 1.75+£0.14 23.58 +£2.31
4e 3’-OMe 3.05+£0.28 3.19+£0.11 30.40 £ 2.61
4f 2’-OMe 31.2+15 11.7+£0.6 32.18+2.92
4g 3°,4’-OCH,0- 8.18 +0.97 375+24 36.76 + 3.57
4h 4’-NMe, 241+3.1 154 + 23 59.01 +1.69
4i 4’-F 31.0+1.2 10.0+0.7 23.31+2.96
4j 4’-Cl 5.28+0.19 0.372£0.021 38.00 + 3.36
4k 3’-Br 0.0373 £ 0.0082 1.27+0.10 4223 +£3.85
41 3’-NO, 298+ 1.7 2.68 £ 0.15 66.79 = 2.41
p-MT" - 0.105 + 0.015 >100 32.75+2.50
Tacrine - 0.374 £ 0.053 0.0442 £ 0.0017 nd
Nimodipine - nd nd 49.62+1.24

Results are expressed as the mean of at least two experiments in which each datum was obtained in triplicate; ° p-MT
stands for p-methoxytacripyrine; data from [14]. SEM stands for standard error of the mean; nd stands for not
determined.

It is interesting to note that tacripyrimidines showed a distinctly different behaviour concerning
BuChE inhibition in comparison with the previously developed tacripyridines, which were selective
AChE inhibitors with no significant activity toward human BuChE [14]. Increasing evidence has
shown that inhibition of CNS BuChE activity may be beneficial for the treatment of moderate to
severe forms of AD as highlighted by the increasing interest on BUChE as a therapeutic target in
AD drug discovery [29] and by the design of BuChE-selective inhibitors [30,31]. In fact,
progressive elucidation of the role of BUChE in AD brain has highlighted that, with the progression
of the disease, the role played by AChE in the hydrolysis of the neurotransmitter acetylcholine

(ACh) decreases. Conversely, BuChE levels and activity in certain regions of AD brain have been

136



shown to increase [29]. Therefore, selective BUChE inhibitors could be more effective in patients
with moderate to severe forms of this disease, although this tentative conclusion has not yet been
clinically verified. Indeed, to date, no large-scale clinical trials of selective BuChE inhibitors have
been performed in patients with AD. Studies on mild to moderate AD patients, that is the
population of patients enrolled in most clinical trials on cholinesterase inhibitors, is unlikely to be
able to highlight the benefits of selective BUChE inhibition. In the light of these observations, the p-
chloro tacripyrimidine 4j, which was a 14.2-fold more potent hBuChE inhibitor, is worth further
investigation. As a perfectly balanced micromolar ChE inhibitor, 3’-methoxy-tacripyrimidine 4e is

also worth to be considered.

9.3.2 Binding mode evaluation for the most promising AChE inhibitors by in solution assay

To achieve a deeper understanding of the mode of interaction of our derivatives, tacripyrimidines 4e
and 4k, the two most potent hAChE inhibitors, were further investigated. Lineweaver-Burk plots
for both compounds showed increasing slopes (lower vmax) but unaltered intercept (unvaried Ky,
value) with increasing inhibitor concentration, indicating a non-competitive type of inhibition (Fig.
34). This type of inhibition was further confirmed by data reprocessing according to the Dixon
method (1/v vs [1]). The K’ constant, i.e., the dissociation constant of the enzyme-substrate-inhibitor
complex, has been calculated and found to be 3.88 £ 0.30 uM for 4e and 0.147 £ 0.011 uM for 4Kk,
respectively. Importantly, the interaction of these compounds with the enzyme’s PAS could be

advantageous in the light of AChE activity in promoting AP aggregation [32].

354 50-
o [4e] = 4.45 uM [4K] = 0.170 uM
454
30-
[4e] = 2.67 uM 401
67 [4K] = 0.068 LM
254 354
4 0 [4e] = 1.33 uM T
2 20] 2 -
g 6] = 0.667 s < [4K] = 0.023 uM
£ c
£ £
% S
50 25 00 25 50 7.5 100 50 -25 00 25 50 7.5 10.0

[ACTh] (mMmY) [ACTh]™? (mM?)

Figure 34| Kinetic study on the mechanism of hAChE inhibition by 4e (A) and 4k (B). Overlaid Lineweaver—Burk
reciprocal plots of AChE initial velocity (v) at increasing substrate concentration in the absence and in the presence of
inhibitor.
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Based on the 1Cso values and selectivity profile, binding of selected tacripyrimidines 4k and 4j, the
most potent and selective AChEI and BuChEI, respectively, was investigated by an in silico
approach (Prof. Iriepa Universidad de Alcal, Spain) on hAChE and hBuChE. The same analysis
was also carried out for tacripyrimidine 4e, the derivative showing no selectivity.

Concerning 4k, in agreement with the experimentally confirmed non-competitive mechanism of
action of (x)-4k, molecular modeling studies indicated that both (R)-4k and (S)-4k interact with
residues at the PAS and not with those at CAS and highlighted the key interactions involved in the
binding (see original article for details). On the other hand, concerning inhibition of hBuChE by 4k,
the best-ranked docking solutions revealed that (i) BuChE can effectively accommodate both
enantiomers inside the active site gorge and (ii) both enantiomers have similar binding modes.

In general, the sets of interactions highlighted by docking studies on both ChEs (see full article for a
detailed discussion) pointed out that the primary amino group and the halogen atoms are the
features which mostly contribute to the inhibitory activities of compounds 4j and 4k toward hAChE
and hBuChE. The position of the halogen atom also contributes to compound selectivity toward a
specific ChE by establishing a network of interactions.

Furthermore, the effectiveness of the MTDLSs rational design was verified by investigating the Ca2+
influx induced by K*-depolarization in SH-SY5Y neuroblastoma cells, previously loaded with the
fluorescent dye Fluo-4AM. The study was carried out by the research group of Prof. Jozwiak
(Medical University of Lublin, Poland) (Table 10).

In details, Fluo-4-loaded cells were incubated in the presence of tacripyrimidines 4a-1 (1 uM) for 10
min and then stimulated with KCI/CaCl, solution in order to have a final concentration of K* and
Ca”" of 90 mM and 5 mM, respectively. Fluorescence emission intensity before stimulation and
after stimulation was recorded at 535 nm (Aexc = 485 nm). DMSO (0.01%) was used as a vehicle
control. Nimodipine was used as a reference inhibitor, causing, at 1 pM, ~50% inhibition of K'-
evoked Ca?* uptake.

All tacripyrimidines, except the unsubstituted derivative 4a, significantly inhibited Ca®* influx
(Table 10) although to different extents. Interestingly, tacripyrimidines 4h (bearing a
dimethylamino substituent at position 4’) and 4l (bearing a nitro-group at position 3’) were more
potent CCBs than the reference drug nimodipine (59.01% vs 49.62% and 66.79% vs 49.62%,
respectively). Furthermore, 4c and 4k showed a very good blockade activity (>40% inhibition)
which was not significantly different (n.s., P > 0.05) from that of nimodipine. Finally, from a
statistical point of view, the encountered slightly lower CCB activity of derivatives 4g and 4e was

scarcely significantly different to that of nimodipine (*P > 0.05).
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The calcium channel blockade activity of tacripyrimidines seemed unrelated to the electronic nature
of the substituents at the aromatic ring. Indeed, the two most active compounds within this series,
i.e., 4h and 4l, bore an electron-donor (4’-NMe2) and an electron-withdrawing (3°-NO2) group,
respectively. If a homogeneous set of substitution is considered, as in the case of methoxy- or
methyl-tacripyrimidines, the 4’-position seems the least favorable one (compare 4b with 4c and 4d
with 4e and 4f).

For the sake of completeness, it is important to underline that further studies were carried out to
assess physico-chemical properties, safety towards hepatoma cells and activity towards amyloid-
beta peptide. For full results and their extensive discussions, please refer to the original article [1].
Briefly, the three most interesting tacripyrimidines, namely derivatives 4e, 4j and 4k, were
investigated for their antiaggregating activity against A4, Self-aggregation by Prof. Bartolini. The
tested tacripyrimidines exhibited poor inhibitory potency, with a % inhibition of about 10%.
Furthermore, because of the hepatotoxicity displayed by tacrine in human body, all tacrine-based
hybrids were assayed on human hepatoma cells (HepG2) to assess their safety. This study was
performed by Dr. Giovannini (S.Orsola-Malpighi Hospital, CRBA, Bologna, Italy) using tacrine as
positive control. Compounds were assayed in the concentration range 10-300 uM. Cell viability at
24 h was determined by quantifying ATP as an indicator of metabolically active cells, using a
luminescence-based assay (CellTiter-Glo® Assay, Promega). Among tacripyrimidines, only
derivatives 4b (4’-Me derivative) and 4j (4’-Cl) showed higher hepatic cell toxicity than tacrine,
while most tacripyrimidines were found to be similarly or slightly less toxic than tacrine. Quite
promisingly, 4e emerged as the safest tacripyrimidine, with no toxic effect on HepG2 cells even at
the highest tested concentration. Although to a lower extent, 4l also turned out to be safer than
tacrine with a reduction of only 17% of the cell viability at the highest dose (300 uM).

Finally, in-silico calculation of ADME parameters, carried out by Prof. Iriepa and coworkers,
allowed assessing the ability of these compounds to be absorbed after oral administration, to cross

the BBB and reach the central nervous system (CNS).
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9.4 Conclusions

The development of new drug candidates for an effective treatment of AD is a challenging task for
medicinal chemists, and also a research area with a potentially tremendous impact in society. In this
scenario, the contribution of the academic research to the definition of an effective therapeutic
intervention is destined to increase as a consequence of the recent cut of AD focused research
programs by some pharmaceutical companies. Having this in mind, new 5-amino-4-aryl-3,4,6,7,8,9-
hexahydropyrimido[4,5-b]quinoline-2(1H)-thione MTDLs able to modulate both cholinesterase
activity and calcium influx mediated by voltage-dependent calcium channels have been studied.
Indeed, in vitro inhibition studies performed by us, combined with in silico studies, showed that
activity toward the two selected targets is modulated by the substituent attached to the aromatic ring
at position C4. Derivatives bearing halogens (Br, Cl) at C3” and/or C4’ position showed the highest
inhibitory potencies toward hChEs. Moreover, combination of CCB studies performed by coauthors
showed that the introduction of a dimethylamino group at position 4’ or a nitro group at position 3’
afforded the best calcium channel blockers, with potencies higher than that of the reference CCB
drug nimodipine.

Considering the overall biological profile of tacripyrimidines, including predicted ADME
parameters and hepatotoxicity, tacripyrimidine 4e emerged as the first well balanced inhibitor of
ChEs and calcium channel, endowed with no significant hepatotoxicity toward HepG2 cells and
excellent predicted oral absorption and BBB permeability [1].

Not less importantly, in the light of the role of BuChE as prevalent ACh degradating enzyme in
moderate-to-advanced forms of AD and considering the potential role of BuChE in the etiology and
progression of AD, the 3’-nitro-tacripyrimidine 4l, which acts as moderately selective micromolar
hBuChE inhibitor (AChE/BUChE = 10, ICsy@uche) = 2.68 pM) and potent CCB with a significantly
higher activity than nimodipine, can also be considered as a promising candidate for further

development.
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Studying molecular biorecognition phenomena is pivotal to rationally interpret the complex
network of communications which regulates physiological and pathological events. To be effective,
this investigation requires advanced methodologies and analytical strategies to profile the binding
partners and detail the structural features involved in such interaction. Several analytical techniques
have been developed and applied over the years to clarify different aspects of the biorecognition
processes and, depending on the analytical issue to be addressed, the most suitable (and available)
strategy has been adopted. In this context, combination of different analytical techniques including
circular dichroism spectroscopy (CD), surface plasmon resonance (SPR) and high-performance
liquid chromatography coupled with mass spectrometry (HPLC-ESI-MSMS), among others, can
facilitate the understanding of complex systems and multifaced biorecognition phenomena. Based
on these considerations such approach has been pursued to investigate two targets of
pharmaceutical interest, namely human serum albumin (HSA) and human cholinesterases (ChEs).

In particular, interest on HSA structural modifications and their involvement in affecting HSA
binding properties arose from the importance of altered forms of HSA as circulating biomarkers as
well as prognostic factors and possible mediator of pathological events such as activation of the
human receptor for advanced glycation end products (RAGE) upon advanced glycation in
hyperglycemic conditions.

Due to the strict connection between HSA binding properties and protein integrity, the assessment
of HSA binding capacity is of relevance in clinical research as well as in the early stages of drug
discovery. In the first work proposed, CD spectroscopy proved to be a trustworthy technique when
the drug—HSA interactions are investigated, especially when possible competitors need to be
considered. The proposed method enabled to clarify the role of N-acetyltryptophan and sodium
octanoate in the impairment of HSA binding capacity when they are added as stabilizers in
pharmaceutical formulations containing HSA (i-HSA). In particular, site-1l ICD markers showed to
be efficient tools in the evaluation of the effect of stabilizers on i-HSA binding properties and the
CD-based assay enabled monitoring effective stabilizers clearance and recovery of binding
properties within the development of more efficient removal strategies.

Affinity chromatography, MS and SPR, instead, resulted highly informative to investigate
biorecognition phenomena when used in combination. In particular, this multimethodological
strategy was employed to obtain further insights into the interaction of glycated HSA (HSAgly) and
the extracellular region (VC1) of RAGE. This modified form of circulating HSA, formed at higher
amount in pathological conditions such as diabetes, may trigger inflammation and sustain chronic
complications through RAGE activation. For this reason, the characterization of such interaction

represents an emerging aspect to be elucidated. The herein proposed strategy enabled the
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quantification of HSAgly-VC1 complex affinity and allowed to draw some preliminary hypotheses
on the HSA region involved in the binding. Indeed, the majority of HSA peptides, identified by
combining affinity chromatography and MS, revealed a possible involvement of subdomain IA (63
% of peptides being retained onto the VC1 affinity column), as well as residue K525 as key
glycated residue in the interaction with the receptor. In analytical terms, the outcomes of this study
showed that combination of all these techniques may be a useful strategy to shed light on complex
interacting ligands.

In drug discovery, targeting ChEs has constituted and still constitutes an important strategy for
Alzheimer’s disease (AD) treatment, especially in the light of new strategies based on multi-target
compounds. In this context, classical in solution assays can be paralleled to new highly informative
approaches, providing important elements for aiding the selection of favorite chemical scaffolds.
Herein, in solution assays were performed for the evaluation of biological activity and the binding
mode of new hybrid inhibitors, i.e. donepezil and tacrine hybrids, designed on the basis of the so-
called multi-target-directed ligand (MTDL) strategy. Data achieved enabled to elucidate some
structure-activity relationships for ChEs inhibition and, in combination with in vitro and in silico
studies carried out by other groups involved in the projects, allowed to identify some promising
new MTDLs which could be further developed. In particular, most interesting results were achieved
with the so-called tacripyrimidine derivatives which combine anticholinesterase activity with CCB
properties. Furthermore, since a better prioritization of new chemical entities may reduce attrition
rate in the drug discovery process, a human acetylcholinesterase (hAChE)-based SPR platform was
developed. The SPR-based assay was employed to define Kkinetic rates constants and
thermodynamic parameters for the inhibitors—hAChE binding events. Indeed, the definition of
residence time and Kinetic parameters by SPR technology besides the assessment of potency and
inhibition profile might result useful powerful strategy in the early drug discovery phase.

As conclusive remark, all analytical strategies summarized in this dissertation share the common
purpose to elucidate biorecognition events and/or uncover alterations of such mechanisms which
may result in pathological events. The final goal is to provide pivotal information which can help
understanding pathophysiological mechanisms and facilitate the development of new and more

effective drugs.
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Volevi disconoscerti, se mai. Dimenticare il tuo nome
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