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Abstract

Instrumental Variables (IV) are widely used in econometrics to overcome endogeneity

problem in regression models, which occurs when regressors are correlated with the

stochastic component. Nonetheless, in applied works, practitioners face with instru-

ments that are collectively “weak”, i.e. poorly correlated with endogenous regressors.

Under weak instruments, conventional estimators are no longer consistent and asymp-

totically normal. Furthermore, bootstrap methods could be useful to improve infer-

ence in IV estimation. However, under poorly relevant instruments, the bootstrap is

deemed invalid and its use is generally discouraged in applied papers. In this work,

we propose a new derivation of bootstrapped IV estimators under weak instruments

asymptotics (Stock and Yogo, 2005) using residual–based bootstrap method involving

fixed or resampled instruments. We prove that bootstrap counterpart of estimators,

conditionally on the data, converges to a random distribution preserving some pat-

terns (non–normality) of weak and irrelevant instruments scenarios. These issues may

be also reflected in bootstrap–based confidence sets and hypothesis testing. In this

sense, we explore the usefulness of bootstrap methods to provide information on the

weakness (or the strength) of the instruments. We consider descriptive indicators and

develop new bootstrap-based tests useful to detect weak instruments in IV framework.

The method basically relies on Angelini et al. (2016) and allows to test normality of a

certain number of (possibly standardized) bootstrap replications. Since conventional

normality tests can lose power in presence of more instruments and high endogeneity,

we propose new test statistics with the aim to test standard normality on the boot-

strap replications. These tests are based on the moments of standard normal and are

asymptotically chi–square distributed under the null hypothesis. In conclusion, we find

that, in some cases, bootstrapped estimators may be used to test weak identification.
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Chapter 1

Introduction

1.1 Instrumental variables and weak instruments

Since the early works of Nelson and Startz (1990a,b), it is well-known that finite sample

distributions of conventional instrumental variable (IV) and two stage least squares

(TSLS) estimators are asymptotically non–normal and severely biased under weak

instruments, i.e. when instruments are not collectively correlated with the endogenous

regressors. This usually lead to identification issues in the estimation of structural

parameters. Therefore, t/Wald tests associated to IV/TSLS are generally oversized,

providing unreliable and/or spurious inference, even in large samples, as pointed out

by Bound et al. (1995). In the linear IV case, practitioners mainly adopt the first

stage F rule of thumb (F > 10) or the F statistic with critical values developed by

Stock and Yogo (2005), in order to determine if instruments are collectively weak or

not. Nowadays this procedure is considered a standard tool but has its limitations,

regarding mostly the fact that it is based on strictly assumptions and it does not

consider the level of endogeneity, that crucially affects bias of TSLS as pointed out by

Hahn and Hausman (2002a). To overcome these problems, different “robust”, with

respect to weak instruments, test statistics have been proposed (Kleibergen, 2002;

Moreira, 2003), and several “partially robust” estimators, such as Limited Information

Maximum Likelihood (LIML), may outperform conventional IV estimators, producing

more reliable confidence intervals, as pointed out by Blomquist and Dahlberg (1999)

among others.

Despite the available robust tests, evaluation of the instruments strength is still

under discussion, especially under non–standard conditions and in presence of many

1



1.2. BOOTSTRAP METHODS IN WEAKLY IDENTIFIED MODELS 2

endogenous regressors. In most non–standard cases the F statistic may be uninfor-

mative. Furthermore, there are arguments against robust methods, especially when

partially robust estimation is conducted under very weak instruments, as explained by

Hahn et al. (2004) and, more recenlty, Young (2017).

1.2 Bootstrap methods in weakly identified models

Bootstrap methods in econometrics are developed to improve the performance of esti-

mators and test statistics, obtaining an approximation of sampling distributions, more

precise standard errors and confidence intervals presenting better coverage rates. How-

ever, the bootstrap is not deemed valid, even in the linear IV framework, under weak

instruments, especially when inference is conducted through non-robust IV estimators

and associated t/Wald tests. This also appears in non–linear models, under the so

called weak identification issue. The sources of bootstrap failure may be different,

including the presence of outliers and incorrect resampling scheme, as examined by

Canty et al. (2006). In IV models, this failure mostly occurs because the statistics

of interest (as the t/Wald statistic) can be not asymptotically pivotal. In addition,

as Horowitz (2001) pointed out, the bootstrap does not always perform well when

the covariance matrix of certain coefficients is nearly singular as often appears un-

der very weak (nearly irrelevant) instruments. Moreover, Moreira et al. (2009) prove

the validity of bootstrap, even in the first order, for score and conditional likelihood

ratio statistics under irrelevant and weak instruments. Furthermore, Dovonon and

Gonçalves (2017) demonstrated the validity of bootstrap under local identification

failures, testing overidentified restrictions in non–linear Generalized Method of the

Moments (GMM). Nevertheless, there are some cases where both standard and new

bootstrap methods remain invalid under weak instruments, as recently demonstrated

by Doko Tchatoka (2015) and Wang and Kaffo (2016).

In the context of weakly identified models, the bootstrap is rarely applied to high-

light non-normality and size distortion of the estimators. Flores-Lagunes (2007) ex-

ploits bootstrap as a bias–correction device for different IV estimators, showing its

poor performance under weak instruments, while Ouysse (2011) finds similar results

using a (fast) double bootstrap procedure. Zhan (2017) introduces bootstrap–based

test to evaluate the maximal size distortion of the t–test under weak instruments,

suggesting the informativness of graphical evaluation to compare the standardized
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bootstrap distribution (of an estimator) against standard normal. In the context of

linearized rational expectation models, Angelini et al. (2016) develop a bootstrap–

based approach to detect misspecification in dynamic stochastic general equilibrium

(DSGE) models, testing normality directly on a certain (moderately small) number of

bootstrap realizations. Caner (2011) suggests a bootstrap-based Kolmorov–Smirnov

test between the Wald statistic and a chi–square distribution to distinguish between

weak and nearly-weak identification in non-linear GMM inference. Furthermore, Cam-

ponovo and Otsu (2012) compare performances of bootstrap–based t/Wald test (in IV

and TSLS estimation) in presence of outliers, arguing that performances can be dra-

matically worse in this case. Wang et al. (2015) propose the bootstrap in a selection

method of the instrumental variables based on bootstrap version of approximate mean

square error. Recently, Young (2017) applies the iterated bootstrap to study the dis-

tribution of estimators and tests of more than 1000 IV regressions from published

papers, finding misleading results in terms of weak instruments tests, under iid theory,

and checking understated confidence intervals. From a different point of view, Kita-

gawa (2015) proposes a bootstrap procedure to test exogeneity of instrument in the

heterogeneous treatment effect model with binary endogenous regressor and discrete

instrument.

From our perspective, invalidity of bootstrap methods could be used to detect weak

instruments in IV models, in particular when two stage least squares estimator (TSLS)

is applied. Firstly, the asymptotic distribution of TSLS estimators and associated t–

test statistics is found to be substantially different from the normal distribution under

weak instruments. Monte Carlo simulation, based on weak instrument asymptotics

(Staiger and Stock, 1997), confirms that departures from normality depend strictly

on three factors: strength of instruments, level of endogeneity and overidentification.

Some of these problems could be exacerbated in the empirically–relevant just identified

case, where the number of instruments is equal to the number endogenous variables.

In fact, the inexistence of moments for IV estimator (Mariano, 2001) may produce

extreme values for the structural parameters and huge standard errors.

1.3 Main contribution

The aim of this work is to analize the properties of bootstrap estimator in linear IV

under weak instruments, both analitically and through Monte Carlo simulations, in or-
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der to study and capture sources of failure, verifying the informativeness of bootstrap

in the context of weak instruments. We provide a new derivation of the bootstrap

limiting distribution of the IV/TSLS estimator using two types of residual–based re-

sampling schemes. Bootstrap estimators converges to a random limiting distribution,

conditionally on the original data, preserving some components of the weak instrument

asymptotics. Some examples are presented to show failures of bootstrap inference un-

der weak instruments. In fact, bootstrap may provide information on the failures of

standard inference caused by weak instruments, overidentification, high level of endo-

geneity and, in particular, a lack of moments of the estimators, that could be severely

reflected in the bootstrap samples.

Subsequentely, a bootstrap normality test on a certain number of replications is

introduced in the context of weakly identified linear models, adapting a framework

introduced by Angelini et al. (2016). The main idea is to check failures in the standard

regularity conditions, reasonably driven by weak instruments in IV setting. Well–

known normality tests as could be applied and, in addition, a modified Shapiro-Wilk

test with known mean (Hanusz et al., 2016) is proposed in order to control the distance

from limiting distribution of the estimators, improving power of the tests in presence

of more than one instrument. In fact, these estimators are asymptotically normal in

overidentified models (Bekker, 1994) although consistency breaks down dramatically

when the number of instruments is arbitrarily large. We also introduce standard

normality tests based on the moments of standard gaussian random variable. The main

idea is to detect issues in conventional standardization of the bootstrapped estimator,

as suggested by Zhan (2017), also caused by the weak identification combined with the

degree of overidentification and the endogeneity level. These kinds of large samples

tests are based on the first four moments of the standard normal and have asymptotic

chi square distributions under the null hypothesis. From a theoretical point of view

they are similar to those proposed by Bontemps and Meddahi (2005).

This PhD Thesis is organized as follows. Chapter 2 presents the basic IV linear

model with one endogenous regressor, weak instrument asymptotics and the bootstrap

techniques for limited information system estimators. Chapter 3 examines analitically

and through simulation study the bootstrapped distribution of IV/TSLS estimators,

presenting a new derivation under weak instrument asymptotics. In Chapter 4 we

firstly analyze some detection tools and then develop new bootstrap–based tests for

weak instruments in linear IV models. These tests are analyzed through Monte Carlo
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simulations, in order to verify the performance of proposed methods, in terms of size

and power of tests; at the end of this Chapter we apply these methods on two real

cross–sectional data. Conclusions are in Chapter 5.



Chapter 2

Weak instruments and bootstrap in

instrumental variable: a review

In this chapter we review the issue of weak instruments in instrumental variables

linear models with one endogenous regressor, summarizing some available tests and

procedures to detect failures in the relevance conditions, i.e. when the instruments

are poorly correlated with the endogenous explanatory variable. This framework re-

quires the so–called “weak instrument asymptotics”, a particular nesting useful to

study the asymptotic properties of estimators and test statistics. Furthermore, an

extensive Monte Carlo simulation is conducted to highlight the performance of well–

known estimators under low relevance, moderate overidentification and several degrees

of endogeneity. Evidences regarding non–normality in commonly used estimators are

discussed under different data generating processes (DGPs), considering skewed distur-

bances and non perfectly exogenous instruments. Asymptotic behaviour of associated

t/Wald statistics under the null hypothesis is also presented under different DGPs.

Simulation study includes an evaluation of first stage F test screening, in order to

point out some issues in conventional procedures and rules of thumb applied by prac-

titioners. We propose Kolmogorov–Smirnov (KS) distance as a further performance

indicator in order to compare several IV estimators and test statistics against their

non–normality, possibly generated by weak instruments.

Therefore, we illustrate bootstrap methods in instrumental variables linear mod-

els. In general resampling techniques could be useful to improve inference in point

estimations, confidence intervals and test statistics. However, the bootstrap is not

deemed always valid when instruments are collectively weak. Recent methods may be

6



2.1. INSTRUMENTAL VARIABLES IN ECONOMETRICS 7

improve inference in some cases, especially in hypothesis testing, but relevance remains

a crucial issue to discuss the usefulness of bootstrap inference in linear IV models.

2.1 Instrumental variables in Econometrics

Instrumental variables represent a very powerful tool in regression analysis when the

explanatory variables are deemed correlated with the stochastic component. When

endogeneity appears, Ordinary Least Squares (OLS) estimators give biased and incon-

sistent estimates of the parameters. Main sources of endogeneity refer to a) omitted

variable bias, b) measurement error and c) reverse causality, also called simultaneous

equations issue. IV estimators are widely used in Econometrics to overcome these

kinds of problems in a broad range of empirical research. In microeconometrics, they

are often applied in the context of wage equations, e.g. estimating the effects of educa-

tion and experience on earnings. Several papers are developed in this field, including

Grichiles (1977), Angrist and Kreueger (1991), Card (2001), Oreopoulos (2006) and

Pischke and Von Wachter (2008). Some empirical works in economics regard the esti-

mation of elasticity of intertemporal substitution (EIS), e.g. Yogo (2004) and Gomes

and Paz (2011), using stationary time series data. Further studies are focused on

political economics, including Acemoglu et al. (2008), or crime rates in U.S. (Levitt,

2002). In macroeconometrics, one of the first application concerns the estimation of

Klein model (see for example Greene, 2000). Nowadays, the usage of IV estimation is

still under debate in the context of linearized rational expectation models, especially

in the estimation of New Keynesian Phillips Curve (NKPC) parameters (Kleibergen

and Mavroeidis, 2009).

Nevertheless, IV estimation is strictly based on the sources of valid instruments.

Validity essentially requires two properties: exogeneity and relevance; the first is usu-

ally verified through overidentification tests applying Sargan–type statistics or, alter-

natively, likelihood ratio. However, these procedures require exogeneity of a certain

number of instruments, at least equal to the amount of endogenous regressors. Re-

cently, some authors criticized this practice: Conley et al. (2012) approach this issue

from a Bayesian point of view, while Ashley (2009) proposes sensitivity measures to

evaluate inference under possibly endogenous instruments.

A large literature is mainly focused on the failure of relevance condition and es-

sentially concerns two aspects. The first regards development of tests and detection
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methods for the weakness of instruments. The second is based on robust techniques, in

order to obtain reliable point estimates, tests and confidence intervals under poorly rel-

evant instruments. In this context, (partially) robust estimators are generally included

in a broad group called κ−class, while robust tests are proposed by Kleibergen (2002)

and Moreira (2003). Existing surveys on inference under weak instruments/weak iden-

tification and robust methods include Stock et al. (2002), Dufour (2003), Andrews and

Stock (2005) and Poskitt et al. (2013).

2.1.1 The model

We consider the following linear model with two equations, containing one right–

hand–side regressor (in the structural equation) and k instrumental variables, where

k is considered as a fixed number. The system takes the following form:

yt = xtβ + ut

xt = Ztπ + vt, (2.1)

where t = (1, . . . , T ) and T is the sample size. Observations can be stacked to obtain:

y = xβ + u (2.2)

x = Zπ + v, (2.3)

where (2.2) is the structural equation and (2.3) is called first stage equation. Model in

(2.2, 2.3) includes an outcome variabile y = (y1 . . . , yT )′ while x = (x1, . . . , xT )′ is the

endogenous explanatory variable, assuming E(xtut) 6= 0, and Z = (Z1, . . . , ZT )′ is a full

column rank matrix T × k containing exogenous (also called excluded) instruments.

The scalar parameter of interest is β, while the k × 1 vector π presents nuisance

parameters associated to instrumental variables. Substituting (2.3) in (2.2), we obtain

the so called reduced form as:

y = Zπβ + η, (2.4)

where η = vβ + u.

The presence of a non–zero correlation between xt and ut makes ordinary least

squares (OLS) estimator, defined as β̂OLS = (x′x)−1x′y, largerly biased in finite sam-

ple and (possibly) inconsistent, where the amount of bias depends on the degree of

correlation between regressor and the structural error component. To summarize,
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instrumental variables have the main role to isolate the exogenous variation of the

endogenous regressor. When the number of instruments is equal to one, the equation

(2.3) is reduced to:

x = zπ + v, (2.5)

where, in (2.5), π is reduced to a scalar parameter, z = (z1, . . . , zT )′ represents the

only instrumental variable and the reduced form becomes y = βπz + η, where η is

previously defined. Usually, if the number of IV is equal to the amount of endogenous

regressors the model is called just–identified or perfectly identified.

Finally, we introduce some notation for the following paragraphs: the symbol “
p→”

denotes convergence in probability, while “
d→” indicates convergence in distribution.

2.1.2 Assumptions

The vectors u = (u1, . . . , uT )′ and v = (v1, . . . , vT )′, which contain disturbances from

both equations, are conditionally homoskedastic with zero mean and with the following

2× 2 covariance matrix:

Σ =

(
σ2
u σuv

· σ2
v

)
=

(
σ2
u ρσuσv

· σ2
v

)
, (2.6)

which is symmetric and positive definite. The scalar parameter ρ = Corr (ut, vt) is the

level of endogeneity, while the population variances of the disturbances are constant

and finite, i.e. σ2
u <∞ and σ2

v <∞.

Two main assumptions regard validity of instruments, involving the exogeneity of

Zt (exclusion condition) and the so called relevance condition. Exogeneity implies

E(Ztut) = E(Ztvt) = 0, while relevance condition holds when E(Ztxt) 6= 0 and it

is necessary for the identification of structural parameter β. In addition, the k × k

covariance matrix of the instruments is a full rank matrix E(ZtZ
′
t) = QZZ , and Z′Z/T

is a consistent estimator for QZZ i.e. Z′Z/T
p→ QZZ . Furthermore, asymptotic

normality of estimators requires E(y4t ) < ∞, (T−1u′tut, T
−1v′tvt)

p→ (σ2
u, σ

2
v) and also

(T−1/2Z ′tut, T
−1/2Z ′tvt)

d→ (WZu,WZv) ∼ N(0,Σ⊗QZZ), where “⊗” denotes the Kro-

necker product. In the just identified case with a single instrument, E(ztz
′
t) is reduced

to σ2
z , T

−1z′z
p→ σ2

z and (T−1/2z′tut, T
−1/2z′tvt)

d→ (wzu, wzv) ∼ N(0, σ2
zΣ).

Finally, we point out that IV estimators are invariant for an orthonormal transfor-
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mation of the instruments, such that T−1(Z′Z) = Ik. We indicate with the subscript t

both cross–section and time series data, while the latter also requires stationarity and

ergodicity conditions of the variables.

Exogenous Covariates

System described in (2.2, 2.3) allows to include exogenous covariates, sometimes de-

noted as control variables or “included” instruments, in both equations. If there are l

exogenous variable W, where W = (W1, . . . ,WT )′ is a T × l matrix and Cov(Wt, ut) =

Cov(Wt, vt) = 0, the endogenous variables (y,x) and instruments may be substituted,

in the estimation procedures, by residuals from their projection on W. This could be

done applying the Frisch-Waugh-Lovell (FWL) theorem (1963), as remarked in Stock

et al. (2002). Thus, a more general model could be expressed as follows:

y = xβ + WΓ1 + u (2.7)

x = Zπ + WΓ2 + v, (2.8)

where Γ1 and Γ2 are vectors l×1 containing parameters associated to control variables.

Equations in (2.8, 2.7) could be rewritten in the following way:

ỹ = x̃β + ũ

x̃ = Z̃π + ṽ,

where x̃ = MWx, ỹ = MWy, Z̃ = MWZ, (ũ, ṽ) = (MWu,MWv) and MW = (Il−PW )

is a symmetric and idempotent matrix.

2.1.3 Estimation

Considering system in (2.2, 2.3), a common choice in the estimation of (scalar param-

eter) β is two–stage least squares (TSLS) estimator, defined as follows:

β̂TSLST =
[
x′Z(Z′Z)−1Z′x

]−1 [
x′Z(Z′Z)−1Z′y

]
= (x′PZx)

−1
(x′PZy) , (2.9)

where PZ = Z (Z′Z)−1 Z′ is the symmetric and idempotent projection matrix of

instruments. Vector of nuisance parameters π could be estimated through OLS:
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π̂OLST = (Z′Z)−1 Z′x. Considering π = π0 6= 0, where π0 is fixed, and if the as-

sumptions of section 2.1.2 hold, TSLS in (2.9) is consistent and asymptotically normal

distributed. This type of modeling is known in IV literature as strong instrument

asymptotics. In particular: β̂TSLST −β p→ 0 with the following asymptotic distribution:

T 1/2(β̂TSLST − β)
d→ N(0, σ2

u [x′PZx]
−1

), (2.10)

where σ2
u = E(utu

′
t) and the estimation error of β̂TSLST as β̂TSLS−β = (x′PZx)−1 (x′PZu) .

Recalling π = π0 and Z′Z/T
p→ QZZ , the expression in (2.10) may be modified in the

following way:

T 1/2(β̂TSLST − β)
d→ N(0, σ2

u [π′0QZZπ0]
−1

). (2.11)

In the empirically–relevant just identified case, TSLS is reduced to the so-called in-

strumental variable estimator (IV):

β̂IVT = (z′x)
−1

z′y =

∑T
t=1 ztyt∑T
t=1 ztxt

, (2.12)

and its asymptotic variance could be estimated using the following quantity ω̂:

ω̂ = σ̂2
u

∑T
t=1 z

2
t∑T

t=1(xtzt)
2
.

Under strong instruments, i.e. π = π0, estimator in (2.12) is consistent, and its

asymptotic distribution becomes:

T 1/2(β̂IVT − β)
d→ N

(
0, ω2

)
. (2.13)

where the numerator of asymptotic variance is ω2 = σ2
u(σ

2
zπ

2
0)−1. and ω̂2 p→ ω2

Recalling that x̂ = PZx, it is noticeable that TSLS estimator in (2.9) could be

rewritten as:

β̂TSLST = (x̂′x)−1x̂′y. (2.14)

Following (2.14), TSLS can be viewed as an IV estimator where the endogenous re-

gressor x is instrumented with its fitted values x̂ = PZx. This estimator could be

also written as β̂TSLST = (x̂′x̂)−1x̂′y, where x̂ = (Z′Z)−1Zx, (see Wooldridge, 2010

for details). The denomination Two Stage Least Squares comes directly from this

equality.
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When the system allows to include exogenous regressors, the estimator in (2.9)

becomes:

β̂TSLST =
[
x̃′Z̃(Z̃′Z̃)−1Z′x̃

]−1 [
x̃′Z̃(Z̃′Z̃)−1Z̃′ỹ

]
= (x̃′PZ̃x̃)

−1
(x̃′PZ̃ỹ) ,

and IV in (2.12) takes the following form:

β̂IVT = (z̃′x̃)
−1

z̃′ỹ =

∑T
t=1 z̃tỹt∑T
t=1 z̃tx̃t

,

where the quantities denoted with the tilde are previously defined in terms of resid-

ual projections of the included exogenous instruments W. Under strong instrument

asymptotics both estimators are consistent and asymptotically normal distributed.

2.1.4 A wide class of estimators

The previously discussed TSLS and IV estimator, defined in (2.9) and (2.12), are

nested in a wider group, called κ−class, introduced by Nagar (1959). Considering the

system in (2.2, 2.3) with k instruments, a generic κ−class estimator can be written as

follows:

β̂κ−clT =
[
x′(I − κMZ)−1x

]−1
x′(I − κMZ)−1y,

= (Ax)−1Ay (2.15)

where A = x′(Ik − κMZ)−1 is a matrix expressed in terms of x and Z, and also

MZ = (Ik−PZ). From expression (2.15), it is noticeable that TSLS and IV are special

cases of κ− class estimators where κ is fixed and equal to 1, and then A = x′PZ . OLS

estimator β̂OLST = (x′x)−1x′y is also nested in this class, having κ = 0 and A = x′.

An estimator presenting κ̂ = T/(T − k + 2) is called Bias adjusted TSLS (BTSLS).

It is mainly used in presence of more instruments and its properties are analized and

discussed in Donald and Newey (2001).

The so–called limited information maximum likelihood (LIML) is another κ−class

estimator where κ = κ̂LIML is the smallest eigenvalues of the matrix: (x′x−κ·x′MZx).

Performance of LIML estimator are analyzed through simulation by Hahn and Inoue

(2002). A slightly modification of the LIML was introduced by Fuller (1977) using
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κFull = κ̂LIML− c/(T − k), where c is a fixed constant chosen by the researcher, often

setted equal to an integer number ( 1 or 4). In this context it is important to point

out that LIML and Fuller share the same asymptotic variance of IV/TSLS estimator

and are also asymptotically normal distributed under strong instrument asymptotics,

i.e. π = π0 6= 0. Therefore, some jackknife–based estimators are nested in this class;

we remind JIVE proposed by Angrist et al. (1999). Furthermore in the just–identified

case LIML, TSLS and BTSLS estimators coincide with IV.

LIML, BTSLS or Fuller can be applied when the number of instruments is mod-

erately large, and their behaviour in finite samples is analized and discussed in some

papers including Blomquist and Dahlberg (1999) and Hahn et al. (2004). These works

also mention issues regarding the absence of finite moments in k − −class, occurring

especially in LIML and BTSLS. We do not discuss theoretically this problem, but our

empirical evidences show that it could dramatically affect the distribution of estimators

and tests in finite samples, if combined with weak or irrelevant instruments.

More than one endogenous regressor

When the number of endogenous explanatory variable m is greater than 1, the system

described in (2.2, 2.3) contains (m+ 1) equations and takes the following form:

y = Xβ + u

X = ZΠ + V , (2.16)

where Π is a matrix k ×m of nuisance parameters, β is a vector m× 1 of structural

parameters, X is a matrix T×m and Z is again the T×k matrix of instruments. Given

the system in (2.16), vector β is identified if k ≥ m and TSLS estimator, previously

defined in the (2.9), becomes:

β̂TSLST = (X′PZX)−1X′PZy = (X̂′X)−1X̂′y. (2.17)

In the just identified case, i.e. when the number of instruments is equal to the endoge-

nous regressors (k = m), the (2.17) is reduced to IV estimator: β̂
IV

T = (Z′X)−1 Z′y.

Assumptions regarding consistency and asymptotic normality are similar to those pre-

viously introduced in section 2.1.2, where now V = (V1, . . . , VT )′ is a matrix T × k

and the full rank (m+1)× (m+1) covariance matrix of (conditionally homoskedastic)
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stochastic components is:

Σ =

(
σ2
u ΣV u

ΣuV ΣV V

)
.

A simple example of linear two–endogenous variable system (m = 2), without exoge-

nous covariates, is the following:

y = x1β1 + x2β2 + u

x1 = Zπ1 + v1

x2 = Zπ2 + v2.

and the variance–covariance matrix of disturbances is the 3× 3 matrix:

Σ =

 σ2
u σv1u σv2u

σv1u σ2
v1

σv1v2

σv2u σv1v2 σ2
v2

 .

Finally we remark that all κ−class estimators, defined in the (2.15), may be rewritten

in the multiple endogenous variable case, and takes the following form:

β̂κ−clT =
[
X′(I − κMZ)−1X

]−1
X′(I − κMZ)−1y,

= (AX)−1Ay.

2.2 Weak instruments

When the instruments are deemed weak the empirical distribution of the TSLS/IV

estimators may be very far from the limiting distribution. Failure of conventional

asymptotics is also reflected in hypothesis testing, as pointed out by Nelson and Startz

(1990a), and confidence intervals (Zivot et al., 1998) resulting too wide. In this section

we briefly introduce weakly identified models in econometrics by using the sequence

of modeling denoted as “weak instrument asymptotics”. Then, we discuss detection

methods and tests for weak instruments in linear IV models and briefly mention some

advances in this topic. Pratictioners mainly apply procedures based on the first stage

F statistic, testing the null hypothesis that all the coefficients in vector π are equal to

zero.
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2.2.1 Weakly identified models

Weak identification is not a prerogative of linear IV, arising in many econometric

models. Some examples include AutoRegressive Moving Average (ARMA) with near

canceling unit root, Structural Vector AutoRegressions (SVARs), rational expectation

models and linear or non–linear GMM, including IV/TSLS inference as a particular

case. In the latter case, the source of this problem is related to a lack of information to

estimate the parameters of interest. In the IV context Andrews and Mikusheva (2014)

show that this issue clearly appears in estimation via maximum likelihood, in which the

occurring disparity between estimated information measures, i.e. the expressions for

variance of score statistic, could be interpreted as signal of weak identification. In case

of non–linear GMM the interpretation may be different; briefly speaking it concern

the randomness of curvature in objective (criterion) function. From a different point

of view, Nelson and Startz (2007) introduce the Zero Information Limit Conditions

(ZILC) to show the cases whose weak identification lead to spurious inference, as

occurs especially in IV where conventional estimators presents unreliable precision.

In mostly applied liner model with one endogenous regressor, weak identification

practically means that the excluded instruments are not collectively correlated with the

troublesome explanatory variable, i.e. E(Ztxt) ≈ 0. To summarize, the instrumental

variables are not useful to predict the endogenous explanatory variable. Then, first

stage R2, denoted as R2
f may be very close to zero in finite samples. Under these

scenarios standard inference provides poor first-order approximation, even in very

large samples, as highlighted by Bound et al. (1995) reviewing the estimates from

seminal paper of Angrist and Kreueger (1991).

Unidentification and intuition

In special unidentified case, when E(Ztxt) = 0 and π = 0, scalar parameter β is

completely not identified and the asymptotic distribution of TSLS/IV estimator could

be non–normal, even lacking any finite moment. In order to give a first intuition of

unidentfication, we consider the case of a single irrelevant instrument, i.e. π = 0 and

then x = v. First of all, IV estimator defined in (2.12) is distributed as a ratio of two

correlated gaussian (Cauchy–like random variable), as follows:

β̂IVT − β =

∑T
t=1 ztut∑T
t=1 ztvt

d→ wzu
wzv

. (2.18)
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where (wzu, wzv)
′ ∼ N(0, σ2

zΣ) and Σ is defined in section 2.1.2. In this extreme case

IV estimator is not consistent because does not converge in probability to the true

value. Therefore, considering σ2
v = σ2

u = σ2
z and defining w = wzu − ρwzv, where

w ∼ N(0, (1− ρ2)), we obtain the following result:

β̂IVT − β
d→ ρ+

w

wzv
. (2.19)

By expression (2.19), we notice that ratio w/wzv is now a proper Cauchy random

variable; any inference conducted through usual procedures may easily fail.

Weak instruments problem arises when the relevance condition is close to a failure

rather than being completely violated, as illustrated in the previous case. To show

this fact, we consider again the just–identified case where the relevance condition is

not violated, but the correlation between instrument and exogenous regressor may be

very small. In this situation, since the IV estimator in (2.12) can be straightforward

expressed as β̂IVT = Cov(zt, yt)/Cov(xt, zt), its estimation error can be re-written as

the following ratio of covariances:

β̂IVT − β =

∑
t ytzt∑
t xtzt

=
Cov(zt, ut)

Cov(zt, xt)
. (2.20)

Estimation error in (2.20) presents huge values if the covariance (correlation) between

instrument and regressor vanishes to zero.

From another point of view, substituting xt in the second stage, i.e. first equation

of (2.12), we obtain yt = πβxt + ηt. Denoting πβ = δ as the so called reduced–

form (recalling expression (2.4)) parameter, then β = δ/π and weak identification

issue clearly appears if π ≈ 0. Finally, in the overidentified case with k > 1, weak

instruments practically means that rank[E(Z′x)] ≈ 0.

2.2.2 Weak instrument asymptotics

Weak instrument asymptotics is a sequence of models introduced by Staiger and Stock

(1997) and developed by Stock and Yogo (2005) in order to study the properties of

IV/TSLS estimators under weak instruments. The basic idea is to set the vector of

nuisance parameters in a 1/
√
T neighbourhood of 0: π = πT = C/

√
T , where C is

k × 1 vector of constants. Thus, under this nesting, π is drifting to zero as T → ∞.
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Adopting weak instrument asymptotics the system in (2.2, 2.3) becomes:

y = xβ + u (2.21)

x = Z
C√
T

+ v. (2.22)

Starting from system (2.21, 2.22) and given the assumptios of Section 2.1.2, Staiger

and Stock (1997) derived the distribution of TSLS under weak instrument asymptotics

as follows:

(β̂TSLST − β) = (xPZx)−1xPZu

d→ (QZZC +WZu)
′Q−1ZZWZv

(QZZC +WZv)′Q
−1
ZZ(QZZ +WZv)

=
(λ+WZu)

′WZv

(λ+WZv)′(λ+WZv)
; (2.23)

where (WZu,WZv) ∼ N(0,Σ) and λ = C ′Q
1/2
ZZ . By using ν1 = (λ + WZu)

′ and

ν2 = (λ+WZv)
′(λ+WZv), the expression in 2.23 modifies to:

(β̂TSLST − β)
d→ ν−11 ν2.

In weak instruments setting constant C in (2.23) is often substituted by
√
µ2,

where µ2 represents the so–called population concentration parameter, introduced by

Rothenberg (1984). He derive an alternative representation of TSLS estimator error

under fixed instruments and gaussian disturbances, showing that it strictly depends

on the quantity π′Z′Zπ. Concentration parameter plays a central role in the relevance

of instruments and it is defined as follows:

µ2 =
π′Z′Zπ

σ2
v

. (2.24)

Weak instrument asymptotics based on C = µ implies that µ2, representing the

strength of instruments, tends to a constant even if sample size diverges, i.e T →∞.

Relevance of all instruments is measured by the average population concentration pa-

rameter µ2/k, where k > 1 is a fixed number of excluded instruments. In the limit

case of irrelevance, i.e. µ2/k = 0, structural coefficient β is not point identified, as

previously discussed, while the relevance level of the instruments grows as µ2/k →∞,
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reducing to strong instrument asymptotics.

In the just identified case, when QZZ = σ2
z , the interpretation of weak instrument

asymptotics based on π = π(T ) = cT−1/2 is even more immediate. Recalling the

denominator of IV estimator in (2.12), it could be expressed as follows:

1

T

T∑
t=1

xtzt =
c

T 1/2

1

T

T∑
t=1

z2t +
1

T

T∑
t=1

vtzt, (2.25)

and then expression in (2.25) becomes an Op(T
−1/2) rather than being Op(1). Then,

IV estimator under weak instrument asymptotics is:

β̂IVT − β
d→ wzu

(cσ2
z + wzv)

, (2.26)

where (wzu, wzv) ∼ N(0, σ2QZZ). Finally, the expression for concentration parameter

in just identified case takes the following expression:

µ2 =
π2σ2

zT

σ2
v

, (2.27)

and the simplified case of σ2
z = σ2

v = 1, then µ2 is reduced to π2T .

2.2.3 Tests and detection methods

Since the seminal paper of Angrist and Kreueger (1991), practitioners face the problem

of detecting poorly relevant instruments. First of all, Bound et al. (1995) argue that

both first stage F statistic and first stage R2, denoted as R2
f , should be used to diag-

nose complete failures in relevance of instruments. Since R2
f could be a controversial

measure in presence of control variables, several works propose partial R2
f , introduced

by Shea (1997), in order to isolate the explanatory power of instruments. However,

this practice is still under debate because R2 measures strictly depend on the sample

size.

From a different point of view, Hahn and Hausman (2002a) propose a specifica-

tion test in IV framework, based on the so called reverse estimator of TSLS: β̂REVT =

(y′PZy)−1y′PZx, using the asymptotically equivalence, occurring under strong instru-

ments, between β̂TSLST and 1/(β̂REVT ). Despite existing methods this test presents the

null hypothesis of strong instruments but has very low power under poor relevance, as
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illustrated by Hausman et al. (2005).

First stage F

The first stage F statistic on the excluded instrumental variable is typically used to

assess the weakness of instruments, and it is defined as follows:

F =
π̂′TZ′Zπ̂T/k

σ̂2
v

. (2.28)

If the first stage F test rejects the null hypothesis of π = 0, there is an empirical

evidence that relevance condition holds. However, this does not guarantee that instru-

ments are not weak, as pointed out in simulation study by Hall et al. (1996). Moreover,

first stage F represents a crucial quantity in the estimation of (unknown) population

µ2. In fact, considering overidentified models, the average concentration parameter

can be estimated using the following relationship:

µ̂/k = (F − 1). (2.29)

The result in (2.29) comes from the approximate expected values of the F statistic.

As Staiger and Stock (1997) pointed out, E(F ) ∼= 1 + µ2/k, and F − 1 can be viewed

as an estimator of the average strength of the instruments.

Under weak instrument asymptotics F is asymptotically distributed as a noncentral

χ2
k(µ

2/k), where k is the number of excluded instruments and noncentrality parameter

is equal to µ2/k. Stock and Yogo (2005) introduce quantitative definition of weak

instruments considering both the relative bias of IV estimators, with respect to OLS,

and relative size of the associated t/Wald test for the null hypothesis H0 : β = β0.

They also compute critical values for the non central χ2 distributions through Monte

Carlo simulation, considering different combinations between instruments and endoge-

nous regressors. This method has recently been improved analitically by Skeels and

Windmeijer (2016).

To summarize, critical values for the F test are all approximately around ten. This

generates a useful rule of thumb for economists and practitioners: instruments are

deemed collectively strong or relevant if F > 10, and weak otherwise. In order to un-

derstand the intuition of this procedure we introduce the definition of bias (and relative

bias) of TSLS estimator. Considering σuv = ρ and σv = 1, te bias of TSLS quantity
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can be approximated (Hahn and Hausman, 2002b) by the following expression:

E(βTSLST )− β ≈ ρ
k − 2

µ2
. (2.30)

By the (2.30), approximate TSLS bias depends on the number of instruments k, con-

centration parameter µ2 and degree of endogeneity. Hence, the procedure of Stock

and Yogo (2005) is based on the relative bias between TSLS and OLS, approximable

as follows:

RelBias ≈ (k − 2)(µ2T−1 + 1)

µ2
,

which depends only on µ2 and the sample size T, because the level of endogeneity

affects both estimators in their finite sample properties. We further present results

of our simulation study in order to show discrepancy between the estimated bias

of TSLS and its approximated population counterpart, occurring if instruments are

irrelevant (µ2 = 0) or very weak. If there are multiple endogenous regressors, this

procedure could be generalized considering the multivariate counterpart of µ2, called

concentration matrix:

µ2 = T (Σ
−1/2
V V Π′QZZΠΣ

−1/2
V V ).

In this case, a statistic introduced by Cragg and Donald (1993) is used, representing

the multivariate version of the First stage F.

However, these methods are based on strictly assumptions, as i.i.d. normal er-

rors and fixed instruments, and could be sensitive to non-standard conditions, e.g.

clustered robust errors and autocorrelation. Since heteroskedasticity in IV estimation

is still of practical interest variable estimation (Hausman et al., 2012), the detec-

tion of weak instruments through a robust F statistic is still under debate. Monte

Carlo results in Bun and de Haan (2010) suggest that F > 10 could be considered a

low benchmark in presence of grouped errors, because F shows high values when the

number of groups increases, while the clustered robust F decreases, as expected, but

mainly underestimates the (true) concentration parameter µ2. Similar results could

be seen if the disturbances are simulated through autoregressive processes. Moreover,

as pointed out by Hahn and Hausman (2003) and highlighted in our further simula-

tions, F statistic does not take account of the endogeneity level, even if high values of

ρ clearly affects the finite sample distribution of the estimators (and associated test

statistics) in terms of bias as we see in expression (2.30). This arises even in case of
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homoskedastic disturbances (and instruments).

Further developments in First stage F

Extensions of first stage F methods are essentially developed in two areas: the for-

mer regards inference under heteroskedasticity (or autocorrelation) of the stochastic

component, the latter is related to F test in case of multiple endogenous regressors.

To overcome limitation of conventional screening, based on i.i.d. normal errors, some

tests and procedures have been proposed. Primarily,Kleibergen and Paap (2006) de-

velop a robust version of the Cragg–Donald statistic for unidentification in the case

of more endogenous regressors (m > 1). Recently, Olea and Pflueger (2013) criticize

the practice of comparing robust F statistic with conventional critical values. They

propose a non–robust F with no–integer degrees of freedom, only valid in case of one

endogenous regressor.

An F statistic in presence of multiple endogenous regressors is suggested by Angrist

and Pischke (2008): they propose a conditional F in order to evaluate the strength

of identification on each structural coefficient. The procedure essentially consists in

replacing (m − 1) endogenous variables with their reduced–form predictions, leading

back to the univariate case. Despite usefulness of this new F test, replacing partial

R2
f in well–known econometric software, they do not derive asymptotic theory and

proper critical values. Moreover, Sanderson and Windmeijer (2016) introduce a new

conditional F, correcting the proposal from Angrist and Pischke to have a proper

asymptotic distribution under the null hypothesis.

2.3 Finite samples evidences under weak instru-

ments

In this section an extensive Monte Carlo simulation is conducted in order to show the

behaviour of conventional inference under weak instrument asymptotics. The simula-

tion study has the main purpose to highlight the performance of IV/TSLS estimators

under different strength of instruments combined with several endogeneity levels. The

evaluation is conducted through some indicators recommended in the literature, to see

in which scenarios the distribution of estimators deviates from their limiting distribu-

tions. In this context Kolmogorov–Smirnov statistic, based on the maximal difference
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between CDFs, is proposed as a further goodness of fit indicator. We also consider

other κ−class estimators including LIML and two types of Fuller with c = 1, 4, sum-

marized in Section 2.1.4. Furthermore, non–normality of t–statistic under the null

hypothesis, generated by inconsistency of estimators, is presented through simula-

tion and graphic evaluation. Some evidences from the first stage tests and screening

methods are highlighted, especially considering high endogeneity and non–gaussian

disturbances.

First of all, we consider the just–identified case of one instruments–one regressor;

successively we generate models with more than one instrument, combining weak iden-

tification with non–standard conditions, as non–normally distributed Zt or (skewed)

disturbances, and accounting a slightly violation of exogeneity condition, defined in

Section 2.1.2.

2.3.1 Performance of estimators

The performances of IV/TSLS estimators under different degrees of identification

and (positive) increasing endogeneity levels are evaluated through the following mea-

sures: Median point estimates (Median), Median Absolute Deviation (MAD), Root

Mean Square Error (RMSE), Coverage rates (95%), Interdecile Range (IDR) and Kol-

mogorov Smirnov distance (KS). Some of these measures are also recommended in the

literature, e.g. in works of Hahn et al. (2004) and Flores-Lagunes (2007). In particular,

median point is reported to quantify distance from true value β, while MAD is con-

sidered a more robust measure of variability than standard error, especially in IV case

because it present lack of all moments generating extreme values in the simulation.

We also investigate non–normality of the standardized distribution of the κ class:

we present sampled moments of the Monte Carlo distribution of estimators, i.e.
{
β̃T,m

}M
m=1

,

as mean, median, variance, kurtosis and skewness. InterQuartile Range (IQR) and KS

distance are also reported.

Kolmogorov–Smirnov distance

In our simulation study KS distance is applied in order to measure the distance, in

finite samples, between empirical cumulative distribution function (Ecdf) of TSLS/IV

estimators and the gaussian Cdf. We follow the approach of Zhan (2017), computing

KS in a bootstrap perspective, and extend to the κ−class estimators. KS statistic
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could be written as follow:

KS = sup
−∞<c<+∞

∣∣∣P (β̃T ≤ c
)
− Φ(c)

∣∣∣ , (2.31)

where β̃T is the so called “non–studentized” statistic:

β̃T =
√
Tω−1

(
β̂T − β

)
. (2.32)

The quantity in (2.32) is standardized using the (true) value of asymptotic variance

ω2 = σ2
u(πQZZπ)−1, Φ(.) is the Cdf of standard normal distribution and KS ∈ (0, 1).

From a practical perspective, KS represents a measure of worst-case size distortion

of the standardized statistic using the critical values from the normal distribution.

First of all, KS increases with the level of endogeneity and the number of instruments,

which are desirable features in the evaluation of IV/TSLS bias. Secondly, for given

values of ρ and k, KS → 0, where the strength of instruments diverges i.e. µ2 →∞,

representing the limit case of strong instrument asymptotics. Low values of KS suggest

the usefulness of conventional TSLS/IV or κ−class inference, whereas, when KS in-

creases there is an evidence of sensitivity to weak instruments. Normality of t–statistics

associated to IV/TSLS and partially robust estimators may be also evaluated in the

same way. Finally this approach could be used also applied to compare performance

of overidentifying restriction tests under weak instruments.

2.3.2 Set up of Monte Carlo

The main design presents a single instrument, drawn from a standard normal i.e.

zt ∼ N(0, 1), and disturbances (ut, vt) sampled from a bivariate normal N2(0,Σ) with

the following covariance matrix:

Σ =

(
1 ρ

· 1

)
.

The number of replicated datasets is equal to M = 100000 and observations are

generated in the following way:yt = β · xt + ut

xt = zt(µT
−1/2) + vt,
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where π = µT−1/2 and the scalar parameter of interest β is set to 0. Three sample

sizes are considered: T = {100, 250, 1000} and estimation is conducted through IV

estimator, previously defined in (2.12). Positive endogeneity, expressed by ρ, varies

from low to high: ρ ∈ {0.25, 0.5, 0.75, 0.9}. Concentration parameter µ2, defined

in the (2.24), takes following values: µ2 ∈ {0, 1, 5, 10, 20, 40, 60, 100}, where µ2 = 0

corresponds to a completely irrelevant instrument, and µ2 = 100 represents strong

correlation between zt and xt. Therefore, different values of the scalar parameter

π = π(T ) = µT−1/2 are generated under weak instrument asymptotics. These values

imply standard errors of the IV estimator, becoming:
√
σ2
u/(µ

2T−1). Clearly, this

quantity does not exist in the unidentified case of π = 0.

When instruments are more than one, the relevance is measured by the averaged

concentration parameter µ2/k. In this case the elements of the vector π = (π1, . . . , πk)
′

are modeled in the following way:

πj =

√
µ2

k · T
, where j = {1, . . . , k} .

An equivalent strategy consists in setting π1 =
√
µ2 and then πj = 0 for j = 2, . . . , k.

The number of considered instruments is k = {3, 5}, corresponding to a moderate

degree of overidentification, in order to avoid the so called many instruments problem

(Bekker, 1994). The Zt’s are drawn from a multivariate normal distribution Nk(0, Ik)

where Ik is an identity k × k matrix and k = 3, 5. Then, the second equation of

the system becomes xt = Ztπ + vt. Strength of instruments µ2/k takes values in

{0, 1, 5, 10, 20, 40, 60, 100}, where again µ2/k = 0 represents a situation of totally ir-

relevant instruments.

We further consider LIML and Fuller estimators, introduced in subsection 2.1.4,

to analyze their performance in finite samples under weak instruments asymptotics

and overidentification. The constant c for Fuller estimator is set equal to c = {1, 4}.
In order to observe the sensitivity of IV/TSLS and other κ−class estimators to non–

normality of stochastic component, we also generate disturbances from a multivariate t

distribution with covariance matrix equal to Σ, previously defined, using the following

degrees of freedom: DF = {2, 6, 12}.
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Non standard conditions and invalid instrument

In simulation study we consider a particular scenario whose validity condition is vio-

lated due to the presence of weakly endogenous instruments, which seems more realistic

in practice. This means that we introduce a correlation between the instrument and

structural disturbances. Recalling the just identified case, under a weakly endogenous

instrument the system in (2.2, 2.3) can be expressed ad follows:

y = xβ + e

x = πz + v

e = γz + u, (2.33)

where e in (2.33) is constructed to ensure a non zero correlation between instrument

and structural disturbances (of second stage). Moreover, the estimation error becomes:

β̂IVT − β = (z′x)−1z′e.

The parameter γ = φ/
√
T , where φ is a fixed constant, is modeled local to zero as

the sample size increases. When φ = 0, then γ = 0 and instruments are completely

exogenous, as required in assumption of section 2.1.2. This type of modeling, intro-

duced by Conley et al. (2012), which may be called weakly endogenous instrument

asymptotics, will not be formally discussed because our main interest is focused on

the performance of estimators and tests under a mutual failure in the basic assumpi-

ons. Different φ = {0.1, 0.5, 1} are chosen to observe the behaviour of IV estimator

and its associated t/Wald statistic, depending on γ and π, under weakly endogenous

(and weak) instrument. In fact, the asymptotic expected value of β̂IV is equal to φ/π.

First stage and t–statistic

Another purpose is to quantify bias of IV/TSLS with respect to the degree of iden-

tification and level of endogeneity, comparing performances of first stage F tests and

first stage R squared, denoted as R2
f . We report population bias of IV/TSLS, ex-

pressed in (2.30), and its estimates, the estimation of (possibly average) concentration

parameter, obtained as µ̂2/k = F − 1, and finally the median of F statistics. We

also compute mean and median of the first stage R2
f across M = 100000 replications.

Proportion of F greater than 10, i.e. the empirical threshold proposed by Staiger and
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Stock (1997), is reported, together with the frequency of F statistic greater than the

following thresholds: {16.4, 10.83}, representing the critical values provided by Stock

and Yogo (2005) when k = 1, 5, based on size distortion of t/Wald test (IV case) and

on the relative bias of TSLS against OLS (k = 5). In particular, according to Stock

et al. (2002), these values ensure that relative bias of TSLS with respect to OLS is

less than the ten percent, under the assumption of normally distributed stochastic

components. Furthermore, we consider DGP with multivariate t disturbances with six

degrees of freedom.

Finally, we analyze performance of t–statistic for the null hypothesis of H0 : β = β0

associated to κ−class estimators (TSLS, LIML and two types of Fuller) under different

degrees of endogeneity and when instruments are weakly endogenous, using DGP of

2.33, both in just–identified case and considering more than one instrument, setting

everywhere β0 = 0.

2.3.3 Main results of the simulation

Just identified case (IV)

In all of Tables we use bold to emphasize worst results and red colour to highlight the

best performance according to selected indicators. Tables 2.1 and 2.2 show the main

results of IV estimator: when k = 1 and the instrument is totally irrelevant, median of

β̂IVT is practically equal to ρ; this appears because plim(β̂IVT −β) = plim(β̂OLST ) = ρ in

our setting. In terms of Median point estimates, IV performs well; its median across

M generated samples is practically equal to zero for all µ2 > 1. MAE and RMSE

decrease very fast with the strength of instrument. However, RMSE reaches very huge

values even if µ2 = 10, especially in small samples (T = 100), due to the no–moment

problem of IV estimator, combined with weak identification. Ouysse (2011) suggests

to apply the “adjusted” RMSE in this situation, excluding the first and the last 5%

of the observation. Coverage rates are often nearly to one under low endogeneity and

weak instrument. Nonetheless, when ρ > 0.5, they could be very lower than 0.95 when

instrument is poorly correlated with the endogenous regressor.

When the DGP allows to include weakly endogeneity of instruments, the asymp-

totic distribution is centered on the (wrong) value φ/π, and rapidely tends to infinity in

the unidentified case (µ2 = π = 0). These results are presented in Tables 2.7 and 2.8.

When φ = 0.1, i.e. low endogeneity of instrument, IV estimator performs well in terms
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of Median, MAE, Coverage rates and KS, especially when ρ ≤ 0.75. However, under

high endogeneity of instruments (φ = 1), confidence intervals are severely understated

in terms of coverage rates even if the instrument is highly correlated with endogenous

regressor. Thus, KS statistic reflects the fact that distributions are centered on the

wrong value β + φ/π. In this case, KS values are approximately greater than 0.3 for

all considered scenarios.

Figure 2.1 shows the empirical density and Ecdf of standardized IV estimators

under different degrees of identification, where red line represents the standard gaus-

sian distribution. Furthermore, Figure 2.2 contains results about two identification

scenarios. To summarize, high endogeneity combined with weak instruments and no

moment problem could exacerbate non–normality of IV estimator.

Overidentified case

When the number of instruments increases, bias of TSLS may be severe even if the

population level of identification is not deemed weak according to F > 10 rule of

thumb. In particular, considering the case of ρ = 0.9 and µ2/k ≤ 20, confidence

intervals appear seriously understated. In fact, when µ2/k = 20, we observe that may

be very far from the nominal level, as described in Tables 2.3 and 2.4, where it is also

noticeable that median increases with respect to IV case, at the same level of µ2/k,

due to the overidentification.

Figure 2.3 shows empirical density of standardized TSLS estimator with ρ = 0.9,

while in figure 2.4 we plot empirical densities of TSLS under weak and strong instru-

ments scenarios for different degrees of endogeneity . When ρ takes high values, the

empirical densities are far from standard normal even if µ2/k = 10, similarly to IV

case. Regarding other κ−class estimators, Fuller with c = 1 performs well in terms of

coverage rates, reaching the 1 − α level even if µ2 = 10 for each level of endogeneity.

Moreover, it presents lower values for KS in case of k = 5 instruments, as shown in

Table 2.6, while LIML (Table 2.5) also performs well, especially regarding Median

point estimates, resulting less sensitive to the degree of endogeneity than TSLS and

Fuller. This fact confirms that LIML results median unbiased when instruments are

not irrelevant or very weak (µ2/k = 1). Finite sample behaviour of LIML and Fuller

under different µ2/k and ρ could be visualized in Figures 2.5, 2.6 2.7, and 2.8.
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Hypothesis testing

When inference is conducted through conventional t/Wald test, associated to a κ−class

estimator, the distribution of t-statistic under the null hypothesis could be non–normal

in finite samples under weak or irrelevant instruments. Figure 2.9 presents asymptotic

distribution of t–statistic (under the null hypothesis) when ρ = 0.5 (left panel) and

ρ = 0.9 (right panel) for IV (k = 1) and TSLS estimator considering five instruments.

These distributions are very different from standard normal even if µ2 = 10, under

high endogeneity, and substantially skewed presenting heavy tail on the right. In

Figure 2.11 we clearly notice that t/Wald statistics associated to LIML and Fuller

estimators are closer to standard normal when µ2 = 10, exhibiting non–normality

and skewness when instruments are very weak or irrelevant (µ2/k ≈ 0). Nevertheless,

LIML estimator seems to be more robust to the level of endogeneity (ρ), expecially

when instruments are collectively considered not too weak (µ2/k = 10).

Table 2.12 shows the empirical size of t–Wald test associated to κ−class estima-

tor under (jointly) normal disturbances and two different sample sizes, while OLS is

considered as a worst case benchmark. The number of instruments is equal to 5 and

sample size is equal to T = 100, 1000. Wald/t test associated to LIML estimator

presents the best performance; TSLS case is again severely oversize in finite samples,

especially under high endogeneity. Under jointly normal disturbances, Fuller with

c = 1 outperforms that with c = 4, performing very poor under irrelevant and very

weak instruments. Moreover, weakly endogeneity of instruments could dramatically

affect performance empirical size, as viewed in Table 2.13. Under very low endogene-

ity of instruments, i.e. φ = 0.1, LIML outperforms other estimators, while moderate

endogeneity (φ = 1) deteriorates rejection frequency for all considered methods. Fur-

thermore, Figure 2.12 shows rejection frequency of t/Wald test for the just–identified

case under different possible endogeneity levels; when instruments are weakly invalid

(φ = 0.1), rejection frequencies are close to the case of valid instruments for each iden-

tification level. When high invalidity arises, the test over–rejects too often, especially

when φ = 1.

Regarding first stage evidences and bias of TSLS under normal disturbances, pre-

sented in Table 2.14, we firstly notice that estimated bias (of IV/TSLS) is close to

theoretical value even if instruments are not too strong, especially in the TSLS case.

We also observe that both F > 10 rule of thumb and F test using critical values from

Stock and Yogo perform better when k = 5. However, if k = 1 and ρ = 0.9, F test
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seems not to capture the presence of a large bias in the finite sample distribution of

the estimator, occurring even if µ2 = 10. When disturbances are generated from a

multivariate t with 6 degrees of freedom, estimated bias could be different from its

approximated theoretical counterpart, as highlighted in Table 2.15, first stage R2 is

lower than that obtained under normal errors for every identification level, and also

µ̂2 = E(F ) − 1 sistematically underestimates population µ2. To summarize, F tests

loses power even under moderately strong instruments under skewed and non–normal

disturbances. In these cases is not trivial to recognize the true correlation between the

instruments and endogenous regressor estimating the strength of instruments.

Finally, we compare rejection frequency First stage F rules under non–standard

conditions applying different data generating processes. Figure 2.13 shows rejection

frequency of both F > 10 test and F > 16.4 empirical power under weak instrument

asymptotics with k = 1 and four different DGPs, including logNormal instrument and

disturbances coming from a multivariate t with two and six degrees of freedom. To

summarize, when disturbances are generated through a multivariate t with 2 degrees of

freedom, the test presents very low power even under very strong instrument (µ2 = 60).

2.4 Bootstrap methods in instrumental variables

In this section, several bootstraps in linear instrumental variable are discussed and re-

viewed; different methods may be applied with respect to a specific inference of interest.

A first possible application regards bias–adjustment of IV/TSLS estimators through

bootstrap–based bias corretion. The basic idea is to estimate the bias of IV or κ−class

estimators using the average (or possibly the median) of B bootstrap replications as

a proxy for the expected value. The method is introduced in Hsu et al. (1986), and

successively studied by Flores-Lagunes (2007) under the combination of weak instru-

ments, high endogeneity and moderate degree of overidentification. Flores-Lagunes

(2007) finds that bootstrap–based bias corrected version of some κ−class estimators,

such as LIML and Fuller, may presents better performance than conventional IV/T-

SLS. Therefore, simulation study highlights critical issues in obtaining realiable point

estimates under weak identification, especially combined with a moderate amount of

instruments (k = 30) and high degrees of endogeneity. In the same context Ouysse

(2013) applies two types of double bootstrap as a bias correction device, finding bet-

ter performances by iterating the bootstrap or considering the method introduced by
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Davidson and MacKinnon (2007). However, issues regarding bootstrap–based bias–

correction are confirmed, especially when instruments are collectively weak, applying

conventional TSLS. From a theoretical point of view, Chau (2014) proves the equiva-

lence of indirect inference (II) and bootstrap–based bias correction of κ−class estima-

tors.

Another topic of interest regards bootstrap methods in hypothesis testing. When

inference is conducted through conventional t/Wald test, Moreira et al. (2009) prove

invalidity of bootstrap under irrelevant instruments, meaning that the rejection proba-

bility under the null hypothesis does not tend to nominal level of the test as the sample

size increases. Main issue is substantially related to non–pivotality of t/Wald statistic

under weak or irrelevant instruments. Practically speaking it does not converge, in

a bootstrap sense, to a free parameters distribution. To overcome these limitation,

Davidson and MacKinnon (2008) propose two new types of residual–based bootstrap:

the former is based on a consistent estimator of π introduced by Kleibergen (2002),

while the latter essentially involves a bias correction on the estimated concentration pa-

rameter µ̂2. These methods are also considered in the context of Sargan-type statistics

(Davidson and Mackinnon, 2015), and bootstrapped confidence sets may be obtained

inverting non–robust and robust tests (Davidson and MacKinnon, 2014).

Furthermore, bootstrap methods may be applied in the context of instruments

selection; Wang et al. (2015) propose bootstrap approximation of mean square er-

ror (BMSE) using the analytical bias in order to choose the number of instrumental

variables, while Inoue (2006) considers coverages errors estimated via bootstrap.

In the next paragraphs we discuss some parametric, semi–parametric and non–

parametric bootstrap methods in IV linear models, summarizing some recent advances

in hypothesis testing under weak instruments. Detailed algorithms of some methods

are reported in the Appendix.

2.4.1 Parametric bootstrap

Parametric bootstrap method rely on the (possibly strictly) hypothesis of normally

distributed and homoskedastic disturbances. In this case, the quantities (u?t , v
?
t ) are

based on variance of the residuals and drawn from the following distribution:(
u?t

v?t

)
∼ NID

(
0,

[
σ̂2
u σ̂uv

σ̂uv σ̂2
u

])
.
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Given (u?t , v
?
t ), the bootstrap data D?

T = (y?t , x
?
t ) are rebuilt in the following way:

y? = x?β̂T + u? (2.34)

x? = Zπ̂t + v?. (2.35)

Considering quantities constructed in (2.34, 2.35), the parametric bootstrapped TSLS

estimator becomes:

β̂TSLS?T = (x?′PZx?)(x?′PZy?)

= β̂TSLST + (x?′PZx?)(x?′PZu?),

while IV bootstrap counterpart is:

β̂IV ?T = (z′x?)−1z′y? =

∑T
t=1 zty

?
t∑T

t=1 ztx
?
t

= β̂IVT +

∑T
t=1 ztu

?
t∑T

t=1 ztx
?
t

.

Furthermore, it may be possible to assume jointly normality of disturbances and

instruments resampling the zt. For example in IV case z?t ∼ N(0, σ̂2
z), assuming

E?(ztut) = E?(ztvt) = 0.

Another parametric bootstrap is the fixed regressor i.i.d. method, in which all

regressors (from both first and second stage) take their original values in the bootstrap

DGP, assuming normality of structural disturbances. So, considering the just identfied

case where u?t ∼ N(0, σ̂2
v) and yt = π̂Txt + u?t , the IV estimator takes the following

form:

β̂IV ?T =

∑T
t=1 zty

?
t∑T

t=1 ztxt
= β̂IVT +

∑T
t=1 ztu

?
t∑T

t=1 ztxt
.

However, this method is discouraged in IV framework because it does not involve

quantities coming from first stage that are affected by the strength of the instruments.

Furthermore, illustrated parametric methods are not recommended if the joint nor-

mality of the stochastic components is not guarantee, or safely rejected.
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2.4.2 Non parametric method: Pair bootstrap

The first bootstrap method applied in IV setting is the pair (also called paris or

pairwaise) bootstrap, introduced by Freedman (1984). This method essentially in-

volves the sampling of endogenous and exogenous variables, i.e. the rows of matrix:

(y,x,Z) = (yt, xt, Zk,t)
T
t=1. Then, the bootstrap counterpart of TSLS estimator in

(2.9) takes the following form:

β̂TSLS∗T = (x∗′PZ∗x
∗)
−1

x∗′PZ∗y
∗, (2.36)

where PZ∗ = Z∗(Z∗′Z∗)−1Z∗′. In the just identified case, given the resampled observa-

tion of the original data (y∗t , x
∗
t , z
∗
t )
′, the bootstrap estimators becomes:

β̂IV ∗T = (z∗′x)
−1

z∗′y =

∑T
t=1 z

∗
t y
∗
t∑T

t=1 z
∗
t x
∗
t

. (2.37)

As pointed out by Freedman et al. (1984), Flores-Lagunes (2007) and Wang et al.

(2015), this method could be slightly modified to avoid some issues. Basically, the

pair bootstrap does not guarantee orthogonality between the TSLS residuals, ût =

yt − β̂TSLST xt, and instruments Zt in the bootstrap world, i.e. E∗(u∗t , Zt) could be

different from zero. For this purpose, the vector of modified residuals ũ = MZû,

where MZ = I − PZ , is implemented in the resampling scheme, by using the matrix

Wk,i = (ũ,x,Z) = (ũt, xt, Zk,t)
T
t=1 to obtain (ũ∗t , x

∗
t , Z

∗
t ). The outcome variable could

be reconstructed in the bootstrap world as ỹ∗t = β̂Tx
∗
t + ũ∗t . Finally, the new bootstrap

TSLS estimator is:

β̂∗T = (x∗′PZ∗x
∗)
−1

x∗′PZ∗ỹ
∗, (2.38)

while in the perfectly identified case the bootstrap counterpart of IV estimator is:

β̂IV ∗T = (z∗′x∗)−1 z∗′ỹ∗.

2.4.3 Semi–parametric method: Residual bootstrap

A more efficient approach is represented by residual bootstrap. This method is semi–

parametric and requires assumptions of homoskedasticity and incorrelation of the

stochastic components, without specifying a probability law but resampling residu-

als from its empirical (cumulative) distribution function (EDF). The first method is
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called unrestricted residual bootstrap (Davidson and MacKinnon, 2010) and consists

in resampling residuals coming from the estimated model, defined as follows:

û = y − β̂Tx

v̂ = x− Zπ̂T , (2.39)

where β̂T = β̂
IV/TSLS
T is the TSLS or IV estimates and π̂T = π̂OLST is the OLS estimates

for π in the first (stage) equation1. The quantities in (2.39) are recentered to be (ũt, ṽt)

with zero mean and orthogonal to the instruments. The disturbances2 for bootstrap

DGP are sampled from the following joint empirical distribution function:(
u∗t

v∗t

)
∼ EDF

[
ũt

ṽt

]
.

Given new resampled disturbances, bootstrap DGP may be written in the following

way:

y∗ = x∗β̂T + u∗

x∗ = Zπ̂T + v∗. (2.40)

Finally, the bootstrap counterpart of the TSLS estimator is computed as follows:

β̂TSLS∗T = (x∗′PZx∗)
−1

(x∗′PZy∗)

=
[
x∗′Z(Z′Z)−1Z′x∗

]−1 [
x∗′Z(Z′Z)−1Z′y∗

]
. (2.41)

In the perfectly identified case, given ŷ∗t = x∗t π̂T + u∗t and x∗t = ztπ̂T + v∗t , where

(u∗t , v
∗
t )
′ ∼ EDF (v̂t, ût)

′, the bootstrap estimator in (2.41) is reduced to:

β̂IV ∗T = (z′x∗)−1z′y∗ =

∑T
t=1 zty

∗
t∑T

t=1 ztx
∗
t

. (2.42)

1We point out the difference between resampled residuals, denoted as u∗ and v∗, from quantities
of Section 2.4.1 indicated with u? and v?, coming from a specific probability law.

2Davidson and MacKinnon (2008) suggest to multiply residuals vt by a factor equal to (T/(T −
k))1/2.
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Resampled instruments

In residual–based bootstrap, instruments Z can be assumed as fixed, as previously

shown, or stochastic. The latter assumption requires the resampling of instrumental

variables in the bootstrap DGP, as proposed for example in work of Moreira et al.

(2009). In this case, the vector Z may be substituted with Z∗.; then the second

equation of (2.39) becomes:

x∗ = Z∗π̂T + v∗, (2.43)

and bootstrapped TSLS estimator in (2.41), using (2.43), modifies to:

β̂TSLS∗T = (x∗′PZ∗x
∗)−1 (x∗′PZ∗y

∗) , (2.44)

where PZ∗ = Z∗(Z∗′Z∗)−1Z∗′. Moreover, in the just identified case the expression in

(2.43) is simplified to x∗t = π̂T z
∗
t + v∗T , and bootstrap counterpart IV estimator, with

resampling instrument, may be written as:

β̂IV ∗T = (z∗′x∗)−1z∗′y∗ =

∑T
t=1 z

∗
t y
∗
t∑T

t=1 z
∗
t x
∗
t

. (2.45)

Davidson and MacKinnon (2010) include this method in the pairwise–type bootstraps,

because it involves resampling of instruments and projections of endogenous variables,

e.g. (u∗t , v
∗
t , Z

∗
t ). Nevertheless, we denote it as residual bootstrap with resampled

instruments.

Therefore, it may be useful to remark that IV and OLS residuals have 0 mean if a

constant term is included in the model, in both equations. In this case the recentering

of residuals is not necessary and basically (ût, v̂t)
′ = (ût, v̂t)

′

Hypothesis Testing

The previous methods may be straightforward adapted to hypothesis testing, without

imposing the null in the bootstrap DGP. A first application regards bootstrap counter-

part of t/Wald statistic for testing the null hypothesis H0 : β = β0; the test statistics

takes the following form:

τ ∗T =
β̂∗t − β̂T
ω̃∗T/
√
T

, (2.46)
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where ω̂∗/
√
T is the bootstrap counterpart of ω̂/

√
T , i.e. the standard error of β̂T . The

associated bootstrap p–value is based on the assumptions that limiting distribution

of τ ∗T , i.e. τ∞ is symmetric, and could be computed as the proportion of bootstrap

statistics greater than the estimated one:

p∗ = B−1
B∑
b=1

(
∣∣τ ∗T,b∣∣ ≥ |τT |). (2.47)

Given the expression in (2.47), the null hypothesis is safely rejected if p∗ ≤ α, where

α is the I type error level, for example α = 0.05 or α = 0.01.

However, different methods are developed imposing the null hypothesis in the boot-

strap DGP. In order to test null ofH0 : β = 0 in TSLS estimation, the bootstrap sample

could be constructed, imposing β = β0, as follows:

û(β0) = y − β0 · x (2.48)

v̂ = x− Zπ̂T ,

where û(β0) is the vector of residuals from the structural equation, induced by imposing

the null hypothesis. Hence, Bootstrap DGP is constructed using sampled residuals

from: (
u∗t

v∗t

)
∼ EDF

[
ũ(β0)t

ṽt

]
,

and bootstrapped data:

x∗t = Ztπ̂T + v∗t (2.49)

y∗t = β0xt + u∗t . (2.50)

Finally, the bootstrap counterpart of t–statistic is computed in the following way:

τ ∗T =
√
T

(β̂∗T (β0)− β0)
ω̂∗(β0)

(2.51)

where β̂∗T (β0) and its standard error ω̂∗(β0)T
−1/2 are estimated through IV/TSLS 3

using quantities in (2.49) and (2.50). This method is also called restricted residual

bootstrap.

3Or another κ−class estimator
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Heteroskedasticity

Among the previoulsy introduced methods, only the pair bootstrap is considered valid

even if the disturbances are not (jointly) homoskedastic. Nevertheless, residual–based

techniques could be modified to take account of an heteroskedasticity of unknown form

using the so called “wild” residuals, introduced by Wu (1986). The method, named

Wild bootstrap, is based on a transformation of the disturbances which consists in

multiplying them by a random variable with zero mean and variance equal to unit.

Considering the residuals in (2.39), the method involves resampling from:(
u∗wt

v∗wt

)
∼ EDF

[
ũtξt

ṽtξt

]
,

where the auxiliary random variable ξt has the following properties: E(ξt) = 0 and

V (ξt) = 1. Common choices for are the Mammen distribution (Mammen, 1993) and

the Rademacher distribution: ξt ∈ {−1, 1} where P (ξt = −1) = P (ξt = 1) = 1/2.

Finally, bootstrap data are reconstructed using the new (u∗wt v∗wt )′ instead of (u∗t , v
∗
t )
′,

for example using the same syste viewed in the system (2.40). This method may be

straightforward applied in hypothesis testing.

2.4.4 Recent improvements in bootstrap methods

Davidson and MacKinnon (2008) introduce new residual–based bootstrap methods

producing better performance, with respect to conventional (parametric and non–

parametric) methods, under weak instruments and certain degree of overidentification

(they consider 11 instrumental variables). The basic idea regards issue related to

inefficiency of OLS estimator for π when instruments are collectively weak; to overcome

this problem they apply a more efficient estimator for π̃T , introduced by Kleibergen

(2002). In the so–called Unrestricted (residual) Efficient bootstrap the equation in

(2.3) becomes:

x = Zπ + δû + ε, (2.52)

where ε is the T × 1 vector of the errors, δ is a scalar parameter and û is the vector

containing residuals, computed using β̂TSLST in IV regression. Following expression

(2.52), OLS estimates are π̃ and δ̃, and then the residuals implemented in the bootstrap
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procedures are:

ṽur = x− Zπ̃, (2.53)

and corresponds to the OLS residual augmented by the quantity δ̂û. Using procedure

described in (2.52) and residuals in (2.53), estimator of the parameters β,π is asymp-

totically equivalent to Three Stage Least Squares (3SLS) if β is estimated through

TSLS4. With the procedure described in (2.52), pairs of resampled residuals are the

following: (
u∗t

v∗t

)
∼ EDF

(
ũt

ṽurt

)
. (2.54)

If the null hypothesis is imposed, i.e. β = β0, the system becomes:

y = xβ0 + u

x = Zπ + δû(β0) + ε, (2.55)

This method is called restricted (residual) efficient bootstrap (RE), and the expression

for the τ ∗T is equal to the (2.51). If β0 = 0, then û(β0) reduced to δMZy, and ṽ is

equal to OLS residuals.

Finally summarize some recent advances in this topic. In the context of clustered–

robust inference, Finlay and Magnusson (2014) propose a wild cluster constrained

residual–based bootstrap, which outperforms other resampling methods in hypothesis

testing under clustered disturbances, even if instruments are weak. Moreover, Wang

and Kaffo (2016) demostrate the invalidity of residual efficient bootstrap under many

instruments asymptotics for TSLS and LIML estimator. They modifies this algo-

rithm in order to obtain validity bootstrapping LIML and Fuller estimators under the

many instruments sequence. Finally, Doko Tchatoka (2015) demonstrates the validity

of bootstrap in the context of DWH (Durbin–Wu–Hausman) endogeneity tests even

under weak or irrelevant instruments.

2.5 Concluding Remarks

In this chapter we review instrumental variable estimation under weak instrument

asymptotics. IV/TSLS and other estimators, nested in the so called κ−class, are

4If LIML is used instead of TSLS, estimator is asymptotically equivalent to the so called Full
Information Maximum Likelihood (FIML)
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typically used to obtain structural coefficient associated to an endogenous regres-

sor, considering a fixed number of instrumental variables equal to k. Conventional

asymptotic approximation works if validity of instruments, including exogeneity and

relevance conditions, holds. Under weak instrument asymptotics, estimators are no

longer consistent and, in particular, normality of IV/TSLS (but also of other κ−class

estimators) is reflected in their finite samples properties. Furthermore, inference con-

ducted through conventional t/Wald test, under null hypothesis H0 : β = β0, leads to

misleading results. In particular, rejections frequencies of Wald test are too high when

poorly relevant instruments are combined with moderate and high endogeneity. More-

over, first stage F test for detecting weak instruments could presents very low power

in non normal homoskedastic cases, especially when the disturbances are joitly drawn

from a multivariate non–gaussian distribution. The effect of weak identification can

also be combined with high endogeneity and overidentification, affecting finite sample

bias.

Since Monte Carlo simulation of κ−class estimators are computationally straigth-

forward, we argue the usage of KS distance to evaluate performance in the context of IV

and GMM estimators under weak/invalid instruments and non–standard conditions.

This quantity could be helpful to quantify severity of non–normality under different

DGPs. Our results confirm that LIML presents good performance in terms of median

point and coverage rates, especially under homoskedastic and normally distributed

disturbances. However, when instrumens are too weak it presents huge variance and

unreliable standard errors.

We also discuss bootstrap methods in IV estimation: they could be parametric,

non–parametric and semi–parametric. Former methods require strictly assumptions

on the distribution of disturbances (e.g. joint normality), while semi–parametric and

non–parametric bootstrap are based on the resampling from empirical distribution

of the stochastic components or variables (pair bootstra casep). Semi–parametric

methods refer to bootstrap DGP including estimates from both first and second stage.

Some of these methods are valid even in presence of heteroskedasticity (Wild and Pair)

of unknown form, while others (Residual Efficient) are able to improve performance

of tests imposing the null in bootstrap DGPs.
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2.6 Appendix

Weak instrument asymptotics

Just identified case

In the just–identified case, the first stage parameter π = π(T ) = c · T−1/2 while the

variance of instrument is equal to Qzz = σ2
z . The distribution of π̂OLST under weak

instrument asymptotics is the following:

π̂OLST = (z′z)−1z′x = π + (z′z)−1z′v

= π +

∑T
t=1 ztvt∑T
t=1 z

2
t

=
c√
T

+

∑T
t=1 ztvt∑T
t=1 z

2
t

;

√
T π̂T = c+

√
T

∑T
t=1 ztvt∑T
t=1 z

2
t

= c+

∑T
t=1 ztvt/

√
T∑T

t=1 z
2
t /T

d→ N

(
c,
σ2
v

σ2
z

)
.

Moreover, the asymptotic distribution of β̂IVT under a single weak instrument becomes:

β̂IVT − β =
T−1

∑T
t=1 ztut

T−1
∑T

t=1 ztxt
=

T−1
∑T

t=1 ztut

T−1
∑T

t=1 zt(c/
√
Tzt + vt)

=
T−1

∑T
t=1 ztut

T−1/2c
∑T

t=1 z
2
t + T−1

∑T
t=1 ztvt

d→ wzu
(cσ2

z + wzv)
.

We recall that under this nesting β̂IVT is a non–normally distributed if c <∞. Hence,

this distribution may be rewritten as follows:

wzu
(cσ2

z + wzv)
=

N(0, σ2
zσ

2
u)

cσ2
z +N(0, σ2

zσ
2
v)

=
σ2
zσ

2
uN(0, 1)

cσ2
z + σ2

zσ
2
uN(0, 1)

=
N(0, σ2

u)

c+N(0, σ2
v)

.

Assuming σz = 1 and c2 = µ2, previous expression can be simplified to:

β̂IVT − β
d→ wzu

(µ+ wzv)
=

N(0, σ2
u)

µ+N(0, σ2
v)

.
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In special unidentified case where c = µ = π = 0, IV estimator converges to:

β̂IVT − β
d→ wzu
wzv

=
N(0, σ2

u)

N(0, σ2
v)

.

Overidentified Case

When k > 1 the vector of first stage (nuisance) paremeters π0 = C/
√

(T ). Again,

OLS estimator converges as T →∞ to the following expression:

π̂OLST = (Z′Z)−1Z′x = π0 + (Z′Z)−1Z′v

= T−1/2C + (Z′Z)−1Z′v
√
T (π̂T ) =

√
T
(
T−1/2C + (Z′Z)−1Z′v

)
= C +

√
T
[
(Z′Z)−1Z′v

]
= C +

[
(Z′Z)−1

T

Z′v√
T

]
d→ Nk(C, σ

2
vQ
−1
ZZ).

Furthermore, the TSLS estimator β̂TSLST is:

β̂TSLST = (x′PZx)
−1

(x′PZy)

=
[
x′Z(Z′Z)−1Z′x

]−1 [
x′Z(Z′Z)−1Z′y

]
= β + (x′PZx)

−1
(x′PZu) , (2.56)

where denominator of expression (2.56) may be rewritten as:

x′PZx = (x′Z)(Z′Z)−1(Z′x)

= (Zπ0 + v)′Z(Z′Z)−1Z′(Zπ0 + v)

=

(
(Zπ0 + v)′Z√

T

)(
Z′Z

T

)−1(
Z′(Zπ0 + v)√

T

)
d→ (QZZC +WZv)

′Q−1ZZ(QZZC +WZv).
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Finally, numerator of (2.56) is:

x′PZu = (x′Z)(Z′Z)−1(Z′u) =
(x′Z)√
T

(Z′Z)−1

T

(Z′u)√
T

=
(Zπ0 + v)′Z√

T

(Z′Z)−1

T

Z′u√
T

=
(Zπ0 + v)′Z√

T

(Z′Z)−1

T

Z′u√
T

=

(
Z′Z

T
C +

v′Z√
T

)
(Z′Z)−1

T

Z′u√
T

d→ (QZZC +WZv)
′Q−1ZZWZu.

Under special case of irrelevant instruments, i.e. π0 = 0 = µ2 = 0, the distribution of

TSLS becomes:

βTSLS − β d→ W ′
ZvWZu

W ′
ZvWZu

=
WZu

WZv

.

Concentration parameter under strong and weak instruments

Under strong instrument asymptotics π = π0, the concentration parameter µ2 p→ ∞
as T →∞. For the IV case with π = π0 the following asymptotic result holds:

µ2 = T · σ
2
zπ

2
0

σ2
v

p→∞.

When k > 1 under strong instrument asymptotics, π = π0, we have:

µ2 = T · π0
′QZZπ0

σ2
v

p→∞.

To summarize, µ2 = Op(T ) in both cases. Nevertheless, under weak instrument asymp-

totics, i.e. π0 = CT−1/2, the concentration parameter converges to a constant as

T →∞:

µ2 =
π0
′Z′Zπ0

Tkσ2
v

p→ C ′QZZC

kσ2
v

.

This expression is simplified in the just–identified case:

µ2 =
π2σ2

z

σ2
v

p→ c2σz
σ2
v

.



2.6. APPENDIX 42

An R code to simulate TSLS and other κ−class estimators

Here we present the R code (R Core Team, 2016) to simulate the asymptotic distri-

bution of IV/TSLS, κ−class estimators and their associated t–statistics (under the

null hypothesis) under weak instruments asymptotics. The DGP presents jointly nor-

mally distributed and valid instruments, as indicated in Section 2.3.2. The output

of the function written above includes the simulated standardized distribution of four

κ−class estimators, i.e. TSLS, LIML, Fuller(1) and Fuller(4), and related t–statistics.

We use the following R packages: MASS for the multi–normal distribution, AER for

the estimation of IV/TSLS and ivmodel for other κ−class estimators.

l i b r a r y (MASS) ; l i b r a r y (AER) ; l i b r a r y ( ivmodel )

kc l a s s<−f unc t i on (M, t , mu2 , rho , k , beta ){
# I n i z i a l i z e e s t imato r s and standard e r r o r s

t s l s<−numeric ( ) ; f u l l e r <−numeric ( ) ; l iml<−numeric ( )

f u l l e r 4<−numeric ( ) ; s d f u l l 4<−numeric ( )

sdt<−numeric ( ) ; sd l im l<−numeric ( ) ; s d f u l l <−numeric ( )

I <− diag (1 , k )

## Covariance matrix f o r the d i s tu rbance s

Sigma<−matrix ( c (1 , rho , rho , 1 ) , 2 , 2 )

i k=matrix (1 , nrow=k , nco l =1);

## Weak instrument asymptot ics and u n i d e n t i f i c a t i o n

i f (mu2==0) pi<−i k ∗0 e l s e pi<−i k%∗%s q r t (mu2)/ s q r t ( t )

i f (mu2==0) sqad<−NA e l s e sqad<−s q r t ( s o l v e ( t ( p i)%∗%pi )/ ( t ) )

f o r ( i in 1 :M){
uv <− mvrnorm( t , c ( 0 , 0 ) , Sigma )

u<−uv [ , 1 ] ; v<−uv [ , 2 ] ;

## DGP:

z <− mvrnorm( t , rep (0 , k ) , I )

x <−z%∗%pi+v ;

y <−beta∗x+u

## Estimation :

iv<−i v r e g ( y˜x | z )

t s l s [ i ] <−i v $ c o e f [ 2 ]

l i m l [ i ]<−suppressWarnings ( ivmodel (y , x , z ) $LIML$point . e s t )
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f u l l e r [ i ]<−suppressWarnings ( ivmodel (y , x , z ) $Fu l l e r $po in t . e s t )

f u l l e r 4 [ i ]<−suppressWarnings ( F u l l e r ( ivmodel (y , x , z ) , b=4) $point . e s t )

o l s<−lm( x˜z ) $ c o e f f i c i e n t s [ 2 : ( k+1)]

sdt [ i ]<−summary( iv ) $ c o e f f i c i e n t s [ 2 , 2 ]

s d l i m l [ i ]<−suppressWarnings ( ivmodel (y , x , z ) $LIML$std . e r r )

s d f u l l [ i ]<−suppressWarnings ( ivmodel (y , x , z ) $Fu l l e r $ s td . e r r )

s d f u l l 4 [ i ]<−suppressWarnings ( F u l l e r ( ivmodel (y , x , z ) , b=4) $std . e r r )

}
t s l s s t <−( t s l s−beta )/ as . numeric ( sqad ) ;

l i m l s t <−(l iml−beta )/ as . numeric ( sqad )

f u l l e r s t <−( f u l l e r −beta )/ as . numeric ( sqad ) ;

f u l l e r s t 4 <−( f u l l e r 4−beta )/ as . numeric ( sqad )

t . t e s t t s l s <−t s l s / sdt

t . t e s t l i m l<−l i m l / s d l i m l

t . t e s t f u l l <− f u l l e r / s d f u l l

t . t e s t f u l l 4 <−f u l l e r 4 / s d f u l l 4

out<− l i s t ( t s l s s t , l i m l s t , f u l l e r s t , f u l l e r s t 4 ,

t . t e s t t s l s , t . t e s t l i m l , t . t e s t f u l l , t . t e s t f u l l 4 )

names ( out)<−c ( ’ t s l s ’ , ’ l iml ’ , ’ f u l l e r ’ , ’ f u l l e r 4 ’ ,

’ t t s l s ’ , ’ t l i m l ’ , ’ t f u l l e r ’ , ’ t f u l l e r 4 ’ )

r e turn ( out )

}
## Example 1) Weak instruments :

w inst r<− k c l a s s (M, t ,mu2=1,rho , k , beta=0)

## Example 2) Strong Instruments :

s i n s t r<−k c l a s s (M, t ,mu2=20, rho , k , beta=0)

Bootstrap Algorithms in just identified case

In this subsection we briefly illustrate some bootstrap algorithms exposed in section

2.4 considering the just–identified case of IV estimator: parametric bootstrap, pair

bootstrap and unrestricted residual–based bootstrap both with fixed and resample zt.

• Parametric Bootstrap

Step 1. Estimate parameters (β̂IVT , π̂OLST ) and obtain residuals (ût, v̂t)
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Step 2. Sample (u?t , v
?
t )
′ ∼ N2(0, Σ̂) where Σ̂ =

(
σ̂2
u σ̂uv

σ̂uv σ̂2
v

)
Step 3. Reconstruct the bootstrap series as: x?t = π̂OLST zt + v?t ; y?t = β̂IVT x?t + u?t .

Step 4. Bootstrap IV estimator: β̂IV ?T = (z′x?)−1z′y? =
∑T

t=1 y
?
t zt∑T

t=1 x
?
t zt

Step 5. Repeat 2–4 B times to obtain the distribution of bootstrapped IV estimator:

(β̂IV ?T1 , . . . β̂
IV ?
TB ).

• Pair Bootstrap

Step 1. Sample the endogenous variables and instrument: (y∗t , x
∗
t , z
∗
t )
′ ∼ EDF(yt, xt, zt)

′

Step 2. Compute bootstrap estimator β̂IV ∗T = (z∗′x∗)−1z∗′y∗ =
∑T

t=1 y
∗
t z
∗
t∑T

t=1 x
∗
t z
∗
t

.

Step 3. Repeat 1–2 B times to obtain the distribution of bootstrapped IV estimator:

(β̂IV ∗T1 , . . . β̂
IV ∗
TB ).

• Residual Bootstrap (resampled instrument)

Step 1. Estimate parameters (β̂IVT , π̂OLST ) and obtain (ût, v̂t)

Step 2. Sample residuals and instrument: (u∗t , v
∗
t , z
∗
t )
′ ∼ EDF(ũt, ṽt, zt)

′

Step 3. Bootstrap DGP:

– x∗t = π̂OLST z∗t + v∗t ;

– y∗t = β̂IVT x∗t + u∗t .

Step 4. Bootstrap IV estimator: β̂IV ∗T = (z∗′x∗)−1z∗′y∗ =
∑T

t=1 y
∗
t z
∗
t∑T

t=1 x
∗
t z
∗
t

.

Step 5. Repeat steps from 2 to 4 B times in order to obtain (β̂IV ∗T1 , . . . β̂
IV ∗
TB ).

• Residual bootstrap (fixed instrument):

Step 1. Estimate parameters (β̂IVT , π̂OLST ) and obtain residuals (ût, v̂t)

Step 2. Sample the residuals: (u∗t , v
∗
t )
′ ∼ EDF(ũt, ṽt)

′

Step 3. DGP: x∗t = π̂OLST zt + v∗t ; y∗t = β̂IVT x∗t + u∗t .

Step 4. β̂IV ∗T = (z′x∗)−1x∗′y∗.

Step 5. Repeat steps 2–4 B times to obtain (β̂IV ∗T1 , . . . β̂
IV ∗
TB ).

Remark : pair bootstrap could be straightforward applied on all κ−class estimators

because it does not involve the estimation of the parameters π, β in bootstrap DGP.
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Figure 2.1: Empirical density and ECdf of standardized IV estimator under different
degrees of identification.
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(b) µ2 = 20

Figure 2.2: Empirical density of standardized IV estimator under different levels of
endogeneity for µ2 = 1, 20.
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Figure 2.3: Empirical density and ECdf of standardized TSLS estimator under different
degrees of identification and k = 5 instruments.
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(b) µ2/k = 20

Figure 2.4: Empirical density of standardized TSLS estimator under weak and strong
instruments, with different levels of endogeneity (k = 5).
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Figure 2.5: Empirical density and ECdf of standardized LIML estimator under differ-
ent degrees of endogeneity and k = 5,
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(b) µ2/k = 20

Figure 2.6: Empirical density of standardized LIML estimator under weak and strong
instruments with different levels of identification (k = 5).
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Figure 2.7: Empirical density and ECdf of standardized Fuller estimator under differ-
ent degrees of identification and k = 5 instruments.
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Figure 2.8: Empirical density of standardized Fuller estimator under weak and strong
instruments with different levels of endogeneity
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(a) ρ = 0.5
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(b) ρ = 0.9

Figure 2.9: Density plot of t–statistic in four identification scenarios under the null
hypothesis of H0 : β = 0 associated with IV (upper panel, k = 1) and TSLS (lower
panel, k = 5).
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(b) ρ = 0.9

Figure 2.11: Density plots of t-statistic in four identification scenarios under the null
hypothesis H0 = β = 0 associated to LIML (upper panel) and Fuller (lower panel).
The number of instruments is k = 5.
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Figure 2.12: Rejection frequency of t-test under weakly endogenous instruments.
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Figure 2.13: Rejection frequency of F test under different DGPs (k = 1).
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Design Performance Indicators
ρ µ2 Median MAE RMSE Coverage IDR KS

0.25

0 0.253 1.435 262.192 0.998 5.884 —
1 0.098 0.956 179.199 0.995 3.804 0.075
5 0.008 0.465 83.178 0.985 1.402 0.062
10 0.002 0.327 3.896 0.976 0.907 0.045
20 -0.002 0.229 0.311 0.966 0.608 0.029
40 0.000 0.160 0.169 0.958 0.422 0.021
60 0.001 0.131 0.135 0.954 0.340 0.016
100 -0.001 0.102 0.104 0.951 0.262 0.013

0.50

0 0.499 1.283 3697.288 0.984 5.277 —
1 0.198 0.908 476.588 0.975 3.728 0.095
5 0.015 0.455 21.601 0.958 1.426 0.079
10 0.002 0.320 162.044 0.956 0.919 0.061
20 0.000 0.227 0.282 0.955 0.616 0.044
40 -0.001 0.161 0.172 0.955 0.424 0.032
60 0.001 0.131 0.137 0.952 0.341 0.024
100 0.000 0.101 0.104 0.950 0.262 0.019

0.75

0 0.752 0.982 237.955 0.904 4.099 —
1 0.286 0.785 130.100 0.908 3.718 0.144
5 0.017 0.438 49.528 0.922 1.485 0.097
10 0.001 0.317 232.568 0.932 0.947 0.078
20 -0.001 0.225 0.824 0.942 0.622 0.056
40 0.000 0.159 0.177 0.947 0.425 0.040
60 0.000 0.130 0.139 0.949 0.342 0.032
100 0.001 0.100 0.105 0.949 0.263 0.025

0.90

0 0.901 0.645 147.840 0.734 2.686 —
1 0.302 0.668 415.808 0.838 4.057 0.157
5 0.012 0.426 26.797 0.904 1.551 0.107
10 0.000 0.313 19412.531 0.920 0.967 0.087
20 -0.001 0.223 0.339 0.934 0.625 0.063
40 0.000 0.158 0.181 0.943 0.425 0.044
60 -0.001 0.130 0.141 0.947 0.342 0.037
100 0.000 0.100 0.106 0.948 0.264 0.030

Table 2.1: Performance of IV estimator under different strength of the instruments
and degrees of endogeneity, where T = 100.
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Design Performance Indicators
ρ µ2 Median MAE RMSE Coverage IDR KS

0.25

0 0.255 1.441 245.463 0.999 5.942 —
1 0.103 0.959 64.204 0.996 3.788 0.074
5 0.007 0.465 16.755 0.986 1.394 0.062
10 0.001 0.321 1.619 0.978 0.889 0.042
20 0.000 0.226 1.289 0.969 0.603 0.028
40 0.000 0.159 0.166 0.961 0.414 0.017
60 0.000 0.129 0.133 0.957 0.335 0.013
100 0.000 0.100 0.102 0.955 0.257 0.010

0.50

0 0.500 1.276 549.191 0.985 5.350 —
1 0.199 0.900 126.712 0.975 3.716 0.098
5 0.010 0.454 27.572 0.960 1.426 0.079
10 0.001 0.320 10.407 0.957 0.915 0.061
20 -0.001 0.225 0.263 0.957 0.605 0.040
40 0.000 0.158 0.168 0.957 0.415 0.026
60 0.000 0.130 0.135 0.955 0.339 0.023
100 0.000 0.101 0.103 0.952 0.260 0.017

0.75

0 0.751 0.979 120.301 0.905 4.081 —
1 0.279 0.786 63.778 0.909 3.696 0.141
5 0.013 0.431 1600.519 0.924 1.462 0.095
10 0.000 0.312 2.785 0.935 0.932 0.076
20 -0.001 0.222 0.282 0.943 0.613 0.053
40 0.000 0.158 0.173 0.951 0.419 0.037
60 0.000 0.129 0.137 0.952 0.338 0.031
100 0.000 0.099 0.104 0.951 0.260 0.024

0.90

0 0.902 0.649 47.548 0.733 2.694 —
1 0.301 0.666 117.971 0.838 4.095 0.156
5 0.014 0.420 32.067 0.907 1.525 0.106
10 0.002 0.309 7.622 0.921 0.952 0.084
20 0.000 0.221 0.304 0.933 0.621 0.060
40 -0.001 0.158 0.177 0.946 0.420 0.043
60 0.001 0.128 0.138 0.949 0.340 0.035
100 0.000 0.100 0.104 0.950 0.260 0.026

Table 2.2: Performance of IV estimator under different strength of the instruments
and degrees of endogeneity, where T = 1000.
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Design Performance Indicators
ρ µ2/k Median MAE RMSE Coverage IDR KS

0.25

0 0.252 0.635 0.982 0.989 1.832 —
1 0.113 0.440 0.640 0.978 1.244 0.123
5 0.033 0.244 0.270 0.963 0.649 0.057
10 0.017 0.177 0.187 0.958 0.464 0.039
20 0.008 0.128 0.132 0.953 0.331 0.025
40 0.005 0.091 0.092 0.952 0.234 0.021
60 0.002 0.074 0.075 0.951 0.191 0.014
100 0.002 0.058 0.058 0.950 0.148 0.012

0.50

0 0.498 0.567 1.003 0.917 1.639 —
1 0.230 0.410 0.633 0.910 1.164 0.210
5 0.062 0.233 0.271 0.931 0.628 0.103
10 0.033 0.174 0.188 0.941 0.459 0.076
20 0.016 0.126 0.131 0.946 0.329 0.052
40 0.008 0.090 0.092 0.947 0.234 0.034
60 0.005 0.074 0.075 0.947 0.192 0.031
100 0.003 0.057 0.058 0.949 0.148 0.024

0.75

0 0.749 0.432 1.012 0.638 1.254 —
1 0.341 0.349 0.632 0.752 1.007 0.311
5 0.093 0.221 0.271 0.884 0.603 0.154
10 0.048 0.168 0.186 0.914 0.448 0.110
20 0.025 0.124 0.131 0.932 0.325 0.077
40 0.013 0.090 0.093 0.940 0.232 0.056
60 0.008 0.074 0.075 0.945 0.190 0.045
100 0.005 0.058 0.058 0.946 0.148 0.036

0.90

0 0.899 0.285 1.007 0.305 0.823 —
1 0.404 0.291 0.631 0.617 0.862 0.380
5 0.112 0.209 0.269 0.851 0.579 0.188
10 0.059 0.162 0.187 0.897 0.438 0.134
20 0.029 0.122 0.130 0.924 0.320 0.092
40 0.015 0.088 0.092 0.936 0.231 0.068
60 0.010 0.074 0.076 0.939 0.191 0.054
100 0.006 0.057 0.058 0.943 0.148 0.043

Table 2.3: Performance of TSLS estimator under different strength of the instruments
and degrees of endogeneity, where T = 250 and k = 3.
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Design Performance Indicators
ρ µ2/k Median MAE RMSE Coverage IDR KS

0.25

0 0.249 0.468 0.611 0.972 1.279 —
1 0.118 0.328 0.394 0.959 0.884 0.157
5 0.035 0.185 0.197 0.953 0.483 0.078
10 0.019 0.136 0.140 0.952 0.354 0.055
20 0.010 0.098 0.100 0.949 0.253 0.041
40 0.005 0.070 0.071 0.950 0.181 0.030
60 0.003 0.058 0.058 0.950 0.148 0.023
100 0.002 0.045 0.045 0.950 0.115 0.018

0.50

0 0.503 0.421 0.709 0.812 1.150 —
1 0.238 0.303 0.418 0.853 0.823 0.275
5 0.070 0.179 0.198 0.916 0.469 0.151
10 0.038 0.133 0.141 0.931 0.346 0.110
20 0.019 0.097 0.100 0.941 0.251 0.078
40 0.009 0.069 0.071 0.946 0.179 0.055
60 0.007 0.057 0.058 0.947 0.148 0.046
100 0.004 0.045 0.045 0.948 0.114 0.035

0.75

0 0.750 0.319 0.841 0.406 0.873 —
1 0.357 0.257 0.459 0.648 0.704 0.408
5 0.108 0.166 0.201 0.854 0.441 0.232
10 0.058 0.127 0.142 0.900 0.336 0.170
20 0.029 0.095 0.100 0.924 0.247 0.119
40 0.015 0.069 0.071 0.937 0.177 0.087
60 0.010 0.057 0.058 0.942 0.146 0.067
100 0.006 0.044 0.045 0.946 0.113 0.054

0.90

0 0.899 0.210 0.935 0.115 0.577 —
1 0.422 0.214 0.486 0.485 0.594 0.494
5 0.127 0.157 0.203 0.815 0.420 0.274
10 0.068 0.124 0.143 0.876 0.327 0.200
20 0.035 0.093 0.100 0.913 0.242 0.146
40 0.017 0.068 0.071 0.930 0.176 0.099
60 0.012 0.057 0.058 0.936 0.146 0.082
100 0.007 0.044 0.045 0.943 0.113 0.064

Table 2.4: Performance of TSLS estimator under different strength of the instruments
and degree of endogeneity, T = 1000 and k = 5.
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Design Performance Indicators
ρ µ2 Median MAE RMSE Coverage IDR KS

0.25

0 0.253 1.429 630.068 0.976 5.973 —
1 0.025 0.591 140.429 0.962 2.021 0.102
5 0.000 0.217 0.809 0.954 0.584 0.041
10 0.000 0.149 0.154 0.951 0.387 0.024
20 0.000 0.102 0.104 0.951 0.263 0.014
40 0.000 0.072 0.072 0.951 0.184 0.010
60 0.000 0.058 0.059 0.949 0.150 0.007
100 0.000 0.045 0.045 0.950 0.115 0.005

0.50

0 0.497 1.282 4020.715 0.868 5.286 —
1 0.052 0.555 65.076 0.901 1.920 0.104
5 0.000 0.213 0.369 0.943 0.575 0.050
10 0.001 0.146 0.154 0.948 0.383 0.031
20 0.000 0.101 0.105 0.948 0.264 0.021
40 0.000 0.071 0.072 0.949 0.184 0.013
60 0.000 0.058 0.058 0.950 0.149 0.011
100 0.000 0.045 0.045 0.950 0.115 0.008

0.75

0 0.750 0.983 204.125 0.590 4.074 —
1 0.050 0.493 138.579 0.841 1.776 0.111
5 0.000 0.207 0.260 0.927 0.564 0.056
10 0.000 0.144 0.155 0.942 0.380 0.037
20 0.000 0.101 0.104 0.946 0.262 0.025
40 0.000 0.071 0.073 0.948 0.185 0.019
60 0.000 0.058 0.059 0.949 0.149 0.014
100 0.000 0.045 0.045 0.949 0.115 0.011

0.90

0 0.901 0.645 112.420 0.251 2.654 —
1 0.026 0.443 45.714 0.823 1.644 0.113
5 0.000 0.201 0.253 0.920 0.554 0.057
10 0.001 0.142 0.157 0.936 0.380 0.042
20 0.000 0.100 0.105 0.945 0.262 0.029
40 0.000 0.071 0.072 0.948 0.183 0.020
60 0.000 0.058 0.059 0.949 0.149 0.016
100 0.000 0.045 0.045 0.949 0.116 0.013

Table 2.5: Performance of LIML estimator under different strength of the instruments
and degree of endogeneity, where T = 1000 and k = 5.
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Design Performance Indicators
ρ µ2 Median MAE RMSE Coverage IDR KS

0.25

0 0.253 0.694 0.688 0.981 1.677 —
1 0.066 0.461 0.507 0.965 1.256 0.059
5 0.009 0.209 0.228 0.952 0.554 0.024
10 0.006 0.144 0.149 0.951 0.375 0.017
20 0.002 0.101 0.103 0.950 0.260 0.009
40 0.001 0.071 0.072 0.950 0.183 0.009
60 0.001 0.058 0.058 0.950 0.149 0.005
100 0.001 0.045 0.045 0.950 0.115 0.006

0.50

0 0.499 0.619 0.761 0.899 1.498 —
1 0.133 0.415 0.486 0.915 1.138 0.128
5 0.022 0.200 0.220 0.948 0.534 0.043
10 0.010 0.142 0.148 0.951 0.370 0.028
20 0.005 0.100 0.103 0.950 0.260 0.021
40 0.002 0.071 0.072 0.951 0.182 0.013
60 0.002 0.058 0.058 0.950 0.148 0.012
100 0.001 0.045 0.045 0.949 0.115 0.010

0.75

0 0.752 0.474 0.869 0.699 1.142 —
1 0.181 0.330 0.435 0.878 0.888 0.203
5 0.029 0.189 0.211 0.940 0.510 0.061
10 0.015 0.137 0.146 0.949 0.361 0.044
20 0.007 0.099 0.102 0.950 0.257 0.031
40 0.004 0.070 0.071 0.950 0.181 0.022
60 0.002 0.058 0.058 0.949 0.148 0.016
100 0.001 0.044 0.045 0.949 0.115 0.012

0.90

0 0.899 0.312 0.945 0.497 0.753 —
1 0.198 0.259 0.370 0.885 0.663 0.267
5 0.037 0.180 0.206 0.935 0.492 0.077
10 0.017 0.135 0.145 0.947 0.356 0.050
20 0.009 0.098 0.102 0.949 0.256 0.035
40 0.005 0.070 0.071 0.950 0.180 0.026
60 0.003 0.057 0.058 0.950 0.147 0.024
100 0.001 0.044 0.045 0.949 0.115 0.014

Table 2.6: Performance of Fuller estimator under different strength of the instruments
and degrees of endogeneity, where T = 1000 and k = 5.
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Design Performance Indicators
ρ µ2 φ/π Median MAE RMSE Coverage IDR KS

0.25

0 — 0.240 1.437 1852.240 0.998 5.840 —
1 0.100 0.179 0.971 24.928 0.996 3.833 0.088
5 0.045 0.058 0.449 4.693 0.984 1.340 0.054
10 0.032 0.027 0.320 0.660 0.971 0.896 0.037
20 0.022 0.021 0.229 0.256 0.961 0.610 0.040
40 0.016 0.014 0.161 0.167 0.958 0.418 0.041
60 0.013 0.014 0.130 0.134 0.953 0.337 0.047
100 0.010 0.010 0.100 0.102 0.948 0.256 0.046

0.50

0 — 0.473 1.282 45.062 0.984 5.277 —
1 0.100 0.265 0.871 55.301 0.972 3.735 0.133
5 0.045 0.058 0.443 8.066 0.948 1.392 0.069
10 0.032 0.031 0.317 2.645 0.945 0.898 0.047
20 0.022 0.021 0.218 0.257 0.948 0.600 0.040
40 0.016 0.015 0.157 0.166 0.950 0.411 0.042
60 0.013 0.015 0.129 0.133 0.951 0.334 0.049
100 0.010 0.009 0.101 0.102 0.949 0.260 0.040

0.75

0 — 0.743 0.993 89.590 0.906 4.138 —
1 0.100 0.347 0.752 71.611 0.899 3.425 0.172
5 0.045 0.061 0.413 255.067 0.910 1.396 0.083
10 0.032 0.032 0.308 7.527 0.920 0.924 0.066
20 0.022 0.022 0.218 0.266 0.930 0.607 0.043
40 0.016 0.014 0.156 0.168 0.938 0.416 0.036
60 0.013 0.011 0.129 0.137 0.939 0.336 0.036
100 0.010 0.008 0.099 0.101 0.947 0.255 0.033

0.90

0 — 0.898 0.652 123.809 0.734 2.657 —
1 0.100 0.383 0.641 39.221 0.807 3.604 0.194
5 0.045 0.051 0.414 262.125 0.886 1.496 0.096
10 0.032 0.029 0.304 0.943 0.906 0.950 0.077
20 0.022 0.024 0.216 0.282 0.919 0.608 0.047
40 0.016 0.015 0.157 0.172 0.931 0.414 0.043
60 0.013 0.013 0.125 0.135 0.941 0.336 0.045
100 0.010 0.010 0.099 0.105 0.938 0.260 0.040

Table 2.7: Performance of IV estimator with a single weakly endogenous instrument,
φ = 0.1.
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Design Performance Indicators
ρ µ2 φ/π Median MAE RMSE Coverage IDR KS

0.25

0 — 0.222 2.234 80.652 0.996 9.050 —
1 1.000 0.721 1.051 40.905 0.977 4.523 0.298
5 0.447 0.440 0.452 5.847 0.910 1.351 0.385
10 0.316 0.315 0.311 0.773 0.866 0.856 0.386
20 0.224 0.222 0.217 0.325 0.828 0.581 0.392
40 0.158 0.157 0.152 0.223 0.816 0.396 0.396
60 0.129 0.128 0.126 0.180 0.821 0.322 0.384
100 0.100 0.097 0.101 0.140 0.816 0.258 0.375

0.5

0 — 0.495 2.179 118.083 0.975 8.788 —
1 1.000 0.775 0.906 23.209 0.908 3.659 0.341
5 0.447 0.451 0.407 3.311 0.797 1.226 0.401
10 0.316 0.317 0.288 0.858 0.763 0.791 0.393
20 0.224 0.228 0.205 0.312 0.757 0.546 0.403
40 0.158 0.157 0.147 0.214 0.776 0.386 0.390
60 0.129 0.128 0.121 0.175 0.783 0.319 0.390
100 0.100 0.100 0.095 0.137 0.794 0.248 0.390

0.75

0 — 0.785 2.084 449.246 0.908 8.041 —
1 1.000 0.897 0.667 136.609 0.736 2.766 0.430
5 0.447 0.453 0.332 17.775 0.652 1.026 0.425
10 0.316 0.317 0.250 0.892 0.676 0.713 0.409
20 0.224 0.225 0.189 0.298 0.702 0.516 0.397
40 0.158 0.160 0.143 0.210 0.728 0.371 0.399
60 0.129 0.133 0.115 0.172 0.751 0.312 0.400
100 0.100 0.100 0.095 0.134 0.766 0.242 0.389

0.90

0 — 0.825 2.115 863.908 0.844 7.782 —
1 1.000 0.960 0.426 35.205 0.526 1.698 0.525
5 0.447 0.458 0.274 42.674 0.558 0.914 0.442
10 0.316 0.320 0.226 2.208 0.627 0.685 0.413
20 0.224 0.224 0.180 0.307 0.676 0.495 0.403
40 0.158 0.159 0.138 0.205 0.707 0.362 0.396
60 0.129 0.130 0.112 0.167 0.734 0.299 0.400
100 0.100 0.101 0.092 0.132 0.749 0.236 0.393

Table 2.8: Performance of IV estimator under a weak and endogenous instrument,
φ = 1
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k = 3

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 0.350 0.396 1.133 -4.242 281.188 0.958 0.209
5 0.143 0.247 1.087 -1.099 11.265 1.230 0.107
10 0.090 0.171 1.039 -0.656 4.607 1.285 0.072
20 0.070 0.127 1.009 -0.408 3.538 1.310 0.053
40 0.047 0.088 1.005 -0.271 3.204 1.330 0.036
60 0.039 0.074 1.010 -0.228 3.176 1.343 0.030

0.9

1 0.635 0.695 0.771 0.293 60.200 0.691 0.379
5 0.253 0.433 1.026 -2.369 32.664 1.118 0.187
10 0.167 0.310 1.012 -1.234 7.722 1.226 0.130
20 0.119 0.230 1.019 -0.785 4.464 1.287 0.097
40 0.083 0.163 1.003 -0.503 3.530 1.318 0.066
60 0.073 0.132 0.996 -0.417 3.388 1.321 0.055

k = 5

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 0.502 0.533 0.634 -0.274 6.445 0.910 0.276
5 0.293 0.360 0.893 -0.538 4.110 1.200 0.155
10 0.204 0.261 0.954 -0.399 3.580 1.276 0.108
20 0.152 0.201 0.983 -0.305 3.302 1.318 0.081
40 0.102 0.139 0.988 -0.230 3.163 1.330 0.057
60 0.088 0.113 0.995 -0.167 3.090 1.338 0.047

0.9

1. 0.898 0.944 0.385 -1.809 82.622 0.649 0.495
5 0.518 0.638 0.765 -1.081 5.916 1.073 0.277
10 0.374 0.477 0.885 -0.793 4.503 1.198 0.199
20 0.268 0.349 0.942 -0.547 3.639 1.272 0.142
40 0.186 0.248 0.973 -0.385 3.305 1.311 0.100
60 0.159 0.212 0.985 -0.313 3.210 1.322 0.086

Table 2.9: Standardized TSLS estimator with T = 1000 and k = 3, 5.
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DF = 12

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 0.548 0.583 0.724 -0.550 7.688 0.953 0.287
5 0.346 0.421 1.058 -0.476 3.870 1.310 0.169
10 0.240 0.301 1.130 -0.427 3.538 1.361 0.120
20 0.172 0.222 1.187 -0.309 3.279 1.447 0.091
40 0.135 0.174 1.167 -0.235 3.135 1.433 0.073
60 0.121 0.148 1.171 -0.196 3.130 1.426 0.065

0.9

1 1.011 1.046 0.402 -0.108 9.252 0.641 0.533
5 0.613 0.740 0.879 -1.139 5.814 1.134 0.313
10 0.439 0.561 1.012 -0.875 4.949 1.283 0.222
20 0.319 0.431 1.140 -0.566 3.523 1.404 0.169
40 0.230 0.323 1.182 -0.466 3.567 1.429 0.128
60 0.182 0.245 1.207 -0.382 3.402 1.476 0.099

DF = 2

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 0.613 0.625 2.197 -3.849 129.400 1.259 0.263
5 0.541 0.620 4.346 0.302 29.120 1.909 0.237
10 0.391 0.492 5.361 2.009 110.404 2.081 0.209
20 0.247 0.348 5.392 0.118 35.057 2.188 0.184
40 0.231 0.268 5.163 -0.596 57.637 2.299 0.179
60 0.216 0.230 5.082 2.595 68.101 2.292 0.168

0.9

1 1.088 1.098 0.971 -2.000 60.918 0.814 0.511
5 0.976 1.108 3.593 -3.782 129.565 1.536 0.400
10 0.730 0.885 3.685 -1.917 50.434 1.796 0.315
20 0.557 0.718 4.451 -0.869 20.311 2.048 0.267
40 0.388 0.507 4.393 0.782 25.571 2.187 0.218
60 0.324 0.394 4.483 -0.111 23.401 2.193 0.197

Table 2.10: Standardized TSLS estimator under t(12) and t(2) disturbances, with
T = 1000 and k = 3.
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LIML

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 -0.363 0.114 1617.946 6.475 2262.168 1.749 0.105
5 -0.136 -0.007 1.626 1.108 64.444 1.458 0.051
10 -0.096 -0.008 1.175 -0.549 3.995 1.399 0.035
20 -0.070 -0.009 1.094 -0.345 3.369 1.355 0.024
40 -0.024 0.018 1.051 -0.263 3.132 1.352 0.018
60 -0.028 0.004 1.048 -0.153 3.039 1.374 0.015

0.9

1 -0.608 0.023 3995.979 -7.163 2327.911 1.518 0.118
5 -0.225 -0.005 1.548 -1.986 14.075 1.419 0.060
10 -0.136 0.011 1.207 -0.964 4.977 1.368 0.042
20 -0.092 0.016 1.097 -0.623 3.843 1.346 0.030
40 -0.072 -0.016 1.062 -0.388 3.395 1.369 0.022
60 -0.043 0.008 1.050 -0.286 3.218 1.365 0.019

Fuller(c = 1)

ρ µ2/k β̃T Me(β̃T ) V (β̃T ) Skew(β̃T ) K(β̃T ) IQR KS

0.5

1 0.317 0.296 1.050 0.226 3.842 1.232 0.130
5 -0.028 0.080 1.248 -0.819 5.335 1.362 0.033
10 -0.006 0.072 1.078 -0.499 3.788 1.350 0.032
20 0.027 0.072 1.055 -0.359 3.498 1.361 0.031
40 -0.012 0.021 1.024 -0.179 3.116 1.351 0.010
60 -0.020 0.001 1.017 -0.172 3.121 1.342 0.010

0.9

1 0.432 0.441 0.468 1.144 8.589 0.788 0.266
5 0.010 0.160 1.087 -1.193 5.980 1.266 0.071
10 0.005 0.118 1.039 -0.812 4.424 1.306 0.049
20 -0.005 0.082 1.008 -0.522 3.572 1.330 0.035
40 -0.002 0.071 1.028 -0.444 3.421 1.344 0.030
60 0.004 0.050 1.020 -0.264 3.003 1.364 0.022

Table 2.11: Standardized κ−class estimators with T = 1000 and k = 5.



2.6. APPENDIX 63

T=100
ρ µ2/k OLS TSLS LIML Fuller(1) Fuller(4)

0.5

0 1.000 0.181 0.097 0.134 0.241
1 1.000 0.143 0.082 0.095 0.150
5 0.998 0.082 0.052 0.058 0.081
10 0.990 0.065 0.048 0.049 0.064
20 0.954 0.058 0.047 0.048 0.054
40 0.831 0.056 0.051 0.051 0.054
60 0.712 0.052 0.048 0.048 0.050

0.9

0 1.000 0.882 0.499 0.768 0.999
1 1.000 0.510 0.111 0.177 0.581
5 1.000 0.185 0.062 0.080 0.159
10 1.000 0.123 0.052 0.064 0.108
20 1.000 0.090 0.052 0.058 0.083
40 1.000 0.070 0.047 0.050 0.065
60 0.998 0.065 0.052 0.055 0.063

T=1000
ρ µ2/k OLS TSLS LIML Fuller(1) Fuller(4)

0.5

0 1.000 0.178 0.097 0.132 0.243
1 1.000 0.146 0.085 0.100 0.153
5 1.000 0.087 0.053 0.059 0.080
10 1.000 0.068 0.050 0.054 0.066
20 1.000 0.062 0.050 0.053 0.062
40 1.000 0.056 0.052 0.052 0.054
60 1.000 0.057 0.053 0.053 0.056

0.9

0 1.000 0.888 0.502 0.774 1.000
1 1.000 0.512 0.113 0.182 0.584
5 1.000 0.185 0.062 0.078 0.157
10 1.000 0.128 0.057 0.068 0.118
20 1.000 0.095 0.054 0.059 0.086
40 1.000 0.071 0.053 0.057 0.066
60 1.000 0.063 0.047 0.050 0.059

Table 2.12: Rejection frequencies (empirical size) of t–test associated to κ−class esti-
mators under weak instruments and (jointly) normal disturbances.
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φ = 0.1
ρ µ2/k OLS TSLS LIML Fuller(1) Fuller(4)

0.5

0 1.000 0.085 0.058 0.084 0.179
1 1.000 0.094 0.065 0.080 0.140
5 0.999 0.071 0.053 0.062 0.092
10 0.997 0.065 0.050 0.055 0.075
20 0.987 0.055 0.050 0.052 0.064
40 0.944 0.056 0.051 0.052 0.059
60 0.866 0.051 0.050 0.050 0.054

0.9

0 1.000 0.884 0.494 0.763 0.999
1 1.000 0.520 0.120 0.187 0.595
5 1.000 0.201 0.068 0.085 0.169
10 1.000 0.136 0.059 0.070 0.118
20 1.000 0.088 0.052 0.057 0.080
40 1.000 0.078 0.055 0.059 0.076
60 0.998 0.066 0.050 0.053 0.063

φ = 1
ρ µ2/k OLS TSLS LIML Fuller(1) Fuller(4)

0.5

0 0.999 0.197 0.100 0.134 0.252
1 1.000 0.235 0.144 0.163 0.237
5 0.999 0.173 0.107 0.117 0.156
10 0.996 0.133 0.088 0.096 0.124
20 0.980 0.120 0.090 0.096 0.114
40 0.912 0.098 0.077 0.080 0.093
60 0.834 0.104 0.088 0.092 0.101

0.9

0 1.000 0.606 0.246 0.598 0.988
1 1.000 0.577 0.219 0.386 0.926
5 1.000 0.335 0.159 0.202 0.392
10 1.000 0.255 0.143 0.172 0.289
20 1.000 0.197 0.133 0.152 0.222
40 1.000 0.167 0.119 0.133 0.179
60 1.000 0.142 0.111 0.121 0.158

Table 2.13: Rejection frequencies (empirical size, T = 100) of t–test associated to
κ−class estimators (k = 5) under weak and weakly endogenous (invalid) instruments.
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Design First Stage(k = 1)

ρ µ2 Bias MC–bias R
2
f Me(R2

f ) Me(F ) µ̂2 F > 10 F > 16.4

0.5

0 2.900 0.001 0.000 0.448 0.000 0.001 0.000
1 -0.500 -0.234 0.002 0.001 1.125 1.033 0.015 0.001
5 -0.100 -0.068 0.006 0.005 4.866 4.933 0.176 0.034
10 -0.050 -0.080 0.011 0.010 9.935 10.008 0.496 0.186
20 -0.025 -0.031 0.020 0.020 19.899 19.938 0.903 0.659
40 -0.012 -0.015 0.039 0.038 39.827 39.950 0.999 0.988
60 -0.008 -0.008 0.057 0.056 59.674 59.959 1.000 1.000

0.9

0 0.644 0.001 0.000 0.454 0.003 0.001 0.000
1 -0.900 0.534 0.002 0.001 1.131 1.040 0.017 0.001
5 -0.180 -0.421 0.006 0.005 4.944 4.921 0.173 0.035
10 -0.090 -0.353 0.011 0.010 10.018 10.017 0.501 0.188
20 -0.045 -0.054 0.021 0.020 19.967 20.096 0.904 0.664
40 -0.022 -0.022 0.039 0.039 40.063 40.168 0.999 0.987
60 -0.015 -0.016 0.057 0.057 59.886 60.115 1.000 1.000

k = 5

ρ µ2 Bias MC–bias R
2
f Me(R2

f ) Me(F ) µ̂2/k F > 10 F > 16.4

0.5

0 0.500 0.005 0.004 0.863 0.000 0.000 0.000
1 0.300 0.222 0.010 0.009 1.837 1.000 0.000 0.000
5 0.060 0.059 0.029 0.028 5.813 5.003 0.043 0.024
10 0.030 0.031 0.052 0.051 10.743 9.999 0.601 0.488
20 0.015 0.014 0.095 0.095 20.803 20.017 0.999 0.998
40 0.008 0.008 0.171 0.170 40.837 40.131 1.000 1.000
60 0.005 0.006 0.235 0.235 60.903 60.181 1.000 1.000

0.9

0 0.903 0.005 0.004 0.874 0.002 0.000 0.000
1 0.540 0.407 0.010 0.009 1.812 0.993 0.000 0.000
5 0.108 0.103 0.029 0.028 5.788 4.996 0.045 0.024
10 0.054 0.053 0.052 0.052 10.834 10.056 0.610 0.501
20 0.027 0.028 0.096 0.095 20.881 20.106 0.999 0.997
40 0.014 0.012 0.170 0.170 40.775 39.986 1.000 1.000
60 0.009 0.008 0.234 0.234 60.745 60.132 1.000 1.000

Table 2.14: Bias of IV/TSLS and evidences from first stage with T = 100 under jointly
normal disturbances and two levels of endogeneity.
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Design First Stage (k=1)

ρ µ2 Bias MC–bias R
2
f Me(R2

f ) Me(F ) µ̂2 F > 10 F > 10.83

0.5

0 0.271 0.001 0.000 0.449 0.018 0.002 0.001
1 -0.500 -2.592 0.002 0.001 0.850 0.666 0.010 0.007
5 -0.100 -0.228 0.004 0.003 3.332 3.318 0.089 0.071
10 -0.050 -0.093 0.008 0.007 6.661 6.673 0.281 0.240
20 -0.025 -0.085 0.014 0.013 13.413 13.511 0.689 0.644
40 -0.012 -0.025 0.027 0.026 26.621 26.736 0.978 0.968
60 -0.008 -0.014 0.040 0.039 40.259 40.273 0.999 0.998

0.9

0 1.246 0.001 0.000 0.465 0.019 0.002 0.000
1 -0.900 0.272 0.002 0.001 0.804 0.619 0.008 0.000
5 -0.180 0.054 0.004 0.003 3.423 3.384 0.090 0.012
10 -0.090 -0.044 0.008 0.007 6.645 6.672 0.280 0.072
20 -0.045 -0.049 0.014 0.013 13.194 13.306 0.681 0.344
40 -0.022 -0.039 0.027 0.026 26.720 26.726 0.975 0.864
60 -0.015 -0.022 0.040 0.039 40.356 40.342 0.999 0.986

k = 5

ρ µ2 Bias MC–bias R
2
f Me(R2

f ) Me(F ) µ̂2/k F > 10 F > 10.83

0.5

0 0.504 0.005 0.004 0.870 0.003 0.000 0.000
1 0.300 0.279 0.008 0.008 1.509 0.671 0.000 0.000
5 0.060 0.082 0.021 0.020 4.118 3.324 0.005 0.002
10 0.030 0.044 0.037 0.036 7.476 6.715 0.172 0.112
20 0.015 0.022 0.067 0.066 14.114 13.392 0.905 0.848
40 0.008 0.012 0.122 0.122 27.584 26.779 1.000 1.000
60 0.005 0.008 0.171 0.171 40.944 40.195 1.000 1.000

0.9

0 0.897 0.005 0.004 0.875 0.006 0.000 0.000
1 0.540 0.509 0.008 0.007 1.500 0.670 0.000 0.000
5 0.108 0.153 0.021 0.021 4.178 3.367 0.005 0.002
10 0.054 0.082 0.037 0.037 7.545 6.731 0.174 0.107
20 0.027 0.039 0.067 0.066 14.104 13.369 0.899 0.842
40 0.014 0.020 0.122 0.122 27.538 26.762 1.000 1.000
60 0.009 0.013 0.171 0.171 40.882 40.117 1.000 1.000

Table 2.15: Bias of TSLS and evidences from first stage with T = 100 and two levels
of endogeneity. Disturbances are distributed as a multivariate t(6).



Chapter 3

Bootstrap asymptotics under weak

instruments

In this Chapter we investigate the bootstrapped distribution of instrumental variables

estimators under weak instrument asymptotics in presence of one endogenous regres-

sor, both from a theoretical point of view and through simulation. Firstly, we consider

the just identified case and then models involving several instruments. Under strong

instrument asymptotics, i.e. π = π0, the bootstrapped IV/TSLS estimator converges

in distribution to its proper normal limit, matching the true value of the structural

parameter β and its (theoretical) asymptotic variance V (β̂T ). However, when low

relevance issue arises, non-normality of IV/TSLS estimators, discussed throughout

Chapter 2, could be reflected in their bootstrap counterpart.

From a theoretical point of view, we propose a new formulation of the bootstrapped

IV/TSLS estimator under weak instruments and homoskedastic disturbances, applying

unrestricted residual bootstrap both with fixed and resampled instruments. We con-

sider these methods because they are applied both in theoretical and empirical works,

being moderately straightforward to implement. Therefore, they are also not too com-

putationally demanding, requiring only parameter estimates and residuals from the

unrestricted model. We also consider other bootstrap methods, summarized in Sec-

tion 2.4, finding similar problems in confidence intervals and p–values when strength

of instruments is very low. On one hand we notice that the distribution of boot-

strapped estimator, conditionally on the sample, preserves some components of those

derived in Stock and Yogo (2005), which mainly concerns its non-normality. This

could be intepreted as a pattern of weak identification and should be a desirable fea-
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ture in practice, in order to recognize weak instruments via bootstrap methods. On

the other hand, this limit distribution does not asymptotically mimic its weak instru-

ment asymptotics counterpart. Thus, result of conventional bootstrap inference does

no longer hold even if T →∞ and B →∞.

Bootstrap methods are generally deemed not valid in IV/TSLS (and other κ−class)

inference when instruments are poorly correlated with the endogenous regressor, and

their use is often discouraged in point estimation and hypothesis testing. Neverthless,

Zhan (2017) approaches this issue arguing that malfunctions of IV/TSLS bootstrap

inference strictlty depends on the asymptotic difference between the concentration pa-

rameter µ2 and its bootstrap counterpart µ∗2, occurring when instruments are weak or

nearly irrelevant. He also argues that bootstrap distribution of estimators can provide

information on the identification strength; malfunctions of conventional inference may

be recognized in practice. To summarize, the bootstrap counterpart of concentration

parameter, µ∗2, is different (greater) than µ2, although both converges to constants,

and the bootstrap sistematically fails to estimate the level of identification strength.

For this reason, both the estimated first stage F statistic and its bootstrap counterpart

F ∗ could be different from population F under weak instruments asymptotics. How-

ever, in our simulation studies, we found that proportion of bootstrapped F ∗ > 10 is

often preserved in the bootstrap world.

As mentioned, we give a different interpretation of the failure regarding bootstrap

in linear IV/GMM, related to a randomness of bootstrapped distributions under weak

instrument asymptotics, conditionally on the data DT . Consider a specific (test) statis-

tic or parameter estimator τ , converging in distribution to a non–dengeerate random

variable τ∞, and its bootstrap counterpart τ ∗. Although validity requires that cumula-

tive distribution of τ ∗, denoted with G∗T , converges Cdf of τ∞ (i.e. G∞), conditionally

on the original data, there are cases in which the bootstrap distribution of τ ∗ may

be random. This is known in some application of bootstrap, regarding time series

with unit roots (Basawa et al., 1991), inference at the boundary of parameter space

(Andrews, 2000) and infinite variance processes (Cavaliere et al., 2016). In this con-

text, randomness of τ ∗ gives an evidence of bootstrap failure, even in the first order.

From a different point of view, this means that bootstrap p–values may be not asymp-

totically uniformly distributed as required in conventional bootstrap inference. Our

objective is to connect bootstrap in instrumental variable estimation to this growing

literature. In order to show the effects of randomness in bootstrap applications, we
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also consider the theoretical case of irrelevant instruments in TSLS (and IV) estima-

tion, i.e. when π = 0 (or π = 0), and associated t/Wald statistic under the null

hypothesis H0 : β = β0. We also decide to analize separately IV and TSLS estimator

to enlighten differences in the behaviour of bootstrapped distribution of estimators

(and statistics), occurring when overidentication arises and the amount of (possibly

unuseful) information increases. In this context, some empirical examples and simula-

tion exercises, regarding the behaviour of bootstrap under irrelevant instruments, are

proposed. We find that non–normality of estimators and test statistics also depends

on the bootstrap method.

At the end of this Chapter, a small–scale Monte Carlo simulation is conducted in

order to show the differences between bootstrap distribution of considered estimators

and its conventional asymptotic version under weak instruments, and to understand

issues regarding inference through bootstrap methods under poorly relevant instru-

ments. Sample moments of (standardized) bootstrapped estimators are computed in

order to highlight how non–normality emerges among a severe deterioration of in-

struments strength consider different levels of endogeneity. Furthermore we analyze

performance of resampling methods in bias adjustment, hypothesis testing and confi-

dence intervals to see in which cases inference could be misleads under low relevance,

severe endogeneity and weakly endogenous instruments.

We introduce some notations: the symbols ∼∗ denotes the distribution in the

bootstrap world, where “
d∗→p” denotes, weak convergence in probability. The symbol

d∗→d, indicates weak convergence in distribution conditionally on the data DT (see

Cavaliere and Georgiev, 2018). Finally, P ∗ is the probability measure induced by the

bootstrap.

3.1 Bootstrap distribution under strong instruments

Under strong instruments asymptotics, i.e: π = π0 6= 0 where π0 is fixed, the

bootstrap counterparts of the IV/TSLS estimators, denoted as β̂TSLS∗T and β̂IV ∗T , are

(asymptotically) normally distributed, conditionally on the data DT = (y,x,Z). In

the following paragraphs we present results regarding two types of residual–based re-

sampling methods, where instruments may be resampled or not in the bootstrap DGP.

This choice is related to the fact that both methods are used, in the IV literature, to ob-

tain theoretical results under strong and weak instruments asymptotics, as mentioned
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in Section 2.4. It may be also useful to remark that both concentration parameter µ2

and its bootstrap counterpart µ2∗ diverge to∞, under strong instruments asymptotics,

as T → ∞. Then, relevance of the instruments is preserved in the bootstrap world.

We consider firstly the just identified case and then overidentified models.

3.1.1 IV estimator

Resampled Instrument

Considering π = π0 6= 0 where π0 is fixed, the estimation error of bootstrap estimator

defined in (2.45), using residual bootstrap with resampled instrument, is:

β̂IV ∗T − β̂IVT = (z∗′x∗)−1z∗′u∗ =

∑T
t=1 z

∗
t u
∗
t∑T

t=1 z
∗
t x
∗
t

. (3.1)

Furthermore, for T →∞ and B →∞:

√
T (β̂IV ∗T − β̂IVT ) ∼∗ iid

(
0, ω̂2

)
,

where

ω̂2 = σ̂2
u

(
∑T

t=1 xtzt)
2∑T

t=1 z
2
t

,

and could be also rewritten as:

ω̂2 =
σ̂2
u

σ̂2
z π̂

2
T

.

Therefore, σ̂2
u = T−1û′û, σ̂2

z = T−1
∑T

t=1(zt − z)2 and finally ω̂2 − ω2 p→ 0. Hence,

conditionally on the original data DT = (y,x,Z) the following asymptotic result holds:

√
T (β̂IV ∗T − β̂IVT )

d∗→p N(0, ω2).

Fixed Instrument

Under strong instrument asymptotics, applying residual bootstrap with fixed instru-

ment in the (bootstrap) DGP, the estimation error of bootstrap estimator defined in

(2.42) is equal to:

β̂IV ∗T − β̂IVT = (z′x∗)−1z′u∗ =

∑T
t=1 z

∗
t u
∗
t∑T

t=1 z
∗
t x
∗
t

. (3.2)
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Therefore, for T →∞ and B →∞:

√
T (β̂IV ∗T − β̂IVT ) ∼ N

(
0, ω̂2

)
d∗→p N

(
0, ω̂2

)
, (3.3)

where the variance ω̂ and other quantities are previously defined. Hence the expression

in (3.2) converges, in a bootstrap sense, to a standard normal distribution:

√
T ω̂−1(β̂IV ∗T − β̂IVT )

d∗→p N(0, 1).

3.1.2 Two Stage Least Squares

Resampled Instruments

When the number of instruments is more than one (k > 1) and under strong instrument

asymptotics, i.e. π = π0 6= 0 where π0 is fixed, and applying residual bootstrap with

resampled instruments, TSLS estimator, defined in (2.44), is:

β̂TSLS∗T = (x∗′PZ∗x
∗)
−1

(x∗′PZ∗y
∗)

=
[
x∗′Z∗(Z∗′Z∗)−1Z∗′x∗

]−1 [
x∗′Z∗(Z∗′Z∗)−1Z∗′y∗

]
.

Recalling that it could be rewritten in the following way:

β̂TSLS∗T = β̂TSLST + (x∗′PZ∗x
∗)
−1

(x∗′PZ∗u
∗) ,

and its associated estimation error is β̂TSLS∗T − β̂TSLST , the bootstrap asymptotic dis-

tribution is the following:

β̂TSLS∗T − β̂TSLST = (x∗′PZ∗x
∗)
−1

(x∗′PZ∗u
∗)

=
[
x∗′Z∗(Z∗′Z∗)−1Z∗′x∗

]−1 [
x∗′Z∗(Z∗′Z∗)−1Z∗′u∗

]
√
T (β̂TSLS∗T − β̂TSLST ) ∼∗ N(0, ω̂2)

d∗→p N(0, ω2),

where ω̂2 = σ̂2
u

(
π̂′T

Z′Z
T
π̂T
)−1

, ω2 = σ2
u [π0

′QZZπ0]−1 and also ω̂2 − ω2 →p 0, as in the

just identified case.



3.2. BOOTSTRAP UNDER WEAK INSTRUMENT ASYMPTOTICS: A NEW DERIVATION 72

Fixed Instruments

Under π = π0 6= 0 where π0 is fixed and applying residual–based bootstrap with fixed

instruments (k > 1), the estimation error of bootstrap estimator, defined in (2.41), is:

β̂TSLS∗T − β̂TSLST = (x∗′PZx∗)
−1

(x∗′PZu∗)

=
[
x∗′Z(Z′Z)−1Z′x∗

]−1 [
x∗′Z(Z′Z)−1Z′u∗

]
.

Furthermore, for T →∞ and B →∞:

√
T (β̂TSLS∗T − β̂TSLST ) ∼∗ N(0, ω̂2) where ω̂2 = σ̂2

u

[
π̂′T

Z′Z

T
π̂T

]−1
.

Hence, conditionally on the original data DT :

√
T (β̂TSLS∗T − β̂TSLST )

d∗→p N(0, σ2
u [π0

′QZZπ0]
−1

).

To summarize, under strong instrument asymptotics, we have the following result for

both considered resampling methods of IV/TSLS estimator (with resampled and fixed

instruments):
√
T

(β̂∗T − β̂T )

ω̂

d∗→p N(0, 1).

This means that conventional bootstrap asymptotics holds under the assumptions of

strong instruments.

3.2 Bootstrap under weak instrument asymptotics:

a new derivation

In this section we introduce a new derivation for the asymptotic distribution of β̂IV ∗T

and β̂TSLS∗T under weak instrument asymptotics, i.e. π0 = C/
√
T or π = cT−1/2,

applying residual–based bootstrap (with fixed and resampled instruments) under as-

sumptions of homoskedastic disturbances and completely exogenous instruments. The

main idea is to clarify the reason of bootstrap failures in IV that remains still under

debate, as also pointed out in recent work, e.g. Andrews et al. (2018) and Young

(2017).

As shown in Section 2.2, under a single irrelevant instrument the distribution of
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IV estimator converges to a ratio of (correlated) normal variables. Moreover, the dis-

tribution of bootstrap IV counterpart converges, in a bootstrap sense, to a random

distribution that differs from this derived Stock and Yogo (2005) by a quantity here de-

noted with the symbol U. Using our set up, assumptions in Section 2.1.2 and imposing

that estimated Σ̂ converges in probability to a non–random matrix Σ, this quantity is

also normally distributed but conditionally on the original data DT . In overidentified

cases the interpretation could be slightly less intuitive; random component appears

both in numerator and denominator of the bootstrapped limiting distribution (under

weak instruments), even conditionally to the data.

As mentioned in Section 2.2, under weak instrument asymptotics and normal dis-

turbances (and instruments), population constant C (or c in the just identified case)

plays a center role to guarantee also consistency and asymptotic normality of IV/T-

SLS estimators, representing directly the strength of instruments. Its relevance is also

confirmed in the bootstrap world; loosely speaking, when C (c) is high, the random

components tend to disappear, vanishing when C →∞ reducing to strong instrument

asymptotics. On the contrary, in the worst identification case of c = 0 (single irrelevant

instrument), the randomness becomes predominant in the asymptotic distribution of

bootstrapped IV estimator. These features (i.e. non–normality and randomness) may

be found also in bootstrapped distribution of test statistics which are sensitive to weak

instruments, as t/Wald or the Sargan statistic, computed using bootstrap estimator

β̂∗T or its associated resiudals û∗t = y∗t − β̂∗Tx∗t . We point out that these results may

be obtained applying other resampling methods, as for example parametric bootstrap

introduced in Section 2.4.1 under strictly assumptions (normally and identical dis-

tributed disturbances), or the fully non–parametric pair bootstrap, very popular in IV

setting. However, there are some exceptions.

A slightly computational analysis of the performance regarding bootstrap version

of t–statistic under irrelevant instruments is also presented. Small–scale Monte Carlo

exercises confirm that bootstrap counterpart of other limited information estimators

included in κ−class, as LIML, present similar behaviour under poor relevance, al-

though they are considered (partially) robust to weak instruments. Moreover, we do

not provide a formal proof of the limiting distribution of other κ−class estimators.
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3.2.1 Bootstrap IV under weak instrument asymptotics

Resampled Instrument

Theorem 1 (Bootstrapped IV estimator under weak instrument applying residual

bootstrap with resampled instrument). Let the assumptions in Section 2.1.2 hold with

π = c/T 1/2. Then, the distribution of bootstrapped IV estimator based on residual boot-

strap with resampled instrument, conditionally on the data DT , satisfies the following

convergence as T →∞:

β̂IV ∗T − β̂IVT |DT
d∗→d

w∗zu
cσ2

z + w∗zv + U

∣∣∣U,

where U ∼ N(0, σ2
zσ

2
v), the symbol “·|DT” means conditionally on the sample DT and

(w∗zu, w
∗
zv)
′ ∼ N2(0, σ

2
zΣ), independent of the original data, with Σ defined as in (2.6),

and also Σ̂
p→ Σ.

Fixed Instrument

Theorem 2 (Bootstrapped IV estimator under weak instrument applying residual

bootstrap with fixed instrument). Let the assumptions in Section 2.1.2 hold with

π = c/T 1/2. Then, the distribution of bootstrapped IV estimator based on residual

bootstrap with fixed instrument zt, conditionally on the data DT , satisfies the following

convergence as T →∞:

(β̂IV ∗T − β̂IVT )|DT
d∗→d

w∗zu
cσ2

z + w∗zv + U

∣∣∣U, (3.4)

where the quantities U, w∗zu and w∗zv are previously defined. Furthermore, in case of

σ2
z = 1, the expressions in (1) and (3.4) is reduced to:

(β̂∗IVT − β̂∗T )|DT
d∗→p

w∗zu
c+ w∗zv + U

∣∣∣U,

where U ∼ N(0, σ2
v) conditionally on DT . To summarize, the inconsistency of IV

estimator is reflected in the bootstrap world. In fact, P ∗(β̂IV ∗T − β̂IVT ≤ x) weakly

converges to a probability law F depending on the random component U, as follows:

P ∗(β̂IV ∗ − β̂IV ≤ x)
d→ F (x,U)|U.
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3.2.2 Bootstrap TSLS under weak instrument asymptotics

Resampled Instruments

Theorem 3 (Bootstrapped TSLS estimator under weak instrument asymptotic ap-

plying residual bootstrap with resampled instruments). Let the assumptions in Section

2.1.2 hold with π = C/T 1/2. Then, the distribution of bootstrapped TSLS estimator

based on residual bootstrap with resampled instrument, conditionally on the data DT ,

satisfies the following converges as T →∞:

(β̂TSLS∗T − β̂TSLST )|DT
d∗→d

(QZZC + U +W ∗
Zv)
′Q−1ZZW

∗
Zu

(QZZC + U +W ∗
Zv)
′Q−1ZZ(QZZC + U +W ∗

Zv)

∣∣∣U, (3.5)

where U ∼ N(0, σ2
vQZZ), conditionally on the data DT , QZZ is a full–rank squared

matrix, (W ∗
Zu,W

∗
Zv)
′ ∼ N(0,Σ⊗QZZ) and again Σ̂

p→ Σ.

Fixed Instruments

Theorem 4 (Bootstrapped TSLS estimator under weak instrument applying residual

bootstrap with fixed instruments). Under the assumption of Section 2.1.2 and applying

residual bootstrap with fixed instruments (k > 1), the distribution of bootstrap TSLS

estimator, considering weak instrument asymptotics π = CT−1/2 and conditionally on

the data DT , converges to:

(β̂TSLS∗T − β̂TSLST )|DT
d∗→d

(QZZC + U +W ∗
Zv)
′Q−1ZZW

∗
Zu

(QZZC + U +W ∗
Zv)
′Q−1ZZ(QZZC + U +W ∗

Zv)

∣∣∣U, (3.6)

where U and other W ∗
Z. quantities are previously defined. Following expression (3.5)

and (3.6), we observe that random component appears both in the numerator and

denominator of TSLS limit bootstrap distribution. Proofs of Theorems 1,2,3, 4 are

presented in Section 3.5.

3.2.3 Irrelevant instruments and bootstrap

In the no identification case, i.e. π = 0 (or π = 0 when k = 1), β is not point

identified and the distribution of IV/TSLS estimators results asymptotically as a ratio

of two correlated normals (Cauchy–like random variable), as shown in (2.18) and

(2.19). In this situation the bootstrap, exactly like asymptotic theory, completely
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breaks down1. This occurs because π̂T , obtained through OLS, estimates the true value

(π = 0 in the just identified case) with probability equal to zero; loosely speaking, the

unidentification is not properly captured in the bootstrap DGP. Nevertheless, since

irrelevance of instruments represent only a theoretical limit case, it could be useful

to understand the source of randomness in the limiting bootstrapped distribution of

estimator, conditionally on the data. We further introduce the following corollary

regarding bootstrapped IV estimator in the limit case of π = c = 0.

Corollary 4.1 (Bootstrapped IV estimator under irrelevant instrument applying

residual bootstrap). When c = π = 0, given the assumption of Section 2.1.2, the

bootstrap estimator β̂IV ∗T based on residual bootstrap (using fixed or resampled instru-

ment), conditionally on the sample DT , converges to:

• Resampled zt

(β̂IV ∗T − β̂IVT )|DT
d∗→d

w∗zu
w∗zv + U

∣∣∣U. (3.7)

• Fixed zt

(β̂IV ∗T − β̂IVT )|DT = (z′x∗)−1z′û∗

d∗→d
w∗zu

w∗zv + U

∣∣∣U. (3.8)

The distribution in (3.7) and (3.8) is also a Cauchy–like random variable, but differs

from the asymptotic IV under irrelevant instrument. In fact, recalling expression in

(2.18), when σ2
u = σ2

v = 1, the distribution of IV under unidentification is equal to

wzu/wzv. This distribution is centered on the OLS plim, i.e. the endogeneity coefficient

ρ, as pointed out in simulation study of Section 2.3.

Furthermore, a straightforward Monte Carlo exercise is conducted in order to un-

derstand and visualize randomness of β̂IV ∗ under two residual–based resampling meth-

ods. Figure 3.1 shows 10 empirical densities2, obtained through B = 9999 residual–

based bootstrap samples with (left panel) and without (right panel) resampled instru-

ment. In the simulation design, zt is drawn from a standard normal, the stochastic

1Applying estimators and test non–robust to weak instruments, like IV, TSLS and its associated
t–stats

2Densities are computed applying normal Kernel on the bootstrap replications β̃∗
Tb ∈ (−4, 4),

for b = 1, . . . , B. The bandwidth h is selected using Silverman’s Rule of Thumb (1986), and it is

approximately equal to h ≈ 1.06ŝd(β̂IV
T )T−1/5
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components are jointly normally distributed and true value of parameter is set to

β = 0. The sample size is moderately large (T = 250), where the considered level

of endogeneity is high and equal to ρ = Cor(ut, vt) = 0.9. Red line represents the

asymptotic distribution (Cauchy–like) of IV estimators, based on M = 100000 simu-

lated samples, while blue (resampled instruments), and green (fixed) dashed lines are

the bootstrapped IV estimator when c = µ = 0. Despite IV estimator under π = 0 is

centered on ρ, its bootstrapped counterpart substantially differs from its finite sample

distribution, even if two resampling methods seem to perform quite different. In fact,

bootstrap distributions with resampled instrument are centered on random values, of-

ten very far from 0.5, while fixed–instrument distributions seem to present an high

kurtosis.

In overidentified models there is an increase of useless information; thus, random-

ness appears less severe, especially using residual bootstrap with resampled instru-

ments. In Figure 3.2, we plot only 10 bootstrap–based densities of TSLS with k = 5

(multi–normal instruments) and high degree of endogeneity level (ρ = 0.9), where

π = 0. Even if the (simulated) asymptotic distribution of TSLS under five irrelevant

instruments is again centered on ρ = 0.9, the bootstrap distributions of estimators,

generated with the same DGP present very different medians from this theoretical

value.

3.2.4 Concentration parameter and bootstrap under weak in-

struments

In this section we report some results from Zhan (2017), regarding the difference

between population concentration parameter and its bootstrapped counterpart con-

verging to different constant as T,B →∞ under weak instrument asymptotics. Here,

for simplicity, we present only the just identified case. When π = c/
√
T , the boot-

strap counterpart of (population) concentration parameter, denoted as µ∗2, converges

to following distribution as T →∞:

µ∗2 =
σ̂2
z π̂

2
T

σ̂2
v

d→ c2σ2
z + 2cwzu + (wzv)

2/σ2
z

σ2
v

,
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Figure 3.1: Empirical density of 10 bootstrapped IV estimators under irrelevant in-
strument (π = 0) using B = 9999 replications.
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Figure 3.2: Empirical densitiy of 10 bootstrap–based TSLS (residual bootstrap) esti-
mators under k = 5 irrelevant instruments (π = 0) using B = 9999 replications.
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while3 µ2 p→ σ2
zc

2/σ2
v . Hence the asymptotic difference between µ2∗ and µ2 is equal to:

2cwzu + (wzv)
2

σ2
z

.

For this reason, we are interested in comparing the estimated strength of instruments

in the bootstrap world against its asymptotic counterpart, in order to check or quan-

tify this difference. We generate M = 1000 samples of xt, zt under weak instru-

ment asymptotics following the design of Section 2.3.2. Then we apply residual–based

bootstrap proposed in this chapter (both fixed and resampled instruments). We con-

sider only just identified case, reporting Monte Carlo estimate of µ2, computed as

µ̂2 = M−1∑M
m=1 Fm − 1, where F is obtained through (2.28), and the rejection fre-

quencies of F > 10 test for different strength of identification, i.e. µ2/k varies from 0

to 60. The bootstrapped estimators or the concentration parameter are computed in

the following way:

µ̂∗2 = Ê(F ∗)− 1 = B−1
B∑
b=1

F ∗b − 1,

where F ∗b obtained under resampled and fixed instruments are:

F ∗b =
σ̂∗2z π

∗2
T

σ̂2
v

F ∗ =
σ̂2
zπ
∗2
T

σ̂2
v

.

We compute mean and median values of µ̂∗2 and the median of F ∗b > 10 for b =

1, . . . , B. In Table 3.3, we observe that the mean and median of bootstrap estima-

tor of µ2 are greater than µ2 and µ̂2 in the irrelevant instrument case. In general,

under weak instrument asymptotics, the bootstrap overestimates in mean the concen-

tration parameter, while the distance between µ̂2 and µ2 decreases in large sample

sizes (T = 500). To summarize, the difference between concentration parameter and

its bootstrapped counterpart appears not negligible only if the instrument is irrelevant

or very weak, i.e. the DGP presents µ2 ≤ 1. Further investigations may be conducted

using different DGPs (e.g. non–normal disturbances and invalid instrument).

3Remark the Appendix of Section 2
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3.2.5 Cautionary note: a (parametric) fixed regressors boot-

strap

In the previous paragraphs, two residual–based resampling scheme are applied in order

to prove convergence (in a bootstrap sense) of bootstrapped IV/TSLS estimators to

a non–normal and random distribution, exploiting a particular sequence of modeling

(weak instrument asymptotics). From a practical perspective, non–normality of boot-

strap estimators could be a desirable feature in order to check the presence of weak

instruments, allowing to develop useful indicators and forma diagnostics bootstrap–

based tests. For example, it would be possible to test normality of bootstrap replica-

tions, or associated statistics (under the null or the alternative hypothesis). However,

considering another resampling method the distribution of a bootstrapped statistic

may be asymptotically normal even if instruments are collectively weak (i.e. µ2/k or

π ≈ 0) or totally irrelevant. An example is represented by the parametric fixed design

i.i.d. bootstrap in the context of IV estimator (perfectly identified case). Applying

this method, the bootstrap DGP may be summarized as follows:

y?t = β̂IVT xt + u?t where u?t ∼ N(0, σ̂2
u). (3.9)

Following the expression in (3.9), both endogenous regressor and instrument are fixed

at their sample original values. Then, bootstrapped IV estimator takes the following

form:

β̂IV ?T =

∑T
t=1 zty

?
t∑T

t=1 ztxt
= β̂IVT +

∑T
t=1 ztu

?
t∑T

t=1 ztxt
, (3.10)

and the associated estimation error in the bootstrap world is:

β̂IV ?T − β̂IVT = (z′x)−1zu?

=

∑T
t=1 ztu

?
t∑T

t=1 ztxt
.

Hence, conditionally on the original data DT , following theorem proves asymptotic

normality of bootstrap estimator, obtained through fixed regressor parametric boot-

strap, under weak instruments.

Theorem 5 (Bootstrapped IV estimator under weak instruments applying fixed iid

bootstrap). Under weak instrument asymptotics π = T−1/2c where 0 ≤ c < ∞, as-

sumption in Section 2.1.2 and applying method described in (3.9) and estimator in
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(3.10), the bootstrapped distribution of IV, conditionally on the data DT , converges to:

√
T ω̂−1(β̂∗IVT − β̂IVT )

d∗→p N(0, 1). (3.11)

Proof is presented in Section 3.5, i.e. the Appendix of this Chapter. To summarize,

method described in (3.9) neglets π̂T and residuals vt in the bootstrap DGP, while in

general these quantities bring out identification issues from the sample to bootstrap

world through the inconsistent estimator β̂IVT .

Table 3.1 presents main results of a small–scale Monte Carlo exercise; in this con-

text we apply Jarque–Bera normality tests directly on the distribution of β̂IV ?T , i.e.

(β̂IV ?T1 , . . . , β̂
IV ?
TB ) obtained through (parametric) fixed regressor iid bootstrap. The

number of generated samples is M = 1000; in each iteration the number of bootstrap

replication is equal to B = 199. We notice that rejection frequencies of JB tests are

very low and close to nominal level α = 0.05 for all degrees of identification, indicated

by µ2, and two considered levels of endogeneity. We hightlight in bold highly p–values

and denote in red the best “performance” in terms of size. Empirical size is also found

close to the nominal level using five instruments (TSLS) and similar rejections can be

obtained with higher values of B; all of these results are consistent with Theorem 5.

Moreover, applying the same bootstrap method, other κ−class estimators could

present a different behaviour with respect to IV/TSLS, becoming non–normal under

weak or irrelevant instruments. This can be viewed in Table 3.2, presenting rejection

frequency of JB test applied on the bootstrapped distribution of the LIML estimator,

even with M = 1000 and B = 199. In the unidentified case (π = 0), rejection fre-

quencies are close to one with k = 2, 5 instruments4, whereas they tend to the nominal

level if the strength of identification increases. This empirical evidence appears un-

der the two considered level of endogeneity. To summarize, this may depend on two

things. On one hand the discrepancy between κ̂LIML and κ̂∗LIML could be reflected in

the bootstrap counterpart, while in TSLS estimation κ̂ = κ̂∗ = 1. On the other hand,

recalling the definition in Section 2.15, LIML takes always account of quantities in the

first stage.

Thus, the combination between (bootstrap) method and estimator is required in

this setting: a particular method may be chosen in order to check weak identification

only if it effectively preserves patterns of low relevance (i.e. non–normality) in asymp-

totic distribution of estimator, conditionally on the data DT . Finally, we point out

4We recall that if k = 1 LIML coincides with TSLS
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k = 1
ρ µ2 = 0 µ2 = 1 µ2 = 10 µ2 = 20

0.5 0.044 0.050 0.035 0.041
0.9 0.048 0.040 0.048 0.032

k = 5
ρ µ2/k = 0 µ2/k = 1 µ2/k = 10 µ2/k = 20

0.5 0.044 0.038 0.046 0.042
0.9 0.040 0.040 0.046 0.044

Table 3.1: Rejection frequency of JB test applied the bootstrapped IV/TSLS (k = 1, 5)
distribution, based on fixed regressor iid bootstrap, considering four different levels of
identification

k = 2
ρ µ2/k = 0 µ2/k = 1 µ2/k = 10 µ2/k = 20

0.5 0.968 0.872 0.126 0.044
0.9 0.956 0.832 0.124 0.050

k = 5
ρ µ2/k = 0 µ2/k = 1 µ2/k = 10 µ2/k = 20

0.5 0.980 0.824 0.038 0.040
0.9 0.988 0.812 0.058 0.034

Table 3.2: Rejection frequency of JB test on the bootstrapped LIML distribution
computed with iid fixed regressor bootstrap for different levels of identification

that fixed regressor bootstrap is not valid under weak (or irrelevant) instruments and

in general its application seems not appropriate in IV estimation.

3.2.6 Bootstrapped t–statistic under irrelevant instrument

Randomness and non–normality of bootstrap limiting distribution may appear even if

inference is conducted through t–test for the null-hypotesis H0 : β = β0. To show this

issue, we recall the simplest IV case, imposing σu = σv = 1 and σuv = ρ. Under irrel-

evant instrument i.e. π = 0, the t–statistic converges in distribution to the following
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expression:

τT
d→ wzu/wzv√

1− 2ρwzu

wzv
+
(
wzu

wzv

)2 . (3.12)

Expression in (3.12), comes from the fact that estimator σ̂2
u could be no longer consis-

tent under irrelevant instruments (see for example the textbook of B. Hansen, 2018),

converging in distribution to a non–trivial limit, equal to Ψ = 1 − 2ρ(wzu/wzv) +

(wzu/wzv)
2 and violating assumptions of Section 2.1.2. Hence, under an irrelevant

instrument, the distribution of t–statistic under the null hypothesis is non–normal

and the parameter ρ plays a key role, as we point out in simulation study of Section

2.3. Considering for simplicity only residual bootstrap with fixed instruments, fol-

lowing Davidson and MacKinnon (2010), the bootstrap counterpart of t–statistics

is equal to: τ ∗T = T 1/2ω̂∗−1(β̂∗T − β̂T ) previously defined in expression (2.46). In

this case β̂T could be IV/TSLS (or other κ−class estimator) and T 1/2ω̂∗ denotes

the standard error of β∗T in the bootstrap world, obtained with the same method

of t–statistic which is bootstrapped. In just identified case, the simplest choice is

ω̂∗2 = T−1/2
√
σ̂∗2u
∑T

t=1 z
2
t /
∑T

t=1 ztx
∗
t , but also robust (to heteroskedasticity) estima-

tors5 may be used.

In Figure 3.3, we plot 10 empirical distribution of bootstrapped t–statistic with

B = 9999, applying the simulation design of Section 3.2.5 applying residual bootstrap

with fixed and resampled instruments. In this exercise, the true value of parameter β

is set equal to 0 and also the (high) endogeneity level is ρ = 0.9. The black dotted

line represents the asymptotic distribution of the statistic under the null hypothesis

H0 : β = 0 (standard normal), while red line denotes the finite sample distribution of

the t statistic, obtained as: T 1/2ω̂−1(β̂IVT − β) where ω̂/
√
T is the estimated standard

error of β̂T . Thus, under the assumption of irrelevant (and weak) instruments, the

asymptotic results τ ∗T
d∗→p N(0, 1) no longer holds.

3.3 Bootstrap inference under weak instruments:

a simulation study

In this section, we present the main result of Monte Carlo simulation conducted to

evaluate non-normality and randomness, conditionally of the data, of bootstrapped dis-

5See for example White(1980) or Mackinnon and White (1985)
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Figure 3.3: Empirical densities of bootstrap t-statistics (residual bootstrap) associated
to IV under the null hypothesis H0 : β = 0 and irrelevant instrument, i.e. π = 0.

tribution of IV/TSLS (and other κ−class estimators) under weak instruments. From

a different point of view, our concern is also to understand if sources of non-normality

could help to detect weak instruments. For this purpose, the presence of random com-

ponent, denoted with the symbol U, could be a serious issue, especially under nearly

irrelevant instruments, as highlighted in simulation exercise of Section 3.2.3.

First of all, different bootstrap methods surveyed in Chapter 2 are proposed to

find if they present substantial differences against asymptotic distribution of estima-

tor. The analysis includes κ−class estimators and weak exogeneity of instruments.

Secondly, we present performance of bootstrap methods regarding several areas: bias

correction, hypothesis testing and confidence intervals. The design for Monte Carlo

simulation basically relies on that proposed in Section 2.3.2, considering different

strength of instruments imposed by the average concentration parameter µ2/k and

several levels of endogeneity for the regressor. Sample size varies from 100 to 1000,

while the number of bootstrap replication is B = 199, 399.
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3.3.1 Non normality of bootstrap distribution

As mentioned in Section 3.2, the bootstrapped distribution of IV/TSLS estimator may

be random and highly non–normal under weak instrument asymptotics. In order to

show these features, we are interested in quantifying how the standardized bootstrap

counterpart of estimator is far from the standard normal, computing sample mean,

median, variance, skewness, kurtosis and InterQuartile Range (IQR) of (β̃∗T1, . . . , β̃
∗
TB),

where β̃∗ =
√
T ω̂−1(β̂∗− β̂). The number of bootstrap replications is B = 399 for each

of M = 1000 random samples. We present both average and median values across the

M replicated samples, denoting all values with the symbol ‘∗’. The main idea is to

investigate if malfunctions of conventional standardization can be sistematically found

in the bootstrap samples of estimators, due to a) the inconsistency of β̂T and b) the

subsequentely randomness of β̂∗T . Again, we use bold and red color to emphasize worst

and best performances.

Table 3.4 contains some results regarding the case of k = 3 instruments: aver-

age values of mean and median of
{
β̃∗Tb

}B
b=1

increase with the endogeneity level while

the average kurtosis of bootstrapped distribution suggests that non-normality may

occur especially when µ2/k is less than 10. Average and median of Kurtosis (of boot-

strapped estimator) could take huge values in presence of very weak instruments, when

µ2/k = 1, due to the no–moment problem. If the sample size increases, as shown in

Table 3.5, standardized TSLS estimator performs better, on average, in terms of IQR,

variance and kurtosis of the bootstrapped distribution. In this setting the number of

instruments is k = 5.

κ-class estimator

Simulation includes some results regarding bootstrapped κ−class estimators, obtained

applying residual–based bootstrap method. The resampling scheme is the same used

for TSLS, involving residuals induced by LIML or Fuller(c) estimates i.e. ût = yt −
β̂LIML
T xt and ût = yt−β̂FullerT xt, where β̂LIML

T and β̂FullerT are introduced in Section 2.1.4

through expression (2.15). Simulation design follows that proposed in this Section.

Table 3.6 shows the main results in a overidentified case (k = 5 instruments),

considering Fuller estimator with constant c equal to 1. Standardized bootstrapped

LIML presents unreliable huge variance and kurtosis under weak instruments, per-

forming very well in terms of Median when instruments are collectively not weak, i.e.

µ2/k = 10. For this reason, a huge variability in bootstrap distribution of the LIML
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could be interpreted as a signal of weak identification although its sensitivity, pro-

ducing those outliers, depends on the so called no–moment problem. Fuller estimator

seems to outperform LIML and TSLS especially in terms of skewness and kurtosis.

3.3.2 Bootstrap–based bias correction

In order to show mulfunctions of bootstrap inference under weak instrument asymp-

totics, we present results regarding bias–correction of the TSLS estimators4. The

bootstrap–based bias corrected version of TSLS is computed as follows:

β̂BTSLST = 2β̂TSLST − 1

B

B∑
b=1

β̂TSLS∗Tb (3.13)

where the quantity B−1
∑B

b=1 β̂
TSLS∗
Tb represents the bootstrap estimates of the bias

E(β̂TSLST ) − β of the estimator, obtained as the average of the B bootstrap replica-

tions. Evaluation is conducted through descriptive indicators previously introduced

(RMSE, MAE, IDR, KS) also using graphical inspection against the normal distri-

bution. In addition, coverage rates are obtained through (bootstrapped) gaussian

confidence intervals:

β̂TSLS ± Φ(1− α/2)σ̂∗,

where the symbol σ̂∗2, denotes the bootstrap estimates of the variance (of the estima-

tor) as follows:

σ̂∗2 =
1

B − 1

B∑
b=1

(
β̂TSLS∗T,b −B−1

B∑
b=1

β̂TSLS∗T,b

)2

.

In Figure 3.4 we plot empirical density of bootstrap–based bias corrected TSLS

under four different strength of identification and four degrees of endogeneity, against

the normal density (red line) with mean equal to β = 0 and variance equal to V (β̂) =

T−1σ2
u(π

′QZZπ)−1 = T−1(π′Ikπ)−1, considering a number of instruments equal to

k = 3, 5. When k = 3, and µ2/k = 1, the distribution of bias corrected TSLS could be

far from N(β, V (β̂T )) even in the case of low endogeneity (ρ = 0.25), indicated with

the black line. Therefore, in case of strong instruments (µ2/k = 40), the distribution

4Perfectly identified case (IV estimator) is not considered because bias of estimators is mainly
affected by overidentification in finite samples
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seems to coincide with its reference normal under all levels of endogeneity. Figure 3.5

confirms some issue under very weak instruments for each level of ρ.

Table 3.7 shows the performance of bootstrap–based bias corrected TSLS when

k = 5. In terms of confidence intervals, covera1ge rates reach the nominal value

only in case of low endogeneity, resulting understated in other cases. Kolmogorov

Smirnov statistic KS, computed on M = 1000 replicated samples, takes values less

than 0.05 even if the instruments present low µ2/k. Table 3.8 presents the performance

of bootstrap–based bias correted LIML, where the estimator β̂BLIML
T using β̂LIML

T and

its bootstrap counterpart β̂LIML∗
T . It seems to perform better than bootstrap–based

bias corrected TSLS especially in terms of coverage rates when instruments are not

too weak (µ2/k ≥ 10), resulting usual unreliable huge values of RMSE under nearly

irrelevant and weak instruments, due to its lack of all moments.

3.3.3 Confidence intervals

In this subsection we discuss confidence intervals of IV/TSLS under weak instruments.

As previously illustrated in Section 2.3, coverage rates may be severely affected by low

relevance of instruments and this reflects in the bootstrap world. We consider two

types of non–robust (with respect to weak instruments) bootstrap–based sets. The

first is the so called percentile and is computed as:

CI∗P,1−α = (β̂∗T,α/2, β̂
∗
T,1−α/2), (3.14)

where β̂∗T is bootstrap counterpart of IV/TSLS (or κ−class) estimator, and β̂∗T,j rep-

resent the j–percentile obtained through B replication. The latter confidence interval

is expressed as follows:

CI∗t,1−α = (β̂T − τ ∗α/2 · ω̂/
√
T , β̂T − τ ∗1−α/2 · ω̂/

√
T ), (3.15)

were ω̃ is the estimated standard error of β̂T , t∗α, t
∗
1−α are the estimated α/2 and 1−α/2

quantiles of the distribution of τ ∗T . The sets in (3.15) are denoted as t–bootstrap

confidence intervals (or t–percentile), suggested by Davidson and MacKinnon (2014).

We point out that other confidence sets can be obtained inverting a fully robust test

but they are not considered here.

Table 3.9 contains the median length and coverage rates of M = 1000 confidence
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Figure 3.4: Empirical density of bootstrap–based bias corrected TSLS estimator (k =
3) under different degrees of identification and levels of endogeneity.
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Figure 3.5: Empirical density of bootstrap–based bias corrected TSLS estimator (k =
5) with different degrees of identification and levels of endogeneity.
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sets obtained using asymptotic theory and method described in (3.14) and (3.15), with

a number of bootstrap replication equal to B = 399, sample size T = 100 and also

β = 0. We consider only two levels of endogeneity, i.e. ρ = 0.5, 0.9. Under weak

instruments, when k = 1, percentile intervals are wider than those obtained with con-

ventional inference, presenting coverage rate close to one under unidentification. Sets

obtained through t–boot method perform very poor in terms of coverage rates, espe-

cially if the instruments are not too weak (i.e. µ2/k = 10), although they have lower

length when instruments are very weak or irrelevant with respet to the asymptotic

sets. This is related to the randomness of bootstrapped t–statistic, preivously viewed

in Section 3.2.6. Nevertheless, in the overidentified case (k = 5) both two bootstrap

methods have very poor performance in terms of coverage rates even when instru-

ments are not too weak, i.e. µ2/k ≤ 20 and under high endogeneity, while t–boot sets

perform better than percentiles under strong instruments.

Furthermore we show results regarding (non robust) confidence sets LIML estima-

tor applying both Pair and Residual bootstrap. Main results are in Table 3.10. Under

no–identification all confidence intervals are very large (in median), confirming no–

moment problem occurring in LIML case. Sets obtained through residual method are

slightly narrower than those computed with the pairs one. However, coverage rates of

percentile intervals are very different between two methods and Pair seems to perform

better when instruments are not very strong (µ2/k = 10). Surprisingly, where identifi-

cation level is very high, bootstrap confidence intervals may perform worst than those

obtained though asymptotic methods, especially under high endogeneity.

3.3.4 Wald test under weak instruments

In this subsection we analize the performance of bootstrapped t–test for the null

hypothesis of H0 : β = β0, where in our analysis we consider β0 = 0. We use two

unrestricted methods (Pair and Unrestricted Residual) that do not impose the null

hypothesis in the bootstrap DGP, as viewed in Section 2.4. When instruments are

irrelevant the rejection frequencies (empirical size) of bootstrap–based test increase

with the number of instruments, as shown in Figure 3.6. Therefore, if overidentification

is combined with high endogeneity, rejection frequencies tend rapidely to unit even if

the true DGP involves β0 = 0. When instruments are collectively not weak, bootstrap

methods could be helpful to improve the performance, especially in presence of high

endogeneity, as highlighted in the lower panel of Figure 3.6. Figure 3.7 and 3.8 compare
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asymptotic p–values of the test with those obtained through residual bootstrap. We

consider two different scenarios: µ2/k = 1, i.e. weak instruments, and µ2/k = 20,

i.e. strong relevance, running M = 500 simulations with ρ = 0.5. In case of a single

weak instrument (red points), bootstrap p–values are sistematically lower than those

obtained through conventional asymptotics; in overidentified cases this discrepancy

still exists but is less systematic.

Table 3.11 contains rejection frequency of t–statistics using two bootstrap methods

and asymptotics considering a number of instruments equal to k = 1, 5. The number

of bootstrap replication is B = 399 (Monte Carlo are 1000) and β = 0. In the

just identified case, when a single instrument is weak or irrelevant, the bootstrap

performs better than asymptotics; under moderate endogeneity residual bootstrap

performs better than pair in terms of empiriacal size, expect when endogeneity is too

high. Moreover, in overidentified case (i.e. k = 5), Pair seems to outperform residual

bootstrap. Table 3.12 presents similar results regarding empirial size of bootstrapped

t–test under a weakly endogenous instrument, following the design of Section 2.3. We

notice that Pair bootstrap performs better than Residual when the level of endogeneity

is not too high (φ = 0.1). A possible reason is that bootstrap DGP (residual case)

is constructed under the strictly hypothesis of incorrelation between instruments and

structural disturbances. When endogeneity of instrument increases (i.e. φ = 1) all

methods get worse for all considered scenarios of identification and endogeneity (of

the regressor); they are very far from the nominal level, confirming problems discussed

in simulation of Chapter 2. A possible challenge in this topic is to apply restricted

methods proposed by Davidson and MacKinnon (2010) illustrated in Section 2.4. We

write an R code presented in the Appendix useful to implement these two methods.

3.4 Concluding Remarks

In this Chapter we analyze the properties of bootstrapped distribution of estimators

IV models with one endougenous regressor. We propose a new derivation of boot-

strapped IV/TSLS estimator under weak instruments asymptotics, using two types of

residual–based bootstrap, involving resampled or fixed instruments. We show that this

distribution has a random limit, conditionally on the data, and also confirms asymp-

totical non–normality; these features vanish as the correlation between instruments

and the endogenous regressor increases. In particular, bootstrapped distribution of
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IV/TSLS differs from those obtained under weak instrument asymptotics, even if it

preserves some peculiarities of low relevance. Randomness clearly appears in the limit

case of irrelevant instruments, considering both estimator and associated t–statistic.

This framework could be extended to the case of multiple endogenous regressors, even

if the vector of nuisance parameter Π becomes a k ×m matrix, where m is the num-

ber of rhs endogenous variables and the strength of instruments is represented by

concentration matrix µ2/T .

The method can be also straightforward applied to prove the limiting distribution of

bootstrapped κ−class estimators under poorly relevant instruments. It is well known

that (partially) robust estimators, as LIML and Fuller, are asymptotically non–normal

under weak instruments (as previously illustrated in Chapter 2). Therefore, some

bootstrap methods are deemed invalid in this context. Empirical exercise suggests

that bootstrap κ−class estimators may also present a random limiting distribution,

conditionally on the data, when instruments are irrelevant or very weak. However, a

possible drawback is that parameter κ could be a random variable in such cases, e.g.

LIML and Fuller, rather than being a constant in OLS and IV/TSLS.

Inference conducted via bootstrap methods could be dramatically affected by weak

instruments, as viewed through Monte Carlo simulation. In particular, bootstrap–

based bias corrected TSLS estimator may be non–normal, in finite samples, under

weak instruments and high endogeneity. Confidence sets can present wrong coverage

rates when weak identification is combined with lack of moments, while rejection fre-

quencies of bootstrapped t–Wald test are severely affected by overidentification and

non exogeneity of instruments. In this context, we show that usage of t–boot confi-

dence intervals may not help to improve performance in terms of coverage rates and

rejection frequency under very weak instruments; moreover, residuals based bootstrap

may performs worst than Pair bootstrap if high endogeneity is combined with overi-

dentification. In this context, will apply the so called fast double bootstrap to see if

this method can improve performance of t/Wald tests under misspecification.



3.5. APPENDIX 93

3.5 Appendix

Bootstrap distribution of IV under weak instruments

The bootstrap estimator of IV (residual bootstrap with resampled instrument) is de-

fined as follows:

β̂IV ∗T − β̂IVT = (z∗′x∗)−1(z∗′u∗)

=

∑T
t=1 z

∗
t u
∗
t∑T

t=1 z
∗
t x
∗
t

Under the assumption of Section 2.1.2 and conditionally on the original data, the

bootstrap instruments and disturbances, (z∗t , u
∗
t , v
∗
t )
′, are i.i.d. with mean zero and

covariance matrix σ̂
2
z 0 0

0 σ̂2
u σ̂uv

0 σ̂uv σ̂2
v


where, by assumption, σ̂

2
z 0 0

0 σ̂2
u σ̃uv

0 σ̂uv σ̂2
v

 p→

σ
2
z 0 0

0 σ2
u σuv

0 σuv σ2
v


Moreover, since the term z∗t u

∗
t is (conditionally on the original data) i.i.d. with mean

zero, provided that ut and zt have finite fourth order moments, we can proceed as e.g.

in Liu et al. (1988) and prove the (conditional) central limit theorem:

1√
T

T∑
t=1

z∗t u
∗
t ∼ ∗iid(0, σ̂2

z σ̂
2
u)

d∗→p N(0, σ2
uσ

2
z)

1√
T

T∑
t=1

z∗t v
∗
t ∼ ∗iid(0, σ̂2

z σ̂
2
v)

d∗→p N(0, σ2
vσ

2
z).
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where “
d∗→p” denotes weak convergence in probability. The above convergence results

are joint; that is,

1√
T

T∑
t=1

z∗t

(
u∗t

v∗t

)
d∗→p N

(
0, σ2

zΣ
)

=

(
w∗zu

w∗zv

)

where

Σ =

[
σ2
u σuv

σuv σ2
v

]
and w∗zu and w∗zv are implicitly defined. Consider the denominator, and recall that

under weak instrument asymptotics, i.e. π = c/
√
T , the OLS estimator of π, given by

π̂T =

∑T
t=1 ztxt∑T
t=1 z

2
t

=
c√
T

+

∑T
t=1 ztvt∑T
t=1 z

2
t

,

satisfies

√
T (π̂T −

c√
T

) =
√
T π̂T − c =

T−1/2
∑T

t=1 ztvt

T−1
∑T

t=1 z
2
t

d→ N(c, σ2
v/σ

2
z).

The denominator bootstrap IV estimator can be rewritten as:

1

T

T∑
t=1

z∗t x
∗
t = π̂T

1

T

T∑
t=1

z∗2t +
1

T

T∑
t=1

z∗t v
∗
t ,

where
1

T

T∑
t=1

z∗2t
p∗→p σ

2
z , (3.16)

that is, for any δ > 0, P ∗(| 1
T

∑T
t=1 z

∗2
t − σ2

z | > δ)
p→ 0 (P ∗ is the probability measure

induced by the bootstrap). Moreover, since z∗t v
∗
t is conditionally i.i.d., 1

T

∑T
t=1 z

∗
t v
∗
t =

O∗p
(
T 1/2

)
in probability (see Chang and Park, 2003, for the definitions of bootstrap

stochastic orders). All together, as in Cavaliere and Georgiev (2018, proof of Theorem

3), these results imply that, conditionally on the data,

(β̂IV ∗T − β̂IVT )|DT
d∗→d

w∗zu
cσ2

z + U + w∗zv

∣∣∣U.
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as required.

Hence, conditionally on the fact that U ∼ N(0, σ2
zσ

2
v), the bootstrapped asymptotic

distribution of IV estimator could be rewritten as follows:

wzu
cσ2

z + U + wzv
=

σ2
uσ

2
zN(0, 1)

cσ2
z + σ2

zσ
2
vN(0, 1) + σ2

zσ
2
vN(0, 1)

=
σ2
uN(0, 1)

c+ σ2
vN(0, 1) + σ2

vN(0, 1)

=
σ2
uN(0, 1)

c+ σ2
vN(0, 2)

,

where two normals are correlated with correlation coefficient equal to ρ.

Bootstrapped IV estimator with fixed instrument

The bootstrap counterpart of IV estimator applying residual bootstrap with fixed

instruments is:

β̂IV ∗T − β̂T = (z′x∗)−1(z′u∗)

=

∑T
t=1 ztu

∗
t∑T

t=1 ztx
∗
t

Again, under the assumption of Section 2.1.2 and conditionally on the original data,

the bootstrap disturbances, (u∗t , v
∗
t )
′, are i.i.d. with mean zero and covariance matrix

Σ̂ =

[
σ̂2
u σ̂uv

σ̂uv σ̂2
v

]

where, by assumption, [
σ̂2
u σ̂uv

σ̂uv σ̂2
v

]
→p

[
σ2
u σuv

σuv σ2
v

]
Here, ztu

∗
t is also (conditionally on the original data) i.i.d. with mean zero, provided

that:

1√
T

T∑
t=1

ztu
∗
t ∼ ∗iid(0, σ2

z σ̂
2
u)

d∗→p N(0, σ2
uσ

2
z)

1√
T

T∑
t=1

ztv
∗
t ∼ ∗iid(0, σ2

z σ̂
2
v)

d∗→p N(0, σ2
vσ

2
z).
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The above convergence results are the following:

1√
T

T∑
t=1

zt

(
u∗t

v∗t

)
d∗→p N

(
0, σ2

zΣ
)

=

(
w∗zu

w∗zv

)

where

Σ =

[
σ2
u σuv

σuv σ2
v

]
and w∗zu and w∗zv are previously defined. Under weak instrument asymptotics, i.e.

π = c/
√
T , the OLS estimator of π, given by

π̂T =

∑T
t=1 ztxt∑T
t=1 z

2
t

=
c√
T

+

∑T
t=1 ztvt∑T
t=1 z

2
t

,

satisfies

√
T (π̂T −

c√
T

) =
√
T π̂T − c =

T−1/2
∑T

t=1 ztvt

T−1
∑T

t=1 z
2
t

d→ N(c, σ2
v/σ

2
z).

The denominator of bootstrap IV estimator could be written

1

T

T∑
t=1

ztx
∗
t = π̂T

1

T

T∑
t=1

z2t +
1

T

T∑
t=1

ztv
∗
t ,

where T−1
∑T

t=1 z
2
t

p→ σ2
z by assumptions. Since ztv

∗
t is conditionally i.i.d., 1

T

∑T
t=1 ztv

∗
t =

O∗p
(
T 1/2

)
in probability these results imply that, conditionally on the data,

(β̂IV ∗T − β̂IVT )|DT
d∗→d

w∗zu
cσ2

z + U + w∗zv

∣∣∣U,

as required.

Considering both fixed and resampled instrument, in the special unidentified case

of irrelevant instrument π = c = 0:

(β̂IV ∗T − β̂IVT )|DT
d∗→d

wzu
wzv + U

∣∣∣U, (3.17)
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and then expression in (3.17) could be straightforward rewritten as:

wzu
wzv + U

=
N(0, σ2

zσ
2
u)

N(0, σ2
zσ

2
v) +N(0, σ2

zσ
2
v)

=
N(0, σ2

zσ
2
u)

N(0, 2σ2
zσ

2
v)

,

resulting, even conditionally on original data DT , a ratio of two correlated normal

random variables.

More than one instrument

Resampled Instruments

We firstly report the expression for bootstrap counterpart of TSLS estimator under

residual–based bootstrap with resampled instruments (overidentified case, k > 1):

β̂∗TSLST = (x∗′PZ∗x
∗)
−1

(x∗′PZ∗y
∗)

=
[
x∗′Z∗(Z∗′Z∗)−1Z∗′x∗

]−1 [
x∗′Z∗(Z∗′Z∗)−1Z∗′y∗

]
= β̂TSLST + (x∗′PZ∗x

∗)
−1

(x∗′PZ∗u
∗) (3.18)

The joint distribution of bootstrapped residuals and instruments is:Z
∗
t

u∗t

v∗t

 ∼∗ iid
(
0,ΣT ⊗ T−1(Z′Z)

)

where Σ̂ =

[
σ̂2
u σ̂uv

σ̂uv σ̂2
v

]
. Then, we have the following asymptotic results:

Z∗′u∗√
T

∼ ∗iidk(0, σ̂
2
uT
−1(Z′Z))

d∗→p Nk(0, σ
2
uQZZ)

Z∗′v∗√
T

∼ ∗iidk(0, σ̂
2
vT
−1(Z′Z))

d∗→p Nk(0, σ
2
vQZZ)
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Under weak instruments, i.e. π = CT−1/2 where C is a k−dimensional vector, the

distribution of π̂T is

π̂T = (Z′Z)−1Z′x

= CT−1/2 + (Z′Z)−1Z′v
d→ Nk(C, σ

2
uQ
−1
ZZ). (3.19)

Combined these results, the denominator of (3.18) becomes:

x∗′PZ∗x
∗ = (x∗′Z∗)(Z∗′Z∗)−1(Z∗′x∗)

= (Z∗π̂T + v∗)′Z∗(Z∗′Z∗)−1Z∗′(Z∗π̂T + v∗)

=

(
(Z∗π̂T + v∗)′Z∗√

T

)(
Z∗′Z∗

T

)−1(
Z∗′(Z∗π̂T + v∗)√

T

)
=

(
π̂TZ∗′Z∗√

T
+

v∗′Z∗√
T

)(
Z∗′Z∗

T

)−1(
Z′Zπ̂T√

T
+

Z∗′v∗√
T

)
=

(√
T π̂TZ∗′Z∗√
T
√
T

+
v∗′Z∗√
T

)(
Z∗′Z∗

T

)−1(
Z′Zπ̂T

√
T√

T
√
T

+
Z∗′v∗√
T

)
x∗′PZ∗x

∗|DT
d∗→d (QZZC + U +W ∗

Zu)
′Q−1ZZ(QZZC + U +W ∗

Zu)
∣∣∣U, (3.20)

where expression in (3.20) comes from:

x∗′PZ∗x
∗ d∗→d

[
Nk(C, σ

2
vQZZ)QZZ +W ∗

Zu

]′
Q−1ZZ

[
Nk(C, σ

2
vQZZ)QZZ +W ∗

Zu

]
= [CQZZ + U +W ∗

Zu]
′Q−1ZZ [CQZZ + U +W ∗

Zu] .
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Furthermore, the numerator of expression (3.18) has the same asymptotic distribution,

conditionally on the data:

x∗′PZ∗u
∗ = (x∗′Z∗)(Z∗′Z∗)−1(Z′u∗)

=
(x∗′Z∗)√

T

(Z∗′Z∗)−1

T

(Z∗′u∗)√
T

=
(Z∗π̂T + v)′Z√

T

(Z′Z)−1

T

Z′u∗√
T

=
(Zπ̂T + v∗)′Z√

T

(Z′Z)−1

T

Z′u∗√
T

=

(
π̂TZ′Z√

T
+

v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)
=

(√
T π̂TZ′Z√
T
√
T

+
v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)
x∗′PZ∗u

∗|DT
d∗→d (C ′QZZ + U +W ∗

Zu)
′Q−1ZZW

∗
Zu

∣∣∣U,

where

x∗′PZ∗u
∗|DT

d∗→d

[
Nk(C, σ

2
vQZZ)QZZ +WZV

]′
Q−1ZZW

∗
Zu

∣∣∣U
and (W ∗

Zu,W
∗
Zu)
′ ∼ N(0,Σ⊗QZZ)

Fixed instruments

The expression for bootstrap counterpart of TSLS estimator under residual–based

bootstrap with fixed instruments ( k > 1) is:

β̂∗TSLS = (x∗′PZx∗)
−1

(x∗′PZy∗)

=
[
x∗′Z(Z′Z)−1Z′x∗

]−1 [
x∗′Z(Z′Z)−1Z′y∗

]
= β̂TSLST + (x∗′PZx∗)

−1
(x∗′PZu∗) . (3.21)
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Bootstrap disturbances and fixed instruments have the following joint asymptotic dis-

tributions:

Z′u∗√
T
∼ ∗NID(0, σ̂2

uT
−1(Z′Z))

d∗→p Nk(0, σ
2
uQZZ)

Z′v∗√
T
∼ ∗NID(0, σ̂2

vT
−1(Z′Z))

d∗→p Nk(0, σ
2
vQZZ).

Therefore, the denominator of expression (3.21) becomes:

x∗′PZx∗ = (X∗′Z)(Z′Z)−1(Z′x∗)

= (Zπ̂T + v∗)′Z(Z′Z)−1Z′(Zπ̂T + v∗)

=

(
(Zπ̂T + v∗)′Z√

T

)(
Z′Z

T

)−1(
Z′(Zπ̂T + v∗)√

T

)
=

(
π̂TZ′Z√

T
+

v∗′Z√
T

)(
Z′Z

T

)−1(
Z′Zπ̂T√

T
+

Z′v∗√
T

)
=

(
C/
√
TZ′Z√
T

+
Z′v√
T

+
v∗′Z√
T

)(
Z′Z

T

)−1
·

(
Z′ZC/

√
T√

T
+

Z′v√
T

+
Z′v∗√
T

)
x∗′PZx∗|DT

d∗→d (QZZC + U +W ∗
Zu)
′Q−1ZZ(QZZC + U +W ∗

Zu)
∣∣∣U (3.22)
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And the denominator of expression (3.21) becomes:

x∗′PZu∗ = (x∗′Z)(Z′Z)−1(Z′u∗)

=
(x∗′Z)√

T

(Z′Z)−1

T

(Z′u∗)√
T

=
(Zπ̂T + v∗)′Z√

T

(Z′Z)−1

T

Z′u∗√
T

=
(Zπ̂T + v∗)′Z√

T

(Z′Z)−1

T

Z′u∗√
T

=

(
π̂TZ′Z√

T
+

v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)
=

(
(C/
√
T + (Z′Z)−1Z′v)Z′Z√

T
+

v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)

=

(
(C/
√
TZ′ + Z′v)√
T

+
v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)

=

(
C/
√
TZ′Z√
T

+
Z′v√
T

+
v∗′Z√
T

)(
Z′Z

T

)−1(
Z′u∗√
T

)
x∗′PZu∗|DT

d∗→p (QZZC + U +W ∗
Zu)
′Q−1ZZW

∗
Zu

∣∣∣U. (3.23)

Combining two results, using (3.23), we obtain the following representation:

(β̂∗TSLST − β̂TSLST )|DT = (x∗′PZx∗)
−1

(x∗′PZu∗)

d∗→d
(QZZC + U +W ∗

Zu)
′Q−1ZZW

∗
Zu

(QZZC + U +W ∗
Zu)
′Q−1ZZ(QZZC + U +W ∗

Zu)
.
∣∣∣U.

In the special unidentified case of C = π = 0:

(β̂∗TSLST − β̂TSLST )|DT
d∗→d

(W ∗
Zu + U)′W ∗

Zu

(W ∗
Zu + U)′(W ∗

Zu + U)′
.
∣∣∣U
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Fixed Regressor iid Bootstrap

Let the bootstrapped IV estimator based on fixed regressor iid bootstrap in Section

3.9 (just identified case):

β̂IV ∗T =

∑T
t=1 zty

∗
t∑T

t=1 ztx
∗
t

=

∑T
t=1 zt(β̂

IV xt + u∗t )∑T
t=1 zty

∗
t

=
β̂IVT

∑T
t=1 ztxt∑T

t=1 ztxt
+

∑T
t=1 ztu

?
t∑T

t=1 ztxt

= β̂IVT +

∑T
t=1 ztu

?
t∑T

t=1 ztxt
.

Recalling that u?t ∼ N(0, σ̂2
u) and assumptions of Section 2.1.2, the bootstrap IV

estimator converges to:

√
T (β̂IV ∗T − β̂IVT )

d∗→p N(0, ω̂2)

since ω̂2∗ p→ σ̂2
u

∑T
t=1 z

2
t∑T

t=1(ztxt)
2

= ω̂2, even if ω̂2 9p ω
2.

Remark: inconsintency of variance estimator

The assumption of consistency for the estimator Σ̂ seems more unrealistic under poorly

relevant instrument. This assumption may be relaxed if we assume that Σ̂ converges

in distribution to a random matrix M rather than constant and positive definite Σ .

In order to give an intuition of this fact, under weak instrument asymptotics we have

inconsistency of variance of ut:

σ̂2
u

d→ Ψ (3.24)

and Ψ is a random variable equal to:

Ψ = σ2
u − 2σuvD + σ2

vD
2.

where D = wzu/(c
2σz + wzv) is the limiting distribution of (β̂IVT − β). The main con-

cept regards that both the numerator and denominator of bootstrapped IV estimator

presents two components, either normally distributed, conditionally on the original

data DT . Hence, we point out that our asymptotic results regarding randomness

of the bootstrapped distribution, formally proved in Theorem 1, 2 3 and 4, may be
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improved considering Σ̂
d→M.

Three R code for bootstrap in IV/TSLS

Here we present three R functions useful in the context of inference in IV/TSLS

context. The first concerns boostrapped distribution of TSLS or IV estimator and

associated t–statistic (with no exogenous covariates) using (unrestricted) Residual

bootstrap with both resampling and fixed instruments. Standardized bootstrapped

estimators are also included in the output. The second code regards bias–corrected

TSLS and LIML estimator with both pair and residual–based bootstrap (only with

fixed instrument). The last function contains restricted residual bootstrap for the t–

statistic associated to TSLS estimator, applying methods introduced by Davidson and

MacKinnon (2010). To our knowledge, these procedures are not even implemented in

R packages.

1. Unrestricted Residual Bootstrap

boot iv fun<−f unc t i on (B, data , beta0 ){
## t s l s / iv e s t imat ion :

k<−nco l ( data)−2

iv <−i v r e g ( data [ , 1 ] ˜ data [ , 2 ] | data [ , 3 : ( k + 2 ) ] ) ;

t s l s<− i v $ c o e f f i c i e n t s [ 2 ] ;

o l s<−lm( data [ , 2 ] ˜ data [ , 3 : ( k +2)])

sdt<−summary( iv ) $ c o e f f i c i e n t s [ 2 , 2 ]

t s t a t <−( t s l s−beta0 )/ sdt

t<−nrow ( data )

z<−data [ , ( 3 : ( k +2)) ]

## I n i z i a l i z i n g ve c t o r s :

betaB UR res<−numeric ( ) ; t boot UR res<−numeric ( )

betaB UR fix<−numeric ( ) ; t boot UR f ix<−numeric ( )

## r e s i d u a l s

uvz<−cbind ( r e s i d u a l s ( i v ) , r e s i d u a l s ( o l s ) , z )

f o r ( j in 1 :B){

i nd i c e s<−sample ( 1 : t , t , r e p l a c e=TRUE)

ub<−uvz [ i nd i c e s , 1 ] ; vb<−uvz [ i nd i c e s , 2 ] ;
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zb<−uvz [ i nd i c e s , 3 : ( k+2)]

## DGP f i x e d z

i f ( k==1){xb<−z∗ o l s $ c o e f [2 ]+ vb} e l s e {xb<−z%∗%o l s $ c o e f [ 2 : ( k+1)]+vb}
yb<−t s l s ∗xb+ub ;

ivb UR fix<−i v r e g ( yb˜xb | z ) ;

## Bootstrapped es t imator and t−s t a t

betaB UR fix [ j ]<− i v b U R f i x $ c o e f f i c i e n t s [ 2 ] ;

t boot UR f ix [ j ]<−(betaB UR fix [ j ]− t s l s )/summary( ivb UR f ix ) $ c o e f f i c i e n t s [ 2 , 2 ]

## DGP resampled z :

i f ( k==1){xb2<−zb∗ o l s $ c o e f [2 ]+ vb} e l s e {xb2<−zb%∗%o l s $ c o e f [ 2 : ( k+1)]+vb}
yb2<−t s l s ∗xb2+ub

ivb UR res<−i v r e g ( yb2˜xb2 | zb )

## Bootstrapped es t imator and t−s t a t :

betaB UR res [ j ]<− i v b U R r e s $ c o e f f i c i e n t s [ 2 ] ;

t boot UR res [ j ]<−(betaB UR res [ j ]− t s l s )/summary( ivb UR res ) $ c o e f f i c i e n t s [ 2 , 2 ]

}
### Standardized e s t imato r s

betaB UR1 st<−(betaB UR res−t s l s )/ sdt

betaB UR2 st<−(betaB UR fix−t s l s )/ sdt

## Save q u a n t i t i e s from IV es t imat ion

i v e s t<− l i s t ( t s l s , t s t a t )

boot<− l i s t ( betaB UR res , betaB UR fix ,

betaB UR1 st , betaB UR2 st ,

t boot UR res , t boot UR f ix )

names ( boot)<−c ( ’ betaB UR res ’ , ’ betaB UR fix ’ ,

’ betaB URres st ’ , ’ betaB URfix st ’ ,

’ t boot UR res ” , ’ t boot UR f ix ’ )

names ( i v e s t )<−c ( ’ t s l s ’ , ’ t s t a t ’ )
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OUT<− l i s t ( boot , i v e s t ) ; names (OUT)<−c ( ’ boot ’ , ’ i v e s t ’ )

r e turn (OUT)

}

## Example datase t with 2 instruments :

rho<−0.1; mu2<−20; t<−100;Sigma<−matrix ( c (1 , rho , rho , 1 ) , 2 , 2 )

k<−2;uv <− mvrnorm( t , c ( 0 , 0 ) , Sigma ) ; u<−uv [ , 1 ] ; v<−uv [ , 2 ] ;

i k=matrix (1 , nrow=k , nco l =1)

i f (mu2==0) pi<−i k ∗0 e l s e pi<−i k%∗%s q r t (mu2)/ s q r t ( t )

i f (mu2==0) sqad<−NA e l s e sqad<−s q r t ( s o l v e ( t ( p i)%∗%pi )/ ( t ) )

## DGP:

beta<−0; I<−diag (1 , k )

z <− mvrnorm( t , rep (0 , k ) , I )

i f ( k==1)x <−z∗ pi+v e l s e {x <−z%∗%pi+v}
y <−beta∗x+u

data<−cbind (y , x , z )

## Function (199 boots t rap r e p l i c a t i o n )

boot out<−b o o t i v f u n (199 , data , 0 )

## Bootstrap p . va lue s f o r t−s t a t

p va lue boot1<−mean( abs ( boot out$boot$t boot UR res )>

abs ( b o o t o u t $ i v e s t $ t s t a t ) )

p va lue boot2<−mean( abs ( boot out$boot$t boot UR f ix )>

abs ( b o o t o u t $ i v e s t $ t s t a t ) )

p va lue boot1 ; p va lue boot2

## Card data without exogenous r e g r e s s o r s

data<−cbind ( card . data$lwage , card . data$educ , card . data$nearc2 )

## Function

B<−999

boot out<−b o o t i v f u n (B, data , 0 )

## Bootstrap p . va lue s f o r t−s t a t

p va lue boot1<−mean( abs ( boot out$boot$t boot UR res )>
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abs ( b o o t o u t $ i v e s t $ t s t a t ) )

p va lue boot2<−mean( abs ( boot out$boot$t boot UR f ix )>

abs ( b o o t o u t $ i v e s t $ t s t a t ) )

## p value boots t rap

p va lue boot1

p va lue boot2

2. Bootstrap–based bias correction

boot bcor<−f unc t i on (B, data ){
k<−nco l ( data)−2

## Estimation , t s l s and LIML

y<−data [ , 1 ] ; x<−data [ , 2 ]

z<−data [ , ( 3 : ( k +2)) ]

iv<−i v r e g ( y˜x | z )

ivL<−suppressWarnings (y , x , z ) ;

t s l s<−i v $ c o e f [ 2 ] ; l iml<−ivL$LIML$point . e s t

## Fi s t s tage

o l s<−lm( data [ , 2 ] ˜ data [ , 3 : ( k +2)])

t<−nrow ( data )

## I n i z i a l i z i n g ve c t o r s :

b e taB l im l pa i r<−numeric ( ) ; b e taB l im l r e s<−numeric ( )

b e t a B t s l s p a i r<−numeric ( ) ; b e t a B t s l s r e s<−numeric ( )

## Resampled Var iab l e s ( pa i r )

yxz<−cbind (y , x , z )

## Res idua l s

r e s l i m l <−(y−x∗as . numeric ( l i m l ))−mean(y−x∗as . numeric ( l i m l ) )

uvzL<−cbind ( r e s l i m l , r e s i d u a l s ( o l s ) )

uvz<−cbind ( r e s i d u a l s ( i v ) , r e s i d u a l s ( o l s ) )

f o r ( i in 1 :B){
i nd i c e s<−sample ( 1 : t , t , r e p l a c e=TRUE)

## DGP PAIR boots t rap

yb<−yxz [ i nd i c e s , 1 ] ; xb<−yxz [ i nd i c e s , 2 ] ;
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zb<−yxz [ i nd i c e s , 3 : ( k+2)]

ivbL<−suppressWarnings ( ivmodel (yb , xb , zb ) ) ;

ivb<−i v r e g ( yb˜xb | zb )

b e t a B t s l s p a i r [ i ]<− i vb$coe f [ 2 ]

b e t a B l i m l p a i r [ i ]<−as . numeric ( ivbL$LIML$point . e s t )

##DGP Res idual Bootstrap

ub<−uvz [ i nd i c e s , 1 ] ; vb<−uvz [ i nd i c e s , 2 ] ;

ubL<−uvzL [ i nd i c e s , 1 ] ;

i f ( k==1){xb<−z∗ o l s $ c o e f [2 ]+ vb} e l s e {xb<−z%∗%o l s $ c o e f [ 2 : ( k+1)]+vb}
ybR<−t s l s ∗xb+ub ;

ybRL<−as . numeric ( l i m l )∗xb+ubL

ivbRL<−suppressWarnings ( ivmodel (ybR , xb , z ) ) ;

ivbR<−i v r e g (ybRL˜xb | z )

b e t a B t s l s r e s [ i ]<− i v b R $ c o e f f i c i e n t s [ 2 ]

b e t a B l i m l r e s [ i ]<−ivbRL$LIML$point . e s t

}
## Bias c o r r e c t e d es t imator t s l s

betaBcor t s l sP<−as . numeric (2∗ t s l s−mean( b e t a B t s l s p a i r ) )

betaBcor ts l sR<−as . numeric (2∗ t s l s−mean( b e t a B t s l s r e s ) )

betaBcor l imlP<−as . numeric (2∗ l iml−mean( b e t a B l i m l p a i r ) )

betaBcor l imlR<−as . numeric (2∗ l iml−mean( b e t a B l i m l r e s ) )

## L i s t

Tsls<− l i s t ( betaBcor t s l sP , be taBcor t s l sR )

Liml<− l i s t ( betaBcor l imlP , betaBcor l imlR )

names ( Ts l s)<−c ( ’ Bco r t s l s 1 ’ , 0 Bco r t s l s 2 ’ )

names ( Liml)<−c ( ’ Bcor l iml1 ’ , ’ Bcor l iml2 ’ )

OUT<− l i s t ( Tsls , Liml ) ; names (OUT)<−c ( ’ Tsls ’ , ’ LIML’ )

re turn (OUT)

}

## card example with two instruments and no exogenous c o v a r i a t e s



3.5. APPENDIX 108

data<−cbind ( card . data$lwage , card . data$educ ,

card . data$nearc4 , card . data$nearc2 )

bootBCOR<−boot bcor (399 , data )

bootBCOR$Tsls ; bootBCOR$Liml

3. Bootstrapped t–statistic

3.1 Residual Restricted Bootstrap

t boot RR<−f unc t i on (B, data , beta0 ){
## t s l s / iv e s t imat ion :

k<−nco l ( data )−2; t<−nrow ( data )

iv <−i v r e g ( data [ , 1 ] ˜ data [ , 2 ] | data [ , 3 : ( k + 2 ) ] ) ;

t s l s<− i v $ c o e f f i c i e n t s [ 2 ] ;

o l s<−lm( data [ , 2 ] ˜ data [ , 3 : ( k +2)])

sdt<−summary( iv ) $ c o e f f i c i e n t s [ 2 , 2 ]

##t s t a t and p−value

t s ta t <−( t s l s−beta0 )/ sdt

pva lue t<−2∗pnorm(−abs ( t s t a t ) )

z<−data [ , ( 3 : ( k + 2 ) ) ] ; x<−data [ , 2 ]

y<−data [ , 1 ]

## I n i z i a l i z i n g ve c t o r s :

betaB RR<−numeric ( ) ;

t bootRR<−numeric ( )

## r e s t r i c t e d r e s i d u a l s RR

resRR<−(y−beta0∗x)−mean(y−beta0∗x )

uv RR<−cbind ( resRR∗( s q r t ( t /( t −2))) , r e s i d u a l s ( o l s )∗ s q r t ( t /( t−k ) ) )

f o r ( j in 1 :B){
i nd i c e s<−sample ( 1 : t , t , r e p l a c e=TRUE)

ub<−uv RR [ ind i c e s , 1 ] ; vb<−uv RR [ ind i c e s , 2 ] ;

## Bootstrap DGP

i f ( k==1){xb<−z∗ o l s $ c o e f [2 ]+ vb} e l s e {xb<−z%∗%o l s $ c o e f [ 2 : ( k+1)]+vb}
yb<−beta0∗xb+ub ;
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ivb RR<−i v r e g ( yb˜xb | z ) ;

## Bootstrapped ( r e s t r i c t e d ) e s t imator and t−s t a t

betaB RR [ j ]<− i v b R R $ c o e f f i c i e n t s [ 2 ] ;

t bootRR [ j ]<−(betaB RR [ j ]−beta0 )/summary( ivb RR ) $ c o e f f i c i e n t s [ 2 , 2 ]

}
## p . value boots t rap

pvalue tB<−mean( abs ( t bootRR)>abs ( t s t a t ) )

i v e s t<− l i s t ( t s t a t , pva lue t ) ; names ( i v e s t )<−c ( ’ t s t a t ’ , ’ pva lue t ’ )

boot<− l i s t ( t bootRR , pvalue tB )

names ( boot)<−c ( ’ t bootRR ’ , ’ pvboot ’ )

boot

OUT<− l i s t ( boot , i v e s t ) ; names (OUT)<−c ( ’ boot ’ , ’ i v . est ’ )

r e turn (OUT)

}

3.2 Restricted Efficient Bootstrap (Davidson and MacKinnon, 2010).

t boot RE<−f unc t i on (B, data , beta0 ){
## t s l s / iv e s t imat ion :

k<−nco l ( data)−2

iv <−i v r e g ( data [ , 1 ] ˜ data [ , 2 ] | data [ , 3 : ( k + 2 ) ] ) ;

t s l s<− i v $ c o e f f i c i e n t s [ 2 ] ;

## Davidson−Mackinnon Estimator :

o l s<−lm( data [ , 2 ] ˜ data [ , 3 : ( k+2)]+ r e s i d u a l s ( i v ) )

sdt<−summary( iv ) $ c o e f f i c i e n t s [ 2 , 2 ]

t s t a t <−( t s l s−beta0 )/ sdt

pva lue t<−2∗pnorm(−abs ( t s t a t ) )

t<−nrow ( data ) ; z<−data [ , ( 3 : ( k + 2 ) ) ] ; x<−data [ , 2 ]

y<−data [ , 1 ]

## I n i z i a l i z i n g ve c t o r s :

betaB RE<−numeric ( ) ;
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t bootRE<−numeric ( )

## r e s t r i c t e d r e s i d u a l s RE

re s i v <−(y−beta0∗x)−mean(y−beta0∗x )

##r e s i d u a l f i r s t s tage

r e s o l s<−r e s i d u a l s ( o l s )+ o l s $ c o e f f i c i e n t s [ k+2]∗ r e s i d u a l s ( i v )

r e s o l s<−resRE−mean( r e s o l s )

uv RE<−cbind ( r e s i v ∗( s q r t ( t /( t −2))) , r e s o l s ∗ s q r t ( t /( t−k ) ) )

f o r ( j in 1 :B){
i nd i c e s<−sample ( 1 : t , t , r e p l a c e=TRUE)

ub<−uv RE [ ind i c e s , 1 ] ; vb<−uv RE [ ind i c e s , 2 ] ;

i f ( k==1){xb<−z∗ o l s $ c o e f [2 ]+ vb} e l s e {xb<−z%∗%o l s $ c o e f [ 2 : ( k+1)]+vb}
yb<−beta0∗xb+ub ;

ivb RE<−i v r e g ( yb˜xb | z ) ;

## Bootstrapped es t imator and t−s t a t

betaB RE [ j ]<− i v b R E $ c o e f f i c i e n t s [ 2 ] ;

t bootRE [ j ]<−(betaB RE [ j ]−beta0 )/summary( ivb RE ) $ c o e f f i c i e n t s [ 2 , 2 ]

}

pvalue tB<−mean( abs ( t bootRE)>abs ( t s t a t ) )

boot<− l i s t ( t bootRE , pvalue tB )

i v e s t<− l i s t ( t s t a t , pva lue t ) ; names ( i v e s t )<−c ( ’ t s t a t ’ , ’ pva lue t ’ )

names ( boot)<−c ( ’ t bootRE ’ , ’ pvboot ’ )

boot

OUT<− l i s t ( boot , i v e s t ) ; names (OUT)<−c ( ’ boot ’ , ’ i v . est ’ )

r e turn (OUT)

}

### Card data example

data<−cbind ( card . data$lwage , card . data$educ ,

card . data$nearc2 , card . data$nearc4 )

B<−999

out RR<−t boot RR (B, data , 0 )
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out RE<−t boot RE (B, data , 0 )

out RR$iv . e s t $ p v a l u e t ; out RR$boot$pvboot

outRE$iv . e s t$pva lue ; out RE$boot$pvboot
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T=100
MC Residual Bootstrap (resampled zt) Residual Bootstrap (fixed zt)

µ2 µ̂2 F > 10 Me(µ̂∗2) µ̂∗2 F ∗ > 10 Me(µ̂∗2) µ̂∗2 F ∗ > 10
0 0.081 0.003 0.565 1.131 0.008 0.565 1.150 0.008
1 1.105 0.019 1.184 2.169 0.018 1.197 2.211 0.023
5 4.949 0.167 5.173 6.157 0.185 5.179 6.208 0.188
10 10.302 0.508 10.590 11.633 0.524 10.613 11.787 0.529
20 20.182 0.884 20.121 21.820 0.882 20.201 22.089 0.902
40 41.260 0.999 41.744 43.533 0.997 42.313 44.017 1.000
60 60.855 0.999 60.400 63.763 1.000 61.379 64.423 1.000

T=1000
MC Residual Bootstrap (resampled zt) Residual Bootstrap (fixed zt)

µ2 µ̂2 F > 10 Me(µ̂∗2) µ̂∗2 F ∗ > 10 Me(µ̂∗2) µ̂∗2 F ∗ > 10
0 -0.027 0.002 0.442 0.974 0.008 0.476 0.982 0.008
1 0.911 0.008 1.106 1.911 0.018 1.117 1.916 0.018
5 5.011 0.186 4.981 6.036 0.175 5.021 6.031 0.182
10 10.342 0.516 10.229 11.376 0.511 10.216 11.383 0.513
20 19.693 0.901 19.299 20.746 0.890 19.491 20.777 0.895
40 40.546 0.999 40.503 41.683 1.000 40.276 41.731 1.000
60 59.977 1.000 59.098 61.140 1.000 59.362 61.242 1.000

Table 3.3: Estimated concentration parameter coming from Monte Carlo simulation
and residual bootstrap (IV case, one instrument).
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Average values

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 0.022 0.020 0.863 0.095 18.441 0.844
1 0.146 0.175 0.988 -0.297 16.491 0.983
5 0.128 0.198 1.090 -0.575 9.083 1.201
10 0.092 0.166 1.006 -0.577 4.935 1.247
20 0.063 0.118 0.982 -0.381 3.630 1.278
40 0.043 0.083 0.980 -0.261 3.320 1.297
60 0.038 0.072 0.979 -0.219 3.235 1.303

0.9

0 -0.016 -0.018 0.873 0.062 20.715 0.835
1 0.334 0.408 0.904 -0.659 20.390 0.879
5 0.244 0.390 1.007 -1.365 11.754 1.104
10 0.174 0.302 0.979 -1.027 6.676 1.185
20 0.114 0.211 0.984 -0.715 4.412 1.257
40 0.079 0.153 0.977 -0.485 3.608 1.281
60 0.067 0.131 0.976 -0.400 3.419 1.293

Median values

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 0.009 0.003 0.840 0.124 9.487 0.882
1 0.147 0.192 0.980 -0.259 7.908 1.048
5 0.112 0.181 0.995 -0.555 4.601 1.201
10 0.089 0.163 0.974 -0.521 3.826 1.232
20 0.061 0.119 0.973 -0.359 3.408 1.278
40 0.048 0.082 0.956 -0.245 3.200 1.287
60 0.040 0.074 0.959 -0.207 3.155 1.294

0.9

0 0.004 0.004 0.867 -0.054 9.780 0.884
1 0.365 0.477 0.871 -0.720 10.184 0.929
5 0.230 0.384 0.915 -1.214 6.423 1.088
10 0.165 0.291 0.959 -0.945 4.817 1.188
20 0.116 0.217 0.952 -0.651 3.820 1.240
40 0.081 0.155 0.951 -0.473 3.443 1.264
60 0.065 0.125 0.957 -0.377 3.260 1.292

Table 3.4: Bootstrapped standardized TSLS with k = 3 under different strength of
instruments and degrees of endogeneity, considering M = 1000 data–sets.
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T = 100

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 -0.011 -0.013 0.589 0.032 6.276 0.879
1 0.213 0.235 0.731 -0.213 5.236 1.017
5 0.239 0.286 0.859 -0.381 3.925 1.176
10 0.188 0.233 0.909 -0.343 3.560 1.231
20 0.134 0.173 0.930 -0.247 3.300 1.262
40 0.100 0.127 0.935 -0.180 3.167 1.277
60 0.082 0.105 0.945 -0.146 3.153 1.283

0.9

0 -0.017 -0.017 0.581 -0.024 6.046 0.870
1 0.549 0.605 0.578 -0.572 6.002 0.880
5 0.460 0.553 0.747 -0.822 5.061 1.068
10 0.352 0.435 0.820 -0.646 4.113 1.152
20 0.251 0.322 0.903 -0.474 3.572 1.233
40 0.182 0.235 0.926 -0.349 3.358 1.260
60 0.150 0.190 0.931 -0.268 3.221 1.271

T=1000

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 -0.003 -0.001 0.596 -0.008 5.914 0.881
1 0.201 0.224 0.758 -0.204 5.151 1.042
5 0.244 0.299 0.903 -0.424 3.921 1.210
10 0.192 0.245 0.943 -0.373 3.527 1.262
20 0.144 0.187 0.973 -0.278 3.257 1.299
40 0.106 0.140 0.983 -0.209 3.113 1.319
60 0.086 0.110 0.987 -0.159 3.066 1.328

0.9

0 0.246 0.263 0.562 -0.110 6.579 0.841
1 0.480 0.522 0.549 -0.373 4.492 0.899
5 0.489 0.602 0.746 -0.788 4.197 1.076
10 0.370 0.467 0.859 -0.687 4.155 1.209
20 0.281 0.357 0.927 -0.528 3.528 1.246
40 0.181 0.237 1.017 -0.371 3.285 1.337
60 0.147 0.223 1.051 -0.308 3.115 1.356

Table 3.5: Bootstrapped standardized TSLS with k = 5 under different degrees of
endogeneity and two sample sizes. Results refer to median values through M = 1000
replications.
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LIML

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 0.025 0.017 183.208 0.398 175.177 1.493
1 -0.040 0.092 174.463 -0.498 173.367 1.691
5 -0.146 0.013 3.456 -0.966 31.589 1.578
10 -0.096 0.002 1.395 -0.567 4.294 1.458
20 -0.058 0.001 1.155 -0.349 3.391 1.387
40 -0.042 -0.002 1.061 -0.232 3.192 1.361
60 -0.026 0.008 1.029 -0.167 3.128 1.342

0.9

0 0.013 -0.006 189.701 -0.195 191.263 1.458
1 -0.262 0.120 139.679 -1.918 155.218 1.475
5 -0.228 0.001 1.691 -1.582 9.103 1.406
10 -0.143 0.000 1.217 -0.912 4.550 1.362
20 -0.095 0.000 1.075 -0.601 3.657 1.332
40 -0.061 0.005 1.029 -0.413 3.345 1.327
60 -0.049 0.001 1.017 -0.316 3.186 1.334

Fuller

ρ µ2/k β̃T Me(β̃∗T ) V (β̃∗T ) Skew(β̃∗T ) K(β̃∗T ) IQR∗

0.5

0 0.016 0.009 1.173 0.017 3.033 1.458
1 0.085 0.098 1.768 0.190 4.015 1.545
5 -0.081 0.013 1.589 -0.434 5.059 1.481
10 -0.083 -0.001 1.312 -0.500 3.932 1.435
20 -0.056 -0.005 1.109 -0.324 3.356 1.368
40 -0.034 0.000 1.051 -0.214 3.158 1.351
60 -0.032 -0.004 1.017 -0.162 3.100 1.337

0.9

0 0.018 0.004 1.235 0.008 3.040 1.469
1 0.199 0.165 1.110 0.853 5.447 1.217
5 -0.158 -0.004 1.168 -0.991 4.825 1.310
10 -0.131 -0.006 1.120 -0.783 4.154 1.318
20 -0.094 -0.004 1.058 -0.559 3.560 1.328
40 -0.066 -0.007 1.027 -0.381 3.301 1.318
60 -0.050 0.001 1.008 -0.319 3.215 1.321

Table 3.6: Bootstrapped standardized κ−class estimators with k = 5 under two dif-
ferent degrees of endogeneity. The results refer to median values obtained through
M = 1000 replication.
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ρ µ2/k Mean Median MAD RMSE Coverage IDR KS

0.25

1 0.043 0.078 0.414 0.626 0.901 1.213 0.075
5 0.016 0.018 0.192 0.217 0.941 0.518 0.058
10 0.007 0.011 0.148 0.151 0.940 0.382 0.046
20 -0.001 0.002 0.105 0.106 0.940 0.276 0.026
40 -0.003 -0.004 0.077 0.075 0.929 0.191 0.032
60 -0.004 -0.005 0.060 0.059 0.937 0.146 0.046

0.5

1 0.107 0.154 0.409 0.611 0.785 1.156 0.152
5 0.009 0.035 0.199 0.226 0.897 0.532 0.080
10 -0.007 0.005 0.151 0.153 0.921 0.383 0.031
20 0.000 0.005 0.100 0.105 0.923 0.268 0.027
40 0.000 0.002 0.075 0.074 0.929 0.187 0.037
60 0.000 0.001 0.055 0.058 0.925 0.146 0.024

0.75

1 0.217 0.254 0.338 0.499 0.564 0.996 0.270
5 0.009 0.032 0.203 0.231 0.826 0.520 0.077
10 0.005 0.012 0.152 0.157 0.856 0.382 0.069
20 -0.001 0.006 0.098 0.103 0.915 0.256 0.033
40 0.002 0.003 0.072 0.073 0.923 0.183 0.034
60 0.003 0.005 0.058 0.058 0.929 0.150 0.036

0.9

1 0.226 0.291 0.310 0.508 0.390 0.888 0.289
5 0.010 0.050 0.202 0.238 0.769 0.539 0.103
10 0.010 0.034 0.134 0.151 0.851 0.377 0.098
20 0.001 0.008 0.101 0.107 0.876 0.272 0.049
40 0.000 0.005 0.069 0.073 0.912 0.181 0.034
60 0.000 0.004 0.061 0.061 0.923 0.151 0.029

Table 3.7: Performance of bootstrap–based bias corrected TSLS with T = 100 running
B = 399. The number of instruments is k = 5
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ρ µ2/k Mean Median MAD RMSE Coverage IDR KS

0.25

1 -0.460 0.066 0.842 17.354 0.997 4.501 0.182
5 0.021 0.011 0.232 3.704 0.996 0.645 0.058

10 -0.001 0.003 0.149 0.416 0.978 0.387 0.033
20 0.002 0.003 0.100 0.103 0.961 0.262 0.021
40 0.001 0.004 0.073 0.076 0.937 0.192 0.026
60 0.001 0.000 0.058 0.059 0.948 0.144 0.022

0.50

1 1.137 0.153 0.824 42.922 0.988 5.521 0.194
5 0.077 0.035 0.216 1.608 0.979 0.599 0.086

10 0.006 0.013 0.138 0.149 0.968 0.350 0.052
20 0.002 0.004 0.102 0.104 0.957 0.260 0.030
40 0.000 0.001 0.072 0.073 0.946 0.184 0.021
60 -0.004 -0.002 0.062 0.061 0.949 0.154 0.035

0.75

1 4.433 0.159 0.726 132.068 0.985 5.125 0.214
5 0.036 0.063 0.177 2.184 0.969 0.533 0.142

10 0.001 0.015 0.139 0.148 0.967 0.365 0.063
20 0.005 0.012 0.094 0.102 0.951 0.257 0.062
40 0.001 0.006 0.067 0.072 0.949 0.178 0.049
60 0.000 0.002 0.059 0.057 0.956 0.144 0.025

0.90

1 6.689 0.303 0.566 186.688 0.980 4.378 0.263
5 0.241 0.063 0.168 4.849 0.948 0.465 0.139

10 -0.002 0.013 0.145 0.146 0.949 0.356 0.044
20 -0.001 0.010 0.102 0.105 0.948 0.261 0.046
40 0.002 0.006 0.072 0.073 0.947 0.188 0.046
60 0.000 0.001 0.051 0.058 0.941 0.148 0.040

Table 3.8: Performance of Bootstrap-Bias corrected LIML with T = 100 and B = 399.
The number of instruments is k = 5
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IV Case (k = 1)
Design Length Coverage
ρ µ2/k Asymptotic Percentile t–boot Asymptotic Percentile t–boot

0.5

0 7.059 23.126 5.284 0.980 0.993 0.477
1 3.885 17.120 2.898 0.966 0.979 0.564
5 1.847 3.946 1.511 0.965 0.975 0.726
10 1.273 1.786 1.142 0.957 0.967 0.824
20 0.881 1.040 0.837 0.955 0.955 0.873
40 0.623 0.668 0.606 0.963 0.948 0.922
60 0.504 0.538 0.509 0.959 0.955 0.941

0.9

0 3.585 11.839 2.760 0.704 0.957 0.329
1 3.955 16.660 4.444 0.842 0.968 0.503
5 1.744 4.557 1.817 0.900 0.970 0.687
10 1.198 1.907 1.202 0.927 0.973 0.779
20 0.870 1.069 0.877 0.947 0.968 0.856
40 0.626 0.694 0.630 0.951 0.954 0.916
60 0.503 0.551 0.516 0.948 0.947 0.928

TSLS (k = 5)
Design Length Coverage
ρ µ2/k Asymptotics Percentile t–boot Asymptotics Percentile t–boot

0.5

0 1.759 1.433 1.556 0.809 0.787 0.562
1 1.203 1.107 1.121 0.832 0.822 0.727
5 0.706 0.690 0.708 0.900 0.893 0.864
10 0.525 0.515 0.535 0.932 0.929 0.917
20 0.382 0.381 0.393 0.941 0.934 0.928
40 0.273 0.273 0.280 0.941 0.935 0.947
60 0.225 0.226 0.232 0.931 0.926 0.933

0.9

0 0.881 0.727 0.794 0.106 0.001 0.168
1 0.839 0.670 0.965 0.489 0.220 0.663
5 0.651 0.581 0.747 0.811 0.757 0.875
10 0.510 0.479 0.562 0.859 0.838 0.904
20 0.374 0.360 0.393 0.903 0.893 0.931
40 0.270 0.264 0.280 0.937 0.932 0.953
60 0.224 0.223 0.233 0.944 0.939 0.952

Table 3.9: Asymptotic and bootstrapped confidence sets (TSLS, B = 399) under
different degrees of identification and two levels of endogeneity.
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Pair Bootstrap
Design Length Coverage
ρ µ2/k Asymptotic Percentile t–boot Asymptotic Percentile t–boot

0.5

0 3.695 20.497 4.471 0.901 0.992 0.376
1 1.785 9.896 1.945 0.917 0.993 0.629
5 0.798 1.157 0.844 0.951 0.977 0.898
10 0.566 0.670 0.597 0.953 0.949 0.924
20 0.400 0.426 0.407 0.957 0.946 0.932
40 0.282 0.287 0.283 0.950 0.944 0.944
60 0.230 0.233 0.230 0.944 0.931 0.932

0.9

0 1.913 10.574 2.311 0.537 0.945 0.314
1 1.796 9.009 2.371 0.888 0.981 0.692
5 0.797 0.987 0.813 0.927 0.944 0.856
10 0.561 0.624 0.568 0.953 0.934 0.902
20 0.397 0.415 0.401 0.953 0.952 0.936
40 0.282 0.283 0.279 0.936 0.926 0.926
60 0.229 0.231 0.228 0.955 0.946 0.948

Residual Bootstrap
Design Length Coverage
ρ µ2/k Asymptotics Percentile t–boot Asymptotics Percentile t–boot

0.5

0 3.490 10.445 3.621 0.896 0.881 0.535
1 1.712 3.162 1.667 0.930 0.894 0.757
5 0.797 0.878 0.797 0.943 0.904 0.892
10 0.561 0.579 0.566 0.946 0.939 0.927
20 0.402 0.402 0.404 0.941 0.925 0.919
40 0.281 0.280 0.285 0.956 0.951 0.946
60 0.230 0.228 0.231 0.950 0.934 0.945

0.9

0 1.748 5.543 1.765 0.489 0.769 0.378
1 1.695 2.506 1.811 0.892 0.873 0.839
5 0.795 0.854 0.806 0.931 0.917 0.888
10 0.566 0.581 0.569 0.939 0.921 0.918
20 0.399 0.399 0.400 0.960 0.941 0.941
40 0.285 0.282 0.286 0.941 0.938 0.939
60 0.229 0.226 0.231 0.947 0.941 0.948

Table 3.10: Asymptotic and bootstrapped confidence sets (LIML, B=399) under dif-
ferent degrees of identification and two levels of endogeneity.
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Figure 3.6: Rejection frequencies of bootstrap t–test against number of instruments
under irrelevant (upper panel) and strong instruments (lower panel, µ2/k = 0, 10)
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Figure 3.7: Fanchart of asymptotic p–values (x–axis) against bootstrap–based p–values
(y–axis) in the just–identified case.
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Figure 3.8: Fanchart of asymptotic p–values (x–axis) against bootstrap–based p–values
(y–axis) in the overidentified case (k = 5).
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k = 1
ρ µ2/k Asymptotic Pair Residual

0.5

0 0.011 0.022 0.029
1 0.027 0.038 0.049
5 0.038 0.040 0.074
10 0.042 0.053 0.063
20 0.042 0.051 0.054
40 0.042 0.049 0.058
60 0.036 0.040 0.055

0.9

0 0.262 0.132 0.320
1 0.167 0.090 0.157
5 0.111 0.075 0.092
10 0.064 0.052 0.060
20 0.074 0.064 0.071
40 0.059 0.055 0.062
60 0.046 0.046 0.048

k = 5
ρ µ2/k Asymptotic Pair Residual

0.5

0 0.196 0.089 0.125
1 0.142 0.074 0.130
5 0.082 0.058 0.081
10 0.075 0.059 0.072
20 0.060 0.051 0.061
40 0.046 0.044 0.047
60 0.064 0.063 0.062

0.9

0 0.888 0.325 0.794
1 0.509 0.204 0.302
5 0.179 0.079 0.092
10 0.124 0.076 0.071
20 0.096 0.051 0.061
40 0.078 0.058 0.060
60 0.059 0.052 0.053

Table 3.11: Rejection frequencies of Wald test for the null hypothesis H0 : β = 0
associated to IV and TSLS estimation.
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φ = 0.1
ρ µ2/k Asymptotic Pair Residual

0.5

0 0.010 0.025 0.037
1 0.033 0.041 0.070
5 0.049 0.058 0.086
10 0.038 0.052 0.068
20 0.054 0.063 0.076
40 0.048 0.053 0.056
60 0.050 0.053 0.060

0.9

0 0.240 0.111 0.295
1 0.197 0.107 0.203
5 0.115 0.084 0.108
10 0.095 0.083 0.088
20 0.074 0.063 0.077
40 0.064 0.064 0.066
60 0.054 0.054 0.064

φ = 1
ρ µ2/k Asymptotic Pair Residual

0.5

0 0.020 0.036 0.032
1 0.104 0.139 0.139
5 0.200 0.233 0.293
10 0.235 0.261 0.318
20 0.214 0.242 0.272
40 0.207 0.215 0.232
60 0.217 0.225 0.233

0.9

0 0.162 0.088 0.131
1 0.491 0.308 0.531
5 0.421 0.334 0.406
10 0.360 0.299 0.339
20 0.296 0.272 0.291
40 0.287 0.281 0.298
60 0.253 0.248 0.260

Table 3.12: Rejection frequencies of Wald test for the null hypothesis H0 : β = 0
associated to IV considering a weak and (weakly) endogenous instrument



Chapter 4

Bootstrap–based tests and

diagnostic for weak instruments

In this chapter we exploit the possibility of detecting and/or testing weak instruments

via bootstrap methods, starting from non-normality of the bootstrapped distribution

of IV/TSLS estimators under weak instrument asymptotics, theoretically analized and

discussed in Chapter 3. Firstly, we introduce and discuss graphical inspection and de-

scriptive measures, some of which are previously suggested by Zhan (2017)1. Since

some of these measures strictly depend on the sample size and number of bootstrap

replications, we decide to develop new bootstrap–based tests to for the relevance of in-

struments taking account of other IV/TSLS issues as the no–moment problem, amount

of overidentification and levels of endogeneity. The method basically relies on the work

of Angelini et al. (2016), introducing bootstrap methods in the frequentist evaluation

of (dynamic) rational expectation models, here adapted for the first time in the linear

IV framework and κ−class estimation. The key idea concerns the difference between

the unknown cumulative distribution of a bootstrapped statistic of interest, here de-

noted β̃∗T , with its limit distribution, under the assumption of strong identification

and if other regularity conditions for inference holds, e.g. validity of instruments.

Practically speaking, this procedure allows to apply conventional normality tests di-

rectly on the (possibly normalized) B bootstrapped replications of a given estimator,

representing a formal test of asymptotic normality.

However, performancs in terms of rejection frequencies could be affected by three

main issues: the first is lack of moments for IV estimator, occurring in perfectly iden-

1Unpublished paper
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tified case. We empirically observe this problem in huge RMSE measures of Section

2.3 considering several κ−class estimators. The second regards presence of high endo-

geneity (ρ ≈ 1), because it affects finite sample behaviour of estimators, as mentioned

in Chapter 2. Finally, when the number of instruments increases, performance of con-

ventional normality tests may be unsatisfactory, especially in terms of power. From

a different point of view, a similar lack of power may be found in the test proposed

by Hahn and Hausman (2002a), which presents the null hypothesis of strong/valid in-

struments. Sources of poor rejection frequencies may be twofold. Firstly, the random

component of the conditional distribution, defined as U, plays a central role in this

sense, as pointed out in Section 3.2.3. Secondly, TSLS estimator is asymptotically

normal under the so–called many instrument sequence, introduced by Bekker (1994),

even if it is not consistent, and the bootstrap is also invalid in this context (see Wang

and Kaffo, 2016). Anyway, on average, the differences between asymptotic distribu-

tion of β̂TSLST and its (random) bootstrap counterpart affects the distribution of β̃∗T ,

as shown in simulation of Section 3.3, in terms of mean, variance and other sampled

moments. In order to overcome these issues, we propose to test asymptotic normality

with zero mean, or alternately, standard normality of β̃∗T , where the null hypothesis is

H0 : β̃∗T ∼ N(0, 1). This may be done applying a modified Shapiro–Wilk statistic, and

then proposing new test statistics based on the sample moments of standard normal.

At the end of this Chapter we apply new bootstrap based tests on two real well–known

datasets in instrumental variable literature, to show that these methods may help to

detect weak instruments.

4.1 Bootstrap and diagnostic

When inference is conducted through commonly used estimators, i.e. IV and TSLS,

the bootstrap is deemed not valid, considering the standard definition of validity in a

bootstrap sense, when the instruments are collectively weak. This means that it does

not provide a first-order improvement, giving a poor approximation of asymptotic

distributions of estmators and test statistics. As shown by Moreira et al. (2009), this

failure is related to a violation in the regularity conditions occurring in the Edgeworth

expansions. This appears in the bootstrap version of t–test under weak instruments,

previously exposed in Section 3.2.6 and whose failures are shown in simulation study

of Section 3.3. However, validity of bootstrap can be restored applying statistics that
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are robust to weak instruments, see for example Moreira (2003). Anyway, in this

context, application of bootstrap methods is not helpful to provide information on the

identification level.

Furthermore, when instruments are not deemed weak, the bootstrap distribution

of IV estimator is asymptotically normal and so the standardized distribution of IV

estimator can be close to the standard normal, as we point out in Section 3.1. As men-

tioned, bootstrap distribution of IV estimator (β̂∗T1, . . . , β̂
∗
TB) and the associate t/Wald

test, given the sample, preserves some features of the (unknown) asymptotic distri-

bution of the estimator, although it present some random components. In particular,

when the number of instruments is equal to the explanatory endogenous variables, the

bootstrap distribution of the estimators could be dramatically non–normal under weak

identification, with huge standard errors and heavy or sometimes tails, as shown in

simulation of Section 3.3. This is due to the combination of poorly relevant instruments

with the non existence of moments in the perfectly identified cases2 and, in general,

when k < 3, as proved by Mariano (2001). This features affect the distribution of an

estimator and its bootstrap counterpart, meaning that it has very huge variability and

unreliable dispersion under weak identification, especially in small samples. For this

purpose, detection tools to evaluate non–normality of bootstrap estimators could be

the following: a) graphical inspection, b) Kolmogorov Smirnov Distance, c) Bootstrap

Mean square error.

4.1.1 Graphical Inspection

A first check of the strength of identification could be conducted through graphical in-

spections, comparing the empirical density of the bootstrap replications: (β̂∗T1, . . . , β̂
∗
TB)

against its theoretical limiting distribution, conditionally on the data, i.e. N(β̂T , V̂ (β̂T )),

where β̂T is one of the discussed limited information estimators and V̂ (β̂T ) stand for

its estimated variance.

As viewed in simulation of Section 3.3, it is possible to standardize the bootstrap

distribution of the parameters and evaluate distance from the standard normal in

terms of mean, median and variance. Loosely speaking, it could be useful to check if

mean and median of the standardized bootstrap distribution are close to zero or if the

variance is higher or lower than 1.

2This occurs even in the LIML case
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To summarize, malfunction in conventional asymptotic can be viewed as an evi-

dence of weak instruments. For this kind of comparison, pdf plots, Ecdf plots, Q–Q

Plot and P–P Plot may be useful to verify the presence of heavy tails and high level

of kurtosis, which appears when very weak identification is combined with the lack

of moments, as pointed out in the simulation of Section 2.3. Boxplots of the boot-

strapped distribution also can help to detect the presence of outliers and could be

used to compare a) different bootstrap estimators, included in the κ−class b) different

resampling scheme, previously discussed in Section 2.4.

4.1.2 Bootstrapped Kolmogorov Smirnov distance

Bootstrapped KS statistic is suggested by Zhan (2017) as a descriptive measure of weak

identification in IV/TSLS models. From a practical perspective, KS represents the

worst–case size distortion for the Wald/t-test statistic using the critical values from the

normal distribution, since β̃T is the non-studentized statistic, equal to T 1/2ω−1(β̂−β).

In Chapter 2 we show the desirable behaviour of KS statistic in the evaluation of

finite sample distribution of κ−class estimators, through Monte Carlo simulations. We

also propose this method in order to compare bias–correted TSLS/LIML under weak

instruments in section 3.3, where the amount of bias is estimated through bootstrap

methods. To summarize, low values of KS suggest the use of conventional TSLS/IV

inference, whereas when KS increases, the standardized TSLS distribution could be

far from the standard normal.

Since the true maximal difference between Cdfs is not known, the bootstrap is

proposed to estimate the unknown quantity of (2.31) where its counterpart, denoted

by KS∗, is defined as follows:

KS∗ = sup
−∞<c<+∞

∣∣∣P (β̃∗T ≤ c
∣∣∣ (y,x,Z)

)
− Φ(c)

∣∣∣ ,
and measures the distance between the bootstrap Ecdf of β∗IV and its asymptotic Cdf

from the N(β̂, σ̂β̂), where β̂ and σ̂β̂ are the TSLS/IV estimates from the data. From

a different point of view, KS∗ cold be thought a descriptive measure of how the G∗

of any bootstrapped statistic is far from G∞, i.e. the cdf of τ∞. In order to give an

empirical threshold, instruments may deemed collectively weak if the KS∗ exceeds a

given threshold (e.g. 0.05 or 0.10).

Zhan demonstrate (Theorem 3) that KS and its bootstrap counterpart share the
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same order in probability Op

(
T−1/2

)
when identification is deemed strong and KS∗

is also a super–consistent estimator for KS. In order to build a formal bootstrap

test, a computationally demanding double3 bootstrap Horowitz (2001) is implemented

to obtain the unknown distribution of KS∗, bootstrapping the residual from boot-

strap samples D∗T = (y∗t , x
∗
t , Z

∗
t ) and computing KS∗∗1 , . . . , KS

∗∗
B , where the double

subscript. The test is constructed estimating the α quantile of KS∗ with KS∗∗α using

percentile bootstrap methods. The null hypothesis of strong identification is rejected

when KS∗∗α ≤ α.

However, both KS∗ as descriptive indicator and proposed bootstrap–based test

suffer from two main limitation. Firstly, the KS∗ requires moderately large number

of replications B, and then bootstrap–based test could be computationally demanding

because it needs B2 iterations. In addition, KS test seems to reach desired rejection

frequencies, in terms of empirical power under weak instruments especially when en-

dogeneity is unrealistically very close to one, in just identified case. Nonetheless, it

could be investigate if KS∗ may be a useful tool to evaluate the failures of bootstrap in

inference conducted through t–statistic, (using τ ∗T ), since its asymptotic distribution,

in large samples, is standard normal.

4.1.3 Bootstrap mean square error

As mentioned, the difference between β̂∗T and β̂T could be thought as a diagnostic of

weak instruments, recalling the fact that both converge to a non–normal distribution

under this particular modeling, differing from a random component U. This difference

could be exacerbated if the instruments are very weak, as already pointed out in

examples of Section 3.2.3. In this context the Bootstrap Mean Square Error, defined

as MSE∗ may be used as an estimates of the MSE in TSLS/IV estimation:

MSE∗ = B−1
B∑
b=1

(β̂∗T − β̂T )2. (4.1)

Since it reflects the variability around β̂T , MSE∗ could be used as a descriptive mea-

sure of weak instruments. We show that, in the just identified case, MSE∗ can take

huge values, due to the lack of moments, while it rapidely decreases with number of

overidentification. Furthermore, for a given k, the MSE∗ simulation evidences, ap-

3Iterated two times i.e. involving two loops
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Figure 4.1: Median of MSE∗ among different levels of identification (k = 5)

plying weak instrument asymptotics, suggest that it decreases with the strength of

identification, represented by µ2/k. However, to our knowledge it is not possible to

choose a proper threshold, given the number of instruments, which allows to distin-

guish between strong and weak instruments.

Figure 4.1 shows the results of a small–scale Monte Carlo exercise under k = 3,

B = 199 and M = 1000 replication. We plot the median of MSE∗ for a small–scale

exercise with TSLS against the identification level where k = 5 and using two levels

of endogeneity (red line stand for moderately ρ and blue line for ρ = 0.9). In this

case, bootstrapped MSE rapidly decreases when the strength of instruments increases,

resulting lower in case of high endogeneity. Although beyond the purpose of this work,

it seems that MSE∗ can be used in the choice of instrument, following the approach of

Donald and Newey (2001) and applying bootstrap as suggested by Wang et al. (2015).

4.2 A new bootstrap–based test

In this section we present the methodology of a novel bootstrap–based misspecifi-

cation test for asymptotic normality of a bootstrap statistic or estimator. As above

mentioned, weak instruments, combined with lack of moments, leads to non–normality

of TSLS/IV estimators in finite samples and these features are also reflected in their
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bootstrap counterpart, as proved in Section 3.2. In addition, the randomn component

of bootstrapped distribution could be exacerbated under very weak or irrelevant in-

struments. Nevertheless, applying normality tests on B replications does not seem a

reasonable choice, because the distribution of bootstrapped estimator (or test statis-

tic) is gaussian only in the limit, as B, T → ∞, even if B may be moderately large

in bootstrap procedure. So, applying previously introduced bootstrap methods, nor-

mality tests tend to reject too often, even if the instruments may be collectively very

strong.

In this sense, Angelini et al. (2016) introduce a bootstrap–based misspecification

test in the context of estimation and evaluation of dynamic rational expectation mod-

els, where identification issues are still under debate both in the frequentist framework

(see Canova and Sala, 2009). The basic idea is to apply normality tests on a certain

number of bootstrap estimates, in order to test how the bootstrapped distribution of

structural parameters is far from standard asymptotic theory.

In the following sections we firstly discuss the methodology and summarize the

procedure of bootstrap–based test. Successively we introduce standard normality tests

useful to verify malfunctions in conventional standardization.

4.2.1 Method and asymptotics

The main approach is based on the evaluation of G∗T , i.e. the cumulative distribution

function of a (possibly normalized) bootstrap statistic, here denoted with β̂∗T or β̃∗T .

The key point is to evaluate the distance betweenG∗T (·) and the cumulative distribution

function of standard normal, defined as G∗T −ΦZ(x). Since G∗T is unknown, it could be

estimated from its finite sample (bootstrapped) counterpart, based on B replications,

as follows:

G∗T,B(x) = B−1
B∑
b=1

I(β̃∗T ≤ x), (4.2)

where I stands for the indicator function and expression in (4.2) is the cumulative

distribution function of
{
β̃∗T1, . . . β̃

∗
TB

}
. The estimation error G∗T,B(x) − G∗T (x), for

any fixed x ∈ R, may be properly normalized as follows:

B1/2V (x)−1/2(G∗T,B(x)−G∗T (x))
d→ N(0, 1). (4.3)
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This equality holds by the CLT when B →∞. Thus, the distance previously introud-

ced could be estimated as G∗T,B − ΦZ(x) and normalized in the following way:

dT,B = B1/2VT,B(x)(G∗T,B(x)− Φ(x)), (4.4)

where VT,B(x) is an available consistent estimator of VT (x), denoting the variance of

G∗T (x). A proper choice could be represented by G∗T,B(x)(1−G∗T,B(x)). Decomposing

the expression in (4.4) it is possible to obtain:

dT,B = B1/2V̂T,B(x)(G∗T,B(x)− Φ(x))

= B1/2V̂T,B(x)(G∗T,B(x)−GT,B(x)) +B1/2V̂T,B(x)(G∗T,B(x)− Φ(x)). (4.5)

Since the first term is asymptotically standard normal, the second vanishes asymptot-

ically to zero if the following condition holds: a) it admits, under regularity con-

ditions (i.e. strong identification), an Edgeworth Expansion such that G(x)∗T =

Φ(x)+Op(T
−1/2), where Φ(x) is the Cdf of standard normal, b) the expression (4.4) is

bounded in probability: dT,B = Op(T
−1/2B1/2), and converges in probability to zero.

Briefly speaking, in order to apply the following bootstrap–based test, introduced

asymptotics requires that quantity BT−1 is close to zero, and therefore the choice of

B may affects performance of bootstrap–based tests in finite samples.

To summarizem this framework allows to apply normality test directly on a finite

number of bootstrap replications, (β̂∗T,1, . . . , β̂
∗
T,B

) where B is sample length, and then

reject null hypothesis if the resulted p–value p < α where α is the chosen nominal

level. From another perspective, well–known test statistics, e.g. the Jarque–Bera

statistic, have an only asymptotically known free parameters distribution under the

null hypothesis of normality, e.g. χ2 with 2 degrees of freedom. For this reason B

should not be very small in order to control the size of test. Tentative thresholds,

strictly depending on the sample size, may be proposed in order to control empirical

size and power. Our preliminary results (not presented here) suggests that JB test

performs poorly with B ≤ 20.

One of the potential drawback is represented by the loss of information given by

B − B bootstrap estimates. In order to overcome this problem, it is possible to

apply two procedures involving total number of B replications, dividing the bootstrap

sample in N independent non–overlapping groups. The simultaneous test produces

N associated p–values (p1, . . . , pN) and, two possible strategy could be adopted for a
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given significance level α. The former relies on Bonferroni correction, rejecting the

null hypothesis if mini=1,...,N(pi) ≤ α0, where α0 = α/N , while the latter technique

is also based on the stochastically independence between the N tests. In fact, it is

possible to select the overall I type error probability as α = 1− (1− α0)
N , and again

reject normality if mini=1,...,N(pi) < α0 where α0 is obtained from α0 = 1− (1−α)1/N .

These procedures may be implemented in different type of bootstrap algorithms, where

B can be arbitrary large (usually 399 or 999), even if the bootstrap is applied as a

standard tool for inference, e.g. for bias-correction method or to obtain standard error

and/or confidence intervals. Different normality tests may be used in this framework:

we apply Shapiro–Wilk and, as above mentioned, well–known Jarque–Bera.

However, when the number of instruments increases, the distribution of TSLS

estimator could be asymptotically normal (Bekker, 1994), but far from its limiting

distribution, i.e. N(β, V (β̂T )). Furthermore, Monte Carlo simulation of Section 2.3

shows that the standard errors of bootstrapped TSLS are often closer to the true

value in overidientified models, even if instruments are collectively weak. In order to

control the distance in mean from the standard normal distribution, a Shapiro–Wilk

type statistic with known mean, introduced by Hanusz et al. (2016), is proposed as an

alternative to already mentioned tests. Given that the known mean of β̃∗ is µ0 = 0,

the test statistic, denoted as W0, could be obtained as follows:

W0 = W ·

∑B
b=1

(
β̃∗T,b − β̃

∗
T,B

)2
∑B̃

b=1

(
β̃∗T,b

)2 , (4.6)

where W is the Shapiro–Wilk Statistic and β̃
∗
T,B is the mean of (β̃∗T ) bootstrap repli-

cations, i.e. B−1
∑B

b=1 β̃
∗
T,b. Thus, the null hypothesis is H0 : β̃∗T ∼ N(0, V̂ (β̂T )). Since

the statistic in (4.6) has a proper known distribution only if T = 3, W0 could be

normalized through the Johnson procedure in the following way:

z = γ + δW̃ ,

where the normalizing constants γ and δ can be substituted by γ̂ and δ̂, estimated

through an OLS regression of z on W̃ = log(W0(1 −W0)
−1). This procedure is im-

plemented in order to obtain p–values of proposed test, computing observed statistic

z and then Φ(z), where Φ denotes the probability of standard normal distribution;
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the estimates of δ and γ are found in Hanusz et al. (2016). This procedure presents

a possible drawback, because coefficients are estimated using a moderate number of

observation (T = 3, . . . , 50). Thus, choosing T > 50, asymptotic standard normality

of z is not guarantee. For this reason we apply this test, denoted as SW0, using only

a small number of bootstrap replication, e.g. T = B = 30, 40, 50.

Figure 4.2 shows rejection frequencies of proposed Shapiro–Wilk with known mean

statistic, obtained through a straigthforward simulation exercise (without bootstrap-

ping). The data are generated from a random variable N(τi, 1), where τi ∈ [−1, 1),

with sample size equal to T = 20, 30, 40, and the number of simulations is equal to

M = 100000. As it clearly appears from the figure, rejection frequencies increase when

the expected values deviates from zero, and test presents an high empirical power when

τi > |0.5| and the sample size is T = 40.
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Figure 4.2: Rejection frequency of statistic W0 for different T. DGP: Xi ∼ N(τi, 1)

4.2.2 Algorithm for the procedure

In this subsection we present the algorithm to implement proposed test for the asymp-

totic normality of bootstrap estimator, applying methodology presented in Section

4.2.1. The procedure is summarized in the following steps:

1. Given the sampleDT = (y,x,Z), estimate parameters and obtain β̂T , π̂T , implied
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residuals (ût, v̂t) and σ̂2
u, where β̂T is one of the considered κ−class estimators

and π̂T is estimated through OLS.

2. Apply residual–based resampling scheme, introduced in section 2.4.3, to generate

bootstrap sample of endogenous variables4 (y∗t , x
∗
t )
′ and instruments Z∗t or Zt (not

resampled).

3. Use bootstrap sample D∗T to obtain the bootstrap counterpart of the estimator

β̂∗T and its standardized version β̃∗T =
√
T ω̂−1(β̂∗T − β̂T ).

4. Repeat steps 1–3 B times, to have bootstrap distribution of estimator
{
β̃∗T,b

}B
b=1

.

5. Choose a number B < B of independent replications and apply proposed test

using one the available statistics (JB, SW or SW0). B must be chosen to satisfy

T−1B → 0.

6. Reject null hypothesis of asymptotic normality (strong identification) if p ≤ α

where α is the nominal I type error and p is the p–value of normality test.

Alternatively, in order to avoid loss of information regarding B − B replications, it

is possible to split the bootstrap sample of estimator in N non–overlapping groups

of length B = int(B/N) and apply N , stochastically independent, normality tests.

Thus, two decision rules may be applied:

• Bonferroni correction: select the value α0 = αN−1, and then reject null hypoth-

esis if:

mini=1,...,N(pi) < α0.

• Sequential tests: select the overall I type error probability as α = 1− (1−α0)
N ,

and again reject asymptotic normality of bootstrap estimator if mini=1,...,N(pi) <

α0, where α0 could be obtained by the following expression:

α0 = 1− (1− α)1/N .

For example, if the nominal level is α = 0.05, the threshold for decision rule may be

α0 = 0.05/N or eventually α0 = 1−(0.95)1/N . Considering a fixed number of group N ,

4We point out that exogenous covariates could be removed before estimation, as explained in
Section 2.1.3
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the α0 obtained using sequential tests is always greater than the Bonferroni correction

version; moreover α0 obtained through Bonferroni and that computed using (4.2.2)

are very close when the number of groups N is large.

4.2.3 Standard normality tests

In order to extend the proposed approach, this section introduces some new statistics

useful to verify the asymptotic (standard) normality of bootstrapped standardized

TSLS estimators. These statistics are based on the moment conditions implied by

standard normality; the main idea is to check if the moments of standardized boot-

strapped estimators β̃∗T match those of standard normal, in order to detect if the

non-studentized statistic β̃T is close or far from the N(0, 1). As pointed out in Chap-

ter 2, non–normality of the standardized estimators appears weak instruments, often

dramatically combined with the lack of moments, occurring in empirically–relevant

cases of k = 1. However, even if the distribution of bootstrap estimator is normal,

inferenec in TSLS may be affected by levels of endogeneity and degree of overiden-

tification. Thus, if the null hypothesis of standard normality is safely rejected, this

could be interpreted as a signal of weak instruments and, in general, misspecification

regarding failures in the basic assumptions. All the proposed test statistics share a

completely known χ2 asymptotic distribution with known degrees of freedom from 1

to 4.

To introduce the methodology, let X a standard normal variable X ∼ N(0, 1).

Then, the main ingredients for test statistics are the following: firstly, the random

vector w′ = (X,X2, X3, X4), its associated expectations E(w)′ = (0, 1, 0, 3) and a

completely known covariance matrix Ω equal to:

Ω =


1 0 3 0

0 2 0 12

3 0 15 0

0 12 0 96

 ,

where the elements on principal diagonal are V (Xj), where j = 1, . . . , 4. In addition,

Cov(Xj, Xj+1) = 0 ∀j and

Cov(X,X3) = 3; Cov(X2, X4) = 12.
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All proposed tests are built starting on the following statistic:

mj = T−1/2

(
T∑
t=1

xit − E(Xj)

)
, where j = 1, . . . , 4, (4.7)

where E(Xj) was previously defined and DT = (x1, . . . , xt, . . . , xT ) are the data5.

Given the vector containing all ordered mj, denoted with A1234:

A1234 =


m1

m2

m3

m4

 ,

a comprehensive large samples test, involving the first four moments of the standard

normal, could be based on the following expression:

M1234 = A′1234Ω
−1A1234

d→ χ2
4. (4.8)

where Ω is invertible by definition. Following expression in (4.8), it is possible to

construct test statistics based on three moments of the standard normal using all the

possible subvectors 3 × 1 of A1234, denoted by Ajj′j′′ , and submatrices 3 × 3 from Ω,

indicated with Ωjj′j′′ for j 6= j′ 6= j′′. The generic statistic for test standard normality,

using three moment conditions, is:

Mjj′j′′ = A′jj′j′′Ω
−1
jj′j′′Ajj′j′′

d→ χ2
3, (4.9)

where j = {1, 2} ; j′ = {2, 3} and j′ > j, j′′ = {3, 4} and j′′ > j′. Four test statistics,

obtainable from expression (4.9), are: {M123,M124,M134,M234}, where the subscripts

denote statistics in the subvector Ajj′j′′ . Subsequentely, tests based on two moment

conditions could be also implemented, considering subvectors 2× 1 of A1234, denoted

by Ajj′ , and submatrices 2× 2 from Ω, i.e. Ωjj′ . The generic test statistic Mjj′ is:

Mjj′ = A′jj′Ω
−1
jj′Ajj′

d→ χ2
2, (4.10)

where j = {1, 2, 3}, j′ = 2 {1, 2, 3} and j′ > j. Six test statistics could be obtained

5In this case the generic xt is not an observation from endogenous regressor
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from the (4.10) and are: {M12,M13,M14,M23,M24,M34}. Finally, it is possible to

construct test statistics based on the single moments, simply using the (4.7):

Mj =
m2
j

ωjj

d→ χ2
1, (4.11)

where j = {1, 2, 3, 4} and ωjj is the j-diagonal element of Ω, denoting the single V (Xj);

the four test statistics are: M1,M2,M3,M4.

Performance of the proposed tests is presented in Section 4.6 (Appendix) and

their empirical size, power and asymptotic critical values are investigated through

simulations. In order to evaluate empirical size and critical values of proposed tests,

we generate 100000 samples and data xi sampled from N(0, 1), denoted as DGPs,

with different sizes T = {20, 50, 100, 200, 500, 1000, 5000, 10000}. Table 4.3 contains

rejection frequencies regarding the 17 test statistics previously introduced. All tests

present correct size in large samples, while M1234,M234 seems to be slightly oversized

when T ≤ 200. The p–values are computed as P (M ≥ χ2
df,1−α), where the symbol “M”

denotes one of the new proposed statistics, α is the selected nominal level equal to

0.05 and df is the number of degrees of freedom. Table 4.4 shows the 95% quantiles of

these statistics, based on 1000000 replications, compared with the asymptotic critical

values (χ2
j) where j = 1, . . . , 4. The difference between those values could be moderate

in small samples and if number of moments involved in the test increases. Empirical

power of proposed tests is investigated through two different data generating processes:

DGPp1, where xi ∼ N(0.5, 1.22) and DGPp2 : xi ∼ t(2). Main results are shown in

Table 4.5 and 4.6. Under the DGPp1, rejection frequencies are very close to 1 for all

considered test, especially when the sample size is not too small (T = 100). When

xt ∼ t(2), rejections are very close to one for all tests (exept for M1) even if T = 50.

Standard normality tests may be directly applied on B < B replications of the

standardized IV/TSLS bootstrap estimates: β̃∗T1, . . . , β̃
∗
TB

, when BT−1 ≈ 0 at the

end of procedure described in the previous section. Then we could rewrite the test

statistics in 4.7 in the following way:

mj(β̃
∗
T ) = B

−1/2

 B∑
b=1

β̃∗jT,b − E(Xj)

 , where j = 1, . . . , 4, (4.12)

where β̃∗T is the standardized bootstrapped IV,TSLS or κ−class estimator. P–values of



4.3. MONTE CARLO SIMULATION 138

the bootstrap–based test could be computed using the same procedures introduced in

Section 4.2.2. To summarize, standard normality tests are computationally straight-

forward and do not require estimation of any covariance matrix, since Ω is completely

known and does not depend on any nuisance parameter. Finally we remark that these

tests are closely related to those proposed by Bontemps and Meddahi (2005), based on

the Stein equations, obtained from the Hermite polynomials of the standard normal.

4.3 Monte Carlo simulation

In this section we present a small–scale Monte Carlo simulation, replicating M =

1000 dataset, in order to show the performances of proposed bootstrap–based tests

with fixed and resampled instruments. Simulation design is the same proposed in

Section 2.3.2, where instruments are drawn from multi–normal distribution Nk(0, Ik)

and the disturbances come from a multivariate normal N2(0,Σ). Again, different

levels of positive endogeneity are considered, ρ = {0.25, 0.5, 0.75, 0.9}. The number

of bootstrap replications is equal to B = 199 or B = 399, where tentative values for

the subsamples B are B = (30, 40, 50) applying JB, SW and SW0, while for standard

normality tests we use B = (100, 120).

Firstly, we briefly analize diagnostic measures introduced in Section 4.1 using boot-

strapped IV, TSLS and LIML. To our knowledge this is the first time that KS∗ and

MSE∗ are applied to other κ−class estimators, and in general to the overidentified

cases. Furthermore, we evaluate performance of new bootstrap–based test using con-

ventional statistics (JB, SW), showing graphically their poor performances when the

number of instruments increases. We also apply Shapiro–Wilk statistic with known

mean (W0) previously illustrated. The test is used also in the LIML case, especially

because it shares the no–moment problem with the simple IV estimator. This means

that under irrelevant and very weak instruments, proposed bootstrap normality test

may be very powerful. Successively, we implement our proposed standard normal-

ity statistic in the overidentified cases. In particular we analize performance of the

following statistics: M12,M13,M123,M124,M134,M1234. We use bold and red color to

emphasize worst (power) and best (size) performance in our tables.
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4.3.1 Diagnostics

Figure 4.3 shows the results of a small–scale simulation obtained by 1000 samples and

then applying B = 399 bootstrap replications to compute KS∗ and the mean of KS∗

using KS∗1 , . . . , KS
∗
M . The graphic refers to the case of k = 3 instruments. The average

values ofKS∗ are higher with weak identification and very high endogeneity, decreasing

to 0.05 (tentative threshold) when instruments are collectively strong (µ2/k ≥ 40).

These results confirm the fact that F > 10, i.e. µ2/k = 9 could be a low benchmark,

especially in case of high endogeneity. Table 4.7 shows mean and median of KS∗ and

median of MSE∗ under weak instruments asymptotics, considering µ2/k ∈ (0, 60) for

both k = 1 (IV) and k = 5. We notice that median of bootstrapped MSE reaches

huge values if µ2/k ≤ 10, confirming the empirical threshold. Therefore, mean and

median of bootstrapped KS increase, at the same level of identification, with high

endogeneity.

Table 4.8 contains results regarding bootstrap mean square error and bootstrapped

KS statistic for κ−class estimators LIML and Fuller, obtained through residual boot-

strap with fixed instruments, under k = 5 and T = 1000. We show that, under

irrelevant and weak instruments, the LIML may present huge values for the median

of bootstrapped MSE. Fuller estimator performs better than LIML only in irrelevant

and weak instrument cases, i.e. µ2 ≤ 5, and also its bootstrapped mean square er-

ror decreases as the level of endogeneity increases, for all degrees of identification.

Furthermore, KS∗ rapidly decreases to 0.05 for all considered identification values.

In general, under strong instruments, LIML and Fuller perform similarly in terms of

MSE∗ and KS∗. As we mentioned, these results confirm the difficult to identify a

threshold in order to discriminate between strong instruments, although large values

of MSE∗ in IV and LIML estimator suggest the presence of irrelevant or very weak

instruments.

4.3.2 Bootstrap–based tests

In Table 4.9 we present the results regarding normality tests in the just identified

case, using the first B bootstrap replication of β̃IV ∗T , where B = 30, 40 if T = 100 and

B = 40, 50 when T = 500. We consider only four identification cases; the tests present

high rejection frequencies when instruments are weak or irrelevant, decreasing with the

strength of instruments. However, rejection frequencies increase across endogeneity for
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Figure 4.3: Mean of KS∗ among different identification levels and degrees of endo-
geneity.

the same identification level, as required in IV framework. Table 4.11 contains main

results of proposed tests when all the B replications are used, following the procedure

described in Section 4.2.2. In this case, the empirical power increases under irrelevant

and weak instruments, and the SW0 test performs better than others in terms of

empirical size, especially when instrument is very strong and endogeneity is moderately

low e.g. ρ = 0.25 and µ2 = 100. In the overidentified models, i.e. when the number of

instruments increases, empirical power of the bootstrap–based tests may be very low,

especially under moderately small sample size (T = 100). To visualize this issue, in

Figure 4.4 we plot the rejection frequencies of three bootstrap–based normality tests

under irrelevant instruments, when k = 5. Conventional statistics decrease rapidly

with the number of overidentification, while SW0 statistic has power, under irrelevant

instruments, especially when the endogeneity is high, as viewed in the left panel of

the Figure. Nonetheless, in Table 4.10 the results of normality tests for TSLS and 3

instruments seem to remark the behaviour of IV case, in large sample size T = 500.

Considering κ−class estimators, Table 4.12 shows the performance of new boot-

strap tests regarding LIML. We note that it performs very well in some cases, especially

applying the procedure described in Section 4.2.2, and using the test statistic W0 or

the conventional W when endogeneity is not too high. In fact, empirical power is
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Figure 4.4: Performance of three bootstrap–based normality tests among number of
instrumental variables for two endogeneity levels, with T = 100 and B = 30

equal to one under irrelevant instruments (lower panel of the Table), reaching often

the nominal level when instruments are strong or very strong. To summarize, LIML es-

timator, presenting the moment problem for all possible k, seems useful to detect weak

instruments because combination of no–moments and weak identification generates a

detected non–normality.

Finally, we apply six of our proposed normality tests, in the overidentified case,

inspired by evidences in Figure 4.4. Main results are illustrated in Table 4.13 under

three possible scenarios, i.e. irrelevant, weak and strong instruments, corresponding to

µ2/k = 0, 1, 50. The number of observations is T = 500, while proposed B = 100, 120,

due to asymptotically behaviour of tests shown in Table 4.3. We conclude that these

tests tend to present high power under the combination of weak instruments (µ2/k = 5)

and high endogeneity; in particular, when ρ = 0.9, the tests are more powerful un-

der weak than irrelevant instruments. In general M12 and M123 seem to perform well

among proposed statistics, presenting rejection frequencies closer to nominal level un-

der the combination of strong instruments and low endogeneity. However, an optimal

combination of B and T remains an issue for that we leave for further research.
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4.4 Empirical Applications

In this section we give two example of discussed detection tools and new bootstrap tests

using two different empirical datasets. The former represents an empirically–relevant

case of one regressor–one instrument, while the second model presents four instruments

and a set of control variables, helpful to improve inference in linear regression models.

We apply Pair Bootstrap and three types of residual bootstrap: fixed instruments,

resampled instruments and Residual Efficient bootstrap introduced by Davidson and

MacKinnon (2010). The main idea is to see if the combination of a specific bootstrap

method and estimator may help to detect weak identification.

Just identified case: Colonials Origins

The seminal paper of Acemoglu et al. (2001) is an example of instrumental variable

estimation in Political Economics. The base sample size consists of N = 64 countries

ex–European colonies; the outcome variable of interest is the logarithm of income per

capita in 1995 (on the purchasing power parity basis), while the deemed endogenous

regressor is an averaged index of risk protection against government appropriation of

assets between 1985 and 1995. Authors suggest to use, as instrumental variable, the

logarithm of mortality referring to European settlers during the colonization period.

The just-identified model takes the following specification:

yi = α + βRi + ui

xi = τ + πmi + vi

where yi is the logarithm of DGP, Ri is the Risk index and mi is the logarithm of

mortality previoulsy discussed. Thus, we commonly estimate β using instrumental

variable estimator defined in the (2.12). First stage results, F = 22.4 and R2
f = 0.27

suggest that instruments are not weak, especially because F value exceeds both the

empirical threshold of ten and the critical values of Stock and Yogo (2005). The

estimates of β is equal to 0.945 where estimated standard error is equal to 0.157.

In Table 4.1 there are two diagnostic tools and proposed bootstrap based tests

through the four considered bootstrap methods. Pair bootstrap exhibits the larger

MSE∗, confirming its inefficiency among other methods, while residual bootstrap with

fixed instrument presents the lower value of KS∗. Despite these almost contradictory

results, normality tests based on Shapiro–Wilk and Jarque–Bera statistics, based on
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B = int(T/3), confirm normality of the bootstrap distribution giving another evidence

of strong identification, previously checked by the first stage F.

Returns to schooling: Wage Equation

In order to apply bootstrap methods in a general framework consisting in more than

one instrument and control variables, we consider the example of Card (2001), re-

garding the returns to education, i.e. quantifying the effect of an additional year of

schooling on individual wage. Data comes from National Longitudinal Survey of Young

Men (LSYM) between 1966-1981 including 3010 individuals; the outcome variable of

interest is the logarithm of wage in 1976 while the endogenous regressor contains years

of education even in 1976. Following wage equation is specified:

y = α1 + βx + γ1W
′ + u

x = αz + Zπ + γ2W
′ + v,

where y = logwage, x = education and β is the structural coefficient. We instru-

mented education with four dummy variables (k = 4) regarding college proximity,

following the specification of Davidson and MacKinnon (2010): Z = (nearc2, nearc2 :

nearc4, nearc4a, nearc4b)′, respectively equal to 1 if there is a 2 year college, either a 2

and 4 year college, a four year pubblic college, and four year private college in the local

area of each individual. Furthermore the matrix W contains l = 5 control variables

including age and squared age, and three other dummy variables; we use the same

controls of Davidson and MacKinnon (2010). The estimates of β is equal to 0.115 and

first stage F is equal to 4.98; this suggests that instruments may be collectively weak.

In order to apply residual bootstrap with resampled instruments, we remove the

effect of control variables and then estimate the overidentified model. Thus, we apply

both TSLS and LIML estimators, since they are not equivalent when there are more

instruments. In Table 4.2 we again present the diagnostic tools and p–values for

bootstrap–based normality tests, computing using B = 50 replications. As we can see,

the results regarding TSLS are contradictory, since applying one method (Residual

bootstrap with fixed instruments) the null hypothesis of strong instruments is not

safely rejected. Moreover, using the LIML estimators all of bootstrap based tests

reject the null hypothesis. This result confirms our findings in simulation study and

in general the usefulness of LIML estimator that could be highly non–normal and
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Method KS∗ MSE∗ p–value(SW) p–value(JB)
Pair 0.094 5.614 0.098 0.288
Residual (fix.) 0.051 0.034 0.202 0.470
Residual (res.) 0.093 0.447 0.725 0.877
Res Efficient 0.089 0.047 0.566 0.628

Table 4.1: Colonial Origins, where B = 9999 and B = T/3

TSLS
Method KS∗ MSE∗ p–value(SW) p–value(JB)
Pair 0.122 0.002 0.002 0.000
Residual (fix) 0.153 0.001 0.186 0.158
Residual (res.) 0.119 0.002 0.050 0.043
Res. Efficient 0.519 0.046 0.001 0.000

LIML
Method KS∗ MSE∗ p–value(SW) p–value(JB)
Pair 0.106 0.002 0.000 0.000
Residual (fix) 0.065 0.001 0.006 0.002
Residual (res) 0.115 0.002 0.000 0.000
Res. Efficient 0.328 0.046 0.000 0.000

Table 4.2: Returns to Schooling, where B = 9999 and B = 50

overdispersed if µ2/k < 5 (recalling that estimated first stage F is equal to 4.98). To

summarize, in overidentified models we suggest that combination of new bootstrap

based tests equipped with LIML estimator could be a useful screen in order to avoid

weak identification.

4.5 Concluding Remarks

In this Chapter we exploit bootstrap methods to diagnose and test weak instruments in

IV/TSLS inference; the usage of bootstrap (failures) to detect model misspecification

represents a novel strand in the current literature. Firstly, we introduce graphical eval-

uation of (bootstrapped) distributions and other descriptive tools to detect weak iden-

tification applying bootstrap methods. Furthermore, we develop new bootstrap–based

tests useful to (empirically) verify the relevance of instruments by testing asymptotic

normality directly on the bootstrap replications of the estimator. We firstly apply
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well–known test statistics as Jarque Bera and Shapiro–Wilk, which seem to work well

especially in the just identified case and when other no–moment estimators are applied

in overidentified cases (e.g. LIML). Then, inspired by out simulation study, we pro-

pose test statistics for normality with fixed parameters, as the Shapiro–Wilk test with

known mean and, finally, standard normality tests, for the null hypothesis that avail-

able data match the moments of N(0, 1). Simulation shows that some of these tests

present a desirable behaviour in terms of size and power under weak instruments, being

sensitive to some issue related to lack of moments, overidentification and, in particular,

high endogeneity, which dramatically affects finite sample bias of IV/TSLS estimators.

We also apply normality tests on two well–known datasets finding results consistent

with the literature both in just–identified case and in more instruments situation.

These methods could be also quickly adapted to the case of multiple endogenous

regressor. In fact, in order to evaluate relevance of instruments in each equation, a first

strategy consists in testing (asymptotic) normality of each bootstrapped distribution of

the estimators for the vector β = (β1, . . . , βm)′. Alternatively, multivariate normality

statistic of Doornik and Hansen (2008) may be applied to test the joint normality of

β̂
∗
T . We leave this topic for further resarch. Finally, the method can be straightforward

applied of other κ−class estimators, as LIML or Fuller, considering more endogenous

regressors.

4.6 Appendix

Moments of the Standard Normal

As indicated in section 4.2.3, we start considering X ∼ N(0, 1), and then the random

vector w′ = (X,X2, X3, X4). Expectation of Xj when j = 1, . . . , 4 are given by:

E(X) = 0; E(X2) = 1; E(X3) = 0; E(X4) = 3

and the variances of elements included in w are:

V (X) = E(X2)− [E(X)]2 = 1− 0 = 1

V (X2) = E(X4)− [E(X2)]
2

= 3− 1 = 2

V (X3) = E(X6)− [E(X3)]
2

= 15− 0 = 15

V (X4) = E(X8)− [E(X4)]
2

= 105− 9 = 96.
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Then, the population covariances are:

Cov
[
X i, X i+1

]
= Cov

[
X i, X i+d

]
= 0.

are equal to zero if d ∈ {2, 4, . . .} . In fact:

Cov
[
X,X2

]
= Cov

[
X2, X3

]
= Cov

[
X3, X4

]
= Cov

[
X1, X4

]
= 0,

Furthermore there are two non–zero covariances:

Cov
[
X,X3

]
= E(X4)− E(X)E(X3) = 3− 0 = 3,

Cov
[
X2, X4

]
= E(X6)− E(X2)E(X4) = 15− 3 = 12.

Thus, summarizing previous results for the random vector w, it is possibile to rewrite:

w =


X

X2

X3

X4

 , E(w) =


0

1

0

3

 ; V (w) = Ω =


1 0 3 0

0 2 0 12

3 0 15 0

0 12 0 96

 .

Standard Normality Tests

We assume that data, indicated with DT = (x1 . . . , xt, . . . , xT )′ normally distributed

under the null hypothesis, i.e. xt ∼ N(0, 1)

Test based on a single sample moment

Given: 

m1 = 1√
T

(
∑

t xt − E(X))

m2 = 1√
T

(
∑

t x
2
t − E(X2))

m3 = 1√
T

(
∑

t x
3
t − E(X3))

m4 = 1√
T

(
∑

t x
4
t − E(X4))

=



m1 = 1√
T

(∑T
t=1 xt − 0

)
m2 = 1√

T

(∑T
t=1 x

2
t − 1

)
m3 = 1√

T

(∑T
t=1 x

3
t − 0

)
m4 = 1√

T

(∑T
t=1 x

4
t − 3

)
,
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we introduce four statistics based on sample moments:

M1 =
m2

1

V (X)
= m2

1
d→ χ2

1 (4.13)

M2 =
m2

2

V (X2)
=
m2

2

2

d→ χ2
1 (4.14)

M3 =
m2

3

V (X3)
=
m2

3

15

d→ χ2
1 (4.15)

M4 =
m2

4

V (X4)
=
m2

4

96

d→ χ2
1 (4.16)

A comprehensive test of the four sample moments

A test statistic involving all the first four moments of standard normal is constructed

using the quantity A:

A =



1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

2
t − E(X2)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

)

 =



1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

2
t − 1

)
1√
T

(∑T
t=1 x

3
t − 0

)
1√
T

(∑T
t=1 x

4
t − 3

)


d→ N4(0,Ω) (4.17)

where the covariance matrix previously defined is:

Ω =


1 0 3 0

0 2 0 12

3 0 15 0

0 12 0 96

 ,

and a comprehensive test statistic has the following asymptotic distribution:

M1234 = A′Ω−1A
d→ χ2

4
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Three sample moments tests

The main ingredients for built test statistics are the following four matrices Ajj′j′′ ,

where j < j′ < j′′:

A123 =


1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

2
t − E(X2)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

)
 =


1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

2
t − 1

)
1√
T

(∑T
t=1 x

3
t − 0

)
 d→ N3 (0,Ω123) (4.18)

A124 =


1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

2
t − E(X2)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

)
 =


1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

2
t − 1

)
1√
T

(∑T
t=1 x

4
t − 3

)
 d→ N3 (0,Ω124) (4.19)

A134 =


1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

)
 =


1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

3
t − 0

)
1√
T

(∑T
t=1 x

4
t − 3

)
 d→ N3 (0,Ω134) (4.20)

A234 =


1√
T

(∑T
t=1 x

2
t − E(X2)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

)
 =


1√
T

(∑T
t=1 x

2
t − 1

)
1√
T

(∑T
t=1 x

3
t − 0

)
1√
T

(∑T
t=1 x

4
t − 3

)
 d→ N3 (0,Ω234) (4.21)

where the four covariance matrices, indicated with Ωjj′j′′ j
′ > j and j′′ > j′, are:

Ω123 =

1 0 3

0 2 0

3 0 15

 ; Ω124 =

1 0 0

0 2 12

0 12 96

 ;

Ω134 =

1 3 0

3 15 0

0 0 96

 ; Ω234 =

 2 0 12

0 15 0

12 0 96

 .
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Then the four test statistics, presenting an asymptotically χ2
3 distribution, are the

following:

M123 = A′123Ω
−1
123A123

d→ χ2
3 (4.22)

M124 = A′124Ω
−1
124A124

d→ χ2
3 (4.23)

M134 = A′134Ω
−1
134A134

d→ χ2
3 (4.24)

M234 = A′234Ω
−1
234A234

d→ χ2
3 (4.25)

Tests based on two sample moments

The test statistics based on the vector Ajj′ , where j′ > j are asymptotically normal,

as follows:

A12 =

 1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

2
t − E(X2)

) =

 1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

2
t − 1

) d→ N2 (0,Ω12)

A13 =

 1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

) =

 1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

3
t − 0

) d→ N2 (0,Ω13)

A23 =

 1√
T

(∑T
t=1 x

2
t − E(X2)

)
1√
T

(∑T
t=1 x

3
t − E(X3)

) =

 1√
T

(∑T
t=1 x

2
t − 1

)
1√
T

(∑T
t=1 x

3
t − 0

) d→ N2 (0,Ω23)

A14 =

 1√
T

(∑T
t=1 xt − E(X)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

) =

 1√
T

(∑T
t=1 xt − 0

)
1√
T

(∑T
t=1 x

4
t − 3

) d→ N2 (0,Ω14)

A34 =

 1√
T

(∑T
t=1 x

3
t − E(X3)

)
1√
T

(∑T
t=1 x

4
t − E(X4)

) =

 1√
T

(∑T
t=1 x

3
t − 0

)
1√
T

(∑T
t=1 x

4
t − 3

) d→ N2 (0,Ω34) (4.26)
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where the six known covariance matrices, denoted as Ωjj′ , are:

Ω12 =

(
1 0

0 2

)
; Ω13 =

(
1 3

3 15

)
; Ω14 =

(
1 0

0 96

)
;

Ω23 =

(
2 0

0 15

)
; Ω24 =

(
2 12

12 96

)
; Ω34 =

(
15 0

0 96

)
.

Finally, given the quantity Ajj′ and Ωjj′ , where j′ > j, the six test statistics (based

on two moments implied by standard normal) are asymptotically χ2 with 2 degrees of

freedom, as follows:

M12 = A′12Ω
−1
12 A12

d→ χ2
2 (4.27)

M13 = A′13Ω
−1
13 A13

d→ χ2
2 (4.28)

M14 = A′14Ω
−1
14 A14

d→ χ2
2 (4.29)

M23 = A′23Ω
−1
23 A23

d→ χ2
2 (4.30)

M24 = A′24Ω
−1
24 A24

d→ χ2
2 (4.31)

M34 = A′34Ω
−1
34 A34

d→ χ2
2 (4.32)
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An R code to obtain bootstrap–based normality tests

Here we present a simple R function to compute bootstrap–based normality test

through procedure described in Section 4.2.2. We include only SW and JB test ap-

plied on IV/TSLS estimator. Code could be straigthforward extended to other κ−class

estimators.

boo t t e s t<−f unc t i on (B, b , data ){
l i b r a r y ( t s e r i e s ) ## to compute JB t e s t

k<−nco l ( data)−2

t<−nrow ( data )

iv<−i v r e g ( data [ , 1 ] ˜ data [ , 2 ] | data [ , 3 : ( k +2)])

thetaB<−numeric ( )

f o r ( j in 1 :B){
i nd i c e s<−sample ( 1 : t , t , r e p l a c e=TRUE)

## Res idual boots t rap with resampled instruments

uvz<−cbind ( r e s i d u a l s ( i v ) ,

r e s i d u a l s ( lm( data [ , 2 ] ˜ data [ , 3 : ( k +2) ] ) ) , data [ , 3 : ( k +2)])

ub<−uvz [ i nd i c e s , 1 ] ; vb<−uvz [ i nd i c e s , 2 ] ; zb<−uvz [ i nd i c e s , 3 : ( k+2)]

i f ( k==1) xb<−lm( data [ , 2 ] ˜ data [ , 3 : ( k +2)]) $ coe f [ 2 : ( k+1)]∗ zb+vb

e l s e xb<−lm( data [ , 2 ] ˜ data [ , 3 : ( k +2)]) $ coe f [ 2 : ( k+1)]%∗%zb+vb

yb<−i v $ c o e f [ 2 ] ∗ xb+ub

ivb<−i v r e g ( yb˜xb | zb )

thetaB [ j ]<− i vb$coe f [ 2 ]

}
## Standardized c o e f f i c i e n t

thetaBst<−(thetaB−i v $ c o e f [ 2 ] ) / summary( iv ) $ c o e f f i c i e n t s [ 2 , 2 ]

## S p l i t in N groups

cfa<−s p l i t ( thetaBst , s o r t ( rank ( thetaBst ) %% round (B/b ) ) )

p1s<−numeric ( ) ; p2s<−numeric ( ) ;

f o r ( wi in 1 : l ength ( c f a ) ){
p1s [ wi]<− shap i ro . t e s t ( c f a [ [ wi ] ] ) $p . va lue ;

p2s [ wi]<− j a rque . bera . t e s t ( c f a [ [ wi ] ] ) $p . va lue

}
## p . va lue s with our procedure
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p1<−min( p1s ) ; p2<−min( p2s )

##thre sho ld f o l l o w i n g Sec t i on 4 . 2 . 2

tr <−1−(0.95)ˆ(1/ round (B/b ) )

out<−c ( p1<tr , p2<t r )

names ( out)<−c (”SW” ,”JB”)

re turn ( out )}
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k = 1 k = 5

ρ µ2/k Me(MSE∗) KS
∗

Me(KS∗) Me(MSE∗) KS
∗

Me(KS∗)

0.25

0 496.393 0.220 0.183 0.271 0.202 0.179
1 258.961 0.173 0.112 0.132 0.143 0.118
5 9.768 0.093 0.077 0.038 0.088 0.078
10 0.252 0.065 0.060 0.019 0.076 0.072
20 0.064 0.054 0.051 0.010 0.061 0.058
40 0.028 0.048 0.046 0.005 0.054 0.051
60 0.018 0.048 0.046 0.003 0.053 0.051

0.5

0 378.260 0.216 0.175 0.219 0.201 0.175
1 229.034 0.177 0.114 0.115 0.163 0.148
5 11.583 0.105 0.086 0.036 0.143 0.136
10 0.359 0.076 0.069 0.019 0.117 0.114
20 0.068 0.061 0.058 0.010 0.094 0.093
40 0.028 0.053 0.052 0.005 0.075 0.075
60 0.018 0.050 0.049 0.003 0.067 0.066

0.75

0 204.041 0.217 0.183 0.128 0.201 0.178
1 194.010 0.186 0.129 0.085 0.223 0.207
5 21.000 0.114 0.098 0.033 0.204 0.204
10 0.476 0.091 0.087 0.018 0.167 0.166
20 0.075 0.073 0.070 0.009 0.128 0.127
40 0.030 0.060 0.059 0.005 0.102 0.102
60 0.018 0.055 0.053 0.003 0.088 0.088

0.9

0 96.611 0.223 0.187 0.052 0.202 0.176
1 179.791 0.212 0.154 0.070 0.294 0.287
5 24.064 0.128 0.112 0.030 0.252 0.245
10 0.621 0.102 0.100 0.018 0.201 0.200
20 0.082 0.082 0.079 0.009 0.153 0.154
40 0.030 0.066 0.064 0.005 0.116 0.116
60 0.019 0.060 0.058 0.003 0.100 0.100

Table 4.7: MSE∗ and KS∗ for IV/TSLS estimators with k = 1, 5 with different
strength of instruments and endogeneity levels.
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LIML Fuller(c = 1)

ρ µ2/k Me(MSE∗) KS
∗

Me(KS∗) Me(MSE∗) KS
∗

Me(KS∗)

0.25

0 354.415 0.172 0.172 0.655 0.145 0.134
1 78.046 0.136 0.136 0.364 0.119 0.110
5 0.180 0.086 0.086 0.074 0.081 0.075
10 0.030 0.064 0.064 0.028 0.064 0.060
20 0.012 0.054 0.054 0.012 0.056 0.053
40 0.005 0.051 0.051 0.005 0.053 0.050
60 0.003 0.050 0.050 0.003 0.053 0.050

0.5

0 296.829 0.172 0.172 0.477 0.142 0.133
1 84.282 0.141 0.141 0.294 0.123 0.112
5 0.109 0.082 0.082 0.065 0.078 0.074
10 0.029 0.064 0.064 0.026 0.065 0.061
20 0.012 0.055 0.055 0.011 0.057 0.054
40 0.005 0.052 0.052 0.005 0.054 0.052
60 0.003 0.050 0.050 0.003 0.053 0.051

0.75

0 153.072 0.166 0.166 0.279 0.143 0.133
1 72.258 0.141 0.141 0.214 0.132 0.112
5 0.089 0.084 0.084 0.054 0.074 0.071
10 0.026 0.065 0.065 0.024 0.065 0.062
20 0.011 0.058 0.058 0.011 0.059 0.057
40 0.005 0.054 0.054 0.005 0.056 0.053
60 0.003 0.052 0.052 0.003 0.055 0.053

0.9

0 82.135 0.179 0.179 0.132 0.148 0.142
1 60.265 0.131 0.131 0.152 0.157 0.125
5 0.068 0.080 0.080 0.047 0.079 0.077
10 0.027 0.067 0.067 0.022 0.069 0.066
20 0.011 0.057 0.057 0.010 0.061 0.058
40 0.005 0.054 0.054 0.005 0.057 0.055
60 0.003 0.053 0.053 0.003 0.055 0.053

Table 4.8: MSE∗ and KS∗ for LIML and Fuller estimators with different strength of
instruments and endogeneity levels, k = 5.
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Resampled instruments
B1 = 40 B2 = 50

ρ µ2 SW JB SW0 SW JB SW0

0.25

0 0.982 0.973 0.965 0.989 0.988 0.970
1 0.931 0.926 0.892 0.966 0.964 0.939
50 0.139 0.138 0.091 0.146 0.138 0.091
100 0.070 0.063 0.075 0.086 0.073 0.057

0.5

0 0.978 0.971 0.961 0.986 0.985 0.973
1 0.949 0.937 0.914 0.962 0.964 0.938
50 0.194 0.167 0.123 0.259 0.231 0.139
100 0.126 0.087 0.084 0.147 0.131 0.082

0.9

0 0.983 0.983 0.965 0.992 0.993 0.978
1 0.968 0.962 0.951 0.990 0.985 0.972
50 0.206 0.192 0.124 0.238 0.218 0.142
100 0.256 0.196 0.136 0.286 0.227 0.149

Fixed Instruments
B1 = 40 B2 = 50

ρ µ2 SW JB SW0 SW JB SW0

0.25

0 0.978 0.968 0.951 0.985 0.984 0.978
1 0.950 0.946 0.912 0.957 0.961 0.932
50 0.122 0.115 0.082 0.137 0.136 0.085
100 0.067 0.067 0.051 0.091 0.078 0.046

0.5

0 0.981 0.979 0.956 0.988 0.984 0.975
1 0.947 0.947 0.920 0.967 0.962 0.939
50 0.210 0.189 0.130 0.252 0.231 0.125
100 0.119 0.089 0.081 0.130 0.107 0.061

0.9

0 0.973 0.966 0.966 0.995 0.989 0.982
1 0.970 0.958 0.956 0.977 0.974 0.970
50 0.215 0.187 0.126 0.244 0.211 0.146
100 0.218 0.174 0.125 0.288 0.227 0.149

Table 4.10: Bootstrap–based normality tests on the TSLS (k = 3) estimator with
T = 500
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Test based on B < B
B1 = 40 B2 = 50

ρ µ2/k SW JB SW0 SW JB SW0

0.25

0 0.963 0.958 0.920 0.970 0.969 0.937
1 0.796 0.790 0.697 0.854 0.859 0.782
50 0.054 0.047 0.056 0.061 0.051 0.040
100 0.055 0.039 0.055 0.059 0.049 0.056

0.5

0 0.940 0.933 0.900 0.979 0.977 0.947
1 0.821 0.807 0.723 0.859 0.863 0.785
50 0.073 0.057 0.044 0.083 0.055 0.052
100 0.057 0.044 0.053 0.062 0.038 0.059

0.9

0 0.945 0.940 0.900 0.977 0.977 0.953
1 0.916 0.868 0.838 0.930 0.899 0.874
50 0.126 0.101 0.093 0.121 0.101 0.071
100 0.073 0.047 0.050 0.105 0.083 0.066

Procedure based on overall B=199

B1 = 40 B2 = 50
ρ µ2/k SW JB SW0 SW JB SW0

0.25

0 1.000 1.000 0.996 1.000 1.000 0.990
1 0.968 0.984 0.928 0.980 0.990 0.944
50 0.072 0.124 0.054 0.080 0.108 0.058
100 0.052 0.098 0.036 0.060 0.096 0.046

0.5

0 0.992 0.992 0.986 0.979 0.977 0.947
1 0.970 0.984 0.928 0.984 0.986 0.932
50 0.074 0.128 0.052 0.118 0.168 0.048
100 0.096 0.132 0.052 0.078 0.090 0.050

0.9

0 0.945 0.940 0.900 0.977 0.977 0.953
1 0.916 0.868 0.838 0.930 0.899 0.874
50 0.126 0.101 0.093 0.121 0.101 0.071
100 0.073 0.047 0.050 0.105 0.083 0.066

Table 4.12: Boostrap–based tests and LIML estimator with T = 500 and k = 5
instruments
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B = 100
ρ Identification M12 M12 M123 M124 M134 M1234

0.25
irrelevant 0.787 0.689 0.808 0.855 0.723 0.853

weak 0.582 0.596 0.638 0.656 0.589 0.670
strong 0.049 0.064 0.060 0.060 0.064 0.068

0.5
irrelevant 0.792 0.683 0.814 0.844 0.712 0.840

weak 0.678 0.675 0.718 0.727 0.667 0.737
strong 0.072 0.109 0.099 0.076 0.102 0.099

0.9
irrelevant 0.771 0.686 0.809 0.847 0.713 0.850

weak 0.952 0.959 0.968 0.949 0.956 0.965
strong 0.166 0.248 0.215 0.144 0.206 0.179

B = 120
ρ Identification M12 M12 M123 M124 M134 M1234

0.25
irrelevant 0.821 0.718 0.850 0.891 0.750 0.887

weak 0.611 0.609 0.661 0.723 0.615 0.724
strong 0.065 0.073 0.063 0.063 0.065 0.071

0.5
irrelevant 0.833 0.763 0.877 0.916 0.794 0.917

weak 0.701 0.707 0.742 0.781 0.710 0.789
strong 0.093 0.129 0.111 0.090 0.109 0.100

0.9
irrelevant 0.811 0.701 0.837 0.892 0.735 0.891

weak 0.967 0.971 0.974 0.971 0.969 0.975
strong 0.193 0.284 0.247 0.173 0.247 0.216

Table 4.13: Boostrap–based standard normality tests for TSLS estimator with T =
500 and k = 5 instruments under three identification scenarios and three levels of
endogeneity



Chapter 5

Conclusions and further research

5.1 Summary and conclusions

In this PhD Thesis we analyze instrumental variable estimators and their bootstrap

counterpart under poorly relevant instruments. In Chapter 2, we discuss how the weak-

ness of excluded instruments affects both finite sample and asymptotic properties of

IV/TSLS, and also of other κ−class estimators. We consider several weak instruments

scenarios, reporting the performance of (non–robust) estimators and tests under stan-

dard and non–standard conditions, considering models with one endogenous regressor

equipped with one or more instruments. Our simulations confirms that IV and TSLS

may perform very poorly in terms of coverage rates and may generally be very far

from their limiting distribution, even if the sample size is moderately large, mainly

due a sensitivity to the level of endogeneity. LIML and Fuller estimators, nested in the

so–called κ−class, perform better than IV/TSLS in terms of median point estimates

and coverage rates; we also suggest their use in case of nearly-weak instruments and

high degree of endogeneity, i.e. 5 < F < 10 and ρ > 0.5. Nevertheless, both IV and

LIML suffer from the no–moment problem and this is reflected in their huge variability,

occurring especially when instruments are very weak or practically irrelevant. In this

context, we propose KS statistics, suggested by Zhan (2017) in a different framework,

as descriptive indicator of normal approximation, in order to compare the sensitivity of

κ−class estimators with respect to misspecification. Moreover, when instruments are

weakly endogenous, i.e. poorly correlated with structural disturbances, rejection fre-

quencies of t/Wald test, associated to all κ−class estimators, may be too high even if

instruments are not deemed weak. This will be also investigated in other test statistics
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mainly used in IV framework.

Bootstrap methods may often improve inference in finite samples. For this reason,

different methods summarized in section 2.4 could be applied in linear IV setting.

However, we prove that bootstrap counterpart of IV and TSLS estimator under weak

instrument asymptotics converges to a non-normal distribution presenting random

component, conditionally on the original data DT . In the empirically relevant just–

identified case, when a single instrument is totally irrelevant, this randomness is exac-

erbated due to the no–moment problem of IV estimator. Similar results may be found

applying different bootstrap methods, with some exceptions, as pointed out in section

3.2.5. Our Monte Carlo exercises suggest that randomness can also be found in the

bootstrap distribution of t–statistic associated with IV estimator and in bootstrapped

κ−class estimators.

In Section 3.3 we present some cases of malfunctions in bootstrap inference regard-

ing bias–correction, confidence intervals, and hypothesis testing under weak instru-

ments. We also highlight cases in which bootstrap may perform better, in terms of

empirical power or coverage rates, with respect to conventional asymptotics, with the

exception of irrelevant or nearly–irrelevant instruments.

Furthemore, in Chapter 4 we introduce bootstrap–based normality tests in order

to test the null hypothesis of strong instruments, using a limited number of bootstrap

replications. Our simulation study in Section 4.3 shows that normality tests perform

satistfyingly in terms of power through IV and LIML estimators, and procedure in-

volving all the bootstrap replication, introduecd in Section 4.2.2, may also improve

the power of test. In particular, the LIML shown desirable features in this context

because its no–moment problem exacerbates non–normality of bootstrap replications

under very weak and irrelevant instruments, producing better results in terms both

of empirical size under strong instruments, and empirical power under irrelevant and

weak instruments. These findings suggest to extend out test in the GMM framework

on the Generalized Empirical Likelihood (GEL) estimator, reducing to LIML in the

linear context. Finally, adding more instruments, rejection frequencies of conventional

normality tests tend to decrease using TSLS estimator. To overcome this problem, we

propose to test standard normality of bootstrap using different test statistics. These

tests improve the empirical power when weak instruments are combined with high

endogeneity, that often affects finite sample bias of TSLS.
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5.2 Suggestions for further works

In order to develop the evaluation of Chapter 2, we will consider κ−class estimators in

the case of multiple endogenous regressor under weak instruments, where the vector

Π will be modeled in terms of population Cragg–Donald statistic (Cragg and Don-

ald, 1993) or partial µ2, using framework described in Angrist and Pischke (2008).

Nowadays a question of practical interest regards the behaviour of partial F statistic,

proposed by Sanderson and Windmeijer (2016), under non–standard conditions, i.e.

heteroskedastic/autocorrelated disturbances and weakly endogenous instruments.

In the context of bootstrap applications, further research will be focused on three

aspects. The first concerns bootstrap distribution of LIML and Fuller estimators

under weak instrument asymptotics. Applying residual–based resampling methods of

Section 2.4, we evidence that they have a non–normal limiting distribution, presenting

random quantities conditionally on the data DT as viewed in the IV/TSLS case. In

order to prove formally this fact, an open issue is related to the relationship between

estimated κ̂ and its bootstrapped counterpart, computed through bootstrap sample:

(y∗t , x
∗
t , Z

∗
t )′.

A second topic concerns new concepts of bootstrap validity, introduced in Cav-

aliere and Georgiev (2018), denoted as conditional on the sample and “on average”

validity, which will be investigated in κ−class estimators and associated t/Wald tests.

This could be done using different asymptotics to model π, like the one proposed by

Andrews and Chen (2012), called “semi–strong” instruments. Furthermore, we will

be interested in the bootstrapped distribution of IV/TSLS estimators under weakly

endogenous instruments. In this situation, the presence of a non–zero correlation be-

tween instruments and structural disturbances may be reflected in the bootstrap world,

as suggested by our empirical findings regarding rejection frequeny of bootstrapped

t-statistic in Section 3.3.4.

Finally, in further research, we will apply our bootstrap–based test in case of mul-

tiple endogenous regressors, using TSLS and other κ−class estimators. These models

are rarely present in applied work, essentially because detection of weak instruments

is still of practical interest when m > 1 and existing methods remain under debate.

The choice of bootstrap replications B will play also a central role in further works,

in order to improve the performance of proposed test in terms of empirical size and

power.
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