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ABSTRACT OF THE DISSERTATION 

 

 

Lignin is a plant derived, amorphous, aromatic, polymer and a potential source of carbon 

feedstock for generation of fuels and bulk chemicals. Nonetheless, for so long the 

commercial use of lignin has not been favorably brought to the market due to its difficult 

processing as a raw material. Like the variety of depolymerization methods opted in the 

literature, this thesis contributes to the catalytic hydrodeoxygenation of lignin model 

molecules to obtain functional aromatics. The work is an attempted contribution to the 

improvement of quality of lignin obtained by organosolv pulping. We synthesized lignin 

model molecules in close resemblance to the native lignin in terms of structure and chemical 

reactivity. The hydrodeoxygenation of the model compound was carried out under mild 

conditions in the presence of mixed oxides catalysts obtained by the thermal decomposition 

of layered double hydroxide. The conversion and selectivity variation was manipulated by the 

detailed characterization (XRD, TG, TPR, SEM, EDX and N2 physiosorption) of the solid 

catalysts. We observed that MeOH, as an efficient H-donor solvent can successfully cleave α-

O-4 linkage, causing Meerwein–Ponndorf–Verley reduction and selective 

hydrodeoxygenation of the lignin model under mild condition, consequently generating 

products of solvolysis and successive hydrogenation. The depolymerized lignin products 

were characterized by GC (MS, FID). 

Our original contribution to the subject through this thesis is the conversion of α-O-4 linkage 

of lignin model (4-(benzyloxy)-3-methoxybenzaldehyde) to the hydrogenated products 

(alcohols, phenols) under mild conditions (160-200°C) using mixed oxides from Ni-Cu-Fe 

and related LDH systems. The goal of the project was a heterogeneous catalyst-assisted step 

ahead in development of solvolysis of lignocellulosic biomass. To the best of our knowledge 

the mixed oxides obtained from this set of LDH cations, for this reaction and conditions with 

above mentioned model have never been reported in the literature.   

 

KEYWORDS: Lignin model compounds, α-O-4 linkage, heterogeneous catalysis, layered 

double hydroxides, mixed oxides, hydrodeoxygenation 
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GENERAL INTRODUCTION TO THE PROJECT 

 

Lignin is an attractive renewable source of diversified aromatic functionalities with low O/C 

ratio. However, the complexity and recalcitrant nature of the lignin structure has rendered it 

one of the most underexploited biopolymers. Several routes, such as oxidation, reduction, 

pyrolysis and acid/base catalysis have been proposed for the catalytic depolymerization of 

lignin. Due to the high cost of hydrogen, oxidative routes have been considered the most 

cost-effective but the oxidation reactions may bring challenges to the reactions by the 

formation of highly reactive free radicals and which may lead to recondensation of the 

depolymerised fragments. Reductive methods for the fractionations proposed in the literature 

are game-changing only if the cost issues (transport, high pressure control, storage) of 

hydrogen are resolved. This problem can be alleviated if addressed through a mechanism of 

transfer of hydrogen coming from a cheap hydrogen-donor source. In this context, a reductive 

route, hydrodeoxygenation (HDO) is considered one of the most simple and effective method 

for valorization of this rich reserve, eventually leading to the upgraded products. To address 

this problem several reports have proposed organic hydrogen donors (alcohols, formic acid) 

which not only aid in the partial/selective hydrodeoxygenation but also address the solubility 

issues of organosolv pulping. This opens up new pathways to simultaneous fractionation of 

biomass and lignin modification. Typically, Meerwein-Ponndorf-Verley reaction (MPV) is a 

chemoselective procedure to reduce carbonyl groups of aldehydes/ketones to their 

corresponding alcohols using a H-donating alcohol solvent but further surface-catalyzed 

mechanisms allow hydrogenation of simple C-O bonds. Alcohols are certainly potential H-

donor solvents for their renewable nature and low cost but the selection of right alcohol is a 

requisite, due to the rigidity of stoichiometric formation of oxidation products of the 

hydrogen donor together with the desired hydrogenation products of substrate. Methanol 

complete oxidation results in easily separable CO2 and renewable ethanol is already 

extensively used for organosolv pulping. The complicated variability of biomass lignin 

prompted the reliance on simplified, low molecular weight lignin model compounds to study 

the mechanism of depolymerization. These models mimic the linkages present in the real 

lignin polymer, are often intermediates of the lignin degradation streams and their separation 

by chromatographic techniques identification is possible using conventional analytical 

methods. Hence, we synthesized some α-O-4 and β-O-4 model molecules of lignin. 



 

 

 

Rate and selectivity of catalytic hydrodeoxygenation largely depends on the type of catalysts 

used. Literature has favored the choice of heterogeneous catalysts, keeping in view the 

product recovery, toleration of wide temperature/pressure range and easy disposal. Single and 

mixed metal oxides (MMO) obtained from the transition series are interesting to impart redox 

properties to the system. The selection of Layered Double Hydroxides (LDHs) as a catalyst 

precursor for MMO is an attractive route to obtain oxides with high surface area, basic 

properties and homogeneous mixture of metal oxides. Taking into account the rich chemical 

properties of the transition metals, we modified a commonly known hydrotalcite 

(Mg6Al2CO3(OH)16·4(H2O)) by replacing magnesium (Mg2+) with less basic divalent nickel 

(Ni2+) and copper (Cu2+), a typical catalyst of lignin depolymerization and iron (Fe3+) to 

induce further redox properties in the system. The synthesis of the catalyst precursor was 

done by conventional co-precipitation methods. Different types of Layered Double 

Hydroxides (LDHs) based on Cu,Ni/Fe-LDH have been synthesized by studying the effect of 

cation types, cation ratios, and the solubility domains of cations in the synthesis system. The 

structural, surface and morphological properties were studied by powder X-ray Diffraction 

(XRD), N2 physiosorption, Thermal gravimetery (TG), Scanning Electron Microscopy (SEM) 

and Energy Dispersive X-Ray spectroscopy (EDX). 
 

Syntheses of LDHs with any cation ratio were successful in Cu-Ni-Fe, Ni-Fe and Cu-Ni-Al 

systems. The pure Cu-Fe system resulted instead in precipitation of CuO or Cu2(OH)3NO3, 

depending on the pH of the precipitation. None of these phases account for the presence of 

iron in the system. Iron, not visible through XRD, should exist in amorphous state. The 

independent precipitation of amorphous Fe(OH)3 is due to the different precipitation domains 

of Fe3+ and Cu2+ prevents the formation of the expected mixed LDH phase. This phenomenon 

holds true for the calcined samples as well, where only at high calcination temperature 

(≥600°C), crystallized iron-bearing phases are detected. 
 

To further study this effect, we introduced Ni2+ in a Ni-Cu-Fe system to balance the solubility 

differences. This allowed to define a threshold amount of a second divalent cation (nickel in 

this case) allowing the formation of Cu-bearing LDHs up to (Cu/Ni) 1:1. It has been often 

reported that the Jahn Teller distortion in Cu2+ is the cause of no formation of Cu-Fe LDH. 

Indeed, Rietveld refinement of these mixed LDHs allowed us to observe an increase of the 

cation-oxygen distance of the Fe LDHs from 2.04 Å for pure Ni divalent to 2.06 for (Cu/Ni) 

1:1 divalent ratio. This variation cannot be exploited by the smaller size of Cu2+ (0.69) with 



 

 

respect to nickel (0.72) and can be justified instead by a disordered distribution of Cu 

octahedra elongated by Jahn-Teller effect. Despite its presence, the Jahn-teller effect of Cu2+ 

is a poor candidate for the difficult formation of Cu-Fe LDHs, as the same mechanism does 

not seem operative in the Cu-Al solid solution, in which pure Cu-Al LDHs are easily formed 

and the precipitated cation ratio corresponds to the initial synthesis. The actual challenge is 

the different solubility domains of Cu2+ and Fe3+ whereas Cu2+ can precipitate in the same 

conditions of Al3+. 

Formation of dispersed mixed metal oxides (MMO) are obtained as a result of progressive 

thermal dehydration and decarbonatation of LDH materials. The nature and distribution of 

oxide phases (NiO, CuO, spinel) were strictly dependent on the initial synthesis composition 

of LDH and the calcination temperatures. It was observed through x-ray diffraction that the 

Fe3+ was found missing in the samples which were subjected to moderate temperature of 

calcinations, concluding to the presence of an “amorphous” part in the mixed oxide. A cross 

check of analysis by EDX confirmed preferential crystallization (phase segregation) 

phenomena with the synthesis ratios initially employed. NiO was nearly completely 

segregated at 400°C and the following crystallization of CuO left trivalent-enriched 

amorphous materials, from which spinel phases crystallized at higher temperature (≥500°C). 

Late formation of crystalline Fe-bearing phases suggests a high stability of amorphous iron 

oxides. The percentage quantification of crystalline phases was done for all samples by 

Rietveld analysis. The amorphous part of the samples was measured by difference with the 

measured crystalline experiments with an internal standard. The catalytic activity of the 

catalysts was tested in batch liquid-phase reactors on the model molecules of lignin in the 

presence of different hydrogen-donor solvents (methanol, ethanol, 2-propanol) in the 

temperature range 160-200°C. This field of temperature is less severe than typical gas-phase 

hydrogen transfer reactions and nearer to the conditions of organosolv pulping of 

lignocellulosic biomass. 

The use as a substrate of model molecules with aldehyde, methoxy and phenylether groups 

allowed modeling the effects of different catalysts on the reactivity of several functionalities 

of natural lignin. If aldehyde functions were easily hydrogenated by a typical MPV 

mechanism, the breaking of phenylether bonds, mimicking the most frequent β-O-4 bonds of 

lignin, was only partial and probably followed several pathways. Deeper hydrogenation was 

observed, possibly due to H2 issued from methanol reforming, with the formation of 

hydroxycresol by hydrogenation of C-OH bonds. Traces of guaiacol were sometimes 

observed, suggesting that also hydrogenation of C-C bonds is possible in our conditions.  



 

 

Conversion and selectivities heavily dependent on the nature of the catalyst and of the 

hydrogen-donor solvent. The yield of hydrogenation of the different bonds present in the 

model molecule could be calculated from product distribution. When methanol was used, 

nearly complete MPV hydrogenation of aldehyde groups was observed, whereas the breaking 

of ether bonds was less effective and just a quarter of the C-OH bonds formed by previous 

reactions could be hydrogenated. When ethanol was used, an inversion of reactivity trends 

was observed, with less effective MPV hydrogenation and much more effective breaking of 

C-O-C and C-OH bonds. The presence of copper seems critical to achieve high 

hydrogenation yields, as the oxides issued from the calcination of Ni-Fe LDH are much less 

effective than the ones formed in the Cu-Ni-Fe system. 
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Chapter Summary: 
 

The substantially increasing demand of energy, the rising greenhouse gas emissions and the 

declining fossil fuels resources have necessitated the development of alternate renewable 

resources. In this perspective, a renewable resource like biomass offers significant potential 

in terms of carbon feedstocks to generate fuels and bulk chemicals with multiple benefits of 

sustainable development, environmental preservation and energy efficiency. Lignin, an 

inedible, diversified reservoir of aromatic functionalities with the lowest O/C ratio among the 

components of biomass, is a strikingly underexploited resource. However, lignin is a complex 

biopolymer formed of several propylphenol monolignol units (G, H, S) connected by diverse 

cross-linkages (β-O-4, α-O-4, β-5, β-β, 4-O-5, 5-5 or β-1) with a severe natural variability. 

The complexity of lignin has largely limited the development of processes for its industrial 

use. Due to this complexity, the study of lignin reactivity can be usefully addressed by 

relying on low molecular weight lignin model molecules which mimic the linkages present in 

native lignin and allow to understand how to cope with structural variations of raw lignin. In 

this chapter, examples of model molecules with various kinds of linkages and their 

depolymerisation strategies have been discussed. Typically, heterogeneous catalysis is a 

favored valorisation method because it can be carried out over a wide range of operating 

conditions, with easy separation and recyclability of the catalyst. In the current literature, 

catalytic pyrolysis, oxidative/reductive transformations and acid/base catalysis are being 

studied over various model molecules under a broad range of reaction conditions. The choice 

of a selected route may vary with the targeted products but a general overview of the cost and 

feasibility is often under debate. In this context, the reductive conversion could be extremely 

valuable to exploit and upgrade the abundantly available phenolics in the structure. 

Hydrogenation/hydrodeoxygenation is a well-founded method if alternate supply of the 

expensive hydrogen gas could be addressed. In this project, we focused on MPV and further 

hydrogenation reactions by early stage catalytic conversion of lignin α-O-4 model molecule 

by using alcohols as H-donor alcohol solvents at comparatively mild conditions. The ideal 

target is to improve the solvolysis of lignocellulosic biomass by the use of heterogeneous 

catalyst in order to obtain selectively hydrogenated lignin-derived products directly from 

organosolv processes of lignocellulose pulping. 
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Introduction 

 

The perspective depletion of fossil fuels and the need to control emissions of greenhouse 

gases has provoked research in finding alternative renewable resources. Among them, 

lignocellulose is a largely underutilized form of natural biomass, not directly competing with 

food resources. However, the difference in structure, composition and complexity of biomass 

as compared to crude oil requires an extensive reevaluation and rethinking of feedstock 

processing strategies to render economically viable the proposed transition to a bio-based 

industry.1,2 

Lignocellulosic biomass is essentially composed of three components: cellulose (38-50%), 

hemicellulose (23-32%) and lignin (15-25%). Cellulose is currently hydrolyzed to glucose 

and converted into valuable products such as ethanol biofuel and platform chemicals, such as 

levulinic and formic acids, gamma-valerolactone and derived products. Hemicellulose has 

potential applications for biofuel production and for the generation of valuable chemicals 

intermediates, such as furfural. Lignin is the most underutilized fraction of lignocellulose. 

The total lignin availability in the biosphere exceeds 300 billion tons and annually increases 

by around 20 billion tonnes.3  Annually, 40-50 million tons of roughly isolated lignin are 

available as waste of pulp and paper industry and biorefineries. Only approximately 2% of 

the lignin available is commercially exploited while the remainder is burnt as a low-value 

fuel in the lignocellulose fractionation units.4  

 

1.1 The potential of lignin  

Lignin is an important component of secondary cell wall of plants, which forms a matrix 

between cellulose fibrils and provides mechanical strength and chemical protection to the 

plant. Lignin is a tridimensional amorphous polymer composed of three types of 

propylphenyl monolignols (Fig1.), differing by their degree of substitution: sinapyl alcohol 

(S), coniferyl alcohol (G) and p-coumaryl alcohol (H) units (see Fig.1.1).  

 

Figure 1.1 Monolignols, the building units of lignin 
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According to the source it derives from, lignin presents a high diversity of chemical structure, 

not only in terms of percentage of each monolignol, but also from the different ways the 

building blocks are connected to each other through various crosslinked C-O and C-C bonds 

including β-O-4, β-5, β-β, 4-O-5, 5-5 or β-1 to form a complex matrix (see Fig. 1.2).5 

Generally softwood has 45-48 wt % and hardwood has 60 wt % of β-O-4 aryl glycerol ether 

bonds. Softwood has approximately 5 wt% and hard wood has 0-2 wt % of dibenzodioxocin 

5-5’-α, β-O-4’ bonds. In addition, softwood has 3.5-8 wt % and hardwood has 6-9 wt % of 

diphenyl ether 5-O-4’ linkages.6,7 The presence of these propylphenolic groups is at the basis 

of the interest for lignin, as a large reservoir of aromatic hydrocarbons and fine and specialty 

chemicals.8  

 

 

Figure 1.2 Idealized structure of lignin with the most representative functional groups 

 

 

1.2 The challenges of lignin 

Untransformed lignin finds property-based applications as component of epoxy glues for 

wood and packages, as fillers for bitumen and oil drilling fluids or as precursor of carbon 

fibres.9 Considering the rich chemical functionalities of lignin, it is really promising to 

develop methods of depolymerisation for the production of phenolic monomers for the 

polymer, flavor and pharmaceutical industry.10 Development of effective catalytic processes 
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is badly needed in lignin depolymerisation to orient the selectivity towards well-defined 

monomers, in order to minimize the separation costs, which can nullify the economic 

viability of depolymerisation.  

In order to tailor processes for the chemical valorisation of lignin, a considerable challenge is 

to interpret the exact structural arrangement in the macromolecule. The structure of native 

lignin is only accessible by analysis of its hydrolysis products, which nature in turn depends 

on the separation process used. Moreover, the variability of lignin coming from different 

plant species hinders the developments of set protocols for lignin depolymerisation. To cope 

with lignin's chemical complexity, a multifaceted, translational approach is required that 

includes new analytical tools for structure characterization of substrates and products. The 

lignin depolymerisation technology is still in the early phases of R&D. Taking advantage of 

lignin as a reliable alternate source to fossil resources relies on the interest from game-

changing investors, which will provide funding options when the depolymerisation 

technology will reach a sufficient level of maturity.5 

 

1.3 Lignin model molecules 

The complexity and variability of the structure of lignin has complicated the study of 

industrial lignin as a substrate. This fact has prompted the reliance on simplified, low 

molecular weight lignin model compounds to study lignin depolymerisation. The basic 

advantage of these models is that they mimic the linkages present in the real lignin polymer, 

which helps in a better understanding of the breaking mechanisms of specific bonds. 

Furthermore, similar molecules are often present in the lignin degradation streams, after the 

depolymerisation of lignin itself. The small compounds generated by fragmentation of lignin 

model compounds could be separated by chromatographic techniques, and further 

identification is possible using conventional analytical methods like GC-MS and NMR. 

Therefore, better and reliable characterization can be done because often only one type of 

linkage is present in the model molecule, which helps in understanding the reaction paths and 

the catalytic performance.  

Catalytic systems can be studied in detail on oligomers and dimers aiming to understand the 

reactivity and selectivity of multifunctional group models. This is often the first step of 

research in lignin valorisation. Taking into account the solubility and polyfunctionality of 

native lignin, as well as the repolymerization with intermediate, demand a further step in the 

research planning. Different molecules are used as model compound for different bonds of 

native lignin (see Fig. 1.3). 
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Figure 1.3 The main linkages in the lignin structure:β-O-4 (A), β-5 and α-O-4 (B), β-4 (C), 5-

5 (D), β-β (E), 4-O-5 (F). 

 

1.3.1 β-O-4 model molecules 

It is the most abundant linkage found in lignin. The ether bond is readily cleaved; indeed, the 

cleavage of these bonds during alkaline pulping constitutes the principle pathways in which 

the lignin is depolymerised and generates monomers with a phenyl propane structure 

The fragmentation of these linkages tends to lead to the generation of water-soluble 

oligomers containing phenolic hydroxyl groups.11 The disruption of β-O-4 containing model 

molecules results in simpler analogs of the coumaryl, coniferyl, and sinapyl alcohols of 

monolignols (see Fig. 1.1). Secondary products obtained during the fragmentation include 3-

hydroxypropaldehyde and arenes with various aldehyde or alkyl side chains.12 Successive 

oxidation reactions of coniferyl alcohol form vanillin or lead to oxidation of the aromatic ring 

and form quinones (see Fig. 1.4 for possible lignin depolymerisation products). 
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Figure 1.4 Common monomers to be familiar with in lignin chemistry. 

 

1.3.2 C-C linkage model molecules 

The C-C linkage in the lignin/model molecules are the hardest to break. Although carbon-

carbon linkages are present in the native lignin polymer, additional carbon-carbon bonds can 

be formed during lignin pretreatment, such as in alkali-promoted condensation reactions 

during kraft pulping.11 The development of catalysts capable of performing these disruptions 

(particularly the aryl-aryl linkages) is therefore a considerable challenge that has not yet been 

adequately addressed. Model compounds with these linkages usually involve dimeric arenes 

with varying methoxy and hydroxyl substituents on the arene, resembling dimers of p-

coumaryl or coniferyl alcohols. 

 

1.3.3 Phenylcoumaran model molecules 

The β-5 linkage is often located in a five-membered oxygenated ring fused with an aromatic 

ring in a coumaryl structure. In the model molecules, the rupture of both these bonds often 

yields monomers such as vanillin and vanillic acid. Because of the inherent complexity in 

selectively disrupting both bonds, products resulting from the disruption of only one bond 

(i.e. the R-O-4 ether linkage) leaves compounds containing isolated β-5 linkage. In some 

instances, the β-5 bond remains intact and products resulting from the oxidation of the arene 

ring are observed.7 
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1.3.4 α-O-4 and 4-O-5 linkages model compounds 

Compounds containing α-O-4 have also been observed in the lignin network however modern 

NMR experiments do not confirm the presence of non-cyclic α-O-4 moieties.7 

The 4-O-5 aryl-aryl ether linkage is, however, present in lignin mainly as the result of 

demethoxylating oligomer-oligomer couplings and leads to branching of the polymer. Some 

model compounds have been studied in order to understand the chemistry of this particular 

linkage as well. 

 

1.4 Lignin Depolymerisation Strategies  

Catalysts are essential to facilitate energy and atom efficient lignin depolymerisation and to 

selectively deoxygenate the products for further applications. Considerable efforts have been 

devoted in this field but current methodologies are not satisfactory from the economical or 

environmental viewpoint. There are generally three main approaches for   depolymerisation: 

thermochemical (pyrolysis), biochemical and chemical processes. In this chapter, we will 

deal essentially with the latter class of processes, under the aspects of hydrolysis, oxidation, 

and reduction. Pyrolysis refers to the thermal treatment of biomass/lignin in the absence of 

oxygen, with or without any catalysts at temperature between 300 and 600°C.3,13 The 

cleavage of OH functional group linked to the aliphatic side chain, the breaking of alkyl side 

chain, aryl ether bonds and linkage between aromatic ring occur when temperature increases, 

forming a mixture of phenol, guaiacol, syringol and catechols. Cracking of the aromatic ring 

occurs at temperature above 500°C.13,14 The process is poorly selective and is affected by 

several factors including feedstock type, heating rate and reaction temperature.15 Biochemical 

methods have also been employed for the depolymerisation but, despite interesting 

selectivities and mild conditions required, time to grow the microorganisms/fungi and 

dilution of the system which can make the process slow and less efficient.16 In the chemical 

conversion, ether bonds C-O-C are targeted. Comparing to thermochemical and biochemical 

processes, the chemical treatment of lignin has shown reliable results in terms of high 

selectivity and reaction control, with efficient valorisation of lignin into functionalized 

aromatics.  

The development of selective and robust catalyst must be a core effort in a biorefinery 

program. While selecting the catalytic route, there are two main considerations to be taken 

into account: 

1. Maximization of activity and selectivity of catalyst under the chosen conditions (as 

mild as possible) bearing in mind the bulky nature of biomass source and the reaction 

conditions 
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2. Repolymerisation and self-condensation capability of lignin under processing 

conditions, due to the formation of radicals and/or C-C bond through self-

condensation reactions which eventually leads to a complex pool of re-condensed 

aromatics.1  

The accountability of successful industrial scale production of chemicals is based on the 

selection of optimized reaction conditions, which include the chemical, engineering and 

financial aspects of a feasible reaction. In this chapter, we will overview the major pathways 

of lignin depolymerisation which can directly affect the reaction mechanisms controlling the 

nature and the yield of valuable products. For the chemical depolymerisation of lignin, a 

choice to be made among homogeneous and heterogeneous catalysis is on the top of the list.  

 

1.4.1 Homogeneous catalysis for lignin depolymerisation 

1.4.1.1 Base-Catalyzed Depolymerisation 

 

Lignin depolymerisation through base-catalyzed hydrolysis is a well-known and 

straightforward route for the production of monomeric substituted phenols. The mineral bases 

used as catalysts, such as NaOH, KOH, and sometimes LiOH are cheap and commercially 

available but requires corrosion-resistant materials and treatment of waste sewage. Typically, 

reflux boiling of lignosulfonates in 12% NaOH solutions in nitrogen atmosphere provided up 

to 7% yields of high-value added vanillin.17 The reaction proceeds with cleavage of alkyl-aryl 

ether bonds, including (β-O-4), which is considered to be the weakest bond in the lignin 

structure.13,18 However, in the base-catalyzed lignin hydrolysis reactions, the selectivity and 

yield are chiefly dependent on temperature, concentration and nature of the base, time, 

pressure and lignin/solvent ratio.19 Beauchet et al. worked on base-catalyzed 

depolymerisation reactions on less reactive Kraft lignin using NaOH as a base catalyst.20 

Total yield of identified monomers reached a maximum of 8.4 wt.% at 315°C. Although the 

base-catalyzed process was simple, it needed to be carried out at high temperature, and the 

control of selectivity was still difficult. The production of monomers is favored by high 

temperature and longer reaction time. The final yield is effectively decreased due to the 

formation of solid residues by the condensation reaction of intermediates and products. In 

base-catalyzed reactions, control of the rate of re-polymerization and condensation is the key 

challenge.21 This fact is supported by the studies of Lercher and co-workers who carried out 

base-catalyzed liquid-phase hydrolysis of organosolv lignin at 300°C and 25MPa using 

NaOH as catalyst.22 Syringol (4.1 wt%), hydroxyacetophenone(1.6 wt%) and guaiacol (1.1wt 
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%) were the major products of base-catalyzed hydrolysis and that oligomers form as 

secondary products. Oligomerization and polymerization of these highly reactive products, 

however, limit the amount of obtainable low-molecular-weight phenolic products. The 

inhibition of parasite oligomerization reactions is crucial to ensure a high yield of monomeric 

products. For analytical purposes this can be achieved by using a capping agent, as boric acid, 

to suppress addition and condensation reactions of initially formed products.22  

 

1.4.1.2 Acid-Catalyzed Lignin Depolymerisation 

 
 

Early attempts of acid-catalyzed lignin hydrolysis dates back to 1920’s when Hagglund and 

Bjorkman distilled lignin with 12% HCl and observed severe repolymerization of the 

products.23 The hydrolytic cleavage of α- and β-aryl ether linkages plays a main role in the 

acid-catalysed hydrolysis because aryl−aryl ether bonds, phenolic C−O bonds, and C−C 

bonds between aromatic lignin units are relatively more stable and difficult to break. 

Better stabilisation of depolymerisation products was later obtained in aqueous solution of 

organic solvents, where acid-catalysed hydrolysis was combined with hydrodeoxygenation of 

the products by hydrogen transfer from hydroxyl-bearing solvents. Hewson and Hibbert 

studied an acid-catalysed treatment on maple wood meal by combinations of various acids 

and alcohols including HCl/ethanol and formic acid/ethylene glycol systems, with the 

purpose of separating the lignin into water-soluble and water-insoluble components.24 The 

low range of temperature (78-200°C) was moderately effective for the degradation of 

complex lignin into monomers. Later, high temperature conditions have also been studied on 

acid catalysed reactions. For example, Barth and co-workers studied the effect of 13 wt.% 

formic acid in ethanol.17 At temperature above 360°C the major products were 

methoxyphenol, catechol, and phenol.17,25 The optimum reaction time was below 200 

minutes. Formic acid/ethanol solutions in the presence of Pt/C catalyst allowed to reduce all 

carbonyl groups of the products and provided yields up to 7% propylguaiacol, 5% 

methylguaiacol and 3% homovanillyl alcohol.26 In general, acid-catalysed depolymerisation 

required harsh reaction conditions, which could affect the cost and economic feasibility of the 

reaction.13  

 

1.4.1.3 Oxidative Lignin Depolymerisation 

 
 

Oxidative depolymerisation to vanillin has been the main historical industrial process of 

valorisation of lignin, justified by the high added value of vanillin as a flavor molecule.27 
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The cheap and effective oxidizing agent used is molecular oxygen, bubbled through basic 

solutions to couple oxidation reactions with alkaline hydrolysis.  

Mathias and Rodrigues in 1995 described the classical state of the art, explaining that 60g/L 

solution of softwood Kraft lignin, treated at 120-130°C for 4-6h in the presence of 2N NaOH, 

could yield a maximum 13% (w/w) yield of vanillin.28 In the same year, the Monsanto 

process at 160°C in 10% NaOH solution claimed a yield of vanillin of 19% when softwood 

sulfite liquor was oxidized through carefully controlled oxygen pressure.29 It is interesting to 

observe that these yields were normalized on the assumed lignin content in the sulfite liquor. 

When the vanillin yield in the same commercial process was expressed on the basis of the 

lignosulfonate mass, the yield value was not higher than 7%.30,31  

The original patent of Monsanto cited the optional use of Cu(II) salts as oxidants and 

catalysts. Copper salts were used when the Monsanto process was bought by Borregaard and 

cobalt and cerium salts were also tested.30 Pacek et al. studied the Borregaard process under 

highly alkaline conditions, catalyzed by Cu+2 at 120, 140 and 160°C and pressures up to 10 

bars in flow reactors.31 They were able to determine that nearly 55% of the vanillin formed 

was issued from hydrolysis and 45% from oxidation. [6] Recently, Yamamoto et al. found 

that the use of Bu4NOH·30H2O (tetrabutylammonium hydroxide 30-hydrate) as reaction 

medium (instead of the commonly used aqueous NaOH solution) in aerobic oxidative 

degradation of lignin improved the yield of aromatic monomers.32 At 120°C, total monomer 

yield of 6.5−22.5% was obtained with vanillin and vanillic acid as the main products.  

 

1.4.2 Heterogeneous Catalysis for lignin depolymerisation  

Homogeneous catalysis for the depolymerisation of lignin presents several drawbacks, 

notably in separation of catalyst from the reaction mixture and corrosiveness when strong 

mineral acid and bases are used.33 Depolymerisation by heterogeneous catalysis offers 

promising strategies in spite of mass transfer limitations from bulk lignin to catalyst surface.1 

Heterogeneous catalysis means that catalysts and reagents form different physical phases. 

This type of catalysis is usually favored because it can be carried out over a wide range of 

operating conditions and offers easy separation and recyclability of the catalyst. The product 

recovery and purification are significant industrial facets of catalysis, on which the 

advantages of heterogeneous catalysis are based. As David Parker (ICI) said on 24th April 

1988 during the 21st Irvine lectures at the University of Saint Andrews: “At the molecular 

level, there is a little to distinguish between homogenous and heterogeneous catalysis, but 

there are clear distinctions at the industrial level”. We will discuss in this chapter the 
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heterogeneous forms of catalysts applied to the fragmentation of lignin via pyrolysis, 

reduction and oxidation pathways. 

 

1.4.2.1 Catalytic Pyrolysis 

Liquefaction by pyrolysis has been developed to convert lignocellulosic biomass to bio-oil. It 

is a rapid heating of biomass at high temperatures (450-650°C) in the absence of oxygen to 

generate a mixture of non-condensable liquid, gas and oil mixtures.34 The main target of 

biomass pyrolysis is the reduction of the oxygen content of biomass to make it suitable as 

fuel component. Lignin, as the biomass component with the lowest O/C ratio, has been 

extensively studied as a bio-oil precursor. Indeed, the activation energy of lignin pyrolysis is 

lower than the activation energy of cellulose pyrolysis.35 

The requirement for high temperature of the pyrolysis processes is energy intensive and the 

final product is a mixture of a large number of components, mainly substituted aromatics. It 

is considered that the product distribution is the result of a number of reactions where non-

volatile compounds are broken down into heavy volatile compounds at first and finally 

cracked into volatile alkyl aromatics and ultimately to coke and gas.34  

The addition of catalyst to the pyrolysis reactor introduces some selectivity and directs the 

distribution of the product stream towards higher-value desired products. The proportion of 

each pyrolysis product is dependent on the process variables, particularly temperature and 

heating rate.35 At lower temperature the first bonds cleaved are hydroxyl and ether groups 

attached to alpha or beta carbons to form condensable volatile products and water. Large 

fractions of methoxyphenols, such as substituted syringol and guaiacol, are present in the 

condensable volatile products as the methoxyl groups show more resistance than the ether 

linkages against thermal degradation. C-C bond is the strongest bond in all kind of 

transformations, its breaking only occurring at very high temperatures.36 

Several kinds of catalysts have been tested for lignin pyrolysis. Zhan et al.  studied the 

product distribution obtained from lignin at 400, 500 and 600°C on several catalysts with 

different pore structure and acidity; HZSM-5, MCM-41, TiO2, ZrO2 and Mg(Al)O.37 It was 

concluded that HZSM-5 was the best catalyst for fast pyrolysis whereas the basic catalysts 

trigger reduction of the liquid, leading to oligomers and coke formation. Ohra-aho and 

Linnekoski studied the activity of HZSM-5, zeolite Y and Pd/C on Kraft lignin and pine 

wood lignin at 600°C. The catalyst with the larger influence on product distribution was the 

zeolite Y, which increased the extent of demethylation and demethoxylation of the 

monoaromatic products.38 The yield of liquid and the selectivity of products can be monitored 

by tuning acidity and pore size of zeolites. Ma et al. compared the activity of several zeolites 
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with micropore size from 0.5 to 0.7 nm and Si/Al ratio from 7 to all silica.39 Zeolite US-Y, 

the catalyst with the largest pores and the highest density of acid sites, allowed to increase the 

yield of liquid to 75% from 40% without a catalyst. Zeolite H-ZSM5 with smaller pores and a 

smaller number of stronger acid sites was able to increase the selectivity of phenol alkoxy 

species. The small size of pores is expected to prevent repolymerization and coke formation 

reactions.  

Studies on model molecules have contributed to a better understanding of the mechanisms of 

lignin pyrolysis. For instance, Zhang et al have recently investigated the catalytic pyrolysis 

products of guaiacol over ZSM-5 between 400 and 650°C, showing that the mechanisms of 

pyrolysis are similar to the dehydration, decarbonylation and hydrogen transfer pattern of the 

geological formation of coal and hydrocarbons from lignocellulosic biomass.40,41  

 

1.4.2.2 Reductive Transformations 
 

The idea of reductive depolymerisation of lignin began in the late 1930s when the insoluble 

biomass isolated from tree sawdust was hydrogenated. The selective catalytic reduction of 

lignin has attained great attraction for the improvement of bio-oil over the past few years. For 

lignin reductions, typical reactions involve the removal of the extensive functionalities of the 

lignin subunits to form less substituted monomeric compounds, such as phenols, benzene, 

toluene, or xylene (BTX). These simple aromatic compounds can then be hydrogenated to 

alkanes for fuel applications or used as platform chemicals for the synthesis of bulk and fine 

chemicals using technology already developed by the petrochemical industry. The biomass or 

lignin model molecules are subjected to hydrogenating conditions for the production of high 

yield phenols and aromatics. Oxygen is generally removed in the form of H2O and CO/CO2 

by means of different catalytic processes such as hydrogenation, C-O bond hydrogenolysis, 

dehydration, decarboxylation, decarbonylation.1 Bifunctional catalyst having both acid and 

noble metal can give interesting results where they can simultaneously break ether bonds and 

deoxygenate the resulting monomers in the presence of H-donor solvent or H2.  

Harris et al. in 1938 studied the catalytic hydrogenation of hardwood lignin at 260°C for 18h 

in the presence of copper-chromium oxide catalyst and successfully achieved 70% 

conversion.42  

Pepper et al. did extended comparative studies on the effectiveness of different metal 

catalysts (Raney Ni, Pd/C, Rh/C, Rh/Al2O3, Ru/C, Ru/Al2O3) for the hydrogenolysis of 

spruce wood lignin in dioxane/water at 195°C under 3.3 MPa H2 pressure.43 The best results 

were obtained on Rh/C, with a yield of identified monomers of 33%, the main products being 
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4-propylguaiacol and dihydroconiferyl alcohol.44 The distribution of products was greatly 

influenced by catalyst loading and pH variations resulting in over-hydrogenated or degraded 

products.  

In more recent years, many types of metal catalysts have been tested for hydrogenation of 

model molecules, commercial lignin or lignin-issued bio-oil (see Table 1). Metal catalysts are 

very effective in the improvement of the fuel properties of bio-oil, by decreasing its O/C 

ratio. Hydrodeoxygenation of substituted guaiacols and syringols, among the main 

components of bio-oil, was achieved on a variety of metal catalysts at 250-300°C under 40-

50 bar H2 with high yields of cycloalkanes, provided an acid function was also present.45,46,47 

The nature of the metal catalysts used spanned from noble metal palladium to Raney nickel 

and the acid function could be provided by addition of an inorganic acid, as H3PO4,
45 or by a 

heterogeneous co-catalyst, as silica-zirconia or Nafion.46,47 At so high a temperature, also 

water has proven to be a good solvent for the reaction, allowing easy separation of the less 

polar hydrocarbon products at the end of the process.45,47,48 The use of Rh/Ru nanoparticles 

and a Brønsted-acid ionic liquid ([bmim][TF2N], 1-Butyl-3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide) as the solvent allowed to reach still higher yields of 

cycloalkanes at a much lower temperature of 130°C,49 while a lower hydrogen pressure of 7 

bar allowed only partial depolymerisation and hydrogenation of lignin, giving a low yield of 

arenes and cyclohexanes.48 

 

Table 1.1 Some recent literature on the heterogeneous catalysis of hydrogenation of lignin 

and model molecules 

Catalyst Solvent 
Experimental 

Conditions 
Substrate Major Products Ref 

Pd/C, H3PO4 H2O 250°C, 50bars H2 phenolic monomers 79% cycloalkanes [45] 

Ni/SiO2-ZrO2 Dodecane 300°C, 50bars H2 Guaiacol 97% Cyclohexane [46] 

RaneyNi+ 

Nafion/SiO2 
H2O 300°C, 40bars H2 4-propylguaiacol 74% alkylcyclohexane [47] 

RhPt/ZrO2 Tetradecane 400°C, 50bars H2 Guaiacol 43% cyxlohexane [54] 

Rh/Ru 

Nanoparticles 

[bmim][TF2

N] 
130°C, 40bars H2 4-ethylphenol 99% ethylcyclohexane [49] 

Ru/Nb2O5 H2O 250°C, 7 bars H2 Birch lignin 
21% arenes, 8% 

cycloalkanes 
[48] 

Ru/C THF 250°C, 40bars H2 
Formaldehyde-

treated beech lignin 
77% phenolic monomers [50] 
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Ni/C 
THFA, 

dioxane 
220°C, 20bars H2 Beech lignin 14% phenolic monomers [51] 

Ni7Au3, 

NaOH 
H2O 160°C, 10bars H2 Birch lignin 11% phenolic monomers [52] 

Zn/Pd/C methanol 150°C, 20bars H2 Vanillin 81% creosol [53] 

Ni/TiN ethanol 150°C, 12bars H2 Diphenyl ether 
49% cyclohexanol, 46% 

benzene 
[55] 

Ni/SiO2 Decalin 130°C, 30bars H2 Dihydrobenzofuran 95% 2-ethylphenol [56] 

Pt/SiO2 Gas phase 400°C, flowing H2 Anisole 
42% phenol, 33% 

cresols 
[57] 

Pt/HBeta Gas phase 400°C, flowing H2 Anisole 
52% benzene, 28% 

toluene 
[57] 

Pd/C dioxane 200°C, 1bar H2 Miscanthus lignin 15% phenolic monomers [58] 

Raney Ni-H-

USY 

aqueous 

methanol 
270°C, N2 Bamboo lignin 28% phenolic monomers [59] 

Ni/C methanol 200°C, Ar Birch lignin 49% phenolic monomers [60] 

CoMo/Al2O3 hexadecane 300°C, 69bars H2 4-methylcathecol 

25% 

methylcyclohexane, 

20% cresol 

[61] 

Cu-Mg-Al 

mixed oxides 
methanol 180°C, 40bars H2 Organosolv lignin 63% phenolic monomers [62] 

MoOx/CNT methanol 260°C, 30bars H2 Birch lignin 47% phenolic monomers [63] 

CoMo, NiMo tetradecane 400°C, 50bars H2 Guaiacol 46% phenolic monomers [54] 

Mo2N Decalin 300°C, 50bars H2 Guaiacol 47% phenol [64] 

FeS2/C Cyclohexane 300°C, 100bars H2 Dibenzyl ether 98% toluene [65] 

MoO3 Gas phase 320°C, flowing H2 Guaiacol 31% phenol [67] 

MoO3 Gas phase 320°C, flowing H2 Anisole 44% benzene [67] 

Ni2P/SiO2 or 

Co2P/SiO2 

Gas phase 
300°C, flowing 

20% H2 in N2 
Guaiacol 48% benzene [66] 

WP/SiO2 Gas phase 
300°C, flowing 

20% H2 in N2 
Guaiacol 60% phenol [66] 

 
 

 

In the absence of an acid function, metal catalysts allowed effective depolymerisation of 

lignin at 250°C under 40 bar H2 but the product was mainly a phenolic bio-oil with no 

significant hydrogenation of the aromatic rings.50 Metal catalysts as different as Ru, Ni, Zn, 
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Pd, Ni7Au3 have been used with yields of phenolic monomers mainly depending on 

temperature and H2 pressure.50,51,52,53 Lin et al. studied the mechanism of hydrodeoxygenation 

of guaiacol, using mono and bimetallic Rh-based catalysts on zirconia and showed that RhPt 

significantly accelerated the hydrogenation to cycloalkanes by comparison to plain Rh or 

RhPd.54 Studies on model molecules showed that ether bonds were easily cleaved also in 

mild hydrogenation conditions.55,56 

The difference between simple metal catalysts and bifunctional metal-acid catalysts was 

highlighted by Zhu et al. in a mechanistic study of the hydrogenation of anisole 

(methoxybenzene) over a bifunctional metal-zeolite catalyst Pt/HBeta or a monofunctional 

catalyst Pt/SiO2.
57 Anisole fed in gas phase at 400°C in flowing H2 at atmospheric pressure 

was converted to phenolic monomers by demethylation and transalkylation on the metal 

catalyst and was hydrogenated to BTX (Benzene, Toluene, Xylene) on the bifunctional 

catalyst. 

Molecular hydrogen was not the only possible agent of hydrodeoxygenation of lignin. 

Internal hydrogen transfer from alcohol groups has been suggested by Hartwig and co-

workers to be active in breaking ether bonds of lignin.58 In their paper, H2 pressure of one 

atmosphere was used to reduce the weak amount of olefinic bonds present in the miscanthus 

lignin used. Hydrogen transfer from a hydrogen-donor solvent has been shown to be effective 

in the hydrodeoxygenation of lignin, 49% yield of phenolic monomers having been attained 

by treatment of birch lignin in methanol on Ni/C catalyst at 200°C in inert atmosphere.59,60 

Non-metal catalysts were also tested in lignin hydrogenation, looking for a parallel with the 

highly stable classical sulfided CoMo and NiMo hydrotreatment catalysts of oil refineries. In 

a seminal study, Petrocelli and Klein investigated the hydrodeoxygenation of several model 

compounds over a sulfided CoOMoO3/γ-A1203 commercial catalyst at 300°C and 69 bars 

hydrogen pressure.61 Compounds with aromatic methoxyl groups (4methylguaiaco1, eugenol, 

vanillin) underwent primary demethylation as their major reaction. Hydroxyl groups were 

removed readily at temperatures well below those required for thermal dehydroxylation. 

Catalytic cleavage of the inter-aromatic unit linkages of o-hydroxydiphenylmethane and 

phenyl ether was facile, while o,o'-biphenol was converted to single-ring products through 

dibenzofuran and 2-phenylphenol intermediates. In more recent years, yields of phenolic 

monomers as high as 47-63% were obtained by lignin depolymerisation at 180-260°C under 

30-50 bar H2 on catalysts as different as Cu-bearing basic mixed oxides issued from 

hydrotalcite decomposition or on molybdenum oxides on carbon nanotubes.62,63 Molybdenum 

oxides and nitrides, as well as sulfides and phosphides of different metals, were tested in 
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mechanistic studies of hydrodeoxygenation of model molecules at temperature as high as 

400°C and under H2 pressure up to 100 bars or in flowing hydrogen atmosphere.54,64,65,66,67 

The main results of these studies were the suggestion of a scale of reactivity of the functional 

group of phenolic molecules, with ether bonds being more easily hydrogenated than methoxy 

groups, phenolic OH being the more resistant to hydrodeoxygenation. The interest of flow 

processes for the depolymerisation of lignin is evident, albeit the results on model molecules 

in the gas phase at high temperature are surely difficult to transpose to the reactivity of lignin 

of higher molecular weight. 

 

1.4.2.3 Oxidative Transformations 
 

Oxidative treatments of lignin are aimed to the production of high added value aromatics, 

especially aromatic aldehyde flavours. The increase of the O/C ratio in oxidative treatments 

render them inappropriate for the production of fuels but justifies some interest in total 

oxidation of lignin-containing paper mill wastes or selective oxidation of lignin-derived 

alcohols to aldehydes.12,68,69,70 In this section, we will only examine applications of 

heterogeneous catalysis to selective oxidative fractionation of lignin or model oligomers. 
 

 

Table 1.2 Some recent literature on the oxidation of lignin and lignin model oligomers by 

heterogeneous catalysis. 

Catalyst Oxidant Solvent 
Experimental 

Conditions 
Substrate  Major Products yield Ref 

MeRhO3/polyvi

nyl pyridine 
H2O2 CH3COOH Room T 

β-O-4 

phenolic 

dimer 

28% guaiacol [71] 

Co-salen/SBA-

15 
H2O2 acetonitrile 

150°C, 

microwaves 

β-O-4 

phenolic 

dimer 

21% guaiacol [72] 

Cu,V-

hydrotalcite 
O2 6bars Pyridine 135°C 

β-O-4 

phenolic 

dimer 

38% veratrylaldehyde [73] 

Graphene 

nitride 

tert-butyl 

hydroper

oxide 

H2O 120°C 

β-O-4 

phenolic 

dimer 

45% benzylic acid [74] 

CeO2 O2 10bar methanol 185°C 

β-O-4 

phenolic 

dimer 

42% phenol, 40% 

methylbenzoate 
[75] 

Pd/CeO2 O2 1bar methanol 185°C 

β-O-4 

phenolic 

dimer 

41% phenol, 20% 

methylbenzoate 
[75] 
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Pd/CeO2 O2 1bar methanol 185°C 
Organosolv 

lignin 

5% vanillin, 2% 

hydroxybenzaldehyde 
[52] 

Pd/Al2O3 O2 5bars 
Aqueous 

2M NaOH 

140°C, flow 

reactor 

Alkaline 

bagasse 

lignin 

7% 

hydroxybenzaldehyde, 

5% vanillin 

[76] 

La(Co,Cu)O3 

perovskite 
O2 5bars 

Aqueous 

2M NaOH 
120°C 

Steam-

exploded 

cornstalk 

lignin 

12% syringaldehyde, 

5% vanillin 
[78] 

La(Fe,Cu)O3 

perovskite 
O2 5bars 

Aqueous 

2M NaOH 
120°C 

Steam-

exploded 

cornstalk 

lignin 

12% syringaldehyde, 

4% vanillin 
[77] 

La-SBA-15 H2O2 
Aqueous 

2M NaOH 
microwaves 

Organosolv 

beech 

lignin 

15% syringaldehyde, 

9% vanillin 
[79] 

 

The formation of aromatic aldehydes by oxidative cleavage of model molecules containing β-

O-4 bonds was studied on supported homogeneous catalysts using hydrogen peroxide as the 

oxidant. Crestini et al. used methyltrioxorhenium immobilized on poly(4-vinyl pyridine) or 

polystyrene at room temperature in acetic acid whereas Badamali et al. used Co(salen) 

complexes in SBA-15 mesoporous silica in acetonitrile with microwave heating, obtaining 

21-28% yields of guaiacol.71,72 Mottweiler et al. inspected Cu-V hydrotalcites for catalytic 

activity in the cleavage of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-

methoxyphenoxy)-l,3-propanediol with molecular oxygen as oxidant.73 High yield of 

veratrylaldehyde was observed at 130°C but pyridine had to be used as solvent of the 

reaction. 

Nitrogen-containing graphene materials were also tested for the oxidative cleavage of β-O-4 

bonds by using tert-butyl hydroperoxide as the oxidant.74 Also at the mild temperature of 

120°C, over oxidation to benzylic acid was observed. Deng et al. tested several non-noble 

metal oxides as catalysts and reported that cerium oxide can efficiently catalyze the one-pot 

oxidative conversion of 2-phenoxy-1-phenylethanol in methanol under 10bars molecular 

oxygen.75 The presence of a noble metal in CeO2-supported palladium nanoparticles 

(Pd/CeO2) allowed to reduce by a factor 10 the oxygen pressure needed for the reaction. With 

both catalytic system, over oxidation of tolualdehyde to methyl benzoate was observed. The 

same Pd/CeO2 catalyst was used in the same reaction conditions not on a model system but 



 

19 

 

on organosolv lignin. On such more demanding substrate, high yields of syringaldehyde and 

vanillin were obtained.75 

Indeed, several heterogeneous catalysts have been successfully used in oxidative 

depolymerisation of several kinds of lignin in conditions similar to the ones of the Monsanto-

Borregaard process for the synthesis of vanillin. Sales et al. employed Pd/ γ-Al2O3 catalysts 

for the oxidative conversion of alkaline lignin extracted from sugar cane bagasse in both 

batch slurry and continuous fluidized-bed reactors.76 Good yields of syringaldehyde and 

vanillin were obtained in 2M aqueous NaOH solution at 120-140°C. The use of the 

perovskite-type mixed oxides LaM1-xCuxO3 (M=Co or Fe) has been proposed for the wet 

aerobic oxidation of cornstalk enzymatic lignin in 2M NaOH under 5 bars O2. Yields of 

aromatic aldehydes comparable to the Monsanto process were reported and the catalysts were 

stable after a series of successive recycling.77,78 The best yields in syringaldehyde and lignin 

from organosolv lignin were reported in a microwave-heated 2M NaOH solution by using 

hydrogen peroxide as the oxidant and La-SBA-15 as the catalyst.79 

Pineda and Lee reported that oxidative protocols could sometime result in undesirable 

products because of free radicals-driven recondensation.33 More complex multi-step reaction 

pathways have been proposed in order to use milder conditions for each step of the process. 

Samec and co-workers investigated a mild and chemoselective oxidation of α-alcohols β-O-4 

glycerolaryl ethers at 80°C on Pd/C catalysts.80,81 In this reaction, the benzylic alcohol groups 

were selectively oxydehydrogenated to the corresponding ketones attaining 60-93% of yield. 

Successive Pd-catalyzed β-O-4 bond cleavage of the obtained 2-aryloxy-1-arylethanols by 

hydrogen transfer from formic acid reached 92-98% yields of 3,4-dimethoxypropiophenone 

proposed as a platform molecule.  

1.5 Economical aspects of lignin valorisation 

Virtually all lignin presently available is a co-product of pulp and paper industry. However, 

the development of second-generation biorefineries is providing new industrial sources of 

isolated lignin. The concept of lignocellulose biorefinery is born with the perceived need of 

second generation biofuels to ensure sustainability while avoiding direct competition with 

food resources.82,83 The installation of biorefinery plants based on new technologies of 

biomass fractionation opens the way to the integration of optimized lignin recovery in the 

plant design.84,85 The introduction of more advanced plants is one of the aspects of the current 

trend of shifting the design of biorefineries away from the production of biofuels and towards 

the production of higher value-added chemicals able to replace present fossil-issued 

products.86,87   
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A significant hurdle in the development of profitable biorefineries is the adaptation to 

variability and seasonality of the biomass supply. Wood-issued lignin from the different 

processes of pulp and paper industry enjoys a constant supply and a stable price throughout 

the year, while other lignin sources, notably from cornstalks and wheat or rice straw, present 

a significant seasonal variability. In any case, the status of lignin as a co-product of the 

profitable cellulose industry provides it with a reasonable entry price, at the basis of its 

possible competition with oil-derived raw materials for the production of chemicals (see 

Table 1.3).  

 
 

Table 1.3 Market values of medium-grade lignins compared to fossil oil, significant reagents 

and potential products88,89,90,91,92 

Lignins, competitor and 

reagents 
$/ton Products $/ton 

Kraft lignin 260-500 Vanillin 15000-40000 

Lignosulfonates 180-500 4-Hydroxybenzaldehyde 9500-11100 

Soda lignin 200-300 Phenol 1400-1620 

Organosolv lignin 280-520 Benzene 830-1280 

Brent crude oil 490 Toluene 690-980 

Methanol 460-490 Xylenes 690-1000 

Hydrogen ~3900   

 

Clearly lignin, with a higher heating value of 21 MJ kg-1, is a very poor fuel when compared 

with liquid hydrocarbons with a heating value of 45 MJ kg-1. The same oxygen content which 

lowers the fuel performance of lignin necessary decreases the atomic yield of the production 

of any hydrodeoxygenation products. Albeit lignin, with a lower oxygen content than 

cellulose, can improve the yields of bio-oil production from biomass, it seems clear that 

production of valuable chemicals from lignin has to be based on the retention of useful 

functional groups already present in the raw material.  

The retention of the aromatic rings by lignin hydrogenation to BTX has been developed at the 

pilot scale, despite the development of the process be hampered by the formation of chars 

which decreases the yield and poison the catalyst, as well as by the high selectivity to meta-

xylene, the less valuable fraction of BTX.93 The heavy burden of the cost of hydrogen 

strongly suggests that lignin be used for the production of oxygen-rich products rather than of 

fuels or base hydrocarbon chemicals.94  

Indeed, the exploitation of substituted phenolics present in native lignin is at the basis of the 

production of high added-value flavors like vanillin and derivatives, a traditional staple of 
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biorefinery.95 Other functionalized phenolics can provide valuable market outlets but the 

formation of many products, each with relatively low yields, made separation issues critical 

for the viability of biorefinery processes.96,97    

It is clear that better economic returns require the development of technologies integrating 

easier fractionation of lignocellulosic biomass and more selective depolymerisation. A fuller 

exploitation of the lignin potential as a source of aromatics remains a worthy technological 

challenge. 

 

Note: This chapter of the manuscript has been published as a book chapter; I.Z. Awan, N. 

Tanchoux, F. Quignard, S. Albonetti, F. Cavani, F. Di Renzo, “Heterogeneous Catalysis as a 

tool for production of aromatic compounds from lignin” in S. Albonetti, S. Perathoner, E.A. 

Quadrelli (Eds.), Horizons in Sustainable Industrial Chemistry and Catalysis, Volume 178, 

1st Edition, Elsevier (in press) ISBN: 9780444641274, Chapter13. 
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Chapter Summary: 

 
Layered Double Hydroxides (LDHs) or anionic clays form an inorganic family of natural or 

synthetically occurring 2-D lamellar hydroxides with tunable composition with multivalent-

cations (M2+, M3+) in the main layers and counter-balancing anions (An-) in the interlayer 

region. LDHs have received profound attention by virtue of their properties like high surface 

area, low cost synthesis, tailor-ability and recyclability. This family of materials has 

demonstrated applications in the fields of catalysis, drug delivery, sensors and anion 

exchangers. Their applications in catalysis are either as direct catalysts, precursors of mixed 

oxides, or catalyst supports. In most reaction conditions, LDH-derived mixed metal oxides 

(MMO), obtained by the thermal decomposition, are more active and stable than the parent 

LDH. A temperature-dependent calcination imparts surface properties to the mixed metal 

oxides catalytic systems. Both basic and redox mixed oxide catalysts have been reported in 

the literature for the conversion of biomass-derived molecules. This chapter explains the aim 

of modifying a classical, basic, dopable, member of this family, hydrotalcite 

[Mg6Al2CO3(OH)16·4(H2O)], to produce a tailored redox catalyst. Among cost-effective 

transition metals, Ni-Cu-Fe system was chosen, since copper (Cu2+) is a typical candidate 

catalyst for the depolymerisation of lignin, nickel (Ni2+) is less basic as compared to Mg2+ in 

the hydrotalcite and iron (Fe3+) replacing Al3+ induces further redox properties to the system. 

Benchmark catalysts systems have been synthesized to understand existing Jahn Teller 

distortion in the Cu-Fe system, which is critically described. The nature and distribution of 

mixed oxide phases are strictly dependent on the type of cation and on calcination 

temperatures. Interestingly, the MMO phases are not always like expected from the 

composition of the systems; instead they underwent phase segregations leaving an amorphous 

phase when calcination temperature is not high enough. This phenomenon, as reported in the 

literature, varies with the type and ratio of cations used. MMO catalysts have been widely 

used for the conversion of biomass and derived molecules with selectivity and conversions 

characteristically dependent on the composition of the catalysts. Hence, a careful selection 

with respect to cation ratio, nature and size of cations has been carried out. Moreover, 

keeping in view the experimental studies, a general literature overview of synthesis 

conditions of LDHs, their derived oxides and their applications is presented. Prospects and 

objectives of the project have also been summarized. 
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Background 

Layered Double Hydroxides (LDHs) is the class of natural or synthetic two-dimensional 

lamellar hydroxides consisting of at least two kinds of metallic cations in the main layers 

with charge-compensating exchangeable anions in the interlayer domains, with a general 

formula [M1−x
2+ Mx

3+ (OH)2]
x+ [Ax/n]

n−·mH2O where M2+ (Mg2+, Ni2+, Cu2+, Zn2+, Ca2+) and 

M3+ (Fe3+, Al3+) are divalent and trivalent metal ions, respectively, and An- (Cl−, NO3−, and 

CO3
2–) is the interlayer anion. They are often called anionic clays, double layered hydroxides, 

mixed metallic hydroxides or hybrid layered structures. Layered Double Hydroxides are often 

also commonly called hydrotalcite-like materials due to their similarity with a naturally 

occurring mineral called Hydrotalcite (a hydrated, talc-like, hydroxy carbonate of magnesium 

and aluminium), first discovered in 1842 in Sweden.2 Thus Hydrotalcite is a special instance 

of Layered Double Hydroxide (LDHs). The normal formula of Hydrotalcite was suggested as 

(Mg6Al2(OH)16CO3.4H2O)) by E. Manasse in 1915.3 Later, the name was allotted to call a 

large group of LDH naturally occurring minerals.86 

A typical LDH material with CO3
-2 counter-anions has cell parameters  a = b = 3.07 Å, c = 

23.23 Å, α = β = 90°, and γ = 120°. Layer stacking is highly ordered in either polytypes with 

a hexagonal cell (2H symmetry) or polytypes with a rhombohedral (3R symmetry)1 

 

Figure 2.1 A naturally occurring Hydrotalcite76 

Hydrotalcite-like compounds drastically drew attention in the early 1970’s when a patent by 

BASF reported them to be the optimal precursors for the preparation of hydrogenation 

catalysts.4 Since then, great efforts have been put to better understand their structural 

characterization and their anionic exchange properties and to develop novel synthesis and 

preparation methods to get the best possible advantage in heterogeneous catalysis, 
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pharmaceutical applications and electrochemical and magnetic properties. LDHs are 

distinguished for their ability to incorporate and disperse more than one transition metal 

cation, which may impart redox properties to the system. Their significant characteristics, 

such as anion mobility, surface basicity5, sorption6 and anion exchange7 make them efficient 

sensors8, catalysts9,10, electrodes11 and biomaterials114. Therefore, keeping in view the 

economic and environmental aspects, LDHs have received tremendous attention by virtue of 

their simple handling, low cost, tuna-bility and tailor-ability, easy separation and 

recyclability.12 This is clear from the increasing trend of publications on layered double 

hydroxides as catalysts (see Fig. 2.2) 

 

Figure 2.2 Annual Publications on Layered Double Hydroxides as catalysts(data obtained 

from Web of Science Core collection dated as of 05.09.2018) 

A part of this research project is based on the structural modifications and the acquired 

properties of the LDH materials; therefore the structural description and the properties of the 

synthesis will be introduced here and discussed in detail in the later chapters. 

2.1 General Structural Aspects 

LDHs compounds are characterized on the basis of their structural similarity to brucite 

(Mg(OH)2), in which layers, where the octahedral units of Mg2+ share edges to form  stacked 

sheets in order to build Mg(OH)2 layers. These infinite stacked sheets/main layers are held 

one above the other with two different symmetries, rhombohedral or hexagonal, by the 

hydrogen bonding between the surrounding hydroxyl ions. As depicted in the general formula 

of LDH, [M1−x
2+Mx

3+(OH)2]
x+ [Ax/n]

n−·mH2O, it is evident that the octahedral units of the 

main layers can host a variety of divalent (M2+ = Mg2+, Fe2+, Mn2+, Zn2+) and trivalent 

cations (Al3+, Fe3+, Cr3+, Mn3+) with a varying ratio of charge compensating M2+/M3+. An 

isomorphous substitution of M2+ by M3+ dispenses net positive charge to the layer which is 

electrically neutralized by the incorporation of an adequate number of anions (CO3
2-, NO3

-, 
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Cl-, SO4
2-, etc.) into the interlayer domains between the stacked sheets. The free space in the 

interlayer region is occupied by water of crystallization (see Fig. 2.3) Hence it is obvious that 

the charge density is proportional to the trivalent metal ratio 1/x= M2/ (M2+M3). Detailed 

information on the structure of the conventional LDH is provided by Reichle13 and Mills.85 

 

Figure 2.3 Schematic view of LDH structure14 

 

2.1.1 Selection of Cations 

A wide variety of metallic cations (M2+/M3+) can be integrated into the interlayers of the 

synthetic LDH system chosen on the basis of the intended applications. The structural 

properties of LDHs vary with the nature of cations used, by the position of anions and water 

in the interlayer region and by the type of stacking of the brucite-like sheets.2 Therefore, 

selection of the appropriate cations for the LDH system governs the stabilized structure with 

the exception of some structural changes.15 It is suggested that only those cations having not 

too different radius than Mg2+ can be fitted well into the octahedral sites of main layers to 

successfully form LDHs.2 The ionic radii of cations in LDH are usually indicated as being in 

the range of 0.65-0.80Å for divalent cations and 0.62 - 0.69 Å for for trivalent ones with the 

main exception, Al3+: 0.50 Å. (Table 1). The 6-fold symmetry of the oxygen atoms 

surrounding the cation imposes a minimum ratio of 0.414 between the radius of the cation 

and the radius of oxygen. With a radius 1.35 Å of O2-, Al3+ is at this lower limit. Smaller 

cations such as Be2+ or cations with higher ionic radii (Ca2+, Cd2+ and Sc3+, La3+) seem to be 

incompatible with the formation of true brucite-like layers.15 Ordering of the cations in the 

layers in superstructures are a multiplication of the simplest brucite-sheet unit (ab) in which 

edges are equal to [M(OH)6] octahedron. Insertion of the largest radii cations as Ca2+ in the 
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layers imposes a higher coordination than six. Therefore the octahedron is broken and Ca2+ is 

directly coordinated with water molecules in the layer. Thus the symmetry around the cation 

is changed and lowered from D3d to C3v.15This leads to distortion of the lattice yielding 

pseudo-hexagonal superstructures like hydrocalumite [Ca4Al2(OH)12]
2+[Cl2(H2O)4]

2-. 133,134 

This is a unique kind of layered material family unlike the conventional layered double 

hydroxide. Indeed, only traces of Ca2+ in natural and synthetic LDHs have been reported by 

Allmann115, 85and Drits16.  

Table 2.1 Ionic radius (Å) of some cations in decreasing order 

M2+ 
Ca 

0.98 

Cd 

0.97 

Mn 

0.80 

Fe 

0.76 

Zn 

0.74 

Co 

0.74 

Ni 

0.72 

Cu 

0.69 

Mg 

0.65 

Be 

0.30 

M3+ 
In 

0.81 

Ti 

0.76 

V 

0.74 

Cr 

0.69 

Mn 

0.66 

Fe 

0.64 

Co 

0.63 

Ni 

0.62 

Ga 

0.62 

Al 

0.50 
 

 

2.1.2 Cation Ratio 

As a role of thumb, a general accepted range for the divalent verses trivalent ratio in a well 

crystalline LDH, spans from 0.2 ≤ x ≤ 0.33.2 In some cases, LDHs are described by the 

M2+/M3+ fraction, generally with integer value (R= 2, 3, 4) equivalent to the relative amount 

of cations present in the coprecipitation mixture. (Fig. 2.4) There have been literature reports 

for preparation of synthetic LDH outside this range but the phase purity is questionable.21, 116 

 

Figure 2.4 Comparison of trivalent metal fraction x scale and divalent vs. Trivalent ratio R 

scale and corresponding limits for LDH compositions.15 

The upper limit of the ratio is associated to the degree of electrostatic repulsion between 

adjacent trivalent cations in the layer which can be minimized when x ˂ 1/3. The lower limit 

corresponds to an insufficient amount of corresponding anions to keep open the interlayer 

domains, leading to the collapse of the interlayer structure. 
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2.1.3 The choice of anions 

 The choice of anions is practically vast and not limited by the ionic size. However the 

stoichiometric amount plays a vital role in counter-balancing the net positive charge 

corresponding to the trivalent cations. Nevertheless, some structural alterations or 

contaminations might come through the way. Typically, in choosing anion other than 

carbonate (CO3
2-) in the synthesis, carbonate can be anyway found in the product, as the 

contamination of LDH with atmospheric CO2 on aqueous solution is a frequent occurrence. 

The use of inorganic anions (NO3
2- 2, Cl-, CO3

2-, SO4
2- 23), heteropolyacids (PMo12O40)

3- 24, 

(PW12O40)
3- 25 and organic acids26 such as oxalic, succinic, malonic, sebacic acid in the 

interlayer domains has been reported. As suggested by Wang et al. nitrate and chloride tend 

to have special effects when to be incorporated in the LDH system.104 This is because LDH 

are generally formed at low pH and carbonate incorporation in the system is normally 

prevented. Thus, LDH having nitrate, sulphate and chloride have their own layered 

spacing.102 The thickness of the interlayer is determined both by the size of the anions and by 

the bonds between anions layers and hydration water. Typically, for a given anion, the 

interlayer distance decreases at higher content of trivalent cation. 

2.2 Preparation of LDH 

Several methods have been developed for the synthesis of LDH. These include urea method, 

sol gel method, coprecipitation, microwave irradiation method and alkali method. Among 

these, coprecipitation method is the most common. In this method, a slow addition of 

stoichiometric amounts of divalent and trivalent metal cation solutions is added in a water- 

containing reactor. An alkaline solution is continuously added dropwise to the reactor to 

maintain the selected pH of the system constant. Coprecipitation starts with the condensation 

of metal aqueous complexes to form a stacked brucite-like structure, in which the metallic 

cations are uniformly distributed with anions existing in the interlayer region. The obtained 

slurry is then aged for several hours at moderate temperature to promote 

nucleation/agglomeration of the particles which are obtained as microcrystalline platelets 

upon filtration and drying.82 The rate of addition and physical parameters of ageing determine 

the crystallinity of the LDHs.82 Some typical factors to be taken into consideration are: 

1. pH of the reaction medium  

2. Concentration of metallic salts  

3. Temperature of the reactor  

4. Flow rate of the reactants  

5. Aging of the precipitates  
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6. Concentration of alkaline solution15 

It must be noted that LDH materials are stable in alkaline and neutral solution although they 

are soluble at pH below 4.027, which means that at pH around 9-10, LDHs are stable solid 

compounds. 

2.3 Characterization of LDHs 

The characterization of LDH is principally done by X-Ray Diffraction (XRD). Diffraction 

methods are used to determine the crystalline properties of LDH compounds by study of the 

structure of the crystallites, phases present and the unit cell parameters. Further analysis 

through crystallographic techniques can also give clues about the structural defects.  

The degree of crystallinity and quantitative determination of each cation in the phase is 

confirmed by the Energy Dispersive X-ray (EDX) which allows the comparison of the initial 

(synthesis) with final (precipitated fraction) atomic ratio of the material formed, be it 

crystalline LDH or other phase or also amorphous material. 

The Thermogravimetry (TG) can give quantitative information on successive changes upon 

thermal decomposition of the LDH compound. This allows determining calcination 

temperatures needed to obtain mixed metal oxides from LDH. N2 Adsorption/Desorption 

technique (BET) gives significant information about the pore size, surface area and pore 

volume of the materials. Temperature Programmed Reduction (TPR) can also be employed to 

study the redox properties of calcined LDH.28 The morphology of the crystallites can be 

examined by Scanning Electron Microscopy (SEM). Other techniques, like Fourier-transform 

infrared spectroscopy (FTIR)29, X-ray fluorescence (XRF), Transmission electron 

microscopy (TEM)78, X-ray absorption spectroscopy (XAS)79 and electron spin resonance 

(ESR)80, as well as Raman spectroscopy81, have also been less frequently reported. 

 

2.4 Which metals to choose for LDH? 

 

Changes brought by the wide variety of composition and calcination conditions can crucially 

affect crystallite size, nature and distribution of cations in the LDHs. Thus, the catalytic 

properties and performance of the LDH-obtained mixed oxides can significantly vary. 

Additionally, if reducible cations are employed in the metallic framework with intercalating 

anions of different sizes and functions, a distinctive approach of design of redox bifunctional 

catalysts can be achieved.30 

There are generally two main categories of functional materials used in redox catalysis. 

Noble metals for example palladium (Pd), platinum (Pt), ruthenium (Ru) and rhodium (Rh) 

and base transition metals (3d-type, first series) such as chromium (Cr), copper (Cu), cobalt 
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(Co) and nickel (Ni) and their respective oxides. Despite frequent superior performances of 

the noble metals, the choice among them is worth consideration due to the limited reserves of 

noble metals and their easy poisoning. Transition base metals are generally cheap, thus do not 

require strict control during the reaction processes. Oxides of the transition metal-based 

precursors have seen to be promising catalysts for oxidation and hydrogenation reactions 

owing to their easy preparation and handling.31 One of the main targets in the preparation of 

mixed oxides is a homogenous and high dispersion of cations, avoiding any phase separation 

(segregation).32 To date, coprecipitation has been considered the most reliable and effective 

method for the synthesis of LDH precursors. This method favors the synergetic effect of the 

starting materials and homogenously mixed precursors can be achieved. 

 

2.4.1 The choice of redox metallic System (Ni-Cu-Fe) 

Classical hydrotalcite, Mg6Al2CO3(OH)16·4(H2O) is an effective basic catalyst and has been 

widely used for a range of applications such as  alkylation of ketones and phenols, aldol 

condensation, Michael additions, Claisen-Schmidt condensation, transesterification of 

vegetable oils for biodiesel production 37,135-139,145 Regarding the calcined products of 

the hydrotalcites, several authors reported concerns on the chemical composition 

which has significant impact on the acid/base properties of the catalysts and hence 

their catalytic activity is under debate.137,140  

 

2.4.1.1 Iron (Fe3+) as catalyst 

 

Leclercq et al. reported a poor performance (conversion of 35% after 22 h of reaction) 

of mixed oxides from a commercial Mg/Al hydrotalcite for the transesterification of 

rapeseed oil with methanol/oil molar ratio of 75 at 60°C.141 Macala et al. studied the 

introduction of a transition metal such as Fe, Cr, and Ga in a MgAl hydrotalcite 

system to improve the catalytic activity of the obtained mixed oxides.142 Their studies 

showed that Fe-doped materials performed the best for transesterification reaction. For 

the transesterification of soybean oil, a conversion of 38% after 40 min on-stream at 

80°C using 1 wt % of catalyst was obtained. 

 

2.4.1.2 Nickel as a hydrogenation Catalyst 

 

The use of nickel as a hydrogenation catalyst for lignin monomers has been reported by Qi.143 

Also Pepper et al. reviewed the outstanding performance of Ni for the catalytic hydrogenation 
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of lignin and its model substances. 144 Another study by Usman et al. indicated the use of 

nickel supported on highly ordered mesoporous silica for the hydrogenation of edible 

vegetable oil achieving 81% conversion. The catalyst was stable, reused, and resistant to 

leaching and poisoning. 146 

 

2.4.1.3 The role and interest in Cu based LDHs 

 

Copper is a non-noble and cheap transition metal which induces redox effects in the catalyst 

by favoring electron donation or supply in the reaction system. It can dramatically affect the 

surface properties of the catalysts as claimed by Dupin and co-workers, who synthesized 

LDH-derived mixed oxides with different proportions of Ni, Cu, Mg and Al to achieve acid-

base and redox properties in the catalyst. Both acidity and basicity of the catalysts was 

dependent on the ratio between the reducible metals Ni/Cu.121Thus its tailor-able and wide 

range of properties make it a desirable catalyst for the industry. A long list of reactions are 

efficiently catalyzed by copper.    

Copper-containing catalysts are frequently utilized in organic chemistry to catalyze reactions 

of C-C bonds, C-heteroatoms such as, Ullmann reactions, 117 C–O cross-coupling reaction, 118 

C (aryl)-O. C (aryl)-N, and C (aryl)-S Bond Formation,119 Diels-Alder reactions120 etc. 

Furthermore, copper is also known for assisting in reduction reactions such as 

electrochemical reduction of CO2 to C2H4
122, photochemical reduction of CO2 to CO123 and 

MOF-Derived Cu@Cu2O nanocatalyst for oxygen reduction and cycloaddition reactions124. 

Cu-containing LDH, taking advantage of known redox properties of copper have been 

exploited in many applications. Velu et al. conducted oxidative steam reforming of methanol 

over CuZnAl(Zr)-LDH derived oxides for the selective production of Hydrogen from fuel 

cells. With Cu:Zn:Al 37.6 : 50.7 : 11.7 (wt%) around 100% conversion was achieved at 503K 

without any detectable CO in the outflow stream.105 Zhao et al. explained the characteristic 

structural and chemical features of NiAl, 1%CuNiAl, 3%CuNiAl, 5%CuNiAl LDH-based 

mixed oxides for the SO2 abatement concluding that 5% CuNiAl had the best performance 

because increasing the copper content enriches Cu2+-O2- which infers oxygen vacancy 

sites.110 

 

2.5 Synthesis Limitations of Copper-LDH 

 

It has been early reported that all divalent cations from Mn2+ to Mg2+ form LDHs except Cu2+ 

which can only form LDH in the presence of a substantial amount of another divalent cation.2 

The ratio between Cu2+ and the second divalent cation should be equal or lower than one. The 
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higher copper content distorts the structural symmetry in LDH and brings to the formation of 

phases such as malachite and gerhardtite.17 This effect is attributed to the Jahn Teller 

distortion in Cu2+ system due to the lifting of degeneracy of the d9 state, which decreases the 

symmetry of the octahedra to the extent that the structural stability is lost (see Fig. 2.5).18 

Cu2+ in octahedral coordination is not stable electronically.  

 

 

Figure 2.5 Lifting of the d9 degeneracy by Jahn Teller distortion in Cu2+.87 

 

Despite the synthesis of Cu LDH has been early reported to be difficult,2 many examples are 

known of experimental synthesis of Cu-Al based LDH, where Cu2+ is the only divalent and 

Al3+ serves as a trivalent. Apart from natural presence as Woodwardite, 

(Cu4Al2(SO4)(OH)12.3(H2O)), successful procedure for synthetic analogue of woodwardite 

has also been reported with application in affinity for Rare earth elements (REEs).88 Lwin et 

al. prepared series of catalyst precursors from atomic ratios Cu/Al 0.25-1, mainly forming 

Hydrotalcite-like and malachite phases.100 The ratio of phases present and their crystallinity 

was controlled by the Cu-concentration in the system.  Remarkably, another synthesis of Cu-

Al (1:4) has been reported by Fogg et al. indicating that Cu-Al can be synthesized over a 

wide range of cationic fractions.99 Likewise, application of Cu-Al LDH-derived mixed oxide 

catalysts include, H2 production by water gas shift reactions89, from methanol steam 

reforming 90 and catalytic decomposition of ethanol and other alcohols in a fuel stream 90, 91 

Cu-Al LDH/racBinol ligand has been proposed for selective oxidation of alcohols at room 

temperature.92 Similarly ternary hydrotalcite (CuAl-M2+ metal cation) systems have also been 

investigated. For instance, Rives et al. reported the catalytic hydroxylation of phenol over 
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CuCoAl with ((Cu+Co/Al)=3) 93 and CuNiAl with ((Cu+Ni/Al)= 2, 3).94 Vaccari and co-

workers studied the combination of CuAl with Zn with a highest performing atomic ratio of 

(Cu+Zn/Al) =2 for the water gas shift reaction. 95  

 

2.5.1 Studies on formation Mechanism of LDH and effect on peculiar synthesis of Cu 

LDH:  
 

The ineffective synthesis dealing with the structural constraints in a Cu-Fe LDH have been 

reported many times2, 19, 20. Cu-LDH has been considered a special problem due to the 

structural differences of cupric hydroxide, which does not form layered structures, at 

difference from other divalent hydroxides.102 Though, a complex Cu-Al LDH 

(Cu0.67Al0.33(OH)2(SO4)0.15(CO3)0.015·0.5H2O) had been reported by the addition of mixed 

solution of aluminium sulfate and sodium hydroxide to a cupramine complex solution.101 

Grosso et al. screened the catalysts precipitation conditions for the synthesis of Cu-Cr LDH 

system, although not pure LDH phase was obtained.103 Taking into account this, it can be said 

that every precursor catalysts system has own preference which must be explored to optimize 

the properties. Another explanation has been advanced, dealing with the choice of anions 

selected for the incorporation into the layered system.  

It is known that the LDH formation mechanism is a two-step process.48, 77 In stage one, the 

formation of hydrous oxide takes place followed by the formation of LDH in a second stage, 

in which the LDH crystallization occurs either by diffusion of M3+ inside the hydrous M2+ 

oxide47 or through the diffusion of M2+ cations into the M3+ rich phase. 45, 46 It is very 

important to understand the bottom line of this phenomena which has been well explained by 

Ruby and co-workers in terms of formation mechanism of Ni-Fe and Mg-Fe layered 

structures (see Fig. 2.6).48 After the precipitation of Fe3+(stage 1), the formation of a 

precursor begins on Fe3+ oxyhydroxide surface. The LDH phase is formed (stage 2) when 

slow diffusion of Fe3+ into the Ni(OH)2, Mg(OH)2 layered structures precursors occurs.48 This 

fact that refrains a Cu-Fe LDH system because as explained in the above example, LDH is 

not merely composed of M2++M3+ cations however the structural properties are drastically 

affected by the choice of cations used.  Cu(OH)2 does not possess a layered structure, thus in 

a Cu-Fe system, precursor required for stage 2 is absent consequently no LDH is formed.  
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Figure 2.6 Mechanism of formation of Ni2+. Mg2+-Fe3+ LDH phase48 

 

However, this is not the case in Cu-Al, which is explained by virtue of M2+/Al system 

example.77 At the beginning of the precipitation, sequential hydrolysis and polycondensation 

of Al3+ takes place producing amorphous aluminium hydroxide structures. These particles of 

Al(OH)3 combine into sphere-like aggregates, which are later transformed into a lamellar 

boehmite acting as precursors, where Mg2+ can diffuse to produce a Mg/Al LDH structure. 

The unbalance in charge invites carbonates into the interlayer region and thus sheet stacking 

continues.  

Furthermore, another hypothesis has been based on a detailed study on distribution of NO3
1- 

and H2O in the interlayer and the strong supramolecular interaction between host and guest.19 

by Shi et al. suggested that this Jahn Teller effect on LDH structure is linked to the 

intermolecular effect of water on supramolecular Cu-Fe LDH. Based on the density 

functional theory it was proposed that Cu3Fe-LDHs-.yH2O geometry can be optimized by the 

controlled distribution of NO3
1- and water of hydration.   

For Cu2+/ M2+ ≤ 1, Cu2+ cations are far apart in the interlayer, which maintains an adequate 

distance for undistorted octahedra in the brucite-like sheet. If the ratio of Cu2+/ M2+ ≥1, the 

Cu2+ cations in octahedral position impose a distorted symmetry energetically favoured in 

comparison to the LDH structure.2 
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Against these, sometimes contradictory literature reports, we will present our results and 

discuss the effect of hydroxide solubilities on the synthesis of Cu-LDH in a further chapter. 

 

2.6 From LDH to Mixed Metal Oxides (MMO) 

The mixed metal oxides produced by the calcinations of LDH are generally more active as 

catalyst than the parent LDH33, depending on the phases obtained as a function of the 

calcination temperatures used.34 Metal oxides became an important class of catalysts in the 

mid 1950’s when found to effectively catalyze some important redox and acid-base reactions. 

Recently, solid acid/base mixed metal oxide catalysts have widely been utilized and reported 

for applications in refining and petrochemical industry.83 They are in good competition for 

replacing the homogenous catalysts to decrease the E-factor which, in a nutshell, is explained 

as “weight of waste/weight of product” by Sheldon.35,36 Later, a lot of attention was given to 

the impact and influence of the chemical processes on the environment, which, in the case of 

homogeneous catalysis, is drastically affected. 

 

2.6.1 Single and Mixed Metal Oxides 

Mixed metal oxides are often preferred for their catalytic applications as compared to single 

metal oxides. The properties of surface metal ions and oxides can be tailored for their 

oxidation/reduction degree by being electron deficient and electron rich. Choice of transition 

metals is promising to achieve ease of continuity in the redox cycle. The advantage of using 

several transition metals is that electron transfer between metal cations with different redox 

potential can facilitate the regeneration of the catalyst in the reaction cycle.  

Regardless of the redox properties of MMO, the properties of metal ions are significantly 

modified by matrix, concentration and the presence of co-cations associated with the 

system.93 In some cases, the metal cations may act in a cooperative manner to catalytically 

promote the stepwise chemical process. Hence, the choice of cations in the mixed metal 

oxides is often considered keeping in mind the catalytic applications it will be used for.  

 

2.6.1.1 Rehydration of Mixed Metal Oxides 

 

A property of LDH-derived MMO is their ability to reverse to their initial precursor (lamellar 

hydroxide) when the mixed M2+(M3+)O oxide, obtained at moderate calcination temperature 

(450°C) is immersed in a solution of the anion to be intercalated 37,39 This phenomenon is 

known as the memory effect. For instance, Abello et al. studied a rehydration/memory effect 

in both gas and liquid phases on Mg/Al (3:1) LDH-derived mixed oxides (MgO, Mg(Al)Ox) 

obtained by sintering at 450°C for 15h. Vapour phase rehydration was done at room 
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temperature for 15h (40mL/min) under water-saturated argon gas flow to reattain the 

hydrotalcite structure. Liquid phase rehydration was carried out by treating MMO in 

decarbonated water (1g sample/100mL H2O) at room temperature for 1h along with 

mechanical stirring (500rpm).37 Similarly, synthetic hydrocalumite, a Ca/Al-LDH calcined at 

500-900°C produced crystalline mayenite (Ca12Al14O33) and lime (CaO), which were 

completely reversed to their original precursor structure at room temperature in deionized 

water.125 Likewise, Mascolo was able to synthesize Li/Al-LDH directly from alumina xerogel 

and dissolved LiOH.H2O.126 Some other examples in the literature have long established the 

foregoing facts. 39 

 

2.6.2 Reaction Mechanism of Mixed Oxides 

 

O2- anions line the surface of oxide due to their large size in comparison to the cations (Mn+). 

This disturbs and eventually loses the coordination and symmetry of cations (Mn+) on the 

surface. The water vapors in the reaction system compensate for the surface unsaturation by 

the formation of surface hydroxyl groups (M2O + H2O → 2MO). These hydroxyl groups are 

conjugated acids of lattice oxide ions O2- which are strong bases and conjugated bases of 

water molecules.36  

In addition, single and complex mixed metal oxides from the transition series are interesting 

by virtue of the unfilled 3d electron shell which creates non-stoichiometric phenomena. The 

transition of electron and formation of vacancies impart redox properties to the system as 

stated above. For instance, a change in the partial pressure of oxygen during the reaction may 

decide the fate of reaction to be oxidation or reduction. When the partial pressure of oxygen 

(pO2) is low, oxygen is lost, which generates electrons, promoting n-type conductivity as 

O0↔ (1/2) O2 + VO•• + 2e-. In case of high oxygen pressure, oxygen is incorporated into an 

oxygen vacancy and takes two electrons from the valence band, leading to a holes that 

contributing to the p-type conduction, as (1/2) O2 + VO•• ↔ O0 + 2h•.36 

The selection of Layered Double Hydroxides (LDHs) as catalyst precursors is an attractive 

route to obtain oxides with high surface area, basic properties and homogenous mixture of 

mixed metal oxides. Oxides formed as a result of calcinations of LDH materials are small in 

crystal size, thermally stable and can recover their properties to form LDH parent material 

when contacting the product of the thermal treatment with water solution containing various 

ions.2  

Valente and co-workers enquired the applications of Mg–Me–Al (Me: Cu, Fe, Ni, Zn) mixed 

oxides as bifunctional catalysts for conversion of 4-methylpentan-2-ol in a gas-phase.40-43 The 
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extent of basicity and acidity can be controlled by the compositional ratio of metals, their 

type and valency.40  

 

2.7 Calcination of LDH 
 

LDHs calcination results in the formation of a mixture of phases. The nature of these phases 

is primarily dependent on the initial synthesis composition of LDH and the thermal 

treatments. Formation of homogeneous mixed metal oxides (MMO) solid solution is obtained 

as a result of progressive temperature increase in LDH materials which ultimately breaks the 

house of cards assembly of the structure. The thermal decomposition of the LDH material is 

associated with the structural composition of the layers such as the nature of cations 

employed, the interlayer anions, and the heating parameters (oxidative, reductive or inert 

atmosphere) used for calcinations. The first step in the calcination is the dehydration, where 

the loss of physically bound water molecules on the external crystallite surface takes place, 

followed by loss of water of crystallization in the interlayer region. This occurs between 100 

and 250°C 44. In the later step, hydroxyl groups coordinating with anions in the interlayer 

region are lost as water vapor. The LDH material is completely collapsed as the anions in the 

interlayer regions are lost at high temperature (˃450°C) as shown from one of the examples 

here.  

1. Removal of water from precursor (≈ 100-250°C) 

       [M2
1-x M

3
x(OH)2]

x+(An-)x/n.mH2O (LDH)           [M2
1-x M

3
x(OH)2]

x+(An-)x/n 

2. Dehydroxylation (350-450°C) 

[M2
1-x M

3
x(OH)2]

x+(An-)x/n                   [M
2
1-x M

3
xO]x+ (An-) x/n 

3. Decarbonation (Anion) (420-470°C) 

  [M2
1-x M

3
xO]x+ (An-) x/n            M

2
1-x M

3
xO1 + x/2(BOy) 

4. Formation of mixed oxides (450°C)  

                    M2
1-x M

3
xO1 + x/2(BOy)           M

2O +M2M3O4 + BOy                  [9] 

The loss of hydroxyl groups and interlayer anions, as well as the structural decomposition are 

often interpreted quantitatively by thermal gravimetry (TG) and Temperature-programmed 

decomposition/desorption (TPDD) analysis of the gases evolved inveterate the order of the 

decomposition sequence.112, 113 

 

2.7.1 Oxides by Sintering of LDH  
 

Sintering is a thermal treatment of powder catalysts at a temperature below the melting point 

for the purpose of increasing their strength by bonding the particles together. When subjected 
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to high temperature, the crystallites form new point of contact in such a way that the original 

inter-particles boundaries disappear, giving rise to new crystallization mosaics. Small catalyst 

particles with high surface area and a high reaction temperature are in general factors that 

increase the reactivity of a catalyst (see Fig. 2.7). However, these factors are also the 

circumstances under which sintering occurs.132 For a porous catalytic surface, the pores may 

collapse due to sintering, resulting in loss of surface area and structural changes. However, 

the process is inevitable to carry out in order to stabilize the catalysts to be used in high 

temperature reactions.73 In the field of catalysis, the term calcinations sometimes implicitly 

includes some sintering beyond its main effects of decomposition of carbonates, hydroxyls or 

other labile compounds in the precursor of the catalyst. Some examples from literature have 

been taken into account to highlight the effect of temperature on the oxide phases formed 

(Table 2.2). 

 

 

Figure 2.7 Powder particle sintering stages 131 

 

Table 2.2: Synthesis and calcination conditions reported for the preparation of mixed metal 

oxides from LDH 

Precursor 

Catalyst 
M2+/M3+ 

Synthesis 

pH 

Calcination 

Temp (°C)/ 

time(h) 

Oxides 

formed 

Surface 

area of 

mixed 

oxide  

(m2g-1) 

Ref 

Pd doped/ 

MgAl LDH 
3 10 550/4 Pd/MgO/Al2O3 - [49] 

CuCoAl LDH 
(5, 2, 1/2, 

1/5) 
6.5 450/5 Co3O4, CuO, CuCo - [50] 

MgZnAl LDH 3 8 550/4 MgO 167 [40] 
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MgFeAl LDH 3 8 550/4 MgO 237 [40] 

MgCuAl LDH 3 8 550/4 MgO, CuO 200 [40] 

LaMgAl LDH 3 10 450/9 La2O3/MgO 301 [51] 

Mg/Fe LDH 3 - 400 and 500/- MgO - [52] 

Ni/Fe LDH 3 - 400 and 500/- NiO - [52] 

Zn/Al LDH 2 - 450/14 ZnAl2O4, ZnO 38 [53] 

Ni/Al LDH 3 - 650/-  - [54] 

Cu40MgAl 

LDH 
- 9.5-10 460/6 MgO/CuO 125 [55] 

NiMgAl LDH 3 10 450/4 

θ-Al2O3, MgAl2O4, 

k-Al2O3, MgO, NiO, 

Al2O3, 

(Ni0.198Al0.802)(Al1.198

Ni0.802)O4, 

Mg0.36Al2.44O4 

753 [38] 

CoFe LDH 1/2 9.4 927/1 
CoO, Co3O4 and 

CoFe2O4 
< 5 [56] 

CuMgFe LDH 3/3/2 10.5±0.2 450/5 
CuO,CuFe2O4,Fe2M

gO4, MgCu2O3 
65.6 [96] 

Mg/Al LDH 3 9.5 800/7 MgO, 236.3 [97] 

CuFeMg LDH 4 7-8 600/5 
MgO, CuFe2O4, 

Fe2O3 
50.32 [98] 

Ni/Co/Al 2 10 400/4 NiO,CoO,Co3O4 163 [108] 

MgAl/Ga (5 

wt %) 
3 10 460/18h MgO - [20] 

Cu/Zn/Al 3 - 450 CuO, ZnO, CuAl2O4 143 [109] 

The literature suggests that the variability of the surface area could subject to the synthesis 

conditions developed and phases formed. 

 

2.7.1.1 Fractional crystallization in the preparation of Mixed Metal Oxides 
 

Regardless of the nature of cations used, more importantly the calcination temperature 

effectively determines the qualitative and quantitative phase composition of the catalyst.61 

For instance, Babey and co-workers claimed that Co-Fe system as in [Co2Fe(OH)6] (NO3), 

nH2O may have several possibilities of evolution upon decomposition. i) Below 900°C, the 

oxide product could form a single phase mixed oxide of different oxidation states of Co such 

type Co2 (Co3, Fe3)O4 ii) at 950°C, a possibility of formation of a normal spinel phase Co3O4 

and inverse spinel CoFe2O4by demixtion of the original iron cobaltite.57, 58 Vaccari and co-

workers explained the synthesis of different mixed oxides of Ni/Al in the  temperature range 

350<T<800°C. The authors reported three different types of oxides. i) A NiO phase, 
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containing a small amount of Al3+ ions between 350-750°C. ii) a spinel-type phase (NiAl2O4) 

above 900°C. iii) An alumina-type phase (doped with small amounts of Ni2+ ions), grafted on 

the spinel-type phase.59 Ferreira et al. studied structure and morphology of spinels; FeCo2O4 

and CoFe2O4 produced by annealing between 300°C and 800°C. At 300°C, a heterogeneous 

chemical composition of spinel CoFe2O4 was observed until 500°C. At 900°C a single 

CoFe2O4 spinel was obtained whereas FeCo2O4 only appears above 900°C.127 Ulibarri and 

colleagues studied the Cd/Al/Fe- LDH-derived calcined products with CdO crystallizing at 

300°C, Spinel as CdAl2O4, Cd1-xFe2+xO4 and CdxFe2.66O4 observed at 800°C.84 Leont’eva et 

al. reviewed nature and composition of some commonly known LDH-derived mixed oxides 

(Mg/Al, Ni/Al) focusing on the characterization techniques used for their determination.60 

Fornasari et al. also well studied the crystallographic parameters of the oxide and spinel 

phases formed by Ni/Mg/Al LDH as a function of composition and calcination 

temperature.106  

As already cited for the Cd/Al/Fe system,84 an interesting feature of the mixed metal oxides is 

the fractional crystallization of metal cations in the system. Fractional crystallization usually 

occurs when the temperature of calcination is relatively low and some cations form 

crystalline oxide phases more easily than other cations, leaving these last ones in the 

amorphous material formed by the dehydration and deanionisation of the LDH. A number of 

reports on mixed oxides from LDH have reported this fact.2,9,44,84,128,129,135,147 In such cases, 

the authors mentioned to use other characterization techniques such as XPS59, Raman61, 

XANES spectroscopy44 beyond elemental analysis to verify the presence of cations in the 

material not corresponding to phases determined by XRD.  

Trifirò et al. studied the calcinations of Ni-Cr and Ni-Al LDHs.59 They observed that, in 

bothcases, NiO was the only crystalline phase formed at 450°C, whereas NiCr2O4 appeared 

only at 600°C and NiAl2O4 appeared at 750°C. Rives et al. calcined the LDH with several 

amounts of Cu/Ni/Al (M2+/M3+=2) at 500°C leading to the formation of NiO and CuO 

crystallized phases but leaving Al in an amorphous material. However, increase in 

temperature to 850°C produced well crystallized NiO, CuO and NiAl2O4 with ratios 

depending on the amount of cations present in the system.130Bernal et al. observed a similar 

trend in Co-Fe system calcined at 1200°C where CoO, Co3O4 and CoFe2O4 (spinel), were 

detected, where spinel being the only phase, for large Fe contents.56 Thermal decomposition 

of Cr3+/Mg LDH calcined at 500°C leads to formation of MgO with traces of MgCrO4 

magnesium chromate whereas MgCr2O4 only appear at 750°C and becomes an important 

phase at 1000°C.63  

https://www.sciencedirect.com/science/article/pii/016913179500022V#!
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2.8 Examples of LDH as efficient catalysts/supports for biomass (derived) 

molecules Conversion 

Since the last decade, a great deal of research has been ongoing for environmentally benign 

heterogeneous catalytic processes for the depolymerisation of biomass and derived 

molecules. In this context, biomass and derived intermediates (platform molecules), such as 

5-(hydroxymethyl) furfural (HMF), glycerol, furfural, levulinic acid, benzyl alcohol, 

cinnamaldehyde, glucose, fructose, etc. have been catalytically upgraded by layered double 

hydroxides. LDHs and their derived mixed metal oxides have been proven to be active and 

selective catalysts due to metal dispersion, environmental friendliness and easy recovery. 

Their bifunctional redox and/or controlled acid-base properties have listed them among the 

effective materials. 

 

2.8.1 LDH as catalyst supports 
 

Liang et al. reported a synthesis of bimetallic Au-Pd nanoparticles on a unique support of 

LDH derived Mg-Al mixed oxides (Au-Pd/MAO) to produce metal nanoparticles with high 

degree of coordinative unsaturation of metal atoms.65 Au-Pd/MAO gave highly efficient 

aerobic solvent-free oxidation of benzyl alcohol and glycerol with a turnover frequency of 

91000 h-1 at 160°C with molecular O2 air pressure. Au-Pd/MAO was also found to have 

98.5% conversion with a selectivity for tartronic acid (TARAC, 36.6%) in aerobic oxidation 

of glycerol. Similarly, Takagaki employed hydrotalcite supported ruthenium (Ru/HT) catalyst 

for the selective oxidative synthesis of 2, 5-Diformylfuran (DFF) from HMF in the presence 

of molecular oxygen under mild conditions of 120°C.66 Another biomass-derived molecule, 

glycerol, was investigated for the oxidation to dicarboxylic acids (tartronic acids and oxalic 

acid) in the presence of cobalt-based catalysts.67 Cobalt catalysts supported on 

Mg3Al(OH)y(CO3)z showed 100% conversion of glycerol with a selectivity of 64% tartronic 

acid and 24% oxalic acids under mild conditions of 55-70°C at 1MPa oxygen pressure. 

Several parameters, such as cobalt content, temperature, concentration-time profiles and 

possible reaction pathways were also discussed. Likewise, Yuan et al. studied the effect of 

series of catalysts such as MgO, H-beta zeolite, Al2O3, HZSM-5, and LDH precursors-

supported platinum catalysts for the hydrogenolysis of glycerol to 1,2-propanediol in a base-

free aqueous solution. 68 Results show that, due to strong alkalinity and high dispersion of Pt 

on the hydrotalcite precursor, LDH precursors-supported platinum catalyst showed the most 

favorable performance for the desired reaction, i.e. 93 % of selectivity and 92.1% of 1,2-

propanediol at low pressure in base-free aqueous solution. Xia and co-workers have also 
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reported an extraordinary conversion and selectivity of glycerol to 1,2-propanediol by a series 

of bimetallic Pd/Cu (PdxCu0.4Mg5.6−xAl2(OH)16CO3 crystals) solid base catalysts.70 On 

Pd0.04Cu0.4/Mg5.56Al2O8.56, at 180°C, 2MPa pressure of H2 in an ethanol solution for 10h, 88% 

conversion and 99.6% of selectivity were achieved. The catalyst has been reported to be 

stable upto five recycles. Similarly, Yuan et al. worked on catalytic hydrogenolysis of 

glycerol by a homogenously dispersed copper on a solid base (Cu0.4/Mg5.6Al2O8.6-CP, with 

80.1% copper dispersion) obtained by thermal reductive decomposition at 300°C of 

Cu0.4Mg5.6Al2(OH)16CO3 LDH.69 At 180°C, in the presence of 3MPa H2 in 20 hours, the base 

catalysts offered 80% conversion of glycerol with a selectivity of 98.2% of 1, 2-propanediol. 

 

2.8.2 LDH as catalysts 
 

Castiglioni et al. investigated the physical and catalytic properties of mixed oxides obtained 

from Cu/Zn/Al LDH as a function of surface area and porosity for the selective vapor phase 

hydrogenation of maleic anhydride as an alternative to Cr-containing catalysts.111 The study 

shows that Cu/Zn/Al in 25:25:50 ratio is a best compromise, allowing low temperature and 

high yield conversion to γ-Butyrolactone (GBL). Yan et al. synthesized a series of selective 

Cu (Cr, Al, Fe)-catalysts derived from hydrotalcite precursors for the hydrogenation of 

biomass-derived furfural and levulinic acid.64 Cu–Fe oxides were the most effective catalysts 

under optimized conditions reported. Up to 90% yield of furfuryl alcohol at 160°C in 5 hours 

and 51% yield of 2-methylfuran at 220°C in 14 hours were achieved in the selective 

hydrogenation of furfural and 91% yield of c-valerolactone was achieved in the 

hydrogenation of levulinic acid at 200°C in 10 hours. Hansen et al. discussed the one-pot 

reduction of HMF in the presence of supercritical methanol via hydrogen transfer method at 

300°C by a copper-containing porous metal oxide (Cu–PMO) obtained by the calcinations of 

a hydrotalcite.71 Zhang et al. studied the copper catalysts (CuXAl) derived from LDH for 

selective transfer hydrogenation of furfural (FFR) to furfuryl alcohol (FA) and 2-methyl furan 

(MF) using methanol as a hydrogen donor solvent.107 High yield of 94 mol % has been 

reported at 200°C in methanol. The copper catalyst was further treated with H2/N2 at 500°C 

forming the metallic Cu2+ species which catalyzed conversion of FRR to MF at 240°C 

yielding 94.1% mol. Also the activated Cu2+ gave remarkable performance in converting 

HMF to 2, 5-dimethylfuran (DMF). Yan and fellows summarized several methods of LDH 

synthesis and biomass degradation processes by their corresponding oxides.72 Considerable 

selectivity, reactivity, metal dispersion, and improved methods of catalysts recovery have 

been discussed.  
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2.9 Examples of LDH as efficient catalysts for depolymerisation of lignin 

and its models 
 

The layered double hydroxides have been known for long as effective depolymerisation 

catalysts for lignin, either as precursors in the formation of direct catalysts or as active 

supports for multifunctional catalysts.62 Huang et al. investigated the role of varying 

percentage of Cu in a Cu-Mg-Al mixed oxides system obtained from LDH for the 

depolymerisation of soda lignin in supercritical ethanol.55 The 20 wt % Cu catalyst was 

considered optimum for the process which produced 36% monomers at 340°C for 4h without 

the formation of char. Barta et al. investigated disassembling of the organosolv lignin using 

the mixed oxides catalysts obtained from 20% Cu-doped hydrotalcite and supercritical 

methanol acting as H-transfer reagent.74 The catalyst was reported to have completely 

hydrogenated the phenyl ether bonds along with the hydrogenation of aromatic rings at 

supercritical methanol conditions (300°C). The same group of Barta et al. later also 

conducted catalytic depolymerisation on solvent-extracted lignin from candlenut biomass 

using methanol and H2 in the presence of porous metal oxide catalyst (PMO) derived from a 

Cu-doped hydrotalcite-like precursor.75 Cu-PMO produced mixture of aromatic compounds 

in high yields from low molecular weight lignin without formation of char. Lignin conversion 

of >90% and high yields of methanol-soluble products (>70%) with optimized catalyst and 

biomass loading was achieved at 180°C.75 

 

2.10 Prospective 
 

A variety of binary and ternary LDHs-derived mixed oxides can be synthesized by changing 

the cation ratios and physical parameters of synthesis to carry out selective catalysis aimed at 

desired products. Tailor-made properties can offer outstanding conversion and selectivity 

performance. More investigation needs to be done to apprehend the formation mechanism 

and properties of amorphous state of cations in the catalysts. These studies have merely been 

reported in the literature since the characterization of amorphous phase is arduous. In this 

present study, we have carried out attempts to quantify the amorphous phase present in LDH 

samples with different compositions, synthesized under the same condition and calcined at 

different temperatures. Furthermore, a detailed study on the amorphous material and its 

characteristic role in catalytic reactions has been performed.  
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Chapter Summary: 

This chapter summarizes applications of all the analytical techniques, methods and their 

specifications, used for the structural and morphological studies carried out on catalysts. The 

characterization of as-synthesized and mixed metal oxides were done by X-ray diffraction 

(XRD), N2 physiosorption, Energy Dispersive  Powder X-ray Spectroscopy (EDX), scanning 

electron microscopy (SEM), thermogravimetry (TG) and temperature programmed reduction 

(TPR). 
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3.1 Calcination of Catalysts 
 

The dried Layered Double Hydroxides (LDH) samples were calcined at different 

temperatures, 300-800°C for 6 hours at heating rate of 2°C/min in the presence of air to 

transform them into mixed metal oxides. Prior to the calcinations, the thermogravimetric 

analysis of the LDH was done to obtain the appropriate temperatures required to form 

complete oxides.  

 

3.2 Characterization of Catalysts: 
 

3.2.1 Powder X-Ray Diffraction (PXRD) 

 

For the structural identification of the materials (Fig. 3.1), powder X-ray diffraction (XRD) 

patterns of the synthesized catalyst were recorded at a room temperature on a Bruker AXS 

D8 Advance diffractometer operated at 40KV-40mA using monochromatic CuKα (1.5402 Å) 

radiation at 4-80 ̊ and step size of 0.020 ̊ and phases were identified by using the International 

Centre for Diffraction Data (ICDD) database. The parameters refined were zero shift (2θ), 

background, cell parameters and peak shapes. Scherrer method was used for the calculation 

of crystallite size of a multiphasic sample from the full width at half maximum intensity 

measurements.  

 

Figure 3.1 Obtainable information from a XRD diffractogram 8 

 

As indicated in the figure (Fig. 3.1), XRD can be used to obtain a broad range of information 

on structure of the material. Considering the unique patterns produced by each solid, it can 

surely be called as a fingerprint of the material. Structural defects and information on 
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presence of amorphous state is also perceptible. The miller indices obtained from the 

diffractogram provide information on the cell parameters and crystallinity and hence detailed 

characterization of the material becomes easier.   

3.2.1.1 Internal Standard Method for Relative Abundance of oxide phases 

 

The quantitative phase analysis was carried out using the method suggested by Gualtieri.1  

Initially the internal standard; anatase (TiO2) nanopowder <25nm particle size sample 

purchased from Sigma Aldrich, was collected individually and assumed as zero. A finally 

grinded mixture of sample and 10wt% of the internal standard was carefully weighted by 

analytical balance and homogenized by mixing with mortar. The prepared samples were run 

on the XRD using the specifications described above. 

 

3.2.2 Nitrogen Physiosorption 

 

The textural characterization and surface area was studied using conventional 

adsorption/desorption of N2 as the adsorbate at 77 K by a multipoint method; carried out 

using Micrometrics Tristar-3000 automated gas adsorption system. Prior to the nitrogen 

adsorption, the samples were degassed for 12 hours under vacuum at 50°C  for 

uncalcined sample and 250°C for calcined samples by Micrometrics VacPrep 061 auto-

degassing station to remove any adsorbed species and moisture. The Brunauer- Emmett-

Teller (BET) method was used to calculate the specific surface area, pore size distribution 

and pore volume of the catalyst. 

 

Figure 3.2 IUPAC classification of adsorption isotherms2 
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The isotherms have been generally categorized into 6 groups among which 4 are most 

common (Fig. 3.2).2 Merely, the shape of the isotherm provides many clues about the 

porosity of the catalysts for instance i) Type I isotherms are allotted to microporous solids 

with small external surfaces ii) Type II isotherm is associated with a non-porous/macroporous 

adsorbent material. Iii) Type III and V are uncommon types of isotherms which represent 

weak interaction of adsorbent-adsorbate. iv) Type IV isotherms are related to the mesoporous 

industrial adsorbents. v) Type VI isotherm indicates a multilayer stepwise adsorption on a 

uniform non-porous surface.2  

 

3.2.3 Scanning Electron Microscope (SEM) 

 

A Hitaichi S-4800 Scanning Electron Microscopy (SEM) at an accelerating voltage of 5.0kV 

and magnification 10k/100k mixed BSE and SE electron was used to analyse the microscopic 

morphology of the synthesized materials. 

The high resolution images generated from SEM, typically linked with EDX provide 

information on topography, morphology, elemental maps and spatial variations in chemical 

compositions of materials. (Fig 3.4) SEM is also used to analyze surface fractures, 

microstructures, examine surface contaminations along with phase discrimination. (Fig. 3.3) 

 

 

Figure 3.3 SEM images of a microstructure3 

 

 

Figure 3.4 The structural details of LDH materials obtained from SEM images4 

3.2.4 Thermogravimetry (TG) 
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 The thermal analysis (TG and DTG) to study the progressive thermal decomposition of the 

materials was carried out using Perkin Elmer STA 6000/8000; approximately 25mg of 

catalyst in Al2O3 crucible was heated in the presence of air (60mL/min) from 40-900°C with 

the linear heating rate of 5°C/min.  

 

Figure 3.5 TG and DTG curves of sample giving percentage decomposition information of 

physical and chemical changes as a function of temperature5 

 

TGA provides information on the thermal stability of the material which is decisive for 

determining the maximum temperature under which the catalyst can be used in a stable state. 

As indicated in Fig. 3.5, it can also be utilized for quantitative composition analysis such as 

temperature dependent weight loss in sample, determining the water content or the residual 

solvents in the material, evaporation rate as a function of temperature. 

 

 

3.2.5 Energy Dispersive X-Ray (EDX) 

 

The composition of the as-synthesized precursor catalysts was done by using Energy 

Dispersive X-Ray analysis (EDXA) by QUANTA 200F with Detector Oxford Instruments X-

Max N SDD/ working condition at 15kV/1 µm3 area, BSE electron in which samples were at 

vacuum (0.38torr) at room temperature.  
 

EDX is used for the chemical characterization of elements in a material, an estimation of their 

relative abundance and presence of any contaminants. (Fig. 3.6)  EDX is a helpful tool for the 

identification of amorphous phase in the sample which otherwise is not detected by other 

techniques such as XRD. 
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Figure 3.6 Energy-dispersive X-ray spectroscopy (EDX) analysis for elemental abundance in 

PbS sample6 

 

3.2.6 Temperature Programmed Reduction (TPR) 

 

The H2-TPR was carried out on Micromeritics Autochem II 2920 instrument equipped with 

thermal conductivity detector (TCD). Sample were pre-treated in Helium (He) flow at 450°C 

for 45min, analysed in 5% Hydrogen (H2) at the rate of 30mL/min with heating ramp of 

10°C/min to 800°C (isotherm 40min).  

 

 

Figure 3.7 TPR of cobalt species during TPR of Fischer-Tropsch Catalysts7 

 

TPR profile is a key technique used for the characterization in heterogeneous catalysis to 

determine the ideal reduction conditions. The surface chemistry of the mixed oxides can be 

studied over a range of temperature. In Fig. 3.7 Co3O4 can be observed changing its state and 

reducing to Co0. 

The oxidized catalysts is subjected to the set temperature in the presence of the flowing gas 

hydrogen. This tool accurately investigates the catalyst reproducibility. Furthermore, a TPR-
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MS can also provide qualitative and quantitative data on the reduction of gas mixture in the 

presence of mixed oxides catalysts.      
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Chapter Summary: 
 

The chapter deals with the detailed experimental procedures and coprecipitation conditions 

employed for the synthesis of the catalyst precursors. Three major types of parameters have 

been studied and explained: 1) under same physical parameters, a complete shift in crystalline 

phase as a ratio of copper cations (x ≤0.75) in a Ni-Cu-Fe system. A nickel-diluted system 

rendered an impossible formation of LDH phase, confirming the Jahn Teller effect in copper 

complex as stated in chapter II.  2) Attempts for synthesis of a well crystalline Cu-Fe LDH at 

pH ranging from acidic (4.5) to strongly basic (12.5). No evidence on formation of the 

desired phase could be achieved. 3) An investigation on atypical copper chemistry by 

replacing iron with aluminium, in both; a divalent (Cu-Al) and trivalent (Ni-Cu-Al) LDH 

system. However, the effect of Teller distortion in Cu-Al case does not seem operative; Cu-

Al and Ni-Cu-Al were obtained in a very well crystalline LDH materials. A brief discussion 

on a difference of solubilities of the cations has been reported.  

 

 
 

*Possible synthesis of Cu-Fe LDH suggested by computational methods: Shi, W., Hu, Jun., 

Ni, Z.M., Li, Y., Liu, J. Acta Phys. Chim. Sin. 28, 8 (2012) 1869-1876. 
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Experimental  

 
4.1 Reagents and Apparatus 

 

Nickel nitrate hexahydrate ≥98.5% (Ni(NO3)2.6H2O), copper nitrate trihydrate ≥99% 

(Cu(NO3)2.3H2O), Iron nitrate nonahydrate ≥99.95% (Fe(NO3)3.9H2O), aluminium chloride 

hexahydrate  ≥99% (AlCl3.6H2O), and sodium hydroxide ≥97% (NaOH) of high Purity grade 

from Sigma Aldrich and sodium carbonate ≥99% (Na2CO3) from Prolabo were purchased and 

used as received without further purification. Deionized water was used throughout the 

experiments.  

 

4.1.1 Apparatus 

 

The synthesis of Layered Double Hydroxides (LDH) was done with Metrohm 877 Titrino 

plus potentiometric titrator coupled with a flow pump to control the rate of addition of the 

cationic solution. A hydroxide solution was added dropwise to maintain stable pH. The post-

synthesis washing of the catalyst precursors was done with a conventional centrifuge (see 

Fig. 4.1) 

 

Figure 4.1 A typical apparatus used for coprecipitation of layered double hydroxides 

 

4.1.2 Procedure  

 

For the preparation of precursor layered double hydroxides , a range of ((M1
2++M2

2+)/M3+=x 

=0.6-0.75) nitrates of the respective cations were taken. Four different types of Layered 

Double Hydroxides (LDH) based on NiFe-LDH, CuFe-LDH, NiCuFe-LDH and CuAl-LDH 

systems were synthesized at different pH and cation ratios with the coprecipitation method 

describ by Tichit and co-workers.1 
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For the explanation of synthesis method, consider NiCuFe-LDH as an example. 0.5M 

solution of nickel nitrate nonahydrate (Ni(NO3)2.6H2O) and 0.5M solution of copper nitrate 

trihydrate(Cu(NO3)2.3H2O) were prepared separately in 100mL of deionized water and 

stirred at room temperature. This solution was later added to a 0.3M solution of iron nitrate 

nonahydrate (Fe(NO3)3.9H2O). The cationic solution was added dropwise into 50mL of 

caustic solution of 0.25M Na2CO3 at the rate of 0.4mL/sec with constant stirring at 700 rpm. 

To keep constant pH during the coprecipitation, the addition of alkaline solution NaOH (2M) 

was done in a controlled manner by pH-STAT Titrino (Metrohm). The resulting suspension 

was aged for 15 hours at 80°C under constant stirring in the mother liquor; centrifuged at 

5000rpm for 10minutes; washed (x3) with deionized water; and dried firstly under vacuum 

for 3 hours and kept at 80°C for 12h to dry. Fig. 4.2 shows an outline of the procedure of 

LDH synthesis and agglomeration of the particles. 

 

 

Figure 4.2 Schematic diagram of LDH synthesis and particle growth by coprecipitation 

 

There can be no single protocol for the synthesis of LDH, every combination of M2+/M3+ 

having its own particular characteristics. Preparation of a pure LDH is often hindered by 

severe limitations.8 The synthesis parameters could strongly influence the structural 

modifications in the LDH structure.6 Therefore, we tried to cover various aspects of 

favourable synthesis conditions to study the Cu-Fe system such as pH, cation ratio and nature 

of cations.  
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4.2 CASE I: Series of catalyst precursors with different copper content for 

attempted synthesis of Cu-Fe LDH 
 

 

Objective: The limitations of synthesis of Cu-Fe LDH have been attributed in the literature 

to a significant structural distortion caused by the copper content in the LDH. In the present 

study, we tried to evaluate the tolerable amount of copper in the LDH system to keep the 

symmetry intact. In other words, the amount of another divalent cation to support the LDH 

structure has been estimated. Series of Cu-Ni-Fe preparations with Fe:x=0.25 starting from 

Cu: x= 0 to 0.75 show a prominent transition from LDH phase to CuO. 

 

Table No 4.1 A shift in crystalline phase as dilution of Ni2+ (divalent cation) by Cu2+ in a Ni-

Cu-Fe LDH system  

Catalyst 

Precursor 

Synthesis Atomic Ratio Crystalline 

Phase 

Final Atomic Ratio (EDX) 

Ni Cu Fe Ni Cu Fe 

IZA 22 0.75 - 0.25 LDH 0.75 - 0.25 

IZA147 0.70 0.05 0.25 LDH 0.72 0.04 0.26 

IZA20 0.375 0.375 0.25 LDH 0.37 0.38 0.25 

IZA 27 0.25 0.50 0.25 LDH+CuO 0.28 0.44 0.28 

IZA23 - 0.75 0.25 CuO - 0.65 0.35 

*The table is in increasing order of copper percentage in the system. 

*All syntheses were carried out at room temperature at pH 10. 

 

4.2.1 Result and Discussion 

 

X-ray Diffraction: In figure 4.3, it is shown that a well crystallized Ni-Fe LDH system is 

incorporated with copper in such a way that at each step of catalysts precursor synthesis, the 

copper content is increased; decreasing nickel and keeping iron constant, to maintain the 

overall divalent/trivalent ratio uniform throughout the series. This was done to investigate the 

potential threshold amount of another divalent cation required to synthesize a well fitted Cu-

Fe LDH structure. Overall, the XRD shows a transition between LDH and CuO. 
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Figure 4.2 Series of Ni-Cu-Fe catalyst precursors changing crystallinity as a result of dilution 

of Ni2+ by Cu2+ at pH 10. 

The cell parameters of LDHs and the distribution of phases (LDH and tenorite) obtained from 

Rietveld refinement are reported in Table 4.2, together with the crystallite size estimated 

from Scherrer analysis of the peaks (003) for LDH and (111) for tenorite. 
 

Table No 4.2 Cell parameters of LDH, distribution of phases from Rietveld analysis and 

crystallite size by Scherrer method for catalyst precursors in the Ni-Cu-Fe LDH system 

Samples Elemental 

composition 

LDH Cell 

Parameters 

(Trigonal, R-3) 

Phases percent crystallite size 

(nm) 

SBET 

(m2 g-1) 

  a=b c LDH CuO LDH CuO  

IZA23 Cu0.65Fe0.35    100  51 109 

IZA27 Ni0.28Cu0.44Fe0.28 3.1153 23.002 84 16 6 44  

IZA20 Ni0.37Cu0.38Fe0.25 3.1054 22.903 100  8  109 

IZA147 Ni0.7Cu0.05Fe0.25 3.0837 22.842 100  7  119 

IZA22 Ni0.75Fe0.25 3.0607 23.023 100  14  88 

 

As observed in the Ni-Fe sample IZA22, an appropriate LDH structure with sharp and 

symmetric reflections for (003), (006), (012), (110), (113) and broad peaks for (015) (018) 

planes is present. As a limited amount of copper is introduced in the system in IZA147, the 

diffraction peaks are broadened and intensities have shown variation with prominent peak 

shoulders (101) (009) appearing at 2θ (34.0°) and (35.5°) respectively.  The broadening of the 

XRD peaks corresponds to a significant decrease of the particle size, as evaluated by the 
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Scherrer method, and an increase of the surface area, as evaluated by the BET method. The 

particle size further decreases when more copper replaces Ni in IZA20 and IZA27.  

The cell parameter c of LDHs is strongly affected by the content of the interlayer space and 

its small irregular variations (less than 1%) from one sample to another are probably justified 

by changes of hydration state in sample dried at 80°C but not kept later in inert atmosphere. 

The cell parameter a is instead virtually independent from the hydration state and, at constant 

iron content, variations following the Vegard’s law can be expected with the substitution of 

Ni by Cu. It can be observed that the a parameter steadily increases with the copper content, 

increasing by nearly 2 % from the value of all-Ni IZA22 to the value of IZA 27, containing 

more copper than Ni. As the ionic ratio of Cu2+, 0.69 Å, is smaller than the ionic ratio of Ni, 

0.72 Å, it is clear that the variation of the a parameter follows a trend opposite to the relative 

size of the cations. It would be tempting to attribute this effect to a deformation of the Cu2+ 

octahedra induced by the Jahn-Teller effect.  

In case of IZA27, when the copper content of the sample is approximately 1.6 times more 

than the nickel in the system, the typical LDH diffraction peak intensity at (003) tends to 

lower down whereby CuO peak of reflection (111) at 2θ (35.2°) appears. The pattern explains 

that the purity of the LDH structure has been affected by the structural distortion caused by 

the unendurable copper content that could be present in an LDH in the absence of another 

divalent cation.  

 

Figure 4.4 Scanning micrographs of Ni-Cu-Fe precipitates with different Cu/Ni ratios. From 

left to right Ni0.75Fe0.25 (IZA22), Cu0.44Ni0.28Fe0.25 (IZA27), Ni0.75Fe0.25 (IZA23). 

 

As soon as nickel is no more present in the Cu-Fe system (IZA23), layered structure could 

not be observed anymore. The diffraction pattern depicted presence of CuO phase showing 

intense peaks of (110), (111), (202), (020), (202) (113), (311), (220) and (004). It is also 

important to remark that no iron-containing phase is visible in the XRD of IZA23. Iron has to 

be present as an amorphous material, possibly identifiable with smaller lamellae present in 

the micrographs of IZA23 together with the larger CuO platelets.  
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The transition of copper oxide to LDH is thus supported by appropriate amount of nickel 

which enables to reduce the distorted effect of copper in a LDH system and provides 

structural stability to the layers.  

This fact has already been illustrated by Cavani et al. who reported that the ratio between the 

Cu2+ and the second metal M2+ ion must be equal or lower than one.2 Furthermore, the 

individual Cu-Fe LDH system faces decreased chemical stability, weaken hydrogen bonding, 

and decreased electrostatic interactions between host and the guest layer has been proposed 

by Lui.3 Nonetheless, the gradual shift in the phase compositions in Ni-Cu-Fe system with 

M2+/ (M2++M3+) =0.75 had never been studied before.  

Conclusion: Despite the close similarity in the ionic radius of Cu2+ (0.69 Å) to Mg2+ (0.72 Å) 

(a typical hydrotalcite cation), Cu-Fe LDH could only be synthesized by virtue of another 

divalent cation. For Cu/Ni ratio higher than 1 in Ni-Cu-Fe system reasonably stable LDH 

structure could not be formed. 

 

 

4.3 CASE II: Series of Cu-Fe catalyst precursors at different pH 
 

 

Objective: As per the definition of coprecipitation itself, the precipitation of the M2+ and M3+ 

occur in a desired proportion as fixed in the start of the reaction. Therefore, the formation of 

hydroxides is primarily determined by the pH because of the required enough concentration  

of OH- ions to be present in the system which must react in order to produce M2+
(1-x) 

M3+
x(OH)2Xx/m.nH2O.6 

Effects of pH on various systems have been studied. For instance Seron et al. described the 

mechanism of Mg/Al LDH formation at varying pH from 10 to 13.2.9 Interesting diffusion of 

Al-rich species into Mg until the complete formation of LDH, has been observed. Similar 

phenomena were studied by C. Ruby and co-workers, investigating the Ni2+-Fe3+ and Mg2+ 

and Fe3+ hydrolysis along with the mechanism of LDH formation with respect to phases 

obtained at pH values 6, 8, 10, 12.5.10 In this way, Cu-Fe LDH synthesis attempts at varying 

pH could provide some reliable clues on the mechanism of formation of this system. Beside 

this, another important factor of coprecipitation is the choice of pH at which the reaction has 

to be conducted. If the cation M2+ and M3+ are far apart in pH range of precipitation, the 

precipitation may not be fruitful for the synthesis of a multi-valent system. One of the cations 

may precipitate leaving the other one as amorphous. Therefore, we tried a range of pH from 

acidic to basic to evaluate the presence of different phases at each pH under similar 

conditions.     
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Result and Discussion 

 

Trials for synthesis of a well crystalline Cu-Fe LDH at various pH (4.5, 8, 10, 12.5) was done 

but no success could be achieved under the attempted conditions. (Fig. 4.5) 

 

 

Figure 4.5 Phases formed in Cu-Fe system at different pH with same cation ratio 

 

Table 4.3 Synthesis attempts of Cu-Fe LDH at various pH 
 

Catalyst 

Precursor 

Synthesis Atomic Ratio 
pH 

Crystalline 

Phase 

Final Atomic Ratio 

(EDX) 
Scherrer 

grain size 

(nm) 
Cu Fe Cu Fe 

IZA 134 0.75 0.25 4.5 Cu2(OH)3NO3 0.87 0.12 37 

IZA 77 0.75 0.25 8 Cu2CO3(OH)2 0.82 0.17 56 

IZA 70 0.75 0.25 10 CuO 0.71 0.28 111 

IZA 69 0.75 0.25 12.5 CuO 0.74 0.25 94 

 

*All syntheses were carried out at room temperature 

 

X-ray Diffraction: At pH > 8, CuO tenorite nanocrystals were formed. At pH 8, 

crystallization at room atmosphere often lead to carbonation and formation of malachite 

(Cu2(CO3)(OH)2). A better crystallization of copper hydroxynitrate (Cu2(OH)3NO3) is 

observed at lower pH but a significant difference in initial and final cation ratio is confirmed 

 

 IZA 134 
IZA 77 
IZA 70 
IZA 69 
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by the EDX. Iron at lower pH does not seem to be incorporated in the solid and clearly has 

been lost in solution or as subcolloidal particles not centrifugated. On the other hand, at 

higher pH, the precipitated cation ratio corresponds well to the initial synthesis ratio however 

preventing copper precipitation as a hydroxy(carbonate/nitrate).5 However, no iron-bearing 

phase is observable by XRD and iron has to be present in colloidal amorphous particles. This 

fact indicates that a best compromise between pH in a multi-cation system is crucial in order 

to form desired multiple-cation phases.13  

   

4.4 CASE III: Series of Catalyst Precursors by replacement of Iron by 

Aluminium 
 

Objective: After verification of the impossibility of formation of LDH in Cu-Fe system, 

several reports of successful synthesis of a Cu-trivalent cation LDH in Cu-Al system aroused 

our attention. Consequently, we chose Al3+ cation to replace Fe3+. Three different categories 

of syntheses were done as follows: 

 

1. A comparison of Cu-Fe and Cu-Al system (to study possible formation of LDH)  

2. A comparison of Ni-Fe and Ni-Al system (to investigate the difference of 

parameters when Ni2+ is incorporated with aluminium) 

3. Intermediate copper content syntheses of Ni-Cu-Fe and Ni-Cu-Fe (to find range of 

Cu2+ effecting the symmetry and effect of content of M3+ in the system) 

 

Table 4.4 Attempted syntheses of LDH in Cu-Fe and Cu-Al systems 
 

Catalyst 

Precursor 

Synthesis 

pH 

Synthesis Atomic Ratio Crystalline 

Phase 

Final Atomic Ratio (EDX) 

Cu Fe Al Cu Fe Al 

IZA31 10 0.67 0.33 - Cu2(OH)3NO3 0.47 0.53 - 

IZA120 10 0.66 - 0.33 LDH 0.74 - 0.26 

 

4.4.1 Results and Discussion 

 

X-ray Diffraction: In the IZA 120, Cu-Al system, a proper LDH phase is obtained. On the 

other hand, Cu-Fe shows formation of copper hydroxynitrate Cu2(OH)3(NO3) (gerhardtite, a 

mineral dedicated to Charles Frédéric Gerhardt, professor at the University of Montpellier 

and discoverer of the synthetic analogue of the mineral. To him is dedicated the present 

Institut Charles Gerhardt in Montpellier) and no crystalline phase of iron is detected. (Fig. 

4.6)  
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Figure 4.6 Diffractograms comparing precipitate formed in Cu2+/M3+ (Cu-Fe, Cu-Al) systems 

 

This indicates a contradiction in results obtained by XRD and EDX. Hence, the undetected 

iron by XRD is though present in the system, perhaps as nanocrystalline iron hydroxide, 

Fe(OH)3.  

Ramesh et al. have explained the formation of gerhardtite by suggesting that some hydroxyl 

groups of copper hydroxide layers are replaced by nitrate ions which are directly coordinated 

to the sheets.7 Thus, copper occupies two different distorted octahedral sites in the copper 

hydroxynitrate structure. The symmetry of the synthetic copper hydroxynitrate, reported in 

Table 4.4, differs from the symmetry of the orthorhombic natural gerhardtite. The synthetic 

material shares the basal plane of gerhardtite but presents a monoclinic cell with half the 

volume of the cell of the natural material. 

 

 

Figure 4.7 Crystal structure of copper hydroxynitrate-Cu2(OH)3NO3.
7 
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Table 4.5 Cell parameters of Cu-Fe and Cu-Al LDH system 

Catalyst 

Precursor 

Composition 
Structure a (Å) b(Å) c(Å) β γ 

Cu Fe Al 

IZA 31 0.47 0.53 - Cu2(OH)3NO3 5.5956 6.0767 6.9299 94.607 90 

IZA 120 0.74 - 0.26 LDH 2.970 - 22.446 90 120 

 
 

 
 

       
Figure 4.8 Colour of uncalcined precursors at a variation of trivalent cation 

 

Table 4.6 Replica of Ni-Fe and Cu-Ni-Fe LDH system with aluminium replacing iron 

Catalyst 

Precursor 

Synthesis Atomic Ratio 
Crystalline Phase 

Final Atomic Ratio (EDX) 

Ni Cu Fe Al Ni Cu Fe Al 

IZA 127 0.75 -  0.25 LDH 0.74 - - 0.25 

IZA 22 0.75 - 0.25 - LDH 0.75 - 0.25 - 

IZA 126 0.37 0.37 - 0.25 LDH 0.38 0.39 - 0.23 

IZA20 0.38 0.38 0.25 - LDH 0.37 0.38 0.25 - 

IZA 124 0.65 0.02 0.33 - LDH 0.62 0.02 0.35 - 

IZA 125 0.65 0.02 - 0.33 LDH 0.65 0.02 - 0.32 

*All syntheses were carried out at room temperature at pH 10. 

Cu0.76Al0.23 Cu0.79Fe0.21 
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Figure 4.9 Diffractograms comparing Ni-Fe and Ni-Al LDH system 

 

 
Figure 4.10 Diffractograms comparing of Cu-Ni-Fe and Cu-Ni-Al LDH system 

 

 

 

 

 

 

Table 4.7 Cell parameter variation in catalysts as a function of cation nature and ratio 
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Catalyst 

Precurs

or 

Composition 
a(Å) b(Å) c(Å) β γ 

Cell 

Volum

e (Ȧ3) Ni Cu Fe Al 

IZA22 0.75 - 0.25 - 3.0738 - 23.132 90 120 189.28 

IZA 127 0.74 - - 0.25 
3.0624

3 
- 

23.512

2 
90 120 191.74 

IZA 31 - 0.47 0.53 - 5.5956 6.0767 6.9299 94.607 90 234.8 

IZA120 - 0.74 - 0.26 2.970 - 22.446 90 120 171.47 

IZA 20 0.37 0.38 0.25 - 3.0907  22.913 90 120 189.55 

IZA126 0.38 0.39 - 0.23 
3.0736

8 
 

22.983

6 
90 120 182.71 

IZA124 0.62 0.02 0.35 - 3.0809  22.841 90 120 187.75 

IZA125 0.65 0.02 - 0.32 3.0051  22.770 90 120 178.08 

 

The cell parameters of the LDHs vary with the composition. The a parameter, which can be 

expected to be not affected by the degree of hydration, decreases from the Ni-Fe LDH 

(IZA22) to the Ni-Al LDH (IZA127), in good agreement with the ratio of the ionic radii of 

iron and aluminium cations. In a similar way, the cell parameter a strongly decreases from 

the Ni-Al LDH (IZA127) to the Cu-Al LDH (IZA120), following a Vegard’s law with the 

decrease of the ionic radius from nickel to copper cations. This logical result is in contrast 

with the increase of the cell parameter with the copper content previously observed in the Ni-

Cu-Fe samples with variable copper content. An alternative explanation of the anomalous 

behavior of the series of the Ni-Cu-Fe samples is that the amount of trivalent in the LDH is 

not always the one expected from the chemical analysis. A decrease of the fraction of iron in 

the LDH structure at the increase of the Cu content would justify an anti-Vegard trend and 

could be attributed to the formation of amorphous Fe-rich material, that we have already 

detected in the Cu-rich end-term of the Ni-Cu-Fe series. 

 

Figure 4.11 Variation of ‘c’ cell parameter in Ni-Cu (Fe, Al) LDH systems 
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The c cell parameter of Cu-Ni (Fe, Al) LDH systematically decreases with the Cu fraction, 

both for Al or Fe as trivalent cation in either ratio (M2+/M2++M3+ = 0.66, 0.75). The variations 

of the c parameter with composition cannot be usually explained by the cation size. The Fe-

bearing samples present a lower parameter than the Al-bearing ones, despite a larger cation 

radius of Fe3+ (0.64 Å) than Al3+ (0.50 Å). The decrease of cell parameter with the copper 

content could be justified by the cation radius of Cu2+ (0.69 Å), smaller than the cation radius 

of Ni2+ (0.72 Å), but a 5% decrease of the c parameter largely exceeds what would be 

justified by the decreased cation radius and clearly depends on a change of the interlayer 

spacing.  

The results show that c cell parameter is characteristically dependent on the trivalent cation in 

agreement with results reported for Co/M3+ system by Ramirez.14 As the M3+ systematically 

increases, the coulombic forces of attraction between the negatively charged interlayer anions 

and the positively charged sheets of the LDH increase, causing a decrease in c cell 

parameter.11, Zhao et al. also suggested a similar fact in Mg2+/Al3+ LDH system, when 

irrespective of the synthesis method opted, the crystallite size in the c direction decrease 

when Mg2+/Al3+ ratio is increased. The presence of excessive trivalent cations probably 

accelerates the stacking of the sheets.12   In our case, the increase of trivalent content from 

IZA22 to IZA124 and from IZA127 to IZA125 clearly justifies the decrease of the c 

parameter, while the effect of the copper content on the c parameter still needs to be 

explained. 

 

4.5 Synthesis of Single hydroxides 

In order to study a comparison between mixed oxides obtained from layered double 

hydroxides and single hydroxides, identical synthesis conditions (pH 10) were opted for the 

preparation of single hydroxides. The PXRD shows that IZA238 iron hydroxides was a 

multiphase sample with nearly equivalent amounts of goethite ((α-FeO(OH)), orthorhombic 

system, and Fe2O3. Similarly, Nickel hydroxide was prepared (IZA239), albeit a splitting of 

the 001 peak was observed at 2θ (18.8-19.1°), probably indicating some heterogeneity in the 

interlayer hydration. IZA240, an attempted synthesis of Cu(OH)2, shows a crystallization of 

CuO tenorite rather than copper hydroxide as shown in the Fig 4.12.  This is clearly due to 

the well-known metastability of Cu(OH)2 towards CuO.15 These hydroxides were then 

calcined at different temperatures and used in catalysis as benchmarks catalysts, as explained 

in a next chapter. 
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Figure 4.12 Diffractograms of single hydroxides prepared under identical conditions as of 

corresponding LDH 

 

  Table 4.8 Synthesis of single hydroxides 
 

Catalyst 
Cation 

used 

Identified 

Phases 

Phase  

% 
 a(Å) b(Å) c(Å) β 

Cell 

Volume(Ȧ3) 

IZA 238 Fe3+ 
Fe2O3 44.73 5.0385 - 13.773 - 302.81 

(α-FeO(OH) 55.26 4.6117 9.954 3.0187 - 138.57 

IZA 239 Ni2+ Ni(OH)2 100 3.1237 - 4.739 - 40.05 

IZA 240 Cu2+  CuO 4.6842 - 3.4279 5.1448 99.175 81.553 
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IZA 238 uncalcined (Fe(OH)3) +Fe2O3 

    
IZA239 uncalcined (Ni(OH)2) 

    
IZA 240 uncalcined (CuO) 

Figure 4.13 Change in colour of uncalcined precursor catalysts (Left) and SEM images (right) 

as a variation of cations 

 

 

4.5.1 Titration Curves provide useful clues on the mechanism of formation of LDH 

It is widely accepted that the mechanism of formation of LDH is a multistep mechanism, in 

which an initial layered phase is formed by the less soluble cation and other components are 

incorporated in further local dissolution-recrystallization steps. The experimental study of the 

precipitation of each component during titration by NaOH of acid solutions provides useful 

information on the possible sequence of steps in the formation of LDHs. We have measured 

these curves by monitoring the evolution of pH in the same apparatus and the same methods 

used for the synthesis of the LDHs. The resulting curves are reported in Figure 4.14 

1.20µm 

1.20µm 

1.20µm 
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Figure 4.14 Titration curves for nitric acid solutions of Ni2+, Cu2+, Fe3+ and Al3+ 

 

As shown in Figure 4.14, the solubility domains of the cations are diverse. For individual 

cation precipitation curves, at room temperature, an initial visible plateaus for each metallic 

cation can be observed at the pH of the parent solution.The initial plateau corresponds to the 

precipitation of an earlier precursor, which provides a pH buffer when NaOH is added. The 

end of this plateau is the onset of a sharp increase of pH, indicating that the precipitation of 

the initial precursor is no more taking place. The ratio OH/cation at the end of the plateau 

provides an information on the composition of the first precipitated precursor. 

In case of Fe, the first plateau ends at OH/cation ratio 1, indicating the uptake of one 

hydroxyl ion (OH-) by precursor Fe3+ precipitating out as goethite (FeOOH). This can be 

expressed as: 

Fe(NO3)3 +H2O +OH-                       FeOOH +2H++3NO3
-1 

The successive step of pH is interrupted by small plateau at pH 9.01 and 12.04 indicating 

minor precipitation steps.  

For Cu2+ the initial precipitation plateau ends at OH/cation 1.5. In the presence of nitrate, this 

value corresponds to the formation of copper hydroxynitrate Cu2(OH)3NO3 (gerhardtite).  

The acid dissociation constant (pKa) of Cu2+(aq) is nearly 7 therefore at pH lower than 6, the 

formation of Cu(OH)2 is not possible in the aqueous solution.4    
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The phase experimentally observed at the end of the precipitation is CuO, which is normally 

formed by dehydration of Cu(OH)2. The formation of Cu(OH)2 would require further 

consumption of OH-, which is not observed. It is possible to postulate a direct mechanism of 

formation of CuO from gerhardtite, which would respect the charge balance and could be 

favoured at high pH by the extraction of protons:  

 

Cu2(OH)3NO3                    2CuO +H2O+2H++ NO3
-1 

 

In the case of Ni, the precipitation plateau ends at a value OH/cation slightly lower than 1. 

Such a value has been interpreted as due to the formation of layered salts of non-

stoichiometric hydroxo-aquo species of general formula [Ni(OH)1-δ(H2O)δ]
δ+.10 These species 

could be weathered at high pH, forming Ni(OH)2
 by releasing protons and anions. 

The case of aluminium is somewhat different. The initial precipitation plateau ends sharply at 

OH/cation 3, clearly indicating the precipitation of a trihydroxide Al(OH)3. However, at 

difference of the other cations, the steps of pH increase is less sharp and the pH rises again 

slowly for pH higher than 9. The amphoteric nature of aluminium oxides and hydroxides, 

with isoelectric point near to 7, allows aluminate species Al(OH)4 to be formed at higher pH 

from the dissolution of the previously precipitated hydroxide. 
 

The titration curves give us information on the mechanism of formation of LDHs if it can be 

assumed that the initial formation of a lamellar phase is needed as a seed for the formation of 

the mixed layered structure. In this case, we can consider that, in the case of the Fe-Cu 

system, early precipitation of goethite takes place. This non-lamellar phase can hardly evolve 

by further incorporation of copper ions. In this case, copper will form an independent 

hydroxynitrate phase which will be the only one later detectable by XRD, due to the low 

crystallinity of the nanogoethite formed. 
 

It can be observed that a different situation occurs in the Ni-Fe system. The early formation 

of layered Ni oxyhydoxy salts at the beginning of the alkalinisation of the solution provides 

seeds on which iron species can be incorporated, allowing the formation of LDH. In the 

presence of an incipient mixed phase, also Cu2+ ions will be incorporated in the growing 

LDH. In this case, the limit of formation of pure LDH will depend on the competition 

between incorporation of Cu2+ in the Ni-Fe LDH and the independent precipitation of 

gerhardtite. 

The situation will be radically different when Al is present instead of Fe. In this case, the 

need of large amounts of NaOH for the precipitation of Al(OH)3 leaves place to early 
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formation of Ni or Cu lamellar precursors, in which the Al3+ cations can be easily 

incorporated, with the formation of classical LDHs. 

Such an explanation of the limit of formation of Cu-Fe LDH solves the conundrum of the 

difference between Cu-Fe and Cu-Al systems, without requiring the intervention of the 

structural instability allegedly brought by Jahn-Teller effect, which intervention in the 

presence of Fe and not of Al was especially difficult to justify. 
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CHAPTER 5  
 

Synthesis of Lignin Model Molecules   
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Chapter Summary: 
 

Despite the rich functionalities and accessibility to lignin, the complexity of this biopolymer 

has only rendered its use limited as an industrial substrate. This fact has prompted the use of 

low molecular weight lignin model molecules which mimic the linkages present in the native 

lignin. The easier analysis (compared to lignin) of the reaction products of simple model 

molecules allows collecting reliable information on the effect of catalysts and reaction 

conditions and it is a prerequisite of advanced studies on lignin reactivity. Advantageously, to 

avoid structural variation, model molecules can be easily and repeatedly synthesized and well 

characterized on a lab-scale. In this chapter, the synthesis protocols of lignin α-O-4 and β-O-4 

model molecules have been stated. Gas Chromatography Mass Spectrometry (GCMS), 

Nuclear Magnetic Resonance (NMR), Matrix-Assisted Laser Desorption Ionization-Time of 

Flight (MALDI-TOF) and Elemental Analysis (EA) were used for the characterization of the 

models. After a brief introduction to the characterization techniques and methods of analysis; 

purity and analytical limitations for model molecules sensitive to high temperatures have also 

been reported.  

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

 

 

Introduction to Lignin Model Molecules 
 

Model molecules are the smallest representative units of lignin that mimic the linkages 

present in the native lignin. The diversity in lignin type coming from different sources and its 

separation methods from the lignocelluloses impart specific properties to it, which make the 

study of lignin very complex. However model molecules can be easily and repeatedly 

synthesized at a lab-scale using synthesis procedures available in literature to avoid structural 

variation. Keeping in view this point, we headed to the synthesis of different α-O-4 and β-O-4 

lignin model molecules (see Fig. 5.1). 

5.1 Synthesis Schemes of lignin model compounds 

  

 

Figure 5.1 Synthesis Scheme of self-synthesized α-O-4 and β-O-4 lignin model molecules 

 

 

5.1.1 Materials and Methods 
 

Guaiacol (98%), vanillin (99%), Methyl α-bromoacetate (97%), Potassium carbonate (99%), 

Benzyl bromide (98%), Tetrahydrofuran (99.9%), Sodium borohydride (96%), 

Diisopropylamine (99.5%), n-ButylLithium (1.6M in hexane), Dioxane (99.5%), Palladium 

on carbon catalyst (10% wt), Ethyl acetate(99.5%) and Ethanol(99.8%) from Fluka, Dry 

acetone (100%) and Hydrochloric acid (35%) from VWR and Magnesium sulphate(99%) 

from Carlo Erba were purchased and used as received without further purification. carbon 

dioxide (99.99%), 5700 kPa cylinder, was purchased from Air Liquide. 

5.1.1.a  Synthesis of methyl 2-(2-methoxyphenoxy)acetate (1a)1 
  

A solution of guaiacol (9mL, 9.9 g, 79.8mmol) in dry acetone (100mL) and methyl α-

bromoacetate (10.85mL, 13.5g, 88.2mmol) was added in anhydrous potassium carbonate 

(13.73g, 99.3mmol) at room temperature and the resulting mixture was refluxed for 2 hours 

at 54°C. When the desired product (monitored by TLC) was formed, the mixture was filtered 
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and washed with ethyl acetate (50 mL approx.); concentrated in the rotator evaporator and 

dried under vacuum to give a colourless product, yield= 86.7% (Fig. 5.2). GCMS highest 

peaks: [m+z] (Relative abundance) = 77(100), 95(69.3), 122(53.3), 123(59.2), 196 (66.8); 1H 

NMR (400MHz, CDCl3): δ 3.71 (s, CH3), 4.63 (s, CH2-CO), 6.81-8.23 (m, 4H, Ph-H). 13C 

NMR (100MHz, CDCl3): δ 52.22 (CH3-COO), 55.88 (CH3-O), 66.50 (CH2-O), 112.11-

122.63 (C-Ar); (M+ n/z) 196.0; elemental analysis C10H12O4 (calculated %) C 60.75, O 34.1, 

H 5.94. The product was stored under vacuum at -5°C. (Refer to the GCMS, NMR, MALDI 

data at the end of the chapter) 

 

 

Figure 5.2 Williamson etherification scheme for synthesis of methyl 2-(2-

methoxyphenoxy)acetate (1a) 

5.1.2 α-O-4 Model Molecule 

 

5.1.1b Synthesis of 4-(benzyloxy)-3-methoxybenzaldehyde (2a)2 

  

A mixture of Vanillin (10g, 65.7mmol) in benzyl bromide (15.27g, 89.2mmol), potassium 

carbonate (4.04g, 29.2mmol) and acetone (150mL) were refluxed for 12 hours at 54°C and 

then water (approx. 150mL) was added to quench the reaction. The precipitated product was 

recrystallized with water and ethanol (2:1), 50mL. A cloudy white solution appeared that was 

centrifuged and washed with water (x3) at 5000 rpm at 0°C for 15 minutes each. The crystals 

were then filtered and dried in a vacuum desiccator overnight, yield = 72% (Fig. 5.3). GCMS 

highest peaks: [m+z] (Relative abundance) = 51(7.2), 65(23.4), 91(100), 92(8.55), 242(4.28); 

1H NMR (400MHz, CDCl3: δ 3.82 (s, CH3), 4.63 (s, CH2-O), 6.76-6.94 (m, 8H, Ph-H), 7.20 

(s, CHO). 13C NMR (100MHz, CDCl3): δ 56.09 (CH3-O), 70.90 (CH2-O), 109.39-128.74 (C-

Ar), 190.23 (CHO).; (M+ n/z) 242.1; elemental analysis C15H14O3 (calculated %) C 72.06, O 

18.52, H 5.23. The compound, if not stored properly, was oxidizing; with its colour changing 

to yellowish. Therefore, strict measures were taken to retain the molecule purity. (Refer to the 

GCMS, NMR, MALDI data at the end of the chapter) 
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Figure 5.3 Williamson etherification scheme for synthesis of 4-(benzyloxy)-3-

methoxybenzaldehyde(2a) 

 

 

 

 

 

 

 

  

 
5.1.3 β-O-4 Model Molecules 
 

5.1.1.c Synthesis of methyl 3-(4-benzyloxy)-3-methoxyphenyl)-3-hydroxy-2-(2-

methoxyphenoxy)propanoate(3)3 

 

A two-necked 250mL round bottom flask with a magnetic stirrer and a thermocouple was 

flushed with argon gas. (2.875mL, 20.3mmol) of diisopropylamine was added in 50mL of 

THF. This reaction mixture was cooled to 0°C and a (14.6mL, 155mmol) of n-ButylLi was 

added very slowly in 30 min. This mixture was then cooled to -78°C with dry ice. After 

stirring for 1 hour, a separate solution of compound 1a (4.266g,  21.7mmol) in 50mL of THF 

was added slowly in 2 hours (approx. 0.75mL per minute) by maintaining the temperature at -

78°C. After stirring of additional 20min, a solution of compound 2a (3.18g, 13.14mmol) in 

50mL of THF was added dropwise in 1 hour (approx. 1mL per minute). 

      Figure 5.4 Precipitated, clear colourless needles of 4-(benzyloxy)-3-methoxybenzaldehyde 
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Figure 5.5 Mechanism reaction of compounds1a and 2a 

 

The reaction mixture was allowed to stir for 90min at -78°C and 120mL of distilled water 

was added for quenching. The aqueous phase was extracted by solvent extraction by Ethyl 

acetate 540mL (180 x 3). The separated organic phase was washed with HCl (14.07mL in 

160mL), water 160mL and brine 200mL. It was then dried with MgSO4 to absorb the excess 

of water left in the organic phase. The mixture was then concentrated under reduced pressure 

and dried for 3 hours in vacuum to obtain a yellowish-orange product, a combination of two 

diastereomers threo/erythro. Yield=74% (Fig. 5.6)1H NMR (400MHz, CDCl3: δ 3.77 (s, 

CH3), 3.82 (s, CH3), 3.88 (CH3-COO), 3.94 (s, OH), 4.91 (CH-COO), 5.07 (s, CH2-O), 5.18 

(CH-OH), 7.19-7.38 (m, 12H, Ph-H). 13C NMR (100MHz, CDCl3): δ 52.2 (CH3-O), 55.9 

(CH3-O), 70.92 (CH3-COO), 74.8 (CH-O), 70.9 (CH-OH), 90.59 (CH2-O), 110-128 (C-Ar).; 

(M+ n/z), 438.17; elemental analysis C25H26O7 (calculated %) C 64.68, O 29.13, H 5.96. The 

product was stored in fridge at -5°C under vacuum and analyzed by MALDI and NMR. 

 

 

Figure 5.6 Aldol reaction scheme for synthesis of methyl 3-(4-benzyloxy)-3-methoxyphenyl)-

3-hydroxy-2-(2-methoxyphenoxy)propanoate (3) 
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Figure 5.7 System setup for the synthesis of compound 3 

 

5.1.1c.1 Purification of Compound 3 

The synthesis and purity of compound 3 was monitored by the TLC during the reaction. After 

the completion of the reaction, the left over unreacted reactants were observed in the reaction 

stream which was separated by column chromatography with silica (70-200microns) packed 

column using as eluent a mixture of THF and hexane (1:1) respectively. (see Fig. 5.8) 

 
Figure 5.8 Column chromatography to purify compound 3 from the unreacted compound 1a 

and 2 
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5.1.1.d Synthesis of 1-(4-(benzyloxy)-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane- 

1,3- diol (3a)4 

 

A solution of (0.646g, 1.47mmol) of methyl 3-(4-(benzyloxy)-3-methoxyphenyl)-3-hydroxy-

2-(2-methoxyphenoxy)proponoate (3) in 12.99mL of THF/H2O (7.692mL/4.308mL=3:1) was 

prepared. 0.6g of NaBH4 (15.8mmol) was added with continuous stirring in three turns (0.2g 

each/2 hours).The mixture was left stirring until 48 hours at room temperature. 25mL of 

water was added and the aqueous solution was extracted with ethyl acetate (200mL). 

 

Figure 5.9 Mechanism of hydride reduction and protonation 

 

The organic phase was washed and dried with MgSO4, filtered and concentrated to give the 

product. Yield=36% (Fig 5.10) (M+ n/z), 410.17; elemental analysis C24H26O6 (calculated %) 

C 68.67, O 23.46, H 5.94. The characterization done by MALDI-TOF can be found at the end 

of the chapter. 

 

 

Figure 5.10 Hydride reduction scheme for synthesis of 1-(4-(benzyloxy)-3-methoxyphenyl)-

2-(2-methoxyphenoxy)propane- 1,3- diol (3a) 

 

Due to impurities in the molecule, the NMR results were not conclusive enough, so we 

performed the MALDI-TOF analysis to see the molecular ion. 
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5.1.1.e Synthesis of 1-(4-hydroxy-3-methoxyphenyl)-2-(2 methoxyphenoxy)propane-1,3- 

diol (4)5 

 

(0.16g, 0.39mmol) of 1-(4-(benzyloxy)-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane- 

1,3-diol was added in 8.57mL of Dioxane and 0.04g of 10wt% Palladium/Carbon catalyst 

with continuous stirring. H2 was purged into the system and the consumption of the starting 

material was monitored with TLC. The catalyst was added with the same rate until all the 

starting material was consumed. The catalyst was filtered and dioxane was evaporated to get 

the product. Yield= 64% (Fig. 5.11). (M+ n/z), 320.13; elemental analysis C17H20O6 

(calculated %) C 62.81, O 28.43, H 5.98. Result of MALDI-TOF spectrum has been attached 

at the later part of the chapter. 

 

Figure 5.11 Hydrogenation scheme for synthesis of 1-(4-hydroxy-3-methoxyphenyl)-2-(2 

methoxyphenoxy)propane-1,3- diol (4) 

Due to impurities in the molecule, the NMR results were not conclusive enough, so we 

performed the MALDI-TOF analysis to see the molecular ion for this compound as well. 

5.2 Characterization of Model Molecules 
 

The characterization of the model molecules was done by various techniques however it was 

observed that some techniques were valid up to a certain point. For example, when GCMS of 

compound 3 was done, it broke apart into the component reactants and only their peaks could 

be seen in the MS spectrum however when the same molecule was analyzed by NMR and 

MALDI-TOF, the compound was easily detected. Thus temperature sensitive molecules 

could only be analyzed by NMR or MALDI-TOF and elemental analysis. 

▪ GCMS 

▪ NMR 

▪ MALDI-TOF 

▪ Elemental Analysis 
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5.2.1 Gas Chromatography-Mass Spectrometry 
 

A Gas Chromatography (GC) coupled with Mass spectrometry (MS), GCMS, is an analytical 

technique for the qualitative and/or quantitative analysis of low molecular weight single 

components or mixtures that are sufficiently volatile but thermally stable at high 

temperatures. A sample dissolved in an appropriate solvent is injected into the GC where it is 

evaporated and taken through the column by the carrier gas, helium (mobile phase). The 

components of the mixture are separated on the basis of their interaction with the column 

coating (stationary phase). The helium gas containing the sample is transferred to a heated 

transfer line with a connecting ion source at the end where separated components of mixture 

are converted to ions. A typical method of ionisation is Electrospray ionization (ESI). A 

sample molecular ion (M+) is formed as a result of loss of electron by the beam of 

electrospray. The high energy transferred to the molecules fragments leads them to produce 

smaller units (ions) with characteristic relative abundance that confirms the distinctive 

molecular species as a ‘fingerprint’ (Fig. 5.12). As these ions travel to the mass analyser 

(commonly quadrupoles), the positively charges ions are separated and travel to the detector. 

An amplified signal from the detector is sent to the computer and individual spectral peaks 

yield the molecular weight of the compound (Fig. 5.13). Thus GCMS is a reliable technique 

for the separation of component mixture, their purities and a confirmation test. However, for 

the sake of quantification, GCMS has limitations.6 

5.2.1.1 GCMS Analysis of Lignin Models 
 

The analysis of the model molecules was done by Shimadzu GCMS-QP 2010 plus using 

Zebron ZB-5HT column of dimensions: length 15m, thickness 0.10µm, diameter 0.25mm, 

using the following method. For GC; Column oven temperature 40°C; Injection temperature 

250°C; Constant flow of Helium 1.21mL/min, Split ratio 30. For MS, ESI mode of ionization 

with ion source temperature 200°C; Interface temperature 250°C; (m/z 33-750). 



 

97 

 

 

Figure 5.12 Block diagram of a gas chromatograph-mass spectrometer.7 

 

 

 

 

 

 

 
 

             

Figure 5.13 Working Principle of GCMS.7 
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5.2.1.2 GC-MS Identification of Model Molecules 

 
 

 
Figure 5.14 MS spectrum of MS spectrum of methyl 2-(2-methoxyphenoxy)acetate (1a) 

 

 
Figure 5.15 MS spectrum of 4-(benzyloxy)-3-methoxybenzaldehyde (2a) 
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Figure 5.16 MS spectrum of methyl 3-(4-benzyloxy)-3-methoxyphenyl)-3-hydroxy-2-(2-

methoxyphenoxy)propanoate(3) 
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5.2.2 Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) 

Analysis 

 

MALDI Technique is an advanced tool for analysis of heavy molecular weight compounds 

that are sensitive to high temperatures. Its principle is similar to Mass Spectrometry the 

molecules are vaporized and converted into charged ions and the mass to charge ratio is 

calculated. But, contrarily to GCMS, MALDI relies on soft ionization method i.e. the 

addition of one or more known ions to the sample molecule. The addition however can be 

either cationic (positive mode) or anionic (negative mode). This gentle ionization technique 

saves the sample integrity to a significant level. Another advantage of the MALDI technique 

is the production of singly charged ions, which simplify the interpretation of data. Therefore, 

MALDI has been considered a reliable instrument for analysis of high molecular weight 

compounds and proteins. 
 

Practically, the sample is uniformly mixed with the matrix on a conductive plate. The matrix, 

together with the sample is vaporized and comes in interaction with the Ultra violet radiation. 

This produces charged ions of different sizes on the sample plate which fly towards the 

detector due to a potential difference between two points. As the potential difference between 

two points is constant for all ions, lighter ions tend to travel faster through the drift space to 

reach the detector. (Fig. 5.14) Consequently, the time spent by each ion in the vacuumed 

space is different, depending on their mass (Time of flight). Hence, this system is known as 

MALDI-TOF MS Spectrum. 

 

 

Figure 5.17 Schematic Diagram showing the working principle of MALDI-TOF MS.8 

 

5.2.2. MALDI-TOF Analysis of Lignin Models 
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Full scan mass spectra MALDI-TOF-MS were performed on a MALDI-TOF/TOF Bruker 

RapifleX mass spectrometer, using a nitrogen laser for MALDI (=337 nm). Mass spectra of 

3000 shots were accumulated for the spectra at a 25 kV acceleration voltage and reflectron 

lens potentials at 26.3 KV. Mixture of peptides was used for external calibration. The 

samples were dissolved at 40 mg/mL in a mixture of water: acetone (50:50 vol %). The 

matrix used was DHB (2,5-dihydroxybenzoic acid). It was dissolved at 10 mg/mL in a 

mixture of acetone and water (50:50 vol %). The cationization agent was LiCl (10 mg/mL in 

methanol). 10 µL of matrix solution, 4 µL of sample and 1 µL of salt were mixed. 1 µL of 

this mixed solution was hand spotted on a MALDI target and left to dry before analysis.  

5.2.2.1 MALDI-TOF Identification of Model Molecules 

 

 
Figure 5.18 Spectrum MALDI-TOF of methyl 2-(2-methoxyphenoxy)acetate (1a) 
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Figure 5.19 Spectrum MALDI-TOF of 4-(benzyloxy)-3-methoxybenzaldehyde (2a) in 

positive ionization mode 

 

 
Figure 5.20 Spectrum MALDI TOF of methyl 3-(4-benzyloxy)-3-methoxyphenyl)-3-

hydroxy-2-(2-methoxyphenoxy)propanoate (3) in negative (top) and positive (bottom) 

ionization mode 

(M+Na)+=438.17+23=461.2 

 

M=438.17  

 

(M+K)+=338.17+39=477.2 
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Figure 5.21 Spectrum MALDI TOF of 1-(4-(benzyloxy)-3-methoxyphenyl)-2-(2-

methoxyphenoxy)propane-1,3-diol (3a) in positive (top) and negative (bottom) ionization 

mode 

 

Figure 5.22 Spectrum MALDI-TOF of 1-(4-hydroxy-3-methoxyphenyl)-2-(2-

methoxyphenoxy)propane-1,3-diol (4) in positive (top) and negative (bottom) ionization 

mode 

M=410.17  

 

(M + propanol+Li)+ =410+60+7=477 

 
(M –(H2O) +Li)+ =410-(18) +Li(7)=399 

 

(M+K)+=320.13+23=359.13 

 

(M+Na)+=320.13+23=343.13 

 

M = 320.13  
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5.2.3 Nuclear Magnetic Resonance (NMR) 
 

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive analytical technique 

for the determination of the structure and purity content of the molecules.10 It is a physical 

phenomena used to investigate molecular properties of matter by irradiating atomic nuclei in 

a magnetic field with radio waves.9  

Among all offered spectral methods, NMR is the only technique to analyze and interpret a 

whole spectral range and determine the molecular composition.10 The spectra are clear, 

distinctive, and often exceedingly predictable for small and pure molecules. Not only are the 

different functional groups easily identifiable but also the same functional groups with 

different neighbouring substituents give the unique signals. The working principle of NMR is 

related to the spins of the atomic nuclei of the sample. The spinning of proton in the nuclei 

generates a magnetic field which is aligned either in or out of the orientation of the external 

magnetic field when applied. If the proton positions itself in the direction of field, a lower 

energy orientation is achieved, called alpha spin state (α-spin) and beta spin (β-spin) for vice 

versa.11 When the electromagnetic radiation of the right frequency is applied, the protons flip 

to from α to β or vice versa spin state. This flipping electromagnetic radiation is absorbed the 

nucleus that is oriented in the direction opposite to the magnetic field. Thus nucleus tends to 

be in the state of resonance which is revealed in the form of hyper fine spectral lines, detected 

by the NMR spectrometer. As the energy required to flipping the nucleus for all compounds 

vary, their resonance differs, giving details of the electronic structure. Therefore, highly 

characteristic spectral lines are obtained for each compound.11 

 

 

Figure 5.23 Schematic of nuclear magnetic resonance (NMR) 12 
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5.2.3.1 NMR Analysis of Model Molecules 
 

The 1H and 13C APT NMR were done on a Bruker 400MHz HD AVANCE III spectrometer 

with Bruker Smartprobe with two channels, 1H and Broadband. For 1H the hard pulse (90°) is 

9.25µs for 40W and we use a 30° pulse with a D1 (relaxation delay) of 1s in 1D 

measurement. For 13C the hard pulse is 9.90µs for 100W, frequency 100MHz. 13C APT 

sequence show CH,CH3 +  and C,CH2-. 

 

Figure 5.24 1H-NMR (400MHz, CDCl3) of Compound 1a 

 
Figure 5.25 13C-NMR (100MHz, CDCl3) of Compound 1a 
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Figure 5.26 1H-NMR (400MHz, CDCl3) of Compound 2a 

 

 

 
Figure 5.27 13C-NMR (100MHz, CDCl3) of Compound 2a 
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Figure 5.28 1H-NMR (400MHz, CDCl3) of Compound 3 

 

 

Figure 5.29 13C-NMR (100MHz, CDCl3) of Compound 3 

 

5.2.4 Elemental Analysis (EA) 
 

Elemental analysis is an analytical tool to qualitatively and quantitatively characterize a 

sample composition by combustion.13 In organic chemistry it generally refers to the carbon, 

hydrogen, oxygen, nitrogen and heteroatom (X) content of the sample. The technique is 
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useful to ascertain unknown compound synthesized composition. Moreover, it is the most 

convenient and inexpensive method to figure out impurities in the sample by comparing them 

with reference if available. The sample is burnt in excess of oxygen which produces 

combustion products like water, carbon dioxide, Nitric oxide (see Fig. 5.27). The masses of 

these substances, separated through gas chromatography, are used to calculate the average 

initial composition of the sample to derive its chemical formula. 

 

Figure 5.30 A typical combustion analyzer with a furnace.14
 

For determination of Carbon and Hydrogen: Elemental analysis was carried out on 

ElementarVario Micro Cube with a balance Mettler Toledo UMX5Comparator, accuracy 

0.1μg. The sample (approx. 10mg) was prepared in a tin capsule which is introduced into a 

120-position smother. The sample is sent in inert SAS (white zero) under helium gas flow. 

The catalytic combustion of the capsule and sample takes place at 1150°C in the first furnace. 

Reduction of gases is carried out on hot copper at 850°C in a second furnace. Hence, the 

gases formed, (CO2, H2O and SO2) are mixed with the carrier gas Helium. This gaseous 

mixture is separated by the TPD (Temperature Programmed Desorption) column. The signals 

are detected by TCD Detection of the signal by a TCD catharometer (thermal conductivity 

detector). 

For Oxygen: The sample is placed in a silver capsule and placed at 120-position smother. 

Under inert atmosphere (helium flow at 1050°C), pyrolysis. The pyrolysis gases products are 

converted to CO and separated by chromatographic separation followed by signal detection 

by TCD.  

Elemental analysis data of the molecules have been reported along with the above mentioned 

protocols. 
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5.3 Conclusion 

 

Successful synthesis and purification of four model molecules mimicking the α- and β-O-4 

bonds present in the lignin models. The model molecule was used as a substrate for the 

catalytic hydrodeoxygenation studies aimed for the depolymerisation of lignin. 

Unfortunately, we could not test all the molecules as substrate for HDO reactions due to time 

constraints but this work can be further pursued with the remaining model molecules.   
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CHAPTER 6 

From Layered Double Hydroxides to 

Mixed Oxides 
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Chapter Summary:  
 

This chapter explains the calcination parameters opted for the transformation of layered 

double hydroxides to their corresponding mixed metal oxides (MMO). Characterization and 

evaluation of the phases present in the calcined catalysts was chiefly done by XRD. The data 

obtained show a clear distinction in textural properties, degree of crystallinity and crystalline 

phases evolved at each step of calcination temperature. Data from thermogravimetric analysis 

(TG/DTG) was also correlated to understand the decomposition pattern of house-of-cards 

assembly of the LDHs.  It was observed that spinel formation begins at higher temperatre 

than the crystallization of divalent oxides. Upon calcination of Fe-containing as–synthesized 

catalysts, no Fe-phase was detected at calcinations temperature below 600°C. Late formation 

of a crystalline iron-bearing phase suggests a high stability of amorphous iron oxides. The 

quantitative estimation of phases was done by internal standard method using the Rietveld 

refinement. Surface area and pore volume of solids, measured by N2-adsorption and analyzed 

by Brunauer-Emmett-Teller method, have also been studied. Among various catalysts 

synthesized, special emphasis has been given to those used in catalytic hydrodeoxygenation 

of lignin model. 
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Mixed Metal Oxides from LDH 
 

As stated previously in chapter 2, mixed metal oxides (MMO) obtained by the thermal 

decomposition of LDH are favorable candidates as catalysts. In comparison to LDH, metal 

oxides own unusual properties like mechanical strength and resistance to leaching. Their 

metal sites are not obstructed by anions but their activity largely depends on the surface area, 

hence there is a trade-off between increasing stability and decreasing surface area with 

temperature of calcination. Thus, the temperature of calcination causes significant 

transformation to the morphology of the catalysts in terms of extent of crystallinity, phases 

present, crystallite size, surface area, and their efficiency for application as well. A few 

examples on this subject have been quoted below.  

 

6.1 Fractional Crystallization of Oxide Phases 
 

Elhalil et al. synthesized Zn-Al-CO3 LDH nanoparticles by the co-precipitation method with 

Zn/Al molar ratios r = 1, 3 and 5 and calcined it in the temperature range from 300-600°C to 

be used for the removal of pharmaceutical pollutants.1 At 300°C the characteristic XRD 

peaks of ZnO oxide were observed in all samples. As the calcination temperature was 

increased, characteristic reflections of the mixed composite ZnO-ZnAl2O4 appeared at 600°C. 

The optimum adsorption of 94.59% was achieved with Zn/Al (r= 3) catalyst, calcined at 

300°C.Perez-Ramirez et al. explained the decomposition behavior and phase transition in 

Co/M3+ (trivalent cation (Al, Ga, Fe, and Cr)) through spectroscopic techniques.2 For the Co-

Al HTlc, calcination at 200°C brought to the collapse of the layered double structure and the 

formation of a spinel-like structure. A spectrum typical of a normal II–III spinel compound 

was already observed at 250°C, indicating the loss of lamellar arrangement in the layered 

structure and confirming that IR spectroscopy can detected local structure at temperature 

lower than the one required for extension of these structures in a crystalline phase.  In Co-Fe 

HTlc, the layer decomposition was observed at even lower temperature of 200°C and finally 

leadto the oxidic phase. In case of Cr-Cr HTlc, spinel indicating doublet only appeared at 

300°C, high stability and complete decomposition of the layers into oxidic phase only occurs 

at 350°C. Oxidic phase formation occurs above 300-350°C. In all cases, a well define 

crystallization is achieved upon calcination at 550°C for 3h yielding cobalt spinels. Kamanth 

and coworkers proposed a detailed formation mechanism of Co/Al LDH precursor to oxide 

with spinel structure caused by variation in basal spacing.3 The studies were conducted in by 

in situ variable temperature XRD at 50, 125, 150, 145, 200, 225, 275, 600 and 800°C. 

Similarly, Kannan et al. contributed to the studies on the thermal decomposition pattern of 
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Co-Al LDH, synthesized by sequential precipitation and calcined at ≥400°C for 5h in air.4 A 

spinel phase, solid solution of Co3O4, was observed at temperature as low as 200°C. The 

unusual low temperature of crystallization was considered specific to Co-bearing systems. In 

all the cases, however, spinel crystallinity varied with the atomic ratio of the cations. 

Increasing temperature improved crystallinity due to growth of spinel phase at sintering. The 

particle size grew at calcination temperature of 600°C.  

It can be concluded that often precursors of catalysts generate different phases at a given 

temperature. Nevertheless, in most of the literature available, the percentage abundance of the 

phases as a function of temperature is not discussed. An interesting study is to correlate the 

thermal decomposition stages of the precursor with evolution and analysis of the quantitative 

transitions of the phases. In the present study, we have focused on the phase evaluation in a 

novel Cu-Ni-Fe LDH system (as uncalcined, discussed in Chapter 4) sintered at various 

temperatures and its comparison with the single precursor oxides and composition replicas 

 with aluminum instead than iron.    

In some cases, the XRD data do not provide clue about expected phases in the catalysts, 

particularly those calcined at lower temperature. At elevated temperature, the same catalysts 

clearly showed multi-phases. Thus, it was confirmed that transformation of LDH to mixed 

metal oxides is strictly dependent on the cation ratios and calcination temperatures.2,3 It is 

verified that up to a certain range of temperature, a part of samples remains amorphous and 

hence undetected by XRD. The best possible way for calculating the amorphous fraction is 

by the internal standard method.5 This provides a combined sumquantitative evaluation of 

well crystallized phases and the undetected residue of sample can be quantitatively evaluated 

as amorphous. This technique is not only efficient to determine the amorphous material in a 

polyphasic sample but can also assist in understanding the mechanism and differences in 

catalytic properties of catalysts.  

6.2 Characterization of Mixed Oxides Catalysts 
 

As described in the chapters 2 and 4, we will now focus our interest in formation and 

properties of mixed oxides as per modification in the cation nature, ratio and calcination 

temperature. These multiple factors allow the understanding of property modifications in the 

catalysts. Hence, here we report as typical catalyst Ni-Cu-Fe an example with Ni/Cu (1:1) 

and divalent/iron ratio 3. We will now discuss in detail the characteristic properties of this 

catalyst, which will be later compared with the rest of syntheses, keeping this as a typical 

catalyst.  
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6.3 Standard Catalyst Example: IZA 20 (Ni0.37Cu0.38Fe0.25)  

 

To determine the thermal stability and right temperature of calcination, the thermogravimetric 

analysis was carried out in air at 60mL/min, ramp=5°C, 40-900°C. The observed initial 

weight loss of 10.64% of the LDH around 150°C is attributed to the dehydration, caused by 

the loss of water molecules in the interlayer region. Later, the loss of hydroxyl groups linked 

with anions in the interlayer region is shows degrading 15.49% of the sample in 150-290°C. 

A complete collapse of the layer occurs when the carbonate anions in the interlayer are lost 

between 300-400°C with affective mass loss of 2.88%. In this sample IZA 20, the LDH is 

completely transformed into oxide phase after 400°C (Fig. 6.1). However, the loss of mass at 

a given temperature is also function of the time spent at that temperature and the loss of mass 

after several hours of calcination can be complete at 400°C also if it is not complete at the 

same temperature in the dynamic evolution of temperature of TG.   

 

 
Figure 6.1 TG/DTG of uncalcined IZA20 (Ni0.37Cu0.38Fe0.25) showing percentage loss of sample 

with increasing temperature  

 

As the information provided by the TG/DTG, the loss of labile components of the uncalcined 

LDH is completeat 400°C and correponding formation of mixed oxides must have taken 

place. Therefore, we carried out the calcination at 400°C. However, the catalyst study by 

XRD indicated that the assumption of complete mixed oxide crystallisation just after 400°C 

was not factual, since only NiO phase was obtained, not well crystallized, and iron was 
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missing in the observed diffractograms. Further evidence was collected by calcining the LDH 

catalyst at even higher temperatures, 400-800°C, to study the evolution of phases. 

Different crystalline phases obtained as a function of temperature (See Fig. 6.2) were 

identified by ICDD as: nickel oxide bunsenite-NiO, tenorite-CuO, spinel-M3O4 of mixed 

composition but surely including iron. The diffraction pattern, cell parameters and percentage 

of each phase, and evaluation of the amorphous fraction, have been indicated in the figure 

6.2, annex A.1 and figures 6.3, 6.4 respectively.  

  

Figure 6.2 X-ray diffraction pattern of IZA 20 Ni0.37Cu0.38Fe0.25 calcined at different 

temperatures 

NiO and CuO phases are already present at 300°C. NiO phase is strongly prevalent at 300°C 

and 400°C, despite the equivalent amounts of Cu and Ni present in the sample. (see Fig. 6.3) 

Moreover, a spinel phase just appears at 500°C. Clearly the ratios between the XRD phases 

do not correspond to the composition of the sample. Some Cu and Fe are missing from the 

crystalline phase at low temperature and they can be considered as constituent of an 

amorphous material formed by the thermal decomposition of the LDH and coexistent with 

the crystalline phases observed. The presence of amorphous material can be confirmed by 

quantitative analysis of the XRD with internal standard. 

 



 

117 

 

 
 
 

Figure 6.3 Change in percentage of crystalline phases in IZA20 Ni0.37Cu0.38Fe0.25 at different 

temperatures 

 

At the lowest temperature, the crystalline phases justify only the minor fraction of the sample. 

This confirms the presence of amorphous material, which amount decreases with the 

temperature of calcination. (Fig. 6.4) The ratios between phases changes as new fractions of 

amorphous material are selectively incorporated in crustalline phases, leading, between 400 

and 600 °C, to the growth of CuO and spinel phases. 

An open question is that at which point the composition of the amorphous material can be 

deduced by the internal standard analysis. It would be possible if the composition of the 

crystalline phases present could be surely known. However, it can be observed that, at 

increasing temperature of calcination, the CuO phase becomes predominant on the NiO phase 

despite the 1:1 ratio between Ni and Cu in the sample and that the spinel phase present is far 

from justifying the amount of Fe present in the samples.  It can be safely assumed that the 

tenorite and bunsenite phases present are not pure CuO and NiO, respectively, but they are 

doped phases containing a significant amount of Fe. This can be confirmed by monitoring 

their cell parameters. The evolution of the cell parameters of the cubic bunsenite and spinel 

phase and the evolution of the cell size of the tenorite phase, reported in (Fig 6.5), clearly 

indicates a change of composition of these phases with the temperature of calcination. An 

increase of cell size of the divalent oxides with calcination temperature can easily be 

attributed to the incorporation of Fe2+ cations, larger (80 Å radius) than Ni2+ (72 Å) or Cu2+ 

(69 Å), incorporated from the amorphous material. The interpretation of the increase of cell 

parameter of the spinel phase is less easy to understand in terms of cation composition of the 

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900

P
h

as
e 

P
er

ce
n

t 

Temperature (°C)

CuO NiO Spinel



 

118 

 

phase. Indeed, the cell parameter of spinel, evolving fron 8.30 to 8.34 Å at increasing 

temperature,l are lower than the cell size of most expected phases, cuprospinel CuFe2O4 

(8.369 Å), tenorite NiFe2O4  (8.355 Å), and even the cation-deficient γ-Fe2O3 maghemite 

 (8.350 Å). It is clear that a solid solution between a ferrite and Co3O4 (8.08 Å) is present.6 

However, it is difficult to define a Vegard’s law approach to the determination of the 

composition, as the increase of cell size with temperature is probably related to a decrease of 

the average oxidation state of the spinel. The loss of the cation vacancies in cation-defective 

oxidized spinel is expected to increase the cell size, going towards a correct M3O4 

stoichiometry.7 

 

 
Figure 6.4 Mass fraction of phases and amorphous material in IZA 20 as a function of 

temperature by Rietveld analysis with internal standard. An inverse relation is observed 

between amorphous material and temperature (°C) 

 

The N2 physiosorption showed a type IV isotherm as classified by IUPAC. Fig. 6.5 shows the 

variation in c cell parameter with the rise of temperature. The surface area and pore volume 

calculated using BET method are indicated in Table 6.1. 
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Table 6.1: BET surface area and pore volume of IZA 20 uncalcined and calcined samples 

 

Composition Calcination Temperature (°C) BET surface area (m2/g) Pore Volume (cm3/g) 

IZA20 

Ni0.38Cu0.37Fe0.25 

- 109 0.253 

400°C 97 0.324 

500°C 32 0.164 

600°C 40 0.164 

700°C 18 0.015 

 

 

 

 

Figure 6.5 Cell Volume and size upon calcination of IZA 20  (Ni0.37Cu0.38Fe0.25) 

 

 

Figure 6.6 Adsorption-desorption isotherms of IZA20 (Ni0.37Cu0.38Fe0.25)  

8.305

8.31

8.315

8.32

8.325

8.33

8.335

8.34

8.345

70

72

74

76

78

80

82

0 200 400 600 800 1000

ce
ll 

si
ze

 s
p

in
el

ce
ll 

vo
lu

m
e 

N
iO

, C
u

O
 

calcination T °C

CuO NiO spinel

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Q
u
q
n
ti
ty

 a
d
s
o
rb

e
d
 S

T
P

 (
c
m

3
g

-1
)

Relative pressure p/p°

IZA20 Uncalcined IZA20 calcined 400C

IZA20 calcined 500C IZA20 calcined 600C



 

120 

 

 

6.4 Scheme series of Mixed Oxide Catalyst Synthesis 
 

A scheme opted for the detailed exploration of the Ni-Cu-Fe system is the investigation of 

individual cations based catalysts such as Ni-Fe and Cu-Fe systems, their phase evolution and 

quantification of amorphous material along with variation in cell parameters. The calcination 

at 600°C was a standard temperature maintained for catalysts used in the HDO reactions. 

 Now we will present the series of selected catalysts prepared in this range. 

Table 6.2 List of mixed oxide catalysts in order of increase of Cu/Ni atomic ratio  

Catalyst 
Cu/Ni atomic 

ratio 

Final Atomic Ratio 

(EDX) Crystalline phase by calcination 

at (600°C) 

Surface area 

(m2g-1) at 

600°C Ni Cu Fe 

IZA 22 0 0.75 - 0.25 NiO, spinel 89 

IZA 124 0.02 0.62 0.02 0.35 NiO, spinel 53 

IZA147 0.04 0.72 0.04 0.26 NiO, spinel 71 

IZA 123 0.2 0.55 0.17 0.27 CuO, NiO, spinel 55 

IZA 20 0.38 0.37 0.38 0.25 NiO, CuO, Spinel 40 

IZA 24 0.56 0.18 0.56 0.27 NiO, CuO, Spinel 53 

 

Table 6.3 List of Cu-Fe oxide catalysts in order of increase of Cu atomic ratio  

 

The introduction of different metals in the structure could strongly influence the surface 

related properties of the catalyst such as dispersion, particle size and reducibility which 

eventually affect their catalytic performance. As in the above example, the increase in copper 

content visibly indicates the decrease in surface area of the catalyst, all calcined at same 

temperature, 600°C. However, all mixed catalysts retain a surface area higher than 50 m2 g-1, 

while the Cu-Fe oxides present a lower surface area. 

From the previous results of TG/DTG, the corresponding temperature of calcination for each 

catalyst was initially set to 600°C. 

 

Catalyst Cu ratio 

Final atomic ratio 

(EDX) 

Crystalline phase by calcination 

at (600°C) 

Surface 

area 

(m2g-1) at 

600°C 

 

Cu Fe 
   

IZA 31 0.47 0.47 0.53 CuO, Fe2O3, Spinel - 
 

IZA 23 0.65 0.65 0.35 CuO, spinel 25 
 

IZA 42 0.79 0.79 0.21 CuO,Fe2O3 - 
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Figure 6.7 Diffractograms of mixed oxides catalysts calcined at 600°C 

 

The TG/DTG was done for all the samples for which the graphs have not been shown here, 

nevertheless the data have been complied to evaluate the average loss at each step in the 

thermal decomposition. Though the decomposition trend is not accounted exactly as per the 

following temperatures. A variation of ±20°C for some samples is observed which could 

possibly be due to the synthesis conditions.  Table 6.4 indicates the major steps of loss of 

LDH structure and the temperatures of transformation into mixed oxide for each catalyst.  

 

Table 6.4 Percentage weight loss of sample upon thermal decomposition at each step 

Sample 

Type of 

Reactions 
Dehydration Dehydroxylation Deanionization 

Oxide 

formation 

Total loss (%) 
100-200°C 200-300°C 400-500°C >500°C 

Percentage weight loss/step 

IZA 22 

Ni0.75Fe0.25 
32.72  12.59 13.91 5.13 1.08 

IZA 147 

Ni0.72Cu0.04Fe0.26 
30.42 8.2 15 4.48 3.4 

IZA 31 

Cu0.47Fe0.53 
28.6 5.85 15.06 6.23 1.46 

IZA 24 

Ni0.18Cu0.56Fe0.27 
24.05 6.56 9.93 4.42 3.14 

IZA 23 

Cu0.65Fe0.35 
11.28 4.31 3.88 2.24 0.85 

IZA 42 

Cu0.79Fe0.21 
30.59 2.07 24.30 2.85 1.37 

The results clearly show that copper-rich LDH samples have relatively fewer total loss of 

total weight, particularly in the first step of dehydration. This effect could be related to the 
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decrease of c cell parameter with the Cu content observed in chapter 4, probably due to lower 

amount of water molecules in the interlayer region. On the other hand, Ni-Fe IZA 22 presents 

a typical LDH structure, where water of hydration is a key component for the structural 

stability. Layers accommodating the water of hydration show a sharp curve upon heating 

range 100-200°C, making this the most important step. It is interesting to observe, by 

comparison, the very high mass loss of IZA42, which at the origin presents not a LDH but a 

copper hydroxynitrate structure. 

 

IZA22 (Ni0.75Fe0.25)  

 

Ni0.75Fe0.25 (IZA22) mixed oxides obtained by calcination at 400-800°C, were compared with 

Ni0.37Cu0.38Fe0.25 (IZA 20) to get understanding of the difference of evolution of phases in 

these systems. The crystalline phases is this case were Nickel Oxide-NiO (00-044-1159) 2θ: 

37.2°,43.2°, 62.8°, 75.2°,79.4°; and spinel phase. 2θ: 18.5°, 30.1°,35.8°,57.3°,63.0°. The 

diffraction pattern, cell parameters and percentage of each phase have been indicated in the 

figure 6.7, annex A.2 and figures 6.8, 6.9 respectively. In this case, NiO is the only phase 

present at lower temperature whereas the spinel formation begins at T>500°C (Fig. 6.8). 

Calcination at 800°C presents very sharp peaks and indicates a significant decrease of crystal 

size. 

 
Figure 6.8 X-ray diffraction pattern of IZA22 (Ni0.75Fe0.25) calcined at different temperatures  
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With internal standard analysis, as done in the mixed catalyst system IZA 20, there was a 

clear presence of amorphous material in the catalyst calcined at low temperature. Bunsenite 

(NiO) was a prevailing phase until 700°C with a slow evolution of spinel phase. Clearly the 

amorphous material was crystallizing in both phases present. As the temperature increased 

further to 800°C, peaks sharpness increased to a great extent. Probably both the loss of 

amorphous material and the increase of crystal size have been contributing to the high surface 

area (Table 6.2) The decrease in amorphous material  to zero at 700°C can be seen in (Fig. 

6.9) The amount of spinel also after complete crystallization is too low to justify the amount 

of iron in the sample. Indeed, the cell parameter of bunsenite in the sample at 800°C, 4.189 

Å, is much larger than the value for pure NiO, 4.176 Å, enough to justify the incorporation of 

a significant amount of iron. 

 

 
Figure 6.9 Change in percentage of amorphous and crystalline phases in IZA 22 at different 

temperatures (°C) 

 

 

IZA 147(Ni0.72Cu0.04Fe0.26) 

 

IZA147 is a sample with a very small copper content, with mixed oxide calcination data on 

400-600°C. The diffraction pattern, cell parameters and percentage of each phase have been 

indicated in the figure 6.10(a), annex A.6 and figure 6.10 (b) respectively. 
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Figure 6.10 Change in percentage of crystalline phases in IZA147 at different temperatures 

(°C): a) diffractogram b) Phase percentage abundance 

 

This system predominantly contains NiO and spinel phase with no presence of CuO 

throughout, even at higher temperature (Fig. 6.10). The presence of also a small amount of 

copper anticipates the formation of crystalline spinel at a lower temperature than in the pure 

Ni-Fe system. 

 

 

IZA31 (Cu0.47Fe0.53)  
 

In this sample, as the copper ratio (Cu/Fe) is increased in the uncalcined sample, copper 

hydroxy nitrate is formed with noticeable amount of amorphous material present as evident 
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from the baseline shift. At 600°C, CuO:2θ:32.7°,35.6°,38.8°,48.8°,53.3°,58.2°,61.7°,65.9, 

66.2,68.0°; Fe2O3 :2θ: 24.2°, 33.2°, 35.2°, 49.6°, 54.1°, 62.5, 64.0°; Spinel: 18.3°, 

30.30°,35.9°,37.3°,43.8° main peaks were identified. At 400°C, hematite Fe2O3 is the first 

phase crystalized with minor CuO. 

 
Figure 6.11 X-ray diffraction pattern of IZA 31 calcined at different temperature (°C) 

 
Figure 6.12 Change in percentage of crystalline phases in IZA31 at different temperatures 

(°C) 

A drastic spinel formation, increase of CuO and decrease in Fe2O3 crystalline fraction occur 

at 500°C, probably due to the crystallization of Cu-rich amorphous material. The sharp peaks 

at 600°C are an indication of large crystals of CuO, which is the primary phase at this 

temperature. The diffraction pattern, cell parameters and percentage of each phase have been 

indicated in the figure 6.11, annex A.7, and figure 6.12 respectively.  
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IZA24 (Ni0.18Cu0.56Fe0.27) 
 

The influence of increasing copper content and decreasing nickel in the mixed oxide phases 

was studied through the catalyst where CuO, due to high copper content, has already started 

appeared in the uncalcined LDH phase. Upon calcination at 400°C, NiO and CuO are 

primary phases present whereas spinel formation begins at 500°C. As in the NiFe (IZA22) 

system, late spinel formation has been observed despite the same M2+/M3+ratio in both these 

system. However, as already observed in IZA 147, the presence of copper in the system leads 

to earlier spinel formation.  CuO remains the most dominant phase throughout temperature 

range (400-800°C), followed by NiO and spinel. The system is characterized by an unusual 

persistence of amorphous material at a high temperature of 700°C. The ratio between CuO 

and NiO phases suggests the presence of a Ni-rich amorphous materials, which presence 

could only be understood by further characterisations. The diffraction pattern, cell parameters 

and percentage of each phase, amorphous material have been indicated in the figure 6.13, 

annex A.4. respectively.  

 
Figure 6.13 Change in percentage of amorphous and crystalline phases in IZA24 at different 

temperatures (°C) 

IZA23 (Cu0.65Fe0.35)  

 

The as-precipitated precursor just presents CuO diffraction peaks and no Fe-bearing phases 

are visible. A clear identification of amorphous material in the system under calcination is an 

indication of Fe-doped CuO system which gradually evolves as spinel phase at higher 

temperature. 

Moreover, in comparison, the formation of hematite in IZA31 which is also a CuFe system 

with M2+/M3+=2 molar ratio indicates an important message. The difference lies in the initial 
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precursor which in case of IZA 31 is copper hydroxynitrate. This fact has also been proven 

with another sample IZA 42, which had a same molar ratio as of IZA 23 but a different pH. 

Also, in case of IZA 42, copper hydroxynitrate was the parent LDH as explained below. The 

cell parameters and percentage of each phase, amorphous have been indicated in the annex 

A.3 and figure 6.14 respectively. 

 

 
Figure 6.14 Change in percentage of amorphous and crystalline phases in IZA23 at different 

temperatures (°C) 

 

 

IZA42 (Cu0.79Fe0.21)  

 

IZA 42 is a replica of the synthesis of IZA 23 with the same molar ratios and just difference 

of 2 points in pH. Initial precursor synthesis pH was 8, instead than 10 for IZA23 and copper 

hydroxynitrate with prominent amorphous material was clearly observable. The diffraction 

pattern, cell parameters and percentage of each phase and amorphous material have been 

indicated in the figure 6.15, annex A.5 respectively.  
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Figure 6.15 X-ray diffraction pattern of IZA 42 calcined at different temperature (°C) 

 

Unlike, in all specimens calcined from 500°C upwards there are sharp peaks of hematite (for 

instance at 24 and 33 °) and irregular amounts of spinel. It is interesting to observe that in 

very copper-rich samples, like IZA23 and IZA42, the cell parameter of spinel is 0.39-8.41, 

much higher than the cell parameter of the spinel of previous described samples. It is indeed 

corresponding to the cell size of magnetite Fe3O4 (peak near 30°, a 8.395) suggesting that we 

are in presence of a pure iron spinel instead than of mixed spinels. It is important because this 

suggests than for forming mixed spinel we need to start from a precursor containing both 

cations, which is not the case for IZA42, when we start from Copper hydroxynitrate, or 

IZA23, where we start from CuO already in the precursor. In both cases it seems likely that 

iron in the precursor is an independent amorphous not containing copper. It is also 

remarkable that, at difference with copper-rich samples synthetized at pH 10, the amorphous 

material of IZA42, synthetized at pH 8, is not stable at high temperature. So it can be deduced 

that the pH (comparison of IZA 23 and 31) and molar ratio (comparison of IZA 23 and 42) of 

cation are the determinant factors in the phases evolution at high temperatures irrespective of 

the same cations distribution. 
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Figure 6.16 Change in percentage of amorphous and crystalline phases in IZA42 at different 

temperatures (°C) 

 

There was no significant difference in the shape of the isotherm (Type IV) of these samples 

therefore the isotherms have not been shown here. A significant loss in surface area is 

observed by the thermal treatment of mixed oxides at high temperature. 

Table No 6.5: Change in surface area as a function of calcination temperature (°C) 

 

Sample 
Surface area (m2/g-1) 

400°C 500°C 600°C 700°C 

IZA 22 Ni0.75Fe0.25 114 113 89 48 

IZA124 Ni0.62Cu0.02Fe0.35 121 76 52 20 

IZA 147  Ni0.72Cu0.04Fe0.26 197 87 71 24 

IZA 123 Ni0.55Cu0.17Fe0.27 145 52 55 20 

IZA 24 Ni0.18Cu0.56Fe0.27 72 43 53 21 

Cu-Fe system 

IZA 23 Cu0.65Fe0.35 57 44 25 11 

IZA 42  Cu0.79Fe0.21 30 11 8 5 

 

 

6.5 Single Oxides Catalysts  

 

To understand the role of each oxide and study them as benchmark catalysts in the HDO, 

single/pure hydroxides were also prepared using exactly the same synthesis parameters used 

for the LDH synthesis leading to oxides as previously explained in chapter 4. The same 
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method was applied to them; calcination temperature was determined by TG/DTG analysis, 

later XRD was done for catalysts calcined at 400-600°C. 

Single oxides catalysts were prepared from precursor IZA238-(Fe(OH)3 and Fe2O3)3, IZA239-

Ni(OH)2, and IZA240-CuO. Since no carbonate ion was present in these samples therefore the 

decomposition temperature of the hydroxides was relatively low (Fig.6.25). It was therefore 

not seen useful to calcine them a very high temperature. A Pure Fe2O3, NiO, and CuO were 

obtained with no significant change in the cell parameters, upon calcination at high 

temperature except a slight decrease of the ‘c’ parameter of CuO at the beginning of 

calcination. 

 The interest in single oxides was, from the catalytic point of view, to understand the 

selectivity and conversion differences in H-transfer reactions. They served as a second- step 

standards following the blanks. The TG/DTG, diffraction pattern, cell parameters and 

percentage of each phase have been indicated in the figure [6.17-20], annex [A.11, A.12] 

respectively.  

 

 
Figure 6.17 Thermogravimetric analysis of uncalcined IZA 238(Fe (OH)3) showing 

percentage loss of sample with increasing temperature [air 60mL/min, ramp=5°C, 40-900°C] 
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Figure 6.18 Thermogravimetric analysis of uncalcined IZA 239(Ni(OH)2) showing 

percentage loss of sample with increasing temperature [air 60mL/min, ramp=5°C, 40-900°C] 

 

 

 

 
Figure 6.19 Thermogravimetric analysis of uncalcined IZA 240(CuO) showing percentage 

loss of sample with increasing temperature [air 60mL/min, ramp=5°C, 40-900°C] 
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Figure 6.20 Diffractograms of single oxides catalysts at 600°C showing well-crystallized 

phases 
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Figure 6.21 Diffractograms of single uncalcined and calcined oxides  
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      Table 6.6 Surface area and Pore volume of single oxides calcined at 600°C 

 

Sample Calcination Temperature (°C) Surface area (m2g-1) Pore volume (cm3/g) 

IZA238-Fe(OH)3 600 38 0.208 

IZA 239-Ni(OH)2 600 24 0.141 

IZA 240-CuO 600 13 0.04 

 

6.6 Replicas of M-Fe in comparison to M-Al 
 

To study the effect of iron in the prepared catalysts, ore classical analogues were synthesized 

in the same conditions. IZA 120,(Cu0.73Al0.26), IZA126 (Ni0.37Cu0.37Al0.25) and IZA 127 

(Ni0.74Al0.25) were the Al analogues od respectively IZA23, IZA 20 and IZA22. 

The comparative sample of IZA23 was initially synthesized with aluminium, to determine the 

structural constraints observed in Cu-Fe system as discussed in chapter 2 and 3. CuO was the 

only phase present in the system. Though the molar ratio analyzed by EDX well correspond 

to the syntheses, no indication of Al-containing phase was apparent between the temperature 

range 400-600°C. M3+ (Fe, Al) has always shown  a late crystalline phase formation but this 

effect I especially pronounced when aluminium is used, to lower reactivity of aluminium 

oxides with comparison with iron oxides. The formation of amorphous alumina significantly 

contributed to the high surface area of the catalysts. The diffraction pattern and cell 

parameters have been indicated in the figure 6.28, annex A.10 respectively. 

 



 

135 

 

 

Figure 6.22 IZA120 (Cu0.73Al0.26) uncalcined and calcined at different temperatures 

 
Figure 6.23 TG/DTG profile of IZA 120 

       

Table 6.7 Surface area and Pore volume of single oxides calcined at 600°C 

 

Sample 
Composition 

Surface area (m2g-1) at 600°C 
Pore volume 

(cm3/g) Ni Cu Al 

IZA 120 - 0.74 0.26 42 0.010 

IZA126 0.37 0.37 0.25 121 0.325 

IZA 127 0.74 - 0.25 191 0.568 
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Figure 6.24 SEM images of IZA120 calcined 400°C (a) 500°C (b) and 600°C (c)  

 

 

6.7 Conclusion  
Mixed oxide catalysts are drastically temperature-

dependent in terms of crystallinity and cation ratio of 

the trivalent cation plays a major role in the abundance 

of phases present. A compromise between temperature 

of calcination and surface area is important to reach for 

the catalytic applications of MMO.  

As our catalysts are Ni-Fe based oxide, they typically 

stucked to the poles of the magnetic stirrer, due to magnetic properties that can be extremely 

useful in the easy separation of the catalyst.  
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CHAPTER 7 
 

H-Transfer reaction of lignin model 

molecules over mixed metal oxides 

catalysts 
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Chapter Summary: 
 

This chapter deals with the importance of Meerwein–Ponndorf–Verley (MPV) reaction 

chosen for testing the hydrodeoxygenation of lignin model molecules over mixed oxides 

catalysts. It summarizes the reaction pathways and choice of catalytic valorisation protocols 

developed for the employed reaction with interest in improved solvolysis. Several catalytic 

system containing different single and mixed oxide catalysts were used in the 

depolymerisation study of lignin model and related molecules at 160-200°C for 0.5-3hours in 

the presence of different hydrogen-donor solvents (methanol, ethanol, Isopropanol). The 

quantitative evaluation of results has also been outlined as yields per reaction type obtained 

by various types of cleavage occurring in the substrate molecule. The highest selectivity and 

conversion of 98% was achieved by a ternary Ni-Cu-Fe mixed metal oxide system, in the 

presence of MeOH at 200°C. 
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Methods for Reduction of Bio-oil 
 

7.1 Hydrodeoxygenation (HDO) 
 

Hydrodeoxygenation in chemistry is a term titled for the chemical conversion carried out at 

high H2 partial pressures (100-200 bar) and high temperature (300-400°C) to remove oxygen 

primarily in the form of water.1 Given that bio-oil or biomass-derived molecules are generally 

highly oxidized compounds, HDO methods are employed with the aim to reduce oxygen 

content particularly in aromatic hydroxyl and methoxy containing molecules and thus 

improving the H/C ratio and product heating value.5  

 

7.1.1 Meerwein–Ponndorf–Verley (MPV) Reduction Reaction 
 

 

Though for the reduction processes, catalytic hydrogenation is still a mainstream technique 

being used.2 Nonetheless, the Meerwein–Ponndorf–Verley (MPV) reaction in organic 

chemistry deals with the reduction of ketones and aldehydes to their corresponding alcohols 

in the presence of alcohol and precious metal catalysts. The use of MPV reaction is 

advantageous for the reduction of carbonyl compounds due to its high selectivity for C==O 

double bond thus α,β-unsaturated carbonyl compounds can be selectively reduced leaving 

C==C bond intact.8 In addition, a key interest in such methods other than direct 

hydrogenation is to save process economy and omit risks associated with safety and handling 

of H2 gas. MPV reaction offers a practical approach for the chemoselective reduction of bio-

oil, in which alcohol serves as an alternative hydrogen source. The reaction takes place with 

the catalytic transfer of hydrogen from alcohol to the carbonyl carbon 3,4 

 

7.1.2 Our Depolymerisation Approach 
 

 

Organsolov pre-treatment is a pulping technique which solubilizes and separates the lignin 

fraction of the lignocellulosic biomass (lignin+cellulose+hemicelluloses). In this process, 

lignocellulosic feedstock is treated with aqueous organic solvents at temperatures 140-220°C. 

The hydrolytic cleavage of α-aryl-ether linkage breaks down the lignin into smaller solvent 

soluble fragments. Major advantages achieved through the process include a high quality 

lignin with low sulphate content and cost efficiency in the conversion. In this scenario, we 

implemented an early stage catalytic conversion on lignin model molecule having the 

following interests in this strategy: (Fig. 7.1) 



 

141 

 

1. Hydrogenation of a highest H/C component of lignocellulosic biomass (lignin is ̴ 26% 

phenols) is less challenging. 

2. Improved solvolysis of lignocellulosic biomass to obtain selective hydrogenated 

products in one step from organosolv treated technical lignin at low temperatures.  

3. Reduced solubility challenges in the presence of a green solvent. 

4. Reasonably effective and economical reactivity could be achieved. 

            

 

Figure 7.1 H-transfer pre-treatment from lignin for bio-oil 

 

7.1.2.1 Method Development for catalytic test 

 
 

Solvent: In this method, methanol serves as a H-donor solvent. The choice of methanol was 

made because its complete oxidation results in CO2. The substrate molecule 4-(benzyloxy)-3-

methoxybenzaldehyde and the products were completely soluble in methanol (˃99.8%). 

Temperature: The range of temperature (160-200°C) tested is much less severe than typical 

gas-phase hydrogen transfer reactions5,6,7 and close to the conditions of organosolv pulping of 

lignocellulosic biomass. The lower temperature studies carried out assisted in identification 

of the intermediates and pathways of the reaction under different conditions. 

Catalyst: As previously discussed in chapter 2, mixed oxide catalyst are effective and 

thermally stable enough to bear reactions carried out at elevated temperature.  
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Also, in this case, Fe in the catalyst, served as magnetic separator. After the reaction, all the 

catalyst was found attached to the magnetic stirrer and thus purification of the liquid phase 

was easier. 

 

Autoclave Pressure Calibration: The HDO reactions are sensitive to oxidation at high 

temperature therefore for the complete removal of 

atmospheric oxygen from the autoclaves and 

purging of nitrogen gas, the autoclaves pressures 

were calibrated prior to begin the catalytic tests. A 

multipoint calibration method was performed. At 

room temperature, the pressure of nitrogen gas in all 

6 autoclaves in a row was increased (0-15 bar) from 

the bottle of nitrogen gas fixed with the setup. (Fig. 

7.2) The response of the measurement and autoclave 

control system pressure were noted down to see 

linearity or any technical fault and in pressure sensors. 

(Fig. 7.3)   

 

 

Figure 7.3 Pressure sensor calibration in each reactor/autoclave 

 

The interesting questions to be addressed in the implication of this improved strategy were: 

 Can hydrogen-donor solvents of organosolv treatments compete with hydrogenation 

of biomass by molecular hydrogen? 
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 Organosolv pre-hydrogenation of biomass can improve the economics of bio-oil 

production? 

 Is the cost of a pretreatment worth the reduction of the hydrogen need for 

improvement of thermal bio-oil?  

7.2 Procedure of the Catalytic Hydrodeoxygenation reaction 
 

The catalytic activity of the catalysts was tested in batch liquid-phase reactors on the α-O-4 

model 4-(benzyloxy)-3-methoxybenzaldehyde. The reactions were carried out in Parr 5000 

automated 6-posts stainless steel 75mL  multi reactor system equipped with a magnetic stirrer 

and thermocouple with pressure sensors. Several preliminary tests were carried out at 

different temperatures, using different solvents with varying reaction time to for the 

optimization of reactions.  

In a typical experiment, the substrate, 4-(benzyloxy)-3-methoxybenzaldehyde (20mg, 

0.082mmoles) was dissolved in 20mL of methanol and 20mg of catalyst was added in the 

stainless steel reactor. Prior starting the reaction, the autoclaves were flushed multiple times 

with 10 bar of N2 gas to remove any air residual. After, at ambient temperature, the autoclave 

was purged with 5 bar of N2 and the outlet vale was abruptly closed to maintain the pressure. 

The reactions were conducted at 160-200°C at heating rate of 2°C/min, for 0.5-3hours with a 

constant stirring speed of 500rpm. Blank tests were also done in the same conditions. As the 

reaction halted, the reactor was cooled down to room temperature. The catalyst was found 

stuck to the magnetic bars in the reactors, still the liquid was poured into the tubes and 

centrifuged at 1000rpm for 10 minutes at 20°C. The liquid phase was then filtered with 

syringe filters of 0.20µm mesh size and analyzed by a gas chromatograph–mass spectrometer 

(GC-MS) gas chromatograph-flame Ionization detector (GC-FID). 

 

7.2.1 Configuration of GC-MS 

 
 

GC: Column: ZB-5HT Length=15m, thickness=0.10um, diameter=0.25mm; Column oven 

temperature=40°C; Injection Temperature=250°C; Carrier gas: He, Column flow 

=1.21mL/min; Total flow =9.3mL/min; Split=5; Total program time=17min. (Table 7.1) 
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Table 7.3 GC-MS configuration used for the analysis of hydrodeoxygenation products 

Method in GC 

Rate (°C/min) Final Temperature (°C) Hold time (min) 

- 40 0 

15 250 3 
 

MS: Ion source Temperature=200°C; Interface Temperature=250°C; Solvent Cut 

time=1.5min 

Method in MS 

Start time (min) End time (min) Start (m/z) End (m/z) 

1.5 17 19 750 
 

 

7.2.2 Configuration of GC-FID 

 
 

GC-FID: Column: ZB-5HT, Length = 15m, Diameter =0.32mm, Film thickness =0.10µm; 

Injector Temperature=250°C; Column flow: 1.5mL H2/min; Split: 50; Detector Temperature: 

280°C; Solvent: as in the reaction (no dilution), direct injection of 2uL of sample. (Table 7.2) 

 

Table 7.4 GC-FID configuration used for the analysis of hydrodeoxygenation products 

Method in GC-FID 

Temperature (°C) Rate (°C/min) Hold time (min) Total (min) 

40 - 1 1 

100 8 0 8.5 

250 15 7 25.5 

 

 

7.2.3 Calibration Curve for HDO products 
 

The standard solution of the substrate and some products in different volumes (10-150µL) 

were prepared. For solid products, the equivalent weight was calculated for each point using 

the mass/density formula. The standards were run in both GCMS and GCFID using the above 

mentioned conditions to obtain reliable calibration curve with high R-squared value that were 

used for the accurate and precise quantification of products corresponding to the peak area in 

GC-FID and TIC in GC-MS. The response factors of the instruments were duly checked. (Fig 

7.4) 
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Figure 7.4 Calibration Curve of GCMS for the main products or intermediates of the reaction 

 

7.2.4: Effective Carbon Number (ECN): 

The fact that different detectors equipped with GC respond differently to the same compound 

for instance the MS detector records the response proportional to the fragmentation of the 

compound and spectral peaks are recorded in volts either by Selected Ion Monitoring (SIM) 

or total ion chromatograph (TIC), however the signals in FID are directly proportional to the 

number of carbon atoms present in the analyte.9 Therefore for the meaningful quantitative 

analysis of the reaction mixture it is inevitable to alternatively correlate the response of these 

detectors. Calibration curve can be drawn for the compounds with available standards. The 

peak areas are then feasibly retrieved to estimate the unknown concentration in the reaction 

mixture and the quantitative analysis is thus very reliable.  

 

As the instrumental response factor (RF) corresponds to the carbon number (CN) in the 

sample, thus a linear trend between the RF and CN can provide reliable quantification data 

for compounds that otherwise are unstable or lack the authentic standards.10 

 

7.3 Reaction Mechanism 
The use as a substrate of model molecules with aldehyde, methoxy and phenylether groups 

allowed modeling the effects of different catalysts on the reactivity of several functionalities 

of natural lignin. 
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If aldehyde functions were easily hydrogenated by a typical MPV mechanism, the breaking 

of phenylether bonds, mimicking the most frequent β-O-4 bonds of lignin, was only partial 

and probably followed several pathways. Deeper hydrogenation was observed, possibly due 

to H2 issued from methanol reforming, with the formation of hydroxycresol by hydrogenation 

of C-OH bonds. Traces of guaiacol were sometimes observed, suggesting that also 

hydrogenation of C-C bonds is possible in our conditions. 
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Beyond the hydrogenating activity, a significant factor in the reactivity of the aldehyde group 

of the model molecule used was the formation of hemiacetals and acetals. Stable cyclic 

acetals are desirable products of lignin depolymerisation in the presence of glycols.11 

However, acetals and especially hemiacetals of monoalcohols are unstable equilibrium 

products easily formed from aldehydes in presence of alcohols also at room temperature and 

without a catalyst.12 Indeed, a standard 4 mM solution of the substrate at room temperature 

already presented traces of acetal and, after autoclave heating at 200 °C, 6 % acetals were 

detected. Due to the unstable nature of these compounds, generally reverting to aldehyde and 

alcohol upon concentration of the solution, we have not included them in the evaluation of 

the conversion, considering them as a reservoir of unreacted substrate.  

 

 

Figure 7.6 Hemiacetal (left) and acetal (right) of the substrate molecuele 

 

7.4 Catalytic tests  
 

Before testing the mixed oxides obtained from LDHs, the reactivity of single-cation oxides 

was tested (Table 6.6, annex A.10-11). In the standard conditions used (methanol, 200°C, 3 

hours) on the IZA238 catalyst, formed of hematite (Fe2O3), the hydrogenating activity was 

limited. Less than 4% substrate was converted and the only measurable products were traces 

of veratryl alcohol, benzyl alcohol and toluene, none of them reaching 1% yield. Nickel oxide 

and copper oxide catalysts (respectively IZA239 and IZA240) were both more active than the 

iron oxide catalyst but oriented the hydrogenation in very different ways. Both catalysts 

provided nearly 16% yield of hydrogenation products but, in the case of the CuO catalyst, 

virtually no hydrogenolysis of the α-O-4 bond was observed and the only significant product 

was the alcohol formed by MPV hydrogenation of the aldehyde group. The 

benzyloxymethoxybenzyl alcohol was the main product also by reaction on NiO but, in this 

case, significant amounts of products of hydrogenation of the α-O-4 bond were observed. The 
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presence of veratryl aldehyde and benzylmethyl ether indicates some etherification activity of 

methanol. 

In the case of the mixed Cu-Ni-Fe oxide catalysts, the conversion was always higher than for 

the single-component oxides but the reactivity was enormously influenced by the Cu/Ni ratio 

in the catalyst (Fig. 7.7). The conversion values of nearly 30% for the Ni-Fe catalyst rapidly 

rose to nearly complete conversion for Cu/divalents ratio of 0.4 or higher. With the increase 

of the conversion, the mass balance became rapidly unsatisfactory, very likely due to the 

formation of volatile non-analysed products. 

 

 
Figure 7.7 Evolution of the conversion (filled symbols) and the mass balance (void symbols) 

with the copper fraction of the Ni-Cu-Fe catalysts 

 

The evolution of the main products reported in (Fig. 7.8) clearly indicates that deeper 

hydrogenation is reached at the increase of the copper content.  For catalysts with low copper 

content, the main product is benzyloxymethoxybenzyl alcohol, viz. the first MPV 

hydrogenation product of the substrate. At increasing copper content, the main product 

becomes benzyloxymethoxybenzene, the product of successive C-O hydrogenolysis of the 

alcohol group of benzyloxymethoxybenzyl alcohol and C-C hydrogenolysis of the 

intermediate product. When the Cu/divalent ratio approaches 0.5, the presence of nickel 

oxide accelerates the α-O-4 hydrogenolysis, as already observed on the single-component 

oxides, and the main products become methoxycresol and toluene, respectively the C-O and 

C-C reduction products of the vanillic and benzylic moieties of the parent substrate.   
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Figure 7.8 Yields of benzyloxymethoxybenzyl alcohol, benzyloxymethoxybenzene, 

methoxycresol and toluene with the copper fraction of the Ni-Cu-Fe catalysts 

 

The relevance of benzyloxymethoxybenzene among the products clearly indicates that also 

aliphatic C-C bonds are hydrogenated. This suggests that benzene can be formed as 

hydrogenation product of toluene. Too short retention time of benzene made its measurement 

unavailable in our analytical system. No products of hydrogenation of the aromatic ring were 

observed. 

Oxides were prepared by calcination of divalent-aluminium precursors to give hints on the 

role of iron in H-transfer catalysis. We have already seen that Fe2O3 (IZA268) itself is 

virtually inactive, however its presence affects in some way the activity of the catalysts (see 

annex table). The Cu-Al catalyst (IZA120) is much more active than the catalyst with CuO 

alone (IZA240), keeping the same product distribution oriented towards simple initial MPV 

reaction. This effect could be attributed to the higher surface area of the sample with 

amorphous alumina, however it is likely that the more important effect is the Scherrer size of 

CuO crystallite, 39 Å for IZA120 and 53 Å for IZA240. When compared with the Cu-Fe 

analogue IZA23, the CuO crystallite size (40 Å) is the same than for the Cu-Al catalyst. 

However, the activity of the Cu-Fe system is significantly higher and the distribution of 

products indicates a much deeper hydrogenation. It is likely that iron defects in CuO plays a 

significant role in catalysis. 

In the case of the Ni-Al system, the presence of amorphous alumina seems to deactivate the 

catalyst (IZA127), which is less active than pure NiO (IZA239) and much less active than the 
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Ni-Fe catalyst (IZA22). Also in this case the promoting effect of iron is patent. 

More complex is the situation in the case of the mixed Cu-Ni systems in the presence of Al 

(IZA126) or Fe (IZA247). The conversion is nearly total and the level of hydrogenation is 

high in both systems but the distribution of products is very different, with the Al-bearing 

system presenting a less effective hydrogenolysis of α-O-44 bonds. It is likely that, in this 

case, the manin effect is due to a different distribution of defects between Cu- and Ni-bearing 

phases.     

7.5 Conclusions 
 

Oxides obtained by thermal decomposition of LDH precursors are effective catalysts for H-

transfer reactions to lignin model molecules, also in absence of the basic properties induced 

by Mg2+ cations in the most usual catalysts ex hydrotalcites. The catalytic activity strongly 

depends on the presence of copper in the system but the presence of Ni2+ induces significant 

variations in the product distribution. The doping of CuO and NiO by iron undoubtedly 

affects the activity of the catalysts. The relative effectiveness of MPV hydrogenation and 

hydrogenolysis of phenylether bonds can orient the choice of the catalyst in a lignin 

organosolv environment towards the obtention of products with different molecular weight 

and level of functionalisation.  
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Chapter 6-Annex 1: Fractional Crystallization of Oxide Phases 

 

Table A.1: Index of phase percentage and cell parameters obtained by calcination of IZA20 at 

different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA20 

N
i 0

.3
7
 C

u
0
.3

8
 F

e 0
.2

5
 

400 
NiO 26.29 4.161 - - 72.07 - 

CuO 2.90 4.685 3.405 5.115 80.46 99.58 

500 

NiO 21.76 4.1654 - - 72.27 - 

CuO 22.40 4.6791 3.4078 5.1198 80.53 99.435 

Spinel 

Phase 
6.43 8.3092 - - 573.7 - 

600 

NiO 32.75 4.1688 - - 72.45 - 

CuO 53.09 4.6872 3.4032 5.1248 80.66 99.377 

Spinel 

Phase 
14.15 8.3299 - - 578.0 - 

700 

NiO 27.33 4.1705 - - 72.540 - 

CuO 56.88 4.6908 3.4139 5.1201 80.91 99.335 

Spinel 

Phase 
15.78 8.3338 - - 578.79 - 

800 

NiO 28.24 4.1801 - - 73.042 - 

CuO 56.46 4.6944 3.4176 5.1320 81.27 99.245 

Spinel 

Phase 
15.28 8.3405 - - 580.20 - 

*Heating ramp = 2°C/min 

* Bunsenite (NiO) = Cubic, Tenorite (CuO) = Monoclinic, Spinel= Cubic 

 

 

Table A.2: Index of phase percentage and cell parameters obtained by calcination of IZA22 at 

different temperatures 

 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 
Phase % 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA22 Ni0.75Fe0.25 

400 NiO 32.10 4.1760 - - 72.83 - 

500 NiO 54.10 4.1730 - - 72.667 - 

600 
NiO 61.27 4.1708 - - 72.553 - 

Spinel Phase 5.34 8.3433 - - 580.8 - 

700 
NiO 90.80 4.18750 - - 73.428 - 

Spinel Phase 9.19 8.3505 - - 582.29 - 

800 
NiO 88.00 4.1888 - - 73.496 - 

Spinel Phase 12.00 8.3582 - - 583.90 - 

* Bunsenite (NiO) = Cubic, Spinel= Cubic 
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Table A.3: Index of phase percentage and cell parameters obtained by calcination of 

IZA23 at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 
Phase % 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA23 

C
u

0
.6

5
F

e 0
.3

5
 

400 CuO 56.68 4.7278 3.3736 5.1274 80.52 100.086 

500 CuO 68.40 4.7196 3.3981 5.1361 81.17 99.813 

600 
CuO 60.62 4.695 3.4127 5.125 80.97 99.525 

Spinel Phase 10.17 8.410 - - 594.8 - 

700 
CuO 54.47 4.6855 3.4130 5.1200 80.756 99.496 

Spinel Phase 8.48 8.422 - - 597.3 - 

* Tenorite (CuO) = Monoclinic, Spinel= Cubic 

 

 

 

 

Table A.4: Index of phase percentage and cell parameters obtained by calcination of IZA24 at 

different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA24 

N
i  0

.1
8
C

u
 0

.5
6

 F
e 0

.2
7
 

400 
NiO  4.168 - - 72.42 - 

CuO 35.44 4.6734 3.4187 5.115 80.61 99.45 

500 

NiO 17.54 4.1470 - - 71.32 - 

CuO 46.40 4.6785 3.4242 5.1306 81.09 99.405 

Spinel Phase 5.25 8.397 - - 592.0 - 

600 

NiO 12.39 4.1783 - - 72.946 - 

CuO 45.01 4.6943 3.4388 5.1387 81.85 99.361 

Spinel Phase 5.99 8.3415 - - 580.40  

700 

NiO 10.46 4.1708 - - 72.552 - 

CuO 56.86 4.6895 3.4295 5.1357 81.497 99.357 

Spinel Phase 6.76 8.3539 - - 583.01 - 

* Bunsenite (NiO) = Cubic, Tenorite (CuO) = Monoclinic, Spinel= Cubic 
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Table A.5: Index of phase percentage and cell parameters obtained by calcination of IZA42 at 

different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

A 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA42 

C
u

0
.7

9
F

e 0
.2

1
 

400 CuO 100 4.6901 3.4233 5.1324 81.27 99.510 

500 
CuO 96.31 4.6875 3.4240 5.1295 81.200 99.493 

Fe2O3 3.68 5.0452 - 13.706 302.13 - 

600 
CuO 89.03 4.6895 3.4263 5.1336 81.355 99.495 

Fe2O3 10.96 5.0400 - 13.7581 302.65 - 

700 

CuO 87.65 4.6879 3.4248 5.1330 81.281 99.5027 

Spinel 

Phase 
3.6 8.4341 - - 599.95 - 

Fe2O3 8.74 5.0460 - 13.750 303.21 - 

800 

CuO 89.10 4.6875 3.4234 5.1310 99.4779 99.4779 

Spinel 

Phase 
8.96 8.396 - - 591.9 - 

Fe2O3 1.93 5.0655 - 13.792 306.47 - 

* Tenorite (CuO) = Monoclinic, Spinel= Cubic, Hematite (Fe2O3) = Trigonal 

 

 

 

 

Table A.6: Index of phase percentage and cell parameters obtained by calcination of IZA147 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA147 

N
i 0

.7
2
C

u
0
.0

4
F

e 0
.2

6
 300 NiO 100 4.227 - - 75.53 - 

400 NiO 100 4.1828 - - 73.18 - 

500 
NiO 94.54 4.1767 - - 72.861 - 

Spinel Phase 5.45 8.413 - - 595.5 - 

600 
NiO 73.72 4.17743 - - 72.900 - 

Spinel Phase 26.27 8.3446 - - 581.06 - 

* Bunsenite (NiO) = Cubic, Tenorite (CuO) = Monoclinic, Spinel= Cubic 
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Table A.7: Index of phase percentage and cell parameters obtained by calcination of IZA31 at 

different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA31 

C
u

0
.4

7
F

e 0
.5

3
 

400 
CuO 29.08 4.690 3.4202 5.130 81.14 99.542 

Fe2O3 70.91 5.25 - 12.8 305.5 - 

500 

CuO 71.97 4.6892 3.4197 5.1267 81.11 99.393 

Fe2O3 2.24 5.057 - 13.732 304.1 - 

Spinel Phase 25.78 8.3766 - - 587.8 - 

600 

CuO 66.76 4.6892 3.4235 5.1298 81.236 99.446 

Fe2O3 18.00 5.0392 - 13.7454 302.28 - 

Spinel Phase 15.23 8.376 - - 587.6 - 

*Hematite (Fe2O3) = Trigonal, Tenorite (CuO) = Monoclinic, Spinel= Cubic 

 

 

 

 

 

Table A.8: Index of phase percentage and cell parameters obtained by calcination of IZA124 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 
Phase % 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA124 

N
i 0

.6
2
 C

u
0
.0

2
 F

e 0
.3

5
 

400 NiO 100 4.1986 - - 74.01 - 

500 NiO 100 4.1708 - - 72.552 - 

600 
NiO 82.64 4.1721 - - 72.62 - 

Spinel Phase 17.35 8.337 - - 579.5 - 

700 
NiO 56.46 4.1775 - - 72.903  

Spinel Phase 43.54 8.3605 - - 584.38 - 

800 
NiO 63.85 4.17837 - - 72.949 - 

Spinel Phase 36.14 8.3428 - - 580.69 - 

*Bunsenite (NiO) = Cubic, Spinel= Cubic 
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Table A.9 Index of phase percentage and cell parameters obtained by calcination of IZA123 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA123 

N
i 0

.6
5
C

u
0
.2
F

e 0
.3

3
 

300 NiO 100 4.1828 - - 73.18 - 

400 CuO 100 4.1976 - - 73.96 - 

500 

CuO 9.16 4.766 3.425 5.031 81.04 99.30 

NiO 83.15 4.1788 - - 72.971 - 

Spinal 

phase 
7.68 8.3291 - - 577.81 - 

600 

CuO 23.86 4.689 3.3954 5.134 80.63 99.48 

NiO 69.83 4.1743 - - 72.738 - 

Spinel 

phase 
6.30 8.363 - - 584.9 - 

700 

CuO 18.64 4.7014 3.4356 5.1393 81.90 99.382 

NiO 66.28 4.1853 - - 73.314 - 

Spinel 

Phase 
15.07 8.3548 - - 583.19 - 

800 

CuO 16.53 4.6912 3.4224 5.1293 81.27 99.28 

NiO 68.72 4.1844 - - 73.263 - 

Spinel 

Phase 
14.73 8.3402 - - 580.13 - 

*Bunsenite (NiO) = Cubic, Tenorite (CuO)=Monoclinic, Spinel= Cubic 

 

 

 

 

 

 

Table A.10: Index of phase percentage and cell parameters obtained by calcination of IZA120 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcinatio

n temp 

(°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA120 

C
u

0
.7

3
A

l 0
.2

6
 400 CuO 100 5.2144 3.2700 5.4683 91.633 100.6633 

500 CuO 100 4.690 3.420 5.125 81.07 99.56 

600 CuO 100 4.6988 3.4062 5.112 80.65 99.651 

*Tenorite (CuO) = Monoclinic 
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Table A.11: Index of phase percentage and cell parameters obtained by calcination of IZA238 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA238 Fe(OH)3 

400 Fe2O3 100 5.0338 - 13.759 301.93 - 

500 Fe2O3 100 5.0344 - 13.753 301.87 - 

600 Fe2O3 100 5.0342 - 13.749 301.77 - 

* Hematite (Fe2O3) = Trigonal 

 

 
 

Table A.12: Index of phase percentage and cell parameters obtained by calcination of IZA240 

at different temperatures 

Sample Composition 

Composition and cell parameters as a function of temperature 

Calcination 

temp (°C) 

Identified 

Phases 

Phase 

% 

a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3) 
β 

IZA240 CuO 

400 CuO 100 4.6836 3.4241 5.1285 81.126 99.471 

500 CuO 100 4.6828 3.4274 5.1294 81.206 99.463 

600 CuO 100 4.6844 3.4307 5.1313 81.334 99.501 

* Tenorite (CuO) = Monoclinic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

159 

 

 

 

 

 

 

 

 

List of Scientific 

Activities and 

Trainings 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

160 

 

CONFERENCES AND SEMINARS: 

Oral Communications 

 Effective ways for the depolymerisation of lignin to produce functional aromatic 

compounds, Third SINCHEM Winter School, Bologna, Italy (15th-17th Feb, 2016)  

 Catalytic valorisation of lignin model molecules with hydrotalcite-like catalyst. Third 

SINCHEM Autumn School, Lyon, France (Nov, 30th- 02nd Dec, 2016) 

 Synthesis of Layered Double Hydroxides (LDHs) precursor catalysts for the 

depolymerisation of lignin model molecules, 5th Young Mediterranean Researcher 

Days, Montpellier, France (12th-13th Oct, 2017) 

 Heterogeneous catalysts for the valorisation of renewable feedstocks by 

depolymerisation of lignins, SINCHEM Autumn School Turin, Italy (22nd-24nd Nov, 

2017)  

 Practical tips for a better characterization of materials through XRD, SINCHEM 

Winter School, Bologna, Italy (15th-16th Feb, 2018)  

 Synthesis and limitations of Cu-Fe based novel Layered Double Hydroxides (LDHs) 

precursors of catalysts and their application for depolymerisation of lignin and its 

model molecules, Catalyst Design: From Molecular to Industrial Level, Moscow, 

Russia (19th-23rd May, 2018)  

 Copper-bearing layered double hydroxides as precursors of heterogeneous catalyst 

for the oxidative depolymerisation of lignin models under mild reaction conditions, 3rd 

Green and Sustainable Chemistry conference, Berlin, Germany (13th-16th May, 2018)  

 Study of the field of synthesis of Cu-Ni-Fe Lamellar Double Hydroxides and their 

transformation into mixed oxides for catalytic applications, 55th Annual Meeting of 

Clay Mineral Society,  Champaign-Urbana, Illinois, USA (11th -14th June, 2018)  

 Relevance of Fe or Al-bearing amorphous oxides in catalysts from thermal 

decomposition of Cu-Ni-Fe Lamellar Double Hydroxides, National Congress of the 

Chemical Society of France-SCF 2018, Montpellier, France (2nd-4th July, 2018)  

 Study of mild reaction conditions for the oxidative depolymerisation of Kraft lignin 

catalyzed by Cu-bearing Lamellar Double Hydroxide precursors of heterogeneous 

catalysts. 7th EuCheMS Chemistry Congress, Liverpool, UK (26th -30th August, 

2018)  

 Evaluation of the reduction of hydrogen burden in bio-oil production by hydrogen-

transfer pre-treatment of lignin, 7th International Symposium on Energy from 

Biomass and Waste, Venice, Italy (15-18th October, 2018)  

Poster Communications: 

 2nd EFCATS-CNRS European Summer School on Catalyst Preparation, Vogüe, 

France (12th-17th June, 2016)  

 4th Tailor Made Fuels from Biomass, Aachen, Germany (21st-23rd June, 2016)  
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 Green Chemistry Conference, Aachen, Germany (02nd-04th Feb, 2017)  

 The International Symposium on Green Chemistry, La Rochelle, France (16th-19th 

May, 2017)  

 16th International Clay Conference, Granada, Spain (17th-21st July, 2017)  

 EUROPACAT, Florence, Italy (27th-31st Aug, 2017)  

Attended: 

 Third International Conference, Catalysis for Renewable Sources: Fuel, Energy, 

Chemicals, Catania, Sicily, Italy (6th-11th Sept, 2015)  

 French Conference on Catalysis (FC Cat 1), Frejus, France (23rd-27th May, 2016)  

 ELITECAT School of Catalysis, CPE Lyon, France (03rd-06th July, 2017) 

 PHOTOTRAIN Winter School, UNIBO, Bologna, Italy (12th-14th Feb, 2018) 

 

TRAININGS/FORMATIONS: 

 X-ray Diffraction: XRD (Bruker AXS D8 Advance diffractometer) 05th Sep, 2016. 

 Thermogravimetry: TG (Perkin Elmer STA 6000/8000) 09th Sep, 2016. 

 High Performance Liquid Chromatography: HPLC (Shimadzu UFLC), 07th Dec, 

2016. 

 Nuclear magnetic resonance spectroscopy: NMR (Bruker 400MHz HD AVANCE III 

spectrometer), 11th Oct, 2016. 

 Gas Chromatography Mass Spectrometery: GCMS (Shimadzu GCMS-QP 2010 Plus), 

10th April, 2016. 

 Gas Chromatography Flame Ionization Detector: GCFID (Varian 3900), 09th Oct, 

2017. 

 UV-Visible Spectroscopy Solid state: UV-VIS (Perkin Elmer Lambda 40 

UV/Vis Spectrometer) 09th May, 2017. 

 N2 Physiosorption: (Micrometrics Tristar-3000) 12th Sept, 2016.  

 Mössbauer Spectroscopy (MBBC-HE0106 Mössbauer He / N2 Cryostat), 10th April, 

2017. 

 Matrix Assisted Laser Desorption/Ionization: MALDI-TOF/TOF (Bruker RapifleX 

mass spectrometer) 02nd June, 2016. 

 Autoclave reactor (Parr 5000 Automated 6-posts Multi Reactor stirrer System) 01st 

October, 2016. 

*All trainings were carried out in Ecole Nationale Superieure de Chimie de Montpellier, 

Montpellier, France under the supervision of trained engineers and technicians (names 

mentioned on acknowledgment page) 
 

COURSES: 

 Materials for catalysis in MaMaSELF-M2, University of Montpellier (2016) 

 Crystallography in MaMaSELF-M2, University of Montpellier (2016) 

 French Language Course (A1), CIHEAM-IAMM, Montpellier (2017)  
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PUBLICATIONS: 

 

Book Chapter: 
 

Heterogeneous catalysis as a tool for production of functional aromatic compounds from 

lignin I.Z. Awan, N. Tanchoux, F. Quignard, S. Albonetti, F. Cavani, F. Di Renzo, in S. 

Albonetti, S. Perathoner, E. A. Quadrelli (Eds.) Horizons in Sustainable Industrial Chemistry 

and Catalysis, 178, Edition 1, Elsevier (in press) ISBN: 9780444641274, Chapter 13.   

 

 


