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Abstract 

Introduction: atrial fibrillation (AF) is common among critically-ill patients, who are 

considered at increased cardioembolic and haemorragic risk. Consequently, anticoagulant 

therapy might be ineffective or harmful for an excess of haemorragic events which could not 

be counterbalanced by an adequate reduction of cardioembolic occurrences.  

Aims: main outcome (MO) was the composite of death or intensive care unit (ICU) transfer 

in a population of critically-ill subjects admitted to a medical subintensive care unit (sICU); 

we assessed (i) thromboembolic events (TEE) and major haemorrhages (MH); (ii) current 

guidelines (GL) adherence and related outcomes; (iii) performance of validated risk scores 

for TEE and MH;  we engineered (iv) new scores adopting machine learning (ML) predicting 

MO, TEE, MH. 

Patients and Methods: single-center, retrospective study enrolling all the consecutive AF-

affected patients admitted to a sICU for critical illness. Demographic, clinical, therapeutic 

and laboratoristic data were collected. Performance of CHA2DS2-VASc and HAS-BLED 

scores was evaluated. GL-adherence and its relationship with outcomes was studied. ML was 

used to engineer new predictive models. 

Results: we enrolled 1430 subjects; CHA2DS2-VASc (AUC:0.516;95%CI:0.472-0.560) and 

HAS-BLED (AUC:0.493;95%CI:0.443-0.543) did not predict TEE or MH; in-hospital 

warfarin use was associated to increased MO risk (OR:1.73;95%CI:1.06-2.83; p<0.05); low-

molecular-weight-heparin use was not associated to an increased MO risk; antiplatelet drugs 

use was associated to MO risk reduction (OR:0.51;95%CI:0.34-0.78;p<0.002). GL-adherent 

treatment was associated to TEE risk reduction and MH and MO risk increase; ML identified 

specific features for MO, TEE, MH: ML-based classifiers outperformed CHA2DS2-VASc 

(AUC: from 0.516 to 0.90, p<0.0001) and HAS-BLED (AUC: from 0.493 to 0.82, p<0.0001). 

Discussion: AF-related outcomes cannot be predicted in critically-ill patients with currently 

validated methods. GL-adherence is associated to a significant TEE reduction, but also to 
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MH and MO increase. ML algorithms can identify the most important features and shape 

specific scores able to outperform the classical models. 
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1. Introduction 

Atrial fibrillation in the critically-ill patient 

Atrial fibrillation (AF) is the most common sustained arrhythmia observed both in 

general population[1] and in several groups of hospitalized patients[2]. Among critically-ill 

subjects admitted in intensive care units (ICU), pre-existing and new-onset forms of AF can 

be observed in 1 out of 3 admitted patients[3].  

New-onset AF has a prevalence ranging between 5 and 46%[4] and represents 47.4-

61% of all the arrhythmias and 52% of the atrial arrhythmias observed in ICU[2,5,6]. Pre-

existing AF follows the same prevalence of the general population[7], and is present in 9% of 

the patients admitted to ICU for critical illness[8]. Moreover, pre-existing AF has a better-

known pathophysiology: it is strongly linked to ageing[9,10] and its associated comorbidities, 

as chronic heart failure (CHF), diabetes, valvular diseases, acute coronary syndromes (ACS) 

and hypertension (HYP)[11]. These disorders favour atrial structural and electrical 

remodelling, offering an ideal arrhythmogenic substrate[12]. Several factors, as electrolytic 

and volume disturbances, sympathetic and parasympathetic activity alterations are common 

AF triggers. The association of a substrate and a trigger is able to initiate and maintain 

AF[12,13].  

 The classical risk factors and triggers, however, show a weaker association with AF 

when it occurs during a critical illness[14], and other features seem to be implied in 

triggering and maintaining new-onset AF[4]. Acute pathologies, presence of organ failure 

and the activation of the inflammatory systemic response are supposed to induce atrial 

structural and electric remodelling[3,14,15]. Beta-agonist and vasopressor drugs, sustained 

tachycardia, bacterial toxins, neuro-hormonal and electrolyte disturbances, myocardial 

ischemia and volume overload can trigger a new-onset AF[3,4]. Moreover, proinflammatory 

cytokines have a direct arrhythmogenic effect of on atrial myocardium[16].  

 Acute occurrence of AF in the setting of a critical illness is often associated to a 
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deterioration of global haemodynamic due to fast and irregular ventricular response rate and 

to the loss of atrial systole[3,17], but also to an increased risk of stroke[18], acute heart 

failure (AHF)[19], and death[3].  

 Several authors showed that AF increased the risk of in-hospital mortality in specific 

pathologies, as in sepsis[20], trauma[21], ACS[22,23] and AHF[24], but also in generic 

cohorts of critically-ill patients admitted both in medical[25] and surgical[26] ICU. In the 

long-term, these patients had a greater risk of rehospitalisation for AHF and stroke and an 

increased risk of death, which remained high up to 5 years after hospital discharge[27]. 

 Previous reports underlined the association between poorer clinical outcomes and 

new-onset AF[14]. However, new-onset AF did not always result independently predictive 

for in-hospital mortality after adjusting for disease severity, suggesting that this type of AF 

could be a marker of prognosis rather than an independent risk factor[28,29]. Pre-existing AF 

has been identified as an independent risk factor for in-hospital mortality and worse 

functional outcomes in ACS, AHF[22,30,31] and in generic ICU populations[8]. 

 Despite the epidemiologic and prognostic relevance of the problem, the clinical 

management of AF during a critical illness is still object of debate. Currently, studies 

underline no benefit of a rhythm control over a rate control strategy in the critically-ill 

patient, and do not allow to generate any recommendation for a standard treatment[32], 

except for the cases of cardiogenic shock due to elevated cardiac frequency, where urgent 

electric cardioversion is mandatory[1]. Medications adopted for both rate and rhythm control 

are poorly evaluated in the setting of a critical illness and several studies underlined a 

significant practice variability in the prescription of different rate-control drugs[3]. Even the 

correct dose of commonly used medications, as amiodarone or magnesium sulphate, is 

currently under investigation in the specific clinical setting of ICU and in severe sepsis 

(clinicaltrials.gov ID NCT01049464; clinicaltrials.gov ID: NCT02668432). 
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 Critical illness itself represents a procoagulant state, and the coexistence of AF 

implies a markedly increased thromboembolic risk[33]. This increased risk has been 

demonstrated for new-onset AF in severe sepsis[18], ACS[34], AHF[35] and acute 

respiratory failure (ARF)[36]. Similarly, pre-existing AF has been associated to an increased 

stroke risk in ICU patients[8]. Anticoagulation in this subset of patients, however, has not 

been related to a significant reduction of stroke risk, but to a significant increase of bleeding 

risk[36,37].  

 The accuracy of the currently adopted clinical prediction scores in critically-ill 

subjects is still object of debate: while some authors recommend the use of CHA2DS2-VASc 

score at a different cutoff to stratify the thromboembolic risk in the critically-ill patients[38], 

others underline its low predictive value[36,39] and emphasise the presence of a very high 

haemorragic risk which cannot be accurately quantified by HAS-BLED score[36,40]. 

Medical population of a semi-intensive care unit 

The number of critically-ill patients (and their comorbidities) is increasing along with 

ageing of the population. In order to reduce ICU overcrowding and optimize resources, this 

subset of patients is often managed in specific Internal Medicine departments, named semi-

intensive care units, or sICU. The sICU population usually differs from ICU for a more 

advanced age of patients but also for an increased number of comorbidities as chronic 

respiratory failure, chronic kidney disease, dementia, CHF and cancer, with a worse 

prognostic profile and an even higher AF prevalence due to age and associated pathologies. 

Current use of big data and machine learning in medicine 

Medical informations are now collected continuously at the bedside: demographic data, 

clinical informations, pharmacological therapy, physiological signs, laboratory analysis and 

radiologic data can now be easily collected, stored and analysed. Thus, a big data repository 

is usually defined by five “Vs”: volume (large quantity of data), velocity (high speed of 

acquisition), variety (difference of the data sources), veracity (uncertainty of data quality) and 



	8	

value (possible valorisation of the data)[41]. Both ICU and sICU, for their technological 

implementation, represent the ideal environment where to collect and analyse this type of 

informations.  

Due to its multidimensionality, big data analysis cannot be adequately performed with the 

classical statistical methods: several machine learning (ML) techniques are currently used to 

explore hidden relationships between different variables. This process is done automatically, 

but a human supervision is often necessary to clarify the results and avoid spurious 

interpretations.  

Techniques based on a specific set of algorithms, named topological data analysis 

(TDA), are commonly used to explain relationships between variables in large datasets, 

especially in critical bio-medical and medical phenomena. TDA has been successfully 

applied in medical studies regarding cancer[42], simulated human immune systems 

dynamics[43] and pulmonary embolism (PE)[44]. In the setting of TDA, our group already 

used an hypernetwork approach and Q-analysis to identify informative medical features and 

instruct an artificial neural network to predict automatically the pretest probability of PE[44]. 

Hypernetworks provide a significant generalization of network theory, enabling the 

integration of relational structure, logic and analytic dynamics. With this novel approach, the 

resulting neural hypernetwork correctly recognized 94% of the patients affected by PE before 

the CT-scan. In other studies in the same dataset, we identified key features which were best 

associated to PE diagnosis[45,46] to engineer a ML algorithm which was able to outperform 

the classical methods, represented by Wells and Geneve scores.  

Aims of the study 

Objective of Atrial Fibrillation In Critically ILL (AFICILL) study was to evaluate the 

occurrence of the main outcome (MO), defined as death or ICU transfer, in a single-cohort, 

retrospective study of critically-ill patients affected by AF and admitted to a medical sICU. 

We also aimed to: 
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• evaluate	 risk	 factors,	 comorbidities	 and	 concurrent	 clinical	 events	 significantly	

and	independently	associated	to	MO;	

• assess	 the	 prevalence	 of	 cardioembolic	 events	 (TEE)	 and	 major	 haemorrhage	

(MH)	as	main	clinical	adverse	events	associated	to	AF	in	this	setting;	

• appraise	 the	 association	 and	 the	 predictive	 capacity	 of	 CHA2DS2-VASc	 for	 TEE	

and	HAS-BLED	for	MH	in	this	cohort;	

• estimate	the	adherence	to	the	indications	of	the	European	Society	of	Cardiology	

(ESC)	 AF	 guidelines[1]	 for	 anticoagulant	 therapy	 and	 assess	 the	 association	

between	guidelines	adherence	(GL)	and	adverse	clinical	events;	

• identify	 risk	 factors	 for	 MO,	 TEE	 and	 MH	 in	 this	 population	 of	 patients	 and	

generate	new	predictive	models	adopting	a	TDA-based,	ML	algorithm.	
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2. Patients and Methods 

Study cohort and baseline characteristics 

 In order to evaluate the study objectives, we retrospectively analyzed a cohort of 

critically-ill patients with AF admitted to the internal and sub-intensive medicine department 

of the Azienda Ospedaliero-Universitaria “Ospedali Riuniti” in Ancona, Italy. Since January 

01st 2002 the department adopted an electronic medical record (eMR) system for inpatients’ 

management, that allows to interrogate the main database to select patients characterized by a 

specific diagnosis. All diagnoses in the eMR are coded according to ICD-9 system. In the aim 

of the study, we selected all patients admitted to the sICU with a concurrent diagnosis of AF 

(ICD-9: 427.31) from inception to 31/03/2018, then we randomly decided “a priori” to select 

the first consecutive 25% of the entire AF cohort to include in the study, in order to keep the 

data collection timely and effective. Afterward, we excluded all patients admitted performing 

a planned cardioversion procedure for AF rhythm control, stable patients without acute organ 

failure and patients admitted for trauma or surgical pathologies in order to keep only the 

medical, critically-ill patients. We then obtained from the eMR and from the detailed 

examination of discharge reports all the data regarding demographics, history of risk factors 

and comorbidities, admission diagnoses, concurrent clinical events and use of antithrombotic 

drugs. 

Power Analysis 

 According to literature, mortality due to critical illness in ICU is estimated at 15% of 

the population. Setting a priori an alfa of 0.050 in a two-tailed test, we estimated that a 

sample size of 1430 patients was able to establish this outcome with a precision of ±2% 

(95%CI). 

Ethics Committee Approval 
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 The local ethics committee (CERM, Comitato Etico Regione Marche, Azienda 

Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy) reviewed the protocol and 

approved the study (protocol number: 2018/168, 21/06/2018, see Appendix 1). 

Electronic Database Structure 

 The database structure, the format of the collected variables, their content, their names 

and abbreviations are synthesized in Table 1. We collected the unique identifier, the number 

of admissions and the patient’s age at the admission as continuous variables. Main outcome, 

sex, electric cardioversion (CVE), pharmacologic cardioversion (CVF), the reason of sUTI 

admission (syncope, trauma, acute coronary syndrome, acute heart failure, cardiogenic shock, 

haemorragic shock, septic shock, acute kidney injury and acute respiratory failure), 

comorbidities (chronic heart failure, chronic obstructive lung disease, peripheral artery 

disease, previous stroke/TIA, chronic hepatic pathology, chronic kidney disease, chronic 

ischemic cardiopathy, diabetes mellitus, chronic anaemia, hypertension, active cancer, 

alcohol abuse, mitral valve disease and aortic valve disease), previous gastrointestinal (GI) 

bleeding, low time in therapeutic range (TTR), acetylsalicylic acid/clopidogrel use were 

categorized as binary variables.  

 Type of AF, type of MH, type of TEE, anticoagulant therapy at admission, 

anticoagulant therapy at discharge, acute neurologic syndromes, infections and the number of 

comorbidities were collected as categorical variables.  

 

Table 1: Database structure and type of collected variables 

Variable Name Content Format 

DATE Date of admission dd/mm/yyyy 

ID Unique identifier continuous 

ADM Number of admissions  continuous 
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SEX Patient’s sex binary 

AGE Patient’s age at the admission continuous 

MO In-hospital death or ICU transfer 

0: Discharged  

1: Death in sUTI 

1: UTI transfer 

binary 

AF_TYPE Atrial fibrillation type 

1: Paroxysmal 

2: Persistent 

3: Permanent 

categorial 

MH_TYPE Major haemorrhage type 

1: ICH/ESA 

2: Gastrointestinal bleeding 

3: Urinary tract bleeding  

4: Intramuscular bleeding 

5: Other 

categorial 

TEE_TYPE Cardioembolic event type 

1: Stroke/TIA 

2: Atrial appendage thrombus 

3: Systemic embolization  

4: Lower limb ischemia (embolic)  

categorial 

CVE Electric cardioversion binary 

CVF Pharmacologic cardioversion binary 

AC_ING Anticoagulant therapy at admission categorial 
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0: Warfarin 

1: LMWH 

3: No Anticoagulant 

AC_DISMISS Anticoagulant therapy at discharge 

0: Warfarin 

1: LMWH 

3: No Anticoagulant 

categorial 

Critical Illnesses at sICU admission 

SYN Syncope binary 

AC_NEUR Acute neurologic syndromes binary 

TRAUMA Trauma  binary 

ACS Acute coronary syndromes binary 

AHF Acute heart failure binary 

CS Cardiogenic shock binary 

HS Haemorragic shock binary 

SS Septic shock binary 

AKI Acute kidney injury binary 

ARF Acute respiratory failure binary 

INF Infection 

1: Pneumonia 

2: Abdominal infections 

3: Urinary tract infections 

4: Other 

categorial 
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Comorbidities 

CHF Chronic heart failure binary 

COPD Chronic obstructive lung disease binary 

PAD Peripheral artery disease binary 

STROKE_TIA Previous stroke or TIA binary 

CHP Chronic hepatic pathologies binary 

CKD Chronic kidney disease binary 

CCS Chronic ischemic cardiopathy binary 

T2DM Type 2 diabetes mellitus binary 

CA Chronic anaemia binary 

PREVIOUS_BLEED Previous gastrointestinal bleeding binary 

HYP Hypertension binary 

AC Active cancer binary 

COMORBIDITIES Number of comorbidities categorial 

LOW_TTR Low time in therapeutic range binary 



	 15	

ASA_CLOP Acetylsalicylic acid or Clopidogrel use binary 

ALC_ABUSE Chronic alcohol abuse binary 

MV_PAT Mitral Valve Disease binary 

AO_PAT Aortic valve disease binary 

CHA2DS2-VASc CHA2DS2-VASc Score categorial 

HASBLED HAS-BLED Score categorial 

CHADS2 CHADS2 Score categorial 

Legend: ICU=intensive-care unit; sICU= subintensive-care unit; ICH= intracranial 

hemorrhage; ESA= subarachnoid hemorrhage; TIA= transient ischemic attack; LMWH= low 

molecular weight heparin. 

 

We calculated CHADS2, CHA2DS2-VASc and HAS-BLED score following their 

original definitions [47–49], as shown in Table 2 and Table 3 and collected these scores as 

categorical variables. 

 

Table 2: CHADS2 and CHA2DS2-VASc score 

CHADS2 Score 

Item Meaning Score 

C CHF History +1 

H Hypertension History +1 



	16	

A Age >75 +1 

D Diabetes Mellitus +1 

S2 Previous Stroke / TIA / Thromboembolism +2 

CHA2DS2-VASc Score 

Item Meaning Score 

C CHF History +1 

H Hypertension History +1 

A2 Age: >75 +2 

D Diabetes Mellitus +1 

S2 Previous Stroke / TIA / Thromboembolism +2 

V Vascular disease History +1 

A Age: 65-74 +1 

Sc Sex Category (i.e. Female Sex) + 1 

Legend: CHF= chronic heart failure; TIA= transient ischemic attack. 

 

Table 3: HAS-BLED score 

Item Meaning Score 

H Hypertension +1 

A Age > 65 +1 

S Stroke History +1 



	 17	

 Labile INR (TTR < 60%) +1 

B Prior Major Bleeding or Predisposition +1 

L Liver Disease +1 

 Renal Disease +1 

E Alcohol Use +1 

D Drugs (ASA, NSAIDS) +1 

Legend: INR= international normalized ratio; TTR= time in therapeutic range; ASA= acetyl 

salicylic acid; NSAIDS= non-steroidal anti-inflammatory drugs. 

 

Last, we subdivided the overall sample according to GL-adherence. For patients 

without ACS we considered the indications in the 2016 ESC guidelines on AF[1]. For 

patients admitted with ACS, we also considered the indications in latest ESC GL on 

ACS[50,51]. Patients were divided into GL-adherent, overtreated or undertreated according 

their admission diagnosis and therapy, as shown in Figure 1. 
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Figure 1: Subdivision of the sample according to current GL adherence 

Legend: NT= no treatment; AP= antiplatelet therapy; AC= anticoagulant therapy; AP+AC= 

antiplatelet and anticoagulant therapy; GL= guidelines 

 

Definitions 

• critically-ill	 patient:	 we	 defined	 as	 “critically-ill”	 all	 the	 subjects	 who	 –	 at	 the	

admission	–	had	one	or	more	medical	conditions	at	high	risk	of	death,	following	

the	 MeSH	 definition,	 and	 who	 were	 admitted	 with	 at	 least	 one	 acute	 organ	

dysfunction.	

• main	 outcome	 (MO):	 we	 intended	 to	 evaluate	 the	 rate	 of	 therapeutic	 failure,	

defined	as	in-hospital	mortality	or	ICU	transfer.			

• major	 bleeding	 (MH):	 we	 collected	 all	 the	 major	 haemorragic	 events	 defined	

according	ISTH	definition	of	MH	in	non-surgical	patients[52],	intended	as	(i)	fatal	

bleeding,	 and/or	 (ii)	 symptomatic	 bleeding	 in	 a	 critical	 area	 or	 organ	

(intracranial,	 intraspinal,	 intraocular,	 retroperitoneal,	 intra‐articular	 or	

pericardial,	 or	 intramuscular	 with	 compartment	 syndrome),	 and/or	 (iii)	
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bleeding	causing	a	fall	in	haemoglobin	level	≥	20	g/L,	or	leading	to	transfusion	of	

≥	 2	 units	 of	 whole	 blood	 or	 red	 cells.	 Particularly,	 we	 classified	 MH	 into	 the	

following	subclasses:	

o intracranial	haemorrhage	(ICH)	or	subarachnoid	haemorrhage	(ESA)		

o gastrointestinal	bleeding	

o urinary	tract	bleeding	

o intramuscular	or	retroperitoneal	bleeding	

o other	sites	

• thromboembolic	 event	 (TEE):	 we	 recorded	 all	 the	 ischemic	 events	 with	 a	

presumable	 cardioembolic	 source	 during	 AF	 as	 stroke,	 TIA	 or	 systemic	

embolization.		

o stroke/TIA:	 we	 enrolled	 all	 subjects	 with	 stroke	 or	 transient	 ischemic	

attack	(TIA)	where	AF	was	 the	most	probable	source	of	embolism,	after	

evaluating	all	other	causes	of	non-AF	cardioembolic	stroke[53].	

o atrial	 appendage	 thrombus:	 enrolled	 subjects	 undergoing	 to	 urgent	

electric	 or	 pharmacologic	 cardioversion	 were	 submitted	 to	 trans-

oesophageal	echocardiography,	and	the	presence	of	thrombi	in	the	atrial	

appendages	was	recorded.	

o embolic	 limb	 ischemia:	 acute	 ischemia	 of	 embolic	 origin	 appearing	 in	

lower	or	upper	limbs.	

o systemic	embolization:	presence	of	synchronous	embolization	in	multiple	

sites	(visceral,	limb	and	cerebral).	

• atrial	 fibrillation	 (AF):	 	 all	 patients	 underwent	 electrocardiogram	 at	 the	

admission	in	our	sICU;	we	admitted	all	patients	showing	the	typical	AF	pattern,	

as	 defined	 by	 ESC	 Guidelines	 2016:	 “absolutely	 irregular	 RR	 intervals	 and	 no	
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discernible,	distinct	P	waves”[1].	We	excluded	from	the	study	all	the	cases	where	

the	cause	of	 the	arrhythmia	was	deemed	to	be	associated	 to	a	valvular	disease	

(such	as	mechanic	valves	or	severe	mitral	disease).	We	deemed	as	diagnostic	the	

documented	 episodes	 lasting	 at	 least	 30	 seconds.	According	 to	 clinical	 history,	

we	classified	AF	into	three	subclasses[1]:	

o 	paroxysmal:	 events	 self-terminating	within	 48	hours	 after	 admission	 or	

cardioverted	within	7	days	from	onset.	

o persistent:	 events	 lasting	more	 than	7	days	or	undergoing	cardioversion	

after	7	or	more	days.	

o permanent:	 events	 in	which	 a	 rate-control	 approach	was	 preferred	 to	 a	

rhythm-control	approach.	

• electrical	 cardioversion	 (CVE),	 pharmacologic	 cardioversion	 (CVF):	 patients	who	

were	selected	for	rhythm-control	strategies	underwent	to	CVE	or	CVF,	according	

current	guidelines[1].	A	treatment	strategy,	drug	or	procedure	was	not	preferred	

over	another.		

• anticoagulant	 therapy	 at	 admission	 (ADM),	 anticoagulant	 therapy	 at	 discharge	

(DIS):	 we	 recorded	 all	 the	 anticoagulant	 therapies	 at	 admission	 and	 at	 the	

discharge	of	each	subject.	Direct	oral	anticoagulants	(DOACs)	were	not	available	

at	the	time	of	the	study.	Particularly,	we	evaluated	the	use	of:	

o warfarin	

o low	molecular	weight	heparin	(LMWH)	

o 	no	anticoagulant	therapy	

• reason	 of	 admission	 in	 sICU:	 the	 acute	 pathology	 for	 sICU	 admission	 was	

synthesized	 and	 collected.	 Of	 note,	 more	 than	 one	 acute	 pathology	 could	 be	

present	in	the	same	patient.	Particularly,	we	assessed:	
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o syncope	 (SYN):	 patients	 assessed	 for	 transient	 loss	 of	 consciousness	 in	

whom	a	definite	diagnosis	of	cardiogenic	cause	was	ascertained	according	

to	 the	2009	ESC	guidelines	on	management	of	 syncope[54],	which	were	

adopted	at	the	time	of	the	study.	

o acute	 neurological	 syndromes	 (ANS):	 subjects	 admitted	 for	 status	

epilepticus	 or	 other	 life-threatening	 neurological	 pathologies,	 except	

stroke/TIA,	which	was	recorded	as	part	of	TEE.	

o trauma:	patients	admitted	for	major	head	trauma,	blunt	or	open	thoracic	

trauma,	blunt	or	open	abdominal	trauma	were	gathered.	

o acute	coronary	syndrome	(ACS):	ST-elevated	or	non-ST	elevated	ACS	were	

diagnosed	according	current	guidelines[50,51]	and	classified	according	to	

the	third	universal	definition	of	myocardial	infarction[55].	

o acute	 heart	 failure	 (AHF)	 was	 defined	 and	 diagnosed	 according	 current	

ESC	guidelines[56]	as	a	rapid	onset	or	worsening	of	typical	symptoms,	as	

breathlessness,	 ankle	 swelling	 and	 fatigue,	 accompanied	 by	 signs,	 as	

elevated	 jugular	 venous	 pressure,	 pulmonary	 crackles	 and	 peripheral	

oedema[56].	

o shock:	 was	 defined	 as	 a	 failure	 to	 perfuse	 or	 oxygenate	 vital	 organs,	

according	MeSH	definition,	and	was	subdivided,	upon	the	aetiology,	into:		

§ cardiogenic	 shock	 (CS)	 was	 identified	 as	 a	 state	 of	 end-organ	

hypoperfusion	due	to	cardiac	failure[57].	

§ haemorragic	 shock	 (HS)	was	 defined	 as	 a	 form	 of	 hypovolemic	

shock	 in	 which	 severe	 blood	 loss	 leads	 to	 inadequate	 oxygen	

delivery	at	the	cellular	level[58].	
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§ septic	 shock	 (SS)	 was	 diagnosed	 according	 to	 2001	

SCCM/ESICM/ACCP/ATS/SIS	 International	 Sepsis	 Definitions	

Conference	definition[59].	

o acute	 kidney	 injury	 (AKI)	 was	 diagnosed,	 adopting	 the	 modified	 RIFLE	

criteria,	as	a	serum	creatinine	increase	≥	0.3	mg/dl	occurring	within	a	48-

hour	period[60].	

o acute	respiratory	failure	(ARF):	was	defined	as	the	acute	inadequacy	of	the	

lungs	 to	 maintain	 either	 acceptable	 blood	 oxygenation,	 or	 to	 allow	 a	

normal	arterial	blood	carbon	dioxide	 levels	or	both[61]	and	categorized	

in	type	1	(hypoxemic)	or	type	2	(hypercapnic).	

o infection	 (INF)	 was	 defined	 by	 the	 clinical,	 radiologic	 and	 cultural	

detection	of	an	infection	in	a	specific	organ,	and	was	subdivided	into:	

§ thoracic	infections	(pneumonia,	mediastinitis)	

§ non-surgical	 abdominal	 infections	 (appendicitis,	 cholecystitis,	

diverticulitis,	peritonitis)	

§ symptomatic	urinary	tract	infections	

§ other	

• comorbidities:	 we	 also	 investigated	 the	 presence	 of	 one	 or	 more	 associated	

chronic	pathologies	in	each	enrolled	patient.	

o chronic	 heart	 failure	 (CHF)	 was	 diagnosed	 according	 current	

guidelines[56]	 and	 defined	 as	 “a	 clinical	 syndrome	 characterized	 by	

typical	 symptoms	 (e.g.	 breathlessness,	 ankle	 swelling	 and	 fatigue)	 that	

may	 be	 accompanied	 by	 signs	 (e.g.	 elevated	 jugular	 venous	 pressure,	

pulmonary	 crackles	 and	 peripheral	 oedema)	 caused	 by	 a	 structural	
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and/or	 functional	 cardiac	 abnormality,	 resulting	 in	 a	 reduced	 cardiac	

output	and/or	elevated	intracardiac	pressures	at	rest	or	during	stress”.	

o chronic	obstructive	lung	disease	(COPD)	was	diagnosed	according	current	

guidelines[62]	 and	 defined	 as	 persistent	 respiratory	 symptoms	 and	

airflow	limitation	due	to	airway	and/or	alveolar	abnormalities.	

o peripheral	artery	disease	 (PAD)	 was	 diagnosed	 by	 physical	 examination,	

history	 and	 echo-colour	 doppler	 and	 defined	 as	 a	 chronic	 tissue	

hypoperfusion	 due	 to	 atherosclerosis	 of	 extracranial	 carotid	 and	

vertebral,	mesenteric,	renal,	upper	and	lower	extremity	arteries[63].	

o previous	stroke/TIA:	was	defined	as	a	history	of	stroke	or	TIA.	

o chronic	 hepatic	 pathologies	 (CHP)	 were	 defined	 as	 the	 presence	 of	

cirrhosis	 of	 any	 cause	 or	 chronic	 infection	 by	 HBV,	 HCV	 or	 other	

hepatotropic	viruses.		

o chronic	kidney	disease	(CKD)	was	defined	as	kidney	damage	or	glomerular	

filtration	 rate	 (GFR)	 <60	 mL/min/1.73	 m2	 for	 3	 months	 or	 more,	

irrespective	 of	 cause[64].	 eGFR	 was	 estimated	 with	 Cockroft-Gault	

formula.	

o chronic	ischemic	cardiopathy	(CCS)	was	diagnosed	in	presence	of	a	history	

of	myocardial	infarction	or	chest	discomfort	(angina	pectoris)[65].	

o type	2	diabetes	mellitus	(T2DM)	was	diagnosed	in	presence	of	a	history	of	

T2DM	and/or	anti-diabetic	therapies	at	the	admission.	

o chronic	 anaemia	 (CA)	 was	 diagnosed	 when	 a	 chronic	 reduction	 of	

haemoglobin	below	13.7	g/dl	in	men	and	below	12.2	g/dl	in	women[66].	

o previous	gastrointestinal	(GI)	bleeding:	was	defined	as	a	history	of	upper	

or	lower	GI	bleeding	confirmed	by	appropriate	endoscopic	studies.	
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o hypertension	 (HYP)	 was	 identified	 in	 presence	 of	 a	 history	 of	 poorly	

controlled	 hypertension	 and/or	 anti-hypertensive	 therapy	 use	 at	 the	

admission	 with	 an	 history	 of	 poor	 blood	 pressure	 control.	 Due	 to	 the	

frequent	 alterations	of	 blood	pressure	 values	 in	 the	 critically-ill	 patient,	

we	did	not	consider	the	blood	pressure	values	during	hospitalization	for	

diagnostic	purposes.	

o active	 cancer	 (AC)	 was	 diagnosed	 in	 presence	 of	 history,	 physical	

examination	and	laboratoristic/instrumental	exams	suggestive	for	active	

cancer	at	the	admission	of	the	patient.	

o low	time	in	therapeutic	range	(TTR)	 the	quality	of	 anticoagulation	 in	 the	

12	months	preceding	 the	hospitalization	 in	patients	anticoagulated	with	

warfarin	 was	 evaluated	 with	 TTR,	 calculated	 with	 the	 Rosendaal	

method[67]:	TTR	was	defined	labile	for	values	<	60%,	as	required	by	the	

HAS-BLED	score.	

o use	 of	 acetylsalicylic	 acid	 or	 clopidogrel	 (ASA_CLOP)	was	 defined	 by	 the	

use,	 at	 the	 time	of	admission,	of	acetylsalicylic	acid,	 clopidogrel	or	other	

antiplatelet	drugs.	

o alcohol	abuse	(ALC)	was	defined	as	chronic	abuse	of	alcoholic	substances.	

o mitral	valve	disease	(MVP)	or	aortic	valve	disease	(AVP):	were	diagnosed	if	

at	 echocardiogram	 were	 present	 mitral	 valve	 stenosis	 and/or	

insufficiency	 and/or	 aortic	 valve	 stenosis	 and/or	 insufficiency.	 We	

excluded	from	the	present	study	all	the	patients	in	whom	the	cause	of	AF	

was	attributable	to	the	valvular	pathology.	

Statistical analysis 
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 Continuous variables were reported as mean and standard deviation (SD) or median 

and interquartile range (IQR), according to a normal or non-normal distribution of values. 

The statistical difference between subgroups has been evaluated, respectively, with t-test (2 

groups, normal distribution), ANOVA test (more than 2 groups) or with Mann-Whitney U 

test (2 groups, non-normal distribution) and Kruskal-Wallis ANOVA test (more than two 

groups). Categorial variables were reported as number of subjects and their proportion. 

Differences between subgroups have been evaluated with χ2 test. 

 The association of the clinical factors with the main outcome was evaluated with 

logistic regression analysis. Demographic and clinical variables was assessed first with 

univariate analysis: all the variables associated with the main outcome with a p value equal or 

less than 0.010 were included in the multivariate analysis.  The association between risk 

scores and adverse clinical events was assessed with a logistic regression model developed 

with the same methodology adopted to study the relationship between clinical factors and the 

main outcome. 

 Predictivity of risk scores was evaluated adopting the c-statistics. We calculated also 

sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive 

value (NPV) adopting the standard cut-offs. Receiver-operator curves (ROC) were calculated 

in 2D graphs considering the true positive rate (Se) in the y-axis and the true negative rate (1-

Sp) in the x-axis. For each curve, the area under the curve (AUC) was calculated. Differences 

between curves were calculated accordingly to DeLong method[68]. 

We considered as statistically significant a p-value less or equal to 0.05 for two-tailed 

tests. Statistical analysis has been performed with SPSS 25.0 and Microsoft Excel for Mac 

OSx. 

Data-driven modelling of new scoring systems 
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 Visualizing multi-dimensional datasets: the t-SNE approach. The dataset under 

examination described each patient with 45 categorical and numerical variables synthesizing 

different clinical aspects of the enrolled patients.  

Because of this high dimensionality, the dataset could not be immediately visualized 

by human brain, which is capable to shape only data belonging to 3 dimensions. A first 

attempt to visualize the dataset could be of producing a huge amount of 3d scatter plots made 

by plotting 3 variables at time. This brute-force approach, however, is able to discern only a 

few and incomplete set of insights. Thus, is important to instruct a more complex but suitable 

approach for dataset visualization.  

Literature suggests different techniques for visualizing high dimensional datasets: for 

a complete review we referred to [69]. Among these, t-Distributed Stochastic Neighbour 

Embedding (t-SNE) is one of the mostly used techniques, which is able to visualize datasets 

up to 50 dimensions. t-SNE is defined as a “non-linear dimensionality reduction algorithm”, 

which finds patterns in the data by identifying observed clusters based on similarity of data 

points with multiple features. It is important to underline the concept that t-SNE is not a 

clustering algorithm, but a “dimensionality reduction algorithm”, which maps the multi-

dimensional data to a lower dimensional space, where the input features are no longer 

identifiable. Thus, it is not possible to make any inference using t-SNE output only which is 

conceptually a data exploration and visualization technique. t-SNE maps multi-dimensional 

data to two or more dimensions, making it suitable for human observation. The algorithm for 

computing t-SNE considers 4 main steps. Step 1 and Step 2 calculate the conditional 

probability of similarity between a pair of points in high dimensional space and then in low 

dimensional space. In Step 3 and Step 4 t-SNE tries to minimize the sum of the difference in 

conditional probabilities and the algorithm finds the best parameters for retaining the local 

structure of the data in the map. This algorithm optimizes the search of the “hyper-parameter” 

in regard to the so-called perplexity. Perplexity is inputted by the user: this value can be 
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interpreted as a smooth measure of the effective number of neighbours. Typical values are 

between 5 and 50. For a complete technical overview of this methodology we refer to 

[70,71]. In Table 4 we report a comparison by using different perplexity values on the same 

dataset[72].  

Medical studies often use principal component analysis (PCA), which is a long-

standing technique for data visualization and reduction. However, PCA has some limitations: 

it is a linear algorithm, and it will not be able to interpret complex non-linear relationship 

between features. A major problem with linear dimensionality reduction algorithms is that 

they concentrate on placing dissimilar data points far apart in a lower dimension 

representation. However, in order to represent high dimensional data on lower dimensions it 

is important that similar data points must be represented close together, which is not what 

linear dimensionality reduction algorithms do. For a complete technical review of t-SNE we 

refer to [73]. 

 

Table 4: example of t-SNE: visualization of cell types in the mouse cortex and hippocampus. 

 

 Mining insights from multi-dimensional datasets: computational topology and 

Mapper algorithm: t-SNE retains both the local and global structure of the data at the same 

  

Perplexity 30: classes are well grouped except for the endothelial Perplexity 50: the endothelial is now more grouped 
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time but it does not care of the meta-scale proximities among data. Meta-scale is the 

dimension between micro and macro. Topology is the branch of mathematics that aims to 

study the shapes and the maps among them. A topological space is an abstract space 

equipped with some notions of similarities.  There are several ways for building a topological 

space, we are interested to the ones obtained by using the so-called simplicial complex.  

Simplicial complex is the most suitable construction of topological space even they 

are combinatorial objects that can be easily constructed and studied by software systems. An 

abstract simplicial complex is the subset of the power set of a vertex set. For example, given 

the vertex set V = {0,1,2}, the power set 2V of V is 2V 

={{∅},{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}, and one simplicial complex can be {0,1,2}.  

Instead of dealing with an abstract simplicial complex, the researcher could be 

interested in geometrical construction: a simplicial complex is obtained by nesting together 

small pieces, known as simplices. The most common simplices are labelled as follows: 0-

simplex is represented by a vertex, 1-simplex is represented by an edge, 2-simplex is 

represented by a filled triangle, 3-simplex is represented by a filled tetrahedron. During the 

construction of the final simplicial complex only a constrain must be respected: the 

intersection between two simplices must be the empty set or must be proper, meaning that 

they must share all their simplices or at least one simplices of dimension less the dimension 

of the whole simplices. A new set of algorithms for the construction of simplicial complexes 

and their analysis has been derived from algebraic topology and they are known as 

topological data analysis. TDA is sensitive to both large- and small-scale patterns that often 

fail to be detected by other analysis methods, such as principal component analysis, (PCA), 

multidimensional scaling, (MDS), and cluster analysis.  

This technique is able to explore and synthesize the relationships between large sets of 

data and is nowadays largely used for exploratory data mining in big data studies. An 

example of TDA workflow is shown in Figure 3.  



	 29	

 

Figure 3: (A) a 3D object (hand) is represented as a point cloud. (B) a filter value is applied 

to the point cloud and the object is now coloured by the values of the filter function. (C) the 

data set is binned into overlapping groups. (D) each bin is clustered and a network is built. 

Picture and caption from [74].  

  

 

TDA can be derived in three main classes of algorithms: persistent homology, 

hypernetwork and mapper.  Homology is an algebraic machinery that counts the number of 

holes in a simplicial complex. Persistent homology is the computational implementation of 

homology. Persistent homology builds simplicial complexes from data in an iterative fashion. 

If the input dataset is a point cloud data, a Vietoris-Rips algorithm or equivalent is used to 

build the simplicial complex. While, if the input dataset is a network then the completion to a 

simplicial complex is obtained by clique weight rank persistent homology. Once the 

simplicial complex is obtained its homology is studied. Persistent homology takes as input 

the list of simplices within a simplicial complex and iterates over. At each iteration simplicies 

are added to the topological space and the number of n-dimensional holes is computed. Holes 

that are found at the end of the process are labelled as persistent, the other are classified as 

noise.  
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Mapper builds a 1-dimensional simplicial complex from data. A 1-dimensional 

simplicial complex is obtained connecting together vertices (nodes) with edges. This 

structure coincides with a graph. A graph G is a set of nodes V and a set of edges E: G=(V,E)  

where E⊆VxV. Before recalling the technical details of the Mapper algorithm, we provide an 

example in Figure 4. 

 

Figure 4: An example of Mapper with artificially generated 2D point cloud data  

 

 

The example in Figure 4 shows Mapper output from an artificially-generated point cloud 

data. The data in the example consists of 5000 points randomly generated from a Gaussian 

distribution surrounding three centroids at [x, y] coordinates: [10, 20], [-10, -17], [17, -10]; 

with a standard deviation of 9. The simplicial complex (right) contains a flare. The top arm 

ends with another flare made by two nodes indicating the two clusters in the bottom of the 

picture. The second arm ends with a node indicating the upper cluster in the picture. The 

method consists of a number of steps, given a point cloud with N points 𝑥	 ∈ 𝑋 (Figures 3 

and 4): 

1. We start with a function 𝑓:	𝑋 → 	ℜ whose value is known for the N data points. We 

call this function a filter. The function should convey some interesting geometric or 

other, properties of the data, relevant for the task at hand. 
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2. Citing from [75]: “Finding the range (I) of the filter f restricted to the set X and 

creating a cover of X by dividing I into a set of smaller intervals (S) which overlap. 

This gives us two parameters which can be used to control resolution namely the 

length of the smaller intervals (l) and the percentage overlap between successive 

intervals (p)”. 

3. Citing from [75]: “Now, for each interval 𝐼* 	 ∈ 𝑆, we find the set  𝑋* = {𝑥|𝑓(𝑥) ∈ 𝐼*} 

of points which form its domain. The set Xj forms a cover of X, and 𝑋 ⊆ 	⋃ 𝑋** ”. 

4. Choosing a metric d(-,-) to get the set of all interpoint distances 

𝐷𝑗	 = {𝑑(𝑥𝑎; 𝑥𝑏)|𝑥𝑎; 𝑥𝑏	 ∈ 	𝑋𝑗} 

5. For each Xj together with the set of distances Dj we find clusters {𝑋*:}. 

6. Each cluster then becomes a vertex in our complex and an edge is created between 

vertices if 𝑋*: ∩ 𝑋<= = ∅ meaning that two clusters share a common point. 

For a review of the technical details of the algorithm we refer to [75]. In this work we 

have used the Python language implementation of the Mapper algorithm called Kepler 

Mapper [76]. 

Statistical methods adopted in TDA 

• Chi-squared	 test	 (χ2):	 feature	 reduction	 is	 the	 step	 of	 reducing	 the	 number	 of	

features	 to	 improve	 model	 construction.	 There	 are	 two	 main	 approaches	 for	

feature	reduction:	 feature	selection	and	 feature	combination.	They	can	be	used	

together.	 Feature	 selection	 is	 the	 process	 of	 selecting	 a	 subset	 of	 relevant	 and	

informative	variables	 to	be	used	 in	model	construction.	 In	 feature	combination	

the	 features	 are	 combined	 together	 (linearly	 or	 not)	 by	 building	 a	 new	 set	 of	

artificial	 features.	Usually	 in	feature	combinations	the	features	are	weighted	by	

coefficients	 reflecting	 features’	 relevance.	 Several	 approaches	 for	 feature	

selection	are	available,	however	they	rely	mainly	on	statistical	tests.	χ2	statistical	
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tests	 are	 widely	 used	 for	 selecting	 features	 that	 form	 the	 input	 space	 of	

classifiers.	χ2	is	used	 in	statistics	 to	 test	 the	 independence	of	 two	events.	Given	

dataset	 about	 two	 events,	 we	 can	 get	 the	 observed	 count	O	 and	 the	 expected	

count	E.	 χ2	measures	 how	much	 the	 expected	 counts	E	 and	 observed	 Count	O	

derivate	 from	each	other.	n	 feature	selection,	 the	 two	events	are	occurrence	of	

the	feature	and	occurrence	of	the	class.	If	the	two	events	are	dependent,	we	can	

use	the	occurrence	of	the	feature	to	predict	the	occurrence	of	the	class.	We	aim	

to	 select	 the	 features,	 of	 which	 the	 occurrence	 is	 highly	 dependent	 on	 the	

occurrence	of	the	class:	the	higher	value	of	the	χ2	score,	the	more	likelihood	the	

feature	is	correlated	with	the	class,	thus	it	should	be	selected	for	model	training	

[77].	 

• Receiver-operating characteristic (ROC) in TDA: in modern medicine, the validity of 

a dichotomous diagnostic test is determined by sensitivity and specificity. ROC curve 

is the plot that displays the full picture of trade-off between the true positive rate (Se) 

and false positive rate (1-Sp) across a series of inherent validity of a diagnostic test. 

This curve is useful in evaluating the discriminatory ability of a test to correctly pick 

up diseased and non-diseased subjects and finding the optimal cut-off point to least 

misclassify diseased and non-diseased subjects. The AUC is a single index for 

measuring the performance a test. The larger the AUC, the better is the overall 

performance of the medical test to correctly identify healthy and non-unhealthy 

subjects. Equal AUCs of two tests represent similar overall performances, however 

this does not necessary mean that both the curves are identical. We calculated the 

optimal cutoff value in each ROC curve adopting Youden's J statistic. ROC	 curves	

were	compared	adopting	Delong	method[68]. 
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• Jaccard similarities. The Jaccard Similarity coefficient is a statistic used to compare 

the similarity and diversity of sample sets. The Jaccard coefficient measures similarity 

between sample sets, and it is defined as: 

𝐽(𝑀𝐷, 𝐴𝐷) =
|𝑀𝐷 ∩ 𝐴𝐷|
|𝑀𝐷 ∪ 𝐴𝐷| 

Where: 

• MD is the medical doctor diagnosis (0 or 1) 

• AD is the diagnosis obtained with some other approach, e.g. algorithm (0 or 1) 

• Machine learning for data-driven modelling. ML	is	often	defined	as	a	“field	of	study	

that	gives	computers	the	ability	to	learn	without	being	explicitly	programmed”.	It	

means	 that	a	ML	algorithm	 learns	 from	the	data	a	set	of	parameters	necessary	

for	adapting	the	algorithm	to	the	dataset	under	analysis.	As	an	example,	we	will	

use	a	simple	linear	equation,	defined	as:	𝑦 = 𝑎𝑥 + 𝑏:	given	a	set	of	pairs	of	x	and	

y	 (the	 so-called	 training	 set)	 a	 ML	 regressor	 algorithm	 will	 be	 able	 to	 extract	

automatically	the	proper	values	of	a	and	b	so	that,	given	a	new	unseen	x,	it	will	

approximate	the	equation.	Of	course,	ML	is	used	for	more	complicated	problems,	

where	 it	 is	 quite	 impossible	 to	 explicitly	 write	 the	 analytical	 form.	 With	 this	

example	we	have	introduced	the	concept	of	“regressor”	that	is	an	algorithm	able	

for	 predicting	 continuous	 numbers.	 A	 second	 class	 of	 algorithms	 is	 called	

classifier:	 the	ML	algorithm	learns	from	a	training	set	 to	automatically	classify	a	

new	 unseen	 input	 in	 a	 set	 of	 classes.	 ML	 algorithms	 learn	 from	 data	 a	 set	 of	

parameters	 for	 better	 approximating	 the	 map	 projecting	 the	 inputs	 with	 the	

output(s).	 However,	 the	 selection	 of	 which	 ML	 algorithm	 to	 be	 used	 and	 its	

partial	 initial	 configuration	 (e.g.	 number	 of	 layers	 and	 nodes	 of	 an	 artificial	

neural	network)	is	demanded	to	the	data	scientist	experiences.	Moreover,	a	ML	

pipeline	 is	often	composed	by	a	collection	of	algorithms	 interacting	each	other.	
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Thus,	 given	 a	 dataset	 the	 engineering	 of	 a	ML	 pipeline	 in	 terms	 of	 algorithms	

down-selection	and	their	configuration	becomes	a	daunting	task.	Recently,	a	new	

class	of	framework	called	AutoML	is	emerging.	AutoML	systems	aim	to	assist	data	

scientist	 in	 the	 selection	 of	 the	 proper	 algorithms	 and	 their	 automatic	 tuning.	

Among	 the	 other,	 Tree-based	 Pipeline	 Optimization	 Tool	 (TPOT)	 framework	 is	

receiving	interest	from	the	data	science	community.	TPOT	automatically	designs	

and	optimizes	ML	pipelines	 for	 a	 given	problem	domain,	without	 any	need	 for	

human	 intervention.	 In	 short,	 TPOT	 optimizes	ML	 pipelines	 using	 a	 version	 of	

genetic	 programming,	 a	 well-known	 evolutionary	 computation	 technique	 for	

automatically	 constructing	 computer.	 TPOT	 can	 deal	with	 both	 regression	 and	

classification	problems.	In	the	following,	we	list	the	main	algorithms	handled	by	

TPOT	used	as	methods	of	our	data	analysis: 

• Supervised Classification Operators. Decision Tree, Random Forest, eXtreme 

Gradient Boosting Classifier, Logistic Regression, and K-Nearest Neighbor 

Classifier.  

• Feature Preprocessing Operators. StandardScaler, RobustScaler, MinMaxScaler, 

MaxAbsScaler, RandomizedPCA, Binarizer, and Polynomial Features.  

• Feature Selection Operators. VarianceThreshold, SelectKBest, SelectPercentile, 

Select and Recursive Feature Elimination (RFE). 

TPOT developers are very active and new algorithms are added frequently [78]. 
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3. Results 

Study cohort 

The Internal and Subintensive Medicine department of an 800-beds teaching hospital 

(Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy) adopted an electronic 

database for inpatients’ management since 01/01/2002; from that date to 31/03/2018, 6822 

critically-ill patients affected by AF have been admitted to this unit.  

 According to the study design, we selected the first quarter, equal to 1705 patients. 

After excluding those admitted performing a planned cardioversion procedure for AF rhythm 

control, stable patients without acute organ failure and patients admitted for trauma or 

surgical pathologies, we obtained a total of 1430 patients, included in the analysis. We 

synthesized the criteria for patients’ selection in Figure 2. 
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Figure 2: criteria for selection of the analysed sample 

 

   

Baseline characteristics of the sample 

Main outcome was met in 13.6% of the sample (194 subjects). TEE occurred in 

14.8% of the cohort (212 patients). We observed MH in 9.30% of the analyzed group (133 

subjects). Baseline characteristics of the sample at the admission according MO are 

synthesized in Table 5.  

 

Table 5: Baseline Characteristics at Admission in Sub-Intensive Unit (sICU) 

 MO p 

 No Yes 
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N= 1236 N= 194 

Age, years median [IQR] 81 [75-85] 83 [77-89] <0.001 

Female Sex, n (%) 753 (49.9) 90 (46.2) 0.329 

Type of AF, n (%) 

Paroxysmal 

Persistent 

Permanent 

 

220 (18.6) 

292 (24.7) 

668 (56.6) 

 

24 (12.8) 

57 (30.3) 

107 (56.9) 

0.077 

Previous Clinical History    

Hypertension, n (%) 637 (51.5) 64 (33.0) <0.001 

Diabetes Mellitus, n (%) 226 (18.3) 34 (17.5) 0.799 

Chronic Anaemia, n (%) 114 (9.2) 17 (8.8) 0.836 

Coronary Artery Disease, n (%) 531 (43.0) 78 (40.2) 0.471 

Peripheral Artery Disease, n (%) 131 (10.6) 16 (8.2) 0.316 

Chronic Heart Failure, n (%) 581 (47.0) 88 (45.4) 0.669 

CVF, n (%) 183 (14.8) 27 (13.9) 0.745 

CVE, n (%) 29 (2.3) 1 (0.5) 0.098 

Previous stroke/TIA, n (%) 258 (20.9) 34 (17.5) 0.282 

Mitral Valve Disease, n (%) 195 (15.8) 15 (7.7) 0.003 

Aortic Valve Disease, n (%) 151 (12.2) 16 (8.2) 0.109 

COPD, n (%) 340 (27.5) 54 (27.8) 0.925 

Chronic hepatic pathologies, n (%) 35 (2.8) 7 (3.6) 0.551 

CKD, n (%) 230 (18.6) 39 (20.1) 0.620 

Previous GI Bleeding, n (%) 66 (5.3) 5 (2.6) 0.100 
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Active Cancer, n (%) 210 (17.0) 44 (22.7) 0.054 

Comorbidities, n median [IQR] 3 [2-4] 2 [2-3] 0.114 

Concurrent Clinical Events    

TEE, n (%) 177 (14.3) 35 (18.0) 0.175 

MH, n (%) 110 (8.9) 23 (11.9) 0.188 

Syncope, n (%) 68 (5.5) 2 (1.0) 0.007 

Acute Neurologic Disorders, n (%) 47 (3.8) 6 (3.1) 0.627 

Acute Coronary Syndrome, n (%) 160 (12.9) 50 (25.8) <0.001 

Acute Heart Failure, n (%) 669 (54.1) 99 (51.0) 0.421 

Cardiogenic Shock, n (%) 28 (2.3) 43 (22.2) <0.001 

Septic Shock, n (%) 106 (8.6) 74 (38.1) <0.001 

AKI, n (%) 58 (4.7) 10 (5.2) 0.779 

Acute Respiratory Failure, n (%) 319 (25.8) 77 (39.7) <0.001 

Infections, n (%) 330 (26.7) 102 (52.6) <0.001 

Legend: AF= atrial fibrillation; ACS= acute coronary syndrome; AKI= acute kidney injury; 

CKD= chronic kidney disease; COPD= chronic obstructive pulmonary disease; CVE= 

electrical cardioversion procedure; CVF= pharmacological cardioversion procedure; IQR= 

interquartile range; TEE= thromboembolic events; TIA= transient ischemic attack. 

 

Thromboembolic and bleeding risk and relationships with outcomes  

At baseline, there was no difference in terms of thromboembolic risk according to 

CHA2DS2-VASc score between patients that experience the composite outcome and those 

that did not experience it. Conversely, HAS-BLED score, as well the proportion of patients 

with high bleeding risk were lower (both p<0.001) patients that reported the main outcome 

than in those that did not report the outcome (Table 6). Examining the entire spectrum of the 
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two scores, no difference was found in the distribution of the MO according to CHA2DS2-

VASc score points (p=0.501). Conversely, the MO occurred more frequently in patients with 

a lower HAS-BLED score (p<0.001). 

 Further, considering the occurrence of concurrent clinical events we examined the 

prevalence of TEE according to CHA2DS2-VASc score and the prevalence of major bleeding 

according to HAS-BLED score, finding no significant differences across the two scores’ 

points and the occurrence of events (respectively p=0.641 and p=0.479).  

Also, we found no association between CHA2DS2-VASc score and TEE occurrence 

and between HAS-BLED score and major bleeding occurrence (Table 10). Similarly, we 

found no predictive ability of the two scores regarding the respective events (CHA2DS2-

VASc c-index for stroke/TIA: 0.545, 95% CI: 0.489-0.601; HAS-BLED c-index for major 

bleeding: 0.503, 95% CI: 0.453-0.554).  

We also considered CHADS2 score, which is deemed to be less age and vascular 

comorbidities dependent than CHA2DS2-VASc: however, when tested against TEE 

occurrence with ROC curve analysis, CHADS2 did not result significantly predictive of 

events (AUC: 0.513; 95%CI: 0.487-0.539; p >0.05), with performances similar to CHA2DS2-

VASc (AUC: 0.516; 95%CI: 0.472-0.560; p >0.05). Moreover, when comparing the two 

scores, the difference between AUCs did not result significantly different in predicting 

thromboembolic events (difference between areas: 0.00326; p= 0.7108). For this reason, we 

continued the analyses adopting only the most currently adopted scores, CHA2DS2-VASc and 

HAS-BLED. 

Considering high thromboembolic risk, we found a high sensitivity (93.4%, 95% CI: 

90.9-99.0%) and a high NPV (95.0%, 95% CI: 87.6-98.1%) of CHA2DS2-VASc ≥2 for 

stroke/TIA, with a low specificity and PPV (Table 10). Regarding the high bleeding risk, 

intermediate values for both sensitivity (46.6%, 95% CI: 37.9-55.5%) and specificity (57.1%, 
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95% CI: 54.4-59.8%) were found, while a high NPV (91.3%, 95% CI: 89.8-92.5%) and a 

very low PPV were reported (Table 10). 

 

Table 6: Thromboembolic and Bleeding Risk at Baseline 

 MO P 

 No 

N= 1236 

Yes 

N= 194 

CHA2DS2-VASc, median [IQR] 4 [3-5] 4 [3-5] 0.057 

CHA2DS2-VASc, mean (SD) 4.28 (1.68) 4.04 (1.72) 0.774 

CHA2DS2-VASc ≥2, n (%) 1170 (94.7) 180 (92.8) 0.290 

HAS-BLED, median [IQR] 2 [2-3] 2 [1-3] <0.001 

HAS-BLED, mean (SD) 2.38 (1.08) 2.07 (0.95) <0.001 

HAS-BLED ≥3, n (%) 563 (45.6) 55 (28.4) <0.001 

Legend: IQR= interquartile range; SD= standard deviation. 

 

Factors affecting the main outcome 

Regarding medical therapy, we observed that patients undergoing to the main 

composite outcome were more likely treated with anticoagulants and less likely treated with 

antiplatelet drugs at the admission in sICU, as shown in Table 7. 

 

Table 7: Antithrombotic Therapies at Admission in Sub-Intensive Unit   

 MO P 

 No 

N= 1236 

Yes 

N= 194 



	 41	

Anticoagulant Drugs, n (%) 

None 

Any Anticoagulant 

 

454 (36.7) 

782 (63.3) 

 

46 (23.7) 

148 (76.3) 

<0.001 

 

Type of Anticoagulant, n (%) 

LMWH 

OAC 

 

312 (39.9) 

470 (60.1) 

 

65 (43.9) 

83 (56.1) 

0.361 

Antiplatelet Drugs, n (%) 515 (41.7) 55 (28.4) <0.001 

Legend: LMWH= low-molecular weight heparin; OAC= oral anticoagulant. 

 

When analysing at the multivariate logistic analysis the risk factors for the occurrence 

of MO, we identified - among the reasons for sICU admission - ACS, CS, SS and ARF. 

Increasing age was positively associated with the outcome, while hypertension and mitral 

valve disease were negatively associated with MO, as shown in Table 8. 

 

Table 8: Multivariate Logistic Analysis for Composite Outcome Occurrence 

 OR 95% CI P 

Age (per year) 1.04 1.02-1.06 0.001 

Hypertension 0.52 0.36-0.76 0.001 

Mitral Valve Disease 0.49 0.25-0.94 0.033 

ACS 3.40 2.06-5.60 <0.001 

Cardiogenic Shock 20.68 11.03-38.78 <0.001 

Septic Shock 7.66 4.67-12.56 <0.001 

Acute Respiratory Failure 2.34 1.57-3.50 <0.001 

Anticoagulant Drugs    
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None (reference) 

LMWH 

OAC 

- 

1.13 

1.73 

- 

0.68-1.87 

1.06-2.83 

- 

0.640 

0.030 

Antiplatelet Drugs 0.51 0.34-0.78 0.002 

Legend: ACS= acute coronary syndrome; CI= confidence interval; LMWH= low-molecular 

weight heparin; OAC= oral anticoagulant; OR= odds ratio; TEE= thromboembolic events; 

TIA= transient ischemic attack. 

 

CHA2DS2-VASc and HAS-BLED in the prediction of thrombotic and haemorragic events  

The rate of TEE according to CHA2DS2-VASc score and MH according to HAS-

BLED score are synthesized in Table 9. The distribution of TEE does not differ significantly 

among CHA2DS2-VASc classes and, similarly, the distribution of MH does not significantly 

differ among HAS-BLED classes. 

 

Table 9: Major Adverse Events Rate according to Risk Scores 

CHA2DS2-VASc TEE [n (%)] HAS-BLED MH [n (%)] 

0 0 (0.0) 0 3 (7.3) 

1 4 (6.1) 1 27 (9.9) 

2 10 (7.4) 2 41 (8.2) 

3 15 (6.1) 3 49 (11.5) 

4 27 (8.1) 4 10 (6.2) 

5 24 (7.7) 5 3 (11.1) 

6 14 (7.5) 6 0 (0.0) 

7 13 (12.6)   
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8 3 (11.5)   

9 0 (0.0)   

Legend: TEE= thromboembolic events; MH= major haemorrhage. 

 

We did not observe a significant association between CHA2DS2-VASc and the 

occurrence of stroke/TIA, nor a significant association between HAS-BLED and MH 

adopting c-statistic, as shown in Table 10.  

We adopted the currently suggested cut-offs for both scores. CHA2DS2-VASc, when 

analysed at a cutoff ≥2, had a high sensitivity and a good negative predictive value. HAS-

BLED, adopting a cutoff ≥3 had a low sensitivity and specificity, but a good negative 

predictive value, as shown in Table 10.  

We also evaluated the quality of the clinical scores, CHA2DS2-VASc and HAS-

BLED, used for identifying high-risk patients by comparing them with the ground truth TEE 

and MH, respectively.  

Results are represented and summarized in Figure 5. The classification error, that is 1-

accuracy, reports the ration between the number of incorrect classified patients when 

compared with the overall population.  

In our sample, the accuracy of each score was between 49 and 52% (CHA2DS2-VASc 

= 52%, HAS-BLED = 49%), meaning that the two scoring systems had the same probability 

of classifying or misclassifying TEE or MH in this sample of critically-ill patients. 

 

Table 10: Association between Risk Scores, Major Adverse Events and Predictive Analysis 

 OR (95 %)* P c-index (95%) P 

CHA2DS2-VASc 

 for TEE 

1.09  

(0.96-1.22) 

0.175 0.545  

(0.489-0.601) 

0.117 
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HAS-BLED  

for MH 

1.07  

(0.90-1.27) 

0.477 0.503  

(0.453-0.554) 

0.900 

 Se  

(95% CI) 

Sp  

(95% CI) 

PPV  

(95% CI) 

NPV  

(95% CI) 

CHA2DS2-VASc ≥2  

for TEE 

93.4%  

(90.9-99.0%) 

5.8%  

(4.6-7.1%) 

7.8%  

(6.4-9.2%) 

95.0%  

(87.6-98.1%) 

HAS-BLED ≥3  

for MH 

46.6%  

(37.9-55.5%) 

57.1% 

(54.4-59.8%) 

10.0%  

(8.4-11.9%) 

91.3%  

(89.8-92.5%) 

Legend: *adjusted for type of AF and anticoagulant treatment; CI= confidence interval; 

OR= odds ratio; NPV= negative predictive value; PPV= positive predictive value; TIA= 

transient ischemic attack. 

 

Figure 5: ROC Curve Analysis for CHA2DS2-VASc, HAS-BLED and Classification Error 

  

ROC curve for CHA2DS2-VASC score ROC curve for HAS-BLED score 

 AUC 

CHA2DS2-VASC 0.516 [95%CI: 0.472-0.560] 

HAS-BLED 0.493 [95%CI: 0.443-0.543] 
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 Classification Error 

CHA2DS2-VASC 0.963 [95%CI:0.955-0.973] 

HAS-BLED 0.923 [95%CI: 0.910-0.936] 

Legend: ROC= receiver operating curve; AUC= area under the curve. 

 

Medical treatment and outcomes in the critically-ill patient 

 On the basis of the ESC 2016 guidelines, we found out that 642 (44.9%) were treated 

as adherent to the current recommendations, while 540 (37.8%) were undertreated and 248 

(17.3%) were overtreated. Analyzing the rate of major adverse outcomes according to 

guidelines’ adherence, while we found that the TEE rate was the lowest in those patients 

treated as adherent (p<0.001) (Figure 6), in the same patients the prevalence of both major 

bleeding and composite outcome was the higher (p<0.001 and p=0.020, respectively) (Figure 

6). The final multivariable model (Table 11) found out that while undertreatment was 

associated with an increased risk of TEE, an inverse association with both major bleeding and 

composite outcome was found out. Conversely, overtreatment only showed a trend with 

occurrence of TEE, even though did not reach the statistical significance (Table 11). 
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Figure 6: Events distribution according to current guidelines adherence  

 

 
Legend: TEE= thromboembolic events; MH= major bleeding; MO= main outcome; GL= 

guidelines. 

 

Table 11: Multivariable-Adjusted Association between Guidelines Adherence and Major 

Adverse Events 

 TEE MH MO 

 OR  

(95% CI) 

p OR  

(95% CI) 

P OR  

(95% CI) 

P 

GLs Adherent 

(ref.) 

- - - - - - 

Undertreated 2.38  

(1.45.-3.91) 

0.001 0.30  

(0.18-0.48) 

<0.001 0.63  

(0.42-0.97) 

0.034 

Overtreated 1.75  0.097 0.67  0.143 0.83  0.481 

11,10%

4,80%

11,50%

4,80%

13,20%

16,40%

7,70%

8,90%

10,90%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

18,00%

TEE MH MO

Undertreatment GL-adherent Overtreatment

p < 0,0001

p < 0,0001

p < 0,0001
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(0.90-3.39) (0.39-1.15) (0.48-1.41) 

Legend: CI= confidence interval; GLs= guidelines; TIA= transient ischemic attack. 

 

Towards new predictive models in the critically-ill patient 

After observing a poor efficiency of CHA2DS2-VASc and HAS-BLED scores in 

predicting TEE as well as MH (at least for the considered dataset), we focused on instructing 

a new data-driven supervised solution for automatically predicting the three outcomes: TEE, 

MH and MO.  

For each target variable, we dropped the other two scores and evaluated the 

correlation among the clinical variables and target under modeling. Before executing the 

methodology, we have transformed all the categorical variables in their dummy 

representation. A dummy variable is an artificial variable created to represent an attribute 

with two or more distinct categories/levels. The dummy variable represents the original value 

as a tuple of binary values. For example, if the original categorical variable has n values it 

will be represented by n-1 new binary variables.  

t-SNE results: we evaluated the effect of the perplexities spanning between the values 

30-50 with step 5 for the t-SNE algorithm. The t-SNE visualization of the three subsets is 

reported in Table 12. The red points are patients with target variable equal to 0, while the 

blue points are the patients with target variable equal to 1. In the plots for the MH and TEE 

the clusters formed by the blue points are well evident. In the MH plot the blue group is also 

quite distant from the red cloud indicating a good separation between the two clouds. While, 

in the last plot representing MO, the blue points are more scattered: at perplexity 35 it is 

possible to observe two blue subgroups overlapping with red points.  

These results encourage the possibility to train a ML classifier to predict 

automatically the target variables. Due to the scarce separation on the red-blue points in MO, 
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we hypothesize that for this target variable the ML pipeline will require more steps than the 

others. 

 

Table 12: Comparison of t-SNE for different target variables with perplexity values from 30 

to 50 with step 5. 

Outcome t-SNE plot with perplexities from 30 to 50 

MH 

 

TEE 

 

MO 

 

Legend: MH= major hemorrhage; TEE= thromboembolic events; MO= main outcome. 
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Mapper results 

In order to mine other insights from the raw data before their manipulation we 

executed the Mapper algorithms. The inputs to the algorithm are the clinical variables plus 

their dummy representation, when necessary, plus the target variable under analysis. For 

Mapper algorithm, we used the Jaccard coefficient as metric and the DBscan as clustering 

algorithm, overlap percentage equal to 10%. The lens is the sum of the entries plus their 

MinMax scaling. 

 

Table 13: Comparison of Mapper for different target variables 

Outcome Topological Data Analysis (Mapper) 

MH 

 

TEE 
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MO 

 

Legend: MH= major hemorrhage; TEE= thromboembolic events; MO= main outcome. 

 

The Mapper analysis identified interesting features and relationships in the dataset 

confirming t-SNE results and extended previous results by highlighting interesting 

topological features.  

We remark that, from a topological perspective, we focus on forks (flares) and big 

loops. In our case, each simplicial complex contained at least one fork. The main 

characteristics of the topological features are shown in Table 13:  

• MH:	The	simplicial	complex	contains	two	small	loop	and	a	fork.	The	longest	flare	

contains	 two	 nodes	 for	 a	 total	 of	 80	 patients,	while	 the	 other	 node	 contains	 9	

samples.	

• TEE:	 	The	simplicial	complex	contains	2	forks.	The	nodes	with	largest	diameter	

in	 the	 bottom	 flare	 contain	 27	 samples,	 while	 the	 other	 two	 nodes	 contain	 7	

samples	each.	

• MO:	 The	 simplicial	 complex	 contains	 only	 one	 fork.	 The	 longest	 flare	 contains	

two	nodes	with	totally	39	samples,	while	the	other	node	contains	8	samples.	

Mapper returns also the index of the patients belonging to each node and - driven by 

this information – we subsampled the dataset by selecting the subjects in the forks and 

compared them by using chi-squared tests. Results are synthesized in Table 14, Table 15 and 

Table 16. We report only the features with p-value < 0.05. 
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Table 14: statistically relevant features that differentiate the nodes in the fork of the MH 

simplicial complex 

Features c2 p-value 

MH type 376.8212 0 

Anticoagulant type at discharge 44.89189 0 

MH 389 0 

Acute Heart Failure 36.35367 0 

Haemorragic Shock 92.71738 0 

ASA or Clopidogrel use 20.71988 0.000005 

Previous GI Bleeding 13.06815 0.0003 

Age 10.86397 0.001071 

Number of comorbidities 17.96861 0.021463 

Diabetes Mellitus 4.287005 0.038405 

CVE 4.265441 0.038895 

Active Cancer 4.134792 0.04201 

Legend: MH= major hemorrhage; ASA= acetylsalicylic acid; GI= gastrointestinal; CVE= 

electrical cardioversion. 

 

Table 15: statistically relevant features that differentiate the nodes in the fork of the TEE 

simplicial complex 

Features c2 p-value 

TEE type 42 0 

TEE 42 0 

AF Type 23.55294 0.000031 

CVE 10.65613 0.001097 
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Anticoagulant type at admission 7.285045 0.006953 

Sex 5.164035 0.023059 

Previous stroke/TIA 5.164035 0.023059 

Aortic valve disease 5.164035 0.023059 

Legend: TEE= thromboembolic event; AF= atrial fibrillation; TIA= transient ischemic 

attack; CVE= electrical cardioversion. 

 

Table 16: Statistically relevant features that differentiate the nodes in the fork of the main 

outcome simplicial complex 

Features c2 p-value 

Septic Shock 11.84188 0.000579 

CKD 5.9538 0.014686 

Infection 6.880842 0.032051 

Legend: CKD= chronic kidney disease. 

 

The joined analysis of topological structures and statistical tests provided a first 

significant indication on which features should be used for training the ML classifiers: we 

observed that the features in the MH simplicial complex with highest c2 score reflected 

hemorrhage-related issues, such as bleeding predisposition, active cancer and drugs (Table 

14). Features with the highest score in the TEE simplicial complex were related to 

cardioembolism and AF type (Table 15). Features with the highest score for MO in this 

analysis are synthesized in Table 16. 

Feature selection 

Mapper TDA was able to enlighten the importance of some variables. However, the 

evaluation of the simplicial forks provides only informations useful to understand some 

clusters and their statistical differences. In order to instruct automatic classifiers with ML we 
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extended the local results - provided by Mapper - to global analysis. In order to capture 

global statistical insights, we evaluated the dependency among the clinical variables and the 

target variable under modeling by performing both the c2 test with the Yates correction for 

continuity to evaluate the dependency among categorical features and target variable.  

The F-value was used to study the dependencies of the discrete variables on the target 

variable. Results of this analysis are reported in Table 17, where we report only the features 

that received a p-value < 0.05. We obtained a reduced number of variables related with the 

target variables and this was useful on modeling the classifiers. The features identified by 

Mapper were partially included among the features indicated above in Table 17. 

 

Table 17: Relevant features related to the target variables 

Outcome Topological Data Analysis via Mapper 

MH 

Feature c2/F-value p-value 

MH type 1595.4561 0 

Anticoagulant therapy at admission 37.241885 0 

Anticoagulant therapy at discharge 79.376273 0 

MH 1655 0 

Haemorragic Shock 293.64996 0 

Chronic Anaemia 39.094657 0 

Low TTR 27.003168 0 

Previous GI Bleeding 18.03138 0.000022 

CVE 13.756998 0.000208 

ASA or Clopidogrel use 11.396544 0.000736 

Acute Heart Failure 11.093365 0.000866 

Age 10.006409 0.001588 
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TEE Type 48.293552 0.007119 

Acute Respiratory Failure 5.248561 0.021965 

Active Cancer 4.629148 0.031433 

CKD 4.233212 0.03964 

Syncope 4.053498 0.04408 
 

TEE 

Feature c2/F-value p-value 

TEE Type 1613.2040 0 

CVE 28.056792 0 

Anticoagulant therapy at admission 65.840332 0 

Anticoagulant therapy at discharge 37.435286 0 

TEE 1646.1671 0 

Acute Heart Failure 37.235441 0 

Previous stroke/TIA 32.398337 0 

Low TTR 25.672567 0 

Age 16.45507 0.00005 

CHF 11.197515 0.00081 

ACS 9.988791 0.00157 

Mitral Valve Disease 8.180653 0.004234 

Sex 6.34187 0.01179 

AF Type 10.794743 0.01288 

Syncope 5.534671 0.01864 

CVF 5.237731 0.02210 

COPD 4.581552 0.03231 

Aortic Valve Disease 3.96779 0.04637 
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MO 

Feature c2/F-value p-value 

Age 22.723161 0 

Anticoagulant therapy at discharge 71.900145 0 

ACS 31.465911 0 

Cardiogenic Shock 178.662335 0 

Septic Shock 161.661497 0 

Acute Respiratory Failure 39.144258 0 

Infection 101.341306 0 

Hypertension 22.521132 0.000013 

CVE 21.94512 0.000017 

Hemorrhagic Shock 21.932328 0.000017 

COPD 14.544708 0.000694 

TEE type 91.295819 0.00114 

Mitral Valve Disease 9.939222 0.006946 

ASA or Clopidogrel use 8.233689 0.016296 

Sex 7.700486 0.021275 

TEE 23.053895 0.027272 

MH 20.076694 0.028536 

Peripheral Artery Disease 6.524466 0.038303 
 

Legend: MH= major haemorrhage; TEE= thromboembolic event; TTR= time in therapeutic 

range; GI= gastrointestinal; CVE= electric cardioversion; CVF= pharmacological 

cardioversion; ASA= acetyl salicylic acid; CKD= chronic kidney disease; TIA= transient 

ischemic attack; CHF= chronic heart failure; AF= atrial fibrillation; COPD= chronic 

obstructive pulmonary disease. 
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Training automatic classifiers with machine learning 

The features identified with the statistical test were used as input for the TPOT 

framework. The modeling experiment was executed twice by changing the number of 

generations: respectively 10 and 20. The population size was fixed and equal to 20 while the 

number of k-folds for the cross validation on the training set was k=5. Models performance 

was evaluated using the classification error, defined as the percent of incorrect classifications, 

with a minimum possible score equal to 0.  

The performances of the selected pipelines are reported in terms of average accuracy 

(1 – classification error), average classification error and 95% of confidence intervals (CI) on 

the training set and ROC and AUC for the test set (Figure 7). The results are reported in 

Table 18 and Table 19. 

 

Table 18: Best Pipeline(s) fitted after 10 generations 

Target Accuracy 

% 

Classification 

Error 

95%CI Best Pipeline 

MH 100 0 0 LinearSVC (input_matrix, C=25.0, dual = Tur, loss = 

squared_hinge, penalty = 12, tol = 0.001) 

TEE 100 0 0 GradientBoostingClassfier (input_matrix, learning_rate = 1.0, 

max_depth = 9, max_features = 0.8, min_samples_leaf = 1, 

min_samples_split = 3, n_estimators = 100, subsample = 0.65) 

MO 87.68 0.123 0.09153-

0.154847 

RandomForestClassfier(OneHotEncoder(input_matrix, 

minimum_fraction = 0.15, sparse = False), bootstrap = False, 

criterion = entropy, max_features = 0.25, min_samples_leaf = 2, 

min_samples_split = 13, n_estimators = 100) 

Legend: MH= major hemorrhage; TEE= thromboembolic events; MO= main outcome. 

 

Table 19: Best Pipeline(s) fitted after 20 generations 

Target Accuracy

% 

Classification 

Error 

95%CI Best Pipeline 
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MH 100 0 0 RandomForestClassfier(input_matrix, bootstrap = True, 

criterion = entropy, max_features = 0.95, 

min_samples_leaf = 2, min_samples_split = 16, 

n_estimators = 100) 

TEE 99.75 0. 2415 0.2313 – 

0.3144 

DecisionTreeClassifier(input_matrix, criterion = gini, 

max_depth = 9, min_samples_leaf = 1, 

min_samples_split = 11) 

MO 90.33 0.09 0.068159 – 

0.125077 

KNeighborsClassifier(MaxAbsScaler(RFE(Normalizer(i

nput_matrix), norm = max), criterion = gini, 

max_features = 0.95, n_estimators = 100, step = 0.95)), 

n_neighbors = 34, p =1, weights = distance) 

Legend: MH= major hemorrhage; TEE= thromboembolic events; MO= main outcome. 

 

Figure 7: Results of classifiers 

  

A) MH after 10 generations (AUC: 100%) B) MH after 20 generations (AUC: 100%) 
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C) TEE after 10 generations (AUC: 100%) D) TEE after 20 generations (AUC: 99.75%) 

  

E) MO after 10 generations (AUC: 87,68%) F) MO after 20 generations (AUC: 90,33%) 

Legend: MH= major hemorrhage; TEE= thromboembolic events; MO= main outcome; 

AUC= area under the curve. 

 

The obtained classifiers outperformed the CHA2DS2-VASC and HAS-BLED scoring 

systems in the prediction of TEE and MH, respectively. The small fluctuation from accuracy 

= 100% to accuracy = 99.75% in the TEE classifier was due to random initialization during 

the splitting of the training set but is not relevant since the classification error remains 

extremely low. The pipelines for predicting both MH as well as the TEE were relatively 

simple: they train decision-tree based algorithms for modelling the scores and this means the 

populations forming healthy and unhealthy patients are approximately linearly or polynomial 

separable. 

The MO classifier showed good performances, and its accuracy raised from 87.68% 

to 90.33% by increasing the number of generations. These performances were not as 

excellent as the other two outcomes, since the numbers of patients belonging to class 2 is 

relatively low (few tens) and there are several overlaps among patients as pinpointed out by 

the t-SNE plot. This indicated that other features should be added to the dataset.  
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Mapper analysis suggested looking for features regarding septic shock, infections and 

kidney disease. Conversely, the pipelines fitted to predict the MO counted a number of 

intermediate steps to improve the separation among populations belonging to different 

classes.  

In details, the best-fitted pipelines perform a normalization of the data by setting mean 

to 0 and standard deviation to 1 (Normalize). Then, it performs a recursive features 

elimination for reducing the number of features (RFE), the it executes a scaling of each 

feature such that the maximal absolute value of each feature in the training set will be 1.0. 

Eventually, the pipeline trains a proximity-based classifier (KNeighborsClassifier). 

The first results were critically reviewed: since variable selection and model 

generation was machine-driven, the clinical role of each variable was discussed. The 

extremely impressive high accuracy of the TEE and MH classifier was – at least in part –

motivated by the presence of some features that are synonyms of the outcomes we aimed to 

predict: the training set used for instructing the classifier for the MH contained among the 

other the features MH type, MH, HS and TEE type with highest c2: these features map 

exactly the outcome itself. Similarly, the training set for TEE contained two features (TEE 

type and TEE), that represented the outcome itself. 

Thus, we removed those features from the list and retrained the classifiers. Moreover, in 

order to estimate how features impact the overall quality, we adopted the following 

procedure: 

1) Sort in ascending order the features according their p-value (from 0 to n). 

2) Span on the feature set and pick up one feature at time, accordingly to its p-value, and 

re-train the classifier.  

The output of this algorithm is a plot, for each target variable, where horizontal axis is the 

number of features and the vertical axis is the corresponding AUC. The features used in this 

evaluation are reported in Table 20. The corresponding plots are reported in Table 21. 
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Table 20: reduced feature set by removing the features that are the images of the target 

variables 

Outcome Topological Data Analysis via Mapper 

MH 

Feature c2/F-value p-value 

Anticoagulant therapy at admission 37.241885 0 

Anticoagulant therapy at discharge 79.376273 0 

Chronic Anaemia 39.094657 0 

Low TTR 27.003168 0 

Previous GI Bleeding 18.03138 0.000022 

CVE 13.756998 0.000208 

ASA or Clopidogrel use 11.396544 0.000736 

Acute Heart Failure 11.093365 0.000866 

Age 10.006409 0.001588 

Acute Respiratory Failure 5.248561 0.021965 

Active Cancer 4.629148 0.031433 

CKD 4.233212 0.03964 

Syncope 4.053498 0.04408 
 

TEE 

Feature c2/F-value p-value 

CVE 28.056792 0 

Anticoagulant therapy at admission 65.840332 0 

Anticoagulant therapy at discharge 37.435286 0 

Acute Heart Failure 37.235441 0 

Previous stroke/TIA 32.398337 0 

Low TTR 25.672567 0 
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Age 16.455079 0.00005 

CHF 11.197515 0.00081 

ACS 9.988791 0.00157 

Mitral Valve Disease 8.180653 0.004234 

Sex 6.34187 0.01179 

AF Type 10.794743 0.01288 

Syncope 5.534671 0.01864 

CVF 5.237731 0.02210 

COPD 4.581552 0.03231 

Aortic Valve Disease 3.96779 0.04637 
 

MO 

Feature c2/F-value p-value 

Age 22.723161 0 

Anticoagulant therapy at discharge 71.900145 0 

ACS 31.465911 0 

Cardiogenic Shock 178.662335 0 

Septic Shock 161.661497 0 

Acute Respiratory Failure 39.144258 0 

Infection 101.341306 0 

Hypertension 22.521132 0.000013 

CVE 21.94512 0.000017 

Hemorrhagic Shock 21.932328 0.000017 

COPD 14.544708 0.000694 

TEE type 91.295819 0.00114 

Mitral Valve Disease 9.939222 0.006946 

ASA or Clopidogrel use 8.233689 0.016296 

Sex 7.700486 0.021275 
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TEE 23.053895 0.027272 

MH 20.076694 0.028536 

Peripheral Artery Disease 6.524466 0.038303 
 

Legend: MH= major haemorrhage; TEE= thromboembolic event; TTR= time in therapeutic 

range; GI= gastrointestinal; CVE= electric cardioversion; CVF= pharmacological 

cardioversion; ASA= acetyl salicylic acid; CKD= chronic kidney disease; TIA= transient 

ischemic attack; CHF= chronic heart failure; AF= atrial fibrillation; COPD= chronic 

obstructive pulmonary disease. 

 

Table 21: Evaluation of classifiers’ performances trained with a different number of features. 

The x-axis is the feature number, while the y-axis is the AUC 

MH 
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TEE 

 

MO 

 

 

Legend: MH= major haemorrhage; TEE= thromboembolic events; MO= main outcome. 

 

For MH, the classifier with highest accuracy (AUC: 90%) was obtained by using 9 

features: anticoagulant therapy at admission, anticoagulant therapy at discharge, CA, low 

TTR, previous GI bleeding, CVE, ASA or Clopidogrel use, AHF and age, as shown in Table 

21 and Table 22. At the best cutoff, selected with the Youden’s index (optimal cut-off: 

0.092056), the new classifier had a Sensitivity = 0.80, a 1-Specificity = 0.18984, a positive 

likelihood ratio of 4.21 and a negative likelihood ratio of 0.25. 
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The best classifier for TEE (AUC: 82%) was obtained by using the following 9 

features: CVE, anticoagulant therapy at admission, anticoagulant therapy at discharge, AHF, 

previous stroke/TIA, low TTR, age, CHF and ACS, as shown in Table 21 and Table 22. At 

the best cutoff, selected with the Youden’s index (optimal cut-off: 0.137663), the new 

classifier had a Sensitivity = 0.75, a 1-Specificity = 0.245899, a positive likelihood ratio of 

3.05 and a negative likelihood ratio of 0.33.  

For MO, the highest accuracy (AUC: 97.5%) was obtained with the following 

variables: age, anticoagulant therapy at discharge, ACS, CS, SS, ARF, infection and HYP, as 

shown in Table 21. 

This analysis highlighted that the 100% accuracy for MH and TEE classifiers 

decreased by reducing the number of features. However, the new scores outperformed the 

accuracy of HAS-BLED and CHA2DS2-VASC. We also observed that the average accuracy 

for the main outcome classifier slightly increased, from 97.2% to 97.5% by reducing the 

number of variables from 18 to 8. 

 

Table 22: Evaluation of trained classifiers performances with ROC curve analysis.  

MH 
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TEE 

 

Legend: MH= major hemorrhage; TEE= thromboembolic events. 
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4. Discussion 

 Pre-existing or new-onset AF are common in an ICU population. In this cohort, 

critically-ill patients coaffected by AF represented 19% of the sample in the same time-

period. This prevalence is slightly lower than the one reported in literature[5], however this 

observation could be due to the common effect of under-reporting of  this type of arrhythmia 

in ICU[79], which is described especially when adopting administrative databases and 

retrospective models. 

 MO was observed in 194 (13.6%) subjects of the sample: this group was significantly 

older and more often affected by ACS, CS, SS, ARF or infectious diseases, as shown in 

Table 5. TEE were diagnosed in 212 patients (14.8% of the sample). In this subpopulation, 

CHA2DS2-VASc score had a median of 4 [IQR:3]. According to the original validation 

cohort of CHA2DS2-VASc, a similar embolic risk could be observed only in patients with a 

CHA2DS2-VASc ³8[48]. The older age of the patients, the concomitant critical illnesses and 

comorbidities could at least partially explain the excess of TEE observed in this population. 

MH was present in 133 subjects (9.30% of the sample). In this group, HAS-BLED 

score had a median of 2 [IQR:1]. Data from the overall SPORTIF cohorts underlined that a 

similar risk of bleeding was present only in subjects HAS-BLED scores ³4[49]. In our 

cohort, 90.2% of MH were observed in patients with HAS-BLED <4. The excess in the 

haemorragic risk could be explained by several aspects: first, some critical illness, as severe 

sepsis or septic shock, especially when complicated by diffuse intravascular coagulation or 

atypical uremic-hemolytic syndromes, are often associated with platelet or coagulation 

abnormalities; second, patients with ACS are often treated with antiplatelet agents which 

could at least facilitate bleeding; third, the high prevalence of chronic or acute kidney 

dysfunction are recognized risk factors for MH, particularly among subjects undergoing 

parenteral anticoagulation.  
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Of note, both CHA2DS2-VASc and HAS-BLED showed a good negative predictive 

value, being able to exclude TEE and MH. CHA2DS2-VASc values <2 were associated to a 

NPV of 95.0% (87.6-98.1%) for TEE, while HAS-BLED scores <3 had a NPV of 91.3% 

(89.8-92.5%) for MH, as shown in Table 10. Thus, a possible role for the “classical” score 

systems in critically ill subjects could be of identifying clusters at “very low risk” of TEE and 

MH. However, this sample should be only used to suggest this hypothesis, since the number 

of “low-risk” patients is very scarce, due to advanced age, number of comorbidities and 

higher prevalence of cardiovascular diseases. This should not be interpreted as a selection 

bias, but as a clinical difference of the sICU population from the commonly studied cohorts. 

In fact, even adopting a less age- and vascular-dependent score, as CHADS2, we obtained 

results similar to the ones observed with CHA2DS2-VASc. 

These observations synthesize the difficulty of the emergency physician in managing 

anticoagulation in the elderly, critically-ill patients affected by AF: independently from the 

cause of admission, this group of subjects shows a very high risk of both cardioembolic and 

haemorragic events. Moreover, we observed in CHA2DS2-VASc and HAS-BLED a non-

significant difference in the distribution of the subjects according different results, which 

translated into a non-significant predictive capacity of each score, as shown in Table 10 and 

Figure 5. 

In this sample, the predictive performance of CHA2DS2-VASc score was non-

significant and showed a very low accuracy. The role of CHA2DS2-VASc score in predicting 

TEE in patients admitted to an ICU/sICU is still object of debate: only a single perspective 

cohort[38] study of patients found a moderately predictive value of this score, but suggested a 

different cut-off value in order to improve its performance. Other studies observed a very 

poor or non-significant prediction of the events[19,37] in this setting. The ability of 

CHA2DS2-VASc in stratifying patient’s thromboembolic risk during AF has been shown to 

be very low also in specific clinical settings, as AHF[80], ACS[36,39], sepsis[36,37] and 
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ARF[36]. This suggests that a correct risk stratification using this score could be performed 

in populations similar to the original validation cohort. Moreover, it is necessary to underline 

that, while pre-existing AF shares at least the same risk factors with primary AF observed in 

outpatients, being the critical illness a modifier of events, new-onset AF should be considered 

as a completely different entity, with different risk factors and a different cardioembolic and 

haemorragic risk profile[14].  

Similarly, HAS-BLED score was not able to predict accurately MH in this cohort, 

despite a significantly increased prevalence of serious bleeding and haemorragic shock. 

Literature regarding the evaluation of bleeding risk in critical illness is poor, and previously 

published studies underlined that this risk is not accurately evaluated by HAS-BLED 

score[36]. Moreover, HAS-BLED has not been validated in such populations.  

In the context of critically-ill patients with AF, we noted that, while both CHA2DS2-

VASc and HAS-BLED scores were not associated with the occurrence of TEE and MH and 

did not show any predictive ability for these events, these scores demonstrated the ability of 

identifying the patients with a very low risk, who less likely would experience the outcome.  

Moreover, in absence of more accurate and validated stratification tools, the latest 

European Heart Rhythm Association (EHRA) consensus document on the management of AF 

in critically-ill patients still suggests stratifying both thromboembolic and haemorragic risk 

with CHA2DS2-VASc and HAS-BLED[81] and to treat AF accordingly to the more recent 

ESC guidelines[1].  

However, a large study performed in a retrospective cohort of septic patients 

underlined that the high risk of bleeding in critically-ill patients receiving parenteral 

anticoagulation was not counterbalanced by a significant reduction of ischemic stroke 

rate[37].  A CHADS2-based anticoagulation strategy was also associated to an increased risk 

of bleeding in absence of a statistically significant increase in survival rate during the 

hospitalization in ICU[40]. Moreover, anticoagulation was not associated to a reduced in-
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hospital and long-term stroke risk in ACS, ARF and sepsis[36], but it was clearly associated 

to a significantly increased risk of bleeding.  

In a recently published work, we have already underlined the discrepancies between 

different guidelines in the topic of AF[82], which are mainly due to the absence of studies or 

to the poor quality of the studies adopted to elaborate specific indications. 

In this study, when stratifying our sample according to current guidelines adherence, 

we observed that a GL-adherent approach was significantly associated to an overall reduction 

of TEE (4,8%), but also correlated to a significantly increased risk of adverse events. 

Particularly, GL-adherent patients had the highest probability of both MH (13,2%) and MO 

(16,4%), as shown in Figure 6. When compared to GL-adherent patients, undertreated 

patients had significantly increased risk of TEE, a reduced risk of MH and a reduced risk of 

MO, as shown in Table 11. Overtreatment did not confer significantly to a further increased 

risk of TEE, MH or MO when compared to a GL-adherent approach. 

Moreover, we observed that warfarin use at the admission was associated to a two-

fold increased risk of death or ICU transfer when compared to no anticoagulant use, as shown 

in Table 8. LMWH use, however, did not confer an increased risk of MO, and antiplatelet 

drugs use was associated to a reduction of the risk of MO. 

In this sample, nor CHA2DS2-VASc nor HAS-BLED were able to predict events in 

critically-ill subjects. Moreover, the application of current ESC guidelines was effective in 

reducing TEE but was associated to an increased risk of both MO and MH. To date, 

according to our data and current literature, both risk stratification of ischemic and 

haemorragic risk and medical management of AF in critically-ill patients still represent a 

“gray zone” of evidence.  

As in this case, ICU represents an especially compelling case for clinical data 

analysis: the value of many treatments and interventions is still unproven, and high-quality 

data supporting or discouraging specific practices are embarrassingly sparse[83,84]. 
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Guidelines developed to standardize practice are dependent on an evidence base that is 

surprisingly thin considering the copious data generated in ICU. Big data analysis and ML 

represent a new and promising technologies which are deemed to be highly efficient in 

exploring patterns and hidden relationships between clinical variables[41], allowing to 

develop more specific clinical prediction tools and open the road to personalized medicine, 

especially in ICU/sICU where large volumes of data are readily available.  

Predictive models adopting these new technologies have already outperformed their 

gold standard in several acute pathologies, as AKI[85] or PE[44]. With this study, we applied 

these new techniques in the clinical setting critically-ill patients affected by AF, aiming to 

highlight the most relevant features associated to the most important adverse events, that are 

death or ICU transfer, major bleeding and cardioembolism. We then engineered new 

predictive scores to improve the prediction of AF-related events.  

The strongest association with major haemorragic events was observed with age, 

specific critical illnesses (AHF, ARF, SYN), specific chronic conditions (CKD, AC and CA), 

anticoagulant and antiplatelet therapy, procedures performed in sICU (CVE), labile TTR and 

a history of previous gastrointestinal bleeding. Some of these factors (age, antiplatelet drugs 

use, CKD, labile TTR and previous gastrointestinal bleeding) have already been identified 

and included in the HAS-BLED score[86]. Other factors (AC and CA) are recognized by 

literature as risk factors for MH, and have already been considered in other risk scores, as 

HEMORR2HAGES[87]. Some items, however (AHF, ARF, SYN), are specific for the 

critically-ill patient. Adopting this 9-item score with a TDA-based computation, we obtained 

a significant increase in the accuracy of prediction of MH [AUC from 0.52 to 0.90, p<0.001], 

as shown in Table 20, Table 21 and Table 22. 

The association with TEE was robust for age, sex, specific critical illnesses (AHF, 

ACS, SYN), procedures performed in sICU (CVE, CVF), AF type, specific chronic 

conditions (CHF, COPD, mitral and aortic valve pathologies), the anticoagulant strategy, the 
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time in therapeutic range and a previous stroke/TIA. Some of these factors are already 

considered in CHA2DS2-VASc score (CHF, age, sex and previous stroke/TIA). Other 

features, as anticoagulant therapy, time in therapeutic range, CVE and CVF are directly 

related to the acute management of the arrhythmia. Last, some items (AHF, ACS, SYN) refer 

directly to the critical pathology which caused the sICU admission. Thus, we engineered a 

TDA-based model which allowed a significant increase in the prediction of TEE [AUC from 

0.493 to 0.82, p<0.001], as shown in Table 20, Table 21 and Table 22. 

While HAS-BLED and CHA2DS2-VASc are still not validated for ICU, intensive-care 

physicians already have several validated tools to predict in-hospital mortality among 

critically-ill patients, as SAPS-II[88] and APACHE-II[89] scores which are able to predict 

the outcome with an area under the ROC curve greater than 80%[90]. Some predictors of MO 

extracted from our population were similar to the items considered in both scores, as age, 

COPD, ARF and shock. Other items were already associated in previous studies to a worse 

outcome in this clinical setting[91–93]. However, it is interesting to underline that, in a 

selected population of critically-ill patients affected by AF, we were able to identify AF-

specific items, as anticoagulant strategy, antiplatelet drugs use, CVE, TEE, MH and HS, as 

strong determinants of in-hospital death or ICU transfer.  

This last observation underlines also the importance of AF-related events in the 

determination of major outcomes of the critically-ill patient. The absence of robust evidence 

both in risk stratification and in the consequent anticoagulant strategy poses the critically-ill 

patient affected by AF at risk of adverse events even if treated according the current 

guidelines. This preliminary work underlines the urgent need of specific trials for the 

management of new-onset or pre-existing AF in critically-illness.  

Study limitations 

This is a single-center, retrospective study, thus generalizability of results is limited 

and require further confirmations with larger, multicentric and prospective studies. The 
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peculiar TDA-based approach adopted for feature selection and event prediction of events is 

robust but experimental and, despite the encouraging results, it will require further 

validations: in particular, a larger prospective validation cohort is necessary to confirm our 

preliminary results. The validation cohort should enroll particularly patients treated 

accordingly to ESC 2016 guidelines. Last, this retrospective cohort considered subjects 

treated with warfarin or LMWH but did not involve patients treated with direct oral 

anticoagulants: these drugs have been introduced later and seem to have a safer bleeding 

profile: future studies will have to consider also this new class of medications in this specific 

setting of patients. 
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