Solution Path Clustering for Fixed-Effects Models in a Latent Variable Context

Giovinazzi, Francesco (2018) Solution Path Clustering for Fixed-Effects Models in a Latent Variable Context, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8740.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 3.0 (CC BY-NC-ND 3.0) .
Download (1MB)

Abstract

The main drawback of estimating latent variable models with fixed effects is the direct dependence between the number of free parameters and the number of observations. We propose to apply a well suited penalization technique in order to regularize the parameter estimates. In particular, we promote sparsity based on the pairwise differences of subject-specific parameters, inducing the latter to shrink on each other. This method allows to group statistical units into clusters that are homogeneous with respect to a latent attribute, without the need to specify any distributional assumption, and without adopting random effects. In practice, applying the proposed penalization, the number of free parameters is reduced and the adopted model becomes more parsimonious. The estimation of the fixed effects is based on an algorithm that builds a solution path, in the form of a hierarchical aggregation tree, whose outcome depends on a single tuning parameter. The method is intended to be general, and in principle it can be applied on the likelihood of any latent variable model with fixed effects. We describe in detail its application to the Rasch model, for which we provide a real data example and a simulation study. We then extend the method to the case of a latent variable model for continuous data, where the number of fixed effects to be estimated is higher.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Giovinazzi, Francesco
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Fixed-effects, Latent variable models, Sparsity, Penalization, Penalized estimation, Lasso, Pairwise fused lasso, Solution path clustering, Clustering algorithm, Rasch model.
URN:NBN
DOI
10.6092/unibo/amsdottorato/8740
Data di discussione
8 Novembre 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^