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Chapter 1

Introduction

Statistical mechanics has greatly contributed in studying many-body sys-
tems with the purpose of deriving the properties of macroscopic bodies, as
their thermodynamical behaviour. Complex systems research is becoming
ever more important in many �elds of science and other disciplines. A com-
plex system, is a system made from a large number of interacting component,
evolving in a non-linear way with respect to initial conditions or with respect
to small perturbations. The evolution occurs through multiple pathways and
often interactions are not known. The system can be modelled by a graph
which is de�ned by a set of nodes (or vertices) and a set of links (or edges)
that identify relations between nodes. In addiction they are useful to model
di�erent kinds of relations and processes in physical, biological, social and
information systems and can represent many pratical problems.

In sociology graphs are used to measure actors'prestige or to explore ru-
mor spreading generally using social network analysis softwares [1, 2]. Social
networks can be modelled by friendship graphs which connect people if they
know each other, while in�uence graphs model whether certain people can
in�uence the behaviour of their followers. In statistical physics a graph can
be used to represent a system of interacting particles (which are identi�ed
by the nodes) putting an edge between two of them if they interact. The
importance of interactions is moduled with an eventual weight. Also neural
networks can be naturally modelled by networks since they trivially introduce
a dynamics over the network structure coming from neurons dynamics.

Similarly, in computational neuroscience, graphs model functional con-
nections between brain areas that interact to give rise to various cognitive
processes. For what it concerns computer science, graphs are used to rep-
resent network of communication, web network, data organization, etc. For
example, the link structure of a website can be represented by a directed
graph where web pages are identi�ed by nodes and the directed edges are

1



2 1. Introduction

assigned if a link connect one page to another one. A similar approach can
be applied to problems that concern social media, travel, biology, biochem-
ical networks, ecological systems etc. In chemistry, graphs make a natural
model for the interaction in molecular structures, where vertices and edges
respectively represent atoms and bonds, while in biology they can be used
to model the migration of species between regions.

In recent years, statistical mechanics is developing its interest in studying
learning systems. Neural network systems are made by a large number of
interacting simple elements called neurons, which are binary devices that
switch from one state to another when input exceeds a particular threshold
value. More precisely, a neuron receives an input value which is transformed
to an output value that acts as an input for the successive layer of neurons
and so on. Each neuron is a mathematical continuous function that models
the functioning of a biological neuron: it computes the weighted average of
the given input and the sum is passed through a non linear function, often
called activation function (one common activation function is the sigmoid
function [3].

Neural networks due their name to the structure of the nervous system
and are used as model to study the rise of cognitive and learning behaviors
like it happens in brain (for instance phychologists use neural networks to
understand cognitive processes in the human mind). As it happens in the
brain, such systems learn from examples: this concept has extensively been
studied using models and methods of statistical physics [4, 5]. These mod-
els are accessible to investigations and may be helpful to understand some
principles in biological systems.

The �rst contribute was given byWarren McCulloch andWalter Pitts who
proposed in 1943 a network of two-state threshold elements to perform logic
operations [6]. In 1949, Donald Hebb proposed a learning rule that describes
how the neuronal activities in�uence the connection between neurons [7].
It provides an algorithm to update weight of neuronal connection within
neural network. Di�erent versions of the rule have been proposed to make
the updating rule more realistic. The weight of connection between neurons
is a function of the neuronal activity and the classical Hebb's rule indicates
"neurons that �re together, wire together�.

The �rst feedforward network, namely the perceptron, was proposed by
Frank Rosenblatt in 1960 [8, 9]: the perceptron is a model based on a su-
pervised learning algorithm of binary classi�ers which makes its predictions
based on a linear predictor function combining a set of weights with the
feature vector.

In the 80's the contribute of John Hop�eld and Elizabeth Gardner was
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fundamental to create a match between neural networks and statistical me-
chanics. J. Hop�eld pointed out the equivalence between the long-time be-
havior of networks with symmetric connections and equilibrium properties
of magnetic systems such as spin glasses and used it to create neural circuits
for associative memory and other computational tasks [10, 11]. The units in
Hop�eld nets are in fact binary threshold units whose value is determined
by whether or not the units'input exceed the �xed threshold. During the
training, for di�erent values of the weights, which handle interactions be-
tween neurons, we associate to the network a quantity which reminds to the
energy of a statistical model. Under repeating updatings of the weights, the
network will converge to a state which is a local minimum in the energy func-
tion. E. Gardner, instead, became the pioneer of applications to networks
of methods from spin glass theory and opened the door to many investi-
gations into learning systems showing how to analyze the space of all the
networks in order to memorise a certain number of patterns, using spin-glass
techniques and ideas [12, 13]. Spin glasses are magnetic systems with ran-
domly distributed ferromagnetic and antiferromagnetic interactions and the
low temperature phase, i.e. the spin glass phase, is a prototype for consensa-
tion in disordered systems with con�icting constraints. Theoretical studies
show that in the case of long-range interactions between spins, the energy
surface presents many local minima very close to energy to the ground state.
Neural systems present many features in common with long-range spin-glass
models: the coupling constants between spins can assume both positive and
negative values, as it happens between neurons, and both spins and neurons
are connected with long-range interactions.

Neural networks can be used without knowing precisely how the training
process works but we can observe and measure its response to a set of inputs.
The weights of a neural network with hidden layers are interdependent: the
slight modi�cation of a weight will impact the neuron it propagates directly
and as a consequence all the neurons it is connected to a�ecting all the out-
puts. Hence the core problem of neural networks is essentially one of the
statistical inference, since we aim to �nd the optimal weight con�guration.
The most naive approach to do that is setting an initial random con�gura-
tion of weights, tuning them evaluating the accuracy of the provided results.
One way to measure the amount of the error is the loss, or cost, function:
there are several de�nitions for the loss function but all of them penalize the
distance between the predicted value and the given value in the dataset.

Suppose to have a rule implemented by some machine according to which
it gives a response as a consequence of a speci�c input information: the natu-
ral question which borns is how it is possible to infer the learning function on
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the basis of this input-output pairs. Physicists and mathematicians focusing
on neural network models tried to answer how is possible to infer a learning
function to a machine.

In this thesis we present and discuss how the statistical mechanics, through
the network theory, can be useful to solve many di�erent mathematical prob-
lems. In particular, it's not worth to observe that from a mathematical point
of view, training a neural network model equals to solve an inverse problem
for a spin model. In the �rst case, we aim to compute a set of weights and
biases that best �t the model or, equivalently, that minimize the cost func-
tion which is associated to the model. At the same time, in the second case,
we focus on the inference of the coupling constants and of the magnetic �elds
which minimize the Gibbs energy of a given set of spins.

This thesis is organized as follows.
In the second chapter we test the inverse problem method for a class of

monomer-dimer statistical mechanics models that contain also an attractive
potential and display a mean-�eld critical point at a boundary of a coexis-
tence line. We obtain the inversion by analytically identifying the parameters
in terms of the correlation functions and via the maximum-likelihood method.
The precision is tested in the whole phase space and, when close to the coex-
istence line, the algorithm is used together with a clustering method to take
care of the underlying possible ambiguity of the inversion.

In the third chapter we perform some analysis in order to characterize
statistical properties of the observed mobility of drosophilas expressing dif-
ferent kinds of proteins. In order to do this, we identify such insects as
interacting particles of a system and we de�ne an interaction network with
the aim to understand how they behave according to the di�erent proteins
expression. After having observed and analyzed how their walking speed
changes, we study how the interaction dynamic undergoes variations. From
our results, it emerges that wild type drosophilas are more induced in having
a more active social exchanges with respect to the other ones, which seem to
be focused only on their route.

In the fourth chapter we give an overview of the already existing algorithm
Replicated Belief Propagation (RBP) deeply analyzing the equations which
de�ne the model. Belief propagation, also known as sum-product message-
passing algorithm, is a message-passing algorithm which is used to perform
inference on graphical models. It calculates the marginal distribution for
each unobserved node conditional on any observed nodes. Many variants
of such algorithm exist but we focus on that which operates on a factor
graph, namely a bipartite graph containing nodes corresponding to variables
and factors and where the edges connect variables and factors where they
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appear in. The algorithm works by passing messages along the edges. Each
message contains the in�uence that one variable exerts on another. Messages
are updated till convergence is achieved and are used to estimate each node
marginal distribution which is proportional to the product of all messages
from adiacent factors.

In the �fth chapter we apply the RBP in order to predict the congestion
formation in the framework of complex systems physics. Tra�c is a complex
system where vehicle interactions and �nite volume e�ects produce di�erent
collective regimes and phase transition phenomena. Such prediction can
be a di�cult problem due to the heterogenous behaviour of drivers when
the vehicle density increases. We propose a novel pipeline to classify tra�c
slowdowns by analyzing the features extracted from the fundamental diagram
of tra�c. We train the RBP and we provide a forewarning time of prediction
related to the training set size. In conclusion we compare our performances
with those of the most common classi�ers used in machine learning analysis.





Chapter 2

Inverse problem for the

mean-�eld monomer-dimer model

with attractive interaction

In this chapter we test the inverse problem method for a class of monomer-
dimer statistical mechanics models that have also an attractive potential
and display a mean-�eld critical point at a boundary of a coexistence line.
The inversion is obtained by analytically identifying the parameters in terms
of the correlation functions and via the maximum-likelihood method. The
precision is tested in the whole phase space and, when close to the coexistence
line, the algorithm is used together with a clustering method to take care of
the underlying possible ambiguity of the inversion. The results which are
presented in this chapter have been published in [14].

2.1 Introduction

In the last decade a growing corpus of scienti�c research has been built
that focus on the attempt to infer parameters by reconstructing them from
statistical observations of systems. The problem itself is known as statisti-
cal inference and traces back to the times when the mathematical-physics
description of nature became fully operative thanks to the advances of me-
chanics and calculus, i.e. with the French mathematicians Laplace and La-
grange. In recent times this �eld and its most ambitious problems have
deeply connected with statistical physics [15, 16, 17] at least in those cases in
which the structure of the problem includes the assumption of an underlying
model to describe the investigated phenomena. The aforementioned con-
nection is surely related to the ability that statistical physics has acquired
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2. Inverse problem for the mean-�eld monomer-dimer model with

attractive interaction

to describe phase transitions. In this paper we study the inverse problem
for a model of interacting monomer-dimers in the mean-�eld, i.e. in the
complete, graph. The denomination comes from the fact that the standard
calculation in statistical mechanics, i.e. the derivation of the free energy and
correlation from the assignment of the parameters is called the direct prob-
lem. Monomer-dimer models appeared in equilibrium statistical mechanics
to describe the process of absorption of monoatomic or diatomic molecules
in condensed matter lattices [18]. From the physical point of view monomers
and dimers cannot occupy the same site of the lattice due to the hard-core
interaction i.e. the strong contact repulsion generated by the Pauli exclusion
principle. Beside such interaction though, as �rst noticed by Peierls [19],
the attractive component of the Van der Waals potentials might in�uence
the phase structure of the model and the thermodynamic behaviour of the
material. In the mean �eld setting analysed here the monomer-dimer model
displays the phenomenon of phase coexistence among the two types of par-
ticles [20, 21, 22]. This makes the inverse problem particularly challenging
since in the presence of phase coexistence the non uniqueness of its solu-
tion requires a special attention in identifying the right set of con�gurations.
Under mean-�eld theory, the monomer-dimer model can be solved for the
monomer densities and the correlations between monomers and dimers: the
mean-�eld solution is inverted to yield the parameters of the model (external
�eld and imitation coe�cient) as a function of the empirical observables. The
inverse problem has also been known for a long time as Boltzmann machine
learning [23]. Its renewed interest is linked to the large number of applica-
tions in many di�erent scienti�c �elds like biology [24, 25, 26, 27], computer
science for the matching problem [28, 29, 30] and also social sciences [31, 32].

In this chapter we follow an approach to the inverse problem similar to
the one introduced for the multi-species mean-�eld spin model in the work
[33].

The chapter is organised in the following sections and results. In the
second section we recall brie�y the monomer-dimer model and we review the
basic properties of its solution [20, 22]. In the third section we solve the
inverse problem: using the monomer density and the susceptibility of the
model, we compute the values of the two parameters, here called coupling
constants, J and h. The �rst measures the preference for a vertex to be occu-
pied by a monomer (respectively dimer), by imitating his neighbours. Firstly
we identify the analytical inverse formulas providing an explicit expression of
the free parameters in terms of the mentioned macroscopic thermodynamic
variables. Then we use the maximum likelihood estimation procedure in or-
der to provide an evaluation of the macroscopic variables starting from real
data. The fourth section presents and discusses a set of numerical tests for �-
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nite number of particles and �nite number of samples. The dependence of the
monomer density and the susceptibility is studied with respect to the system
size. We �nd that both of them have a monotonic behavior which depends on
the parameters value and reach their limiting values with a correction that
vanishes as at the inverse volume. We then investigate how the experimental
monomer density and susceptibility at �xed volume depend on the number of
samples. The e�ectiveness of the inversion is tested for di�erent values of the
imitation coe�cients and external �elds. After observing that the error of the
inversion does not vanish when the parameters are close to the coexistence
phase we investigate the e�ectiveness of clustering algorithms to overcome
the di�culty. We �nd in all cases that the inverse method reconstructs, with
a modest amount of samples, the values of the parameters with a precision of
a few percentages. The chapter has two technical appendices: the �rst on the
rigorous derivation of the exact inverse formulas, the second that supports
the �rst and studies the non homogeneous Laplace method convergence to
the second order.

2.2 De�nition of the model

Let G = (V,E) be a �nite simple graph with vertex set V and edge set
E = {uv ≡ {u, v}|u 6= v ∈ V }.

De�nizione 2.1. A dimer con�guration D on the graph G is a set of dimers
(pairwise non-incident edges):

D ⊆ E and (uv ∈ D ⇒ uw /∈ D ∀w 6= v).

The associated set of monomers (dimer-free vertices), is denoted by

M(D) :=MG(D) := {u ∈ V |uv /∈ D, ∀v ∈ V }.

Given a dimer con�guration D ∈ DG, we set for all v ∈ V and e ∈ E

αv(D) :=

{
1, if v ∈M(D)

0, otherwise

and

αe(D) :=

{
1, if e ∈ D
0, otherwise.
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attractive interaction

De�nizione 2.2. Let DG be the set of all possible dimer con�gurations on
the graph G. The imitative monomer-dimer model on G is obtained by
assigning an external �eld h ∈ R and an imitation coe�cient J ≥ 0 which
gives an attractive interaction among particles occupying neighbouring sites.
The Hamiltonian of the model is de�ned by the function H imd

G : DG → R
such that

H imd

G := −
∑
v∈V

hαv −
∑
uv∈E

J(αuαv + (1− αu)(1− αv)). (2.1)

The choice of the Hamiltonian naturally induces a Gibbs probability measure
on the space of con�guration DG:

µimdG (D) :=
exp(−H imd

G (D))

Z imd

G

∀D ∈ DG, (2.2)

where the partition function

Z imd

G =
∑
D∈DG

exp(−H imd

G (D))

is the normalizing factor.
The natural logarithm of the partition function is called pressure function
and it is related to the free energy of the model.

The normalized expected fraction of monomers on the graph is called
monomer density. It can also be obtained computing the derivative of the
pressure per particle with respect to h:

mimd

G :=
∑
D∈DG

|M(D)|
|V | µimdG (D) =

∂

∂h

logZ imd

G

|V | .

It is easy to check that

2|D|+ |M(D)| = |V |. (2.3)

In this paper we study the imitative monomer-dimer model on the complete
graph, that is

G = KN = (VN , EN)

with VN = {1, . . . , N} and EN = {{u, v}|u, v ∈ VN , u < v}.
In order to keep the pressure function of order N , it is necessary to normalize
the imitation coe�cient by 1

N
because the number of edges grows like N2
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and to subtract the term logN
∑

e∈EN αe to the external �eld. Thus we will
consider the Hamiltonian H imd

N : DN → R,

H imd

N := −
∑
v∈VN

hαv+logN
∑
e∈EN

αe−
∑
uv∈EN

J

N
(αuαv+(1−αu)(1−αv)) . (2.4)

All the thermodynamic quantities will therefore be functions of N and we
are interested in studying the large volume limits.

Before studying the inverse problem, we brie�y recall the main properties
of the model (see [20, 22]).
Taking m ∈ [0, 1], the following variational principle holds

pimd = sup
m
p̃(m),

where pimd is the pressure of the model at the thermodynamic limit and

p̃(m(J, h), J, h) := −Jm2 +
1

2
J + pmd((2m− 1)J + h) ∀m ∈ R,

with pmd(ξ) := −1− g(ξ)

2
− 1

2
log(1−g(ξ)) = −1− g(ξ)

2
−log(g(ξ))+ξ ∀ξ ∈

R and g(ξ) :=
1

2
(
√
e4ξ + 4e2ξ − e2ξ) ∀ξ ∈ R. The solution of the model re-

duces to identify the value m∗ that maximizes the function p̃ and it is found
among the solutions of the consistency equationm = g((2m−1)J+h) that in-
clude, beside the equilibrium value, also the unstable and metastable points.
It is possible to prove that m∗ (which represents the monomer density) is
a smooth function for all the values of J and h with the exception of the
coexistence curve Γ(J, h). Such curve is di�erentiable in the half-plane (J, h)
which originates at the critical point (Jc, hc) = ( 1

4(3−2
√

2)
, 1

2
ln(2
√

2− 2)− 1
4
).

2.3 The inverse problem

The evaluation of the parameters of the model starting from real data
is usually called inverse problem and amounts of two steps. The analytical
part of the inverse problem is the computation of the values J and h starting
from those of the �rst and second moment of the monomer (or dimer) density.
The statistical part instead is the estimation of the values of the moments
starting from the real data and using the maximum likelihood principle [34]
or the equivalent formulations in statistical mechanics terms [35]. For what
it concerns the analytical part, using the results of Appendix A and B, it can
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be proved that in the thermodynamic limit the imitation coe�cient and the
external �eld can be respectively computed as

J = − 1

2χ
+

2−m∗
4m∗(1−m∗) , (2.5)

and

h = g−1(m∗)− J(2m∗ − 1) =
1

2
log

(
m∗2

1−m∗
)
− J(2m∗ − 1). (2.6)

We denote by mN and χN the �nite size monomer density average and sus-
ceptibility N(〈m2

N〉−〈mN〉2), while their limiting values are denoted without
the subscript N .

For the statistical part we use the maximum likelihood estimation proce-
dure. Given a sample of M independent dimer con�gurations D(1), . . . , D(M)

all distributed according to the Gibbs measure (2.2), the maximum likelihood
function is de�ned by

L(J, h) = µimdN {D(1), . . . , D(M)} =
M∏
i=1

exp(−H imd

N (D(i)))∑
D∈DKN

exp(−H imd

N (D))
.

The function L(J, h) reaches its maximum when the �rst and the second
momentum of the monomer density are calculated from the data according
to the following equations:

mN =
1

M

∑M
i=1mN(D(i)),

m2
N =

1

M

∑M
i=1m

2
N(D(i)).

(2.7)

The inverse problem is therefore solved by the composition of (2.7) with (2.5)
and (2.6). In particular, denoting by mexp and χexp respectively the average
monomer density and the susceptibility computed from the sample

mexp =
1

M

M∑
i=1

mN(D(i)) and χexp = N

(
1

M

M∑
i=1

m2
N(D(i))−m2

exp

)
,

(2.8)
the estimators of the model's free parameters are

Jexp = − 1

2χexp
+

2−mexp

4mexp(1−mexp)
(2.9)

and

hexp =
1

2
log

(
m2
exp

1−mexp

)
− Jexp(2mexp − 1). (2.10)
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2.4 The inversion at �nite volume and �nite

sample size

The aim of this chapter is to study the robustness of the inversion proce-
dure, i.e. the computation of the parameters from real data. The idea is to
infer the value of J and h from the con�gurations generated according to the
distribution of the model. In order to compute e�ciently the values of the
statistical estimatorsmexp and χexp and in order to obtain a good approxima-
tion of the analytical inverse formulas in terms of �nite size thermodynamic
variables, we have to choose a large number of con�gurations of the sample
and a large number of vertices of the graph, which are respectively identi�ed
by M and N . Since in real data we have a �nite number of vertices and a
�nite number of con�gurations, the robustness will be studied with respect
to both these two quantities.
The data that we are going to use are extracted from a virtually exact sim-
ulation of the equilibrium distribution. In fact, the mean-�eld nature of the
model allows to rewrite the Hamiltonian (2.1) as a function of the dimer, or
monomer, density (see equation (2.3)):

H imd

N (dN) = −N
(
J

(
16d2

N − 4dN +
N − 1

2N

)
+ h (1− 4dN)− 2dN logN

)
,

(2.11)
where dN = dN(D) = |D|

2N
, or equivalently

H imd

N (mN) = −N
(
J

(
m2
N −mN +

N − 1

2N

)
+ hmN +

1

2
logN(mN − 1)

)
.

(2.12)
In particular we use the following de�nition of the partition function:

Z imd

N =

[N/2]∑
|D|=0

cN(D)e−H
imd

N (dN (D)), (2.13)

where the term cN(D) = N !
|D|!(N−2|D|)!2

−|D| is the number of the possible con-
�gurations with |D| dimers on the complete graph with N vertices. Using the
previous representation of the partition function we extract large samples of
dimer densities values according to the equilibrium distribution. Those will
be used for the statistical estimation of the �rst two moments (2.7). We
are going to illustrate the results with some examples. Figure 2.1 shows the
�nite size average monomer density mN and �nite size susceptibility χN for
the monomer-dimer model at di�erent N 's for di�erent couples of parameters
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Figure 2.1: Finite size average monomer density mN (upper panels) and
susceptibility χN (lower panels) as a function of N for the monomer-dimer
model at di�erent values of J and h. The red continuous lines represent the
values in the thermodynamic limit.

(J, h). The �gure highlights the monotonic behavior of mN and χN as func-
tion of N . We point out that the di�erent monotonic behaviors of the �nite
size monomer density and susceptibility provide a useful information about
the phase space region at which the system is found before applying the full
inversion procedure. Figure 2.2 shows the power-law �ts of the behavior of
the �nite size corrections both for monomer density and susceptibility. In
order to test numerically our procedure, we consider 20 M−samples for each
couple (J, h) and we solve the inverse problem for each one of them inde-
pendently; then we average the inferred values over the 20 M−samples. We
denote by mexp, χexp, Jexp and hexp such averaged quantities. The two pan-
els of �gure 2.3 represent the statistical dependence of the estimators mexp

and χexp on the number of the con�gurations of the sample. To check out
that dependence on the sample D(1), . . . , D(M), we computed the values of
the experimental estimators over a set of 20 independent instances of such
samples. The errors are standard deviations on 20 di�erent M−samples of
the same simulation: we �nd numerical evidence that M ≥ 5000 stabilizes
the estimations.
To test numerically the inversion procedure, we take a sample of M = 5000
dimer con�gurations {D(i)}, i = 1, . . . ,M over a complete graph with N =
2000 vertices. We consider J ∈ [0.1, 1.5] and we �x h = 0.1; the obtained
values for this case are shown in the left panel of �gure 2.4, where Jexp and
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Figure 2.2: J = 0.5, h = 0.1. Upper panel: |mN − m| as a function of
N together with the best �t aN b for the data in the left upper panel of
�gure 2.1. We obtain a = 0.306, a ∈ (0.1703, 0.4418) and b = −0.8549, b ∈
(−0.9459,−0.7639) with a goodness of �t R2 = 0.9815. Lower panel: |χN−χ|
as a function of N together with the best �t cNd for the data in the left
lower panel of �gure 2.1. We obtain c = 1.277, c ∈ (0.9883, 1.566) and
d = −0.9765, d ∈ (−1.024,−0.929) with a goodness of �t R2 = 0.9971.
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Figure 2.3: N = 2000, J = 0.6 and h = 0.1. Error bars are standard
deviations on 20 di�erent M−samples of the same simulation. Upper panel:
average monomer density mexp (blue crosses) as a function of M (number
of the con�gurations in the sample). The red continuous line represents
the �nite size monomer density mN . Lower panel: susceptibility χexp (blue
crosses) as a function ofM (number of the con�gurations in the sample. The
red continuous line represents the �nite size susceptibility χN .
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Figure 2.4: Error bars are standard deviations on 20 di�erent M−samples
of the same simulation. Left panel: Jexp as a function of J ∈ [0.1, 1.5]
(blue crosses). The red continuous line corresponds to the exact value of the
imitation coe�cient. Right panel: the value of hexp (blue crosses) calculated
from (2.10) for the values of Jexp in the left panel, as a function of J ∈
[0.1, 1.5]. The red continuous line corresponds to the exact value of h.

hexp are plotted as functions of J . Note that the inferred values of the pa-
rameters are in optimal agreement with the exact values. Observe that for
large values of J , the reconstruction get worse since the interaction between
particles grows.
In �gure 2.5 we report the absolute errors as a function of the imitation
coe�cient in reconstructing J and h in the cases of �gure 2.4.

Figures 2.6 and 2.7 show relative errors in recostructing parameters for
increasing sizes of the graph. They highlight that for large values of N and
M , the inference of parameters doesn't give good results only in the case
that the couple (J, h) is close to the coexistence line, but when we deal with
real data, it may happen that we don't have a model de�ned over a graph
with a large number of vertices or numerous con�gurations of the sample.
In these cases, when J and h take values in the region of metastability,
the inversion at �nite volume and �nite sample size can't be made using
the method descripted above and we need another procedure to solve the
problem, as it is shown in the following section.
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Figure 2.5: Inference of parameters of the monomer-dimer model on 20 dif-
ferent M−samples of the same simulation. Absolute errors in reconstructing
J and h, where J ∈ [0.1, 1.5] and h = 0.1.
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Figure 2.6: Relative errors in reconstructing the imitation coe�cient J . The
points of the phase space are coloured with respect to the errors which assume
the highest values along the coexistence line. The graybar on the right gives
a range for the computed errors: the scale goes from white for the lowest
to black for the highest. The blue curves ψ1 and ψ2 de�ne the region of
metastability (see [20, 21, 22]), the red curve is the coexistence line while
(Jc, hc) is the critical point; the blue and red colors do not identify any error.
The number of con�gurations of the sample is set to be M = 500.
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Figure 2.7: Relative errors in reconstructing the external �eld h. The points
of the phase space are coloured with respect to the errors which assume the
highest values along the coexistence line. The graybar on the right gives
a range for the computed errors: the scale goes from white for the lowest
to black for the highest. The blue curves ψ1 and ψ2 de�ne the region of
metastability (see [20, 21, 22]), the red curve is the coexistence line while
(Jc, hc) is the critical point; the blue and red colors do not identify any error.
The number of con�gurations of the sample is set to be M = 500.
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2.5 The inversion at �nite volume and �nite

sample size with clustered phase space

We are now going to work on the monomer-dimer inverse problem when
the phase space doesn't present only one equilibrium state, i.e. when the
system undergoes a phase transition. We explain how to modify the mean-
�eld approach we have seen above. If the model is de�ned for the parameters
J and h such that the couple (J, h) ∈ Γ, the Gibbs probability density
of the model presents two local maxima and we cannot study the inversion
problem in a global way as we have done in the second section but we have to
understand what happens in a local neighborhood of each maximum. Given
M independent dimer con�gurations D(1), . . . , D(M) all distributed according
to the Gibbs probability measure for this model, we can understand their
behavior around m1 and m2 separating them in two sets, before applying
formulas (2.9) and (2.10), i.e. we divide the con�gurations of the sample in
clusters using the so called clustering algorithms which classify elements into
classes with respect to their similarity (see [36, 37, 38, 39]). The clustering
algorithms we use are based on the distance between the monomer density of
the con�gurations: we put them in the same group if they are close enough
and far from the other clusters (the concept of distance between clusters will
be discussed later).
The method we use is the density clustering [36], which is based on the idea
that the cluster centers are encircled by near con�gurations with a lower local
density and that they are relatively far from any other con�guration with a
high local density. For each con�guration we compute two quantities: its
local density ρi and its distance δi from con�gurations with higher density.
These quantities depend on the euclidean distance dij = |m(i)−m(j)|, where
m(i), for i = 1, . . . ,M is the monomer density of the con�guration D(i).
The local density ρi of D(i) is de�ned by

ρi =
M∑
j=1

ϕ(dij − dc), (2.14)

where dc is an arbitrary cuto� distance (we will discuss later the choice of
dc) and

ϕ(x) =

{
1 if x < 0

0 otherwise.

In other words, the local density ρi corresponds to the number of con�gura-
tions that are closer than dc to the con�guration D(i).
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Remark 2.1. The choice of the cuto� distance dc is crucial for the results of
the algorithm: if we take a too large or a too small value for dc it is possible
that the algorithm is not able to �nd correctly the cluster centers. From
the results of our simulations it emerges that, if we want to solve the inverse
problem over a complete graph withN = 3000 vertices working with a sample
made of M = 10000 dimer con�gurations, we have the best reconstruction
of the free parameters when dc is setted to be equal to 0.01. Obviously the
choice depends on the range where the clusters centers have to be found
and on the number of con�gurations of which the sample is made. More in
general we have seen that for large values of M , the minimum absolute error
in reconstructing parameters occurs when the cuto� distance is equal to C

M
.

The distances δi are the minimum distance between the con�guration D(i)

and any other con�guration with higher local density:

δi = min
j:ρj>ρi

dij, (2.15)

while for the con�guration with the highest local density we take δī = max
j
dij.

Observe that the quantity δi is much larger than the typical nearest neighbor
distance only for the con�gurations that are local or global maxima in the
density. Thus cluster centers are recognised as con�gurations for which the
δi is anomalously large (this situation will be illustrated in example 2.1 in
the following).
After the cluster centers have been found, each remaining con�guration is
assigned to its closest neighbor with higher density.

Remark 2.2. We tested our inversion formulas using two other clustering
algorithms, obtaining analogous results, which put a number of data points
into K clusters starting from K random values for the centers x(1), . . . , x(K):
the K-means clustering algorithm and the soft K-means clustering algorithm
[37]. However the results we are going to talk about have been obtained using
the density clustering algorithm: by using this algorithm we do not have to
specify the number of clusters since it �nds them by itself.

Remark 2.3. From the results of our simulations, according to the example
2.1 in the following, it emerges that, if the couple of parameters which de-
�nes the model is not close enough to the coexistence line, we have a better
reconstruction of the parameters applying equations (2.9) and (2.10) to the
con�gurations which belong to the largest cluster.
On the other hand, when the couple (J, h) is near to the coexistence line
Γ(J, h), we solve the problem applying equations (2.9) and (2.10) to each
cluster and averaging the inferred values as follows. We de�ne the respective
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observables of the two classes as

m(k)
exp =

1

Mk

∑
i∈Ck

mi

and

χ(k)
exp = N

(
1

Mk

∑
i∈Ck

m2
i − (m(k)

exp)
2

)
,

where k ∈ {1, 2}, Ck is the set of indices of the con�gurations belonging to
the kth cluster and Mk = |Ck| is its cardinality.
We now apply (2.9) separately to each group in order to obtain two di�erent
estimators J (1)

exp and J
(2)
exp; �nally we take the weighted average of all the

di�erent estimates

Jexp =
1

M1 +M2

(M1J
(1)
exp +M2J

(2)
exp) (2.16)

in order to obtain the estimate for the imitation coe�cient.
To estimate the parameter h, we �rst compute the values h(1)

exp and h
(2)
exp

within each cluster using equation (2.10) and the corresponding J (k)
exp; the

�nal estimate for h is given by the weighted average over the clusters

hexp =
1

M1 +M2

(M1h
(1)
exp +M2h

(2)
exp). (2.17)

We now focus on some cases of clustered phase space and we solve the
inverse problem applying the density clustering algorithm.
In order to test numerically the inversion procedure for the monomer-dimer
model, we consider a sample of M = 10000 dimer con�gurations {D(i)},
i = 1, . . . ,M over a complete graph with N = 3000 vertices. We denote
by the bar averaged quantities and the errors are standard deviations over
20−M samples.

Example 2.1. Consider a monomer-dimer model de�ned by the couple

(J, h) = (2.001,−0.4145);

the Gibbs probability distribution of the monomer densities for this choice
of parameters is represented in �gure 2.8. Given M = 10000 independent
dimer con�gurations D(1), . . . , D(M) all distributed according to the Gibbs
probability measure for this model, we use the density clustering algorithm
in order to divide them in two sets to reconstruct the parameters.
As we can see by �gures 2.8 and 2.9, con�gurations are divided in two
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Figure 2.8: Gibbs probability distribution of the monomer densities for the
dimer con�gurations of the monomer-dimer model de�ned by the couple of
parameters (J, h) = (2.001,−0.4145).

clusters C1 and C2 respectively centered in m1 = 0.1507 ± 5.7 · 10−17 and
m2 = 0.9402± 9.9 · 10−4; moreover the cluster centered in m1 contains more
con�gurations than that centered in m2. Let start observing that the re-
constructed parameters are better solving the problem only respect to the
largest cluster.
Applying equations (2.9) and (2.10) both to the con�gurations in C1 and C2

according to remark 2.3, by formulas (2.16) and (2.17) we obtain the following
reconstructed values of parameters:

Jexp = 2.0141± 0.0802 and hexp = −0.4196± 0.0828. (2.18)

Applying instead equations (2.9) and (2.10) only to the con�gurations in the
largest cluster C1, we obtain the following reconstructed values of parameters:

Jexp = 2.0036± 0.0353 and hexp = −0.4091± 0.0247. (2.19)

In order to justify our choice for the cuto� distance, we focus on �gure
2.10, which shows the euclidean distances between Jexp and the true param-
eter J (blue stars) and between hexp and the true parameter h (red circles)
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Figure 2.9: Density clustering algorithm. Left panel: plot of the vector ρ,
whose components are computed according to (2.14), of the density of con-
�gurations around each con�gurations of the considered sample as a function
of the monomer densities. Right panel: decision graph, plot of the vector δ,
whose components are computed according to (2.15), as a function of the
vector ρ.

for each choice of dc, that takes value 10−j, for j = 1, . . . , 6. We can see that,
taking a sample of M = 10000 dimer con�gurations over a complete graph
with N = 3000 vertices, we obtain the minimum absolute error considering
dc = 0.01. According to what we have told above, the choice is arbitrary
and it depends on the range of values of the monomer densities and on the
number of con�gurations in the sample: obviously, working with a larger
set of dimer con�gurations we have more freedom in the choice of the cuto�
distance. In conclusion we have seen that in the case where the couple of
parameters (J, h) belongs to the region of metastability and is far enough
from the coexistence line, at �nite volume and at �nite sample size, there are
two clusters and one of them is much larger than the other one. According
to remark 2.3, the obtained results con�rm that the reconstruction of the
parameters is better if we apply formulas (2.9) and (2.10) only to the largest
set of con�gurations. The goodness of results is estimated comparing (2.18)
and (2.19): the distance between the reconstructed parameters Jexp and the
true value J is smaller in the �rst case, while the respective recontructions
of h are equivalent.

We proceede considering ten di�erent couples of parameters which are
nearby the coexistence line Γ(J, h) descripted above. In order to de�ne them
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Figure 2.10: Density clustering algorithm: choice of the cuto� distance. Ab-
solute errors in reconstructing J and h. Distance between the reconstructed
Jexp and the true value J (blue stars) and distance between hexp and h (red
circle) for each choice of the cuto� distance dc, which takes value 10−j, for
j = 1, . . . , 6. The values of Jexp and hexp are averaged across 20 M−samples.
The errors are plotted as a function of dc.
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Figure 2.11: N = 3000, J ∈ [1.6, 2], h takes values over the coexistence
line. Error bars are standard deviations on 20 di�erent M−samples of the
same simulation. Parameters are reconstructed using the density clustering
algorithm. Left panel: Jexp (blue crosses) calculated from (2.16) as a function
of J . The red continous line represents the true value of J . Right panel: the
value of hexp (blue crosses) calculated from (2.17) for the values of Jexp in
the left panel, as a function of J . The red continuous line corresponds to the
exact value of h.

we take ten equispaced values for the imitation coe�cient J in the interval
[1.6, 2] and we compute the corresponding values for the parameter J using
equations (2.16) and (2.17). The obtained values are shown in �gure 2.11,
where Jexp and hexp are plotted as a function of J . In �gure 2.12 we can see
the results in reconstructing parameters crossing the coexistence line Γ(J, h).
Fixed J = 1.8 we take increasing values of the parameter h in the interval
[−0.3940,−0.3924]. In �gure 2.13 we can see how the distribution of Gibbs
of the monomer densities changes for di�erent values of h.

In �gure 2.14 the euclidean distances between Jexp and the value J = 1.8
(blue stars) and between hexp and h ∈ [−0.3940,−0.3924] (red circles) are
shown for each of the nine couples (J, h).
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Figure 2.12: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Error bars are
standard deviations on 20 di�erent M−samples of the same simulation. Pa-
rameters are reconstructed using the density clustering algorithm. Left panel:
the value of Jexp (blue crosses) calculated from (2.16) as a function of h to-
gether with the statistical error. The red continous line represents the true
value of J . Right panel: the value of hexp (blue crosses) calculated from
(2.17) for the values of Jexp in the left panel, as a function of h together with
the statistical error. The red continuous line corresponds to the exact value
of h.
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Figure 2.13: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Gibbs probability
distribution of the monomer densities for the dimer con�gurations of the
monomer-dimer model de�ned by each couple of parameters (J, h) de�ned in
�gure 2.12.



30

2. Inverse problem for the mean-�eld monomer-dimer model with

attractive interaction

−0.394 −0.3938 −0.3936 −0.3934 −0.3932 −0.393 −0.3928 −0.3926 −0.3924
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

|J-J̄exp |

|h-h̄exp |

Figure 2.14: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Absolute errors
in reconstructing J and h using the density clustering algorithm. Distance
between the reconstructed Jexp and the true value J (blue stars) and distance
between hexp and h (red circle) for each couple of parameters. The values of
Jexp and hexp are averaged across 20 M−sample. The errors are plotted as
a function of h.



Chapter 3

Statistical properties of group

mobility in an invertebrate

model: Drosophila melanogaster

In this chapter we apply the network theory to a biological environ-
ment. The results have been reached in collaboration with the Department
of Biomedical Sciences and the Department of Biology of Padova.

3.1 Introduction

Behavior can be described as internally coordinated responses (actions or
inactions) of whole organisms to internal and/or external stimuli [40] which
requires a complex and high level neural processing activity. From the op-
erational point of view, each nervous system, whether simple and made by
few neurons like in invertebrates (bees, �ies, shrimps) or complex with many
neurons like in vertbrates, mammals and humans, adaptive behavior is regu-
lated by similar steps and basic mechanisms. Selective attention picks speci�c
sensory informations which couple perception to action and process them at
perceptual level by selecting which object will be the target of the ongoing
action and which action utilize to reach the goal [41].

It is therefore interesting from the mathematical point of view analyse
and de�ne these similar mechanisms in behavioral responses, and evaluate
how they evolved in organisms (and brains) far away from the evolutive point
of view.

An extremely interesting adaptive behavior is navigation or mobility be-
tween other individuals in the same environment. In this case, among other
informations to be processed at perceptual level, social interactions, i.e. the
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exchange of informations between individuals in a group, play a crucial role.
Mathematical models of the operational mechanisms which underlie nav-

igation and mobility, are therefore interesting in helping to understand how
we move among individuals and individual relative importance in regulat-
ing our navigation. Models of human mobility were developed, relying on
statistical approaches [42] or on cognitive anlyses [43]. These studies ap-
proached the problem from two distinct point ov views: i) a mathematical
approach with the aim to gain further knowledge for solving human mobility
in social economical contexts and, ii) a psychophysiological approach with
the aim to know the higher neurophysiological basis of human navigation.
Our aim is to try to unify these to approaches in a unique approach with the
idea to �nd a possible mathematical model describing basic and evolutively
maintained mechanisms of animal navigation and mobility, as a background
for future experiments. In this paper we investigated from a mathemati-
cal point of view, walking locomotion of limited groups of �ies (Drosophila
melanogaster) freely moving together in a uniform and homogeneously illu-
minated arena, without any external visual target. Utilizing the extremely
sophisticated genetic tools which can be used on this animal model, we car-
ried out investigations on a group of normal control wild type individuals and
on a group of mutated individuals where brain level of dopamine, a neuro-
transmitter responsible of reward decision-making both in invertebrates and
in vertebrates, was genetically increased.

By applying a speci�c de�nition of interaction, from our results, it emerged
a clear separation between the two groups which can be classi�ed simply us-
ing a bayesian classi�er. Comparing our results with a null model composed
by particles, we found that individuals move according to a particular dy-
namic which is not comparable to a random walk. Our considerations were
�nally applied to a mixed arena and we �nd out that the behavior and the
nature of such insects can be classi�ed according to our criteria.

The chapter is organized in the following sections and results.
In the second section we present the structure of the dataset and the

recording methods which have been used. In the third section we analyze
trajectories of drosophilas and their �ying speed. From our results, it emerges
that there is a clear separation between the two groups which can be clas-
si�ed simply using a bayesian classi�er. In the fourth section we study the
interaction graph that is originated from drosophilas according to our rule of
interaction. We also compare results with a null model which is composed
by particles which move according to a random walk inside of an arena of
the same dimensions of the arena of our experiments. In order to reproduce
an analogous experiment we lead particles to move with the same speed of
drosophilas speed. It emerges that insects move according to a particular
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dynamic which has no links with a random walk. In the �fth section we
apply our considerations to an heterogeneous arena and we �nd out that the
behavior and the nature of such insects can be classi�ed according to our
criteria.

3.2 Data collection

Animals

The experiments were performed on adult wild-type fruit �ies (Drosophila
melanogaster; Oregon-R strain) and pale mutant �ies in which an alteration
of Tyrosine Hydroxilase function leads to reduced Dopamine synthesis [44,
45]. All �ies were reared on standard cornmeal-sucrose-yeast medium at
22◦C in a 12 h light/12 h dark cycle at 60% relative humidity. Fly crowding
was also controlled (20-30 �ies each vial) to avoid competition for food. Only
individual 5-7 day-old male �ies were used. Flies were kept in their food vials
until the beginning of the experiment. Thus for the experiment �ies were
not starved nor were their wings clipped. All experiments were conducted
between zeitgeber time 2 and 4 at room temperature 22◦-23◦C.

Experimental setup

Walking locomotor behavior of individual �ies was tested in a circular
plexiglass arena. The arena (maximum height at the centre = 3.5 mm;
diameter = 110 mm) was designed so as to i) con�ne �ies in 2D space, ii)
not allow the �ies to reach the edge of the arena and iii) to impede �ight by
means of a glass ceiling [46]. The arena was placed on a plexiglas platform
inside a closed box and illuminated with a cold white leds from below. A
transparent opaque paper around the arena made illumination homogenous.
No visual targets were present inside the arena or accessible to �y vision.
Flies walking locomotion inside the arena was recorded from above using a
CCD camera (Chameleon 3, FLIR System Inc, Wilsonville, OR, USA) with
1288 × 964 pixel resolution, �tted with a 2.8-8 mm varifocal lens (Fuji�lm,
Tokyo, JP) mounted 36 cm above the arena. Videos of �ies moving in the
arena were recorded at 21 frames s-1, following selection of a 700 × 700 pixel
region of interest which included the entire arena.
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Procedure

Ten individual male �ies, selected as above described, were placed inside
the arena and left to adpt in complete darkness for 5 minutes. At the end of
the "adaptation period", lights were turned on and continuous video record-
ing of �ies walking activity for a period of 10 minutes was acquired on PC.
The same procedure was utilized to record walking activity of a group of 10
adult male Oregon R (wild type) �ies and to record walking activity of a
group of 10 adult male mutant �ies.

Data analysis

Uncompressed AVI �les of recorded videos were o�ine analysed using the
CTRAX open source software [47]. By means of this software we obtained, for
each frame, a precise 2D position and body orientation for each �y. Errors
occurring during tracking were �xed manually using appropriate available
MATLAB scripts (CTRAX, FixErrors Toolbox) [47]. Finally, other available
MATLAB scripts (CTRAX, Behavioral Microarray Toolbox) were used to
compute a suite of speed and acceleration properties [47].

3.3 Walking locomotor analysis

We started out by asking if walking locomotor properties can identify a
phenotype in mutant �ies.

We started simply analyzing trajectories which have been de�ned by �ies
inside of the arena. From these quantitative analyses it emerges that loco-
motor behaviors are totally di�erent: the wild group �y without following a
precise scheme, while the mutated group seems to prefer to move along the
borders of the arena and have a more regular �ying way. Figure 3.1 repre-
sents the trajectories which have been de�ned respectively by the wild group
and the mutated one, both from a total point of view and from a singular
point of view.

These �rst images leaded us to consider the �y locomotor speed: in any
experiment we found a statistically signi�cant relationship between the re-
spective genetic mutations and the vectorial moving speed. It emerges that
the wild type insects generally �y with a lower speed than the mutated �ies.
In �gure 3.2, the upper panels present the histograms of the mean speed in
the arena for each timestamp recording. The wild type data are distributed
according to a skew distribution to the right: they are not symmetrically dis-
tributed around the mean since the larger values tend to be farther away from
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Figure 3.1: Flies tracking. Upper panels: we respectively represent the tra-
jectories which have been de�ned by the OREGON group (left �gure) and
the trajectory which have been singularly de�ned by each �y (right �gure).
Lower panels: we respectively represent the trajectories which have been de-
�ned by the PALE group (left �gure) and the trajectory which have been
singularly de�ned by each �y (right �gure).
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the mean than the smaller ones. The mutant type data instead are more sim-
metrically distributed around the mean which assumes a value clearly higher
to the �rst one. Precisely the wild type speed distribution is best �tted by an
exponential distribution Exp(λ) with λ = 1.7808 while PALE type speed dis-
tribution is best �tted by a Gaussian distribution N(µ, σ) with µ = 47.5375
and σ = 4.7838. For that reason it is easy to de�ne a threshold to separate
the two groups which can be easily classi�ed using a bayesian classi�er. In
�gure 3.3 we measure the average speed of each �y in the respective arena
�nding again a clear separation.

3.4 Interaction graphs

As second discriminant feature, we focus on the social behavior of drosophi-
las: our main goal is to separate the Pale class from the wild type by con-
sidering the interaction between insects in the same experiment. From our
observations the wild group is the most interactive while �ies which express
proteins or have undergone some mutations almost don't get in contact one
with each other. We say that two drosophilas have an interaction if they
remain in the same square of 12 pixels side at least for 3 frame instants.

We show in �gure 3.4 the interaction network of the two di�erent exper-
iments: we highlight with the line width di�erent interaction weights which
have been computed acording to the number of instants of contact. It emerges
that wild type drosophilas present a higher attitude to get and remain in con-
tact with other ones for a longer time. In order to characterize vertices and
edges we study the indicators of centrality of the graph: we focused on the
degree, which is de�ned as the number of links incident upon a node. In
order to give some easy de�nition and to set the notation, consider a graph
G = (V,E), with V set of vertices and E set of edges. The degree centrality
of a vertex v is de�ned as

CD(v) = deg(v).

Figure 3.5 shows the plots of each node's degree.
After having studied such graphs, we wanted to understand if insects

move around the arena according to a particular dynamic or randomly. For
this reason we de�ned a system of particles, and let them evolve in a square
of side 700 pixels, according to the arena dimensions, with a speed which is
near dorsophilas speed but in accordance to a random walk. So we repro-
duced two di�erent arenas as follow. The arena which reproduces OREGON
type behavior presents particles which move with a speed vO ∼ Exp(λ) and
that which reproduces PALE type behavior presents particles which move
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(a) Oregon

(b) Pale

Figure 3.2: Flying speed. Upper panels. The histogram represents the av-
erage speed of each frame in di�erent homogeneous experiments. Upper left
panel: Oregon speed histogram. The blue line represents the best �tting
distribution Exp(λ) with λ = 1.7808. Upper right panel: Pale speed his-
togram. The blue line represents the best �tting distribution N(µ, σ) with
µ = 47.5375 and σ = 4.7838. Lower panel: Flying speed graph. Di�erent
colors highlight di�erent experiments. The upper red line represents the av-
erage �ying speed of the Pale drosophilas while the blue line represents the
average �ying speed of the wild type drosophilas.
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Figure 3.3: Cumulative speed histogram. The red line is a bayesian threshold
which separates the wild type from the other one.

with a speed vP ∼ N(µ, σ) as we mentioned above. We build in this way a
dataset which contains the spatial coordinates of the positions assumed in
each timeframe by the particles and we process such data in the same way
as we did with �ies experiments. We report in �gures 3.6 the di�erent inter-
action graphs de�ned by such random particles: they lead us to think that
interactions are due to speci�c and characteristic dynamics.

3.5 Blind dataset

In order to con�rm the integrity of the studied discriminant features, we
considered an heterogeneous experiment and we tried to classify the nature of
drosophilas applying criteria descripted above. In this experiment the arena
is composed by ten drosophilas: seven of them belong to the OREGON type
and the other three ones belong to the PALE type. We started analyzing
each insect average �ying speed (�gure 3.7). Each point represents an insect
and we plot the mean of their �ying speed. Simply looking at each respec-
tive mean we �nd that two groups can be easily identi�ed: the �rst three
drosophilas �y with an evident higher velocity than the other seven ones. It
leaded us to start thinking about the composition of the arena.

As a second step we built the interaction graph which is generated by
this heterogeneous group and we represent it in �gure 3.8. There is a big
connected component composed by seven nodes while the threeother nodes
of the graph don't interact.

Considerations we made above support and con�rm the nature of the
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(a) Oregon

(b) Pale

Figure 3.4: Interaction networks. The graphs represent the interactions
between drosophilas in di�erent homogeneous experiments. Upper panels:
OREGON type interaction network. Lower panel: PALE type interaction
network.
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Figure 3.5: Interaction networks degree. The graphs represent the interaction
graph degree centrality. Upper panel: �rst wild type group, mean degree is
equal to 5.4. Middle panel: second wild type group, mean degree is equal to
4.6. Lower panel: Pale group, mean degree is equal to 1.6.

dataset and we are e�ectively able to classify insects according to their motor
and social behavior.

3.6 Conclusions

Assigning behavioral functions to neural structures has long been a central
goal in neuroscience and is a necessary �rst step to understand how the
brain generates behavior. Here, we study locomotion and social behaviors
for Drosophila melanogaster using the network theory. We combine genetic
mutations with our behavioral analysis to create correlation maps from which
we generate hypotheses on how the behavior, and consequently the brain,
reacts to such mutations. In conclusion, our maps provide a preliminary tool
to distinguish PALE drosophilas from the wild type.
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(a) side = 12 pixels (b) side = 12 pixels

(c) side = 20 pixels (d) side= 20 pixels

(e) side = 25 pixels (f) side = 25 pixels

Figure 3.6: Interaction random networks. Left panels: Simulation which
represent the Oregon type drosophilas. Right panels: Simulation which rep-
resent the Pale type drosophilas. Each row presents the interaction graphs
which have been de�ned according to di�erent pixel dimensions for the side
of the interaction square.
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Figure 3.7: Flying speed heterogeneous arena graph. We represent to average
�ying speed for each drsophila in the arena.

Figure 3.8: Interaction blind network. The graphs represent the interactions
between drosophilas in an heterogeneous experiment. All and only the wild
type insects compose the big connected component.



Chapter 4

Neural networks: Replicated

Belief Propagation

In this chapter we introduce the general architecture of a neural network
and give an overview to the Replicated Belief Propagation algorithm, whose
structure is presented in [48]. After the presentation of the model we deeply
explore the equations which characterize it.

4.1 Introduction

In arti�cial neural networks, learning from data can be performed through
several methods. Basically training refers to determine the best set of weights
for maximize the neural network's accuracy. A feed-forward neural network
presents many layers of neurons connected together: the �rst layer takes in
an input which is processed through the sucessive layers returning out an
output value. More formally, consider a network composed by K layers each
of them presenting NK neurons (see �gure 4.1). The algorithm is trained
using a sample of M couples composed by an N−input vector ξi and the
associated output τξi , for i = 1, . . . ,M . We de�ne aij the activation of the j

th

neuron in the ith layer which is computed according to the following relation:

aj = α

(∑
k

(
wijk · ai−1

k

)
+ bij

)
, (4.1)

where:

• α is the activation function,

• wijk is the weight of the link which connect the kth neuron in the (i−1)th

layer to the jth neuron in the ith layer,
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Figure 4.1: The picture represents a neural network structure. The network
in the picture takes input vectors of size N = 3 and presents K = 1 hidden
layer of size N1 = 4.

• bij is the bias of the jth neuron in the ith layer,

• aij is the activation value of the jth neuron in the ith layer.

The activation function of a node de�nes the output of that node given an
input and represents the state of the neuron which can �res or not, namely
it acts as the Heaviside function of a given real value z ∈ R. In order to
smooth the error propagation during the training, it has been introduced the

sigmoid activation function which is de�ned as α(z) =
1

1 + exp(−z)
.

With the aim to quantify how well the found the set of weights and biases
approximates the output related to a speci�c input vector we de�ne a cost
function. The de�nition of a cost function is not universal but one example
can be provided considering the relation

C(W, b) =
1

2M

∑
i∈M

||yM − τξi||2, (4.2)

where yM is the output provided by the network using the set of weights
and biases {W, b}. Connection weights are thus iteratively tuned through
processes over the cost-function. One of the possible risks training a neural
network, is that the found solution can be trapped in local minima with the
result that the classi�cation doesn't give optimal results [51]. In fact, it is
not worth to remark that the cost function could present several points of
minimum and not necessarily the found solution sits on the gllobal mini-
mum: this is due to the nonlinearity introduced by the activation functions.
The cost function of a network infact presents many hills, valleys and other
irregularities which cause the presence of local minima, which can produce
good but not excellent results. If we imagine the cost function as the energy
function associated to dynamical system, we can �nd a parallelism between
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Figure 4.2: The picture presents three di�erent energy states of a system:
the red ball identi�es a metastable state, the green one identi�es an unstable
state while the blue sits on the stable state.

local minima of the cost function and the metastable states. In physics,
metastability is a stable state other than the system's state of least energy.
An example can be provided thinking about a ball resting on a slope: if it
is slightly pushed it will probably remain into its hollow, but if the push is
stringer it probably rolls down the slope (see �gure 4.2).

In order to avoid con�gurations which are trapped in local minima and to
reduce the computational cost (which generally grows according to the size
of the network), in [52, 53] it has been introduced a method that con�rms
experimentally the existence of subdominant and extremely dense regions of
solutions for learning systems: in particular it has been proved that such
dense regions are accessible by learning protocols and that synaptic con-
�gurations are robust to perturbations and generalize better than typical
solutions.

This chapter is organized as follows. In the second section we provide a
statistical mechanical contestualization of the model and we introduce the
replica theory, which is deeply analyzed in appendix C. In the third section
we give the de�nition of the energy of the mode. In the fourth section we
explain the concept of the factor graph and we derive Belief Propagation
equations. In the �fth section we analyze equations which rule the model.
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4.2 Theoretical background of the model

As we introduced above, �nding a solution which is not trapped in low
performance con�gurations seems to be one of the main problems training
a neural network with descrete synapses. One example can be provided
by the K-statis�ability problem (Ksat) which deals with an ensemble of N
boolean variables submitted to M constraints. Each constraint is an 'OR'
function of K variables (or their negations) of the ensemble and the problem
is to �nd a con�guration which satis�es all the constraint. Because of the
binary nature of the variables, the solution has to be found between 2N

possibilities and this was the �rst problem which has been classi�ed as NP-
complete becoming a central problem in combinatorial optimization. This
problem can also model spin-glass problems, which deal with a set of N
spins interacting with coupling constants: each couple of spins can be seen
as a constraint and the minimal state of energy corresponds to minimize the
number of violated constraints. In [54, 55] it has been proved that in the
space of such solutions there could be one, many or few connected clusters.
In any case, e�cient algorithms seem to exist only when the system has
extensive and connected regions of solutions, called unfrozen clusters. On
the contrary, solutions which are isolated are called locked (see [56] for more
details). For that reason in [57], it has been introduced a di�erent measure
of probability for the weights con�gurations: it ignores isolated solutions and
enhances the statistical weight of clusters of solutions.

In order to introduce the training model, we start considering a system
composed by a �nite set of interacting spin particles σ = {σi}i∈Λ, where
Λ is a �nite subset of N. Suppose that particles interact according to the
Hamiltonian

H(σ) = −
∑
i,j∈Λ

Jijσiσj −
∑
i∈Λ

hiσi, (4.3)

where Jij are the interaction parameters between particles σi and σj and
hi is the magnetic �eld associated to σi. Let us introduce the parameter

β =
1

kBT
that corresponds to the thermodynamics temperature, where kB

is the Boltzmann constant and T is the system temperature. The equilib-
rium distribution of the con�guration of spins is given by the measure of
Boltzmann-Gibbs:

P (σ, β) =
e−βH(σ)

∏
i∈Λ dρ(σi)

Z(β)
, (4.4)
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where Z(β) is the partition function of the system and is de�ned by

Z(β) =
∑
i∈Λ

exp (−βH(σ)) . (4.5)

As we have anticipated above, for learning problems with a discrete num-
ber of synapses, from numerical experiments it emerges the fact that e�cient
algorithms also seek unfrozen solutions, in fact the standard statistical analy-
sis shows that the problem of learning random patterns with binary synapses
in single layer networks is exponentially dominated by isolated solutions that
are extremely hard to �nd algorithmically. In [58] it has been introduced a
method which highlights analytical evidence for the existence of subdominant
and extremely dense regions of solutions. Such results have been con�rmed
by numerical experiments and the found con�gurations are robust to per-
turbations and generalize better than typical solutions. In any cases it has
been shown that the equilibrium description in these problems is not su�-
cient since it predicts that the problem is always in the regions with locked
solutions. In [59], starting from an equilibrium solution of weights, the space
structure around it has been explored: geometrically such space is composed
by isolated solutions. This justi�es the introduction of a new measure, which
ignores isolated solutions increasing statistical weight of large and accessible
regions of solutions. The idea is based on the Franz-Parisi potential [60] ac-
cording to which we select a possible solution from the distribution of Gibbs
and count how many other possible solutions are located around it. Given a
con�guration σ with energy E(σ), such measure is de�ned by

P (σ, β, y, γ) =
exp(yΦ(σ, β, γ))

Z(β, y, γ)
, (4.6)

where y has the formal role of the inverse of temperature. The function
Φ(σ, γ, β) is the local free entropy associated to the con�guration σ and
satis�es the equation

Φ(σ, γ, β) = log
∑
σ′

exp(−βE(σ′)− γd(σ, σ′)), (4.7)

where σ′ identi�es other con�guration solutions. The function d(·, ·) indicates
the distance between con�gurations. Such distance is de�ned according to
the model under consideration: during our implementation we consider the
squared distance

d(σ, σ′) =
1

2

N∑
i=1

(σi − σ′i)2. (4.8)
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We start observing that for large values of β, the function (4.7) counts the
number of minima of energy, weighting them via the parameter γ by the
distance from the reference con�guration σ∗, so that for large values of y, a
con�guration σ∗ has a non-negligible weight only if it is surrounded by an
exponential number of local minima. By increasing the value of the parame-
ter γ, it is possible to focus on the con�gurations around σ∗ which will have
with high probability the same properties of the surrounding minima.

These large-deviation statistics seems to capture very well the behav-
ior of e�cient algorithms on discrete neural networks, which �nd solutions
belonging to high-density regions when these regions exist, and fail other-
wise. These solutions could not emerge in standard equilibrium description
but there existe some algorithms that are able to �nd them. Moreover the
method is robust since solutions are immersed in clusters, i.e. regions of
other good solutions.

The energy landscape presents many valleys with the results that there
are several local minima points: this justi�es the introduction of the local
entropy Φ, which permits to simplify the problem. To this aim, the increasing
of the parameter γ plays a fundamental role. In fact, for small values of γ, the
entropy landscape appears smooth and the dense region is identi�able only
on a coarse-grained-scale. Increasing the value of γ, the landscape assumes
the same shape of the energy landascape smoothing its irregularities so that
the global minimum point of the entropy, which is situated in a dense region
of minima points, corresponds to the global minimum point of the energy.

Hence, the aim of the method is to �nd the equilibrium con�guration
σ∗ which minimizes Φ, with the result that the main di�culty becomes the
estimation of this quantity: this problem is addressed using the Belief Prop-
agation algorithm (see [62]) which will be described in the third section of
this chapter.

The introduction of interacting replicas provides a very useful tool for
seeking dense regions of solutions (see appendix C for more details about
Replica theory): the structure of such model leads in fact good solutions
to be organized in clusters. If the considered parameter y, which has been
introduced above, is a non-negative integer, it counts the number of replicas
of a given con�guration σ∗. Making some simple computations we can rewrite
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the partition function as:

Z(β, y, γ) =
∑
σ∗

exp(yΦ(σ∗, β, γ)) =

=
∑
σ∗

(exp(Φ(σ∗, β, γ)))y =

=
∑
σ∗

[
exp

(
log
∑
σ′

exp(−βE(σ′)− γd(σ∗, σ′))

)]y
=

=
∑
σ∗

(∑
σ′

exp(−βE(σ′)− γd(σ∗, σ′))

)y

=

=
∑
σ∗

∑
σ′a

y∏
a=1

exp(−βE(σ′a)− γd(σ∗, σ′a)) =

=
∑
σ∗

∑
σ′a

exp(−β
y∑
a=1

E(σ′a)− γ
y∑
a=1

d(σ∗, σ′a)) (4.9)

The partition function (4.9) describes a system of y+1 interacting replicas
of the system: the con�guration σ∗ acts as reference while the other y replicas
are identical and interact with σ∗. Replicating the model under the addition
of an interaction term provides a very useful tool to explore accessible regions
of the energy landscape. This simple procedure can be applied to a variety of
di�erent algorithms and in particular we will focus on the Belief Propagation
algorithm.

For our experiments, we consider a neural network composed by identi-
cal threshold units which are arranged in a feed-forward architecture. The
network is trained on a training set composed by αN couples (ξµ, τµ), where
ξµ ∈ {−1,+1}N are binary input vectors and τµ ∈ {−1,+1} is the associated
scalar output. The parameter α > 0 is called capacity of the network and
gives informations on the maximum possible size of training set with respect
to the length of the training vectors.

4.3 The energy function

The neural network we are going to consider is composed by identical
threshold units which are arranged in a feed-forward architecture: each unit,
which is parametrized by a vector of synapic weights W , has many input
channels and issues only one output that is computed as the sign of the
scalar product 〈W, ξµ〉. The aim of training a neural network is to �nd a
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matrix of synaptic weights W so that the network outputs equals τµ for
every pattern ξµ. This condition can be written in di�erent ways according
to the structure of the architecture.

If the model is a single-layer network, namely a perceptron, the synaptic
weights are arranged in a vector with the same size of the input vector and
the previous condition can be written as

E(W ) =
αN∑
µ=1

Θ(−τµ〈W, ξµ〉) = 0, (4.10)

or equivalently as:

χ(W ) =
αN∏
µ=1

Θ(τµ〈W, ξµ〉) = 1, (4.11)

where Θ(x) is the Heaviside function.
Assuming our variables to be binary, the Ising model formalism results

to be valid. Putting equation (4.10) into the Boltzmann Gibbs distribution
P (W,β) = Z(β)−1 exp(−βE(W )) we obtain the probability distribution for
our network model, which is de�ned by:

P (W,β) = Z(β)−1 exp(−β
αN∑
µ=1

Θ(−τµ〈W, ξµ〉)). (4.12)

Under the hypothesis that the learning procedure can be satis�ed, i.e. if
there exist some weights con�gurations such that the energy is null, when
the temperature is very low, the following limit holds

lim
β→∞

exp(−βΘ(−u)) = Θ(u)

and the distribution reads

P (W ) = Z−1

αN∏
µ=1

Θ(τµ〈W, ξµ〉) = Z−1χ(W ), (4.13)

where the partition function

Z =
∑
W

αN∏
µ=1

Θ(τµ〈W, ξµ〉) =
∑
W

χ(W ) (4.14)

counts the number of solutions of the problem.
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The previous equations can be easily extended for a network which is
composed by several layers. If the model is a fully-connected two-layer neural
network, named committee machine, and presents one hidden layer of size
K, then the energy of the weight con�guration becomes

E(W ) =
αN∑
µ=1

Θ(−τµ
K∑
k=1

sign〈W k, ξµ〉), (4.15)

where W k is the vector of synaptic weights associated to the kth hidden unit
and has the same length of the input vector ξ.

As we have introduced above, in order to avoid isolated solutions, we
build the architecture according to the replica theory and we compute the
distance function between replicas of the system using the de�nition in (4.8).

4.4 The Belief Propagation equations

The Belief Propagation algorithm, also known as sum-product message-
passing, is an iterative message-passing method which can be used for per-
forming inference on graphical models [61, 64]. It calculates the marginal
distribution of each unobserved node, conditional on any observed nodes.
One example of graphical model is given by factor graphs.

In order to de�ne a factor graph, we consider N random variables xi and
a real function g(x1, . . . , xN) = g(~x). For each node there exists a marginal
function gi such that

gi(xi) =
∑
x̄i

g(~x), (4.16)

where x̄k means that the sum runs over all the variables except xk. Suppose
that there exist m functions fj and m subset Sj ∈ {x1, . . . , xn} , for j =
1 . . . ,m, such that the function g can be factorized as

g(~x) =
m∏
j=1

fj(Sj). (4.17)

Under these conditions, the function corresponds to a factor graph G =
(X,F,E), where X = {x1, . . . , xN} is the set of variable vertices, F =
{f1, . . . , fm} is the set of factor vertices and E is the set of edges which
connect the variable vertex xk and the factor vertex fj if and only if xk ∈ Sj
(see �gure 4.3).

Factor graphs are related to message-passing algorithms since they are
useful to compute certain characteristics of the function g like the marginal
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Figure 4.3: Example of factor graph which corresponds to the factorization
of a function g(x1, x2, x3) = f1(x1)f2(x1, x2)f3(x1, x2)f4(x2, x3).

distributions: nodes are considered as processing units and edges as a channel
to exchange messages. We identify with µxi→fj messages which go from node
variables to factor variables and with µfj→xi the inverse message.

We start observing that message passing algorithms are usually exact for
trees, but only approximate for graphs with cycles (see [63]): for that reason
we are going to give equations for the computation of messages for graph
trees and then we provide some alternative for general kinds of graphs.

We start describing how to compute the marginal of the node x0, which
is the root of the graph tree. Starting from leaves, messages are recursively
exchanged level by level with the upper nodes. Given the node xk, we de�ne
in general ∂xk = {j ∈ {1, . . .m} such that fj is connected to xk}. Then the
marginal is obtained as

g0(x0) =
∏
k∈∂x0

µfk→x0(x0), (4.18)

where µfk→x0 are the messages from factor nodes fk to the variable node x0

that are computed after the convergence of the algorithm which is described
in the following.

This procedure can be extended for the computation of marginals of the
other nodes of the graph. When a node is situated at an intermediate level, it
plays both the role of being a father and a son and its marginal is computed
as the product of both messages from factors to variables and viceversa.

Since when this approach is applied on graphs with cycles it doesn't give
the correct solution, there have been provided many approaches to deal this
problem.

One possible approach to decode messages in this case is to agglomerate
the graph enough until cycles are deleted, and then apply the sum-product
algorithm, which will now be exact.

A second approach consists in applying the procedure described above
locally and recursively, hoping that the method converges. Messages from
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nodes xi to factors fa and their opposites are respectively updated at each
iteration step t according to the followings equations:

µtxi→fa(xi) =
∏

k∈∂xi\a

µtfk→xi(xi) (4.19)

µt+1
fa→xi(xi) =

∑
j 6=i

fa(Sa) ∏
j∈∂fa\i

µtxj→fa(xj)

 , (4.20)

where ∂fa = {j ∈ {1, . . . n} such that xj is connected to fa}. Latter equa-
tions are updated alternatively until convergence is achieved, which is ensured
by the following statement (see [64] for more details):

Theorem 4.4.1. Consider a tree-graphical model with diameter t∗, i.e. sup-
pose that t∗ is the maximum distance between any two variable nodes. Then:

1. the BP update equations (4.19) and (4.20) converge at most t∗ itera-
tions,

2. the �xed point messages provide the exact marginals for any variable
node i.

When convergence is achieved, messages can be used to compute marginals,
which are called beliefs, as follows:

gi(xi) =
∏
k∈∂xi

µfk→xi(xi). (4.21)

We are now going to apply this procedure to the network model in order
to derive Belief Propagation equations.

Consider a spin glass model where N spins σi taking value in a �nite set
Ω interact according to the Hamiltonian

H(J) =
∑
a

Ja
∏
i∈∂Ja

σi, (4.22)

where Ja are the interaction parameters and ∂Ja indicates the set of spin
indices which interact through Ja Under these conditions, the computation
of local magnetizations consists in solving an inference Bayesian problem
where the spins distribution depends by interaction parameters.

Suppose that interaction parameters are extracted from a uniform distri-
bution P (J). Using the Bayes' theorem, given the interaction parameters,
the conditional probability of the spins can be factorizable as follows:

P (σ|{Ja}) = P ({Ja}|σ)
P (σ)

P ({Ja})
∝ P ({Ja}|σ) =

∏
a

P (Ja|σ), (4.23)
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where

P ({Ja}|σ) =
exp

(
βJa

∏
j∈∂Ja σj

)
∑

Ja
exp

(
βJa

∏
j∈∂Ja σj

) .
The structure of the probability distribution in (4.23), leads us to represent
the system as a factor graph where the factor and the variable nodes are
respectively identi�ed by the interaction parameters and the spins. Under
these conditions, equations (4.19) and (4.20) become:

µtσi→Ja(σi) =
∏

k∈∂σi\a

µtJk→σi(σi) = P (σi|{Jk 6=a}) (4.24)

µt+1
Ja→σi(σi) =

∑
Ω,σj 6=σi

P ({Ja}|σj)
∏

j∈∂Ja\i

µtσj→Ja(σj)

 . (4.25)

Previous equations can be rewritten using probability formalism as:

µtσi→Ja(σi) = P (σi|{Jk 6=a}) (4.26)

µtJa→σi(σi) ∝ P (Ja|σi, {Jk 6=a}) =
∑

Ω,σj 6=σi

P ({Ja}|σj)P (σj|{Jk 6=a}). (4.27)

In order to eliminate the dependence by the value assumed by the spin σi,
we introduce the notion of cavity magnetization, which is simply the average
of the respective message (4.26) and (4.27) at each iteration step:

mt
σi→Ja =

∑
Ω σiµ

t
σi→Ja(σi)∑

Ω µ
t
σi→Ja(σi)

m̂t
Ja→σi =

∑
Ω σiµ

t
Ja→σi(σi)∑

Ω µ
t
Ja→σi(σi)

.

In the speci�c case of the Ising model, since variables can take value in
Ω = {−1,+1}, previous equations respectively read

mt
σi→Ja =

µtσi→Ja(+1)− µtσi→Ja(−1)

µtσi→Ja(+1)− µtσi→Ja(−1)
(4.28)

m̂t
Ja→σi =

µtJa→σi(+1)− µtJa→σi(−1)

µtJa→σi(+1) + µtJa→σi(−1)
(4.29)

giving the following de�nitions for the messages:

µtσi→Ja(σi) =
1 +mt

σi→Jaσi

2
(4.30)

µt+1
Ja→σi(σi) ∝

1 + m̂t
Ja→σiσi

2
. (4.31)
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Proposition 4.4.2. Consider a set of spins which interact according to the
Ising model. Magnetizations (4.28) and (4.29) can be exactly computed and
are respectively de�ned by:

mt
σi→Ja = tanh

 ∑
k∈∂σi\a

tanh−1(m̂t
Ja→σi)

 (4.32)

m̂t+1
Ja→σi = tanh(βJa)

∏
j∈∂Ja\i

mt
σj→Ja . (4.33)

Proof. In order to derive equation (4.32), we recall the equation (4.19), since
the message from the variable node σi to the factor node Ja satis�es both
the cavity magnetization (4.28) and the equation

µtσi→Ja =
∏

k∈∂σi\a

µtJk→σi . (4.34)
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Making some simpli�cations and putting (4.28) in (4.34), we obtain:

mt
σi→Ja =

µtσi→Ja(+1)− µtσi→Ja(−1)

µtσi→Ja(+1) + µtσi→Ja(−1)
=

=

1− µtσi→Ja(−1)

µtσi→Ja(+1)

1 +
µtσi→Ja(−1)

µtσi→Ja(+1)

=

=

1− exp

(
2 · 1

2
log

(
µtσi→Ja(+1)

µtσi→Ja(−1)

))
1 + exp

(
2 · 1

2
log

(
µtσi→Ja(+1)

µtσi→Ja(−1)

)) =

= tanh

[
1

2
log

(
µtσi→Ja(+1)

µtσi→Ja(−1)

)]
=

= tanh

[
1

2
log

(∏
k∈∂si\a µ

t
Jk→σi(+1)∏

k∈∂si\a µ
t
Jk→σi(−1)

)]
=

= tanh

1

2

∑
k∈∂si\a

log

(
µtJk→σi(+1)

µtJk→σi(−1)

) =

= tanh

1

2

∑
k∈∂si\a

log


1 +

µtJk→σi(+1)− µtJk→σi(−1)

µtJk→σi(+1) + µtJk→σi(−1)

1− µtJk→σi(+1)− µtJk→σi(−1)

µtJk→σi(+1) + µtJk→σi(−1)


 =

= tanh

 ∑
k∈∂si\a

1

2
log

(
1 + m̂t

Jk→σi
1− m̂t

Jk→σi

) =

= tanh

 ∑
k∈∂si\a

tanh−1(m̂t
Jk→σi)

 ,
where mt

Jk→σi satis�es equation (4.29).
In order to derive equation (4.33), we recall the equation (4.20), since the

message from the the factor node Ja to variable node σi satis�es both the
cavity magnetization (4.29) and the equation

µt+1
Ja→σi(σi) =

∑
Ω,σj 6=σi

exp

(
βJa

∏
k∈∂Ja

σk

) ∏
k∈∂Ja\i

µtσk→Ja(σk)

 . (4.35)
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Putting (4.35) into (4.29) we obtain:

m̂Ja→σi =

∑
Ω

[
exp

(
βJa

∏
j∈∂Ja\i σj

)
− exp

(
−βJa

∏
j∈∂Ja\i σj

)∏
j∈∂Ja\i µσi→Ja(σj)

]
∑

Ω

[
exp

(
βJa

∏
j∈∂Ja\i σj

)
+ exp

(
−βJa

∏
j∈∂Ja\i σj

)∏
j∈∂Ja\i µσi→Ja(σj)

] .
(4.36)

The numerator of the latter equation can be obviously rewritten as

∑
Ω

exp

βJa ∏
j∈∂Ja\i

σj

− exp

−βJa ∏
j∈∂Ja\i

σj

 ∏
j∈∂Ja\i

µσj→σa(σj)

 =

=
∑

Ω


exp

βJa ∏
j∈∂Ja\{i,k}

σj

− exp

−βJa ∏
j∈∂Ja\{i,k}

σj

µσk→Ja(1) +

+

exp

−βJa ∏
j∈∂Ja\{i,k}

sj

− exp

βJa ∏
j∈∂Ja\{i,k}

σj

µσk→Ja(−1)

 ·
·

∏
j∈∂Ja\{i,k}

µσj→Ja(σj)

 =

=
∑

Ω


exp

βJa ∏
j∈∂Ja\{i,k}

σj

− exp

−βJa ∏
j∈∂Ja\{i,k}

σj

 ·
· (µσk→Ja(1)− µσk→Ja(−1))

∏
j∈∂Ja\{i,k}

µσj→Ja(σj)

 =

= (µσk→Ja(1)− µσk→Ja(−1))·

·
∑

Ω


exp

βJa ∏
j∈∂Ja\{i,k}

σj

− exp

−βJa ∏
j∈∂Ja\{i,k}

σj

 ∏
j∈∂Ja\{i,k}

µσj→Ja(σj)

 .

Applying the previous procedure to every variable σj, the numerator and
the denominator of (4.36) can be respectively written as

(exp(βJa)− exp(−βJa))
∏

j∈∂Ja\i

(µσk→Ja(1)− µσk→Ja(−1)) (4.37)

and

(exp(βJa) + exp(−βJa))
∏

j∈∂Ja\i

(µσk→Ja(1) + µσk→Ja(−1)), (4.38)
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so that (4.36) is equivalent to

m̂Ja→σi =
(exp(βJa)− exp(−βJa))

∏
j∈∂Ja\i(µσk→Ja(1)− µσk→Ja(−1))

(exp(βJa) + exp(−βJa))
∏

j∈∂Ja\i(µσk→Ja(1) + µσk→Ja(−1))
=

=
exp(βJa)− exp(−βJa)
exp(βJa) + exp(−βJa)

∏
j∈∂Ja\i

µσk→Ja(1)− µσk→Ja(−1)

µσk→Ja(1) + µσk→Ja(−1)
=

= tanh(βJa)
∏

j∈∂Ja\i

mσj→Ja ,

where

mσj→Ja =
µσk→Ja(1)− µσk→Ja(−1)

µσk→Ja(1) + µσk→Ja(−1)
.

4.5 Theoretical details: the equations which

rule the model

We summarize in the following the main steps of the method. We are
going to deal with three di�erent kinds of nodes (see �gure 4.4): we denote
with

• σi, the variable nodes which represent weights,

• ηµ the factor node de�ned by the function Θ(τµ〈W k, ξµ〉),

• τµ the variable node which represents the otuput associated to the
pattern ξµ

It is not worth to remark that in the network model we are going to
describe, the weights play the same role of the spins in the previous section.
In fact, as we have said already, we aim to �nd the weight con�guration which
minimizes the energy of the model, which corresponds to the equilibrium
spins con�guration announced above.

In order to train the neural network model, we aim to solve a system of
equations: the involved quantities are called messages and represent cavity
marginal probabilties. Each edge of the graph presents two messages going
in opposite directions which are respectively represented by an equation of
the system and expressed as a function of the neighbouring messages. Such
system is solved iteratively, updating the equations until a �xed point is
reached. In according to the structure of the graph, we have to de�ne four
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Figure 4.4: The �gure shows the factor graph associated to a perceptron
which takes in input a vector ξµ of size 3. Circles on the bottom represents
the sinaptic weights, the square represents the factor node ηµ and the circle
on the top represents the output τµ.

di�erent kinds of messages: two messages respectively start from the variable
nodes σi and τµ and are directed to the factor node ηµ, while the opposite
messages start from the factor node ηµ and respectively directed to σi and
τµ.

Messages from variable (input or output) nodes to the factor node are
de�ned according to (4.32) at each iteration step t by the following equations

mt
σi→ηµ = tanh

 ∑
k∈∂σi\ηµ

tanh−1(mt
k→σi)

 (4.39)

mt
τµ→ηµ = tanh

 ∑
k∈∂τµ\ηµ

tanh−1(mt
k→τµ)

 (4.40)

while messages from factor nodes to input or output variable nodes are de-
�ned according to (4.29) by the following equations

mηµ→σi =

∑
σi
σiν

t
ηµ→σi(σi)∑

σi
νtηµ→σi(σi)

(4.41)

mηµ→τµ =

∑
τµ τ

µνtηµ→τµ(σi)∑
τµ ν

t
ηµ→τµ(τµ)

(4.42)
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where νtηµ→σi(σi) and ν
t
ηµ→τµ(τµ) come from (4.20) and are equal to

νtηµ→σi(σi) =
∑

τµ,{σj}j 6=i

Θ

τµ
 ∑
k∈∂ηµ\i

σkξ
µ
k

(1 + τµmt
τµ→ηµ

2

) ∏
k∈∂ηµ\i

1 + σkm
t
σk→ηµ

2


νtηµ→τµ(τµ) =

∑
{σj}

{
Θ

[
τµ

(∑
k∈∂ηµ

σkξ
µ
k

)] ∏
k∈∂ηµ

1 + σkm
t
σk→ηµ

2

}

Even if equations above give the exact expression of the messages, the
result can be obtained in O(N3) operations, where N is the size of the input,
using either a partial convolution scheme or discrete Fourier trainsforms.
When N is su�ciently large it is possible to use an approximated fast version:
the result can be computed in O(N) operations through the central limit
theorem (see [65]). Given an input vector ξµ, let us de�ne the following
quantities: 

atηµ =
∑

i∈∂ηµ ξ
µ
i m

t
i→ηµ

btηµ =
∑

i∈∂ηµ
(
1− (mt

i→ηµ)2
)

gtηµ→j(σ) = erf

atηµ→j + σξµj√
2btηµ→j


atηµ→j = atηµ − ξµjmt

j→ηµ ,

btηµ→j = btηµ −
(
1− (mt

j→ηµ)2
)

According to results in [48], equations (4.41) and (4.42) become

mt+1
ηµ→τ = erf

(
atηµ√
2btηµ

)
, (4.43)

mt+1
ηµ→j = mt+1

ηµ→µ
gtηµ→j(+1)− gtηµ→j(−1)

2 +mt
τ→ηµ(gtηµ→j(+1) + gtηµ→j(−1))

, (4.44)

mt
ηµ→j = tanh

 ∑
ν∈∂j\ηµ

tanh−1mt
ν→j

 . (4.45)

After the convergence, the single site magnetizations can be computed
as:

mj = tanh

(∑
ηµ∈∂j

tanh−1mηµ→j + tanh−1(m∗→j)

)
, (4.46)
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where m∗→j is the contribute given by replicas described in appendix D.
The optimal con�guration of weights can now be computed from the single

site magnetizations as Wj = sign(mj). After having trained the model, i.e.
when the weight con�guration has been computed, given any other input
vector, the output associated is computed as the scalar product 〈W, ξ〉.





Chapter 5

Tra�c slowdowns prediction

In this chapter we show an application of the RBP algorithm which has
been analyzed in the previous chapter.

5.1 Introduction

Tra�c is a complex system where the vehicle interactions and �nite vol-
ume e�ects imply the existence of di�erent collective regimes and phase tran-
sition phenomena. In particular the congestion formation has been studied
in the framework of complex systems physics and its prediction can be a dif-
�cult problem due to the hetetogenous behaviour of drivers when the vehicle
density increases. We propose a novel pipeline to classify tra�c slowdowns
by analyzing the features extracted from the fundamental diagram of tra�c.
We train a deep learning neural network providing a forewarning time of pre-
diction related to the training set size. Then we compare our performances
with those of the most common classi�ers used in machine learning analysis.

The chapter is organized in the following sections and results.

In the second section we provide an historical background about studies
which have been performed for what it concerns tra�c congestion. In the
third section we describe the analyzed dataset and we discuss the theoreti-
cal framework of the proposed classi�cation and prediction methods. In the
fourth section we present the results of our analysis and we make a compar-
ison with other common classi�ers. The �fth section contains the conclusion
of our analysis.
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5.2 Historical background

Understanding the tra�c dynamics is fundamental task to improve the
life quality and to reduce environmental impact of congestions. The tra�c
congestions are a cause of wasted fuel, air pollution and billions of wasted
dollars in each year due to time lost. The research have tackled this problem
by developing increasingly complex models that simulate the vehicles inter-
action and the driver behaviour in the di�erent tra�c regimes [66]. These
models succeeded to point out the existence of critical values for the traf-
�c density [67], the physical nature of formation of the stop and go regime
[68, 69] and the dynamics of the tra�c waves [70]. Many studies have been
performed to estimate the urban tra�c congestion and to implement pre-
diction methods [71, 72, 73, 74, 75, 76, 77, 78], focusing on various di�erent
features of classi�cation. In any cases the study of transient states that
precede the congestion formation problem, the nature of tra�c �uctuations
near a critical states and the role of heterogeneous behavior of driver are still
open problems. Therefore research is attempting to handle this problem or
at least ease its deleterious e�ects [79, 80], also by using an apporach based
on arti�cial intelligence point of view [81, 82, 83, 84, 85]. There are several
research methods proposed in the �eld of tra�c prediction like deterministic,
non-deterministic and stochastic methods [86]. In this paper we develop an
approach based on a deep learning algorithm to forecast the rising of the con-
gestions related to stop and go regimes by classifying the tra�c slowdowns
that may precede the congestion formation. To apply our method we mea-
sure the tra�c slowdowns by using the data from magnetic coils that record
passage time a vehicle velocity. We consider samples of 100 vehicles dur-
ing rush hours in an italian country road (MTS system) and we classify the
signals depending on whether a congestion is observed in a sequent sample.
The congestion is detected as a sudden decrease of the �ow together with a
increase of the tra�c density according to the fundamental tra�c diagram
[87]. Besides the classi�cation, our approach trains a deep learning algorithm
to forecast the congestion formation from the feautures of the anticipatory
tra�c slowdowns. In this way one is able to de�ne a warning time that could
be used to perform strategies which reduce the congestion e�ects.

Traditional studies have developed simulation techniques to model traf-
�c congestion dynamics [88], but many approaches have limitations, mainly
due to errors during the calibration process of parameters and unrealistic
assumptions. Deep learning techniques [51] are considered some of the most
promising techniques to process huge high-dimensional data. The proposed
method is based on the Binary Committee Machine Replicated Focusing Be-
lief Propagation neural network (RFBP) [48]. The RFBP is an iterative
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message-passing algorithm for performing inference on graphical models: it
calculates the marginal distribution for each unobserved node, conditional on
any observed nodes [89, 57]. This method requires that the input data are
binary signals. Therefore we have preprocessed the data from the magnetic
coils to get binary signals that represent the dynamical features of the tra�c
slowdowns. Detectors record every car passing and generate an high time
resolutions in the amount of data.

One of the main tool to study the congestion problem is the fundamental
diagram that empirically de�nes a nonlinear relation between tra�c �ow and
density [90]. Recently the existence of a fundamental diagram for a whole
road network have been proposed and its application to study the congestion
regime has been considered [91].

The chapter is organized as follows. In the second section we describe
the dataset used in our analysis and we discuss the theoretical framework
of the proposed classi�cation and prediction methods. In the third section
we present the results of our analysis and we make a comparison with other
common classi�ers. The fourth section contains the conclusion of the paper.

5.3 Materials and Method

In order to e�ectively train the model to make forecasts under the nor-
mal and congested tra�c conditions observed in a road, a big dataset of past
situations is necessary. In particular, in this paper, we use three datasets in
the di�erent steps performed to de�ned our model. Firstly we need to �t the
parameters of the model using a training set: in this stage we train the model
using a supervised learning method. The training set is composed by a set
of coupled signals: an input vector, which consists in a binary vector repre-
senting the dynamical state of the tra�c on the considered road in a given
time interval, and the corresponding target, that identi�es if in the following
time interval the road will present a congestion or not. More precisely, we
identi�ed di�erent time intervals with di�erent input vectors sizes: di�erent
lengths correspond to the respective interval time of forecasting which ranges
from 10 to 20 minutes. Secondly, the RFPB weight matrix obtained during
the training is used to predict the targets for the observations in the second
dataset, namely the validation dataset, which allows an unbiased evaluation
of �tting procedure on the training set. Finally the third dataset, which is
the test set, is used to provide an unbiased evaluation of the performances
of the model.

The car data have been collected by the MTS system installed by Emilia
Romagna region [92] and refer to the tra�c of four country roads during
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May 2011: magnetic coils have been installed on each side of a road and
register the time and the velocity of moving of each vehicle. The dataset
contains a list of vehicles with the corresponding informations: date, time,
lane, direction and speed (see table 5.1).

Date Time Lane Direction Speed
05/01/2011 06.00.32 0 0 58
05/01/2011 06.00.36 0 0 65
05/01/2011 06.02.16 0 0 60
05/01/2011 06.02.44 2 1 71
05/01/2011 06.03.00 0 0 89

Table 5.1: The table shows the �rst �ve rows of data which have been
recorded by a detector located on the SS72 country road near Rimini (lat-
lon coordinates 44.0352066,12.5393341). The �rst and the second column
contain the date and recording time. The third column contains the integer
which ranges from 0 to the total number of lanes which is associated to the
lane where the car drives. The fourth column contains the value 0 or 1 which
is assigned according to the driving direction (obviously di�erent lanes can
be run in the same direction). The �fth column contains the driving speed
which is measured by km/h.

Our analysis have been performed selecting data recorded from four dif-
ferent roads where di�erent tra�c dynamical regime are observed during the
considered period. As expected, during weekdays we obviously �nd a daily
amount of cars which is greater than the weekend's one. The daily amount
of each lane reaches in average �fteen thousand of cars during weekdays and
reduces to ten thousand cars during the weekend. Since we are interested
in high tra�c daily regime, we only analyzed weekdays data. According to
empirical observations, each road is characterized by a massimal capacity: if
the number of cars that enter the road is greater than this quantity, a slow-
down will occur. In particular we present results coming from the analysis
of data which have been recorded by detector number 454 which is sit in a
road with four lanes (the dataset is available in link).

We de�ne the �ow as the ratio between a �xed number of cars and the
time interval they need to pass and the density is the ratio between the �ow
and the average speed of the interval. In order to do that we consider the
driving speed vi and the driving time ti of each car. Then, �xed the number
of cars N , we de�ne by ∆T (N) the time needed by the selected group of N
cars to pass, i.e. ∆T (N) =

∑N−1
i=1 (ti+1− ti) = tN− t0, and we normalize it by

N obtaining T̄ (N) = ∆T (N)
N

. We compute the average driving speed of the
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group v̄(N) =
∑N
i=1 vi
N

. The �ow and the density are respectively computed
as

φ(N) =
1

T̄ (N)
and (5.1)

ρ(N) =
φ(N)

v̄(N)
. (5.2)

More precisely, after some trials with di�erent vaues of N from 80 to 120, we
�x a range of 100 cars which is shifted each time a new vehicle arrives in order
to de�ne a time dependent �ow during the day. Then a "moving density"
has been computed as the ratio between the corresponding value of the �ow
of each set of cars and its average speed. In the data processing, we focus on
two tra�c dynamics features: the tra�c �ow and the vehicle density which
are related according to the fundamental diagram (FD) of tra�c (Figure 5.1)
in homogeneous steady conditions.

The tra�c �ow is in a stable dynamical regime when the �ow increases
according to the tra�c density. At low tra�c densities, the e�ect of interac-
tions among vehicles are negligible, the �ow grows almost linearly with the
density until a critical density value is reached, at which the �ow reaches the
road capacity taking its maximum value. In this situation the �ow suddenly
decreases as the density increases producing a local congestion. The FD high-
ligths the interaction between vehicles and it is consistent with the existence
of an optimal velocity model for vehicle dynamics [93]. When a congestion
situation is rising, the tra�c �ow �uctuations are ampli�ed since drivers are
not able to mantain the optimal velocity. In �gure 5.2 we show the behavior
of the average speed, �ow and density both when a congestion formation is
observed and when we have regular tra�c during the same hours in the same
road. Focusing on the speed behaviour, in the �rst case people drive with an
average speed which ranges from 60 km/h to 85 km/h whereas in the second
case a large �uctuation is observed and the average velocity drops down at
10 km/h. Our goal is to analyze the �uctuations in the dynamical quantities
that anticipate the congestion formation in order to forecast the occurrence
of the congestion itself. The heterogeneous behavior of drivers makes the so-
lution of this problem quite di�cult if one uses average dynamical features,
so that we decided to apply an AI system.

We �rst preprocess the data in order to eliminate noisy sample points:
since we are interested in understanding high tra�c regimes, we focus on the
daily hours from 6 a.m. to 10 p.m. avoiding the night period.

Secondly we transform the original signals in a binary signal keeping the
informations coming from the FD. This structure is required by the theo-
retical model linked to the RFBP [48, 89, 57]. Indeed this deep learning
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method can be used to derive marginal probabilities on a system within the
Bethe-Peierls approximation [94]: it works with binarized input arrays and
is able to learn without getting trapped in con�gurations with low computa-
tional performance. The aim of the method is to solve a system of equations
that involve quantities called messages: they represent single-variable cavity
marginal probabilities. Neurons can interact with neurons of the previous
and successive layer through messages going in opposite directions. Each
equation of the system gives the expression of one of the messages as a func-
tion of its neighbouring messages and the resulting system of equations is
then solved iteratively by initializing the messages in some arbitrary con�g-
uration. If convergence is achieved, the messages are used to compute the
optimal con�guration of weights. In order to classify slowdowns we bina-
rize the data as follows: a slowdown occurrence is identi�ed when the road
density is greater than the daily average road density and the tra�c �ow is
decreasing so it depends on the critical value of the density of the road. We
associate to each day a binary ordered set such that each element corresponds
to a car and assumes value +1 if the car is involved in a slowdown either -1.

Thirdly we split each daily sequence into subsets of arbitrary length which
produce a di�erent time interval of prediction. In our experiments four dif-
ferent length settings were applied: RFBP has been trained several di�erent
times using input vectors respectively with length 151, 201, 251 and 301, that
corresponds to time intervals of forecasting from 10 to 20 minutes. We label
each subset applying a majority rule to the values of the following subset. In
�gure 5.3 we show the results by processing data associated to the FD shown
in �gure 5.1 and to the relative graphs of �ow and density in �gure 5.2. The
blue points represents the targets we give to each set of car.

5.4 Results and Performances

We use a cross-validation approach in order to estimate the parameters of
the predictive model and to assess how the results of our statistical analysis
can be applied to an unknown independent dataset [95]. We de�ne a dataset
to test the model during the training phase with the aim to limit over�t-
ting and to understand how the model is generalizable to an indipendent
dataset. Each round of cross-validation method partionates a sample of data
into complementary subsets performing the analysis on the training set and
validating the analysis on the test set.

In particular, to reduce variability, we consider 10 rounds of a 10-fold
cross-validation which are performed using di�erent partitions and we com-
bine the validation results over the rounds to estimate the �nal predictive
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(a) 01/05/2011 (b) 02/05/2011

Figure 5.1: Flow φ(N) versus density ρ(N) daily recorded by a magnetic
coil of the MTS system. Left panel: uncongested day, the diagram present
a linear behavior. The evolution shows a direct proportionaly between �ow
and density of the road. The �ow does not reach a critical value. Right
panel: congested day, the diagram presents a cloud of points stemming from
the straight line. The appearence of the fuzzy behavior is a feature of the
congested behavior when the uniform stationary state for tra�c becomes
unstable.

model. Our performances in predicting the congestions are shown in �gure
5.4 and 5.5. We remark that there are some cases where our prediction is not
correct, but our approach aims to point out the existence of tra�c features
that may anticipate the congestion formation, which in some cases is not
observed since its rising depends on the ampli�cation of local tra�c �uctu-
ations. These cases happen when the tra�c dynamics in the FD is near the
congestion conditions, but �nally the density decreases so that the conges-
tion is escaped and the tra�c comes to be regular. By the way our system is
trained to forecast when the tra�c dynamical state enters in the cloud region
even if the congestion can be deceived by the decreasing of the density.

To benchmark and validate our results, we compare the prediction per-
formances of our approach with the prediction of 10 di�erent classi�ers:
KNeighbors (KNN), linear Support Vector Machine (lSVM), RBF Support
Vector Machine (SVM), Gaussian Process, Decision Tree (DT), Random For-
est (RF), MLP, AdaBoost (AB), Naive Bayes diagQuadratic Discriminant
Analysis, Bayesian Quadratic Discriminant Analysis.

As performances estimator we use the area under the receiver operating
characteristic curve (AUC), i.e. the trapezoidal approximation of the area
under the Receiver Operating Characteristic curve. The AUC corresponds
to the probability that the classi�er ranks a true instance against a false one.
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Figure 5.2: Left panel: evolution of speed, �ow and density during a non
congested day with respect to the FD on the left of �gure 5.1 (�ow and
density are respectively de�ned by formulas (5.1) and (5.2)). Right panel:
congested day with respect to the FD on the right of �gure 5.1, density and
�ow have a di�erent behavior which is due to the �uctuations of the speed.
We remark that during time intervals from 7 a.m. to 9 a.m. and from 5 p.m.
to 8 p.m density increases and �ow decreases, in fact the road is involved in
a congestion situation.
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Figure 5.3: Upper panels: �gures represent the evolution of �ow and density
according to �gure 5.2. We highlight with red colour the regions where
density increases and �ow decreases, producing a congestion. Lower pane:
According to the critical regions which have been highlighted in the upper
panel, the blue points represents the targets we give to each set of car using
our binarization method. In particular we assign +1 to the sets of cars which
precede a congestion situation either -1.
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Figure 5.4: Comparison of AUC values. We represents the results with re-
spect to each classi�er reported along the x-axis. The �rst boxplot refers to
the RFBP method and presents the highest performance of classi�cation.

We plot in �gure 5.4 the comparison of AUC values.
Secondly we analyze the Matthew's Correlation Coe�cient (MCC) which

provides a balanced measure of the quality of a binary classi�cation taking
into account true and false, positive and negatives even if classes have very
di�erent sizes. The MCC can take values in the range [−1,+1]. The value +1
represent a total right classi�cation, the value -1 a complete disagreement of
prediction and the value 0 is associated to a random classi�er. We represent
in �gure 5.5 the comparison of MCC values.

5.5 Conclusions

The arise of a congested regime in tra�c �ow can be understood as the
growth of an instability from a uniform stationary tra�c �ow. The mathe-
matical models based on the optimal velocity concept point out the existence
of critical thresholds for the vehicle density after which the congestion insta-
bility can develop. However in real situations the tra�c along a road is rarely
in a stationary dynamical condition and the local density �uctuations also
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Figure 5.5: Comparison of MCC values. We represents the results with
respect to each classi�er reported along the x-axis. The �rst boxplot refers
to the RFBP method and presents the highest performance of classi�cation.
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depend on the drivers behaviour. Moreover in nonstationary dynamical con-
ditions the time scales for the congestion development play a crucial role. As
a consequence, forecasting the arise of congestion becomes a very di�cult
problem that cannot be coped by simply using the fundamental diagram.

In this chapter we have shown that a deep learning neural network ar-
chitercture (RFBP) is able to perform a short term forecasting of the tra�c
congestion from real data collected by magnetic coils installed on a country
road network in Italy. Our approach aims to classify the slowdowns tra�c dy-
namics that anticipate the congestion. Starting from vehicle speed and time
headways data, we perform a binarization of the slowdown signal suitable
to be classi�ed by a deep learning architecture to distinguish between slow-
downs that cause a congestion from the slowdowns that are recovered in the
succesive evolution. By comparing our results with other classifying meth-
ods, it emerges that RFBP has de�nitely better performances de�nitely in
congestion forecasting from the data. This is probably due to the theoretical
structure which supports this algorithm and which leads to �nd con�gura-
tions without getting trapped in local minima. The �ndings of this research
coud be relevant in order to mitigate congestion e�ects and to reduce the
tra�c costs in extra-urban roads and could be used to give real-time in-
formation and suggestions to drivers (i.e. to reduce the tra�c �uctuations
by uniformizing the velocity). Moreover in the next future the arti�cial-
intelligent approaches to forecast tra�c congestion could be implemented in
the automatic driving systems.



Appendix A

Monomer-dimer model.

Thermodynamic limit of the

susceptibility.

In this appendix, using the extended Laplace's method studied in Ap-
pendix B, we prove that

lim
N→∞

∂

∂h
〈mN(J, h)〉 =

∂

∂h
m(J, h).

We have used this result in the fourth section.

Theorem A.0.1. Given an imitative monomer-dimer model de�ned by a
couple of parameters (J, h) over a complete graph of N vertices, it holds:

lim
N→∞

∂

∂h
〈mN(J, h)〉 =

∂

∂h
m(J, h). (A.1)

Remark A.1. According to results in [21], write the partition function of the
monomer-dimer model as

ZN(J, h) =

∫
R
eNFN (x)dx,

where
FN(x) = −Jx2 + p

(0)
N ((2x− 1)J + h), (A.2)

pN(J, h) =
1

N
log

(∫
R
eNFN (x)dx

)
, (A.3)

p
(0)
N (J, h) = pN(J, h)|J=0 .

Let cN be the maximum point of the function FN(x). In order to simplify
the notations set x̄ := (2x− 1)J + h and c̄ := (1− 2c)J + h.
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Proof. Let start computing the expectation of the monomer density using
the de�nition of the pressure function given in (A.3):

〈mN(J, h)〉 =
∂pN(J, h)

∂h
=

1

N

∂

∂h
log

(∫
R
eNFN (x)dx

)
=

=

∫
R
eNFN (x) ∂

∂h
p

(0)
N (x̄)dx∫

R
eNFN (x)dx

.

The �nite size susceptibility can be written as:

χN(J, h) =
∂〈mN(J, h)〉

∂h
=

=

∫
R
eNFN (x)

N (∂p(0)
N (x̄)

∂h

)2

+
∂2p

(0)
N (x̄)

∂h2

 dx∫
R
eNFN (x)dx

−N

(∫
R
eNFN (x) ∂

∂h
p

(0)
N (x̄)dx

)2

(∫
R
eNFN (x)dx

)2 =

=

∫
R
eNFN (x) ∂

2

∂h2
p

(0)
N (x̄)dx∫

R
eNFN (x)dx

+ (A.4)

+N


∫
R
eNFN (x)

(
∂

∂h
p

(0)
N (x̄)

)2

dx∫
R
eNFN (x)dx

−


∫
R
eNFN (x) ∂

∂h
p

(0)
N (x̄)dx∫

R
eNFN (x)dx


2
 .

(A.5)

Now we are going to use the extended Laplace's method in order to evaluate
the behavior of (A.4) and (A.5) at the thermodynamic limit.
Observe that, since all the quantities computed above are limited, the second
order extended Laplace's method su�ces to study the behavior of the �nite
size susceptibility as N →∞.
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As N →∞, the numerator of (A.4) can be approximated as:

√
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(A.6)

As N →∞, the numerator of the �rst fraction in (A.5) can be approximated
as:
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As N → ∞, the numerator of the second fraction in (A.5) can be approxi-
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mated as:
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As N →∞, the integral
∫
R
eNFN (x)dx can be approximated as:
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]}
=

=

√
2π

−NF ′′(c)e
NFN (cN )

[
1 +

C(J, h)

N

]
. (A.9)

Putting together (A.6) and (A.9) we obtain:

(A.4) N→∞−−−→ g′(x̄). (A.10)

Putting together (A.7),(A.8) and (A.9), we obtain:

(A.5) N→∞−−−→ −8J2(g′(c̄))2

2(−2J + 4J2g′(c̄))
. (A.11)

Using (A.10) and (A.11), we �nd that as N →∞

χN(J, h)
N→∞−−−→ g′ +

8J2(g′)2

2(−2J + 4J2g′)
=

4Jg′(1− 2Jg′) + 8J2(g′)2

4J(1− 2Jg′)
=

(g′)2

1− 2Jg′
.

(A.12)
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At the thermodynamic limit, the susceptibility is the partial derivative of the
solution m(J, h) of the consistency equation with respect to the parameter
h, so that:

χ =
∂m(J, h)

∂h
=

d
dh
g((2m− 1)J + h)

(
1 + 2

∂m(J, h)

∂h
J

)
=

= g′((2m− 1)J + h)(1 + 2χJ)

⇒ χ =
(g′)2

1− 2Jg′
.

Hence, (A.1) is proved.





Appendix B

Extended Laplace's method.

Control at the second order.

The usual Laplace method works with integrals of the form∫
R
(ψ(x))nu(x)dx

as n → ∞. In this appendix we prove an extension at the second order of
the previous method when the functions ψ and u may depend on n (see [21]
for the control at �rst order). We have used that in Appendix A.

Theorem B.0.1. For all n ∈ N, let ψn : R → R and un : R → R. Suppose
that there exists a compact interval K ⊂ R such that ψn, un > 0 on K, so
that in particular

ψn(x) = efn(x) ∀x ∈ K.
Suppose that fn ∈ C4(K) and that un ∈ C2(K).
Moreover suppose that

1. fn
n→∞−−−→ f uniformly on K with its derivatives;

2. un
n→∞−−−→ u uniformly on K with its derivatives;

3. there exixts a positive constant c1 <∞ such that |un| < c1;

4. max
K

fn is attained in a unique point cn ∈ int(K);

5. max
K

f is attained in a unique point c ∈ int(K);

6. lim sup
n→∞

(
sup
R\K

log |ψn| −max
K

fn

)
< 0;
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7. f ′′(c) < 0;

8. lim sup
n→∞

∫
R |ψn(x)|dx <∞.

Then, as n→∞,∫
R
(ψn(x))nun(x)dx =

√
2π

−nf ′′(c)e
nfn(cn)

{
u(c) +

Λ

n
+ o

(
1

n

)}
, (B.1)

where

Λ = − u′′(c)

2f ′′(c)
+
u(c)f (iv)(c)

8(f ′′(c))2
+
u′(c)f ′′′(c)

2(f ′′(c))2
− 5u(c)(f ′′′(c))2

24(f ′′(c))3
.

In the proof we use the following elementary fact:

Lemma B.0.2. Let (fn)n∈N be a sequence of continuous functions uniformly
convergent to f on a compact set K. Let (In)n∈N and I be subsets of K such
that

max
x∈In,y∈I

dist(x, y)→ 0, as n→∞.

Then

a) max
In

fn
n→∞−−−→ max

I
f

b) argmax
In

fn
n→∞−−−→ argmax

I
f , provided that f has a unique global maxi-

mum point on I.

We proceed with the proof of the theorem.

Proof. Since cn is an internal point of maximum of fn (hypothesis 4 ), f ′n(cn) =
0. Moreover ∀x ∈ K

fn(x) = fn(cn) +
1

2
f ′′n(cn)(x− cn)2 +

1

6
f ′′′n (cn)(x− cn)3 +

1

24
f (iv)
n (ξ′x,n)(x− cn)4,

(B.2)

with ξ′x,n ∈ (cn, x) ⊂ K, and

un(x) = un(cn) + u′n(cn)(x− cn) +
1

2
u′′n(ξ′′x,n)(x− cn)2, (B.3)

with ξ′′x,n ∈ (cn, x) ⊂ K.

Fix
ε

2
= ε and Nε such that |f (i)

n (ξ)− f (i)(ξ)| < ε, i = 1, 2, 3, 4 and |u(j)
n (ξ)−
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u(j)(ξ)| < ε, j = 1, 2 ∀ξ ∈ K and ∀n > Nε. Since f and u and their respective
derivatives are continuous in c, there exists δε > 0 such that B(c, δε) ⊂ K
and ∀ξ : |ξ − c| < δε

|f (i)(ξ)− f (i)(c)| < ε

2
, i = 1, 2, 3, 4,

and

|u(j)(ξ)− u(j)(c)| < ε

2
, j = 1, 2.

By lemma B.0.2, cn
n→∞−−−→ c because c is the unique maximum point of f on

K(hypothesis 5 ). Thus there exists N δε such that

|cn − c| < δε =
δε
3
∀n > N δε . (B.4)

Observe that by hypothesis 7 and for n > Nε ∨N δε , f
′′
n(cn) < 0.

Moreover, for n > Nε∨N δε , ∀x ∈ B(c, δε) ⊂ B(c, δε) and ∀ξx,n ∈ (cn, x) ⊂ K,
it holds:

|ξx,n − c| ≤ |ξx,n − x|+ |x− c| ≤ |cn − x|+ |x− c| ≤ |cn − c|+ |c− x|+ |x− c| < 3δε = δε ⇒

 |f (i)
n (ξ′x,n)− f (i)(c)| ≤ |f (i)

n (ξ′x,n)− f (i)(ξ′x,n)|+ |f (i)(ξ′x,n)− f (i)(c)| < ε

2
+
ε

2
= ε

|u(j)
n (ξ′′x,n)− u(j)(c)| ≤ |u(j)

n (ξ′′x,n)− u(j)(ξ′′x,n)|+ |u(i)(ξ′′x,n)− u(i)(c)| < ε

2
+
ε

2
= ε

(B.5)

By substituing (B.5) in (B.2) and in (B.3), we obtain that for n > Nε ∨N δε

and x ∈ B(c, δε)

fn(x)



≤ fn(cn) +
1

2
f ′′n(cn)(x− cn)2 +

1

6
f ′′′n (cn)(x− cn)3+

+
1

24
(f (iv)(c) + ε)(x− cn)4

≥ fn(cn) +
1

2
f ′′n(cn)(x− cn)2 +

1

6
f ′′′n (cn)(x− cn)3+

+
1

24
(f (iv)(c)− ε)(x− cn)4

(B.6)

and

un(x)


≤ un(cn) + u′n(cn)(x− cn) +

1

2
(u′′(c) + ε)(x− cn)2

≥ un(cn) + u′n(cn)(x− cn) +
1

2
(u′′(c)− ε)(x− cn)2

. (B.7)
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Now split the integral into two parts:∫
R
enfn(x)un(x)dx =

∫
R\B(cn,δε)

(ψn(x))nun(x)dx+

∫
B(cn,δε)

enfn(x)un(x)dx.

(B.8)
To control the �rst integral on the r.h.s. of (B.8) we claim that there exists
ηδε > 0 and N̂δε such that

log |ψn(x)| < fn(cn)− ηδε ∀x ∈ R \B(cn, δε) ∀n > N̂δε ; (B.9)

this implies that

lim sup
n→∞

sup
x∈R\B(cn,δε)

(log |ψn(x)| − fn(cn)) < 0.

Indeed, using lemma B.0.2:

lim sup
n→∞

sup
R\B(cn,δε)

(log |ψn(x)| − fn(cn)) =(
lim sup
n→∞

sup
x∈K\B(cn,δε)

(fn(x)− fn(cn))

)
∨
(

lim sup
n→∞

sup
x∈R\K

(log |ψn(x)| − fn(cn)

)
=(

sup
x∈K\B(cn,δε)

(f(x)− f(c))

)
∨
(

lim sup
n→∞

sup
x∈R\K

(log |ψn(x)| − fn(cn))

)
.

Moreover, since c is the unique maximum point of the continuous function f
on the compact set K,

sup
x∈K\B(cn,δε)

(f(x)− f(c)) < 0

and this proves the claim.
Now using (B.9) and hypothesis 8 we can say that there exist C1 and N such
that for all n > N ∨ N̂δε∫

R\B(cn,δε)

enfn(x)un(x)dx ≤ e(n−1)(fn(cn)−ηδε)
∫
R
|ψn(x)||un(x)|dx ≤

≤ e(n−1)(fn(cn)−ηδε)
∫
R
|ψn(x)|c1dx ≤

≤ C1e
n(fn(cn)−ηδε). (B.10)

In order to �nd an upper bound for the second integral of the r.h.s. of (B.8),
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we proceed as follows:∫
B(cn,δε)

enfn(x)un(x)dx ≤

≤
∫
B(cn,δε)

en(fn(cn)+ 1
2
f ′′n (cn)(x−cn)2+ 1

6
f ′′′n (cn)(x−cn)3+ 1

24
(f (iv)(c)+ε)(x−cn)4)un(x)dx =

=

∫
B(cn,δε)

enfn(cn)+n
2
f ′′n (cn)(x−cn)2en(

1
6
f ′′′n (cn)(x−cn)3+ 1

24
(f (iv)(c)+ε)(x−cn)4)un(x)dx.

(B.11)

Since δε may be chosen small, the second exponential term can be expanded
as

exp

[
n

(
1

6
f ′′′n (cn)(x− cn)3 +

1

24
(f (iv)(c) + ε)(x− cn)4

)]
≤

≤1 + n

[
1

6
f ′′′n (cn)(x− cn)3 +

1

24
(f (iv)(c) + ε)(x− cn)4

]
+

+
n2

72
(f ′′′n (cn))2(x− cn)6 + n2C2|x− cn|7, (B.12)

where C2 is a positive real constant. Substitute (B.12) and (B.7) in (B.11).
Collecting powers of (x−cn) and observing that odd powers don't contribute
to the integral, we claim that:

(B.11) ≤enfn(cn)

∫
B(cn,δε)

e
n
2
f ′′n (cn)(x−cn)2

[
un(cn) + (x− cn)2u

′′(c) + ε

2
+

+ (x− cn)4

(
n
u′n(cn)f ′′′n (cn)

6
+ n

un(cn)(f (iv)(c) + ε))

24

)
+

+ (x− cn)6

(
n2un(cn)(f ′′′n (cn))2

72
+ n

(u′′(c) + ε)(f (iv)(c) + ε)

48

)
+

+(x− cn)8n2

(
(u′′(c) + ε)(f ′′′n (cn))2

144
+ u′n(cn)C2

)]
dx+

+enfn(cn)

∫
B(cn,δε)

e
n
2
f ′′n (cn)(x−cn)2n2C2|x− cn|7dx.

Making the change of variable

t =
√
−nf ′′n(cn)(x− cn),
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we obtain:

(B.11) ≤ enfn(cn)√
−nf ′′n(cn)

∫
B(0,
√
−nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

1

n

[
−t2u

′′(c) + ε

2f ′′n(cn)
+

+t4
(
un(cn)(f (iv)(c) + ε)

24(f ′′n(cn))2
+
u′n(cn)f ′′′n (cn)

6(f ′′n(cn))2

)
− t6un(cn)(f ′′′n (cn))2

72(f ′′n(cn))3

]
+

+
1

n2

[
−t6 (u′′(c) + ε)(f (iv)(c) + ε)

48(f ′′n(cn))3
+ t8

(
(u′′(c) + ε)(f ′′′n (cn))2

144(f ′′n(cn))4
+
u′n(cn)C2

(f ′′n(cn))4
+

)]}
dt

+ 2
enfn(cn)√
−nf ′′n(cn)

∫
t∈B(0,

√
−nf ′′n (cn)δε):t≥0

e−
t2

2 t7
C2

n3/2(f ′′n(cn))7/2
dt =

=
enfn(cn)√
−n(f ′′n(cn))

∫
B(0,
√
−nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

a
(1)
n,ε(t)

n
+
b

(1)
n,ε(t)

n2

}
dt+

+ 2
C2e

nfn(cn)

n2(f ′′n(cn))4

∫
t∈B(0,

√
−n(f ′′n (cn))δε):t≥0

e−
t2

2 t7dt, (B.13)

where a(1)
n,ε(t) and b

(1)
n,ε(t) are the arguments inside square brackets which are

respectively multiplied by 1
n
and by 1

n2 .

In order to �nd a lower bound for the second integral of the r.h.s. of (B.8),
we proceed as follows:∫

R
(ψn(x))nun(x)dx ≥

≥
∫
B(cn,δε)

enfn(cn)+n
2
f ′′n (cn)(x−cn)2en(

1
6
f ′′′n (cn)(x−cn)3+ 1

24
(f (iv)(c)−ε)(x−cn)4)un(x)dx.

(B.14)

Since δε may be chosen small, the second exponential term satis�es

exp

[
n

(
1

6
f ′′′n (cn)(x− cn)3 +

1

24
(f (iv)(c)− ε)(x− cn)4

)]
≥

≥1 + n

[
1

6
f ′′′n (cn)(x− cn)3 +

1

24
(f (iv)(c)− ε)(x− cn)4

]
+

+
n2

72
(f ′′′n (cn))2(x− cn)6 − n2C3|x− cn|7, (B.15)

where C3 is a positive real constant.
Analogously as above, expand the second exponential term of (B.14) as in
(B.12) and the function un(x) as in (B.3). Collecting powers of (x− cn) and
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making the change of variable

t =
√
−nf ′′n(cn)(x− cn),

we obtain:

(B.14) ≥ enfn(cn)√
−nf ′′n(cn)

∫
B(0,
√
−nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

1

n

[
−t2u

′′(c)− ε
2f ′′n(cn)

+

+t4
(
un(cn)(f (iv)(c)− ε)

24(f ′′n(cn))2
+
u′n(cn)f ′′′n (cn)

6(f ′′n(cn))2

)
− t6un(cn)(f ′′′n (cn))2

72(f ′′n(cn))3

]
+

+
1

n2

[
−t6 (u′′(c)− ε)(f (iv)(c)− ε)

48(f ′′n(cn))3
+ t8

(
(u′′(c)− ε)(f ′′′n (cn))2)

144(f ′′n(cn))4
− u′n(cn)C3

(f ′′n(cn))4

)]}
dt+

− 2
enfn(cn)√
−nf ′′n(cn)

∫
t∈B(0,

√
−nf ′′n (cn)δε):t≥0

e−
t2

2 t7
C3

n3/2(f ′′n(cn))7/2
dt =

=
enfn(cn)√
−nf ′′n(cn)

∫
B(0,
√
−nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

a
(2)
n,ε(t)

n
+
b

(2)
n,ε(t)

n2

}
dt+

− 2
C3e

nfn(cn)

n2(f ′′n(cn))4

∫
t∈B(0,

√
−n(f ′′n (cn))δε):t≥0

e−
t2

2 t7dt, (B.16)

where a(2)
n,ε(t) and b

(2)
n,ε(t) are the arguments inside square brackets which are

respectively multiplied by 1
n
and by 1

n2 .

It is easy to verify that:

∫
B(0,
√
nδε)

e−
t2

2 un(cn)dt
n→∞−−−→

√
2πu(c),∫

B(0,
√
nδε)

e−
t2

2 t2kdt
n→∞−−−→

∫
R
e−

t2

2 t2kdt =
√

2π(2k − 1)(2k − 3) . . . (3)(1), ∀k ∈ N,∫
t∈B(0,

√
nδε):t≥0

e−
t2

2 t7dt
n→∞−−−→

∫ +∞

0

e−
t2

2 t7dt = 48. (B.17)

In conclusion, using (B.8),(B.10),(B.13), (B.16) and (B.17), we obtain that
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for ε ∈ (0, ε0] and n > N ∨Nε ∨N δε ∨ N̂δε

∫
R
(ψn(x))nun(x)dx−

√
2π

−nf ′′(c)e
nfn(cn)u(c)√

2π

−nf ′′(c)e
nfn(cn)

Λ

n

≤

≤

∫
B(0,
√
−nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

a
(1)
n,ε(t)

n
+
b

(1)
n,ε(t)

n2

}
dt√

−f ′′n(cn)
−
√

2π

−nf ′′(c)u(c)√
2π

−f ′′(c)
Λ

n

+

+

2
C2

n2(f ′′n(cn))5

∫
t∈B(0,

√
−nf ′′n (cn)δε):t≥0

e−
t2

2 t7dt+
C1

enηδε√
2π

−f ′′(c)
Λ

n

n→∞−−−→

n→∞−−−→

√
2π

−f ′′n(cn)√
2π

−f ′′(c)

ε→0−−→ 1 (B.18)
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and∫
R
(ψn(x))nun(x)dx−

√
2π

−nf ′′(c)e
nfn(cn)u(c)√

2π

−nf ′′(c)e
nfn(cn)

Λ

n

≥

≥

∫
B(0,
√
nf ′′n (cn)δε)

e−
t2

2

{
un(cn) +

a
(2)
n,ε(t)

n
+
b

(2)
n,ε(t)

n2

}
dt√

−f ′′n(cn)
−
√

2π

−nf ′′(c)u(c)√
2π

−f ′′(c)
Λ

n

+

−
2

C3

n2(f ′′n(cn))5

∫
t∈B(0,

√
−nf ′′n (cn)δε):t≥0

e−
t2

2 t7dt+
C1

enηδε√
2π

−f ′′(c)
Λ

n

n→∞−−−→

n→∞−−−→

√
2π

−f ′′n(cn)√
2π

−f ′′(c)

ε→0−−→ 1. (B.19)

Hence, by (B.18) and (B.19), (B.1) is proved.





Appendix C

Replica Theory

In this chapter we present an introduction to replica theory which has
been widely studied from G. Parisi in [96]. We derive the replica theory
equations from the SK model since many other statistical models can be
reduced to this one by simple assumptions on the parameters.

The SK model is dxe�ned by the following Hamiltonian

H(σ) = −
N∑
〈i,j〉

Jijσiσj − h
N∑
i

σi, (C.1)

where σi ∈ {−1, 1}, h is the uniform magnetic �eld and the couplings are
random variables extracted from the distribution

P (J) =

√
N

2π
exp

(
−NJ

2

2

)
. (C.2)

Because of the randomicity of the interaction, thermodynamic properties
must be computed by �xing an instance of the disorder. Such property is
called quenched disorder and was widely studied by Parisi in [97]. When
we are dealing with the thermodynamic limit, thanks to the self-averaging
properties, the free energy of a speci�c realization of the disorder can be
computed by the average over such realization of the J-dependent free energy,
which means that

lim
N→∞

f
(N)
J = lim

N→∞
f

(N)
J , (C.3)

where f (N)
J is the average over the disorder of the J−dependent free energy.

Relation (C.3) is satis�ed with probability one since the set of sequences of
J ′s for which the previous result doesn't hold have zero measure [97]. Thus
the solution of the statics of a system under the presence of the quenched
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disorder requires the computation of the logarithm of the partition function

ZJ =
∑
{σ}

exp (−βH(σ)) =
∑
{σ}

exp

β N∑
〈i,j〉

Jijσiσj + βh
N∑
i

σi

 (C.4)

which cannot be done analytically: the replica trick is used to overcome
this di�culty. The idea is based on the following identity:

lim
n→0

Zn − 1

n
= logZ (C.5)

We introduce n non interacting replicas of the system of N interacting spins
living in the same realization of the disorder. The n-th power of the partition
can be written as follows:

Zn
J =

∑
{σ}

exp

β N∑
〈i,j〉

Jijσiσj + βh
N∑
i

σi

n

=

=
n∏
a=1

∑
{σa}

exp

β N∑
〈i,j〉

Jijσ
a
i σ

a
j + βh

N∑
i

σai

 =

=
∑
{σ}

exp

β n∑
a=1

N∑
〈i,j〉

Jijσ
a
i σ

a
j + βh

n∑
a=1

N∑
i

σai

 , (C.6)

so that its average with respect to the couplings can be computed as:

Zn
J =

∫ (∏
i<j

P (Jij)dJij

)∑
{σ}

exp

β n∑
a=1

N∑
〈i,j〉

Jijσ
a
i σ

a
j + βh

n∑
a=1

N∑
i

σai

 .

(C.7)
In order to compute the replicated partition function we have to keep on
mind the following identities:∫

exp(−Ax2 +Bx)dx =

√
π

A
exp

(
B2

4A

)
(C.8)∫

exp

(
−
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Bixi

)
dMx =

√
π

det(A)
exp

(
1

4

M∑
i,k=1

(Â−1)ikBiBk

)
.

(C.9)
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We can get an expression of the replicated partition function starting from
the equation (C.7):

Zn
J =

∫ (∏
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e(β
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a
i σ
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)
.

By applying identities (C.8) and (C.9), the integral in latter equation can
be written as

√
2π

N

β2

2N
exp

(∑
i<j

∑
a,b

σai σ
b
iσ

a
j σ

b
j

)
(C.10)

so that (C.7) reads:

Zn
J =

∑
{σ}

exp

(
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σai +
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2N

∑
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∑
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b
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a
j σ

b
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)
. (C.11)

In the latter equation, interaction between replicas has been introduced and
the interaction term can be rewritten as

∑
i<j

∑
a,b

σai σ
b
iσ

a
j σ

b
j = N2

∑
a<b

(
1

N

∑
i

σai σ
b
i

)2

+
N2n−Nn2

2
. (C.12)
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We show the latter identity starting from the right term:
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Putting (C.12) into (C.11),
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(C.13)
and applying (C.8) with 4A = 2Nβ2 and B = β2

∑
i σ

a
i σ

b
i the partition

function reads:
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As we told above, we are interested in computing the free energy

f(β, h) = lim
n→0

lim
N→∞

(
− 1

βNn
logZn

J

)
. (C.15)

Observe that

Zn
J ∝

∫
e−NS(Q,h)dQ, (C.16)

where

S(Q, h) = −β
2n

4
+
β2

2

∑
a<b

Q2
ab −W (Q)

and

W (Q) = log
∑
{σ}

exp
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βh
∑
a

σa + β2
∑
a<b

σaσbQab

)
.

Using the approximation Laplace method to solve the integral (C.16), we
�nd that

f(β, h) = lim
n→0

1

βn
extrQS(Q, h), (C.17)

where extrQS(Q, h) is the extremal point of the function S with respect to
Q.





Appendix D

Interacting replicas: the

contribute to the model.

The main peculiarity of the descripted algorithm is its attitude in seeking
dense regions of solutions since the process progessively focuses on smaller
and smaller regions of the con�guration space. This approach is possible
replicating the system: we consider N vector variables {W a

j }ya=1 of length y
for j = 1, . . . , N and we assume an internal simmetry for each variable so
that all the marginals are invariant for any permutation of the replica indices,
which means that

Pj
(
{W a

j }ya=1

)
= Pj

(
y∑
a=1

W a
j

)
. (D.1)

As we said in the previous chapters, we keep one con�guration W ∗ as refer-
ence con�guration and we replicate it y times. For this reason starting from
(4.6) is possible to write the new probability distribution associated to the
model which corresponds to:

P (W
∗
, {W a

j }ya=1, β, y, γ) = Z(β, y, γ)−1 exp

(
−β

y∑
a=1

E(W a) + γ

y∑
a=1

W a ·W ∗

)
=

= Z(β, y, γ)−1

y∏
a=1

exp (−βE(W a) + γW a ·W ∗) .

(D.2)
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As β →∞, (D.2) becomes

P (W
∗
, {W a

j }ya=1, y, γ) = Z(y, γ)−1

y∏
a=1

(χ(W a) exp (γW a ·W ∗)) =

= Z(y, γ)−1

y∏
a=1

(
χ(W a)

N∏
i=1

exp (γW a
i W

∗
i )

)
,

so that the probability distributions associated to the simple perceptron,
equivalent to (4.12), is de�ned by

P (W
∗
, {W a

j }ya=1, y, γ) = Z(y, γ)−1

y∏
a=1

M∏
µ=1

(
Θ

(
τµ

N∑
i=1

σai ξ
µ
i

)
N∏
i=1

exp (γW a
i W

∗
i )

)
.

(D.3)
Latter distribution is obviously a factorizable function and can be represented
on a factor graph: under the presence of y replicas, the factor graph is
composed by y replicas of the initial graph and con�gurations of weights
interact through the term eγW

a·W ∗ . For that reason we introduce a factor
node γ to build such interaction (see �gure D.1).

Figure D.1: The �gure represents a portion of a BP factor graph with y = 3
replicas of the variable Wj. The node W ∗

j represents the reference con�g-
uration value. Using the same notation of the third chapter, the squares
represent the the factor nodes which interactions given by the term eγW

a·W ∗ ,
namely the factor node γ. The dashed lines identify the links with the rest
of the graph.

Inside of every single graph, messages continue to be exchange in the same
way descripted in the previous chapters but every replica gives its contribute
to the others sending at an extra- messagemt+1

∗→σi which satis�es the equation:

mt+1
∗→σi = tanh

[
(y − 1) tanh−1(mt

σi→∗ tanh γ)
]

tanh γ, (D.4)
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where mt
σi→∗ is the message which has been sent at tth iteration from the

variable node to the factor node γ (i.e. with interaction strength γ). Under
these conditions, the message (4.39) assumes the form

mt
σi→µ = tanh

 ∑
k∈∂σi\µ

tanh−1(m̂t
k→σi) + m̂t

∗→σi

 (D.5)

while mµ→σi and mτµ→µ takes the same expression as in (4.41) and (4.40).
A message which is exchanged between a factor node γa and a variable node
σai satis�es the equation

m̂γa→σai = tanh(γ)mσai→γa (D.6)

while its opposite satis�es

mσai→γa = tanh

 ∑
b∈∂σi\a

tanh−1(m̂γb→σai )

 . (D.7)

Putting (D.6) in (D.7), we obtain:

m̂γa→σai = tanh(γ) tanh

 ∑
b∈∂σi\a

tanh−1(m̂γb→σai )

 =

= tanh(γ) tanh
[
(y − 1) tanh−1(m̂γb→σai )

]
,

As we told in the third chapter, the BP �xed points can be reached for
large values of γ. In particular, by increasing simultaneously the interaction
strength γ and the number of replicas y, the only �xed points of the iterative
message passing procedure are completely polarized, and situated in regions
of maximal density y →∞ at small distances γ →∞.
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