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Preface 

 

This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD) in Chemistry at the 

University of Bologna (XXXI doctoral cycle). The majority of work reported here was carried out at the 

Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE) of National Research Council 

of Italy (CNR) in Padova and at EMFM (Electrochemistry of Molecular and Functional Materials) 

Electrochemistry Laboratory of the Chemistry Department “Giacomo Ciamician” under the supervision of 

Prof. Francesco Paolucci and Dr. Marco Musiani. 

Part of the research reported in chapter 1, in particular regarding BDD electrodes preparation, was conducted 

in collaboration with the group of Prof. Yasuaki Einaga, during my stage at KEIO University, in November-

December 2017, funded by a formation program of ICMATE-CNR.   

The results obtained on gas-phase catalysis applications, reported on chapter 2, were achieved in 

collaboration with the Institute for Research on Combustion (IRC) of CNR in Napoli. In particular, Dr. Stefano 

Cimino performed all the catalytic tests on samples that I have prepared and characterized. Thanks to this 

profitable collaboration, we got inspiration for exploring ceria potentiality in the electrocatalysis of CO2 

reduction. The ICMATE-IRC collaboration was financially supported by the project “Bioenergia efficiente - WP 

2 Tecnologie catalitiche per il risparmio energetico in impianti di piccola taglia (civili e industriali)” as a part 

of MiSE-CNR Agreement on National Electrical System between Italian Ministry for Economic Development 

(MiSE) and CNR. 

The study of CO2 reduction on copper-based nanocarbons, reported in chapter 3, was inspired by an ongoing 

collaboration with the group of Dr. Alain Penicaud of CNRS in Bordeaux. In particular, the syntheses of these 

materials were performed by Dr. Ferdinand Hof. 
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Abstract 

This thesis is focused on the preparation of nanostructured ceria catalysts with an electrochemical approach 

and on their use in reactions relevant to environmental issues, like CO2 electrochemical reduction and low 

temperature catalytic combustion, in the gas phase. Supports with totally different compositions and 

geometries were used for the preparation of electrocatalysts and gas-phase catalysts, but in all cases ceria 

was cathodically deposited via an electroprecipitation process triggered by local pH increase.  

To study CO2 reduction, ceria was cathodically deposited on boron-doped diamond, obtaining control of its 

morphology and composition, both crucial aspect in ceria catalytic applications. Promising efficiency toward 

formate production was demonstrated, at very low overpotential.  

To produce catalysts for low-temperature combustion of methanol and CO oxidation, platinum and ceria 

were sequentially deposited onto Fecralloy 3D foams, the support currently used in industrial structured 

catalysts.   

To extend the scope of the studies on CO2 reduction, copper oxide graphenide materials were investigated 

and compared to ceria. These materials were shown to effectively reduce CO2 to formate, exhibiting good 

stability and resistance to poisoning. Their performance matched those of the best catalysts described in the 

literature. 
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INTRODUCTION 

 

I.1 A general picture: CO2 and greenhouse gases 

Human impact on climate change is widely recognized as a worldwide issue of unsurpassed importance [1] 

Global warming, the first direct signal of climate change, is a direct consequence of increasing greenhouse 

gases (GHG) concentration in the atmosphere [2]. These gases, because of their long atmospheric lifetime 

(decades, centuries), accumulate in the atmosphere and build-up in concentrations. Increments are evident 

and they are evenly distributed across the globe; their measurement, looking to instrumental observations 

in bubbles of air trapped in ice cores and since 1958, directly in air samples, simplify the global monitoring 

(Fig.1) [3-9]. 

 

 

Fig.1. The global temperature trend, updated through 2016 [2] (top) and global atmospheric concentration 
measurements for carbon dioxide (bottom) [3-9] 

2017 

410 ppm 
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Different GHGs variously affects global warming; they differ from each other for their ability to absorb energy 

(their "radiative efficiency"), and for how long they stay in the atmosphere (also known as their "lifetime"). 

United States Environmental Protection Agency (EPA) developed a Global Warming Potential (GWP) index 

that evidences emissions effects for different gases. Looking to GWP if CO2 has an index of 1, methane is 

reported to have a factor around 30. This evidences that reducing total emissions, and not just concentrate 

on a single gas, is mandatory to prevent catastrophic consequences. [10-11] 

 

Fig.2. Distribution of key greenhouse gases emitted by human activities based on global emissions from 2010. [10] 

 

Internationally, almost all the countries representing both developed and developing countries, decided to 

set objectives and actions to invert the tendencies and mitigate the effects of climate change by signing what 

is called the “Paris agreement” [12,13]. Crucial points of the document are: 

“This Agreement, in enhancing the implementation of the Convention, including its objective, aims to 

strengthen the global response to the threat of climate change, in the context of sustainable development 

and efforts to eradicate poverty…”  

“Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and 

to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels […]” 

“Parties aim to reach global peaking of greenhouse gas emissions as soon as possible […] and to undertake 

rapid reductions thereafter in accordance with best available science…” 
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“Parties, noting the importance of technology for the implementation of mitigation and adaptation actions 

under this Agreement and recognizing existing technology deployment and dissemination efforts, shall 

strengthen cooperative action on technology development and transfer.” 

Even before the publication of this agreement, most efforts were devoted to limit the concentration of 

greenhouse gas in the atmosphere by increasing the efficiency of fossil fuels and biofuels usage [14,15] and 

by capturing and/or converting CO2 to fuels easy to store [16]. Both these processes will play a fundamental 

role to sustain the transition to a world powered by renewable energy sources. This transition predict to 

cover a big lapse of time before humanity will be able to change primary energy sources switching to non-

fossil fuels. Therefore, in addition to increase the number of installations of renewable energy sources in 

different areas of the planet, there are great challenges in ‘‘recycling’’ carbon dioxide and in increasing the 

utilization efficiency of traditional fuels while reducing their impact on environment. Since fuels utilization, 

through catalytic combustion or transformation into energy vectors, is a mature technology, general effort 

concentrate on increasing efficiencies of processes including discovering new approaches to the preparation 

of materials involved. We also know, that traditional energy sources are limited and global reserves are 

difficult to estimate [17]; carbon dioxide is a cheap and abundant source of carbon and could be converted 

to important compounds, to be used in industrial processes as well as fuels [18,19].  Conversion can be 

performed by electrolysis powered by green or renewable energy sources, for example wind, tidal, solar or 

the so-called ‘‘blue energy’’ systems. Although carbon dioxide “recycling” can be performed by sequestration 

and storage, with biochars and by absorption, mimicking natural photosynthesis represents the most 

scientifically challenging avenue [20]. This thesis focus on both, the direct reduction of CO2 and the 

enhancement of efficiency of fuels. 

 

I.2 CO2 conversion 

As a part of “Carbon Cycle”, plants transform radiant energy produced by sun into chemical energy in the 

form of sugars, starches, and other forms of organic compounds from carbon dioxide and water. Land plants 

through photosynthesis fix ca. 450 billion tonnes per year, a value affected by climate variables and 

vegetation properties. Just a small part is long term fixed, the most of the carbon is returned to cycle during 

respiration, leaf or wood decomposition and uncontrolled fires. In most cases, photosynthesis has slow 

kinetics that lead to low efficiencies; additionally, also due to strong deforestation, carbon fixation from 

plants is not high enough to balance CO2 anthropogenic annual emissions, which is around 24 billion tonnes. 

The industry uses approximately 120 million tonnes CO2 per year, which correspond to only 0.5% of the total 

anthropogenic CO2 emissions. The usage can be divided into applications that take advantage of its physical 
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properties and chemical application. The list of “physical” application includes beverage industry, enhanced 

oil recovery, applications in reactions as solvent, use as a safe, inert or protective gas and as a fire 

extinguisher. As a solid, CO2, can be used for refrigeration to substitute CFCs. CO2 chemical applications 

include the conversion into chemicals such as urea, salicylic acid, organic and inorganic carbonates, pigments 

and methanol synthesis additive [16,21]. 

In principle, CO2 is also an abundant and renewable carbon source but its use is limited by the fact that it is a 

molecule in the most oxidized form which is why it is quite unreactive. High energies are required to 

transform CO2 into other chemicals. Scheme 1 [21] summarize some of the possible compounds that can be 

produced through different chemical, physical or biological processes.  

 

Fig.3. Different process for CO2 recovering [21] 

 

Electrochemistry, is widely considered an across-the-board science, thanks to its capability to supply several 

useful tools that spread from biological fields to energetics to environmental monitoring. Electrochemical 

conversion of CO2 represents one of the most interesting and promising approaches to the “CO2 issue”; its 

main advantages are: 

 controlling electrode potentials and cell temperature we can control the process; 

 in most cases it’s a green process, where there is no need of harmful or polluting reagents; 

 other industrial processes like water electrolysis can borrow their electrochemical apparatus for a 

modular approach or an easy scale-up; 

 the electricity used to drive the process can be obtained from renewable sources that include solar, 

wind, hydroelectric, geothermal, tidal, and thermoelectric processes. 

The last point entails that no CO2 production is involved if the process is coupled with a green energy source; 

this aspect and the fact that CO2 electrochemical reduction lead to useful compounds are probably the edges 

over other, still interesting, approaches like sequestrating and storage or biological conversion. 
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I.1.1 CO2 electrochemical reduction 

As mentioned before, the chemical reactivity of CO2 is low. Although its reduction potentials are not very 

negative compared to other important electrochemical reactions, e.g. hydrogen evolution reaction or oxygen 

reduction reaction, it is necessary to employ a catalyst to increase the reaction rate. Electrocatalysis play a 

fundamental role to reach, by means of lower energy routes, higher current densities close to equilibrium 

potential [23]. In case of CO2RR electrocatalysts require the formation of bonds between electrode surface 

and reagents, even so this interaction does not guarantee to obtain desired products with a reasonable yield. 

For example, electrochemical reduction over carbon electrodes usually gives a CO2 radical anion that 

decompose to CO and carbonate, in a really high energy process. On the other hand, active metals, through 

surface adsorption over active sites, can directly reduce CO2 to hydrogenated products at lower voltage 

because of the electrocatalytic effect [22]. There are several parameters that can be compared to evaluate 

different electrocatalysts: exchange current densities, Tafel slope, onset potential, TOF, current stability and 

so on. In general, a good electrode for CO2RR should be stable, very efficient (possibly toward a single 

product) and give product with high rate at low overpotentials. Despite many reports on electrochemical CO2 

reduction during last years many challenges remain [20,24-26]. Primarily, significant improvements are 

needed to fight the slow kinetics of reaction and the low efficiency of the process due to the parasitic HER. 

Synthetically we can say that researcher widely recognize that the biggest challenge in CO2 electroreduction 

is the tailoring of high efficient electrocatalysts [27-28].  

There are several variables that must be addressed when approaching electrochemical CO2 reduction. For 

example, various electrolyte solutions are employed for CO2 electrolysis, from water to organic solvents to 

ionic liquids with low or high pressure of CO2 [22]. Since CO2 cannot be present in basic aqueous solutions, 

its reduction has been studied with neutral to acidic solutions; pH strongly influences concentration of 

species involved in CO2 dissolution (Fig.4): 

𝐶𝑂2  + 𝐻2O →  𝐻𝐶𝑂3
− + 𝐻+    Eq.1 

𝐻𝐶𝑂3
−  + 𝐻2O →  𝐶𝑂3

2− +  𝐻+    Eq.2 

In a buffered solution equilibria become more complicated; some studies reported how pH of buffering 

solutions can affect reaction pathways and the following products distributions [22]; however, using a 

buffered solution helps maintaining a stable pH value that ,especially for prolonged electrolysis, limits the 

expected local alkalinisation close to the electrode surface. Most of recent fundamental research is 

performed in carbonate buffer, and with a CO2 dissolved maximum concentration of ca 33 mM. To give an 

idea on how important the choice of electrolyte composition and concentration are, we report below a table 
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relating pH of solutions with different carbonate concentrations and under a P(CO2) of 1 atm ( table 1[23]) 

and the speciation diagram of carbonate species[29]. 

  

Fig.4. Relative speciation (%) of carbon dioxide, bicarbonate, and carbonate in water as a function of pH [29]. 

 

Table 1. pH of buffered solution made with reported concentration of bicarbonate saturated with CO2. 

 

Electrochemical reduction of CO2 can proceed through two-, four-, six-, and eight-electron reduction 

pathways in water solution; standard reduction potentials (calculated at pH=7) of semi-reactions leading to 

different products are the reported below: 

𝐶𝑂2  + 𝐻2O + 2𝑒−  →  𝐻𝐶𝑂𝑂− +  𝑂𝐻−                      E=-0.43 V pH=7  Eq.3 

𝐶𝑂2  + 𝐻2O + 2𝑒−  →  CO +  2𝑂𝐻−        E=-0.52 V pH=7  Eq.4 

𝐶𝑂2  +  6𝐻2O + 8𝑒−  →  𝐶𝐻4 +  8𝑂𝐻−                 E=-0.25 V pH=7  Eq.5 

2𝐶𝑂2  +  8𝐻2O + 12𝑒−  →  𝐶2𝐻4 +  12𝑂𝐻−               E=-0.34 V pH=7  Eq.6 

2𝐶𝑂2  +  9𝐻2O + 12𝑒−  →  𝐶2𝐻5OH +  12𝑂𝐻−         E=-0.33 V pH=7  Eq.7 

3𝐶𝑂2  +  13𝐻2O + 18𝑒−  →  𝐶3𝐻7OH + 𝑂𝐻−            E=-0.32 V pH=7  Eq.8  

2𝐻+ +  2𝑒−  →  𝐻2 (HER)     E=-0.414 V pH=7  Eq.9 



14 

 

These values, estimated from thermodynamic data, evidence how CO2 standard potentials are generally 

quite negatives and they lay in the same region of HER, that is the main competitive reaction for experiment 

performed in water. This, indirectly confirm how kinetics can be considered the main limitations of the 

process. In alternative to direct electrolysis, homogeneous electrocatalysts can be used but, even if less prone 

to poisoning by electrolyte impurity, they have stability and durability issues, and moreover some systems 

use organic solvents that are not considered “green” [20]. Another big limitation of different catalysts is the 

wide distribution of products obtained during prolonged electrolysis. In most cases, catalysts give a mix of 

products that have to be separated to be used. Actually only few catalysts produce with high efficiency a 

single compound but they are limited by the high overpotential required or by their poor resistance to 

poisoning by solution impurities [30]. Usually, classification of different catalysts is related to principal 

product generated but there are major differences in potentials applied to reduce CO2 amongst these 

materials. Metals, in particular transition metals, are the most studied electrodes for CO2 reduction. They can 

be approximatively divided, with some exceptions, into two main categories: CO oriented and formate 

oriented metals. The first group includes Cu, Au, Ag, Zn, Pd, Ga, Ni, and Pt and the second group includes Pb, 

Hg, Tl, In, Sn, Cd, Bi. Periodic table below can schematically represent products distribution for catalysts 

within the periodic table of elements [20].  

 

Fig.5. Schematic overview of CO2 reduction catalytic activity across the periodic 

system of elements [20]. 

 

Often CO2RR proceed through the formation of two intermediates, a carboxyl (COOH*) and a formate 

(HCOO*) species. Considering reaction pathways, the first electron reducing CO2 leads to a formation of 

either the formate (HCOO*) or carboxyl (COOH*) species. Both intermediates, further reduced, can give 
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formic acid but formate intermediate species can give also biformate (H2COO*) and carboxyl adsorbed 

species can generate CO [27]. Always as a side reaction, contributing to reduce faradaic yield, there is HER. 

Since chemisorption energies of COOH* and H* are strongly linearly correlated, metals that produce 

selectively formic acid usually take a pathway through the adsorption of a HCOO* species as schematically 

represented below (Fig.6). On the contrary, Ni, Pt and other platinum family metals that strongly adsorb CO 

on the electrode surface, prevent further reduction of CO2 enhancing efficiency toward HER [31]. 

 

Fig.6. Possible reaction pathways for the electroreduction of CO2 (top),  

and the competing hydrogen evolution reaction (bottom). 

 

I.1.2 Low temperature catalysis 

As stated in I.0, contributing to greenhouse emissions there are, in addition to CO2, methane and N2O; they 

have, respectively a GWP 28-36 and 265–298 times higher than that of CO2. Moreover, CO and NO2 produced 

by transportation and fuels combustion contribute to particulate formation and directly affects air quality 

causing health disease and ecological effects (acid rains). The strategy that will lead to a world powered by 

renewable energy sources should include a progressive elimination of fossil fuels. During the transition period 

that we are already living, their utilization must be as efficient and clean as possible. Catalytic combustion of 

fuels generates much lower amounts of pollutants than small-scale flame combustion systems. For example, 

nitrogen oxides production is virtually zero. A successful example of catalysis devoted to environmental 

protection is the large-scale application of three-way-catalysts in automotive catalytic converters [32].  

Methanol, together with ethanol, formic acid and other small molecules, is a promising energy feedstock. 

The reason is that, as a liquid at room temperature, it is easy to stow and its combustion is considered clean, 

in particular for small-capacity power generation [33-36]. Methanol catalytic combustion at low temperature 



16 

 

can be sustained stably over a wide range of fuel/air ratios with ultra-low emissions, in contrast to 

conventional small scale flame combustion systems that have some intrinsic limitations on flame stability 

and pollutants formation. Pt-based nanostructured catalysts are considered the catalysts of choice for the 

deep oxidation of methanol either for power generation or for VOC destruction [37-39]. In general ceramic 

phases, like -Al2O3, promote the dispersion of the active noble metal phase. However, the deposition of a 

thin film of the ceramic phase, called washcoating, can be challenging; both a firmly anchorage and a uniform 

deposition must be achieved because they are of paramount importance in order to guarantee long catalyst 

durability and avoid pore blocking and additional pressure drops [40].  

Recently some simple and innovative preparation methods, which take advantage of the metallic nature of 

Fecralloy support, have been proposed. Electrochemically induced precipitation, electrodeposition and 

spontaneous deposition through a galvanic displacement reaction have been shown capable to form small, 

well-dispersed and homogeneously distributed noble metal particles strongly interacting with the support. 

Electrodeposition is an interesting tool widely employed to modify 3D metallic foams depositing thin layers 

of metal oxides and hydroxides, as well as organoceramics and the so called layered double hydroxides 

(LDH)[]. Base generation deposition was first proposed by Switzer to prepare ceramic oxide films and 

powders [41]. Some of these materials, hydrotalcite-type compounds (HT), were successfully used to modify 

Fecralloy or Nickel foams for reforming and partial oxidation applications [42-44]. In fact, the electro-induced 

precipitation is very effective to coat metallic supports with HT-type materials. Unlike precipitation methods, 

where precipitation take place not only on the surface of the structured support but also in the bulk of the 

solution, with the electrochemical method the pH increases quickly near the surface of the support due to 

the reduction of nitrate, oxygen and water under a cathodic polarization. This technique is highly 

recommended to modify conductive 3D support in order to reach a good control of deposition. In addition, 

for some processes, for example for CO oxidation, the presence of a porous washcoat layer is not mandatory, 

since occurring under diffusion limitations. When a fair dispersion of the catalyst can be achieved and the 

active phase is not lost from/in the support, direct electrodeposition of active noble metal can be used as 

simple single step preparation.  
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I.3 Why Ceria? 

Heterogeneous catalysts employed for reactions taking place at solid/liquid interfaces (e.g. electrochemical 

processes), or at solid/gas interfaces (e.g. catalytic oxidations or reductions) share some common 

requirements. They must have a strong activity, resulting from an appropriate choice of morphology, size 

and nature of catalytic active phases and a good stability to grant a long service life. Cost, in terms of raw 

material, chemicals for preparation and conditioning (e.g. calcinations or thermal activation), determine if a 

process is accessible. Further requirement, specific to electrocatalysts, is a high electrical conductivity, 

whereas a strong resistance to degradation at high temperature and to thermal shocks is mandatory for 

catalysts for catalytic combustion or catalytic partial combustion.  

Noble metals are the elements with the higher catalytic activity in most important electrochemical and gas-

phase reactions, but they are very expensive and mining operation usually are linked to grave contamination 

of water sources and soil, human health impacts, and human rights abuse. However, using noble metal 

nanoparticles, that have an intrinsic large surface/volume ratio, or diluting by using noble metal and non-

noble metal alloys are the only approaches to reduce the catalysts cost, still preserving, and even enhancing, 

their activity. Find alternative cheap catalysts to substitute noble metals or use co-catalyst that can enhance 

activity or stability of established materials is an approach that spreads over different catalysis-related 

research fields [45-48].  

Cerium is the most abundant rare earth element and is not included into what is called “critical rare earths” 

category [49]. It is about as common as copper and its cost has decreased during last years. Cerium is the 

easiest lanthanide to extract from its minerals and as all rare earth elements, nowadays, it is crucial for a 

number of key technologies including: lasers, battery electrodes, magnets, MRI contrast agents, catalysts, 

uses in alloys, etc... 
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Fig.7. Abundance (atom fraction) of the chemical elements in Earth’s upper continental crust as a function of atomic 
number, rare earth elements labelled in blue. Ceria position is highlighted by a black circle and its projection on axes. 

[49] 

 

The most studied cerium compound is cerium dioxide, also called ceria. It is a pale yellow/white powder 

obtainable through calcination of a cerium precursors (oxalate or hydroxide), its common crystal structure is 

a fluorite-type face centred cubic.  

 

Fig.8. 3D representation of a ceria cubic crystal unit cell. 

 

It is known that ceria forms, in a reducing environment, oxygen-deficient phases with nonstoichiometric 

CeO2-x oxides, x it’s in between 0 and 0.5 [50]. In spite of the high oxygen depletion, ceria maintain its fluorite 

structure, and is easily reoxidised in oxidative conditions. One of the main consequences of this oxygen 

Ce 

O 
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deficiency is the capability to adsorb molecular oxygen on vacancies and to form radicals, called superoxides, 

that are fundamental intermediates in oxidation reactions. In the presence of a strong metal-ceria 

interaction, ceria can also chemisorb large amounts of H2 [51].  

Ceria is a ubiquitous compound that can be found on literature regarding chemistry, material science, physics 

and even medicine. Most of literature regarding ceria-based materials is focused on energy and 

environmental processes, and the number of paper published every year is constantly increasing (Fig.9).  

  

Fig.9. Histogram of number of publications on ceria (blue bars) and publications on ceria associated with catalysis 
(orange bars) from 1993 to 2017 (Source: Web of Science, October 2018). 

 

Ceria-based materials are well known as catalysts or promoters for many heterogeneous catalytic 

applications. They have been used for oxidation reactions (CO, hydrocarbons, organics…), hydrogenation 

reactions (CO + H2, organic compounds), elimination of SO and NO and in automotive exhaust catalysts 

[52,53]. Most of its catalytic properties are related to the lattice ion mobility and redox properties of 

Ce(III)/Ce(IV) system, together with the formation of adsorbed superoxides with high oxidizing power. Only 

a minor part of literature regarding ceria is focused on processes for low temperature electrocatalytic 

applications. Especially there are several papers describing the preparation of Pt-Ceria materials and their 

use as anodes for the electrochemical oxidation of alcohols in direct alcohol fuel cell applications [54-59]. To 

the best of our knowledge activity of electrochemically prepared Ceria toward CO2 electrochemical reduction 

was never reported. 
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Ceria can be prepared in several different methods that can be roughly divided in techniques to produce 

powders and techniques to deposit films [60]. Cerium oxide powders preparation methods include: sol-gel, 

hydrothermal, chemical homogeneous precipitation, thermal decomposition and electrochemical synthesis. 

For film deposition the list includes: chemical vapour deposition, physical vapour deposition, ion assisted 

beam deposition, electron beam deposition, molecular/atomic beam epitaxial, sol-gel methods, screen 

printing and liquid phase epitaxy and precipitation techniques. Other techniques employed to prepare film 

from solution or suspensions are: dip coating, spin coating, spray coating and electrophoresis. 

Electrochemical deposition ca be used for both, powder or thin film preparation, but it became lately very 

attracting for the film deposition thanks to its intrinsic characteristics: mild temperature and pressure 

operational conditions (usually standard conditions are employed), easy control of film thickness and high 

purity. Nevertheless, calcination was always considered a necessary step to control ceria oxygen 

stoichiometry and morphology, probably due to homogeneity issues. 

Ceria can be electrodeposited anodically [61,62] or cathodically [63-75]. Electrochemical anodic deposition 

consists in applying a positive current or potential to obtain a direct oxidation of Ce3+ to Ce4+ species at the 

electrode. This approach is widely used to obtain metal oxides but less studied for ceria preparation although 

it provides some interesting perspectives. In fact, ceria anodic deposition is a direct electrochemical oxidation 

that lead to purer deposits in terms of inclusion of precursors and in terms of homogeneity and adherence 

to substrates. Cathodic deposition follows the well-studied base generation electrodeposition path, a process 

that was first introduced by Switzer and co-workers in 1994 to prepare nanocrystalline CeO2 powders and at 

a later time to prepare films with the purpose of increasing resistance of metals and alloys to high 

temperature corrosion [41,64]. Most of literature on ceria electrodeposition was focused on the cathodic 

preparation of protective film for corrosion application, but SEM analyses clearly show how film 

morphologies present big cracks that are caused by the large mismatch between the substrates and the film 

during growth and by the drying process. This phenomenon is common on almost all wet chemical methods 

used to deposit CeO2 films. In the end, film cracking confirmed to be a major drawback of electrodeposition 

for corrosion applications and lately electrochemical preparation of ceria returned as a tool to prepare 

materials for polymer electrolyte membrane fuel cells [76], for sensing [77], for water treatment [78] and to 

prepare condensate microdrop self-propelling surfaces [79]. 
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CHAPTER 1: CO2RR on ceria 

 

1.1 Introduction & motivation  

Formic acid has been proposed as a valuable energy feedstock that can be used directly on a fuel cell or as a 

H2 source through catalytic decomposition [1]. To produce formic acid (or formate) selectively reducing CO2 

could be really appealing considering its high volumetric (53.4 gL-1) and moderate gravimetric (4.4 wt.%) 

hydrogen storage capacity in ambient conditions. In Fig.1, the Pourbaix diagram for CO2/HCOOH system, 

calculated on the basis of thermodynamic data, shows that operating at neutral pH region, formate can be 

generated directly by reducing CO2, limiting HER (prevailing in acidic media)  and carbonate formation 

generated from equilibrium with CO2 in alkaline [2]. Most of papers studying CO2RR in water used phosphate 

or carbonate buffered solutions with pH close to 7 [2,3,4].  

 
Fig.1. Pourbaix diagram for CO2/HCOOH system, calculated on the basis of thermodynamic data. 

pH potential relations for water are shown in broken lines. 

 

As mentioned in I.2, several electrodes can generate formate through CO2RR; Pb, Hg, Tl, In, Sn, Cd, Bi all can 

give formate with efficiency higher than 70% in carbonate at potential lower than -1V vs SHE [2,5-8] (Cu 

unique properties toward CO2RR will be addressed on chapter 3) but obtaining higher efficiencies with low 

overpotential it’s very difficult. Kanan and co-workers reported some results on CO2 reduction over SnOx 
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electrodes to give formate at -0.7V reaching over 40% of efficiency toward formate [6]; they also reported a 

very promising study on Pb-based electrodes obtained reducing thick PbO2 layers gives almost 100% 

conversion with potential from -0.7V to -1V [9]. Very recently Li and co-workers published some results 

regarding Bi nanostructures prepared from BiO nanosheet reduced in-situ to give a high efficient electrode 

that produce HCOOH with almost 100% efficiency at overpotentials of 0.7V [5]. Furthermore, electrodes 

show a good efficiency (around 40%) at overpotential of 0.3-0.4V and are stable for several hours of 

electrolysis. Like some review already evidenced, application limits of almost all these materials seems to be 

the high overvoltage required to have high selectivity toward formate and the fact that some of them, for 

example Pb, are toxic or not green-friendly. In addition to non-noble transition metals, Pd is recognized as a 

catalyst that can produce formate at potential close to standard reduction potential, but early works reported 

low faradaic efficiencies. More recently, application of nanostructures and alloys increased sensibly efficiency 

to reach high efficiencies. For example Kanan and co-workers reported values of over 90% at potential as low 

as -0.1V vs SHE for Pd nanoparticles on carbon support [10] but with strong poisoning of surface due to 

adsorbed CO once overpotential is increased. Kortlever and co-workers reported an accurate study of Pt-Pd 

alloys in function of the size of nanoparticles that shown high conversion to formate at low overpotential and 

with good stability [11]. What is generally reducing the appealing of Pd-based catalyst, other than high cost 

compared to non-noble metals, is the fast decay of polarization currents, generally due to surface poisoning 

or structure reconstruction. Very recently Melchionna and co-workers showed how Pd@TiO2 nanoparticles 

supported on single wall carbon nanotubes were able to reduce CO2 to formic acid at near zero overpotential 

and simultaneously to evolve H2 via dehydrogenation of formic acid obtained electrochemically [12]. Authors 

claim a so-called “circular catalysis” of CO2 and catalyst stability was measured in 24h test that showed almost 

no current decreasing. Pd activity toward electrochemical CO2RR is due probably to the formation of surface 

Pd-H that can selectively hydrogenate CO2 to formic acid at low overpotentials; this is also confirmed by Tafel 

plot that give 2 different slopes at low and high overpotentials. Recently Gao and co-workers confirmed this 

mechanism correlating the polarization potential and the consequent H coverage of Pd surface with CO2 

reduction products intermediates [13]. Boni and co-workers worked on a similar system consisting of 

Pd/CeO2 supported on Carbon Nanotubes (CNTs). They reported a higher formic acid production in carbonate 

and in nitric acid for MWCNT@CeO2 electrodes compared to MWCNT@Pd/CeO2. These results seem to be in 

contrast with some papers published recently but the authors explained their lack of activity of Pd containing 

electrodes by poor Pd dispersion and very low Pd loading in their system compared to literature catalysts 

[14]. What is more interesting is that they measured very high efficiency for MWCNT@CeO2 with no 

palladium. This was something never observed before and they speculated about a mechanism involving 

formation of ceria hydride species that can hydrogenate CO2 to formic acid, similar to the one observed for 

palladium. The work for this part of the thesis was partially inspired by these results and partially inspired by 
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curiosity to explore analogies between ceria unique properties in gas phase heterogeneous catalysis and 

electrocatalysis. In particular, we want to explore properties of ceria films prepared with an electrochemical 

approach, toward CO2 electrochemical reduction in neutral media. We especially focused on formate 

production at very low overpotentials and on the relation, if any, with ceria oxygen stoichiometry. 

  

1.2 Electrode preparation 

1.2.1 Support choice: boron doped diamond 

The aim of this work was to study electrochemical deposition of ceria and its application to electrocatalytic 

reduction of CO2 in water, the first step was to choose the right support that can be functionalized with ceria. 

Support should have the following characteristics:  

 Should not be active toward CO2RR, especially in the potential window explored 

 Should not be catalytic toward HER, otherwise it will be difficult to calculate reactions efficiencies 

 Should be conductive, to prevent the slowing down of reaction by electron transport limitations. 

One of the few, if not the only class of material, that respected the previous conditions are doped diamond 

electrodes. In particular, thanks to a collaboration with Prof. Einaga, we had a chance to work with some 

Boron Doped Diamond (BDD) prepared in Einaga’s Group at Keio University [15]. BDD became a major 

argument of research since its development in the seventies. The stimulus behind such push could be 

attributed to their wide potential window, low background current, chemical inertness, and mechanical 

durability [16,17]; these features suit perfectly to electrochemical applications, especially for 

electroanalytical chemistry and electrochemical water treatment.  

 

Fig.1. Electrochemical properties of various electrodes [17]. 
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Diamond with its sp3 hybridization is known to be non-electroactive. When boron is added as doping agent, 

a disorder is generated with the consequent variation of diamond structure; Raman Spectroscopy confirms 

this effect [15] (Fig.2). There are several types of BDD obtained with different preparation modes, amount of 

doping and size of crystallites.  

 

Fig.2. (Left) Raman spectra of BDD films with a B/C ratio of 0.1% with the absence (BDD-A) and presence (BDD-B) of 
sp2, BDD with B/C ratios of 1% (BDD-C) and 5% (BDD-D) [15]. (Right) Room-temperature resistivity as a function of 

boron doping [18]. 

Our BDD films were deposited on Si wafer through a microwave plasma-assisted chemical vapour deposition 

(CVD), had a crystals range from 1 to 8 µm with a 5 µm average and were doped with 1% of Boron. Increasing 

boron content increases conductivity but also gives higher background current and a narrower potential 

window, 1% of Boron correspond to a concentration of ca 1.7 x 1021 boron atoms per cm3, and is sufficient 

to impart BDD metal-like conduction [18]. Grain size of BDD crystals are not influenced by the B/C ratio, 

instead CVD conditions, such as pressure, temperature, and deposition time, strongly affect the grain size of 

the BDD film. 

 

Fig.3. SEM images of a bare BDD electrode (left) and of a cross section of a bare BDD (right).   
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Carbon sp2 impurities in the BDD film are often considered the active sites for electrochemical reactions, 

albeit they are responsible of decreasing the stability of electrode surface and reducing free potential window 

[19]. They tend to be formed in the grain boundaries and defects during the CVD. These impurities make 

electrodes more electroactive, that in case of electrocatalysis applications, could be beneficial, even though 

surface can potentially become more susceptible to fouling. In our case, since we want to measure the 

activity of a phase deposited on BDD toward a reaction that it is known to be surface sensitive, impurities 

amount must be reduced as much as possible. Cleaning was performed by scanning at 0.3 V/s in HClO4 0.1M 

for 20 cycles. Figure 4 report cyclic voltammetries performed to clean the electrode; the insert highlights a 

region that shows an oxidation peak generated by oxidation of sp2 carbon defects. Relative intensity of this 

peak provide indications on the grade of BDD quality in terms of carbon purity. 
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Fig.4. Cyclic voltammetry performed on a BDD electrode in HClO4 0.1M, scan rate 0.300 V/s, 20 cycles. Zoom of the 
potential window with carbon sp2 oxidation peak. 

 

Surface termination of BDD is an important parameter to evaluate for “in solution” electrochemical 

measurements, because it can influence electron transfer kinetics, wettability of the electrode. Usually BDD 

prepared with a H2 plasma CVD process leaves the deposition chamber with H-termination. By treating with 

hydrogen or oxygen plasma BDD after the growth its surface will be terminated respectively with H or O. H-

termination usually is stable for long time but, if necessary, can be restored by cathodically cycling the 

electrode in acidic media. Surface termination can be measured by contact angle measurements, a high value 
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of contact angle means that surface is hydrophobic and the surface is H-terminated, to the contrary a value 

less than 65° correspond to a O-termination [16]. Before any experiment, after cleaning, we performed a 

surface activation by cycling the electrode between 0 an -3V vs SCE in HClO4 to restore H-termination. For 

our electrochemical measurements, that include cathodic scans and polarizations, having a H-termination 

was mandatory to maintain a good reproducibility; O-termination would have guaranteed a better 

wettability but increasing boron doping over a certain value, the sp2 increases generating defects at the film 

grain boundaries and in the diamond lattice this usually increases wettability. Fig.5 below shows H-

termination restoring evidenced by hydrogen evolution current increasing toward cycling. 
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Fig.5. Cyclic voltammetry performed on a BDD electrode in HClO4 0.1M, scan rate 0.300 V/s, 1rst and 10th cycles reported. 
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1.2.2 Ceria deposition on BDD electrodes 

As we stated in I.3, ceria has been electrodeposited cathodically or anodically. Mechanism of cathodic 

deposition method remains in some aspect unclear; we can divide the process in two steps: the surface 

alkalinisation and the Ce3+ to Ce4+ oxidation. A scheme of electrodeposition process is reported below. 

 

Fig.6. Scheme representing the electroprecipitation process on BDD electrodes 

 

Alkalinisation strongly depend on electrolyte composition and pH; we used nitrate-based solution but in 

literature other solutions can be found, including chloride or acetate based baths with or without H2O2 as 

additive [20-33]. Starting from a nitrate deposition bath several reduction reactions can produce OH- at the 

electrode: 

𝑁𝑂3
−  +  𝐻2O + 2𝑒−  →  𝑁𝑂2

− +  2𝑂𝐻−       Eq.1 

𝑁𝑂2
−  +  5𝐻2O + 6𝑒−  →  𝑁𝐻3 +  7𝑂𝐻−       Eq.2 

2𝐻2O + 2𝑒−  →  𝐻2 +  2𝑂𝐻−         Eq.3 

𝑂2 + 𝐻2O + 4𝑒−  →  4𝑂𝐻−      Eq.4 

𝑂2 + 2𝐻2O + 2𝑒−  →  𝐻2𝑂2 +  2𝑂𝐻−      Eq.5 

It is clear that the concentration of species and applied potentials decide the amount of OH- produced at the 

electrode enhancing the pH of the whole solution, starting with basification of a thin layers close to the 

electrode. Starting pH of the bulk solution is approximatively 4.5 and some papers report pH 10-12 close to 

the electrode surface under cathodic polarization [22,34]. Fig.7 is a sketch of the concentration profiles of 

species involved in the electrodeposition mechanism, as a function of distance from the electrode. Something 

that must be evidenced is the fact that the cell used has no separation between working and counter 
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electrode, so oxygen produced at Pt anode can diffuse in the solution enhancing the concentration of oxygen 

dissolved. 

 

Fig.7. Concentration profile of species involved in the electroprecipitation in function of distance from electrode 
surface.  

A linear sweep voltammetry registered on a BDD electrode in a 0.1m NaNO3 deposition bath is reported in 

Fig.8. Based on literature, one can recognize several different processes: at around -1V the reduction of 

nitrate to nitrite described by Eq.2 (a), at around 1.3V the reduction of nitrite to ammonium (b),  below-1.5V  

the predominant hydrogen evolution reaction (c) In the potential window between 0 and -1V, highlighted in 

the magnified insert of Fig.8, there are two diffusion limited plateaux, the first around -0.4 correspond to 

hydrogen peroxide formation (d) and the second, less pronounced is attributed to further reduction of H2O2 

(e) [34]. All these reactions participate in solution alkalinisation and in principle we can affirm that the more 

negative is the potential applied the higher is the basification of the solution next to the electrode surface.  
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Fig.8. Linear sweep voltammetry registered in 0.1M NaNO3, 0.4mM Ce(NO3)3, scan rate 1 mV/s. Insert correspond to a 

magnification of a narrower potential window. 
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The mechanism of deposition of ceria over several supports was studied extensively in literature; many 

authors suggested that the mechanism of reaction is related to the oxygen reduction on the electrode that 

is present in non-deaerated solutions [24, 27, 34]. Mechanism of deposition is considered almost 

independent of the electrode material. As shown in Fig.8, oxygen is reduced on BDD at potentials close to 

the ones used to deposit ceria. The Ce3+ cations in proximity of to the electrode, can react following two 

different pathways: they can be hydrolysed by OH- (Eq.6-7) or they can be oxidized by H2O2 formed at the 

electrode(Eq.5), direct oxidation of Ce3+ precursors by molecular oxygen is thermodynamically not 

permitted[].   

𝐶𝑒3+ + 𝑂𝐻−  →  Ce(𝑂𝐻)3       Eq.6 

2𝐶𝑒3+ + 2𝑂𝐻− + 𝐻2𝑂2 →  2Ce(𝑂𝐻)2
2+     Eq.7 

Then Ce(OH)3 can be further oxidized following Eq.8 or precipitate as is, Ce (IV) hydroxyl complex hydrolyses 

to give CeO2 that precipitates on the electrode surface as shown in Eq.9: 

4Ce(𝑂𝐻)3 +  𝑂2 →  4𝐶𝑒𝑂2 ↓ + 6𝐻2𝑂      Eq.8 

Ce(𝑂𝐻)2
2+ +  2𝑂𝐻− →  𝐶𝑒𝑂2 ↓ + 2𝐻2𝑂     Eq.9 

To summarize, we can obtain two phases, cerium (III) hydroxide obtained through direct precipitation of Ce3+ 

precursors and cerium (IV) oxides obtained through oxidation by hydrogen peroxide. According to the 

Pourbaix diagram below (Fig.9), Ce(OH)3 is the favourite precipitate obtained within the potential window 

we explored (red band). These deposition potentials were chosen to insure sufficient nitrate reduction to 

obtain an adequate alkalinisation of the solution which is essential to precipitate cerium species. Henceforth 

we report data for three potentials (-1, -1.5 and -2V vs SCE) that are representative of three regions a, b, c 

present in Fig.8 corresponding to equation 1, 2 and 3. Onset potential of curve on Fig.8 agree with standard 

potential for Eq.1 (blue line in the Pourbaix diagram), deposition potential adopted here were more negative 

than nitrate reduction even when strong alkalinisation occurred [35]. 



35 

 

 

Fig.9. Pourbaix diagram for the Ce-H2O-H2O2 system,[35]. Red band represents deposition potential window studied in 
this thesis and blue line shows Eq.1 pH dependence.  

 

We used electro-precipitation technique to deposit thin films of ceria from solutions containing 0.1M NaNO3 

and concentrations from 0.1mM to 4mM of Ce(NO3)3. pH of the solution was between 4 and 5. 

Electrodeposition of CeO2 on either BDD or other supporting materials was carried out in a two-compartment 

cell. The working electrode and a Pt wire counter electrode were placed in the main cell compartment; a 

Saturated Calomel Electrode (SCE) was in a compartment separated by a glass frit. Working electrode was 

placed mainly face up, but we performed depositions with working electrode immersed vertically in the 

solution obtaining same results in terms of film thickness and morphology. This also excludes that our 

deposits were made of species precipitated in the bulk solution.  

As we already reported shifting, between different supports means that potential deposition must be 

changed to have the desired currents; Pt containing catalyst, for example, are more active toward nitrate 

reduction and therefore to obtain the same deposition charge and a similar film thickness, we have to apply 

a consistently less negative potential. Fig.10a shows two LSV registered in the deposition bath over BDD and 

Pt electrodes; in the figure insert are reported two potentiostatic electrodepositions that gave similar 

currents though they were obtained with two very different potentials (∆= 800mV). To conclude to have the 

same grade of alkalinisation, i.e. electroprecipitation, over different electrodes we have to directly impose 

the same deposition current or applying a potential that will lead to the same stationary current. 
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Fig.10. (a) LSV registered with two different electrodes in 0.1M NaNO3, 0.4mM Ce(NO3)3, scan rate 50 mV/s, in the 
insert there are two chronoamperograms registered at E=-1V and -1.5V vs SCE respectively for Pt-BDD and BDD in the 

same solution (b) chronoamperograms registered at different potentials with BDD electrode in 0.1M NaNO3, 4mM 
Ce(NO3)3, 

 

In Fig.10b, we reported three chronoamperograms registered on BDD electrodes at three different potential 

-1, -1.5 and -2V vs SCE. Currents after a rapid drop due to double layer charging and to the local increase of 

pH on the electrode, reach a steady state, indicating that the process of deposition is not hindered by the 

formation of a poorly conductive film. In addition to potential effect, we studied relation between deposition 

charge and film thickness. Table 1 resume data collected for upper and lower limits of deposition potential, 

regarding deposition charge and film thickness measured by SEM analysis. We can observe that less negative 

potentials give higher deposition efficiencies compared to more negative potentials. Such behaviour seems 

to be in contrast with the fundamental rule that the more negative is the potential the higher is the pH close 
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to electrode and the higher is the deposition rate. This rule is probably true until is reached a potential where 

HER becomes heavily favorited. At that point, gas evolution on the electrode probably limits the precipitation 

process by mechanically removing precipitates or by preventing precipitation at the electrode.   

Table1 

Deposition Potential  
V vs SCE 

Deposition Charge 
C/cm2 

Film thickness 

-1 -0.02 7nm 

-1 -0.1 300nm 

-1 -0.2 1µm 

-2 -0.4 10nm 

-2 -1 30nm 

 

1.3. Characterization of CeO2-BDD electrodes 

1.3.1. Morphology 

We performed several experiments changing potentials and deposition charges. Control of the charge allows 

to obtain homogeneous films with thickness from 10-20 nm to several hundreds of nm. To characterize films 

we performed SEM-EDX analysis directly on the surface of electrode and of cross sections after breaking the 

electrode. EDX analysis confirm the presence of cerium on the electrodes.  

 

Fig.11. EDX analysis of a BDD modified with a ceria layer 

Over a certain thickness, film growth became fibrous and present vast cracks; as literature report, this seems 

to be quite common for thick layers, cracking is due to drying, or support/film interaction during deposition 

process itself [24, 25, 27, 29]. In general, higher thickness gave less compact film with numerous cracks due 

to drying process (refer to chapter 2). Fig.12 show a cross section image registered with secondary (a, c) and 

backscattered (b) electrons detectors to highlight ceria film distribution on BDD surface. Decreasing thickness 

to few hundreds of nanometres let us obtain deposits that showed some major porosity but could become 

unstable and brittle after prolonged electrolysis with marked gas evolution. As evidence by SEM in fig 12d, 

we were able to modify quite uniformly large area BDD electrodes.  
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Fig.12. (a, b, c) SEM cross section images of CeO2-BDD electrodes obtained at Edep=-1V vs SCE, Qdep=-0.1C/cm2, (d) 
image of an as prepared BDD electrode modified with ceria (OD= 50 mm), ceria deposit is visible in the center.  

  

Fig.13. SEM cross section images of (a) bare BDD electrode, (b) CeO2-BDD electrodes obtained at Edep=-1V vs SCE, 
Qdep=-0.02C/cm2, (c) CeO2-BDD electrodes obtained at Edep=-2V vs SCE, Qdep=-1C/cm2.  
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Reducing deposition charges, we can obtain film with thickness of few nanometres, cross section images 

show that they are uniform and compact and with a very good adhesion to BDD surface. In addition, they are 

very stable remaining unaltered after prolonged experiment also in flow electrochemical cells. Fig. 13 a and 

b show BDD as such and CeO2 modified BDD, while Fig.13c shows an in situ evaluation of thickness performed 

while registering SEM images.  

TEM analysis were performed on samples that were prepared by gently removing films from the surface and 

transferring on transparent conductive grids. They showed CeO2 nanoparticles agglomeration with an 

average dimension of less than 4 nm. Cubic structure Fm-3m with crystal dimension a=5,4 Å was confirmed 

by Fourier Transform Analysis (FTT) of Fig.14a. Particle size distribution is reported in Fig.14b, data highlight 

a very narrow particle distribution.                                       

 

Fig.14a. (a top) HRTEM image and corresponding EDX map for C, O, and Ce (a bottom) HRTEM image of CeO2 film 
obtained at E=-1V with corresponding FTT. 
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Fig.14b. Size distribution plot of ceria nanoparticle. 

 

FTT analysis of single nanoparticles confirmed the Fm-3m cubic structure of CeO2 deposits. Nanocrystallinity 

is a key feature because conductivity of cerium oxide is related to its microstructure; preferential sites for 

electronic conductivity are known to be distributed on grain boundaries and nanocrystalline phase materials 

show a much higher grain boundary density compared to microcrystalline materials. This means that 

conductivity increases with decreasing of crystal size [36]. In addition, it is widely recognized that for 

electrocatalysis, nanoparticles supply large numbers of reactive coordination sites due to their high number 

of surface atoms located at steps, corners and edges. Fig.15 shows HRTEM image with a highlighted 

magnification of a single nanoparticle and its FFT analysis for a deposit obtained at Edep=-2V.  

 

Fig.15. HRTEM image of CeO2 film obtained at Edep=-2V with a higher magnification zoom and an FFT analysis. 
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Fig.16 show a single nanoparticle analysis with zone axis (110) and (111) obtained with deposition potential 

of Edep=-1V; we did not observe any difference in terms of crystal size with different deposition potentials. 

 

Fig.16. HRTEM image of single CeO2 nanoparticle obtained at Edep=-1V with a higher magnification zoom and an FFT 
analysis of different zone axis. 

 

1.3.2. Phase characterization 

The two parameters that we can control during electroprecipitation are applied potential and concentration 

of species in the deposition bath. Nitrate is the species that induce alkalinisation on the electrode so it must 

be concentrated enough to be reduced at a constant rate during experiments. This will guarantee the same 

pH profile for the whole duration of experiment that in general is in the order of minutes. Changing Ce3+ 

concentration we can control the rate of nucleation of cerium species precipitating on the electrode. Looking 

deep into literature and comparing data with our experiments it seems that the higher the concentration of 

Cerium precursors the bigger is the size of crystals obtained and the more dendritic is the morphology 

obtained. Our experiments here revealed also that there is no effect of Ce3+ concentration on composition. 
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To study the phase composition of films in function of deposition potential we registered some diffraction 

spectra directly on film deposited on BDD and on powders obtained by mechanically removing the material 

from BDD surface. Such sample preparation was necessary due to very small thickness and low density of 

ceria deposits.  XRD spectra of deposits obtained at Edep=-1V vs SCE (Fig.17 a) shows only one phase with a 

low grade of crystallinity, confirming the existence of a nanometric powder, attributed to CeO2 cubic fluorite-

type structure [37]. For a sample prepare at Edep=-2V vs SCE (Fig.17 b), we obtained reflections attributed to 

ceria but also some weak reflections that corresponded to peaks related to Ce(OH)3 [38]. We can affirm that 

when we used a more negative potential we obtained the simultaneous formation of Ceria and cerium 

hydroxide. Our opinion is that when high cathodic current are employed the partial reduction of oxygen to 

hydrogen peroxide, that is diffusion limited, become restricted by competitive nitrate reduction, that is 

present in higher concentrations and by HER that is not limited by diffusion at all. With a limited amount of 

hydrogen peroxide produced, precipitation process can take both pathways, through eq.6 and through eq.7 

producing, in addition to ceria, some cerium hydroxide. 
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Fig.17. XRD patterns of CeO2 films removed from BDD electrodes obtained at (a) Edep=-1V and (b) at Edep=-2V. Insert 
show a zoom of most intensive reflections of patter (b). 

 

As stated in I4, ceria exceptional activity in catalysis is related to oxygen vacancies.  Composition of ceria films 

are reported to be dependent on electroprecipitation potential [30, 33]. Some authors report that ceria 

defectiveness depends on deposition potential; i.e. when a more negative potential is applied a lower oxygen 

stoichiometry is obtained. To the best of our knowledge, nobody studied doping through the control of 

electrochemical deposition process. XPS analysis were performed on samples freshly prepared with the 

different potential values (-1V, -1.5V, -2V) and with different deposition charges. Photoelectron spectroscopy 
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has been systematically used to determine the electronic states of cerium in ceria [32, 39, 40]. Figure 18 

shows the Ce 3d3/2,5/2 spectra collected from electrodeposited films. The CeO2 3d-spectrum is composed of 

two multiplets that correspond to the spin-orbit split 3d5/2 and 3d3/2 core holes. On each spectra of Fig.18 we 

can distinguish peaks related to Ce 3d5/2−3/2 doublet-pair of Ce(IV) coloured in grey and some features related 

to 3d3/2-3d5/2 spin-orbit-split doublets which are characteristic for Ce(III) coloured in red. 

 

Fig.18. XPS high-resolution measurements and spectral fits of the Ce 3d3/2-5/2 region. 

 

In Fig.19 are shown spectra of O 1s for the three potentials; we can distinguish two peaks, one at 529 eV 

(blue) generated from lattice oxygen and one at 531 eV (grey) attributed to OH- and to oxygen vacancies. 

We can exclude nitrate adsorption or inclusion because nitrogen is not present in XPS wide energy scan. 
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Fig.19. XPS high-resolution measurements and spectral fits of the O1s. 

 

We integrated peaks area that were obtained by fitting XPS spectra with Gaussian-Lorentzian peak shape 

after subtracting background obtained with a Shirley-type function. Data is resumed in tab.2. In particular, 

we calculated CeOx stoichiometry based on Ce(III) relative peak. Parameter x was calculated with following 

formula: 

𝑥 =
𝐶𝑒(𝐼𝑉)𝐴𝑡. %

100
× 2 +

𝐶𝑒(𝐼𝐼𝐼)𝐴𝑡. %

100
× 1.5 

Where Ce(IV)At.% is the atomic percentage of Ce4+ ions, Ce(III)At.% is atomic percentage of Ce3+ ions, 2 and 

1.5 represent, respectively, the oxygen stoichiometry of CeO2 and Ce2O3. 
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Table 2 
Deposition Potential 

V vs SCE 
Ce(III)  from XPS 

At.% 
Ce(IV) from XPS 

At.% 
Lattice Oxygen Ol , XPS 

At.% 
Parameter 
x on CeOx 

-1 15 85 37 1.925 

-1.5 29 71 25 1.85 

-2 33 67 12 1.835 

Decreasing the deposition potential we increased the level of oxygen vacancies. We suppose that their 

formation was partly due to the electrochemical reduction of Ce(IV) to Ce(III) during deposition process. As 

reported by Cummings and co-workers, electroprecipitated cerium (IV) species can be reduced in solution at 

potential around 0.2V vs SCE [41]. In our case film obtained is not fully reduced because electrochemical 

reduction of ceria is a process confined to the outer layers of a film; since precipitates are continuously 

deposited, only the outer layer it is exposed to the solution and for a very small time. Another consideration 

we made is related to the presence of the cerium hydroxide phase on sample prepared at -2V. In literature 

many authors reported that CeOx cubic phase is stable for 2>x>1.7 values [42], this exclude that 

electrochemical induced doping can generate a phase separation during electrodeposition to give cerium 

hydroxide. Unfortunately, we were not able to separate the contribution of oxygen vacancies and adsorbed 

species to 531 eV peak of O 1s, thus we were not able to quantify directly by integration, the ratio between 

lattice oxygen and oxygen related to vacancies. However we can see that the trend of lattice oxygen respect 

what we expected, it decreases when deposition potential becomes more negative. Ceria composition 

changes very little increasing the thickness of deposits confirming the formation of a layer with constant pH 

close to the electrode.  
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Fig.20. XPS high-resolution measurements of the Ce 3d3/2-5/2 obtained at three potentials (Edep) each with different 
deposition charges (Qdep). 
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1.4. CO2 electrochemical reduction on Ceria-BDD electrodes 

BDD electrodes main characteristic is their electrochemical inertness, however some groups studied 

electrochemical CO2RR on BDD. Einaga and co-workers obtained high faradaic yield toward different products 

like formaldehyde [43], methanol [44], and formic acid [45] in several media like seawater, buffered 

solutions, methanol or ammonia. They obtained high efficiency for electrolysis performed at potential no 

higher than -1.5V vs Ag/AgCl. Regarding formic acid their best results were obtained using a flow cell 

configuration, with yields close to 100% at potential of less than -2V vs Ag/AgCl. Cuellar and co-workers 

reduced CO2 at potential from -1.5V to less than 2V vs Ag/AgCl without obtaining yield of CO higher than a 

few percent [46]. Saha and co-workers converted carbon dioxide to peroxycarbonate in KOH with high 

efficiency but with a cell voltage of over 5V [47]. Recently Birdja and Koper demonstrated that methanol and 

formic acid are obtained at BDD electrode at very negatives potentials, were HER induce a strong local 

alkalinisation of solution. They explain these results as due to base-catalysed Cannizzaro-type 

disproportionation reactions [48]. For potentials lower than -1V vs RHE, BDD produced methane. BDD 

modified electrodes were also used as a support for deposition of metal [49] and metal oxides [50] for CO2 

reduction. All these reports showed that BDD is not active toward CO2RR as transition metal are. 

We report here our study of electrochemical CO2 reduction on ceria modified BDD electrodes. The choice of 

electrolyte is usually quite important; in literature most of papers used KHCO3 that once saturated with CO2 

form a buffered solution with pH between 6 and 10. We used a 0.1M KHCO3 concentration that lead to a 

buffer pH=6.8. This electrolyte has also the peculiarity to act as a reservoir for aqueous CO2, thanks to the 

following equilibria: 

𝐶𝑂2 +  𝐻2O →  𝐻2CO3 

𝐻2CO3 +  𝐻2O →   HCO3
− + 𝐻3𝑂+     pKa1 = 6.35 

HCO3
− +  𝐻2O →   CO3

2− + 𝐻3𝑂+     pKa2 = 10.33 

This choice is ideal for prolonged electrolysis but it is problematic when a voltammetric study of process is 

necessary; without CO2 saturation pH is over 8 so all reaction that are pH dependant shift their equilibrium 

potentials and compare electrode activity with or without CO2 becomes complicated. In addition, as stated 

by Hori [2], comparing results obtained from voltammetries has a major drawback: CO2 reduction and HER 

usually proceed at the same potentials and are not independent of each other. For example, when CO covers 

the electrode, can happen that current densities are lower than in argon-saturated solution. Therefore, 

without any evidence that the current corresponds to a single electrochemical reaction, it is misleading to 

consider only current/potential measurements. In our electrolyte, currents in some regions can be higher in 

N2 saturated than in CO2 saturated solutions. This is due to the fact that: i) in carbonate pH is different once 
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the solution is saturated with CO2 and ii) electrodes could be covered with adsorbed CO during the reduction 

of CO2 to CH4 or other hydrocarbons in aqueous media, electrode surface becomes blocked and total current 

and competitive HER are both suppressed. So we decided to study CO2RR on both 0.1M KHCO3 (CB) and 0.1M 

phosphate buffer solutions (PB) at the same pH of 6.8 with the aim not to compare different current densities 

but to verify the presence of reduction peaks that can be ascribed to CO2RR process. Electrolyte must be pre-

electrolysed before use to guarantee an elevate degree of purity; it is known that even small amount of metal 

impurities can lead to surface interference with electrochemical reactions. This is even more important for 

electrodes with small area, like the ones we used, that without pre-electrolysis are poisoned very quickly. 

BDD as such, as previously described, is almost inactive toward CO2 reduction for potential above -1V vs RHE.  

Low scan rate LSV in Fig.21 show curves for BDD and ceria-BDD electrodes in carbonate solution with and 

without CO2. CO2 reduction at bare BDD begins around -1.15V vs Hg|HgO, while LSV registered in N2 saturated 

solution present onset of HER at potentials around -1.25 vs Hg|HgO.  
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Fig.21. LSV of BDD (red) and CeO2-BDD (black) electrodes in 0.1M KHCO3 with or without CO2 saturation registered at 
1mV/s. 

 

On ceria-modified electrodes, there is a weak reduction peak that begins at -0.45V vs SHE (i) in CO2 saturated 

solution that is not present in N2. This is something never observed in previous report [14] and it is something 

that drove our attention. LSV on Ceria modified BDD, in both carbonate solution (Fig.22a) and phosphate 

buffer solution (Fig.22b), show the weak peak (i) that we attributed to CO2 electrochemical reduction. In 

phosphate solution there is also a reduction system at around -0.9V (ii) present both in in the presence and 

in the absence of CO2, that in our opinion is related to the reduction of cerium phosphate formed by reacting 
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with Ce3+ present in the deposit. Cummings and co-workers reported a higher reduction potential for cerium 

phosphate and no Ce3+/Ce4+ system without presence of phosphate, but this can be explained by the very 

different nature of ceria deposits that they obtained and maybe by presence of binders on the electrode [41]. 

When we registered a CV in CB solution (Fig.22c) we obtained, similarly to Nagarale and co-workers, a system 

due to Ce3+/Ce4+ equilibrium, confirming that when negative potentials typical of CO2 reduction are applied, 

all Ce3+ produced react with phosphate inactivating the electrode surface [51].  

-1.2 -0.8 -0.4 0.0

-0.04

-0.02

0.00

 CeO
2
-BDD / N

2
 sat.

 CeO
2
-BDD / CO

2
 sat.

j 
 /
  
m

A
/c

m
2

E  vs  SHE  /  V

i

a

-1.2 -0.8 -0.4
-0.15

-0.10

-0.05

0.00

i

ii'

 CeO
2
-BDD in CO

2

 CeO
2
-BDD in N

2

E vs SHE   /   V

j 
 /
 m

A
 c

m
-2

ii

b

 

-0.4 0.0 0.4 0.8 1.2

-0.02

0.00

0.02

E vs SHE  / V

j 
 /

  
A

/c
m

2

c

 

Fig.22. LSV of CeO2-BDD electrodes registered at 1mV/s with or without CO2 saturation in (a) 0.1M KHCO3 (b) 0.1M 
phosphate buffer solution. (c) CV of a CeO2-BDD electrode in 0.1M KHCO3 with a scan rate of 10mV/s.  
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Chronoamperograms in Fig.23 were recorded during prolonged electrolysis experiments. To collect quantity 

of products that could be analysed with sufficient accuracy, we performed CO2 electrolysis for at least 16h. 

Solution was kept under CO2 bubbling for all the duration of experiments but temperature was not, even so 

in the room there were small temperature variations. Current behaviours strongly depend on potential 

applied; for electrolysis at -0.44V, we can observe a slight activation of the electrode after several hours of 

polarization. For -0.59V electrolysis after initial stability, few hours long, current start to decay to reduce after 

10 hours to almost 50% of initial values. Experiments at -0.736V show a very rapid decay during first few 

seconds that lead to low currents that decrease constantly.  
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Fig.23. Chronoamperograms registered during CO2 reduction at three different potentials (ref. SHE) in a CO2 saturated 

0.1M KHCO3 solution on CeO2-BDD electrodes prepared at Edep=-1V, Qdep=-0.02 C/cm2. 

 

Electrolysis performed, at the same potential of -0.44V, on electrode with different compositions show very 

different current evolution. Opposite to the one with higher oxygen vacancies, the one obtained at Edep=-2V 

show very poor stability, current after few hours decay almost to zero (Fig.24). When we compare product 

efficiency of the two electrodes, we see that both generate formate at low overpotential, but the latter in 

minor amount. This confirm how activity depend on oxygen deficiency of the ceria phase. 
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Fig.24. Chronoamperograms registered during CO2 reduction at E=-0.44V vs SHE in a CO2 saturated 0.1M KHCO3 
solution on CeO2-BDD electrodes prepared at Edep=-1V, Qdep=-0.02 C/cm2 (black) and Edep=-2V, Qdep=-0.4 C/cm2 

 

Products in liquid phase were analysed with ion chromatography as described in Appendix. An attempt to 

analyse gas phase was done with a micro gas chromatographer but cell geometry, in addition to low currents 

generated, prevented any reliable determination of CO or CH4, the only gas we measured was a small amount 

of hydrogen that, as expected, increased for increasing overpotential. Results, reported in Fig.25, show that 

maximum efficiency toward formic acid (>40%) was obtained at very low overpotential (40mV) with 

electrode with small ceria layers (10-20 nm). All electrolysis are referred to thin films electrodes, when we 

performed experiments with thicker films, no matter what their composition was, we obtained smaller 

currents. Reasons for this inactivity are related to poor conductivity, lower mechanical stability under 

operational conditions but also by limited diffusion of species from and to the electrode due to increased 

thickness of films. Increasing overpotential, the formate efficiency rapidly decrease. Some test performed on 

ceria deposited on glassy carbon electrode, even if they generated higher currents, did not produce formic 

acid at all at low overpotential. This could prove that ceria is fundamental acting as a co-catalyst adsorbing 

CO2 on oxygen vacancies but it is BDD surface that reduces adsorbed CO2 to formate. That oxygen vacancies 

play a fundamental role is evidenced also by the fact that films obtained at more negative potentials, that 

we know contain less oxygen vacancies than other deposits, showed lower efficiencies to formate.   
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Fig.25. Formic acid faradaic efficiency calculated from CO2 electrochemical reduction experiments at different 
overpotentials. 

 

The mechanism we propose is related to ceria adsorption capability. Ceria supplied CO2 to the BDD electrode 

surface where H termination or perhaps metal impurities that deposited during electrolysis reduce CO2 to 

formate at low overpotentials (green pathway). At higher overpotentials it produce some species that poison 

the electrode, presumably CO (orange pathway), leading to a suppression of formate production [52]. This 

speculation, although supported by some different ceria-substrate combination experiments, could be 

confirmed only by in situ spectroscopic techniques that can evidence CO2 low temperature adsorption on 

oxygen vacancies or with a deep study of intermediates of reaction; this last option should be problematic 

due to low turnover frequencies obtained with this system. 

 

Fig.26. Scheme of different reaction pathways for CO2 electrochemical reduction. 
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1.5. Conclusions & Perspectives 

We studied the evolution of ceria film obtained with electrochemical base generation method in function of 

deposition charge and potential, and correlated such parameters with morphology, phase formation and 

oxygen vacancies density. Prolonged CO2 electrolysis showed low but stable currents. We evidenced how 

strong composition and morphology of electroprecipitated ceria can influence the activity toward CO2 leading 

to a very promising conversion to formate at very low overpotential. We suggested a mechanism of reaction 

were both CO2 adsorption on ceria and BDD hydrogenation are necessary to obtain CO2 conversion. To 

further confirmation of mechanism proposed, some in-situ analysis of Ce3+/Ce4+ interconversion could enable 

to verify CO2 adsorption and analysis of reaction intermediates can clarify reaction steps involved in the 

reduction process at BDD surface. Potential match of ceria with other metals that are active toward CO2 

reduction can lead to an increase of selectivity and a decrease of overpotential required. A manuscript related 

to results reported in this chapter is under preparation. 
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CHAPTER 2: ceria for gas phase catalysis 

 

2.1 Introduction 

In a recent paper our group, in collaboration with the Combustion Research Institute of CNR, has reported 

some results on the low/medium temperature catalytic combustion of methanol on Pt-modified Fecralloy 

foams prepared by electrodeposition [1]. That paper resemble to other applications of the electrochemical 

preparation of heterogeneous catalysts for high temperature applications that we have done during last few 

years. Results reported there, suggested that the activation of oxygen molecules on specific metal oxide sites, 

such as FeOx of Fecralloy support, closely interacting with Pt particles played a synergic role in the catalytic 

oxidation process. A solution to improve this interaction consists of employing a deliberately deposited oxide 

with intrinsically good properties as a catalyst or co-catalyst, instead of oxides spontaneously formed on the 

Fecralloy surface. In this way, we will enhance the interaction between oxide and Pt particles to favour 

synergic effects.  

Core–shell catalysts, consisting of active (noble) metal nanoparticles surrounded by porous oxides, have 

drawn much attention because of their enhanced activity and (thermal) stability in several catalytic processes 

[2,3] such as the oxidation of CO [4-5] and hydrocarbons [7-10], the water-gas shift [11], the CO2 reforming 

of methane [12,13], as well as in photocatalysis [14] and electrocatalysis [3,16]. Interactions of metal particles 

with oxide supports can radically enhance the performance of supported catalysts [17,18]: high catalytic 

activity is normally ascribed to the formation of particularly active sites at the noble metal-metal oxide 

interface [2,17,19,20], whose surface area may become very large when nanometric metal cores are 

encapsulated by porous oxide shells. Ceria, as anticipated in the introduction, is a very attractive candidate 

to embed noble metal nanoparticles since it generally displays a marked promoting effect [20,21], apart from 

its own catalytic activity [22,23]. The thermal stability of catalysts based on core-shell particles depends on 

their ability to withstand extensive morphological changes at high temperatures. Under such conditions, 

unprotected metal nanoparticles are prone to undergo aggregation [14, 24], to minimize their surface 

energy, even when dispersed on high surface area supports. This results in the loss of catalytic active centers, 

degradation of performance and even inactivation [25]. However, the physical separation by the oxides shells 

can help noble metal nanoparticles to retain their original shape, size, and catalytic activity [2,10,14] and limit 

their surface diffusion. Since ceria has exceptional crystallographic stability over wide ranges of conditions, 

with a melting temperature of 2400 °C, the synthesis of Pt core - CeO2 shell catalysts, stable at high 

temperature, has become a very active research area in material science [2-8]. 



57 

 

The production of structured catalytic reactors with core-shell noble metal–oxide nanoparticles as active 

materials meets two significant problems: (i) the synthesis of even small amounts of nanoparticles may be 

costly and cumbersome [1-11]; (ii) their transfer and firm anchoring directly onto structured reactors is still 

relatively unexplored [26]. Therefore, alternative routes are being explored. To meet practical needs of gas 

phase catalysis, noble metal-based catalysts must be dispersed and engineered into structured catalytic 

reactors. Fe-Cr-Al alloy foams, commercially known as Fecralloy, are ideal supports for catalytic reactors that 

must work at relatively high temperatures, because they possess outstanding heat and mass transfer 

properties, and excellent thermal stability [27-29]. The use of Fecralloy foams allows to reduce the size of the 

catalytic reactor needed to reach high conversions when dealing with a fast, highly exothermic and often 

diffusion limited process, such as catalytic combustion, and to design lightweight reactors with fast response 

during load variations and start-ups [28]. Materials combining CeO2 and Pt have been prepared with various 

approaches to obtain catalysts for numerous reactions, including electrochemical oxidation of methanol or 

ethanol in direct alcohol fuel cells [29-35] and partial oxidation of methanol [36-38].To the best of our 

knowledge, the use of Pt-CeO2 catalysts in low-temperature catalytic combustion of methanol has never been 

reported.   

Taking advantage of the metallic nature of Fecralloy foams, some simple preparation methods such as 

electrochemically induced precipitation[39-41], electrodeposition [42,43] and spontaneous deposition 

through a galvanic displacement reaction [44-45] have been shown capable to form well-dispersed and 

homogeneously distributed noble metal particles, strongly interacting with the substrate. Some difficulties 

might arise in the deposition onto 3D substrates, like Fecralloy foams, because their geometry might have a 

significant effect on the local pH increase required by the process. We are not aware of reports on the 

electrodeposition of CeO2 onto 3D substrates. CeO2 can be electrodeposited, both anodically [46,47] and 

cathodically [48-60], on a variety of substrates like e.g. Cu, Au, stainless and carbon steel, Si and Ni 

superalloys. The cathodic deposition of CeO2 is particularly interesting for the modification of Fecralloy, as it 

can be realized in a potential range where this alloy is stable with respect to oxidation and dissolution of its 

metal components. Therefore, we studied only the cathodic deposition of CeO2.  

To achieve a better control on the dimension and distribution of the Pt particles, pulsed deposition of Pt was 

used instead of constant-potential electrodeposition. Three preparation strategies were considered: 

simultaneous cathodic electrodeposition of Pt and CeO2, electrodeposition of CeO2, followed by 

electrodeposition of Pt, Electrodeposition of Pt, followed by electrodeposition of CeO2. In particular, after 

preliminary experiments, we focused on materials obtained with last strategy that was the only to give 

nanostructured catalysts with appropriate composition and morphologies. Research reported on this 

chapter, aimed at improving the performance of the methanol combustion over our catalysts. This process 

is technologically interesting because it is stable in a wide methanol/air operating range, produces ultra low 
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NOx, CO and VOC emissions, is suitable for micro burners and well suited for process intensification via 

integration with heat-exchangers [61-64]. Furthermore, we have extended investigations to activity and 

thermal stability measurements up to 800 °C during the oxidation of CO, which is considered a model reaction 

to test synthesized materials, due to its industrial importance and relevance to environmental issues. 

2.2. Preparation of Pt-Fecralloy, CeO2-Fecralloy and CeO2-Pt-Fecralloy catalysts 

2.2.1. Preliminary experiments 

Fig. 1 shows linear voltammograms for the deposition onto Fecralloy sheet electrodes of either Pt, from a 

H2PtCl6 solution, or CeO2, and related compounds, from two media containing either CeCl3 and H2O2 or 

Ce(NO3)3, respectively. In a 0.002 M H2PtCl6 solution, a well-defined cathodic peak due to Pt deposition was 

seen at -0.685 V, during the first scan. The shoulder at less negative potential was possibly due to the 

reduction of oxides initially present on the Fecralloy electrode surface. In experiments aimed at depositing 

CeO2, a weak reduction current was observed using a 0.001 M CeCl3 solution without H2O2 (curve not shown). 

The curve recorded in 0.001 M CeCl3, 0.020 M H2O2 solution showed a broad reduction peak centred at -0.57 

V, due to H2O2 reduction to hydroxyl ions which induced precipitation of Ce oxides/hydroxides. A sharper 

reduction peak, centred at -1.02 V was detected using a 0.1 M Ce(NO3)3 solution, and ascribed to the 

reduction of nitrate ions, which also induced a local pH increase.  

-1.2 -0.8 -0.4 0.0
-0.003

-0.002

-0.001

0.000

j 
 /

  
A

*c
m

-2

E vs SCE  /  V

a

b

c

 

Fig.1. Linear sweep voltammograms recorded with Fecralloy sheet electrodes in 0.002 M H2PtCl6 (a); 0.001 M CeCl3, 
0.020 M H2O2 (b) or 0.100 M Ce(NO3)3 (c). Scan rate: 20 mV s-1. 
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These results showed that the deposition of Pt and CeO2 could occur in compatible potential ranges, at pH 

values that were not markedly different (2 for Pt, between 4 and 5 for CeO2). Therefore, in principle, deposits 

containing both Pt and CeO2 (or its precursors) might be formed onto Fecralloy cathodes in a single co-

deposition step, similarly to the process described by Hassannejad et al. [65] for the cathodic 

electrodeposition of Ni-CeO2 composites. However, our attempts to use the straightforward co-deposition 

approach were unsuccessful and did not allow a good control of the deposit properties. Thus, we reverted to 

procedures involving sequential depositions of the two components, optimizing both the deposition of Pt 

nanoparticles with well-controlled dimension and distribution and that of CeO2 layers with appropriate 

thickness. Henceforth, we will call CeO2-Pt-Fecralloy the catalysts obtained by depositing first Pt then CeO2. 

Reverse deposition order was explored but abandoned because Pt electrodeposition onto CeO2-Fecralloy 

caused the removal of a significant fraction of the oxide initially present. Probably, the evolution of hydrogen 

bubbles that accompanied Pt deposition contributed to detaching the Ce-containing deposit. Each deposition 

process was initially studied on Fecralloy sheets, then on foam samples appropriate for the preparation of 

structured catalysts for combustion tests.  

 

2.2.2. Pulsed deposition of Pt onto Fecralloy 

Our previous work on the cathodic deposition of Pt onto Fecralloy [1], as well as on the spontaneous 

deposition of Pd by galvanic displacement [44,45], showed a strongly heterogeneous reactivity of the foam 

surface. Noble metal nuclei formed on reactive positions and, upon prolonging the electrolyses (or galvanic 

displacement reaction), grew in size but not in number, i.e. no further nucleation of new particles was 

observed. Thus, some areas of the Fecralloy foams remained devoid of Pt particles. To achieve a more regular 

distribution of Pt particles, the noble metal was deposited by pulsing the potential between two values: E1 in 

the Pt deposition region and E2 where no deposition occurred. Fig. 2 shows, as an example, the potential 

program applied to a Fecralloy sheet electrode, with E1 = -0.7 V, held during 0.1 s, and E2 = 0.1 V, held during 

0.2 s (top) and the resulting current transients (bottom). Besides double-layer charging, the reduction current 

flowing at E1 was due to Pt deposition and hydrogen adsorption (and possibly hydrogen evolution at lower 

E1 values); the weak oxidation current observed at E2 was due to hydrogen desorption and possibly to 

oxidation of Fecralloy. The current density measured at the end of the E1 pulse was higher (i.e. more negative) 

at more negative E1 potential and, at each potential, increased during the electrolysis because the noble 

metal deposition occurred on the Pt particles, already formed in the early stages of the process, whose 

surface area increased with time.  
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Fig. 2. Time dependence of the potential applied to a Fecralloy sheet electrode (top) and of the resulting current 
(bottom) during the pulsed electrodeposition of Pt from 0.002 M H2PtCl6 solution. 

 

A large number of SEM images of Pt deposits on Fecralloy sheets or foams was collected. Fig. 3 shows a few 

examples. The comparison of Fig. 3a and 3b, relevant to sheet electrodes, highlights the effect of the E1 

potential value. The number of nuclei per unit surface became larger as E1 was made more negative, up to 

reach an asymptotic value around E1 ≤ -1.0 V, and was essentially independent of the number of pulses. The 

particles dimensions were narrowly distributed, were lower for more negative E1 potential, and increased 

with the number of pulses (images not shown).  Comparison of Fig. 3b and 3c highlights the effect of the 

substrate. Pt particles formed onto Fecralloy sheet and foam electrodes under similar conditions (same E1 

value, twice larger number of pulses for the foam) had different morphologies. They were close to cubes for 

the former and consisted of clusters of quasi-cubical particles for the latter. The nucleation of Pt deposits 

appeared to be less homogeneous on the foams than on the sheets. However, using foam electrodes, 

comparable deposits were formed on the struts of their outer and inner cells, with similar surface densities 

of Pt nuclei.  
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Fig. 3. SEM images of Fecralloy sheet (a,b) and foam (c) electrodes with Pt deposits formed in 0.002 M  H2PtCl6 
solution, by varying E1 (a: -1.0 V; b, c: -0.7 V)  and the number of pulses (a,b: 400; c: 800). 

 

2.2.3 Cathodic deposition of CeO2 onto Fecralloy 

Fig. 4 shows chronoamperometric curves recorded with Fecralloy foams electrodes in either 0.001 M CeCl3, 

0,020 M H2O2 (curve a) or in 0.100 M Ce(NO3)3 (curve b). In both deposition media, after an initial fall, the 

current became essentially stable because the porous Ce-containing deposits did not induce a marked 

passivation of the electrodes. Curve b’, relevant to CeO2 deposition onto Pt-modified Fecralloy sheets, 

henceforth called Pt-Fecralloy, is discussed below. 

a 

b 

c 



62 

 

0 60 120 180
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

I 
 /
  
A

Polarization Time /  s

a

b

b'

 

Fig. 4. Chronoamperometric curves recorded with Fecralloy (a, b) or Pt-Fecralloy (b’) foam electrodes in 0.001 M 
CeCl3, 0.020 M H2O2 at -0.8 V (a), or 0.100 M Ce(NO3)3 at -1.2 V (b, b’). 

Fig 5 shows that the morphology of the deposits formed onto Fecralloy sheets in the nitrate bath changed 

with the deposition charge, i.e. with the thickness of the layers, and was similar to that reported by other 

authors [51-55, 57-59]. Thinner deposits coated the Fecralloy sheets quite homogeneously, though not 

continuously, but thicker coatings became cracked. Comparable results were obtained using CeCl3/H2O2 

solutions and, for both deposition baths, with Fecralloy foam electrodes.  

 

Fig. 5. CeO2-Fecralloy deposits formed on sheet electrodes in 0.100 M Ce(NO3)3 solution with different deposition 
charges: 0.030 (a, a’) and 0.90 C cm-2 (b, b’). 
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In order to assess the chemical nature of the deposits, they were submitted to XRD analyses, which results 

are shown in Fig. 6. Only reflections due to Fecralloy were seen in the diffractograms of as-prepared layers 

formed in CeCl3/H2O2 solutions (curve a). However, upon thermal treatment in air at 600° for 1 h, reflections 

at 2θ = 28.5, 33.0, 47.5, 56.3, 59.0 and 69.4° became visible (curve a’). Both the positions and the relative 

intensities of these reflections agreed with those expected for CeO2 [66], and demonstrated the formation 

of the desired compound. The thermal treatment may have induced crystallization of amorphous CeO2 or 

conversion and crystallization of an amorphous precursor. Deposits formed in the Ce(NO3)3 medium showed 

broad peaks due to CeO2 even before thermal treatment (curve b), which became sharper and markedly 

more intense when the samples were submitted to the thermal treatment described above (curve b’). A 

reflection at 2θ = 27.4° in diffractogram b was due to Ce(OH)3 [58, 67]. That reflection was no longer visible 

in diffractogram b’ because the thermal treatment in air converted Ce(OH)3 to CeO2. Since, as described in 

the experimental section, all catalysts underwent a pre-treatment at 600°C in air, before methanol 

combustion tests, the results in Fig. 6 show that CeO2 was the only (crystalline) Ce-containing species in the 

catalysts, whichever the deposition bath used for their preparation. The following paragraphs refer to CeO2 

deposits formed in nitrate solutions, because they are more stable and allow a better control of the Ce 

oxidation state, i.e. CeO2 vs. Ce(OH)3. 
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Fig. 6. X-ray diffractograms of deposits formed on Fecralloy sheets from 0.001 M CeCl3, 0.020 M H2O2 (a, a’) or 0.100 
M Ce(NO3)3 (b, b’), either as-prepared (a,b) or after 1-hour thermal treatment in air at 600°C (a’, b’). Reflections 

marked with * are due to Fecralloy. 

 

Pt particles were stable under CeO2 deposition conditions and were not removed from the Fecralloy 

substrate. Fig. 7 shows SEM images of CeO2-Pt-Fecralloy samples. The formation of Ce-containing deposit, 
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assessed through EDS analyses, occurred both on the Pt particles and on the Fecralloy substrate. The b image, 

obtained with 500k x magnification, shows that a ca. 20 nm thick, probably discontinuous, oxide skin formed 

on the Pt particles, producing a sort of core-shell system. A discontinuous CeO2 layer was visible on the 

Fecralloy substrate too.  

 

Fig. 7. SEM images of CeO2-Pt-Fecralloy samples. Deposits were formed onto foam cylinders with 2.3 cm3 volume. Pt 
was deposited from 0.002 M H2PtCl6 with E1 = -0.7 V and 800 pulses. CeO2 was deposited in 0.100 M Ce(NO3)3 at -1.2 V 

with 13 C cm-3 deposition charge. 

 

2.2.4 Pt loading and Pt surface area in Pt-Fecralloy and CeO2-Pt-Fecralloy catalysts 

Table 1 summarizes data on Pt loading, Pt surface area per unit foam volume (Sv,EC) and Pt surface area per 

unit Pt mass (Sw,EC) of Pt-Fecralloy and CeO2-Pt-Fecralloy samples. The Pt loading values of catalysts were 

determined by ICP-MS, after exhaustive dissolution of Pt-Fecralloy and CeO2-Pt-Fecralloy samples. The Pt 

loadings were well-below those of catalysts described in [1], and remained unchanged after CeO2 deposition, 

within the experimental error. 

a 

b 
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Table 1. Pt loading and Pt surface area of Pt-Fecralloy and CeO2-Pt-Fecralloy catalysts. Pt was deposited from a 0.002 M 
H2PtCl6 solution.CeO2 was deposited from a 0.100 M Ce(NO3)3 solution. 

System 
Pt Loading / 

mg cm-3 

CeO2 deposition charge / 

C cm-3 

Sv,EC a / 

cm-1 

Sw,EC b / 

m2 g-1 

Pt-Fecralloy 0.373 0 62 16.6 

CeO2-Pt-Fecralloy 0.370 7.1 45 12.1 

CeO2-Pt-Fecralloy 0.370 14.2 15 4.0 

a) Pt surface area per unit foam volume, determined by cyclic voltammetry 

b) Pt surface area per unit Pt mass, determined by cyclic voltammetry 

 

The Pt surface area was calculated from the H desorption charge, measured in cyclic voltammetry, as in 

previous work [1], according to a well-established method [68]. Fig. 8 shows voltammograms recorded with 

a Pt-Fecralloy and two CeO2-Pt-Fecralloy samples that differed for their CeO2 deposition charge. Increasing 

amounts of CeO2 progressively depressed the hydrogen adsorption/desorption, but did not entirely prevent 

those processes. This means that a significant part of the Pt surface remained accessible to electrolyte and, 

one could speculate, available to catalyse gas-phase reactions. The inset in Fig. 8 shows that the residual Pt 

surface area was ca. 25% of the initial one for a 14.2 C cm-3 CeO2 deposition charge, close to that used in the 

preparation of the catalysts described in the following section 3.2.  

A calculation of the Pt surface area per unit mass for spherical particles with 200 nm diameters (compatible 

with images in Fig. 7) according to the formula aPt = 6/ρPtd, where ρPt  is Pt density and d the particles 

diameter, would yield 1.43 m2 g-1. The experimental value was ca. 12 times higher, this large discrepancy was 

caused by the assumption that nanoparticles were perfect spheres, with smooth surfaces, whereas they 

rather appeared to be aggregates of smaller entities, as also observed by other authors [69]. Thus, their 

surface area per unit Pt mass was as large as that of much smaller, perfectly spherical nanoparticles. 
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Fig. 8. Cyclic voltammograms recorded in 1.0 M KOH solution with Pt-Fecralloy (a) and CeO2-Pt-Fecralloy (b,c) samples. 
CeO2 Deposition charge: 7.1 (b) or 14.2 C cm-3 (c).Scan rate 50 mV s-1. 

 

For CO oxidation test, the preparation approach was the same described above for samples used for 

methanol oxidation, but for this application we tried to obtain another set of samples with lower loading and 

smaller nanoparticles. We slightly changed experimental conditions of platinum nanoparticles 

electrodeposition on Fecralloy support. Electrolyses carried out in 0.002 M solution, with E1 = -0.7 V and 800 

pulses yielded catalysts with 370 ± 30 g cm-3 Pt loading, determined by ICP-MS, like previously described. 

On the other hand, electrolyses were carried out in 0.015 M solution, with E1 = -1.2 V and 200 pulses in order 

to obtain catalysts with a lower Pt loading (12 ± 1 g cm-3) and smaller particle dimensions. Thus, the total Pt 

content of each structured catalyst cylinder was either 850 or 28 g, respectively. Catalysts with both Pt 

loadings were further modified by deposition of CeO2. The data in Table 2 show that the deposition of 

increasing amounts of CeO2 progressively depressed the exposed surface of Pt measured by voltammetry, 

thus confirming the formation of thicker and more compact oxide shells on metal nanoparticles: as an 

example, CeO2
16.2-Pt370 foam catalyst retained only 9% of the exposed metal area displayed by Pt370. 

Nevertheless, even for the highest CeO2 deposition charge, the oxide shells retained their porosity. 

Henceforth, the structured catalysts will be labelled as Ptyy or CeO2
xx-Ptyy, where the subscript yy and the 

superscript xx represent respectively the Pt loading, in g cm-3, and the CeO2 loading, indirectly defined 

through the charge transferred during the oxide deposition, in C cm-3. Table 2 summarizes the catalysts that 

were investigated toward CO oxidation. 
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Table 2. Pt loading (Lpt), CeO2 deposition charge, specific Pt surface area by cyclic voltammetry (CV) measurements, 
corresponding average dimension of Pt nanoparticles (by SEM observation or CV), and apparent activation energy for 
CO oxidation for Pt-Fecralloy and CeO2-Pt-Fecralloy catalysts. 

Catalyst 
LPt 

μg cm-3 

CeO2 Dep. Charge 

C cm-3 

SPt  CV 

m2 g-1 

dPt SEM 
nm 

dPt  CV 
nm 

Eapp 

kJ/mol 

Pt370 370 - 16.6 100 - 200 17 121 

CeO2
4.5-Pt370 370 4.5 13.8 100 - 200  118 

CeO2
12.5-Pt370 370 12.5 5.3 100 - 200  118 

CeO2
14.2-Pt370 370 14.2 4 100 - 200  116 

CeO2
16.7-Pt370 370 16.7 1.5 100 - 200  122 

Pt12 12 - 75 25 – 50 3.8 127 

CeO2
6.5-Pt12 12 6.5 32 25 – 50  125 

Figure 9 shows SEM images of Pt-Fecralloy and CeO2-Pt-Fecralloy catalysts. The typical size of the Pt 

nanoparticles fell in the range 100-200 nm and 25-50 nm for the catalysts with higher and lower Pt loadings, 

respectively. An increase in the thickness of the CeO2 layer with increasing deposition charge was visible 

(Fig.9 a-c). However, the resolution of the images was not high enough to allow an accurate determination 

of the shell thickness. 

  

  

Fig.9. SEM images of as-prepared catalysts. a) Pt370-Fecralloy; b) CeO2
4.2-Pt370-Fecralloy; c) CeO2

13.1-Pt370-Fecralloy; d) 
CeO2

6.5-Pt12-Fecralloy. 

 



68 

 

2.3. Catalytic combustion of methanol on Pt-Fecralloy, CeO2-Fecralloy and CeO2-Pt-Fecralloy 

Figure 9 presents the results of the lean methanol combustion tests with foam catalysts in terms of the yield 

to CO2 as a function of the reaction temperature. Preliminary tests were run with a bare Fecralloy foam and 

indicated that, under the investigated experimental conditions, the oxidation of methanol started above 

375°C with the initial production of CO, followed by the formation of CO2 only above ca 430 °C. Temperatures 

above 650°C were required to reach complete methanol conversion leading to the formation of comparable 

amounts of CO and CO2, with a probable significant contribution coming from homogeneous reactions [62]. 

 

Fig. 9. Methanol yield to CO2 as a function of the reaction temperature over Pt-Fecralloy, CeO2-Pt-Fecralloy, CeO2-
Fecralloy catalysts and a bare Fecralloy foam. Feed conditions: 40 Sdm3 h-1, CH3OH 0.5 - 1.0 % in air. 

 

The deposition of CeO2 on the Fecralloy foam induced a limited improvement in the overall methanol 

oxidation activity of the system, showing some CO2 formation from ca. 350 °C (Fig. 9), always accompanied 

by the production of comparable amounts of CO (not shown). At temperatures above 550 °C, the CO2 yield 

over CeO2-Fecralloy became comparable to that on bare Fecralloy foam, thus confirming a predominant role 

of homogeneous oxidation reactions above such threshold temperature. 

In contrast, the Pt-based catalysts displayed a significant activity for methanol total oxidation, despite their 

rather low noble metal content. As shown in Figure 9, CO2 formation became measurable starting from 

slightly above 100°C and its yield increased rather steeply along with the reaction temperature, and 

eventually reached an asymptotic value above 250 °C. This corresponded to the presence of some 

unconverted methanol in the exhaust gas leaving the catalyst, whereas no other products were detected. 
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According to the results in Figure 9, any significant contributions either from the homogeneous gas phase 

reaction or from surface reactions on CeO2-Fecralloy can be safely excluded up to 350 °C.  

CeO2-Pt-Fecralloy catalyst outperformed its Pt-Fecralloy counterpart with identical noble metal loading, both 

in terms of catalytic activity before light-off (with a measured difference of ca 10 °C in T10, defined as the 

temperature required for 10 % yield to CO2, Table 3), as well as in the final CO2 yield at high temperatures 

(87.7 % vs. 75.3 %). Moreover, CO formation was never detected in the exhaust gas from the CeO2-Pt-

Fecralloy sample, and remained below 20 ppmv with Pt-Fecralloy system, in good agreement with our 

previous results on similar foam catalysts with higher Pt-loadings [1]. Reactivity measurements were 

repeated after having exposed the catalysts to reaction conditions at 600°C (2h), and gave substantially 

identical results (not shown), indicating a good stability of the catalytic activity of Pt-based foams under those 

experimental conditions.  

Table 3. Catalytic activity of foam catalysts for methanol combustion. 

System 

Pt 

Loading / 

mg cm-3 

Sw,EC / 

m2 g-1 
T10 

a / °C 
Ea 

b/ 

kJ mol-1 

RvCO2
c  / 

mmol cm-3 

h-1 

RwCO2
c / 

mmol gPt
-1 

h-1 

Sv d / 

cm-1 

Sw d / 

m2 g-1 

Fecralloy - - 470 310  -   

CeO2-Fecralloy - - 428 88.5  -   

Pt-Fecralloy 0.37 16.6 179 70.4 0.11 296 0.46 0.12 

CeO2-Pt-Fecralloy 0.37 5.0 169 70.4 0.15 415 0.69 0.19 

Pt-Fecralloy e 5 - 13 12 - 13 113-133 69.0 0.49 - 2.54 100 - 300 - - 

a) Temperature for 10 % yield to CO2; 0.5% MeOH in air, GHSV=16500 h-1. 

b) Apparent activation energy. 

c) Rv, Rw are the specific CO2 formation rates at 150° per unit volume of foam and per gram of Pt, respectively. 

d) Sv and Sw are the Pt surface areas per unit volume of foam and per gram of Pt, respectively, estimated (after 
calcination for 2h in air at 600°C) from asymptotic conversion data at 350°C. 

e) Catalysts prepared by electrodeposition starting from same batch of Fecralloy foam [1]. 

 

As shown in Figure 9 for the case of CeO2-Pt-Fecralloy, when the inlet concentration of methanol was 

increased, the CO2 yield plots shifted slightly towards higher temperatures, indicating a less than linear 

dependency of the catalytic combustion rate on fuel concentration at low temperature. Analogous results 

were also found over the Pt-Fecralloy catalyst.  
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Figure 10 presents the Arrhenius plots for the specific CO2 formation rate calculated by eq. (2) for the foam 

catalysts. Data sets obtained with CeO2-Pt-Fecralloy in the low temperature region (under kinetic control) at 

various inlet methanol concentrations merged into a single line within experimental accuracy, and departed 

from it above the light-off temperature. The same occurred for the Pt-Fecralloy foams, confirming our 

previous results [1]. The apparent activation energy was estimated from the slope of the corresponding lines 

equal to ca 70 kJ mol-1, and it was hardly affected by the addition of CeO2 as a promoter for Pt or by the noble 

metal content (Table 3). Indeed, this value agrees well with 68 - 70 kJ mol-1 obtained by us onto Pt-Fecralloy 

foams with various (higher) metal loadings, and it also compares to the activation energy previously reported 

in the literature for methanol oxidation on Pt without any support (59-64 kJ mol-1) [70]. The apparent zero 

order dependency of the CO2 formation rate on methanol concentration, and the rather repeatable estimates 

for the apparent activation energy suggest that Pt active sites might be saturated at low temperature (and, 

therefore, poisoned) by an intermediate reaction product (such as in the case of CO) strongly adsorbed on 

their surface [1,64,71,72,73]. Methanol combustion mechanism on Pt-Fecralloy was qualitatively insensitive 

to the addition of CeO2, although ceria is generally recognized as an effective promoter for noble metal based 

oxidation catalysts due to its large availability of labile lattice oxygen and its possible spillover from ceria to 

Pt [5,46].  

  

Fig. 10. Arrhenius plots for the specific CO2 production rate per unit volume during methanol combustion over Pt-
Fecralloy, CeO2-Pt-Fecralloy, CeO2-Fecralloy catalysts and a bare Fecralloy foam. Feed conditions: 40 Sdm3 h-1, CH3OH 

0.5 - 1.5 % in air. 
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Nevertheless, CeO2 addition on Pt-Fecralloy catalyst increased the methanol combustion rate (Rv) at 150°C 

by a factor as large as 1.4 (Table 3), due to the formation of some additional active sites most probably 

located at the interface between the two materials. Moreover, the combustion rate per gram of Pt (Rw) 

increased accordingly, showing an enhanced utilization factor of the costly noble metal also with respect to 

our previous results with Pt-Fecralloy foams (Table 3).  

The asymptotic behaviour of methanol conversion (which is equal to the CO2 yield) upon light-off suggests 

the onset of full external mass-transfer control. Indeed, the asymptotic methanol conversion (CO2 yield) level 

attained with each foam catalyst was independent of methanol feed concentration (0.5 vs 1.0 % vol. Figure 

10). On the other hand, methanol conversion increased to almost 100 % (not shown) when the tests were 

repeated doubling the contact time at fixed gas velocity, i.e. using two identical catalytic foams in series. All 

those results point to the onset of a diffusion-controlled regime associated with pseudo-first-order kinetics 

[74]. Under the assumption of isothermal plug flow behaviour and irreversible reaction, the steady-state 

mass balance for methanol in the reactor becomes: 

− ln(1 − 𝑥) =
𝑆𝑣𝑉𝑓𝑜𝑎𝑚𝑘𝑚

𝑄
   (4) 

where 𝑥 represents methanol conversion, 𝑆𝑣 is the specific area of the active sites per unit volume of the 

foam [cm2 cm-3], 𝑉𝑓𝑜𝑎𝑚 is the foam volume [cm3], 𝑘𝑚 is the mass transfer coefficient [cm h-1], and 𝑄 is the 

volumetric flow [cm3 h-1].  

The value of 𝑘𝑚 was estimated equal to 30 cm/s at 350 °C under our experimental conditions with the 

correlation given by Giani et al. [74], by considering that the approximate diameters of struts (ds) and pores 

(dp) in the Fecralloy foams were respectively 1.0 x 10-2 cm and 5.5 x 10-2 cm, and the geometric void fraction 

was 92.2%. Assuming that 𝑘𝑚 was not affected by the addition of the thin CeO2 overlayer on Pt particles, it 

was possible to calculate for both catalysts the specific area 𝑆𝑣 of those Pt sites that were active after light-

off (Table 3). Noteworthy, CeO2 addition increased the surface area of active sites by as much as 50%, in good 

agreement with the already reported activity increase before light-off. 

Since CeO2 was added at the final step of preparation after Pt-deposition so that neither metal loading nor 

its morphology were significantly affected, it can be argued that the increase in the number of available 

catalytic active sites in CeO2-Pt-Fecralloy was associated to the formation of novel CeO2- Pt interface sites 

that were easily accessible in the nanoparticles with a quasi-core-shell configuration. 

Comparing the values of the specific surface area of active Pt sites per gram of metal to the corresponding 

figures estimated by voltammetric experiments, i.e. comparing Sw with Sw,EC (Table 3), it is evident that the 

active sites for methanol catalytic combustion at 350°C were only a small fraction of the total exposed Pt 

surface, respectively 0.7% and 3.8% for Pt-Fecralloy and CeO2-Pt-Fecralloy foams. 
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In a recent work [72] it was convincingly shown that the active sites for CO oxidation in Pt/CeO2 catalysts 

were those atoms located along the perimeter of the boundary (and mostly those located at the corners due 

to their lower coordination number), rather than all of the Pt exposed atoms. The fundamental role of 

perimeter and corner Pt atoms is also corroborated by the lack of direct correlation previously reported 

between methanol combustion rates on Pt-Fecralloy foam catalysts with variable metal loadings and their 

corresponding total exposed noble metal surface area [1]. 

In analogy to our results on methanol combustion, Cargnello et al. [72] also observed an apparent activation 

energy of ca. 65 kJ/mol on their Pt/CeO2 nanoparticles and a zero-order rate in CO, as a consequence of 

reaction between CO adsorbed on the noble metal and O2 provided by CeO2, so that the CO on the metal was 

unable to suppress the rate of O2 adsorption. A similar synergic role of the Fecralloy support in the catalytic 

oxidation process was inferred also in the case of CO oxidation over analogous Pd-Fecralloy catalysts [28], 

possibly through the activation of oxygen molecules on specific sites (such as FeOx [75]) on the Fecralloy 

surface. Therefore, it appears that Pt active sites existed either at the Pt-Fecralloy and CeO2-Pt interfaces and 

they behaved in a similar manner (identical activation energy and apparent reaction order), despite the 

different nature of the materials. 

 

2.4. CO oxidation activity 

Figure 11a presents the results of catalytic oxidation tests carried out with an inlet feed of 0.5% vol. CO and 

10% vol. O2 over CeO2
xx-Pt370 catalysts having variable amounts of CeO2, but an equal 370 g cm-3 Pt loading. 

Light-off plots for the unpromoted Pt370-Fecralloy foam catalyst and for a CeO2
13-Fecralloy foam sample 

without any Pt are also shown for comparison. All the Pt containing catalysts displayed sharp conversion-

temperature curves, characterized by an initially slow increase of CO conversion at low temperature followed 

by a sudden jump up to 100% (attained during a rather short transient phase with a rapid increase in the 

temperature of the catalyst and the development of temperature gradients along the axial coordinate of the 

foam). Although similar to other light-off curves, the one recorded with the CeO2
4.2-Pt370 catalyst, with the 

lowest ceria content, showed a more complicated pattern, with an ignition phase extending over a larger 

range of temperature and at least two marked steps, which can be possibly ascribed to two populations of 

catalytic sites with different activity toward CO oxidation.  
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Fig.11. a) CO conversion as a function of the reaction temperature and b) corresponding Arrhenius plots for the CO 
oxidation rate over Pt370-Fecralloy and CeO2

xx-Pt370-Fecralloy foam catalysts with fixed Pt and variable CeO2 loadings; c) 
CO oxidation reaction rates, referred to Pt mass, on CeO2

xx-Pt370-Fecralloy catalysts at 250 °C, normalized with respect 
to the unpromoted Pt370-Fecralloy sample. Feed conditions CO=0.5% O2= 10% vol. 

 

It clearly appears from Figure 11 that the deposition of a CeO2 over-layer onto the Pt nanoparticles induced 

a marked increase in the catalytic oxidation activity, as shown by the shift of the CO conversion plots towards 

lower temperature with respect to the unpromoted Pt370 counterpart. In particular, the temperature 

required for 10% CO conversion decreased by as much as 35 °C passing from Pt370 foam to the most active 

CeO2
14.2-Pt370 system. Inspection of the light-off curve relevant to CeO2-Fecralloy sample allows to exclude 

that the enhancement in activity derived from a mere contribution of CO oxidation occurring on additional 

CeO2 active sites. Indeed, CO oxidation on this sample was detected only above 350 °C (a temperature at 

which CO conversion was already 100% even on the least active unpromoted Pt370 foam catalyst), and 5% 

conversion was only attained at 510 °C. 

Low conversion data acquired under differential and pseudo isothermal conditions were used to estimate 

values of the apparent activation energy from the slopes of the corresponding Arrhenius plots reported in 

Figure 11b. In the temperature range 200 – 300 °C, the activation energy for CO oxidation on Pt370 foam 

CeO
2
 load

1

3

5

7
normalized rate

at 250°C

0 4.2 12.514.2 16.7

Temperature, °C
200 250 300 350 400

C
O

 C
o

n
v
e
rs

io
n

 %

0

20

40

60

80

100

1000/T, K
-1

1.7 1.8 1.9 2.0

ln
 R

w

-3

-2

-1

0

1

a)

b) c)

Pt370

CeO2

4.2
-Pt370

CeO2

12.5
-Pt370

CeO2

16.7
-Pt370

CeO2

14.2
-Pt370

CeO2

13.0



74 

 

catalyst was equal to 121±5 kJ/mol, in good agreement with literature data on Pt single crystals, Pt wires or 

high surface area supported catalysts [35-37] and close to the binding energy of adsorbed CO [38]. 

Remarkably, the observed activation energies for all CeO2
xx-Pt370 catalysts (Table 2) were not affected by the 

presence of CeO2 nor by its loading and remained substantially equal to the value recorded for the 

unpromoted Pt370 system, in the same temperature range.  

Further temperature programmed oxidation tests were run on the best performing CeO2
14.2-Pt370 system, 

using different inlet concentrations of CO and O2. The results (Figure 12) clearly indicated that the reaction 

rate was negative first order with respect to CO and positive with roughly 0.85 order with respect to O2, in 

excellent agreement with previously reported data at similar temperatures [35,39]. The apparent activation 

energy for all the feed conditions explored was highly repeatable showing an average value of 116 ± 4 kJ/mol. 

The CO oxidation rate was not affected by the presence of CO2 (5% vol.) or humidity in the feed stream. 

The negative first-order kinetics, typical for CO oxidation on platinum group metals, is caused by the strong 

binding of CO to the metal surface, which inhibits further reaction. In general, the reaction proceeds through 

a Langmuir-Hinshelwood mechanism involving adsorbed CO and O atoms. Under reaction conditions typically 

used in most high-pressure supported catalyst studies, and most low-pressure (UHV) studies on model 

catalysts, the surface is almost entirely covered by CO, which acts as a poisons so that the reaction rate is 

determined by the rate of its desorption [76-78]. Indeed, oxygen can only adsorb at sites where CO has 

desorbed, leading to first-order dependence in oxygen partial pressure, negative-first-order dependence in 

CO partial pressure, and zero-order total pressure dependence [76]. When CO is removed from the surface, 

the catalyst ‘lights-off’ with a rate that increases quickly with increasing reaction temperature. The 

exothermic reaction makes the process autocatalytic, allowing 100% conversion to be achieved rapidly 

[27,28,76].  

Therefore, it appears that CO oxidation mechanism on Pt370-Fecralloy catalysts was insensitive to the addition 

of CeO2, in the temperature range explored in this work. Nevertheless, the specific reaction rate per gram of 

Pt increased significantly, by a factor comprised between 2 and 7, due to the deposition of the ceria overlayer 

on Pt nanoparticles (Figure 12c). Since CeO2 was deposited as an outer shell over preformed Pt nanoparticles 

firmly anchored onto the Fecralloy foam, the overall noble metal loading and the initial nanoparticle 

morphology were preserved. Therefore, the rate increase should be a consequence of an increase in the 

number of available catalytic active sites. This effect can be associated to the formation of novel sites at the 

CeO2-Pt interface [18], which are less prone to be “poisoned” by strongly adsorbed CO molecules. 

Accordingly, Zhang et al. [6] reported a higher CO oxidation activity for Pt@CeO2 core–shell catalysts 

compared to conventional Pt/CeO2 prepared by co-precipitation, which was attributed to the increased 

extension of the interface between the metal nanoparticles and transition metal oxide. In analogy to our 

result, Lee et al. [8] found a maximum in the methane oxidation activity of their Pt@CeO2 core-shell 
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nanoparticles for a shell thickness between 14 nm and 20 nm, whereas thinner CeO2 layers were less effective 

to contrast Pt sintering during catalyst annealing. 

Table 2 shows that, in contrast to the reaction rate, the values of the Pt surface area per unit mass 

progressively decreased for increasing contents of CeO2 oxide. This highlights a lack of correlation between 

the CO oxidation rate and the total exposed noble metal surface area, which was already observed for 

methanol combustion onto same Pt-Fecralloy and CeO2-Pt-Fecralloy catalysts, and was also reported for the 

case of CH4 combustion on Pd@CeO2 and Pt@CeO2 core-shell nanoparticles [8,9]. 

 

Fig.12. a) CO conversion as a function of temperature over CeO2
14.2-Pt370-Fecralloy foam catalyst for various inlet 

concentrations of CO and O2; b, c) effect of the partial pressure of CO and O2 on the catalytic oxidation rate at fixed 
temperature (215 °C). 

 

In order to check this result, we also measured the specific CO oxidation rate of two additional foam catalysts 

with a very low loading of Pt (12 g cm-3) and nanoparticle size in the range 25-50 nm (Pt12-Fecralloy and 

CeO2
6.5-Pt12-Fecralloy). As expected from geometrical considerations, for the unpromoted catalysts the 

measured Pt surface area per unit mass scaled with the inverse of the average diameter (Table 2). On the 

other hand, the CO oxidation rate per gram of Pt increased by as much as a factor 11 (Figure 13c), while the 

observed activation energy of the reaction remained the same (Table 2). This suggests that Pt sites along the 

perimeter of the Pt-Fecralloy boundary were the main responsible for CO oxidation before light-off, because 
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the observed variation in the reaction rate was consistent with the increase in their total number, which 

scales with dPt
-2 [18], rather than on the metal surface area (scaling with dPt

-1). Notably, also in the case of Pt 

nanoparticles supported onto CeO2, it was demonstrated that the active sites for CO oxidation at low 

temperature were those Pt atoms located along the perimeter of the Pt-CeO2 boundary, rather than all 

exposed atoms, for their lower coordination number [18]. 

 

Fig. 13. a) Arrhenius plots for the specific CO oxidation rate per gram of Pt over Pt370-Fecralloy, Pt12-Fecralloy and 
CeO2

6.5-Pt12-Fecralloy catalysts; b) Light-off plots for CO oxidation over Pt12-Fecralloy and CeO2
6.5-Pt12-Fecralloy 

catalysts; c) normalized catalytic reaction rate over the same catalysts at fixed temperature of 250 °C. Feed conditions 
CO=1% O2= 10% vol. 

 

The results in Figure 13b allowed the determination of reliable, purely kinetic data at relatively high 

temperatures (up to ca. 250 – 300 °C depending on the type of catalyst and feed conditions). This is due to: 

i) low Pt loadings of the structured catalysts (28 g); ii) absence of a thick porous catalytic washcoat layer 

excluding the occurrence of internal mass transfer limitations [78]; iii) very effective gas–solid mass transfer 

features of the Fecralloy open cell foams [74]. The deposition of a CeO2 over-layer enhanced the observed 

specific reaction rate by a factor close to 2 also in the case of Pt nanoparticles with diameters of 25-50 nm. 

Notably, the curves in Figure 134b relevant to Pt12 and CeO2
6.5-Pt12 catalysts cross each other. This behaviour 

may be explained by remarking that Pt superficial sites, which are poisoned by strongly adsorbed CO 

molecules up to the light-off point, can activate once CO gets desorbed at higher temperatures. Thereafter, 
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the observed reaction rate becomes proportional to the total exposed surface area of Pt, since the overall 

process is limited by the external mass transfer phenomena and the active phase is dispersed on the top of 

the Fecralloy foam without any thick porous washcoat [78]. In fact, under such conditions, the unpromoted 

Pt catalyst can outperform its counterpart with a CeO2 shell, due to its higher exposed metal surface area, as 

indeed observed for those Pt12 and CeO2
6.5-Pt12 foams with very low Pt loadings. Obviously, this effect can be 

observed only if the CO conversion reaches a plateau level well below 100%, which generally requires 

operation at rather low contact times over noble metal catalysts [74]. 

 

2.5. Thermal stability 

2.5.1. Characterization of used CeO2-Pt-Fecralloy catalysts 

Fig. 14 compares SEM images of as-prepared CeO2-Pt-Fecralloy catalysts with those, prepared under the 

same conditions, that were used as catalysts form methanol oxidation. The images show that there was no 

Pt particles loss, and that the shape and size of the particles remained unchanged. A change in the 

morphology of the CeO2 deposit on Fecralloy, presumably due to crystallization, was detected. These results 

agree with the observed stable catalytic activity of the samples when they were used in successive methanol 

combustion tests. 

 

Fig.14. SEM images of CeO2-Pt-Fecralloy catalysts taken before (a, a’) and after use in methanol catalytic combustion 
(b, b’). Preparation conditions were the same as for Fig. 7. 
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To check the stability of the core–shell particles at high-temperature, we repeated temperature programmed 

oxidation tests on the best performing CeO2
14.2-Pt370-Fecralloy foam catalyst after exposing it at 800 °C in air 

for increasing times up to a total of 24h. Figure 15a shows that the temperature required to attain 10% CO 

conversion (T10) did not vary upon ageing the catalyst at 800 °C up to 24 h, indicating a remarkable stability 

of its intrinsic catalytic activity, which, in turn, confirmed the high sintering resistance of those core-shell 

nanoparticles [3, 5, 6, 8] also when they were directly anchored onto a structured Fecralloy foam reactor. On 

the contrary, the unpromoted Pt370-Fecralloy catalyst showed an initial increase in activity after a calcination 

treatment at 800 °C for 12 h, testified by a corresponding decrease in the value of T10 by ca 20 °C (Figure 15a). 

Aging the catalyst for further 12 h at 800 °C induced a partial loss of activity, and an increase of T10 by ca.10 

°C. Such results reveal a lower thermal stability of the unprotected Pt particles anchored onto the Fecralloy 

support, that are prone to extensive reconstruction, sintering and vaporization under oxidizing conditions at 

800 °C [23, 24, and ref. therein]. 

 

Fig.15. Effect of the progressive aging at 800 °C on the temperature required to achieve 10% CO conversion over Pt370-
Fecralloy and CeO2

14.2-Pt370-Fecralloy catalysts; b) Light-off and blow-out plots for CO oxidation over aged foam 
catalysts (24 h at 800 °C) recorded respectively during heating-up or cooling-down phases at 3 °C/min. Feed conditions 

CO = 0.5% O2 = 10% vol. 
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At the end of this rather demanding thermal cycling, catalysts were studied by SEM. Figure 16 compares 

images recorded with Pt370-Fecralloy and CeO2
14.2-Pt370-Fecralloy aged catalysts. Pt370-Fecralloy, Figure 16a, 

appears to have been significantly deteriorated. Not surprisingly [23,24], after prolonged exposure at 800 °C, 

the Pt particles were evidently reconstructed, with an overall decrease of surface area, and their number 

decreased, possibly due to the detachment of some of them from the substrate, apparently with some size 

selectivity, i.e. with preferential loss of larger particles. Instead, in CeO2
14.2-Pt370-Fecralloy, both the surface 

density and the typical size of Pt nanoparticles was maintained. For both catalysts, EDS analyses of the 

Fecralloy substrate showed a strong Al enrichment, in agreement with literature reporting the formation of 

Al2O3 scales [79]. Pt loss might have been caused by poor adhesion between Pt and those scales. If so, the 

CeO2 layer, besides providing a direct protective action on Pt nanoparticles, preventing their sintering, might 

have contributed to retain firm Pt-substrate adhesion.   

 

 

Fig.16. SEM images of aged catalysts. a: Pt370-Fecralloy; b: CeO2
13.1-Pt370-Fecralloy. 
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CO conversion data retrieved during a cooling temperature ramp (at 3 °C min-1) starting from 100% at 400 °C 

revealed the occurrence of a typical hysteresis loop between light-off (ignition) and blow-out (extinction) 

branches over both unpromoted Pt370-Fecralloy and CeO2
14.2Pt370-Fecralloy catalysts, with an apparent higher 

catalytic activity during the cooling down. This phenomenon has several simultaneous origins including both 

macroscopic effects (e.g. heat and mass transfer effects, temperature and concentration gradients along the 

reactor), as well as mechanistic and structural effects related to the slow transition from an oxygen-enriched 

surface and platinum oxide formation during extinction, to a CO-covered surface including Pt reduction and 

self-inhibition [80 and ref. therein]. Noteworthy, when comparing the characteristic ignition-extinction loop 

for Pt370-Fecralloy and CeO2
14.2Pt370-Fecralloy samples (both aged at 800 °C for 24h) it clearly appears that the 

presence of ceria over Pt nanoparticles enlarged the hysteresis from ca. 30 °C to as much as 60 °C, indicating 

a strong promoting interaction between Pt cores and their reducible oxide shell [80, 81]. In particular, it was 

shown by Operando X-ray absorption spectroscopy that ceria supplied oxygen to the Pt surface in Pt-

CeO2/Al2O3, helping to maintain high activity during cooling down by retarding and contrasting the CO self 

inhibition effect, thus significantly enhancing the catalyst operability under transient conditions [81].  

2.6 Conclusions  

In this work, we have demonstrated how the cathodic deposition of noble metal nanoparticles followed by 

that of discontinuous oxide layers may be an original and effective way to use electrochemistry for the 

preparation of active catalysts for low-temperature catalytic combustion processes. Platinum and CeO2 were 

deposited, in this order, onto Fecralloy foams to obtain structured catalysts for methanol combustion. The 

reverse order and the simultaneous deposition of noble metal and metal oxide were not equally successful. 

The pulsed deposition of Pt enabled us to control size and surface distribution of nanoparticles. The CeO2 

deposit thickness and porosity were controlled through the deposition charge, in order to maintain a 

significant part of the Pt surface accessible to electrolyte or gaseous reactants. 

The CeO2-Pt-Fecralloy catalysts were superior to Pt-Fecralloy catalysts with the same noble metal loading. 

Methanol combustion to yield CO2 (with negligible CO formation), started around 100°C and reached an 

asymptotic value, limited by external diffusion mass transfer, around 250°C. Conversion to CO2 attained 100% 

when the contact time was sufficiently long. The catalysts were stable and their performance was constant 

during successive cycles involving temperatures up to 600°C. 

The increase in the number of available catalytic active sites in CeO2-Pt-Fecralloy was associated to the 

formation of novel CeO2-Pt interface sites that remained easily accessible in the nanoparticles with a quasi-

core-shell configuration. Experimental evidence was found that active sites for methanol catalytic 

combustion represent only a small fraction of the total exposed Pt surface, thus highlighting the fundamental 

role of those atoms, located at the Pt-Fecralloy and Pt-CeO2 interfaces, which were accessible to methanol. 
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Results related to this part of the chapter, including preparation of catalysts and methanol catalytic 

combustion were reported in [83]. 

The catalytic oxidation of CO was selected to investigate the effects induced by the core-shell configuration 

of CeO2-Pt nanoparticles on the intrinsic activity of the synthesized materials in the temperature range 200 

– 300 °C and on the thermal stability under oxidizing conditions up to 800 °C.  

The CO oxidation mechanism was insensitive to the addition of CeO2 overlayer on Pt particles, as confirmed 

by the unchanged apparent activation energy and reaction order with respect to both CO and O2. 

Nevertheless, the specific reaction rate per gram of Pt increased significantly, by a factor comprised between 

2 and 7, due to the formation of novel active sites at the CeO2-Pt interface which are less prone to be 

“poisoned” by strongly adsorbed CO molecules. The strong promoting interaction between Pt cores and their 

reducible oxide shell was also testified by a marked widening of the typical temperature hysteresis loop 

between light-off (ignition) of CO oxidation and its blow-out (extinction).  

In fact, it was found that the activity order between CeO2-covered Pt catalyst and their bare counterpart can 

be reverted at high temperature (after ignition, when the Pt surface is free from CO) due to the significant 

reduction of the total exposed Pt surface area in core-shell systems.  

Temperature programmed oxidation tests performed along with the ageing of the CeO2-Pt-Fecralloy catalyst 

at 800 °C in air for increasing times up to a total of 24h indicated a remarkable stability of the intrinsic low 

temperature CO oxidation activity. In turn, this confirmed the high resistance of core-shell nanoparticles 

against detachment from Fecralloy, sintering and extensive reconstruction. Activity toward CO oxidation 

including ceria influence on stability performance were reported in [84]. 
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CHAPTER 3: CO2RR on Cu-based graphenide 

3.1. Introduction 

As described in I.1, there are two distinct groups of metal catalysts for CO2 electrochemical reduction: CO 

forming metals (Cu, Au, Ag, Zn, Pd, Ga, Ni, and Pt) and formate forming metals (Pb, Hg, In, Sn, Cd, and Tl). 

Copper has a special place, with its capacity of generating a wide range of CO2 reduction products and 

promoting carbon–carbon coupling, producing HCOOH, CH4, C2H4 and alcohols with very good efficiencies [1, 

2]. If we consider CO heats of adsorption, copper is intermediate between Ni and Pt, that strongly adsorb CO, 

and Au that barely interact with CO. This means that copper adsorb CO with moderate strength and so can 

produce hydrocarbons through reduction of CO intermediate. Prof. Hori group published the first report of 

the direct reduction of CO2 to hydrocarbons on a copper electrode, with focus on obtaining reasonable 

current densities and efficiencies [3]. The authors obtained 69% of methane and ethylene at 0°C with currents 

of 10-20 mA/cm2. CO2 Electrochemical reduction attracted recently a great attention and many reviews have 

covering the literature about transition metal electrodes have been published [2, 4, 5]. More specifically, 

Gupta and Cottrell in 2006 published an in depth review focused on copper electrodes in aqueous 

electrolytes, including a comprehensive literature description [6]. They observed that CO2 reduction over 

copper electrode lead to hydrocarbons following multiple different multi-step pathways sharing different 

intermediates. The reaction yield and the products distribution strongly depend on electrolyte pH, 

composition and temperature, on CO2 pressure and on surface structure [2]. For polycrystalline copper, 

usually a large applied overpotential is required to obtain hydrocarbons. At potential values around -0.6V vs 

SHE, Cu electrodes generate low currents and HER strongly prevails. Under these conditions, reduction of 

CO2 produce at most 20% of CO or HCOOH.  Decreasing potential to -0.8V vs SHE, the onset of hydrocarbons 

production is observed, which is related to further reduction of adsorbed CO* to intermediates that are less 

strongly adsorbed [3, 7]. To enhance the catalytic activity of Cu, many authors have proposed approaches 

that included a surface activation mainly based on surface oxidation/reduction steps [8-12]; this activation 

was performed electrochemically or by thermal and plasma treatments. The activation consists in producing 

surface oxides and then reducing them to induce a surface reconstruction. In all cases these activation 

procedures caused an increase in CO2 reduction currents, due to increased roughness, and sometimes an 

increase of efficiency and/or selectivity. The best results with this approach were obtained by Li and co-

workers who prepared their electrodes by annealing a Cu foil and successively reducing it electrochemically. 

They obtained more than 40% of formate at potentials around -0.5V vs RHE [8].  

Different attempts aimed at increasing the performance of copper electrodes were done using alloys or 

nanostructured materials [12-15]. One of their main advantages on nanostructure for CO2 electrochemical 

reduction is related to surface poisoning. Nanomaterials have very large surface/mass ratios, so the presence 



88 

 

on impurities that poison the electrode by surface adsorption, becomes more tolerable. Another key aspect 

of nanostructures is related to the tailoring of electrode surface; in fact, nanoparticles can be prepared with 

high amounts of grain boundaries and with preferential lattice orientations that can lead to better 

performance without the need of activation processes. Wang and co-workers reported a study on different 

etched nanocubes, obtaining for specific enriched facets more than 60% methane selectivity but they did not 

report faradaic efficiencies nor described prolonged electrolyses [15]. Reske and co-workers studied the 

relation between activity and nanoparticle dimension, and reported no significant variations and poor 

performances compared to bulk copper [13]. On the contrary, Li and co-workers using 1:1 or 1:2 mixtures of 

copper nanoparticles and pyridinic-N rich graphene obtained, for potential of -0.8 vs RHE, close to 60% 

formate. However, they obtained similar values for just the pyridinic-N rich graphene phase that resulted 

very active toward CO2 [14]. The mechanism of reaction on different types of electrode remain under debate. 

Some proposed mechanisms are summarized in Raciti and Wang review, based on studies on single crystal 

or highly oriented electrodes [2]. Alloys also produce a change of reaction mechanism; when copper is 

coupled with gold or silver, HER is suppressed and reaction lead to an increase of efficiencies for multi-carbon 

products [16] or, in case of gold-copper nanoparticles, for CO [17]. However, in general, efficiencies toward 

products like formate or methane remains low, below those measured for polycrystalline copper.  

In electrochemistry nanostructures advantages are widely recognised, but notoriously, they have also some 

major drawbacks. The main limitations for application in electrochemical processes are related to their 

limited stability due their tendency to aggregate and form cluster. The use of a fine nanoparticle dispersion 

on porous support like alumina or zeolites was successful for some higher temperature catalysis applications 

but for electrochemistry, where a support with good conductivity is essential, carbon materials are the 

preferred choice. Unfortunately, carbon powders show limited stabilization effect on nanoparticles used in 

fuel cell. After extended experiments under operational conditions, catalysts showed nanoparticle 

aggregation and leaching [18]. To prevent such drawback, nanoparticles grown on template carbon materials 

seem to be ideal, thanks to their intrinsic high surface area and to their co-catalytic effect [19]. Recently, Hof 

and co-workers have published the preparation and electrochemical application of iron oxide nanoparticle 

embedded on graphene sheets, obtained taking advantage of reducing potential of graphite intercalation 

compounds (GICs). The iron–graphene composite material showed remarkable activity and stability [20].  Dr. 

Hof, from Dr. Alain Penicaud group, prepared similar materials containing copper instead of iron [21]. We 

used this innovative copper/graphenide material to perform a preliminary study on CO2 electrochemical 

reduction. We briefly report the preparation and characterization of electrodes and some preliminary results 

about their use toward CO2 electrochemical reduction. We focused our attention mainly on formate 

production and on the relation between current efficiency and overpotential applied. 
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3.2. Preparation  

Graphite intercalated with alkali metals are belongs to the group of graphite intercalation compound (GICs) 

[22]. KC8 is a stage 1 intercalation compound and is structurally composed by alternating layers of graphene 

and the intercalant potassium. A full charge separation is occurring generating  one negative charge for eight 

carbon atoms, which can be exploited to exfoliate the material to graphenide solutions containing sheets 

stabilized energetically [22]. This graphenide solution is a strong reducing agent. Our starting carbon material 

was obtained from microwave plasma splitting of biogas [23] and was intercalated with metal potassium 

under inert gas conditions (step A). Graphenide solutions were obtained upon dissolving a nanocarbon 

intercalation compound of formula KC8 in THF (step B). Scheme 1 and 2 resume the preparation steps of 

graphenide solution. The lateral size of the nanocarbons in solution is 15-30 nm wide and is 0.5-1.5 nm thick, 

measured by AFM. 

 

Fig.1. Scheme of preparation of the graphenide solution 

 

As shown in Figure 2, the composite material henceforth called Cu(nP)/nC, was obtained by reacting 

graphenide solutions with equimolar amounts of anhydrous copper-chloride solutions in THF (step C). This 

lead to the precipitation of what we assume are copper nanoparticles on the carbon framework. The final 

powder of composite was obtained by freeze-drying isolation after some cycles of 

centrifugation/redispersion in water; this procedure leads to further oxidation of nanoparticles to copper 

oxides/hydroxides. The twofold role of the graphenide solution was to reduce the metal salt, to form 

nanostructured material and, simultaneously, to control the size of copper nanoparticles.  
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Fig.2. Scheme of preparation of the copper/carbon composite material from graphenide solution. 

 

 

3.3. Characterization  

Morphological characterization was performed by HR-TEM analysis. Copper nanoparticles showed sizes 

between 1 and 5 nm, with a fairly narrow distribution, as shown in Figure 3. 
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Fig.3. Lateral size statistics of Cu(nP)/nC composite materials. The statistical basis is 50 counts of individual objects 
(metal oxide nanoparticles) in about 20 HR-TEM images with atomic resolution. 

 

Fig.4a shows a low magnification TEM image that perfectly matches the EDX map registered on the same 

sample (Fig.4b); copper was detected just in correspondence of carbon phase, demonstrating that no free 

nanoparticles were present. This aspect is of particular importance for electrocatalysis applications, as it is 

know that free nanoparticles are prone to leaching during operational conditions. Moreover, when 
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composite materials are obtained from reduced graphene oxide or from solutions of graphene stabilized by 

surfactants, nanoparticle and carbon matrix are bonded through weak Wan der Walls interactions. In 

contrast, copper nanoparticles in our samples seem to graft strongly on carbon, probably because they grow 

directly on carbon framework, and this could lead to a carbide-like bond. Higher magnification images 

(Fig.4c,d) show how nanoparticles were distributed on the carbon matrix, with relatively limited 

agglomeration. 

 

 

Fig.4.  (a) Lower magnification bright field HR-TEM image of an aggregate of the Cu(nP)/nC composite sample and (b) 
the corresponding EDX map. (c, d) Respectively lower and higher magnification HR-TEM image of the Cu(nP)/nC. 

 

To determine different phases present in our composite material and their crystal structure we registered 

some XRD spectra (Figure 5). As expected, reflections peak were broad due to nanometric nature on copper 

and carbon obtained. However, the diffractograms showed several reflections due to the compounds 

constituting the composites material. The starting carbon exhibited a peak at 25.9° that origins from the (002) 

a 

b 

c 

d 
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peak of turbostratic graphite; three reflections at 29.5°, 36.5° and 42.3°were generated, respectively, by Cu2O 

(110), Cu2O (111) and Cu2O (200) [24]. At 16.3° there was a weak reflection due to Cu(OH)2 (020) [25].  
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Fig.5. Powder X-ray diffraction measurement between 5 and 46° on the graphitic nano carbon (black trace) and on the 

Cu(nP)/nC composite (blue trace). Green and red dotted lines represent, respectively, reflection of Cu(OH)2 and Cu2O 
PDF card. 

 

XPS spectra (Figure 6) confirm the presence of copper species [26], and a minor presence of oxygen on the 

nanocarbon matrix. A quantitative analysis performed calculating the ratio between different peak areas 

obtained by fitting XPS spectra gave the following rough composition:  C1s [at %]=91%, O1s [at %]=6% and Cu2p 

[at%]=3%.  
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Fig.6. (a) XPS measurements on the Cu(nP)/nC composite materials (blue) in comparison to the starting carbon 
material (black). XPS high-resolution measurements of respectively: copper (b), carbon (c) and oxygen (d) regions of 

the Cu(nP)/nC composite materials and the  starting carbon material. 

 

An accurate peak fitting of Cu2p region (Figure 7) confirmed the presence of two copper species: copper (I) 

oxide and copper (II) hydroxide, in agreement with what we found through the XRD analyses.  Integration of 

Cu2p peaks of the phases gives an atomic percentage composition of roughly 45% of copper (I) and 55% of 

copper (II), that correspond to molar composition, respectively, of 38% and 62%. We don’t know how the 

phases are distributed in the nanoparticle volume but we can speculate that, since copper (I) would be 

oxidized in air, Cu(nP)/nC contained core-shell nanoparticles, whit a Cu2O nucleus covered by a shell of 

Cu(OH)2.  
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Fig.7. XPS high-resolution measurements and spectral fits of the Cu 2p3/2-1/2 region. 

 

Assuming copper nanoparticles to be spheres and considering crystal densities reported in literature [27, 28] 

we calculated volume composition from mass composition and the thickness of both copper compounds 

layers in the core-shell particles. Values are reported in Table 1. 

Table 1 

Copper 
phases 

XPS area 

Cu 2p1/2 

XPS area 

Cu 2p3/2 

Cu At.% 
amount 

% 

Mass 
amount 

% 

Crystal 
Density 
gr/cm3 

Volume 
composition 

% 

Thickness 
nm 

Cu(OH)2 16807 8403 45 53 3.95 64 1.35 

Cu2O 19906 9953 55 47 6.1 36 0.75 

 

To perform electrochemical experiments a suspension of 0.5 mg/mL of Cu(nP)/nC in THF was prepared and 

then different volumes of solution were transferred and fixed on a glassy carbon electrode by a drop-cast 

procedure. The nature of this electrode preparation implies a certain variability in the amount of material 

deposited on each electrode. Therefore, mass or surface area of copper nanoparticles must be measured to 

normalize electrocatalytic activities and compare them with literature data. Atomic emission spectroscopy 

can be employed to measure loading after electrocatalysis experiments but the destructive nature of the 

technique, the difficult dissolution of the electrode with danger of losing material and the very low quantity 

of copper present at the electrode, can limit its application. Electrochemical techniques such voltammetries, 

polarography, electrochemical impedance spectroscopy, EQCM were widely employed to measure 

electrochemical active surface area or electrode loading [29]. Our approach consists in measuring the total 

reduction charge of copper oxide/hydroxides during a slow LSV. When the scan rate is sufficiently low, we 

can assume, due to the dimension of copper nanoparticles, that almost all copper (I) or (II) species are 
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reduced to metallic copper [30]. In fact, considering the 2 nm average size of our copper nanoparticles and 

the crystal dimensions of Cu(OH)2 (2.94 x 10.59 x 5.256 Å) and Cu2O, (4.267 x 4.267 x 4.267 Å) [24, 25], the 

reduction of a few monolayers of hydroxide/oxide copper is sufficient to exhaustively reduce all copper based 

nanoparticles. Fig.8a report a LSV recorded in carbonate buffered solution on an electrode prepared by drop-

cast. During the first scan, we observed only a single reduction peak starting at -0.2V vs HgO, whereas a 

second sweep did not show any peak but just a current due to concomitant HER and CO2 reductions. We 

calculated the reduction charge, that was proportional to number of moles reduced at the electrode. Drop 

casting of different amounts of catalyst dispersion lead to different reduction charges that were roughly 

proportional to volume deposited. In Fig.8b it is shown that two electrodes prepared with different amounts 

of catalysts gave reduction charges that scaled very well with the drop cast volume used. 
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Fig.8. LSV in 0.1M KHCO3 saturated with CO2 scan rate 1mV/s. (a) report two consecutive experiments, (b) LSV on two 
electrode prepared by drop-cast with transferred volumes of 300 (red, 150 µg) and 10 (black, 5 µg) µL.  

Possible reactions involved while sweeping cathodically the electrode are: 

2𝐶𝑢(𝑂𝐻)2 + 𝐻2𝑂 + 2e− →  𝐶𝑢2𝑂 + 2OH−  Eq.1 

2Cu𝑂 + 𝐻2𝑂 + 2e− →  𝐶𝑢2O + 2OH−  Eq.2 

Cu2𝑂 + 𝐻2𝑂 + 2e− →  2𝐶𝑢 + 2OH−  Eq.3 

Based on XRD data presented above and on the Pourbaix diagram of copper (Fig.9) the Cu(nP)/nC samples 
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should contain only Cu(OH)2 and Cu2O, so the occurrence of equation 2 may be neglected. The single peak 

that we observed was probably due to reduction of copper hydroxide and cuprous oxide to metallic copper. 

Such a broad reduction peak covering a wide potential range was already reported in literature for copper 

electrodes in alkaline media and attributed to complex multistep reactions that include both equation 1 and 

3 and ultimately lead to metallic copper [31-32].  

 

Fig.9. Pourbaix diagram of Cu species in water.[33] 

 

This behaviour is strongly related to the presence of copper (II) hydroxide; when we cycle between 0.5V and 

-0.7V (Figure 10) we observe the typical behaviour of bulk copper electrodes with oxidation of Cu to Cu2O (i) 

and Cu2O di CuO (ii) and the corresponding well separated reduction peaks (i’ and ii’). Anodic and cathodic 

charges keep the same value while cycling, thus evidencing no loss of copper while cycling in that potential 

window. From reduction peak charge obtained with LSV (Figure 8), we were able to calculate electrode 

loading. We considered that the copper nanoparticles were made of different amounts of Cu2O and Cu(OH)2 

(quantified thanks to XPS data). We calculated moles and mass of copper obtained by reducing both phases 

to metal Cu and found that our samples showed loadings between 14 µg and 21 µg, with an average of 17 

µg. That value, considering a total loading of 150 µg correspond to a Cu atom percentage of 2.2% very close 

to the one obtained by XPS fitting analysis. 



97 

 

 

Fig.10. CV on a Cu(nP)/nC electrode after an electrolysis in 0.1M KHCO3 scan rate 50 mV/s. In grey, anodic and 
cathodic peaks area of copper redox systems. 

When a bicarbonate solution is saturated with CO2, its pH decreases from 8.2 to 6.8. If we perform LSV on 

Cu(np)/nC electrodes, while gradually saturating the solution, we obtain an increase of cathodic current, due 

to HER enhancement, and a shift of peak reduction potential towards less negative values (Fig.11). Both 

effects are related to pH decrease since: (i) HER is favoured when pH is lower and (ii) the standard reduction 

potential of copper (II) oxide increases according to:  E0 = 0.669 − 0.0591 ∗ 𝑝𝐻.  
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Fig.11. LSV of different Cu(nP)/nC electrodes in 0.1M KHCO3 solution. Each LSV was registered with increasing CO2 

bubbling time. Dotted lines indicate peak potentials. 
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3.4. Study of electrochemical CO2RR  

Even if the reaction mechanisms are still unclear, it is widely recognised that electrode active sites for CO2 

electrochemical consist of metallic copper. Therefore, a pre-treatment that causes the reduction of Cu(I) and 

Cu(II) species is necessary to obtain metallic copper that can efficiently reduce CO2. Reduction through a slow 

linear voltammetry (as shown in Figure 8) is a viable approach. Since the reduction potential of copper 

oxides/hydroxides is generally less negative than the potential of CO2RR, metallic Cu can be obtained by just 

polarising the electrode at the electrolysis potential and let it reduce copper oxide before or while reducing 

CO2. However, this approach has two major drawbacks: (i) is difficult to estimate electrolysis charge and 

separate the  contribution of copper reduction, (ii) for very large overpotentials, rapid reduction can induce 

the detachment of nanoparticles, due to the rapid change of molar volume of copper phases. Moreover it 

seems that the reduction of copper oxide and the formation of highly active surface sites for CO2 reduction 

are not strictly related [34].  We performed electrolysis with both procedures and observed that when we 

performed a pre-electrolysis by linear sweep, the electrodes showed increased current stability, probably 

due to reduced loss of materials.  

As we observed on chapter 1, studies on CO2 electrochemical reduction carried out with voltammetries may 

lead to misleading interpretation of the processes. For this reason, we prefer to study activity of our material 

mainly with potentiostatic techniques. In Fig.12 we reported a chronoamperogram recorded during a 2-hour 

electrolysis. After 1 hour we shifted from nitrogen to carbon dioxide bubbling, obtaining a reduction current 

increase. The enhancement was greater than expected as a result of the pH decrease. This is the evidence 

that the Cu(nP)/nC electrode showed activity toward CO2 reduction at potentials as low as -0.54V vs SHE. 

 

Fig.12. Chronoamperogram registered on a Cu(nP)/nC electrode at E=-0.540V vs SHE.After 1h of polarization gas 
bubbling was switched from N2 to CO2. 
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The electrochemical reduction of CO2 was studied at potentials from -0.56V to -1.26V vs SHE. 

Chronoamperometries showed stable currents and an increase of noise for the more cathodic potential 

values, probably due larger amount of gas evolved on the electrode surface. Fig13a shows 

chronoamperograms recorded ad various potentials and Fig.13b shows two couples of experiments 

performed with or without pre-electrolysis.  Electrodes that were not pre-reduced by LSV showed a longer 

transient to reach a stable current and a worse stability, thus confirming concerns, mentioned above, about 

directly performing CO2 reduction without reducing first the copper species at the electrode. 

 

 
Fig.13. CO2 electrolysis performed in 0.1 carbonate buffer solution on Cu(nP)/nC electrodes with theoretical loading 

of 150 µg. Registered: (a) at different potentials, (b) at different potentials with (full symbols) or without (empty 
symbols) pre-electrolysis reduction. Potentials applied reported vs SHE. 
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Despite performing a pre-electrolysis to purify electrolyte, we observed a 20-30% decrease of current during 

a 4h long electrolysis. We know from literature that this phenomenon can be related to electrode surface 

poisoning [1]. Even if purified by pre-electrolysis, electrolyte can be contaminated by residual THF used in 

the drop cast procedure (and possibly impurities present in it) as the copper amount is so small that even 

diluted impurities may be enough to contaminate part of its surface. Another hypothesis is the loss of 

composite material during prolonged electrolysis; we are still evaluating this possibility performing some 

post-electrolysis characterization. Fig.14 shows values of stationary currents obtained at different potentials 

over different electrodes, with or without LSV pre-electrolysis. A clear trend shows how a reduction process 

occurred from ca. -0.5V.  This process was not related to copper oxides reduction, because the current values 

plotted in Figure 14 were measured after 2h of electrolysis, when copper oxides/hydroxides were fully 

reduced. Several electrolysis performed in a row on the same electrode, corresponding to 16-20 h of total 

electrolysis time, shown electrode degradation, still maintaining some activity. 

 
Fig.14. Stationary currents registered after 2h of electrolysis on Cu(nP)/nC 

electrodes with theoretical loading of 150 µg at different potentials corrected for ohmic drop,  
electrolyte resistance measured with EIS as described in appendix. Black line is just an aid for eye 

Regarding selectivity of CO2 reduction process we analysed the liquid phase with ion chromatography 

(Appendix A1.x) to determine formate production. We tried also to measure methane and hydrogen 

production, but the cell geometry prevented an accurate estimation. We accumulated gas in the cell for 1h 

and then we analysed it to determine the concentration of H2. In this way we were able to obtain a trend of 

hydrogen production, though with low quantitative accuracy. The formate production started at an 

overpotential around 270 mV, with a yield of few percent; yield increased progressively with the 

overpotential, attaining values of ca. 50% at ƞ 700 mV. This remarkable result exceed what Hori obtained 
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with polycrystalline copper and what Kanan and co-workers obtained with copper-activated electrode. 

Although, a direct comparison between very different electrodes is difficult, mechanism of reaction seems 

to be the same of electrodes that have a high amount of grain boundaries, where presumably CO adsorb [2, 

8]. The potential of formation of formate matches those already reported for copper nanostructured 

materials [8]. We calculate turnover number and turnover frequency with following formulas: 

𝑇𝑂𝑁 =
𝑚𝑜𝑙𝑓𝑜𝑟𝑚𝑎𝑡𝑒

𝑚𝑜𝑙𝐶𝑢
  𝑇𝑂𝐹 =

𝑇𝑂𝑁

𝑡
 

where molcu are the moles of metallic copper present in the electrode calculated from table 1 and molformate 

are the number of moles of formate produced during the electrolysis. They are calculated from electrolysis 

total charge Qtot multiplied by formate faradaic efficiency F.E.formate and divided by faraday constant and by 

n, the number of electrons involved in the process (in our case 2, eq.): 

𝑚𝑜𝑙𝑓𝑜𝑟𝑚𝑎𝑡𝑒 =
𝑄𝑡𝑜𝑡 × 𝐹. 𝐸.𝑓𝑜𝑟𝑚𝑎𝑡𝑒

96485 × 𝑛
 

TON values are in the order 35 for the best catalysts; TOF reaches 18 as best value.  In the insert of Fig.15 we 

reported TOF values for several CO2 reduction potentials. We found that HER, estimated by GC, became 

relatively less important at higher overpotentials. We speculate that some methane may be formed together 

with formate and that the yield of both these chemicals would drop over a certain overpotential. Further 

confirmation could be achieved by exploring more negative potentials, to observe formate efficiency drop 

when other hydrocarbons are produced, but we were restricted by limited mechanical stability of electrodes 

under heavy gas evolution.  
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Fig.15. Formate faradaic efficiency calculated from experiments at different overpotentials. Insert show TOF values in 
fuction of overpotential. Empty symbol represents electrode used several times. 
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3.5. Conclusions & Outlooks  

Graphenide solutions from nanocarbons provided small-sized copper nanoparticles, ideal for electrocatalytic 

purposes. The preparation process is robust and controllable, in contrast to nanoparticle synthesis involving 

reduced graphene oxide (RGO) or surfactant-stabilized few-layer graphene. Electrochemical reduction of CO2 

at Cu(np)/nC gave a formate yield as high as  50% at an overpotential of 680mV.  Prolonged electrolyses 

showed stable currents with limited poisoning of the electrode. These results place these materials among 

the best copper-based electrocatalysts reported in literature, in terms of formate efficiency. Future 

perspective include a complete analysis of gas phase during CO2RR and a post reaction characterization of 

electrodes, to verify how much composite material was lost during experiments.  
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APPENDIX 

 

Appendix Chapter 1 

A.1.1 Electrodes preparation 

Electrodes were prepared by depositing CeO2 onto BDD and glassy carbon electrodes. Deposition of CeO2 

was carried out in two-compartment cells. The working electrodes and a Pt wire counter electrode were 

placed in the main cell compartment, a Saturated Calomel Electrode (SCE) in the lateral compartment. 

Voltammetries were performed in the same cell. Electrochemical experiments were performed with an 

Autolab PGSTAT 302N potentiostat. Solutions used to study the deposition of CeO2 range  from 0.4 mM to 

0.1 M Ce(NO3)3, with or without 0.1M NaNO3. The solution used for the deposition of CeO2 for samples used 

in electrocatalysis was: 0.004 M Ce(NO3)3, 0.1M NaNO3.  

The boron doped polycrystalline diamond films were grown on p-type (111) silicon wafers (Furuya metal Co.) 

using a commercial microwave plasma-assisted chemical vapour deposition (MP-CVD) method with 

commercial microwave plasma reactors (Model AX6500 and AX5400, CORNES Technologies Corp.). The 

substrates were pre-treated by abrading with diamond powder (∼ 1 µ, Kemet corp.), and were then washed 

with ultrasonications in distilled water and in isopropyl alcohol. Methane and trimethoxyborane (B(OCH3)3) 

were used as main carbon and boron sources. The vapor of the liquid mixture of them was introduced into 

the reactor with bubbling hydrogen. Boron-to-carbon (B/C) ratios in the gas phase were controlled according 

to Raoult's law. The individual vapor pressure for each chemical component in the mixed solutions is given 

by:  

𝑃𝑖 =  𝑃𝑖
∗  ×  𝜒𝑖  

where Pi is the partial pressure for each component, Pi
* is the vapor pressure of the pure component and χi 

is the mole fraction of the component in solution. B/C is varied from 0.1 to 5% by appropriate mixing ratios 

of the liquid source. The microwave power and deposition pressure were 5000 W and 16.0 kPa (120 torr), 

respectively. Deposition time for films with B/C up to 1% was 6 h. 
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A.1.2. Characterization techniques 

SEM images and EDS analyses were obtained with a Zeiss SIGMA instrument, equipped with a field-emission 

gun, operating under high vacuum conditions, at an accelerating voltage variable from 5 to 30 keV, depending 

on the observation needs. X-Ray diffraction (XRD) patterns were obtained by using a Philips X-PERT PW3710 

diffractometer with a Bragg-Brentano geometry, employing a CuKα source (40 kV, 30 mA). High Resolution 

Transmission Electron Microscopy (HRTEM) and High-Angle Annular Dark-Field Scanning TEM (HAADF-STEM) 

were performed on a JEOL JEM-2200FS microscope, working at 200 kV. Elemental maps were obtained by 

energy dispersive X-ray spectroscopy (EDXS). X-ray photoelectron spectroscopy (XPS) characterization was 

performed using a JPS−9000 MC (JEOL) equipped with a Mg Kα line source. 

A.1.3  Electrochemical Cell for the study of CO2RR  

Electrolysis were performed in CO2 saturated 0.1M carbonate buffer (CB) solution prepared with 0.1M KHCO3 

(pH=6.8). Analyses of the products were performed by means of a Metrohm model 850 Professional IC Ion  

Chromatograph  equipped  with  a  conductivity  detector. CB was pre-electrolized to avoid electrode 

poisoning from contaminants. 

Electrolysis were performed in a custom-made three electrodes electrochemical cell specifically designed 

and  realized in the facilities of the “Centre de Recherche Paul Pascal” (CRPP) in Pessac (France) thanks to a 

long-standing collaboration between the EMFM group in Bologna and the research group of Dr. Alain 

Penicaud in that institution.  
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Figure A.1: Front, a) , lateral b) and top c) views of the electrochemical cell. d) 3D rendering of the electrochemical cell, 

with highlighted the main components. The working electrode is not visible, but the interchangeable basal plate can 

accommodate planar SPE as well as rod-like electrodes with Ø = 6 mm. The drawings are not in scale. 

As can be seen in Fig. A.1, the cell presents two threaded cavities near the bottom of the main body, where 

the R.E. and the C.E. can be accommodated. Both electrodes are placed into glass tubes and isolated from 

the electrolytic solution with medium size porous frits. To ensure the gas-tightness at the electrode-cell body 

junction, Teflon or Viton O-rings are placed around the glass tubes and fitted into PEEK nut connectors 

(Upchurch Scientific Ltd.) which are screwed directly into the body of the cell.  

A peculiar characteristic of the cell is also the bottom part, that consists of circular interchangeable adapters 

into which different W.E. can be placed. These adapters are tightened with 6 screws to the main body and 

allow to use different W.E. with different geometries. In this work only BDD sheet electrodes have been used, 

but commercial SPEs and in general plane electrodes, can be used as well. The top of the cell is closed with a 

cap that is screwed on the main body. Two Viton sealing are placed between the cell and the cap to avoid 

the escape of gases. Connection with the gas line from the cylinders (N2 or CO2) is assured by two Swagelok 

stainless steel connectors, that also in this case are screwed into the main body and have Viton O-rings to 

prevent gas leaks.  

 

Appendix Chapter 2 

A.2.1. Preparation and characterization of catalysts  

Catalysts were prepared by depositing Pt, CeO2 or both onto Fe-Cr-Al foams (commercial name Fecralloy, 

purchased from Porvair, Metpore). Preliminary studies were made using 0.05 mm thick Fecralloy sheets. 

Foams and sheets consisted of alloys with very similar compositions, close to: Fe 70; Cr 21; Al 9 % (mass). The 

foams had 50 pores per linear inch, 0.34 g cm-3 apparent density, ca. 95% void volume, and approximate 

diameters of struts and pores 1.0 x 10-2 cm and 5.5 x 10-2 cm, respectively. Before use, both sheets and foams 

were successively washed with dichloromethane, acetone, water, and dried with a nitrogen stream. Sheet 

electrodes were 1.0 cm x 1.0 cm squares. Fecralloy cylinders (1.8 cm diameter and 2.3±0.05 cm3 volume) 

used in the preparation of catalysts were waterjet cut from large foam samples, 0.9 cm thick. 

Pt and CeO2 were sequentially deposited onto Fecralloy foam cathodes, under the following conditions: 
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I. Pt nanoparticles were deposited from H2PtCl6 solutions containing 1.0 M NaCl and HCl to yield pH 2.0, 

by pulsing the cathode potential between two values, E1 causing Pt deposition and E2 where no faradaic 

process occurred [33]. Experimental variables were the H2PtCl6 concentration, the number of pulses and 

the E1 value. Depositions were performed, using an Autolab PGSTAT 302N potentiostat, in a two-

compartment cell, with Fecralloy-foam working electrodes, a Pt wire counter electrode and a Saturated 

Calomel Electrode (SCE) located in a lateral compartment. All potential values refer to SCE.  

II. CeO2 was deposited onto Pt-modified foam cathodes, from 0.100 M Ce(NO3)3, pH 4.5 to 5.0. 

Potentiostatic electrolyses caused local pH increase and triggered the precipitation of mixtures of 

Ce(OH)3 and CeO2, entirely converted to CeO2 by thermal treatment [33]. The CeO2 loading was 

controlled through the charge transferred during the electrolyses. 

Electrodeposition of either CeO2 or Pt was carried out in two-compartment cells. The Fecralloy-foam working 

electrode and a Pt wire counter electrode were placed in the main cell compartment, a Saturated Calomel 

Electrode (SCE) in the lateral compartment. The solutions used for the deposition of CeO2, similar to those 

employed by other workers [18-30], were: (i) 0.001 M CeCl3, (ii) 0.001 M CeCl3, 0.020 M H2O2, or (iii) 0.100 M 

Ce(NO3)3. Electrolyses were performed at constant potential. Platinum was deposited from 0.002 M M 

H2PtCl6 solutions containing 1.0 M NaCl and HCl to yield pH 2.0. Electrolyses were performed by pulsing the 

working electrode potential between E1, in the range -0.6 to -1.2 V, inducing Pt electrodeposition, and E2, 

variable between 0.1 and -0.1 V. The number of cycles was varied to control the deposition charge and hence 

the Pt loading.   

Cyclic voltammograms aimed at assessing the Pt surface area were recorded using either Pt-Fecralloy or 

CeO2-Pt-Fecralloy samples as working electrodes, a Pt wire as counter-electrode and an Hg/HgO/1 M KOH 

reference electrode. Voltammograms were recorded in 1.0 M KOH, over a potential range where the 

adsorption/desorption of hydrogen onto/from the Pt surface could be measured with good precision 

because redox processes due to Fecralloy were negligible. To obtain the Pt surface area, the hydrogen 

desorption charges were divided by 190 C cm-2, i.e. by the hydrogen desorption charge relevant to an ideally 

flat Pt electrode [36]. Electrochemical experiments were performed with an Autolab PGSTAT 302N 

potentiostat.  
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SEM images and EDS analyses were obtained with a Zeiss SIGMA instrument, equipped with a field-emission 

gun, operating under high vacuum conditions, at an accelerating voltage variable from 5 to 30 keV, depending 

on the observation needs. Pt loading was determined by microwave-assisted dissolution of Pt-Fecralloy and 

CeO2-Pt-Fecralloy samples in hydrochloric/nitric acid mixtures and analysis of the resulting solution with an 

ICP-MS Thermo Elemental X7-series mass spectrometer equipped with Plasma Lab software. Multi-element 

standard solutions for instrument calibration were purchased from Accustandard. X-Ray diffraction (XRD) 

patterns of Fecralloy sheets electrolyzed in CeCl3 or Ce(NO3)3 solutions, both as-prepared and after 1-hour 

thermal treatment in air at 600°C,  were obtained by using a Philips X-PERT PW3710 diffractometer with a 

Bragg-Brentano geometry, employing a CuKα source (40 kV, 30 mA).  

 

 

A.2.2. Methanol combustion tests 

The catalytic combustion of methanol over foam catalyst disks (D x L = 1.8 x 0.9 cm) was investigated under 

dry lean feed conditions (0.5 – 2.0 % vol. in air) using a lab scale test rig already described elsewhere [1]. The 

reactor was operated at nearly atmospheric pressure, under pseudo-isothermal conditions, by ramping up 

the temperature with an electric furnace, starting from 50°C, at ca. 3°C min-1. Temperatures at the inlet and 

outlet section of the catalytic foams were measured by 2 K-type thermocouples with their tips in contact 

with the solid structure. The inlet flow-rate was regulated by mass flow controllers at 40 Sdm3 h-1, 

corresponding to a Gas Hourly Space Velocity (GHSV) = 16500 h-1. Before activity tests, the catalysts were 

calcined for 2 h in flowing air at 600°C.  

The effluent gas was dried and continuously analysed with an ABB Advance Optima2020 and a GEIT FLUE 

GAS, equipped with ND-IR detectors for CO, CO2, CH4 and an electro-chemical cell for O2. In fact the CH4 

detector gave a linear response to methanol, thus it was used to measure its concentration in the feed stream 

after a specific calibration.  

Methanol conversion to CO2 (yield) through reaction (1) was simply defined as the molar ratio between CO2 

formed (outlet) and methanol in the feed.  

CH3OH + 1.5 O2 →CO2 + 2 H2O    (1) 

Possible by-products at low temperature/conversion, such as formaldehyde (CH2O) or methyl formate 

(CHOOCH3), were not measured directly.  
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The CO2 production rate was estimated from low conversion data (before rapid ignition, ΔTout-in <15°C) 

assuming differential conditions, isothermal plug flow reactor, and constant molar flow. Reaction rates were 

normalized with respect to foam volume and Pt mass, according to equations (2)-(3): 

Foam

CO

v
V

yF
COR 2

2




      [mol cm-3 h-1]    (2) 

Pt

CO

w
W

yF
COR 2

2




      [mol gPt
-1 h-1]    (3) 

where F is the total inlet molar flow rate (≈1.67 mol h-1), VFoam is the catalyst volume, WPt  is the weight of Pt 

in the foam catalyst and 𝑦𝐶𝑂2
is the outlet molar fraction of CO2. The apparent activation energy of the 

catalytic deep oxidation was estimated by Arrhenius plots of 𝑅𝑣𝐶𝑂2.    

 

 

A.2.3. CO oxidation tests 

 Catalytic foam cylinders were tested for the oxidation of CO in a lab scale quartz reactor operated at 

atmospheric pressure [33] by ramping up the temperature with an electric tubular furnace from 100 °C to 

600 °C at 3 °C/min. The temperature of the catalyst was measured by two K-type thermocouples (diameter 

= 0.5 mm) placed in contact with the front and back face of the foam. The fluxes of high-purity gases (CO, O2, 

N2) from cylinders were calibrated via Brooks 5850-MFCs. The gases were pre-mixed to give inlet 

concentrations of CO and O2 respectively comprised in the ranges 0.25 – 1 % and 5 – 20 % by volume. The 

CO was cleaned by passing it through an activated-carbon trap to remove eventual metal carbonyls. Some 

catalytic tests were also performed at fixed preheating and/or using a feed stream pre-humidified at room 

temperature or comprising 5% vol. of CO2. The total inlet flow rate Q was set at 40 dm3 h-1 at standard 

conditions (unless otherwise specified), corresponding to a Gas Hourly Space Velocity (GHSV) = 17000 h-1. 

Before activity tests, the catalysts were calcined for 2 h in flowing air at 600 °C. The concentration of CO and 

CO2 in the product gas stream was continuously analysed with an ABB Advance Optima 2020 instrument 

equipped with ND-IR detectors.  

 Separate tests run at fixed temperature levels (not shown) confirmed that CO conversion 

corresponded to what measured during temperature programmed experiments. Low conversion data (<10%, 

ΔTout-in <5 °C) were used to estimate the catalytic reaction rate per mass of Pt (𝑅𝑤) under the assumption of 

differential conditions, isothermal plug flow reactor, and constant molar flow, according to equation (1): 
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CO
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R 2




      [dm3 gPt
-1 h-1]    (1) 

where WPt is the mass of Pt in the foam catalyst and 𝑦𝐶𝑂2
is the outlet molar fraction of CO2. The apparent 

activation energy of the catalytic CO oxidation was estimated by Arrhenius plots of 𝑅𝑤, while the orders of 

reaction with respect to CO and O2 were estimated by plots of ln𝑅𝑤, at fixed temperature, vs. ln𝑃𝐶𝑂 and 

ln𝑃𝑂2, respectively. 

   

Appendix Chapter 3 

A.3.1 Cu(np)/nC preparation 

All chemicals have been purchased from Sigma Aldrich. THF was purified prior use by means of Pure Solv 400-

4-MD solvent purification system that is attached directly to the Glove box. Anhydrous metal chlorides, at 

least 99.99 % purity, have been obtained from Sigma Aldrich and have been used without further treatment. 

Synthesis of intercalation compound  

120 mg (10.0 mmol) of purified graphitic nano carbon (nC), generated through the plasma splitting of 

methane,[1] and 48.8 mg (1.25 mmol) cleaned potassium (stoichiometry KC8) were placed together in a vial 

inside an argon filled glove box and heated for 5 hours at 180°C on a heating plate under occasional stirring. 

Afterwards, the vial was allowed to cool down to room temperature and the intercalated graphitic nano 

carbon (KC8) was collected. [23 chapter 3]. 

Dispersion of intercalated nano carbon (KC8) and isolation of the graphenide solution 

150 mg of the as prepared intercalated graphitic nano carbon (KC8) were mixed with 150 mL of absolute THF 

under inert conditions in a 250 mL Erlenmeyer flask and the dispersion was stirred for 1 day by the aid of a 

glass coated magnetic stirring bar. Then the dispersion was centrifuged at 4500 rpm for 30 min under inert 

conditions and the faint yellowish upper solution was retained. The concentration of the graphenide solution 

was determined by dry extracts as 0.20 mg/mL ± 0.02 mg/mL. 
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Synthesis of the composite compound Cu(nP)/nC 

The as prepared graphenide solution has been used directly as reduction agent for the Cu(nP)/nC composite 

synthesis. Equimolar amounts of recrystallized metal(II) chloride dissolved in 10 mL of absolute THF were 

added dropwise to 100 mL graphenide solution in a 250 mL Erlenmeyer flask inside an argon filled glove box. 

After 5-15 min, aggregation and precipitation occurred and the respective dispersion was stirred for 24 hours. 

Afterwards, the dispersion was removed from the glove box and 100 mL of deionized water was added to 

the dispersion under ambient conditions. The sample was purified by repeated centrifugation and re-

dispersing steps (4 times, 1 h at 10 000 rpm, 15300 g) and the final composite material M(np)/nCs was 

isolated by freeze drying. 

A.3.2 Characterization 

X-ray powder diffraction (XRD). XRD patterns were collected on a Rigaku Nanoviewer (XRF 

microsourcegenerator, MicroMax007HF),with a 1200W rotating anode coupled to a confocal Max-FluxOsmic 

Mirror (Applied Rigaku Technologies, Austin, USA) and a MAR345 image plate detector (MARResearch, 

Norderstedt, Germany); samples were filled into glass capillaries and were exposed to the X-ray beam ; the 

detector was placed at a distance of 156 mm providing access to 2q angles in the range between 0.9° and 

48°. 

X-ray photoelectron spectroscopy (XPS): A ThermoFisher Scientific K-ALPHA spectrometer was used for 

surface analysis with a monochromatized AlKα source (hν = 1486.6 eV) and a 200 microns spot size. A 

pressure of 10-7 Pa was maintained in the chamber during analysis. The full spectra (0-1150 eV) were 

obtained with constant pass energy of 200 eV and high resolution spectra at constant pass energy of 40 eV. 

Charge neutralization was applied for all samples. High resolution spectra were fitted and quantified using 

the AVANTAGE software provided by ThermoFisher Scientific and the Scofield sensitivity factors available 

from the internal database. 

Transmission electron microscopy (TEM): TEM measurements were performed on a TEM-FEG HR 

(JEOL2200FS). TEM grids have been prepared by drop casting 20 ml of nanocomposite dispersion in THF 

directly onto SF400-CU or SF400-NI (for the copper component) TEM grids, silicon monoxide membranes on 

400 mesh copper grids (Electron microscopy science). Size statistics have been obtained using a combination 

of ImageJ (v1.50 b) and Origin 9.2. 
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 A.3.3. Electrochemical CO2 reduction 

Apparatus and cell used were the same reported in the Appendix of chapter 1. All electrodes were prepared 

through a drop-cast procedure. Glassy carbon plates, that acts like support electrodes, were polished with a 

1µm alumina suspension, accurately rinsed with water and sonicated, after that they were rinsed again with 

water and acetone and dried. We prepared a suspension in THF with 0.5 mg/mL of Cu(np)/nC material, 

suspension was repeatedly sonicated before deposition. 300 µL of suspension were transferred onto GC 

plates, with 5 µL aliquots, giving a nominally catalyst loading of 150 µg that included 15 µg of copper. THF 

was evaporated under mild vacuum conditions. 
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'No Man is an Island' 

No man is an island entire of itself; every man 

is a piece of the continent, a part of the main; 

if a clod be washed away by the sea, Europe 

is the less, as well as if a promontory were, as 

well as any manner of thy friends or of thine 

own were; any man's death diminishes me, 

because I am involved in mankind. 

And therefore never send to know for whom 

the bell tolls; it tolls for thee. 

MEDITATION XVII 

Devotions upon Emergent Occasions 

John Donne 

 


