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Introduction

Every seismic event produces seismic waves which travel throughout the Earth.

Seismology is the science of interpreting measurements to derive information about earth-
quakes and the structure of the Earth. It is usually driven by observations and advantaged by
improvements in the instrumentation and progresses in seismological theory.

Global tomography is one of the possible application field of seismic studies. Seismic waves
from big enough earthquakes can be observed throughout the world, and as they travel deep
through the Earth or along the surface, their arrival times and shapes are impregnated with
information on the medium they travelled through. The inverse problem in seismic tomog-
raphy consists of mapping the Earths two and three-dimensional elastic velocity field from a
large quantities of seismic measurements. Over the last two decades numerous tomographic
models of the Earth’s interior have been derived improving our knowledge of geophysical and
geodynamical processes.

Several factors can affect the quality and the reliability of 2D or 3D global tomographic map
derived from seismic tomography. These factors are separately objects of investigation by side
of different research groups; the goal of all those studies is to obtain a common knowledge of
Earth structure and of the physical processes concerned it.

The nature of data can affect, for example, the characteristics of our model; as it is well
known we can use different components of seismic wave record like travel times, waveform,
amplitude or spectra but this clearly lead to the application of different methods for deter-
mining Earth structure which can produce, sometimes, different or even opposite results.
Theory at the basis of tomographic problem is another important factor of influence. At the
moment there are more than one theory used in seismic tomography to implement the tomo-
graphic problem; the evaluation of reliability of one theory respect to another one is currently
object of discussion in the seismic environment. To the classical and easier Ray theory (Wang
& Dahlen,[38]) which is based on a infinite-frequency approximation is usually set against the
“Scattering theory” based on Born approximation (Marquering et al., [20]) which, taking in
account the finite frequency effect, produce results which are sensitive to the Earth structure
off the classical ray-path.

Another interesting factor of influence is the parameterization.

Usually global tomographic images of the Earth can be expressed as linear combination of
chosen basis functions. There are several possible choice, known in literature: discrete cells
(e.g. Boschi & Dgziewonski, [9]), splines (e.g., Boschi & Ekstrom, [10]; Piromallo & Morelli,
[26]), spherical harmonics (e.g., van Heijst and Woodhouse,[14] , Ekstrom et al.,[13] ) .



6 Introduction

With this work we are interested to focus our attention on this last aspect of influence so,
using the ray theory and two different types of seismic measurements (those of surface wave
phase velocities and those of body wave velocities), we are going to evaluate and testing a
new type of parameterization, performed by means of wavelet functions. This parameteriza-
tion is already used for seismic local study (e.g., Piromallo et al., [25],) but it is rarely applied
in global tomography (e.g., Chiao & Kuo, [12]).

It is known from the classical Fourier theory, a time series can be expressed as the sum of a,
possibly infinite, series of sines and cosines. This sum is often referred as a “Fourier expan-
sion”. The big disadvantage of a Fourier expansion is that it has only frequency resolution
and no time resolution. This means that, although we might be able to determine all the
frequencies present in a signal, we do not know when they are present. To overcome this
problem in the past decades several solutions have been developed which are more or less
able to represent a signal in the time and frequency domain at the same time.

The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome
the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is
to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up
data into different frequency components, and then study each component with resolution
matched to its scale, so they are especially useful in the analysis of non stationary process
that contains multi-scale features, discontinuities and sharp strike.

Wavelets are essentially used in two ways when they are applied in geophysical process or
signals studies:

-as a basis for representation or characterization of process;

- as an integration kernel for analysis to extract information about the process.

In any analysis or representation the choice of the kernel or basis function determines the
nature of information that can be extracted or represented about the process.

With this thesis we attempt to develop a Multiresolution Wavelet Analysis in the field of Global
Seismic Tomography, with the aim of evaluating and quantifying the power of this approach
in terms of earth structure localization and interpretation.

In the first part of work we review the basic properties of wavelets that make them such an
attractive and powerful tool for geophysical applications.

We first look at the concept of wavelet function and its properties in the cartesian geome-
try, more precisely in the time-scale plane (scale being in a way the opposite of frequency,
because the term frequency is reserved for the Fourier transform). Then, introducing the con-
cept of Second Generation Wavelets (Sweldens, [31]; Schroder & Sweldens, [29]) , we look at
the wavelets and their properties in spherical domain, namely its application on Earth geom-
etry.

The two types of above-mentioned applications of wavelets in geophysical field, are object
of study in the second part of this work. At the beginning we use the wavelets as basis
to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to
seismic tomography theory, we assess the power of wavelet analysis in the representation of
two different type of synthetic models; then we apply it to real data, obtaining surface wave



phase velocity maps and evaluating its abilities by means of comparison with an other type of
parametrization (i.e., block parametrization).

For the second type of wavelet application we analyze the ability of Continuous Wavelet Trans-
form in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility
and capability and then apply the same analysis to real data (from body wave tomography),
to obtain Local Correlation Maps between different model at same depth or between different
profiles of the same model.
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Chapter 1

Wavelets in the Cartesian Spaces

The fundamental idea behind the wavelet approach is to analyze data at different scales or
resolutions. If we look at a signal with a large “window”, we would notice gross features.
Similarly, if we look at a signal with a small “window”, we would notice small features. So
the wavelet transform is a method of converting a function (or signal) into another form
which either makes certain features of the original signal more amenable to study or enables
the original data set to be described more succinctly. The basic idea to perform a wavelet
transform is to adopt a wavelet prototype function, called analyzing wavelet or mother wavelet
and then perform the temporal analysis by means of a contracted, high frequency version of
this function, while frequency analysis is performed with a dilated, low-frequency version of
the same wavelet.

1.1 The Continuous Wavelet Transform

1.1.1 The Wavelet

To perform a wavelet transform we need a set of wavelet functions which, as the name sug-
gests, are localized waveform which must satisfy certain mathematical criteria. In cartesian
plane wavelets are generated from a single basic wavelet W(t), the so-called mother function
(Fig. (1.2)), by scaling and translation (Valens, [35]):

U, (1) = \}5\1/ (t - T) , (1.1)

where s is the scale factor, 7 is the translation factor and the factor s~1/2 is for energy normal-
ization across the different scales. Equation (1.1) represents a family of wavelet functions:
changing the value of s, in fact, has the effect of dilating (s > 1) or contracting (s < 1) the
function ¥(¢) and changing 7 has the effect of analyzing function around different points 7
(see Fig.(1.1)).

1.1.2 General Proprieties of Wavelets

Wavelets are very powerful tools in the signal processing for their particular proprieties.
Firstly, unlike Fourier basis, sines and cosines, wavelets are functions with compact support
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Figure 1.1: Building of wavelet family - (a) example of dilated (s > 1) and contracted (s < 1)
versions of a mother wavelet; (b) application of building scheme to a particular type of wavelet: the
Haar wavelet.

or sufficiently fast decay to obtain good time - frequency localization. Furthermore, in order
to be classified as a wavelet, a function must satisfy certain mathematical criteria (Addison
PS., [1]).

1. A wavelet must have finite energy :

E:/ | (t)|2dt < +o0.

2. If U(w) is the Fourier Transform of U(t) i.e.:
U(w) = / W(t)e " Cmlt gy,
then the following condition must hold:

+0o |\ 2
Cy = / @I « 100 (1.2)
0 M

This property is known as Admissibility Condition (and gives wavelets their name), while
Cy is called admissibility constant.

3. Eq.(1.2) implies that the Fourier Transform of ¥(¢) vanishes at the zero frequency:

A

\I](w) ‘w:O = O’

this also means that a wavelet is a function with zero mean in the time domain:

/oo W(t)dt = 0,

—0o0

and therefore it must be oscillatory. In other words, ¥(¢) must be a wave.
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Figure 1.2: Examples of mother functions (from Amara Graps ,[39]).
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4. Wavelets may also have higher-order moments equal zero !:

/ t*w(t)dt =0,

—00

1.1.3 Continuous Wavelet Transform (CWT)

The continuous wavelet transform of a signal f(t) € £2(R), with respect to a generic set of
wavelet functions, is defined as:

W (s, 7) = <f,\IIS7T>:/_zOf(t)\}§\IJ* (tj) dt:/_:o O (t)dt. (1.3)

So the wavelet transform can be rewritten as a convolution product:
Wf(s,7) = f*Us,(t). (1.4)

As its Fourier counterpart, there is an inverse wavelet transform, defined as:

+oo +oo
f(q—):;\y /_ /0 ST2W f (s, )W,y (7)dtds (1.5)

Equation (1.5) can be looked at as a way of reconstructing f(¢) once its wavelet transform
W f(s,7) is known as well as a way to write f(¢) as a superposition of wavelets ¥, ;(7). Note
that for inverse transform, the original wavelet function is used, rather than its conjugate
which is used in the forward transformation. If we limit the integration over a range of s
scales rather than all s scales, we perform a basic filtering of the original signal.

1.1.4 The power spectra of a signal

The total energy contained in a signal, f(¢), is defined as its integrated squared magnitude:

+oo
ROl (1.6)
The relative contribution of the signal energy contained at a specific s scale and 7 location is
given by the two-dimensional wavelet energy density function:
E(s,) = [Wf(s, )" (1.7)

A plot of E(s, ) is known as scalogram (crf. Fig.(1.3)) and is the analogous of a spectrogram,
the energy density surface for Fourier transform.

The scalogram can be integrated across s and 7 to recover the total energy in the signal using
the admissibility constant, Cy:

1 +oo +o0o
E= / / sT2|W f(s,7)|*drds (1.8)
C‘lf —co JO

!Within each family of wavelets there are “wavelet subclasses”, distinguished by the number of coefficients.
Wavelets are classified within a family most often by the number of vanishing moments. This is an extra set
of mathematical relationships for coefficients that must be satisfied, and is directly related to the number of
coefficients of wavelet expansion.
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Figure 1.3: Example of scalogram applied to analysis of temporal rainfall using the Morlet wavelet.
The rainfall intensity is shown at the bottom of figure. The scalogram clearly shows the presence of
multiscale features and also some embedding of small-scale features within large-scale features [from
Kumar, P & E. Foufoula-Georgiou, [18]] .

1.2 Wavelet versus Fourier Transforms

e The most important dissimilarity between these two kinds of transforms is that individual
wavelet are localized in space. Fourier sine and cosine functions are not. This localization
feature, along with wavelets localization of frequency, makes many functions and operators,
using wavelets, sparse when transformed into the wavelet domain. This sparseness results
in a number of useful applications such as data compression and removing noise from time
series.

e The differences in time-scale resolution between the Fourier analysis and wavelet analysis
are also clearly evident if we look at the basis function coverage of time-frequency plane (see
Fig.(1.4)). The wavelet transform carries out a decomposition of time-scale plane in cells of
different dimensions: in any decomposition the time-scale plane is layered with cells, called
Heisenberg cells, whose minimum area is determined by the uncertainty principle (which dic-
tates the minimum area but not its shape).

In this way, higher scale/frequencies can be well localized in time, but the uncertainty in fre-
quency localization increases as the frequency increases, which is reflected as taller, thinner
cells with increase in frequency.

e It is also remarkable its applicability to analysis of signal contains discontinuities or no-
stationary features (like sharp spike) or defined on limited domain, impossible in Fourier
domain.



14 Wavelets in the Cartesian Spaces

- Ll
-
- \_“/_,:L_‘_ —

frequency " frequency
[ 4

- —— -
time time

STFT Wavelet Transform
(@) (b)

Figure 1.4: Example of time - frequency plane decomposition using different basis: (a) Fourier basis
and (b) Wavelet basis. (from web site [40])

¢ Ultimately, it makes possible a multiresolution analysis of a signal (see Section 1.4).

1.3 The Discrete Wavelet Transform

The CWT maps a one-dimensional signal to a two-dimensional time-scale representation that
is highly redundant: the wavelet transform is calculated by continuously shifting a continu-
ously scalable function over a signal and calculating the correlation between the two. It will
be clear that these scaled functions will be nowhere near an orthogonal basis. So for practical
applications we are some interested to remove this redundancy.

To overcome this problem a discrete wavelet transform can be introduced. In fact, we can
see that, if certain criteria are met, it is possible to completely reconstruct the original signal
using an infinite summations of discrete wavelet coefficients rather than continuous integrals
(as required for the CWT). This leads to a fast wavelet transform for the rapid computation
of the discrete wavelet transform and its inverse.
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1.3.1 Discrete wavelets

The discrete wavelet transform (DWT) is a particularly useful tool in sampled signals processing
when we work with a discrete input signals with finite length.

A natural way to implement the DWT is by means of a discretization of the s scale and 7
location parameters. In discretizing the scale and location parameters we can choose s = sJ’,
where m is an integer and sy is a fixed dilatation step greater than 1, we also choose 7 =
ntos(’, where 7y > 0 depend upon V¥ (¢) and n is an integer.

This kind of discretization of wavelet carry out to the following representation ( Kumar, P &
E. Foufoula-Georgiou, [18]) :

1 t— mw —m _
Upn(t) = Y < nﬂ:oso > =5 /2\11(80 T —n7p). (1.9
V50 50
The wavelet transform of a continuous signal f(t), using discrete wavelets in the form ( 1.9),
is then: .
W f(m,n) = som/2/ F()V(sy ™1 —n1o)dt, (1.10)

which can be expressed as the inner product:
W f(m,n) = (f, Ymn), (1.11)

where W f(m,n) are the discrete wavelet trasform values given on a scale-location grid of
index (m,n). They are also known as wavelet coefficients.

In the case of a continuous wavelet transform, using (1.3), W f(\,t) is able to completely
characterize f(t) . When we use the discrete wavelet ¥, ,,(t) we can also completely char-
acterize f(t) by means of an appropriate choice of sy and 7p. In fact, we can write f(¢) as a
series expansion if the energy of the resulting wavelet coefficients satisfy a fixed condition.
The necessary and sufficient condition for a stable reconstruction is that the above mentioned
energy must lie between to positive bounds:

AP <D W (m,n)* < Bl f|1%, (1.12)

where || f||?> denotes the energy of f(t), and A > 0, B < oo are constant independent of
function, which can be determined numerically.

When equation (1.12) is satisfied, the family of wavelet functions is a basis and it is referred
as a wavelet frame with frame bounds A and B.

Given this condition, we can obtain a series expansion for f(¢) as

f(t) = A+BZZmen U (). (1.13)

1.3.2 Orthonormal Wavelet Transform

In general, a frame is not an orthonormal basis (it is a basis only in the limit case A = B = 1),
so it also provides a redundant representation of the function f(¢). Practically, this is equiva-
lent, for example, to representing a vector in the Euclidean plane, using more than two basis
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vectors. The ratio A/B is therefore called the redundancy ratio or redundancy factor. When
a frame is redundant the contiguous wavelet coefficients are correlated to each other.

The discrete wavelets can be made orthogonal to their own dilatations and translations by
special choices of mother function.

Common choices for discrete wavelet parameters sy and 7y are 2 and 1, respectively. This
particular type of discretization is known as the dyadic grid arrangement and it is the sim-
plest and most efficient discretization to obtain an orthogonal wavelet basis (dilated dyadic
wavelets) (Addison, [1])

Substituing sy = 2 and 7y = 1 in equation (1.9), we can write:

1 t—mn2™
U n(t) = v <

N o ) =27"2Q (27" — n), (1.14)

Discrete dyadic grid wavelets are chosen to be orthonormal. So these wavelets are both
orthogonal of each other and normalized to have unit energy:

+oo 1 ifm=m'andn=n'
U W, (H)dt = 1.15
/_Oo mn (&) Vo (2) { 0 otherwise ( )
Using the orthonormal dyadic wavelet basis ¥, ,,(¢), all square integrable functions f(t) can
be approximated, by means of the inverse discrete wavelet transform, by a linear combination

as follows:
—+oc0o —+oco

f(t) = Z Z Dm,n\I’m,n(t)y (1.16)

m=—0o0 N=—0oo

where the first summation is over scales and at each scale we sum over all translates. The
coefficient D,, ,, measures the contribution of scale s at location n2™ to the function.
From (1.12), follows that total energy of function can be obtained as:

[ee] —+o0
JELRED S S (1.17)

m=—00 N=—00

1.3.3 The Haar wavelet

The Haar wavelet is the simplest example of an orthonormal wavelet and is given as:

1 0<t<}
Uma(t) =< -1 L<t<i (1.18)
0  otherwise

The mother wavelet for the Haar wavelet system, U(t) = W o(t) is formed from two dilated
unit block pulses sitting next to each other on the time axis, with one of them inverted. From
the mother wavelet we can construct the Haar system on a dyadic grid V¥,,, ,, (see Fig.(1.5)).
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Figure 1.5: Example of Haar wavelet and its translated and dilated version (from web site [41] .)

1.3.4 Scaling function

Orthonormal dyadic discrete wavelets are associated with scaling function and their dilation
equations. The scaling function is associated with the smoothing of the signal and has the
same form as the wavelet, given by:

By (t) = 2720277 — n). (1.19)
They have the property:
“+oo
/ Bo(t) =1, (1.20)

where @ ((t) = ®(t) is sometimes referred as father wavelet. The scaling function is orthog-
onal to translations itself, but not to dilatations of itself. It can be convolved with the signal
to produce the so-called approximation coefficients:
+00
Cn = F() P n(t)dt. (1.21)
—0o0

From the last three equations, we can deduce that the approximation coefficients are simply
weighted averages of continuous signal factored by 2”*/2. The approximation coefficients at a
specific scale m are, therefore, known also as the discrete approximation of the signal at that
specific scale.
By means of scaling functions and approximation coefficients we can obtain a continuous
approximation of the signal at scale m, by summing a sequence of scaling functions at this
scale weighting by the approximation coefficients:

+o00o
Fun ) = D Conn@rn(t). (1.22)

n=—oo

where f(t) is a smooth, scaling-function-dependent, version of the signal f(¢) at the scale
index m. From (1.22) we can see that approximation coefficients are used to produce an
approximation of the signal which is simply a sequence of scaling functions placed side by
side, each factored by their corresponding approximation coefficient.
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scaling function spectrum ()

A cork __.wavelet spectra (U

Figure 1.6: Instead of an infinite set of wavelets it is possible using one scaling function that cover all
spectrum for lower frequencies. (from Valens, [35] ).

Using a combined series expansion both the approximation coefficients (1.22) and the wavelet
(detail) coefficients (1.16), we can represent a signal f(t) as follows:

+o00 mo +00
F&) =Y Cogn®Pmpn(®)+ D D D Wmn(t). (1.23)

So we can see from (1.23) that the original continuous signal is expressed as a combination of
an approximation of itself, at arbitrary scale index my, added to a succession of signal details
from scales my down to negative infinity, the signal detail at scale m being:

“+o00
dn(t) = Y Dy ¥mn(t). (1.24)
n=-—oo
The (1.23) also describes the theoretical structure of multiresolution analysis (crf. section

(1.4)).

Substantially the wavelet function W(¢) (i.e. the mother wavelet) acts as a band-pass filter and
scaling it for each level halves its bandwidth. This behavior creates a fundamental problem:
in order to cover the entire spectrum, an infinite number of levels would be required. The
scaling function ®(¢) (i.e. the father wavelet) helps us in this purpose because it filters the
lowest level of the transform and ensures all the spectrum is covered (crf. Fig. (1.6)).

1.4 Multiresolution Analysis

One of the most important applications of orthonormal wavelet transforms is in multireso-
lution analysis. Multiresolution analysis is concerned with the study of signals or process
represented at different resolutions and developing an efficient mechanism for going from
one resolution to another. To understand this, imagine that you are looking at a sequence
of continuous functions such that the first functions describes only broad features of process
(coarse resolution). Each subsequent function progressively adds more detail (higher resolu-
tion) such that smaller- and smaller-scale features start appearing as the resolution increases.
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1.4.1 Multiresolution representation

Let us assume now we want represent a function f,,(¢), approximated by 27" samples per
unit length so that as scale m decreases, the resolution increases. To get the function at the
next higher resolution step f,,—1, we need to add some detail f7,,(¢), following the scheme
(Kumar, P & E. Foufoula-Georgiou, [18]):

fm—l - fm(t) + f/m(t), (1.25)

which is the basic recursive equation of multiresolution theory.

From the previous section we have just seen that this construction require the fundamental
use of scaling function; in the wavelet multiresolution framework, f,,(¢) is approximated as
(crf. (1.22)):

fun@®) = D Conn®mn(t), (1.26)

n=—oo

where ®,, ,,(t) is the above-mentioned scaling function and the coefficients C,, ,, are:

Conn = [ ®ma®)f )t (1.27)

The function ®(¢), substantially, built a discrete approximation of signal at lowest level, be-
having as a sampling function.
The detail f7,,,(¢) is instead approximated using orthogonal wavelets as (crf. (1.24)):

fran() = > Dinntomn(t). (1.28)

n=—oo

Fig.(1.7) shows clearly how wavelet multiresolution works: S) is the signal at a particular res-
olution level, S)_; and D, are the signal at early resolution level and the detail, respectively,
so that Sy_1 = S\ + D). Equation (1.25) is called multiresolution representation.

1.5 Wavelets in two or more dimensions

The continuous two-dimensional wavelet transform is obtained by treating t = (¢1,t2) and
T = (71, 72) as vectors (Addison, [1]). In this case the 2D wavelet transform is given by :

+oo oo _ too oo
Wf(s,r):/ / f(t)%\ll* <tST>dt:/ / fOT (6, (1.29)

The corresponding inverse wavelet transform is:

1 —+o00 “+o00 “+o00
f(T):CW/ / /_O sT3W f(s,4) Wy s(T)dtds. (1.30)

Wavelet transform in higher dimension, D, are also possible simply by extending the length of
vectors 7 and ¢ to D components. To preserve the energy in the D-dimensional transformation,
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Figure 1.7: Example of Multiresolution Analysis. The general scheme of progression is Sy_; =
Sx + Dy. The example is concerned the use of particular type of wavelet: the Haar wavelet (from
Kumar, P & E. Foufoula-Georgiou, [18]).

the weighting function become 1/s°/2.
The D-dimensional wavelet transform is then defined as:

1 _(t—7
\Ps""(t):SD/2\II< . > (1.31)

The transform in D dimensions becomes:

+o0
W (s, 7) = é / U (4)£(t), db (1.32)
with inverse:
1 oo oo ds
=g [ [ Wi R gy (133)

As in one-dimension, also in two-dimensional case we can perform a multiresolution rep-
resentation of a 2D continuous function. Fig.(1.8) shows an example of multiresolution in
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2-D multiresolution analysis

ariginal

L TE]= p
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Figure 1.8: Multiresolution analysis applied to imagine processing, that is a 2D signal (from web site
[40D).

two-dimensional domain, applied to imaging processing, a successful field of application for
wavelet analysis.
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Chapter 2

Wavelets on the sphere

Classically wavelet construction has been employed on linear spaces (such as the line ® and
the cartesian plane #2) and use the Fourier transform; the underlying reason is that transla-
tion and dilation become algebric operation after Fourier transform. This type of construction
makes, in fact, impossible the application of wavelet analysis to more general manifolds,
where the Fourier transform is not applicable. When we want, for example, to apply mul-
tiresolution wavelet analysis to the spherical domain, as we should make in global seismic
tomography, an alternative construction is necessary.

The Lifting Scheme of Sweldens ([31],[29]) does not rely on Fourier transform and can there-
fore construct wavelet bases over non-translation invariant domains such as bounded region
of RP or surfaces.

Following that technique Bonneau ([7]) built a new family of “Nearly-orthogonal spherical
Haar wavelets” that we study in this chapter and we are going to use in the resolution of
tomographic inverse problem (see chapter 3).

2.1 The Second Generation Wavelets (SGW)

Wavelets are basis functions which represent a given function at multiple level of detail.

Due to their local support in both space and frequency, they are a very useful tool for sparse
approximation of functions. Locality in space, as we have already seen, comes from their
compact support, while locality in frequency is a direct consequence of their smoothness
(decay towards high frequencies) and vanishing moments (decay towards low frequency).
In the classical wavelet setting (i.e., on the real line) wavelets are defined as the dyadic
translates and dilates of one particular fixed function.

The basic philosophy behind the new building approach is, therefore, to build wavelets with
all desirable properties (localization, fast transform, etc.) adapted to much more general
setting.

Firstly we need a construction of wavelets which are adapted to a measure on the surface.
While on the real line, the measure is dx, the usual translation invariant Lebesgue measure;
on a sphere we denote the usual area by dw. Adaptive constructions is based on the idea
that translation and dilation are not fundamental to obtain the wavelets with the desirable
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properties. The fundamental idea that a given function can be expressed as a finite linear
combination of basis functions, at finer subdivision level, is retained.

So the main difference between the new family of wavelets that have been built and the old
translated and dilated wavelets is that the filter coefficients of the new wavelet basis are not
the same throughout, but can change locally to reflect the changing nature of the surface and
its measure.

2.1.1 The Lifting Scheme: Birth of SGW

The Lifting Scheme is an innovative method for both designing wavelets and performing the
discrete wavelet transform. Actually it is worthwhile to merge these steps and design the
wavelet filters while performing the wavelet transform. The technique was introduced by
Sweldens ([31],[29]) in 1994.

The main difference with classical construction is that it does not rely on the Fourier trans-
form. This way lifting can be used to construct the so-called “Second generation wavelets”,
wavelets which are not necessarily translates and dilates of one function. The latter we refer
to as the “First generation wavelets”.

Because of the complexity of the lifting scheme we prefer do not give here the details of the
theory pointing to a separated appendix (crf. Appendix A). In this section we instead focus
our attention to yield a brief overview of the main properties of this technique which make it
a so useful tool for wavelet construction.

Advantages in the use of lifting scheme
The use of lifting scheme for wavelet construction has several advantages:

e it allows a faster implementation of the wavelet transform,;

o the lifting scheme allows a fully in-place calculation of the wavelet transform. In other
words, no auxiliary memory is needed and the original signal can be replaced by its
wavelet transform;

e in the classical case, it is not immediately clear that the inverse wavelet transform ac-
tually is the inverse operation of the forward transform. With the lifting scheme, the
inverse wavelet transform can immediately be found by undoing the operations of the
forward transform. In practice, this comes down to simply changing each + into a —
and vice versa.

Secondly, the lifting scheme can be used, as we have already suggested, in situations where
no Fourier transform is available:

e wavelets on bounded domains (as, for example an interval);

e wavelets on curves and surface (as in our case);

e weighted wavelets;
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e wavelets and irregular sampling.

It is obvious that wavelets adapted to these setting can not be formed by translation and
dilation. The Fourier transform can thus no longer be used as construction tool. The lifting
scheme is, therefore, an alternative approach.

2.2 Spherical Triangular Haar Wavelets

We are interested to a particular family of second generation wavelets: the triangular Haar
wavelets.

\\

#_f

- - p

Figure 2.1: Projecting the faces of an icosahedron (on the left) on spherical surface it is generated a
spherical triangular grid of twenty equilateral triangles (on the right)

The Spherical Triangular Haar Wavelets (STHW) are defined over a nested triangular grids.
These grids are the result of an iterative subdivision of base triangular mesh obtained project-
ing the faces of an icosahedron! (crf. left side of (2.1)) on the sphere.

2.2.1 Building of nested triangular parametric grid

The projection of the faces of icosahedron on spherical surface generates a spherical triangular
grid of twenty equilateral spherical triangles. This is the base starting grid indicated as level
0 (k = 0) (crf. right side of (2.1)).

Starting from base triangular grid we divide recursively each triangle into four sub-triangles
by inserting new vertices at the midpoint of each edge as schematically in Fig. (2.2) shown .
Iterative subdivision produce a nested triangular grid in which, the base patches are triangles
of “almost equal-area”.

Performing the subdivision process we obtain a sequence of nested grid; Fig.(2.3) shows the
tessellation of the spherical surface with the spherical triangular grid up to level 5.

!The Icosahedron is one of the five Platonic solids. It is a convex regular polyhedron composed of twenty
triangular faces, with five meeting at each of the twelve vertices. It has 30 edges and 12 vertices.
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Figure 2.2: Subdivision scheme.

2.2.2 Local reconstruction/decomposition with STHW

The STHW are defined by their values on the four sub-triangles dividing their support.

Let T* be a triangle at the subdivision depth %k (with k& = 0 associated to the base mesh).
Let Ty, TF+! T4 TF! be the four sub-triangles of T*. For each triangle at depth k there
exist three wavelet functions ¥¥, ¥4 and ¥ whose support matches exactly with that triangle
and a constant function ®* whose value is one on T". Let rf; denote the values of ¥¥ on i-th
sub-triangle (crf. Fig.(2.4) for exact notations).

The fundamental property of triangular Haar wavelets is that every piecewise constant func-
tion on the four sub-triangles can be expressed as a linear combination of the constant func-
tion and the three wavelets.

The relation that gives the values xf“
wavelet coefficients y¥ is known as local reconstruction:

of a function at higher resolution level starting by

k+1 k k k k
) L 751 702 Tos Z

k+1 k k k k
Ty _ L riy ria 773 Y1 2.1)
s - 1 rk bk k '

i 21 To2 Tao3 Ya

+1 k k k k

L3 1 73 139 733 Y3

The Fig. (2.5) shows schematically the local reconstruction. The 4 x 4 matrix R in (2.1) is the
so-called matrix reconstruction.
The inverse process, referred as local decomposition, is obviously:

Tk xlg-‘rl
k k+1
Al=(r)| Y 2.2)
_ ! .
y72€ 1:2+1
k k+1

Y3 T3
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Level 1 Level 2

Level 5

Figure 2.3: Iterative subdivision of the spherical triangular mesh up to level 5.



28 Wavelets on the sphere

L)

|

Figure 2.4: Basis function at level k (from Bonneau G.B, [7]).

2.2.3 Global reconstruction/decomposition with STHW

Given the values (xf) of an input data set at the maximal depth level K, the decomposition
in the wavelet basis can be obtained following an iterative pseudo-code:

-fork=K —1to0;
- for all triangles T* at level k;
- perform local decomposition (2.2);

kok ook kY Rl kLl k1l . ktly.
- store (2%, y¥, y&, y%) instead of (xi ™, i, 25T 25 th);

This decomposition process outputs one value on each triangle of the base mesh, and a set of
three coefficients for each triangle in the nested grid.
The global reconstruction is the inverse pseudo-code:

-forOtok=K —1;
- for all triangles T* at level k;
- perform local reconstruction (2.1);

Rl kil k4l kil :
- store (zg ', 2y a5 23t instead of (2, yF, vh, yh)

2.3 Orthogonality on the sphere

It is important to remark that when we work on the sphere we lose the possibility to work
with orthonormal basis wavelet functions as we usually can make in cartesian plane.

At the beginning, for completeness, we review some fundamental concepts; for this purpose
we will use the notation introduced in (2.2.2) and (2.2.3).
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Figure 2.5: Local reconstruction scheme.

e A wavelet basis is defined as semi-orthogonal if the inner product of the wavelets with the
constant function, as defined in (2.2.2), vanishes:

/\If’f(l)k = /m’;«p’f = /\Iféf(l)k =0 (2.3)

e A wavelet basis is defined as orthogonal if, in addition to the above mentioned property, any
two distinct wavelet functions have a vanishing inner product:

/m’qu’g = /qf’gqf’g = /qf’qu’g = 2.4

2.3.1 Nearly Orthogonal Spherical Haar Wavelets

In this work, in particular in Chapter 3, we use new spherical Haar wavelets, introduced by
Bonneau ([7]), that are “nearly-orthogonal”.

The concept of nearly orthogonality for the spherical wavelets was introduced by Nielson et
al. ([21]) and it is based on the observation that the values of spherical wavelets are func-
tions of triangular areas that become uniform at the subdivision depth increases. In the limit
case, i.e. when the four sub-triangle areas are equal, the wavelet basis become orthogonal:
this is, in practice, the nearly-orthogonality.

The starting point to build those wavelets is the observation, from previously introduced re-
construction matrices ([29],[21]) that the wavelet function values are polynomials in the
sub-triangles areas «yg, a1, as, a3, with degree 2.

Since we want to find both simple and nearly orthogonal matrices, we start with a 4 x 3 sub-
matrix containing arbitrary polynomials of degree 1 in «yg, a1, as, a3, then we introduce step
by step the required properties.
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Without any conditions on polynomials coefficients, the number of free parameters are 48 (=
4 x 3 x4).

e The first condition that we impose at our sub-matrix is the symmetry. This property states
that, when permuting the indices (1,2,3) in the right and left-hand side of the local decom-
position/reconstruction relations, the equality should be preserved.

Imposing this property we reduce at 10 the numbers of free parameters.

e The second condition is the semi-orthogonality. This condition reduce further the number
of free parameters to three. So the reconstruction matrix become:

1 aog + bas + bas baq + aao + bag baq + bao + aag

1 —aog+ caz + cas —bag — can —bag — cag (2.5)
1 —bag — caq —aqg + caq + cas —bag — cag

1 —bagy — ca —baygy — cag —aog + caq + cas

In this case a, b and c are the only free parameters.

e The last condition that we impose is the nearly-orthogonality. This implies that in the limit
of uniform areas, the wavelets should be orthogonal and so the inner product of function

should be zero:
/‘111\112:/\112\113:/\111\11320

Imposing the vanishing of the inner product involves:

c=a+b
__ __a+5b
c= -T2
At the end we have two distinct families of simmetris, semi-orthogonal and nearly orthogonal
triangular wavelets in which, the only two free parameters are a and b.
If we keep in mind that the wavelet functions must be still normalized, we can reduce the
free parameters at one.
In particular, choosing to work with the second families of wavelets, we impose, without
lose in generality, a = 1; so from the normalization condition, we have b = —0.067. The
reconstruction matrix is finally:

1 aay + bag + bag ba1 + aas + bag baq + bas + aag

1 —aoy — %%(QQ + a3) —bag + %‘%ag —bag + %Sbozg (2.6)
1 —bag + %‘r’bal —aog — %‘r’b(al + a3) —bag + %‘r’bag )

1 —bag + %m’al —bag + %‘Sbag —aqg — %Sb(al + 042)



Chapter 3

Wavelet Analysis in 2-D Global
Seismic Tomography:
The Inverse Problem

Seismic tomography is the most powerful tool for determination of 3D structure of deep
Earth’s interiors. Tomographic models obtained at the global and regional scales are an un-
derlying tool for determination of geodynamical state of the Earth, showing evident correla-
tion with other geophysical and geological characteristics.

Global tomographic images of the Earth can be written as a linear combinations of basis func-
tions from a specifically chosen set, defining the “model parameterization”.

A number of different parameterizations are commonly seen in literature: seismic velocities
in the Earth have been expressed, for example, as combinations of spherical harmonics (e.g.,
van Heijst and Woodhouse,[14] , Ekstrom et al.,[13] ) or by means of the simpler characteristic
functions of discrete cells (e.g., Boschi and Dziewonski, [9]). There are several motivations to
prefer a parameterization respect to another one: one might be chosen because it simplifies
calculations, or because it is efficient in representing lateral variations over a broad spectrum
of scale lengths. Different parameterizations however tend to sacrifice resolution at different
scale lengths.

For this reason in the last years some multiresolution parameterizations (i.e., parameteri-
zations designed to optimize resolution over broad range of scalelengths) have been also
proposed in the global seismological field (e.g., Sambridge,[28]).

In fields other than seismology, in the last decades, it became very popular a “multiscale”
parameterization performed by means of wavelet basis functions, characterized by compact
support both in the spatial and frequency domains.

In this chapter we want to apply this multiscale wavelet analysis to solve the surface waves
global tomographic inverse problem. In this way we are interested both to obtain better
tomographic images of Earth and quantify the potentialities of wavelets in this particular
geophysical field.

With this purpose, we firstly introduce some general notions about seismic tomographic the-
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ory and informations on the data sets; then we face the tomographic inverse problem resolu-
tion using the spherical triangular Haar wavelets, introduced in the previous chapter.

We study and evaluate the wavelet approach in the tomographic field carrying out some syn-
thetic tests. Then we solve the surface wave tomographic problem using real data and make a
comparison between wavelet and block parameterization, to quantify the capabilities of first
one.

3.1 Surface Wave Tomography

We are interested to study the tomographic problem for seismic surface waves, so we directly
introduce the theory concerning this problem.

3.1.1 Phase velocity measurements

Surface waves are generally the strongest arrivals recorded at teleseismic distances and they
provide some of the best constraints on the Earth’s shallow structure. The seismic surface
waves are dispersive: their speed of propagation is a function of their frequency, or, in the
other words, individual harmonic components of the surface wave seismogram propagate
over the globe at different speed (generally increase with increasing depth).

For any given receiver — source couple, we can isolate, from the seismogram, each harmonic
component and measure its average speed (called phase velocity ). The plot of average phase
velocity against frequency is called dispersion curve. From a large and uniform set of measured
dispersion curves is possible to determinate local phase velocity heterogeneities as function
of longitude and latitude (crf. Stein & Wysession, [30]). This is substantially the fundamental
idea of Seismic Surface Wave Tomography .

Given a spherically symmetric reference Earth model, laterally homogeneous and assumed,
from the Ray Theory (JWKB theory) that wavepaths are great circle on the sphere, we can
assess a theoretical Rayleigh or Love seismogram for any source-receiver geometry and write
it as function of frequency w, in the form (Ekstrom, [13]):

u0(w) = A%(w) exp[i®°(w)], 3.1

where A°(w) is the amplitude and ®° is the propagation phase for reference surface wave. It
is related to phase velocity c? in the spherical reference Earth model, by the relation:

wlL
where L is the propagation path length measured along the great circle.
Using a perturbation approach, we can express the observed surface wave u(w) as a pertur-

bation with respect to the reference seismogram (3.1):

u(w) = [A%(w) + 6 A(w)] exp i[®°(w) + 6B (w)] (3.3)
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Attributing §® to a perturbation of the propagation phase, caused by the real Earth structure,
more complex than reference one, we have:

<1>p:<1>%+5q>zco°‘jzc (3.4)
where dc is the apparent average phase velocity perturbation, calculated for the distance L
along the great circle (i.e., our measurement).

The estimation of phase velocity perturbation §c(w) and amplitude A(w) of the fundamental
mode of surface wave, is generally performed by means of a complex measurement tech-
niques based on iterative algorithms (crf. Ekstrom & al., [13]) which finally give us a data set

of path - average phase velocity as function of period, the above-mentioned dispersion curve.

3.1.2 Forward Problem

In surface wave ray theory, the phase delay and the ray path of a surface wave for a certain
mode branch (we only deal with the fundamental mode) at given period are completely
determined by the phase velocity distribution of the medium. The average phase velocity
along a path ¢ between a source and receiver is given by:

€o L; path; o

where dc¢;/cy is the phase velocity perturbation with respect to the phase velocity ¢, in the
reference model, L; is the path length and d¢;(0, ¢) represents the phase velocity distribution.
The integration in (3.5) is along the ray path, which itself is dependent on the phase velocity
distribution d¢;(0, ¢).

In most global surface wave studies the great-circle approximation is used; so the integral
between source and riceiver is not carried out over the actual ray path, which is not known a
priori, but instead is taken over the corresponding great circle.

Equation (3.5) is the linearized solution to the Forward Problem: it allows us to determine
perturbation in phase velocity as function of the perturbation to the velocity distribution in
the medium.

3.1.3 Inverse Problem

Equations (3.5) is usually used to obtain information on the 2-D and 3-D structure of Earth
from surface wave measurements.

Using a collection of dispersion measurements (crf.(3.4)) and the equation (3.5), we can eval-
uate the unknown function dc[r(s), 8(s), ¢(s)]. Chosen a set of n basis functions (f1, f2,--- , fn),
we re-write the phase velocity perturbation jc as a linear combination of these function, so
that:

5C(T307¢) = lefl(rv 9’ Qb), (3.6)
=1
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where z; are unknown coefficients of linear combination. They do not depend from spherical
coordinates so we obtain, substituting in (3.5), we obtain, for the i—th observation of phase
velocity anomaly:
501' & .
— == filr(s),0(s), (s)lds (i =1,---,m). (3.7)
(&) =1 path;
where m is the total number of available observations and n is the number of parameters.
If we define the m x n matrix A:
1
Ail = T fl [T’(S), 9(8)7 ¢(8)]d$, (3.8)
L; path;

we definitively obtain the tomographic relationship in the matrix notation:
A-x=d, (3.9

where z is the n-vector of the unknown coefficients x;, d is the m-vector of the phase velocity
anomalies (measurements) while the entries of A are numerically computable by means of
(3.8). The linear system (3.9) is the Tomographic Inverse Problem.

It is possible to solve separately the linear inverse problem (3.5), for each frequency, obtaining
two-dimensional phase velocity maps of Earth at different depths. This is the simplest way to
use surface wave phase anomaly data as constraints to the Earth’s internal properties.

3.1.4 Solution of the Tomographic Inverse Problem

The relation (3.9) is a linear system, often, overdetermined, meaning that the number m of
data are higher than the number n of parameters and are affected by error. So we usually
are not able to solve it exactly by a direct inversion. The standard produce is to find its least
square solution.

The least squares techniques arise when all the ‘input’ probability densities (that of data and
that of model) are assumed to be Gaussian. It consists of searching of the model m which
minimize the misfit function, defined as (Tarantola, [34]):

25(m) = ||g(m) — dopsl[p + [Im — M3, =
= (g(m) - dobs)TCBI(g(m) - dobs) + (m - mp'ror)TC]\_/[l (m - mp7'07')7(3-10)

where my, ., is our a priori information on unknown model whose covariance matrix is Cs
and C) is the covariance matrix for data distribution probability (supposed gaussian).
When the problem is linear, as in our case, we have g(m) = Am and the least square solution
can be written as (Tarantola, [34]):

mrLs = Mprior + (ATCBlA + CM)_IATCBI(dobs - Amprior)- (3.11)

We furthermore suppose that m,;,, = 0 (so that C; = 0) and that Cp =1, so, using the
notation in (3.9) the final expression of least square solution is:

zrs = (ATA)7LAT d,y,, (3.12)

where (AT A)~1 is called generalized inverse of A.
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3.1.5 Regularization

In order to obtain a stable solution from the ill-conditioned tomographic problem, is often
necessary to make use of some a priori informations, generally based on our physic knowledge
of the problem. So, the solution of inverse problem is forced to satisfy certain conditions by
simply including in the linear system (3.9) a number of additional equations that represent
them algebraically.

This procedure is usually called regularization or damping.

The constraints that we want impose to our model can be describe by a relation:

D-z=c. (3.13)
Including this new constrain, the system (3.9) becomes:

A 'ZU:[ d]. (3.14)

AD Ac

Like for (3.9), the (3.14) does not have an exact solution and we again solve it in least square
sense. The arbitrary parameter A has the rule to offset the solution which minimizes || Dz — ¢||
and the least squares solution to the original system.

The least square solution for the “damped” system (3.14) is:

zrs = [ATA+ X2DT D)7t [ATdy, + A2D7 ). (3.15)

3.2 Wavelet Tomography

The starting point is the equation (3.5) which relate mean phase velocity dc(w) along ray-path
with unknown local phase velocity dc(6, ¢) .

Now we want to parameterize our images of phase velocity in terms of nearly orthogonal
triangular Haar wavelets so we need to expand the unknown function dc(6, ¢) over a set of
spherical triangular Haar wavelets as showed in (3.6) (in our case we have f;(0, ¢) = ¥¥(0, ¢),
where £ is the level of resolution (crf.(2.1)).

Because of the chosen parameterization we can discretize equation (3.5), so we re-write it as
a summation:

N
dei(w) = Li > deAsy, (3.16)
=1

where N is the number of segments in which the ray path is divided by triangular grid at level
k + 1, As; is the length of one segment and d¢; = dc(6, ¢) is the “local” value of unknown
function or, in other words, the value of phase velocity on the single triangle at level & + 1.
Applying local reconstruction (2.1) to piecewise constant function d¢; we write, for the 1-th
value of data dc(0, ¢), over the generic triangle qu at level k£ + 1:

oef' ) = 3" gl (3.17)

q=1
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\Il((;;) being the values of qth wavelet basis function on the kth triangle and :cgk) the wavelet

coefficients. Substituting (3.17) in (3.16) we definitely obtain:

4
bei(w 1 sz As,, (3.18)

Z

=1 q:l
P_(34) ’
receiver
w (0i)
/ lp (1i) P_(2i)

tr:l.angular cell
level

Figure 3.1: Schematic representation of ray path over spherical triangular grid at level k. The yellow
triangle shows the basic support of wavelet function for the fixed level. ¥ ql) indicate the value of
basis function on sub-triangle (q and | being wavelet and sub-triangle index, respectively).

Clearly, (3.18) is true for a fixed resolution depth & since, changing resolution level we change
the area of triangular pixel and consequently the length of ray portions in (3.18) and the
values of basis functions \IJ((]I;)

3.2.1 Multiresolution Tomographic Matrix

Let us see how the matrix A in (3.9) is calculated from (3.18) to perform a multiresolution
analysis.

By comparison between (3.18) and (3.8) we see that, for any triangular cell at the subdivision
level (k + 1), the elements of matrix are obtained as the product of value of basis function
on its support and the section of ray path which cross the same support (crf. (Fig. (3.1))),
normalized with whole length path L;:

o) =3 (S L LoPas) < ap (3.19)
1 v
data =1 \e= unknown coefficients

matrix elements

Starting from the fundamental level we apply the local reconstruction (2.1) (or equally
(3.17)) and evaluate the pointed out element in (3.19) for all triangles at level 0.
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This first step, substantially, gives us the tools to build (following the forward problem) the
function at the higher resolution level (1). If we have the possibility to evaluate model at
level 1, i.e. we can assess the value of z(!) in local reconstruction (2.1), in the next step, we
do not need to “invert” to obtain the 4 coefficients for a local reconstruction at level 2 but
we have only need of the coefficients associated to the three wavelet whose support matches
the triangle at level 2 and which value, conveniently weighted by the coefficients, give us the
details to be add to value of function at level 1 to obtain its value at level 2.

detail at
level k+1

\

function at

level k+1
\\\\\\\\ function

at level k

_——
—_—

Figure 3.2: Example of hierarchical construction of function on a single triangle. To obtain the value
at (k+1) resolution level (height of red step) we have to add the detail of (k-+1) level (green triangle)
to basic value at k level (blue triangle) . The azure triangle represent an higher resolution level: we
have to add “azure triangle” to blue and green ones to obtain function at level (k + 2)

Substantially the multiresolution analysis is performed by means of a hierarchical construc-
tion of a function in which, at any level, we add a further detail (crf. Fig.(3.2) for a schematic
visualization of hierarchical reconstruction) to obtain a higher resolution level.

So, when we have evaluated the pointed out elements for fundamental level, we store them
in a matrix file; then we reply the same procedure for all resolution level but calculating and
storing the above-mentioned quantity for only the three wavelets which provide the detail.
At the end of building process we should have a n x m tomographic matrix A, with n number
of data and m number of total parameters (m = (20 x 4¥ma=) with 20 number of triangles for
the fundamental grid and k,,,, maximal depth of resolution)

3.2.2 Multiresolution structure of wavelet coefficient vector

When we “invert” the matrix A, or more precisely, when we solve the tomographic inverse
problem (3.9) we directly find the m vector x. The entries of x are all the wavelet coefficients,
conveniently ordered to make immediately the multiresolution reconstruction of our model.
In fact, x has a special structure to itself: the 1% element is the solution model for the 1%
triangle at level 1; the 27¢ to the 4" contain the coefficients on level 1 for the three wavelets,
whose support matches the 1% triangle; the 5" element is the solution model for the 2"¢
triangle at level 1; the 6" to the 8 contain the coefficients on level 1 for the three wavelets,
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whose support matches the 2"¢ triangle and so on until 80" element.

Then from the 81*" to the 320", we have, with the same order, only the coefficients on level
2 for the three wavelets, whose support matches the single triangle at level 2, and so on.

We have currently performed our model up to level 5 so we have a vector x with 20 x 4° =
20480 elements.

3.2.3 Inversion Procedure
e Norm Damping

At the moment we have chosen to regularize the inverse problem simply by damping the
norm model, i.e., imposing that the size of solution model be minimum.

Using a notation similar to that showed in (3.6), we write the generic unknown solution
model m(0, ¢) as:

N
m(0,¢) =Y _ i fi(0, ), (3.20)
=1

where f; are our basis functions (i.e., spherical triangular Haar wavelets) and z; are the
unknown coefficients. We define the norm of m(6, ¢):

Im(, )] = /Q im(6, ¢)ds2, (3.21)

where () denotes the surface of unit sphere.

The relations (3.20) and (3.21) are quite general and do not depend on the parameterization.
If now we substitute (3.20) into (3.21), using our parameterization, i.e. triangular wavelet
functions which are piecewise constant functions with a compact support matched with tri-

angle, we obtain:
N

Im(8,6)| =y a?, (3.22)
i=1
where « denotes the area of one spherical triangle.
Differentiating with respect to z; (: = 1,2,--- , N), because we need to find the value which
minimizes the norm, and converting (3.22) in a matrix notation, we finally determine the
norm damping constraint:
[-2=0, (3.23)

with I the N x N identity matrix.
As for (3.14), we can redefine the our damped inverse problem :

A -x:[d]. (3.24)

A 0

e LSQR Algorithm

To assess the least squares solution of the linear inverse problem, we make use of an iterative
algorithm called LSQR which substantially utilize the sparsity of matrices on the left hand
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side of (3.9) and (3.14), i.e., their property to have a high numbers of zero elements.

The LSQR algorithm, schematically, determine successive approximations of x;g by means
of an iterative procedures, which exploit the sparsity of the matrix A. As many iterative
algorithms, the exact convergence of approximate solutions is assured only if a very large
number of iterations (typically of the order of number parameters in the model) is performed;
but in practice it converge much faster, which makes it extremely convenient.

For our studies we in particular use the LSQR version by Paige & Saunders, [23], which is
capable of evaluating, at each iteration, whether an acceptable approximation to the actual
least squares solution has been achieved, using a “stopping criterion” .

3.3 Synthetic Tests

At the beginning we have tested our multiresolution wavelet analysis with two simplest
model:

e a synthetic model composed by longitude bands in which the values of model are, alterna-
tively, 1,0, —1.

ethe topographic model from CRUST 2.0 (Bassin et al., [4]) which represents the total topog-
raphy, i.e., the depth with respect to the sea level.

For both test, as for real data, we use the spherical triangular Haar wavelet to lay out the
inverse problem as introduced in section (3.2) and (2.2).

3.3.1 Longitude Bands Model

The synthetic model is composed by longitude bands which values are alternatively, 1,0, —1.
It is reconstructed using paths from a real data set of surface wave phase velocities (those of
Ekstrom et al., [13]). In particular we choose the measurements of Love waves at 45s and use
their source- receiver distribution to solve the forward problem (3.5) and assess a synthetic
data set on the basis of the longitude bands model. Then we make the inverse procedure, and
solve the inverse problem (3.9). The results of inversion are showed in Fig. (3.3).

The purpose of this first trivial test is both to make a simple example of multiresolution
approach and, especially, to test the programs and routines developed (during this work) to
perform a multiresolution wavelet analysis.

From (3.3) it is evident that our tools correctly work. It is also interesting to observe the
hierarchical constructions of our synthetic model. We have performed only one inversion for
the highest depth (level=>5) but we are able to reproduce our model from level 1 to level 5 by
simple using the result of inversion, namely the wavelet coefficients vector, to built the details
to be add to go from a level to higher one, with a hierarchical procedure.

3.3.2 Earth Topography

We also show an example of multiresolution analysis applied to a real geophysical model: the
topography. In this case, we do not perform a real multiresolution inversion; in fact we work
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Original synthetic model
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Figure 3.3: Synthetic test: original longitude bands model (on the top) composed by 10 bands and a
multiresolution inversion results at different resolution level. The map on the bottom shows the result
of inversion for highest resolution level currently reached.
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Figure 3.4: Topographic model reproduced with wavelet analysis at different resolution level.
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with a function characterized by local value, so we do not apply the global reconstruction
scheme but only a local reconstruction scheme. We start from forward problem, applied the
local decomposition, then, inverting the 4 x 4 reconstruction matrix R (crf.(2.1)) we assess
the 3 coefficients associated to 3 wavelets and that associated to scaling function.

The local reconstruction, then, give us the values of topographic function (crf. Fig.(3.4)).
Although this example is not very useful for testing our algorithms, is however interesting
because he shows clearly the hierarchical reconstruction of a well known geophysical model.

3.4 Phase Velocity Maps from Surface Wave Measurements

3.4.1 Surface wave data set

Now we are interested to apply the multiresolution analysis to real data to evaluate the capa-
bilities of wavelets in seismic tomography. We have chosen to work with the seismic surface
wave phase velocity data set collected by Ekstrom et al. ([13]), 1997. In particular we fo-
cus our attention on measurements concerning to Love wave at 35 seconds. That data set is
composed by 15780 source-receiver couples (i.e., phase velocity measurements) with a good
uniform coverage of Earth (crf. Fig. (3.5)).

We make this choice because that is a data set particularly sensitive to crustal structure and
shallowest mantle structure,i.e., earth structure of which we have a good knowledges and
models to make a quantitative comparisons.

3.4.2 Multiresolution analysis

We first solve the wavelet tomographic inverse problem (3.9) for the maximum level 5 to show
the hierarchical reconstruction of surface wave tomographic model. The Fig.(3.6) shows the
results of inversion. It is easy to see how, with a single inversion we are able to reconstruct
the model at different wavelengths. At every depth we add details so we pass from a lower
to a higher resolution level. The Fig.(3.6) shows the inversion for a particular choice of norm
damping (i.e., A = 1); from Fig (3.7) we can easily guess that this is a good value to con-
strains our model as it also appears by the statistics analysis perform in the next section.
This is particularly true for the maximum level where we have mesh elements with the small-
est size (about 230 km for side) but we obtain a model smooth so we can deduce that the
constrain on norm could be enough strong.

3.4.3 Damping Effect

We want also to test the response of inversion with multiresolution wavelet analysis to norm
damping. As we have already explained, we choose to impose only a norm damping. In part,
this choice is justified by the smoothing wavelet effect. In fact, we have already seen that,
when we decompose a signal using wavelets, we substantilly use filters that act as averaging
filters and others that produce details. Some of the resulting wavelet coefficients correspond
to details in the signal. If the details are small, they might be omitted without substantially
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affecting the main features of function. By simply application of constrain on the norm that
is translated in a condition on wavelet coefficients (crf.(3.23)) we are so able to achieve this
partial selection of coefficients, making an implicit smoothing of signal.

Statistics analysis

The effect of norm damping is also evident from some statistic analysis.

We can see that the variance reduction (Fig.(3.8)) decrease with increasing of damping so as
the root mean square (Fig.(3.11)) ! (RMS). The decreasing of RMS, in particular, suggest us
that the model become more stable when we use a strongest constrain.

This also evident from the peak-to-peak amplitude of interval (Fig.(3.10)) that become nar-
rowest if we mainly constrain the model and the decreasing of number of iteration necessary
to LSQR algorithm to reach a stable solution which indicates a fast convergence of the model
with increasing of damping value .

On the other hand, the decreasing of variance reduction point out an increase of misfit be-
tween our least square solution and real model which fit the data, so we can deduce that,
although the model becomes more stable, probably we are “averaging too much” the true
model. From (3.7), (3.11) and (3.8) it is quite clear that a good compromise between a
stable solution and a low misfit is a norm damping value in the range (1 + 2).

3.4.4 Block Model parameterization versus
Spherical Triangular Haar parameterization

We want make a comparison between a commonly used parameterization, the pixel model
and ours. With this goal we have focused our attention on resolution depth 3. In fact, for
a consistent comparison we need to achieve both model in similar condition, so we need
to perform the inversion without damping, because we do not know how the two different
parameterizations reply to damping constrain and we need to obtain a comparable number
of parameters. Among all possibilities we have chosen to compare a block parameterization
with 6° x 6° size pixel, which gives 1388 parameters with triangular parameterization at level
3, which gives 1280 parameters.

The Fig. (3.12) shows the results of inversion. To have a whole overview we perform the
inversion with three different approaches: making an inversion up to level 5, we build the
model at level 3, utilizing the multiresolution scheme, the same we make with level 4 to de-
rive level 3, finally we directly solve for level 3. All inversions are performed using the same

We define the variance reduction as:

S [(A-zrs)i — di]?
i1 di

variance reduction = 1 —

and the root mean square as:
PO

i=1"1

N
respectively; so the variance reduction is a measure of how well our least squares solution fit the data and it gets
closer to 1 as the fit is improved and the root mean square is a statistical measure of the magnitude of a varying
quantity and it decreases with increasing of stability of least squares solution.

root mean square =
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procedure, the above-mentioned LSQR algorithm.

By comparing the results we can deduce that when we solve for level 3 we obtain a model
that is consistent with block model (crf. left column in Fig. (3.12)). In the case of level 4
and 5 we have several differences with block model: this is a consequence of instability of
the inverse solution. The use of damping constrains, as we have already explained, have the
purpose to make more stable the ill-conditioned tomographic inverse problem; if we do not
make use of any constrain we should have an instable solution, particularly if the pixels are
small.

Nevertheless, if we focus our attention on, more stable, level 3 we can observe some interest-
ing characteristics of wavelet approach. Without damping and with a comparable number of
parameters the two parameterizations exhibit equal stability in the inversion procedure and
in the resolution capability. Fig (3.12) shows clearly that an advantage in the use of wavelet
approach consists in an intrinsic smoothing effect of our parameterization respect to block
one: in the block model the pixel are more noticeable respect to triangular pixel, in fact,
generally, the block parameterization require an further constrain to assure a more stable and
smoothing solution; this is not true for wavelets where, as we can observe from (3.7), the
only constrain on norm is sufficient to obtain stability in the least square solution.

It is also important to make in evidence another advantage of wavelet approach: the possi-
bility of obtaining a model at different resolution level, without the necessity to repeat the
inversion. If we face the tomographic problem using a pixel parameterization, we have to
split the blocks to obtain a higher resolution (i.e., if we want capture lower wavelengths); but
changing the size of elements of grid we need to repeat the inversion procedure.

This is not necessary in the wavelet approach because of its multiresolution nature: it is clear
from right column of (3.12) that we can easily perform inverse tomographic problem up to
maximum level and then piece together all lower level without the repetition of inversion
procedure.

Pixel grid vs. Triangular grid

One of the interesting aspect in the application of spherical triangular Haar wavelet analysis
is the use of this particular parametric grid with triangular pixel, in spite of more commonly
used block pixel. Utilizing a triangular mesh have some advantages respect to a block param-
eterization, so the use of triangular wavelets, whose supports match the triangular cells, also
hold in itself the goodness of triangular parameterization. In fact, besides to be the natural
basis for developing a spherical wavelet analysis,it make possible the implementation of a
multiresolution analysis by means of hierarchical subdivision of cells. In the case of square
pixels we have a problem relating to spherical block areas: if we want preserve a constant
area, the blocks near the poles must be enlarged to be of similar size of blocks near the equa-
tor.. This is a safeguard no necessary in the triangular case, so the distorsion effects from the
poles are much reduced compared to a mesh built on a lat-long grid.

Moreover blocks show discontinuities from one block to another, causing difficulties in dy-
namic and cinematic ray tracing.
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Ray Distribution of Love at 35s
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Figure 3.5: Ray distribution for Love wave at 35s calculated as number of rays which travel along the
same triangle of parametric mesh. From top to bottom they are showed the ray distributions for the
parametric grid at depth 3, 4 and 5.
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Love wave at 35s
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Figure 3.6: Surface wave velocity tomography for Love wave at 35s, at different level of resolution.
The figure clearly shows how the multiresolution is performed. It is the result from a single inversion,
achieved with a damping value of 1.
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Figure 3.7: Results from multiresolution inversion for maximum level 5, from different norm damping
parameters.
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Figure 3.8: Variance reduction as function of norm damping parameter.
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Figure 3.9: Number of iterations performed by LSQR algorithm as function of norm damping param-
eter.
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Figure 3.10: Amplitude of interval between maximum and minimum model value as function of
damping.
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Figure 3.11: Root mean square as function of norm damping parameter.
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Block vs. Triangular Parameterization

[Block Parameterization| IL=3 (inversion since L=5)|
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Figure 3.12: Block model parameterization versus wavelet parameterization. The figure in top lest
side of table shows the result of inversion using a parameterization with pixel of 6° x 6° size; the
others pictures show the results of inversion at depth of resolution 3 obtained by inversion performed
at different maximum resolution level: the top left figure show the model at level 3 deduced from
inversion at level 5, the two figures on bottom show the model at level 3 obtained from inversion at
level 3 (on the left) and at level 4 (on the right).



Chapter 4

Wavelet Spectral Analysis: Local
Correlation Maps

Wavelets are functions with compact support so they have several interesting application for
their property of localization both in time and frequency domains.

One interesting field of application for wavelet analysis is in the quantitative comparison
between different tomographic models by means of systematic assessment of their spectral
content. This is an important field of application for addressing reliability of different recon-
structions, and for deriving geodynamic constraints on mantle flow.

Classically, spectral analysis is performed by means of spherical harmonics (e.g., Becker and
Boschi, [5]), so it only provides an averaged spectral value associated to the global model, for
each harmonic degree.

We want now investigate the capabilities of the continuous wavelet transform in the spectral
analysis; we use, in particular, a correlation technique based on wavelet analysis (Kido et al.,
[17]) to retain spatial information together with spectral content. This allow scrutiny of local
features, whose representation spans over multiple scales.

One of the mean difficulty in the application of wavelets in the spectral analysis is that most
applications, known in literature, are carried out in Cartesian spaces, where 2D and 3D gen-
eralization of wavelets is straightforward (e.g.,Piromallo et al., [25]).

While exploration of regional scale tomographic structures can be accomplished by using
handy Cartesian formulations, when we look at the globe we are confronted with the prob-
lem of scale invariance of the wavelet mother function.

Between different suggested representations for spherical wavelelets, we have chosen to
adopt the formulation based on stretching a 2D function on the sphere, that does not consti-
tute a mathematically rigorous wavelet basis, but that can be shown to possess the required
scale invariance of the kernel in numerical sense.

In this Chapter we want to test the capabilities of this particular representation by means of
some preliminary tests with the aim to evaluate the sensibility of kernel as function of as-
signed parameters as the wavelength or the distance between two different anomalies whose
correlation we are interesting to evaluate.

In the second part of the Chapter we apply the wavelet spectral analysis to a real data-set of
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body waves to achieve “Local correlation maps ” between different tomographic models, to
make in evidence discrepancies and similarities among them and between different profiles
of the same model with the goal to identify some interesting geophysical structures in the
crust and upper mantle.

4.1 The Continuous Wavelet Transform in spectral analysis

The wavelet kernel that we use for our analysis is based on the zeroth- order Bessel function
and is derived by the azimuthal averaging of the well-known anisotropic Gabor transform.
This type of transform is called as “wavelet-like” , since the kernel has been adjusted with a
spherical correction, which consequently breaks the geometric similarity of the various scales
in the kernel, as we going to show n the following section.

4.1.1 Wavelet-like Transform on the sphere

We want now, briefly, describe the construction of the analytical wavelet-like transform, which
can be applied over the spherical surface.

Firstly it is important to keep in mind that the minimum mathematical requirements to be
satisfied by a mother wavelet are:

- the mean of the wavelet function over the entire interval is zero;
- the geometric similarity must be kept over the different spatial scales.

According to the definition of the wavelet transform as a convolution integral of a kernel with
the original field over the surface, we can achieve the continuous wavelet transform of a field
T(0, ¢) in the point (0o, ¢o) as:

2m
T (60, do) = / / 0,¢) x sin 0dOde, (4.1)

where K (0, ¢) is the integration kernel chosen so that the (4.1) is a wavelet transform.
Following the representation of Kido et al., ([17]), we can start from a preliminary kernel of
the 1D Gabor transform F'1; ,(x) which is one of the most popular mother wavelets, used for
time-series analysis. It is usually composed by three parts:

- exp[—(kz/20)? is the Gaussian window;
- cos(kx) is the basis function;

- constant factor exp(—o?) that, subtracted to former value, ensures that the mean value of
the kernel be zero.

The expression of F'1j ,(x) is therefore :

2
Flp,(x) = exp (— (Sj) ) [cos(kx) — exp(—aZ)], 4.2)

where k is a wavenumber and o /k is the width of the Gaussian window along the z-direction.
We can then define the kernel of the 2D anisotropic Gabor transform in Cartesian geometry
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Fay o (z,y), simply by extending cos(kz) in (4.2) in the y-direction as a constant with the
zero-mean adjustment term and the 2D Gaussian window.

If we re-write the 2D kernel in cylindrical coordinate system and impose it to be isotropic we
have:

2
Fig o (r) = %exp (- <Z> > Lo (kr) — exp(—a2), 4.3)

where Jj is the Bessel function of the zeroth-order.

4.1.2 The Gabor-type Transform Kernel

In order to map the 2D Cartesian kernel onto a spherical surface, it is necessary to apply a
spherical correction (£/sin&) to the basis function, where ¢ is an angular distance instead
of r in (4.3). Furthermore Kido et al. use a normalizing factor Z?U, where [,, substitutes the
wavenumber, and corresponding to the angular degree of the spherical harmonics.

Finally the Gabor-type transform kernel for a sphere can be expressed as:

o () & o2
ﬂqu,a<€)_lwexp % X JO(lwf)sin5 eXP( U) 5 (44)

where ¢ is the angular distance along a great circle and it can be expressed in the geographical
system using ¢q, fy, ¢ and 6, where (¢g, 0y) are the longitude and co-latitude at a location
to be considered for the transform, namely the central location of kernel and (¢, ) is any
geographical location. So we can write for distance &:

cos & = cos b cos O + sin Oy sin 6 cos(pg — ¢). (4.5)

The parameter [,, /o is proportional to window size, while o is a key parameter which controls
the balance of location between space and wavelength (o sets the width of the Gaussian filter
in the spectral domain).

Fig.(4.1) shows the vertical cross section of the Bessel function .J; (blue line) and the Gabor
kernel F;, , (red line), for the case of [, = 8 and ¢ = 2,as a function of angular distance &.
Fig.(4.3) shows instead the trend of kernel on sphere for the same value of [, and o: it is
clear from the figure the property of localization of the kernel which tend to decrease when
the angular distance from the central location increase.

It is important to make in evidence that, using the expression (4.4) we have to choose a value
of l,, > 4. In fact, if we plot F}, , as a function of scaled angular distance ({/,,/4) we note
that, because of the spherical correction, the shape of function depends on [,,, so it violates
one of the mathematical requirement for a mother wavelet, namely the geometric similarity
among the different scales. This is evident from the Fig(4.2) that shows the plots of Gabor
kernel for several values of parameter [, (i.e., l, = 2,3,4,6,8 and 12), as function of the
scaled angular distance. For lw < 3 the function has a singular behavior: a prominent feature
is a singularity originated in the spherical correction for /,, = 2 and 3 and corresponding to
the antipodes of the center of the kernel. The problem is partially solved if we set lw > 4
(blue and azure plot) and is definitely passed if we chose (w > 8.
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Figure 4.1: Bessel function Jy(1,,¢) and kernel of the wavelet -like transform plotted as a function of
angular distance £
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Figure 4.2: Plots of kernel F;,, , (without normalization) for each l,, = 2 — 4,6, 8,12. The difference
in the function near l,, /4 = 60° violates the wavelet requirement of similarity of trend for each value
of l,,.

This is substantially the reason because we use the term wavelet-like for our transform.
For our analysis we have therefore decided to test the special value [, = 4 but generally chose
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Figure 4.3: Gabor-type transform kernel on the sphere (I, = 8 and o = 2). The green star indicate
the center of the kernel.

l, > 8. Moreover, we have also performed some quantitative tests to evaluate the best value
for the parameter o; for brevity we do not show the results of those tests but we directly use
the value o = 2 (as also suggested by Kido et al., ([17])) because it yields a good filtering
capability to our a kernel .

Using the kernel (4.4), we define a wavelet transform of a field 7'(9, ¢) at the geographical
location (6o, ¢o) as:

2m
T (0o, ¢o) = / / &) Fly 000,00 (05 @) x sin §dOde. (4.6)
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Property of localization of the “wavelet filter” : why use the wavelet transform?

As we have just remarked, one of the most important property of wavelet analysis consist
in its property of localization. In the field of spectral analysis this means that we are able
not only to achieve the energy contents of a signal but also to “localize” this quantity. This
is a great advantage of wavelet transform respect to classical spherical harmonic analysis
which only gives us the mean value of the spectral contents for a fixed harmonic degree (i.e.,
for a fixed wavelength); in other words, given a field , with the wavelet transform we can
achieve the energy contents as a function of latitude and longitude, plotting a spherical map
of the spectrum while with Fourier analysis we obtain a single value, for each fixed harmonic
degree. Fig.(4.4) shows an example of spectral analysis performed with classical and “new-
type” analysis, that make the concept of “localized spectrum” more evident and clear.

The original model (obtained from the same data-set used in the C'hapter 3), is showed at the
top of (4.4): the shallowest Earth structures and the contrast between continental and oceanic
crust are the main observable features. When we apply a Fourier analysis we obtain the value
of energy as the summation of square modulus of harmonics coefficients. Clearly, the result
of summation is a single value for each harmonics degree. The green plot in the bottom of
Fig. (4.4), shows the trend of spherical harmonics spectrum for a maximum harmonic degree
equal to 20.

On the other hand, if we apply the continuous wavelet transform to the same signal (crf.
eq.(4.6)) we achieve a localized power spectrum which can be plotted on the Earth surface
as a function of latitude and longitude, as it is shown in the blue panel. The global map in the
blue panel of Fig.(4.4) shows the equivalent result of harmonics analysis for a single value of
L, pointed out with a blue star. It is also evident the “filter action” of wavelet transform: the
filtered field shows a strongest signal where the tomographic model point out Earth structure
associated to remarkable velocity variations, i.e., structure with an higher energy contains.

4.1.3 The Concept of Local Correlation

Starting from the definition of continuous wavelet transform we can compute the spatial
correlation Cj, , between two scalar fields S and T' defined on the sphere (that for us can
either represent two tomographic models at the same depth, or two sections at different
depths of the same 3D model) as:

Jo Wiao (€)5(8,9)T (6, $)dS2
Vo W, o (€)82(6, )2 [, Wi, o (6)T(0, 6)d2

where we make use of a weighting function W, () centered on the point of evaluation:

2
Wiy o(6) = oxp (— (%) ) . “9)

If we plot C},, on the sphere as a function of latitude and longitude we obtain a Local correla-
tion map, i.e., a map which give us information about how well the two field are correlated
and “where” they are correlated.

Clw70(907 ¢0) = ’ (47)




4.2 Synthetic Test 57

4.2 Synthetic Test

Before applying the continuous wavelet transform to real data, we have performed two syn-
thetic tests to evaluate the force and sensibility of our approach in the spectral analysis,i.e.,
its capability in catching the energy content of a signal.

4.2.1 Wavelet Analysis vs. Spherical Harmonics Analysis

We perform a first synthetic test to get a better understanding of relation between wavelet
spectral analysis and spherical harmonics analysis (i.e., the classical approach generally used
to perform a spectral analysis or to evaluate correlation between different fields).

We are in particular interested to understand the relation between the parameter /,, in (4.6)
and the harmonic degree [ and also evaluate the “filtering” action of continuous wavelet
transform. With this goal we perform a test similar to the classical checkerboard test but
using the tesseral harmonics .

For brevity we only show the results, obtained with this tests, concerning the lower (I = 8)
and higher (I = 20) harmonic degree tested. From Fig.(4.5) and Fig.(4.6) it is, however,
evident the filtering action of the wavelet transform and the relation between the parameter

l, and [: they are sensitive to the same wavelength.

4.2.2 Sensitivity of Correlation to the variations of characteristic parameters

We also carry out a second synthetic test to understand the dependence of local correlation
from the dimension of a feature or from the distance between two distinct features that we
want correlate. In this case we have built a synthetic model composed by two Gaussian
anomalies exp(—d?/20?), with d distance from the center of the Gaussian and then we have
correlated. them. We chose the value o = 25°, estimating 20 as the amplitude of Gaussian
anomaly.

Preserving the position of one of the gaussian anomaly, we shift the second one with a step
proportional to its amplitude, to evaluate the gradual response of local correction to this
change. At the beginning, the second field is shifted with a step that is a fraction of the
anomaly; so we start with the two matching anomalies and then we look at partially overlap-
ping anomalies. At the end the distance is a multiple of the dimension so the anomalies are
completely separated

! Assigned a real function f(6, ¢) we can expand it in terms of the real surface spherical harmonics as follows:

o) 1
f(0,9) = Z {azoé\.’zo +v2 Z Xim (aim cos me + by sin md))}

=0 m=1

where a;,, and b;,,, are the harmonic coefficients and X}, are the real spherical harmonics:

o (222) [52] ten

‘P being the associated Legendre functions of degree [.
When we chose m # 0 and m # [ in the expression of f(6, ¢) we obtain the tesseral harmonics.



58 Wavelet Spectral Analysis: Local Correlation Maps

Fig.(4.7) shows the original data field, from top to bottom is evident the gradual shift of the
anomaly while the first one, not shown here, remains in the first position.

The panel in the right side shows the filtered field for different values of [,,,.

Fig.(4.8) shows the local correlation maps for the same values of [, on the line and for the
different relative distances between the two anomalies, on the column.

When the filter is too lower (l,, = 4) the dimension of anomalies and their relative distance
are so that we are not able to distinguish informations about the anomalies. When the value
of [, increases we begin to observe something:

-with a factor between 0 and 0.33, i.e., with a relative distance so that 0 < d < (0.33 - 20) we
have a perfect correlation (~ 1) because the anomalies are still fully overlapped ;

-when the distance increases with a factor between 0.43 and 0.66 we begin to see the distinct
centers of two anomalies characterized by two zone of negative correlation (violet zones lo-
calized near the centers of anomalies);

-the two anomalies are perfectly visible with a factor 100, i.e., the anomalies are at a distance
equal to their dimension so that they are neighboring.

The same results are visible with /,, = 12 and partially with [, = 16. At [, = 24 the value is
probably too much higher, so it filters at wavelengths lower than those we are studying.

4.3 Correlation between different Tomographic Models

As we have just underlined with the synthetic tests, one of the most powerful application of
continuous wavelet transform consists in its capability of localizing both in frequency and in
space domain, the spectral contents of a signal. This property make possible to perform local
comparison between different tomographic models by means of the local correlation.Unlike
of the classical correlation, obtained by spherical harmonics analysis, correlation calculated
starting from wavelet transform give us a global map which shows, spatially localized, the
value of correlation and so, where two models are more or less in agree.

We apply the (4.7) to two couples of body wave velocity models.

Firstly we examine two different S-wave tomographic models: the s20rts by Ritsema et al.,[27]
and the saw642, the most recent model developed by Panning & Romanowicz, [24] (2006).
Figures (4.9) and (4.10) show the original models, while figures (4.11) and (4.12) are the
filtered versions for several value of parameter [,, (I, = 4, 8,12, 16 and 24).

Fig. (4.13) and (4.14) finally show the most important results. First of all, we can note that,
when the parameter /,, is too much low (l,, = 4,8), the transform is only able to capture
structure with highest wavelengths so the models result perfectly correlated. When we go
to study the correlation concerning the higher value of filtering parameter we see that the
models are generally in agreement , best on the continents respect to ocean zones.

We can also see the presences of some anti-correlated zones (blue-violet anomalies); for ex-
ample:

- at 200 km it is visible a “negative anomaly” in the correlation, localized in the middle Pacific
Ocean which remains up on great filtering value and which can be related with the opposite
values of models (positive variation in saw642 and negative in s20rts) visible in (4.9) and
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(4.10).

- between 600 and 800 km for value of [,, = 8,12, 16 it also evident a negative correlation
zone near middle of Africa, probably correlated to differences (in sign) in this zone between
the models; the same is true for the anti-correlated zone in the middle right side of Pacific
Ocean .

Clearly the local correlation maps become more patched when we increase the value of [,,:
to explain these results is more difficult if we start from the original models, because the
wavelengths are enough low, but it becomes clearest if we study the filtered fields.

We repeated the same analysis for two distinct P-wave tomographic models: the bdp00 by
Antolik et al., [2] and the khOOp by Kdrason & van der Hilst, [16]. Also in this case we can
deduce the same conclusions for lower value of filtering parameter. When we go to examine
higher value we find again some negative correlation zone; for example:

- at 100 km it is visible an anti-correlation zone in the middle of Pacific Ocean consistent with
the little positive anomaly visible in bdp00 and absent in kh00p;

- a similar anomaly is also visible at 400 and 500 km probably compatible with positive
anomaly visible in kh00Op near Fiji Island, absent in bdp00 ; to this anomaly is coupled an-
other anti-correlation zone near Indian peninsula: also in this case we can notice a positive
anomaly in the bdp00 model absent in the other one

We can substantially deduce that, in the comparison between two different tomographic mod-
els, the local correlation correctly work, detecting locally the zone of discrepancies and that
it is, in particular, more sensible to variation in sign of field rather than in amplitude.

4.4 Correlation between different depths

Starting from the just analyzed S-wave tomographic model saw642, which is one of the most
recent models available in literature, we want now to show another possible and innovative
application for continuous wavelet transform : the local correlation maps obtained between
two different profile of the same model.

Because of the enormity of analysis which is possible to make in this particular field we
chose to show only a few part of our results concerning this application, that appear us more
interesting.

Fig (4.21) shows, for example, the auto-correlation maps 2 of profile at 100 km with profiles
in an interval around discontinuity at 200 km. The computation is performed for several
value of filtering parameter but we show here only those concerning the more significant
value (I, = 8,12, 16, 24). For [,, = 8 we observe a good agreement between different profiles
with the presence of a zone with a lower correlation which range the Pacific Ocean (crf. map
(0100/0230) which shows the local correlation between 100 km and 230 km). Th anomaly
become more important when we increase the value of /,, and we can see, for [,, = 12 and
16 the presence of another anomaly on the Indian Peninsula, both consistent with a gradual
change of sign of velocities field (from positive to negative).

2We call auto-correlation map the map obtains correlate a model with itself at different depths.
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Fig (4.22) and Fig (4.23) shows instead, the auto-correlation maps of couple of profiles with
a distance of 100 and 200 km.In this case we chose to focus our attention on deeper layers
near discontinuity at 660 km. Differently by (4.21), when we have a narrow analyzing step
of 10 km, here we study a wider interval. As we aspect when the value of filtering parameter
is low and we examine a correlation distance of 100 km, we have a good correlation between
depths. The results change gradually when we increase [, so for [,, = 16 and 24 we see the
presence of two negative anomalies: one on the Indian Peninsula, which is visible in maps
(0400/0600), (0500/0600) and (0500/0700) and another negative anomaly between Australia
and Papua New Guinea, visible in maps (0600/0800), (0700/0800) and (0700/0900).
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right)
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Figure 4.5: Tesseral harmonics field with m = 4 and L = 8 (top of the figure) and its filtered versions
obtained applying the “wavelet-like” transform with (I,, = 4,8,12,16,24).
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Figure 4.6: Tesseral harmonics field with m = 10 and L = 20 (top of the figure) and its filtered
versions obtained applying the “wavelet-like” transform with (I, = 4,8,12,16,24).
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Figure 4.7: Synthetic test with two shifted gaussian anomalies. In the blue panel is shown the first
filtered field for (I, = 4,8,12,18,24). The other filtered fields are equal but shifted as also shown for
the original field.
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Figure 4.8: Local correlation maps from gaussian synthetic test: the lines show the result at the same
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Figure 4.15: P-wave tomographic model bdp00 (Antolik et al., [2]).
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Conclusions

The wavelet analysis is an investigation tool widely applied in the field of seismic signal pro-
cessing but not yet much used in the global tomography.

In this work we developed a multiresolution analysis, performed by mean of the wavelet
transform with the aim of applying it to global seismic tomography. We faced this goal fol-
lowing to separate branches, to test the capabilities of this analysis in seismic tomography.
Firstly we solved the tomographic problem using a particular set of basis function, the spher-
ical triangular Haar wavelets. The use of optimal spherical wavelets, which have compact
support both in the spatial and wavenumber domains, provides a natural multi-scale repre-
sentation of a target model and is free from a priori prejudices intrinsic to other base func-
tions.

We tested the approach with some preliminary analysis (synthetic tests) and then applied it
to real data of surface wave phase anomalies.

The inversion performed with wavelet analysis appeared as stable as that made with block
paremeterization if we do not use “a priori” constraints, but its stability increase imposing a
norm minimization, In the same condition, the pixel inversion usually require a further con-
strain on the roughness of the model. This difference in the damping is ascribed to a intrinsic
multiresolution nature of wavelet analysis. In fact, when we decompose a signal using set,
we, substantially, split it in two main components, one is the average and one is the details;
details represent the difference of values of the model in a point and in its neighbourings,
but this in fact the value that we minimize when we impose a roughness minimization. So
when we solve the tomographic problem with wavelet approach we intrinsically “impose” a
smoothing to our model.

Moreover the wavelet analysis assure us, as showed in Chapter 3, the possibility to reproduce
the model at different resolution levels without the necessity to repeat the inversion, clearly
reducing the running time.

In a second part we tested the potentialities of wavelet transform in the field of spectral anal-
ysis. In this field the wavelet analysis exhibit a remarkable power and usefulness respect to
classical tools. Classically the spectral analysis of a signal, performed by means of the spheri-
cal harmonics, is able to provide one value both for energy content and for correlation. These
values are substantially an averaged estimate which give us an idea of what is the energy as-
sociated to the model or how well two models are correlated. In Chapter 4 we instead showed
the innovative approach by means of wavelet transform which provide us not only the “how”
but also the “where” of spectral contains. The tests, performed with synthetic and real data
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demonstrated the great innovation of wavelet spectral analysis.

On the basis of results with this thesis we think that a future work could take advantage of
multiresolution analysis capability of wavelet functions, developing a criterion to refine the
mesh where is necessary, creating a “self-adaptive” parameterization which models itself to
take in account the uneven distribution of source and recording stations across the globe.
Morover we are the project , for the future, to continue our comparison between tomographic
models using wavelet spectral analysis.



Appendix A

The Lifting Scheme

A lifting is an elementary modification of perfect reconstruction filters, which is used to im-
prove the wavelet properties, decomposing wavelet transforms into a set of stages.

In 1994, Sweldens ([32],[31]) has developed the Lifting Scheme for the construction on
wavelet filters. The main feature of lifting scheme is that all constructions are derived in the
spatial domain. This is in contrast to the traditional approach which relies heavily on the
frequency domain. Staying in the spatial domain leads two major advantages.

First, it does not require the machinery of Fourier analysis as a prerequisite. Secondly, lifting
leads to algorithms that can easily be generalized to complex geometric situations which typ-
ically occur in computer graphic.

The idea behind the lifting scheme is almost complex, so, to make the treatment as accessible
as possible, we chose to begin with a simple example of a wavelet transform to introduce
the basic ideas and then, eventually, introduce lifting in a more general mathematical back-
ground.

A.1 A trivial example: The Haar Wavelet

To make clear the lifting scheme we want in particular, make in evidence, the differences
between the classical approach and this new building scheme.

Consider two number a and b and think of them as two neighboring samples of sequence. We
propose a well-known, simple linear transform which replaces a and b by their average s and
difference d:

a+b

2
d = b—a, (A.1)

With this choice we have not lost information because, inverting the 2 x 2 matrix, we can
always recover a and b from given s and d by means of relations:

a = a—d/2
= s+4d/2, (A.2)
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Figure A.2: Structure of inverse wavelet transform: recursively merge averages and differences.

This simple observation is the key behind the so-called Haar wavelet transform. Consider a
signal s,, of 2" sample values s, ;:

Sp = {sp1|0 <1 < 2"},

Apply the average and difference transform onto each pair a = s9 and b = s9.1. There

are 2"~ ! such pairs (I = 0,---,2""!); denote the results by sp—1, and d,_1;: average s and
difference d:
Sn,2l + Sn,20+1
Sp—1] = — (5
2
dp—1] = Sp20+1 — Sn2ls (A.3)

The input signal s,,, which has 2" samples, is split in two signals: s,_; with 2"~! averages
sp—1; and d,,_; with 27! differences d,—1,. Given the averages s,,_; and differences d,,_;
one can recover the original signal. We can think of the averages s,,_1 as a coarser resolution
representation of the signal s,, and the differences d,,_; as the information needed to go from
the coarser representation back to original signal.

We can apply the same transform to the coarser signal s,,_ itself. So we split the signal in a
(yet) coarser signal s,,_» and another difference signal d,,_» where each of them contain 2”2
samples. We can do this n times before we run out of samples (crf. Fig. (A.1) and (A.2) ).
This is the Haar transform. We end up with n detail signals d; and one signal sy on the very
coarsest scale. By using the inverse transform we start from sy and d; and obtain s,, again
(crf. Fig.(A.2)).
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The total number of coefficients after transform is 1 for sy plus 2’ for each d;. This add up to:

n—1 '
1+ 27 =2m,
§=0

which is exactly the number of samples of the original signal. So the whole Haar transform
is the result of application of a N x N matrix to the signal s,,. The cost of computing the
transform is only proportional to N. It is the hierarchical structure of wavelet transform
which allows switching to and from the wavelet representation in O(NN) time.

A.2 Haar and a first approach to Lifting

Now we want to look at a different approach at the Haar transform seen in the previous
section. The novelty consists in the way used to compute the difference and average of two
number @ and b. A first important assumption is that we want work without using auxiliary
memory location, by overwritting the location that hold a and b with the value s and d.
This can not immediately done with the formulas (A.1), which give us a wrong result. We
therefore suggest an implementation in two steps.

First we only compute the difference:
d=1b-—a,

and store it in the location for b. As we now lost the value of b we next use a and the newly
computed difference d to find the average as :

s=a+d/2.

This substantially give us the same result because a + d/2 = a + (b —a)/2 = (a + b)/2. The
advantage of the splitting into steps is that can overwrite b with d and a with s, requiring no
auxiliary memory. A C-like implementation is given by:

b—=a; a+=10/2;

after which b contains the differences and a the average. We can immediately find the inverse
without formally solving 2 x 2 system (A.3): simply run the above code backwards (i.e.,
change order and flip the signs).

This particular scheme of writing a transform is a first, simple instance of the lifting scheme.

A.3 General theory on the Lifting Scheme

Let see now the more general structure of the lifting scheme, describing it in more detail.
Consider a signal s; with 2/ samples which we want to transform into a coarser signal s;_;
and detail signal d;_;. A typical case of a wavelet transform built through lifting consists of
three steps: split, predict and update. Let us discuss each stage in mode detail.
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Figure A.3: Lifting scheme forward wavelet transform: first compute the detail as the failure of a
prediction rule, then use that detail in an update rule to compute the coarse signal(from web site

[42]).

- SPLIT STEP : This step splits the signal into two disjoint sets of samples. In our case one
group consists of the even indexed samples so; an the other group consists of the odd indexed
samples so;1 1. Each group contains half as many samples as the original signal. The splitting
into even and odd is called Lazy wavelet transform. we can built an operator so that:

(evenj_1,o0ddj_1) := Split(s;).

Remember that is the previous example a was an even sample while b was an odd sample. -
PREDICT STEP : If the signal has a local correlation structure, the even and odd subsets will
be highly correlated. In other words given one of the two sets, it should be possible predict
the other one with reasonable accuracy. We generally use the even set to predict the odd one.
An odd sample s;9.1, in the Haar case, use its left neighboring even sample s; 9 as its
predictor. The detail d;_;; will be the difference between the odd sample and its prediction :

dj_1; = 852141 — Sj21s
which defines an operator P such that:

dj—l,l = Oddj_l — P(evenj_l.

- UPDATE STEP : One of the key properties of the coarser signals is that they have the same
average value as the original signal,i.e., the quantity:

27 -1

S =277 Z S5l
=0

is independent of j. The update stage ensure this by letting

Sj-11 = 821 + dj1,1/2.
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So we can define an other operator U of the form:

sj—1 = evenj_1 + U(dj_1).

All this can be computed in-place: the even locations can be overwritten with the averages
and the odd ones with the details.
An abstract implementation is given by:

o(evenj_1,o0dd;_y) := Split(s;)

eodd;_1;— = P(even;_;

ecvenj_1+ = U(d;_1)

These three steps are showed schematically in Fig.(A.3) and Fig.(A.4) .
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Haar Transform

Lifting version
m split into even and odd
(even;_;,odd; ;) := Split(s;)

m predict and store difference: detail coefficient

m update even with detail: smooth coefficient

S.

jo1 = eveny_; + d;_;/2

Haar Transform

even ~ Smooth
T o
S; split U
odd

s;_; = eveny_; + U(d,_,)

Figure A.4: Lifting scheme: a schematic illustration of lifting scheme Haar transform from Sweldens’s
note [32]
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