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PREFACE 
 

The research project 
 
The present PhD research activity has been carried out at the research center Agricoltura e 

Ambiente (CREA-AA, ex-CIN) in Bologna (Italy). The center is part of the CREA network 

(Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria) and it is a center of 

excellence for top-level research of the biochemical plant defensive system known as 

‘glucosinolate-myrosinase system’ with an in-depth experience of more than four decades. 

Noteworthy, the center has developed a collection of glucosinolate producing plant seed, 

besides having published a wide number of scientific articles on the subject since 1982. The 

center CREA-AA has also pioneered the purification of glucosinolates to a high purity level 

along with the enzyme myrosinase. This system is present in many plants, mainly of the order 

Brassicales, including several nonfood industrial oleaginous crops such as Brassica carinata, 

and common vegetables like broccoli, cabbage, kale, radish and rocket consumed worldwide. 

The subject is of big interest and the knowledge about this fascinating biochemical system is 

still evolving and attracting the combined efforts of scientists of several disciplines. 

This PhD research activity was granted by the project ‘Role of the glucosinolate-myrosinase 

system in the prevention of pathologies of central nervous system’ in collaboration with IRCCS 

Centro Neurolesi Bonino-Pulejo (Messina, Italy) and supervised by Prof. Luca Valgimigli 

(University of Bologna) and Dr. Renato Iori (CREA-AA). The research focused on the 

multigram-scale isolation of selected glucosinolates, the setting-up of their enzymatic 

transformation, and the in-vivo investigation of their activity in the protection of the central 

nervous system from neurodegenerative disorders. Furthermore, several plants were 

analyzed for glucosinolate profiling and quantification over the PhD years, since the analytical 

plant screening is the first step underlying the research activity when dealing with 

phytochemicals investigations. One of the main task of the PhD was the screening of different 

Brassicaceae to identify the most convenient source to isolate glucoraphanin, which pointed 

towards Tuscan black kale seeds that resulted to be a multifunctional source to achieve 

several purposes. The procedure for extraction and purification of glucoraphanin from the 

defatted seed cake was set-up by combining preparative anion exchange chromatography 
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and gel filtration chromatography. Further, a set of other four glucosinolates, namely 

thiofunctionalized glucoerucin, glucoraphasatin, glucoraphenin and the atypical glycosylated 

glucomoringin were isolated and purified using similar experimental approach starting from 

suitable plant sources. The protocol was able to furnish all glucosinolates on the gram scale 

with a 95-99% purity level. To prepare the isothiocyanates from the purified glucosinolate 

precursors, the enzyme myrosinase was extracted and purified from white mustard (Sinapis 

alba L.) seeds by an established method based on two chromatographic steps: affinity 

chromatography on Con-A-Sepharose followed by gel filtration.  

An efficient protocol for the enzymatic transformation of the selected glucosinolates and 

isolation of the corresponding isothiocyanates was set up and optimized using a biphasic 

system. The glucosinolates were also hydrolyzed using the same set-up system with the 

addition of benzyl mercaptan used as a model thiol to trap in situ the corresponding 

isothiocyanates intermediate and directly transform them into dithiocarbamates. This study 

highlighted a peculiar reactivity of glucoraphenin and an interesting water instability of its 

enantiopure isothiocyanate known as R-sulforaphene. Further investigation on glucoraphenin 

myrosinase catalyzed assisted hydrolysis led to the discovery of a new small cyclic molecule 

bearing 3 sulfur atoms that was isolated and characterized.  

The pharmacological studies focused on glucoraphanin and glucomoringin that are the 

precursors of dietary isothiocyanates R-sulforaphane and moringin, respectively, recognized 

for their chemopreventive and medicinal properties. In contrast to the well-known R-

sulforaphane, little is known about the molecular pathways targeted by moringin. The 

neuroprotective effects of R-sulforaphane and moringin freshly prepared by the action of 

myrosinase on highly pure glucoraphanin and glucomoringin, was tested in in vivo 

pharmacological investigations, in collaboration with IRCCS – Messina. The results showed 

neuroprotection by R-sulforaphane in a rat model of spinal cord injury. Moringin was tested 

in four different animal models of Parkinson’s disease, autoimmune encephalomyelitis, spinal 

cord injury and amyotrophic lateral sclerosis proving promising neuroprotection effects.  

The results achieved in the three years of research have been documented by twenty-seven 

scientific articles published in international peer reviewed journals and listed at the end of 

this PhD thesis. Also, the PhD candidate was the presenter of an oral communication at the 

main international congress on glucosinolates in 2014, and a coauthor of a poster 

presentation at a national conference in Zagreb in 2015. 
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Summary 

 

The objective of this chapter is to present a general overview of the glucosinolates, 

thiosaccaridic secondary metabolites, found in the plant kingdom and to present their 

structural diversity depending on the metabolism of the amino acid precursor of the plant 

species. The occurrence of glucosinolates in plants coincides with the occurrence of specific 

thioglucosidases, the myrosinases enzymes, which catalyzes the hydrolysis of these 

compounds. The fascinating glucosinolate breakdown machinery can give rise to the 

formation of structurally diverse products depending mainly on the chemical structure of the 

aglycon chain and the experimental conditions. The different hydrolysis pathways leading to 

the formation of isothiocyanates as well as several others degradation products are 

presented. Finally, a general overview of the relevant biological effects of glucosinolate 

breakdown products is described. 
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1.1 Glucosinolate structure and classification 

 

Glucosinolates (GLs) are an important class of thiosaccaridic secondary metabolites occurring 

in the botanical order Brassicales which encompass seventeen plant families of 

dicotyledonous angiosperms including many edible species (Table 1.1) (APG III, 2009). 

Brassicaceae, also called Cruciferae, is the dominant family within the order Brassicales, with 

over 330 genera and 3700 species distributed primarily in the temperate and alpine areas of 

all continents except Antarctica (Blažević et al., 2017). The Brassicaceae family includes many 

economically important GLs producing plants such as leaf and root vegetables, oilseed and 

condiment crops that are cultivated worldwide and marketed for animal and human 

consumption (Ishida et al., 2014). GLs are water soluble organic anions which display a 

remarkable structural homogeneity based on three moieties: (1) a hydrophilic -D-

glucopyrano unit and (2) a O-sulfated anomeric (Z)-thiohydroxymate function connected to 

(3) a variable aglycone side chain derived from an -amino acid (Figure 1.1). The aglycone can 

originate from one of eight natural -amino acids according to which GLs can be classified 

into three classes as aliphatic (derived from Ala, Leu, Ile, Val, and Met), arylaliphatic (derived 

from Phe or Tyr) and indolyl GLs (derived from Trp) (Agerbirk and Olsen, 2012). The first 

comprehensive compilation and cataloging of the chemical structure of all known GLs and the 

plant families from which they have been isolated was provided by Fahey et al. (2001). This 

review still represents the milestone reference for the scientific community in the field since 

it provides a single source of the chemical and common names of 121 GLs along with their 

chemical structure and their distribution among plant species. A systematic critical review of 

natural occurring GLs has been more recently provided by Agerbirk and Olsen (2012). These 

authors updated the number of GL structures fully documented by 2011. They reduced the 

previously reported number of 121 GLs by 15 structures as these molecules were found 

insufficiently documented and the supportive evidences not conclusive. On the other hand, 

they increased the number by 1 as two well documented epimers namely (S)-2-hydroxy-2-

phenylethyl GL (glucobarbarin) and (R)-2-hydroxy-2-phenylethyl GL (epiglucobarbarin) were 

not distinguished in Fahey table (Fahey et al., 2001). In the same review Agerbirk and Olsen 

(2012) added 26 GLs newly discovered between 2000 and 2011 reaching a total number of 

133 identified structures which is still almost invariably the quoted number nowadays. A new 

GL, 4-hydroxy-3-methoxybenzyl GL, has been isolated from Bretschneidera sinensis and fully 
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characterized during the realization of the present PhD thesis described here at Chapter four 

and published in 2015 (Montaut et al., 2015). Thus, the quoted number of GLs by 2017 should 

be increased to 134. For the sake of completeness, the valuable review of Clarke (2010) must 

be mentioned here. This review focused on the quantitative analysis of GLs in plant materials 

and provided an electronic database of structures, formulae and accurate masses of 200 

structures for use in mass spectrometry.  Hence, it appears likely that several new natural 

structures have already been detected in plants and are awaiting documentation by complete 

identification after their isolation. 

 

Table 1.1 Seventeen plant families of the botanical order Brassicales. Numbers in parenthesis 
are the approximate number of genus and species in each family (Blažević et al., 2017). Edible 
species are reported in italics. 
 

Akaniaceae (2/2) Limnanthaceae (2/9) 

Bataceae (1/2)  Moringaceae (1/12) (moringa) 

Brassicaceae (330/3700) (cabbages) Pentadiplandraceae (1/1) 

Capparaceae (16/480) (capers) Resedaceae (6/85) (reseda) 

Caricaceae (4-6/34) (papaya) Salvadoraceae (3/11) 

Cleomaceae (2-6/300) Setchellanthaceae (1/1) 

Emblingiaceae (1/1) Tovariaceae (1/2) 

Gyrostemonaceae (6/20) Tropaeolaceae (1/105) (Indian cress) 

Koeberliniaceae (1/2)  
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Figure 1.1 General structure of glucosinolates. The three common constitutive moieties are 
indicated: a hydrophilic -D-glucopyrano unit, a O-sulfated anomeric (Z)-thiohydroxymate 
function and a variable aglycone side chain derived from an amino acid precursor. 
 

1.1.1 Glucosinolate nomenclature 

 

The systematic nomenclature of each individual GL is greatly simplified by the convention of 

naming the entire anionic core invariable structure as GL. Because of this convention, most 

natural GLs can be named simply by adding the systematic name of the side chain to the term 

GL. Many GLs also carry common names most often given according to the plant from which 

they have been isolated or indirectly identified for the first time. Also, GL acronyms have been 

developed as a three letters code which is an abbreviated form of the common name 

(Wathelet, 2004). For example, 3-methylsulfinylpropyl GL was isolated from Iberis amara, its 

common name is glucoiberin and its code GIB (Schultz and Gmelin, 1954). The use of these 

codes is not recommendable because it relies on the existence of trivial names instead of 

referring to the chemistry of the side chain group. These codes are by no way officially 

assigned to the compounds and they should be avoided, though they still are of common use 

in the community of GL specialists with many differences depending on the laboratory 

tradition of the research groups.  
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1.1.2 Types of glucosinolates 

 

GLs are conveniently grouped into several chemical classes based on structural similarities of 

the -amino acid derived side chain. The generally accepted chemical classification is the one 

reported by Fahey et. al (2001) and modified by Clarke (2010) as follow: 

 

A. Sulfur-containing side chain, 

B. Aliphatic, straight-chain, 

C. Aliphatic, branched-chain, 

D. Olefins straight and branched chain and alcohols, 

E. Aliphatic straight and branched chain alcohols, 

F. Aliphatic straight chain ketones and esters, 

G. Aromatic, 

H. Benzoates, 

I. Indole, 

J. Glycosylated, 

K. Benzyl glucosides, 

L. Cinnamic glucosides. 

 

All the 134 documented naturally occurring GLs are reported as follows in Table 1.2 and Chart 

1.1 based on the classification described before. Table 1.2 shows chemical name, common 

name and acronym, if known, for each GL numbered progressively within each chemical class 

listed alphabetically. The numeration used by Agerbirk and Olsen (2012) is also reported in 

the last column of the table to keep consistency with this PhD thesis and their recent review. 

Compound numbers 1-120 in Agerbirk and Olsen (2012) refer to the alphabetical numbering 

system proposed by Fahey et al. (2001), whereas numbers 121-142 refer to the 26 structures 

(of which 4 couples of epimers that carry the same number) newly discovered and identified 

between 2000 and 2011. Reported acronyms are those used at CREA-AA (Bologna, Italy) 

where the research activity of this PhD thesis has been carried out, as well as at other 

European research centers, and that can be found in many published articles (Wathelet et al. 

2004). 
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Table 1.2 Chemical names, common names and known acronyms of glucosinolates identified 
in higher plants. Class assignment refers to the chemical classification based on structural 
similarity of the side chain as explained in the text. The last column shows the numeration 
used by Agerbirk and Olsen (2012). 
 

  Glucosinolate 

No. Class Chemical name Common name Acronym No. 

 A Sulfur-containing side chains    
  Methyl-sulfanyl-alkyl    
1 A 3-Methylsulfanylpropyl Glucoiberverin GIV 95 
2 A 4-Methylsulfanylbutyl Glucoerucin GER 84 
3 A 5-Methylsulfanylpentyl Glucoberteroin GBE 94 
4 A 6-Methylsulfanylhexyl Glucolesquerellin  88 
5 A 7-Methylsulfanylheptyl   87 
6 A 8-Methylsulfanyloctyl   92 
7 A 9-Methylsulfanylnonyl   89 
8 A 10-Methylsulfanyldecyl   85 
  Methyl-sulfinyl-alkyl    
9 A 2-Methylsulfinylethyl   137 
10 A 3-Methylsulfinylpropyl Glucoiberin GIB 73 
11 A 4-Methylsulfinylbutyl Glucoraphanin GRA 64 
12 A 5-Methylsulfinylpentyl Glucoalyssin GAL 72 
13 A 6-Methylsulfinylhexyl Glucohesperin  67 
14 A 7-Methylsulfinylheptyl Glucoibarin  66 
15 A 8-Methylsulfinyloctyl Glucohirsutin  69 
16 A 9-Methylsulfinylnonyl Glucoarabin  68 
17 A 10-Methylsulfinyldecyl Glucocamelinin  65 
18 A 11-Methylsulfinylundecyl   74 
  Methyl-sulfonyl-alkyl    
19 A 3-Methylsulfonylpropyl Glucocheirolin GCH 82 
20 A 4-Methylsulfonylbutyl Glucoherysolin  76 
21 A 5-Methylsulfonylpentyl   81 
22 A 6-Methylsulfonylhexyl   78 
23 A 8-Methylsulfonyloctyl   80 
24 A 9-Methylsulfonylnonyl   79 
25 A 10-Methylsulfonyldecyl   77 
  Methyl-sulfanyl-alkene    
26 A 4-Methylsulfanyl-3-butenyl Glucoraphasatin GRH 83 
  Methyl-sulfinyl-alkene    
27 A 4-Methylsulfinyl-3-butenyl Glucoraphenin GRE 63 
  Methyl-sulfonyl-alkene    
28 A 4-Methylsulfonyl-3-butenyl   75 
  Methyl-sulfanyl-hydroxy-alkyl    
29 A 3-Hydroxy-5-methylsulfanylpentyl   37 
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  Glucosinolate 

No. Class Chemical name Common name Acronym No. 

30 A 3-Hydroxy-6-methylsulfanylhexyl   36 
  Methyl-sulfinyl-hydroxy-alkyl    
31 A 3-Hydroxy-5-methylsulfinylpentyl   33 
32 A 3-Hydroxy-6-methylsulfinylhexyl   32 
  Methyl-sulfonyl-hydroxy-alkyl    
33 A 3-Hydroxy-5-methylsulfonylpentyl   35 
34 A 3-Hydroxy-6-methylsulfonylhexyl   34 
  Methyl-sulfanyl-oxo-alkyl    
35 A 6-Methylsulfanyl-3-oxohexyl   91 
36 A 7-Methylsulfanyl-3-oxoheptyl   90 
37 A 8-Methylsulfanyl-3-oxooctyl   93 
  Methyl-sulfinyl-oxo-alkyl    
38 A 7-Methylsulfinyl-3-oxoheptyl   70 
39 A 8-Methylsulfinyl-3-oxooctyl   71 
  Mercapto-alkyl    
40 A 4-Mercaptobutyl   133 
  Disulfanyl    
41 A Dimeric 4-mercaptobutyl   134 
42 A 4--(Glucopyranosyldisulfanyl)butyl   135 
  Cysteine-sulfanyl-alkyl    
43 A 4-(Cystein-S-yl)butyl   136 
 B Aliphatic, straight chain    
44 B Methyl  Glucocapparin GCA 51 
45 B Ethyl   16 
46 B n-Propyl   108 
47 B n-Butyl   13 
48 B n-Pentyl   102 
49 B n-Hexyl   20 
 C Aliphatic, branched chain    
50 C 1-Methylethyl Glucoputranjivin, 

isopropyl 
GPU 56 

51 C 1-Methylpropyl Glucocochlearin, 
sec-butyl, 2-butyl 

GCC 61 

52 C 2-Methylpropyl Isobutyl  62 
53 C 1-Methylbutyl   53 
54 C 2-Methylbutyl   54 
55 C 3-Methylbutyl   55 
56 C 3-Methylpentyl   58 
57 C 4-Methylpentyl   59 
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  Glucosinolate 

No. Class Chemical name Common name Acronym No. 

 D Olefins    
  Straight and branched chain    
58 D 2-Propenyl Sinigrin, Allyl SIN 107 
59 D 2-Methyl-2-propenyl   60 
60 D 3-Butenyl Gluconapin GNA 12 
61 D 3-Methyl-3-butenyl   52 
62 D 1-Pentenyl   100 
63 D 4-Pentenyl Glucobrassicanapin GBN 101 
  Alcohols    
64R D 2(R)-hydroxy-3-butenyl Progoitrin  PRO 24a 
64S D 2(S)-hydroxy-3-butenyl Epiprogoitrin ePRO 24b 
65 D 2-Hydroxy-4-pentenyl Gluconapoleiferin GNL 38 
 E Aliphatic alcohols    
  Straight chain    
66 E 2-Hydroxyethyl   27 
67 E 3-Hydroxypropyl   42 
68 E 3-Hydroxybutyl   25 
69 E 4-Hydroxybutyl   26 
  Branched chain    
70 E 1-Methyl-2-hydroxyethyl Glucosisymbrin GSY 57 
71 E 1-(Hydroxymethyl)propyl   30 
72 E 2-Hydroxy-2-methylpropyl Glucoconringiin GCN 31 
73 E 2-Hydroxy-2-methylbutyl Glucocleomin GCL 29 
74 E 3-(Hydroxymethyl)pentyl   141 
75 E 4,5,6,7-Tetrahydroxydecyl   113 
 F Aliphatic straight chain ketons    
76 F 4-Oxoheptyl Glucocapangulin, 

glucopangulin 
 96 

77 F 5-Oxoheptyl Glucocappasalin  97 
78 F 5-Oxooctyl Gluconorcappasalin  98 
  Esters    
79 F 3-Methoxycarbonylpropyl Glucoeypestrin  1 
 G Aromatic    
  Benzyl    
80 G Benzyl Glucotropaeolin GTL 11 
81 G 2-Hydroxybenzyl   21 
82 G 3-Hydroxybenzyl Glucolepigramin  22 
83 G 4-Hydroxybenzyl Glucosinalbin SNB 23 
84 G 2-Methoxybenzyl   44 
85 G 3-Methoxybenzyl Glucolimnanthin GLI 45 
86 G 4-Methoxybenzyl Glucoaubrietin GAU 46 
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  Glucosinolate 

No. Class Chemical name Common name Acronym No. 

87 G 3,4-Dihydroxybenzyl Glucomatronalin  14 
88 G 3,4-Dimethoxybenzyl   15 
89 G 4-Hydroxy-3-methoxybenzyl Glucobretschneiderin GBR  
90 G 3,4,5-Trimethoxybenzyl   114 
  Phenylethyl    
91 G 2-Phenylethyl Gluconasturtiin, 

phenethyl 
GST 105 

92R G 2(R)-Hydroxy-2-Phenylethyl Glucobarbarin GBB 40S 
92S G 2(S)-Hydroxy-2-Phenylethyl Epiglucobarbarin eGBB 40R 
93 G 2-Hydroxy-2-(4-methoxyphenyl)ethyl   50 
94 G 2,2-Dimethyl-2-(4-methoxyphenyl)ethyl   49 
95R  2(R)-Hydroxy-2-(4-hydroxyphenyl)ethyl 4-Hydroxy-glucobarbarin 4-OHGBB 139R 
95S G 2(S)-Hydroxy-2-(4-hydroxyphenyl)ethyl   139S 
96 G 4-Hydroxyphenylethyl Homosinalbin  140 
97 G 2(R)-Hydroxy-2-(3-hydroxyphenyl)ethyl   142R 
 H Benzoates    
98 H Benzoyloxymethyl   8 
99 H 2-(Benzoyloxy)ethyl   6 
100 H 3-(Benzoyloxy)propyl Glucomalcomiin  10 
101 H 4-(Benzoyloxy)butyl   5 
102 H 5-(Benzoyloxy)pentyl   117 
103 H 6-(Benzoyloxy)hexyl   118 
104 H 2-Benzoyloxy-1-methylethyl Glucobenzosisymbrin  9 
105 H 2-Benzoyloxy-1-ethylethyl Glucobenzsisaustricin  7 
106 H 2-Benzoiloxy-3-butenyl 2-Benzoylprogoitrin  123 
 I Indol    
107 I Indol-3-ylmethyl Glucobrassicin GBS 43 
108 I 4-Hydroxyindol-3-ylmethyl 4-Hydroxyglucobrassicin 4-OHGBS 28 
109 I 1-Methoxyindol-3-ylmethyl Neoglucobrassicin NeoGBS 47 

110 I 4-Methoxyindol-3-ylmethyl 4-Methoxyglucobrassicin 4-
OMeGBS 

48 

111 I 1-Sulfo-indol-3-ylmethyl Glucobrassicin-1-sulfate  112 
112 I 1,4-Dimethoxyindol-3-ylmethyl 1,4-

Dimethoxyglucobrassicin  138 

113R I Glucoisatin  GIT 121R 
113S I Epiglucoisatin  eGIT 121S 
114R I 3’-Hydroxyglucoisatin   122R 
114S I 3’-Hydroxyepiglucoisatin   122S 
 J Multiple glycosilated    
115 J 2-(-L-Rhamnopyranosyloxy)benzyl   109 
116 J 4-(-L-Rhamnopyranosyloxy)benzyl Glucomoringin GMG 110 
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  Glucosinolate 

No. Class Chemical name Common name Acronym No. 

117 J 
4-(4’-O-Acetyl- 
-L-Rhamnopyranosyloxy)benzyl 

  3 

118 J 2-(-L-Arabinopyranosyloxy)-2-
phenylethyl 

  4 

119 J 6-Sinapoyl--D-1-thioglucoside of  
4-methylsulfinyl-3-butenyl 

  111 

 K Benzoyl glucosides    
120 K 6’-benzoyl-4-(benzoyloxy)butyl   125 
121 K 6’-benzoylglucoraphanin   126 
122 K 6’-benzoylglucoerucin   127 
 L Cinnamic glucosides    
123 L 6’-(p-coumaroyl)glucoraphanin   128 
124 L 6’-isoferuloylgluconasturtiin   129 
125 L 6’-isoferuloylglucobrassicin   130 
126R L 6’-isoferuloylglucobarbarin   131R 
126S L 6’-isoferuloylglucobarbarin   131S 
127R L 6’-isoferuloylgluarabihirin   132R 
128 L Sinapoylated 3-hydroxypropyl   124 
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A. SULFUR-CONTAINING SIDE-CHAINS 

 

 Methyl-sulfanyl-alkyl Methyl-sulfinyl-alkyl Methyl-sulfonyl-alkyl 

n 
 

  
2 - 9 - 
3 1 10 19 
4 2 11 20 
5 3 12 21 
6 4 13 22 
7 5 14 - 
8 6 15 23 
9 7 16 24 
1
0 8 17 25 

1
1 - 18 - 

    
 Sulfanyl-alkene Sulfinyl-alkene Sulfonyl-alkene 

 

 
 

26 
 

27 
 

28 
    

 Methyl-sulfanyl-hydroxy-
alkyl 

Methyl-sulfinyl-hydroxy-
alkyl 

Methyl-sulfonyl-hydroxy-
alkyl 

 
 

29 
 

31 
 

33 
    

 

30 32 34 
 
 
 
Chart 1.1 Reported glucosinolate structures by chemical class. The number of each structure 
is the progressive numeration used in Table 1.1. 
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A. SULFUR-CONTAINING SIDE-CHAINS 

 

 

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 

 Methyl-sulfanyl-oxo-alkyl Methyl-sulfinyl-oxo-alkyl  

 
 

35 

  

 

 
36 

 
38 

 

    
 

 
37 

 
39 

 

    
 Mercapto-alkyl   
    

  
40 

  

    
 Disulfanyl  

 
 

41 
 

42  
    
 Cysteine-sulfanyl-alkyl   
    
 

 
43 
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B. ALIPHATIC, STRAIGHT CHAIN 

n  
  

0 44   
1 45   
2 46   
3 47   
4 48   
5 49   
 

C. ALIPHATIC, BRANCHED CHAIN 

 

 
 

50 

  

 
 

51 
 

52 

 

 
 

 
53 

 
 

54 

 
55 

 
 

56 
   

57 

 

 

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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D. OLEFINS 

 

 Straight and branched 
chain 

Alcohols  

    

 
 

58   
    

 
 

59   
    

 
 

60 
 

64R 
 

64S 
    

 
 

61   
    

 
 

62   
    

 
 

63 
 

65  
 

 

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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E. ALIPHATIC STRAIGHT AND BRANCHED CHAIN ACOHOLS 

 

 
 

66 
 

70  
    

 
 

67 
 

71 
 

72 
    

 
 

68 
 

73  
    

 
 

69 
 

74  
    

 
 

 
75   

 

 
 
 
 
 
 
Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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F. ALIPHATIC STRAIGHT CHAIN KETONS 

    

  
76   

    

 

 
77 

 
 
 

 
 

  
78 

 
 
  

 ESTERS   
    

  
79 

   
 

 

 

 

 

 

 

 

 

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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G. AROMATIC 

 

 BENZYL PHENYLETHYL  
    

 

 
80 

 
91 
  

 
 

81 
 

92R 
 

92S 

 

 
82 

 
93 
  

 

 
83 

 
94  

 

 
84 

 
95  

    

 

 
85 

 
 
96  

 

 
Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number 
of each structure is the progressive numeration used in Table 1.1. 
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G.     AROMATIC 
 BENZYL PHENYLETHYL  
    

 
 

86 
 

97  
    

 

 
87   

    

 

 
88   

    

 

 
89   

    

 

 
90   

 

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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H. BENZOATES 

 

n  

  

1 98   
2 99   
3 100   
4 101   
5 102   
6 103   
    

 

 
104 

  

 

 

 
105 

  

 

 
106 

  

 

 
 
 
 
 
 
 
Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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I. INDOLE 
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108  

 

 
109 

 
110  

    

 

 
111 

 
112  

    

 

 
113R 

 
113S  

    

 

 
114R 

 
114S  

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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J. MULTIPLE GLYCOSILATED 

 

 

 

 

    

 

 
115 116 

 

    

 

 

117 

 
 

118 
 

 

    

 

 
119 

 

   
   
   
   
   
   
   
   
Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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K. BENZOYL GLUCOSIDES 

 

 

 

 

 

 

 

 
120  

   

 

 
121  

   

 

 
122  

    
    
    
    
    
    
    
    
    
    
    
    
    
Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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L. CINNAMIC GLUCOSIDES 

 

 
123  

   

 

 
124  

   

 

 
125  

   

 

 
126R  

   

 

 
126S  

 

 
127R  

 

 
128  

Chart 1.1 (continued) Reported glucosinolate structures by chemical class. The number of 
each structure is the progressive numeration used in Table 1.1. 
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1.2 Glucosinolates biosynthesis 

 

The biosynthesis of GLs includes a number of common steps responsible for the formation of 

the core structure, as well as several steps responsible for the side chain diversification and 

has recently been reviewed (Grubb and Abel, 2006; Halkier and Gershenzon, 2006; Sønderby 

et al., 2010). The biosynthetic pathway of GLs has been almost entirely elucidated using 

Arabidopsis thaliana (Brassicaceae) that was selected as the first GL-producing model plant 

to have its genome sequenced because of its small genome and short life cycle and genetics 

(Meyerowitz, 2001). It is important to point out that, although GL biosynthesis is considered 

a secondary pathway, it is firmly embedded in plant metabolism as it requires cofactors and 

intermediates derived from primary metabolism. Indeed, GLs are primarily seen as -amino 

acid derived secondary compounds, but they are clearly also an important component of 

sulfur metabolism in the plant. Each GL contains two sulfur atoms, one in the thioglucosidic 

bond and a second one in the sulfate group. In addition, around one third of aliphatic GLs 

possess a third sulfur atom in their side chain (Table 1.2). Most of the genes encoding the 

biosynthetic enzymes have been identified, as well as transporters necessary for moving the 

metabolic intermediates in the cell and the final products between the cells and organs 

(Sønderby et al., 2010). The biosynthesis is rather complex with more than 40 genes 

participating, creating the variety of GLs, depending on -amino acid used for the synthesis 

and its modifications. The biosynthesis can be divided roughly into three modules: (1) amino 

acid chain elongation, (2) formation of a core GL structure and (3) side chain secondary 

modifications. However, there is no side chain elongation that occurs for indole GL 

biosynthesis (Figure 1.2 and Figure 1.3). Although the core pathway is well understood, 

several transporters necessary for optimal distribution of GLs and their precursors are still 

unknown and the knowledge about the metabolic context of GL synthesis pathway is far from 

being ultimate (Kopriva and Gigolashvili, 2016). 
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Figure 1.2 General scheme of the chemical reactions involved in the glucosinolate 
biosynthesis pathway. 1 Precursor -amino acid, 2 chain elongated -amino acid, 3 
glucosinolate core formation, 4 glucosinolate R group undergoing secondary modification 
reactions. 
 

Step 1: Amino acid chain elongation 
 

Aliphatic GLs have various side chains with different lengths determined by the chain 

elongation step (Figure 1.3). The first process of chain elongation is the deamination of amino 

acids such as Met to the corresponding 2-oxoacids by a branched-chain amino acid 

aminotransferase (BCAT). The 2-oxoacids are precursors of the elongation reaction by a 

methylene group. The elongation proceeds by methylthioalkylmalate synthase (MAM), 

isopropylmalate isomerase (IPMI), and isopropylmalate dehydrogenase (IPMDH). Finally, the 

elongated 2-oxoacids are transformed to the corresponding amino acids by BCAT. This chain 

elongation also takes place in the biosynthesis of aromatic GLs but does not occur in the 

formation of indole GLs.  
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Step 2: Formation of a core glucosinolate structure 
 

Amino acids, including elongated ones, undergo the formation of the core GL structure (Figure 

1.3). Cytochromes P450 (CYP79s) convert the amino acids to aldoximes, which are then 

oxidized to the activated forms by CYP83s. The activated forms are transformed to 

thiohydroximates via glutathione conjugation and the C-S lyase (SUR1) reaction. The 

thiohydroximates are first converted to the desulfoGL structure by the S-glucosyltransferases 

of the UGT74 family and then finally to the GL structure by the sulfotransferases SOTs.  

 
Step 3: Side chain modification 
 

After the GL structure formation has taken place, the side chain can be modified by a variety 

of reactions such as oxygenation, hydroxylation, alkenylation, benzoylation, and 

methoxylation. The S-oxygenation of aliphatic GLs is a common modification conducted by 

flavin monooxygenases FMOGS-OXs. The side chain of GLs derived from Met and its chain-

elongated homologues is especially subjected to further modifications, such as the stepwise 

oxidation of the sulfur atom in the methylsulfanylalkyl side chain leading successively to 

methylsulfinylalkyl and methylsulfonylalkyl moieties. Methylsulfinylalkyl side chains can be 

further modified by oxidative cleavage to afford alkenyl chains produced by 2-oxoglutarate-

dependent dioxygenases AOPs (Figure 1.3). The indole GL secondary modifications involve a 

series of hydroxylations and methoxylations catalyzed by several CYP family enzymes. 

Glucobrassicin, which is a common indole GL, is hydroxylated by CYP81F2 in A. thaliana. 

Methoxylations might occur by unidentified O methyltransferases.  
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Figure 1.3 Schematic pathway of aliphatic glucosinolate biosynthesis. The pathway consists 
of three main steps: (1) amino acid chain elongation, (2) core glucosinolate formation and (3) 
side chain secondary modification. 
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1.3 The glucosinolate-myrosinase system 
 

The occurrence of GLs throughout the order Brassicales coincides with the presence of 

specific thioglucosidases, the myrosinases (MYRs), which can hydrolyze these compounds. 

GLs in intact form are known to be generally inactive in nature and they act as precursors of 

a variety of bioactive hydrolysis products. In plants, MYRs are located in specialized cells 

known as myrosin cells/idioblast cells of the phloem parenchyma, whereas the GLs are held 

separately in the vacuoles or S-cells of most plant tissues. This compartmentalization prevents 

hydrolysis in natural conditions and self-intoxication (Augustine and Bisht, 2016). This system 

has been long referred to as the ‘mustard oil bomb’ and constitutes an endogenous defense 

setup against pests and diseases (Matile 1980). In A. thaliana, GLs have been reported to be 

stored at high levels (>130 mM) in the specific sulfur-rich S-cells. This concentration is about 

20 times higher in comparison to surrounding tissue. Upon damage, the S-cell works as a high-

pressure mustard bomb as the large GL (mustard oil glucoside) content is released producing 

the deterring hydrolysis products (Koroleva et al., 2010). The products of MYR-catalyzed GL 

hydrolysis are -D-glucose, a sulfate anion and a labile aglycon that can be converted to a 

broad variety of final degradation compounds depending on the substrate, the pH value and 

the presence of MYR cofactors. PH values close to neutrality generally favor the formation of 

rather lipophilic, irritant and toxic isothiocyanate (ITC) (mustard oil) through a Lossen-type 

rearrangement of the detached aglycon (Figure 1.4). 

 

 

 
Figure 1.4 Myrosinase-catalyzed hydrolysis of a glucosinolate at neutral pH. The labile aglycon 
thiohydroximate-O-sulfate undergoes a spontaneous ‘Lossen-like’ rearrangement to 
isothiocyanate. 
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1.3.1 Myrosinases 

 

Myrosinases (MYRs) are thioglucosidases (thioglucoside glucohydrolases, EC 3.2.1.147) that 

catalyze the hydrolysis of the thioglucosidic bond of GLs. They are members of glycoside 

hydrolase family I along with other -glycosidases that are involved in plant defense. MYRs 

are unique because they are the only enzymes able to break an anomeric carbon-sulfur bond. 

MYRs are usually composed of two identical 55-65 kDa polypeptides which are heavily 

glycosylated resulting in a native molecular weight of 120-150 kDa of the dimeric proteins as 

reported for the main MYR isoenzyme isolated from ripe seeds of white mustard (Sinapis alba 

L.) (Burmeister et al., 1997; 2000). The dimeric structure is maintained through tetrahedral 

coordination of a Zn2+ by two conserved residues of each monomer (His 56 and Asp 70 in the 

S. alba MYR) (Burmeister et al., 1997). Common properties of MYRs are their heat stability 

(with temperature optima of up to 70 °C) and their activation by ascorbic acid at low 

millimolar concentrations (typically 1-2 mM). MYRs accept GLs of different structural types as 

substrates but differ in their affinity to individual GLs and the efficiency of their hydrolysis 

(Bernardi et al., 2003).  

 

1.3.2 The mechanism of myrosinase-catalyzed hydrolysis of glucosinolates to produce 

isothiocyanates 

 
The determination of the structures of the native MYR enzyme from S. alba seed and the 

covalent glycosyl-enzyme intermediate obtained after reaction with a modified GL (2-deoxy-

2-fluoroglucotropaeolin) made it possible to elucidate the mechanism of MYR-assisted 

hydrolysis of GLs (Burmeister et al., 2000). Each MYR monomer has a substrate-binding 

pocket with three different subsites for recognition of the glucosyl moiety, the sulfate group 

and the hydrophobic side chain of the GL. In the first step of the catalysis MYR bioactivates 

the GL by nucleophilic attack of Glu 409 positioned in its catalytic center at the anomeric 

carbon, which initiates the detachment of the aglycone and results in the formation of a 

glucosyl intermediate. The removal of the glucosyl group is sufficient to initiate a Lossen-like 

rearrangement of the labile aglycone thiohydroximate-O-sulfate with the release of a sulfate 

ion without the need for additional sulfatase activity and formation of ITC. While the ITC and 

the sulfate diffuse away, Gln 187 located in the MYR pocket and dedicated to the recognition 
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of sulfate positions a water molecule close to the anomeric carbon to enable hydrolysis of the 

glucosyl-enzyme. Finally, after this hydrolysis, ITC, sulfate and -D-glucose are released from 

the MYR active site (Figure 1.5) (Burmeister et al., 2000). 

 

 

 

 
Figure 1.5 The mechanism of myrosinase-catalyzed hydrolysis of glucosinolates. Step (A): 
recognition of the glucosinolate in the myrosinase catalytic center. Step (B): nucleophilic 
attack at the anomeric carbon of glucosinolate. Step (C): hydrolysis of the glucosyl-enzyme 
intermediate. Step (D): release of ITC, sulfate ion and -D-glucose. Source: Wittostock et al. 
(2016). 
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1.3.3 Other glucosinolate breakdown products 

 
The catabolism of GLs is likely to follow several pathways leading to the delivery of products 

different from ITCs. The variety of GLs combined with the diversity of reactions that may occur 

upon their hydrolysis gives rise to a fascinating breakdown machinery to produce structurally 

diverse breakdown products.  

 

1.3.3.1 Oxaxolidinethione 

 

In the case of GLs bearing in the aglycone a hydroxyl group in position, the ITC produced 

cannot be isolated because it undergoes a fast cyclization process to afford a 1,3-oxazolidine-

2-thione (Figure 1.6). The first identified ITC-derived compound of this kind was goitrin (5-

ethenyl-1,3-oxazolidine-2-thione), which is a cyclization product of the ITC generated upon 

hydrolysis of (S)-2-hydroxy-3-butenyl GL (progoitrin) (Figure 1.7). Its name refers to the 

observation that intake of high amounts of this compound through Brassica (a genus within 

the Brassicaceae family) vegetables consumption may cause an enlargement of the thyroid 

gland (goiter) as explained next in section 1.4. 

 

 

 
Figure 1.6 Formation of 1,3-oxazolidine-2-thione from the spontaneous cyclisation of a 2-
hydroxy isothiocyanate. 
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Figure 1.7 Formation of 5-ethenyl-1,3-oxazolidine-2-thione (goitrin) from (S)-2-hydroxy-3-

butenylglucosinolate (progoitrin) myrosinase catalyzed hydrolysis through the spontaneous 

cyclisation of unstable 2-hydroxy-5-ethenyl isothiocyanate. 

 

 

1.3.3.2 Specifier proteins 

 

The presence of so-called ‘specifier proteins’ may promote the formation of alternative 

products such as nitriles, epithionitriles and thiocyanates. According to their product profiles, 

specifier proteins are grouped into three different types: nitrile-specifier proteins (NPSs), 

epithio-specifier proteins (ESPs) and thiocyanate-forming proteins (TFPs). Specifier proteins 

themselves do not convert GLs but affect the outcome of MYR GL hydrolysis. With increasing 

amounts of specifier protein, the amount of non-ITC products increases whereas the amount 

of ITC decreases. While simple nitriles may also be formed in the absence of NSP under certain 

conditions (Figure 1.8), formation of epithionitriles and organic thiocyanates is strictly 

dependent on the presence of specifier proteins (Figure 1.9 and 1.10) (Wittstock et al., 2016). 
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Nitriles and epithionitriles 
 

NSPs as well as acidic conditions and/or the presence of a reducing agent (ferrous ion, 

cysteine) favor the formation of nitriles, with concomitant extrusion of elemental sulfur 

(Figure 1.8). 

 

 

 
Figure 1.8 Formation of nitriles from the thiohydroximate-O-sulfate intermediate in 
glucosinolate hydrolysis catalyzed by enzyme myrosinase in the presence of a) nitrile specifier 
protein (NSP) or b) acidic environment and/or ferrous ions. 
 

Simple nitriles are also formed in the presence of ESP unless the GL side chain bears a terminal 

double bond to enable epithionitriles formation. Epithionitriles are nitriles with a terminal 

thiirane moiety (Figure 1.7). Labelling studies demonstrated that the sulfur of the thiirane ring 

originates from the thioglucosidic bond of the GL. 

 

 

 
 

Figure 1.9 Formation of epithionitriles from the thiohydroximate-O-sulfate intermediate in 
glucosinolate hydrolysis catalyzed by enzyme myrosinase in the presence of epithio-specifier 
protein (ESP). 
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1.3.3.3 Thiocyanates 

 
TFPs can promote the formation of organic thiocyanates (Figure 1.10) that has only been 

observed for three GLs, namely allyl (sinigrin), benzyl (glucotropaeolin) and 4-

methylsulfanylbutylGL (glucoerucin). It has been proposed that the ability to form stable 

carbocations is a common feature of the aglucones of these three GLs and a prerequisite for 

organic thiocyanate formation. 

 

 

 

Figure 1.10 Formation of allyl thiocyanate from but-3-ene thiohydroximate-O-sulfate 
intermediate in sinigrin hydrolysis catalyzed by the enzyme myrosinase in the presence of 
thiocyanate forming protein (TFP). 
 

1.4 Biological activity of glucosinolate breakdown products 

 

1.4.1 Plant defense 

 

GL breakdown products play an important role in the interactions between plant and 

insects/herbivores. They can act both as poisons and deterrents to generalist 

insect/herbivores, or, on the contrary, as signaling molecules to attract specialist 

insects/herbivores laying their eggs or feeding on that specific plant. Several studies have 

shown that GLs determine a growth inhibition or represent a feeding deterrent to a wide 

range of herbivorous animals such as birds, slugs and generalist insects. Moreover, it has been 

observed that volatile hydrolysis products can attract natural enemies of herbivores such as 

parasitoids and therefore determine an indirect protection of the plant (Possenti et al., 2017). 

GLs and their breakdown products are also detrimental to many microorganisms like fungi 
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and bacteria (Brown and Morra, 2005). Their biocidal activity can be successfully exploited in 

agriculture in an integrated plant defense strategy for their protection against weeds and 

various pathogens, using a technique known as biofumigation. This technique essentially 

consists in soil incorporation of selected Brassica plants, both as biofumigant or catch crop 

green manures, or derived materials as biofumigant pellets based on Brassica defatted seed 

meal (De Nicola et al., 2013). Several studies have also proven biofumigation by means of GL-

containing processed Brassica plants as a promising treatment to reduce postharvest damage 

due to fungi and bacteria (Ugolini et al., 2014; Ugolini et al., 2017). 

 

1.4.2 Human health 

 

Initially, GLs have been studied for their toxic activity and goitrogenic effects, especially when 

used for animal feeding. Earlier studies initiated in the mid 1970s with plant breeders starting 

to select oilseed rape (Brassica juncea) varieties with a reduced content of GLs because of 

their antinutritional properties, such as goiter, growth retardation, poor egg production and 

liver damage in animals fed with defatted rapeseed meal. In addition, their bitterness and off-

taste limited the intake by animals (Schnug and Haneklaus, 2016). Rapeseed contains 

progoitrin and it has become clear now that its metabolic product 5-ethenyl-1,3-oxazolidine-

2-thione (goitrin) (Figure 1.7) can decrease iodine uptake resulting in a reduced thyroxine 

secretion by the gland that stimulates the growing of the organ (goiter). A similar goitrogenic 

activity has been reported also for thiocyanate ions that are possible GL breakdown products 

(Possenti et al., 2017). In the last three decades, GLs along with their breakdown products, 

especially ITCs, have gained enormous interest because these compounds have shown a wide 

array of health promoting properties in relation to prevent the risk of carcinogenesis and 

certain chronic diseases such as cardiovascular, articular and neurological diseases, asthma, 

diabetes and cholesterol (Avato and Argentieri, 2015). Above all, ITCs are known and 

investigated for their chemopreventive properties showing a strong potential against the risk 

of various cancers at different target organs like lung, prostate, ovary, breast and colon. The 

biological interactions of ITCs are strongly related to the cellular redox state and many studies 

have documented their indirect antioxidant properties, particularly related to the induction 

of phase-2 detoxification enzymes, as well as their pro-oxidant properties related to the 

induction of phase-1 enzymes, as reviewed by Valgimigli and Iori (2009) and summarized in 
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Figure 1.11. Especially, evidences suggest that beneficial effects of ITCs could be mainly 

ascribed to their peculiar capacity to activate the nuclear factor erythroid-derived 2-related 

factor 2 (Nrf2)/ARE (antioxidant responsive element) pathway, consequently exerting 

antioxidant functions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.11 Complex interplay of cellular anti- and pro-oxidant activities of isothiocyanates 
exemplified for 4-methylsulfanyl isothiocyanate (erucin). Removal of hydrogen peroxide (or 
organic hydroperoxides) leads to the formation of 4-methylsulfynyl isothiocyanate 
(sulforaphane), which enters the cell by simple diffusion and concentrates in the cytoplasm 
bound to glutathione (GSH). The adduct is pumped out of the cell, where it can reversibly 
dissociate. In the cytoplasm, sulforaphane (free or conjugated with GSH) interacts with Keap1 
proteins leading to the release of NRf2 factor that translocates in the nucleus and, binding 
with antioxidant responsive elements (ARE), activates transcriptional overexpression of 
antioxidant phase-2 enzymes, increasing the productions of reactive oxygen species (ROS). 
Furthermore, damage to mitochondria and release of cytochrome c is another potential cause 
of induced oxidative stress. Figure and caption taken from Valgimigli and Iori, 2009. 
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1.4.2.1 Indirect antioxidant activity of isothiocyanates 

 

ITCs cross the cell membrane freely, possibly by simple diffusion, and accumulate in the 

cytoplasm where they bind to glutathione and other cellular thiols, reacting with the -SH 

groups (thiocarbamoylation). This reaction is due to the electrophilicity of the -N=C=S moiety 

and is further catalyzed by glutathione S-transferase (GST). Although this reaction is 

reversible, it is believed to be the main driving force for accumulation of ITCs, and intracellular 

levels of 100–200 fold over the extracellular concentrations have been reported (Zhang, 

2000). Intracellular accumulation of ITCs is an essential step in their antioxidant activity. On 

exposure to ITCs, Nrf2 dissociates from Keap1, translocates into the nucleus where it 

associates with other nuclear factors, like small Maf, and binds to ARE to activate the 

transcription of the downstream gene. Direct reactions of ITCs with the sulfydryl groups of 

specific cysteine residues in Keap1 has been reported, resulting in conformational changes 

that would force the release of Nrf2 (Dinkova-Kostova et al., 2017). It is currently unknown 

which of the two-equilibrating species within the cell, the free ITC and the GSH-conjugated 

form, is responsible for enzyme induction and other interactions. Since it has been estimated 

that about 5% or less than 1% of ITCs is in the free form inside the cell, it’s likely that the GSH-

conjugated species at least contribute to the activity (Valgimigli and Iori, 2009). Phase-2 

enzymes are generally regarded as antioxidants as many of them have been proven to 

increase the cellular levels of antioxidant molecules like GSH or protect the cell from reactive 

oxygen species (ROS) and oxidizing species (Figure 1.11). 

 

1.4.2.2 Pro-oxidant activity of isothiocyanates 

 

The early view of ITCs as selective monofunctional inducers of phase-2 

antioxidant/detoxifying enzymes has lately given way to a more realistic consideration of their 

very complex oxidative stress modulation. As discussed above, ITCs rapidly accumulate in the 

cell, the driving force for accumulation being the reaction with SH groups of cellular thiols, 

particularly GSH. The thiocarbamoylation reaction of the -N=C=S group with thiols is 

spontaneous, although it is further enhanced by GST (Zhang, 2001) which promotes GSH 

conjugation with ITCs (Valgimigli and Iori, 2009). ITCs are very interesting polyhedral 

modulators of oxidative stress. The double-edged-sword behavior they express in biological 
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environments, namely antioxidant versus pro-oxidant, is the result of the multiple induction 

of phase-1 and phase-2 enzymes, superimposed on their direct antioxidant activity (Figure 

1.11). It is of interest to point out that, although accumulation of ITCs in the cell is the first 

fundamental step for their beneficial activity, it is also one potential cause of their pro-oxidant 

behavior. Unfortunately, there appears to be no fully distinctive dose range for the two 

actions and, although pro-oxidant activity prevails at the highest doses, there is a large 

overlap between the two dose ranges. Most studies where a clear pro-oxidant behavior was 

observed were based on cell exposures >>1-2 µM or on administration in vivo of doses >>2-4 

µmol/kg of ITCs (or GLs), which are the normal dietary exposures; they do however indicate 

the potential threats associated with high-dose intake. There appears also to be consensus 

on the idea that the pro-oxidant activity is functional to the cancer-protective role of ITCs 

because the variation of the redox status within the cell triggers apoptosis and other 

defensive mechanisms (Valgimigli and Iori, 2009). ITCs can also modulate other pathways, 

such as inflammation and apoptosis, which could be involved in neurodegenerative disease 

development as will be discussed in Chapters twelve to twenty.  
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Glucosinolates investigation is an ongoing research activity and the subject of various 

disciplines. Glucosinolates are found in many plants widely used as food and as medicinal 

plants and they show versatile biological potential together with their breakdown products. 

Therefore, glucosinolate screening in plants is the key step at the basis of a wider spectrum 

of investigation and possible application. The type and concentration of glucosinolates have 

been found to vary between the seventeen plant families belonging to the order Brassicales, 

between genera in the same family, between species of the same genus as well as between 

cultivars of the same species. Moreover, different tissues of the same plant also present 

qualitative and quantitative differences in their glucosinolate content, due to factors such as 

genetics, plant age and environmental growth conditions. Characteristic glucosinolate 

profiles can be found in the roots, seeds, leaf and stem of the plant. Plant screening brings 

knowledge for a multiple array of purposes including profiling of scarcely or not investigated 

plants, documenting new and/or rare glucosinolates, and searching for glucosinolate rich 

sources suitable for isolation. Given the aforementioned consideration, investigation of 

different plants screened for glucosinolate and their breakdown products are reported in this 

part of the thesis, as follows: 

 

1. Arabis turrita L.  

Arabis turrita L. is one of the 17 species of the genus Arabis and it belongs to the Brassicaceae 

family within the order Brassicales. Together with Nasturtium and Lepidium, Arabis is one of 

the few species within the Brassicaceae containing rare long-chain-length aliphatic 

thiofunctionalized glucosinolates (C7-C10). 

 

2. Fibigia triquetra (DC.) Boiss. ex Prantl.  

Fibigia triquetra (DC.) Boiss. ex Prantl. is a rare Croatian paleostenoendemic plant species 

included in the Croatia Red Book in the category of near threatened plants. It belongs to the 

Brassicaceae family and has never been investigated before for glucosinolates. 

 

3. Bretschneidera sinensis Hemsl.  

Bretschneidera sinensis Hemsl. is a Chinese rare and threatened plant belonging to 

Akaniaceae, a different family from Brassicaceae within the same order Brassicales. 

Glucosinolate content was determined for the first time in different organs of plant samples 
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from three different Chinese locations. In the context of this study, a new aromatic 

glucosinolate, 4-hydroxy-3-methoxybenzyl (glucobretschneiderin, GBR listed as n. 89 in Table 

1.2 at Chapter one) was isolated and characterized by NMR and HRMS. 

 

4. Drypetes ssp and Rinorea spp.  

Drypetes and Rinorea genera belong to two different families within the order Malpighiales 

outside the order Brassicales. Drypetes is a genus belonging to the Putranjivaceae family, 

whereas Rinorea belongs to the Violaceae family. Plants of these families are used in 

traditional African medicine. Plant parts of three differents Drypetes species (Drypetes 

euryodes (Hiern) Hutch., Drypetes gossweileri S. Moore, Drypetes laciniata Hutch.), and two 

differente Rinorea species (Rinorea subintegrifolia O. Ktze and Rinorea woermanniana 

(Büttner) Engl.) were investigated proving the presence of glucosinolate outside the order 

Brassicales. 

 

5.  Isatis canescens 

I. canescens flower buds collected in different localities of Sicily were screened for the content 

of 3-indolylmethyl glucosinolate (glucobrassicin; GBS), the natural precursor of recognized 

anti-cancer and chemopreventive agents, such as indole-3-carbinol and 3,3′-

diindolylmethane. The available plant material proved to be a remarkable source for GBS, 

whose purification was performed at gram scale following the chromatographic procedure 

described. 

 

6. Moringa oleifera 

Moringa oleifera is an edible medicinal plant belonging to the Moringaceae family within the 

order Brassicales. It is a promising plant as a food commodity as well as the source of natural 

phytochemicals for the prevention and the treatment of several diseases. 12-day old 

seedlings of M. oleifera were screened for the first time for the profile of glucosinolates and 

phenolics, as well as to assess the glucosinolate content in pulp seed, seed coat, leaves and 

roots of the seedlings. 11 GLs were simultaneously analyzed in the different tissues by using 

mass spectrometric approaches.



57 
 

CHAPTER TWO 

 

Long-chain glucosinolates from Arabis turrita: 
enzymatic and non enzymatic degradations 
 

 

Contents 

 

Summary                   

2.1 Introduction               

2.2 Experimental  

2.2.1 General 

2.2.2 Plant material 

2.2.3 Thermal degradation 

2.2.4 Enzymatic hydrolysis 

2.2.5 Chemical degradation 

2.2.6 GC-MS analysis 

2.2.7 HPLC-ESI-MS analysis of intact glucosinolates 

2.2.8 Identification and quantification                         

2.3 Results and discussion 

References                

 

 

 

 

 

 

Keywords 

Arabis turrita, Glucosinolates, Thermal, Enzymatic, Chemical degradation, HPLC-MS, GC-MS 



58 
 

Summary 
 

C8-C10 methylsulfinylalkyl glucosinolates, and C8-C10 methylsulfonylalkyl glucosinolates 

were identified in the seed of Arabis turrita L. by HPLC-MS/ESI analysis of intact 

glucosinolates. Enzymatic (with myrosinase) and non-enzymatic (thermal at 100 °C, and 

chemical at different pH) hydrolyses were performed and the volatile isolates were analyzed 

by GC-MS. Only the enzymatic and chemical (pH 10) degradations produced volatiles which 

were originating from glucosinolate degradation. GC-MS analysis showed the presence of 

long-chain olefinic isothiocyanates along with other long-chain thiofunctionalized 

glucosinolates breakdown products. 
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2.1 Introduction 

 

Arabis or rockcress, is a genus of flowering plants within the family Brassicaceae which 

includes at least 17 known species that are wild growing in Croatia (Nikolié, 2012). The species 

are annual or perennial plants, 20–80 cm tall, usually densely hairy, with simple entire to 

lobed leaves, and small white four-petalled flowers. The fruit is a long, slender capsule 

containing 10-20 or more seeds (Figure 2.1). 

 

 

Figure 2.1 Arabis turrita L. 

 

Glucosinolates (GLs) are multifunctional secondary plant metabolites of great 

chemotaxonomical importance for classification within the order Brassicales and the 

Brassicaceae family. Many Arabis species contain significant concentrations of long-chain C8-

C10 GLs, either alone or in combination with modified arylaliphatic GLs (Bennet et al., 2004; 

Fahey et al., 2001). Long-chain aliphatic GLs (C7-C10) are generally less common and 

restricted to a few species within the Brassicaceae (Bennet et al., 2004). Nasturtium, 

Camelina, Neslia and certain wild Lepidium species contain aliphatic GLs with more than seven 

carbons in the side chain (Bennet et al., 2004; Fahey et al., 2001; Agerbirk and Olsen, 2012; 

Songsak and Lockwood, 2002; Daxenbichler et al., 1991). Biscutella laevigata is also a 

particularly good source of 8-methylsulfinyloctyl GL (Bennet et al., 2004). Capsella bursa-
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pastoris seed contains several methylsulfinylalkyl GLs, including 9-methylsulfinylnonyl GL 

(glucoarabin) and 10-methylsulfinyldecyl GL (glucocamelinin) (Vaughn and Berhow, 2005; 

Daxenbichler et al., 1991). To our knowledge, although some of these plants are known as 

food and medicinal plants - mostly due to the biological properties of GL breakdown products 

- information on the volatiles produced by long-chain GL degradation due to different 

influences is not available. Thus, the aim of this study was to identify GLs contained in Arabis 

turrita L. seed by HPLC-ESI-MS analysis of the intact GLs (Figure 2.2, Table 2.1) and to 

investigate degradation products obtained by enzymatic and non-enzymatic (thermal and 

chemical) hydrolysis. The obtained volatile extracts were subjected to GC-MS analysis and the 

results are given in Table 2.1 and Table 2.2. 

 

2.2 Experimental 

 

2.2.1 General 

 

All the solvents employed were purchased from Fluka Chemie, Buchs, Switzerland. Anhydrous 

sodium sulfate was obtained from Kemika, Zagreb, Croatia. Myrosinase (β-thioglucoside 

glucohydrolase; E.C. 3.2.1.147; 361 U g-1; MYR) from Sinapis alba L. seed was purchased from 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany. Intact GLs were analyzed by high-

performance liquid chromatography using an Agilent model 1100 (New Castle, Delaware, 

USA) equipped with a quaternary pump, automatic injector, diode-array detector 

(wavelength range 190-600 nm), degasser, and a Hypersil ODS column (5 µm, 4.6 x200 mm). 

The HPLC was interfaced to an Agilent model 6120 mass spectrometer (Toronto, ON) with a 

Chemstation data system LC-MSD B.03.01. GC analyses were performed on a gas 

chromatograph (model 3900; Varian Inc., Lake Forest, CA, USA) equipped with mass 

spectrometer (model 2100T; Varian Inc.) and VF-5MS capillary column (30 m × 0.25 mm i.d., 

coating thickness 0.25 µm (Varian Inc.). 

 

2.2.2 Plant material 

 

Arabis turrita L. seeds were collected near Split, Croatia, in June 2012 from a wild-growing 

population. The botanical identity of the plant material was confirmed by a local botanist, Dr. 
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Mirko Rušcić from the Faculty of Natural Sciences, University of Split and the voucher 

specimens (no. ZOKAT2013) are deposited at the Department of Organic Chemistry, Faculty 

of Chemistry and Technology, Split, Croatia. 

 

2.2.3 Thermal degradation 

 

The essential oil was isolated by hydrodistillation in a Clevenger-type apparatus for 3 h using 

3 mL of n-pentane–diethylether (1:1, v/v) for trapping. The whole air-dried plant material (75 

g) was mixed with previously heated H2O (500 mL). As a consequence of thermal degradation 

(at 100 °C), GL breakdown volatiles are found in the hydrodistillate. The latter was dried over 

anhydrous sodium sulfate and concentrated by careful fractional distillation to a small volume 

(ca. 1 mL), which was used for GC–MS analysis (Blazević et al., 2014). 

 

2.2.4 Enzymatic hydrolysis 

 

Crushed and dried undefatted seeds (1 g) were homogenized separately with H2O (100 mL), 

and MYR (1-2 U) and left for 17 h at room temperature (ca. 30 °C). During this period, volatiles 

are produced from GLs by MYR catalyzed hydrolysis, and from several different precursors by 

the action of other endogenous enzymes. Then, sufficient redistilled CH2Cl2 (3 x 20 mL) was 

added, the mixtures were shaken for 30 min and separated by centrifugation for 5 min at 

4000 rpm. The separated organic layer was dried over anhydrous sodium sulfate. The CH2Cl2 

layer was concentrated to 100 µL and kept (in a tightly closed vial) in a freezer at -20 °C until 

GC-MS analysis (Blazević et al., 2014). 

 

2.2.5 Chemical degradation 

 

The seed meal was defatted with n-hexane in a Soxhlet extractor for 24 h. The hexane extract 

was analyzed by GC-MS and showed no GL breakdown products (data not shown). For 

chemical degradation of GLs in defatted seeds (10 g), different conditions were applied: basic 

(0.05 M Tris buffer), acidic (0.1 M HCl), and very acidic (2 M HCl). CH2Cl2 (50 mL) was then 

added to each flask, and the flasks were placed into an incubator shaker set at 25 °C and 200 

rpm for 8 h. Following hydrolysis, sodium chloride and anhydrous sodium sulfate were added 
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to the solution, which was mixed thoroughly. The CH2Cl2 was filtered and the residual seed 

meal was extracted 3 more times with an excess of CH2Cl2. The combined crude CH2Cl2 extract 

was evaporated under reduced pressure and analyzed by GC-MS (Blazević et al., 2014). 

 

2.2.6 GC-MS analysis 

 

Chromatographic conditions were as follows: helium carrier gas at 1 mL min-1, injector 

temperature 250 °C. VF-5MS, column temperature was programmed at 60 °C isothermal for 

3 min, and then increased to 246 °C at a rate of 3 °C min-1 and held isothermal for 25 min. The 

injected volume was 1 µL and the split ratio was 1:20. MS conditions were: ionization voltage 

70 eV; ion source temperature 200 °C; mass scan range: 40–350 mass units. The analyses 

were carried out in duplicate (Blazević et al., 2014). 

 

2.2.7 HPLC-ESI-MS analysis of intact glucosinolates 

 

Seeds (516 mg) were frozen in liquid N2 then ground with a mortar and pestle. The powder 

was extracted for 5 min at 80 °C in 2 x 5 mL EtOH-H2O (70:30 v/v). The solutions were 

combined and evaporated under reduced pressure. The extract (84.2 mg) was dissolved in 5 

mL of EtOH-H2O (70:30 v/v) and filtered through a plug of cotton prior to HPLC analysis, which 

was performed by injecting a 10 µL aliquot of the solution of crude extract into the HPLC-ESI-

MS. The mobile phase solvents, MeOH and H2O, were prepared with 0.15% Et3N and 0.18% 

HCO2H, added as ion-pairing reagents. Both solutions were filtered using 0.45 µm nylon 

membranes. The initial mobile phase was 100% HPLC-grade H2O. At 10 min, the mobile phase 

was switched to a linear gradient of 100% H2O to 100% MeOH over 60 min. After each run, 

the initial mobile phase conditions were set, and the system was allowed to equilibrate. The 

flow rate was kept constant at 1 mL min-1. The column was maintained at room temperature. 

The electrospray interface was a standard ES source operating with a capillary voltage of 4 kV 

and temperature of 350 °C. The system was operated in the negative and positive ion 

electrospray modes. N2 was used as nebulizing and drying gas at a flow rate of 10 L min-1 (35 

psig). The mass spectrometer was programmed to perform full scans between m/z 100 and 

1000 (Zrybko et al., 1997). 
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2.2.8 Identification and quantification 

 

Individual peaks of volatiles were identified by comparing their retention indices and mass 

spectra with those of authentic samples, as well as by computer matching against the Wiley 

275-library spectra database and comparison of the mass spectra with literature data (Fahey 

et al., 2001; Adams, 1995). The percentages in Table 2.1 and Table 2.2 were calculated as the 

mean value of component percentages on the VF-5MS column for analyses run in duplicate. 

The intact 9-methylsulfinylnonyl GL was identified by comparison of the retention time and 

the UV and mass spectra of an isolated authenticated standard (Berhow et al., 2013). Other 

GLs were identified from their degradation products and/or comparison of the specifìc 

product ion and its abundance in ESI--MS with those of the literature (Bennet et al., 2004). 

 

2.3 Results and discussion 

 

The HPLC-ESI-MS analysis of the intact GLs revealed 6 GLs i.e. C8-C10 methylsulfinylalkyl GLs, 

and C8-C10 methylsulfonylalkyl GLs (Figure 2.2, Table 2.1).  

 

 
 

Figure 2.2 GLs (n = 0-2) of Arabis turrita L. identified by HPLC-MS/ESI. 

Previous HPLC-MS analysis showed only 3 long-chain GLs, i.e. 8-methylsulfinyl- octyl- 

(glucohirsutin), 8-methylsulfonyloctyl- and 10-methylsulfonyldecyl GLs (Bennet et al., 2004). 

Daxenbichler et al. (1991) and Cole (1976) reported C3 and C8 methylsulfanylalkyl-, C8-C10 

methylsulfinylalkyl-, and C8-C9 methylsulfonyl GLs by using GC-MS analysis of GL breakdown 

products (mostly isothiocyanates (ITCs)). After enzymatic hydrolysis of the seeds and CH2Cl2 
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extraction, 21 compounds (95.5 %) were identified, 13 of which (68.3%) originated from GL 

degradation. The volatile degradation products corresponded to 4 thiofunctionalized GLs also 

identified by HPLC- ESI-MS analysis: 9-methylsulfonylnonyl- (47.6%), 8-methylsulfonyloctyl- 

(3.4%) ITCs and 9-methylsulfonylnonanenitrile (0.6%), 10-methylsulfonyldecyl-  (0.9%)   and 

8-methylsulfinyloctyl- (0.3%) ITCs originating from 9-methylsulfonylnonyl-, 8-

methylsulfonyloctyl-, 10-methylsulfonyl- decyl-, and 8-methylsulfinyloctyl (glucohirsutin) GLs, 

respectively. In addition, GC-MS analysis revealed another previously reported 

thiofunctionalized volatile (Daxenbichler et al., 1991; Cole, 1976) 8-methylsulfanyloctyl ITC 

(0.7%), which can derive from the corresponding 8-methylsulfanyloctyl GL. Volatiles 

originating from the degradation 9-methylsulfinylnonyl- (glucoarabin) and 10-

methylsulfinyldecyl (glucocamelinin) GLs, identified by HPLC-ESI-MS analysis, were not 

detected. 
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Table 2.1 Glucosinolate profile of Arabis turrita L. seeds obtained by GC-MS analysis of 
volatiles originating from glucosinolates and HPLC-ESI-MS of intact glucosinolates. 

Parent glucosinolate (GL) 

Identified compound 

LC-MS 

[M]- a) 
RIb) Myrc) Trisd Hyde) 

Hept-6-enyl GL 

Hept-6-enyl ITC 

 

- f) 

 

1296 

 

Trg) 

 

Tr 

 

- 

Oct-7-enyl GL 

Non-2-enenitrileh) 

Non-2-enenitrile h) 

Oct-7-enyl ITC 

- 

 

 

 1174 

1283 

1404 

 

Tr 

Tr 

2.1 

 

- 

- 

8.3 

 

- 

- 

- 

Non-8-enyl GL 

Non-8-enyl ITC 

-  

1518 

 

10.0 

 

8.5 

 

- 

Dec-9-enyl GL 

Dec-9-enyl ITC 

-  

1615 

 

0.3 

 

1.6 

 

- 

Undec-10-enyl GL 

Undec-10-enyl ITC 

- 

 

 

1683 

 

2.4 

 

Tr 

 

- 

8-Methylsulfanyloctyl GL 

8-Methylsulfanyloctyl ITC 

- 

 

 

1895 

 

0.7 

 

2.0 

 

- 

8-Methylsulfonyloctyl GL 

9-Methylsulfonylnonanenitrile 

8-Methylsulfonyloctyl ITC 

508.0 

 

 

1946 

2391 

 

0.6 

3.4 

 

Tr 

Tr 

 

- 

- 

8-Methylsulfinyloctyl GL 

(glucohirsutin) 

8-Methylsulfinyloctyl ITC 

492.0 

 

 

 

2303 

 

 

0.3 

 

 

Tr 

 

 

- 

9-Methylsulfonylnonyl GL 

9-Methylsulfonylnonyl ITC 

522.0  

2500 

 

47.6 

 

35.7 

 

- 

9-Methylsulfinylnonyl GL 

(glucoarabin) 

506.0  

- 

 

- 

 

- 

 

- 

10-Methylsulfonyldecyl GL 

10-Methylsulfonyldecyl ITC 

536.0 

 

 

2625 

 

0.9 

 

0.4 

 

- 

10-Methylsulfinyldecyl GL 

(glucocamelinin) 

520.0 

 

 

- 

 

- 

 

- 

 

- 

Total (%)   68.3 56.5 - 

a) [M]-, specifìc product ion for GL identification in ESI--MS and its abundance (100%); b) RI, retention 
indices determined on a VF-5MS capillary column; c) Myr, volatiles obtained after enzymatic hydrolysis 
by myrosinase; d) Tris, volatiles obtained after chemical degradation in Tris buffer (pH 10); e) Hyd, 
volatiles obtained after thermal degradation (100 °C); f) -, not detected; g) Tr, traces; h) E or Z isomers, 
hypothesized to originate from the rearrangement of non-8-enenitrile. 
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Among volatiles, along with the thiofunctionalized GLs, long-chain olefinic ITCs and nitriles, 

also identified, originated from the corresponding intact GLs that were undetected by HPLC-

ESI-MS analysis. Although the existence of the long-chain olefinic GLs in nature was reported 

by GC-MS identification of the GL breakdown products (Songsak and Lockwood, 2002), the 

report by Chiang et al. (1998) of 4-methylsulfinylbutyl ITC (sulforaphane) degradation to but-

3-enyl ITC during GC/MS analyses put this report in question. The most abundant non-8-enyl 

ITC (10.0%) can derive either from the corresponding non-8-enyl GL (not confirmed by HPLC-

ESI-MS) or from degradation of 9-methylsulfonylnonyl ITC, issued in turn from the 9-

methylsulfonylnonyl GL (confirmed by HPLC-ESI-MS). The presence of undec-10-enyl- (2.4%), 

oct-7-enyl- (2.1%), dec-9-enyl- (0.3%), and hept-6-enyl (Tr) ITCs also suggests the presence of 

the corresponding GLs, i.e. undec-10-enyl-, oct-7-enyl-, dec-9-enyl-, and hept-6-enyl GLs, 

respectively, or breakdown of the corresponding methylsulfonylalkyl ITCs. In addition, 

stereoisomers of non-2-enenitrile (E/Z correct isomer not assigned) were identified by 

comparison of MS spectra with those in the Wiley library of different retention indices. The 

presence of these unusual nitriles can be suggested to originate from rearrangement of the 

non-8-enenitrile terminal double bond. Non-8-enenitrile, not detected in the volatile isolates, 

can be formed through the known scheme of GL degradation (Fahey et al., 2001; Vaughn and 

Berhow, 2005) from oct-7-enyl GL (not confirmed by HPLC-ESI-MS), or by degradation of the 

only other nitrile detected in the sample, 9-methylsulfonylnonanenitrile, which originates 

from the 9-methylsulfonylnonyl GL (confirmed by HPLC-ESI-MS). 
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Table 2.2 GC-MS analysis of miscellaneous volatiles not originating from glucosinolates 
obtained after hydrolysis from Arabis turrita L. 

 

Identified compound RI b) Myrc) Trisd) Hyde) 

Dimethyl disulfide <900 Tr g) - - f) 

Dimethyl trisulfide 966 - Tr - 

S-Methyl methanethiosulfonate 1066 1.1 Tr - 

(E)-Non-2-en-1-ol 1103 - - Tr 

Dimethyl tetrasulfide 1221 Tr 0.1 Tr 

3-Ethyl-4-methyl-1H-pyrrole-2,5-dione 1268 - - Tr 

2-Methoxy-4-vinylphenol 1334 Tr - Tr 

4-Hydroxy-3-methoxy-benzaldehyde 

(vanillin)  

1426 0.2 - - 

Diethyl phtalate 1560 Tr - - 

Dodecanoic acid 

Tetradecanoic acid 

1624 

1827 

- 

- 

- 

- 

Tr 

Tr 

6,10,14-Trimethyl-2-pentadecanone 1861 - - 9.8 

Dibutylphtalate 1892 - - 16.2 

Hexadecanoic acid 2026 6.4 5.1 16.9 

Ethyl linoleate 2223 19.5 20.2 49.8 

Total (%)  27.2 25.4 92.7 
 

From b) to g): same as in Table 2.1. 
 
In addition to enzymatic hydrolysis, GL degradation into various volatiles can be induced 

thermally and chemically. In order to investigate thermal influence (100 °C) on the present 

GLs, the dried plant material was subjected to hydrodistillation. Ten molecules representing 

92.7% of the total volatile compounds were identified (Table 2.2, Hyd). No GL degradation 

products were identified in the analyzed volatile isolate (Table 2.1, Hyd). Previous analysis of 

volatile extracts obtained by hydrodistillation included mostly C3-C5 alkenyl, 

methylsulfanylalkyl, methylsulfinylalkyl, and arylaliphatic GL degradation products (Blazević 

and Mastelić, 2008; Blazević and Mastelić, 2009; Blazević et al., 2010; Blazević et al., 2011; 

Blazević et al., 2013a; Blazević et al., 2013b; Mastelić et al., 2006; Mastelić et al., 2010; 

Radonić et al., 2011). Although thermally induced degradation of individual GLs was not 
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mostly considered, it is widely accepted that indole GLs are more labile than aliphatic ones 

(Chevolleau et al, 1997; Hanschen et al., 2014). Hanschen et al. (2012a, 2012b, 2014) reported 

differences in the thermal stability within the group of sulfur-containing aliphatic GLs i.e. the 

investigated methylsulfanylalkyl GLs (C3 and C4, namely glucoiberverin and glucoerucin) 

being more susceptible to thermal degradation. In a previous report on the volatile extract of 

Cardaria draba, 4-methylsulfanylbutyl GL, 4-methylsulfinylbutyl GL and 4-methylsulfonylbutyl 

GL degradation products were identified in the extract obtained by enzymatic hydrolysis, 

while in the hydrodistillate only degradation products of 4-methylsulfanylbutyl GL were 

identified (Radonić et al., 2011). According to these reports it can be suggested that the long-

chain C8-C10 aliphatic GLs with sulfoxide- or sulfone- containing side chain were stable in 

water at 100 °C (Table 2.1, Hyd). 

GLs can also degrade under several other conditions such as strong acids or bases or different 

type of salts (Hanschen et al., 2014). Previous reports suggested that acid-catalyzed hydrolysis 

(Ettlinger and Lundeen, 1956) of GLs leads to the corresponding carboxylic acid together with 

hydroxylammonium ion and sugar, and this fact has been used by Olsen and Sørensen (1979, 

1980) in the identification of new GLs of Reseda species. On the other hand, the base-

catalyzed hydrolysis of GLs can result in several products (Bones and Rossiter, 2006). Basic 

hydrolysis can lead to the formation of alkyl amino acids and 1--D-thioglucose through a 

Neber-type rearrangement (Bones and Rossiter, 2006; Friis et al., 1977). In order to 

investigate the chemical degradation of the present GLs, different conditions were applied: 

basic (pH 10), acidic (~pH 2) and very acidic (~pH 0). The GC-MS analysis of the CH2Cl2 extracts 

showed that only the basic extract contained GL degradation products, i.e. 11 compounds 

(56.5%) among which ITCs predominate (Table 2.1, Tris). According to the GL degradation 

products obtained by this analysis, the same GL profile can be suggested as in the case of the 

volatile isolate obtained after enzymatic hydrolysis. 9-Methylsulfonylnonyl- (35.7%), 10-

methylsulfonyldecyl- (0.4%), 8-methylsulfonyloctyl (Tr) ITCs, 9-methylsulfonylnonanenitrile 

(Tr) and 8-methyl- sulfinyloctyl ITC (Tr) originate from 9-methylsulfonylnonyl-, 10- 

methylsulfonyldecyl-, 8-methylsulfonyloctyl-, and 8-methylsulfinyloctyl GLs, respectively 

(confirmed by HPLC-ESI-MS). In addition to the thiofunctionalized ITCs, long-chain alkenyl ITCs 

were also identified: non-8-enyl- (8.5%), oct-7-enyl- (8.3%), dec-9-enyl- (1.6%), undec-10-

enyl- (Tr) and hept-6-enyl ITCs (Tr) originating from the corresponding long-chain olefinic GLs, 

i.e. non- 8-enyl-, oct-7-enyl-, dec-9-enyl-, undec-10-enyl-, and hept-6-enyl GLs, respectively. 
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The acidic and strongly acidic conditions did not degrade GLs into ITCs and/or nitriles. Also, in 

contrast to the previous reports (Ettlinger and Lundeen, 1956; Olsen and Sørensen, 1979; 

Olsen and Sørensen, 1980; Bones and Rossiter, 2006; Friis et al., 1977), no carboxylic acids 

that could correspond to the identified GLs were detected by GC-MS analysis (data not 

shown). Such observations showing that GLs easily degrade under basic conditions into their 

corresponding ITCs were previously reported in the study of Lunaria annua (Blazević et al., 

2014) and Capsella bursa pastoris (Vaughn and Berhow, 2005) seed. Thus, in contrast to 

previous reports of the acidic and basic GL hydrolyses (Bones and Rossiter, 2006), the basic 

conditions using Tris buffer (pH 10) can easily degrade GLs, mostly into their corresponding 

ITCs, whereas acidic conditions (pH 0 and 2) are not appropriate for generating characteristic 

volatiles usually obtained by enzymatic degradation. It is worth noticing that next to the major 

degradation products of C5 and C6 methylsulfanylalkyl GLs (glucoberteroin and 

glucolesquerellin) and methylsulfinylalkyl GLs (glucoalyssin and glucohesperin) of L. annua, 

the C5-C7 alkenyl volatiles were also present (Blazević et al., 2014). A large number of 

degradation products identified in the volatile isolate belong to the long-chain olefinic GL 

degradation products that were not identified in the previous reports of A. turrita, nor of 

other Arabis species (Bennet et al., 2004; Fahey et al., 2001). According to previous reports, 

only prop-2-enyl GL (sinigrin) was identified as an olefinic GL in 3 species of Arabis (Fahey et 

al., 2001; Daxenbichler et al., 1991). Those long-chain GLs can be important as 

chemotaxonomic tags of this species. However, such GLs were suggested previously only from 

their degradation products in other plants, e.g. hept-6-enyl GL, reported in Wasabi japonica 

(Fahey et al., 2001), and three long-chain unsaturated C8-C10 ITCs in autolysates of 

Nasturtium montanum, along with structurally related methylsulfonylalkyl long-chain ITCs 

(Songsak and Lockwood, 2002). The corresponding GLs were concluded to exist in the intact 

plant. The suggested occurrence of alkenyl GLs in a plant also accumulating similar Met 

derived GLs seems likely. Contrary to GC-MS analysis, our HPLC-ESI-MS confirmed only 

thiofunctionalized GLs, and their conversion into olefinic ITCs during GC-MS analyses can be 

presumed. Hence, the isolation and purification of these long-chain olefinic GLs and recording 

of their NMR data should be performed in order to confirm their occurrence in nature 

(Agerbirk and Olsen, 2012). Except for the above-mentioned molecules, all volatile fractions 

from the investigated species contained compounds devoid of nitrogen and sulfur (Table 2.2) 

– mostly hexadecanoic acid (5.1-16.9%) and ethyl linoleate (19.5-49.8%) in all volatile isolates. 
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Next to these volatiles, the hydrodistillate contained a high concentration of dibutylphtalate 

(16.2%) and 6,10,14-trimethyl-2-pentadecanone (9.8%). 
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Abbreviations 

 

GL: glucosinolate;  

DS-GL: desulfo-glucosinolate;  

NT: near threatened; ITC: isothiocyanate;  

GC-MS: gas chromatography-mass spectrometry;  

HPLC-DAD: high-performance liquid chromatography - diode array detector;  

HPLC-ESI-MS: high-performance liquid chromatography - electrospray mass spectrometry; 

RPF: relative proportionality factor;  

GRA: glucoraphanin;  

GPU: glucoputranjivin;  

GNA: gluconapin;  

GCC: glucocochlearin;  

GBN: glucobrassicanapin;  

GER: glucoerucin;  

GBE: glucoberteroin;  

GAL: glucoalyssin;  

Met: methionine;  

Leu: leucine;  

Tyr: tyrosine;  

Val: valine;  

DNA: deoxyribonucleic acid;  

ITS: internal transcribed spacer;  

a.s.l.: above sea level. 
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Summary 

 

Different plant parts (flower, leaf, stem, and seed) of Fibigia triquetra were characterized and 

quantified for glucosinolates (GLs) according to the ISO 9167-1 EU official method based on 

the HPLC analysis of desulfo-GLs for the first time. A taxonomic screening showed that F. 

triquetra contained relatively high levels of C-4 GLs, namely but-3-enyl GL (gluconapin, 1a), 4-

methylsulfanylbutyl GL (glucoerucin, 3a), and 4-methylsulfinylbutyl GL (glucoraphanin, 5a). 

GC-MS analysis of the volatile fractions obtained after enzyme hydrolysis and/or HPLC-ESI-MS 

of intact GLs confirmed the GL profile. Four minor GLs, namely isopropyl GL (glucoputranjivin, 

6a), sec-butyl GL (glucocochlearin, 7a), pent-4-enyl GL (glucobrassicanapin, 2a), and 5-

methylsulfanylpentyl GL (glucoberteroin, 4a) were also identified and quantified while 4-

methylpentyl GL, 5-methylhexyl GL, and n-heptyl GL, were tentatively identified by GC-MS of 

their degradation products. Based on the major, as well as the minor GLs, this study showed 

differences in chemotaxonomy between F. triquetra and the related Degenia velebitica 

(Degen) Hayek as well as other investigated species of the genus Fibigia. 
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3.1 Introduction  

              

Croatia is hosting significant populations of many plant species that are threatened at the 

European level. One of the reasons for the large number of endemics in Croatia, and especially 

tertiary relics, is the fact that this area was not greatly affected by glaciation. Among the 13 

known species in the genus Fibigia (Brassicaceae) (Cetin et al., 2012) two wild-growing are 

known in the Flora of Croatia, namely Fibigia clypeata (L.) Medik. and Fibigia triquetra (DC.) 

Boiss. ex Prantl. The latter species is a rare Croatian paleostenoendemic plant species included 

in the Croatia Red Book in the category of near threatened (NT) plants (Fukarek and Šolić, 

1982; Kostović-Vranješ et al., 1998). F. triquetra is a perennial plant, characterized by sub-

shrubby growth (up to 5–20 cm in height), large yellow flowers, and compact rosettes of hairy, 

and grey leaves. The fruit forms an elliptical or elongated ellipsoidal silique (Figure 3.1).  

 

 

Figure 3.1 Fibigia triquetra (DC.) Boiss. ex Prantl. 

 

The natural area of distribution is restricted to the rocky grounds of Dalmatia (Kostović-

Vranješ et al., 1994; Prevalek-Kozlina et al., 1997) on altitudes ranging from 10 to 1000 m 

above sea level (a.s.l.). There is a striking similarity in morphology, anatomy, and taxonomy 

between F. triquetra and Degenia velebitica (Degen) Hayek, which was reported as a Croatian 

stenoendemic chasmophytic herbaceous plant (Mayer, 1981; Prevalek-Kozlina et al., 1999; De 

Nicola et al., 2011; Mastelić et al., 2010). According to a phylogenetic relationship study, F. 

triquetra seems to be closer to D. velebitica than any other Fibigia species (Rešetnik et al., 

2013). The restriction fragment length PCR amplified ribosomal DNA (ITS regions), as well as 

the size of the genome types of F. triquetra and D. velebitica were determined and compared. 
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These analyses indicated that F. triquetra varied from D. velebitica. Studies based on non-

morphological characters, such as chemical features together with other biological or genetic 

informations can help in discriminating species and understanding real relationships among 

the taxa. The plants of the Brassicaceae family are strikingly chemocharacterized by the 

presence of glucosinolates (GLs). GLs are genetically variable within plant species. The 

chemistry of F. triquetra has never been investigated, and thus its GL composition is not 

established. As a matter of fact, information on GLs present in other plants of the genus 

Fibigia are very scarce and only include early approaches regarding the characterization of 

the GLs present, i.e. comparison with the authentic sample on TLC, paper chromatography, 

and GC-MS analysis of their degradation products - which are mostly isothiocyanates (ITCs). 

F. eriocarpa (DC.) Boiss. seeds were reported to contain 3-methylsulfinyl propyl GL (glucoiberin, 

GIB), p-hydroxybenzyl GL (sinalbin, SNB), and benzyl GL (glucotropaeolin, GTL) (Boudjidanian et 

al., 1974). Pent-4-enyl GL (glucobrassicanapin, GBN, 2a) (Figure 3.2) and 2-hydroxy-3-butenyl 

GL (progoitrin, PRO or epiprogoitrin, EPRO) were reported in the seeds of F. clypeata (L.) Medik. 

(Al-Shehbaz et al., 1987). and F. macrocarpa (Boiss.) Boiss. (Al-Shehbaz et al., 1987; Daxenbichler 

et al., 1991). Next to those GLs, F. macrocarpa was reported also to contain but-3-enyl GL 

(gluconapin, GNA, 1a) 4-methylsulfanylbutyl GL (glucoerucin, GER, 3a) and 4-methylsulfinylbutyl 

GL (glucoraphanin, GRA, 5a) (Al-Shehbaz et al., 1987). Bennett et al. (2004) used ion-pairing LC-

MS methodology for the identification of the GLs in F. clypeata seeds, which confirmed the 

previous report of GLs, i.e. EPRO (100–125 µmol g-1 of dry weight) and PRO (0.1–10 µmol g-1 

of dry weight). Conversely to GC-MS and other techniques previously mentioned, this latter 

method ensured accurate measurement of all classes of GLs (Bennett et al., 2004). All previous 

reports dealt with GLs in Fibigia seeds. However, the nature of GLs and their relative amounts 

can vary greatly with plant species and variety, tissue type (seed, root, stem, leaf, flower) and 

developmental stage of the tissue (De Nicola et al., 2011; Blazević et al., 2011; Blazević et al., 

2013a). Thus, the aim of the present study was to investigate the qualitative and quantitative 

GL profile in the various aerial parts (flower, leaf, stem, seed) of F. triquetra. The identification 

and quantification were performed by HPLC-DAD of the desulfo-glucosinolates (DS-GLs) and 

comparison with standards. The analyses were confirmed by direct HPLC-ESI-MS analysis of 

intact GLs and/or indirectly by GC-MS of their breakdown products. 
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3.2 Experimental 
 

3.2.1 General 

 

DS-GLs were analyzed on HPLC Agilent model 1100 (New Castle, Delaware, USA) equipped 

with a diode array detector (DAD) and an Inertsil ODS-3 column (250 × 3 mm, particle size 5 

µm,) thermostated at 30 °C. Intact GLs were analyzed on a HPLC Agilent model 1100 equipped 

with a quaternary pump, automatic injector, diode-array detector (wavelength range 190–

600 nm) degasser, and a Hypersil ODS column (200 × 4.6 mm, particle size 5 µm). The HPLC 

was interfaced to an Agilent model 6120 mass spectrometer (Toronto, ON) with a 

Chemstation data system LC-MSD B.03.01.  

GC analyses were performed with a Varian model 3900 system (Varian Inc., Lake Forest, CA, 

USA) equipped with a Varian mass spectrometer model 2100T, non-polar capillary column VF-

5MS (30 m × 0.25 mm i.d., coating thickness 0.25 μm; Varian Inc.). Homogenization was done 

by U-Turrax (IKA T25) homogenizer. 

All the solvents employed were purchased from Fluka Chemie, Buchs, Switzerland. Anhydrous 

sodium sulfate was obtained from Kemika, HR-Zagreb, DEAE- Sephadex A-25 anion-exchange 

resin from GE Healthcare). Enzymes thioglucosidase (myrosinase EC 3.2.1.147; 361 U g-1; MYR) 

from Sinapis alba seeds and sulfatase Type H-1 from Helix pomatia were purchased from 

Sigma-Aldrich Chemie GmbH, D-Steinheim. GLs and DS-GLs were available as pure standards 

isolated in the laboratory (Montaut et al., 2009; Wathelet et al., 2004). 

 

3.2.2 Plant Material 

 

The aerial parts (leaf-flower, stem, and seed) of Fibigia triquetra (DC.) Boiss. ex Prantl were 

collected on the island of Brač (Mt. Vidova Gora, 770 m a.s.l.; Gauss-Kruger coordinates X = 

5631845; Y = 4794051) - near Split, during flowering in March (flower, leaf, stem) and June 

(seed) in 2011 from wild-growing populations. The botanical identity of the plant material was 

confirmed by the local botanist Dr. Mirko Ruščić, and voucher specimens (no. DBFT001) have 

been deposited at the Department of Biology, Faculty of Sciences, Split, Croatia. 
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3.2.3 HPLC of desulfoglucosinolates and glucosinolates 

 

3.2.3.1 Extraction of glucosinolates and desulfation 

 

GLs were extracted from the different plant parts of F. triquetra (leaf-flower, stem, and seed) 

according to the EU standard procedure (EEC, 1990) albeit with some modifications (Blazević 

et al., 2011). Plant samples were reduced to a fine powder. Samples of ca 500 mg were 

extracted for 5 min at 80 °C in 2x5 mL EtOH–H2O (70:30 v/v), homogenized and then 

centrifuged. Supernatants were combined, and the final volume was measured. Each extract 

(1 mL) was loaded onto a mini-column filled with 0.6 mL of DEAE-Sephadex A-25 anion-

exchange resin conditioned with 25 mM acetate buffer (pH 5.6). After washing with 3 mL 

buffer, 200 μL (0.35 U mL-1) of purified sulfatase (Leoni et al., 1998) was loaded onto the mini-

column which was left on the bench overnight. The DS-GLs were then eluted with 3 mL of 

ultra-pure H2O and were analyzed by HPLC-DAD. In addition, seeds (540 mg) were frozen in 

liquid N2 and ground with a mortar and pestle. The powder was extracted for 5 min at 80 °C in 

2 x 5 mL EtOH–H2O (70:30 v/v). The solutions were combined and evaporated under reduced 

pressure and intact GLs were analyzed by HPLC-ESI-MS. 

 

3.2.3.2 HPLC-DAD analysis of desulfoglucosinolates 

 

The chromatography of DS-GLs (20 µL injected solution) was performed with an Inertsil ODS-3 

column at a flow rate of 1 mL min-1 eluting with a gradient of H2O (A) and acetonitrile (B) 

following the program: 1 min 1 % B; 22 min linear gradient up to 22 % B; 3 min linear gradient 

down to 1 % B. DS-GLs were detected monitoring the absorbance at 229 nm (Blazević et al., 

2011). 

 

3.2.3.3 HPLC-ESI-MS analysis of intact glucosinolates 

 

The extract (121.3 mg) was dissolved in 4 mL EtOH–H2O (70:30 v/v) and filtered through a 

plug of cotton prior to HPLC analysis, which was performed by injecting a 5 µL aliquot of the 
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solution of crude extract into HPLC-ESI-MS. The two mobile phase solvents, MeOH and H2O, 

were prepared with 0.15 % Et3N and 0.18 % HCO2H, added as ion-pairing reagents. Both 

solutions were filtered using 0.45 mm nylon membranes. The initial mobile phase was 100 % 

HPLC-grade H2O. At 10 min, the mobile phase was switched to a linear gradient of 100 % H2O 

to 100 % MeOH over 60 min. After each run, the initial mobile phase conditions were set, and 

the system was allowed to equilibrate. The flow rate was kept constant at 1 mL min-1. The 

column was maintained at room temperature. The electrospray interface was a standard ES 

source operating with a capillary voltage of 4 kV and temperature of 350 °C. The system was 

operated in the negative and positive ion electrospray modes. N2 was used as nebulizing and 

drying gas at a flow rate of 10 L min-1 (35 psig). The mass spectrometer was programmed to 

perform full scans between m/z 100 and 1.000 (Zrybko et al., 1997). 

 

3.2.4 GC-MS analysis of glucosinolate breakdown products 

 

3.2.4.1 Enzymatic hydrolysis of glucosinolates and extraction 

 

Crushed and dried flower with leaf (10 g), stem (10 g), and seed (1 g), were homogenized 

separately with deionized H2O (100 mL, pH~6) and MYR (1-2 U), then   allowed to hydrolyze 

during 17 h at room temperature (ca 30 °C).  Sufficient redistilled CH2Cl2 (3x20 mL) was then 

added, the mixtures were taken for 30 min and separated by centrifugation for 5 min at 4,000 

rpm. The separated organic layer was dried over anhydrous sodium sulfate and concentrated 

to 100 µL. All the obtained hydrolysates were kept (in a tightly closed vial) in a freezer at -20 

°C until GC-MS analysis (Blazević et al., 2010). 

  

3.2.4.2 GC-MS analysis 

 

Chromatographic conditions were as follows: helium was the carrier gas at 1 mL min
-1

, 

injector temperature was 250 °C. VF-5MS column temperature was programmed at 60 °C 

isothermal for 3 min, and then increased to 246 °C at a rate of 3 °C min
-1 and held isothermal 

for 25 min. The injected volume was 1 μL and the split ratio was 1:20. MS conditions were: 
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ionization voltage 70 eV; ion source temperature 200 °C; mass scan range: 40–350 mass 

units. The analyses were carried out in duplicate (Bezić et al., 2011). 

 

3.2.5 Identification and quantification 

 

The identification of DS-GLs was performed based on the retention time and UV spectra 

of each DS-GL compared with pure standards (Leoni et al., 1998). The GL amount was 

quantified by using a calibration curve of pure DS-sinigrin solution (range from 0.14 to 

1.4 mM, y = 36.3 + 5854.3∙x, R2 = 0.9998, LOD (limit of detection) 0.013 mM, LOQ (limit 

of quantitation) 0.041 mM. LOD and LOQ were both determined based on the DS-sinigrin 

calibration curve according to the European Medicines Agency (EMEA, 2009) guidelines 

relating to the validation of analytical methods) and RPFs for each individual DS-GL. The 

published RPFs for DS-GLs (Wathelet et al., 2004; Clarke, 2010) were used, with the 

exception of 5b, for which an arbitrary RPF value equal to 1 was set. 

Peaks of the intact GLs, 1a, 3a, and 5a, were identified by comparison of UV spectra, 

retention times and mass spectra of commercial standards in the LC-MS library. 

Glucoberteroin (5-methylsulfanylpentylGL, GBE, 4a) was identified by comparison of the UV 

spectrum, retention time and mass spectrum with those of a previously isolated GBE stored 

in the LC-MS library (Montaut et al., 2009). 

Individual peaks of volatiles were identified by comparing their retention indices and mass 

spectra to those of authentic samples, as well as by computer matching against the Wiley 

275-library spectra database and comparison of the mass spectra with literature data 

(Adams, 2001). The percentages in Table 3.2 and 3.3 were calculated as the mean value 

of component percentages on column VF-5MS column for analyses run in duplicate. 

 

3.3 Results  

 

The aerial parts of Fibigia triquetra leaf-flower, stem and seed were analyzed for GL 

identification and quantification. The extractions were made according to the EU official 
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method. Each extraction was performed in duplicate. The structures of the major GLs and 

their DS-counterparts are given in Figure 3.2.  

 

 

 

 R1 R2   R1 R2 

1a SO3- CH2=CH-(CH2)2  1b H CH2=CH-(CH2)2 

2a SO3- CH2=CH-(CH2)3  2b H CH2=CH-(CH2)3 

3a SO3- CH3-S-(CH2)4  3b H CH3-S-(CH2)4 

4a SO3- CH3-S-(CH2)5  4b H CH3-S-(CH2)5 

 5a SO3- CH3-SO-(CH2)4  5b H CH3-SO-(CH2)4 

6a SO3- CH3-CH(CH3)  6b H CH3-CH(CH3) 

7a SO3- CH3-CH2-CH(CH3)  7b H CH3-CH2-CH(CH3) 

 

Figure 3.2 Chemical structures of glucosinolates in F. triquetra: gluconapin (1a), 
glucobrassicanapin (2a), glucoerucin (3a), glucoberteroin (4a), glucoraphanin (5a), 
glucoputranjivin (6a), glucocochlearin (7a), and their desulfo-counterparts (1b–7b). 

 
The obtained HPLC chromatograms are given in Figure 3.3 and the GL contents are 

summarized in Table 3.1. The identity of each DS-GL was determined by the comparison of 

the tR and UV spectra of each product with those of DS-GL standards. The leaf - flower extract 

and the stem extract of F. triquetra showed almost the same DS-GL chromatographic 

qualitative profile. DS-GNA (1b) - the major DS-GL in both samples - DS-GER (3b) and DS-GRA 

(5b) were identified at tR 9.4, 5.2, and 14.3 min, respectively. In contrast to other plant parts 

analyzed, the major DS-GL identified in seed extracts was 3b, followed by 1b and 5b. The other 

minor DS-GLs present in all the samples were DS-GPU (desulfo isopropyl GL, 6b) and DS-GCC 

(desulfo sec-butyl GL, 7b). In addition, DS-GBN (desulfo pent-4-enyl GL, 2b) was detected in 

the stem, and DS-GBE (desulfo 5-methylsulfanylpentyl GL, 4b) in the seed only. The structures 

of those minor GLs and their DS-counterparts are also given in Figure 3.2. The HPLC 

chromatograms showed also unidentified peaks at 20.1 and 20.9 min (seed extract) as well as 

at 21.6 min (flower - leaf extract) which did not match with any available standards. 
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Figure 3.3 HPLC-DAD chromatograms of desulfoglucosinolates isolated from a) leaf and 
flower; b) stem; c) seed of F. triquetra (DC.) Boiss. ex Prantl. Peaks correspond to 
glucosinolates, as follows: DS-GRA, desulfo-glucoraphanin; DS-GPU, desulfo-glucoputranjivin; 
DS-GNA, desulfo-gluconapin; DS-GCC, desulfo-glucocochlearin; DS- GBN, desulfo-
glucobrassicanapin; DS-GER, desulfo-glucoerucin; DS-GBE, desulfo-glucoberteroin. 

a) 

b) 

c) 
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For GL quantification, we used the relative proportionality factors (RPFs) reported in the 

literature (Wathelet et al. 2004; EMEA, 2009). Since the RPFs for DS-GCC and DS-GBE are not 

reported, an arbitrary RPF value of 1 was set for DS-GCC, whereas for DS-GBE the RPF of DS-

GER was used. The results for quantification are given in Table 3.1. In comparison to the stem 

extract, the leaf - flower extract showed a similar content of the major GLs, i.e. 77.9 and 68.2 

% of 1a, 12.8 and 15.4 % of 5a, and 5.6 and 8.7 % of 3a, respectively. The seed contained 56.6 

% of 3a, 24.1 % of 1a, and 17.3 % of 5a. The total GL content is strikingly high in all aerial parts, 

with the highest content in the seed. It is worth mentioning that the upper plant parts (leaf - 

flower and stem) have a 2–3 fold higher content of 5a than 3a, while this content in the seed 

is vice versa. This phenomenon was previously reported for D. velebitica (De Nicola et al., 

2011) and Raphanus sativus L. (Barillari et al., 2005) and one could speculate a biological 

oxidation of 3a to 5a during the sprouting of the seeds. 

 

Table 3.1 Glucosinolate content of leaf-flower, stem, and seed in F. triquetra (DC.) Boiss. ex 
Prantl. 

Glucosinolates(a) Leaf-flower Stem Seed LC-MS [M]-(b) 

Glucoraphanin (5a) 8.0 ± 1.7 (c) 15.1 ± 3.0 23.4 ± 1.6 436.0 
Glucoputranjivin (6a) 0.9 ± 0.1 2.5 ± 0.1 0.7 ± 0.1 – 
Gluconapin (1a) 48.7 ± 1.7 66.7 ± 3.4 32.6 ± 1.1 372.0 
Glucocochlearin (7a) 1.4 ± 0.1 4.3 ± 0.1 1.3 ± 0.1 373.8 
Glucobrassicanapin (2a) – 0.7 ± 0.0 – – 
Glucoerucin (3a) 3.5 ± 0.2 8.5 ± 0.5 76.7 ± 2.4 420.0 
Glucoberteroin (4a) – – 0.7 ± 0.1 434.0 
Total content  
(μmol / g dry weight) 

62.5 ± 3.8 97.8 ± 7.1 135.4 ± 5.4 
 

Yield, (w / w) / % 2.7 4.2 6.1  
(a) GLs are listed according to elution of their corresponding DS-GL on Inertsil ODS-3 column. An 
arbitrary RPF value of DS-GL equal to 1 was used only for quantification of 5a. 
(b) [M]– (%): specific product ion for GL identification in ESI–-MS having 100 % abundance. 
(c) Value is the mean ± standard error (n = 2). 

 

The identification of GLs was confirmed by the GC-MS analysis of the corresponding volatile 

degradation products resulting from enzymatic hydrolysis. The most common breakdown 

products are ITCs, which are characterized by odd mass of the molecular ion, and a fragment 

ion of m/z = 72. Some GLs form unstable ITCs, such as 2-hydroxyalkenyl ITCs which cyclize to 
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oxazolidine-2-thiones, while 4-hydroxybenzyl ITC and the very reactive indole ITCs are 

degraded into their corresponding alcohols, releasing the thiocyanate ion (Hanshen et al., 

2014). Beside identified ITCs, other breakdown products, mostly nitriles, can be helpful in 

confirming the parent GL identification. Individual GLs identified by GC-MS analysis of their 

hydrolysis products in different F. triquetra plants parts are shown in Table 3.2. 

Table 3.2 Individual glucosinolates identified by GC-MS analysis of their hydrolysis products 
in different F. triquetra (DC.) Boiss. ex Prantl. plant parts. 
 

Parent GL 
Identified compound RI a) Leaf-flower Stem Seed 

Glucoputranjivin (6a) 
Isopropyl isothiocyanate 

 
836 

 
0.4 

 
1.6 

 
0.9 

Glucocochlearin (7a) 
sec-Butyl isothiocyanate 

 
939 

 
- b) 

 
- 

 
0.7 

Gluconapin (1a) 
But-3-enyl isothiocyanate 

 
998 

 
22.9 

 
48.7 

 
32.0 

Glucobrassicanapin (2a) 
Pent-4-enyl isothiocyanate 

 
1090 

 
0.2 

 
0.2 

 
0.2 

4-Methylpentyl GL 
4-Methylpentyl isothiocyanate 

 
1169 

 
0.2 

 
0.1 

 
0.1 

n-HeptylGL 
n-Heptyl isothiocyanate 

 
1269 

 
tr 

 
0.4 

 
0.3 

5-Methylhexyl GL 
5-Methylhexyl isothiocyanate 

 
1276 

 
- 

 
0.2 

 
0.1 

Glucoerucin (3a) 
5-Methylsulfanylpentanenitrile 
4-Methylsulfanylbutyl isothiocyanate 
(erucin) 

 
1213 
1457 

 
- 
0.3 

 
tr c) 
4.7 

 
tr 
6.0 

Glucoberteroin (4a) 
5-Methylsulfanylpentyl isothiocyanate 
(berteroin) 

 
1542 

 
- 

 
- 

 
0.3 

Glucoraphanin (5a) 
4-Methylsulfinylbutyl isothiocyanate 
(sulforaphane) 

1791 4.3 5.5 3.3 

Group sum (%) 
 

 28.3 61.4 43.9 

a) RI, Retention indices determined on a VF-5MS capillary column. b) -, not detected. c) tr, traces. 

GC-MS analysis confirmed the presence of the GLs identified by  HPLC  analysis of  the 

corresponding  DS-GLs, through  detection of the following ITCs:  i)  isopropyl- and sec-butyl  

ITCs,  originating  from  the  branched  GLs,  6a, and 7a,  respectively;  ii)  but-3-enyl- and pent-

4-enyl ITCs, from olefinic GLs 1a and 2a; and iii) 4-methylsulfanylbutyl- (erucin), 5 

methylsulfanylpentyl- (berteroin) and 4-methylsulfinylbutyl (sulforaphane) ITCs confirming 

3a, 4a, and 5a, respectively.  In addition to the present ITCs, 5-(methylsulfanyl)pentanenitrile 
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confirmed the presence of 3a. GC-MS analysis was particularly useful for the correct 

identification of two minor peaks, namely 6a and 7a. Three additional minor ITCs, 4-

methylpentyl-, 5-methylhexyl-, and n-heptyl ITCs were detected via GC-MS analysis. Those GL 

breakdown products belonging to the saturated C-6 C-7 aliphatic group were tentatively 

identified by their tR and MS spectra. DS-GLs often bring difficulties in interpreting results of 

the individual GLs, due to concerns over the impact of pH value, time, and enzyme sulfatase 

(EC 3.1.6.1) concentration on desulfation products (Wathelet et al., 2014; Hennig et al., 2012). 

In addition, some GL breakdown products lack volatility or prove unstable in the conditions 

used during the analysis, and this represents a major drawback of this indirect method 

(Chiang et al., 1998). Therefore, a direct analysis of intact GLs present in the seed was 

performed by LC-MS for more specific and accurate qualitative determination and for better 

interpretation of analytical results. Specific product ion for GL identification in ESI--MS, having 

abundance 100%, is given in Table 3.1. The major intact GLs, 1a, 3a, and 5a, as well as 4a were 

clearly identified in chromatograms of crude seed extracts. GCC (7a) peak, notwithstanding 

the low amount (1.0 %), was also observed with specific product ion 373.8 (100 %). On the 

contrary, LC-MS analysis of intact GLs in the seed did not allow to confirm the presence of 

either 2a or 6a, previously identified by their corresponding DS-GLs and ITCs (Table 3.1 and 

3.2). Moreover, it was not possible to confirm the tentatively identified 4-methylpentyl-,5-

methylhexyl- and n-heptyl GLs hypothesized by GC-MS analysis of ITCs (Table 3.2). Hence, the 

three HPLC peaks of DS-GLs at 20.1, 20.9 and 21.6 min could not be assigned (Figure 3.2). 

Except for the above-mentioned molecules, all volatile fractions from the investigated species 

contained compounds devoid of nitrogen or sulfur (Table 3.3) - mostly fatty acids, esters, 

alkanes, phenols, phenylpropanoids and related derivatives. The major products belonging to 

this class were hexadecanoic acid (12.6–19.9 %) and ethyl linoleate (15.0–25.7 %). 
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Table 3.3 GC-MS analysis of miscellaneous volatile compounds from different F. triquetra 
(DC.) Boiss. ex Prantl. plant parts. 

Identified compound RI a)  
Flower 

and leaf Stem Seed 

Alkanes     
1-Phenyl-1-propanone 1178 trb) tr - c) 
Tricosane 2300 0.9 - 0.5 
Pentacosane 2500 1.9 - - 
Heptacosane 2700 12.9 2.6 2.6 
Octacosane 2800 3.4 0.7 0.5 
Phenols, phenylpropane derivatives and related compounds 
2-Phenylethyl alcohol 1133 tr 0.7 - 
Eugenol 1366 0.3 0.3 - 
4-Hydroxy-3-methoxy benzaldehyde  1422 tr - - 
Dihydroactinidiolide  1547 - 0.1 0.1 
6,10,14-Trimethyl-2-pentadecanone 1838 0.3 - 0.5 
Fatty acid and esters 
Octanoic acid 1216 tr - - 
Nonanoic acid 1310 tr - tr 
Decanoic acid 1405 tr tr tr 
Dibutyl phtalate 1861 0.3 0.4 tr 
Pentadecanoic acid 1890 tr tr 0.2 
Hexadecanoic acid 2017 19.9 12.6 19.0 
Ethyl linoleate 2195 25.7 15.0 23.7 
Other compounds     
Dimethyl trisulfide 981 tr 0.1 0.1 
Dimethyl tetrasulfide 1228 tr 0.9 1.0 
Phytol 2110 0.2 1.9 - 

Group sum (%)  65.8 35.3 48.2 

Total sum (%)  94.2 96.9 92.3 

 
(a)    Same as in Table 3.2. 
(b)    tr: traces. 
(c)    –: not detected. 

 
 

3.4 Discussion 

 

GL profile analyses in the diverse plant tissues of Fibigia triquetra revealed aliphatic GLs to 

be the major ones. The C-4 and C-5 GLs 1a–5a originate from L-methionine (Met) via chain 

elongation by one carbon atom at a time, while C-3 and C-4 GLs 6a and 7a are derived from 

L-valine (Val) and L-leucine (Leu), respectively. The suggested natural occurrence of C-6 and 
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C-7 GLs, 4-methylpentyl-, 5-methylhexyl-, and n-heptyl GLs in a plant also accumulating similar 

Met-, Val-, and Leu-derived GLs seems likely. Reports of alkyl GLs bearing C-6 and longer 

chains are scarce and analyses revealing their occurrence are mostly based on GC-MS of the 

derived ITCs (Blazević et al., 2015). The presence of Leu-derived 4-methylpentyl GL (Sawada 

et al., 2009) was previously reported in Alyssoides utriculata (L.) Medik., Raphanus sativus 

L., Eruca sativa Mill by using GC-MS analysis of the ITC (Blazević et al., 2009; Blazević et al., 

2015; Fahey et al., 2001) and LC-MS analysis of intact GLs (Lelario et al., 2012; Cataldi et al., 

2007). Natural occurrence of both 5-methylhexyl- and n-heptyl GLs was also inferred from 

GC-MS analysis of their breakdown products. Val-derived 5-methylhexyl GL (Sawada et al., 

2009) was previously inferred from 5-methylhexyl ITC analysis, while identification of n-heptyl 

GL was based on degradation to octanenitrile and n-heptyl ITC (Blazević et al., 2009; Blazević 

et al., 2013a; Blazević et al., 2013b). It is worth mentioning that until recent years, n-heptyl 

GL has been considered “unnatural” as claimed for example by Davidson et al. (2001). The 

present study has shown that C-4 GLs i.e. 1a, 3a, 5a are the major ones in F. triquetra 

whereas a C-5 GL, 4a, is dominant in D. velebitica. In addition, minor GLs can be suggested   

to    be    important    tags   which differentiate F. triquetra from D. velebitica. Previous 

studies of D. velebitica has shown the presence of glucoaubrietin (4-methoxybenzyl GL), as 

one minor GL present in the seed. Thus, it seems that, next to the major Met derived GLs, 

F. triquetra accumulates also Val and Leu derived GLs, whereas D. velebitica accumulates 

Tyr-derived GLs, next to the major Met derived GLs. Earlier reports on other Fibigia species 

showed prevalence of C-4 GLs such as 1a and 5a, but also of (R)- and (S)-2-hydroxy-3-butenyl 

GLs (PRO and EPRO), which were not identified in F. triquetra (Boudjikanian et al., 1974; 

Daxenbichler et al., 1991; Bennett et al., 2004). Previous studies focused on the GL profile of 

endemic plants of the tribe Alysseae, which comprises seven genera: Alyssoides, Alyssum, 

Aurinia, Berteroa, Clypeola, Degenia and Fibigia. Those investigations (De Nicola et al., 2011; 

Blazević et al., 2011; Blazević et al., 2013a; Blazević et al., 2013b; Blazević et al., 2015) of, 

namely, D. velebitica, Aurinia sinuata (L.) Griseb. and A. leucadea (Guss.) C. Koch., suggested 

that species in this tribe represent appropriate sources for Met derived GLs bearing a C-4 

and/or C-5 olefinic aglycon chain (1a, 2a) and/or a thiofunctionalized chain (3a–5a, GAL). 

With high GL contents ranging from 9.9 to 135.4 µmol g-1 of dried material in different plant 
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parts - especially in the seed (over 4.0 % w/w with the highest, 6.1 % w/w in F. triquetra) - 

those Alysseae are found to represent a good GL source 

 

3.5 Conclusions  

 

The GLs of an ice-age survived plant F. triquetra were analyzed by using a multiple method 

approach, involving HPLC-DAD analysis of DS-GLs and their comparison to standards, HPLC-

ESI-MS analysis of intact GLs and GC-MS of the breakdown products obtained by enzymatic 

degradation of GLs. This approach established the qualitative and quantitative GL profile of 

F. triquetra and the present study revealed differences in the GL chemistry with the most 

similar paleostenoendemic plant Degenia velebitica, the only species in this genus. 
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Summary 

 
The glucosinolate (GL) profile in several plant parts (leaf, branch, bark, root, and fruit) of 

Bretschneidera sinensis from three geographical regions of the People’s Republic of China was 

established for the first time by HPLC. During this investigation, benzyl GL (1), 4-hydroxybenzyl 

GL (2), 2-hydroxy-2-methylpropyl GL (3), and 4-methoxybenzyl GL (4) were identified. In 

addition, one new GL, 3-hydroxy-4-methoxybenzyl GL (5), was isolated in a minor amount 

from the fruit and characterized by spectroscopic data interpretation. Furthermore, traces of 

4-hydroxy-3-methoxyphenylacetonitrile were detected by GC-MS analysis in the fruits, thus 

confirming the presence of the regioisomeric 4-hydroxy-3-methoxybenzyl GL (6). GLs 1−5 

were also quantified for the first time by HPLC in the various plant organs. 
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4.1 Introduction  

              

Bretschneidera sinensis Hemsl. (syn. B. yunshanensis Chun & F.C. How.) (Akaniaceae), Chinese 

common name “bo le shu”, is a tree growing in Southeast mainland China (provinces of Fujian, 

Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangxi, Sichuan, Yunnan, and Zhejiang), 

northern Taiwan, and northern Vietnam (Hemsley, 1901; Zhengi et al., 2005). It was described 

for the first time by Hemsley in 1901 and placed originally in the Sapindaceae family (Hemsley, 

1901). However, its taxonomic position has always been a point of discussion, and this plant 

has been the subject of many botanical studies (Tobe et al., 1990; Lü et al., 1994a; Lü et al., 

1994b; Doweld, 1996; Carlquist, 1996; Ronse De Craene et al., 2002; Qiao et al., 2010a; Qiao 

et al., 2010b; Qiao et al., 2012; Tu et al., 2012; Chaw, 1987). The chromosome cytology 

[chromosome number, 2n=18, and karyotypic formula, 8m+6sm+4sm (SAT)] was not 

sufficient to suggest a systematic relationship (Yang et al., 1995). An initial pollen morphology 

observation of B. sinensis suggested for the family Bretschneideraceae a closer classification 

and systematic position relationship with Connaraceae rather than with Papaveraceae (Liu, 

1996). Another pollen morphology investigation suggested that Bretschneidera is related to 

Sapindaceae, Hippocastanaceae, Moringaceae, and Caesalpinioideae (Chaw, 1987). In 

addition, some genetic and cladistic studies have been carried out on B. sinensis (Guan et al., 

2012; Rodman, 1991a; Rodman, 1991b; Gadek et al., 1992; Rodman et al., 1993; Rodman et 

al., 1998; Bayer et al., 2003; Peng et al., 2011). In a phenetic study based on a sparser data 

set, Akania and Bretschneidera clustered together but were not close to Sapindaceae 

(Rodman, 1991a). Cladistic pairings by Rodman were congruent with phenetic linkages 

(Rodman, 1991b). Based on comparative sequence data for the ribulose-1,5-bisphosphate 

carboxylase chloroplast encoded gene (rbcL), a close affinity between Bretschneidera and the 

Capparales was demonstrated and especially with the genus Tropaeolum (Rodman, 1993). 

Other cladistic analyses based on the comparison of the sequence data for rbcL showed that 

the genus Akania clustered robustly with Bretschneidera and then Tropaeolum, within the 

clade of Capparalean families (Gadek, 1992). An investigation on DNA sequencing of the 

nuclear 18S rRNA gene and the combination of the two gene data sets (DNA sequencing of 

the chloroplast rbcL gene and DNA sequencing of the nuclear 18S rRNA gene) yielded the same 

result (Rodman, 1998).  Later, Bayer and Appel included B. sinensis in the family Akaniaceae 

(order Brassicales) (Bayer et al., 2003). This plant still belongs to the family Akaniaceae 
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according to the Angiosperm Phylogeny Group classification III system (APG, 2009) B. sinensis 

is the only known species of the genus Bretschneidera. This plant is rare and threatened in 

mainland China (Qiao et al., 2010a; Qiao et al., 2010b; Qiao et al., 2012; Peng et al., 2011; 

Qiao et al., 2010c; He et al., 2005; Wang et al., 2007). An analysis of the nutrients in leaves of 

B. sinensis has shown that the plant is a magnesium accumulator (Wan et al., 2009). In the 

leaf, the concentrations of N, P, K, Ca, Mg, and Fe were found to be 15.17, 1.18, 4.17, 20.75, 

8.16, and 226.5 mg g-1, respectively, and those of Mn, Zn, Cu, Ni, Na, and Al were found to be 

493.8, 30.16, 4.41, 9.38, 123.3, and 70.3 mg kg-1, respectively (Wan et al., 2009).  Moreover, 

B. sinensis has been described as an excellent wild vegetable because the concentration 

levels of nitrite, nitrate, and vitamin C in the juvenile stems and leaves were 0.04−0.08, 

5.91−6.17, and 15.10−217.0 mg kg-1, respectively (Guo et al., 2009). A review of the scientific 

literature shows that 5,5-dimethyl-2-oxazolidinethione can be isolated from B. sinensis leaves 

after myrosinase (MYR) hydrolysis of the plant extract, indicating the presence of 2-

hydroxy-2-methylpropyl glucosinolate (glucoconringiin, GCN). In addition, 3,4-

dihydroxybenzyl glucosinolate and other glucosinolates (GLs) in trace amounts were detected 

by GC-MS (Boufford et al., 1989). In 2010, glucotropaeolin (GTL), hydroxymethylpropyl- and 

hydroxybenzyl GLs were detected by LC-MS in leaves of a single herbarium specimen of B. 

sinensis collected from mainland China in 1919 (Mithen et al., 2010). In addition, in the trunk 

of B. sinensis, 3-epi-betulinic acid, 3,5,7-trihydroxyflavonol, daucosterol, and -sitosterol 

were isolated (Ma et al., 1992). Recently, two heterocyclic compounds, bretschneiderazines 

A and B, and six aromatic diglycosides, bretschneiderosides A−C, benzyl 6′-O--D-

apiofuranosyl-β-D-glucopyranoside, 3,4,5-trimethoxyphenyl--D-apiofuranosyl-(1→6)--D-

glucopyranoside, and canthoside C, were isolated from the stem of the plant (Liu et al., 2010). 

Furthermore, bretschneiderazine A showed moderate activity against the NCI-H446 human 

lung carcinoma cell line (Liu et al., 2010). Shortly after this, the total synthesis of 

bretschneiderazines A and B was described (Liu et al., 2011). A review of the literature 

indicates that B. sinensis contains glucosinolates, sulfur-containing secondary metabolites 

that are present in all plants of the order Brassicale. Their degradation products mainly 

isothiocyanates (ITCs), nitriles, thiocyanates, and oxazolidinethiones are  known to be 

responsible for various biological activities (Fahey et al., 2001). However, all the   minor 

compounds present have not been identified, and, so far, only the leaves of B. sinensis have 

been investigated. Thus, the aim of the present work was to investigate the GL profile in the 
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various plant parts (leaf, branch, trunk, root, and fruit) of B. sinensis. GLs were extracted and 

quantified as desulfoglucosinolates (DS-GLs) by HPLC. In addition, an extract of the fruits was 

analyzed for ITCs and nitriles by GC-MS analysis. Finally, one new GL (5) was isolated in minor 

amount from B. sinensis fruits and characterized by NMR and HRMS. 

 

4.2 Experimental 

 

4.2.1 General 

 

All solvents were ACS grade and used as such, except for CHCl3, which was redistilled. D2O 

was purchased from Eurisotop (Saint-Aubin, France). Formic acid was purchased from BDH 

(Toronto, ON, Canada). HPLC-grade MeOH, Et3N (Reagent grade), and thymol were purchased 

from Fisher Scientific (Whitby, ON, Canada). 4-Hydroxy-3- methoxyphenylacetonitrile was 

purchased from Sigma-Aldrich Chemie (Steinheim, Germany). Potassium phosphate, FeSO4, 

and sodium acetate were purchased from Merck (Darmstadt, Germany). Potassium sulfate 

was purchased from Sigma-Aldrich (Seelze, Germany). HPLC- grade H2O was generated in the 

laboratory through a Nanopure Diamond Ultrapure water system provided by Barnstead 

(Dubuque, IA, USA). Kieselgel 60 F254 analytical TLC aluminum sheets were purchased from 

EM Science (Gibbstown, NJ, USA); compounds were visualized under UV light and by dipping 

the plates into a 95% ethanol solution containing 1% (w/v) thymol and 10% (v/v) H2SO4 

followed by heating. Preparative TLC was performed on precoated 20 cm × 20 cm silica gel 60 

(0.5 mm thickness, Merck) plates. Flash column chromatography was carried out using SPE 

bulk sorbent large-pore C-18 from Alltech (State College, PA, USA). C-18 silica gel cartridges 

(Mega Bond Elut Flash, 10 g sorbent mass, 60 mL volume) were obtained from Varian, Inc. 

(Mississauga, ON, Canada). The UV spectrum was determined on a Cary 60 UV/visible 

spectrophotometer from Agilent Technologies (Santa Clara, CA, USA). The infrared spectrum 

was recorded with a Bruker Optics FTIR microscope using a mercury cadmium telluride 

detector cooled with liquid N2. The sample was dissolved in MeOH and deposited on a gold-

coated glass, and 1000 coadded scans were collected in grazing angle reflectance mode with 

a 40× objective. The baseline was corrected using OPUS software. The atmospheric 

compensation algorithm from the OPUS software was used to correct for carbon dioxide and 
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water vapor. NMR spectra were recorded in D2O at 600 MHz (1H) and 150 MHz (13C) on a 

Bruker Avance III 600 spectrometer equipped with a TXI cryoprobe at the Institut de Chimie 

Molećulaire de Reims (Reims, France); δ values (ppm) are referenced to 3-(trimethylsilyl)-

2,3,2′,3′-tetradeuteropropanoic acid (Sigma-Aldrich, Saint Quentin Fallavier France), and 

coupling constants J are given in Hz. HRESIMS measurements were recorded using an API 

Qstar XL mass spectrometer at the Saskatchewan Structural Science Centre (Saskatoon, 

Canada). 

 

4.2.2 Plant Material 

 

B. sinensis was collected on October 2011 in the People’s Republic of China: (1) at the 

Xishuangbanna Tropical Botanical Garden, Yunnan Province (branch and leaf); (2) in Xiushui 

County, Jiangxi Province (leaf, branch, bark, and root), and (3) in Wuning County, Jiangxi 

Province (leaf, branch, and fruit). The plant parts were dried in the shade for several days. The 

plant was identified by Prof. Han-Ming Zhang at the Department of Pharmacognosy, Second 

Military Medical University, Shanghai, China. A voucher specimen (20080823) is kept at the 

Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai, 

People’s Republic of China. 

 

4.2.3 HPLC analysis and quantification of desulfoglucosinolates 

 

GLs were extracted as previously reported with some modifications (De Nicola et al., 2012). 

Dried samples (∼500 mg) were frozen in liquid N2, ground in a mortar, and immediately 

extracted for 5 min at 80 °C twice with EtOH/H2O (5 mL, 7:3 v/v). The solution was filtered, 

concentrated to dryness, and dissolved in 10 mL of EtOH. Each extract (2 mL) was loaded 

onto a minicolumn filled with 0.6 mL of DEAE-Sephadex A-25 anion-exchange resin (GE 

Healthcare) conditioned with 25 mM acetate buffer (pH 5.6). After washing with 3 mL of 

buffer, 150 μL (0.36 U/mL) of purified sulfatase (Leoni et al., 1998) was loaded onto the 

minicolumn that was left overnight. The DS-GLs were then eluted with 1 mL of ultrapure H2O 

for GL profiling and with a second addition of 1 mL of H2O for quantification purposes. 

Desulfations were performed in duplicate. HPLC analysis of DS-GLs was performed on an 
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Agilent model 1100 equipped with an Inertsil ODS-3 column (250 × 3.0 mm, 5 μm particle 

size), thermostated at 30 °C, and having a diode array as detector. The chromatography was 

performed at a flow rate of 1 mL min−1 eluting with a gradient of H2O (A) and acetonitrile (B) 

following the following program: 1 min 1% B; 22 min linear gradient up to 22% B; 3 min linear 

gradient down to 1% B. DS-GLs were detected by monitoring the absorbance at 229 nm. 

Identification of the peaks was performed on the basis of retention times and UV spectra of 

pure standards available in our laboratory. The amount of GL was quantified by using a 

calibration curve of pure desulfosinigrin solution (range from 0.07 to 1.29 mM) and the 

relative proportionality factors (RPFs) for each individual DS-GL. The published RPFs for DS-

GLs were used, with the exception of compound 5, for which an arbitrary RPF value equal to 

1 was set for quantification (De Nicola et al., 2012; Clarke, 2010).  

 

4.2.4 Isothiocyanate and nitrile production from B. sinensis fruits 

 

Dried fruits (2.3 g) were first dehulled (net weight 1.7 g), then reduced to a fine powder, which 

was extracted by boiling absolute EtOH. The mixture was homogenized for 10 min at 80 °C 

using an Ultra Turrax T-25 and then centrifuged to afford 7.4 mL of clear supernatant. For ITC 

production, the EtOH extract (1 mL) was concentrated to dryness and the residue dissolved 

in 0.1 M potassium phosphate buffer pH 7 (1 mL). ITCs were produced by enzymatic hydrolysis 

of the GL crude extract by the addition of MYR (100 μL, 34 U mL-1) to the buffer solution. After 

15 min at 37 °C, the resulting ITCs were extracted with CH2Cl2 (1 mL) and analyzed by GC-MS 

after drying with K2SO4 (De Nicola et al., 2012). For nitrile production, the EtOH extract (1 mL) 

was concentrated to dryness and the residue dissolved in 25 mM acetate buffer pH 5.6 (1 mL) 

containing 10 mM FeSO4. Nitriles were produced by enzymatic hydrolysis of the GL crude 

extract by the addition of MYR (100 μL, 34 U mL-1) to the buffer solution. After 15 min at 37 

°C, the resulting nitriles were extracted with CH2Cl2 (1 mL) and analyzed by GC−MS aŌer 

drying with K2SO4 (Velasco et al., 2011). 
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4.2.5 GC-MS analysis of isothiocyanates and nitriles 

 

GC-MS analyses of ITCs and nitriles were carried out using a Bruker Scion  SQ Premium 

instrument (Bruker Daltonics), equipped with a 30 m × 0.25 mm capillary column (HP-5MS). 

The flow rate of the carrier gas He was 1 mL min-1. Temperature programming was from 60 

°C (hold 1 min) to 260 °C at 8 °C min-1 (hold 1 min). The temperatures of the injector   and the 

detector were 250 and 280 °C, respectively. All MS runs were conducted in the electron 

impact (EI+) mode at 70 eV. The mass range was from m/z 40 to 650, and chromatograms 

were acquired as total ion currents. The identification of ITCs and nitriles was assigned based 

on retention times (tR) and mass spectra of hydrolysis products obtained by MYR catalyzed 

degradation of pure GLs available in our laboratory and by matching the recorded mass 

spectra with the mass spectrum library of the GC-MS data system. 

 

4.2.6 LC-MS analysis of glucosinolates 

 

LC-MS analysis was performed by injecting a 20 μL aliquot of the solution of crude extract or 

fraction into an Agilent Technologies HP 1100 (New Castle, DE, USA) high-performance liquid 

chromatograph equipped with a quaternary pump, automatic injector, diode-array detector 

(wavelength range 190−600 nm), degasser, and a Hypersil ODS column (5 μm, 4.6 × 200 mm). 

The two mobile phase solvents, MeOH and H2O, were prepared with 0.15% Et3N and 0.18% 

HCO2H, added as ion-pairing reagents. Both solutions were filtered using 0.45 μm nylon 

membranes. The initial mobile phase was 100% HPLC-grade H2O.  At 10 min, the mobile phase 

was switched to a linear gradient of 100% H2O to 100% MeOH over 60 min. After each run, 

the initial mobile phase conditions were set, and the system was allowed to equilibrate. The 

flow rate was kept constant at 1 mL min-1. The column temperature was held at room 

temperature (Montaut et al., 2009). The HPLC was interfaced to an Agilent model 6120 mass 

spectrometer (Toronto, ON, Canada) with a Chemstation LC-MSD B.03.01 data system. The 

electrospray interface was a standard ES source operating with a capillary voltage of 4 kV and 

temperature of 350 °C. The system was operated in the negative and positive ion electrospray 

modes. Nitrogen was used as nebulizing and drying gas at a flow rate of 10 L min-1 (35 psig). 
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The mass spectrometer was programmed to perform full scans between m/z 100 and 1000 

amu. 

 

4.2.7 Extraction and isolation of glucobretschneiderin  

 

Dried fruits (17 g) were frozen in liquid N2, ground in a mortar, and immediately extracted for 

5 min at 80 °C twice with EtOH/H2O (90 mL, 7:3 v/v). The solution was filtered and 

concentrated to dryness (3.9 g). This extract was dissolved in H2O (10 mL) and submitted to 

liquid−liquid extracƟons with EtOAc. The organic layer (EtOAc fraction 512 mg) and the 

aqueous layer (2.7 g) were concentrated to dryness. The aqueous fraction was separated by 

flash column chromatography (C-18 phase, 40 × 80 mm, gradient H2O/MeOH, 100:0 and 0:100 

v/v, 25 mL fractions). Fractions 8 to 15 were combined (335 mg) and submitted to solid-phase 

separation (C-18 cartridge, H2O/MeOH, 100:0 and 0:100 v/v, 3 mL fractions). The combined 

fractions 6 to 25, obtained from the solid-phase separation, were submitted to preparative 

TLC (CHCl3/MeOH/H2O, 65:45:10), yielding glucobretschneiderin (5) (3.4 mg) and 

glucotropaeolin (1) (74.9 mg) (Prestera et al., 1996, Dini et al., 2002; Piacente et al., 2002) 

after filtration.  

 

4.2.7.1 Glucobretschneiderin characterization 

 

White, amorphous powder. 

UV (MeOH) λmax (log ε) 204 (4.2), 229 (3.7), 283 (3.2) nm. 

IR νmax 3373, 2915, 2847, 1658, 1621, 1596, 1511, 1438, 1247, 1130, 1059, 801, 668 cm-1 

1H NMR  (D2O,  600  MHz) δ 7.06 (1H,  d, 3JH-7−H-8 = 8.8  Hz, H-7), 6.92 (2H, m, H-4 and H-

8), 4.73 (1H, m, H-1′), 4.06 (1H, d,3JH-2A−H-2B = 16.1 Hz, H-2A), 4.02 (1H, d, 3JH-2B−H-2A = 

16.1 Hz, H-2B), 3.87 (3H, s, −OCH3), 3.64 (2H, m, H-6′), 3.42 (1H, m, H-4′), 3.33 (2H, m, H-

2′ and H-3′), 3.21 (1H, m, H-5′). 

13C NMR (D2O, 150  MHz)  δ  165.6  (C-1),  149.6  (C-6),  148.1  (C-5),  130.9 (C-3), 123.1 (C-

8), 118.0 (C-4), 115.9 (C-7), 84.2 (C-1′), 82.7 (C-5′), 79.8 (C-3′), 74.6 (C-2′), 71.5 (C-4′), 63.0 

(C-6′), 58.8 (−OCH3), 40.4 (C- 2). 



106 
 

HRESIMS m/z   454.0479 [M]− (calculated for C15H20NO11S2, 454.0483). 

HPLC, tR = 22.2 min 

 

4.3 Results and discussion 

 

The different parts of B. sinensis were harvested from three geographical regions in the 

People’s Republic of China (branch and leaf at the Xishuangbanna Tropical Botanical Garden, 

Yunnan Province; leaf, branch, bark, and root in Xiushui County, Jiangxi Province; and leaf, 

branch, and fruit in Wuning County, Jiangxi Province). The extractions were performed 

according to the EEC standard procedure. Next, each plant extract was analyzed by HPLC to 

detect the DS-GLs resulting from enzyme-catalyzed hydrolytic desulfation. The tR data and UV 

spectra of the products were compared with the values for standards from our DS-GLs library. 

 

 

Chart 4.1 Structures of glucosinolates 1−6 from Bretschneidera sinensis. 

 

Two GLs, benzyl GL (1, GTL, 79% in leaf, 97.5% in branch) and 4-hydroxybenzyl GL (2, 

glucosinalbin, SNB, 21% in leaf, 2.5% in branch) were identified in the leaf and branch 

harvested at the Xishuangbanna Tropical Botanical Garden (Table 4.1). No GL was detected in 

the leaf and root of B. sinensis from Xiushui County. However, GLs 1 (51% in branch, 76.5% in 

bark) and 2 (5% in branch, 1.1% in bark) as well as 2-hydroxy-2-methylpropyl GL (3, 

glucoconringiin, 44% in branch, 22.4% in bark) have been identified in the branch and in the 
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bark of B. sinensis originating from the same county. In addition, no GL was detected in the 

leaf extract of B. sinensis from Wuning County. However, the bark contained the three GLs 1 

(88.3%), 2 (6.3%), and 3 (5.4%), whereas the fruit contained the four GLs 1 (77.7%), 3 (9.3%), 

4-methoxybenzyl GL [4, glucoaubrietin (GAU), 6.8%], and a minor unidentified GL (5, 6.2%). 

The fruit extract was submitted to MYR hydrolysis process, producing ITCs, and to another 

procedure leading to nitriles. GC-MS analysis revealed the presence of benzyl ITC, 5,5-

dimethyl-1,3-oxazolidine-2-thione, and 4-methoxybenzyl ITC, thus confirming the presence 

of 1, 3, and 4 as already identified by HPLC analysis of the DS-GLs. An additional unidentified 

peak displayed a spectrum with fragments compatible with 4-hydroxy-3-methoxybenzyl ITC 

with major ions at m/z 195 [M+]+ and m/z  137 [M+−NCS]+, as reported for Brassica elongata 

Ehrh. (Brassicaceae) by Schroeder et al. (1983). However, no standard spectrum of this ITC was 

available for comparison. The GC-MS analysis of the nitrile-containing extract confirmed the 

presence of 1, 3, and 4 in the fruit extract. Two additional minor peaks, traces of the first one 

at 15.4 min and the second one at 15.9 min, displayed the same mass spectrum with 

fragmentations matching those of 4-hydroxy-3-methoxyphenylacetonitrile present in the 

mass spectrum library of our GC-MS data system. The nitrile-containing fraction was co-

injected with a commercial standard of 4-hydroxy-3-methoxyphenylacetonitrile in the GC-

MS system. The chromatogram showed that the standard had the same  tR  value as the trace 

peak at 15.4 min, indicating that minor amounts of 4-hydroxy-3-methoxybenzyl GL (6) were 

present in the fruit extract. The peak at 15.9 min remained unidentified, but at this stage of 

the investigation it was reasonable to speculate that it could be a regioisomer of 4-hydroxy-

3-methoxyphenylacetonitrile. 

Table 4.1 Glucosinolate content in different organs of B. sinensis from Xishuangbanna 
tropical botanical garden, Wuning County, and Xiushui County. 
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Identification of compound 5 required its isolation, which was performed from 17 g of fruit, 

producing ca. 3.4 mg of 5. Its structure was elucidated using UV, IR, NMR (1H, 13C, HMBC, and 

HMQC), and mass spectrometric data. The UV spectrum indicated that 5 belongs to the 

arylalkyl GL class (Wathelet et al., 2004). The mass spectrum of 5 gave a mass of 454 amu, 

and the molecular formula C15H20NO11S2 was established by HRMS. FTIR data showed 

absorption bands at 3373 (OH), 2915 (CH), 1658 (CN), 1059 (C−O), 801 (sulfate), and 668 (C−S) 

cm−1.  The 1H and multiplicity edited  HSQC NMR  spectra  revealed  the presence of three 

aromatic protons, a pair of nonequivalent protons from an isolated methylene group (δH 

4.06, 4.02 and  δC 40.4), a singlet due to a methoxy group (δH 3.87 and δC 58.8), and signals 

attributable to a thioglucose unit (see Experimental Section). These observations supported 

the hypothesis of 5 being a benzylic GL, for which the aromatic substitution pattern needed 

to be determined. The signal of the anomeric proton (δH 4.73) may be expected to appear as 

a doublet, caused by the coupling of H-1′ with H-2′. However, as observed in the 1H NMR 

spectra of other benzylic GLs (Figure 4.1), such as glucolimnanthin (3-methoxybenzyl GL), 

glucotropaeolin (1), and glucosinalbin (2), the nearly identical chemical shifts of H-2′ and H-3′ 

make the first-order analysis of the H-1′ signal difficult. The similarity of the complex coupling 

patterns in Figure 4.1 is consistent with a β-anomeric configuration (Cox et al., 1984).  

 

 

Figure 4.1 NMR spectrum expansions of the anomeric 1H signal region of (a) compound 5, (b) 
glucolimnanthin, (c) glucotropaeolin (1), and (d) glucosinalbin (2). 
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The signals of the CH2 group at position C-6′ were identified easily in the multiplicity-edited 

HSQC spectrum. The chemical shifts of H-5′, H-4′, and H-3′ were successively deduced from 

the COSY spectrum. The remaining sugar moiety peak in the HSQC spectrum (δH 3.33, δC 74.6) 

led to the assignment of the position C-2′. The chemical shifts of the sugar moiety carbons 

followed the usual decreasing order for C-1′, C-5′, C-3′, C-2′, C-4′, and C-6′ (Montaut et al., 

2009; De Nicola et al., 2012). Strong coupling effects were also visible in the aromatic ring. 

The HSQC spectrum revealed two methine groups for which the 1H NMR chemical shifts were 

almost identical (δH 6.92, H-4 and H-8), a broad one (δC 123.1, C-8) and a narrow one (δC 

118.0, C-4), broadening being related to the large (3J = 8.8 Hz) 1H−1Hcoupling constant 

observed. The third methine group exhibited a 1H-NMR signal that appeared as a broad 

doublet (δH 7.06, H-7), with its coupling partner being therefore H-8. The coupling pattern of 

the aromatic 1H-NMR signals fully supported the occurrence of a trisubstituted aromatic ring 

with H-7/H-8 ortho coupling and H-4/H-8 meta coupling. The HMBC spectrum (Figure 4.2) 

showed the coupling of C-3, C-4, and C-8 with H-2. 

 

Figure 4.2 Selected HMBC correlations for glucobretschneiderin (5). 

The quaternary C-3 was therefore identified as the attachment point of the aromatic ring to 

C-2, immediately surrounded by C-4 and C-8. The C-6/H-8 HMBC correlation was explained by 

the occurrence of a C-6/C-7 bond. The remaining aromatic carbon C-5 must be bound to C-4 

and C-6. The methoxy group was placed at C-6 by means of the HMBC spectrum. Carbon C-5 

was bound to a hydroxy group, as pointed out by its high chemical shift (δC 148.1), thus 

resulting in the structure and NMR spectroscopic assignments proposed for compound 5. 

Therefore, the NMR data reported here suggested that compound 5 is 3-hydroxy-4-

methoxybenzyl GL (glucobretschneiderin;  GBR). 

The major GLs were quantified in the different plant organs of B. sinensis by HPLC (Table 4.1). 

Quantitatively, the fruit was found to be about nine times richer in GLs than the bark and 

about 15−16 Ɵmes richer than the branch and leaf. In comparison with other GL-containing 

plants recently studied, B. sinensis is not particularly rich in total GLs (De Nicola et al., 2012). 
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The number of plant samples investigated was too small to assume whether their geographic 

locations would have an impact on the GL content. Qualitatively, the phenylalanine-derived 

GTL 1 was found in all B. sinensis GL-containing extracts, no matter the organ type and the 

geographical origin. In summary, the first experiments to examine the comprehensive GL 

profile in B. sinensis have been performed using the HPLC method for analysis of DS-GLs and 

GC-MS methods for the analysis of ITCs and nitriles. As a result, benzyl (1), 4-hydroxybenzyl 

(2), 2-hydroxy-2-methylpropyl (3), and 4-methoxybenzyl (4) GLs were identified. Moreover, 

spectroscopic data are reported for 3-hydroxy-4-methoxybenzyl GL (5), a new GL, isolated 

from B. sinensis fruit. GLs 1−5 were also quantified for the first time by HPLC in various plant 

parts. In addition, traces of 4-hydroxy-3-methoxyphenylacetonitrile were detected in the fruit, 

indicating the presence of traces of 4- hydroxy-3-methoxybenzyl GL (6). The present findings 

agree with the identification of 3 by Boufford et al. (1989). The latter group also mentioned 

the detection of 3,4-dihydroxybenzyl DS-GL in B. sinensis leaf; however, this GL was not 

detected in B. sinensis (Boufford et al. (1989). This may be due to genetic and environmental 

factors. The GL profile of B. sinensis is close to that established for Akania bidwillii (R. Hogg) 

Mabb. (Akaniaceae), featuring benzyl, hydroxybenzyl, dihydroxybenzyl, and methoxybenzyl 

GLs (Mithen et al., 2010). In addition, as some cladistic studies have suggested, the profile of 

arylalkyl GLs in B. sinensis is consistent with a close affinity of the plant with Tropaeolum 

species (Gadek et al., 1992; Rodman et al., 1993). However, arylalkyl GLs are also predominant 

in plants of the families Limnanthaceae, Caricaceae, Moringaceae, and Pentadiplandraceae 

and in some members of the family Brassicaceae. Furthermore, 2-hydroxy-2-methylpropyl GL 

(3) is also found in plants of the families Brassicaceae, Limnanthaceae, Moringaceae, 

Resedaceae, and Tropaeolaceae (Fahey et al., 2001). In a recent study, GTL (1) was shown to 

possess a very low peroxyl radical scavenging capacity and a very weak antioxidant capacity 

toward ABTS•+ (Natella et al., 2014). Furthermore, this GL failed to inhibit Cu-catalyzed LDL 

oxidation or to reduce Cu(II)/H2O2- induced bleaching of crocin (Natella et al., 2014) according 

to Aires et al. (2009) GTL (1) has no antimicrobial activity but is likely to have potential 

inhibition against HIV-1 integrase (Ma et al., 2011). However, several studies have shown that 

benzyl ITC possesses potential cancer chemopreventive properties (Hwang and Lee, 2008; Ho 

et al., 2011; Kim et al., 2011), antifungal activity toward plant pathogenic fungi (Manici et al., 

1997), and antimicrobial activity (Aires et al., 2009; Ma et al., 2011; Hwang et al., 2008; Ho et 

al., 2011; Kim et al., 2011; Manici et al., 1997; Radulović et al., 2012). Therefore, it would also 
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be of great interest to test the potential of 5 and its MYR degradation product 3-hydroxy-4-

methoxybenzyl ITC for their possible health benefits. 
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Summary 

 

Drypetes euryodes (Hiern) Hutch., Drypetes gossweileri S. Moore, Drypetes laciniata Hutch. 

(Putranjivaceae), Rinorea subintegrifolia O. Ktze, and Rinorea woermanniana (Büttner) Engl. 

(Violaceae) from Gabon were probed for the presence of glucosinolates (GLs). When present, 

the GLs were identified and quantified by HPLC analysis. 2-Hydroxy-2-methyl GL (1) was the 

major GL in the cork of D. euryodes. Moreover, 4-hydroxybenzyl GL (2) was the major GL in 

the seed of D. gossweileri whereas the bark contained 2 as the minor GL and benzyl GL (3) 

was the major one. In addition, 4-methoxybenzyl GL (4), 3-methoxybenzyl GL (5), and 3 were 

found in the root of R. subintegrifolia. However, no GL was detected in D. laciniata (leaf and 

stem), D. euryodes (leaf and stem), and R. woermanniana (leaf and stem-branch). Our results 

support the hypothesis of the existence of GLs in plants of the Putranjivaceae and Violaceae 

families (order Malpighiales). 
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5.1 Introduction  
              
Drypetes gossweileri S. Moore (Putranjivaceae) is a tree used in Africa for diverse therapeutic 

applications such as the treatment of headache, intercostal pain, kidney pain, and 

bronchopneumonia. It has also been used as vermifuge, aphrodisiac, and against gonorrhea 

(Bouquet, 1969). The stem bark extract was found to have antifungal properties (Ngouana et 

al., 2011) and to display some toxicity towards mice (Tessier and Paris, 1978). However, no 

toxic effect was noticed in albinos Wistar rats (Ngouana et al., 2011). Furthermore, a 

methanolic extract of D. gossweileri stem bark was found to have cytotoxic and DNA-

damaging activities (Ngouela et al., 2003). The ethanolic and crude aqueous extracts of D. 

gossweileri bark were also active against bacteria responsible for urinary tract infections (Ijah 

and Oyebanji, 2003). Dichloromethane and ethyl acetate extracts of D. gossweileri have 

shown effective insecticide activities against Sitophilus zeamais (Motsch.) and 

Rhyzoperthadominica (F.) (Aba Toumnou et al., 2013). The crude stem bark extract of D. 

gossweileri has shown anti-microbial and phytotoxic properties against Lemna minor L. 

(Schmelzer and Gurib-Fakim, 2008). Phytochemical screenings of stem bark extract and 

fractions indicated the presence of alkaloids, phenols, flavonoids, saponins, anthocyanins, 

anthraquinones, sterols, lipids, cardiac glycosides, tannins, phlobatannins, and essential oils 

(Ijah and Oyebanji, 2003; Ngouana et al., 2011; Aba Toumnou et al., 2013). The essential oil 

of D. gossweleiri bark (origin Gabon) did not show good antioxidant or antiradical activities 

but has shown bacteriostatic and bactericidal activities (Agnaniet et al., 2003; Voundi et al., 

2015). This essential oil contained benzyl isothiocyanate (ITC) (56.5, 93.9 and 86.7% in plants 

from Gabon, Central African Republic and Cameroon, respectively) and benzyl cyanide (42.3, 

5.7 and 12.6%, respectively) (Eyele Mvé-Mba et al., 1997; Voundi et al., 2015). Those 

constituents are indicative of the existence of benzyl glucosinolate (GL) (3) in the plant (Figure 

5.1). 

 

Figure 5.1 Glucosinolates identified in D. euryodes, D. gossweileri, and R. subintegrifolia. 
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Another study confirmed the presence of the above major constituents in D. gossweileri bark 

essential oil, together with benzyl alcohol, several benzyl esters, and terpenes (Agnaniet et 

al., 2003). In addition, non-volatiles have been isolated from the stem bark of D. gossweleiri 

(Dupont et al., 1997). In other respects, several other secondary metabolites were isolated 

from the stem bark of D. gossweleiri (Ngouela et al., 2003; Ata et al., 2011). The whole stems 

of Drypetes laciniata Hutch. (Putranjivaceae) were shown to contain several friedelane-type 

ketones, olean-12-en-28-oic acid derivatives, a mixture of sterols, and chikusetsusaponin IVa 

methyl ester (Fannang et al., 2011). In African traditional medicine, Rinorea subintegrifolia O. 

Ktze (Violaceae) is used as a fragrant agent during ancestral cults, as expectorant, against eye 

diseases and to treat heart disease, fever, headache, rheumatism, stomach ache, 

constipation, œdema, and malaria (Agnaniet et al., 2003; Tokuoka, 2008; Lekana-Douki et al., 

2011). However, the methanolic extract of R. subintegrifolia was not active in vitro against 

Plasmodium falciparum Welch (Lekana-Douki et al., 2011). The essential oil obtained from 

roots of Gabonese R. subintegrifolia contained benzyl- and p-methoxybenzyl cyanides, 

benzyl- and p-methoxybenzyl ITCs, benzyl- and p-methoxybenzyl alcohols (Agnaniet et al., 

2003). This investigation led to think that the plant would contain 3 and p-methoxybenzyl GL 

(4) (Figure 5.1). Furthermore, the essential oil of R. subintegrifolia did not have good 

antioxidant or antiradical activities (Agnaniet et al., 2003). No previous phytochemical study 

was reported in the literature for Drypetes euryodes (Hiern) Hutch. (Putranjivaceae) or 

Rinorea woermanniana (Büttner) Engl. (Violaceae). GLs are present in all species of the 

order Brassicales and in some families of the order Malpighiales (Eyele Mvé- Mba et al., 

1997; Agnaniet et al., 2003; Voundi et al., 2015). GL degradation products – mainly ITCs, 

nitriles, thiocyanates and oxazolidinethiones – are known to be responsible for various 

biological activities (Mithen et al., 2000; Brader et al., 2006). The aim of this work was to 

probe for the presence of GLs in D. euryodes, D. gossweileri, D. laciniata, R. subintegrifolia 

and R. woermanniana growing wild in Gabon. GLs were extracted, analyzed as 

desulfoglucosinolates (DS-GLs) and quantified by HPLC. 
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5.2 Experimental 
  

5.2.1 General  
 
HPLC-grade acetonitrile was purchased from Sigma Aldrich Chemie GmbH, (Steinheim, D). 

Potassium phosphate and sodium acetate were purchased from Merck (Darmstadt, 

Germany). Ultrapure water (pH 5.0 ± 0.2) was obtained from a Milli-Q Gradient instrument 

(Millipore SAS, Molsheim, F) equipped with a Millipack filter 0.22 µm (Millipore, SAS, 

Molsheim, F). 

 

5.2.2 Plant Material 
 
The plants were collected in February 2010 in Gabon. The samples were harvested in a forest 

near Andem village (Kougouleu) at least 30 km north of Libreville for D. laciniata, in a forest 

near Libreville (Estuaire) for D. gossweileri, D. euryodes, R. woermanniana and for R. 

subintegrifolia near Ngounié. They were identified by Mr. Raoul Niangadouma from the 

National Herbarium of Gabon by comparison with authenticated plants in the herbarium. The 

information regarding the voucher numbers are reported in Table 5.1. 

  

Table 5.1 Studied plants from Gabon 
 

Plant  Voucher numbers in Gabon  
Drypetes euryodes  JJFE de Wilde 233  
Drypetes gossweileri  AM Louis 3407  
Drypetes laciniata  AM Louis 1849   
Rinorea subintegrifolia  Breteler 14738   
Rinorea woermanniana  Wieringa 4352  

 

 

5.2.3 HPLC analysis and quantification of desulfoglucosinolates 
 
Glucosinolates (GLs) were extracted as previously reported with some modifications (Barillari 

et al., 2005). Plant samples were reduced to a fine powder. Samples of about 500 mg were 

extracted for 5 min at 80 °C in 2 x 5 mL EtOH-H2O (70:30 v/v), using a U-Turrax (IKA T25) 

homogenizer and then centrifuged. Supernatants were combined 4 and each extract (1 mL) 

was loaded onto a mini-column filled with 0.6 mL of DEAE Sephadex A-25 anion-exchange 
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resin (Amersham Biosciences) conditioned with 25 mM acetate buffer (pH 5.6). After washing 

with 3 mL of buffer, 200 μL (0.35 U mL-1) of purified sulfatase (Leoni et al. 1998) was loaded 

onto the mini-column which was left overnight at 30 °C. The desulfoglucosinolates (DS-GLs) 

were then eluted with 3 mL of ultrapure H2O and finally injected into an HPLC. The DS-GLs 

were analyzed on an Agilent 1100 HPLC system equipped with an Inertsil ODS-3 column (250 

x 3.0 mm, 5 µm particle size), thermostated at 30 °C, and using a diode array detector. The 

chromatography was performed at a flow rate of 1 mL min-1 eluting with a gradient of H2O 

(A) and acetonitrile (B) following the program: 1 min 1% B; 22 min linear gradient up to 22% 

B; 3 min linear gradient down to 1% B. DS-GLs were detected monitoring the absorbance at 

229 nm. The amount of GL was quantified by using a calibration curve of pure DS-sinigrin 

solution (range from 0.14 to 1.4 mM) and the RPFs of each individual DS-GLs (Clarke, 2010; 

De Nicola et al., 2012). Identification of the peaks was performed based on retention time 

and UV spectra of spiked DS-GL pure standards available in our laboratory (Leoni et al., 1998). 

 

5.3 Results and discussion 
 

The extraction of various plant parts of D. euryodes, D. gossweileri, D. laciniata, R. subintegrifolia 

and R. woermanniana, the HPLC analysis and quantification of DS-GLs (Barillari et al., 2005; 

Clarke, 2010; De Nicola et al., 2012) were performed as described in the experimental section 

(Figures 5.2–5.5 and Tables 5.1–5.2).  
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Figure 5.2  HPLC chromatogram of desulfoglucosinolates in Drypetes euryodes cork ethanolic 
extract.  1: Desulfo 2-hydroxy-2-methylbutyl glucosinolate (DS glucocleomin) (tR 7.9 min).  
 
 

 

Figure 5.3 HPLC chromatogram of desulfoglucosinolates in Drypetes gossweileri bark 
ethanolic extract.  2: desulfo 4-hydroxybenzyl glucosinolate (DS glucosinalbin) (tR 8.2 min), 3: 
desulfo benzyl glucosinolate (DS glucotropaeolin) (tR 13.5 min).  

1   
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Figure 5.4 HPLC chromatogram of desulfoglucosinolates in Drypetes gossweileri seed 
ethanolic extract.  2: desulfo 4-hydroxybenzyl glucosinolate (DS glucosinalbin) (tR 8.2 min).  

 

 

 

Figure 5.5 HPLC chromatogram of desulfoglucosinolates in Rinorea subintegrifolia root 
ethanolic extract.  3: desulfo benzyl glucosinolate (DS glucotropaeolin) (tR 13.7 min), 4: desulfo 
4-methoxybenzyl glucosinolate (DS glucoaubrietin) (tR 15.4 min), 5: desulfo 3-methoxybenzyl 
glucosinolate (DS glucolimnanthin) (tR 15.9 min). 
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Table 5.2 Distribution of glucosinolates in Drypetes euryodes, Drypetes gossweileri, Dryptetes 
laciniata, Rinorea subintegrifolia, and Rinorea woermanniana.  
 

 

Plant  

 
Glucosinolatesa) (µmol/g dry weight)  

 

          1                       2                        3                       4                      5                   Total  

D. euryodes  
Leaf  
Stem  
Cork  

  
   ND b)  

ND   
3.19 ± 0.49c)  

  
ND   
ND   
ND   

  
ND   
ND   
ND  

  
ND   
ND   
ND  

  
ND   
ND   
ND  

  
ND   
ND   

3.19 ± 0.49  

D. gossweileri  
Bark  
Seed  

  
ND   
ND   

  
2.30 ± 0.12  

171.41 ± 8.93  

  
16.11 ± 0.56  

ND  

  
ND   
ND   

  
ND   
ND   

  
18.41 ± 0.68  

171.41 ± 8.93 

D. laciniata  
Leaf  
Stem  

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

R. subintegrifolia 
Root  

  
ND  

  
ND  

  
2.56 ± 0.52  

  
5.99 ± 1.06  

  
0.20 ± 0.03  

  
8.75 ± 1.61  

R. woermanniana 
Leaf  
Stem and branch  

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

  
ND   
ND   

Legend: 1: 2-Hydroxy-2-methylbutyl glucosinolate (glucocleomin), 2: 4-hydroxybenzyl 
glucosinolate (glucosinalbin), 3: benzyl glucosinolate (DS glucotropaeolin), 4: 4-
methoxybenzyl glucosinolate (DS glucoaubrietin), 5: 3-methoxybenzyl glucosinolate (DS 
glucolimnanthin). 

 

No GL was detected in the leaf and stem of D. laciniata or in the leaf and stem-branch of R. 

woermanniana. This could be paralleled to the fact that these species are odorless (Raponda-

Walker and Sillans, 1995). Additionally, no GL was detected in the leaf and stem of D. euryodes 

whereas 2-hydroxy-2-methylbutyl GL (glucocleomin, 1) was identified for the first time as the 

only GL in the cork of this species (Figure 5.2). 
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5.3.1 Glucosinolates in Drypetes gossweileri 
 

The results of the investigations showed that 4-hydroxybenzyl- (glucosinalbin, 12.5%, 2) 

and benzyl GL (glucotropaeolin, 87.5%, 3) are present in the bark of D. gossweileri. 

Furthermore, 2 was the only GL found in the seeds of D. gossweileri. The unusual high quantity 

of 2 (171.14 μmol/g dry weight) (Table 5.2) in this plant is indicative that D. gossweileri 

represents a sound novel source of this GL. Our investigations confirmed the presence of 3 in 

the cork of D. gossweileri, as surmised by the detection of benzyl ITC in the essential oil 

obtained from the plant bark (Eyele Mvé-Mba et al., 1997; Voundi et al., 2015). However, we 

were able to identify 2 as a minor GL in the bark, whereas no previous study mentioned the 

presence of 4-hydroxybenzyl ITC in D. gossweileri essential oil. This can be explained by the 

fact that this ITC, resulting from the degradation of 2, is unstable in aqueous media, producing 

4-hydroxybenzyl alcohol under release of a thiocyanate ion (Borek and Morra 2005). 

Interestingly, the smell of the bark of D. gossweileri was reported to be very similar to the smell 

of Pentadiplandra brazzeana Baill. root (family Pentadiplandraceae, order Brassicales) and 

described as a particular mixture of horseradish and methyl salicylate (Bouquet, 1969). This 

similarity could be attributed partly to the presence of 3, which is prone to undergo 

degradation into benzyl ITC in both plants. 

 

5.3.2 Glucosinolates in Rinorea subintegrifolia 
 

The HPLC profile of R. subintegrifolia root revealed the presence of three GLs, the major being 

4-methoxybenzyl GL (glucoaubrietin, 68.5%, 4) followed by 3 (29.2%), and 3-methoxybenzyl GL 

(glucolimnanthin, 2.3%, 5). Our investigations confirmed the presence of 3 and 4 in the root 

of R. subintegrifolia hypothesized from the detection of benzyl- and 4-methoxybenzyl ITCs in 

the essential oil of the root by one of us (Agnaniet et al., 2003). We also have been able to 

identify 5 as a minor GL in the root whereas no previous study ever mentioned the presence 

of 3-methoxybenzyl ITC in R. subintegrifolia root essential oil. Our GL profile based on DS-

GL analysis does not fit previous results regarding the composition of the essential oil from 

the root. In fact, the essential oil was constituted of benzyl ITC (1.4–29%), benzyl cyanide 

(64–87.7%), 4-methoxybenzyl ITC (0.6–0.8%), and 4-methoxybenzyl alcohol (0.4–0.5%) 
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(Agnaniet et al., 2003). This apparent discrepancy can be explained by the high instability of 

arylaliphatic ITCs under hydrodistillation conditions (De Nicola et al., 2013). Genetic and 

environmental factors may also account for the observed differences. Interestingly, a 

similar GL profile was observed for the root of R. subintegrifolia and for the root of P. 

brazzeana (De Nicola et al., 2012). Arylaliphatic GLs, biosynthesized from Tyr and Phe, were 

found in D. gossweleiri and R. subintegrifolia whereas the aliphatic GL 1 was identified in D. 

euryodes. The close GL profiles of D. gossweileri and R. integrifolia would indicate a close 

relationship between these two genera. This is supported by a phylogenetic analysis of the 

order Malpighiales which showed that Putranjivaceae and Violaceae are grouped in the same 

clade (Tokuoka and Tobe,  2006). 

 

5.4 Conclusions 
 
The probing of the presence of GLs in plants of the order Malpighiales (D. euryodes, D. 

gossweileri, D. laciniata, R. subintegrifolia and R. woermanniana) growing wild in Gabon 

enabled the identification and quantification of 5 known GLs. More species in the Violaceae 

and Putranjivaceae families and other families of the order Malpighiales should be screened 

in the future for the presence of GLs, to delineate a better overview of the distribution and 

diversity of GLs in these plant families. 
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Summary 

 
 
Glucobrassicin (GBS), a glucosinolate contained in many brassica vegetables, is the precursor 

of chemopreventive compounds such as indole-3-carbinol. Large amounts of GBS would be 

needed to perform studies aimed at elucidating its role in the diet. This study was mainly 

undertaken to evaluate the flower buds of Isatis canescens as a source for GBS purification. 

To investigate the health-promoting potential of this species, glucosinolate, phenol and 

flavonoid content as well as the whole antioxidant capacity were also determined. Flower bud 

samples were collected in four localities around Mount Etna in Sicily, Italy, where I. canescens 

is widespread, as they are locally traditionally eaten. I. canescens flower buds displayed high 

GBS concentrations, up to 60 µmol g−1 dry weight. The purification method consisted of two 

chromatographic steps, which made it possible to obtain GBS with a purity of 92–95%, with a 

yield of 21 g Kg−1. The total glucosinolates, phenols, flavonoids and antioxidant activity were 

considerable, with the southern locality showing the highest concentrations for all the 

phytochemicals. I. canescens flower buds represent a naturally rich source of GBS, at a level 

suitable for its purification. Furthermore, flower bud consumption could provide an intake of 

health-promoting compounds, with possible antioxidant and chemopreventive properties. 
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6.1 Introduction  

 

Glucobrassicin (GBS), or 3-indolylmethyl glucosinolate (GL), a secondary metabolite 

contained in many Brassicaceae plants (Fahey et al., 2001) is the natural precursor of 

recognized anti-cancer and chemopreventive agents, such as indole-3-carbinol and 3,3′-

diindolylmethane. These compounds have been widely investigated and have been shown to 

suppress the proliferation of various cancer cell lines, such as those of breast, colon, prostate 

and endometrium (Weng et al., 2008). Indole-3-carbinol and 3,3′-diindolylmethane are 

generated after hydrolysis of GBS, catalyzed by the plant endogenous myrosinase (𝛽-

thioglucoside glucohydrolase, EC 3.2.1.147; MYR), following tissue disruption (chewing, cutting 

or processing the vegetable) or by enzymatic activity of the intestinal microflora (Jeffery and 

Jarrel, 2001). GBS hydrolysis gives firstly an unstable isothiocyanate (ITC) which is 

spontaneously transformed into indole-3-carbinol (Figure 6.1) and, in an acidic environment, 

the latter generates a series of biologically active oligomeric products including 3,3′-

diindolylmethane (Agerbirk et al., 2009). 

 

-D-glucose + HSO4
-

myrosinase SCN-

Glucobrassicin indolyl-3-methyl isothiocyanate indole-3-carbinol

N

H

NOSO3
-

S
-D-Glc

N

H

N
C

S

N

H

OH

 

 
Figure 6.1 Myrosinase-catalyzed hydrolysis reaction of glucobrassicin. 

 
GBS is also the most abundant GL ingested by the consumption of Brassica vegetables, such as 

Brussels sprouts, broccoli and cauliflower (Steinbrecher and Linseisen, 2009), whose high 

intake has been associated with a reduced risk for developing cancer as shown by several 

epidemiological studies (Verhoeven et al., 1996; Higdon et al., 2007; Herr and Buchler, 2010). 

This effect is mainly attributed to the ability of ITC to induce detoxification enzymes (Keum et 

al., 2005; Valgimigli and Iori, 2005). Recently, a possible synergizing role for indole GLs, as 

GBS, has been suggested (Zhu et al., 2010). For these reasons, the role of GBS in the diet, as 
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well as its potential as a chemopreventive compound, merits in-depth investigation, but 

research is slowed down by the unavailability of the pure compound in suitable amounts, 

since the organic synthesis of GBS is difficult and expensive (Cassel et al., 1998). A previous 

study indicated a northern Italy accession of woad (Isatis tinctoria L.) from Casolavalsenio 

(Ravenna, Italy) as a valuable source for the purification of GBS (Galletti et al., 2006) far better 

than broccoli, which instead contains GBS in small amounts and combined with other indole 

GLs (Ageribirk et al., 1998). However, the purification of GBS from the young leaves of I. 

tinctoria needs a preliminary step to increase its concentration up to a suitable level of at 

least 1% on a dry weight basis, which can be obtained by repeated mechanical wounding or 

by treatment with jasmonic acid (Galletti et al., 2006). Both these treatments are effective, 

but they are time consuming and/or expensive, and the search for naturally rich sources of 

GBS is therefore still of great interest to allow the purification of the compound on the gram-

scale and at low cost. In this perspective, attention has been focused on I. canescens DC., 

which tends to replace I. tinctoria in the south of Italy and in Sicily (Pignatti, 1982; Guarino et 

al. 2000). I. canescens is an herbaceous biennial or, according to some (Strobl, 1885), a 

perennial hemicryptophyte, very similar to I. tinctoria but characterized by densely 

tomentose siliqua (Pignatti, 1982). Some botanists actually consider I. canescens as a sub-

species of I. tinctorial (Greuter and Raus, 1986). An interesting characteristic of I. canescens 

is the traditional local use as food, unlike I. tinctoria, which is not considered as an edible 

green worldwide. In the region of Mount Etna, the largest active volcano in Europe on the 

north-eastern coast of Sicily, Italy, rural people are accustomed, in late winter, to collecting 

the not yet flowered tops of the wild plants of the I. canescens sub-species, which are 

abundant in the countryside, and to eat them after cooking, for their slightly bitter taste 

(Branca, 1991). Since the inflorescences generally represent the organ with maximum GL 

accumulation, after seeds (Brown et al., 2003), the main objective of the present study was 

to determine the GL content in different samples of I. canescens flower buds, collected over 

2 years in the Mount Etna area, to evaluate their potential as a source for GBS purification. 

Because of this traditional consumption of I. canescens flower buds, the total phenol and 

flavonoid content, as well as the antioxidant capacity, tested by the oxygen radical 

absorbance capacity (ORAC) assay, were also determined, to complete their profile as health-

promoting compounds (Manchali et al., 2012). 
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6.2 Experimental  

  

6.2.1 Plant materials and sample preparation 

 

In March-April 2007 and 2008 large samples [about 1 Kg fresh weight (FW)] of flower buds of 

wild populations of I. canescens were collected in four localities around Mount Etna in Sicily, 

Italy, at different altitudes and slopes: Linguaglossa at 550 m a.s.l. on the northern slope, 

Pedara at 700 m a.s.l. on the southern slope, S. Alfio at 870 m a.s.l. on the eastern slope and 

Maletto at 960 m a.s.l. on the western slope (Figure 6.2). Samples were stored at -20 °C, then 

freeze-dried and ground to a fine powder prior to analysis. The botanical identity of the plant 

material was confirmed by a local botanist, Prof. Gian Pietro Giusso del Galdo from the 

Department of Biological, Geological and Environmental Science, University of Catania, Italy, 

and the voucher specimen is deposited at the Botanical garden belonging to the same 

department under the following denomination: I. tinctoria L. ssp. canescens (DC.) Arcang., 

Mascali (CT), 3.IV.2008, Argento, Bagatta, Branca & Galletti, s.n. (CAT). For comparison 

purposes, samples of flower buds from plants of the Casolavalsenio accession of I. tinctoria, 

cultivated at the CRA-CIN experimental site of Budrio (Bologna, Italy), were collected in April 

2008 at the same development stage and stored for analysis as above. 

 

 
Figure 6.2 Map of Isatis canescens sampling localities on the four different slopes of Mount 
Etna, Sicily, Italy: Linguaglossa (northern), Pedara (southern), Maletto (eastern), S. Alfio 
(western). 
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6.2.2 Determination of glucosinolate content 

 

Freeze-dried powder samples of I. canescens and I. tinctoria flower buds were analyzed for 

GL content according to the EU official ISO 9167-1 method (EEC, 1990), which is based on the 

high-performance liquid chromatography (HPLC) analysis of desulfo-GL, with some 

modifications (Wathelet et al., 2004). Each sample (250 mg) was extracted by adding boiling 

70% EtOH (5 mL) with the addition of a standard solution of sinigrin (2-propenyl GL) as internal 

standard (200 μL, 0.038 μmol L−1). The mixture was homogenized for 5 min at 80 °C using a 

U-Turrax T25 (IKA-Werke, Staufen, Germany). The residue after centrifugation was extracted 

again with the same amount of boiling 70% EtOH, and the centrifugation repeated. 

Supernatants were combined, and each extract was treated as already reported (Galletti et 

al., 2006). Desulfo-GLs were analyzed using an Agilent 1100 HPLC system (Agilent 

Technologies, Waldbronn, Germany) equipped with an Inertsil ODS3 column (250 × 3 mm, 5 

μm), thermostated at 30 °C, and having a diode array as detector. Chromatography was 

performed at a flow rate of 1 mL min−1, eluting with a gradient of H2O (A) and CH3CN (B) 

following the program: 1 min 1% B; 22 min linear gradient up to 22% B; 3 min linear gradient 

down to 1% B. Desulfo-GLs were detected by monitoring the absorbance at 229 nm. 

Identification of the peaks was performed based on retention times and UV spectra of the 

desulfo-GL standards available in our laboratory, then GL content was quantified considering 

the amount of the internal standard and the relative proportionality factor values (Clarke, 

2010). 

 

6.2.3 Extraction and purification of glucobrassicin 

 

GBS was isolated from I. canescens flower buds harvested in the locality of S. Alfio (Catania, 

Italy) in 2007, following the procedure developed at CRA-CIN and reported in a previous 

article (Iori et al., 2003), with some modifications. A sample of freeze-dried powder (10 g) was 

added to 300 mL of boiling methanol 70% (v/v) and homogenized by U-Turrax at medium 

speed for 15 min at 75 °C. The mixture was centrifuged at 25 900 × g for 30 min at 4 °C. The 

solid residue was extracted again, homogenized and centrifuged, as before. The two extracts 

were pooled and loaded onto an open preparatory column (20 cm × 2.5 cm i.d.) containing 

DEAE-Sephadex A-25 (GE Healthcare, Freiburg, Germany) conditioned with 25 mmol L−1 
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acetate buffer pH 4.2. After loading, the column was washed sequentially with water, a formic 

acid/2-propanol/water (3/2/5) solution and water again. The column was then eluted 

stepwise with starting 1 × 150 mL of a 0.2 mol L−1 water solution of potassium sulfate, and 

sequentially with 1 × 100 mL and 3 × 150 mL of a 0.8 mol L−1 water solution of the same salt. 

The fractions of collected eluate were then checked by HPLC for GL content, as described 

before, after salt precipitation with ethanol. The fractions containing GBS were dried using a 

rotary evaporator at 40 °C under vacuum. Boiling methanol was then added to the solid, up 

to approximately the initial volume, and the mixture was left at room temperature to allow 

potassium sulfate salt to settle. After filtration, the methanolic extract was analyzed and 

concentrated to a few milliliters. The purity of GBS was further improved by gel filtration 

performed on an XK 16/70 column containing Sephadex LH-20 chromatography media (GE 

Healthcare), connected to an AKTA fast protein liquid chromatograph system (GE Healthcare). 

A 500 μL methanolic sample of GBS was loaded onto the column and elution was per- formed 

using a mobile phase of ethanol 70% (v/v) at a flow rate of 1.0 mL min−1. After the void volume 

(approximately 50 mL) was discarded, 4-mL fractions were collected. Individual fractions were 

analyzed by HPLC and those containing pure GBS were pooled and freeze-dried, after 

removing the organic solvent by rotary evaporation at 40 °C. Purified GBS was characterized 

by 1H and 13C NMR spectroscopy in agreement with previous reports (Iori et al., 2003). The 

purity of GBS was determined by HPLC analysis of the desulfo-derivative, according to ISO 

9176-1 method, as reported above. 

 

6.2.4 Determination of total phenol and flavonoid content 

 

Freeze-dried powder samples (250 mg) of I. canescens flower buds were extracted in 70% 

acetone (5 mL). Total phenolic content was determined according to the Folin-Ciocalteu 

method (Singleton, 1999). The values are expressed as μmol of gallic acid equivalents (GAE) 

g−1 dry weight (DW). The Folin-Ciocalteu reagent was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Flavonoids were determined by the method of Liu et al. (2002) and the amount of 

total flavonoids is expressed as mg of (+)-catechin equivalents (CE) g−1 DW. 
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6.2.5 Oxygen radical absorbance capacity assay 

 

The antioxidant activity of I. canescens extracts was determined by the hydrophilic ORAC 

assay (oxygen radical absorbance capacity) (Ninfali et al., 2009). The assay was carried out 

using a Fluostar Optima plate reader fluorimeter (BMG Labtech, Offenburgh, Germany) 

equipped with a temperature-controlled incubation chamber and an automatic injection 

pump. Incubator temperature was set at 37 °C. The reaction mixture was the following: 200 

μL of 0.096 μmol L−1 fluorescein sodium salt (Sigma-Aldrich) in 0.075 mol L−1 sodium 

phosphate buffer (pH 7.0), and 20 μL of sample or 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic 

acid (Trolox; Sigma-Aldrich) as standard. A calibration curve was made each time with the 

standard Trolox (100, 50, 25 μmol L−1). The blank was 0.075 sodium phosphate buffer (pH 

7.0). The reaction was initiated with 80 μL of 0.33 mol L-1 2,2′-azobis(2-amidinopropane) 

dihydrochloride (Polysciences, Warrington, PA, USA). Fluorescence was read at 485 nm 

excitation and 520 nm emission until complete extinction. ORAC values are expressed as μmol 

Trolox equivalents (TE) g−1 DW. The TEAC assay (Trolox equivalent antioxidant capacity), 

which utilizes the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical 

scavenging method, was also used for a comparison with the ORAC assay, following the 

procedure described by Re et al. (1999), using Trolox as a standard. 

 

6.2.6 Statistical analysis 

 

Results were expressed as the mean ± standard deviation (SD) of three independent assays. 

Data were submitted to analysis of variance by Statgraphics plus 5.1 statistical program 

(StatPoint Inc., Herndon, Virginia) and means were separated by least significance difference 

(LSD) test at P ≤ 0.05 significance level. 

 

6.3 Results and discussion 

 

6.3.1 Glucosinolate content 

 

Figure 6.3 shows a typical HPLC profile obtained during the analysis of GL in I. canescens 

flower buds. In the profile, besides the internal standard (peak 1), two main peaks are present: 
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peak 2, desulfo-GNA, corresponding to gluconapin (3-butenyl GL, GNA) and desulfo-GBS (peak 

3), corresponding to GBS in the crude extract of flower buds.  

 

 
 
Figure 6.3 HPLC chromatogram showing the desulfo-glucosinolate profile of a sample of Isatis 
canescens flower buds. Peak numbers are identified as follows: (1) desulfo-sinigrin (internal 
standard); (2) desulfo-gluconapin; (3) desulfo-glucobrassicin. 
 

Values ranged from about 30 up to 69 μmol g-1 DW for both GNA and GBS, depending on the 

collecting site and year (Table 6.1). In comparison, I. tinctoria flower buds, cultivated at the 

experimental site of CRA-CIN, contained lower levels of GBS (12.4 ± 0.7 μmol g-1 DW) and 38.2 

± μmol g−1 DW of GNA. Unlike I. canescens, I. tinctoria samples also contained epi-progoitrin 

((2S)-2-hydroxy-3-butenyl GL) (13.6 ± 0.4 μmol g−1 DW). 

 

Table 6.1 Gluconapin, glucobrassicin and total glucosinolate content (μmol g−1 DW) of floral buds of Isatis 

canescens sampled in four Mount Etna localities (Sicily, Italy) in 2007 and 2008 

 

Locality 
Gluconapin 

 
2007 2008 

Glucobrassicin 
 

     2007                      2008 

Total glucosinolates 

    2007                         2008 

Linguaglossa 45.4 ± 2.9a 47.2 ± 4.0c 34.1 ± 3.0c 35.3 ± 1.7b 79.5 ± 5.9c 82.5 ± 5.7d 

Pedara 34.6 ± 1.9c 40.8 ± 2.7d 68.7 ± 6.0a 60.9 ± 0.5a 103.3 ± 7.9a 101.6 ± 2.4a 

S. Alfio 33.5 ± 2.1c 55.4 ± 1.3b 68.8 ± 3.3a 35.7 ± 0.3b 102.3 ± 5.2ab 91.2 ± 1.4c 

Maletto 43.4 ± 3.3b 65.1 ± 4.6a 56.1 ± 6.4b 33.1 ± 2.6b 99.5 ± 9.6b 98.2 ± 2.0b 

Mean 39.2 ± 6.1     52.1 ± 10.5 56.9 ± 16.3 41.3 ± 13.1 96.1 ± 11.2 93.4 ± 8.4 

Means in columns with a common letter are not significantly different for P ≤ 0.05 after ANOVA (LSD test). 
Results are expressed as means ± SD for triplicates. 
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To identify the richest source of GBS, samples of I. canescens from the four sites in the Mount 

Etna area were compared over 2 years. In both the investigated years, the Pedara samples 

(700 m a.s.l., southern slope) showed the highest GBS content (over 60 μmol g−1 DW), while 

the Linguaglossa samples (550 m a.s.l., northern slope) showed the lowest values (around 35 

μmol g−1 DW) (Table 6.1). S. Alfio and Maletto samples showed higher values in 2007 than in 

2008, suggesting an effect of the environmental factors, as confirmed by the analysis of 

variance, which highlighted a significant year × locality interaction. Similarly, a significant year 

× locality interaction was found both for GNA and total GLs. In general, a high content of GBS 

corresponded to a lower amount of GNA and vice versa (Table 6.1). A possible explanation of 

this occurrence could be that the biosynthesis of one type of GL down-regulates the synthesis 

of the other type of GL. GBS derives from tryptophan, while GNA derives from methionine. A 

reciprocal negative control of methionine and tryptophan derived GL pathways was already 

demonstrated in Arabidopsis thaliana (Giglolashvili et al., 2009). The total GL values showed 

the same behavior as GBS: in both years the Pedara samples showed the highest GL content 

(over 100 μmol g−1 DW), while the Linguaglossa samples showed the lowest but still 

remarkable amount (around 80 μmol g−1 DW) (Table 6.1). GL synthesis is regulated by genetic 

and environmental factors, but the latter are reported to exert a stronger effect than the 

former on indole GLs (Brown et al., 2002). High temperature, light intensity, water stress and 

long days caused a total and indole GL content increase in several cultivars of Brassica 

oleracea (Charron et al., 2005). Therefore, the highest values found on the southern slope 

(Pedara) of the Mount Etna region could partly depend on the occurrence of favorable 

environmental conditions. The climate in the Mount Etna area varies greatly with the 

variation of altitude and slope. Rainfall is intense, with more than 1000 mm per year. The hilly 

area is dominated by a sub-humid climate (meso-Mediterranean), while in the mountain area 

a humid climate (supra-Mediterranean) prevails (Brullo et al., 1996). Figure 6.4 reports the 

thermo-pluviometric monthly data recorded in 2007 at Pedara, showing the occurrence of 

mild temperatures (8-19 °C) and abundant rainfall during winter, before the collection time. 

The thermo-pluviometric trends of the other sampling localities were similar, and the longer 

sun exposure of Pedara could therefore have played a major role in favoring GL biosynthesis. 
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Figure 6.4 Monthly rainfall, minimum and maximum temperatures recorded at the collection 
site of Pedara, in the Mount Etna area, Italy, in 2007. 
 

From a dietary point of view, since I. canescens flower buds are traditionally consumed in 

Sicily, it is worth comparing their GL content to that of other brassica vegetables. Interestingly, 

the total GL content in I. canescens flower buds is considerably higher than those generally 

reported for other commonly eaten brassica (Table 6.2). Looking at the GBS maximum value 

of I. canescens flower buds, it was at least 3.5-fold higher than those of the other brassica 

vegetables (Table 6.2). 

 

 

 

 

 

 

 

 

 
 

 
 

Table 6.2 Total glucosinolate range and glucobrassicin maximum content (μmol g-1 DW) of 
Isatis canescens flower buds in comparison with other brassica vegetables 
Species Total glucosinolate 

range 
Glucobrassicin 

maximum content 
Reference 

Isatis canescens 80 – 103 69 – 
Broccoli 19 – 25 8 Charron et al. (2005) 
Brussels sprouts 15 – 36 19 Charron et al. (2005) 
Turnip greens 8 – 74 1 Padilla et al. (2007) 
Cauliflower 24 – 33a 15a Volden et al. (2009) 
Cabbage 9 – 41 3 Kushad et al. (1999) 
a Assuming 10% dry weight (DW). 
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Notably, the GNA mean value of I. canescens samples is also higher than that of the most 

commonly consumed brassica cultivars (0-7 μmol g−1 DW) (Kushad et al., 1999), whereas 

some accessions of turnip greens showed similar GNA levels (Padilla et al., 2007). 

The health promoting potential of I. canescens depends on GBS hydrolysis by MYR, with 

formation of the unstable 3-indolylmethyl ITC and its spontaneous conversion into indole-3-

carbinol (Figure 6.1), one of the most studied compounds for its chemopreventive and anti-

cancer properties (Weng et al., 2008). The presence of MYR activity in I. canescens samples 

was therefore demonstrated by means of a gas chromatography assay which revealed the 

presence of 3-butenyl ITC derived from GNA (data not shown). 

 

6.3.2 Purification of glucobrassicin 

 

The remarkable GBS values found in I. canescens flower buds demonstrated that they 

represent a naturally rich source of this GL and prompted us to set up its purification which was 

achieved by means of two chromatographic steps, the first on Sephadex DEAE-A25 and the 

second on Sephadex LH-20. The presence of GNA in the I. canescens samples did not represent 

a drawback for the purification of GBS. In fact, GNA and GBS showed a different affinity for the 

Sephadex DEAE-A25 resin, GBS being more adsorbed because of the indole structure of its 

aglycon side chain (Agerbirk et al., 1998). Indeed, the method of elution by fractions made it 

possible to isolate GBS by using a solution of potassium sulfate with two different concentrations. 

The elution carried out with 0.2 mol L−1 of the salt made it possible to recover GNA, whereas GBS 

was selectively isolated by using 0.8 mol L−1 of potassium sulfate solution (Table 6.3).  

 

 

 

 

 

Table 6.3 Distribution of gluconapin (GNA) and glucobrassicin (GBS) among 
the anion exchange chromatographic fractions 
 
Fraction 

K2SO4 eluent 
(mol L-1) 

Volume (mL) GNA 
(μmol) 

GBS 
(μmol) 

I 0.2 150 290.7 6.3 

II 0.8 100 4 53.6 

III 0.8 150 – 280.9 

IV 0.8 150 – 227.5 

V 0.8 150 – 29.1 
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Fraction II was discarded because of the presence of GNA, whereas fractions III and IV, containing 

about 85% of GBS, were pooled and further processed. Fraction V was discarded because of the 

negligible amount of GBS content. GBS collected after anion exchange was refined with gel 

filtration by exploiting the dual hydrophilic and lipophilic nature of the Sephadex LH-20 media. 

Finally, the purity of freeze-dried GBS (potassium salt) (212 mg) estimated by HPLC analysis of 

the desulfo-derivative was 99% (peak purity HPLC) and 92 – 95% on weight basis, for a yield of 

about 21 g Kg−1 on the starting vegetal material. Based on this yield, a gram-scale production of 

GBS is thus achievable simply starting from a larger quantity of I. canescens flower buds. 

 
6.3.3 Total phenol, flavonoid content and antioxidant activity 

 

To better define the health-promoting profile of I. canescens flower buds, the total phenol 

and flavonoid content as well as the antioxidant activity were evaluated. 

As for GLs, a significant year × locality interaction was found both for phenol and flavonoid 

content. Total phenol content mean values ranged from 22 up to 27 mg GAE g−1 DW, while 

flavonoid content ranged from5 up to 8 mg CE g−1 DW (Table 6.4). Significant differences were 

recorded for both classes of compounds among localities, especially in 2007, even if the range 

of variation was not as marked as observed for GLs. In general, the samples collected at 

Pedara tended to display the highest values. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4 Total phenol and flavonoid content of floral buds of Isatis canescens 
sampled in four Mount Etna localities (Sicily, Italy) in 2007 and 2008. 

 
 
 
Locality 

Total phenols  

(mg GAE g−1 DW) 
    

2007 2008 

Flavonoids 

(mg CE g−1 DW) 

2007 2008 

Linguaglossa  

Pedara 
S. Alfio  
Maletto  
Mean 

24.1 ± 2.3c 26.7 ± 1.5a 

24.7 ± 2.2b 26.4 ± 0.8a 

26.5 ± 2.2a 25.1 ± 1.2a 

23.3 ± 1.9d      22.3 ± 0.1b 
24.7 ± 1.4 25.1 ± 2.0 

7.0 ± 0.2a 

7.0 ± 0.1a 

6.5 ± 0.1b 

5.3 ± 0.1c 
6.5 ± 0.8 

7.0 ± 0.1b 

8.3 ± 0.3a 

7.1 ± 0.2b 

7.2 ± 0.0b 
7.4 ± 0.6 

Results are expressed as means ± SD for triplicates. 
Means in columns with common letters are not significantly differ for P ≤ 0.05 after 
ANOVA (LSD test). 
CE, catechin equivalents; DW, dry weight; GAE, gallic acid equivalents. 
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The total phenol values found for flower buds are two- to six-fold higher than those generally 

reported for other common edible brassica vegetables (Heimler et al., 2006; Volden et al., 

2009). Values similar to our data were reported for broccoli, cabbage and cauliflower (Wu et 

al., 2004; Sultana et al., 2008). The large phenol quantity measured was explained in terms of 

high solar radiation received by the plants grown in the mountain regions of Pakistan (Sultana 

et al., 2008) Thus, the considerable phenol content found in I. canescens flower buds could 

be related to the strong solar radiation occurring on the Mount Etna slopes. Similarly to 

phenol, the flavonoid content, ranging from 5.3 up to 8.3 mg CE g−1 DW (Table 6.4), was also 

found to be similar to the maximum values reported for broccoli or red cabbage, which were 

6.7 and 9.7 mg CE g-1 DW, respectively (Heimler et al., 2006; Chun et al., 2004), or even greater 

than those recorded for other common brassica vegetables (Ninfali et al., 2005). About the 

antioxidant activity measured by the ORAC assay, the mean values were stable over the years, 

thus only the mean values over the years were reported (Table 6.5). Statistically significant 

differences were only highlighted among the localities, with Pedara samples showing the 

maximum value (326 μmol TE g−1 DW), as previously observed for total GLs and GBS. The 

mean value of about 300 μmol TE g−1 DW found in I. canescens (Table 6.5) is among the 

highest reported for other brassica vegetables, whose ORAC values range from 42 up to 318 

μmol TE g−1 DW (Volden et al., 2009; Wu et al., 2004; Ninfali et al., 2005; Kurlich et al., 2002). 

In addition, the ORAC/phenol ratio was calculated since it is considered a valuable parameter 

to describe the antioxidant quality of the phenolic compounds and the synergy among them 

(Ninfali et al., 2009). The ORAC/phenol ratio in our samples ranged from 10 up to 13 (Table 

6.5), being either higher than those reported for other common brassica vegetables (under 

10), and in the highest slot of many fruit and vegetable values (from 5 up to 15) (Wu et al., 

2004). To obtain a better insight of the antioxidant quality, the ABTS radical scavenging 

method was considered for standardization. By this way the relative differences found among 

the antioxidant capacity values of floral buds in the four Mount Etna localities were 

maintained when expressed in TEAC units (Table 6.5). 
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6.4 Conclusion 

 

The results of this study highlighted that I. canescens flower buds represent a remarkable 

source for GBS, whose purification can be easily performed at gram scale following the 

chromatographic procedure described. The availability of this pure compound at low cost 

could allow studies and clinical trials to be performed on this molecule, which is normally 

present in brassica vegetables as part of the human diet, and on its derivatives, elucidating 

their chemopreventive role. As I. canescens flower buds could also represent a rich source of 

dietary GLs and antioxidants, with possible health-promoting effects, mild cooking methods, 

like steaming, able to preserve the actual bioavailability of these heat-labile compounds, 

should be evaluated in future studies. Since the availability of the fresh flower buds is 

restricted to a relatively short period of the year, dried standardized extracts could be 

produced and proposed as dietary supplements, once the positive role of these 

phytochemicals, particularly GBS, for human health had been clearly established. Breeding 

and agronomic research would be needed to explore the variability among I. canescens 

populations, to reproduce genotypes with stable characters and to establish appropriate 

cultivation protocols. The ruderal habit of I. canescens and its invasive behavior suggest the 

possibility of easily cultivating it even in marginal areas under mild climates. 

Table 6.5 Antioxidant activity reported as ORAC, ORAC/phenols ratio and 

TEAC of floral buds of Isatis canescens sampled in four Mount Etna localities 

(Sicily, Italy) in 2007 and 2008 

 
Locality 

ORAC 

(μmol TE g−1 DW) 

ORAC/ 
phenols 

TEAC 

(μmol TE g−1 DW) 

Linguaglossa 300 ± 25ab 11.9 ± 0.6ab 562 ± 44ab 

Pedara 326 ± 4a 12.8 ± 0.8a 610 ± 47a 

S. Alfio 276 ± 7b 10.8 ± 0.7b 516 ± 32b 

Maletto 282 ± 4b 12.4 ± 0.1a 528 ± 43b 
Results are expressed as means ± SD (triplicates × 2 years). 
Means in columns with common letters are not significantly differ for P ≤ 0.05 
after ANOVA (LSD test). 
DW, dry weight; ORAC, oxygen radical absorbance capacity; TE, Trolox equivalents; 
TEAC, Trolox equivalent antioxidant capacity. 
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Summary 

 
Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients 

(vitamins and minerals) and health promoting phytochemicals (phenolic compounds, 

glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to 

possess anti-carcinogenic and antioxidant effects and have attracted great interest from both 

toxicological and pharmacological points of view, as they are able to induce phase 2 

detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds 

possess antioxidant properties and may exert a preventative effect regarding the 

development of chronic degenerative diseases. The aim of this work was to assess the profile 

and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different 

MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) 

fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization 

of the different plant organs in terms of profile of phenolic compounds and glucosinolates. 

Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the 

identification and/or determination of phenolics and glucosinolates in M. oleifera. 
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7.1 Introduction          

 
Moringa oleifera Lam. (synonym: M. ptreygosperma Gaertn.) (Moringaceae) is a tree native 

of India, Pakistan, Bangladesh and Afghanistan, widely distributed in tropical and sub-tropical 

areas of the world (Manguro et al., 2007; Kashiwada et al., 2012). Moringa, the sole genus in 

the family Moringaceae, consists of 13 species, among which M. oleifera is the best known 

and most widely distributed and naturalized. M. oleifera, also called ‘Miracle Vegetable’, is a 

multiuse plant used for human nutrition as functional food, animal feeding and for medicinal 

purposes (Verma et al., 1976). In fact, a wide variety of nutritional and medicinal virtues have 

been attributed to its roots, bark, leaves, flowers, fruits and seeds. All these parts are used in 

folk medicine for the treatment of various ailments including the treatment of inflammation 

and infectious diseases along with cardiovascular, gastrointestinal, hematological and 

hepatorenal disorders. In addition, extracts of various Moringa tissues have been used for 

anti-bacterial and anti-cancer activity (M. oleifera seeds) (Oluduro et al., 2012), anti-

inflammatory and hepatoprotective agents (M. oleifera fruits and bark) (Cheenpracha et al., 

2010), while leaf extracts have been shown to regulate thyroids status and cholesterol levels 

in rats (Anwar et al., 2004). Recently, this plant has attracted great interest as an important 

food commodity because of its high nutritional value. Leaves, flowers and green pods are 

used traditionally as vegetable, whereas the seed can be consumed fresh, fried, roasted or 

ground to meal. The seed is also the source of a high quality edible oil known as moringa oil, 

or ben oil, that can be used in several applications such as cooking, cosmetics and as a 

lubricant. M. oleifera is an excellent dietary source of micronutrients, vitamins and minerals, 

and health-promoting phytochemicals such as glucosinolates (GLs) and phenolic compounds 

(Mbkay, 2012). The stem bark has also been reported to contain alkaloids (moringinine and 

moringine) (Sreelatha et al., 2009). In particular, this plant genus contains unusual sugar-

substituted hydroxy-aromatic GLs (Bennett et al., 2003; Faizi et al., 1997). M. oleifera contains 

several uncommon members of the GLs family with peculiar characteristics given by the 

presence in their structure of a second saccharide residue in the aglycon side chain 

(Smiechowska et al., 2010; Jahangir et al., 2009; Brunelli et al., 2010). The predominant GL in 

this species is 4-(α-L-rhamnopyranosiloxy)benzyl GL, known as glucomoringin (GMG). Due to 

its atypical structure, this compound could display biological properties distinctly different 

from those of other GLs (Brunelli et al., 2010). Since GLs and their derivatives possess different 

900 
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relevant biological activities, their identification and quantification in plant tissues have 

become of great importance (Kusznierewicz et al., 2013). Several published indirect methods 

are based on the determination of their enzymatic volatile breakdown products by GC-MS 

analysis, but unfortunately some GL breakdowns products are unstable in the conditions 

applied, and they cannot be correctly detected. Therefore, the current tendency is to 

determine intact GLs or desulfoglucosinolates by more accurate and robust LC-MS methods 

(Bennett et al., 2004). LC coupled with tandem mass spectrometry (LC-MS/MS) is an 

important tool that can be used for both qualitative and quantitative analysis, especially in 

the case of the characterization of GLs composition in less investigated species (Kusznierewicz 

et al., 2013; Bennett et al., 2004; Maldini et al., 2012). 

Phenolics are a large class of secondary metabolites widely distributed in plant kingdom. 

Previous phytochemical studies on different tissues of M. oleifera reported the highest level 

of phenolic compounds in leaves extracts, mainly flavonoids and caffeic acid derivatives 

(Bennett et al., 2003). Crypto-chlorogenic acid, caffeoylquinic acids (5- and 3-isomers), 

isoquercetin and astragalin were detected to be the major compounds isolated and identified 

in the leaves of M. oleifera (Bennett et al., 2003; Vongsak et al., 2013; Manguro and Lemmen, 

2007; Kashiwada et al., 2012). Concerning flavonoids, their profiles were found more complex 

and characterized by flavonol glycosides (kaempferol 3-O-rutinoside, kaempferol 3-O-

glucoside, quercetin 3-O-glucoside and rutin). Amaglo et al. (2010) reported leaves as the 

tissue with the highest and most complex flavonoid contents, while in roots or seeds any 

phenolic compounds are detected. Phenolics and flavonoids are active antioxidant 

components in the leaves of M. oleifera, responsible also for anti-inflammatory, 

atherosclerotic and anti-diabetics activities (Sreelatha et al., 2009; Verma et al., 2009; Ndong 

et al., 2007; Chumark et al., 2008). The aim of the present study was to determine the profile 

of GLs and phenolics, as well as to assess the GL content in pulp seed, seed coat, leaves and 

roots of M. oleifera 12-day old seedlings. Furthermore, we investigated whether ESI-MS 

coupled to statistical analysis (principal components analysis (PCA)) could be used as a simple 

and reliable technique to distinguish extracts from different tissues. Direct infusion ESI-MS 

offers several advantages since it is a very fast, versatile, reproducible and sensitive technique 

(Fenn et al. 1989) which requires little or no sample preparation and provides almost 

instantaneous information. On the other hand, PCA is a chemometric approach that combines 

mathematical, statistical and computing methods which allows obtaining the maximum 
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information from chemical data analyses (Hopke, 2003). First, based on ESI-MS and ESI-

MS/MS results, the profiles of GLs, along with proanthocyanidins and phenolic compounds, 

in M. oleifera tissues were described. Second, the occurrence and level of GLs were 

determined in pulp and coat of dried seeds, as well as in roots and leaves of 12-day-old 

seedlings, by LC-MS/MS analysis and a rapid and sensitive LC-MS/MS (MRM) method. 

 

7.2 Experimental  

  

7.2.1 Materials 

 

Solvents used for extraction, HPLC grade methanol, acetonitrile and formic acid were from 

Sigma-Aldrich Chemical Company (St Louis, MO). HPLC grade water (18 mΩ) was prepared by 

using a Millipore (Bedford, MA, USA) Milli-Q purification system. Glucoraphanin (GRA) 

potassium salt, glucoiberin (GIB) potassium salt, glucotropaeolin (GTL) potassium salt, 

glucosinalbin (SNB) potassium salt, glucobarbarin (GBB) potassium salt and glucoraphenin 

(GRE) potassium salt were purchased from PhytoLab GmbH & Co. KG (Vestenbergsgreuth, 

Germany). 

 

Glucomoringin purification.  

GMG was isolated from M. oleifera Lam. seed cake powder as described in detail at Chapter 

ten. GMG was unambiguously characterized by 1H- and 13C-NMR spectrometry, and the purity 

was assessed by HPLC analysis of the desulfo-derivative according to the ISO 9167-1 method 

(EEC, 1990) yielding GMG with a purity of 99% based on peak area value and 95% on a weight 

basis. 

 

7.2.2 Plant material 

 

M. oleifera Lam. seeds were kindly provided from Moringa society of Egypt. A part of dried 

seeds was separated in coat and pulp, whereas another part was kept 2 days in water for 

imbibition and then germinated in field for 12 days. Afterwards, young leaves and roots of 12-

day-old seedlings were rapidly and gently collected, immediately frozen in liquid nitrogen and 

then stored at 80 °C prior analysis. 
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7.2.3 Extraction and sample preparation 

 

Each sample of M. oleifera (pulp seed, seed coat, leaves and roots) was ground to a fine 

powder and extracted with methanol:water (70:30 v/v; sample to solvent ratio 1:25 w/v) at 

70 °C for 30 min under vortex mixing to facilitate the extraction. The samples were 

successively centrifuged (4000 rpm, 30 min, 4 °C), the supernatants were collected, and the 

solvent was completely removed using a rotary evaporator under vacuum at 40 °C. The dried 

samples were dissolved in ultrapure water with the same volume of extraction and filtered 

through 0.20-μm syringe PVDF filters (Whatmann International Ltd., UK). 

 

7.2.4 ESI-MS and ESI-MS/MS analyses 

 

Full scan ESI-MS and collision-induced dissociation (CID) ESI-MS/MS analyses of samples were 

performed on an ABSciex API2000 (Foster City, CA, USA) spectrometer. The analytical 

parameters were optimized by infusing a standard solution of GMG (1 μg mL-1 in methanol 

50%) into the source at a flow rate of 10 μl min-1. The optimized parameters were declustering 

potential 40 eV, focusing potential 400 eV and entrance potential 10 eV. Data were acquired 

in the negative ion MS and MS/MS modes. Full scan ESI-MS, MS/MS and MS3 analyses of 

standards and samples were performed on an ABSciex API32000 Q-Trap (Foster City, CA, USA) 

spectrometer. The analytical parameters were optimized by infusing a standard solution of 

GMG (1 μg mL-1 in methanol 50%) into the source at a flow rate of 10 μl min-1. The optimized 

parameters were declustering potential 73.6 eV, entrance potential 4 eV, collision energy 39 

eV and collision cell exit potential 5 eV. Data were acquired in the negative ion MS and MS/MS 

modes. 

 

7.2.5 HPLC-ESI-MS and HPLC-ESI-MS/MS analyses 

 

Qualitative on-line HPLC-ESI-MS/MS analysis of extracts was performed using an HPLC system 

interfaced to an Applied Biosystems (Foster City, CA, USA) API3200 Q-Trap instrument in ion 

trap mode. LC analyses were conducted using a system equipped with a 200-binary pump 

(Perkin-Elmer, USA). Samples were injected (10 μl) into a Luna C18 column (Phenomenex, 

USA) (150 × 2.1 mm i.d., 5 μm d) and eluted at a flow rate of 0.3 mL min-1.  Mobile phase A 
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was H2O containing 0.1% formic acid, while mobile phase B was acetonitrile containing 0.1% 

formic acid. Elution was carried out using a gradient commencing at 100% A (gradient:1) and 

changing to 20:80 (A:B) in 55 min (gradient: 4), then from 20:80 (A:B) to 100%:B in 5 min 

(gradient: 1). The column was kept at 25 °C, using a Peltier Column Oven Series 200 (Perkin 

Elmer). The flow from the chromatograph was injected directly into the ESI source. Qualitative 

analysis of the compounds was performed using IDA (information dependent acquisition). 

The IDA method created included an IDA criterion (specify the charge state, mass range), 

enhanced MS scan, enhanced resolution, enhanced product ion scan or MS/MS scan. The 

source temperature was held at 450 °C, and MS parameters were those optimized for the ESI-

MS and ESI-MS/MS analyses with ion spray voltage at 4500. MS data were acquired using the 

software provided by the manufacturer (Analyst software 1.5.1) and extracted ion 

fragmentograms (XIC) were elaborated to identify GLs from their deprotonated molecular 

ions and retention time. Quantitative on-line HPLC-ESI-MS/MS analyses were performed 

using the same LC-ESI-MS/MS equipment, but the mass spectrometer worked with triple 

quadrupole analyzer in Multiple Reaction Monitoring (MRM) mode. Elution was carried out 

using a gradient commencing at 98% A (gradient:1) and changing to 88:12 (A:B) in 5 min 

(gradient: 4), then from 88:12 (A:B) to 75:25 (A:B) in 21 min (gradient: 1). The API 3200 ES 

source was operated in negative ion mode and was tuned by infusing solutions of standards 

(1 μg μl-1 in methanol 50%) into the source at a flow rate of 10 μl min-1. The optimized 

parameters, fragmentation reactions selected for each compound, dwell time and retention 

times were reported in Table 7.1. The voltage applied was -4500.  Data acquisition and 

processing were performed using Analyst software 1.5.1. 

 

7.2.6 Principal component analysis procedure 

 

A m × n matrix (where m is the number of samples, and n is the number of variables) was 

used in PCA. For the flow injection ESI-MS matrix construction, the mass spectra were 

expressed as the intensities of the individual [M-H]-1 ions (variables) of the most intense ions 

in the fingerprint of each sample. The data were autoscaled and PCA was run. Thus, 

quantitative data of each chemical marker were used to define a data set with 12 observations 

and 545 variables. The resulting metabolomics data were processed using SIMCA P+ software 

12.0 (Umetrix AB, Umea, Sweden). 
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7.2.7 Calibration and quantification of glucosinolates 

 

To prepare the calibration plot, a sample (1 mg) of each standard was weighted accurately 

into a 1-mL volumetric flask, dissolved in methanol 50% (v/v) and the volume made up to the 

mark with methanol. The resulting stock solution was diluted with methanol in order to obtain 

reference solutions containing 0.5, 1, 5, 10, 25, 50, 100 and 200 μg mL-1 of external standards. 

A suitable amount of Internal Standard (IS), namely GBB for GMG, SNB and GTL 

determination, and GRE for GRA and GIB analysis, was added to each reference solution to 

give a final concentration of 20 μg mL-1 and 5 μg mL-1 for GBB and GRE, respectively. 

Calibration curves were constructed by analyzing reference/IS solutions in triplicate at each 

concentration level. The ratios of the peak areas of the external standard to those of the IS 

were calculated and plotted against the corresponding standard concentration using 

weighted linear regression to generate standard curves. All quantitative data were elaborated 

with the aid of Analyst software (Applied Biosystems). 

 

7.2.8 Method validation 

 

LC-MS/MS method was validated according to the European Medicines Agency (EMEA) 

guidelines relating to the validation of analytical methods. Precision was evaluated at three 

concentration levels for each compound through triplicate intra-day assays and inter-day 

assays over 3 days; the intra-day precision (coefficient of variance) was within 8%, while the 

inter-day was within 9% for all analytes (Table 7.2). Specificity was defined as the non-

interference by other analytes detected in the region of interest. About the LC-MS/MS 

method, which was developed on the basis of the characteristic fragmentation of detected 

GLs, no other peaks interfered with the analytes in the MS/MS detection mode. Accuracy of 

the analytical procedure was evaluated using the recovery test. Pulp seed samples were 

added with three different amounts of the eight standards, and recoveries were calculated 

from the difference between the number of analytes measured before and after standards 

addition. The mean recoveries for each standard and each concentration level are reported 

in Table 7.2. The calibration graphs, obtained by plotting the area ratio between the external 

and internal standards against the known concentration of external standards, were linear in 

the range used for the analysis of all GLs. The sensitivity of the method was determined with 
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respect to limit of quantification (LOD) and limit of detection (LOQ). The LOQ (equivalent to 

sensitivity of the quantitative method), defined as the lowest concentration of analyte that 

could be quantified with acceptable accuracy and precision, was estimated by injecting a 

series of increasingly dilute standard solutions until the signal-to-noise ratio was reduced to 

10. The LOD (equivalent to sensitivity of the qualitative method), defined as the lowest 

concentration of analyte that could be detected, was estimated by injecting a series of 

increasingly dilute standard solutions until the signal-to-noise ratio was reduced to 2. 

Linearity (calibration curves equations and regression), together with LOQ and LOD for each 

of the five compounds analyzed, is reported in Table 7.3. 

 

7.3 Results 

 

Direct infusion electrospray ionization mass spectrometry in the negative ion mode was initially 

used to obtain the fingerprints of the extracts of the following different tissues: seed pulp and 

coat, and leaves and root of 12-day-old seedlings of M. oleifera. The full spectrum of each sample 

was recorded in triplicate with the aim to rapidly provide a visual and statistical evaluation of 

similarities and differences of secondary metabolites among tissues. The ESI-MS fingerprints 

of samples were very characteristic, thus showing distinctive sets of polar markers for each 

different tissue. Considering the large amount of data set obtained by negative ion ESI-MS 

fingerprints of extracts under investigation, a chemometric approach was performed using PCA, 

to characterize the different plant’s tissue and to evaluate differences in terms of metabolites. 

The PCA, using SIMCA-P+ Software, was applied to the matrix as described in the experimental 

section, resulting in the intensity of each compared signal which shows the quantitative level 

of each marker compound in each of the overall 12 samples (4 tissues × 3 replicates). PCA is 

an unsupervised method and was used to reduce the dataset to obtain the maximum 

variation between the samples. Pareto scaling was chosen for scaling data. Figure 7.1 shows 

the 2D projection plot of the 12 M. oleifera samples. The first component (R1X) explained the 

57% of variance whilst, and the second (R2X) the 16%. Principal component’s choice was done based 

on the fitting (R2X) and predictive (Q2X) values for the PCA model. In our case, the second 

component gave the closest value to 1 for both. Variance was evaluated by significance level for 

Hotelling’s T2. The 2D diagram showed confined cluster areas, representing each a link to a 

different part of the plant extracted; in fact, we can observe separated regions related to 
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samples of pulp seed, seed coat, root and leaves. To evaluate the influence of each variable on 

the classification of the samples, the loading plot obtained for the same dataset was then 

studied, and it is reported in Figure 7.2. For each region of the 2D space, the loading plot shows 

the m/z values corresponding to the peak observed in the specific samples. The variables that 

contribute most to the differentiation of the samples and to their location in a specific area of 

the space can be highlighted. Interesting, values like m/z 288.9 and m/z 577.0 are localized in 

the area corresponding to the seed coat in the score plot, whereas values like m/z 570, m/z 

612, m/z 407.9 and m/z 912, are confined in the area corresponding to pulp seed, and leaves 

and roots of 12-day-old seedlings in the score plot. 

 

 

Figure 7.1 Principal component analysis score plot. 
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Figure 7.2 Principal component analysis loading plot. 

 

As evidenced by PCA, the ESI-MS fingerprint obtained for seed coat extract showed the [M-

H]- ions at m/z values of 289, 577 and 865 corresponding at catechin/epicatechin and dimeric 

and trimeric procyanidins, respectively (Figure 7.3A). We confirmed the presence of these 

compounds by opportune ESI-MS/MS experiments (data not shown). To our knowledge, this is 

the first study showing the profiling of proanthocyanidins in seed of M. oleifera; in fact, previous 

published works reported just the total proanthocyanidin content (Compaoré et al., 2011). The 

full negative mass spectrum recorded for seed pulp extract (Figure 7.3B) revealed a major 

intense ion peak at m/z of 570, relative to GMG together with 3-hydroxy-4-(α-L-

rhamnopyranosyloxy)benzyl GL (m/z 586) and three GLs with close structure similarity to GMG, 

except for the presence of an acetyl group in the compound located at C-2′, C-3′ and C-4′ on the 

α-L-rhamnopyranosyl unit (m/z 612). The identity of the revealed GLs was verified by the 

comparison of the MS2 spectra recorded for each compound with those of the standards and/or 

with those reported in literature. 
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Figure 7.3 ESI-MS (negative ion mode) fingerprints of coat (A) and pulp seed (B). 

 

Another most abundant unknown ion peak was evidenced in this spectrum at m/z value of 

912. Fragmentation experiments were performed with the aim to individuate the nature of 

this compound. MS2 spectrum (Figure 7.4A) evidenced only one major ion peak at m/z value 

of 570 corresponding to the deprotonated ion of GMG. Sequential MS3 spectrum of m/z 570 

(Figure 7.4B) displayed most intense fragment ions at values of m/z 424, 328, 275 and 259. 

The first two were presumably generated by the subsequent loss of a rhamnopyranosyloxyl 

moiety [M – H – 146]-, followed by the loss of sulfate ion [M – H – 146 – 96]-. The last two 

fragments resulted to be characteristic diagnostic ions typical of fragmentation pattern of 

GLs. Comparing these results with the fragmentation pattern obtained for GMG standard in 

using ESI-QqQ-MS and ESI-QqQ-MS/MS (Figure 7.4C), we could hypothesize that the ion at 

m/z 912 is a GL structurally correlated to GMG. Further studies are needed to clearly identify 

this compound. 
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Figure 7.4 ESI-IT-MS/MS (A), ESI-IT-MS3 (B) spectra of compound at m/z 912 and ESI-IT-MS/MS (C) 
of GMG. 
 
The negative ion ESI-MS spectra of leaves and roots extracts were more complicated, 

suggesting the high complexity of the mixtures analyzed (data not shown). The deprotonated 

spectrum of roots extract showed over all a most intense peak at m/z of 408 corresponding to 

GL GTL, along with minor ion relative to GMG (m/z 570). The comparison of the MS2 spectra 

recorded for each compound with those of the standards confirmed the nature of revealed 

compounds. The ESI-MS spectrum of leaves extract showed, along with major ion peak of 

GMG (m/z 570), the acetyl-α-L-rhamnopyranosyloxy-benzyl GL (m/z 612), GTL (m/z 408) and 

another most abundant ion at m/z value of 353, ascribable to chlorogenic acid. The identity 

of this compound was confirmed by the comparison of MS/MS spectrum with that of the 

standard. As evidenced by PCA (Figure 7.2), this variable contributes to the differentiation of 

leaves sample. Moreover, negative ESI-MS spectrum evidenced other minor ion peaks at m/z value 

of 447, 463, 593 and 609 corresponding to kaempferol 3-O-β-glucoside, quercetin 3-O-β-

glucoside, kaempferol 3-O-rutinoside and rutin, respectively. The identity of the revealed 

phenolic compounds was verified by the comparison of the MS2 spectra with those of the 
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corresponding standards and/or with those reported in literature (Bennett et al., 2003; 

Amaglo et al., 2010; Vongsak et al., 2013; Manguro and Lemmen, 2007; Kashiwada et al., 

2012). By using IDA software, phenolics found in M. oleifera leaves were characterized 

according to their retention time and their MS and MS/MS spectra and by comparison with 

standard reference compounds, when available (data not shown). Besides confirming the 

presence of the revealed compounds, LC-ESI-MS/MS analysis allowed to identify three 

chlorogenic acid isomers (m/z 353). Focusing on GLs, an opportune IDA method with EMS 

survey scans, ER and EPI scans was developed to clearly identify these compounds by 

comparison of both their MS2 and retention times with those observed for the analytical 

standards in LC-ESI-MS/MS analyses (data not shown). 

Besides GMG, GTL (benzyl GL), 3-hydroxy-4-(α-L-rhamnopyranosyloxy)benzyl GL, 4-(-2′-O-

acetyl-α-L-rhamnopyranosyloxy)benzyl GL, 4-(-3′-O-acetyl-α-L-rhamnopyranosyloxy)benzyl 

GL and 4-(-4′-O-acetyl-α-L-rhamnopyranosyloxy)benzyl GL, LC-ESI-MS/MS analyses allowed to 

evidence the presence of other GLs at m/z values of 424, 422 and 436. The comparison of MS2 

spectra and the retention times with those of reference standards allowed us to identify these 

compounds as SNB (4-hydroxybenzyl GL), GIB (3-methylsulfinylpropyl GL) and GRA (4-

methylsulfinylbutyl GL), respectively. Except for SNB, these latter GLs have never been 

previously reported in M. oleifera. To obtain accurate data concerning the amounts of 

revealed GLs in different tissue extracts, a quantitative LC-ESI/MS (MRM) analysis was 

performed using a method previously described with the opportune modifications (Maldini 

et al., 2012). MS/MS spectra of GMG and 3-hydroxy-4-(α-L-rhamno-pyranosyloxy)benzyl GL 

showed the most intense peak at specific product ion at m/z value of 97 corresponding to the   

[SO4H]-   ion,   while   the   MS2   spectra   of   4-(O-acetyl-α-L- rhamnopyranosyloxy)benzyl GL 

and SNB showed a major ion peak at m/z value of 259 due to a sulfated glucose moiety. For 

the unknown compounds at m/z 912, the only intense product ion generated was the ion at 

m/z 570. Based on the results, the specific transitions from deprotonated molecular ions to 

the corresponding fragment ions for each compound were selected to develop an MRM 

method. IS (internal standards) were characterized by MRM through the transitions from 

precursor ion m/z 438.0 to product ion m/z 97.0 for GBB and from precursor ion m/z 434.0 to 

product ion m/z 259.0 for GRE. The structures of detected compounds and selected IS are 

reported in Figure 7.5. The calibration curves, obtained by plotting the area ratios between 

the external standards and internal standards against the known concentration of each 
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compound, were linear in the range of 0.5–200 μg mL-1 with r2 values of >0.993 (Table 7.3). 

Retention times and selected transitions for analyzed compounds are reported in Table 7.1. 

The method based on the characteristic fragmentation reactions of GLs was highly specific 

with no other peaks interfering at the retention times of the marker compounds in the MRM 

chromatograms (Figure 7.6). 

 

 

 
 

Figure 7.5 Molecular structure of glucosinolates. 
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Table 7.1 LC-MS/MS conditions for quantitation of glucosinolates by negative ion MRM. 
Compound tR Precursor ion 

[M - H]- 
Product ion 

[A - H]- 
Dwell 
time  

(ms) 

Declustering 
potential 

Entrance 
potential 

Collision 
energy 

Collision cell 
exit potential 

Glucomoringin 

3-Hydroxy-4-(α-L-rhamnopyranosyloxy)benzyl GL 
11 
10.74 

570 
586 

97 
97 

60 
60 

-73.6 
-78 

-6.1 
-6 

-56.4 
-57 

-1.13 
-4 

4-(2′-O-Acetyl-α-L-rhamnopyranosyloxy)benzyl   GL  

4-(3′-O-Acetyl-α-L- rhamnopyranosyloxy)benzyl GL

15.45 
16.01 

612 259 10
0 

-76 -11 -41 -5.6 

4-(4′-O-Acetyl-α-L-rhamnopyranosyloxy) 19.85       

benzyl glucosinolate 

unknown (m/z 912) 

10.8 
11.3 

912 570 20
0 

-49 -4.1 -30 -8 

Glucotropaeolin 
Glucosinalbin 
Glucoraphanin 
Glucoiberin 
Glucobarbarin (I.S.) 
Glucoraphenin (I.S.) 

17.6 
11.6 

9.3 
8.8 

16.9 
9.6 

408 
424 
436 
422 
438 
434 

328 
97 

178 
358 

97 
259 

60 
60 
60 
60 
60 
60 

-44 
-61.5 
-51 
-48.5 
-55 
-56 

-4 
-4.34 
-5 
-4 
-7.7 
-4.8 

-20 
-37 
-37.8 
-26 
-40 
-35.1 

-9 
-1.8 
-4 
-11.6 
-1.7 
-6.5 
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Figure 7.6 LC/ESI(QqQ)/MS/MS XICs (extracted ion chromatograms) of MRM analysis of 
glucosinolates in M. oleifera. 
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Table 7.2 Accuracy and precision of eight analytes at three
concentration levels 

Compound Concentration 

(μg/mL) 

Accuracy 

(% recovery) 

Precision  
Intra-day  

(CV%) 

Precision 
 Inter-day  

(CV%) 

Glucomoringin 5 112 1.8 3 
 50 101 1.2 4.3 
 100 99 4.7 3.6 

Glucotropaeolin 1 87 8 8 
 10 99 2.4 1 
 50 98 4.4 2.2 

Glucosinalbin 1 112 5.3 6.4 
 10 113 2.7 3.2 
 50 98 3.1 0.3 

Glucoraphanin 1 109 6.3 4.6 
 10 110 5.1 2.2 
 50 101 3.6 9.8 

Glucoiberin 1 106 4.1 8.2 
 10 110 3.5 6 
 50 100 5.4 1.9 

Precision and accuracy were evaluated at three concentration levels for each 
compound through triplicate intra-day assays and inter-day assays over 3 days 

 

 

Table 7.3 Linearity, LOQ and LOD of LC-ESI-QqQ-MS/MS MRM method for the 
analysis of standard compounds. 

Compound Calibration curve 
equation 

R2 LOQ 
(μg mL-1) 

LOD 
(μg mL-1) 

Glucomoringin y = 0.0757x + 0.705 0.993 0.02 0.005 

Glucotropaeolin y = 0.0241x + 0.0156 0.999 0.05 0.0015 
Glucosinalbin y = 0.149x - 0.00236 0.999 0.011 0.005 
Glucoraphanin y = 0.883x + 1.72 0.998 0.06 0.009 
Glucoiberin y = 0.565x + 1.07 0.994 0.0019 0.05 

 

The quantitative analysis results are summarized in Table 7.4. It is possible to observe that 

GMG is the most abundant GL in all parts of M. oleifera, particularly in the pulp seed, followed 

by 3-hydroxy-4-(α-L-rhamnopyranosyloxy)benzyl GL in the pulp seed and seed coat, and by 

GTL in the leaves. In the pulp, we can also evidence, for the first time in M. oleifera, the 

presence of GRA and SNB and minor quantities of 4-(-2′-O-acetyl-α-L-rhamnopyranosyloxy) 

benzyl GL, 4-(-3′-O-acetyl-α-L-rhamnopyranosyloxy)benzyl GL, 4-(-4′-O-acetyl-α-L-

rhamnopyranosyloxy)benzyl GL, GTL, GIB and in addition two unidentified compounds, most 

likely GLs. 
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Table 7.4 Quantitative results for glucosinolates detected in extracts of seed pulp, seed coat, roots and leaves of 12-day-old
seedlings of Moringa oleifera 

Glucosinolates (mg/100 g) 

Compound Pulp 

 
 

Coat 

 
 

Roots 

 
 

Leaves 
Glucomoringin 8619.44 ± 573.20 

    3-Hydroxy-4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate    65.75 ± 10.85                      
4-(2′-O-Acetyl-α-L-rhamnopyranosyloxy)benzyl glucosinolate                                 (tR15.45)   0.29 ± 0.03 

or 4-(3′-O-acetyl-α-L-rhamnopyranosyloxy)benzyl glucosinolate   (tR16.01) 0.16 ± 0.01 
or 4-(4′-O-acetyl-α-L-rhamnopyranosyloxy)benzyl glucosinolate a      (tR19.85) 0.39 ± 0.11 
Unknown (m/z 912) a  (tR10.8) 0.14 ± 0.11 

(tR11.3) 0.14 ± 0.05 
 Glucotropaeolin ND 
Glucosinalbin 3.17 ± 0.67 
Glucoraphanin 3.57 ± 0.32 
Glucoiberin 0.09 ± 0.02 

28.27 ± 0.6 
3.3 ± 0.02 

ND 
ND 
ND 
ND 
ND 
ND 
ND 

0.86 ± 0.22 
ND 

3.99 ± 0.47 
0.02 ± 0.01 
0.01 ± 0.01 
0.01 ± 0.01 
0.02 ± 0.01 

ND 
ND 

0.27 ± 0.03 
0.05 ± 0.01 
0.58 ± 0.03 
0.02 ± 0.01 

77.7 ± 8.07 
0.45 ± 0.05 
0.50 ± 0.01 
0.35 ± 0.05 
2.22 ± 0.26 

ND 
ND 

15.66 ± 1.04 
0.84 ± 0.19 

2.2 ± 0.27 
0.05 ± 0.02 

Each data is the mean of three replicates (mean ± SD); ND: not detected; aQuantified as equivalent of glucomoringin. 

 

To our knowledge, this is the first paper showing a direct quantitative determination of 

predominant GMG and the other glucosinolates in seeds and different tissues of M. oleifera 

12-day-old seedlings. Previously, Bennett et al. (2003, 2004) reported the identification (by a 

LC-MS method) and the indirect quantification (by LC-UV method) of the major GLs present 

in seeds (Kusznierewicz et al., 2013) and in tissues of 1-year-old plants of M. oleifera (Bennett 

et al., 2003). In another study, performed by Amaglo et al. (2010) a direct quantitative analysis 

of GMG and congeners in 100-, 320- and 380-day-old plants is reported. Furthermore, the 

study of Bellostas et al. (2010) measured the total GL level in leaves of 2-3-year-old plants of 

three different Moringa species. Despite showing similar patterns, the levels of GLs obtained 

in our study are different from those already reported (Amaglo et al., 2010; Bellostas et al., 2010). 

These differences could be attributed to several reasons. In addition to the different analytical 

methods used, difference in the varieties examined, the growth conditions, as well as the plant 

health and nutrition could represent important factors. Our data demonstrated that seed and 

seedlings of M. oleifera can represent a good source of GMG. This compound, as well as its 

acetyl derivatives and hydrolyzed products, can exert a broad biological activity, from 

antimicrobial to antiproliferative properties (Cheenpracha et al., 2010; Park et al., 2011; Lee 

et al., 2009; Juge et al., 2007; Leuck and Kunz, 1998; Fahey, 2005; Galuppo et al., 2013), as 

well as an effective anticarcinogenic activity (Brunelli et al., 2010; Galuppo et al., 2013; Anwar 

et al., 2007; Guevara et al., 1999; Dayal et al., 2013).  
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7.4 Conclusion 

 

This study describes for the first time the MS profiling of proanthocyanidins in seed coat and 

the simultaneous determination of 11 GLs in different M. oleifera tissues by using mass 

spectrometric approaches. ESI-MS and ESI-MS/MS fingerprints of seed coat have not been 

previously performed and allowed us to emphasize the presence of dimeric and trimeric 

proanthocyanidins together with the related monomer (catechin/epicatechin). Furthermore, 

the use of the full ESI-MS spectra along with the PCA approach proved to be a potentially 

useful and effective tool to rapidly provide both visual and statistical evaluation of similarities 

and differences in M. oleifera tissues. The LC-ESI-MS/MS IDA method allowed us to 

individuate two GLs (GIB and GRA) never reported in M. oleifera before. Moreover, an LC–

MS/MS MRM method allowed us to quantify all the identified GLs in different tissues of M. 

oleifera. M. oleifera pulp resulted a very rich source of GMG, an uncommon member of the 

GL family with promising antimicrobial, anticarcinogenic and neuroprotective properties. 

Finding of phenolic compounds is interesting because they are active antioxidant components 

of M. oleifera responsible for its anti-inflammatory, atherosclerotic and antidiabetic activities. 
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GER: glucoerucin; 

GBS: glucobrassicin; 

GIB: glucoiberin; 

GRA: glucoraphanin; 

4-OH-GBS: 4-hydroxy-glucobrassicin; 

DS-GL: desulfo-glucosinolate; 

MYR: myrosinase; 

PPB: potassium phosphate buffer; 

R-SF: R-sulforaphane. 
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Summary 
 

In this chapter, the use of Tuscan black kale seed (Brassica oleracea (L.) ssp acephala (DC) var. 

Sabellica L.) as a multifunctional plant source suitable to achieve several purposes is 

described. Tuscan black kale proved to be a rich source of natural glucoraphanin (4R-

methylsulfinylbutyl glucosinolate), the precursor of the most popular dietary enantiopure R-

sulforaphane. Natural sulforaphane exists as a single R-configurated enantiomer and this 

enantiopurity appears critical for its biological activity. However, only few studies up to now 

have evaluated the influence of the sulfoxide chirality on the beneficial health effects of 

sulforaphane. Therefore, there is the need to make natural glucoraphanin and R-sulforaphane 

available in large quantities for investigations in animal and clinical studies. The selected seed 

resulted to be the ideal source to perform the following research activities: 

 
1. isolation and purification of natural glucoraphanin on the gram scale; 

2. production of R-sulforaphane on the gram scale; 

3. preparation of a standardized glucoraphanin enriched freeze-dried seed extract; 

4. preparation of a standardized freeze-dried sprout powder; 

5. preparation of a standardized glucoraphanin enriched freeze-dried sprout extract. 

 
Tuscan black kale proved to be a better alternative to broccoli. In fact, Tuscan black kale 

contains a minor number of glucosinolates along with a higher concentration of 

glucoraphanin and this occurrence enables a more efficient purification of the glucosinolate 

of interest. Moreover, Tuscan black kale does not contain antinutritional glucosinolates such 

as the goitrogenic progoitrin present in most screened broccoli varieties. The different 

research activities described in this chapter proved that seed and sprout of Tuscan black kale 

can be successfully used for the purification of glucoraphanin and R-sulforaphane on the gram 

scale, as well as for the preparation of standardized glucoraphanin rich plant powder for 

application in the food/nutraceutical industry.  
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8.1 Focus on dietary enantiopure R-Sulforaphane  

 

Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF) was first isolated from the leaves of 

hoary cress (Lepidium draba L.), an invasive weed belonging to the Brassicaceae family 

(Procházka, 1959). About thirty years later in 1992, Professor Paul Talalay of the Johns 

Hopkins School of Medicine University in Baltimore discovered SF as the main phytochemical 

in broccoli sprouts responsible for phase 2 enzymes induction (Zhang et al., 1992). This 

pioneer study opened the way to a new era in cancer research coined as ‘green 

chemoprevention’ influencing dietary habits and agricultural practices worldwide. Talalay 

was indeed defined as ‘the catalyst’ (Johnson, 2016) of the steady increase in the number of 

studies on SF (Figure 8.1). A total number of 2684 publication was found between 1992 and 

2018 through a search in Scopus using the keyword ‘sulforaphane’. In particular, the keyword 

combination ‘sulforaphane’ and ‘cancer’ yielded 1331 scientific articles evidencing the great 

scientific interest on the anti-cancerogenic activity of this compound (Scopus, February 2018).  

 

Figure 8.1 Chronology of the number of publications appearing in Scopus between 1992 and 

2018 with the keyword ‘sulforaphane’. 
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Furthermore, SF is currently being used in clinical trials to assess its effects against different 

tumour processes, cardiovascular diseases, autism disorder, aging, dementia and other 

pathologies (Clinicaltrials.gov, 2018). SF is not produced as such by the plant, but rather 

released by the enzymatic action of myrosinase (β-thioglucoside glucohydrolase, E.C. 3.2.1.147; 

MYR) on the glucosinolate (GL) precursor glucoraphanin (4-methylsulfinylbutyl GL; GRA) 

following plant cell damage (Schema 8.1). The configuration of the sulfoxide stereogenic center 

in the GRA side chain was recently ascertained by NMR to be RS, a configuration retained in the 

hydrolysis product R-SF (Vergara et al., 2008). It must be also clarified that the stereochemical 

absolute configuration of natural R-SF has been established unequivocally: the incorrect and 

confusing designation ‘L-sulforaphane’ currently found in many articles, clumsily refers to the 

levorotatory nature of the compound. Up to now, most studies on the biological activities of 

SF have been conducted using R,S-SF, the racemic form obtained by chemical synthesis, as 

early studies had shown that the chirality of the sulfoxide group in SF did not affect its potency 

as an enzyme inducer (Zhang et al., 1992).  

 

 
Scheme 8.1. Reaction of myrosinase (MYR) catalyzed hydrolysis of 4R-methylsulfinylbutyl 
glucosinolate (glucoraphanin; GRA) to produce 4R-methylsulfinylbutyl isothiocyanate (R-
sulforaphane; R-SF).  
 

As humans are exposed exclusively to R-configurated SF through the diet, investigations of 

the effectiveness of this enantiomer to provide beneficial health effects should be carried out 

in comparison with the S-enantiomer and with the racemic mixture. As a matter of fact, 

marked differences in the modulation of cytochrome P450 and of the phase II enzymes, by 

the two enantiomers of SF, have been recently reported. In precision-cut tissue slices of both 

liver and lung of rats, R-SF enhanced quinone reductase and glutathione S-transferase 

activities, whereas S-SF either was ineffective or provoked a much weaker response (Abdull 
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Razis et al., 2011). Future investigations in animal or clinical trials on the pharmacological 

properties of R-SF, as a promising natural compound in chemopreventive therapy, are 

suggested in recent reviews of existing studies (Abdull Razis and Noor, 2013; Kelsey et al., 

2010). There is therefore the need for making available large quantities of enantiopure R-SF. 

Several methods for the purification of natural R-SF are based on the separation of the 

compound from complex mixtures of isothiocyanates (ITCs) present in water extracts of 

broccoli seed or seed meal after MYR hydrolysis. Those methods are based on low-pressure 

column chromatography (Liang et al., 2005), solid phase extraction coupled with preparative 

HPLC (Liang et al., 2007), and macroporous resin (Li et al., 2008), but generally, the yield and/or 

purity of the obtained R-SF were limited. An efficient methodology to produce enantiopure R-

SF based on the enzymatic hydrolysis of its natural precursor GRA is described in this Chapter 

and published in De Nicola et al. (2014). In the next sections, the selection of an appropriate 

vegetable source for GRA purification on the gram scale and its conversion to R-SF are 

reported. 

 

8.2 Plant source selection 

 

In a recent report, the GLs content of 32 cvs of cabbage and 24 cvs of kale was analyzed (Sasaki 

et al., 2012). The authors mentioned in particular five cvs of kale from Italy, categorized as 

black kale (Cavolo nero), as excellent sources of GRA, hence as potential plant material to 

produce R-SF. Accordingly, broccoli seeds and Tuscan black kale seeds were screened for GLs 

profile and content. 

 

8.2.1 Screening of broccoli and Tuscan black kale seeds 

 

Selected seeds for sprout production were provided by Suba Seeds Company (Longiano, FC, 

Italy). Eight different broccoli (Brassica oleracea (L.) spp. italica) seed cvs. (labelled as A to H), 

and four Tuscan black kale (Brassica oleracea (L.) ssp acephala (DC) var. Sabellica L.) seed cvs. 

(labelled as TBK-1 to TBK-4) were analyzed. GLs were extracted from duplicate samples (about 

100 mg) of finely powdered seed meal. Each extract (1 mL) was loaded onto a mini-column 

filled with DEAE Sephadex A-25 anion exchanger (0.6 mL), conditioned with 25 mM acetate 

buffer pH 5.6. After washing with the same buffer (3 mL), purified sulfatase (100 μL, 0.26 U 
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mL−1) was loaded onto the mini-column which was left overnight at room temperature. The 

desulfo glucosinolates (DS-GLs) were then eluted with ultrapure water (3 mL) and finally 

injected into an HPLC Agilent 1100 system equipped with a PDA detector and an Inertsil ODS-

3 column (250 × 3.0 mm, 5 μm) thermostated at 30 °C. The chromatography and the 

quantification were achieved as already reported at Chapter three (see Section 3.2.5). All 

desulfation procedures were carried out in quadruplicate. The typical profile of DS-GLs 

chromatogram of broccoli and Tuscan black kale is presented in Figure 8.2 and Figure 8.3, 

respectively. The individual and total content of GL present in each different seed are 

summarized in Table 8.1. Tuscan black kale resulted to have only five GLs with predominant GRA. 

The cv labeled as TBK-4, and commercialized as 0D74, showed the highest content of GRA with 

a value of 3.4% (w/w) on whole seed. This cv was therefore chosen as the starting plant material 

for all the studies, including GRA purification for R-SF production. 

 

 
 

Figure 8.2. HPLC chromatogram of desulfo glucosinolates (DS-GLs) isolated from broccoli 
(Brassica oleracea (L.) ssp italica) seed extract. Legend: DS-GIB, desulfo glucoiberin; DS-PRO, 
desulfo progoitrin; DS-GRA, desulfo glucoraphanin; DS-SIN, desulfo sinigrin; DS-4-OH-GBS, 
desulfo 4-hydroxy glucobrassicin; DS-GER, desulfo glucoerucin; DS-GBS, desulfo 
glucobrassicin. 
 
 

DS-GRA 

DS-GIB 

DS-PRO 
DS-SIN 

DS-4-OH-GBS 

DS-GER 

DS-GBS 

BROCCOLI 
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Figure 8.3. HPLC chromatogram of desulfo glucosinolates (DS-GLs) isolated from Tuscan black 
kale (Brassica oleracea (L.) ssp acephala (DC) var. Sabellica L.) seed extract. Legend: DS-GIB, 
desulfo glucoiberin; DS-GRA, desulfo glucoraphanin; DS-4-OH-GBS, desulfo 4-hydroxy 
glucobrassicin; DS-GER, desulfo glucoerucin; DS-GBS, desulfo glucobrassicin. 
 
Table 8.1 Glucosinolate (GL) content in eight different broccoli (Brassica oleracea (L.) ssp 
italica) seed cvs. (labeled as A to H) and four different Tuscan black kale (Brassica oleracea 
(L.) ssp acephala (DC) var. Sabellica L.) seed cvs. (labeled as TBK-1 to TBK-4). 
 

  
Legend: GIB, glucoiberin; PRO, progoitrin; GRA, glucoraphanin; SIN, sinigrin; 4-OH-GBS, 4-hydroxy 
glucobrassicin; GER, glucoerucin; GBS, glucobrassicin. 

SEED GIB PRO GRA SIN 4-OH-GBS GER GBS TOTAL GLs

A 10.96 ± 0.44 2.26 ± 0.07 33.44 ± 1.43 0.96 ± 0.00 3.00 ± 0.10 7.96 ± 0.26 0.54 ± 0.02 59.12

B 11.91 ± 0.77 4.31 ± 0.04 31.82 ± 2.75 1.85 ± 0.06 3.63 ± 0.10 9.45 ± 0.02 0.72 ± 0.02 63.69

C 10.36 ± 0.89 1.68 29.10 ± 2.68 - 3.70 ± 0.31 9.24 ± 0.39 0.64 ± 0.04 54.72

D 7.87 ± 0.48 2.14 ± 0.04 20.64 ± 1.32 - 3.56 ± 0.04 6.58 ± 0.12 0.46 ± 0.12 41.25

E 9.09 ± 0.52 2.05 ± 0.00 22.74 ± 1.27 - 3.81 ± 0.01 7.55 ± 0.06 0.62 ± 0.00 45.86

F 7.66 ± 1.08 2.03 ± 0.02 23.09 ± 3.37 - 3.99 ± 0.04 7.36 ± 0.03 0.51 ± 0.00 44.64

G 6.79 ± 1.07 2.56 ± 0.11 22.76 ± 1.04 0.98 ± 0.10 2.56 ± 0.16 9.55 ± 0.19 0.54 ± 0.02 45.74

H 1.09 ± 0.12 - 27.19 ± 0.81 - 1.90 ± 0.31 14.61 ± 0.50 - 44.79

TBK-1 4.10 ± 0.40 - 55.01 ± 4.01 - 3.30 ± 0.61 13.00 ± 0.95 - 76.04

TBK-2 0.65 ± 0.31 - 35.46 ± 2.49 - 3.57 ± 0.50 9.05 ± 1.72 0.61 ± 0.15 49.34

TBK-3 3.47 ± 0.65 - 50.22 ± 4.21 - 4.36 ± 0.38 12.59 ± 0.87 - 70.64

TBK-4 1.32 ± 0.16 - 72.12 ± 3.21 - 2.76 ± 0.28 14.15 ± 0.75 - 90.35

GLUCOSINOLATE (µmolg-1)

TUSCAN BLACK KALE 

DS-GIB 

DS-GRA 

DS-4-OH-GBS 

DS-GER 

DS-GBS 
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8.3 Purification of glucoraphanin on the gram scale 

 

8.3.1 Plant source 

 

Ripe seeds of Tuscan black kale (Brassica oleracea (L.) ssp acephala (DC) var. Sabellica L. cv. 

0D74) were supplied by Suba Seeds Company (Longiano, FC, Italy) and stored in a dry and 

dark place at room temperature. Seeds were identified by a lot number and guaranteed by 

the producer for the quality and the homogeneity of the product. Tuscan black kale (Cavolo 

nero di Toscana) seeds were first ground to a fine powder and defatted overnight in hexane. 

 

8.3.2 Glucoraphanin extraction and purification 

 

A sample of dried defatted seed meal (150 g) was treated with boiling 70% ethanol (700 mL) 

to quickly deactivate the endogenous MYR. GLs were extracted using an Ultraturrax 

homogenizer T50 at medium speed for 20 min. The resulting homogenate was centrifuged at 

14,000 g for 30 min and the extraction repeated on the solid as before. The two extracts were 

pooled, and 0.5 M acetate buffer pH 4.2 (100 mL) was added and diluted with water (up to a 

final volume of 3 L). The treated extract was left overnight at 4 °C for protein precipitation. 

The isolation of GLs from the extract was carried out by one-step ion exchange 

chromatography. The extract was filtered and loaded on a glass column (Econo-Column 2.5 × 

20 cm, Bio-Rad Laboratories, Milan, Italy) packed with DEAE Sephadex A-25 anion exchanger 

(90 mL) conditioned with 25 mM acetate buffer (pH 4.2).  After washing with distilled water 

(2 L), the GLs were eluted with a 0.2 M aqueous solution of potassium sulfate (500 mL). The 

collected solution was concentrated to dryness using a rotary evaporator Laborota 4002 

(Heidolph Instruments, Schwabach, Germany). The solid residue was then submitted to three 

subsequent extractions with boiling methanol (3 × 100 mL). The alcoholic extracts were then 

filtered and concentrated by rotary evaporation to about 10% of the initial volume. 

Afterwards, the solution was warmed, and slowly added dropwise under stirring to absolute 

ethanol (≥99.8%, 200 mL) previously cooled to −20 °C, leading to the precipitaƟon of a white 

powder. After centrifugation, the solid was thoroughly dried under vacuum, then reduced to 

a fine powder and sealed under reduced pressure to prevent moisture uptake. The purity of 

GRA was further improved by gel filtration performed on a XK 26/100 column packed with 
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Sephadex G-10 connected to an AKTA fast protein liquid chromatograph system (FPLC) (GE 

Healthcare, Milan, Italy). The isolated GLs powder was dissolved in ultrapure water (0.5 g 

mL−1), filtered through a 0.45 µm membrane filter (Gema Medical S.L., Barcelona, Spain), 

charged (2 mL) onto the column and eluted using a mobile phase of ultrapure water at a flow 

rate of 2.0 mL min−1 monitoring the absorbance at 254 nm (Figure 8.4). Individual fractions (6 

mL) of seven runs were analyzed by HPLC and those containing pure GRA were pooled and 

freeze-dried. GRA (potassium salt) was characterized by NMR and the purity was assayed by 

HPLC analysis of its desulfo-derivative (Figure 8.5). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.4 Chromatogram of a gel-filtration run performed using a XK 26/100 column packed 
with Sephadex G10 chromatography media, connected to an AKTA-FPLC System (GE 
Healthcare).  Injected sample: water solution of GLs mix powder (containing main 
glucoraphanin and minor glucoiberin and glucoerucin) isolated with anion exchange 
chromatography on DEAE-A25 resin. Mobile phase: ultrapure water; monitoring absorbance: 
254 nm.  
 
 
 
 

Glucoraphanin 

Glucoerucin Glucoiberin 
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Figure 8.5 HPLC chromatogram of freeze-dried fractions of purified glucoraphanin analyzed 
as its desulfo counterpart. 
 

Results and discussion of glucoraphanin purification 

 

Individual and total GLs content in Tuscan black kale defatted seed meal are summarized 

(Table 8.2). Three aliphatic GLs bearing a thio-functionalized side chain accounted for 95% of 

the total content with predominant GRA, followed by GER and a minor amount of glucoiberin 

(GIB; 3-methylsulfinylpropyl GL). Two indolic GLs, namely 4-hydroxyglucobrassicin (4-OH-

GBS; 4-hydroxy-3-indolylmethyl GL) and glucobrassicin (GBS; 3-indolylmethyl GL), were also 

present, accounting for the remaining 5% of total GLs. The starting defatted seed meal was 

extracted with boiling 70% ethanol with a GLs extraction yield of 78.4%. The GLs mixture 

isolated after anion exchange chromatography and precipitation with cold absolute ethanol 

consisted of GRA in a purity of 81.1% (w/w), the rest being GIB 1.4% (w/w), GER 6.7% (w/w), 

and most likely potassium sulfate and yellow substances which were all eliminated further 

on by gel filtration (Table 8.2). Enhancement of the purity level of GRA was achieved by the 

final gel filtration step. Seven runs of gel filtration afforded 3.10 g of purified GRA as a white 

amorphous solid after freeze-drying. The purity of GRA assessed by HPLC resulted to be 99% 

(area peak based) and 95% on weight basis. 
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Table 8.2 Summary of data for the purification of glucoraphanin (GRA) and the production of 
R-sulforaphane (R-SF) Tuscan black kale (Brassica oleracea (L.) ssp acephala (DC) var. Sabellica 
L. cv. 0D74) defatted seed meal. 
 

Purification step Amount Aliphatic GLs (g) Indole-type GLs (g) Total GLs (g) 

  GIB GRA GER 4-OH-GBS GBS  

TBK-DSM 150 g 0.15 (±0.01)a 7.66 (±0.62) 1.25(±0.17) 0.46 (±0.05) 0.01 (±0.00) 9.53 (±0.85) 

Ethanolic extract 2.29 L 0.10 (±0.00) 6.20 (±0.02) 0.88(±0.00) 0.19 (±0.07) 0.10 (±0.00) 7.47 (±0.09) 

GLs mix powder  
(from DEAE A-25) 

7.19 g 0.10 (±0.00) 5.83 (±0.14) 0.48(±0.06) - - 6.41 (±0.20) 

Purified GRA 3.10 g       

R-Sulforaphane 1.09 g       
 

a Glucosinolate content (g) reported as the mean of eight determinations (n = 8). Numbers in 
parenthesis denote the standard deviation (± SD). Legend: TBK-DSM: Tuscan black kale defatted seed 
meal; GIB: glucoiberin; GRA: glucoraphanin; GER: glucoerucin; 4-OH-GBS: 4-hydroxy glucobrassicin; 
GBS: glucobrassicin 
 

 

8.3.3 Glucoraphanin characterization 

 

8.3.3.1 Glucoraphanin molar extinction coefficient determination 

 

First, the UV spectrum of a water solution of GRA (95% pure, 2.089 × 10−4 M) was registered 

between 200 and 320 nm by using a computerized Varian Cary 300 Bio UV/Visible 

spectrophotometer (Varian, Palo Alto, CA, USA) equipped with 1 cm quartz cells. A maximum 

absorption at 225 nm was exhibited (Figure 8.6A). Then, the molar extinction coefficient (ε) 

of GRA was determined as follows. A stock water solution of GRA (95% pure, 10.46 mg mL−1) 

was prepared and 10, 14, 24, 20, 30, 34 and 40 µL aliquots were diluted into the quartz cell 

up to 3 mL with water to achieve seven concentration levels from 0.70 × 10−4 to 2.79 × 10−4 

M. The absorbance of each final solution was measured at 225 nm in triplicate against a water 

blank at 25 °C. Absorbance mean values were plotted against the corresponding molar 

concentrations and the ε calculated by linear regression as the slope of the plot (Figure 8.6B). 

This value can be of considerable importance to the analytical chemist in correcting the purity 

level as already pointed out (Clarke et al., 2010). The measured ε (225 nm, water) for GRA, 

potassium salt, was found to be 6634 M−1 cm−1. This value greatly differs from the previously 
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reported one of 6872 M−1 cm−1 measured in water at 235 nm, which is not the λmax for GRA 

(Fahey et al., 2003). 

 

Figure 8.6 UV spectrum of purified glucoraphanin (GRA) (purity 95%) in water at a 
concentration value of 2.089 × 10−4 M. λmax: 225 nm (A). Absorbance vs. glucoraphanin (GRA) 
concentration plot used for the determination of the molar extinction coefficient (ε) in water 
at 225 nm. The ε calculated by linear regression as the slope of the plot resulted 6634 M−1 

cm−1 (B). 
 

8.3.3.2 NMR analysis of glucoraphanin 

 

NMR spectra were recorded in D2O at 298 K with TSP-d4 as an internal reference on (i) a 500 

MHz Bruker Avance III spectrometer equipped with a 5 mm BBFO+ probe and (ii) a 600 MHz 

Bruker Avance III spectrometer equipped with a 5 mm TCI cryoprobe, both driven by the 

TopSpin NMR software (v2.1), which was also used for the data processing. Spectra were 

recorded by means of standard Bruker pulse sequences, namely, cosygppr for COSY, 

hsqcedetgpsisp2.2 for HSQC, hmbcgplpndqf for 1H− 13C HMBC and hmbcf3gpndqf for 1H− 15N 

HMBC as reported in Ibrahim et al. (2018).
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4R-methylsulfinylbutyl glucosinolate (glucoraphanin, GRA) 
C12H22NO10S3 ; M = 475.59 g mol-1 (potassium salt) 

 
Table 8.3 1H-, 13C- and 15N-NMR spectral data (500 MHz, D2O) for glucoraphanin (4-methylsulfinylbutyl glucosinolate) (Ibrahim et al., 2018). 

# δ C # δ H Couplings     
C-1 84.7250 H-1 5.0276 J(H-1,H-2) = 9.8961     
C-2 74.8823 H-2 3.4483 J(H-2,H-1) = 9.8961 J(H-2,H-3) = 9.0020    
C-3 79.9776 H-3 3.5526 J(H-3,H-2) = 9.0020 J(H-3,H-4) = 9.1593    
C-4 72.1033 H-4 3.4492 J(H-4,H-3) = 9.1593 J(H-4,H-5) = 9.8367    
C-5 83.0824 H-5 3.5597 J(H-5,H-4) = 9.8367 J(H-5,H-6S) = 5.9431 J(H-5,H-6R) = 2.2233   
C-6 63.6114 H-6R 3.8883 J(H-6R,H-5) = 2.2233 J(H-6R,H-6S) = -12.6088    

  H-6S 3.6980 J(H-6S,H-5) = 5.9431 J(H-6S,H-6R) = -12.6088    
C-7 166.6598        
C-8 34.6060 H-8R 2.7953 J(H-8R,H-8S) = -14.7144 J(H-8R,H-17R) = 8.1568 J(H-8R,H-17S) = 9.2756   

  H-8S 2.7897 J(H-8S,H-8R) = -14.7144 J(H-8S,H-17R) = 5.0333 J(H-8S,H-17S) = 6.5919   
N-10 346.1800        
C-17 28.3292 H-17R 1.9061 J(H-17R,H-8S) = 5.0333 J(H-17R,H-8R) = 8.1568 J(H-17R,H-17S) = -13.3531 J(H-17R,H-18S) = 7.5533 J(H-17R,H-18R) = 7.4683 

  H-17S 1.8824 J(H-17S,H-8S) = 6.5919 J(H-17S,H-8R) = 9.2756 J(H-17S,H-17R) = -13.3531 J(H-17S,H-18S) = 5.2948 J(H-17S,H-18R) = 7.4205 

C-18 24.1367 H-18R 1.8196 J(H-18R,H-17R) = 7.4683 J(H-18R,H-17S) = 7.4205 J(H-18R,H-18S) = -12.0042 J(H-18R,H-19R) = 5.5044 J(H-18R,H-19S) = 9.1477 

  H-18S 1.8466 J(H-18S,H-17R) = 7.5533 J(H-18S,H-17S) = 5.2948 J(H-18S,H-18R) = -12.0042 J(H-18S,H-19R) = 9.0214 J(H-18S,H-19S) = 6.6860 

C-19 55.0411 H-19R 2.9185 J(H-19R,H-18S) = 9.0214 J(H-19R,H-18R) = 5.5044 J(H-19R,H-19S) = -13.3586   

  H-19S 2.9563 J(H-19S,H-18S) = 6.6860 J(H-19S,H-18R) = 9.1477 J(H-19S,H-19R) = -13.3586   
C-21 39.3269 H-21 2.6924      
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8.4 Production of enantiopure R-sulforaphane on the gram scale 

 

A sample of purified GRA (95% weight based, 3.10 g; 6.192 mmol) was dissolved in PPB pH 

7.0 (0.3 M, 120 mL) and mixed with DCM (160 mL). After addition of MYR (1 mL, 12 U mL−1), 

the mixture was vigorously stirred at 37 °C overnight (Scheme 8.2). After cooling at room 

temperature, the organic phase was decanted, and the aqueous phase extracted with DCM 

(3 × 10 mL). The organic layers were pooled, dried over anhydrous sodium sulfate, and the 

solvent was then removed by rotary evaporation at room temperature yielding enantiopure 

R-SF (1.09 g, 6.130 mmol) as a light-yellow oil with a 99% conversion of GRA. R-SF was sealed 

under reduced pressure and stored at −28 °C.  Characterization of R-SF is reported at Chapter 

nine (See Section 9.4.1). 

 

 

 

 

 
Scheme 8.2 Production of enantiopure R-sulforaphane. Myrosinase (β-thioglucoside 

glucohydrolase; E.C. 3.2.1.147; MYR) catalyzed hydrolysis reaction of glucoraphanin (GRA), 

purified from Tuscan black kale defatted seed meal, in a biphasic system. Upper layer: 

phosphate buffer 0.3 M pH 7.0, lower layer: dichloromethane. 
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8.5 Production of a standardized freeze-dried Tuscan black kale seed extract powder 

 

Tuscan black kale seeds were dehulled, ground to a fine powder and defatted overnight by 

stirring in hexane. After filtration on filter paper (Whatman No. 1) the residue was let to dry 

completely in a fume hood obtaining the defatted seed meal (DSM) as a yellow fine powdered 

cake. A sample of DSM (25.4 g) was extracted in boiling 70% (v/v) ethanol (750 mL) for 5 min 

at 75°C using an Ultra-Turrax T25 homogenizer (IKA-Werk, Staufen, Germany), and then 

centrifuged with a J2-MC centrifuge (Beckman, Palo Alto, CA, USA) at 10000g for 45 min at 10 

°C. The solid residue was extracted a second time (500 mL solvent) and centrifuged as before. 

The two supernatants (514 + 335 mL) were pooled and reduced in a rotary evaporator at a 

temperature of 40 °C. The concentrated extract (230 mL) was kept in an ice bath and left 

overnight at 4 °C for protein precipitation. After centrifugation ultrapure water was added 

(up to 450 mL) to the slightly yellow clear solution. The extract was then frozen and finally 

freeze-dried (DLAB 500, Italian Vacuum Technology) obtaining a light yellow fine powder 

(4.695 g) that was analyzed for GL profile and content. The freeze-dried seed extract resulted 

to be highly enriched in GRA containing 26.7% (w/w) of the GL of interest. 

 

Table 8.3 Glucosinolate (GL) content of Tuscan black Kale (Brassica oleracea (L.) ssp acephala 
(DC) var. Sabellica L. cv. 0D74) freeze-dried seed extract powder.   
 

  Aliphatic GLs Total Aliphatic GLs Indole-type GLs Total GLs 

 GRA GER   4-OH-GBS   

μmol/g 561.8 ± 18.4 96.1 ± 2.9 657.9 ± 21.3 23.6 ± 2.6 681.5 ± 23.9 

mg/g 267.2 ± 8.8 44.2 ± 1.3 311.4 ± 10.1 11.9 ± 1.3 323.3 ± 11.4 

% (w/w) 26.7 4.4 31.1 1.2 32.3 
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8.6 Production of a standardized freeze-dried Tuscan black kale sprout powder 

 

Tuscan black kale seeds were surface sterilised by soaking for 30 min in 1% sodium 

hypochlorite and rinsed with tap water. Sprouts were grown at room temperature by using 

an automatic sprouter VitaSeed (Suba Seeds, Longiano, FC, Italy) under an 8h/16h light/dark 

cycle. Four-day old sprouts were gently washed with tap water, whole frozen, freeze-dried 

and ground to a fine powder. The obtainded powder was analyzed for GLs and results are 

reported in Table 8.4. 

 

Table 8.4 Glucosinolate (GL) content of Tuscan black Kale (Brassica oleracea (L.) ssp acephala 
(DC) var. Sabellica L. cv. 0D74) freeze-dried four-day old sprout powder.   
 

 Aliphatic GLs Indole-type GLs Total GLs 

 GRA GER 4-OH-GBS GBS 4-OMe-GBS Neo-GBS   

μmol/g 90.2 ± 2.2 19.8 ± 0.1 6.4 ± 0.2 1.1 ± 0.1 1.2 ± 0.1 3.5 ± 0.1 122.2 ± 2.8 

mg/g 42.9 ± 1.1   9.1 ± 0.0 2.6 ± 0.1 0.6 ± 0.1 0.8 ± 0.0 1.8 ± 0.1 57.6 ± 1.3 

% (w/w) 4.3 0.9 0.3 0.1 0.1 0.2 5.9 
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8.7 Production of a standardized freeze-dried Tuscan black kale sprout powder 
 
Fine powdered freeze-dried four-day old sprouts (30 g) were extracted in boiling 70% (v/v) 

ethanol (800 mL) for 5 min at 80°C using an Ultra-Turrax T25 homogenizer (IKA-Werk, Staufen, 

Germany), and then centrifuged with a J2-MC centrifuge (Beckman, Palo Alto, CA, USA) at 

17700g for 40 min at 10 °C. The solid residue was extracted a second time with the same w/v 

ratio and centrifuged as before. The two supernatants were collected and the volume was 

reduced three fold in a rotary evaporator at a temperature of 40 °C. The concentrated extract 

was kept in an ice bath overnight. Precipitated proteins were removed by centrifugation, and 

finally the extract was freeze-dried (DLAB 500, Italian Vacuum Technology) obtaining a fine 

green powder (TBK-SE). Individual and total content of GLs in TBK-SE are reported in Table 

8.5, and Figure 8.7 shows a typical HPLC chromatogram of derived DS-GLs. The extract 

resulted to be highly enriched in GLs containing 20.3% (w/w) of total GLs. The most abundant 

were two aliphatic GL with sulfur-containing side chain, with predominant GRA, followed by 

glucoerucin (GER, 4-methylsulfanylbutyl GL) the precursor of erucin, representing 74% and 

18% of total GLs, respectively. It is worth noting that, TBK-SE was free of the goitrogenic 

progoitrin ((2S)-2-hydroxy-3-butenyl GL) and contained only limited amount of indole GLs, 

0.98% (w/w) 4-hydroxy-glucobrassicin (4-OH-GBS, 4-hydroxy-3-indolylmethyl GL), 0.18% 

(w/w) glucobrassicin (GBS, 3-indolylmethyl GL), 0.02% (w/w) 4-methoxy glucobrassicin (4-

OMe-GBS, 4-methoxy-3-indolylmethyl GL) and 0.07% (w/w) neoglucobrassicin (Neo-GBS, N-

methoxy-3-indolylmethyl). 

 
Table 8.5 Glucosinolate (GL) content of Tuscan black Kale (Brassica oleracea (L.) ssp acephala 
(DC) var. Sabellica L. cv. 0D74) freeze-dried four-day old sprout extract.   

 Aliphatic GLs Indole-type GLs Total GLs 

 GIB GRA GER 4-OH-GBS GBS 4-OMe-GBS Neo-GBS   

μmol/g 6.5 ± 0.4 317.2 ± 8.2 79.5 ± 2.8 19.4 ± 1.8 3.7 ± 0.5 0.4 ± 0.5 1.4 ± 0.3 428.1 ± 14.5 

mg/g 3.0 ± 0.2 150.9 ± 3.9 36.5 ± 1.3 9.8 ± 0.9 1.8 ± 0.2 0.2 ± 0.3 0.7 ± 0.2 202.9 ± 7.0 

%(w/w) 0.3 15.1 3.6 1.0 0.2  0.1 20.3 

The data represent the mean ± SD of two replicates experiments with 4 samples analysed per replicate 
(n = 8). Legend: GIB, glucoiberin; GRA, glucoraphanin; GER, glucoerucin; 4-OH-GBS, 4-hydroxy 
glucobrassicin; GBS, glucobrassicin, 4-OMe-GBS, 4-methoxy glucobrassicin; Neo-GBS, 
neoglucobrassicin. 
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Figure 8.7. HPLC chromatogram of desulfo glucosinolates (DS-GLs) isolated from Tuscan black 

kale (Brassica oleracea (L.) ssp acephala (DC) var. Sabellica L. cv. 0D74) freeze-dried sprout 

extract (TBK-SE). Legend: DS-GIB, desulfo glucoiberin; DS-GRA, desulfo glucoraphanin; DS-

GER, desulfo glucoerucin; DS-4-OH-GBS, desulfo 4-hydroxy glucobrassicin; DS-GBS, desulfo 

glucobrassicin, DS-4-OMe-GBS, desulfo 4-methoxy glucobrassicin; DS-Neo-GBS, desulfo 

neoglucobrassicin. 

 

8.8 TBK-SE treatment with myrosinase 

 

TBK-SE (17 mg) was dissolved in PBS pH 7.4 (1 mL, 0.01 M), and ITCs were produced by MYR 

(S. alba L.) (0.64 U) enzymatic hydrolysis performed at 37 °C. After 10 min, the resulting ITCs 

were analyzed via GC-MS for profile determination and quantified as total ITCs via HPLC 

analysis. 

 

8.8.1 GC-MS analysis of isothiocyanates 

 

The buffered solution containing ITCs (1 mL) was withdrawn and extracted with DCM (2 mL). 

After drying with K2SO4, the organic phase was analyzed by GC-MS. GC-MS analyses of ITCs 

were carried out using a Bruker Scion SQ Premium (Bruker Daltonics) equipped with a 30 m x 

0.25 mm capillary column (HP-5MS). The flow rate of the carrier gas He was 1 mL min-1. 

Temperature programming was from 60 °C (hold 4 min) to 200 °C at 10 °C min-1 (hold 1 min). 

The temperature of the injector and of the detector was 180 and 280 °C, respectively. All MS 

DS-GIB 

DS-GRA 

DS-4-OH-GBS 

DS-4-OMe-GBS 

DS-Neo-GBS 
DS-GER 

DS-GBS 



196 
 

analyses were conducted in the electron impact (EI+) mode at 70 eV, the mass range was from 

40 to 650 m/z and the chromatogram acquired in total ion current (TIC). The identification of 

ITCs was assigned based on retention times and mass spectra of standard ITCs obtained by 

MYR-catalyzed conversion of pure GLs. 

 

8.8.2 HPLC analysis of total isothiocyanates 

 

The buffered solution containing ITCs was analyzed as reported by Matera et al. (2012) by 

adding 40 µL of the sample to 600 µL of a solution of 1,2-benzenedithiol (10 mM) in i-PrOH 

and 500 µL of phosphate buffer pH 8.5 (0.1 M). Solutions were incubated for 2 h at 65 °C and 

then left to cool to room temperature, centrifuged 20 min at 13 000 g with a 5415C centrifuge 

(Eppendorf) and the supernatants (20 µL) were injected in HPLC. Analyses were performed 

with an Agilent 1100 system equipped with a photodiode array detector on a Zorbax SB-C18 

column (150 x 4.6 mm, 3.5 µm) and thermostated at 30 °C. Separation and quantification was 

achieved as previously described (Matera et al., 2012). The pretreatment of TBK-SE solution 

with MYR was performed twice and each cyclo-condensation assay was done in triplicate. 

 

8.3 Results 

 

GLs contained in TBK-SE were hydrolyzed by the exogenous MYR treatment, and the resulting 

ITCs were identified and quantified. Identification was achieved by GC–MS analysis after DCM 

extraction of the buffered hydrolysate. As a result, three ITCs, SF, erucin (ER) and minor iberin, 

were detected confirming the presence of the precursors GRA, GER and glucoiberin (GIB) in 

the extract. The total ITCs were determined according to the well-established cyclo-

condensation assay (Zhang, 2012) and quantified by HPLC. By treating 17 mg mL-1 of TBK-SE 

containing 3.2 ± 0.1 mmol mL of GLs (GIB, GRA and GER) the cyclo-condensation assay gave a 

result of 3.3 ± 0.1 mmol mL of total ITCs, showing a quantitative transformation of aliphatic 

GLS into ITCs, thus indole GLs are known to be hydrolyzed into highly unstable ITCs and are 

spontaneously transformed to carbinols. 
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8.9 Conclusions 

 

Tuscan black kale seed has shown to be a valuable vegetable source of GRA, particularly 

suitable for purification purposes. In fact, the defatted seed meal contained a high percentage 

(5.1% w/w) of GRA which was also the most abundant among a limited number of only five 

GLs, representing 80% of the total GL content. Those data fulfilled the starting conditions to 

make it a remarkable candidate amongst brassica vegetables for an efficient purification of 

GRA through a simple procedure.  Although broccoli seeds have also been reported to be a 

good source of GRA, the investigated Tuscan black kale seeds showed a higher amount of GRA 

compared with different commercial broccoli seeds cultivars that were obtained locally. 

Moreover, GRA only constitutes approximately 50% of the GLs present in broccoli, which 

represents a major drawback for the purification of this GL (Lai et al., 2008). In this study, a 

complete and detailed strategy to purify GRA via a two-step chromatographic process starting 

from Tuscan black kale defatted seed meal is described. The purification procedure involves 

the initial inactivation of MYR by use of boiling 70% ethanol. After extraction, GLs are isolated 

using an anion exchange column chromatography on DEAE Sephadex A-25, well adapted for 

optimum recovery of the loaded mixture of methionine-derived GLs, namely GIB, GRA and 

GER, by eluting with a 0.2 M aqueous solution of potassium sulfate. The DEAE Sephadex A-25 

resin proved to be suited to our purpose, further allowing isolation of the GLs mixture as a 

fine powder with a good purity level of 81.1% after precipitation with cold absolute ethanol. 

Both indole-type GLs (4-OH-GBS and GBS) are retained by the resin and can therefore be 

eluted at higher salt concentration (Agerbirk et al., 1998). After the first chromatographic 

step, GRA is further purified by gel filtration on Sephadex G-10, which enables to discard the 

yellow contaminants present in the starting mixture, and to separate GIB and GER from GRA. 

The gram-scale availability of highly pure GRA allowed to design a strategy to easily produce 

amounts of the naturally occurring enantiopure R-SF. R-SF is a potential chemopreventive 

agent and it has proven furthermore to be a promising molecule for the 

prevention/treatment of neurological diseases in an animal model of multiple sclerosis and 

Parkinson’s disease (Giacoppo et al., 2013; Galuppo et al., 2013). It is therefore important to 

dispose of a simple and efficient method for the preparation of enantiopure R-SF. It is worth 

mentioning that the novel method disclosed herein conveniently allows gram-scale 

production of the target compound without requiring any purification steps as it is further 
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discussed next at Chapter nine. SF is usually regarded as a labile compound and moreover, 

because of its poor solubility in water, several difficulties are met during in vitro and in vivo 

testing of SF to correctly assess its biological properties. To overcome these drawbacks, the 

presented strategy of producing large amounts of R-SF can be positively combined with already 

reported effective methods to enhance its stability such as the inclusion in cyclodextrins (Lai et 

al., 2008; Roselli et al., 1999) or its formulation in polyethylene glycol successfully applied for 

topical applications (Franklin et al., 2013). Tuscan blake kale seed represents an ideal 

multifunctional starting material to realize also glucoraphanin enriched powder such as a 

freeze-dried four-day old sprouts, a freeze-dried sprouts extract and a freeze-dried seed 

extract. These latter materials were all standardized for GLs content and resulted to contain 

GRA in the following amount 4.3% (w/w), 15.1% (w/w) and 26.7% (w/w), respectively. 

Enriched GRA powders can be usefully used in in vitro and in vivo studies to assess their 

biological properties and can be promising ingredients for applications in food/nutraceutical 

industry.  
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Summary 
 

In this Chapter a new simple method to produce pure isothiocyanates and dithiocarbamates 

is described. Pure glucosinolates were hydrolyzed by the action of myrosinase in a phosphate 

buffer/dichloromethane biphasic system. The conversion of a set of four glucosinolates to 

isothiocyanates namely glucoerucin, glucoraphanin, glucoraphasatin and glucoraphenin, was 

investigated. The same glucosinolates were hydrolyzed using the biphasic system with the 

addition of benzyl mercaptan used as a model thiol to trap in situ the corresponding 

isothiocyanates intermediate and directly transform them into dithiocarbamates. This new 

strategy gave a quantitative transformation of glucoerucin and glucoraphanin into the desired 

isothiocyanates, and dithiocarbamates in good yield. Conversely, glucoraphasatin and 

glucoraphenin gave lower results. Glucoraphenin myrosinase assisted hydrolysis, as well as 

the stability in water of its enantiopure isothiocyanate, ER-sulforaphene, were further 

investigated showing an interesting and peculiar reactivity. A new small molecule bearing 3 

sulfur atoms was isolated and characterized for the first time. 
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9.1 Availability of natural isothiocyanates  

 

Isothiocyanates (ITCs) are the main breakdown products of glucosinolates (GLs) myrosinase 

(MYR) assisted hydrolysis at neutral pH. Many ITCs are of interest because of their biological 

activities. Indeed, some of them have proven biocidal activity against a wide variety of 

organisms, such as insects, plants, fungi and bacteria (Vig et al., 2009), whereas others can 

provide human health benefits (Traka, 2016). Nutritional/health studies require gram 

quantities of ITCs and the utilization of these compounds is often limited because either they 

are not commercially available, or their cost is very high. For instance, 5 mg of pure R-

sulforaphane (≥95% HPLC grade) currently costs 222 € (Sigma-Aldrich Italy). Most studies are 

focused on sulforaphane (see Chapter five of this PhD thesis), though in nature there are at 

least 134 documented GLs and it would be valuable to investigate how different side chain 

structures could modulate the biological activity and the possible health promoting properties 

of the corresponding ITCs. Therefore, there is the need to make these biomolecules available 

on the multigram scale. Several methods to produce natural ITCs have been reported in the 

literature. You et al. (2008) screened 28 varieties of brassica seeds to select the most suitable 

source for the isolation of sulforaphane and erucin on the gram scale. In that study, seeds 

were autolyzed (hydrolyzed by the action of endogenous MYR) releasing a pool of ITCs, nitriles 

and goitrin that needed to be purified with chromatographic techniques for the isolation of 

the pure target compounds. In a previous study, Vaughn and Berhow (2005) described a 

procedure for the gram-scale preparation of several GL hydrolysis products autolyzing 

suitable defatted seed meals in variable reaction conditions, without necessitating 

chromatography of any kind. Although the focus of their study was to qualitatively produce 

the compounds without using chromatography, they also reported the yield of conversion for 

one of the selected GL into the corresponding ITC. Pure 3-methylsulfinylpropyl ITC (iberin) 

was obtained in a yield of 90% after several solvent extractions of autolyzed defatted 

Lesquerella fendleri seed meal (rich in the parent GL) in a mixture of HCl 0.1 M and 

dichloromethane (DCM). A different strategy evaluated the transformation of purified GLs 

using free and immobilized MYR followed by water/DCM liquid/liquid extraction. It was 

shown that, starting from 2-propenyl GL (sinigrin), 3-butenyl GL (gluconapin), benzyl GL 

(glucotropaeolin), 4-hydroxybenzyl GL (sinalbin), 4-methylsulfanylbutyl GL (glucoerucin), 4-

methylsulfinylbutyl GL (glucoraphanin) and 3-methylsulfonylpropyl GL (glucocheirolin) 
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obtained in a pure form from suitable GL rich seeds, only ITCs were produced at pH value of 

6.5. However, the yield of transformation of starting GLs into ITCs was not mentioned. The 

authors reported only the ratio of ITCs to nitriles determined qualitatively via GC-MS analysis 

(Leoni et al., 1997; 2000).  

 

9.2 A new strategy – The phosphate buffer/dichloromethane biphasic system 

 

The aim of the present study was to test the feasibility of hydrolyzing pure GLs with MYR using 

a simple potassium phosphate buffer (PPB)/DCM biphasic system to recover a single highly 

pure ITC in the organic phase without the need of any chromatographic separation (Scheme 

9.1).  

 

 
 

Scheme 9.1 General scheme of the production of isothiocyanates from myrosinase catalyzed 

hydrolysis of glucosinolates in a biphasic system. Aqueous phase is potassium phosphate 

buffer pH 7.0 (upper layer) and organic phase is dichloromethane (lower layer). The reported 

dimeric structure of myrosinase purified from white mustard seeds (Sinapis alba L.) is taken 

from Burmeister et al. (1997). 
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The presented new procedure has been applied to the conversion of a set of four thio-

functionalized GLs into the corresponding ITCs and DTCs (Figure 9.1). Two bio-relevant redox 

couples have been chosen: 4-methylsulfanylbutyl GL (glucoerucin; GER)/ 4R-

methylsulfinylbutyl GL (glucoraphanin; GRA) and (E)-4-methylsulfanyl-3-butenyl GL 

(glucoraphasatin; GRH)/(E)-4R-methylsulfinyl-3-butenyl GL (glucoraphanin; GRE). Both 

examined GL couples are present in vegetables widely consumed worldwide. The couple 

GER/GRA is present in crucifers such as broccoli (Brassica oleracea (L.) spp. italica), Tuscan 

black kale (Brassica oleracea (L.) ssp acephala (DC) var. sabellica L.) and rocket (Eruca sativa 

(Mill.). The corresponding ITCs, 4-methylsulfanylbutyl ITC (erucin; ER) and especially 4R-

methylsulfinylbutyl ITC (R-sulforaphane; R-SF) are the most studied amongst dietary ITCs.  The 

couple GRH/GRE can be found in radish (Raphanus sativus (L.)) which consumption is 

increasing together with the interest of the scientific community in investigating the 

promising positive health effects of its derived ITCs, namely (E)-4-methylsulfanyl-3-butenyl 

ITC (E-raphasatin; E-RH) and (E)-4R-methylsulfinyl-3-butenyl ITC (ER-Sulforaphene, ER-SFE) 

(Hanlon and Barnes, 2011, De Nicola et al., 2013a, Abdul Razis et al., 2013). The dried ripe 

seed of raphanus is used as traditional Chinese medicine and is listed in Pharmacopoeia of 

the People’s Republic of China (Sham et al., 2013). In particular, raphanus var. Sango has 

gained attention because it is rich of GLs and anthocyanins. A freeze-dried juice obtained by 

7-day old Sango sprouts, standardized for total ITCs and anthocyanins (Matera et al., 2012; 

Matera et al., 2015), was prepared as a side activity of this PhD thesis project and recently 

studied in a rat model of obesity (Vivarelli et al., 2016; Vivarelli et al., 2017). 
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Figure 9.1 Structures of isothiocyanates (B) and dithiocarbamates (C) produced from purified 
glucosinolates (A) myrosinase assisted hydrolysis in a phosphate buffer/dichlorometane 
biphasic system.  
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9.2.1 Glucosinolate isolation and purification 

 

To test the presented original method, natural purified GLs have been used. Purification of 

GRA isolated from Tuscan black kale seeds has been already described in detail at Chapter 

eight and published in De Nicola et al. (2014). The same two-step chromatography procedure, 

namely anion exchange followed by gel filtration, described for GRA, was applied to purify 

GER, GRH and GRE extracted from a suitable plant source. NMR spectra of each purified GL 

were recorded in D2O as described for GRA (see section 8.3.3.2) and reported in Ibrahim et 

al. (2018). 

 

Glucoerucin purification and characterization 
 

GER was extracted from rocket (Eruca sativa Mill.) ripe seeds as described in Barillari et al. 

(2005a). Briefly, rocket seeds were first ground to a fine powder and defatted in hexane. The 

solvent was removed, and the defatted seed meal was then treated with boiling 70% ethanol 

to produce a quick deactivation of endogenous MYR and to extract the intact GL. The isolation 

of GER from the extract was carried out by one-step anion-exchange chromatography and the 

purity was further improved by gel-filtration by using water as mobile phase. Fractions 

containing pure GER were freeze-dried obtaining a with solid. GER was characterized by NMR 

spectrometry (Table 9.1), and the absolute purity estimated by HPLC analysis of its desulfo 

counterpart was 96%. 

 

Glucoraphasatin purification and characterization 
 

GRH was purified from 10-day old Daikon (Raphanus sativus L.) sprouts as described in 

Barillari et al., (2005b). A sample of fine freeze-dried powder (35g) was extracted twice with 

500 mL of boiling ethanol 70% (v/v). The pooled extracts were filtered by using Hyflo Supercel 

Filter Aid (BDH Chemicals Ltd., Poole, U.K.) and subjected to chromatography procedures. The 

extract was loaded onto an open preparatory column (25x200 mm i.d., Pharmacia) containing 

DEAE-Sephadex A-25 conditioned with 25 mM acetate buffer (pH 5.6). After loading, the 

column was washed in sequence with starting buffer, formic acid/2-propanol/water (3:2:5) 

solution, and the buffer again. The column was then eluted stepwise with 5x100 mL of 25 mM 
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aqueous K2SO4 and finally with 2x150 mL of 50 mM aqueous K2SO4. Each fraction collected 

was then checked for GL content by HPLC, and those containing GRH (about 95%) were pooled 

and concentrated to 1/10 of the initial volume. Inorganic salts were removed from the 

concentrate by adding absolute ethanol in 1:1 (v/v) ratio. After removal of precipitated salts 

by centrifugation, the ethanol was evaporated, and the aqueous solution containing GRH was 

freeze-dried. The GRH-containing freeze-dried sample of about 1.6 g was dissolved in water 

(400 mg mL-1), and 2 mL sample was loaded onto an XK 26/100 column containing Sephadex 

G-10 (GE Healthcare, Milano, Italy) connected to an AKTA FPLC equipped with a Frac-900 

fraction collector and UV monitor UPC-900 (GE Healthcare, Milano, Italy). Elution was 

performed using water as mobile phase at a flow rate of 2.0 mL min-1, and the eluate was 

monitored at 254 nm. After the void volume was discarded, 10-mL fractions were collected. 

Individual fractions were then analyzed by HPLC and those containing pure GRH were pooled 

and freeze-dried obtaining pure GRH as a white solid. GRH was characterized by NMR 

spectrometry (Table 9.2), and the absolute purity estimated by HPLC analysis of its desulfo 

counterpart was 94%. 

 

Glucoraphenin purification and characterization 
 

GRE was extracted from Daikon (Raphanus sativus L.) ripe seeds and purified through a 

sequential two-step ion exchange and size exclusion chromatography, as reported in De 

Nicola et al. (2013b). After the two-step chromatography process, water aliquots containing 

pure GRE were lyophilized obtaining a white solid. GRE was characterized by NMR 

spectrometry (Table 9.3), and the absolute purity estimated by HPLC analysis of its desulfo 

counterpart was 95%.



214 
 

  
 

4-methylsulfanylbutyl glucosinolate (glucoerucin, GER) 
C12H22NO9S3 ; M = 459.58 g mol-1 (potassium salt) 

 
Table 9.1 1H-, 13C- and 15N-NMR spectral data (500 MHz, D2O) for glucoerucin (4-methylsulfanylbutyl glucosinolate) (Ibrahim et al., 2018). 

# δ C #  δ H  Couplings     
C-1 84.7308 H-1 5.0631 J(H-1,H-2) = 9.9024     
C-2 74.8860 H-2 3.4649 J(H-2,H-1) = 9.9024 J(H-2,H-3) = 8.9435    
C-3 79.9919 H-3 3.5721 J(H-3,H-2) = 8.9435 J(H-3,H-4) = 9.2058    
C-4 72.0727 H-4 3.4734 J(H-4,H-3) = 9.2058 J(H-4,H-5) = 9.9469    
C-5 83.0913 H-5 3.5821 J(H-5,H-4) = 9.9469 J(H-5,H-6S) = 2.2386 J(H-5,H-6R) = 5.8203   
C-6 63.5812 H-6R 3.7210 J(H-6R,H-5) = 5.8203 J(H-6R,H-6S) = -12.6141    

  H-6S 3.9077 J(H-6S,H-5) = 2.2386 J(H-6S,H-6R) = -12.6141    
C-7 167.3351        
C-8 34.5900 H-8R 2.7522 J(H-8R,H-8S) = -15.7577 J(H-8R,H-17R) = 8.9934 J(H-8R,H-17S) = 5.9266   

  H-8S 2.7522 J(H-8S,H-8R) = -15.7577 J(H-8S,H-17R) = 6.1395 J(H-8S,H-17S) = 9.1683   
N-10 345.5810        
C-17 28.6469 H-17R 1.8297 J(H-17R,H-8S) = 6.1395 J(H-17R,H-8R) = 8.9934 J(H-17R,H-17S) = -12.2374 J(H-17R,H-18S) = 11.8729 J(H-17R,H-18R) = 2.7275 

  H-17S 1.8153 J(H-17S,H-8S) = 9.1683 J(H-17S,H-8R) = 5.9266 J(H-17S,H-17R) = -12.2374 J(H-17S,H-18S) = 7.4241 J(H-17S,H-18R) = 8.7904 

C-18 30.1943 H-18R 1.7250 J(H-18R,H-17R) = 2.7275 J(H-18R,H-17S) = 8.7904 J(H-18R,H-18S) = -12.4219 J(H-18R,H-19R) = 7.3033 J(H-18R,H-19S) = 6.1088 

  H-18S 1.7250 J(H-18S,H-17R) = 11.8729 J(H-18S,H-17S) = 7.4241 J(H-18S,H-18R) = -12.4219 J(H-18S,H-19R) = 7.1637 J(H-18S,H-19S) = 8.3911 

C-19 35.5165 H-19R 2.6068 J(H-19R,H-18S) = 7.1637 J(H-19R,H-18R) = 7.3033 J(H-19R,H-19S) = -21.1761   

  H-19S 2.6008 J(H-19S,H-18S) = 8.3911 J(H-19S,H-18R) = 6.1088 J(H-19S,H-19R) = -21.1761   
C-21 16.9564 H-21 2.1119      



215 
 

 

4-methylsulfanyl-3-butenyl glucosinolate (glucoraphasatin, GRH) 
C12H20NO9S3 ; M = 457.57 g mol-1 (potassium salt) 

 

Table 9.2 1H- and 13C-NMR spectral data (500 MHz, D2O) for glucoraphasatin (4-methylsulfanyl-3-butenyl glucosinolate) (Ibrahim et al., 2018). 
 

# δ C # δ H Couplings     
C-1 84.7292 H-1 5.0284 J(H-1,H-2) = 9.8978     
C-2 74.8384 H-2 3.4660 J(H-2,H-1) = 9.8978 J(H-2,H-3) = 8.9132    
C-3 79.9636 H-3 3.5671 J(H-3,H-2) = 8.9132 J(H-3,H-4) = 9.2147    
C-4 72.0373 H-4 3.4716 J(H-4,H-3) = 9.2147 J(H-4,H-5) = 9.9575    
C-5 82.9952 H-5 3.5655 J(H-5,H-4) = 9.9575 J(H-5,H-6S) = 2.2891 J(H-5,H-6R) = 5.7865   
C-6 63.5225 H-6R 3.7181 J(H-6R,H-5) = 5.7865 J(H-6R,H-6S) = -12.6229    

  H-6S 3.9024 J(H-6S,H-5) = 2.2891 J(H-6S,H-6R) = -12.6229    
C-7 166.2401        
C-8 34.9731 H-8R 2.8000 J(H-8R,H-8S) = -15.4956 J(H-8R,H-17R) = 6.2545 J(H-8R,H-17S) = 7.8589   

  H-8S 2.8204 J(H-8S,H-8R) = -15.4956 J(H-8S,H-17R) = 6.5029 J(H-8S,H-17S) = 8.2421   
C-17 32.9793 H-17R 2.5336 J(H-17R,H-8S) = 6.5029 J(H-17R,H-8R) = 6.2545 J(H-17R,H-17S) = -19.0478 J(H-17R,H-18) = 7.6040 J(H-17R,H-19) = -1.1685 

  H-17S 2.5382 J(H-17S,H-8S) = 8.2421 J(H-17S,H-8R) = 7.8589 J(H-17S,H-17R) = -19.0478 J(H-17S,H-18) = 6.4934 J(H-17S,H-19) = -1.3230 

C-18 127.5983 H-18 5.5596 J(H-18,H-17R) = 7.6040 J(H-18,H-17S) = 6.4934 J(H-18,H-19) = 15.0474   
C-19 128.0764 H-19 6.2140 J(H-19,H-17R) = -1.1685 J(H-19,H-17S) = -1.3230 J(H-19,H-18) = 15.0474   
C-21 16.6233 H-21 2.2555      
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4R-methylsulfinyl-3-butenyl glucosinolate (glucoraphanin, GRE) 

C12H20NO10S3 ; M = 473.57 g mol-1 (potassium salt) 
 

Table 9.3 1H-, 13C- and 15N-NMR spectral data (500 MHz, D2O) for glucoraphenin (4-methylsulfinyl-3-butenyl glucosinolate) (Ibrahim et al., 2018). 
 

# δ C # δ H Couplings     
C-1 84.5130 H-1 5.0596 J(H-1,H-2) = 9.9004     
C-2 74.7751 H-2 3.4716 J(H-2,H-1) = 9.9004 J(H-2,H-3) = 8.9201    
C-3 79.8731 H-3 3.5708 J(H-3,H-2) = 8.9201 J(H-3,H-4) = 9.2076    
C-4 71.9950 H-4 3.4677 J(H-4,H-3) = 9.2076 J(H-4,H-5) = 9.9777    
C-5 82.9455 H-5 3.5811 J(H-5,H-4) = 9.9777 J(H-5,H-6S) = 5.9737 J(H-5,H-6R) = 2.2149   
C-6 63.4793 H-6R 3.9055 J(H-6R,H-5) = 2.2149 J(H-6R,H-6S) = -12.6152    

  H-6S 3.7127 J(H-6S,H-5) = 5.9737 J(H-6S,H-6R) = -12.6152    
C-7 165.1462        
C-8 33.2952 H-8R 2.9483 J(H-8R,H-8S) = -17.7470 J(H-8R,H-17R) = 6.9221 J(H-8R,H-17S) = 6.9861   

  H-8S 2.9523 J(H-8S,H-8R) = -17.7470 J(H-8S,H-17R) = 7.4720 J(H-8S,H-17S) = 7.0568   
N-10 347.6290        
C-17 31.4656 H-17R 2.7261 J(H-17R,H-8S) = 7.4720 J(H-17R,H-8R) = 6.9221 J(H-17R,H-17S) = -15.0413 J(H-17R,H-18) = 7.1162 J(H-17R,H-19) = -1.7910 

  H-17S 2.7376 J(H-17S,H-8S) = 7.0568 J(H-17S,H-8R) = 6.9861 J(H-17S,H-17R) = -15.0413 J(H-17S,H-18) = 6.4611 J(H-17S,H-19) = -1.4115 

C-18 144.2535 H-18 6.6057 J(H-18,H-17R) = 7.1162 J(H-18,H-17S) = 6.4611 J(H-18,H-19) = 15.2297   
C-19 135.7740 H-19 6.5936 J(H-19,H-17R) = -1.7910 J(H-19,H-17S) = -1.4115 J(H-19,H-18) = 15.2297   
C-21 41.5544 H-21 2.7434      
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9.2.2 Myrosinase purification 

 

MYR was isolated from seeds of Sinapis alba L. according to a published method (Pessina et 

al., 1990) with some modifications (Bernardi et al., 2003). Briefly, the enzyme was extracted 

from white mustard seeds with water and purified by affinity chromatography on Con A-

Sepharose. Then, the active fractions coming from affinity chromatography were pooled and 

dialyzed against 50 mM phosphate buffer pH 6.5 containing 0.15 M NaCl. The dialyzed MYR 

solution was concentrated and loaded into a prepacked Superdex 200 HiLoad 26/60 gel 

filtration column (GE Healthcare) equilibrated with 50 mM phosphate buffer pH 6.5 

containing 0.15 M NaCl connected with a fast protein liquid chromatography system (AKTA 

FPLC System, GE Healthcare, Milan, Italy). The active fractions were pooled and concentrated 

by Millipore Amicon Stirred Cell Model 8400 using a UF membrane 30 KDa MWCO (Millipore). 

MYR activity was determined by spectrophotometric analysis. One MYR unit (U) was defined 

as the amount of enzyme able to hydrolyze 1 μmol of sinigrin (SIN; 2-propenyl GL) per minute 

at pH 6.5 and 37 °C (Palmieri et al., 1982). The stock solution used in the present PhD thesis 

study had a specific activity of 60 U mg-1 of soluble protein. The enzymatic activity was                

32 U mL-1 and the solution was stored at 4 °C in sterile saline solution at neutral pH until use. 

 

9.2.3 General procedure for isothiocyanates production 

 

A solution of GL (0.2 mmol) in PPB pH 7.0 (1 mL, 0.5 M) and water (2 mL) was mixed with DCM 

(4 mL). After addition of MYR (3.2 U) the mixture was stirred vigorously at 37 °C for 4 hours. 

After cooling at room temperature, the organic phase was decanted, and the aqueous phase 

extracted with DCM (3 x 10 mL). The combined organic extracts were dried over MgSO4 and 

the DCM then removed under reduced pressure at 35°C. The obtained ITC was weighed and 

characterized by NMR, IR, and optical rotation analysis. The efficiency of GL enzymolysis was 

quantified by the rate of conversion of the precursor GL to its ITC and was expressed as the 

percentage (%) obtained by the following equation: Yield (%) = [ITC (mol)/GL (mol)] x 100. 
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9.2.4 Isothiocyanate characterization 

 

Each ITC was characterized through 1H- and 13C-NMR, and IR. The optical rotation was 

measured for chiral R-SF and ER-SFE. For each ITC, the Compound Identification (CI) number 

found in the PubChem Open Chemistry Database (National Center for Biotechnology 

Information, 2018), was also given. 

 
9.2.4.1 NMR analysis 

 
1H- and 13C-NMR spectra were recorded on a 400 MHz Avance 2 spectrometer (Bruker Biospin 

SA, Wissembourg, France). ITCs were dissolved in deuterated chloroform (CDCl3) and 

chemical shift (δ) values were reported in ppm referenced to residual CHCl3 at 7.26 ppm. The 

δ assignments were supported by 2D COSY, HSQC, and HBMC spectra. Following 

abbreviations are used to designate δ multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; 

m, multiplet; and coupling constants (J) are given in Hertz (Hz). 

 
9.2.4.2 Infrared analysis 

 
Infrared spectra were recorded on an Attenuated Total Reflectance Thermo-Nicolet AVATAR 

320 AEK0200713 instrument (Perkin Elmer Instruments, Courtaboeuf, France). 

 
9.2.4.3 Optical rotation determination 

 
ITCs were weighed in a 1 mL volumetric flask and dissolved in CHCl3. The solution was 

transferred into a 1 mL cell (path length 1 dm) and the optical rotation was measured at         

25 °C on a Perkin-Elmer 141 polarimeter (Perkin Elmer Instruments, Courtaboeuf, France) 

and reported as [α]D
25 values. Concentration (c) was expressed in g per 100 mL of solvent. 
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9.3 Erucin production 

 

GER (96% pure, 0.27 mmol) was hydrolyzed as described before in the general procedure. The 

crude product from DCM was analyzed by 1H-NMR and any purification was needed. ER (42.5 

mg) was obtained as an oil with a yield of 97%. 

 

 

 

4-methylsulfanylbutyl isothiocyanate 

PubChem Compound Database; CID=78160 

CAS Registry Number: 4430-36-8 

C6H11NS2 ; M = 161.28 g mol-1 

 

9.3.1 Erucin characterization 

 

IR (cm-1): 2915, 2856, 2179, 2089, 1448, 1346, 1269, 1070, 958, 765, 685. Data are in 

accordance with Kuhnert et al. (2001).  

 

Table 9.4 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for erucin (4-methylsulfanylbutyl 
isothiocyanate; ER). Data are in accordance with those reported by Kuhnert et al. (2001). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 44.8 H-1 3.55 t, 2H, J = 6.3 

C-2 26.0 H-2 1.76-1.85 m, 2H 

C-3 29.0 H-3 1.69-1.75 m, 2H 

C-4 33.4 H-4 2.53  t, 2H, J = 6.9  

C-5 15.6 H-5 2.10  s, 3H 

C-6 130.4    
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9.4 R-Sulforaphane production 

 
GRA (96% pure, two experiments: 0.51 mmol; 1.30 mmol) was hydrolyzed as described before 

in the general procedure. The crude product from DCM was analyzed by 1H-NMR and any 

purification was needed. R-SF (90 mg; 230 mg) was obtained as a light-yellow oil with an 

average yield of 100%. Production of enantiopure R-SF was also easily scaled-up using this 

new methodology converting 3.10 g of GRA to 1.09 g of R-SF as described at Chapter eight. 

 
9.4.1 R-Sulforaphane characterization 

 
Besides NMR, optical rotation and infrared spectra analysis, R-SF was also analyzed by HPLC 

and GC-MS as follows. 

 

HPLC-PDA Analysis of R-sulforaphane 
 

Pure R- was dissolved in 10% aqueous acetonitrile and analyzed using an Agilent 1100 HPLC 

system (Agilent, Waldbronn, Germany) with an Inertsil ODS-3 column (250 × 3.0 mm, 5 μm 

particle size), thermostated at 30°C, and equipped with a PDA detector. The chromatography 

was performed at a flow rate of 0.8 mL min−1 eluting with a gradient of H2O (A) and acetonitrile 

(B) following the program: 1 min 10% B; 16 min linear gradient up to 40% B; 3 min linear 

gradient down to 10% B. R-SF was detected by absorbance monitoring at 240 nm. 

 

GC/MS Analysis of R-sulforaphane 
 
GC-MS analyses of pure R-SF was carried out using a Bruker Scion SQ Premium (Bruker 

Daltonics, Macerata, Italy) equipped with a 30 m × 0.25 mm capillary column HP-5ms. The flow 

rate of the carrier gas (He) was 1 mLmin−1. Temperature programming was from 60 °C (hold 4 

min) to 200 °C at 10 °Cmin−1 (hold 1 min). The temperature of the injector and of the detector 

was 180 °C and 280 °C, respectively. All MS analyses were made in the electron impact (EI+) 

mode at 70 eV, the mass range was from 40 to 650 m/z and the chromatogram acquired in 

total ion current (TIC). 
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4R-methylsulfinylbutyl isothiocyanate 

PubChem Compound Database; CID=9577379 

CAS Registry Number: 142825-10-3 

C6H11NOS2 ; M = 177.28 g mol-1 

 
[α]D

25: -76.0 (c 1.3, CHCl3); literature data:  -78.2 (c 0.6, CHCl3) (Khiar et al., 2009).  

IR (cm-1): 3426 (O-H from H2O adsorbed), 2923, 2867 (C-H), 2179, 2100 (N=C=S), 1451, 1349 

(C-H), 1260 (C-N), 1021 (S=O), 739 (C-H), 688 (C-S), in accordance with literature data (Wu et 

al., 2010).  

HPLC, t = 5.8 min.   

GC-MS, tR = 18.7 min; EIMS 70 eV m/z (rel. int.): 72 (100), 160 (64), 55 (43), 39 (15), 45 (13), 

64 (12), 63(10), 41(10), 114 (8), 74 (6). The observed data are in agreement with literature 

values (Chiang et al., 1998).  

 

Table 9.5 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for R-sulforaphane (4R-
methylsulfinylbutyl isothiocyanate; R-SF). Data are in accordance with those reported by 
Khiar et al. (2009). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 44.8 H-1 3.59 t, 2H, J = 6.0  

C-2 29.1 H-2 and H-3 1.83-1.97 m, 4H 

C-3 20.2    

C-4 53.6 H-4 2.66-2.80 m, 2H 

C-5 38.9 H-5 2.59 s, 3H 

C-6 Not Detected     
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9.5 E-Raphasatin production 

 

GRH (94% pure, two experiments: 0.14 mmol; 0.13 mmol) was hydrolyzed as described before 

in the general procedure. The crude product from DCM was analyzed by 1H-NMR and any 

purification was needed. E-RH (12.84 mg; 11.5 mg) was obtained as an oil with an average 

yield of 56%. 

 

9.5.1 E-Raphasatin characterization 

 

 

 

(E)-4-methylsulfanyl-3-butenyl isothiocyanate 

PubChem Compound Database; CID=5368086 

CAS Registry Number: 13028-50-7 

C6H9NS2 ; M = 159.27 g mol-1 

 
IR (cm-1): 2917, 2178, 2077, 1613, 1448, 1345, 1259, 1079, 1011, 935, 818, 684.  

 
Table 9.6 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for E-Raphasatin ((E)-4-
methylsulfanyl-3-butenyl isothiocyanate; E-RH). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 45.3 H-1 3.53 t, 2H, J = 6.5 

C-2 34.0 H-2 2.47-2.52 m, 2H 

C-3 120.2 H-3 5.31-5.38 m, 2H 

C-4 129.3 H-4 6.20  d, 2H, Jtrans = 15.0 

C-5 14.9 H-5 2.27 s, 3H 

C-6 Not detected    
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9.6 ER-Sulforaphene production 

 

GRE (95% pure, 0.2 mmol) was hydrolyzed as described before in the general procedure. The 

crude product from DCM was analyzed by 1H-NMR and any purification was needed. ER-SFE 

was obtained as an oil (11.4 mg) with a yield of 33%. 

 

9.6.1 ER-Sulforaphene characterization 

 

 
 

 

(E)-4R-methylsulfinyl-3-butenyl isothiocyanate 

PubChem Compound Database; CID=5368086 

CAS Registry Number: 592-95-0  

C6H9NOS2; M = 175.26 g mol-1 

 

[α]D25: -115.8 (c 1.3, CHCl3). 

IR (cm-1): 3442, 2998, 2913, 2180, 2085, 1732, 1634, 1452, 1417, 1344, 1295, 1249, 1174, 

1039, 958, 912, 873, 801, 730, 680. 
 

Table 9.7 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for ER-sulforaphene ((E)-4R-
methylsulfinyl-3-butenyl isothiocyanate; ER-SFE). Data are in accordance with those reported 
by Brinker and Spencer (1993). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 43.8 H-1 3.67 t, 2H, J = 6.4 

C-2 32.8 H-2 2.71-2.61 m, 2H 

C-3 133.3 H-3 and H-4 6.54-6.38 m, 2H 

C-4 133.3    

C-5 40.7 H-5 2.65 s, 3H 

C-6 138.2     
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9.7 Discussion of the isothiocyanates production yields 

 

Yield data of the production of the four investigated ITCs are summarized in Table 9.8. Both 

GER and GRA were quantitatively converted to the corresponding ITCs affording ER and R-SF 

in a 97% and 100% yield respectively, without the need of any chromatographic step. The 

system has also proven to be easily scaled-up to produce pure enantiomeric R-SF on the gram 

scale, as described at Chapter eight. Conversely, the transformation of GRH and GRE was not 

as effective as for the redox couple GER/GRA. GRH yielded E-RH in a 56% of the expected 

amount based on an equimolar conversion rate of the starting GL to final ITC. This result was 

somehow expected since E-RH is known to be unstable in aqueous environment and to 

spontaneously change to other compounds (Montaut et al., 2010, Kim et al., 2015). The 

lowest transformation rate was obtained with GRE which displayed only a 33% of formation 

of ER-SFE. E-RH is more hydrophobic than ER-SFE (Holst and Williamson, 2004) therefore, E-

RH produced by hydrolysis in water migrates to the non-polar DCM phase faster than ER-SFE 

resulting in this way more protected from degradation.  Moreover, GRE, as well as its 

corresponding ITC, ER-SFE, holds the unique structural specificity of a Michael acceptor vinyl 

sulfoxide site and several unexpected transformations have been already reported, such as 

Michael-induced ring closures (Iori et al., 2008, De Nicola et al., 2013b).  

 

Table 9.8 Isothiocyanates (ITCs) and dithiocarbamates (DTCs) production from glucosinolates 
(GLs) myrosinase (MYR) catalyzed hydrolysis in a potassium phosphate 
buffer/dichloromethane biphasic system. MYR was isolated and purified from white mustard 
seeds (Sinapis alba L.). Yield is expressed as the % of starting glucosinolate conversion rate. 
 

Glucosinolate Code Purity Isothiocyanate Code Yield DTC Yield 

Glucoerucin GER 96% Erucin ER 97% ER-DTC 68% 

Glucoraphanin GRA 96% R-Sulforaphane R-SF 100% R-SF-DTC 90% 

Glucoraphasatin GRH 94% E-Raphasatin E-RH 56% E-RH-DTC 90% 

Glucoraphenin GRE 95% ER-Sulforaphene ER-SFE 33% ER-SFE-DTC 20% 

 

The last column of Table 9.8 shows the results obtained with the one-pot DTCs production in 

the biphasic system that will be discussed at section 9.13. 
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9.8 One-pot production of dithiocarbamates  

 

Based on the results discussed at section 9.7, the new methodology for GL hydrolysis in a 

biphasic system was tested to assess the ability of an added model thiol to trap in situ the 

intermediate ITC to directly produce dithiocarbamates (DTCs) (Scheme 9.2). 

 

 

 
Scheme 9.2 General scheme of the one-pot production of dithiocarbamates from myrosinase 

catalyzed hydrolysis of glucosinolates in a biphasic system in the presence of triethylamine 

(NEt3) and a model thiol to trap in situ the intermediate isothiocyanate. Aqueous phase is 

phosphate buffer pH 7.0 and organic phase is dichloromethane. The reported dimeric 

structure of myrosinase purified from white mustard seeds (Sinapis alba L.) is taken from 

Burmeister et al. (1997). 
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9.8.1 General procedure for the production of dithiocarbamates 

 

To a solution of benzylmercaptan (0.24 mmol) and triethylamine (0.24 mmol) in DCM (4 mL), 

a solution of GL (0.2 mmol) in PPB pH 7.0 (1 mL, 0.5 M) and water (2 mL) was added. After 

addition of MYR (3.2 U) the mixture was vigorously stirred at 37 °C for 4 hours. After cooling 

at room temperature, the organic phase was decanted, and the aqueous phase extracted with 

DCM (3 x 10 mL). The combined extracts were dried over MgSO4 and the DCM removed under 

reduced pressure at 35 °C. 

 

9.8.2 Dithiocarbamates characterization 

 
Each DTC was characterized through 1H- and 13C-NMR analysis.  

 

9.8.2.1 NMR analysis 

 
1H- and 13C-NMR spectra were recorded on a 400 MHz Avance 2 spectrometer (Bruker Biospin 

SA, Wissembourg, France). DTCs were dissolved in dimethyl sulfoxide-d6 (DMSO-d6) and 

chemical shift (δ) values were reported in ppm referenced to DMSO at 2.54 and 40.5 ppm, 

respectevly. Following abbreviations are used to designate δ multiplicities: s, singlet; d, 

doublet; t, triplet; q, quartet; m, multiplet; br, broad; and coupling constants are given in 

Hertz (Hz). 
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9.9 Erucin-dithiocarbamate production 

 

GER (96% pure, 0.2 mmol) was hydrolyzed as described before in the general procedure in 

the presence of benzylmercaptan (1.2 eq) and NEt3 (1.2 eq). Crude product (55.4 mg) was 

purified by flash chromatography (petroleum ether/AcOEt 10:1) to give ER-DTC (38.8 mg) as 

a clear transparent oil in a 68% yield.  

 

9.9.1 Erucin-dithiocarbamate characterization 

 

 
Benzyl 4-methylsulfanylbutyldithiocarbamate  

Original compound 
C13H19NS3; M = 285.48 g mol-1 

 
Table 9.9 1H- and 13C-NMR spectral data (400 MHz, DMSO-d6) for erucin-dithiocarbamate 
(benzyl 4-methylsulfanylbutyldithiocarbamate; ER-DTC). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 46.4 H-1 3.60-3-65 m, 2H 

C-2 25.9 or 26.7 H-2 1.62-1.69 m, 2H 

C-3 25.9 or 26.7 H-3 1.50-1.57 m, 2H 

C-4 32.8 H-4 2.47 t, 2H, J = 7.2 

C-5 14.6 H-5 2.02 s, 3H 

C-6 195.4    

C-7 38.1 H-7 4.50 s, 2H 

C-8 137.4 H-Ar 7.22-7.42 s, 5H 

C-9 128.4 or 128.8 N-H 9.98 br s, 1H 

C-10 127.9    

C-11 128.4 or 128.8    

 
In the 1H-NMR spectrum of ER-DTC peaks corresponding to a minor rotamer (7% ca.) could be 

detected at δ: 10.17 (br s, 1H, N-H), 4.55 (s, 2H, H-7), 3.32-3.37 (m, 2H, H-1). 
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9.10 R-Sulforaphane-dithiocarbamate production 
 
GRA (96% pure, 0.2 mmol) was hydrolyzed as described before in the general procedure in 

the presence of benzylmercaptan (1.2 eq) and NEt3 (1.2 eq). Crude product (69.3 mg) was 

purified by flash chromatography (CHCl3/MeOH 9:1) to give (54.2 mg) of a white solid in a 90% 

yield. 

 
9.10.1 R-Sulforaphane-dithiocarbamate characterization 
 

 

Benzyl 4R-methylsulfinylbutyldithiocarbamate 

PubChem Compound Database; CID = 11500431 

CAS Registry Number: 884523-01-7 

C13H19NOS3; M = 301.49 g mol-1 

 
Table 9.10 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for R-sulforaphane-
dithiocarbamate (Benzyl 4R-methylsulfinylbutyldithiocarbamate; R-SF-DTC). Data are in 
accordance with those reported by Moriarty et al. (2006). 

Position δ C Position δ H δ Multiplicities and J 
C-1 46.5 H-1 3.76 d, 2H, J = 5.5 
C-2 39.8 H-2, H-3 1.83-1.85 m, 4H 
C-3 27.1    
C-4 53.5 H-4 2.73 t, 2H, J = 6.0 
C-5 20.3 H-5 2.53 s, 3H 
C-6 197.7    
C-7 38.6 H-7 4.53 s, 2H 
C-8 136.8 H-Ar 7.24-7.38 s, 5H 
C-9 128.7 or 129.2 N-H 8.16 br s, 1H 
C-10 127.5    
C-11 128.7 or 129.2    

 
In the 1H-NMR spectrum of R-SF-DTC peaks corresponding to a minor rotamer (20% ca.) could 

be detected at δ: 8.34 (br s, 1H, N-H), 3.45 (s, 2H, H-1). Minor peaks were also detected in the 
13C-NMR spectrum at δ: 45.8 (C-1), 41.0 (C-2), 27.9 (C-3). 
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9.11 E-raphasatin-dithiocarbamate production 

 

GRH (94% pure, 0.2 mmol) was hydrolyzed as described before in the general procedure in 

the presence of benzylmercaptan (1.2 eq) and NEt3 (1.2 eq). Crude product (68 mg) was 

purified by flash chromatography (petroleum ether/AcOEt 95:5) to give E-RH-DTC (51 mg) as 

a yellow oil in a 90% yield. 

 

9.11.1 E-raphasatin-dithiocarbamate characterization 

 
 

 

Benzyl (E)-4-methylsulfanyl-3-butenyl dithiocarbamate 

Original compound 

C13H17NS3; M = 283.48 g mol-1 

 

Table 9.11 1H- and 13C-NMR spectral data (400 MHz, DMSO-d6) for E-raphasatin-
dithiocarbamate Benzyl (E)-4-methylsulfanyl-3-butenyl dithiocarbamate; E-RH-DTC). 

 

Position δ C Position δ H δ Multiplicities and J 

C-1 46.6 H-1 3.62-3-65 m, 2H 

C-2 31.0 H-2 2.31-2.40 m, 2H 

C-3 122.2 H-3 5.34 dt, 1H, J = 7.0, Jtrans = 15.0 

C-4 125.9 H-4 6.15 d, 2H, Jtrans = 15.0 Hz 

C-5 13.9 H-5 2.19 s, 3H 

C-6 195.6    

C-7 38.1 H-7 4.50 s, 2H 

C-8 137.4 H-Ar 7.22-7.40 s, 5H 

C-9 128.4 or 128.9 N-H 10.00 br s, 1H 

C-10 127.1    

C-11 128.4 or 128.9    
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In the 1H-NMR spectrum of E-RH-DTC peaks corresponding to the Z stereoisomer (35% ca.) 

could be detected at δ: 6.11 (d, 1H, Jcis = 9.0 Hz, H-4), 5.49 (dt, 1H, Jcis = 9.0 Hz, J = 7.0 Hz, H-

3), 2.26 (s, 3H, H-5). 13C-NMR signals due to the Z stereoisomer were detected at δ: 129.5 (C-

4), 123.6 (C-3), 16.1 (C-5). 

Moreover, signals due to a minor rotamer (12% ca.) were also detected in the 1H-NMR 

spectrum at δ: 10.13 (br s, 1H, N-H), 4.55 (s, 2H, H-7), 3.40-3.35 (m, 2H, H-1), 2.17 (s, 3H, H-5) 

and in the 13C-NMR spectrum at δ:  27.5 (C-2), 45.7 (C-1). 

Also, a strong shielding effect (1H and 13C) was observed on the C-3 vinylic β-site of E-RH-DTC 

for which the normal positioning compared to the α-site C-4 was inverted both in DMSO-d6 

and CDCl3 solutions. Such observation was already reported for RH and methyl 4-methylthio-

3-butenyl dithiocarbamate in DMSO-d6 (Kosemura et al., 1993; Matsuoka et al., 1997). 
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9.12 ER-sulforaphene-dithiocarbamate production 
 

GRE (95% pure, 0.2 mmol) was hydrolyzed as described before in the general procedure in 

the presence of benzylmercaptan (1.2 eq) and Net3 (1.2 eq). Crude product (32.60 mg) was 

purified by flash chromatography (petroleum ether/AcOEt 9:1) to give ER-SFE-DTC (11.8 mg) 

a white solid with a 20% yield. 

 

9.12.1 ER-sulforaphene-dithiocarbamate characterization 
 

 

Benzyl (E)-4R-methylsulfinyl-3-butenyl dithiocarbamate  
Original compound 

C13H17NOS3; M = 299.48 g mol-1 

 

Table 9.12 1H- and 13C-NMR spectral data (400 MHz, DMSO-d6) for ER-sulforaphene-
dithiocarbamate (Benzyl (E)-4R-methylsulfinyl-3-butenyl dithiocarbamate; ER-SFE-DTC).  
 

Position δ C Position δ H δ Multiplicities and J 

C-1 45.4 H-1 3.68-3.76 m, 2H 
C-2 29.6 H-2 2.49-2.58 m, 2H 
C-3 133.8 H-3 6.26 dt, 1H, J = 6.8, Jtrans = 15.2 
C-4 136.8 H-4 6.63 d, 1H, Jtrans = 15.2 
C-5 40.1 H-5 2.54 s, 3H 
C-6 196.0    
C-7 38.1 H-7 4.50 s, 2H 
C-8 137.3 H-Ar 7.24-7.37 s, 5H 
C-9 128.4 or 128.9 N-H 10.08 br s, 1H 
C-10 127.1    

C-11 128.4 or 128.9    

 
In the 1H-NMR spectrum of ER-SFE-DTC peaks corresponding to a minor rotamer (9% ca.) 

could be detected at δ: 10.16 (br s, 1H, N-H) and 4.54 (s, 2H, H-7). The same shielding effect 

described before for E-RH-DTC was observed also for R-SFE-DTC and reported already for GRE 

and DS-GRE (Iori et al., 2008). 
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9.13 Discussion of the dithiocarbamate yields 

 

Yield data of the production of the four investigated DTCs are summarized in Table 9.8 

together with results obtained for ITCs production. DTCs are known to exert promising 

biorelevant activity such as chemoprevention (Moriarty et al., 2006; Qian et al., 2010) and 

they offer a better stability than ITCs. The proposed system proved to be effective, excluding 

the exceptional behavior of GRE, and it will be further investigated to produce a wider 

portfolio of DTCs. GER and GRA gave again good results, though in a lower yield compared to 

their transformation into the corresponding ITCs. Interestingly, the yield increased for the one 

pot direct transformation of GRH to DTC, if compared to the yield of production of its ITC, RH. 

Hence, the addition of benzylmercaptan to trap the in situ intermediate E-RH facilitated the 

migration of the hydrophobic E-RH into the DCM phase successfully stabilizing it in the DTC 

form. It is to be noted that the aglycone of starting GRH was mainly in the E conformation 

with minor Z (10%) assessed by 1H-NMR analysis whereas, the recovered E-RH-DTC after 

chromatography showed an increase of Z epimer up to 35%. Recently, the same 

stereomutation effect of RH side chain has already been observed and reported (Montaut et 

al., 2010). Again, GRE showed the lowest yield (20%) and a lower result compared to the 

formation of ER-SFE in PPB/DCM. Differently from the case of E-RH, the idea of trapping ER-

SFE to facilitate its migration to DCM was not effective. The MYR assisted hydrolysis of GRE, 

as well as the stability in water of its enantiopure ITC ER-SFE, was then further investigated to 

gain insights into its peculiar reactivity as described in the following sections. 
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9.14 Further exploration of glucoraphenin myrosinase assisted hydrolysis 

 

GRE myrosinase assisted hydrolysis has been investigated under various controlled conditions 

to evaluate the effect of several parameters on the conversion of this GL to its corresponding 

ITC, ER-SFE. 

 

9.14.1 Solvent effect 

 
9.14.1.1 Hydrolysis in phosphate buffer followed by dichloromethane extraction 

 

To evaluate the solvent effect, a sample of GRE (95% pure, 0.2 mmol) was hydrolyzed in PPB 

pH 7 (0.5 M, 3 mL) with MYR (32 U) in ten minutes to speed the reaction up and limiting the 

time of its possible degradation or peculiar reaction. The hydrolysis reaction was then 

stopped and extraction with DCM (3 x 10 mL) was performed. Pure ER-SFE (11.3 mg) was 

recovered in a yield of 32%  

 

9.14.1.2 Hydrolysis in phosphate buffer/ethyl acetate biphasic system 

 

GRE (95% pure, 0.2 mmol) was hydrolyzed with the same procedure described in section 9.6.1 

using AcOEt in the biphasic system as well as in the work up phase to extract the aqueous 

phase after hydrolysis. Pure ER-SFE (12.6 mg) was recovered in a 36% yield. 

 

9.14.2 Time effect 

 

To learn on the effect of hydrolysis time, samples of GRE (95% pure, 0.2 mmol) were 

hydrolyzed with MYR (3.2U) in a PPB pH 7/DCM biphasic system for a set time of 1.5 h, 2h, 4h 

up to 14 hours overnight. ER-SFE recovery yields are reported in Table 9.13 with the indication 

of the reaction time. 
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9.14.3 Myrosinase/glucoraphenin ratio effect 

 

Samples of GRE (95% pure, 0.2 mmol) were hydrolyzed with different amount of enzyme MYR 

(0.32 U, 3.2 U and 32 U) in a PPB pH 7/DCM biphasic system. ER-SFE recovery yields are 

reported in Table 9.13 with the indication of the reaction time. 

 

9.14.4 Ascorbic acid effect 

 

The procedure was the same as described at section 9.6.1 except ascorbic acid was added and 

hydrolysis was conducted in 4 hours. Two experiments were performed adding 0.012 eq and 

0.15 eq of ascorbic acid (based on GRE content) to have a final concentration of 1 mM and 10 

mM in the aqueous phase, respectively.  

  

9.14.5 Effects of enzymolysis conditions on glucoraphenin conversion into ER-sulforaphene 

 

Conversion rates of GRE obtained with different controlled conditions of enzymolysis are 

summarized in Table 9.13. A quick hydrolysis done in PPB in 10 min followed by extraction 

with DCM showed that DCM does not affect MYR performance. Ethyl acetate (AcOEt) was 

also tested as water concurrent solvent in a biphasic system to evaluate a possible better 

migration of ER-SFE into a more polar solvent than DCM. However, results indicated a minor 

role of the extraction solvent in the final yield. 3.2 U MYR can catalyze the hydrolysis of 0.2 

mmol GL in 62 min and 0.77 mmol GL in 4 hours which was the time set in the general ITCs 

production procedure (section 9.2.1). Results showed that when hydrolyzing 0.2 mmol GRE 

conversion yield does not change with hydrolysis time from 1.5 h up to an overnight reaction 

for 14 h. Either decreasing or increasing the MYR/GRE ratio did not improve the conversion 

rate as well. It is known that MYR is activated by ascorbic acid at low millimolar concentrations 

tipically 1-2 mM (Wittstock et al., 2016), anyway the addition of ascorbic acid did not have 

any effect in terms of ER-SFE production with both tested concentrations (1 and 10 mM). 

 

 

 

 



235 
 

Table 9.13 Conversion rate of pure GRE to ER-SFE using MYR (from Sinapis alba L.) in different 
hydrolysis conditions. All the experiments have been done using GRE (95% pure, 0.2 mmol). 
 

 Solvent  MYR (U) Time  Ascorbic acid  Yield 

Solvent effect PPB  32 10 min  - 32% 

PPB/AcOEt 3.2 2.5 h - 36% 

Time effect PPB/DCM 3.2 1.5 h - 33% 

PPB/DCM 3.2 2 h - 29% 

PPB/DCM 3.2 4  - 33% 

PPB/DCM 3.2 14 - 33% 

MYR/GRE ratio PPB/DCM 3.2 1.5 h - 33% 

PPB/DCM 32 1 h - 39% 

PPB/DCM 0.32 14 - 37% 

PPB/DCM 3.2 14 - 33% 

Ascorbic acid effect PPB/DCM 3.2 1.5 1 mM 32% 

PPB/DCM 3.2 4 10 mM 35% 
 

 

9.14.6 Autolysis of Japanese radish seed 

 

In a previous study, the autolysis of radish sprouts proved a high conversion of GRE and GRH 

to the corresponding ITCs. In particular, Daikon var., known as Japanese radish, exhibited an 

almost complete transformation of GRE and GRH to ITCs, analyzed as total ITCs, in autolysis 

experiments of freeze-dried powdered sprouts both in water and phosphate buffer pH 6.5 

(De Nicola et al., 2013a). This result lead to reasonably think that Daikon endogenous MYR 

(Daikon MYR) is specific for its substrates GRH and GRE. It is known, indeed, that MYRs accept 

GLs of different structural types as substrates but differ in their affinity to individual GLs and 

in the efficiency of their conversion. In some cases, substrate specificity of MYRs roughly 

matches the GL profile of the plant organ in which the enzyme is expressed indicating some 

degree of specialization (Wittstock et al., 2016). Based on these considerations, the following 

experiments were examined: the autolysis of Daikon defatted seed meal, and the hydrolysis 

of pure GRE by the action of a crude extract of Daikon MYR. 
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9.14.6.1 Daikon defatted seed meal preparation 

 
Daikon (R. sativus (L.) major cv. 0P38) seed (50 g) was ground to a fine powder and defatted 

overnight by stirring in hexane (500 mL). After filtration on filter paper (Whatman No. 1) the 

residue was allowed to dry completely in a fume hood obtaining the defatted seed meal 

(DSM) (20 g) . GRE content in Daikon DSM was quantified to be 130 µmolg-1 (6.1%) by HPLC-

DAD analysis of the corresponding DS-GRE.  

 

9.14.6.2 Daikon defatted seed meal autolysis in the biphasic system 

 

A sample of Daikon DSM (1.547 g; containing 0.2 mmol GRE) was autolyzed by the action of 

the endogenous MYR in a PPB/DCM (3 mL/4 mL) biphasic system at 37 °C overnight (14 h). 

The mixture was centrifuged, and the aqueous phase extracted with DCM (3x10 mL) by vortex 

agitation. The crude product (90 mg) obtained after DCM evaporation contained a mix of ER-

SFE and lipids. ER-SFE was purified by flash chromatography eluting first the lipidic fraction 

with CHCl3 and then the target ITC with CHCl3/MeOH (20:1) to give ER-SFE (22.8 mg) in a 65% 

yield. 

 

9.14.6.3   Daikon MYR crude extract preparation 

 

A crude Daikon MYR extract was obtained by treating the freeze-dried powder of seven-day 

old Daikon sprouts (1 g) with PPB pH 6.5 (50 Mm, 10 mL) using an Ultra-Turrax T25 

homogenizer in an ice bath. After centrifugation, the activity of soluble Daikon MYR was 

determined by spectrophotometric analysis performed with a computerized Varian Cary 300 

Bio UV/vis spectrophotometer equipped with a dual cell Peltier accessory, as previously 

described (Palmieri et al., 1982). Two replicate experiments with three samples analyzed per 

replicate gave a soluble Daikon MYR activity of 1.2 U/mL. 

 

9.14.6.4 Daikon MYR assisted hydrolysis of glucoraphenin 

 

GRE (95% pure, 0.2 mmol) was hydrolyzed using the Daikon MYR crude extract (1.2 U) in a 

PBB/DCM biphasic system at 37 °C overnight (14 h). The crude product from DCM extraction 



237 
 

was analyzed by 1H-NMR and any purification was needed. ER-SFE (24.2 mg) was obtained as 

an oil with a yield of 65%. 

 

Results 
 

Both experiments proved a better catalysis performance of Daikon MYR in comparison of 

Sinapis alba MYR at hydrolyzing GRE that is one of its natural substrate present in radish seed 

and sprouts, allowing to obtain enantiopure ER-SFE in a 65% yield. Since a better result of ER-

SFE recovery in DCM was achieved, the focus of the study was shifted to the aqueous phase 

with the following objectives: 

- to learn about the stability of ER-SFE in water with the isolation and characterization 

of eventual degradation products, 

- the isolation and characterization of a water soluble by-product of MYR catalyzed 

hydrolysis of GRE. 

 

9.15 Stability test and transformation of ER-sulforaphene in water 

 

One week, room temperature 
 

Enantiopure ER-SFE (22 mg, 0.12), obtained by myrosinase-catalyzed hydrolysis of GRE in 

PPB/DCM biphasic system, was stirred at room temperature in ultrapure water (5 mL). After 

one week, water was evaporated obtaining an oil that was analyzed by NMR. Only ER-SFE 

could be detected and no degradation products. 

 

Three days, 40 °C 
 

Enantiopure ER-SFE (22 mg, 0.12 mmol), obtained by MYR catalyzed hydrolysis of GRE in 

PPB/DCM biphasic system, was stirred at 40 °C in ultrapure water (5 mL). ER-SFE stability was 

checked by TLC. After three days a TLC analysis (CHCl3/MeOH 9/1) showed three spots 

corresponding to starting ER-SFE and two other compounds. The reaction was stopped, and 

flash-chromatography performed. The two isolated compounds, P1 (1 mg) and P2 (white 

solid, 4 mg) were identified by NMR characterization and HR-MS analysis, as follows.  
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P1 Characterization  

 

P1 was dissolved in DMSO-d6 and 1H-NMR and bidimensional COSY spectra were recorded as 

described at section 9.8.2.1. The quantity of P1 recovered by flash chromatography was not 

enough to register the 13C-NMR spectrum. 

 

 

 

(E)-4-(methylsulfinyl)-3-butenamine 

Original compound 

C5H11NOS; MW = 133.21 g mol-1 

 

Table 9.14 1H-NMR spectral data (400 MHz, DMSO-d6) of P1 isolated after ER-SFE degradation 

in water at 40 °C and characterized as (E)-4-(methylsulfinyl)-3-butenamine. 

 

Position δ H δ Multiplicities and J 

H-1 3.49 br s, 2H 

H-2 2.43 q, 2H 

H-3  6.24 dt, 1H, Jtrans = 15.2Hz, J2,3 = 6.9 

H-4 6.62 d, 1H, Jtrans = 15.2 

H-5 2.56 s, 3H 

N-H 7.55 br s, 2H 
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P2 Characterization  

 
P2 was dissolved in DMSO-d6 and NMR spectra (1H, 13C, COSY, DEPT135 and HSQC) were 

recorded as described at section 9.8.2.1. 

Mass spectra were recorded on a Perkin-Elmer SCIEX API-300 spectrometer (electrospray, 

positive mode). 

 

 
 

6-methylsulfinylmethyl-1,3-thiazinan-2-thione 

CCDC ID = 742902 (Cambridge Structural Database) 

C6H11NOS3; MW = 209.34 g mol-1 

 
MS m/z = 146 [M-CH3SO]+, 210 [M+H]+, 232 [M+Na]+ 

 

Table 9.15 1H- and 13C-NMR spectral data (400 MHz, DMSO-d6) of P2 isolated from ER-SFE 
degradation in water at 40 °C and characterized as 6-methylsulfinylmethyl-1,3-thiazinan-2-
thione. Data are in accordance with that reported in literature (Zhang et al., 2010; Song et al., 
2013). 
 

Position δ C Position δ H δ Multiplicities and J 

C-2 190.9    

C-4 42.2 H-4 3.36-3.39 m, 1H 

  H-4 3.40-3.51 m, 1H 

C-5 25.6 H-5 1.78-1.91 m, 1H 

  H-5 2.23-2.35 m, 1H 

C-6 38.5 H-6 3.69-3.80 m, 1H 

C-7 57.2 H-7 2.93 dd, 1H, J7a,7b = 13.1, J7,6 = 5.13 

  H-7 3.14 dd, 1H, J7a,7b = 13.1, J7,6 = 9.2 

C-8 38.4 H-8 2.61 s, 3H 

  N-H 10.40 br s, 1H 
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Degradation product P2 characterized as 6-methylsulfinylmethyl-1,3-thiazinan-2-thione has 

been previously fully described by Zhang et al. (2010). In that study authors evaluated the 

effect of the roasting process of Raphanus sativus L. seeds on sulforaphene chemistry. They 

also established the absolute stereochemistry of the degradation compound by X-ray 

crystallographic analysis as S-6-methylsulfinylmethyl-1,3-thiazinan-2-thione. The same 

product was identified later by Song et al. (2013) as a degradation product of SFE in the 

autolysis of radish seeds in PPB pH 7. It’s fascinating that ER-SFE and its possible degradation 

compound were studied for the first time back in the years in 1950. Indeed, enantiopure ER-

SFE isolated from radish in 1948, has been claimed as the first natural product with optical 

activity due to sulfur (Schmid and Karrer, 1948). Moreover, Koczka et al. (1950) showed that 

ER-SFE treated with a water solution of Ba(OH)2 was transformed in a compound with melting 

point of 192-193 °C, and formula C6H11NOS3, same as P2. Koczka et al. (1950) also showed 

that the same compound was obtained by treating ER-SFE with H2S. That new compound was 

not characterized in that first document and authors explained the addition of H2S to ER-SFE 

by means of a two-step process as follow: 

 

Step 1 –  R-NCS + 2 H2O → R-NH2 + CO2 + H2S 

Step 2 –  R-NCS + H2S →  
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Recently, Song et al. (2013) found that SFE degraded and converted completely to product P2 

when H2S was passed through a water solution of SFE. On the basis of the aforementioned 

finding the authors proposed the following degradation pathway for SFE (Chart 9.1). 

 

 
Chart 9.1 Proposed degradation pathway of sulforaphene into 6-methylsulfinylmethyl-1,3-

thiazinan-2-thione (P2). Taken from Song et al. (2013). 

 

The isolation of P1 in the process of ER-SFE degradation in water solution is unprecedent in 

the literature and strongly support the already proposed pathway for the degradation of SFE. 
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Indeed, the isolation of P1 justifies the hydrolytic generation of H2S according to Koczka et al., 

which in turn is necessary to explain the subsequent conversion of SFE into P2 by the 

mechanism proposed by Song et al (Chart 9.1). 

 

9.16 Investigation of the aqueous phase after myrosinase assisted glucoraphenin 

hydrolysis 

 
To learn on the formation of a side product during the hydrolysis of GRE to SFE, so to fully 

rationalize the lower yields of conversion as compared to other ITCs, four kinds of 

experiments have been done with GRE: 

 
- pure GRE hydrolyzed with Sinapis alba MYR to produce ER-SFE in different controlled 

reaction conditions as summarized in Table 9.13; 

- pure GRE hydrolyzed with Sinapis alba MYR in the presence of benzyl mercaptan and 

NEt3 to produce ER-SFE-DTC (Table 9.8); 

- Daikon DSM (containing GRE) autolyzed by the action of the endogenous MYR; 

- pure GRE hydrolyzed with Daikon MYR to produce ER-SFE. 

 

In all these experiments, the aqueous phase has always been checked by 1H-NMR analysis in 

DMSO-d6 after the following work-up. The aqueous phase was co-evaporated with toluene, 

the residue partly re-dissolved with anhydrous MeOH and evaporated to dryness after 

filtration on celite. Preliminary NMR investigation indicated a new compound, P3, probably 

derived by a different cyclization of ER-SFE leading to P2.  

 
9.16.1 Isolation and purification of P3 

 

A solution of GRE (95% pure, 0.74 mmol) in PPB pH 7.0 (3 mL, 0.5 M) and water (7 mL) was 

mixed with DCM (12 mL). After addition of Sinapis alba MYR (10.5 U) the mixture was stirred 

vigorously at 37 °C for 4 hours. Hydrolysis reaction was monitored via HPLC-DAD analysis. 

Diluted samples (1:1000 with ultrapure water) were injected on a Hewlett-Packard HP1090 

model equipped with a hydrophilic C18 column ODS-AQ (Waters) thermostated at 30 °C. The 

chromatography was performed at a flow rate of 0.8 mLmin-1, using isocratic ammonium 

acetate 50 mM as eluent and monitoring the absorbance at 226 nm. GRE consumption was 
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observed by the area decrease of the peak eluting at 9.5 min. Simultaneous formation of P3 

was observed with the appearance and increase of a peak at 8 min. After 220 min GRE 

resulted completely transformed and the hydrolysis was stopped after a reaction time of 4 

hours. After cooling at room temperature, the organic phase was decanted, and the aqueous 

phase extracted with DCM (3 x 10 mL) to eliminate any trace of ER-SFE. Pooled DCM extracts 

gave ER-SFE (38.7 mg) with a 30% yield in line with previous observations of several replicated 

experiments. The aqueous phase was quickly frozen (-80°C) and then freeze-dried obtaining 

a crude product (617 mg) that was extracted with anhydrous MeOH and filtered on celite 

giving pure P3 (64.7 mg) as a hygroscopic white solid.  

 

9.16.1.1 P3 characterization 

 

The UV spectrum of P3 was registered between 200 and 320 nm in water solution using a 

computerized Varian Cary 300 Bio UV/Visible spectrophotometer (Varian, Palo Alto, CA, USA) 

equipped with 1 cm quartz cells. A maximum absorption at 226 nm was exhibited. The 

structure of the degradation product P3 was identified by HR-MS and NMR analysis. P3 was 

dissolved in DMSO-d6 and NMR spectra (1H, 13C, COSY, DEPT135, HSQC and HMBC) were 

recorded as described at section 9.8.2.1. 

HRMS was measured on a MicrOTOF-QII (ESI mode). 

The ESI-HRMS spectrum showed the compound had a molecular formula of C6H10NO5S3 with 

mass 271.9720 (calculated: 271.9721). 1H- and 13C-NMR data as well as DEPT135 and the 

correlation in bi-dimensional COSY, HSCQ and HMBC spectrum are listed in Table 9.16 for P3 

that was characterized as 6-(methylsulfinylmethyl)-2-oxo-1,3-thiazinane-3-sulfonate. 
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6-(methylsulfinylmethyl)-2-oxo-1,3-thiazinane-3-sulfonate 

C6H10NO5S3; MW = 271.97 g mol-1 

 
Table 9.16 NMR spectral data (400 MHz, DMSO-d6) of P3 isolated from the aqueous phase of myrosinase-assisted hydrolysis of glucoraphenin in 

a phosphate buffer/dichlorometane biphasic system and characterized as 6-(methylsulfinylmethyl)-2-oxo-1,3-thiazinane-3-sulfonate.  
 

# δ H Couplings (Hz) COSY 
(H-H) 

HSQC 
(H-C) 

δ C DEPT  
135 

HMBC 
(H-C) 

2     162.37 C  

3        

4a 2.82 (dt, 1H) J4a,5a=J4a,5b=6.0, J4a,4b=15.6  H4, H5 C4 31.89 CH2 C2, C5, C6 

4b 2.69 (ddd, 1H)  J4b,5a=6.6, J4b,5b=9.0, J4a,4b=15.6 H4, H5    C2, C5, C6 

5a 2.34 (dddd, 1H)  J4b,5a=J5a,6=6.0, J4a,5a=6.6, J5a,5b=12.2 H4, H5, H6 C5 32.95 CH2 C2, C4, C6, C7 

5b 1.90-1.99 (m, 1H)  H4, H5, H6    C2, C4, C6, C7 

6 3.96 (ddd, 1H) J6,5a=J6,5b= 6.0, J=7.8 H5, H7 C6 43.86 CH C2, C5, C7 

7a 3.24 (dd, 1H) J7a,6=8.3, J7a,7b=13.1 H5, H7 C7 57.77 CH2 C5, C6, C8 

7b 3.24 (dd, 1H) J7b,6=6.1, J7a,7b=13.1 H5, H7    C5, C6, C8 

8 2.61 (s, 3H)   C8 38.35 CH3 C6, C7 
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9.17 Conclusion 

 

The new presented biphasic system proved to be effective at obtaining pure ITCs and DTCs 

without the need of any further chromatographic step. In this study, the MYR assisted 

hydrolysis in a biphasic PPB/DCM system has been applied to the conversion of four thio-

functionalized GLs, namely the two redox couples GER/GRA and GRH/GRE. The system 

allowed to modify GER, GRA and GRH in a very good yield. Conversely GRE showed the lowest 

yield of transformation when hydrolyzed in the same reaction conditions used for the other 

three GLs. Indeed, GRE was not an ideal substrate for MYR purified from white mustard (S. 

alba L.). The transformation of GRE to its corresponding ITC, ER-SFE was enhanced from about 

30% to 65% by using a crude extract of Daikon MYR. Hence, this finding highlighted the 

importance of studying each GL-MYR system modification with attention. This finding opened 

the way to further investigate the peculiar reactivity of GRE and ER-SFE. Studying the stability 

of ER-SFE in water it was possible to isolate (E)-4-(methylsulfinyl)-3-butenamine (P1) for the 

first time, strongly supporting the hydrolytic generation of H2S which in turn is necessary to 

explain the subsequent conversion of ER-SFE into cyclic 6-methylsulfinylmethyl-1,3-thiazinan-

2-thione (P2). Moreover, a new small hydrophobic cyclic molecule bearing three sulfur atom 

was isolated from the MYR assisted hydrolysis of GRE and characterized as 6-

(methylsulfinylmethyl)-2-oxo-1,3-thiazinane-3-sulfonate (P3).  
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CHAPTER TEN 

 

Moringa oleifera seed cake as a source of medicinal 
glucomoringin, moringin and other derivatives 
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Moringa (Moringa oleifera Lam.) belongs to the family Moringaceae within the order 

Brassicales and it is an extraordinary source of a unique dietary glycosylated glucosinolate, 

namely 4-(α-L-rhamnosyloxy)benzyl glucosinolate (glucomoringin). In this chapter the 

utilization of the commercially available Moringa PKM-2 seed cake was investigated for 

several purposes. First, the production of a freeze-dried glucomoringin-rich extract, as well as 

the isolation and purification of glucomoringin to a high level purity are described. The 

myrosinase catalyzed hydrolysis of glucomoringin to its isothiocyanate counterpart, moringin, 

has also been investigated. The feasibility of exogenous enzymolysis of glucomoringin was 

evaluated testing different glucomoringin sources:  Moringa PKM-2 seed cake, the enriched 

extract and the pure glucomoringin. Moreover, the one-pot production of a model 

dithiocarbamate as already described at Chapter nine for four different dietary 

glucosinolates, has been applied hydrolyzing glucomoringin in a phosphate 

buffer/dichloromethane biphasic system in the presence of benzylmercaptan to trap the in 

situ produced moringin. Finally, a third derivative, the peracetylated moringin, was prepared 

in a semi synthetic way and characterized. Based on literature data about the mono-acylated 

isomer, this latter compound could be attractive for testing its possible anti-inflammatory 

properties. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.1 Moringa oleifera – Botanical classification and its use 
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The Moringaceae family consists of a single genus Moringa with 13 different species, namely 

– M. arborea, indigenous to Kenya; M. rivae indigenous to Kenya and Ethiopia; M. borziana, 

indigenous to Somalia and Kenia; M. pygmaea indigenous to Somalia; M. longituba 

indigenous to Kenia, Ethiopia and Somalia; M. stenopetala indigenous to Kenya and Ethiopia; 

M ruspoliana indigenous to Ethiopia; M. ovalifolia indigenous to Namibia and Angola; M. 

drouhardii, M. hildebrandi indigenous to Madagascar; M. peregrine indigenous of Red sea and 

Horn of Africa, M. concanensis, M. oleifera indigenous to sub-Himalayan tracts of Northern 

India (Leone et al., 2015). The best known and most widely distributed species is by far M. 

oleifera Lam. (Moringa pteryogosperma Gaerthn), referred as Moringa or drumstick tree for 

the shape of its seed pods (Figure 10.2). Moringa is an exceptionally useful multipurpose plant 

that is native to northwestern India and now cultivated in all tropical countries. It has been 

used for millennia for human nutrition, animal feeding, and traditional medicine purposes 

(Fahey, 2005; Anwar et al., 2007). Pods and leaves are very popular vegetables and the plant 

is used extensively for low-cost nutrition. All parts of the tree are used medicinally and appear 

to have potent antioxidant, antimicrobial and chemoprevention activity. Seeds contain a high-

oleic oil used in cooking, cosmetics and as a machinery lubricant. The seed cake remaining 

after oil extraction can be used to clarify turbid water or to increase protein in animal feed of 

crop fertilizer (Olson et al., 2016). Moringa derives from a Tamil (the official language spoken 

in the State of Tamil Nadu, India) word, murungai, meaning "twisted pod", alluding to young 

Moringa fruit. Interestingly, the Agricultural University of Periyakulam, in the State of Tamil 

Nadu pioneered in the development of Moringa cultivars. Periyakulam (PKM) is one of the 

most fertile places in the state of Tamil Nadu and agriculture is the primary occupation for 

the population there. Since Moringa is emerging as a future crop across the globe for health 

management due to its nutraceutical traits, multidisciplinary efforts are needed to answer to 

the concern to produce more Moringa with less water and land, along with the pressure of 

biotic and abiotic stress. In this scenario, scientists at the Agricultural University of 

Periyakulam have succeeded in developing seed-propagated Moringa types, which has 

revolutionized the Moringa cultivation in India releasing two commercially available high 

yielding annual Moringa cultivars: Periyakulam-1 (PKM-1), and Periyakulam-2 (PKM-2) (AICRP, 

2017). Considering the potential of Moringa, more intensive research is needed. Despite the 

clear utility of the tree, crucial information gaps impede its optimal use in all its applications, 
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including nutrition. Many reports of its efficacy have not been published in high impact 

journals in the past limiting their visibility and there are still too few clinical studies to 

recommend Moringa parts as medication in the prevention or treatment of diseases. 

Noteworthily, the efforts of the scientific community are going towards that direction and the 

literature about Moringa has had an exponential increase (Figure 10.1) especially during the 

last ten years witnessing the great interest about this plant (Scopus, 2018). 

 

 

 
Figure 10.1 Chronology of the number of publications appearing in Scopus between 1952 and 
2018 by using the keyword ‘Moringa’. 
 

 

 

 

 

 

 

 

 

10.2 Glucomoringin and its derivatives 
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Seeds and leaves of M. oleifera contain several phytochemicals (Maldini et al., 2014; Leone et 

al., 2015), and in particular they are rich in a structurally unusual glucosinolate (GL), 4-(α-L-

rhamnosyloxy)benzyl GL (glucomoringin, GMG).  Structurally speaking (Figure 10.1), GMG is a 

unique O-glycosylated form of the ubiquitous phenolic GL, 4-hydroxybenzyl GL (glucosinalbin; 

SNB), broadly represented among Brassicaceae, Resedaceae and other families of the order 

Brassicales (Fahey et al. 2001; Agerbirk and Olsen, 2012; Pagnotta et al., 2017). The 

therapeutic value of the seeds and other parts of the plant has long been recognized in folk 

medicine, and different extracts have also been tested as anticancer and anti-inflammatory 

agents (Padayachee, 2012; Biswas et al., 2012; Berkovich et al., 2013). Those properties are 

mainly attributed to the glycosylated isothiocyanate (ITC), 4-(α-L-rhamnosyloxy)benzyl ITC 

(moringin, MO), resulting from myrosinase (MYR) hydrolysis of GMG (Figure 10.2). Recently, 

it has been demonstrated that MO, produced from GMG, constitutes an innovative and 

effective antibiotic against strains of Gram positive bacteria with new promising application 

for the clinical practice in the treatment of nosocomial infections (Galuppo et al., 2013). In 

this context, there is the need to make GMG and its derivative MO available in large quantities 

to study their properties. Easy accessible procedures to obtain GMG and MO on the gram-

scale are described here in this Chapter (Chart 10.1). Furthermore, it has been reported that 

naturally-occurring O-acetylated forms of MO on the L-rhamno unit led to higher anti-

inflammatory activity, investigated with the lipopolysaccharide (LPS)-induced murine 

macrophage RAW 264.7 cell line, versus the non-acetylated MO (Cheenpracha et al., 2010). 

Considering this enhancement of bioactivity from partial acetylation of the carbohydrate 

moiety of MO, a semi-synthetic route to produce the peracetylated derivative, i.e. 4-(2’,3’,4’-

tri-O-acetyl-α-L-rhamnosyloxy)benzyl isothiocyanate (MO-TRIAC) (Chart 10.1) from MO is also 

described in this Chapter. 
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Figure 10.2 Moringa oleifera as a source of 4-(α-L-rhamnosyloxy)benzyl glucosinolate 
(glucomoringin; GMG) (D). Pictured: seed pods known as Moringa drumsticks (A), seeds (B) 
and defatted seed cake (C). 
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Figure 10.3 Reaction of myrosinase catalyzed hydrolysis of 4-(α-L-rhamnosyloxy)benzyl 
glucosinolate (glucomoringin; GMG) to produce 4-(α-L-rhamnosyloxy)benzyl isothiocyanate 
(moringin; MO).  

A - Seed pods 

B - Seeds C - Defatted seed 
cake 
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Chart 10.1 Structures of Glucomoringin (GMG) (A) and its derivatives. The isothiocyanate 

moringin (MO) (B), a model moringin dithiocarbamate (MO-DTC) (C) and the moringin 

peracetylated (MO-TRIAC) (D). 
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10.3 Plant material 

 

10.3.1 Moringa oleifera PKM-2 seed cake  

 

The plant material used for this research activity was M. Oleifera PKM-2 cake powder 

provided by Indena India Pvt. Ltd.; Bangalore, India. Figure 10.3 shows the chromatogram of 

DS-GMG isolated from M. oleifera PKM-2 seed cake powder ethanolic extract. M. oleifera 

PKM-2 seed cake powder contains 227.7 ± 8.6 µmol g-1 of GMG as a single glucosinolate in 

the percentage of 13.9% (w/w). 

 

   

Figure 10.4 HPLC chromatogram of desulfo-glucomoringin (DS-GMG) isolated from Moringa 
oleifera PKM-2 seed cake powder ethanolic extract. 
 

10.3.2 Moringa oleifera PKM-2 seed cake freeze dried extract 

 

M. oleifera PKM-2 seed cake powder (50 g containing 6.95 g of GMG) was extracted in boiling 

water (500 mL) for 15 min at 80°C using an Ultra-Turrax T25 homogenizer (IKA-Werk, Staufen, 

Germany), and then centrifuged with a J2-MC centrifuge (Beckman, Palo Alto, CA, USA) at 

10000g for 30 min at 10 °C. The solid residue was extracted a second time with the same w/v 

ratio and centrifuged as before. The two extracts were pooled, and zinc acetate (1M) was 

added in the ratio 50:1 (v/v), and left overnight at 4 °C for protein precipitation. After 

centrifugation (10000g, 40 min, 10 °C) a slightly yellow clear solution (940 mL) was obtained 

DS-GMG 
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and freeze-dried. After lyophilization a slightly yellow fine powder (PKM2EXT) was obtained 

(16.79 g). The content of GMG in the water extract was determined to be 5.5 (±0.3) g (8.97 ± 

0.55 mmol) with an extraction efficacy of 85% on the starting brown Moringa PKM-2 seed 

cake. The freeze-dried water extract (PKM2EXT) resulted to be highly enriched in GMG 

containing 32.8% (w/w) of the GL of interest. 

 

10.4 Analysis 

 

10.4.1 Determination of glucomoringin content 

 

GMG content was analyzed in M. oleifera PKM-2 seed cake powder and in the freeze-dried 

PKM2EXT as desulfo-GMG (DS-GMG). Two fine powder samples were extracted twice with 

boiling EtOH/H2O 80/20. Combined extracts were analyzed twice on two minicolumns by 

means of desulfation (n=4) and analyzed by HPLC-DAD. Purity level of purified GMG was 

assessed in the same way after water dilution. 

 

10.4.2 NMR analysis of moringin derivatives 

 
1H- and 13C-NMR spectra were recorded on a 400 MHz Avance 2 spectrometer (Bruker Biospin 

SA, Wissembourg, France). Following abbreviations are used to designate δ multiplicities: s, 

singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; and coupling constants are 

given in Hertz (Hz). 

 

10.4.3 Infrared analysis 

 

Infrared spectra were recorded on an Attenuated Total Reflectance Thermo-Nicolet AVATAR 

320 AEK0200713 instrument (Perkin Elmer Instruments, Courtaboeuf, France). 

 
10.4.4 Optical rotation determination 

 

ITCs were weighed in a 1 mL volumetric flask and dissolved in CHCl3. The solution was 

transferred into a 1 mL cell (path length 1 dm) and the optical rotation was measured at 25 
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°C on a Perkin-Elmer 141 polarimeter (Perkin Elmer Instruments, Courtaboeuf, France) and 

reported as [α]D
25 values. Concentration (c) was expressed in g per 100 mL of solvent. 

 

10.5 Glucomoringin purification 

 

Glucomoringin was purified by means of two chromatographic steps following the same 

procedure as reported for GRA purification at Chapter eight. 

- Glucomoringin isolation 

A sample of PKM2EXT (50 g) was dissolved in ultrapure water (50 mL). The isolation of GMG 

from the extract was carried out by one-step ion exchange chromatography. The extract was 

loaded on a glass column (Econo-Column 2.5 × 20 cm, Bio-Rad Laboratories, Milan, Italy) 

packed with DEAE Sephadex A-25 anion exchanger (GE Healthcare, Milan, Italy) (90 mL) 

conditioned with 25 mM acetate buffer (pH 4.2). After washing with distilled water (2 L), GMG 

was eluted with a water solution of potassium sulfate (0.5 M, 500 mL). The collected solution 

was concentrated to dryness using a rotary evaporator Laborota 4002 (Heidolph Instruments, 

Schwabach, Germany). The solid residue was then submitted to three subsequent extractions 

with boiling methanol (3 × 100 mL). The alcoholic extracts were pooled, then filtered and 

concentrated by rotary evaporation to about 10% of the initial volume. Afterwards, the 

solution was warmed, and slowly added dropwise under stirring to absolute ethanol (≥ 99.8%, 

2 portions of 200 mL) previously cooled to −20 °C, leading to the precipitaƟon of a white 

powder. After centrifugation, the solid was thoroughly dried under vacuum, then reduced to 

a fine powder and sealed under reduced pressure to prevent moisture uptake.  

- Glucomoringin purification 

The purity of GMG was further improved by gel filtration performed on a XK 26/100 column 

packed with Sephadex G-10 connected to an AKTA fast protein liquid chromatograph system 

(FPLC) (GE Healthcare, Milan, Italy). The isolated GL powder was dissolved in ultrapure water  

(0.5 g mL−1), filtered through a 0.45 µm membrane filter (Gema Medical S.L., Barcelona, Spain), 

charged (2 mL) onto the column and eluted using a mobile phase of ultrapure water at a flow rate 

of 2.0 mL min−1 monitoring the absorbance at 254 nm. Individual fractions (6 mL) of seven runs 

were analyzed by HPLC and those containing pure GMG were pooled and freeze-dried. GMG (9.1 

g) was obtained as a white solid and characterized by 1H- and 13C-NMR. The purity of GMG 

assessed by HPLC resulted to be 99% (area peak based) and 95% on weight basis.
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10.5.1 Glucomoringin characterization 

 

NMR spectra of pure GMG were recorded in D2O as described for GRA (see Section 8.3.3.2) and reported in Ibrahim et al. (2018). 

 

 
 

4-(α-L-rhamnosyloxy)benzyl glucosinolate 

PubChem Compound Database; CID = 102222710 

C19H26NO14S2K; M = 595.18 g mol-1 (potassium salt) 
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Table 10.1 1H-, 13C- and 15N-NMR spectral data (500 MHz, D2O) for glucomoringin (4-(α-L-rhamnosyloxy)benzyl glucosinolate; GMG) (Ibrahim et 
al., 2018). 

# δ C # δ H Couplings    
C-1 84.2256 H-1 4.7204 J(H-1,H-2) = 9.7185    
C-2 74.6341 H-2 3.3394 J(H-2,H-1) = 9.7185 J(H-2,H-3) = 8.9375   
C-3 79.8478 H-3 3.3420 J(H-3,H-2) = 8.9375 J(H-3,H-4) = 9.1790   
C-4 71.5814 H-4 3.4194 J(H-4,H-3) = 9.1790 J(H-4,H-5) = 9.9289   
C-5 82.7088 H-5 3.2429 J(H-5,H-4) = 9.9289 J(H-5,H-6S) = 3.6733 J(H-5,H-6R) = 3.6532  
C-6 63.1380 H-6R 3.6468 J(H-6R,H-5) = 3.6532 J(H-6R,H-6S) = -12.0277   

  H-6S 3.6512 J(H-6S,H-5) = 3.6733 J(H-6S,H-6R) = -12.0277   
C-7 165.5820       
C-8 40.3724 H-8R 4.1055 J(H-8R,H-8S) = -16.2722    

  H-8S 4.1210 J(H-8S,H-8R) = -16.2722 J(H-8S,H-18) = -0.8725 J(H-8S,H-22) = -0.8725  
N-10 346.8470       
C-17 132.3216       
C-18 132.2893 H-18 7.3771 J(H-18,H-8S) = -0.8725 J(H-18,H-19) = 8.5543 J(H-18,H-21) = 0.3012 J(H-18,H-22) = 2.7731 

C-19 120.4358 H-19 7.1651 J(H-19,H-18) = 8.5543 J(H-19,H-21) = 2.4060 J(H-19,H-22) = 0.3012  
C-20 157.5697       
C-21 120.4358 H-21 7.1651 J(H-21,H-18) = 0.3012 J(H-21,H-19) = 2.4060 J(H-21,H-22) = 8.5543  
C-22 132.2893 H-22 7.3771 J(H-22,H-8S) = -0.8725 J(H-22,H-18) = 2.7731 J(H-22,H-19) = 0.3012 J(H-22,H-21) = 8.5543 

C-1' 101.0160 H-1' 5.5668 J(H-1',H-2') = 1.8624    
C-2' 72.8453 H-2' 4.1789 J(H-2',H-1') = 1.8624 J(H-2',H-3') = 3.4801   
C-3' 72.9493 H-3' 4.0143 J(H-3',H-2') = 3.4801 J(H-3',H-4') = 9.7866   
C-4' 74.9041 H-4' 3.5282 J(H-4',H-3') = 9.7866 J(H-4',H-5') = 9.6315   
C-5' 72.2952 H-5' 3.8156 J(H-5',H-4') = 9.6315 J(H-5',H-6') = 6.2715   
C-6' 19.5356 H-6' 1.2464 J(H-6',H-5') = 6.2715    
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10.6 Moringin production 

 

Several ways to produce MO are described. Enzymolysis by using MYR purified from Sinapis 

alba L. was tested on different GMG containing material starting from Moringa PKM-2 seed 

cake powder as such, to a GMG enriched extract, up to purified GMG. 

 

10.6.1 Moringa PKM2 hydrolysis in a biphasic system 

 

A sample of Moringa PKM2 seed cake powder (10.32 g containing 1.43 g of GMG, 2.34 mmol 

GMG) was dispersed in freshly prepared potassium phosphate buffer (PPB) pH 7.0 (0.25 M, 

50 mL) and mixed with DCM (40 mL). After addition of MYR (7.5 U), the mixture was vigorously 

stirred at 37 °C overnight. After cooling at room temperature recovery of the organic phase 

was tried in two ways. Filtration on cotton was not successful. Filtration on a glass filter was 

possible although not optimal. The organic phase was washed with brine, dried over 

anhydrous sodium sulfate, and the solvent was then removed by rotary evaporation at room 

temperature. The oily residue was dissolved in aqueous ACN (30%, 21 mL) and freeze-dried. 

MO (692 mg) was obtained as a slightly yellow oily gum and the purity level was not assessed. 

The system used resulted not easy to be treated and in particular, the work up phase was not 

handy. DCM extracted MO together with the residual oil of the seed meal. For this reason, 

the freeze-dried MO was not obtained as a white solid but as an oily gum. Taking these 

considerations into account, Moringa PKM-2 seed cake powder was hydrolyzed in PPB 

followed by DCM extraction after centrifugation to eliminate the solid residue.   

 

10.6.2 Moringa PKM2 seed cake powder hydrolysis in phosphate buffer 

 

A sample of Moringa PKM-2 seed cake powder (10.17 g containing 1.41 g of GMG, 2.31 mmol 

GMG) was dispersed in freshly prepared PPB pH 7.0 (0.25 M, 50 mL). After addition of MYR 

(7.5 U), the mixture was stirred at 37 °C overnight. After cooling at room temperature, the 

mixture was centrifuged at 10 °C (14000 g, 30 min). The supernatant was left overnight in an 

ice bath for protein precipitation and then centrifuged again at 10 °C (17000g, 30 min). 

Extraction with DCM was tried on the clear slightly yellow aqueous phase, but it resulted not 
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handy for the formation of a lot of foam. Addition of brine did not improve the extraction 

process.  

 

10.6.3 Freeze-dried Moringa PKM2 seed cake water extract hydrolysis in a biphasic system 

 

A sample of freeze-dried Moringa PKM-2 seed cake powder water extract (PKM2EXT) (7.19 g 

containing 2.36 g of GMG, 3.87 mmol GMG) was solubilized in freshly prepared PPB pH 7.0 

(0.25 M, 100 mL) and mixed with DCM (140 mL). After addition of MYR (6 U), the solution was 

stirred at 37 °C overnight. After cooling at room temperature, the mixture was transferred 

into a separatory funnel and extracted with DCM (3 x 10 mL). The formation of three phases 

in the separatory funnel was observed: the bottom-heavy DCM phase, an intermediate fine 

solid phase and un upper slightly yellow aqueous phase. DCM extractions were pooled 

together, and the solvent removed by rotatory evaporator at room temperature. The solid 

residue was dissolved in aqueous ACN (22%, 90 mL) and freeze-dried. MO (548 mg) was 

obtained as a white solid with a yield of 46.8% and purity level determined by HPLC was >99%. 

The aqueous phase was freeze-dried obtaining a slightly yellow powder (7.0 g).  The powder 

was analyzed for not hydrolyzed GMG and its content was assessed to be 8.0% (w/w). 

 

10.6.4 Moringin from pure glucomoringin hydrolysis in a biphasic system   

 

A sample of purified GMG (≥95%; 3.55 g; 5.82 mmol) was dissolved in freshly prepared PPB 

pH 7.0 (0.25 M, 120 mL) and mixed with DCM (140 mL). After addition of MYR (15 U) the 

mixture was vigorously stirred at 37 °C for 18 hours. After cooling at room temperature, the 

organic phase was decanted, and the aqueous phase extracted with DCM (3 x 10 mL). The 

organic layers were pooled, dried over anhydrous sodium sulfate, and the solvent was then 

removed by rotary evaporation at room temperature. The residue was dissolved in aqueous 

ACN (30%, 150 mL) and freeze-dried. Pure MO (876 mg, 2.81mmol) was obtained as a white 

powder with a yield of 48.4%. 

The aqueous phase was added with additional MYR (15 U) and mixed with DCM (100 mL). The 

mixture was vigorously stirred at 37 °C for 17 hours. After cooling at room temperature, the 

organic phase was decanted, and the aqueous phase extracted with DCM (3 x 10 mL). The 

organic layers were pooled, dried over anhydrous sodium sulfate, and the solvent was then 
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removed by rotary evaporation at room temperature. The residue was dissolved in aqueous 

ACN (30%, 140 mL) and freeze-dried. Pure MO (605 mg, 1.94 mmol) was obtained as a white 

powder with a yield of 33.3%. The starting GMG was hydrolyzed to the desired ITC MO by 

means of two subsequent hydrolysis processes with a total yield of 81.7%. 

 

10.6.5 Moringin characterization 

 
 

4-(α-L-rhamnosyloxy)benzyl isothiocyanate  
PubChem Compound Database; CID = 153557 

CAS Registry Number: 73255-40-0 
C14H17NO5S; M = 311.35 g mol-1 

 
Table 10.2 1H- and 13C-NMR spectral data (400 MHz, CD3OD) for moringin (4-(α-L-
rhamnosyloxy)benzyl isothiocyanate; MO). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 99.9 H-1 5.4 d, 1H, J = 1.9 

C-2 72.0 H-2 3.99 dd, 1H, J = 3.6, J = 1.9 

C-3 72.3 H-3 3.83 dd, 1H, J = 9.5, J = 3.7 

C-4 73.9 H-4 3.28 t, 1H, J = 9.5 

C-5 70.8 H-5 3.62 m, 1H 

C-6 18.1 H-6 1.22 d, 3H, J = 6.1 

C-7 157.8    

C-8 117.9 H-8 6.99 d, 2H, J = 8.9 

C-9 129.7 H-9  7.30 d, 2H, J = 8.9 

C-10 130.1    

C-11 49.0 H-11 4.69 s, 2H 

C-12 133    
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10.7 One-pot production of a model glucomoringin-dithiocarbamate  
 

The same procedure used for four dietary GLs (see Chapter nine) for the direct transformation 

of GMG into a model MO-DTC was tested in a PPB/DCM biphasic system in the presence of 

benzyl mercaptan to trap the in-situ MO produced by the action of exogenous MYR purified 

from Sinapis alba L. 

 

 
Scheme 10.1 One-pot production of moringin-dithiocarbamate from myrosinase catalyzed 
hydrolysis of glucosinolates in a biphasic system in the presence of triethylamine (NEt3) and a 
model thiol to trap in situ the intermediate moringin. Aqueous phase is phosphate buffer pH 
7.0 and organic phase is dichloromethane. The reported dimeric structure of myrosinase 
purified from white mustard seeds (Sinapis alba L.) is taken from Burmeister et al. (1997). 
 
GMG (95% pure, 0.2 mmol) was hydrolyzed as described at chapter nine (see section 9.8.1 

General procedure for dithiocarbamates production) in the presence of benzylmercaptan (1.2 

eq) and NEt3 (1.2 eq). Crude product (41.3 mg) was purified by flash chromatography 

(CHCl3/MeOH 9:1) to give MO-DTC (33.5 mg) as a white oil in a 38.4% yield.  
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10.7.1 Moringin-dithiocarbamate characterization 

 

 
Benzyl 4-(α-L-rhamnosyloxy)benzyldithiocarbamate  

Original compound 
C21H25NO5S2; M = 435.56 g mol-1 

 

Table 10.3 1H- and 13C-NMR spectral data (400 MHz, DMSO-d6) for moringin-dithiocarbamate 
(benzyl 4-(α-L-rhamnosyloxy)benzyldithiocarbamate; MO-DTC). 
 
Position δ C Position δ H δ Multiplicities and J 

C-1 98.4 H-1 5.35 br s, 1H 
C-2 70.22 H-2 3.82 m, 1H 

  OH2 5.02 d, 1H, J = 4.3 

C-3 70.44 H-3 3.64 m, 1H 

  OH3 4.72 d, 1H, J = 6.0 
C-4 71.81 H-4 3.28 m, 1H 
  OH4 5.02 d, 1H, J = 5.8 
C-5 69.48 H-5 3.45 m, 1H 
C-6 17.94 H-6 1.10 d, 3H, J = 6.3 
C-7 155.34    
C-8 116.2 H-8 6.99 d, 1H, J = 8.8 

C-9 or C-15 or C-16 
128.46, 
128.95, 
129.15 

H-Ar 
H-9, H-15, H-16, H-17 7.30 m, 7H 

C-10 130.54    

C-11 49.23 H-11 4.79 br s, 2H 

C-12 196.11    

C-13 38.31 H-13 4.79 br s, 2H 
C-14 137.19    
C-17 127.18    
  N-H 10.40 br s, 1H 
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10.8 Moringin peracetylated production 

 

The production of MO-TRIAC was carried out as briefly described in Kjaer (1979). MO (2.150 

g, 6.9 mmol) was dissolved in pyridine (20 mL) and cooled in a NaCl/ice bath. Acetic anhydride 

(4 mL, 42.4 mmol) was added dropwise to the solution and then stirred overnight at room 

temperature. After coevaporation with toluene in a rotatory evaporator at 40 °C, the yellow 

oily residue was dissolved in DCM (20 mL) and washed with water (20 mL). The aqueous phase 

was extracted with DCM and the two pooled organic layers where washed consecutively with 

HCl 1N (2 x 20 mL), saturated NaHCO3 (2 x 20 mL), distilled water until neutral pH. The organic 

phase was then dried over anhydrous potassium sulfate and the solvent was then removed 

by rotary evaporation. The oily MO-TRIOAC was dissolved in aqueous ACN 40% and freeze-

dried to obtain a slightly yellow crystalline compound (3.0 g) with a yield of 99%. 

 

10.8.1 Moringin peracetylated characterization 

 
 
 

 
 

4-(2’,3’,4’-O-triacetyl-α-L-rhamnosyloxy)benzyl isothiocyanate 
Original compound 

 C20H23NO8S; M = 437.46 g mol-1 
 
HPLC, tR = 12.2 min. UV (λmax): 222 nm. [α]D25: -81.0 (c 1, CHCl3). 

IR (cm-1): 2983, 2167, 2085 (N=C=S), 1744, 1612, 1510, 1438, 1368, 1213, 1180, 1129, 1031, 

983, 936, 828, 761, 733, 672.  

ESI+-MS m/z= 438 [M+H]+,  460 [M+Na]+, 476 [M+K]+ and a signal with m/z 273 corresponding 

to the fragment of a peracetylated α-L-rhamnosyloxyl ion. 
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Table 10.4 1H- and 13C-NMR spectral data (400 MHz, CDCl3) for moringin-peracetylated (4-
(2’,3’,4’-O-triacetyl-α-L-rhamnosyloxy)benzyl isothiocyanate; MO-TRIAC). 
 

Position δ C Position δ H δ Multiplicities and J 

C-1 95.77 H-1 5.46 d, 1H, J = 1.6 

C-2 69.74 H-2 5.42 dd, 1H, J = 3.5, J = 1.9 

C-3 68.92 H-3 5.50 dd, 1H, J = 10.1, J = 3.5 

C-4 71.01 H-4 5.16 t, 1H, J = 9.9 

C-5 67.42 H-5 3.95 dq, 1H, J = 9.8, J = 6.2 

C-6 17.59 H-6 1.21 d, 3H, J = 6.2 

C-7 155.94    

C-8 116.91 H-8 7.09 d, 2H, J = 8.7 

C-9 128.59 H-9  7.26 d, 2H, J = 8.7 

C-10 125.45    

C-11 48.33 H-11 4.66 s, 2H 

C-12 128.63    

OAc 20.89  2.03 s, 3H 

OAc 20.94  2.06 s, 3H 

OAc 21.05  2.17 s, 3H 

 

10.9 Discussion and conclusions 

 
Moringa PKM-2 seed cake represents a very good source of GMG. It is commercially available, 

rich in GMG 13.9% (w/w), and has the advantage to be defatted when compared to the whole 

seed. Starting from this advantageous material an extract was prepared using boiling water 

obtaining a GMG enriched freeze-dried extract containing GMG in a 32.8% (w/w). This 

product was the starting material for the purification of GMG by a sequential two-step 

process, anion exchange chromatography followed by gel filtration, that allowed to obtain 

GMG on a gram scale as a white solid 99% pure (HPLC peak based) and ≥95% (weight based). 

Moringa PKM-2 seed cake, the rich GMG extract, as well as pure GMG were all tested to 

produce MO by enzymolysis using exogenous MYR purified from white mustard seeds (Sinapis 

alba L.). The best way resulted to be the hydrolysis of pure GMG. Interestingly, a second 
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addition of MYR was necessary to almost complete the conversion of GMG to MO.  

Considering the results, GMG was indeed converted to MO with the rate of 46.8% and 48.4% 

when hydrolyzing PKM2EXT and pure GMG, respectively, with the first MYR treatment. A 

similar yield was obtained when hydrolyzing GMG with the addition of benzyl mercaptan 

resulting in the production of MO-DTC in a 38.4% rate. This occurrence leads to consider the 

hydrolysis of GMG with endogenous Moringa MYR to further investigate the process, similarly 

to what I have done studying glucoraphenin (GRE) conversion to its ITC and described at 

Chapter nine. The second MYR addition made it possible to reach 81.7% MO production, 

when hydrolyzing pure GMG. The dietary ITC MO is different from most ITCs since it can be 

produced as a white solid after lyophilization. It is stable, odorless and water soluble up to a 

concentration of about 1 mg mL-1. The procedure described here to obtain MO in a biphasic 

system made it possible to have it in a pure form without the need of any chromatographic 

step and it represents a simplification of a previously reported method (Brunelli et al., 2010). 

In that cited study, pure GMG was hydrolyzed in PPB followed by a C-18 reverse phase 

chromatography step to release pure MO. Finally, a third GMG derivative has been described 

here; the peracetylated MO was obtained in a semi synthetic way transforming natural MO 

in a quantitative yield. To sum up, GMG and its derivatives MO, MO-DTC and MO-TRIAC can 

easily be obtained on the gram scale making these molecules available for new research 

studies on their activity in many fields from nutrition to several pathologies to prove the 

efficacy of the use of Moringa “the Miracle tree” as an edible medicinal plant. 
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CHAPTER ELEVEN 
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Abbreviations 

 

GLs: glucosinolates;  

FFPE: formalin-fixed paraffin-embedded; 

H&E: hematoxylin/eosin;  

iNOS: inducible nitric oxide synthase expression; 

ICAM-1: intercellular adhesion molecule 1;  

I/R: ischemia/reperfusion;  

ITCs: isothiocyanates;  

MYR: myrosinase;  

NF-kB: nuclear factor kB;  

NO: nitric oxide;  

ONOO−: peroxynitrite;  

RNS: reactive nitrogen species;  

ROS: reactive oxygen species;  

Bioactive RS-GRA: myrosinase bioactivated GRA;  

O2−: superoxide anion; 

TdT: terminal deoxynucleotidyltransferase;  

TUNEL: terminal deoxynucleotidyltransferase-mediated UTP end labeling. 
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Summary 

 

Ischemic stroke is the result of a transient or permanent reduction in cerebral blood flow 

caused by the occlusion of a cerebral artery via an embolus or local thrombosis. Restoration 

of blood supply to ischemic tissues can cause additional damage known as reperfusion injury 

that can be more damaging than the initial ischemia. This study was aimed to examine the 

possible neuroprotective role of enantiopure R-sulforaphane R-SF in an experimental rat 

model of brain ischemia/reperfusion injury (I/R). The mechanism underlying the inhibitory 

effects of R-SF on inflammatory and apoptotic responses, induced by carotid artery occlusion 

in rats,was carefully examined. Cerebral I/R was induced by the clamping of carotid artery for 

1 h, followed by 40 min of reperfusion through the release of clamp. The results have clearly 

shown that administration of R-SF (GRA 10 mg Kg-1, i.p. + myrosinase) 15 min after ischemia, 

significantly reduces proinflammatory parameters, such as inducible nitric oxide synthase 

expression (iNOS), intercellular adhesion molecule 1 (ICAM-1), nuclear factor (NF)-kB 

translocation as well as the triggering of the apoptotic pathway (TUNEL and Caspase 3 

expression). Results have shown that R-SF possesses beneficial neuroprotective effects in 

counteracting the brain damage associated to I/R.  
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11.1 Cerebral ischemia reperfusion 

 

Stroke is the third leading cause of death (Lo et al., 2003) and the most severe cause of 

acquired adult disability (Donnan et al., 2008). With high incidence, stroke survivors are 

permanently disabled, and they require institutional care. Deficits can include partial 

paralysis, difficulties in memory, thinking, language, and movements. Ischemic stroke results 

by a transient or permanent reduction in cerebral blood flow, that is restricted to the territory 

of a major brain artery. The reduction in flow is, in most cases, caused by the occlusion of a 

cerebral artery either by an embolus or by local thrombosis. This leads to a complex sequence 

of pathophysiological events, that evolve in time and space and which includes mechanisms 

of excitotoxicity, release of neurotransmitters, breakdown of blood–brain barrier, cytokine 

production, adhesion molecule upregulation, oxidative and nitrosative stress and apoptosis 

(Sahota and Savitz, 2011; Brouns and De Deyn, 2009). Although several mechanisms are 

involved in cerebral ischemic stroke pathogenesis, increasing evidences demonstrate that 

inflammation plays a key role in the pathogenesis of ischemic stroke and other forms of 

ischemic brain injury (Moskowitz et al., 2010; Jin et al., 2010). Cerebral ischemia initiates a 

significant inflammatory cascade, which involves the activation of brain microglia, 

upregulation of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), 

interleukin (IL)-1β and others (Jin et al., 2010; del Zoppo et al., 2000), infiltration of various 

types of inflammatory cells (including neutrophils, different subtypes of T cells, 

monocyte/macrophages and other cells) into the ischemic brain tissue (Jin et al., 2010; Yilmaz 

and Granger, 2010). Reperfusion is the restoration of blood flow to the ischemic tissue. 

Despite the unequivocal benefit of blood reperfusion to an ischemic tissue, itself can elicit a 

cascade of adverse reactions that paradoxically injure the tissue (Bonventre, 1993). It has 

been amply demonstrated that there are a series of reactions following brain reperfusion, 

such as inflammation and a rapid increase of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), which can produce significant quantities of tissue damage, thereby 

contributing to neuronal cell death (Kahles et al., 2007; Maneen and Cipolla, 2007). Therefore, 

antiinflammatory or antioxidant approach may be a potential therapeutic strategy of 

preserving against ischemia/reperfusion (I/R) cerebral injury. Despite advances in the 

understanding of the cerebral ischemia pathophysiology, therapeutic options remain limited. 

Numerous clinical trials failed in the past decades because either these agents showed no 
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protective effects in patients or their toxicity/side effects cannot be tolerated by patients. The 

aim of this study was to evaluate the possible positive effect of R-SF in the treatment of 

cerebral I/R rat model. 

 

11.2 Materials and Methods  

 

11.2.1 Animals 

 

Male Wistar rats (Harlan, Italy) weighing 200–250 g were used. Rats were housed in a 

controlled environment and provided with standard rodent chow and water. Animal care 

followed Italian regulations on the protection of animals used for experimental and other 

scientific purpose (D.M. 116/92) as well as with the EEC regulations (O.J. of E.C. 

L358/112/18/1986). Experimental procedures did not cause any significant animal suffering. 

 

11.2.2 Induction of cerebral I/R 

 

After anesthesia, cerebral I/R was induced in rats. In brief, in the supine position, a midline 

ventral incision was made in the neck of each animal, carotid artery was exposed, separated 

from the vagus nerve and occluded for 1 h by clamping with small vascular clips and by 

inducing hypotension to generate a cerebral ischemia animal model. R-SF was administered 

15 min after ischemia and at the end of clamping time, a phase of reperfusion of blood flowing 

the duration of 40 min was followed. Finally, rats were sacrificed to perform subsequent 

morphological evaluation and Western blot analysis. 

 
11.2.3 Myrosinase bioactivation of pure glucoraphanin 

 
GRA and MYR were purified as described at Chapter eight (see Section 8.3.2) and at Chapter 

nine (see Section 9.2.2), respectively. 

Pure GRA (95%) was dissolved in PBS solution pH 7.2 at room temperature (2.5 mg mL-1) and 

hydrolyzed by the action of MYR (12.5 μl; 32 U mL-1) for 15 min at 37 °C right before animal 

treatment. Starting GRA was quantitatively transformed into R-SF and rats were then 

administered with the resulting solution as such. 
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11.2.4 Experimental design  

 

Rats were randomly allocated into the following groups (N=20 total animals): 

- I/R + saline group: rats were subjected to artery occlusion (1 h) followed by 

reperfusion (40 min) and were administered with saline (N=10); 

- I/R + R-SF group: rats were subjected to surgical procedures described as above and R-SF 

(GRA 10 mg Kg-1 + 50 μl/rat MYR) was administered 15 min after ischemia (N=10). 

At the end of the experiment, blood from each animal was collected by cardiac puncture for 

hemogram analysis, following animals were sacrificed. Brain tissues were sampled and 

processed, to evaluate some disease parameters. 

 

11.2.5 Light microscopy 

 

Brain tissues were taken at 40 min following I/R (Lu et al., 2003). Tissues were fixed in 10% 

formalin, pH 7.4. After dehydration in graded ethanol and xylene, the tissues were paraffin 

embedded and cut into coronal sections (7 μm thick) to observe hippocampus area, a vital 

center for learning and memory, which is extremely vulnerable to various insults such as 

ischemia (Nakatomi et al., 2002). Tissue sections were stained with hematoxylin/eosin (H&E) 

and studied using light microscopy (Leica ICCS50HD). 

 

11.2.6 Immunohistochemical localization of ICAM-1, iNOS, IkB-α and NF-kB 

 

About 40 min following I/R tissues were fixed in 10% (w/v) PBS-buffered formaldehyde, and 

6-μm sections were prepared from paraffin-embedded tissues. After deparaffinization, 

endogenous peroxidase was quenched with 0.3% (v/v) hydrogen peroxide in 60% (v/v) 

methanol for 30 min. Nonspecific adsorption was minimized by incubating the section in 2% 

(v/v) normal goat serum in PBS for 20 min. Endogenous biotin or avidin binding sites were 

blocked by sequential incubation for 15 min with biotin and avidin (DBA, Milan, Italy), 

respectively. Sections were incubated overnight with anti-ICAM-1 monoclonal antibody 

(1:100 in PBS v/v; Santa Cruz Biotechnology. INC), anti-iNOS polyclonal antibody (1:100 in PBS 

v/v; Santa Cruz Biotechnology. INC), anti-IkB-α polyclonal antibody (1:100 in PBS v/v; Santa 

Cruz Biotechnology. INC), and anti-NF-kB monoclonal antibody (1:100 in PBS v/v; Cell 
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Signaling). Sections were washed with PBS and incubated with secondary antibody. Specific 

labeling was detected with a biotin conjugated goat anti-rabbit IgG and avidin–biotin 

peroxidase complex (DBA). The counterstain was developed with diaminobenzidine (brown 

color) and ematossilin (blue background). To verify the binding specificity, some sections were 

also incubated with only the primary antibody (no secondary) or with only the secondary 

antibody (no primary). In these situations, no positive staining was found in the sections, 

indicating that the immunoreaction was positive in all the experiments carried out. All 

sections were obtained using light microscopy (LEICA ICC50 HD) and studied via an Imaging 

computer program (Leica Application Suite V4.1). 

 

11.2.7 Protein extraction from formalin-fixed paraffin-embedded tissues (FFPE) 

 

For Western blotting analysis, according to Rodriguez-Rigueiro et al. (2011), we obtained a 

total protein extract from formalin-fixed paraffin-embedded tissue (FFPE) blocks. Briefly, 6 × 

15μm sections for each paraffin embedded sample were deparaffinated with xylene and 

rehydrated with decreasing scale of alcohols. After centrifugation, pellets were resuspended 

in 50 μl of buffer, containing 200 mM Tris HCl, pH 7.5, 200 mM NaCl, 5% SDS and 100 mM 

sodium citrate, and incubated in a thermomixer comfort (Eppendorf) first at the temperature 

of 100 °C for 20 min and then at 80 °C for 2 h, under continuous shaking at 1000 rpm. Samples 

were ice cooled for 1 min, purified by centrifugation at 14000 ×g for 15 min at 4 °C and the 

supernatants were recovered, and protein quantification was carried out by using Biorad 

protein assay kit (Bio-Rad Milan, Italy). According to the molecular weight of the protein to 

investigate, extracts were loaded in polyacrilamide gels at different percentage for SDS-PAGE 

and after electrophoresis and blotting, Westran S PVDF Blotting Membranes, (Labcenter 

EXACTA + OPTECH) were blocked with 1×PBS, 5% (w/v) nonfat dried milk (PM) for 1 h at room 

temperature and subsequently probed at 4 °C overnight with specific antibodies for Caspase 

3 (1:1000; Cell Signaling), in 1×PBS, 5% (w/v) nonfat dried milk, 0.1% Tween-20 (PMT). 

Membranes were incubated with peroxidase-conjugated bovine anti-mouse IgG secondary 

antibody or peroxidase-conjugated goat anti-rabbit IgG (1:2000, Santa Cruz Biotechnology. 

INC) for 1 h at room temperature. To verify that blots were loaded with equal amounts of 

protein extract, they were also incubated in the presence of the antibody against α-tubulin 

(1:250, Santa Cruz Biotechnology. INC). The relative expression of the protein bands of 
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Caspase 3 (~35 kDa), was visualized using an enhanced chemiluminescence system (Luminata 

Western HRP Substrates, Millipore). The protein bands were scanned and quantitated with 

ChemiDocTM MP System (Bio-Rad) and a computer program (ImageJ). 

 

11.2.8 Terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) assay 

 

To test whether I/R was associated with cell death by apoptosis, we measured TUNEL-like 

staining in brain tissues. TUNEL assay was conducted by using a TUNEL detection kit according 

to the manufacturer's instruction (Apotag, HRP kit DBA, Milan, Italy). Sections were incubated 

with 15 mg mL-1 proteinase K for 15 min at room temperature and then washed with PBS. 

Endogenous peroxidase was inactivated by 3% H2O2 for 5 min at room temperature and then 

washed with PBS. Sections were immersed in terminal deoxynucleotidyltransferase (TdT) 

buffer containing deoxynucleotidyl transferase and biotinylated dUTP in TdT buffer, 

incubated in a humid atmosphere at 37 °C for 1 h, and then washed with PBS. Sections were 

incubated at room temperature for 30 min with anti-horseradish peroxidase conjugated 

antibody, and signals were visualized with diaminobenzidine and controstained with methyl 

green. 

 

11.2.9 Statistical evaluation 

 

Data were analyzed in GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA). The 

results were analyzed by unpaired Student's t-test. A p value of ≤0.05 was considered to be 

statistically significant. Results are expressed as the mean ± S.E.M. of n experiments. 

 

11.3 Results 

 

11.3.1 Effect of R-SF on carotid artery ischemia/reperfusion injury in rats 

 

Cerebral infarction was examined using slices of brain after I/R in rats through H&E staining. 

The infarct area was larger in brain sections obtained from rat subjects to I/R. In addition, 

histological examination showed severe damage to the brain tissue in different sections, as 

demonstrated by the presence of edema (Figure 11.1A, B, E and F), infiltration of 
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inflammatory cells, such as leukocytes (neutrophils and/or lymphocytes), as well as alteration 

of the frame 40 min after injury. These data were also supported by the results obtained 

through hemogram analysis, that have demonstrated an increase in inflammatory cells in rats 

subjected to cerebral I/R. On the contrary, an attenuation of these indices of inflammation 

was observed in rats treated with R-SF (Table 11.1). Moreover, presence of mast cells (Figure 

11.2A) was observed in brain tissues collected after 40 min of reperfusion in perivascular area 

(arrows indicate the presence of mast cells characterized by metachromatic granules 

basophils rich in histamine). On the contrary, significant less mast cells density and 

degranulation were observed in brain tissue after I/R, collected from rats which have been 

treated with R-SF (Figure 11.2B). Also, R-SF administration showed reductions in infarct 

volume and a significant protection from I/R-associated damage was observed in tissue 

samples collected from R-SF treated rats (Figure 11.1C, D). 

 

Table 11.1 Hemogram analysis. The results obtained through hemogram analysis, demonstrated an 
increase in inflammatory cells in rats subjected to cerebral I/R. On the contrary, an attenuation of 
these indices of inflammation was observed in rats treated with R-SF. Values shown are the mean of 
multiple observations. 
 

Parameters I/R  
(K/μL) 

I/R + R-SF  
(K/μL) 

WBC 1.37 0.5355 

NEU 0.42967 0.236 

LYM 0.837 0.2715 

MONO 0.027 0.0065 

EOS 0.058 0.02 

BASO 0.01867 0.001 
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Figure 11.2 Staining of mast cells. In the vascular endothelium the presence of metachromatic 
granules basophils rich in histamine was shown, indicated by the arrows, which identifies the cells as 
mast cells. Many of the mast cells are arranged separately in concentric rings around small blood-
vessels. In the brain tissue collected after 40 min of reperfusion there is presence of mast cells mainly 
localized in the perivascular area (A). On the contrary, administration of R-SF showed reduction in 
mast cell infiltration and activation (B). 
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Figure 11.1 Effect of R-SF on histological alterations of the brain tissue. Significant damage to the brain 
tissue in rats subjected to I/R was apparent, as demonstrated by the presence of edema as well as 
frame alteration 40 min after injury (A, B, E and F). Also, a significant protection from I/R-associated 
damage was observed in tissue samples collected from R-SF treated rats (C,D). 
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11.3.2 Effect of R-SF on ICAM-1 expression in ischemic cerebral tissues  

 

Since ICAM-1 in post-ischemic cerebral stroke has a role in the recruitment of inflammatory 

cells, such as leukocytes and lymphocytes from the blood into the brain parenchyma, we 

evaluated ICAM-1 expression in ischemic cerebral tissue collected after 40 min of reperfusion. 

Our results clearly showed that increased expression of adhesion molecules following carotid 

artery I/R in the vascular endothelium (Figure 11.3A, C) could be reverted by R-SF treatment 

that significantly reduces degree of positive staining for ICAM-1 (Figure 11.3B, D). 

 

 
 

Figure 11.3 Effect of R-SF on ICAM-1 expression. A substantial increase in ICAM-1 expression was 
found in brain tissues from I/R rats 40 min after reperfusion localized in the vascular endothelium (A, 
C). Treatment with R-SF significantly reduced the degree of positive staining for ICAM-1 (B, D). 
 

11.3.3 Effect of R-SF on IkB-α and NF-kB expression in ischemic cerebral tissues 

 

To investigate the cellular mechanism by which R-SF treatment may attenuate development 

of I/R and damage associated with it, we evaluated in the brain sections collected after 40 

min of reperfusion, IkB-α degradation and nuclear NF-kB activation by immunohistochemical 

analysis. Brain sections obtained from rats subjected to I/R did not stain for IkB-α (Figure 11.4 

A, C), whereas brain sections obtained from rats treated with R-SF exhibited positive staining 
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for IkB-α (Figure 11.4B, D). In addition, brain sections obtained from rats subjected to I/R 

exhibited positive staining for NF-kB (Figure 11.4E, G). On the contrary, R-SF treatment 

significantly reduced degree of positive staining for NF-kB (Figure 11.4F, H). 

 

 

Figure 11.4 Effect of R-SF on IkB-α and NF-kB expression. IkB-α and NF-kB expression was 
evaluated by immunohistochemical analysis. Brain sections obtained from rats subjected to 
I/R did not stain for IkB-α (A, C), whereas brain sections obtained from rats treated with R-SF 
exhibited positive staining for IkB-α (B, D). In addition, brain sections obtained from rats 
subjected to I/R exhibited positive staining for NF-kB (E, G). On the contrary, treatment with 
R-SF significantly reduced the degree of positive staining for NF-kB (F, H). 
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11.3.4 Effect of R-SF on iNOS expression in ischemic cerebral tissues 
 

To determine the role of nitric oxide (NO) produced during I/R and to verify whether 

treatment with R-SF is able to counteract oxidative and nitrosative stress resulting from 

ischemic damage, we evaluated iNOS expression by immunohistochemical analysis, after 40 

min of reperfusion. Brain section obtained from rats subjected to I/R exhibited positive 

staining for iNOS (Figure 11.5A, C, see densitometry analysis E). R-SF treatment clearly 

reduced the degree of positive staining for iNOS (Figure 11.5B, D see densitometry analysis 

E). 

 
Figure 11.5 Effect of R-SF (bioactive RS-GRA) on iNOS expression. A substantial increase in iNOS 
expression was found in inflammatory cells, in the white matter nuclei of hippocampus from I/R rats 
(A) and in blood–brain barrier (C). Brain levels of iNOS were significantly attenuated in R-SF treated 
rats (B, D). Densitometric analysis is shown in E: a p value ≤ 0.05 was considered statistically significant. 
ND: not detectable. 
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11.3.5 Effect of R-SF on apoptosis in brain after ischemia 
 

Morphological and biochemical criteria of apoptosis are the condensation of chromatin 

leading to the development of apoptotic bodies or membrane-enclosed vesicles containing 

oligonucleosomal DNA fragments. Important diagnostic tools of death, such as TUNEL test, 

are based on the biochemical characteristics mentioned above. To test whether tissue 

damage was associated with apoptosis induction, we evaluated TUNEL-like staining in the 

brain tissue. After 40 min of reperfusion, brain tissue demonstrated a marked appearance of 

dark-brown apoptotic cells and intercellular apoptotic fragments (Figure 11.6A, see particle 

A1 and C). In contrast, tissues obtained from rats treated with R-SF demonstrated no 

apoptotic cells or fragments (Figure 11.6B, D). 

 

 
Figure 11.6 Effect of R-SF on TUNEL-like staining in brain tissue. At 40 min after reperfusion, tissues 
obtained from rats subjected to I/R demonstrated a marked appearance of dark-brown apoptotic cells 
and intercellular apoptotic fragments both in hippocampus (A, see particle A1,) and in the vascular 
endothelium (C). In contrast, tissues obtained from rats treated with R-SF demonstrated no apoptotic 
cells or fragments in hippocampus areas (B) and in vascular endothelium (D). Panel E is a positive 
control of kit. 
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11.3.6 Effect of R-SF on Caspase 3 expression in ischemic cerebral tissues 

 

By Western blot, we evaluated Caspase 3 activation, since sequential activation of caspase 

plays a key role in the execution phase of cell apoptosis. Caspase 3 levels were appreciably 

increased in the brain from rats subjected to I/R. On the contrary, treatment with R-SF 

prevented I/R-induced Caspase 3 expression (Figure 11.7). 

 

 
Figure 11.7 Western blot for Caspase 3. By Western blot, Caspase 3 activation was evaluated. Caspase 
3 levels were appreciably increased in the brain from rats subjected to I/R. On the contrary, treatment 
with R-SF (bioactive RS-GRA) prevented the I/R-induced Caspase 3 expression. α-tubulin was used as 
internal control. *p ≤ 0.0112 vs. I/R. 
 

11.4 Discussion 

 

I/R is characterized by initial tissue damage during the ischemic period to cell structures and 

following the restoration of blood flow (I/R), lesions produced are exacerbated further. 

Moreover, it is believed that several mediators, such proinflammatory cytokines (Husted and 

Lentsch, 2006), chemokines, excess of NO (Masini et al., 2006) and ROS contribute 

significantly to the degree of injury (Serracino-Inglott et al, 2001; Ayub et al., 2001). Previous 

studies have demonstrated that inflammation has been implicated in the pathogenesis of 

ischemic stroke and inflammatory cell recruitment, appears to aggravate ischemic brain injury 

(Planas et al., 2006; Wang et al., 2007). Since leukocyte-endothelial cell adhesion is a rate-
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determining step in the recruitment of leukocytes into post-ischemic brain tissue, much 

attention has been devoted to defining the contribution of different adhesion molecules, 

expressed either on leukocytes or endothelial cells, to the leukocyte recruitment process, like 

ICAM-1 (Yilmaz and Granger, 2008). ICAM-1 is a member of the immunoglobulin superfamily 

and among all, ICAM-1 has been the most extensively investigated in cerebral ischemia since 

it plays an important role in its pathophysiology (Yilmaz and Granger, 2008). Indeed, results 

of several studies have revealed significant ICAM-1 expression in the post-ischemic brain and 

a role for this adhesion molecule in the recruitment of inflammatory cells, such as leukocytes 

and lymphocytes from the bloodstream into the brain parenchyma (Chen et al., 2003; Okada 

et al., 1994; Jander et al., 1995; Zhang et al., 1995; Wang et al., 1995). In normal rat brain, 

ICAM-1 is constitutively expressed in low concentrations in the membranes of leukocytes and 

endothelial cells. In certain circumstances, concentrations greatly increase. In response to I/R, 

it is super expressed in the vascular endothelium cells, connective tissue, lamina propria and 

inflammatory cells. This super expression of ICAM-1 accentuates the leukocyte adhesion and 

promotes their migration to the injured brain during I/R. We have shown significant increase 

ICAM-1 levels in the brain tissues from I/R rats and that treatment with R-SF significantly 

reduced degree of positive staining for ICAM-1. Also, resident mast cells contribute to 

dysfunction of the I/R brain through the release of histamine and other mediators, mainly 

after the formation of large quantities of ROS (Mannaioni and Masini, 1988). These in turn 

contribute to the up-regulation of ICAM-1 expression on endothelial cells and play a key role 

in inflammatory process (Clark et al., 1995). Mast cells are implicated in leukocyte recruitment 

and tissue injury following acute brain I/R, in specific, through their degranulation is released 

histamine. It is a vasoactive amine which increases the caliber and permeability of blood 

vessels by promoting the extravasation of plasma and plasma proteins in the extracellular 

environment, with consequent formation of edema and promoting the release neutrophils 

(Strbian et al., 2006; Lindsberg et al., 2010). By histological examination we demonstrated 

that cerebral ischemia causes edema and infiltration of inflammatory cells, such as leukocytes 

(neutrophils and/or lymphocytes) and mast cells in brain tissues from I/R rats. R-SF 

administration significantly reduced degree of the severity of I/R through reduction of mast 

cell infiltration and activation. NF-kB plays a central role in the regulation of many genes 

responsible for generation of mediators or proteins in secondary inflammation associated to 

I/R. NF-kB is normally sequestered in the cytoplasm, bound to regulatory protein IkBs. In 
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response to a wide range of stimuli including oxidative stress, infection, hypoxia, extracellular 

signals, and inflammation, IkB is phosphorylated by IkB kinase enzyme (Bowie and O’Niell, 

2000). The net result is release of the NF-kB dimer, which is then free to translocate into the 

nucleus. We reported here that carotid artery occlusion caused a significant increase in the 

NF-kB levels in brain tissues, whereas treatment with R-SF significantly reduced this 

expression. Moreover, we also demonstrated that R-SF inhibited IkB-α degradation, as well 

as the consequent NF-kB translocation and subsequent activation of many proinflammatory 

mediators under its control, such as iNOS (Attuwaybi et al., 2004). ROS and RNS are produced 

during an acute ischemic stroke and it is known that oxidative stress is a key mediator of tissue 

damage in it (Cuzzocrea et al., 2001). NO is also important among the free radicals produced 

during I/R. It is normally synthesized by L-arginine through NO synthase, which can have 

constitutive (cNOS) and induced (iNOS) isoforms. The excess production of NO through 

induced NO synthase (iNOS) contributes to the pathophysiology of I/R in the brain. NO 

presents beneficial vasodilatory effects in the microvascular system through the relaxation of 

the smooth vascular muscle cells, but, paradoxically, could be involved in the production of 

cytotoxic radicals (Chan et al., 1999). According to Sekhon et al. (2003), NO is beneficial as a 

modulator or messenger, but during oxidative stress it is potentially toxic. NO cytotoxicity 

emerges, in part, by reaction with superoxide anion (O2−) to generate peroxynitrite (ONOO−), 

which then causes accentuated lipid peroxidation, proteic and DNA modifications resulting in 

cellular damage (Montalto et al., 2003). All cellular components are susceptible to the action 

of ROS, though the membrane is one of the most affected because of lipid peroxidation, which 

causes alterations in the structure and permeability of cellular membranes. We showed that 

cerebral I/R results in expression of iNOS in rats brain 40 min after reperfusion. We further 

demonstrated that R-SF administration protected brain morphology and reduced I/R-induced 

activation of iNOS after reperfusion. Therefore, it is possible that R-SF by counteracting 

oxidative and nitrosative stress prevents inflammatory and toxic events during I/R injury. 

Moreover, it is well known that isothiocyanates may exert their cytoprotective effects by the 

ability to induce the expression of several enzymes via the Keap1/Nrf2/ARE pathway (Baird 

et al., 2014). Nrf2, is believed one of the most important transcription factors involved in the 

protection of the cells by oxidative stress, regulating cytoprotective genes and triggering the 

activation of the antioxidant glutathione pathway (Harvey et al., 2009). Therefore, after 

damage, Nrf2 could play a protective action in astrocytes, decreasing GFAP expression 
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probably through the mechanism related to the glutathione activity, according to other 

studies reported in literature (Harvey et al., 2009; LaPash Daniels et al., 2012). Thus, it seems 

that astrocyte specific Nrf2 mediated protection due to treatment with R-SF could have 

beneficial effects in counteracting the damage after I/R and this could be associated with the 

production of several growth factors that may protect neurons from damage. Finally, we have 

demonstrated that R-SF treatment has proved to be able to attenuate degree of apoptosis in 

brain after I/R induction, measured by TUNEL. Apoptosis is a natural form of cell death, which 

can be induced by an “intrinsic” mitochondria mediated pathway. Activation of caspases (in 

particular Caspase 3) followed by cleavage of cellular substrates, leads to programmed cell 

death (Green and Reed, 1998). Caspase 3 is a key regulator of apoptosis, essential for some 

of the characteristic changes in cell morphology and in some biochemical events associated 

with the execution and completion of this process (Porter and Janicke, 1999). Since apoptosis 

is present in dying neurons after ischemia, we considered Caspase 3 overexpression as marker 

of apoptosis. Our data demonstrated a significant increase of cleaved Caspase-3 after I/R. A 

protective effect of R-SF suggests that this treatment could interfere with the I/R induced 

neuronal death, preserving cells by injury. 

 

11.5 Conclusion 

 

Taken together, the results of the present study have shown that the R-SF treatment is 

associated with neuroprotective effects due to an anti-inflammatory and antiapoptotic 

activity during cerebral I/R in rats. These results provide a new and interesting possible 

application of R-SF in the clinical treatment of cerebral ischemia. 
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Abbreviations 

 

(2S)-2-hydroxy-3-butenyl GL: progoitrin;  

4-OH-GBS: 4-hydroxy-3-indolylmethyl GL, 4-hydroxy-glucobrassicin;  

4-OMe-GBS: 4-methoxy-3-indolylmethyl GL, 4-methoxy glucobrassicin;  

BBB: blood–brain barrier;  

CIR: Cerebral ischemia and reperfusion;  

CNS: central nervous system;  

GBS: 3-indolylmethyl GL, glucobrassicin;  

GER: 4-methylsulfanylbutyl GL, glucoerucin;  

GLs: glucosinolates; 

GRA: 4(R)-methylsulfinylbutyl GL, glucoraphanin;  

ICAM-1: adhesion molecule 1;  

iNOS: inducible nitric oxide synthase;  

ITCs: isothiocyanates; 

MYR: myrosinase;  

Neo-GBS: N-methoxy-3-indolylmethyl, neoglucobrassicin; 

NO: nitric oxide;  

RNS: reactive nitrogen species;  

ROS: reactive oxygen species; 

TBK-SE: Tuscan black kale sprout extract;  

TJ: tight junction;  

t-PA: tissue plasminogen activator. 
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Summary 

 

Cerebral ischemia and reperfusion (CIR) is a pathological condition characterized by a first 

blood supply restriction to brain followed by the consequent restoration of blood flow and 

simultaneous reoxygenation. The aim of this study was to evaluate the neuroprotective 

effects of Tuscan black kale sprout extract (TBK-SE) bioactivated with myrosinase enzyme, 

assessing its capability to preserve blood–brain barrier (BBB), in a rat model of CIR.  

CIR was induced in rats according to a classic model of carotid artery occlusion for a time of 1 

h and the reperfusion time was prolonged for seven days. By immunohistochemical 

evaluation and western blot analysis of brain and cerebellum tissues, our data have clearly 

shown that administration of bioactive TBK-SE is able to restore alterations of tight junction 

components (claudin-5 immunolocalization). Also, bioactive TBK-SE reduces some 

inflammatory key-markers (p-selectin, GFAP, Iba-1, ERK1/2 and TNF-α), as well as the 

triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance, p53 and 

cleaved-caspase 3) and the generation of radicalic species by oxidative stress (results focused 

on iNOS, nitrotyrosine and Nrf2). Taken together, the results showed that bioactive TBK-SE 

exerts pharmacological properties in protecting BBB integrity through a mechanism of action 

that involves a modulation of inflammatory and oxidative pathway as well into control of 

neuronal death. 
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12.1 Cerebral ischemic stroke 

 

Cerebral ischemic stroke regards for approximately 80% of all strokes (Feigin et al., 2003) and 

often it results from the occlusion of a cerebral artery caused by a thrombus or embolus that 

leads to an immediate loss of the normal intake of oxygen and glucose to cerebral tissues (Go 

et al., 2014). Ready initiation of reperfusion is the most effective treatment for reducing 

infarct area and behavioral deficits caused by ischemia. Paradoxically, however, blood flow 

restoration is causative of additional injury during the cascade of events that characterize and 

identify the so-called cerebral ischemia/reperfusion (CIR) injury (Dong et al., 2013). It has 

been widely demonstrated that excitotoxicity, ionic imbalance, adhesion molecules 

upregulation, reactive oxygen and nitrogen species (ROS/RNS) formation, inflammation and 

apoptosis are the main mechanisms involved in CIR (Doyle et al., 2008; Ritz et al., 2008). It is 

well known also that all these events contribute to blood–brain barrier (BBB) breakdown, 

considered as a critical step in cerebral ischemia pathogenesis (Sandoval and Witt, 2008). BBB 

integrity and maintenance of homeostasis in central nervous system (CNS) are critically 

dependent of tight junctions (TJs) between cerebrovascular endothelial cells. Any abnormality 

in the structure or function of TJs can lead to BBB dysfunction that consequently may 

contribute to the development of neurological damage (Sandoval and Witt, 2008). Several 

experimental data showed that oxidative stress may affect TJ components of BBB through the 

activation of several pathways (Lochhead et al., 2010). In fact, during CIR, production of ROS 

is dramatically increased and involves endogenous antioxidant systems leading to oxidative 

stress and ultimately contributing to neuronal cell death (Sugawara and Chan, 2003). For this 

reason, antioxidants have been the focus of studies for developing neuroprotective drugs to 

be used in cerebral ischemia treatment. To date there is no clinically effective therapy for 

stroke management except tissue-plasminogen activator (t-PA) (Alavijeh et al., 2005). The 

purpose of our study was to investigate whether a freeze-dried Tuscan black kale sprouts 

extract containing about 15% of GRA and other minor GLs and bioactivated with MYR 

(bioactive TBK-SE) has neuroprotective effects in a chronic experimental model of CIR. Also, 

we investigated the possible neuroprotective role of bioactive TBK-SE, as a novel important 

field of action potentially applicable in BBB dysfunctions through a repair mechanism at the 

level of TJs proteins and thus, the progression of neurological injury. Finally, other important 

aim of this study was to suggest this natural extract as a promising source of alternative 
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medicine for the prevention and/or treatment of cerebral ischemia. In addition, as being a 

natural phytochemical, we believe that bioactive TBK-SE could be introduced as an herbal 

medicine without adverse effects, at least in association with current conventional therapies. 

 

12.2 Materials and Methods  

 

12.2.1 Animals 

 

Male Sprague–Dawley rats (about 9 weeks old) (Harlan, Italy) 200–250 g weight were used. 

Rats were housed in a controlled environment and provided with standard rodent chow and 

water. Animal care was in compliance with Italian regulations on protection of animals used 

for experimental and other scientific purposes (D.M. 116/92) as well as with the EEC 

regulations (O.J. of E.C.L 358/1 12/18/1986). 

 

12.2.2 Induction of CIR 

 

After anesthesia induced with an anesthetic cocktail composed of tiletamine plus xylazine (1 

mL Kg-1 i.p.), CIR was induced in rats according to Awooda et al. (2013). In brief, in the supine 

position, a midline ventral incision was made in the neck of each animal; the left carotid artery 

was exposed, separated from the vagus nerve and occluded for 1 h by clamping with small 

vascular clips and by inducing hypotension to generate a cerebral ischemia animal model. A 

phase of reperfusion of blood flow of the duration of seven days was followed. Blood pressure 

was continuously monitored through a blood pressure recorder (Ugo Basile, Varese, Italy), a 

noninvasive method that allows to check on a display the systolic and diastolic blood pressure 

of rat during the surgical procedures by the application of a tail cuff. This allowed to ascertain 

the reduction of blood flow following carotid artery occlusion and the increasing after blood 

flow restoration. In specific, before the start surgical procedures, it was recorded a baseline 

blood pressure value of about 108 ± 5 mmHg in rats and a blood pressure value of about 49 

± 5 mmHg immediately after the clamping, indicating that cerebral ischemia was successful 

induced. Following removal of vascular clip, blood pressure returned to the value of about 

108 ± 5 mmHg. In addition, during the observation period of seven days, we have recorded 
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eyelid edema associated to hemorrhagic lachrymation in animal subjected to CIR, further 

indicating that there had been alteration in cerebral blood flow circulation. 

 

12.2.3 Myrosinase bioactivation of TBK-SE 

 

TBK-SE was prepared as described at Chapter eight (see section 8.7). TBK-SE was dissolved in 

PBS solution pH 7.2 (17 mg mL-1, containing 2.6 mg GRA) and hydrolyzed by the action of MYR 

(20 μl; 32 U mL-1) for 15 min at 37 °C, right before animal treatment. The resulting solution 

was labeled as bioactive TBK-SE and used for animal treatment in this study. MYR treatment 

transformed quantitatively aliphatic GLs into ITCs, R-sulforaphane being the major one as 

described at Chapter eight (see section 8.8).  

 
12.3.4 Experimental design  

 

Rats were randomly allocated into the following groups (N=20 total animals): 

- Untreated CIR group: rats were subjected to 1 h of carotid artery occlusion followed by 7 

days of reperfusion (N=10); 

- Bioactive TBK-SE-treated CIR group: rats were subjected to surgical procedures described 

as above and bioactive TBK-SE (17 mg TBK-SE/rat plus 20 μl MYR) was administered 15 

min after ischemia and daily for seven days (N=10). 

At the end of the experiment, blood was collected by cardiac puncture and animals were 

euthanized. Brain and cerebellum tissues were sampled and processed to perform 

morphological evaluation and molecular biology analysis. 

 

12.3.5 Immunohistochemical evaluation 

 

At 7 days following CIR-induction, brains were sampled and fixed in 10 % (w/v) PBS-buffered 

formaldehyde and 7 μm sections were prepared from paraffin-embedded tissues. After 

deparaffinization with xylene, sections of brain samples were hydrated in graded ethanol. 

Detection of claudin-5, p-selectin, GFAP and iNOS, Nitrotyrosine, Nrf2 and Bax was carried 

out after boiling in citrate buffer 0.01 M pH 6 for 4 min. Endogenous peroxidase was quenched 

with 0.3% (v/v) hydrogen peroxide in 60% (v/v) methanol for 30 min. Nonspecific adsorption 
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was minimized by incubating the section in 2% (v/v) normal goat serum in PBS for 20 min. 

Sections were incubated overnight with: 

- anti-Claudin-5 monoclonal antibody (1:100 in PBS v/v; Novus Biologicals); 

- anti-p-selectin polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc.); 

- anti-GFAP monoclonal antibody (1:50 in PBS v/v; Cell Signaling Technology); 

- anti-iNOS polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc.); 

- anti-Nitrotyrosine polyclonal antibody (1:1000 in PBS v/v; Millipore); 

- anti-Nrf2 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc.); 

- anti-Bax polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc.). 

Endogenous biotin or avidin binding sites were blocked by sequential incubation for 15 min 

with biotin and avidin (DBA, Milan, Italy), respectively. Sections were washed with PBS and 

incubated with secondary antibody. Specific labelling was detected with a biotin-conjugated 

goat anti-rabbit IgG and avidin–biotin peroxidase complex (Vectastain ABC kit, VECTOR). The 

counterstain was developed with peroxidase substrate kit DAB (brown colour) or DAB nickel 

solution addicted (black colour) (Vector Laboratories, Inc.) and Hematoxylin (blue 

background) or nuclear fast red (Vector Laboratories, Inc.). To verify the binding specificity, 

some sections were also incubated with only the primary antibody (no secondary) or with 

only the secondary antibody (no primary). In these cases, no positive staining was found in 

the sections, indicating that the immunoreaction was positive in all the experiments carried 

out. All sections were obtained using light microscopy (LEICA DM 2000 combined with LEICA 

ICC50 HD camera). To perform densitometric analysis, quantitative data were carried out 

using Leica Application Suite V4.2.0 software. 

 

12.3.6 Western blot analysis 

 

All the extraction procedures were performed on ice using ice-cold reagents. In brief, 

cerebellum tissues were suspended in extraction buffer containing 0.32 M sucrose, 10 mM 

Tris–HCl, pH 7.4, 1 mM EGTA, 2 mM EDTA, 5 mM NaN3, 10 mM 2-mercaptoethanol, 50 mM 

NaF, protease inhibitor tablets (Roche Applied Science, Monza, Italy), and they were 

homogenized at the highest setting for 2 min. The homogenates were chilled on ice for 15 

min and then centrifuged at 1000 g for 10 min at 4°C, and the supernatant (cytosol + 

membrane extract from brain tissue) was collected to evaluate content of citoplasmatic 
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proteins. The pellets were suspended in the supplied complete lysis buffer containing 1 % 

Triton X-100, 150 mM NaCl, 10 mM Tris–HCl, pH 7.4, 1 mM EGTA, 1 mM EDTA protease 

inhibitors (Roche), and then were centrifuged for 30 min at 15.000 g at 4 °C. Then, 

supernatant containing nuclear extract was collected to evaluate the content of nuclear 

proteins. Supernatants were stored at −80°C until use. Protein concentration in homogenate 

was estimated by Bio-Rad Protein Assay (Bio-Rad, Segrate, Italy) using BSA as standard, and 

20 μg of cytosol and nuclear extract from each sample were analyzed. Proteins were 

separated on sodium dodecyl sulfatepolyacrylamide minigels and transferred onto PVDF 

membranes (Immobilon-P Transfer membrane, Millipore), blocked with PBS containing 5 % 

nonfat dried milk (PM) for 45 min at room temperature, and subsequently probed at 4 °C 

overnight with specific antibodies for Phospho-p44/42 MAPK (ERK1/2) (1:2000; Cell Signaling 

Technology), Bcl-2 (1:500; Cell Signaling Technology), Bax (1:500; Cell Signaling Technology), 

Nrf2 (1:100; Cell Signaling Technology), Nitrotyrosine (1:2000; Millipore), Iba-1 (1:1000; 

Abcam), p53 (Abcam 1:2000;) and cleaved caspase 3 (1:500; Cell Signaling Technology), in 1x 

PBS, 5% (w/v) nonfat dried milk, 0.1 % Tween-20 (PMT). HRP-conjugated goat anti-rabbit IgG 

or goat anti-mouse IgG were incubated as secondary antibodies (1:2000; Santa Cruz 

Biotechnology, Inc.) for 1 h at room temperature. To ascertain that blots were loaded with 

equal amounts of protein lysates, they were also incubated with antibody for GAPDH HRP 

Conjugated (1:1000; Cell Signaling Technology), p42 MAP Kinase (Erk 2) (1:1000; Cell Signaling 

Technology) and beta-actin (1:1000; Santa Cruz Biotechnology, Inc). The relative expression 

of protein bands was visualized using an enhanced chemiluminescence system (Luminata 

Western HRP Substrates, Millipore) and proteic bands were acquired and quantified with 

ChemiDoc™ MP System (Bio-Rad) and a computer program (ImageJ software) respectively. 

Blots are representative of three separate and reproducible experiments. The statistical 

analysis was carried out on three repeated blots performed on separate experiments. 

 
12.3.7 Blood sampling 

 
At the sacrifice, blood samples were collected via cardiac puncture in Serum Separator Tubes 

(Vacutainer® SSTTMII Advance, BD Diagnostic, Milan, Italy) and centrifuged following at least 

30 min from the collection at 2000 g speed for 10 min. The achieved serum was collected, 

aliquoted and stored at −80 °C to be used in next investigations. 
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12.3.8 TNF-α assay 

 

ELISA kit for TNF-α parameter assay (R&D system Europe, Ltd, Abingdon, UK) was purchased 

to detect TNF-α levels in serum samples. The kit was used according to the manufacturer’s 

instruction and achieved O.D. were tabulated and analyzed using a software of elaboration 

data. 

 

12.3.9 Statistical evaluation 

 

Data were analyzed in GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA). The 

results were analyzed by unpaired Student's t-test. A p value of <0.05 was considered to be 

statistically significant. Results are expressed as the mean ± S.E.M. of n experiments. 

 

12.3 Results 

 
12.3.1 Bioactive TBK-SE restores BBB vascular endothelium after CIR induction 

 

To evaluate whether BBB breakdown is accompanied by the loss or alterations of TJ-

associated molecules from the BBB TJs following CIR induction, we investigated the claudin-5 

expression by immunohistochemical evaluation. Sections obtained from CIR rats did not show 

positive staining for claudin-5 in temporal lobe of brain tissue (Figure 12.1a) as well as at the 

level of vascular endothelium of BBB in temporal lobe area of the brain (Figure 12.1b). In 

contrast, bioactive TBK-SE treatment normalized the positive staining for claudin-5 in 

different districts, as shown by immunohistochemical localization in brain section and in BBB 

vascular endothelium of CIR rats (Figure 12.1c and d, see densitometric analysis Figure 12.2). 

Also, immunohistochemical localization of p-selectin showed an increased expression of 

adhesion molecules following CIR in the vascular endothelium (Figure 12.1e), while treatment 

with bioactive TBK-SE clearly reduced the degree of positive staining for p-selectin in brain 

tissues (Figure 12.1f, see densitometric analysis Figure 12.2). 
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Figure 12.1 Bioactive TBK-SE restores BBB vascular endothelium. Sections from CIR rats did 
not show positive staining for claudin-5 in temporal lobe of brain tissue (a) as well as at the 
level of vascular endothelium of BBB in temporal lobe area of the brain (b). In contrast, in 
both two sections obtained from bioactive TBK-SE-treated rats it was observed a normal 
distribution of claudin-5 (c and d). Also, immunohistochemical localization of p-selectin 
displayed an increased expression of adhesion molecules following CIR in the vascular 
endothelium (e), while treatment with bioactive TBK-SE clearly reduced the degree of positive 
staining for p-selectin in brain tissues (f). 
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Figure 12.2 Bioactive TBK-SE treatment modulates unbalance between Bax and Bcl-2. Bax was 
evaluated by immunohistochemical evaluation in brain sections after CIR induction. Brain sections 
obtained from CIR untreated rats exhibited positive staining for Bax in cortex (a), hippocampus (b), 
brainstem (c) and cerebellum (d) of CIR rats, while rats treated with bioactive TBK-SE showed negative 
staining for Bax in cortex (e), hippocampus (f), brainstem (g) and cerebellum (h). Panel I shows ratio 
between Bax and Bcl-2 in cerebellum tissues, showing an higher expression of Bax/Bcl-2 in CIR 
untreated rats, attenuated by administration of bioactive TBK-SE (i). GAPDH was used as internal 
control. **p < 0.05 vs CIR. 

 

 

12.3.2 Bioactive TBK-SE modulates GFAP and Iba-1 expression after CIR 

 

Moreover, with the purpose to investigate the cellular mechanisms by which the treatment 

with bioactive TBKSE may modulate the astrocyte activation during CIR, we evaluated the 

GFAP expression by immunohistochemical analysis. GFAP is considered a marker protein for 

astrogliosis. It was observed a marked positive staining for GFAP in the sections from CIR rats, 

both in brain (Figure 12.3a) and cerebellum sections (Figure 12.3b). In contrast, a reduction 

of GFAP positive staining was evident in pharmacologically treated group (Figure 12.3c and d, 
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see densitometric analysis Figure 12.4). Also, western blot analysis showed that Iba-1 levels 

are substantially increased in cerebellum samples collected from CIR rats seven days after CIR 

induction, whereas Iba-1 levels were attenuated by approximately 50% with bioactive TBK-SE 

administration (Figure 12.3e). 

 

Figure 12.3 Effects of Bioactive TBK-SE on GFAP and Iba-1 expression. The 
immunohistochemical analysis for GFAP showed that positive staining for GFAP was observed 
in the tissues obtained from CIR rats both in brain (a) as well as in cerebellum sections (b). In 
contrast, a reduction of GFAP positive staining was evident in bioactive TBK-SE-treated group 
in both two different areas (c and d). By western blot analysis it has been shown a significant 
increase Iba-1 expression in cerebellum samples collected from CIR rats seven days after CIR 
induction. Conversely, levels of Iba-1 were attenuated by administration with bioactive TBK-
SE attenuated Iba-1 levels by approximately 50 % (e). GAPDH was used as internal control. 
**p < 0.05 vs CIR 
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12.3.3 Bioactive TBK-SE regulates iNOS, nitrotyrosine and Nrf2 expression 

 

To determine the role of nitric oxide (NO) produced during CIR and to verify whether 

treatment with bioactive TBK-SE is able to counteract oxidative and nitrosative stress 

resulting from ischemic damage, we evaluated iNOS and nitrotyrosine expression by 

immunohistochemical and western blot analysis, after seven days of reperfusion. 

Immunohistochemical localization of iNOS in temporal lobe area of brain tissues of untreated-

CIR rats (Figure 5a) sampled showed an increased expression of this marker following CIR, 

while treatment with bioactive TBK-SE significantly reduces the degree of positive staining for 

iNOS (Figure 5b, see densitometric analysis Figure 4). Brain sections obtained from CIR 

untreated rats exhibited positive staining for nitrotyrosine in cortex (Figure 6a), hippocampus 

(Figure 6b), brainstem (Figure 6c) and cerebellum (Figure 6d) of CIR rats, while rats treated 

with bioactive TBK-SE showed negative staining for nitrotyrosine (Figure 6e, f, g, h, see 

densitometric analysis Figure 4). In addition, we analyzed cerebellum expression levels of 

nitrotirosine by western blot analysis. This displayed a significant increase in nitrotirosine 

expression in cerebellum samples collected 7 days after CIR-induction from untreated rats. 

Conversely, cerebellum levels of nitrotirosine were reduced by administration of bioactive 

TBK-SE (Figure 6i). Moreover, it is known that GLs may exert their cytoprotective effects by 

the ability to induce expression of several enzymes via the Keap1/Nrf2/ARE pathway. Western 

blot analysis showed a basal level of Nrf2 expression in samples obtained from CIR rats. 

Treatment of rats with bioactive TBK-SE significantly increased Nrf2 expression (Figure 7i). 

The same result was obtained from immunohistochemical evaluation for Nrf2, showing a 

positive staining in cortex (Figure 7a), hippocampus (Figure 7b), brainstem (Figure 7c) and 

cerebellum (Figure 7d) of CIR rats treated with bioactive TBK-SE, and a negative staining in 

brain of CIR rats (Figure 7e, f, g, h, see densitometric analysis Figure 4). 
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Figure 12.4 Densitometric analysis for claudin-5, p-selectin, GFAP and i-NOS, nitrotyrosine, Nrf2 and 
Bax. For immunohistochemical images, densitometric analysis was carried out to quantify and 
highlight significant differences among experimental groups. p value <0.05 was considered significant. 

 
 

 
 

Figure 12.5 Bioactive TBK-SE modulates production of i-NOS. iNOS was evaluated by 
immunohistochemical analysis in brain sections 7 days after CIR. Brain sections obtained from CIR rats 
exhibited positive staining for iNOS (a). Bioactive TBK-SE treatment reduced the degree of positive 
staining for iNOS in lobe temporal area of brain (b). 
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Figure 12.6 Bioactive TBK-SE modulates nitrotyrosine expression. Nitrotyrosine was evaluated by 
immunohistochemical evaluation in brain sections after CIR induction. Brain sections obtained from 
CIR untreated rats exhibited positive staining for nitrotyrosine in cortex (a), hippocampus (b), 
brainstem (c) and cerebellum (d) of CIR rats, while rats treated with bioactive TBK-SE showed negative 
staining for nitrotyrosine in cortex (e), hippocampus (f), brainstem (g) and cerebellum (h). By western 
blot analysis nitrotyrosine expression was evaluated. It was found a significant increase in nitrotirosine 
expression in cerebellum samples collected 7 days after CIR-induction from untreated rats. 
Conversely, cerebellum levels of nitrotirosine were reduced by administration of bioactive TBK-SE (i). 
GAPDH was used as internal control. ***p < 0.05 vs CIR 
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Figure 12.7 Effects of Bioactive TBK-SE on Nrf2 expression. Negative staining for Nrf2 was observed in 
cortex (a), hippocampus (b), brainstem (c) and cerebellum (d) of CIR rats. On the contrary, positive 
staining for Nrf2 was observed in cortex (e), hippocampus (f), brainstem (g) and cerebellum (h) from 
rats treated with bioactive TBK-SE. Also, western blot analysis showed a basal level of Nrf2 expression 
in cerebellum samples obtained from CIR rats. Bioactive TBK-SE treatment significantly increased Nrf2 
expression (i). GAPDH was used as internal control. *p < 0.05 vs CIR 

 
 

12.3.4 Effect of bioactive TBK-SE on Phospho-p44/42 MAPK (ERK1/2) expression and TNF-

α following CIR 

 

To investigate the cellular mechanisms whereby treatment with bioactive TBK-SE attenuates 

the development of CIR, we also evaluated the level of ERK1/2 which results in expression of 

pro-inflammatory genes mediating the inflammatory characteristic of CIR. The activation of 

MAPK pathways in particular the phosphorylation of ERK1/2 expression was investigated by 

western blot analysis in cerebellum tissue. ERK1/2 levels were appreciably increased in 

cerebellum samples taken from rats subjected to CIR, while the treatment of rats with 

bioactive TBK-SE reduced levels of ERK1/2 (Figure 12.8a). Also, in order to investigate whether 

treatment with bioactive TBK-SE can modulate the inflammatory processes triggered by CIR 
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induction through regulating secretion of pro-inflammatory cytokines, the expression levels 

of TNF-α, serum samples was quantified by ELISA assay. Our results showed that serum levels 

are significantly higher in untreated CIR rats when compared with serum levels of animals 

treated with bioactive TBK-SE (Figure 12.8b). 

 

 

 

Figure 12.8 Western blot analysis of ERK1/2 expression and ELISA assay for TNF-α. ERK1/2 expression 
levels normalized on ERK2 display an increase in rats subjected to CIR, while administration of 
bioactive TBK-SE reduces levels of ERK1/2 (a). ERK2 was used as internal control. **p < 0.05 vs CIR. 
ELISA assay showed that serum levels of TNF-α are significantly higher in untreated CIR rats when 
compared with TNF-α serum levels of animals treated with bioactive TBK-SE (b). **p < 0.05 vs CIR. 
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12.3.5 Bioactive TBK-SE treatment inhibits CIR induced apoptosis 

 

At seven days after CIR, the appearance of proteic effectors of mitochondrial apoptosis, such 

as pro-apoptotic Bax proteins, was evaluated by immunohistochemical evaluation and 

western blot. Immunohistochemical evaluation for Bax was performed in different areas of 

brain tissues. Specifically, a positive staining was found in cortex (Figure 12.2a), hippocampus 

(Figure 12.2b), brainstem (Figure 12.2c) and cerebellum (Figure 12.2d) of CIR rats. On the 

contrary, treatment with bioactive TBK-SE significantly reduces the degree of positive staining 

for Bax in all the same regions of the brain (Figure 12.2e, f, g, h, see densitometric analysis 

Figure 12.4). Also, by western blot was found that Bax levels were increased substantially in 

cerebellum tissues from CIR rats. On the contrary, bioactive TBK-SE treatment prevented the 

CIR-induced Bax expression (Figure 12.2i). Likewise, to detect Bcl-2 expression, extracts from 

cerebellum tissues of rats were also analyzed by Western blot analysis. A basal level of Bcl-2 

expression was detected in samples from CIR rats. Treatment of rats with bioactive TBK-SE 

significantly attenuated CIR-induced inhibition of Bcl-2 expression (Figure 12.2i). In addition, 

proteins in the mitochondrial p53 pathway were detected by western blot analysis in 

cerebellum samples. Our data showed a significant expression of p53 in samples collected 

seven days after CIR-induction. Conversely, levels of p53 were clearly reduced by 

administration of bioactive TBK-SE (Figure 12.9a). Finally, sequential activation of caspases 

plays a central role in the execution-phase of cell apoptosis, leading to programmed cell death 

by cleavage of cellular substrates. By western blot analysis, we have evaluated the activation 

of cleaved-caspase 3. Cleaved-caspase 3 levels were appreciably increased in the cerebellum 

from rats subjected to CIR. On the contrary, treatment with bioactive TBK-SE prevented CIR-

induced cleaved-caspase 3 expression (Figure 12.9b). 
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Figure 12.9 Western blot analysis for p53 and Cleaved-caspase3 expression. p53 expression was 
detected by western blot analysis. Our data showed a significant expression of p53 in samples 
collected seven days after CIR-induction. Conversely, levels of p53 were clearly reduced by 
administration of bioactive TBK-SE (a). GAPDH was used as internal control. **p < 0.05 vs CIR. By 
western blot analysis the activation of cleaved-caspase 3 was evaluated. CIR caused a significant 
increase in cleaved-caspase 3 expression. On the contrary, treatment with bioactive TBK-SE prevented 
the CIR-induced caspase 3 expression (b). GAPDH was used as internal control. **p< 0.05 vs CIR. 
 
 
 
 



321 
 

 
12.4 Discussion 

 

Ischemic stroke is the result of a transient or permanent reduction in cerebral blood flow 

caused by occlusion of a cerebral artery via an embolus or local thrombosis (Pignataro et al., 

2007). After the primary neuronal cell injury, secondary neuronal damage, known as 

reperfusion injury occurs 

and exacerbates initial damage (Dong et al., 2013; Manley et al., 2000). It is well known that 

cerebral ischemia rapidly raises inflammatory responses in brain, by activating different 

resident cell populations such as endothelial cells, microglia and astrocytes, as well as 

inflammatory cytokines release, thereby contributing to BBB breakdown (Yilmaz and Granger, 

2010; Skaper et al., 2012). In fact, BBB disruption is considered as a critical event in the 

pathogenesis of cerebral stroke. However, the molecular mechanisms involved are not 

completely understood (Sandoval and Witt, 2008). Among various components of the BBB, 

the tight junction (TJs) protein claudins are the most widely studied, which are critical for 

maintaining the BBB structural integrity and permeability. The disruption of the 

cerebrovascular claudin-5 has been strongly correlated with the dynamic event of BBB 

breakdown after cerebral ischemia (McColl et al., 2008; Nitta et al., 2003). 

Immunohistochemical evaluation was performed to demonstrate that CIR induced changes 

in claudin-5 expression and as well as bioactive TBK-SE can control TJs permeability, 

modulating claudin-5 expression. Following an impairment of BBB, peripheral leukocytes 

infiltrate into the brain and the normally immune privileged cerebral environment is exposed 

to systemic responses that further aggravate inflammation and brain injury (Patel et al., 

2013). According to Jin et al. (2011), our data have revealed an increased expression of p-

selectin, an adhesion molecule that stimulates rolling of leukocytes and other inflammatory 

cell infiltration following induced damage, demonstrating that it was modulated by bioactive 

TBK-SE administration. About the untreated rats the up-regulation of p-selectin seems to 

reflect both increased expression of the endothelial cells and the binding of p-selectin positive 

platelets to the vessel wall, leading in turn an exacerbation of the neuroinflammation status 

(Ishikawa et al., 2003). In addition, we evaluated expression of Iba-1, a novel calcium-binding 

protein that plays an important role in regulation of microglia function, in which it is 
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specifically expressed (Ito et al., 2001). Also, it was found that Iba-1 expression is up-regulated 

in microglia following cerebral ischemia (Ito et al., 2001). 

Indeed, according to Ohsawa et al. (2000), seems that Iba-1 is involved in the Rho family of 

small GTPase, Rac, and calcium signaling pathways and may be required for cell mobility and 

phagocytosis of microglia/macrophages. Once activated, microglia develops macrophage-like 

capabilities including cytokine production, antigen presentation and the release of matrix 

metalloproteinases that weaken the BBB (Iadecola and Anrather, 2011). Our data confirmed 

an up-regulation of Iba-1 in CIR rats compared with pharmacologically treated ones. 

Moreover, looking at proinflammatory cytokine profile classically activated by microglia 

during CIR, levels of TNF-α result significantly decreased following bioactive TBK-SE 

treatment. It was consistently demonstrated that astrocytes the most abundant population 

of glial cells, are essential for brain homeostasis and maintenance and maturation of the BBB 

(Abbott et al., 2006; Liu et al., 2012; Barreto et al., 2011). While astrocytes show a good 

capability repairing in many CNS processes, they are also capable of secreting inflammatory 

factors such as cytokines and chemokines, which aggravate brain damage (Sun et al., 2009). 

In fact, astrocytes were found to play an important role also in CIR injury (Burnstock, 2008). 

Moreover, the induction of Nrf2-mediated transcription, particularly in astrocytes, has been 

shown to protect against neurotoxicity from a variety of injuries, such as cerebral ischemia 

(Narayanan et al., 2015; Jing et al., 2013). According to other studies reported in literature, 

Nrf2 could play a protective action in astrocytes, decreasing GFAP expression probably 

through the mechanism related to the glutathione activity (Calkins et al., 2010; Vargas and 

Johnson, 2009). Our results confirmed that treatment with bioactive TBK-SE in CIR rats leads 

to an upregulation of Nrf2 expression, while GFAP expression was significantly inhibited. This 

balance prevents that GFAP expressing astrocytes may regulate the integrity of BBB, 

damaging TJ components and interfering with the normal astrocyte interactions (LaPash 

Daniels et al., 2012; Mignot et al., 2004; Willis, 2012). Probably, astrocyte specific Nrf2-

mediated protection due to treatment with bioactive TBK-SE could have beneficial effects in 

counteracting the damage after CIR and this could be associated with the production of 

several growth factors that may protect neurons from damage. The local accumulation of NO 

is also involved in the inflammatory cascade after cerebral ischemia (Mitrasinovic et al., 2005; 

Awooda et al., 2015). This mediator enhances cell adhesion molecules expression on 

endothelial cells and promotes adhesion and transendothelial migration of immune cells 
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(Kubes et al., 1991). The role of iNOS in ischemia is yet controversial, it was demonstrated 

that has a beneficial role as modulator or messenger but during oxidative stress condition it 

is potentially toxic (Sekhon et al., 2003). In fact, over-production of NO through iNOS causes 

accentuated lipid peroxidation, protein and DNA modifications that result in cellular damage 

(Montalto et al., 2003). Our study demonstrates that bioactive TBK-SE reduces the expression 

of iNOS in tissues from CIR treated rats. Likewise, our results demonstrated that bioactive 

TBK-SE reduced the generation of reactive species through the evaluation of nitrotyrosine 

expression, chosen as an indirect marker of peroxynitrite activity. MAP kinase (MAPKs) 

pathway, investigated through detection of ERK1/2 expression, resulted upregulated in CIR 

related mechanisms of pathology but attenuated by bioactive TBK-SE administration. 

Although it has been demonstrated that ERK1/2 is a pro-survival factor in the MAP kinase 

family and contributes to the regulation of cell proliferation and differentiation, under some 

circumstances, it can function in a pro-apoptotic manner in the neuronal system (Cheung and 

Slack, 2004; Lu and Xu, 2006). Protective effects of bioactive TBK-SE in counteracting 

apoptosis are evaluable looking to the main apoptosis regulatory genes, such Bax and Bcl-2. 

The changes in the Bax to Bcl-2 ratio have also been studied in several experimental ischemic 

models proving that excess of Bcl-2 promotes cell survival, while Bax excess induces cell 

death. Our data showed an upregulation of Bcl-2 and a downregulation of Bax in 

pharmacologically treated rats. The transcription factor and mediator of apoptosis p53 was 

also found to be upregulated following stroke (Leker et al., 2004). p53 is able to induce 

apoptosis both by controlling translation of pro-apoptotic p53-checked mediators and by 

non-transcriptional mechanisms (Sheikh and Fornace, 2000), including upregulation of pro-

apoptotic Bax and downregulation of Bcl-2 (Cregan et al., 1999; Xiang et al., 1998). In specific, 

according to Leker at al. (2004), translocation of resident p53 into the nucleus is an early event 

in p53-induced apoptosis in ischemic brain cells and that the prevention of this early 

translocation could reduce brain damage. Our data showed an increased nuclear expression 

in brain ischemic tissues, on the contrary attenuated by treatment with bioactive TBK-SE. 

Also, supporting above cited results and adding further evidences about effects of bioactive 

TBK-SE, we found a modulated cleaved-caspase 3 activity in CIR pharmacologically treated 

rats. A protective effect of bioactive TBK-SE suggests that this treatment could interfere with 

the CIR-induced neuronal death, preserving cells by the injury. 
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12.5 Conclusion 

 

Alternative medicine is an interesting research field in to discovering potential active 

substances found in nature for a wide range of applications. Here, results showed that 

bioactive TBK-SE could represent a good and effective approach in the treatment of 

experimental CIR. This study was designed and performed considering the results reported at 

Chapter eleven when investigating the neuroprotective effects R-SF in an acute experimental 

model of CIR. R-SF proved to be active on central and peripheral nervous system, through 

mechanisms which involved both the modulation of the inflammatory pathways and the 

reduction in the activation of cell death by apoptosis. In the present study, TBK-SE exerted 

pharmacological properties protecting BBB integrity through a mechanism of action that 

involved a modulation of the inflammatory and oxidative pathway in a chronic experimental 

model of CIR. Also, TBK-SE could have an action in controlling neuronal death by apoptosis. In 

summary, the relevance of the present study consists in the possible use of TBK-SE activated 

with myrosinase, as a novel natural product for the treatment of damage associated with CIR, 

at least in association with current conventional therapies. 
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Abbreviations 

 

MO: moringin (4(-L-rhamnosyloxy)-benzyl isothiocyanate);  

GMG: glucomoringin (4(-L-rhamnosyloxy)-benzyl glucosinolate);  

GL: glucosinolates;  

ITC: isothiocyanates;  

MYR: myrosinase enzyme;  

(NF)-B: nuclear factor (NF)-B;  

B-: nuclear factor of kappa light polypeptide gene enhancer in B-cells  inhibitor, alpha; 

iNOS: inducible Nitric Oxide Synthases;  

SCI: spinal cord injury;  

BBB: blood-brain barrier; 

RO: reactive oxygen species;  

RNS: reactive nitrogen species;  

H&E: haematoxylin/eosin;  

Bax: Bcl-2-associated X protein;  

Bcl-2: B-cell lymphoma 2;  

BSB: blood-spinal cord barrier;  

NO: nitric oxide. 
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Summary 

 
Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) for 

1 min, via four-level T5-T8 after laminectomy. The purpose of this study was to investigate 

the dynamic changes occurring in the spinal cord after ip treatment with moringin produced 

15 min before use from myrosinase (MYR) catalyzed hydrolysis of glucomoringin (GMG) (10 

mg Kg-1 body weight + 5 µl MYR mouse per day). The following parameters, such as 

histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-

B translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, alpha (B-) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as 

well as apoptosis, were evaluated. Results showed a protective effect of MO on the secondary 

damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection.  
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13.1 Spinal cord injury 

 
Spinal cord injury (SCI) is a major cause of disability, primarily affecting young males 

with an incidence of 15–40 cases per million per year (Wyndaele and Wyndaele, 2006) 

causing enormous social and health-care costs. To date, generally accepted 

treatment for this disease is not available because of its complex pathophysiology. 

The functional decline, following SCI, is a consequence of both direct mechanical 

injury, which causes the death of a number of neurons that cannot be recovered and 

regenerated, and secondary pathophysiological mechanisms, called ‘secondary 

damage’, supported by a large number of cellular, molecular, and biochemical 

cascades (Profyris et al., 2004). The local inflammatory response in the injured spinal 

cord has been proposed to contribute significantly to the evolution of secondary 

damage. After SCI, microglia in the parenchyma are activated and macrophages in 

circulation pass through the blood-brain barrier (BBB) acting as intrinsic spinal 

phagocytes. These cells release different pro-inflammatory mediators such as 

cytokines, reactive oxygen species (ROS) and reactive nitrogen species(RNS) (Park et 

al., 2004). Increased production of ROS, which appears to play a critical role in the 

induction of neurological dysfunctions in SCI, causes the activation of the 

transcription factors such as (NF)-B that plays a key role in the induction of 

inflammatory cytokines. ROS formation and lipid peroxidation enhances damages of 

neuronal injury, such as spinal cord hypoperfusion, development of edema, axonal 

conduction failure, and breakdown of energy metabolism. The importance of free 

radicals and peroxidation in SCI is supported by many studies that showed neuronal 

protection efficacy of antioxidant agents (Scott et al., 2005).  

The relevance and innovation of the present study lies in the possible use of a new 

formulation to deliver MO providing a therapeutic natural agent to counteract the 

overall cascade of events, such as oxidative injury and neuronal cell death, related to 

the secondary damage after spinal cord injury. 
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13.2 Materials and Methods  

 

13.2.1 Animals 

 

Male adult CD1 mice (average weight 25 g) were purchased from Harlan (Milan, Italy). 

Animals were housed in individually ventilated cages with food and water ad libitum. 

The room was maintained at a constant temperature and humidity on a 12 h/12 h 

light/dark cycle. Animal care followed Italian regulations of animal protection used 

for experimental and other scientific purposes (D.M. 116/92) as well as with the EEC 

regulations (O.J: of E.C.L 358/1 12/18/1986). 

  

13.2.2 Induction of spinal cord injury 

 

After anesthesia, induced with an anesthetic cocktail composed of tiletamine plus 

xylazine (10 mL Kg-1, ip), the mice were subject to SCI, according to the model 

described by Rivlin and Tator (1978). A longitudinal incision was made on the midline 

of the back, exposing the paravertebral muscles. These muscles were dissected 

exposing T5-T8 vertebrae. The spinal cord was exposed via a four-level T5-T8 

laminectomy and SCI was produced by extradural compression of the spinal cord at 

level T6-T7 using an aneurysm clip with a closing force of 24 g. In all injured groups, 

the spinal cord was compressed for 1 min. Following surgery, 1 mL of saline solution 

was administered subcutaneously to replace the blood volume lost during the 

surgery. The induced damage was verified and the animals were consequently 

awakened, evaluating the mobility of the hind limbs on a flat surface. 

 

13.2.3 Myrosinase bioactivation of glucomoringin 

 
GMG and MYR were purified as described at Chapter ten (see Section 10.5) and Chapter nine 

(see Section 9.2.2), respectively. 
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Pure GMG (95%) was dissolved in PBS solution pH 7.2 at room temperature (2.5 mg mL-1) and 

hydrolyzed by the action of MYR (5 μl; 32 U mL-1) for 15 min at 37 °C right before animal 

treatment. Mice were then administered the resulting solution as such. 

 
 

13.2.4 Experimental design  

 

Mice were randomly allocated into the following groups (N=25 total animals). 

- SCI group (N=10): Mice were subjected to surgical operations to induce SCI. 

- SCI + MO group (N=10): Mice subjected to SCI were treated with MO (GMG 10 

mg Kg-1 body weight + 5 µL MYR mouse per day). The experiment provided a period 

of pretreatment with MO via ip injection once a day for 7 days. On the eighth day, 

the injury was induced and then the treatment was daily protracted for seven days 

until the sacrifice. 

- Naive group: (N=5): Mice not subjected to SCI or to any injection, euthanized 

as control. 

At the end of the experiment, the animals were euthanized, and the spinal cord 

corresponding to the thoracic spine was sampled, to evaluate the various 

parameters. 

 

13.2.5 Light microscopy 

 

Spinal cord biopsies, taken at 7 days following trauma, were fixed in 10% (w/v) PBS-

buffered formaldehyde. Tissue segments containing the lesion (1 cm on each side of 

the lesion) were paraffin-embedded and cut into 7 µm-thick sections.  Tissue sections 

were deparaffinized with xylene, stained with haematoxylin/eosin (H&E) and studied 

using light microscopy (LEICA ICC50 HD microscope). 

 

13.2.6 Silver impregnation for reticulum 

 

Silver impregnation was performed as the recommended method to show 

argyrophilic reticular fibers in connective tissue and specially to differentiate collagen 
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fibers from connective tissue. Silver impregnation was performed according to the 

manufacturer’s protocol (http://www.biooptica.it/pdf3/040801.pdf, Bio-Optica, 

Milano S.P.A). Reticular and nervous fibers will appear in black, connective tissue in 

tobacco brown and collagen in gold yellow. 

 

13.2.7 Immunohistochemical localization for (NF)-Bp65, iNOS, Bcl-2-associated X 

protein (Bax) and B-cell lymphoma 2 (Bcl-2) 

 

After deparaffinization 7 µm sections were hydrated in graded ethanol. Detection 

of (NF)-Bp65, iNOS, Bax and Bcl-2 was carried out after boiling in citrate buffer 0.01 

M pH 6 for 4 min. Endogenous peroxidase was quenched with 0.3% (v/v) hydrogen 

peroxide in 60% (v/v) methanol for 30 min. Nonspecific adsorption was minimized by 

incubating the section in 2% (v/v) normal goat serum in PBS for 20 min. Sections    

were    incubated    overnight    with    anti-(NF)-Bp65 monoclonal antibody (Cell 

Signaling Technology, 1:100 in PBS); anti-iNOS monoclonal antibody (Cell Signaling 

Technology, 1:100 in PBS); anti-Bax polyclonal antibody (Santa Cruz Biotechnology, 

1:100 in PBS) and anti-Bcl-2 polyclonal antibody (Santa Cruz Bio- technology, 1:100 in 

PBS). Endogenous biotin or avidin binding sites were blocked by sequential 

incubation for 15 min with biotin and avidin (DBA, Milan, Italy), respectively. Sections 

were washed with PBS and incubated with secondary antibody. Specific labelling was 

detected with a biotin-conjugated goat anti-rabbit IgG and avidin–biotin peroxidase 

complex (Vectastain ABC kit, VECTOR). The counterstain was developed with 

diaminobenzidine (brown color) and hematoxylin (blue background). 

All images have been acquired in light microscopy using a LEICA ICC50 HD microscope. 

To perform densitometric analysis, quantitative data were carried out using Leica 

Application Suite V4.2.0 software. 

 

13.2.8 Western blot analysis for B-and caspase 3 

 

All the extraction procedures were performed on ice using ice-cold reagents. In brief, 

spinal cord tissues were suspended in extraction buffer containing 0.32 M sucrose, 10 
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mM Tris-HCl, pH 7.4, 1 mM EGTA, 2 mM EDTA, 5 mM NaN3, 10 mM 2-mercaptoethanol,   

50 mM   NaF,   and   protease   inhibitor   tablets (Roche Applied Science, Monza, Italy), 

and  they  were  homogenized  at  the highest setting for 2 min. The homogenates were 

chilled on ice for 15 min and then centrifuged at 1000g for 10 min at 4 °C, and the 

supernatant (cytosol + membrane extract from spinal cord tissue) was collected to 

evaluate content of B-. The pellets were suspended in the supplied complete lysis 

buffer containing 1% Tri- ton X-100, 150 mM NaCl, 10 mM Tris–HCl, pH 7.4, 1 mM EGTA, 

and 1 mM EDTA protease inhibitor tablets (Roche Applied Science), and then they were 

centrifuged for 30 min at 15,000g at 4 °C, and the supernatant (nuclear extract) was 

collected to evaluate the content of caspase 3. Supernatants were stored at 80 °C until 

use. Protein concentration in homogenate was estimated by the Bio-Rad Protein Assay 

(Bio-Rad, Segrate, Milan, Italy) using BSA as standard, and 50 µg of cytosol and nuclear 

extract from each sample was analyzed. Proteins were separated on sodium dodecyl 

sulfate-poly-acrylamide minigels and transferred into nitrocellulose membranes (Protran 

nitrocellulose transfer membrane; Whatman Schleicher and Schuell, Dassel, Germany), 

blocked with PBS containing 5%  nonfat  dried  milk  for  45 min  at  room  temperature, 

and subsequently probed at 4 °C overnight with specific antibodies for B-  (1:1000; 

Cell Signaling Technology) and   caspase   3 (1:1000; Cell Signaling Technology), in PBS, 

5% (w/v) nonfat dried milk, and 0.1% Tween-20 (PMT). Membranes were incubated with 

peroxidase-conjugated bovine anti-mouse IgG secondary antibody or peroxidase-

conjugated goat anti-rabbit IgG (1:2000; Jackson Immuno Research, West Grove, PA, 

USA) for 1 h at room temperature. To ascertain that blots were loaded with equal 

amounts of protein lysates, they were also incubated with antibody for -tubulin 

(1:250; Santa Cruz Biotechnology, Inc.), and conjugated GAPDH HRP (1:1000; Cell 

Signaling Technology).  The relative expression of the protein bands B- (~37 kDa), and 

caspase 3 (~35 kDa) was visualized using an enhanced chemiluminescence system 

(Luminata Western HRP Substrates, Millipore). The protein bands were scanned and 

quantitated with ChemiDocTM MP System (Bio-Rad) and a computer program 

(ImageJ). It is important to note that all differences in band expressions were 

normalized on the housekeeping control. For this reason, even if there was some 
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difference in the amount of protein loading, in each quantitative graph of Western 

blot analysis, the value was provided as ratio. 

 

13.2.9 Statistical evaluation 

 

Data were analyzed in GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA). 

The results were statistically analyzed using one-way ANOVA followed by a 

Bonferroni post hoc test for multiple comparisons. A p value of <0.05 was statistically 

significant. Results are expressed as the mean ± SEM of n experiments. 

 

13.3 Results 

 

13.3.1 Moringin reduces the severity of spinal cord trauma 

 

At day 7 after injury, the severity of the trauma of the perilesional area was analyzed 

by hematoxylin/eosin (H&E) staining and the presence of edema as well as alteration 

of the white matter and infiltration of leukocytes was assessed. Results clearly 

demonstrated important damage in the spinal cord tissue collected from SCI animals 

(Figure 13.1A) compared with naive mice (Figure 13.1C). Significant protection 

against the SCI was observed in MO treated mice (Figure 13.1B). Moreover, the 

severity of the trauma was also evaluated, investigating the alterations of reticular 

fibers in connective tissue by silver impregnation. Degeneration of reticular fibers in  

the spinal cord  of SCI mice (Figure 13.1D) was found, whereas a normal distribution 

of reticular fibers was observed in sections of MO treated (Figure 13.1E) and naive mice 

(Figure 13.1F), proven by the deposit of black silver grains in the perilesional area, 

easily distinguishable from the brown background produced by the staining 

procedure. 
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Figure 13.1 Effect of moringin (MO) on severity of spinal cord trauma (SCI). The severity of the 
trauma was evaluated 7 days after injury and stained with H&E. No histological alterations 
were observed in the spinal cord tissues from naive mice (C). 7 days after trauma, a significant 
damage to the spinal cord from untreated SCI operated mice at the perilesional area was 
assessed by the presence of edema as well as alteration of the white matter (A). It is 
noteworthy that a significant protection from the SCI was observed in the tissues collected 
from MO treated mice (B). Also, a degeneration of reticular fibers in the spinal cord from SCI 
mice was demonstrated (D), whereas a normal distribution of reticular fibers has been 
observed in sections of MO treated (E) and naive mice (F), reflected by the deposition of black 
silver grains in the perilesional area. 
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13.3.2 Effect of moringin on B- degradation and (NF)-Bp65 activation 

 

Spinal cord sections were collected at 7 days after injury, to investigate cellular 

mechanism through which MO treatment may attenuate the damage associated 

with SCI.  B- degradation and nuclear (NF)-Bp65 activation were evaluated by 

Western blot and immunohistochemical analysis. A basal level of B- was detected 

in the spinal cord from naïve mice, whereas B- levels were substantially reduced in 

SCI mice. MO administration attenuated the SCI induced B- degradation. Although 

not statistically significative, visible differences in B- expression were also found 

(Figure 13.2D). In addition, spinal cord sections obtained from mice subjected to SCI 

exhibited positive staining for (NF)-Bp65 in the perilesional area (Figure 13.2A). On 

the contrary, treatment with MO significantly reduced the degree of positive staining 

for (NF)-Bp65 (Figure 13.2B).  Naive mice did not stain for (NF)-Bp65 (Figure 13.2C). 
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Figure 13.2 Effects of moringin (MO, labeled as GMG-ITC) on B- degradation and nuclear (NF)-
Bp65 expression after SCI. By Western blot analysis a basal level of B- was detected in the spinal 
cord from naive animals and in SCI mice, whereas MO administration prevented the SCI induced B-
 degradation. GAPDH was used as internal control. Although not statistically significative, visible 
differences in B- expression were found. Please, note that all differences in band expression were 
normalized on the housekeeping control. For this reason, even if there was some difference in the 
amount of protein loading, in each quantitative graph of Western blot analysis, the value was provided 
as ratio (D). Also, (NF)-Bp65 expression was evaluated by immunohistochemical analysis. Spinal cord 
sections obtained from mice subjected to SCI exhibited positive staining for (NF)-Bp65 in perilesional 
area (A). On the contrary, treatment with MO significantly reduced the degree of positive staining for 
(NF)-Bp65 (B). Naive mice did not stain for (NF)-Bp65 (C). 
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13.3.3 Moringin modulates expression of iNOS after SCI 

 

Evaluation of the iNOS expression by immunohistochemical analysis assessed the 

role of nitric oxide (NO) produced during SCI. The treatment with MO was able to 

counteract the oxidative and nitrosative stress resulting from the spinal cord damage. 

Spinal cord sections from naive mice did not stain  for  iNOS (Figure 15.3C), whereas 

spinal cord sections obtained from SCI mice exhibited positive staining for iNOS 

(Figure 13.3A). MO treatment reduced the degree of positive staining for iNOS in the 

spinal cord of mice subjected to SCI (Figure 13.3B, see densitometric analysis Figure 

13.3D). 

 

 
  
Figure 13.3 Moringin (MO, labeled as GMG-ITC) modulates expression of iNOS. iNOS was evaluated 
by immunohistochemical analysis in the spinal cord sections 7 days after SCI. Spinal cord sections from 
naive mice did not stain for iNOS (C), whereas spinal cord sections obtained from SCI mice exhibited 
positive staining for iNOS (A). MO treatment reduced the degree of positive staining for iNOS in the 
spinal cord tissues (B). Densitometric analysis of iNOS. Results were analyzed by one-way ANOVA 
followed by a Bonferroni post hoc test for multiple comparisons. *p <0.05 versus SCI and versus naive. 
ND: not detectable (D). 
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13.3.4 Effect of moringin on apoptosis in spinal cord after injury 

 
Samples of spinal cord tissue were taken at 7 days after SCI to determine the 

immunohistological staining for the apoptotic protein family. Spinal cord sections 

from naive mice did  not  stain  for  Bax  (Figure 13.4C), whereas spinal cord sections 

obtained from SCI mice exhibited positive staining for Bax (Figure 13.4A). MO 

treatment decreased the degree of positive staining for Bax in spinal cord samples 

from mice subjected to SCI (Figure 13.4B, see densitometric analysis Figure 13.4D). 

In addition, immunohistological staining for Bcl-2 in spinal cord sections from naive 

mice, demonstrated positive staining (Figure 13.5C), while in SCI mice the staining 

was significantly reduced (Figure 13.5A). MO treatment modulates  SCI induced 

expression of anti-apoptotic protein, increasing significantly the tissue 

immunolocalization of Bcl-2 protein (Figure 13.5B, see densitometric analysis Figure 

13.5D). Moreover, sequential activation of caspases plays a central role in the 

execution-phase of cell apoptosis. Activation level of caspase 3, determined by 

Western blot, was appreciably increased in the spinal cord from mice subjected to 

SCI, while treatment with MO prevented the SCI induced expression (Figure 13.6). 
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Figure 13.4 Effect of moringin (MO, labeled as GMG-ITC) on immunohistochemical expression for Bax. 
Spinal cord sections from naive mice did not stain for Bax (C), whereas SCI caused an increase in Bax 
expression at 7 days (A). MO treatment reduced the degree of positive staining for Bax in the spinal 
cord (B). Densitometric analysis of Bax. Results were analyzed by one-way ANOVA followed by a 
Bonferroni post hoc test for multiple comparisons. *p <0.05 versus SCI and versus naive. ND: not 
detectable (D). 
 

 
 
Figure 13.5 Effect of moringin (MO, labeled as GMG-ITC) on immunohistochemical expression for Bcl-
2. Positive staining for Bcl-2 was observed in the spinal cord tissues from naive mice (C), while the 
staining was significantly reduced in SCI mice (A). MO treatment attenuated the loss of positive 
staining for Bcl-2 in the spinal cord from SCI subjected mice (B). Densitometric analysis of Bcl-2. Results 
were analyzed by one-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons. 
*p <0.05 versus SCI and versus naïve. ND: not detectable (D). 
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Figure 13.6 Western blot for caspase 3. By Western blot analysis the activation of caspase 3 was 
evaluated. SCI caused a significant increase in caspase 3 expression compare to naive mice. On the 
contrary, treatment with moringin (MO, labeled as GMG-ITC)  prevented the SCI induced caspase 3 
expression. Note that all differences in band expression were normalized on the housekeeping control. 
For this reason, even if there was some difference in the amount of protein loading, in each 
quantitative graph of Western blot analysis, the value was provided as ratio. *p<0.05 versus SCI and 
versus naïve. 
 

 

13.4 Discussion 

 
 
SCI is a disease widely associated with both the inflammatory response and oxidative 

mechanism, as well as with the apoptotic pathway and neurodegenerative feature. 

In addition, in direct injury caused by primary trauma after SCI, a variety of extended 

neuropathophysiologic alterations occur, mediated by a series of cellular, molecular 

and biochemical cascades, including glutamate excitotoxicity, Ca2+ overload, oxygen 

free radical induced lipid peroxidation, inflammation, vascular events, and neuronal 

death (Anderson and Hall, 1993). The pharmacological window for therapeutic 
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intervention aimed to avoid diffused axonal injury (DAI) is between 0 and 12 h after 

damage. Many factors contribute to the progression of degenerative events that, in 

the long-term, lead to irreversible injury as well as perilesional damage. In this 

respect, current researches are aimed at avoiding diffused tissue degeneration at the 

upper level and lower the lesion with target therapies, counteracting numerous 

factors involved in secondary degeneration cascade (Genovese et al., 2006). By 

histological examination of perilesional area, untreated mice showed evident signs 

of inflammation and necrosis, while in spinal cord tissues of animals, treated with 

MO, was not observed damage. Secondary damage is related to vascular events that 

cause blood–spinal cord barrier (BSB) disruption, closely associated with edema 

formation. Moreover, BSB breakdown triggers post-traumatic inflammatory 

response mediated by neutrophilic infiltration and macrophage invasion. Further, 

trauma-activated endothelial and glial cells release vasoactive substances (reactive 

oxygen molecules, bradykinin, histamines and NO) that influence the spinal cord 

perfusion and facilitate the crossing of plasma-derived molecules into the cord 

(Schnell et al., 1999).  Structurally, silver impregnation highlighted a degeneration of 

the reticular fiber in the connective tissue of the spinal cord samples collected at 7 

days after the trauma, whereas a normal distribution and architecture has been 

observed in sections of MO treated mice. MO can hence promote a neuroprotection 

of microvasculation that occurs because of the trauma. Inflammatory response is the 

major component of secondary injury and plays a central role in regulating the 

pathogenesis of acute and chronic SCI. Also, it is associated with a significant 

production of free radicals like ROS such as superoxide anions, hydrogen peroxide 

and peroxynitrite (Calabrese et al., 2007). (NF)-B is a transcription factor, which is kept 

inactive by B-, that plays a central role in the regulation of many genes responsible 

for the generation of mediators or proteins in secondary inflammation associated 

with SCI. Our analysis demonstrated that MO inhibited both B-degradation, as 

well as (NF)-B translocation. A direct consequence of the inhibitory effect of MO on 

(NF)-B activation is the reduction in proinflammatory mediators production under its 

control, such as iNOS, involved in the development of the secondary inflammatory 

response and apoptosis following traumatic SCI (Genovese et al., 2006). Among 
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them, this factor has a beneficial role as modulator or messenger but during oxidative 

stress it is potentially toxic. In fact, overproduction of NO through iNOS causes 

accentuated lipid peroxidation, protein and DNA modifications that result in cellular 

damage (Ahmad et al., 2009). MO attenuates the expression of iNOS in the tissue of 

SCI treated mice when compared with injured mice, indicating that this compound 

may be able to protect the spinal cord against iNOS mediated neurodegeneration. 

MO influences the   downstream   cascade   of events triggered by the inflammatory 

process by inhibiting (NF)-B pathway, that in turn regulates iNOS activation (Hsu et al., 

2013). Moreover, recent studies have also demonstrated that ROS induce apoptosis 

in an early and likely causal event that contributes to the spinal cord motor neuron 

death following SCI (Siniscalco et al., 2007). Apoptosis is an important process 

strongly related to secondary damage after SCI which involves different cell types, 

especially oligodendrocytes of the white matter (Beattie et al., 2002).  

Chronologically, it occurs 6 h post-injury at the lesion center, where there is the 

highest number of apoptotic cells that increase steadily over few days. A significant 

intracellular signal transduction pathway that leads to apoptosis after SCI involves 

activation of the caspases, in particular, caspase 3 (Chittenden et al., 1995). Since SCI 

causes an important increase in caspase 3 and an imbalance in mitochondrial 

permeability with an up-regulation of proapoptotic Bax protein and a down-

regulation of anti-apoptotic Bcl-2 protein, this study was aimed to understand 

whether MO treatment could decrease the expression level of these markers, 

modulating the apoptotic pathway. Interestingly, the results showed that MO can 

prevent transcriptional changes, playing a key role in the control of proapoptotic 

mechanisms following SCI-related tissue damage. Taken together, this data suggest 

that MO is a promising phytochemical that could be used for the management of 

secondary damage following SCI to counteract the overall cascade of events, such as 

oxidative injury and neuronal cell death, triggered by mechanical and direct damage 

to the spinal cord. 
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13.5 Conclusion 

 

The relevance of the present study consists in the possible use of MO as a therapeutic agent 

in the treatment of secondary damage associated with SCI.  Considering the results achieved, 

the neuroprotection derived by the treatment of MO could lead to an application of this drug 

for long term re-establishment of spinal cord functionality. 
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Summary 

 

The present study was designed to test the potential therapeutic effectiveness of moringin 

(4-(a-L-rhamnopyranosyloxy)benzyl isothiocyanate; MO) to counteract the amyotrophic 

lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1G93A at about 

16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a 

day with glucomoringin (4-(a-L-rhamnopyranosyloxy)benzyl glucosinolate; GMG) (10mg Kg-

1) bioactivated with myrosinase (32 U mL-1; MYR) (20 𝜇L/rat) via intraperitoneal (i.p.) injection 

for two weeks before disease onset and the treatment was prolonged for further two weeks 

before the sacrifice. Immune inflammatory markers as well as apoptotic pathway were 

investigated to establish whether MO could represent a new promising tool in clinical practice 

to prevent ALS. Achieved data displayed clear differences in molecular and biological profiles 

between treated and untreated SOD1tg rats suggesting that MO can interfere with the 

pathophysiological mechanisms at the basis of ALS development. Therefore, MO could be a 

candidate for further studies aimed to assess its possible use in clinical practice for the 

prevention or to slow down this disease. 
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14.1 Amyotrophic lateral sclerosis 

  

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease first described by Jean-Martin 

Charcot in the 1800s. The disease gradually and fatally attacks both the first motor neurons 

in the cerebral cortex and the second motor neurons in the brainstem and spinal cord (the 

upper and lower motor neuron, respectively) responsible for controlling the voluntary 

muscles. It is a neurodegenerative pathology with a progressive and invariably fatal outcome. 

The disease is sometimes called Lou Gehrig’s disease and, less frequently, Charcot disease 

(Doi et al., 2014). Sadly, as a neuromuscular disease, it is related just to the motor system so 

that all the neurological functions are preserved, and the patient is wholly aware of what is 

happening. Mostly, ALS onset occurs in late adulthood (Malaspina et al., 2015) starting in 

limb, axial, bulbar, or respiratory muscles and causing spasticity and severe and rapidly 

progressive muscle weakness and respiratory insufficiency that lead to death within few years 

after initial diagnosis. Sporadic (sALS) and familial (fALS) forms of the disease represent, 

respectively, about 90% and 10%, of all ALS cases (Rafałowska et al., 2014). To date the causes 

are unknown; nevertheless, it is believed that ALS could have a multifactorial etiology, where 

environmental factors can greatly contribute to pathology triggering (Eisen, 1995). Both a 

defect in glutamate transporter and calcium binding protein failure have been identified as 

potential causes of the corticomotoneuronal system defects (Gunther et al., 2014). Moreover, 

genetic mutations on chromosome 21, which codes for the cytosolic antioxidant enzyme 

Cu2+/Zn2+ binding superoxide dismutase gene 1 (SOD1), have been identified first as a cause 

associated with 20% of all familial forms (Gunther et al., 2014). Other possible genetic causes 

have been related to defects in transactivation response (TAR) element, DNA-binding protein 

43 (TDP-43), angiogenin, and an intronic hexanucleotide expansion in the gene encoding the 

chromosome 9 open reading frame 72 (C9orf72) (Malaspina et al., 2015). Also potentiated to 

be involved in the genesis of the disease is the role of the innate immune system with cellular 

mechanisms mediated by CD8+ cytotoxic cells and CD4+ T-helper cells localized in spinal cord 

ventral horns, in the anterior and lateral corticospinal tracts and in the motor cortex 

(Malaspina et al., 2015). The most commonly used drug to treat ALS is glutamate antagonist 

riluzole that prolongs patient survival but has very limited benefits, since it does not show the 

expected efficacy that could lead to disease resolution. For this reason, new innovative and 

safer therapies are needed (Benatar, 2007; Stewart et al., 2001), at least aimed at delaying 
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the neurodegenerative processes of the ongoing disease. To discover new active compounds 

as alternatives to the current therapies, basic science is focused on natural products and their 

derivatives for the treatment of neurodegenerative diseases, such as ALS (Halliwell, 2001; Li 

et al., 2011). Thus, the aim of the present work was to test the potential effectiveness of MO 

to interfere with the mechanisms underlying ALS development and prevent or slow down the 

disease in transgenic SOD1G93A (SOD1tg) rats, an experimental genetic model of ALS. 

 

14.2 Materials and Methods 

 
14.2.1 Animals  

 

Male Sprague-Dawley rats overexpressing the mutated human gene SOD1G93A, which 

represents a transgenic model of ALS, were purchased from Taconic Biosciences, Inc. 

(Hudson, NY, USA) and used for the experiment. 

  

14.2.2 ALS model of disease  

 

According to genetic and phenotypic description provided by Taconic industry 

(http://www.taconic.com/2148) spinal cord of SOD1G93A hemizygous rats expresses about 8-

fold more endogenous SOD1, which became ∼16-fold by the end stages of disease. SOD1 rats 

have an onset of motor neuron disease after approximately 115 days. 

 

14.2.3 Myrosinase bioactivation of glucomoringin  

 

GMG and MYR were purified as described at Chapter ten (see Section 10.5) and Chapter nine 

(see Section 9.2.2), respectively. 

Pure GMG (95%) was dissolved in PBS solution pH 7.2 at room temperature (2.5 mg mL-1) and 

hydrolyzed by the action of MYR (20 μl; 32 U mL-1) for 15 min at 37 °C right before animal 

treatment. Rats were then administered the resulting solution as such. 
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14.2.4 Experimental design 

 

Rats were randomly allocated into the following groups: 

- Untreated SOD1tg group (N=10): rats not pharmacologically treated. 

- MO treated SOD1tg group (N=10): rats were prophylactically treated once a day with 

GMG (10mg Kg-1) bioactivated with MYR (20 𝜇L/rat), via i.p. injection starting from two weeks 

before the disease onset (about 100 days of life) and protracted for other two weeks before 

the sacrifice (about 130 days of life). Since the Taconic industry disease onset occurs around 

115 days of life (about 16 weeks), our experiments were planned to treat SOD1tg rats starting 

from 14 weeks. Consequently, the sacrifice was established when in the MO SOD1tg group 

the first signs of disease appeared (about 18 weeks of life). At the end of the experiment, 

blood was collected by cardiac puncture and animals were euthanized. Brain tissue and spleen 

were sampled and processed to evaluate disease parameters. 

 

14.2.5 Behavioral test 

 

Noninvasive behavioral evaluations were made without causing excessive animal stress to 

provide data about muscular degeneration/locomotor activity loss. Hanging Wire Test (HWT) 

was performed to evaluate motor performance. The test consists in the capability of the 

animal at hanging from a wire for a time of 90 sec, using the paw strength. HWT was 

performed two times a week starting from four weeks before the disease onset and two 

weeks later and for a total number of fifteen tests. Also, Open Field Test (OFT) for motor 

function was performed to test behavior and general motor function. MO treated, as well as 

untreated SOD1tg rats were monitored for a time of 180 sec to assess the spontaneous 

activity in an open field, consisting of a white Plexiglas box (100 cm × 100 cm) with the floor 

divided into 16 squares. Four squares were defined as the center and 12 squares along the 

walls as the periphery. Each animal was placed in the center of the box and activity was scored 

as a line crossing when a mouse removed all four paws from one square and entered another. 

Immediately after each test, the apparatus was thoroughly cleaned with cotton pad wetted 

with 70% ethanol. The test was performed once a week starting from two weeks before the 

disease onset and two weeks later, with the last measure performed the day before the 

sacrifice and for a total number of six tests. 
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14.2.6 Immunohistochemistry localization 

 

Brain tissues were fixed in 10% (w/v) PBS-buffered formaldehyde, and 6 𝜇m sections were 

prepared from paraffin-embedded tissues. After deparaffinization, endogenous peroxidase 

was quenched with 0.3% (v/v) hydrogen peroxide in 60% (v/v) methanol for 30 min. 

Nonspecific adsorption was minimized by incubating sections in 2% (v/v) normal goat serum 

in PBS for 20 min. Endogenous biotin or avidin binding sites were blocked by sequential 

incubation for 15 min with biotin and avidin, respectively. Sections were incubated overnight 

with the following primary antibodies: 

(i) Anti-TLR4 monoclonal antibody (1:100 in PBS v/v; Abcam). 

(ii) Anti-MMP9 polyclonal antibody (1:100 in PBS v/v; Abcam). 

(iii) Anti-NOS2 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc). 

(iv) Anti-PARP-1 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc). 

(v) Anti-CD8𝛼 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc). 

(vi) Anti-Nrf2 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology, Inc). 

Sections were washed with PBS and incubated with secondary antibody. Specific labeling was 

detected with a biotin conjugated goat anti-rabbit IgG and avidin-biotin peroxidase complex. 

The counterstain was developed with diaminobenzidine (brown color) and ematossilin (blue 

background). To verify the binding specificity, some sections were also incubated with only 

the primary antibody or with only the secondary antibody. In these situations, absence of 

positive staining was found in the sections, indicating that the immunoreaction was positive 

in all the experiments carried out. All sections were observed using light microscopy (Leica 

ICC50 HD). Leica Application SuiteV4.2.0 software was used as image computer program to 

acquire IHC (immunohistochemistry) pictures. 

 

14.2.7 Western blot analysis 

 

All western blot procedures aimed to assess the expression of mediators of ALS development 

were performed according to previously published protocols (Galuppo et al., 2014) and here 

modified for brain tissue and spleen. Briefly, all the extraction procedures were performed 

on ice using ice-cold reagents. Brain tissues or spleen were suspended in extraction buffer 

containing 0.32M sucrose, Tris-HCl, pH 7.4, 1 mM EGTA, 2 mM EDTA, 5 mM NaN3, 10 mM 2-
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mercaptoethanol, 50 mM NaF, and protease inhibitor tablets (Roche, Milan, Italy) and then 

homogenized at the highest setting for 2 min.The homogenates were chilled on ice for 15 min 

and then centrifuged at 1000 g for 10 min at 4 °C, and the supernatant (cytosol + membrane 

extract) was collected to evaluate content of citoplasmatic proteins. The pellets were 

suspended in the supplied complete lysis buffer containing 1% Triton X-100, 150 mM NaCl, 10 

mM Tris-HCl, pH 7.4, 1 mM EGTA, and 1 mM EDTA protease inhibitors tablets (Roche), and 

then they were centrifuged for 30 min at 15,000 g at 4 °C, and the supernatant (nuclear 

extract) was collected to evaluate the content of nuclear proteins. Supernatants were stored 

at −80 °C until use. Protein concentration in homogenate was estimated by Bio-Rad 

ProteinAssay (Bio-Rad, Segrate, Italy) using BSA as standard, and 20 𝜇g of cytosol and nuclear 

extract from each sample were analyzed. Proteins were separated on sodium dodecyl sulfate-

polyacrylamide minigels and transferred onto nitrocellulose membranes (Protran 

nitrocellulose transfer membrane; Whatman Schleicher and Schuell,Dassel, Germany), 

blocked with PBS containing 5%nonfat dried milk (PM) for 45 min at room temperature, and 

subsequently probed at 4∘Covernight with the follow primary antibodies: TNF-alpha (1:100 

in PM 0.1% Tween 20 (PMT) v/v; Cell Signaling Technologies), FoxP3 (1:500 in PMT v/v; 

eBioscience), and cleaved-caspase3 (1:1000 in PMT v/v; Cell Signaling Technologies). HRP-

conjugated goat anti-mouse IgG or HRP-conjugated goat anti-rabbit IgG were incubated as 

secondary antibodies (1:2000 in PMT v/v; Santa Cruz Biotechnology, Inc.) for 1 h at room 

temperature. To ascertain that blots were loaded with equal amounts of proteic lysates, they 

were also incubated with GAPDH-HRP conjugated primary antibody (1:1000 in PMT v/v; Cell 

Signaling Technology). Relative protein bands expression was visualized using an enhanced 

chemiluminescence system (Luminata Forte, Western HRP substrate, Millipore) and proteic 

bands were acquired and quantified with ChemiDoc MP System (Bio-Rad, Segrate, Italy) and 

a computer program (ImageJ software), respectively. Blots are representative of three 

separate and reproducible experiments. Statistical analysis was run on three repeated blots 

performed on separate experiments. 

 

14.2.8 Blood sampling 

 

At the sacrifice, blood samples were collected via cardiac puncture in Serum Separator Tubes 
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(Vacutainer SSTTM II Advance, BD Diagnostic, Milan, Italy) and centrifuged following at least 

30 min from the collection at 2000 g speed for 10 min. The achieved serum was collected, 

aliquoted, and stored at −80 °C to be used in next investigations. 

 
14.2.9 Prostaglandin E2 (PGE2) assay 

 

ELISA kit for PGE2 parameter assay (R&D system Europe, Ltd., Abingdon, UK) was purchased 

to detect PGE2 levels in serum samples. The kit was used according to the manufacturer’s 

instruction and achieved O.D. were tabulated and analyzed using a software of elaboration 

data. 

 

14.2.10 Chemical Serum Parameters 

 

VITROS MicroSlide Tests (VITROS 350 by Ortho-Clinical Diagnostics, Johnson & Johnson 

company, Milan, Italy) were used to assess creatine kinase (CK), sodium (Na+), and potassium 

(K+) serum levels. Data are shown as mean of achieved values for each experimental group. 

 

14.2.11 Golgi stain 

 

FD Neurotech kit (FD NeuroTechnologies, Ellicott City, Md, USA) was used for Golgi 

impregnation of tissue, according to manufacturing instruction 

(http://fdneurotech.com/docs/1333571253.web pk401-401a-04042012.pdf). Briefly, brain 

samples were placed directly into solution (A + B) containing mercuric chloride, potassium 

dichromate, and potassium chromate, without rinsing, and remained there for 2weeks in the 

dark at room temperature. Forty-eight hours after placing in solution C (4 °C), brains were 

frozen on dry ice and stored at −70 °C until sectioning. Cryostat sections (100 𝜇m) were cut at 

−25 °C and mounted onto gelatinized slides. Slides were allowed to dry in the dark, and the 

rest of the staining process was done as previously described (Feng et al., 2000). Cresyl violet 

was used as background color to counterstain. 

 

 

 



361 
 

 

14.2.12 Statistical evaluation 

 

All data were elaborated using GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA). 

The results were statistically analyzed by performing Student’s 𝑡-test. A 𝑝 value of < 0.05 was 

considered to be statistically significant. Results are expressed as mean ± S.E.M. of 𝑛 

experiments. For behavioral assessment, Sidak-Bonferroni method was applied using multiple 

𝑡-tests to assess statistical differences. 

 

14.3 Results and discussion 

 

SOD1tg rats represent a genetic model of ALS. Our purpose was to verify whether MO could 

have some effects on ALS disease and, if so, to investigate the mechanism which was 

modulated by pharmacological treatment of animals starting two weeks before the disease 

onset. We aimed to assess whether MO treatment could shift the time of disease onset 

forward, characterized by hind limb abnormal gait associated with degeneration of muscle 

integrity and function. It was evident that the appearance of muscle spasticity and abdominal 

contortion were initially visible in untreated rats SOD1tg (16 weeks of life in untreated SOD1tg 

rats) and later, about two weeks of delay (18 weeks of life), in rats treated with MO. 

Behavioral tests were a helpful tool in monitoring disease progression and MO treatment 

effects. Performing OFT, we established a locomotor activity of MO treated SOD1tg rats in 

the arena higher than untreated SOD1tg rats (Figure 14.1).  
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Figure 14.1 Moringin (GMG-ITC, MO) treatment delays locomotor activity loss. OFT was performed to evaluate 
SOD1tg rats motility in an open field, as a result of the administration or no administration of GMG-ITC 
treatment. Following seven measures, rats that received MO showed higher locomotor activity for the whole 
observational period with a significant difference at the day before the sacrifice. ∗𝑝 = 0.003. 
 

It is noteworthy to mention that even if the motility of MO SOD1tg rats appears to decrease 

in the time, the last measure occurring the day before the sacrifice shows a significant 

difference between the two groups, leading to believe that, however, MO treatment has the 

capability to delay deficits by ALS. Also, WHT, often used in place of rotarod test to assess the 

natural course of neuromuscular disease, allowed to establish a better performance of 

SOD1tg rats treated with MO given by a stronger grip capability and a better muscle strength, 

although decreasing over time (Figure 14.2). To understand the underlying molecular and 

cellular mechanisms we looked at the activation of the innate and acquired immune system, 

since it is inextricably related to many neurodegenerative and neuromuscular diseases 

(Malaspina et al., 2015; Sta et al., 2011). 
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Figure 14.2 Moringin (MO; GMG-ITC) treatment delaying ALS progression maintains muscle efficiency. 
HWT displays an initial overlapping of performance between the two experimental groups. 
Nevertheless, starting from forth test significant differences occur, showing better muscle strength 
and attitude in MO treated SOD1tg rats in all tests made during the experimental period. ∗𝑝 = 0.002. 
 

As expected, we observed that both TLR4 and CD8𝛼 detections were apparent in untreated 

SOD1tg rats (Figures 16.3 (a) and (c); see densitometric analysis Figure 1.9). Conversely, the 

effects of MO produced an immunomodulatory action reducing immune-competent cell 

solicitation (Figures 16.3 (b) and (d); see densitometric analysis Figure 1.9). These data have 

been further validated in MO treated SOD1tg rat by a high and significative FoxP3 detection, 

as an indirect marker of T regulatory (Treg, also known as CD4+/CD25high/FoxP3+) cell 

presence (Figure 14.4 (a)). Treg cell recruitment plays a key defensive role in suppression of 

Th1 effector cells (Dittel, 2008), which are the main T cell subtype mediating disease 

pathogenesis. Interestingly, it is possible that MO stimulates Th0 cell to develop into a Treg 

phenotype. Moreover, looking at proinflammatory cytokine profile classically activated by 

microglia during ALS development (Lewis et al., 2012), levels of TNF-𝛼 result significantly 

decreased following MO treatment (Figure 14.4 (b)). Taken together, all these parameters 

suggest that there is an upstream regulation of immune-inflammatory mediators as 

confirmed by increased PGE2 serum levels in the untreated SOD1tg rats (Shin et al., 2012) and 

by the modulation of this marker following MO administration (Figure 14.4 (c)). Furthermore, 

the influence that the prophylactic administration of MO has on ALS development is evident 
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assessing CK activity, an enzyme measured to monitor muscular deficit and atrophy and 

characteristically altered in ALS patients (Iłzecka and Stelmasiak, 2003). In fact, while no 

variation was detected in electrolytic balance between treated and untreated SOD1tg rats, a 

marked difference in serum CK was found in MO treated SOD1tg rats that show lower levels. 

This data demonstrated the capability of MO to interfere with motor neuron degeneration 

blocking radical species production, which is at the basis of many neurodegenerative diseases, 

including ALS (Shin et al., 2012) (Figure 14.4 (d)). 

 
 
 

 
 
Figure 14.3 Moringin (MO; GMG-ITC) treatment modulates innate and acquired immune response. In 
brain sections, TLR-4 detection reveals immunopositivity in untreated SOD1tg rats (a), while SOD1tg 
rats treated with MO show negative staining for TLR4 (b). In untreated SOD1tg rats the 
immunopositivity of brain sections to CD8 antibody identified wide areas with infiltrating cells (c). MO 
treatment reveals the capability to counteract the release of cytotoxic T cells at level of brain sections 
(d). 
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Figure 14.4 Western blot analysis of FoxP3 and TNF-𝛼 expression and serum parameters. Brain protein 
extracts reveal significant differences. Moringin (MO; GMG-ITC) treated SOD1tg rats present levels of 
FoxP3 higher than untreated animals (a) and TNF-alpha expression in spleen homogenates shows 
significant higher level of this marker in untreated than MO treated SOD1tg rats (b).  
∗∗∗∗𝑝 < 0.0001; ∗𝑝 = 0.0223. PGE2 serum levels are significantly higher in untreated SOD1tg rats when 
compared with serum levels of animals treated with MO (c). ∗∗∗𝑝 = 0.0001. About serum parameters, 
no electrolyte imbalance was measured in both groups looking at NA+/K+ levels, when creatine kinase 
(CK) enzyme was assayed, while a significant and interesting change was found comparing the CK 
levels of untreated SOD1tg rats higher than MO treated animals (d). ∗∗ 𝑝 = 0.008. 
 

Our data suggest that the high component of radicalic species is the cause of neuromuscular 

degeneration leading to ALS development. In this regard, it was interesting to investigate both 

the capability of MO to preserve brain tissue by oxidative stress and the state of the zinc 

dependent endopeptidase MMP9. Overall, data in literature show that this enzyme is not 
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specific for ALS; nevertheless, it is associated with ALS as marker of pathogenesis exerting 

direct neurotoxic effects or causing death by matrix proteins degradation (Łukaszewicz-Zając, 

2014). Convincing data about iNOS expression (Figure 14.5 (a) versus Figure 14.5 (b); see 

densitometric analysis Figure 14.9) as well as MMP-9 detection (Figure 14.5 (c) versus Figure 

14.5 (d); see densitometric analysis Figure 14.9) have been produced showing tissue 

preservation by ALS disease in rats treated with MO. The mechanism by which MO inhibits 

prooxidative genes nuclear expression seems to be controlled by a nuclear factor (erythroid-

derived 2)-like 2(Nrf-2)-mediated action (Figure 14.6(a) versus Figure 14.6(b); see 

densitometric analysis Figure 14.9). Moreover, we investigated the apoptotic pathway 

through different markers to evaluate how MO is able to preserve cells by dysfunction and 

death processes. In particular, Poly (ADP-ribose) polymerase 1 (PARP-1), which is responsible 

for DNA breakdown in apoptosis processes and correlated to ALS progression (Kim et al., 

2004), was reduced in the MO treated rats, establishing the capability of MO to prevent tissue 

damage (Figure 14.6(c) versus Figure 14.6(d); see densitometric analysis Figure 14.9). Also, 

protective effects of MO in counteracting apoptosis are evaluable through the analysis of data 

regarding these markers and confirmed by the absence of apobodies in SOD1tg rats 

pharmacologically treated (Figures 16.7(a), 16.7(b), and 16.7(c) versus Figure 14.7(d)). A 

modulated cleaved-caspase 3 activity in MO treated SOD1tg rats (Figure 14.8(a)), a mediator 

reported to influence PARP-1 expression (Kim et al., 2004) was found. Furthermore, also a 

preserved neuronal cell integrity was assessed in SOD1tg rats treated with MO, resulting in 

normal and unaffected synaptic spine-spine communication at level of dendritic trees (Figure 

14.8(b) versus Figure 14.8(c)). To compare dendritic loss, see areas in the rectangles. Finally, 

providing a quantification of the above displayed immunopositivity, immunohistochemical 

images regarding TLR-4, CD8𝛼, iNOS, MMP-9, Nrf-2, and PARP-1 were analyzed and the 

intensity was represented as % of positive staining (brown) on total tissue area (Figure 14.9). 
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Figure 14.5 iNOS formation and MMP-9 expression. Immunohistochemical (IHC) detection of iNOS 
tissue expression reveals that untreated SOD1tg rats have a positive staining for this marker (a), while 
there is an absence of positivity in brain sections sampled from moringin (MO; GMG-ITC) treated 
SOD1tg rats (b). By IHC stain, brain sections sampled from untreated SOD1tg rats exhibit positive 
staining for MMP-9 (c), whereas brain sections obtained from MO treated SOD1tg rats do not stain 
for MMP-9 (d). 
 

 
Figure 14.6 Moringin (MO; GMG-ITC) treatment promotes Nrf-2 activity and reduces PARP-1 activity. 
Nrf2 IHC localization shows a negative expression in brain sections sampled from untreated SOD1tg 
rats (a), while MO administration stimulates Nrf2 nuclear activity (b) preserving tissue damage by 
prooxidative gene expression. PARP-1 immunodetection shows a positive staining in untreated 
SOD1tg rats (c) and an IHC negative localization in MO treated SOD1tg rats (d). 
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Figure 14.7 TUNEL assay for apoptosis detection. In untreated SOD1tg rats, black-brown apobodies 
are shown as an index of DNA breakdown (a, b, and c; see arrows). In brain sections sampled from 
moringin (MO; GMG-ITC) treated SOD1tg rats no apoptotic cells or fragments were present (d). 
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Figure 14.8 Cleaved-caspase3 activation and dendritic spine detection. Western blot analysis of spleen 
homogenates revealed that, although not significantly, cleaved-caspase3 levels are higher in 
untreated SOD1tg rats than in animals that received moringin (MO; GMG-ITC) treatment (a). 
Moreover, a complete loss of nerve processes was detected in untreated SOD1tg rats (b) while 
treatment with MO protects SOD1tg rats neurons that appear morphologically intact and with long 
dendrites establishing normal synapses (c). 
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Figure 14.9 Densitometric analysis. Comparative expression between moringin (MO; GMG-ITC) 

treated/untreated SOD1tg rat for all evaluated immunohistochemical markers. A 𝑝 value < 0.05 was 

considered significant. ND = not detectable. 
 

14.4 Conclusion 

 

The present study adds a new promising use of MO in the treatment of a so severe pathology 

such as ALS. SOD1tg rats, which represent a transgenic model of ALS, showed a modified 

phenotype following MO administration, displaying a delay in appearance of disease onset of 

about two weeks, and variations in serum parameters as well as in molecular and 

histochemical marker assessment. Overall, results support that MO treatment can interfere 

with the mechanisms underlying ALS development. MO, freshly produced by MYR catalyzed 

hydrolysis of pure GMG, could be a candidate for further studies aimed to assess its possible 

use in clinical practice for the prevention or attenuated progression of ALS as well as other 

neuromuscular pathologies. 
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Summary 

 

Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS), 

although the results are controversial. The present study aimed to examine the role of the 

Wnt–β-catenin pathway in experimental MS and to test moringin (4-[α-L-

rhamnopyranosyloxy]-benzyl isothiocyanate) as a modulator of neuroinflammation via the β-

catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common 

model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released 

moringin (10 mg Kg-1 glucomoringin + 5 μL myrosinase/mouse) was administered daily for 1 

week before EAE induction and continued until mice were killed on day 28 after EAE 

induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in 

the EAE model, whereas moringin pretreatment was able to avert this. Moringin 

pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition 

and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the 

main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In 

addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and 

cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. The 

results provided an interesting discovery in identifying moringin as a modulator of the Wnt–

β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. 
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15.1 The Wnt canonical pathway 

 

The central logic of the Wnt–β-catenin-dependent or Wnt canonical pathway has been 

revealed in the past two decades. The Wnt-signaling pathway regulates many biological 

events occurring in the developmental and adult phases of all animals (Inestrosa and Arenas, 

2010). Wnts are a family of secreted signaling proteins, which activate either β-catenin-

dependent or independent intracellular pathways by binding to the seven-pass 

transmembrane receptors of the Frizzled family (van Amerongen et al., 2008). Generally, the 

Wnt1 class acts via the canonical pathway, while the Wnt5 class acts via the noncanonical 

pathway (Gordon and Nusse, 2006; Kikuchi et al., 2011). The key role of the canonical Wnt 

pathway is the stabilization of β-catenin present in the cytoplasm. When the Wnt ligand is 

absent, β-catenin binds with the adenomatous polyposis coli–Axin complex, which promotes 

β-catenin phosphorylation via the GSK3β enzyme. Then, phosphorylated β-catenin binds with 

the ubiquitin complex, resulting in degradation (Gordon and Nusse, 2006; Aberle et al., 1997).  

Wnt signaling prevents GSK3β activity, and thus increases the amount of β-catenin, which 

translocates into the nucleus and associates with TCF/LEF transcription factors, leading to the 

regulation of Wnt target genes (Gordon and Nusse, 2006). 

Wnt–β-catenin signaling is involved in the development of sensory and motor neurons 

present in the brain and spinal cord via regulation of all facets of neuronal activities, including 

differentiation, proliferation/senescence, and survival/apoptosis (Patapoutian and Reichardt, 

2000; Ciani and Salinas, 2005). Moreover, Wnt-signaling pathway aberrations are associated 

with the adulthood diseases of the central nervous system (CNS), which points to its critical 

role in the development of the mature CNS (Inestrosa and Arenas, 2010; Oliva et al., 2013). 

Growing evidence shows the importance of the Wnt–β-catenin pathway to stabilize neuronal 

cell survival and death in neurodegenerative diseases, such as Alzheimer’s disease and 

Parkinson’s disease (Inestrosa and Arenas, 2010; Toledo et al., 2008; Grand et al., 2015; 

Berwick and Harvey, 2012). In addition, the Wnt–β-catenin pathway seems to be involved in 

the pathogenesis and modulation of chronic pain in experimental autoimmune 

encephalomyelitis (EAE) mice (Yuan et al., 2012), the most commonly used model for multiple 

sclerosis (MS). However, the role of the Wnt canonical pathway in MS is still unclear. MS is a 

chronic inflammatory disease caused by an induction of autoreactive immune responses 

effected from T and B lymphocytes, which results in the demyelination of the myelin sheath 
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around neurons in the CNS (Trapp and Nave, 2008; Goverman, 2009). It is noteworthy to 

emphasize that the present-day treatments for MS provide palliative relief, but do not cure 

the disease. Moreover, these treatments trigger many side effects that hinder their 

application for a prolonged period (Weber et al., 2012). Therefore, new drugs that may act 

on the underlying etiology with no side effects are urgently required to treat MS. In the last 

few decades, PPARγ, an important target for diabetes treatment (Willson et al., 2001) has 

aroused great interest for its therapeutic role in brain disorders (Haneka et al., 2007). In 

addition, since PPARγ is linked with the Wnt–β-catenin pathway (Lecarpentier et al., 2014; 

Sabatino et al., 2014) identifying novel PPARγ activators through Wnt–β-catenin pathway 

regulation has become a promising therapeutic approach for brain diseases. In the present 

study, we investigated moringin (4-[α-l-rhamnopyranosyloxy]-benzyl isothiocyanate, MO) as 

a modulator of neuroinflammation via the β-catenin–PPARγ axis in an experimental model of 

MS.  

 

15.2 Materials and Methods  

  

15.2.1 Induction of experimental autoimmune encephalomyelitis 

 

This study was carried out in strict accordance with the recommendations of the guide for the 

care and use of laboratory animals of the National Institutes of Health. The protocol was 

approved by the Ministry of Health “General Direction of animal health and veterinary drugs” 

and this study was approved by “Animal Welfare Bodies” of IRCCS Centro Neurolesi Bonino-

Pulejo, Messina, Italy. Animal care followed Italian regulations on the protection of animals 

used for experimental and other scientific purposes (D.lgs 26/2014). All efforts were made 

during experimental procedures, to minimize animal suffering and to reduce the number of 

animal used. Male C57BL/6 mice (20–25 g) were anesthetized with an anesthetic cocktail 

consisting of tiletamine plus xylazine (10 mL Kg-1 intraperitoneally). EAE was induced in mice 

using the peptide MOG35–55 (MEVGWYRSPFSRVVHLYRNGK, peak area by HPLC $95%; AnaSpec 

Inc., Fremont, CA, USA), based on Paschalidis et al. (2009). Mice were subcutaneously injected 

with 300 µL/flank of the suspension consisting of an equal volume of 300 µg MOG35–55 in 

PBS and complete Freund’s adjuvant consisting of 300 µg heat-killed Mycobacterium 

tuberculosis H37Ra (BD, Franklin Lakes, NJ, USA). After MOG35–55 injection, the animals 
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immediately received an intraperitoneal injection of 100 µL Bordetella pertussis toxin (500 

ng/100 µL; Sigma-Aldrich Co., St Louis, MO, USA) and 48 hours later. EAE induction followed 

a sequence of progressive degeneration with visible signs, such as tail flaccidity and loss of 

hind-leg movement. 

 

15.2.2 Myrosinase bioactivation of glucomoringin 

 
GMG and MYR were purified as described at Chapter ten (see Section 10.5) and Chapter nine 

(see Section 9.2.2), respectively. 

Pure GMG (95%) was dissolved in PBS solution pH 7.2 at room temperature (2.5 mg mL-1) and 

hydrolyzed by the action of MYR (5 μl; 32 U mL-1) for 15 min at 37 °C right before animal 

treatment. Mice were then administered the resulting solution as such. 

 

15.2.3 Experimental design  

 

Mice were randomly separated into the following groups (n=35 total animals): 

1.  naïve group (n=5) – mice without any injection, serving as controls. 

2.  MO control group (n=5) – mice not subjected to EAE induction but injected with MO 

(10 mg/kg GMG +5 μL MYR/mouse), killed as controls of drug safety and tolerance. 

3. MYR control group (n=5) – mice not subjected to EAE damage, but only injected with 

MYR (5 μL MYR/mouse) to evaluate possible side effects, including allergenic reactions after 

administration. 

4.  EAE group (n=10) – mice receiving MOG injection. 

5.  EAE + MO (n=10) – MOG-injected mice administered with MO (10 mg Kg-1 GMG + 5 μL 

MYR/mouse); MO administered intraperitoneally daily for 1 week before EAE induction and 

continued daily after EAE induction until death. 

After 28 days of EAE induction, mice were killed and spinal cord tissues collected and 

processed for further analyses. 

 

 

 

 



378 
 

15.2.4 Clinical disease-score evaluation 

 

Mice showed initial signs of MS, including loss of tail tonus, hind-limb paralysis, and loss of 

body weight, after 14 days of EAE induction. Clinical neurological score was assessed 

according to a standardized scoring system (Rodrigues et al., 2010): 0, no visible signs; 1, 

partial flaccid tail; 2, complete flaccid tail; 3, hind limb hypotonia; 4, partial hind-limb 

paralysis; 5, complete hind-limb paralysis; and 6, moribund or dead animal. Mice with a 

clinical score ≥5 were killed to avoid animal suffering. The following clinical disease 

parameters were assessed: incidence, day of onset of clinical signs, peak disease score, 

cumulative disease score (CDS), and mortality (Table 15.1). The first assessment of 

neurological disease score was measured on the day of EAE induction (day 0), and all 

subsequent assessments were performed every 48 hours until mice were killed. Days’ 

difference in the disease parameter is reported compared to the day of EAE induction (day 

0). Days are reported as mean ± standard error of mean of all mice for each experimental set. 

 

Table 15.1 Clinical parameters of EAE 

Group Incidence 
(%) 

Day of disease  
onset (mean ± SD) 

Peak disease  
(mean ± SD) 

Cumulative disease 
score (mean ± SD) 

Mortality 

EAE 100 12.2±0.62 3.72±0.3 28.21±10.4 0/10 

EAE + moringin 100 14.3±0.5 1.26±0.2* 7.91±1.07* 0/10 

Naïve 0 0 0 0 0/5 

*P<0.005 compared to EAE group. incidence was calculated as the percentage of mice that displayed 
any clinical signs of disease. One-way multiple comparisons with Tukey’s test were used to determine 
the statistical significance of differences. All data calculated from two experiments. Day of onset: first 
day mice showed clinical signs; peak of disease: maximum score observed between days 0 and 28;

cumulative disease score, mean of sum of daily scores observed between days 0 and 28. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; SD, standard deviation. 

 

 

15.2.5 Immunohistochemistry  

 

Spinal cord tissues removed from the cervical region were fixed in 10% (w/v) PBS-buffered 

formaldehyde and embedded in paraffin. The tissues were cut into 7 µm sections. After 

deparaffinization, tissues were incubated with 0.3% (v/v) hydrogen peroxide in 60% (v/v) 
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methanol for 30 minutes to terminate endogenous peroxidase activity. Then, the tissue 

sections were blocked in 2% (v/v) normal goat serum in PBS for 20 minutes at room 

temperature. 

Tissue sections were incubated overnight with the following primary antibodies: 

-  anti-IL-1β polyclonal antibody (1:50 in PBS v/v; Santa Cruz Biotechnology Inc., Dallas, TX, 

USA) 

-  anti-IL-6 polyclonal antibody (1:100 in PBS v/v; Abcam, Cambridge, UK) 

-  anti-Fas-ligand polyclonal antibody (1:100 in PBS v/v; Abcam) 

- anti-cleaved caspase-9 monoclonal antibody (1:200 in PBS v/v; Abcam) 

- anti-CD4 polyclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology Inc.) 

- anti-FoxP3 monoclonal antibody (1:100 in PBS v/v; Santa Cruz Biotechnology Inc.). 

To avoid endogenous cross-reactivity of biotin- or avidin-binding sites, tissue sections were 

blocked separately with biotin and avidin for 15 minutes. Tissue sections were rinsed with 

PBS and incubated with secondary antibody. Specific labeling was performed using a biotin-

conjugated antirabbit IgG and avidin–biotin peroxidase complex (VectaStain; Vector 

Laboratories, Burlingame, CA, USA). Then, the tissue sections were stained using a DAB per-

oxidase-substrate kit (Vector Laboratories), followed by hematoxylin counterstaining. In 

addition, tissue sections were incubated with either primary or secondary antibody to assess 

antibody specificity. In these cases, no positive staining was observed in the tissue sections, 

indicating that the immunoreactions were positive in all the experiments carried out. 

Immunohistochemical staining was evaluated using light microscopy (Leica DM 2000 

combined with Leica ICC50 HD camera), and images were acquired by Leica Application Suite 

version 4.2.0 software. 

 

15.2.6 Western blot analysis 

 

Spinal cord tissues were homogenized in ice-cold extraction buffer consisting of 0.32 M 

sucrose, 10 Mm Tris–HCl (pH 7.4), 5 Mm NaN3, 2 Mm ethylenediaminetetraacetic acid (EDTA), 

1 Mm ethyleneglycoltetraacetic acid (EGTA), 50 Mm NaF, 10 Mm 2-mercaptoethanol, and 

protease-inhibitor tablets (Hoffman-La Roche Ltd, Basel, Switzerland). The homogenates 

were kept on ice for 15 minutes, centrifuged (1,000 g for 10 minutes at 4°C), and the 

supernatant removed to estimate cytosolic proteins. The pellets were resuspended in ice-cold 
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lysis buffer consisting of 10 Mm Tris–HCl (Ph 7.4), 150 Mm NaCl, 1 Mm EDTA, 1 Mm EGTA, 1% 

Triton X-100, and protease-inhibitor tablets. The resuspended pellets were kept on ice for 10 

minutes, centrifuged (15,000× g for 30 minutes at 4°C), and the supernatant removed to 

estimate nuclear proteins. Supernatants were preserved at -80°C until use. The quantity of 

protein was calculated with protein-assay reagent (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). Bovine serum albumin was used as the standard. Proteins (30 μg) were resolved on 

sodium dodecyl sulfate polyacrylamide minigels (8% or 12%) and transferred onto 

polyvinylidene difluoride membranes (Immobilon-P transfer membrane; EMD Millipore). 

After transfer, membranes were blocked with PBS containing 5% nonfat dried milk (PBS-milk 

(PM)) for 1 hour at room temperature, and incubated for overnight at 4°C overnight with 

specific antibodies: Wnt1 (1:250; Santa Cruz Biotechnology), β-catenin (1:500; Cell Signaling 

Technology, Danvers, MA, USA), CK2α (1:250; Santa Cruz Biotechnology Inc.), GSK3β (1:250; 

Santa Cruz Biotechnology Inc.), p-β-catenin (1:500; Santa Cruz Biotechnology Inc.), PPARγ 

(1:250; Santa Cruz Biotechnology Inc.), COX2 (1:250; Santa Cruz Biotechnology Inc.), and Nrf2 

(1:250; Santa Cruz Biotechnology Inc.). Then, membranes were washed in PBS and incubated 

with horseradish peroxidase-conjugated antimouse, -goat, or -rabbit IgG secondary antibody 

(1:2,000; Santa Cruz Biotechnology Inc.) for 1 hour at room temperature. Membranes were 

stripped and reprobed with β-actin (1:1,000; Santa Cruz Biotechnology Inc.) to confirm 

uniform protein loading. Protein bands were detected by an enhanced chemiluminescence 

system (Luminata Western; EMD Millipore), and images were taken by ChemiDoc™ MP (Bio-

Rad Laboratories Inc.) and quantified for relative expression of proteins using ImageJ 

software. 

 

15.2.7 Statistical evaluation 

 

Statistical analysis was performed using GraphPad Prism version 6.0 (GraphPad Software, Inc., 

La Jolla, CA, USA). The data were statistically analyzed by one-way analysis of variance and 

Bonferroni post hoc tests for multiple comparisons. A P-value ≤0.05 was considered 

statistically significant. Data are reported as mean ± standard error of mean of n experiments. 
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15.3 Results 

 

15.3.1 Moringin ameliorates clinical disease score 

 

Clinical disease score was evaluated as a functional neurological parameter. EAE is a well-

documented model of MS in the mouse and resembles the hallmarks of the disease, such as 

paralysis, loss of body weight, inflammation, demyelination in the CNS and blood–brain 

barrier leakage (Constantinescu et al., 2011). To study the role of MO in regulating 

susceptibility to EAE, mice were pretreated with the phytochemical and immunized with 

MOG35–55. The mice were monitored every 48 hours to assess clinical EAE signs. Compared to 

the EAE group, MO pretreated mice showed a significant reduction in disease incidence and 

average CDS. The lower CDS in the EAE + MO group was also reflected as a significant 

reduction in the severity of disease (Table 15.1). Indeed, EAE mice displayed a chronic-

progressive clinical course, while significant reduction in clinical score was observed in EAE 

mice pretreated with MO. No sign of motor deficits was noticed in naïve animals (Figure 

15.1B). These results suggest that MO reduces disease progression and increases recovery of 

neurological function in EAE mice. 

 

 

Figure 15.1 Treatment with moringin (MO) ameliorates clinical score in EAE (experimental 
autoimmune encephalomyelitis) mice. Scores are expressed as mean ± SEM of all measurements of 
each experimental group. Naïve group (n=5), EAE group (n=10), EAE+ MO (n=10). Naïve vs EAE, 
**P=0.0018; naïve vs EAE + MO, **P=0.005; EAE vs EAE + MO, **P=0.0019. One way-analysis of 
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variance with Bonferroni test were used to determine the statistical significance of differences. Data 
are expressed as mean ± SEM (standard error of mean). 

 

15.3.2 Moringin regulates the Wnt–β-catenin signaling pathway in EAE development 

 

Western blot analysis was performed to observe the modulation of the Wnt–β-catenin 

signaling pathway after EAE induction in mouse spinal cord. Results showed that the Wnt–β-

catenin canonical pathway was downregulated in EAE mice. Lower Wnt1 expression (Figure 

15.2A) was found in spinal cord tissues taken from EAE mice compared to naïve and control 

ones, which led to enhanced expression of GSK3β (Figure 15.2B), which acts synergistically 

with CK2α (Figure 15.2C) in the multiprotein complex that phosphorylates cytoplasmic β-

catenin, encouraging its ubiquitination and degradation. Indeed, β-catenin nuclear 

translocation was prevented in spinal cord tissues taken from EAE mice (Figure 15.2D), 

whereas cytoplasmic p-β-catenin expression was increased (Figure 15.2E). On the contrary, 

MO pretreatment positively regulated the Wnt–β-catenin signaling pathway in EAE mice. As 

demonstrated by Western blot analysis performed in spinal cord tissues, increased Wnt1 

expression was found in pretreated EAE mice compared to untreated ones (Figure 15.2A). In 

addition, MO pretreatment reduced the expression levels of GSK3β and CK2α (Figure 15.2B 

and C), by inhibiting phosphorylation of cytoplasmic β-catenin (Figure 15.2D). These results 

were further corroborated by enhanced expression of β-catenin in the nucleus (Figure 15.2E). 
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Figure 15.2 Moringin (MO) modulates the Wnt–β-catenin signaling pathway in EAE. 
Western blot analysis for Wnt1 (A). Naïve vs EAE, *P=0.0108; EAE vs EAE + MO, ##P=0.0014. Western 
blot analysis for GSK3β (B). Naïve vs EAE, ****P,0.0001; EAE vs EAE + MO, ####P,0.0001. Western blot 
analysis for CK2α. (C). Naïve vs EAE, **P=0.0022; EAE vs EAE + MO, ##P=0.0024. Western blot analysis 
for β-catenin (D). Naïve vs EAE, *P=0.0112; EAE vs EAE + MO, ##P=0.0028. Western blot analysis for 
p-β-catenin (E). Naïve vs EAE, ***P=0.0002; EAE vs EAE + MO, ###P=0.0002. All Western blot analyses 
were performed on spinal cord tissues sampled at 28 days from EAE induction. β-Actin was used as 
internal control. Blots are representative of three separate and reproducible experiments. Statistical 
analysis was carried out on three repeated blots performed on separate experiments. One way-
analysis of variance with Bonferroni test were used to determine the statistical significance of 
differences, Data are expressed as mean ± SEM. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control; ND, not detectable. 

 

15.3.3 Moringin modulates apoptosis triggered by Wnt–β-catenin signaling pathway 

downregulation 

 

To investigate apoptosis, we studied Fas-ligand expression by immunohistochemistry in spinal 

cord sections. Results showed negative staining for Fas in naïve mice (Figure 15.3A), MO 

controls (Figure 15.3B), and MYR control mice (Figure 15.3C). On the contrary, marked 

immunopositivity for Fas in untreated EAE mice (Figure 15.3D, arrows) was found. MO 

pretreated EAE mice showed negative staining for Fas (Figure 15.3E). It is well known that 
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activation of caspases is involved in apoptosis induction. Negative staining of cleaved caspase 

9 was observed in naïve mice (Figure 15.4A), as well as in control groups (Figure 15.4B and C). 

Immunohistochemistry results also showed that cleaved caspase-9 level was considerably 

increased in EAE mice (Figure 15.4D). MO pretreatment totally suppressed the level of cleaved 

caspase 9 (Figure 15.4E). 

 
Figure 15.3 Moringin (MO) modulates Fas-ligand expression in EAE. Immunohistochemical localization 
for Fas ligand in spinal cord tissues from naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and 
EAE mice pretreated with MO (E). All images are representative of three independent experiments. 
The arrows indicate positive staining for FAs-ligand in cytoplasmic membranes of spinal cord tissues. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 
 

 
Figure 15.4 Moringin (MO) modulates cleaved caspase-9 expression in EAE. Immunohistochemical 
localization for cleaved caspase 9 in naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and EAE 
mice pretreated with MO (E). All images are representative of three independent experiments. The 
arrows indicate positive staining for cleaved caspase-9 in nuclei of spinal cord tissues. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 
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15.3.4 Moringin regulates production of CD4 and Treg 
cells 

 

CD4 T-cell expression is involved in cell-mediated immunity and the pathogenesis of MS, with 

destruction of the axonal myelin sheath in several areas of the spinal cord mediated mainly 

by self-reactive CD4 T cells. Immunohistochemical analysis performed in spinal cord sections 

showed negative staining for CD4 in naïve (Figure 15.5A), MO controls (Figure 15.5B), and 

MYR control mice (Figure 15.5C). Positive staining for CD4 was observed in EAE mice (Figure 

15.5D); conversely, no positive staining for CD4 expression was obtained in mice pretreated 

with MO (Figure 15.5E). In addition, to verify whether treatment with MO could modulate the 

production of regulatory T (Treg) cells, we evaluated expression of the transcription factor 

FoxP3 by immunohistochemical analysis. Our results showed negative staining for FoxP3 in 

naïve mice (Figure 15.6A) and in MO, as well as the MYR control group (Figure 15.6B and C). 

Spinal cord sections from EAE mice showed positive staining for FoxP3 (Figure 15.6D), which 

was not observed in the tissues of EAE mice pretreated with MO (Figure 15.6E). 

 

 
Figure 15.5 Moringin (MO) modulates CD4 expression in EAE. Immunohistochemical evaluation for 
CD4 in naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and EAE mice pretreated with (MO) 
(E). All images are representative of three independent experiments. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 

 



386 
 

 
 
Figure 15.6 Moringin (MO) modulates FoxP3 expression in EAE. Immunohistochemical evaluation for 
FoxP3-naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and EAE mice pretreated with MO (E). 
All images are representative of three independent experiments. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 
 

15.3.5 Moringin modulates neuroinflammation triggered by Wnt–β-catenin signaling 

pathway downregulation 

 
Enhanced expression of proinflammatory cytokines has been associated with many 

neurodegenerative diseases, including MS. Furthermore, as it is known that Wnt–β-catenin 

signaling can regulate cytokine production, we analyzed the expression of IL-1β and IL-6 in 

spinal cord tissues collected from EAE untreated and MO pretreated EAE mice by 

immunohistochemical staining. No positive staining for IL-1β (Figure 15.7A) or IL-6 (Figure 

15.8A) was obtained in naïve mice, in the MO control group (Figures 7B and 8B), or in MYR 

ones (Figures 7C and 8C), while high levels of the these proinflammatory mediators were 

noticed in spinal cord tissues of EAE mice. Specifically, positive inflammatory cells are 

indicated by arrows in spinal cord sections stained with IL-1β and IL-6 (Figures 7D and 8D, 

respectively) and arrowheads show vascular endothelium positive for IL-6 (Figure 15.8D). 

Negative staining for IL-1β and IL-6 was observed in spinal cord tissues from EAE mice pre-

treated with MO (Figures 7E and 8E, respectively). In addition, we investigated COX2 

expression by Western blot analysis (Figure 15.9A). A basal level of COX2 was detected in 

naïve animals and control groups, while its level was significantly increased in EAE mice. MO 

pretreated EAE mice showed reduced COX2 expression. In addition, we investigated whether 
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MO could be a potential activator of PPARγ via Wnt–β-catenin signaling. By Western blot 

analysis, a mild increase in PPARγ expression was found in EAE mice, while administration of 

MO markedly increased PPARγ levels. Neither naïve mice nor the MYR control group showed 

any expression for PPARγ, whereas the MO control group showed PPARγ expression (Figure 

15.9B). Moreover, since it is widely recognized that isothiocyanates (ITCs) exert their 

protective effects by the capacity to induce expression of several enzymes via the Keap1–

Nrf2–ARE pathway (Hu et al., 2004; Dinkova-Kostova et al., 2002) we investigated expression 

of Nrf2. By Western blot analysis, we found that MO pretreatment enhanced Nrf2 expression 

in EAE mouse spinal cord, while in untreated EAE mice, Nrf2 was absent (Figure 15.9C). 

 

 

 

Figure 15.7 Moringin (MO) modulates IL-1β expression in EAE. Immunohistochemical localization for 
IL-1β in spinal cord tissues from naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and EAE mice 
pretreated with MO (E). All images are representative of three independent experiments. The arrows 
indicate positive staining for inflammatory cells in vascular endothelium of spinal cord tissues. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 
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Figure 15.8 Moringin (MO) modulates IL-6 expression in EAE. Immunohistochemical evaluation for IL-
6 in naïve mice (A), Ctl + MO (B), Ctl + MYR (C), EAE mice (D), and EAE mice pretreated with MO (E). 
All images are representative of three independent experiments. The arrows indicate positive staining 
for inflammatory cells in vascular endothelium of spinal cord tissues. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control. 
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Figure 15.9 Moringin (MO) modulated inflammatory mediators and Nrf2 activity in EAE. Western blot 
analysis for COX2 (A). Naïve vs EAE, ***P=0.0005; EAE vs EAE + MO, ##P=0.0012. Western blot analysis 
for PPARγ (B). EAE vs EAE + MO, ##P=0.0038. Western blot analysis for Nrf2 (C). Naïve vs EAE, 
**P=0.0039; EAE vs EAE + MO, ##P=0.003. All Western blot analyses were performed on spinal cord 
tissues sampled at 28 days from EAE induction. β-Actin was used as internal control. Blots are 
representative of three separate and reproducible experiments. Statistical analysis was carried out on 
three repeated blots performed on separate experiments. Data are expressed as mean ± SEM. 
Abbreviations: EAE, experimental autoimmune encephalomyelitis; Ctl, control; ND, not detectable. 
 

15.4 Discussion 

 

MS is documented as the most common root of neurological disability (Noseworthy et al., 

2000). Recent research has described the importance of the Wnt–β-catenin signaling pathway 

for normal functioning of the adult CNS, and its aberration has been reported in degenerative 

and inflammatory CNS diseases, like MS (Inestrosa and Arenas, 2010; Toledo et al., 2008; Yuan 

et al., 2012; Marchetti and Pluchino, 2013). Moreover, Wnt signaling has been reported in 
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immune cells present in the CNS, such as macrophages, microglia, and astrocytes, suggesting 

the critical role of the Wnt pathway in inflammation mediated CNS injury and recovery 

(Halleskog et al., 2011; L’Episcopo et al., 2011). Although it is well known that the Wnt 

canonical pathway can modulate the immune system by repressing the inflammatory process 

during MS, the role of the Wnt canonical pathway in regulating remyelination remains 

controversial (Xie et al., 2014). Some studies have supported the notion that the Wnt–β-

catenin pathway may act as a negative modulator of the remyelination process, via inhibiting 

oligodendrocyte differentiation and myelin formation (Fancy et al., 2009; Shimizu et al., 2005; 

Gaesser and Fyffe-Maricich; 2016). Conversely, results from recent studies suggested that the 

Wnt canonical pathway may promote remyelination (Marchetti and Pluchino, 2013; Hanafy 

and Sloane, 2011; Ye et al., 2009). In the present study, we evaluated the involvement of the 

Wnt–β-catenin pathway in the etiopathology of an experimental EAE model and also tested 

MO as a modulator of neuroinflammation via the β-catenin–PPARγ axis. In accordance with 

previous studies (Yuan et al., 2012; Swafford and Manicassamy, 2015) our results showed that 

the canonical Wnt–β-catenin pathway is inactivated in EAE development. We found that in 

mice subjected to EAE, cytoplasmic β-catenin was constantly phosphorylated by increased 

expression of CK2α and GSK3β, which inhibited nuclear translocation of β-catenin and 

consequent activation of Wnt target genes involved in cell survival. The enhanced activity of 

CK2α and GSK3β was paralleled by Wnt1 suppression. Moreover, upregulation of GSK3β 

induced the degradation of β-catenin, which resulted in apoptosis of neurons. Apoptosis was 

confirmed by significant positive staining for proapoptotic Fas and cleaved caspase 9 in the 

spinal cord sections of EAE mice. Pretreatment with MO markedly ameliorated the clinical 

score induced by EAE. Interestingly, MO pretreatment reverted the abnormal Wnt–β-catenin 

signaling of EAE mice. We found that MO reduced levels of CK2α and GSK3β, which in turn 

increased Wnt1 and nuclear β-catenin levels. Reduction in GSK3β expression was further 

supported by the absence of cytoplasmic phosphorylated β-catenin, which resulted in the 

attenuation of apoptosis, evidenced by reduction in Fas and cleaved caspase 9. Moreover, we 

noticed that in the spinal cord of EAE mice, CD4 and FoxP3 levels were elevated, which 

indicated engagement and infiltration of Treg cells in the CNS. MOG-induced activation of 

CD4+/Foxp3+ Treg cells have been already demonstrated in EAE mice (Zorzella-Pezavento et 

al., 2013). The proinflammatory mediators IL-1β, IL-6, and COX2 were also increased. MO 

repressed EAE-associated Treg-cell activation by diminishing CD4 and FoxP3 levels. 
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Additionally, MO decreased IL-1β, IL-6, and COX2 levels in EAE mice. Indeed, similar 

suppression of T-cell response in EAE has been previously demonstrated by sulforaphane, 

(Geisel et al., 2014; Li et al., 2013).  From our findings, we propose that MO may control EAE 

associated Treg-cell molecules via Wnt-signaling activation. It is well known that the Wnt-

signaling pathway regulates T-cell activation (van Loosdregt et al., 2013; Staal et al., 2008). 

Increased Wnt1/β-catenin levels and decreased GSK3β level in MO administered EAE mice 

corroborated our notion, suggesting the active inhibition of MOG induced T-cell activation via 

the MO mediated Wnt-signaling pathway. Studies in recent years have demonstrated the 

beneficial efficacy of PPARγ agonists in the treatment of MS and other neurodegenerative 

diseases to suppress inflammatory and oxidative stress (Drew et al., 2008; Kaundal and 

Sharma, 2010; Mrak and Landreth, 2004). Since PPARγ is associated with the Wnt–β-catenin 

pathway (Lecarpentier et al., 2014; Sabatino et al., 2014) we investigated whether MO could 

be a potential activator of PPARγ via Wnt–β-catenin signaling. We observed a mild increase 

in PPARγ levels in EAE mice, which might have resulted from an innate anti-inflammatory 

response. Interestingly, EAE mice administered with MO exhibited marked upregulation in 

PPARγ expression. We assume that the observed reduction of the proinflammatory mediators 

IL-1β, IL-6, and COX2 in MO treated EAE mice might be attributed to elevated levels of PPARγ. 

Moreover, MO pretreatment augmented antioxidant Nrf2 expression in EAE mice. It has been 

well documented that ITCs may exert their antioxidative effects by Nrf2 activation (Dinkova-

Kostova et al., 2002; Ernst et al., 2013). Of note, it is important to emphasize that GSK3β 

downregulation increases Nrf2 expression (Dinkova-Kostova et al., 2002). We assume that the 

enhanced expression of Nrf2 might have resulted from the MO regulated reduction of GSK3β. 

Our results are in line with previous studies, where it has been reported that R/S-

sulforaphane, increased the level of Nrf2 by reducing GSK3β expression (Rada et al., 2012; 

Shang et al., 2015; Rojo et al., 2008). Figure 15.10 shows a graphic representation of β-catenin 

signaling-mediated PPARγ and Nrf2 regulation in the presence or absence of Wnt. 
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Figure 15.10 Wnt–β-catenin canonical pathway. In the absence of the Wnt ligand (off), β-catenin is 
phosphorylated by the destruction complex formed by Axin, APC, CK2α, and GSK3β, leading to β-
catenin degradation and subsequent induction of neuronal cell death. In the presence of the Wnt 
ligand, the Wnt canonical pathway is activated (on), and β-catenin is not phosphorylated by the 
destruction complex formed by Axin, APC, CK2α, and GSK3β. Therefore, β-catenin is free to translocate 
into the nucleus, where it binds with the TCF/LEF transcription factors and promotes the transcription 
of Wnt target genes. 
 

15.5 Conclusion 

 

The results of the presented study demonstrated that in a mice model of EAE, MO normalizes 

the aberrant Wnt–β-catenin pathway and inhibits GSK3β. Furthermore, MO suppresses 

proinflammatory mediators via PPARγ activation and attenuates apoptosis. Therefore, MO 

could be considered as a potential PPARγ agonist in the treatment of MS. 
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Summary 

 
The present study was aimed at estimating a possible neuroprotective effect of 

glucomoringin (GMG) [4-(a-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with 

the enzyme myrosinase to form the corresponding isothiocyanate (4-(a-L-

rhamnopyranosyloxy)benzyl C; moringin) in the treatment or prevention of Parkinson’s 

disease (PD). The beneficial effects of moringin were compared with those of pure GMG 

in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in 

C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 

Mice were pretreated daily for 1 week with moringin (GMG 10 mg Kg-1 + 5 µL 

MYR/mouse) and with GMG (10 mg Kg-1). Behavioral evaluations were also performed to 

assess motor deficits and bradykinesia in MPTP mice. Besides, if pretreatment with 

moringin could modulate the triggering of inflammatory cascade with a correlated 

response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 

macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher 

efficacy of moringin compared with GMG to modulate the inflammatory pathway as well 

as the oxidative stress and the apoptotic pathways. In addition, the better effectiveness of 

moringin in countering mainly the inflammatory pathway has been corroborated by the 

results obtained in vitro.  
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16.1 Parkinson’s disease 

 

Parkinson’s disease (PD) is the second most common progressive neurodegenerative 

disorder after Alzheimer’s disease that occurs mostly in older persons, but can also 

appear, although with a lower frequency, in young patients. Worldwide, estimated 7 

to 10 million people are thought to be affected and men are 1.5 times more likely to 

develop PD than women (Beitz, 2014). PD is primarily characterized by extensive and 

progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars 

compacta (SNpc) with subsequent loss of dopamine in the striatum and the presence of Lewy 

bodies, consisting of alpha-synuclein aggregates (Braak et al., 2004; Dawson and Dawson, 

2003). The neuronal connection between substantia nigra and the striatum is essential for 

normal motor functions of the brain; deterioration of these neurons results in dopamine 

depletion, which leads to major pathological hallmarks of PD (Rai et al., 2015). Although the 

etiology and pathogenesis of PD remain not completely understood, increasing evidences 

indicate oxidative stress as one of the major pathophysiological mechanisms associated with 

PD (Blesa et al., 2015; Jenner, 1991). However, it is still unclear whether an increase in 

oxidative damage, observed during progression of disease, may be the primary cause or, 

instead, a consequence of upstream inflammatory and excitotoxicity events. To date, DA 

replacement with levodopa or DA agonists is the most effective treatment against PD. 

Although such drugs are effective in the early stages of the disease, long-term therapy has 

been associated with serious adverse effects (Ceravolo et al., 2016). Over the last decade, to 

discover new alternative therapies for PD, basic science has focused on the discovery of 

natural products as a source of potent and effective antioxidant agents in the treatment of 

this devastating pathology.  

In the present study, we investigated the neuroprotective effects of MO and we compared its 

efficacy with GMG in an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

induced subacute PD model. To provide further evidence for the potential molecular 

mechanisms underlying MO bioactivity, we studied its anti-inflammatory and antioxidative 

effects in the mouse macrophage cell line, RAW 264.7, stimulated with lipopolysaccharide 

(LPS).  
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16.2 Materials and Methods  

  

16.2.1 MPTP-induced subacute Parkinson’s Disease  

 

Subacute PD was induced in male C57BL/6 mice by injection of MPTP hydrochloride 

(Sigma-Aldrich), as recognized by Langston et al. (1983). In our experimental design, five 

injections of MPTP (20 mg Kg-1) were performed 24 hours apart to produce subacute 

symptoms. 

 

16.2.2 Myrosinase bioactivation of glucomoringin 

 
GMG and MYR were purified as described at Chapter ten (see Section 10.5) and Chapter nine 

(see Section 9.2.2), respectively. 

Pure GMG (95%) was dissolved in PBS solution pH 7.2 at room temperature (2.5 mg mL-1) and 

hydrolyzed by the action of MYR (5 μl; 32 U mL-1) for 15 min at 37 °C right before animal 

treatment. Mice were then administered the resulting solution as such. 

 

16.2.3 Experimental design  

 

Mice were randomly allocated into the following groups (N=55 total animals): 

1. NAIVE group (N=5): mice not subjected to MPTP damage or to any injection, 

sacrificed as control; 

2. MPTP group (N=10): mice received five injections of MPTP (20 mg Kg-1, 

intraperitoneal [i.p.]) 24 hours apart; 

3. MPTP + MO group (N=10): mice were pretreated daily for 1 week with moringin 

(10 mg Kg-1 GMG + 5 µL MYR/mouse, i.p.) before MPTP administration (20 mg Kg-1, i.p.) 

24 hours apart, then treatment was protracted until the sacrifice; 

4. MO control group (N=5): mice not subjected to MPTP damage, but injected with 

MO (10 mg Kg-1 GMG + 5 µL MYR/mouse, i.p.), sacrificed as control of drug safety and 

tolerance; 
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5. MPTP + GMG group (N = 10): mice were pretreated daily for 1 week with pure 

GMG (10 mg Kg-1, i.p.) before the five injections of MPTP (20 mg Kg-1, i.p.)  24 hours apart, 

then treatment was protracted until the sacrifice; 

6. GMG control group (N=5): mice not subjected to MPTP damage, but injected with 

GMG (10 mg Kg-1, i.p.), sacrificed as control of drug safety and tolerance; 

7. MYR control group (N=5): mice not subjected to MPTP damage, but only injected 

with MYR (5 µL MYR/mouse, i.p.) to evaluate possible side effects, including allergenic 

reactions after administration; 

8. Vehicle group (N=5): mice not subjected to MPTP damage, but only injected with 

MO or GMG vehicle (phosphate-buffered saline) as control of the treatment. 

At the 14th day from subacute PD induction, all animals were euthanized, and brain 

tissues were sampled and processed to evaluate parameters of the disease. 

 

16.2.4 Body weight loss and behavioral test 

 

The measure of the body weight was assessed every 48 hours, and any loss was registered 

as marker of pathology (Figure 16.1B). The behavior was evaluated with the pole test 

method (Figure 16.1C). This test is used in mice to assess basal ganglia-related movement 

disorders and in particular bradykinesia. The method was adapted from the protocol 

originally described by Ogawa et al. (1985) with minor modifications. 

 

16.2.5 Immunohistochemistry on mouse brain tissues 

 

All immunohistochemical evaluations were performed according to previously published 

protocols (Galuppo et al., 2014). 

 

16.2.6 Golgi stain 

 

The FD Rapid Golgi Stain™ Kit (FD NeuroTechnologies, Inc.) was used for Golgi 

impregnation of tissue, according to the manufacturer’s instructions 

(http://fdneurotech.com/ docs/1333571253.web_pk401-401a-04042012.pdf). 
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16.2.7 Cell culture conditions, drug treatment, and immunocytochemistry analysis 

 

All experiments regarding cell culture as well as immunocytochemistry analysis were 

performed according to previously published protocols (Rajan et al. 2016). Untreated 

cells (CTR), GMG alone, and MYR alone treated cells, with or without LPS activation, were 

also included as controls. 

 

16.2.8 Western blot analysis 

 

All western blot procedures were performed according to previously published protocols 

(Galuppo et al., 2014). 

 

16.2.9 Statistical evaluation 

 

GraphPad Prism version 6.0 program (GraphPad Software) was used for statistical 

analysis of data. The results were statistically analyzed using one-way analysis of 

variance, followed by a Bonferroni post hoc test for multiple comparisons. A p-value 

≤0.05 was considered significant. Results are expressed as n ± standard error of the mean 

of n experiments. 

 

16.3 Results 

 

16.3.1 Moringin avoids body weight changes and ameliorates motor deficits in MPTP mice 

 

The measure of body   weight   was   assessed every 48 hours. (Figure 16.1B). As expected, 

after PD induction, a significant body weight loss was observed in MPTP mice compared with 

naive ones. A body weight gain was also observed in MPTP mice pre-administered with 

moringin as well as in mice pre-administered with GMG. Likewise, no sign of any decrease in 

body weight was found in control groups. Pretreatment with MO as well as with pure GMG 

did not show any sign of toxicity in mice. 

Animals were also evaluated for degree of PD-related bradykinesia during the pole test 

(Figure 16.1C). The results showed that MPTP mice administered with MO, more than GMG-
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treated ones, did not show reluctance when placed head-up on top of the pole compared 

with untreated MPTP mice. MO pretreatment also resulted in faster drop time when 

compared with MPTP mice that did not receive pharmacological injection. As expected, 

control groups showed normal behavior. 

 

 
 

Figure 16.1 Pretreatment with MO or GMG avoids body weight changes and ameliorates 
motor deficits in MPTP mice. (B) MPTP-injected mice show a significant body weight loss. MO 
or GMG pretreatment significantly prevents MPTP-induced weight loss. (C) The same 
experimental group examined in a pole test gives significant results. MPTP-administrated 
mice pretreated with MO or GMG show a faster drop time compared with the untreated 
groups. The graph (B) represents  value for each group obtained by calculating the difference 
in body weight between the measures taken the day of sacrifice and those taken the day of 
disease induction.  
(B) ****p < 0.0001 versus MPTP, ****p < 0.0001 versus MPTP+MO, ****p < 0.0001 versus 
MPTP+GMG, ****p < 0.0001 versus MO CTRL, ****p < 0.0001 versus GMG CTRL, ****p < 
0.0001 versus MYR CTRL, ****p < 0.0001 versus Vehicle CTRL.  
(C) ****p < 0.0001 versus MPTP, ****p < 0.0001 versus MPTP+MO, ****p < 0.0001 versus 
MPTP+GMG, ****p < 0.0001 versus MO CTRL, ****p < 0.0001 versus GMG CTRL, ****p < 
0.0001 versus MYR CTRL, ****p < 0.0001 versus Vehicle CTRL. GMG, glucomoringin; MPTP, 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PBS, phosphate-buffered saline. 
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16.3.2 Moringin prevents the decreasing of tyrosine hydroxylase expression and improves 

the neuronal dendrite in MPTP mice 

 

To evaluate neuronal synaptic integration following MPTP damage, we performed a 

qualitative analysis by Golgi impregnation in the substantia nigra area. We found that 

neuronal dendrites were clearly reduced in substantia nigra of MPTP mice (Figure 16.2A). In 

contrast with GMG pretreatment (Figure 16.2C), MO pretreatment (Figure 16.2B) exerts 

protection against neuronal damage with a recovery of neuronal dendrites resembling the 

results obtained for naive and control groups (data not shown). 

As DA loss in the SNpc region is the primary feature of MPTP mice, we examined protein 

expression levels of tyrosine hydroxylase (TH) in brain samples to assess the neuroprotective 

role of MO (Figure 16.2D). In this study, we found that MPTP mice exhibited a significant 

reduction in the protein expression levels of TH, whereas the decreased expression of TH was 

significantly restored following pretreatment with MO, suggesting a neuroprotective effect 

protecting presumably DA neurons from MPTP-induced degeneration. Pretreatment with 

GMG acts only partially on restoration of TH expression. As expected, naive and control 

groups showed a normal expression of TH (Galuppo et al., 2013) (data not shown). 
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Figure 16.2 Compared with GMG, MO significantly improves the neuronal dendrites and 
prevents the decreasing of TH expression in MPTP mice. A severe loss of termination at the 
level of the dendrite tree is marked in brain samples taken from untreated MPTP mice (A). 
Nigral DA neurons are preserved significantly by MO-pretreated MPTP mice. (B). than GMG-
treated MPTP mice (showed in black arrows) (C). All sections were obtained using light 
microscopy (LEICA DM 2000 combined with LEICA ICC50 HD camera). Leica Application Suite 
V4.2.0 software was used as the image computer program to acquire immunohistochemical 
pictures. Western blot results show that expression of TH is preserved significantly by MO-
treated MPTP mice than GMG-pretreated MPTP mice. A severe loss of TH level is noticed in 
untreated MPTP mice (D). GAPDH was used as internal control. **p = 0.0029 versus 
MPTP+MO; **p = 0.0067 versus MPTP+GMG. Blots are representative of three separate and 
reproducible experiments. The statistical analysis was carried out on three repeated blots 
performed on separate experiments. DA, dopamine; TH, tyrosine hydroxylase.  
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16.3.3 Moringin modulates the inflammatory pathways in MPTP mice 

 

Modulation of inflammatory mediators in mouse brain, particularly about the main cytokines 

involved in PD progression, was investigated to understand and assess the effects of MO 

pretreatment compared with GMG pretreatment on molecular mechanisms of inflammation. 

Specifically, the expression levels of tumor necrosis factor alpha (TNF-a) and interleukin-1 

beta (IL-1) in brain samples were quantified by western blot and immunohistochemical 

analysis. By western blot analysis, an increase in TNF-a release over the course of subacute 

PD was found, as evidenced in samples collected from MPTP mice (Figure 16.3A). On the 

contrary, reduced expression of TNF-a was observed in mice having received MO 

administration as well as in mice pretreated with GMG. A level basal of TNF-a expression was 

observed in naive animals as well as in control groups (data not shown). 

In addition, by western blot performed on brain extracts, we found that in MPTP mice, high 

expression of Toll-like receptor 4 (TLR4), which plays a fundamental role in activation of innate 

immunity as well as in triggering inflammatory response, was attenuated by administration 

of MO and less by pretreatment with GMG (Figure 16.3B). A basal level of TLR4 expression 

was also observed in naive animals as well as in control groups (data not shown). 

Our results clearly show that brain sections from MPTP mice that did not receive 

pharmacological treatment displayed a marked positive staining for IL-1 (Figure 16.3C). 

MPTP mice pretreated with MO (Figure 16.3D) and to a lesser extent with GMG (Figure 16.3E, 

densitometric analysis Figure 16.8A) displayed a reduced IL-1 immunohistochemical 

localization, which supports the hypothesis of a possible mechanism of anti-inflammatory 

action of MO. Negative staining for IL-1 was also found in brain sections from naive mice as 

well as in control groups (data not shown). 

Finally, no positive staining for P-selectin was observed in sections of brain from naive mice 

as well as in control groups (data not shown), whereas intense positive staining in the vascular 

endothelium of MPTP mice was observed (Figure 16.3F, densitometric analysis Figure 16.8B). 

Conversely, negative staining for P-selectin was observed in brain tissues from mice 

pretreated with MO (Figure 16.3G) and less in GMG-pretreated mice (Figure 16.3H). 
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Figure 16.3 Compared with GMG, MO significantly modulates the inflammatory pathways in 
MPTP mice. Western blot results show enhanced expression of proinflammatory TNF-a (A) 
and TLR4 (B) in MPTP mice, while significant reduction is noticed in MO-pretreated MPTP 
mice. Similar reduction is observed in GMG-pretreated MPTP mice. GAPDH was used as 
internal control (A). **p = 0.0076 versus MPTP+MO; **p = 0.0084 versus MPTP+GMG; (B) 
*p = 0.00126 versus MPTP+MO; *p = 0.0151 versus MPTP+GMG. Blots are representative of 
three separate and reproducible experiments. The statistical analysis was carried out on 

three repeated blots performed on separate experiments. Proinflammatory marker IL-1 
and microglial activation marker P-selectin expression by immunohistochemical localization 

shows that MPTP injection causes elevated level of IL-1 (C) and P-selectin (F), while 

following MO pretreatment, IL-1 and P-selectin staining results are negative (D and G, 

respectively). MPTP mice pretreated with GMG show reduced expression of IL-1 and P-
selectin (E and H, respectively), although less effective than MO pretreatment. All sections 
were obtained using light microscopy (LEICA DM 2000 combined with LEICA ICC50 HD 
camera). Leica Application Suite V4.2.0 software was used as the image computer program 

to acquire immunohistochemical pictures. IL-1, interleukin-1 beta; TLR4, Toll-like receptor 
4; TNF-a, tumor necrosis factor alpha. 
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16.3.4 Moringin modulates oxidative stress markers in MPTP mice 

 

One possible consequence of upstream inhibition of the inflammatory pathway is the possible 

blockage of the oxidative stress triggering. It is known that production of radical species plays 

a key role in the development of severe brain damage, especially following PD. During 

investigation of oxidative pathways by western blot analysis, we found that samples of MPTP 

mice demonstrated significant increase of inducible nitric oxide synthase (iNOS), whereas in 

MO pretreatment, iNOS expression was clearly reduced. By comparing both pretreatments, 

GMG has proven to be not as effective as MO (Figure 16.4A). A basal level of iNOS was also 

found in naive and in control mice (data not shown). Those results were correlated with the 

expression of Nrf2, a transcription factor that binds to a short antioxidant response element 

(ARE), found in the promoters of several detoxification genes, including those involved in 

redox homeostasis. Immunohistochemical evaluation showed a positive staining for Nrf2 in 

brain samples obtained from naive mice and control ones (data not shown). The MPTP mouse 

group (Figure 16.4B) presents a reduced tissue expression for this protein, whereas 

pretreatment with MO (Figure 16.4C) and partially with GMG (Figure 16.4D, densitometric 

analysis Figure 16.8C) keeps Nrf2 nuclear expression at high levels, preserving tissues from 

MPTP damage. 
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Figure 16.4 MO significantly modulates the oxidative stress markers in MPTP mice. Western 
blot results show enhanced expression of iNOS in MPTP mice, while significant reduction is 
noticed in MO-pretreated MPTP mice. MPTP mice pretreated with GMG did not show any 
protection (A). GAPDH was used as internal control. **p = 0.0049 versus MPTP+MO; **p = 
0.0076 versus MPTP+GMG. Blots are representative of three separate and reproducible 
experiments. The statistical analysis was carried out on three repeated blots performed on 
separate experiments. Nrf2 expression by immunohistochemical localization shows that 
MPTP injection causes a marked reduction (B), while following MO pretreatment, Nrf2 
staining results are significantly positive (C). MPTP mice pretreated with GMG show reduced 
expression of Nrf2 (D), although less effective than MO pretreatment. All sections were 
obtained using light microscopy (LEICA DM 2000 combined with LEICA ICC50 HD camera). 
Leica Application Suite V4.2.0 software was used as the image computer program to acquire 
immunohistochemical pictures. iNOS, inducible nitric oxide synthase. 
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16.3.5 MO pretreatment inhibits apoptosis in MPTP mice 

 

Radical species production is implicated in the progression of oxidative stress-related 

apoptosis and cell death of the midbrain dopaminergic neurons. Therefore, we ultimately 

evaluated the degree of apoptosis associated with MPTP, testing the role of MO in 

attenuating cell death. By western blot analysis, we evaluated the activation of cleaved 

caspase-9 in brain tissues (Figure 16.5A). Cleaved caspase-9 levels were appreciably increased 

in the samples from MPTP mice, whereas pretreatment with MO prevented MPTP-induced 

cleaved caspase-9 expression. MPTP mice pretreated with GMG showed yet high expression 

of cleaved caspase-9. Naive mice as well as control ones (data not shown) showed a basal 

expression of cleaved caspase-9. In addition, 14 days after subacute PD induction, the 

appearance of protein effectors of mitochondrial apoptosis, such as proapoptotic Bax 

proteins, could be detected by immunohistochemical evaluation. In the study of the apoptotic 

pathway through immunohistochemical analysis, as expected, we assessed a completely 

negative staining for Bax and a marked positivity for Bcl-2 in naive animals (data not shown). 

Conversely, MPTP mice showed a positive expression for Bax (Figure 16.5B) and negative 

staining for Bcl-2 (Figure 16.5E). By comparing the two pretreatments, MO demonstrated a 

significant capacity in protecting the unbalance between Bax/Bcl2 (Figure 16.5C, F), while 

GMG possessed a lower power in downregulation of Bax (Figure 16.5D densitometric analysis 

Figure 16.8D) and in upregulation of Bcl-2 degradation (Figure 16.5G, densitometric analysis 

Figure 16.8D). The above proteins seem to be modulated by STAT-1 protein, which has been 

implicated in modulating pro- and antiapoptotic genes following several stress-induced 

responses (Cao et al., 2015). In this study, we found an increased expression of STAT-1 in 

MPTP mice, attenuated by administration of MO as well as by GMG pretreatment. (Figure 

5H). Likewise, proteins in the mitochondrial p53 pathway (Figure 16.5I) and one of its target 

genes, p21 (Figure 16.5J), were detected by western blot analysis. Gene p53 is able to induce 

apoptosis both by controlling the translation of proapoptotic p53-checked mediators and by 

non-transcriptional mechanisms, including upregulation of proapoptotic proteins and 

downregulation of antiapoptotic mediators. MPTP mice showed a significant expression of 

these markers when compared with the naive group (data not shown). Conversely, expression 
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of p53 was reduced by administration of MO as well as by administration of GMG, while p21 

was downregulated only by MO pretreatment. 

 

 
Figure 16.5 MO significantly attenuates apoptosis in MPTP mice. Western blot results show enhanced 
expression of cleaved caspase-9 in MPTP mice, while significant reduction is noticed in MO-pretreated 
MPTP mice. MPTP mice pretreated with GMG show reduced expression of cleaved caspase-9, 
although less effective than MO pretreatment (A). *p = 0.0327 versus MPTP+MO. Proapoptotic Bax 
expression by immunohistochemical localization shows that MPTP injection causes elevated level of 
Bax (B) in MPTP mice, while following MO pretreatment, Bax staining results are significantly negative 
(C). MPTP mice pretreated with GMG did not show significant reduction of Bax (D). Antiapoptotic Bcl-
2 expression by immunohistochemical localization shows that MPTP injection causes marked 
reduction (E) in MPTP mice, while following MO pretreatment, Bcl-2 staining results are significantly 
positive (F). MPTP mice pretreated with GMG show a mild positive staining for Bcl-2 (G), although less 
effective than MO pretreatment. All sections were obtained using light microscopy (LEICA DM 2000 
combined with LEICA ICC50 HD camera). Leica Application Suite V4.2.0 software was used as the image 
computer program to acquire immunohistochemical pictures. Western blot results show enhanced 
expression of STAT1 (H), p53 (I), and p21 (J) in MPTP mice, while significant reduction is noticed in 
MO-pretreated MPTP mice. MPTP mice pretreated with GMG show reduced expression of STAT1 and 
p53, similar to MO-pretreated MPTP mice; however, p21 reduction is less than MO pretreatment. 
GAPDH was used as internal control.  (H)  *p = 0.0129 versus MPTP+MO; *p = 0.0229 versus 
MPTP+GMG. (I) 
***p = 0.0002 versus MPTP+MO; ***p = 0.0002 versus MPTP+GMG. (J) **p = 0.0054 versus 
MPTP+MO; *p = 0.0256 versus MPTP+GMG. Blots are representative of three separate and 
reproducible experiments. The statistical analysis was carried out on three repeated blots performed 
on separate experiments. ND, not detectable. 
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16.3.6 Moringin modulates the inflammatory pathways in LPS-activated mouse 

macrophage RAW 264.7 

 

To provide further evidence for the molecular mechanisms underlying the anti-inflammatory 

effects of MO, we performed in vitro studies in the mouse macrophage cell line, RAW 264.7. 

The cells were pretreated with MO before LPS stimulation. Eosin and hematoxylin staining 

showed morphological changes in LPS-stimulated macrophages (Figure 16.6B), including an 

increase in cell size and production of lamellipodia and filopodia compared with control cell 

(Figure 16.6A). MO pretreatment (Figure 16.6C) attenuated clearly these LPS-triggered 

morphological changes. Macrophages pretreated with GMG showed only partially reduced 

(Figure 16.6D) morphological changes. 

Immunocytochemistry results showed dense positive staining for inflammatory markers, 

TLR4 (Figure 16.6F) and TNF-a (Figure 16.6J), in LPS-activated cells. On the contrary, MO 

pretreatment showed basal level staining for TLR4 (Figure 16.6G) similar to that of control 

cells (Figure 16.6E). MO pretreatment also displayed negative staining for TNF-a in LPS- 

activated cells (Figure 6K) as well as in control cells (Figure 16.6I). In addition, GMG 

pretreatment displayed partial but significant reduction of positive staining for TLR4 (Figure 

16.6H, densitometric analysis Figure 16.8E) as well as for TNF-a (Figure 6L, densitometric 

analysis Figure 16.8F) when compared with the LPS-moringin group. Western blot data 

showed a reduction in IjB-a level in LPS-activated cells, while MO significantly elevated its 

level (Figure 16.6M). Increased expression of NF-B (Figure 6N) and IL-6 (Figure 16.7A) was 

observed in LPS-activated cells, while MO significantly reduced their levels. 
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Figure 16.6 MO modulates the inflammatory pathways in LPS-activated mouse macrophage RAW 
264.7. Morphological assessment in LPS-activated RAW macrophages shows increased cell size and 
production of lamellipodia and filopodia (B). MO pretreatment significantly reduced these LPS-
triggered morphological features (C). Control cells show normal morphological appearance (A). GMG 
pretreatment reduced partially LPS-triggered morphological features (D). Immunocytochemistry 
results show that in LPS-activated macrophages, proinflammatory markers, TLR4 (F) and TNF-a (J), 
show enhanced expression, while MO pretreatment shows basal level staining for TLR4 (G) similar to 
that of control cells (E) and negative staining for TNF-a (K) expression. Control cells show negative 
staining for TNF-a (I). GMG pretreatment displayed partial but significant reduction of positive staining 
for TLR4 (H) as well as for TNF-a (L) when compared with the LPS-MO group. All sections were obtained 
using light microscopy (LEICA DM 2000 combined with LEICA ICC50 HD camera). Leica Application Suite 
V4.2.0 software was used as the image computer program to acquire immunohistochemical pictures. 
Western blot results show reduced expression of IjB-a (M) and enhanced expression of NF-B (N) in 
LPS-stimulated macrophages, MO pretreatment significantly increased the IjB-a level and decreased 
the NF-B level in LPS-activated macrophages. GAPDH was used as internal control. (J) **p = 0.0014 
versus LPS; **p = 0.0026 versus LPS+MO. (K) ***p = 0.0002 versus LPS; ***p = 0.0001 versus LPS+MO. 
Blots are representative of three separate and reproducible experiments. The statistical analysis was 
carried out on three repeated blots performed on separate experiments. LPS, lipopolysaccharide. 
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16.3.7 Moringin modulates oxidative stress markers in LPS-activated mouse macrophage 

RAW 264.7 

 

We assessed the antioxidative effects of MO in LPS-activated mouse macrophage RAW 264.7 

cells. Immunocytochemistry results showed dense positive staining for oxidative stress 

marker nitrotyrosine in LPS-activated cells (Figure 7C). Only MO pretreatment (Figure 7D) 

significantly reduced the expression of nitrotyrosine when compared with LPS-activated cells 

(Figure 7C) and LPS-GMG cells (Figure 7E, densitometric analysis Figure 8G). Western blot data 

showed increased expression of another oxidative stress marker—iNOS—in LPS-activated 

cells, while MO completely inactivated iNOS expression (Figure 7F). 

 
Figure 16.7 MO modulates the oxidative stress markers in LPS-activated mouse macrophage RAW 
264.7. Western blot results show enhanced expression of IL-6 (A) and iNOS (F) in macrophages 
activated with LPS, while MO pretreatment significantly reduced the expression of IL-6 and iNOS. 
Immunocytochemistry results show negative staining for nitrotyrosine in normal cells (B). In LPS-
activated macrophages, the nitrotyrosine level is markedly increased (C), while MO pretreatment 
shows negative staining for nitrotyrosine (D). GMG pretreatment (E) partially reduced the expression 
of nitrotyrosine when compared with LPS-activated cells.  GAPDH was used as internal control.  (A) 
****p < 0.0001 versus LPS; ****p < 0.0001 versus LPS+MO. (E) **p = 0.0029 versus LPS; **p = 0.0029 
versus LPS+MO. Blots are representative of three separate and reproducible experiments. The 
statistical analysis was carried out on three repeated blots performed on separate experiments. All 
sections were obtained using light microscopy (LEICA DM 2000 combined with LEICA ICC50 HD 
camera). Leica Application Suite V4.2.0 software was used as the image computer program to acquire 
immunohistochemical pictures.  
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Figure 16.8 Densitometric analysis for IL-1b, P-selectin, Nrf2, Bax/Bcl-2, TLR4, TNF-a, and 
nitrotyrosine. For immunohistochemical images, densitometric analysis was carried out to 
quantify and highlight significant differences among experimental groups. p Value <0.05 was 
considered significant.  ****p < 0.0001 
 

16.4 Discussion 

 

In recent years, interesting findings about the neuroprotective effects of ITCs generated from 

GL precursors by MYR-induced hydrolysis have been obtained in in vitro and in vivo models 

of neurodegeneration (Dinkova-Kostova and Kostov, 2012; Giacoppo et al. 2015a; Galuppo et 

al., 2014; Galuppo et al., 2015a; Galuppo et al., 2013; Galuppo et al., 2015b). The present 

study introduces a new promising application of MO, which is readily produced from GMG, 

the sole GL present in M. oleifera seeds. Indeed, MO might be used in the treatment of severe 

pathological diseases, as in PD, widely associated with both inflammatory response and 

oxidative mechanism, as well as apoptotic pathway and neurodegenerative feature. 

As it is known, the primary pathophysiology of PD is correlated with a decrease in TH activity 

in the striatum. Since TH mediates the conversion of tyrosine into L-DOPA during dopamine 

synthesis, we investigated the changes in the expression levels of TH. In this study, the 

reduction in TH expression in MPTP mice was positively amended with MO pretreatment and 

partially by GMG pretreatment, which demonstrated the neuroprotective effect of MO 

against MPTP-induced dopaminergic neurotoxicity. As evidenced by our results, the 

behavioral deficits induced by MPTP, including motor incoordination, bradykinesia, and 
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weight loss, as well as damage by dendritic spine loss, were significantly improved by 

administration of MO and only to a small extent by GMG pretreatment. Notably, only in MO-

pretreated MPTP mice and not in GMG pretreated MPTP mice, preserved neuronal cell 

integrity, resulting in unaffected synaptic spine-spine communication at the level of dendritic 

trees, was observed. Since microglial activation in the SNpc is another hallmark of PD 

(Galuppo et al., 2013; Mogi et al., 1994) we evaluated the immunomodulatory effects of MO 

and GMG in MPTP-induced neuroinflammation. TLR4 signaling promotes inflammation and 

oxidative stress by increasing the expression of proinflammatory cytokines, such as TNF-a, IL-

1, and IL-6 (Sabroe et al., 2008; Tadeka and Akira; 2005). Indeed, analyses performed on 

postmortem brain and cerebral spinal fluid from PD patients show enhanced 

proinflammatory cytokine production, including TNF-a, IL-1, IL-6, and interferon gamma 

(IFN-c) (Mogi et al., 1994; Nagatsu et al., 2000). In addition, extensive reactive microgliosis 

and T-cell infiltration indicate a strong proinflammatory immune response (Brochard et al., 

2009; McGeer et al., 1988). All of the inflammatory features found in human PD are also 

observed in the MPTP model (Ramsey and Tansey, 2012), which mimics the primary 

pathological and biochemical features of human PD, including oxidative stress, mitochondrial 

dysfunction, and apoptosis (Camicioli et al., 2001). Besides, recent data indicate that TLR4 is 

elevated by MPTP administration in a mouse model of PD (Ros-Bernal et al., 2011). Our results 

showed marked upregulation of TLR4, TNF-a, and IL-1 in the brain of MPTP mice. MO 

administration significantly reduced their expression. Moreover, proinflammatory cytokine 

triggered expression of microglial activation marker P-selectin cell adhesion molecule was 

reduced after MO pretreatment, which suggested a reduction in microglial activation. In 

addition, we noticed that GMG administration also could elicit anti-inflammatory effects, 

although the effects were much lower than those of MO. In a recent article (Budnowski et al., 

2015) mice orally administered with other GLs, belonging to the Brassicaceae family, excreted 

approximately one-quarter to one-third of orally administered compounds intact in their 

urine. In addition, the same authors reported that intact GLs were detected not only in the 

urine of mice following oral administration but also in plasma. They confirmed the absorption 

of intact GLs in circulation and hypothesized a thioglucosidase activity as a possible account 

for GL hydrolysis in germ-free mice. In addition, Abdull Razis et al. (2010) reported that it has 

always been assumed that intact GLs, because of their hydrophilicity, would be unable to 

reach the bloodstream following oral intake, but these authors found that studies performed 
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in precision-cut rat liver slices (living tissue) demonstrate for the first time that intact GLs can 

modulate the hepatic activity of carcinogen-metabolizing enzyme systems. It is not possible 

to discern from our study whether anti-inflammatory effects of GMG, although much lower 

than that shown by MO, are likely derived from the GL per se or due to its derived compounds 

generated in small quantities by the action of a hydrolytic enzyme. Interestingly, anti-

inflammatory effects of MO compared with GMG, were found in the LPS-stimulated mouse 

macrophage cell line, RAW 264.7. As widely known, LPS has been shown to initiate multiple 

intracellular signaling events by upstream TLR4, which in turn activates the NF-B pathway, 

leading to the synthesis and release of several proinflammatory mediators (Sweet and Hume, 

1996; Schletter et al., 1995). In most types of cells, NF-B dimers are transcriptionally inactive 

in cytoplasm due to the inhibition of IB-a. In response to a wide range of stimuli, including 

oxidative stress, infection, extracellular signal, and inflammation, IB-a is phosphorylated by 

the enzyme, IB-a kinase, so that NF-B is free to translocate into the nucleus and to promote 

the expression of inflammatory cytokines (Tak and Firestein, 2001; Oeckinghaus et al., 2011). 

Our results showed that pretreatment with MO led to upregulation of IB-a and consequently 

downregulation of NF-B. These in vivo and in vitro results established a major efficacy of MO 

as a better anti-inflammatory agent than GMG, demonstrating the greater effectiveness of 

the ITC and suggesting its possible use as therapeutic agent. These results can be attributed 

to the electrophilicity of the ITC function, whose interaction with biological nucleophiles 

underlies the biological activity of ITCs (Fimognari et al., 2012), notably MO, whereas intact 

GLs, for example, GMG, lack such chemical behavior. 

Then, we assessed the antioxidative effects of MO and GMG. It is believed that the main 

mechanism of DA loss in MPTP-administered animals is ascribed to an enhanced production 

of reactive oxygen species generated in response to MPTP exposure (Przedborski et al, 

2000), which in turn can induce cell degradation and death in many forms. The antioxidative 

effect of ITCs has been demonstrated in previous studies and can be attributed to Nrf2-

mediated action (Giacoppo et al., 2015a; Galuppo et al., 2015a; Galuppo et al., 2015b; 

Boddupalli et al., 2012). Nrf2 is a transcription factor that (by interacting with a short ARE) 

regulates phase II antioxidant response, which includes expression of free radical scavengers 

and cytoprotective enzymes (Scapagnini et al., 2011). Hence, these genes are upregulated in 

response to oxidative stress. The induction of Nrf2-mediated transcription has been shown 
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to protect neurons from toxic insults such as increases in intracellular calcium, oxidative 

stress, and mitochondrial dysfunction (Tufekci et al., 2011). With regard to ITCs, it was widely 

demonstrated that they can interact directly with sulfhydryl residues on the Kelch-like ECH-

associated protein 1 (Keap1), the repressor of Nrf2, which is normally present in cytoplasm, 

leading to its release into the nucleus. Once translocated into the nucleus, Nrf2 activates ARE-

responsive genes and induces the phase 2 response. In neurodegenerative diseases, Nrf2 

expression has been shown to decrease, while Nrf2 overexpression was demonstrated to 

protect against neurodegeneration and cell death (Scapagnini et al., 2011; de Vries et al., 

2008). Confirming this, in the present study, Nrf2 immunohistochemical localization shows a 

negative expression in brain sections sampled from MPTP mice, whereas administration of 

MO and, to a smaller extent, of GMG stimulates Nrf2 nuclear activity, preventing tissue 

damage by pro-oxidative gene expression. 

Moreover, reactive nitrogen species (RNS) have been shown to play a significant role in 

inflammatory responses. Especially, the overproduction of nitric oxide through iNOS causes 

accentuated lipid peroxidation and protein and DNA modifications that result in cellular 

damage by exacerbating inflammatory events (Montalto et al., 2003). Our results showed that 

only MO pretreatment was able to inhibit iNOS production, whose expression remains, on 

the contrary, higher in mice pretreated with GMG. Moreover, similar inhibition of RNS was 

noticed in LPS-stimulated macrophages pretreated with MO. The absence of iNOS and 

nitrotyrosine expression found in LPS-MO cells and not in LPS-GMG ones led to suggest MO 

as a potent antioxidant. Finally, we investigated whether MO could potentially exert 

apoptosis regulatory functions in MPTP mouse brain. The mechanism of apoptosis is complex 

and involves a cascade of reactions; one of the key steps leading to apoptosis is the leakage 

of cytochrome C from the mitochondria and activation of caspases (Joshi and Bakowska, 

2011). In this study, we found that MO pretreatment (and only partially GMG treatment) was 

able to reduce the cell death induced by MPTP in mice and this protective effect was 

associated with a decreased activity of cleaved caspase-9 and of Bax, a proapoptotic factor, 

which influences the mitochondrial outer membrane permeability and apoptotic 

susceptibility. In addition, MO pretreatment significantly enhanced the expression of Bcl-2 

compared with both GMG-treated MPTP mice and untreated ones. In this study, we 

investigated also STAT1-p53-p21 pathway-mediated apoptosis in MPTP mice. As expected, 

upstream activation of proinflammatory cytokines and consequent oxidative stress mediators 
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positively recruited STAT1, p53, and p21 proteins in MPTP mouse brain. On the contrary, mice 

treated with MO showed significant reduction in STAT1, p53, and p21 expression when 

compared with mice treated with GMG, thus confirming a lower efficacy of the GL treatment 

in comparison with the corresponding ITC (Abdull Razis and Noor, 2013). Therefore, a 

protective effect of MO suggests that this pretreatment could interfere with MPTP-induced 

neuronal death. 

 

16.5 Conclusion 

 

The present study was designed to promote a new alternative therapy in the treatment or 

the prevention of PD, either alone or in association with the currently used therapies. For this 

purpose, we have compared the efficacy of the phytochemical MO obtained by MYR-

catalyzed hydrolysis of the GL precursor GMG with that of GMG itself, demonstrating the 

greater effectiveness of a breakdown product of GL, in an experimental model of 

neurodegenerative disease. Therefore, we suggest MO as a good and effective candidate in 

the treatment of experimental PD as it is able to modulate different molecular pathways 

underlying the progression of this disease. 
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