
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Meccanica e Scienze Avanzate dell’Ingegneria
Ciclo 30

Settore Concorsuale: 09/A1 Ingegneria aeronautica, aerospaziale e navale

Settore Scientifico Disciplinare: ING-IND/03 Meccanica del volo

Development of a fight control architecture for
rotary-wing UAVs with model-based design

approach

Presentata da:

Gianluca Rossetti

Coordinatore Dottorato Supervisore

Prof. Marco Carricato Prof. Fabrizio Giulietti

Esame finale anno 2018

Declaration of Authorship

I, Gianluca Rossetti, declare that this thesis titled, ‘Development of a flight control

architecture for rotary-wing UAVs with model-based design approach’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a Ph.D. degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

i

“The best design method is the one with which the designer is most comfortable.”

D.J. Moorhouse, Flight Control Design Best Practices, 2000

ALMA MATER STUDIORUM UNIVERSITÁ DI BOLOGNA

Abstract

University of Bologna

Department of Industrial Engineering

Doctorate in Mechanics and Advanced Engineering Sciences

by Gianluca Rossetti

This thesis describes the design and implementation of various autopilot software archi-

tectures for mini/micro rotary-wing unmanned aerial vehicles by exploiting the model-

based design approach. Nowadays in fact, the tendency for software development is

changing from manual coding to automatic code generation, in other words, it is becom-

ing model-based. In general, models can be described as abstractions of systems, they

are created to serve particular purposes, for example, to present a user-understandable

description of the system or to present information in a more intuitive form. Model-based

techniques for software design enables the engineer to reduce drastically development

time required for software corrections or modifications. Under the various chapters,

different flight control techniques are presented with theoretical background and tested

via simulations and experimental campaigns. All the navigation and control problems

presented below arise in development of embedded software that exploits the innovative

model-based design technology. In order to provide validations of the proposed solutions,

software for simulation and implementation is specialized for the case of multirotor ve-

hicles, which are becoming very helpful systems for many and varied civil operations.

This is the reason why part of the text is devoted to multirotor vehicle dynamics.

http://www.unibo.it
http://www.unibo.it
http://www.ingegneriaindustriale.unibo.it
gianluca.rossetti3@unibo.it

Acknowledgements

This thesis is submitted in partial fulfillment of the requirements for the Doctor of

Philosophy in ’Mechanics and Advanced Engineering Sciences’. The work has been

carried out during the period from November 2014 to March 2017 under the supervision

of Prof. Fabrizio Giulietti. I would like to thank Prof. Fabrizio Giulietti for his support

and guidance, Matteo Turci and Emanuele Luigi de Angelis for their fundamental help,

it has been really inspiring working with all of you. I would also like to thank Prof.

Goele Pipeleers, Ruben Van Parys and the whole MECO research crew for the good

time spent in KU Leuven. Finally, thanks to my dear family and my friends for having

them always by my side during these years.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables x

Abbreviations xi

Symbols xiii

1 Introduction 1

1.1 Multirotor vehicles . 2

1.2 Outline . 3

2 Multirotors kinematics and dynamics 5

2.1 Reference frames . 5

2.2 Multirotor kinematics . 7

2.3 Multirotor dynamics . 8

2.4 Forces and moments . 9

2.5 Simplified multirotor models . 11

2.5.1 Simplified inertial model . 11

2.5.2 Simplified model for control design 12

2.5.3 Simplified inertial model with small angle approximation 13

3 Flight control software development 14

3.1 Model-based design approach . 14

3.2 Pixhawk R© Flight Management Unit . 15

3.3 Flight modes . 16

3.3.1 Manual flight modes . 16

3.3.2 Assisted flight modes . 18

3.3.3 Auto flight modes . 18

v

Contents vi

3.4 Software architectural overview . 18

3.4.1 Signal conditioning . 19

3.4.2 Position and Attitude Estimator 19

3.4.3 Trajectory planning . 20

3.4.4 Flight control . 20

3.4.4.1 Attitude controller . 21

3.4.4.2 Heading hold controller 23

3.4.4.3 Altitude hold controller 24

3.4.4.4 Velocity controller . 26

3.4.5 Motor mixing . 28

3.4.5.1 Output saturation . 29

3.5 Flight test . 29

4 Optimal multirotor navigation 33

4.1 General methodology . 33

4.1.1 Optimal motion problem . 33

4.1.2 Differential flatness of multirotor model 35

4.2 Point-to-point multirotor navigation . 36

4.3 point-to-point navigation for multirotor considering holonomic trajectory
planning . 38

4.3.1 Minimum time . 39

4.4 Motion planner . 39

4.5 Model predictive control strategy . 40

4.5.1 Motion control . 43

4.6 Validation . 43

4.6.1 Numerical simulation . 43

4.6.2 Flight tests . 46

5 Formation flight control 49

5.1 Formation flight control architectures . 49

5.2 Formation modelling . 50

5.3 Potential strategy for formation flight . 52

5.3.1 Control design . 54

5.3.2 Numerical simulation . 55

5.3.2.1 Case 1 . 56

5.3.2.2 Case 2 . 59

5.3.3 Flight test . 60

5.4 Optimal navigation strategy for formation flight 62

5.4.1 Model predictive control strategy for formation flight 64

5.4.2 Numerical simulation . 66

6 Conclusions 67

A Control design considering drag 68

Contents vii

Bibliography 71

List of Figures

2.1 Representation of a three-dimensional quadrotor. 6

2.2 Representation of the three reference frames 6

3.1 The model-base approach for UAV Autopilot Software developing 14

3.2 Pixhawk R© FMU main module. 16

3.3 The diagram provides an overview of the Flight control software architec-
ture, it can be adapted for various UAV classes. 19

3.4 Attitude controller architecture. 22

3.5 Response of roll angle to step change of roll angle set-point vs time. . . . 23

3.6 Heading hold controller architecture. 23

3.7 Response of heading angle to step change of heading set-point vs time. . . 24

3.8 Altitude hold controller architecture. 25

3.9 Response of vertical speed to step change of vertical speed set-point vs
time. 26

3.10 Response of altitude to step change of altitude set-point vs time. 26

3.11 Velocity controller architecture. 27

3.12 Response of translational speed (x-axis) to step change of speed set-point
vs time. 28

3.13 Flight test - Performance of attitude controller. 30

3.14 Flight test - Performance of altitude hold controller. 31

3.15 Flight test - Performance of heading hold controller. 31

3.16 Flight test - Performance of velocity controller. 32

4.1 tri-dimensional quadrotor flying among obstacles. 40

4.2 Two-dimensional holonomic vehicle moving in obstructed environment. . . 41

4.3 Model predictive control scheme. 42

4.4 Model predictive control scheme considering holonomic trajectory planning. 42

4.5 Quadrotor flying between two walls represented in 2D view at time T =
1 s, the dashed line indicates the predicted trajectory that is corrected
repeatedly. 43

4.6 Quadrotor flying between two walls represented in 2D view at time T =
5 s, the blue line represents the covered trajectory. 44

4.7 Attitude profiles during trajectory tracking; blue and red lines represent
angles φ and θ respectively. 45

4.8 Velocity profiles during trajectory tracking; the blue, red and yellow lines
represent ẋ, ẏ and ż respectively. The resultant multirotor’s speed is
maintained low along the path. 45

4.9 Quadrotor flying between two walls represented in 3D view, red line rep-
resents the covered trajectory . 46

viii

List of Figures ix

4.10 Multirotor used for experimental tests . 47

4.11 Trajectory covered hexa-rotor vehicle during flight test. 48

4.12 Speed during flight test. 48

5.1 Leader-wingman configuration. 50

5.2 Virtual leader configuration. 51

5.3 Behavioral configuration with formation geometry center. 51

5.4 Definition of actual (Pi) and desired (Di) positions of i−th multirotor. . . 51

5.5 Formation trajectories over the xE-yE plane (Case 1). 56

5.6 Mutual distances between agents of the formation (Case 1). 57

5.7 Stability of the formation under external disturbances (Case 1). 58

5.8 Thrust magnitude and inclination angle commands (Case 1). 58

5.9 Formation trajectories (Case 2). 59

5.10 Mutual distances between agents of the formation (Case 2). 60

5.11 Trajectory of vehicle 1 during the experimental test. 62

5.12 Examples of optimal motion planning problems solved for a formation of
four multirotor vehicles. 64

5.13 Examples of optimal motion planning problems solved for a formation of
four holonomic vehicles. 64

5.14 Model predictive control scheme. 65

5.15 MPC Simulations for a fleet of multirotors (Two-dimensional view). . . . 66

List of Tables

3.1 Pixhawk R© specifications . 17

5.1 Simulation parameters . 55

x

Abbreviations

RPAS Remotely Piloted Aircraft System

UAV Unmanned Aerial Vehicle

VLOS Visual Line Of Sight

BVLOS Beyond Visual Line Of Sight

GCS Ground Control Station

FMU Flight Management Unit

GNC Guidance Navigation Control

GNU GNU’s Not Unix

GPL General Pubblic License

LGPL Lesser General Pubblic License

MPC Model Predictive Control

NMPC Non-linear Model Predictive Control

DC Direct Current

BLDC Brush-Less Direct Current

ESC Electronic Speed Controller

PSP Pilot Support Package

EKF Extended Kalman Filter

GPS Global Position System

GNSS Global Navigation Satellite System

DCM Direction Cosine Matrix

OS Operative System

PID Proportional Integral Derivative

PWM Pulse-Width Modulation

OMG Optimal Motion Generation

MIMO Multiple-Input Multiple-Output

xi

Abbreviations xii

FGC Formation Geometry Center

SD Secure Digital

Symbols

t Time s

m Mass kg

R Transformation matrix

g Gravitational acceleration m/s2

F i Inertial frame

F v Vehicle frame

F b Body frame

ξ = [x, y, z]T Position vector m

V = [u, v, w]T Velocity vector m/s

α = [φ, θ, ψ]T Euler’s angle vector rad

Ωb/i = [p, q, r]T Angular rates vector rad/s

F = [Fx, Fy, Fz]
T External force vector N

h Angular momentum kg·m2/s,

M = [τφ, τθ, τψ]T Torque vector N·m

J Moment of inertia matrix m4

K Motor constant parameter N/(s·10−6)

δpwm Motor command signal s·10−6

l distance between motor and center of mass m

CD Drag coefficient

ρ Air density kg/m3

A Equivalent flat plate areas m2

ε Error signal,

Soft-formation deviation

KP/I/D Controller gains m

a Acceleration m/s2,

xiii

Symbols xiv

Normal vector to the hyperplane,

Potential variable

T Final time s

q Trajectory

h(q, t) Inequality constraints

J(q) Cost function

q Spline control points

b Spline basis m

f Total acceleration m/s2

ω Angular rate rad/s

r Vehicle influence radius,

Position vector m

w polyhedron vertex m

b Hyperplane’s offset

x(t) System state

x̂(t) Estimate system state

∆T Update time s

d Distance vector m

u Models’ input

Pi Actual position point m

Di Desired position point m

w Soft-formation parameter

Dedicated to my grandpas.

xv

Chapter 1

Introduction

We live in a time of great technological innovation and Remotely Piloted Aircraft Sys-

tems (RPASs), also known as Unmanned Aerial Vehicles (UAVs), or popularly as drones,

can certainly be considered part of this change. UAVs basically are aircrafts with no

human pilot on-board; they are flown through a ground control station but they are gen-

erally capable to fly autonomously with pre-programmed flight plans, which is crucial,

for example, in Beyond-Visual-Line-Of-Sight (BVLOS) operations. The control system

of an UAV is always composed by two major sub-systems: the control station at ground

and the flight management unit on-board. A Ground Control Station (GCS) is a set

of ground-based systems which provide human control and telemetry feedback to the

operator. They can have different forms and dimensions depending on the particular

type of UAV; smaller UAVs can be operated with a traditional transmitter as used for

radio-controlled models. The extension of this setup with data and video telemetry

by laptop or tablet computer creates what is effectively considered a Ground Control

Station. On the other hand, an on-board Flight Management Unit (FMU) is an embed-

ded system that handles at different levels of automation the UAV during flight. The

FMU primary task is performing Guidance, Navigation and Control (GNC) algorithms,

which means using sensors data for operating at different levels on the flight behaviour

of the UAV. For these reasons, the term ”autopilot” is also widely used when referring

to both the hardware and the software of the FMU. There are many UAV autopilots out

on the market but two main types are distinguished. Some companies sell commercial

autopilots with proprietary design; although they are often very good products, they

appear to be ”black boxes” in the eyes of a customer. In this case, vendors need to

establish an efficient support service because customers are dependent for any technical

issue or modification into the autopilot. On the other hand, many other companies sell

autopilots derived from open-source projects. In an open-solution in fact, companies

can reduce cost and time to market and customers have the possibility to know exactly

1

Symbols 2

what is happening inside the autopilots, becoming developers if they want to. For exam-

ple, this fact gives great advantages during research projects, in which open-systems are

always favoured. As regards open-software proprietary information, today the two most

common open-source licenses are GNU General Public License (GPL) and GNU Lesser

General Public License (LGPL), for both of them any modifications made to the source

code must become public domain [1]. Anyway, in both open source and commercial

worlds, traditional methods used for synthesizing, implementing and validating a flight

management software are still the standard. Traditional coding approach obliges engi-

neers to use complex structures and extensive work for converting engineering principles

and control theories into software code, which consumes time and resources for com-

panies and researchers. For this reason, another approach, called model-based design,

is taking off quickly in software engineering. Model-based design approach is signifi-

cantly different from traditional design methodology and, for various reasons, it results

to be much more appropriate for small-UAV software development. Today, flight soft-

ware designers can define plant models with advanced functional features, use building

blocks and tools which can lead to rapid software prototyping, testing and deploying

more quickly and much more efficiently. In favour of what has been said, this thesis

wants to give clear example of the potential and advantages which model-based design

can provide in software development, applying that methodology for the flight software

project of multirotor UAVs.

1.1 Multirotor vehicles

Drone technology has developed and prospered in the last few years both in military

and civil field, especially as regards the category of small multirotor vehicles, or multi-

rotors, which nowadays is the most common. Recent civil applications highlighted the

capability of multirotor platforms to perform unimaginable mission tasks ranging from

environment monitoring and remote sensing to surveillance and rescue operations [2],

whereas theoretical studies provided novel design tools for optimal performance [3, 4].

A multirotor is an aerial vehicle with very simple mechanics, motion is controlled by

speeding or slowing multiple propeller motors installed on a rigid frame. The multirotor

vehicle is intrinsically unstable, that is way it requires a flight controller for performing

stable flight. Respect to helicopters or fixed-wing UAVs, a real manual-controlled flight

is not possible. Many multirotor configurations exist, based on the number and posi-

tion of rotors they are called tri-rotors, quad-rotors, hexa-rotors and so on. Although

the invention of this type of aerial vehicle is dated almost ninety years ago, when the

four-rotor helicopter of Louis Breguet succeeded to lift itself off the ground for a few

seconds, the large-scale dissemination of the multirotor architecture happened only some

Symbols 3

years ago. This fact is definitely connected with the great progress made in the field

of information technology, in terms of miniaturization, reduction in cost of electronic

components and computing performance. In relation to other types of UAVs, multiro-

tors have become much more popular to the point that, nowadays, the vast majority of

people uses the newly coined word ”drones” for referring only to the multirotor class.

Their fame came from user-friendly features, mechanical simplicity and flying capabili-

ties. With respect to fixed-wing configurations, in fact, the hovering and vertical take-off

capabilities represent crucial aspects for many aerial operations[5]. Furthermore, with

respect to conventional remotely piloted helicopters, multirotor platforms show great

advantages in large-scale sales in terms of safety, reliability and controllability.

1.2 Outline

The aim of this thesis is to present potentialities of the model-based design approach via

the development of a flight control software architecture conceived for multirotor UAVs.

That approach is intended for combining theoretical design tools and experimental pro-

cedures, so that become easy to synthesize, implement and test flight controllers of small

UAVs in a safer, cost effective and time efficient way. This thesis proposes different GNC

algorithms and strategies which try to address different tasks in operations with single

multirotor or a fleet of them. In particular these tasks are trajectory planning, trajectory

tracking, collision avoiding and motion controlling. The overall control design process is

covered, including modelling, control development and validation with simulations and

experimental tests.

The Thesis is organized as follows:

In Chapter 2 the non-linear simulation model of a multirotor vehicle is derived start-

ing from the definition of the rigid body equations of motion. Model, developed in

Matlab/Simulink R© environment, is designed for testing synthesized control architec-

tures before they are put into an embedded hardware for flight tests.

Chapter 3 presents the general architecture of the flight control software developed with

the model-based methodology. This approach uses the Matlab/Simulink R© tool suite

for developing the architecture, design and modeling the software parts. The software

code is then auto-generated by embedded coder. The motion control architecture is also

explained in detail and supported by simulations and flight tests.

Symbols 4

Chapter 4 explains an innovative methodology for computing optimal autonomous nav-

igation for multirotor vehicles in obstructed environments. The navigation algorithm,

formulated in a Model Predictive Control (MPC) fashion, guarantees capability of tra-

jectory planning and tracking with obstacle avoidance. After a simulation campaign, the

strategy is incorporated in the flight control software and tested in outdoor environment.

Chapter 5 focuses the attention into the UAV formation flight control problem. Two

alternative strategies are proposed: the first one is a potential method that ensures

trajectory tracking, formation keeping and collision avoidance tasks. The second method

follows the work explained in Chapter 4, extending it for formations of UAVs. For both

methodologies, results of numerical simulations are provided to confirm their validity.

Potential method is also tested in outdoor environment, as part of the flight control

software, for validation in presence of external disturbances and unmodeled dynamics.

Chapter 2

Multirotors kinematics and

dynamics

An important stage of model-based flight control design approach is represented by the

derivation of a suitable flight dynamics model of the aerial vehicle which can be used in

different steps of controller development. In this chapter, the non-linear mathematical

model of multirotor is defined starting from general expressions for the kinematics and

dynamics of a rigid body. The derived mathematical model is just an approximation

of a real multirotor dynamics, in particular because some aerodynamic effects are still

less well understood and hard to model, but either way it gives fundamental support

for controllers development. In order to ensure a more clear explanation, the quad-rotor

case is considered as example of the equation specifications part.

2.1 Reference frames

First, three right-handed orthogonal reference frames are introduced, they are used to

derive the mathematical model of multirotor.

1. NED Frame F i (North-East-Down): this is an inertial frame under the assumption

of flat and non-rotating Earth.

2. Vehicle Frame F v: this is a Local Vertical / Local Horizontal frame, the origin is

located at the center of gravity of the multirotor. It has axes parallel to the inertial

frame.

5

Symbols 6

+

+

+

𝐹2

𝐹1

𝐹4

𝐹3

X

YZ

𝜓

𝜃

𝜙

𝜏2

𝜏1

𝜏4

𝜏3

Figure 2.1: Representation of a three-dimensional quadrotor.

3. Body Fixed Frame F b: As illustrated in Figure 2.2, the origin of this frame is

located at the center of gravity of the multirotor. The X axis points in forward

direction, generally defined by the inertial measurement unit orientation or by

vehicle geometry; the Y axis points to the right; the Z axis points downwards.

𝐹𝑖

𝐹𝑏

𝐹𝑣

 𝑖𝑖 (North)

 𝑗𝑖 (East)

 𝑘𝑖
(Down)

 𝑖𝑣

 𝑗𝑣
 𝑖𝑏

 𝑗𝑏

 𝑘𝑣 𝑘𝑏

Figure 2.2: Representation of the three reference frames

Symbols 7

The multirotor state is composed by twelve variables:[
x y z

]T
: Position (2.1)[

u v w
]T

: Velocity (2.2)[
φ θ ψ

]T
: Euler angles (2.3)[

p q r
]T

: Angular rates (2.4)

The position vector of the multirotor is given with respect to the NED frame. Velocity

and angular velocity vectors are given in the body fixed frame.

2.2 Multirotor kinematics

The relationship between the position defined in the vehicle frame and the velocity

defined in the body fixed frame is given by:

d

dt


x

y

z

 = Rvb


u

v

w

 (2.5)

where Rvb represents the rotation matrix [6] for vector transformation between body

fixed frame and vehicle frame:

Rvb =


cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ
−sθ sφ cθ cφ cθ

 (2.6)

the relationship between absolute angular rates φ , θ and ψ and the angular rates p , q

and r defined in the body fixed frame is given by:
φ̇

θ̇

ψ̇

 =


1 sφ tθ cφ tθ

0 cφ −sφ
0 sφ/cθ cφ/cθ



p

q

r

 , (2.7)

in which c, s and t symbolize respectively cos, sin and tan.

Symbols 8

2.3 Multirotor dynamics

The Newton’s law applied to the translational motion is:

m
dV

dti
= F (2.8)

in which m is the mass of the multirotor, v is the velocity vector, d
dti

is the time derivative

in the NED frame, F is the total force applied to the multirotor. From the equation of

Coriolis, equation (2.8) becomes:

m
dV

dti
= m(

dV

dtb
+ Ωb/i × V) = F (2.9)

where d
dtb

is the time derivative in the body fixed frame (airframe), Ωb/i =
[
p q r

]T
is the angular velocity of the airframe with respect to the NED frame. Equation (2.9)

can be also written as: 
u̇

v̇

ẇ

 =


rv − qw
pw − ru
qu− pv

+
1

m


Fx

Fy

Fz

 (2.10)

The Newton’s second law for the rotational motion is:

dh

dti
= M (2.11)

where h is the angular momentum and M is the applied torque. From the equation of

Coriolis, equation (2.11) becomes:

dh

dti
=
dh

dtb
+ Ωb/i × h = M (2.12)

writing h = JΩb/i as follows:

J
dΩb/i

dtb
+ Ωb/i × (JΩb/i) = M (2.13)

dΩb/i

dtb
= J−1(M − Ωb/i × (JΩb/i)) (2.14)

Assuming the multirotor as a symmetric body for all three axes, the constant inertia

matrix J can be written as:

J =


Jx 0 0

0 Jy 0

0 0 Jz

 (2.15)

Symbols 9

Defining M =
[
τφ τθ τψ

]T
, equation (2.14) can be formulated in body coordinates as

follows: 
ṗ

q̇

ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+


1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (2.16)

2.4 Forces and moments

From a mechanical point of view, the multirotor is a quite simple aerial vehicle, probably

the most simple after balloons and gliders. With the exception of the tri-rotor configu-

ration, that needs a yaw-tilt servo to balance torques, it consists of an even number of

rotors attached to a rigid airframe. Airframes are built with the aim of placing rotors

equidistant from the centre of gravity, which generally matches the power cell position.

Except some very rare cases, the propulsion system is electric and formed by brushless

DC electric motors (BLDC), electronic speed control units (ESCs) and batteries. Forces

and moments in multirotors are primarily due to gravity and propellers but, in a navi-

gation context, reliable simulation results can only be obtained taking into account also

drag forces during motion. That said, equation (2.10) can be written as:
u̇

v̇

ẇ

 =


rv − qw
pw − ru
qu− pv

+
1

m
(
[
Fg

]
+
[
Fp

]
+
[
Fd

]
) (2.17)

In the vehicle frame, the gravity force acting on the center of mass is given by:

Fg|i =


0

0

mg

 (2.18)

Transforming to the body fixed frame gives:

Fg = Rbv


0

0

mg

 =


−mg sin θ

mg cos θ sinφ

mg cos θ cosφ

 (2.19)

Multirotor control is achieved by controlling the power generated by each motor. So

each motor produces a force F and a torque τ defined as:

F(i) = K1 ∗ δpwm(i) (2.20)

τ(i) = K2 ∗ δpwm(i) (2.21)

Symbols 10

In which K1 and K2 are constants that have to be determined experimentally, δpwm

is the motor command signal. In order to write forces and torques that act on the

multirotor, it is necessary to define the number of motors and the configuration of the

frame. As illustrated in Figure 2.1, a four-motor cross configuration (sometimes called

X-quadrotor) is chosen as example; the following quantities can be defined:

Total force:

Ftot = F1 + F2 + F3 + F4 (2.22)

Roll and pitch control are obtained by modifying the speed of the rotors in pairs, while

yaw control is obtained by modifying the average speed of the clockwise and anticlockwise

rotating rotors.

Roll torque:

τφ = l

√
2

2
(F1 − F2 − F3 + F4) (2.23)

Pitch torque:

τθ = l

√
2

2
(F1 + F2 − F3 − F4) (2.24)

Yaw torque:

τψ = τ1 − τ2 + τ3 − τ4 (2.25)

In which l stands for the distance in the X-Y plane between the center of gravity and

the point of application of the i-th motor force. The force produced by propellers in the

body fixed frame is:

[
Fp

]
=


0

0

−(F1 + F2 + F3 + F4)

 =


0

0

−Ftot

 (2.26)

The drag force in the body fixed frame is given by:

[
Fd

]
= −1

2
ρCD


Axu|u|
Ayv|v|
Azw|w|

 (2.27)

where ρ is the air density, CD is the drag coefficient andAx, Ay andAz are the projections

of the quadrotor surfaces in the body frame.

Symbols 11

Finally equation (2.16) can be formulated as follows:
u̇

v̇

ẇ

 =


rv − qw
pw − ru
qu− pv

+
1

m
(


−g sin θ

g cos θ sinφ

g cos θ cosφ

+


0

0

−Ftot

+
1

2
CDρ


−Axu|u|
−Ayv|v|
−Azw|w|

) (2.28)

The six-degree of freedom quadrotor model is now defined for the twelve state variables

and it is formulated by equations (2.5),(2.7),(2.16) and (2.17). As any other multirotor

model, this is an under-actuated model; so the translational speed in the horizontal

plane of the NED frame must be managed through the system dynamics, by controlling

the attitude. 
ẋ

ẏ

ż

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



u

v

w

 (2.29)


u̇

v̇

ẇ

 =


rv − qw
pw − ru
qu− pv

+


−mg sin θ

mg cos θ sinφ

mg cos θ cosφ

− 1

m


0

0

Ftot

− 1

m

1

2
CDρ


Axu|u|
Ayv|v|
Azw|w|

 (2.30)


φ̇

θ̇

ψ̇

 =


1 sinφtanθ cosφtanθ

0 cosφ −sinφ
0 sinφ

cosθ
cosφ
cosθ



p

q

r

 (2.31)


ṗ

q̇

ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+


1
Jx
l
√
2
2 (F1 − F2 − F3 + F4)

1
Jy
l
√
2
2 (F1 + F2 − F3 − F4)

1
Jz

(τ1 − τ2 + τ3 − τ4)

 (2.32)

2.5 Simplified multirotor models

The six degree-of-freedom model represented by equations (5.5), (2.30), (2.31) and (2.32)

can be used to perform accurate simulations. However, the model turns out to be not

appropriate or too complex for other purposes like control design [6] or motion planning

methodologies, reasons of that will be more clear along the following sections. In this

section some approximations are made to the equations in order to obtain two simplified

derived models.

2.5.1 Simplified inertial model

Let is start differentiating equation (5.5), neglecting Ṙvb gives:

Symbols 12


ẍ

ÿ

z̈

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



u̇

v̇

ẇ

 (2.33)

In (2.30) all the Coriolis terms are considered small and can be neglected, moreover drag

effects are removed from equation. Plugging that equation into (2.33) gives:
ẍ

ÿ

z̈

 =


0

0

g

+


−cφsθcψ − sφsψ
−cφsθsψ + sφcψ

−cφcθ

 Ftotm (2.34)

Angles φ, θ and ψ are assumed small in order to write:
φ̇

θ̇

ψ̇

 =


p

q

r

 (2.35)

In equation (2.32), Coriolis terms qr, pr and pq are considered small and can be ne-

glected: 
ṗ

q̇

ṙ

 =


1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (2.36)

Writing f = Ftot
m , finally the following simplified inertial model can be written:

ẍ = f(− cosφ sin θ cosψ − sinφ sinψ) ,

ÿ = f(− cosφ sin θ sinψ + sinφ cosψ) ,

z̈ = −f cosφ cos θ + g ,

φ̈ =
1

Jx
τφ ,

θ̈ =
1

Jy
τθ ,

(2.37)

2.5.2 Simplified model for control design

The mechanical simplicity of multirotors comes with a price: they are under-actuated

vehicles. In particular, it is possible to control only four of the six degrees-of-freedom.

Multirotor vehicles are capable of tracking desired attitudes, headings and accelera-

tions in the body-fixed vertical direction, but they cannot achieve accelerations in the

body-fixed horizontal plane. This results in a coupling between multirotor attitude and

acceleration. For control design purposes, in order to find relations between angles φ/θ

Symbols 13

and forward/right accelerations, the heading angle ψ becomes irrelevant and can be set

equal to zero. This is equivalent to rotate the vehicle frame F v by the heading angle,

equations (2.37) become:



ẍ = −f cosφ sin θ ,

ÿ = f sinφ ,

z̈ = −f cosφ cos θ + g ,

φ̈ =
1

Jx
τφ ,

θ̈ =
1

Jy
τθ ,

(2.38)

Section 3.4.4.4 describes how relations between angles and accelerations can be derived

starting from the model above, while Appendix A tackles the same problem considering

drag forces in the solutions.

2.5.3 Simplified inertial model with small angle approximation

The model represented by equations (2.38) can be further reduced by introducing small

angle approximation, sinα ≈ α and cosα ≈ 1. This approximation is considered valid

for attitude angles smaller than 15◦.

ẍ = −f θ ,

ÿ = f φ ,

z̈ = −f + g ,

φ̈ =
1

Jx
τφ ,

θ̈ =
1

Jy
τθ ,

(2.39)

Chapter 3

Flight control software

development

This chapter presents the architecture of the flight control software developed during

the doctorate. The model-based approach helps the software development as well as the

presentation of all its sub-systems. First of all, a quick presentation of the hardware used

for software deployment is necessary, following a summary of flight modes are commonly

implemented and used for UAV control. The chapter continues with the description of

the software parts, especially those relating to architecture of the flight control systems.

3.1 Model-based design approach

Model design Matlab / Simulink

HIL simulations and/or Flight tests Autopilot unit

Embedded coderCode generation

Step Tool

Figure 3.1: The model-base approach for UAV Autopilot Software developing

Model-Based Design approach is a method for developing dynamic processes by using

visual and mathematical tools. For example, problems which are often associated with

model-based design are complex control systems developing, signal processing and com-

munication systems design. The main reason to use model-based design approach is

14

Symbols 15

improving the product quality and reducing development time, in fact today this ap-

proach is increasingly used in the industry [7]. Regarding the topic of this thesis, the

model-based design approach is used with the aim of developing flight management code

suitable for UAV vehicles. Hardware and software implementation requirements can be

included during model development and then code can be automatically generated for

embedded deployment. In comparison with the traditional programming approach, some

of the advantages offered by model-based design are summarized below:

1 - Model-based design provides a common design environment that is much more in-

tuitive for an engineer, the graphical approach facilitates general communication, data

analysis and system verification.

2 - Engineers can apply modifications or locate and correct errors early, minimizing time

spent in system design.

3 - Design reuse for upgrades and for derivative systems with expanded capabilities is

facilitated.

3.2 Pixhawk R© Flight Management Unit

The term ”Pixhawk Flight Management Unit (FMU)” refers to an open-hardware on-

board management unit suitable for a wide variety of micro air vehicles [8]. It com-

bines in an embedded design a high-performance microcontroller, based on Cortex-M4F

processor, an inertial measurement unit (IMU) which integrates 3-axis gyroscopes and

accelerometers, a barometer and a set of external sensors including GNSS and magne-

tometers. Regarding the project of this thesis, Pixhawk R© FMU was selected especially

for its open-source features. Moreover, nowadays this system is an industry standard

autopilot which also provides high-end functionalities to the academic community, at

low costs and high availability. Table 3.1 contains some important specifications of

Pixhawk R© FMU and sensors can be implemented.

The flight software will follow has been developed using Matlab-Simulink R© together with

the toolbox Pixhawk R© Pilot Support Package (PSP) [9]. The PSP feature allows users

to use Simulink models to generate code targeted for the Pixhawk R© flight management

unit. The PSP provides the ability to incorporate the Pixhawk R© toolchain for complete

firmware build and download to the Pixhawk R© hardware. The user needs to use blocks

from the base Simulink R© or possibly the Aerospace block-set for simulating flight control

system models. Once the flight control system has been successfully modeled, simulated

and verified, the Embedded Coder can be used to deploy it into the autopilot hardware.

NuttX is the Operative System delivered with the Pixhawk R© toolchain and it is used for

running the code generated from the Simulink R© model. The flight control software can

Symbols 16

Figure 3.2: Pixhawk R© FMU main module.

be easily adapted for various configurations of micro-RPAS and represents the vehicle’s

main brain. Different flight modes have been implemented inside, which use more or

less complex control chains depending on the degree of automation required. Each

flight mode is selectable by the pilot in real time using, for example, a switch on the

transmitter.

3.3 Flight modes

Flight modes are the way the autopilot responds to pilot inputs and controls vehicle

motion. Every UAV autopilot software allows the user to control the vehicle by using

different flight modes, which provide different levels of autopilot-assisted flight. The

number and types of flight modes programmed in an autopilot software must be related

with vehicle configuration and some modes can behave differently on different flying

machines. The pilot can change between flight modes by using a switch on the remote

control or a ground control station. Based on the level of automation provided by

the autopilot, flight modes can generally be grouped into manual, assisted and auto

modes; this section provide an overview of flight modes commonly used for fixed-wing

and rotary-wing class of UAVs.

3.3.1 Manual flight modes

By using manual modes, the pilot has direct control of the vehicle actuators via joystick,

yoke or stick movements. In this case the autopilot provide direct pass-through of user

Symbols 17

Processor

32bit STM32F427 Cortex M4 core with FPU
168 MHz
256 KB RAM
2 MB Flash
32 bit STM32F103 failsafe co-processor

Sensors

ST Micro L3GD20H 16 bit gyroscope
ST Micro LSM303D 14 bit accelerometer / magnetometer
Invensense MPU 6000 3-axis accelerometer / gyroscope
MEAS MS5611 barometer

Interfaces

5x UART (serial ports), one high-power capable, 2x with HW flow control
2x CAN (one with internal 3.3V transceiver, one on expansion connector)
Spektrum DSM / DSM2 / DSM-X Satellite compatible input
Futaba S.BUS compatible input and output
PPM sum signal input
RSSI (PWM or voltage) input
I2C
SPI
3.3 and 6.6V ADC inputs
Internal microUSB port and external microUSB port extension

Power system and protection

Ideal diode controller with automatic failover
Servo rail high-power (max. 10V) and high-current (10A+) ready
All peripheral outputs over-current protected, all inputs ESD protected

Peripherals

Digital airspeed sensor PX4AIRSPEED
u-Blox GPS Module
External USB port
External multicolor LED
I2C splitter

Table 3.1: Pixhawk R© specifications

inputs to actuators or to an output mixer if the user input is associated to a combi-

nation of actuators. In this mode the automation level is minimum and the autopilot

is also described as ”transparent”; at best it can modify the type of response of vehi-

cle movement respect to stick movement or limit it between maximum and minimum

values. For these reasons this mode is generally used for Visual-Line-Of-Sight (VLOS)

operations. In fixed-wing and rotary-wing UAVs, manual flight mode is used by expert

pilots because it requires more skills and effort. For consumer multirotor class, a real

manual flight mode is generally not available for most of them because of the piloting

complexity.

Symbols 18

3.3.2 Assisted flight modes

Assisted modes are also pilot-controlled but offer some level of automatic assistance.

User inputs are not directly linked with actuators but they are interpreted by the au-

topilot as physical reference quantities. Depending on the automation level, a wide

range of sensors is used; the autopilot triggers different feedback control chains in order

to govern actuators and chase user inputs. Assisted modes often make it much easier to

gain or restore controlled flight, especially during BVLOS operations. For the multirotor

class, examples of assisted modes can be:

- Attitude rate flight mode:

User controls roll, pitch and yaw angle rates, throttle control is manual.

- Attitude flight mode:

User controls roll and pitch angles and yaw angle rate, throttle control is manual.

- Attitude + Altitude flight mode:

User controls roll and pitch angles and yaw angle rate, throttle controls climb/descent

speed at a predetermined maximum rate.

- Speed flight mode:

User controls left-right and front-back speed over ground. Yaw input controls yaw angle

rate. Throttle controls climb/descent speed at a predetermined maximum rate.

3.3.3 Auto flight modes

Auto modes are those where the autopilot doesn’t require constant user inputs. In this

case, paths or trajectories’ data must be uploaded or generated into the embedded flight

controller.

- Mission flight mode

The vehicle obeys to a pre-programmed mission sent by user using GCS, or created by

a path/trajectory planner implemented in the flight control software.

- Return to home flight mode

This mode is often used for emergency. Many autopilots, equipped with GNSS, can

automatically steer a vehicle to the take-off position if there is a need. This mode can

be triggered automatically or by user command, technically it represents a special case

of the Mission flight mode.

3.4 Software architectural overview

This section explains the most interesting parts of the flight control software. Figure 3.3

shows a graphical view of the proposed software architecture, as it has been designed

Symbols 19

in Matlab/Simulink R©. The whole software is intended to be stored in the Pixhawk R©

FMU with the exception of the trajectory planning task, to which a separated processor

is dedicated.

Sensors Hub
Position/Attitude

Estimator
State Machine
Arming/Mode

switching

Velocity / Altitude
Controller

Attitude Controller

Output driver
Mixing

ESC/Servo
Controller

RC input
mapping/conditioning

Trajectory planner

PWM/UART/CAN

Output references

Attitude / Thrust
references

Remote control

Raw data

Rates, angles,
airspeed, GPS

World/vehicle
constraints Velocity references

OR

Figure 3.3: The diagram provides an overview of the Flight control software archi-
tecture, it can be adapted for various UAV classes.

3.4.1 Signal conditioning

Signal conditioning is an important portion of the software that elaborates input com-

mands sourced by remote control station. This stage is required to make user inputs

suitable for processing through flight controllers, so that input signals can be compared

with sensor measurements. In this software signal conditioning includes processes of

range matching with saturation and converting. Signals are re-mapped in range [−1, 1]

by using the following general relation:

out = outmin + (in− inmin) ∗ (outmax − outmin)

(inmax − inmin)
(3.1)

3.4.2 Position and Attitude Estimator

Generally one of the most crucial part of a flight control software is the algorithm for

sensor fusion. This is the reason why many more or less complex estimation algorithms

were tested and adopted in the UAV field over the years [10, 11]. Here an Extended

Kalman Filter (EKF) is proposed to perform accurate estimations. The algorithm is the

non-linear version of the Kalman filter, it uses rate gyroscopes, accelerometer, compass,

Symbols 20

GPS, airspeed and barometric pressure measurements to estimate the position, velocity

and angular orientation of the flight vehicle. This algorithm was not developed by the

candidate, but is based on initial work documented in [12]. The advantage of the EKF

over simpler algorithms like complementary filter or Direction Cosine Matrix (DCM)

algorithm, is the increased ability to reject measurements with significant errors by

fusing all available measurements. This makes the vehicle less susceptible to faults

which can affect a single sensor. The EKF algorithm implemented is available as a

built-in App in the Nuttx OS of Pixhawk R©, it can estimate a total of 22 states with the

underlying equations derived in [13].

3.4.3 Trajectory planning

Trajectory planning consists of generating time sequences of reference inputs q(t) to the

inner motion control system which ensures that vehicle performs the planned trajectory.

Trajectory planning is often referred to as path planning, but actually these are two

different concepts. A ”path” is a geometric description of motion, it denotes a locus

of points in space which the vehicle has to follow. Trajectory, however, refers to a

path on which a time law is specified at each point in terms of different variables like,

for instance, velocities, accelerations or angles. The vehicle motion can be restricted by

several limitations that must be considered and imposed as constraints into the definition

of the planning problem; typically, these can be initial and final conditions, mechanical

constraints and obstacle constraints. In this thesis, Chapter 4 presents an efficient

methodology of trajectory generation which can be applied to multirotor vehicles and

Chapter5.4 shows how the same approach can be extended to multirotor fleets. As will

be seen, the strategy used for trajectory planning requires a not-negligible computing

power and for this reason it has been implemented and tested separately in a different

hardware connected with Pixhawk R© autopilot; it can be nevertheless considered full-

fledged part of the software architecture.

3.4.4 Flight control

Flight controllers represent the main processing stage in the software. Proportional-

Integral-Derivative (PID) control technique dominates in multirotor application in par-

ticular for its feasibility and simplicity. The tuning of PID gains can be tackled based

upon the system parameters if they can be achieved or estimated precisely. On the

other hand, if the system parameters are unknown, appropriate PID gains can be de-

signed just based on the system tracking error and treating the system like a black-box.

Symbols 21

This fact gives chance to easily adapt a given PID control architecture to vehicles hav-

ing widely different dynamics. This Section presents one by one the structure of the

software’s flight controllers, which are organized as a cascade control system [14]. In

this architecture there are generally a primary controller and a primary dynamics which

are components of the outer loop. A secondary controller loop is designed as part of

the outer loop. Set-points of the inner loop are calculated by the outer loop, hence

the name ”cascade control”. For good performances the inner loop should represent a

significantly faster dynamics with respect to the outer loop; this assumption allows re-

straining interaction that can occur between them and improve stability characteristics.

Therefore, a higher gain in the inner loop can be adopted. An additional advantage is

that the non-linear features of the plant are generally handled by the controller in the

inner loop without having meaningful influence on the outer loop [5]. Thanks to the

application of a cascade control structure, the PID control strategy can be adapted for

controlling complex dynamics like rotary-wing aerial vehicles. In sections below each

flight controller implemented into the software is graphically and analytically explained.

Finally, control performances are evaluated setting up a simulation environment which

uses the dynamics of a DJI R© F550 hexa-rotor. The multirotor dynamics is designed in

line with the six degree-of-freedom model, represented by equations (5.5), (2.30), (2.31)

and (2.32) derived in Chapter 2. During simulations the model state feeds back to the

controller without any additional noise.

3.4.4.1 Attitude controller

The attitude controller represents the innermost control chain in the software and gives

the basic piloting level of the multirotor vehicle. This controller is always active into

the software since no real manual flight modes are permitted for steering multirotors, it

would require too much effort for the user. Following the same philosophy as the others,

the attitude controller is implemented as a cascade control system, figure 3.4 shows the

design in detail.

The outer loop is based on the Euler angles φ and θ and exploits attitude estimations

calculated by the extended Kalman filter, here just a simple proportional gain is used.

The inner loop deal with angular velocities in a PI-D scheme in which the D-term

processes only the derivative of the feed-back signal (output) instead the error signal.

The PI-D solution is more suitable in practical implementation because it prevents

violent controller reactions in case of step change in the input signal.

Symbols 22

+
-

AIRFRAME

PILOT
COMMAND

PILOT
COMMAND

𝐾𝑃 𝜙,𝜃
+
- 𝐾𝐼 𝑝,𝑞

𝐾𝑃 𝑝,𝑞

𝐾𝐷 𝑝,𝑞

TO
MOTORS

EKF
ESTIMATION

ATTITUDE RATE MODE
OR

ATTITUDE MODE

𝜙, 𝜃𝑑𝑒𝑠

𝜙, 𝜃

𝑝, 𝑞

𝑝, 𝑞𝑑𝑒𝑠

PWM
Signal

Figure 3.4: Attitude controller architecture.

By defining the following error signals:

εφ = φdes − φ ,

εθ = θdes − θ ,

εp = pdes − p ,

εq = qdes − q ,

(3.2)

The cascade P-PID control output can be resumed as follows:

pdes = KPφεφ

qdes = KP θ εθ

τφ(pwm) = KP p εp −KDp ṗ+KI p

∫ t

0
εp dt

τθ(pwm) = KP q εq −KD q q̇ +KI q

∫ t

0
εq dt

(3.3)

The attitude controller allows users to select two different flight modes depending on

whether the aim is to control angles or angular velocities. These modes are called

ATTITUDE MODE or ATTITUDE RATE MODE.

Symbols 23

Figure 3.5: Response of roll angle to step change of roll angle set-point vs time.

3.4.4.2 Heading hold controller

+
-

AIRFRAME

PILOT
COMMAND

𝐾𝑃𝜓
+
- 𝐾𝐼𝑟

𝐾𝑃𝑟

𝐾𝐷𝑟

TO
MOTORS

EKF
ESTIMATION

HEADING HOLD MODE

𝑟

PWM
Signal

𝜓

𝑟𝑑𝑒𝑠

𝜓𝑑𝑒𝑠

LOGIC
TRIGGER

Figure 3.6: Heading hold controller architecture.

Figure 3.6 shows the design of the heading hold controller. The scheme is very similar

to that seen for attitude control, the only difference appears in dealing the user’s input

signal. In fact heading hold controller does not provide direct control of the real heading

angle ψ, that would be inappropriate for piloting. rdes represents the real input variable

controlled by the user, the ψdes reference for the outer loop is obtained by the current

value of ψdes whenever the user’s command returns to zero. The strategy of triggering

Symbols 24

the outer loop only for as long as user’s command is null is used to ensure a stable

and robust heading control in presence of disturbances on the airframe. By defining the

following error signal: εψ = ψdes − ψ

εr = rdes − r
(3.4)

The cascade P-PID control output can be resumed as follows:
rdes = KP ψ εψ + rin

τψ(pwm) = KP r εr −KD r ṙ +KI r

∫ t

0
εr dt

(3.5)

Figure 3.7: Response of heading angle to step change of heading set-point vs time.

3.4.4.3 Altitude hold controller

Altitude hold controller allows the user to control multirotor vertical speed and/or ver-

tical acceleration acting on the total force applied by motors. Two possible modes are

available for this controller, the THROTTLE MODE and the ALTITUDE MODE. Us-

ing the first one gives the user direct control of the multirotor total thrust, this mode

is considered manual because there is no presence of feedback signal from any autopilot

sensors. By selecting the ALTITUDE MODE, the user input is interpreted as vertical

speed reference; figure 3.8 shows how three cascade control loops are used forming a P-

P-PID control chain. In order to maintain a fixed altitude and ensure good performance

in presence of disturbance, the same strategy of the heading hold controller is used, in

Symbols 25

+
-

AIRFRAME

PILOT
COMMAND

𝐾𝑃𝑧

+
- 𝐾𝐼 ሷ𝑧

𝐾𝑃 ሷ𝑧

𝐾𝐷 ሷ𝑧

TO
MOTORS

EKF
ESTIMATION

THROTTLE MODE
OR

ALTITUDE MODE

ሷ𝑧𝑑𝑒𝑠
𝐾𝑃 ሶ𝑧

+
-

ሷ𝑧

PILOT
COMMAND

𝑧𝑑𝑒𝑠

𝐹𝑡𝑜𝑡(𝑃𝑊𝑀)

ሶ𝑧

ሶ𝑧𝑑𝑒𝑠

LOGIC
TRIGGER

𝑧

Figure 3.8: Altitude hold controller architecture.

which a new reference altitude is stored and triggered whenever the user’s command

drop to zero. By defining the following error signal:
εz = zdes − z

εż = żdes − ż

εz̈ = z̈des − z̈

(3.6)

The cascade P-P-PID control output can be resumed as follows:
żdes = KP z εz + żin

z̈des = KP ż εż

Ftot(pwm) = KP z̈ εz̈ −KD z̈
...
z +KI z̈

∫ t

0
εz̈ dt

(3.7)

Symbols 26

Figure 3.9: Response of vertical speed to step change of vertical speed set-point vs
time.

Figure 3.10: Response of altitude to step change of altitude set-point vs time.

3.4.4.4 Velocity controller

A very useful way to control an UAV is by speed commands. This section shows how the

velocity controller is modeled inside the flight control software for a rotary-wing UAV,

figure 3.11 shows the design in detail. The controller is part of the main cascade control

scheme and is designed as a feed-back proportional controller that accepts forward/right

velocity references vf/r des and provides desired roll/pitch angles to the inner control loop.

Symbols 27

+
-

AIRFRAME

PILOT
COMMAND

PILOT
COMMAND

𝐾𝑣 𝑓,𝑟
+
-

TO
MOTORS

EKF
ESTIMATION

ATTITUDE MODE
OR

SPEED MODE

𝑣𝑓, 𝑣𝑟𝑑𝑒𝑠

𝑣𝑓, 𝑣𝑟

𝜑, 𝜃𝑑𝑒𝑠

DESIRED
ACCELERATION

TO DESIRED
ATTITUDE

𝑎𝑓,𝑟𝑑𝑒𝑠

ATTITUDE
CONTROLLER

𝜑, 𝜃

PWM
Signal

Figure 3.11: Velocity controller architecture.

Controller inputs and outputs are intended in the forward-right-downward coordinate

frame F c, which is equivalent to the vehicle frame F v after rotating by the heading

angle.

The transformation matrix Rcv(ψ) is defined as follows:

Rcv(ψ) =

[
cosψ sinψ

− sinψ cosψ

]
(3.8)

By introducing the speed errors εv:[
εv f

εv r

]
= Rcv(ψ)

[
udes − u
vdes − v

]
=

[
vf des − vf
vr des − vr

]
(3.9)

a simple proportional controller can be implemented inside the software with this form:af des = Kvf εv f

ar des = Kvr εv r
(3.10)

In which Kv1,2 are gains. Since multirotors are under-actuated vehicles, controlling

speeds or accelerations in body-fixed horizontal plane implies to impose references in to-

tal thrust and attitude angles or angle rates. Desired accelerations af des and ar des must

be expressed as function of the desired attitude angles needed for increasing airspeed.

Symbols 28

Starting from the simplified equations presented in (2.38), it is possible to write:
af des = −f cosφ sin θ ,

ar des = f sinφ ,

ad des = −f cosφ cos θ + g ,

(3.11)

By imposing ad des = 0, the following relations can be found for φdes and θdes:
φdes = arctan

ar des cos θdes
g

θdes = − arctan
af des
g

(3.12)

By referring to figure 3.11, equations (3.12) are stored inside the ACC. TO ATTITUDE

block. The velocity controller is active only if the appropriate flight mode, here called

SPEED MODE, is selected by the user.

Figure 3.12: Response of translational speed (x-axis) to step change of speed set-point
vs time.

3.4.5 Motor mixing

Motor mixer, also called output mixer, represents the final stage of the processed signals

inside the software. This part depends on multirotor configuration you have to control,

which means the number of motors and the geometrical layout. It is basically a table

which specifies the magnitude of forces that should be applied to each motor to control

multirotor’s movements (pitch, roll, yaw and total thrust). It is easy to understand that

Symbols 29

an inappropriate motor mix can severally affect or undermine completely the upstream

control chain and PID tuning. The design of a proper motor mixing is simple once you

know the location of each motor in relation to the center of mass. Recalling equations

(2.20) and (2.21) for motor thrust and torque, it is possible to write the following relation:
δpwm(1)

δpwm(2)

..

δpwm(n)

 = Mmix


τφ(pwm)

τθ(pwm)

τψ(pwm)

Ftot(pwm)

 (3.13)

in which n is the number of motors and Mmix is the motor mix matrix. For example, a

proper motor mix matrix for a quad-rotor symmetrical cross configuration (Figure 2.1)

is defined as follows:

Mmix =


l
√
2
2 l

√
2
2 1 1

−l
√
2
2 l

√
2
2 −1 1

−l
√
2
2 −l

√
2
2 1 1

l
√
2
2 −l

√
2
2 −1 1

 (3.14)

3.4.5.1 Output saturation

Pratically, motor command signals δpwm are expressed as values of the duty cycle of the

PWM motor drivers. Before sending signals to motor regulators (ESCs), it is necessary

programming a saturation step that prevents certain side-effects caused by physical

features of the actuators:

1. Each PWM output cannot be more than a maximum value corresponding to 100%

of duty cycle.

2. Each PWM output cannot be less than the minimum value that stops the propeller;

this is required to avoid multirotor flip.

3. The constraints above must not affect the displacement imposed by motor mixer,

otherwise control could not work well or not work at all.

3.5 Flight test

In order to confirm the performance of the flight control architecture, some experimental

tests are performed by using a DJI R© F550 hexa-rotor with take-off mass m = 1.47 kg

and arm length l = 0.46 m. This is the same vehicle modeled for simulations. The

vehicle is equipped with the Pixhawk R© autopilot in which the proposed software is

Symbols 30

directly deployed by using the Pixhawk R© Pilot Support Package toolbox. The autopilot

unit performs estimation and control tasks in real-time with a frequency set to 250 Hz,

the data is captured and stored in microSD at a sampling rate of 10 Hz. Control gains

are trimmed in empirical way starting from values used in simulations. During flight

tests simple maneuvers are performed by the pilot in different flight modes, so that it is

possible to engage all the controllers by enforcing various reference commands. Figures

below show a comparison among reference and actual values for the most significant

quantities.

Figure 3.13: Flight test - Performance of attitude controller.

Symbols 31

Figure 3.14: Flight test - Performance of altitude hold controller.

Figure 3.15: Flight test - Performance of heading hold controller.

Symbols 32

Figure 3.16: Flight test - Performance of velocity controller.

Chapter 4

Optimal multirotor navigation

This section explains an innovative methodology for computing optimal autonomous

navigation for multirotor vehicles in obstructed environments. This approach is adopted

from early work described in [15, 16]. The research work presented in this chapter has

been made in collaboration with MECO (Motion Estimation, Control Optimization) Re-

search Team of KU Leuven University, Division PMA (Production engineering, Machine

design and Automation) [17]. First the general methodology is presented. Afterwards

it is applied to the multirotor navigation case.

4.1 General methodology

The presented methodology aims to solve a navigation problem in the form of optimiza-

tion problem, in which constraint satisfaction is guaranteed over the entire time horizon.

The approach suits for systems that are differentially flat and admit a polynomial rep-

resentation of flat outputs and, below right assumptions, can be adapted for the case of

multirotor vehicle. The optimization problem with parameterization of the flat output

will be presented in a general form in subsection 4.1.1. After that, in subsection 4.1.2 the

concept of differential flatness for the multirotor case is explained in a bit more detail.

4.1.1 Optimal motion problem

The considered motion problem searches for trajectories q(·) which steer a system from

an initial condition, at t = 0, to a terminal condition, at t = T . Both conditions are

expressed as conditions on q and its derivatives q(j). Optimal trajectories are obtained

by minimizing an objective J while respecting constraints h over the considered time

horizon [0, T]. These represent constraints on input and states and include actuator

33

Symbols 34

limitations and obstacle avoidance constraints. If the system is flat, initial conditions,

final conditions, input and state constraints can be expressed as conditions on q and

its derivatives q(j). The motion planning problem generally can be translated in an

optimization problem of the following form:

minimize
q(·)

J(q)

subject to q(j)(0) = q
(j)
0 , j ∈ {0, . . . , r} ,

q(j)(T) = q
(j)
T , j ∈ {0, . . . , r} ,

h(q, t) ≥ 0 , ∀t ∈ [0, T] .

(4.1)

In order to solve the optimization problem above, two challenges have to be faced:

Firstly, the problem (4.1) is infinite dimensional because q(·) is a function representing

an infinite set of optimization variables. Secondly, constraints on q(·) have to be enforced

and guaranteed at all time instances. In order to tackle both issues, the trajectories q(·)
are approximated as piece-wise polynomials and are parameterized in B-spline basis [18]:

q̂(t) =

n∑
l=1

qlbl(t) = qT b(t) , (4.2)

with B-spline basis b = [b1, . . . , bn]T and B-spline coefficients, also called control points,

q = [q1, . . . , qn]T , which become the new optimization variables.

The main reason for adopting the B-spline basis is the so-called convex hull property:

as the B-splines are positive and sum up to 1, a spline is always contained in the convex

hull of its B-spline coefficients. For completeness, such property is reported below as

written in [18]:

Convex hull propertyLet q be a polynomial spline of order k with knot vector t.

From the non-negativity, partition of unity and local support property of the B-spline

basis it follows immediately that the segment q(t), t[ti, ti+1] lies within the convex hull

of its control points cik+1, ..., ci.

This way, bounds on a spline function can be enforced by imposing them on the coeffi-

cients:

q ≥ 0⇒ q̂(t) ≥ 0 , ∀t ∈ [0, T] . (4.3)

Because derivatives, anti-derivatives and any polynomial function of a spline are splines

as well, also polynomial constraints on spline trajectories and their derivatives and anti-

derivatives can be relaxed in the same way.

Symbols 35

Using the spline parameterization (4.2) and constraint relaxation (4.3) allows to translate

problem (4.1) into a non-linear program which generates trajectories with guaranteed

satisfaction of constraint h at all time instances. It requires however to find a set of

trajectories q(·) that characterizes the motion of the system and from which state and

input trajectories can be determined. Furthermore, it should be possible to reformulate

constraints on state and inputs as polynomial constraints in q, its derivatives and anti-

derivatives. This is however possible for many vehicle systems including considered

multirotor vehicles.

4.1.2 Differential flatness of multirotor model

Differential flatness is a property of systems in which the state and control inputs can be

expressed as functions of the flat output and its time derivatives. Aside from all linear

and controllable systems, also many nonlinear systems are differentially flat, as the one

shown below related to a tri-dimensional multirotor. Writing the output q as following:

q = F (x, u, u̇, ü, ...) (4.4)

q is a flat output if there exist smooth functions Fx and Fu such that:

x = Fx(q, q̇, q̈, ...) (4.5)

and:

u = Fu(q, q̇, q̈, ...) (4.6)

Considering the following multirotor model already shown in Section 2:

Model:



ẍ = −f cosφ sin θ

ÿ = f sinφ ,

z̈ = −f cosφ cos θ + g

φ̇ = ωr

θ̇ = ωp

(4.7)

Defining inputs and outputs as shown below:

Inputs:


u1 = f

u2 = ωr

u2 = ωp

(4.8)

Symbols 36

Flat outputs:


q1 = x

q2 = y

q3 = z

(4.9)

It can be demonstrated that the system is flat [19]. This means that both state and

input equations can be expressed as functions of the specified flat output and its time

derivatives: 

ẍ = q̈1

ÿ = q̈2

z̈ = q̈3

φ̇ = arctan
q̈2√

q̈21 + (q̈3 − g)2

θ̇ = arctan
q̈1

q̈3 − g

(4.10)



f =
√
q̈21 + q̈22 + (q̈3 − g)2

ωr =

...
q 2(q̈

2
1 + q̈22 + (q̈3 − g)2)− q̈2(q̈1

...
q 1 + q̈2

...
q 2 + (q̈3 − g)

...
q 3)

(q̈21 + q̈22 + (q̈3 − g)2)
√
q̈21 + (q̈3 − g)2

ωp =
q̈1

...
q 3 − (q̈3 − g)

...
q 1

q̈21 + (q̈3 − g)2

(4.11)

4.2 Point-to-point multirotor navigation

In the navigation problem considered in this section, a multirotor is steered from an

initial condition towards a terminal condition which are expressed as equality constraints

on the initial and terminal positions ξ0 = [x0, y0, z0]
T and ξT = [xT , yT , zT]T , roll and

pitch angles φ, θ and their derivatives φ̇, θ̇. The objective is formulated as

J =

∫ T

0
‖ξ(t)− ξT ‖1dt , (4.12)

where ξ = [x, y, z]T represents the quad-rotor’s position. This objective function will

steer the multirotor as close as possible to the destination throughout the control horizon.

The multirotor is subject to bounds on its thrust acceleration, roll and pitch angles and

their derivatives:
fmin ≤ f ≤ fmax ,

φmin ≤ φ ≤ φmax , θmin ≤ θ ≤ θmax ,

φ̇min ≤ φ̇ ≤ φ̇max , θ̇min ≤ θ̇ ≤ θ̇max .

(4.13)

Symbols 37

Since obstacles may arise in the multirotor’s airspace, collision avoidance constraints

are imposed. These are constructed by imposing the existence of a separating plane

between multirotor and an obstacle [20]. Note that this construction can only separate

convex shapes [21]. Suppose the multirotor’s shape is represented by a sphere with

radius r, while the obstacle is a convex polyhedron with vertices wi. Demanding the

separation of both shapes by a plane {x ∈ R3|aTx = b} is achieved with the following

set of constraints:

−a(t)T ξ(t) + b(t) ≥ r ,

a(t)Twi(t)− b(t) ≥ 0 , ∀i ∈ {1, . . . , nwi} ,

ai(t)
Tai(t) ≤ 1 .

(4.14)

In order to avoid collisions at all time, the separating line is allowed to change over

time. Both a(·) and b(·), representing the normal vector to the hyperplane and the hy-

perplane’s offset respectively, are introduced as time dependent optimization variables

and are parameterized as splines. The problem of real-time obstacle detection, that is

how sensing obstacles and transforming them in convex shapes which can be included

into the navigation problem, is not addressed in this thesis, but it could be an inter-

esting part of future research work. In order to use the spline parameterization and

constraint relaxation described in Section 4.1.1, a set of trajectories q(·) has to be cho-

sen, from which the inputs and states of the multirotor can be derived and such that

constraints (4.13) and (4.14) can be reformulated as polynomial constraints in q and

its (anti-)derivatives. Section 4.1.2 shows how this can be done exactly and in [16] is

discussed how this can be achieved in a different manner by exploiting half angle iden-

tities. For both approaches, the obtained optimization problem is however complex and

takes a rather long time to solve, because of the huge equations derived in (4.11). For

this reason a different and approximating approach is proposed here by introducing the

assumption of small attitude angles. Firstly the multirotor’s motion is determined from

the position trajectories q = [x, y, z]T ; this allows to formulate the thrust acceleration

as:

f =
√
ẍ2 + ÿ2 + (z̈ − g)2 (4.15)

Expressions for the roll and pitch angles and their derivatives in (4.11) are elaborated

using a small angle approximation, sinφ ≈ φ and cosφ ≈ 1:

φ =
ÿ

z̈ − g
, φ̇ =

(z̈ − g)
...
y − ÿ...

z

(z̈ − g)2
,

θ =
−ẍ
z̈ − g

, θ̇ =
−(z̈ − g)

...
x + ẍ

...
z

(z̈ − g)2
.

(4.16)

Constraints (4.13) are then formulated as polynomial functions in q and its derivatives by

Symbols 38

squaring the constraint on f and multiplying constraints on the roll and pitch angles and

their rates by their (non-negative) denominators. Also collision avoidance constraints

(4.14) are polynomial in q.

Using a small angle approximation is mainly valid in cases where smooth and gentle ma-

neuvers are covered. This can be imposed by tightening the bounds on φ and θ. As will

be shown in Section 4.5, deviations from computed trajectories due to modeling errors

are however easily accounted for when the motion planning is performed repeatedly in

receding horizon.

4.3 point-to-point navigation for multirotor considering holo-

nomic trajectory planning

In robotics, a vehicle is considered holonomic if all the constraints that it is subjected

to can be integrated to obtain positional constraints [22]. A multirotor with no tilting

rotors is a non-holonomic vehicle since it is under-actuated. Anyway its model can be

reduced to a holonomic vehicle model by doing three assumptions:

1 - Bandwidth of attitude dynamics is considered significantly larger than bandwidth of

speed dynamics.

2 - Vehicle maintains a fixed orientation.

3 - Vehicle moves at low speed.

A holonomic vehicle in tri-dimensional space can be simply represented by a kinematics-

only model: 
ẋ = u1

ẏ = u2

ż = u3

(4.17)

Therefore in this case trajectory is composed by path coordinates:

q(t) =

[
x(t)

y(t)

]
(4.18)

The general methodology for solving optimal motion problems can be successfully ap-

plied to the holonomic vehicle’s case [20]. Due to the simplicity of the vehicle model,

implemented in terms of constraints, the resulting MPC algorithm for trajectory plan-

ning can be solved at high frequency, proving to be much lighter and more numerically

manageable. In conclusion, the strategy of solving the trajectory planning task for

multirotors, imposing constraints derived from a holonomic vehicle model instead of

Symbols 39

multirotor model, can be considered as a good alternative for the implementation of the

whole strategy into a software, especially if the computing power on-board is limited.

4.3.1 Minimum time

A variant of the optimization problem presented in (4.1) is where the final time T is a

variable and the objective function is simply written as:

J = T (4.19)

a classical time scaling can be applied to (4.1). The dimensionless time τ = t
T is

used as free variable in the parameterization for the flat output instead of the time t.

Consequently, the derivatives must be scaled by T and for free end-time problem (4.1)

can be formulated as follows:

minimize
q(·),T

T

subject to q(j)(0) = q
(j)
0 , j ∈ {0, . . . , r} ,

q(j)(T) = q
(j)
T , j ∈ {0, . . . , r} ,

h(q, τ) ≥ 0 , ∀τ ∈ [0, 1] .

(4.20)

Therefore, the proposed approach remains applicable to free end-time problems as well.

4.4 Motion planner

Problem presented in 4.2 and 4.3.1 can be numerically solved using OMG-Tools (Op-

timal Motion Generation-tools) [23], originally developed by MECO Research Team of

KU Leuven. This toolbox facilitates the modeling of motion planning problems, the

simulation of them and the embedding on real motion systems. The toolbox has been

written in Python and uses the software CasADi as symbolic framework and interface to

solvers. It also provides a library of different predefined system models and contains an

extensive list of motion problems. Figures 4.1 and 4.2 show some illustrative examples

of optimal trajectories solved by using OMG-Tools software, code examples are available

in [23].

Symbols 40

Figure 4.1: tri-dimensional quadrotor flying among obstacles.

4.5 Model predictive control strategy

Model Predictive Control (MPC) is an optimization based strategy for control of multiple-

input/multiple-output (MIMO) systems. The technique uses a dynamic model of a

system to solve a control problem in a receding horizon (online), without violating con-

straints, taking into account the most recent information about the environment. MPC

combines the benefits from feed-forward and feed-back control by not only optimizing for

the current state, but also for known events within the prediction horizon (e.g. changes

in model parameters and reference signals). MPC is by now a well-established control

approach with a vast theoretical basis. NMPC is an extension of MPC for the con-

trol nonlinear systems. It is implemented similarly as linear MPC techniques; it differs

in that we obtain a non-convex control problem employing different solution strategies.

NMPC solution strategies are generally computationally more challenging [24], for which

often accuracy is traded for the solution time. For the case of real-time motion planning

of autonomous vehicles indeed, generally vehicles operate in uncertain environments, in

which obstacle positions and movements are not fully known a priori. The same is true

for the motion of a real vehicle that cannot be exactly predicted using a mathematical

model. This is why it is necessary to update the motion trajectory in real time, based

on the most recent world information.

In order to account for disturbances, model-plant mismatches and changes in the envi-

ronment, as first step it is necessary to eliminate the assumption of ideal motion control

[25], which is present in the OMG-tools software. This can be done by coupling the

Symbols 41

Figure 4.2: Two-dimensional holonomic vehicle moving in obstructed environment.

motion-planning problem with the more detailed multirotor model derived in Section

2. That model will be used in simulations to perform the calculated trajectories. A

low-level control system is required to lead the vehicle model along the trajectory, the

controller is explained in section 4.5.1. Figure 4.4 shows how the motion planner, the

motion controller and the model are connected together to solve the navigation problem

in a receding horizon. The navigation algorithm uses the update time ∆T : k = 0, 1, 2, ..

and can be described by the following steps:

1. At time tk, execute trajectory qk.

2. At time = t ∈ [tk, tk+1] update current state xk(t) from measurements and world

information.

3. Estimate x̂k(tk+1).

4. Solve optimization problem using x̂k(tk+1) as initial data of vehicle dynamics and

environment constraints. Obtain complete motion trajectory qk+1 for a granted

time horizon.

5. At time tk+1 = tk + ∆T , vehicle’s motion controllers receive trajectory qk+1.

6. Repeat.

Symbols 42

multirotor
dynamics

High-level
control

MPC

Low level
control

PID

Current 𝝋, 𝝑, 𝒇

Current state

PWM signalsDesired 𝝋, 𝝑, 𝒇

Terminal condition,
world data

Figure 4.3: Model predictive control scheme.

For a proper implementation of the algorithm, the update frequency has to be cho-

sen high enough to compensate with updated data mismatches between the simplified

dynamics used for motion planning and the more correct dynamics used for motion

performing.

Dynamics of
multirotor

High-level
control

MPC

Attitude
controller

PID

Current 𝑽𝒙, 𝑽𝒚, 𝑽𝒛

Terminal condition,
world data

Current 𝑿, 𝒀, 𝒁

PWM signalsDesired 𝝋,𝝑, 𝒇

Speed
controller

PID

Current 𝝋,𝝑, 𝒇

Desired 𝑽𝒙, 𝑽𝒚, 𝑽𝒛

Figure 4.4: Model predictive control scheme considering holonomic trajectory plan-
ning.

Symbols 43

4.5.1 Motion control

As already seen in 3.4.4.1, an inner motion control system can be used to chain trajectory

planner and model, in order to chase trajectory references and perform attitude varia-

tions. However, thrust variations are directly commanded by a non-feedback controller

whose effect depends on the vehicle’s mass:

Ftot(pwm) = f ∗m (4.21)

Alternatively, if the holonomic trajectory planning case is considered, a velocity control

architecture is necessary to track the path, as the one proposed in 3.4.4.4,

4.6 Validation

The next subsections show how the MPC algorithm validation has been provided by

numerical simulations as well as supported by real flight tests.

4.6.1 Numerical simulation

s

Figure 4.5: Quadrotor flying between two walls represented in 2D view at time T =
1 s, the dashed line indicates the predicted trajectory that is corrected repeatedly.

Symbols 44

s

Figure 4.6: Quadrotor flying between two walls represented in 2D view at time T =
5 s, the blue line represents the covered trajectory.

In the following example a quadrotor has to reach the imposed destination point at

[0,−2, 1], starting from position [2, 2, 1] and avoiding two vertical walls which are in-

cluded in the environment between initial and final position. The spline-based motion

planning problem can be solved using the Optimal Motion Generation-tools software

[23], as explained above, this is a user-friendly toolbox written in Python that uses the

symbolic framework CasADi to perform nonlinear numerical optimization. In the mo-

tion planner trajectories are parameterized as cubic splines with 10 polynomial intervals,

the control horizon T is set to 10 s. Environmental constraints, as obstacles and airspace

dimensions, are added in advance in the airspace during the primary navigation problem

construction. In order to obtain smooth and feasible trajectories the following model

constraints are imposed:

2m/s2 ≤ f ≤ 15m/s2 ,

−15 ◦ ≤ φ ≤ 15 ◦ , −15 ◦ ≤ θ ≤ 15 ◦ ,

−5 ◦/s ≤ φ̇ ≤ 5 ◦/s , −5 ◦/s ≤ θ̇ ≤ 5 ◦/s .

(4.22)

During simulations the motion planning problem is solved with a prefixed frequency of

4 Hz, the average solving time for computing this particular point-to-point navigation

problem is equal to 200ms. It should be noted that average solving time can grow

if more obstacles are added in the environment. The dynamic model uses a sample

Symbols 45

0 1 2 3 4 5 6 7 8 9 10
time (s)

-15

-10

-5

0

5

10

15

a
n
g
le

 (
d
e
g
)

Attitude angles

Figure 4.7: Attitude profiles during trajectory tracking; blue and red lines represent
angles φ and θ respectively.

0 1 2 3 4 5 6 7 8 9 10
time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
x
,
V

y
,
V

z
(m

/s
)

Speed components

Figure 4.8: Velocity profiles during trajectory tracking; the blue, red and yellow lines
represent ẋ, ẏ and ż respectively. The resultant multirotor’s speed is maintained low

along the path.

rate t = 0.01s and the simulation is 10s long. The resulting motion is illustrated in

Figure 4.6 and Figure 4.7, the vehicle reaches the destination avoiding obstacles and

trajectories are constantly corrected with latest measured data during motion correcting

models mismatch. As shown in Figure 4.7 and 4.8, attitude angles, angular rates and

consequently resulting multirotor’s speed are maintained low along the path thanks to

the imposed constraints.

Symbols 46

Figure 4.9: Quadrotor flying between two walls represented in 3D view, red line
represents the covered trajectory

4.6.2 Flight tests

A flight test campaign has been led as support of the proposed strategy. As already said,

the navigation algorithm is formulated in an MPC fashion in which two fundamental

parts act and communicate together: a trajectory planner and a motion controller. With

a view to hardware implementation, it was decided to physically separate these parts,

by using different hardware elements and referring to them as trajectory planning unit

and flight control unit. Reasons of this choice are two: firstly, solving the trajectory

planning problem in a receding horizon requires a processing power not within reach of

the flight control hardware, so it became necessary using a faster microcontroller. In

addition, separating hardware which compute different tasks (trajectory planning and

motion control) guarantees more safety during tests. The hardware used for trajectory

planning is the Odroid R©-XU4 single board computer with quad-core 2GHz A15 and

RAM 2GB. The board is energy-efficient but powerful enough for running the MPC

algorithm and solving optimization problems at high rates. Figure 4.10 shows the com-

puter companion installed on-board the F550 hexa-rotor, used in flight tests. In the

following example test, the vehicle is requested to fly from an initial location, also called

home location, to a final destination situated 10m away to the east. A cylindrical obsta-

cle with radius 0.5m and infinite height is present along the straight path, the obstacle

centre is 5m away both from initial and final location. The MPC algorithm for motion

planning is configured as follows:

Symbols 47

Figure 4.10: Multirotor used for experimental tests

1 - A holonomic 2D trajectory planning strategy is treated.

2 - The hexa-rotor is considered a holonomic 2D vehicle, circular in shape with radius

0.5m, plus a safety distance of 0.2m.

3 - The following model constraints are imposed:

1m/s2 ≤ ẍ ≤ 1m/s2 , 1m/s2 ≤ ÿ ≤ 1m/s2 ,

1m/s ≤ ẋ ≤ 1m/s , 1m/s ≤ ẏ ≤ 1m/s
(4.23)

4 - Control Horizon is set to 15s.

5 - The algorithm’s trajectory update time DeltaT is set to 1 second, trajectory consists

in a time sequence of 10 velocity inputs in north-east coordinates.

6 - The trajectory planner send velocity inputs to the flight control unit via Mavlink

protocol [26].

With these settings, the average time requested by the computer companion for solving

the trajectory planning task is 25ms, which is in line with the chosen DeltaT . Relevant

flight data are saved on a microSD card at 10 Hz. Figure 4.11 illustrates the flight test.

Symbols 48

Figure 4.11: Trajectory covered hexa-rotor vehicle during flight test.

Figure 4.12: Speed during flight test.

Chapter 5

Formation flight control

The cooperative use of UAVs in civil field is very interesting for research, especially nowa-

days that many countries are going to approve new specific regulations for unmanned

aircrafts. The operational potential of multirotor platforms can be strongly improved by

making them fly within a formation. E. g. for remote sensing applications, an UAV fleet

flying simultaneously may be able to quickly cover larger ground areas than a single

aircraft, with the possibility to carry distributed payloads. In general, it is expected

that aircraft cooperative control will play a fundamental role in future aerospace scenar-

ios, where unmanned aerial vehicles will be required to cover large areas for monitoring

with more robust and reliable results if compared to the use of single vehicle [27]. De-

pending on the sensing capability and the interaction topology of agents, a variety of

applications and formation control problems can be found in the literature, based on the

behavioral approach, [28, 29], virtual structures [30, 31], and the classic leader-follower

configurations [32, 33]. In Ref. [34] a comparative study of the three different formation

structures is performed and the superiority of the behavioral approach is proven for

trajectory tracking and formation keeping, providing that each aircraft has knowledge

of all the other state vectors. In this chapter, the case study of UAVs formation flight

is treated starting with the explanation of the possible control architectures, following

with two different formation control techniques which have been implemented into the

experimental flight software for multirotors.

5.1 Formation flight control architectures

The choice of formation flight control architecture is crucial because it influences, of

necessity, both software and hardware design. There are many possibilities and each

architecture shows pros and cons in terms of performance of the control strategy and/or

49

Symbols 50

implementation complexity. In this section, three different formation arrangements are

described, the same structures are also reported in literature, in [34, 35]. These ar-

rangements are called Leader-wingman, virtual leader and behavioural structure. In the

leader-wingman structure there is an UAV designed as leader, while the remaining ve-

hicles are called wingmen. While the leader keeps a prescribed trajectory, the followers

refer their position to the other vehicle in the formation, keeping a fixed relative dis-

tance from the neighbouring vehicles. The leader-wingman structure is widely employed

in control and management of multiple vehicle formations because of its simplicity, de-

spite it suffers of error propagation. In the virtual-leader structure each UAV receives the

same leader instructions or information, that generally are the leader trajectory. Leader

position may be represented by a real vehicle position or a virtual point in the formation

that vehicles must track. In this case there is no error propagation effect because all

vehicles refer to the same leader; moreover the formation behaviour is prescribed by

simply specifying the behaviour of the virtual leader. The disadvantage is that there is

no explicit feedback among the follower positions in the formation, each member has no

information about its distance from the followers; so that increases chances of collision.

At last, the behavioral approach considers the introduction of a virtual point called

formation geometry center (FGC). The position of the FGC depends on the relative dis-

tance among vehicles, representing a sort of barycenter of the formation. Each vehicle

has to maintain a prescribed distance from the FGC. This structure is good for safety

because it allows vehicles to sense indirectly other vehicle movements by sensing FGC

variations, increasing chances to avoid air collisions.

Figure 5.1: Leader-wingman configuration.

5.2 Formation modelling

For the purposes of the formation control strategy that will be exposed in Section 5.3,

it is required to introduce a suitable UAVs’ formation model, in which each vehicle

is represented as a three degrees-of-freedom point mass model. This simplified model,

Symbols 51

Figure 5.2: Virtual leader configuration.

FGC

Figure 5.3: Behavioral configuration with formation geometry center.

that involves only the slow state variables, is widely used and considered proper with

trajectory tracking problems and position-keeping autopilot systems design.

Assume the i−th vehicle is required to keep a specified distance from a reference point

G, moving with velocity V̄ . By referring to the inertial frame, F i, the following three

position vectors are introduced: rr is the position of the reference point, ri is the current

position of the i−th vehicle, and r̄i represents its required position. Thus, as depicted

Figure 5.4: Definition of actual (Pi) and desired (Di) positions of i−th multirotor.

in Fig. 5.4, di and d̄i respectively indicate the current and required relative distance

Symbols 52

between the i−th vehicle and its reference point, G. The following relations are derived:

rr + di = ri (5.1)

and

rr + d̄i = r̄i (5.2)

from which one obtains:

d̄i − di = r̄i − ri (5.3)

Provided ṙi = Vi and ˙̄ri = V̄i, the time derivative of Eq. (5.3) evaluated in the F i frame

yields:
˙̄di − ḋi = V̄i − Vi (5.4)

where Vi and V̄i respectively represent the actual and the desired velocity of the i−th

vehicle, relative to the inertial frame. Assuming the desired velocity V̄i equals the velocity

of the reference point V̄ , the position dynamics of the i−th vehicle with respect to the

reference point becomes:

ḋi = ˙̄di − V̄ + Vi (5.5)

The translational dynamics of the i−th vehicle as expressed in F i is described by the

following equation:

V̇i =
1

mi
(ui +mi g + fai) (5.6)

where mi is the mass of the vehicle, g = [0 0 g]T is the local gravitational acceleration

vector, and fai is the aerodynamic drag. Provided ρ is the air density, a simple flat plate

area model is considered such that

fai = −1

2
ρ
(
Rvb [Ax Ay Az]

T
)
‖Vi‖Vi (5.7)

where ‖·‖ indicates the euclidean norm and Ax, Ay, and Az are the equivalent flat plate

drag areas facing the three body-frame axes of the i−th agent. The total thrust vector

ui = [uxi uyi uzi]
T , directed along zBi and pointing upwards, represents the only control

input to Eq. (5.6).

5.3 Potential strategy for formation flight

This section describes an analytical and experimental framework addressing formation

control of multirotor aircraft with collision avoidance capability, developed in close co-

operation with the all team of Flight Mechanics Laboratory. This strategy does not deal

Symbols 53

with path generation and, in order to be successfully applied, it requires the implemen-

tation of a preventive path planning step in the software used for experimental tests, as

the one seen in Chapter 4. The proposed strategy applies to a formation of cooperating

vehicles under two assumptions:

1- Position data are available for all the agents by use of broadcast transmission.

2- Standard autopilot loops have been closed around each agent in the formation, con-

trolling attitude variables.

The proposed formation control law is able to fulfill simultaneously three different tasks:

1- Trajectory tracking

2- Position keeping

3- Mutual collision avoidance

In order to accomplish the collision avoidance task, a potential function Vp(a) : A → R
is defined:

Vp(a) =
Ka

4

∑
i,j

[
(āij − aij)T (āij − aij)

aTijaij − r2

]2
(5.8)

In which Ka > 0, aij = rj − ri = dj − di and āij = r̄j − r̄i = d̄j − d̄i represent the

distance and the desired distance respectively between the i−th and the j−th vehicle

of the formation. Assume a sphere with radius r > 0 is centered at Pj and represents

a safety zone for the j−th vehicle. To avoid collision, the i−th agent is requested not

to enter the j−th sphere. The set of distance constraints which the above potential

function takes into account is defined as follows:

Aij =
{
aij ∈ R3 | ‖aij‖ > r

}
(5.9)

The potential function (5.8) guarantees that each term aij satisfies the constraint in

Eq. (5.9), the following properties can be proven [36]:

1. Vp(ā) = 0

2. Vp(a) > 0 for all a ∈ A \ {ā}

3. Vp(a) has a global minimum at a = ā.

About last property, the gradient ∇Vp|aij defined as:

∇Vp|aij = −Ka

(āij − aij) ‖āij − aij‖2(
aTijaij − r2

)2 +
aij ‖āij − aij‖4(
aTijaij − r2

)3
 (5.10)

Symbols 54

becomes null only at a = ā, which means ā represents a global minimum.

5.3.1 Control design

A suitable control action is derived to guarantee that each multirotor in the formation

has the following dynamics:

V̇i = KV

(
V̄ − Vi

)
+Kd

(
d̄i − di

)
+
∑
j

∇Vp|aij (5.11)

To get the required control efforts, a dynamic inversion approach is employed. More

precisely, the commanded acceleration in Eq. (5.11) is set equal to the actual acceleration

in Eq. (5.6) and a solution is found for the control input ui. By disregarding the effect

of aerodynamic drag [37], one obtains:

ui = mi

−fg +Kd

(
d̄i − di

)
+KV

(
V̄ − Vi

)
+
∑
j

∇Vp|aij

 (5.12)

The control input ui represent the input of the inner control loop closed around each

vehicle in the formation. Multirotor vehicles are generally controlled by using total thrust

and attitude references, so it is necessary to transform ui in terms of these inputs. In

particular, the total thrust magnitude is given by Ti = ‖ui‖, while attitude commands

have to be computed from the orientation of ui with respect to the local vertical. Define

ξi ∈ R as the angle between ui and the unit vector directed along zHi, pointing upwards.

It is

ξi = cos−1
(
−uzi
Ti

)
(5.13)

Note that there are infinite attitudes of F b with respect to F v for which zBi is aligned

with ui. Hence, in order to specify a unique attitude, it is possible to select a pre-

defined yaw angle equal to zero. This is equivalent to take into consideration the attitude

represented by the principal Euler angle/axis (ξi, ei), where ei ∈ R3 is the unit vector

given by

ei =
ui × zHi
‖zHi × ui‖

(5.14)

From (ξi, ei), the attitude of F b with respect to F v can be finally expressed in terms of

Euler angles or direction cosine matrix [38]. Global asymptotic stability of the closed-

loop control system can be proven by means of the Lyapunov method, as it is showed

in [36].

Symbols 55

5.3.2 Numerical simulation

The proposed control technique is evaluated on the basis of computer simulations per-

formed in the Matlab-Simulink environment. A formation made of an array of quadrotor

vehicles is considered in simulations, where all vehicles always are requested to fly at the

same altitude while following a prescribed trajectory. The non-linear 6-DoF mathemat-

ical model, presented in Chapter 2, represents each multirotor dynamics, in which the

additional effect of aerodynamic drag is considered. All relevant simulation parameters

are listed in Table 5.1. All vehicles are assumed identical; each one has four identical

Table 5.1: Simulation parameters

Parameter Symbol Value Units

Vehicle data

Mass m 1.32 kg
Moments of inertia Jx, Jy 9.75 · 10−3 kg m2

Moment of inertia Jz 1.93 · 10−2 kg m2

Arm length l 0.19 m
Equivalent flat plate areas Ax, Ay 1.32 · 10−2 m2

Equivalent flat plate area Az 6.44 · 10−2 m2

Gravitational acceleration g 9.81 m s−2

Air density ρ 1.225 kg m−3

Formation control

Trajectory tracking control gains KVx , KVy , KVz 12 s−1

Position keeping control gains Kdx , Kdy , Kdz 5 s−2

Safety zone radius r 0.3 m

electrical motors driving fixed-pitch propellers with paired spin directions that generate

propulsive forces and moments. The internal attitude controller is based on proportional-

integral-derivative contributions tuned to make the attitude dynamics have a bandwidth

significantly larger than the bandwidth of the formation control dynamics[37]. The ef-

ficiency of the controller in simultaneously performing trajectory tracking, formation

geometry keeping, and collision avoidance was evaluated time after time by adding dis-

turbance forces on vehicles. In order to evaluate the efficiency of the controller in the

presence of non-modeled dynamics, constraints are set on the maximum total thrust

magnitude, namely Ti ∈ [0, 2mg], and on the commanded inclination, ξi ∈ [0, 45] deg.

A fixed time delay, td = 0.02 s, is also implemented which accounts for local processing

and communication issues between the agents of the formation. Finally, the additional

effect of aerodynamic drag is considered according to the model in Eq. (5.7). In the

present framework, the moment generated by ai about the center of mass of the i−th

multirotor is disregarded.

Symbols 56

Two simulation test cases are analyzed. In the first case the robustness of the proposed

controller against disturbances is evaluated and the contribution of the collision avoid-

ance controller to formation keeping is investigated. In the second test case the stability

of the controller and its capability of performing collision avoidance task are tested in

a scenario where both formation acquisition and formation reconfiguration would lead

the agents to repeatedly cross their trajectories.

5.3.2.1 Case 1

All vehicles are requested to fly at the same altitude while following a rectilinear tra-

jectory. In particular, the quadrotors leave their initial hovering positions r1(0) =

[−3 − 2 − 2]T m, r2(0) = [−4 3 − 2]T m, and r3(0) = [−1 1 − 2]T m at time

t = 0 s and follow a reference point identified by the position rr(t) = [λ t 0 − 2]T m,

where λ = 0.5 m/s and t ≥ 0 s. Formation geometry is defined by d̄1 = [0 − 0.5 0]T

m, d̄2 = [0 0.5 0]T m, and d̄3 = [0 0 0]T m. Collision avoidance control gain is Ka = 1

m2 s−2. Figure (5.5) shows the trajectory of vehicles leaving their initial positions while

-3 -2 -1 0 1 2 3 4

y
E
 [m]

-4

-2

0

2

4

6

8

10

12

14

x E
 [m

]

r
1
(t), K

a
=1

r
2
(t), K

a
=1

r
3
(t), K

a
=1

r
1
(t), K

a
=0

r
2
(t), K

a
=0

r
3
(t), K

a
=0

t = 0 s

t = 23 s

t = 13 s

t = 10 s

Figure 5.5: Formation trajectories over the xE-yE plane (Case 1).

circle markers indicate the formation configuration at discrete time instants. Also, to

assess the robustness of the proposed controller against disturbances, an inertially-fixed

constant force, fd = [0 5 0]T N, is applied to vehicle 1 for t ∈ [10, 13] s. Dashed lines

in Fig. (5.5) indicate the trajectories followed when Ka = 0. In such a case, formation

geometry is not maintained since vehicles 2 and 3 are not influenced by the state of

vehicle 1. Also, the trajectories of vehicles 1 and 3 intersect when t = 13 s, leading to a

Symbols 57

collision. Solid lines represent the case when Ka 6= 0 and each agent can get the position

information of all the other vehicles. In this configuration the line formation is preserved

during the collision avoidance maneuver (as indicated by circle markers in Fig. (5.5))

and the maximum lateral displacement of vehicle 1 is reduced with respect to the case

when Ka = 0. In Figure (5.6) relative distances ‖a12‖, ‖a23‖, and ‖a31‖ are plotted as a

Figure 5.6: Mutual distances between agents of the formation (Case 1).

function of time. The gray zone is upper-limited by the desired value ‖āij‖, which is the

prescribed value for ‖aij‖, and lower-limited by the radius of the safety zone, r. Note

that, in this particular scenario, gray zones related to ‖a23‖ and ‖a31‖ are narrower than

the case related to ‖a12‖, thus showing a higher collision risk. In fact, when no collision

avoidance control is performed, the dashed line representing ‖a31‖ almost goes to zero,

thus implying the above-mentioned collision between vehicles 1 and 3. Constraints are

instead respected when Ka 6= 0. In Figure (5.7) the norm of the error vectors ‖eta1‖,
‖eta2‖, and ‖eta3‖ are reported as a function of time. It is evident how, after the ini-

tial transient, during which formation acquisition is performed, the external disturbance

determines a deviation of the error variables from the equilibrium condition. It can be

noted that a steady-state error is reached for t ≥ 13 s: this is due to the not modeled

effect of the aerodynamic drag in the design phase of the controller. As a matter of fact,

the final error remains bounded, with ‖deltai‖ → 0.013 m and ‖epsiloni‖ → 6.5 · 10−6

m/s for i = 1, 2, 3 and t → ∞. As a final remark, commanded thrust magnitude and

attitude signals are reported in Fig. 5.8 for each vehicle, with particular focus on the

effect of external disturbance. It is evident how, for t ∈ [10, 13] s, the electric motors

are required to provide more thrust in order to keep the vehicles in the desired positions

Symbols 58

0

2

4

||
1||

0 5 10 15 20 25
time [s]

0

2

4

||
3||

0

5

10

||
2||

21 22 23 24 25
0.01

0.015

0.02

21 22 23 24 25
0.01

0.015

0.02

21 22 23 24 25
0.01

0.015

0.02

Figure 5.7: Stability of the formation under external disturbances (Case 1).

1

1.05

1.1

T
i/(

m
g)

vehicle 1
vehicle 2
vehicle 3

9 10 11 12 13 14 15
time [s]

0

10

20

30

i [d
eg

]

Figure 5.8: Thrust magnitude and inclination angle commands (Case 1).

and maintain the desired mutual distances. As expected, the highest control effort is

demanded to multirotor 1, although the values of maximum thrust and inclination angle

do not exceed the given constraints.

Symbols 59

5.3.2.2 Case 2

The quadrotors leave their initial hovering positions r1(0) = [0 2 − 3.5]T m, r2(0) =

[0 − 2 − 1]T m, and r3(0) = [0 0 − 3]T m at time t = 0 s. The reference point is

the same analyzed in Case 1, identifying a constant-altitude rectilinear trajectory for

t ≥ 0 s. A line formation geometry is defined by d̄1 = [0 − 0.5 0]T m, d̄2 = [0 0.5 0]T

m, and d̄3 = [0 0 0]T m for t ∈ [0, 12[s. At time t = 12 s a formation reconfiguration

is commanded in order to obtain a classic triangular shape with d̄1 = [1 0 0]T m,

d̄2 = [0 − 1 0]T m, and d̄3 = [0 1 0]T m. Collision avoidance control gain is Ka = 0.01

m2 s−2.

In this framework, the initial hovering positions are designed in such a way that the

trajectories of the agents would intersect during the formation acquisition phase if no

collision avoidance control were performed. The same situation would occur during

the formation reconfiguration phase, where vehicle 1 moves to the front vertex of the

triangular shape while vehicles 2 and 3 swap their respective initial positions. With

respect to Case 1, altitude changes are also required for the multirotors to reach the line

formation for t ∈ [0, 12[s. Figure (5.9) shows the trajectory of vehicles leaving their

Figure 5.9: Formation trajectories (Case 2).

initial positions while circle markers indicate the formation configuration at discrete time

instants. Relative distances ‖a12‖, ‖a23‖, and ‖a31‖ are also plotted in Figure (5.10) as

a function of time. The gray zone is still lower-limited by the radius of the safety zone,

Symbols 60

Figure 5.10: Mutual distances between agents of the formation (Case 2).

while the upper-limit increases at t = 12 s because of the formation reconfiguration.

When no collision avoidance control is performed, the dashed line representing ‖a31‖
almost goes to zero during the first phase of the maneuver, thus implying collision

between vehicles 1 and 3. At the same time, vehicle 2 hazardously approaches vehicles

1 and 3. After formation reconfiguration, collision occurs between agents 2 and 3,

while ‖a12‖ becomes very close to the lower bound. Constraints are instead respected

when Ka 6= 0, despite the unfavorable initial conditions and the unusual reconfiguration

maneuver of the formation.

5.3.3 Flight test

In order to validate the proposed approach in a real mission scenario, an experimental

campaign is performed by using a DJI R© F550 hexarotor with take-off mass m = 1.47

kg and arm length l = 0.46 m. The term ”hexarotor” stands for multirotor vehicle

equipped with six rotors. The vehicle is equipped with the Pixhawk R© PX4 autopilot,

already presented in Chapter 3.2. The proposed control technique is first model-based

designed and validated in Matlab/Simulinkr environment. Then Matlabr scripts and

the Simulink blocks related to formation control are included in the flight management

software, comprehensive of estimation algorithm and aircraft attitude control, and di-

rectly coded by using the Pixhawk R© Pilot Support Package toolbox. At this point

the dedicated firmware can be easily deployed to the Pixhawk R© unit. The autopilot

unit performs estimation and control tasks in real-time with a frequency set to 250 Hz

Symbols 61

while relevant flight data are saved on a microSD card at 25 Hz. Focusing the atten-

tion on the collision prevention task, a simple maneuver is performed outdoor where

rr(t) = [0 0 − 3]T m and the hexarotor, here named vehicle 1, is required to leave its

initial position r1(0) = [−3.9 6.7 − 2.9]T m and reach the desired position defined by

d̄1 = [5 0 0]T m, that is r̄1(t) = [5 0 − 3]T m. Constraints are set on the maximum total

thrust magnitude, namely T1 ∈ [0, 2mg], and on the commanded inclination, ξ1 ∈ [0, 45]

deg. It is assumed that a virtual vehicle 2 is at hover in r2(t) ≡ r̄2(t) = [0 0 − 3]T

m for all t ≥ 0 s, emulating a condition where vehicle 2 is able to perfectly perform

position keeping but its condition is not affected by the state of vehicle 1. The vehicle

1 global position, expressed in terms of latitude, longitude, and altitude, is estimated in

real-time by filtering raw measurements from on-board GNSS and inertial measurement

unit and then it is rotated to local position according to the North-East-Down frame.

The experimental setup represents the case when vehicle 1 has the knowledge of vehicle

2 state vector (written in the firmware as constant data), but the converse does not

occur anymore due to communication loss. In this framework, the formation control

gain matrices are given by KV = 1 · I3 s−1 and Kd = 0.5 · I3 s−2, while the collision

avoidance control gain is Ka = 1 m2 s−2.

The sample maneuver is depicted in Fig. 5.11, where the trajectory of vehicle 1 is plotted

for t ∈ [0, 12.9] s. At time t = 0 s, when formation control is activated, the attitude

of vehicle 1 is described by Euler angles Φ1(0) = −10.9 deg, Θ1(0) = −21.2 deg, and

Ψ1(0) = −28.7 deg. It can be noted that Ψ1(0) 6= 0 deg represents a non-nominal

condition for the computation of attitude commands as described in Section 5.3. Thus,

the initial part of the formation acquisition maneuver is characterized by a non-nominal

trajectory during which correction of the yaw angle by the internal autopilot is still

ongoing. During the non-nominal formation acquisition phase, vehicle 1 results to be

driven toward the sphere with radius r = 0.7 m centered at the position of virtual vehi-

cle 2, where the potential function contribution of the controller in Eq. (5.12) becomes

predominant and collision avoidance occurs. Figure 5.11 also reports an intuitive rep-

resentation of potential function Vp in a 3-dimensional environment together with the

trajectory of vehicle 1. In particular, the values of Vp can be read along the vertical

axis as a function of the horizontal position on the xE-yE plane. It can be finally noted

that Vp increases its value near the safety sphere, ideally going to infinity on the sphere

surface, while a minimum of Vp characterizes the desired position r̄1.

During the last part of the maneuver, vehicle 1 finally reaches the desired position and

stabilizes at hover. The proposed experimental setup, here focused on collision avoid-

ance, determines severe maneuvers for vehicle 1. It is in the intentions of the authors,

however, to intentionally validate the efficiency of the proposed approach under non-

nominal conditions: a) vehicle 1 is required to perform formation acquisition with large

Symbols 62

5

0
0

x
E
 [m]

-6
-4

-2

y
E
 [m]

0
-52

4
6

8

5
-z

E
 [m],

V
p
 [m2/s2]

2

1 @ t=12.9 s

1 @ t=0 s

Figure 5.11: Trajectory of vehicle 1 during the experimental test.

initial error ‖delta1(0)‖ = ‖r̄1(t)− r1(0)‖ ≈ 11.1 m, b) vehicle 1 starts the maneuver

from a non-nominal yaw condition, c) vehicle 2 is not influenced by the state of vehicle

1 and does not perform its expected part of collision avoidance task (in this case, vehicle

2 rather represents a fixed obstacle for vehicle 1). This latter aspect particularly makes

the closed-loop control task of vehicle 1 demanding. As a matter of fact, the exper-

iment proves the efficiency of the proposed controller in a real application and shows

encouraging performance capabilities in unusual conditions.

5.4 Optimal navigation strategy for formation flight

With respect to the strategy exposed in 5.3, a different approach is represented by

optimization methods, which attempt to find an input that minimizes a performance

index to avoid obstacles. Literature illustrates how most of these methods calculate the

performance index for a finite time horizon, which can be easily combined with model

predictive control [39–41]. This section shows how the navigation strategy described in

Chapter 4 can be extended to formation of multiple UAVs. This approach, in line with

the case of single agent, proposes to solve the resulting problem globally, considering

all agents objectives and constraints. The proposed technique requires a single central

unit for computing trajectories and communicating them to each vehicle. This approach

results in a good solution if the number of agents in the formation is small, indeed it

Symbols 63

scales badly with the number of agents in terms of computation as well as communication

load [42, 43]. The offline motion planning problem can be written as follows:

minimize
∀ i : qi(·)

N∑
i=1

(Ji(qi) +

Mi∑
k=1

w

∫ T

0
εk dt)

subject to q
(j)
i (0) = q

(j)
i,0 , j ∈ {0, . . . , r} ,

q
(j)
i (T) = q

(j)
i,T , j ∈ {0, . . . , r} ,

gik(qi, qk, εk) ≤ 0 ,

hi(qi, t) ≥ 0 ,

∀t ∈ [0, T] , ∀i ∈ [0, N] , ∀k ∈ [0,Mi] .

(5.15)

The optimization problem 5.15 deals with motion planning for multi-vehicle systems

and considers the problem of finding optimal input trajectories qi for each vehicle i to

steer it from an initial location qi(0) towards a desired destination qi(T), while satisfying

interaction constraints gik(qi, qk, εk) between the agents, such as attaining a formation,

avoiding collisions with each other or meeting at the destination position. In the mean-

time, each vehicle should respect its own kinematic and dynamic limitations and avoid

collisions with the environment, these constraints are represented by hi(qi, t). In com-

parison to the single agent case, an extra term is added to the objective function to

trade-off time optimality against formation keeping during motion:

w

∫ T

0
εk(t) dt (5.16)

in which εk is called soft-formation deviation, and w is the soft-formation parameter has

to be tuned. Formation constraints are adapted as follows:

−εk(t) ≤ qi(t)− qk(t)−∆qik ≤ εk(t) , (5.17)

This construction motivates agents to fly in fleet but it allows little variations in the

formation geometry if e.g. a dynamic obstacle has to be avoided. In order to use the

approach described in Chapter 4, new variables εk are parameterized as extra splines

such that constraints can be reformulated as polynomial constraints in q, its derivatives

and anti-derivatives. Also this strategy was tested with simulations and implemented as

part of the software toolbox OMG-tools.

Figure 5.13 shows how different values of the soft-formation parameter w can affects

the average solving time for trajectories. According to simulations, high values of this

parameter can reduce the problem complexity.

Symbols 64

Figure 5.12: Examples of optimal motion planning problems solved for a formation
of four multirotor vehicles.

Soft-formation weight = 100 Soft-formation weight = 0.1

Soft-formation weight Average update time

100 569.465 ms

10 861.049 ms

1 1269.33 ms

0.1 1281.14 ms

Figure 5.13: Examples of optimal motion planning problems solved for a formation
of four holonomic vehicles.

5.4.1 Model predictive control strategy for formation flight

The multi-agent motion problem can be solved in a receding horizon by running it into

a model predictive control architecture. Following Section 4.5 as outline, the motion-

planning problem is coupled with multirotor model derived in Section 2. That model

will be used in simulations to perform the calculated trajectories. A low-level control

system, required to lead vehicle models along the trajectories, has already explained in

Symbols 65

section 4.5.1. Figure 5.14 shows the architecture used for solving online the navigation

problem for the multi-agent case. For a real implementation, it has to be said that

multirotor
dynamics

High-level
control

MPC

Low level
control

PID

Current 𝝋, 𝝑, 𝒇

Current states

PWM signals

Desired 𝝋, 𝝑, 𝒇

Terminal condition,
world data

multirotor
dynamics

Low level
control

PID

Current 𝝋, 𝝑, 𝒇

PWM signals

multirotor
dynamics

Low level
control

PID

Current 𝝋, 𝝑, 𝒇

PWM signals

Desired 𝝋, 𝝑, 𝒇

Desired 𝝋, 𝝑, 𝒇

Figure 5.14: Model predictive control scheme.

communication among vehicles, provided of necessity by wireless devices, could require

more time in comparison with the single-agent case. Since the motion problem is going

to be solved globally, the MPC navigation algorithm is very similar to the one already

proposed in Chapter 4. The algorithm uses the update time ∆T : k = 0, 1, 2, .. and can

be described by the following steps:

1. At time tk, execute trajectories qk i.

2. At time = t ∈ [tk, tk+1] update each vehicle’s current state xk i(t) from measure-

ments and world information.

3. Estimate x̂k i(tk+1).

4. Solve optimization problem globally using x̂k i(tk+1) as initial data of each vehicle

dynamics and environment constraints. Obtain complete motion trajectories qk+1 i

for a granted time horizon.

5. At time tk+1 = tk + ∆T , each vehicle’s attitude and thrust controllers receive

trajectories qk+1 i.

6. Repeat.

Symbols 66

5.4.2 Numerical simulation

Figure 5.15 illustrates an example of the strategy explained above. A fleet of quadro-

tor vehicles have to reach the imposed formation center’s destination point at [−3, 4, 1].

Initial locations of all agents are spread in the airspace at [0, 2, 1], [2, 2, 1] and [4, 2, 1],

without fulfilling the desired formation geometry. As already said, the spline-based

motion planning problem is solved using the Optimal Motion Generation-tools software

[23], a user-friendly toolbox written in Python that uses the symbolic framework CasADi

to perform nonlinear numerical optimization. The motion planner parameterizes trajec-

tories as cubic splines with 10 polynomial intervals, the control horizon T is set to 10 s.

Environmental constraints are added in advance during the primary navigation problem

construction. In order to obtain smooth and feasible trajectories the following model

constraints are imposed for each vehicle, which are considered identical:

2m/s2 ≤ f ≤ 15m/s2 ,

−15 ◦ ≤ φ ≤ 15 ◦ , −15 ◦ ≤ θ ≤ 15 ◦ ,

−5 ◦/s ≤ φ̇ ≤ 5 ◦/s , −5 ◦/s ≤ θ̇ ≤ 5 ◦/s .

(5.18)

Update time: 0.5 sec

Horizon time: 10 sec

Update rate: 2 Hz

Figure 5.15: MPC Simulations for a fleet of multirotors (Two-dimensional view).

Chapter 6

Conclusions

The purpose of this thesis was to describe the architecture behind a flight control soft-

ware for multirotor UAVs and to demonstrate how the usage of Model-based approach

in UAV flight control design has the potentiality to shorten the design cycles and reduce

the development cost. Through various control problems addressed and solved on the

different chapters, this thesis proves how the application of the Model-based design in

flight control enables fast transitions from development to simulation and experimental

stages. Furthermore, the advantages of that approach become more tangible for realities

characterized by restricted working group and budget. In Matlab/Simulink R© a software

model of the general control architecture of a multirotor UAV has been built, address-

ing various flight control tasks, including trajectory generation, attitude and navigation

control. Problems like trajectory planning, collision avoidance, formation flight control,

could be tackled and implemented into the model by using different strategies. Em-

bedded codes have automatically been generated from Simulink R© models, so that each

strategy presented in the thesis could be validated by simulations and experimental

tests. In conclusion, the model-based design approach has been proved to be practical

and effective during software development. The model-based environment guarantees

great operational flexibility during the whole development process: design, analysis, sim-

ulation, automatic code generation and verification. Trying different control strategies

becomes easy, without the need of building prototypes. Testing and validation can be

done several times throughout the design process rather than at the end of it, so that

many errors can be found and corrected before hardware testing. Automatic embedded

code generation from system model reduces effort and eliminates hand-coding errors,

in general it results to be more efficient and useful for testing in real-time simulations.

Finally, model-based environments can be adapted and re-used on subsequent projects,

the model lends itself to team-work, resulting particularly suitable for small engineering

teams.

67

Appendix A

Control design considering drag

Section 3.4.4.4 shows how to design a PID strategy for controlling a multirotor vehicle

by desired velocity commands and how required relations between desired accelerations

and desired attitude angles can be found. This is obtained under the assumption of zero

speed, which means zero drag forces acting on vehicle. This Appendix explains how it

is conceptually possible, but improper for a number of reasons, computing desired roll

angle φdes and pitch angle θdes, starting from desired accelerations ax|des and ay|des,
also considering drag forces.

We start rotating the velocity vector from the body fixed frame to the vehicle frame:
ṗx

ṗy

ṗz

 = Rvb


u

v

w

 =


cθ sφsθ cφsθ

0 cφ −sφ
−sθ sφcθ cφcθ



u

v

w

 (A.1)

Differentiating equation (28) and neglecting Ṙvb gives:
p̈x

p̈y

p̈z

 =


cθ sφsθ cφsθ

0 cφ −sφ
−sθ sφcθ cφcθ



u̇

v̇

ẇ

 (A.2)

Now we can plug equation (25) into equation (29), neglecting the Coriolis terms we

obtain:
p̈x

p̈y

p̈z

 =


0

0

g

+


−cφsθ
sφ

−cφcθ

 Ftotm − 1

2m
CDρ


Axcθ Aysφsθ Azcφsθ

0 Aycφ −Azsφ
−Axsθ Aysφcθ Azcφcθ



u|u|
v|v|
w|w|

 (A.3)

68

Symbols 69

By setting

p̈x = ax (A.4)

p̈y = ay (A.5)

p̈z = az (A.6)

From equations (30) we can find the relationship between acceleration and attitude

ax = −Ftot
m

cosφ sin θ − R1

m
cos θ − R2

m
sinφ sin θ − R3

m
cosφ sin θ (A.7)

ay =
Ftot
m

sinφ− R2

m
cosφ+

R3

m
sinφ (A.8)

az = g − Ftot
m

cosφ cos θ +
R1

m
sinφ− R2

m
sinφ cos θ − R3

m
cosφ cos θ (A.9)

Where we have set:

R1 =
1

2
ρCDAxu|u| (A.10)

R2 =
1

2
ρCDAyv|v| (A.11)

R3 =
1

2
ρCDAzw|w| (A.12)

We have to solve equation (37) for Ftot
m and replace it into eq. (35) and (36), we obtain:

ax = (az − g) tan θ − R1

m

1

cos θ
(A.13)

ay = (
az − g
cos θ

+
R1

m
tan θ) tanφ− R2

m

1

cosφ
(A.14)

To solve the equations we can use half angle formulas reported below for a generic angle

α:

sinα =
2t

1 + t2
(A.15)

cosα =
1− t2

1 + t2
(A.16)

tanα =
2t

1− t2
(A.17)

with t = tan α
2 , α 6= π + 2kπ We have to solve the following equations for t1 = tan θ

2

and t2 = tan φ
2 :

(R1 −max)t21 − 2m(az − g)t1 +R1 +max = 0 (A.18)

(R2 −may)t22 − 2(
m(g − az)

cos θ
+R1 tan θ)t2 +R2 +may = 0 (A.19)

Symbols 70

The solutions for φ and θ are given by:

θdes = 2 arctan(
az − g ±

√
(g − az)2 − (R1

m − ax|des)2
R1
m − ax|des

) (A.20)

φdes = 2 arctan(
((g−az)
cos θdes

+ R1
m tan θdes)±

√
(g−az
cos θdes

+ R1
m tan θdes)2 − (R2

m − ay|des)2
R2
m − ay|des

)

(A.21)

Relations above provide more accurate solutions for angles and they can theoretically

be used as references for the inner-loop covering attitude control. However, these solu-

tions also present several disadvantages which exclude in practice their usage for control

design. Disadvantages can be summarized as follows:

1 - It is not easy to quantify properly parameters Ax,y,z

2 - For control design purposes, including drag into solutions for angles results in a

vehicle attitude that varies continuously with the vehicle flying speed. This gives un-

comfortable piloting sensations to most of users.

3 - In the end, equations (A.20) and (A.21) result quite complex without presenting

recognizable benefits in multirotor control design.

Bibliography

[1] Andrew M. St. Laurent. Understanding open source and free software licensing.

pages 34–84, August . URL http://www.oreilly.com/openbook/osfreesoft/

book/.

[2] K.P. Valavanis. Advances in unmanned aerial vehicles: State of the art and the road

to autonomy. Micro-processor-Based and Intelligent Systems Engineering Series,

pages 15–46, July 2007.

[3] Giulietti F. Avanzini, G. Maximum range for battery-powered aircraft. Journal of

Aircraft, 50(1):304–307, 2013.

[4] de Angelis E.L. Avanzini, G. and F. Giulietti. Optimal performance and sizing of a

battery-powered aircraft. Aerospace Science and Technology, 59:132–144, December

2016.

[5] Giulietti F. Gatti, M. and M. Turci. Maximum endurance for battery-powered

rotary-wing aircraft. Aerospace Science and Technology, 45:174–179, September

2015.

[6] R. Beard. Quadrotor dynamics and control rev 0.1. 2008.

[7] Mohammed Rizwanullah N Md Jubair basha, Salman Abdul Moiz. Model based

software develeopment: Issues challenges. International Journal of Computer Sci-

ence Informatics, 2:2231–5292, 2012.

[8] URL https://pixhawk.org/.

[9] URL https://www.mathworks.com/hardware-support/pixhawk.html.

[10] Ferrarese G. Giulietti F. Modenini D. de Angelis, E.L. and P. Tortora. Gaussian de-

terministic recursive estimator with online tuning capabilities. Journal of Guidance,

Control, and Dynamics, 38(9):1827–1833, September 2015.

[11] Ferrarese G. Giulietti F. Modenini D. de Angelis, E.L. and P. Tortora. Terminal

height estimation using a fading gaussian deterministic filter. Aerospace Science

and Technology, 55:366–376, August 2016.

71

http://www.oreilly.com/openbook/osfreesoft/book/
http://www.oreilly.com/openbook/osfreesoft/book/
https://pixhawk.org/
https://www.mathworks.com/hardware-support/pixhawk.html

Bibliography 72

[12] . URL https://github.com/priseborough/InertialNav.

[13] . URL https://github.com/priseborough/InertialNav/blob/master/

derivations/GenerateEquations22states.m.

[14] R. Czyba G. Szafranski. Different approaches of pid control uav type quadrotor.

International Micro Air Vehicles conference 2011, 2011.

[15] Pipeleers G. Swevers J. Van Loock, W. B-spline parameterized optimal motion

trajectories for robotic systems with guaranteed constraint satisfaction. Mechanical

Sciences, 6(2):163–171, 2015.

[16] Pipeleers G. Van Parys, R. Spline-based motion planning in an obstructed 3d

environment. 20th IFAC World Congress, July 2017.

[17] URL https://www.mech.kuleuven.be/en/pma/research/meco.

[18] C. De Boor. A practical guide to splines, revised edition, vol. 27 of applied mathe-

matical sciences. Mechanical Sciences, 27, August 2001.

[19] Lvine J. Martin P. Fliess, M. and P. Rouchon. Flatness and defect of nonlinear

systems: Introductory theory and examples. Int. J. Control, 61:1327–1361, 1995.

[20] W. Van Loock T. Mercy and G. Pipeleers. Real-time motion planning in the pres-

ence of moving obstacles. 2016 European Control Conference, pages 1586–1591,

July 2016.

[21] Vandenberghe L. Boyd, S. Convex optimization. Cambridge university press, 2004.

[22] H. Asada M. West and C. Zhu. Design of holonomic omnidirectional vehicle. In-

ternational Conference of Robotics and Automation, May 1992.

[23] Mercy T. OMG-tools Van Parys, R. Omg-tools. 2016. URL https://github.com/

mecogroup/.

[24] Zheng A. Some practical issues and possible solutions for nonlinear model predictive

control. in: Allgwer f., zheng a. (eds) nonlinear model predictive control. progress in

systems and control theory. Aerospace Science and Technology, 26:129–143, 2000.

[25] G. Rossetti F. Giulietti, G. Pipeleers and R. Van Parys. RED UAS 2017 Interna-

tional Conference, October .

[26] URL http://qgroundcontrol.org/mavlink/start.

[27] Kendoul F. Suzuki S.-Wang W. Nonami, K. and D. Nakazawa. Autonomous flying

robots: Unmanned aerial vehicles and micro aerial vehicles. pages 22–24, 2010.

https://github.com/priseborough/InertialNav
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://www.mech.kuleuven.be/en/pma/research/meco
https://github.com/mecogroup/
https://github.com/mecogroup/
http://qgroundcontrol.org/mavlink/start

Bibliography 73

[28] T. Balch and R. Arkin. Behavior-based formation control for multi-robot systems.

IEEE Trans. Robot. Autom., 14(6):926–939, December 1998.

[29] Menhaj M.B. Asl, A.N. and A. Sajedin. Control of leader-follower formation and

path planning of mobile robots using asexual reproduction optimization (aro),.

Appl. Soft Comput., 14:563–576, January 2014.

[30] Abdollahi F. Rahimi, R. and K. Naqshi. Time-varying formation control of a col-

laborative heterogeneous multi agent system. Robot. Auton. Syst., 62:1799–1805,

December 2014.

[31] Abdollahi F. Aghaeeyan, A. and H.A. Talebi. Uav-ugvs cooperation: with a moving

center based trajectory. Robot. Auton. Syst., 63:1–9, January 2015.

[32] Wen G. Rahmani A. Peng, Z. and Y. Yu. Leader-follower formation control of

nonholonomic mobile robots based on a bioinspired neurodynamic based approach.

Robot. Auton. Syst., 61:988–996, September 2013.

[33] D. Panagou and V. Kumar. Cooperative visibility maintenance for leader-follower

formations in obstacle environments. IEEE Trans. Robot., 30:831–844, March 2014.

[34] F. Giulietti and G. Mengali. Dynamics and control of different aircraft formation

structures. The Aeronautical Journal, 108(1081):117–124, March 2004.

[35] Innocenti M. Napolitano M. Giulietti, F. and L. Pollini. Dynamic and control issues

of formation flight. Aerospace Science and Technology, 9(1):65–71, January 2005.

[36] Giulietti F. de Angelis, E.L. and G. Rossetti. Multirotor aircraft formation flight

control with collision avoidance capability. Aerospace Science and Technology - in

press, 2017.

[37] Acampora-Prado I.A. dos Santos D.A. Viana, I.B. and L.C. Sandoval-Goes. Forma-

tion flight control of multirotor helicopters with collision avoidance. International

Conference on Unmanned Aircraft Systems, pages 757–764, June 2015.

[38] Damaren C.J. de Ruiter, A.H.J. and J.R. Forbes. Spacecraft dynamics and control

- an introduction. pages 19–24, 2013.

[39] R. Van Parys and G. Pipeleers. Online distributed motion planning for multi-vehicle

systems. 2016 European Control Conference, pages 1580–1585, July 2016.

[40] W.B. Dunbar and R.M. Murray. Distributed receding horizon control for multi-

vehicle formation stabilization. Automatica, pages 549–558, April 2006.

Bibliography 74

[41] Borrelli F. Fregene K. Godbole D. Kevickzy, T. and G.J. Balas. Decentralized

receding horizon control and coordination of autonomous vehicle formations. IEEE

Transactions on Control System and Technology, 16(1):19–33, December 2007.

[42] D. Sun S. Liu and C. Zhu. Coordinated motion planning for multiple mobile robots

along designed paths with formation requirement. Mechatronics, IEEE/ASME

Transactions on, 16(6):1021–1031, 2011.

[43] A. Kushleyev D. Mellinger and V. Kumar. Mixed-integer quadratic program tra-

jectory generation for heterogeneous quadrotor teams. 2012 IEEE International

Conference on Robotics and Automation (ICRA), pages 477–483, 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Multirotor vehicles
	1.2 Outline

	2 Multirotors kinematics and dynamics
	2.1 Reference frames
	2.2 Multirotor kinematics
	2.3 Multirotor dynamics
	2.4 Forces and moments
	2.5 Simplified multirotor models
	2.5.1 Simplified inertial model
	2.5.2 Simplified model for control design
	2.5.3 Simplified inertial model with small angle approximation

	3 Flight control software development
	3.1 Model-based design approach
	3.2 Pixhawk® Flight Management Unit
	3.3 Flight modes
	3.3.1 Manual flight modes
	3.3.2 Assisted flight modes
	3.3.3 Auto flight modes

	3.4 Software architectural overview
	3.4.1 Signal conditioning
	3.4.2 Position and Attitude Estimator
	3.4.3 Trajectory planning
	3.4.4 Flight control
	3.4.4.1 Attitude controller
	3.4.4.2 Heading hold controller
	3.4.4.3 Altitude hold controller
	3.4.4.4 Velocity controller

	3.4.5 Motor mixing
	3.4.5.1 Output saturation

	3.5 Flight test

	4 Optimal multirotor navigation
	4.1 General methodology
	4.1.1 Optimal motion problem
	4.1.2 Differential flatness of multirotor model

	4.2 Point-to-point multirotor navigation
	4.3 point-to-point navigation for multirotor considering holonomic trajectory planning
	4.3.1 Minimum time

	4.4 Motion planner
	4.5 Model predictive control strategy
	4.5.1 Motion control

	4.6 Validation
	4.6.1 Numerical simulation
	4.6.2 Flight tests

	5 Formation flight control
	5.1 Formation flight control architectures
	5.2 Formation modelling
	5.3 Potential strategy for formation flight
	5.3.1 Control design
	5.3.2 Numerical simulation
	5.3.2.1 Case 1
	5.3.2.2 Case 2

	5.3.3 Flight test

	5.4 Optimal navigation strategy for formation flight
	5.4.1 Model predictive control strategy for formation flight
	5.4.2 Numerical simulation

	6 Conclusions
	A Control design considering drag
	Bibliography

