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Chapter 1

INTRODUCTION

Seismic intensity is an index that describes the effects on people, objects
and buildings that are observed when seismic waves arrive at certain
locality.

Despite its not quantitative nature, more than 60% of national haz-
ard maps worldwide are expressed in terms of seismic intensity (McGuire,
1993). This choice can be explained considering that seismic intensity is
irreplaceable for the representing of damage scenarios for future earth-
quakes, moreover in many countries (such as Italy), most of information
about major past earthquakes comes from documentary sources that date
back to the preinstrumental age.

A widely used method to estimate seismic hazard was proposed by
Cornell (1968) and implemented by Bender and Perkins (1987). Such
method needs an attenuation law that describes the decrease of the
shaking parameter with distance from source. Moreover it requires the
complete probabilistic form of the attenuation relationship. In particu-
lar Albarello et al. (2002) show that assuming a Normal distribution of
residuals, the variance associated with attenuation law affects dramati-
cally the hazard estimates. As variance increases the hazard estimates
become less reliable. Every data set presents an intrinsic variability that
could be estimated by subdividing data in epicentral distance bins and
calculating the standard deviation for each of them. This represents a
lower bound for standard regression associated to attenuation law.

Two intensity attenuation law have been recently proposed for Italy
by Gasperini (2001) and Albarello and D’Amico (2004). By applying the
procedure described above, a standard deviation significantly lower that
those associated to the two attenuation laws is obtained. This indicates
that their data fitting could be improved.

In chapter 2 of the present work a new intensity attenuation law for
Italy is presented, formulated considering its entire probabilistic distribu-
tion, taking into account that the associated standard deviation has to be
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reduced as more as possible. To achieve this objective some open issues
characterizing the previous attenuation relation are considered. Epicen-
tral intensity definition, which is not unique in literature, choice of the
functional form of the attenuation law, which can be done empirically
between various candidate models on the basis of their data fitting or
can be based on assumptions related to the physics of seismic wave prop-
agation, presence in the data base of observations that present the effect
typical of a certain intensity degree but also some effect characterizing
the higher degree (uncertain degrees, i.e. VII-VIII), are some examples
of such problems.

A two step regression procedure that allow to separate propagation
from sources effect on the observed intensity is applied.

The procedure followed in chapter 2 allow to obtain attenuation laws
that represent on average how intensity decreases with distance. Consid-
ering the high structural complexity characterizing the Italian peninsula,
strong deviations from this average behavior are expected at local scale.

To study the internal attenuation structure of a certain volume of
material on the basis of measures taken above or near its surface, the
tomographic method can be used. This method has been applied in a
great number of discipline including geophysics. In particular, in seismol-
ogy it allows to reconstruct the internal structure of the Earth in terms
of physical properties related to seismic waves propagation and is based
on the idea that seismic waves contain information about the materials
that they crossed in their path between seismic source and station that
records them.

Tomographic method had been widely applied in seismology to know
the velocity structure of the Earth from travel time recorded at various
seismic stations and also to study anelastic attenuation properties char-
acterizing the material crossed by seismic waves using amplitude data
(Iyer and Hirahara, 1993).

Also propagation properties of seismic intensity can be studied by
tomographic method. Chapter 2 is focused on the log-linear law, that
is physically grounded and widely used in hazard estimates. Comparing
the log-linear attenuation law with the log-bilinear on the basis of Infor-
mation Criteria, which premiate data fitting of the model but penalize
models with an higher number of free parameter, the log-bilinear model
results preferable. Chapter 3 concerns the estimation of lateral variations
of attenuation law coefficients, taking as reference model the values of
the coefficients of the log-bilinear law presented in chapter 2. Once such
variations have been estimated, by assuming a linear relation between
intensity and logarithm of PGA the anelastic attenuation structure in
terms of seismic quality factor (Q) can be obtained.

When amplitude data are available, anelastic attenuation can be stud-
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ied by estimating directly the seismic quality factor characterizing the
materials involved.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Intensity attenuation law

As evidenced in chapter 1, to estimate seismic hazard by Cornell (1968)
method it is necessary to defining an attenuation law of the shaking
parameter with distance. The attenuation law has to be described in
its entire probabilistic form. It is desirable that the standard deviation
characterizing such a relation is as low as possible. In the following
sections some open issues regarding the use of intensity as ground shaking
parameter are reconsidered.

A first aspect to consider in the statistical formalization of the at-
tenuation law is that intensity is defined as a discrete quantity, in fact
it can assume only integer values. A second aspect is that the data set
includes ”uncertain degrees” (i.e. VII-VIII). Following a maximum like-
lihood approach allows to treat in a formally correct way such aspects.
Hence, it is necessary to defining a parameter that describes the strength
of the seismic source. Epicentral intensity is a common choice but it
definition in literature is not unique and has to be reconsidered. In par-
ticular it could be defined as the intensity expected at the epicenter by
an attenuation law. In this case a two step procedure can be followed.
The parameters describing the distance dependence of intensity are cal-
culated in the first step and the epicentral intensity in the second one. As
the relation between felt intensity and seismic wave propagation is not
clearly known, the functional form of the attenuation law that describes
the intensity decrease with distance from seismic source is not univocally
defined. Moreover, various distance definitions are possible. A defini-
tion that substantially agrees with Gasperini (2001) and Albarello and
D’Amico (2004) is chosen here, but instead of assuming an ”average”
hypocentral depth of 10 km, as they do, the depth is calculated directly
from the data set. A log-linear functional form is assumed, but it is com-
pared with other forms commonly presented in literature on the basis
of their data fitting and also using Information Criteria, which penalize
models with an higher number of parameters in order to avoid over fit-
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ting. As a Normal distribution of residual is assumed, errors in parameter
estimations could be evaluated from variance-covariance matrix. Boot-
strap method could be applied to check their reliability. Fictitious data
set are built by randomly resampling the original one, then the param-
eters values are evaluated for each of them. The frequency distribution
of such values gives an empirical estimate of the parameters errors. The
reliability of the presented attenuation law is also tested by observing
the stability of the parameters of attenuation law when different values
of some arbitrary parameters involved in the regression procedure are
assumed.

A peculiarity of the regression procedure followed is that epicentral
intensity is defined as the the intensity expected at the epicenter by the
attenuation law. This is valid for earthquakes included in the compu-
tations. Regressions with other earthquake size measures are calculated
to obtain epicentral intensity for each earthquake of the catalog. This
makes the presented attenuation law suitable to be used in seismic hazard
estimations.

2.1 Statistical formalization

2.1.1 Probability distribution of the attenuation law

To use an intensity attenuation law in seismic hazard estimates its com-
plete probability distribution must be defined. This implies that a con-
tinuous distribution model (such as the Normal one) is applied to in-
tensity data, as well as that intensity is defined as a discrete quantity.
To consider this, the total probability of a given integer observation I is
computed as the integral of the probability density function over the in-
terval [I−0.5, I +0.5] of the continuous variable that the integer function
represents.

Gasperini (2001) and Albarello and D’Amico (2004) show that the
distribution of intensity residuals for the Italian data set is close to Nor-
mal. Under the hypothesis that discrepancies from normality, albeit
statistically significant, are not relevant in the practice for the evalua-
tion of attenuation parameters, a Normal distribution of residuals can be
assumed. In this case, the probability of observing an intensity IS at a
certain site, for an earthquake of size J occurring at distance D from the
site, is

F (IS) = prob(I = IS|J, D) =
1

σ
√

2π

∫ IS+0.5

IS−0.5
exp

[

−(i − µ(J, D))2

2σ2

]

di ,

(2.1)
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where µ(J, D) represents the mean of the probability distribution that is
the intensity expected by the attenuation law at a distance D from the
source, for an earthquake of size J , and σ is the standard deviation of
data respect to the average value.

Eq. 2.1 will be used in section 2.1.3 to estimate by the maximum
likelihood method the values of the parameters of the attenuation law.

2.1.2 Uncertain degrees

About 30% of the intensities included in the data set corresponds to
”uncertain” intensity assessments (e.g. VII-VIII). This means that at
the considered site the lower degree (e.g. VII) has certainly been ob-
served, but there are also some evidences for the higher one (e.g.VIII).
Such data have been treated in different ways, for example Gasperini
(2001) used them as real intensity values positioned in the middle of the
interval between the two degrees (e.g. VII-VIII=7.5) whereas Albarello
and D’Amico (2004, 2005) discard all the uncertain degrees to fit the at-
tenuation law and consider the two possible outcomes equally probable
in its validation.

Magri et al. (1994) propose to assign to each intensity of the macro-
seismic scale a degree of belief expressed in terms of probability p(I).
According to this point of view a certain probability w1 to the nearer
higher degree (e.g. VIII) and the probability 1 − w1 to the nearer lower
one could be attributed. The probabilities of the other intensity degrees
are zeroes

p(I) = [0, 0, 0, 0, 0, 1− w1, w1, 0, 0, 0, 0, 0] . (2.2)

Initially w1 = 0.5 is chosen. The effects of assuming different values for
w1 are considered in section 2.8. Also ”well-defined” intensity degrees
could be defined coherently with this representation. In this case the
probability corresponding to the observed intensity degree is equal to 1
and the other are all equal to zero. For example, for I=VII

p(I) = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] . (2.3)

2.1.3 Maximum likelihood approach

The values of the attenuation law parameters are estimated by a maxi-
mum likelihood approach. This method gives the set of parameters values
that maximize the probability of observing the data set (likelihood func-
tion). The likelihood function of a set of N observations could be written
as the product of their independent probabilities

l =
N
∏

j=1

gj(θ) , (2.4)



16 CHAPTER 2. INTENSITY ATTENUATION LAW

where gj is the probability of the j -th observation and θ is the set of
model parameters. gj(θ) could be calculated using the total probability
theorem as

gj(θ) =
12
∑

I=1

pj(I)gj(θ|I) , (2.5)

where gj(θ|I) is the probability of the j -th observation for the parameter
set θ, given that intensity I actually occurred. In this case the likelihood
function (eq. 2.4) becomes

l =
N
∏

j=1

12
∑

I=1

pj(I)gj(θ|I) . (2.6)

Following the approach described in section 2.1 the total probability of
a given integer observation I is computed as the integral of the probability
density function over the interval [I − 0.5, I + 0.5] of the continuous
variable i that the integer function represents

gj(θ) =
∫ I+0.5

I−0.5
hj(θ, i) di . (2.7)

Assuming a Normal distribution of residuals (see section 2.1) eq. 2.7
becomes

gj(θ|I) =
1

σ
√

2π

∫ I+0.5

I−0.5
exp−(i − µj)

2

2σ2
di , (2.8)

where µj is the intensity expected by the attenuation law for the j -th
observation (and depends on the set of model parameters θ) and σ is
the corresponding standard deviation. Substituting eq. 2.8 in eq. 2.6
and taking the logarithm gives the log-likelihood function that can be
maximized to find the best fitting model parameters values θ:

L =
N
∑

j=1

ln

[

1

σ
√

2π

12
∑

I=1

pj(I)
∫ I+0.5

I−0.5
exp−(i − µj)

2

2σ2
di

]

(2.9)

To maximize L, the quasi-Newton Method (Dennis and Schnabel, 1983)
implemented by the Fortran routine UMINF/DUMINF of the IMSL
Math Libray (Visual Numerics, 1997) is used.

2.2 Attenuation model formulation

2.2.1 Source size definition

In most of intensity attenuation relations the source strength is expressed
in terms of epicentral intensity. Even if it is commonly used, this param-
eter is not clearly defined in literature (Cecic et al., 1996; Cecic and
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Musson, 2004). Generally speaking, it should correspond to ”the inten-
sity observed at the epicenter” and also should reflect a general feature of
the macroseismic field in relation to the strength of the source. However,
it is difficult to develop such definition into an objective and reproducible
procedure. This difficulty is due, not only to the absence of a site exactly
located at the epicenter, but also to the possible presence of amplifica-
tion effects induced by local geostructural conditions at sites showing the
largest intensities, which could make this parameter less representative
of the source strength. If the epicenter is located in an inhabited inland
area, one possible choice is to define epicentral intensity as ”the largest
observed intensity in the absence of local amplification”. This working
definition is the one most commonly used in practice and was adopted for
the Italian seismic catalog used for hazard assessment (CPTI Working
Group, 1999, 2004). However, it is not clear how the local amplification
should be assessed. Furthermore, as largest intensities tend to reflect
anomalously high levels of ground motion, if this definition is used the
actual source strength probably would be overestimated.

An alternative definition of epicentral intensity can be given if this
parameter is determined jointly with other attenuation parameters. In
this case epicentral intensity may be defined as ”the intensity expected
at the epicenter” by the attenuation relationship. Defining epicentral
intensity as the largest observed one, its value is constrained by only a
subset of the data, whereas this second definition has the advantage of
depending on the entire macroseismic data set. In this work I follow such
approach that is described more in details in section 2.2.4.

2.2.2 Distance definition

The distance between seismic source and geographical position of inten-
sity observation can be defined in several ways. The simplest way is to
consider the distance R between the macroseismic epicenter and the site
where the intensity datum is observed. This definition, however, neglects
that generally the rupture that originates seismic waves occur at a cer-
tain dept from the Earth surface. Thus it is a common practice to obtain
the distance as

D =
√

R2 + h2 . (2.10)

In this case h represents an empirical equivalent of the epicentral depth
(Koveslighety, 1906; Blake, 1941). Even if it does not correspond to
the actual distance traveled by seismic waves inside the Earth, this ap-
proximation is more realistic than assuming that waves radiate from the
epicenter.

Gasperini (2001) and Albarello and D’Amico (2004), on the basis of a
rough empirical evaluation of the average depth distribution of Italian in-



18 CHAPTER 2. INTENSITY ATTENUATION LAW

strumental hypocenters, assume a fixed source depth of 10 km. However,
since the hypocentral depth could significantly differ from the centroid of
seismic energy radiation, it would be preferable to estimate the depth of
each earthquake directly from the statistical analysis of the data set. This
approach has the drawback that the number of free parameters strongly
increases and, as a strong interplay between them is expected, the result
would be less stable. An alternative solution that follows the same phi-
losophy but leads to more reliable results is to estimate a common depth
for all earthquakes directly from the data. This could be viewed as the
depth of the ”apparent” radiating source. I choose this latter procedure
and I calculate the distances relative to each intensity observation using
eq. 2.10.

2.2.3 Previous attenuation laws

Seismic intensity is an index of ground shaking based on qualitative de-
scription of eartquake effects. Despite its not instrumental nature it
may be related to ground motion amplitude. A linear relation between
intensity and the logarithm of peak ground acceleration was proposed
by Cancani (1904) and Sieberg compiled the Mercalli-Cancani-Sieberg
(MCS) macroseismic scale aiming at a linear dependence between these
two quantities. Evidences of such a linear dependence have been founded
by empirical investigations in many parts of the world (Margottini et al.,
1992; Boatwright et al., 1994; Wu et al., 2003; Kaka and Atkinson, 2004).

The mayor physical causes of seismic wave amplitude attenuation are
geometrical spreading and anelastic dissipation. In addition, multipath
scattering across crustal discontinuities and near-source effects may play
a significant role, even at relatively large epicentral distances. While ge-
ometrical spreading and anelastic attenuation are quite well described
by seismic ray theory (in terms of a power and an exponential laws,
respectively) multipath scattering and near-source effects are not easily
tractable as they depend on the particular local structure of the crust
and on the geometry of the source (which is unknown for most histor-
ical earthquakes). Starting from this considerations, it is possible to
formulate an empirical relation describing the intensity dependence on
distance. Such relation would include a linear term that corresponds to
anelastic and scattering induced dissipation and a logarithmic term that
account for geometrical spreading (see Appendix A for details).

An initial attempt in this sense is represented by the relation proposed
by Koveslighety (1906)

∆I = I0 − I = 3 log10

D

h
+ 3α(log10 e)(D − h) , (2.11)
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where D =
√

R2 + h2, is the hypocentral distance in km, R is the epicen-
tral distance, h is the source depth and α an empirical parameter. The
first term represents geometrical spreading and the second one the anelas-
tic attenuation. A similar approach, neglecting the linear term, was later
proposed by Blake (1941) in his formula to compute hypocentral depth

∆I = s log10

D

h
(2.12)

where s is a free parameter estimated from data. Both these relations
give I = I0 at R = 0 (D = h). However subsequent works introduced an
intercept term to improve data fitting. One of such relations is the Gupta
and Nuttli (1976) formula, based on physical consideration analogous to
those of eq. 2.11

∆I = C1 + C2(γδ log10 e + log10 d) , (2.13)

where γ is the coefficient of anelastic attenuation, determined indepen-
dently from instrumental investigation, δ is the epicentral distance in
degrees and C1 and C2 are empirical coefficients. The intercept term is
also present in the bilinear model proposed by Gasperini (2001)

∆I = a + b min(D, Dcross) + c max(0, D − Dcross) (2.14)

where Dcross = 45 km. The physical justification for this model comes
from the hypotheses that anelastic dissipation properties in the Earths
crust are depth-dependent and that dissipation dominates over geomet-
rical spreading in the considered interval of distances from the source
(>10 km). The values of the free parameters are a = 0.445 ± 0.019 b =
0.0590 ± 0.0007 c = 0.0207 ± 0.0003 and they gives ∆I = I0 − I ≈ 1 for
R = 0, contradicting the implicit assumption that I = I0 at the epicenter.
A different point of view underlies the approach of Berardi et al. (1993).
As the physical relation between intensity and seismic wave propagation
is not known, the model could be chosen empirically between different
options. In this case the major points to be considered are the ability of
the model to fit the data but also its simplicity, expressed by a low num-
ber of free parameters, as the simpler the model the lower the possibility
of over-fitting. In particular, they propose an empirical attenuation re-
lation called Cubic Root Attenuation Model (CRAM) that use only two
free parameters

∆I = α + βD
1

3 . (2.15)

They found α = −0.79 and β = 1.22 which gives ∆I = I0 − I = −0.79
for R = 0. Also in this case the intensity expected at the epicenter does
not correspond to the epicentral intensity I0. Other authors removed
this inconsistency by various methods. Chandra et al. (1979) forced
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∆I ≈ 0 at the epicenter by recomputing it by an iterative procedure,
while Tilford et al. (1985) imposed explicit constraints to make ∆I = 0
at the epicenter.

It is important to note that all of the above forms of attenuation
relation implicitly assume that the scaling of intensity with distance is
independent of the source strength. However, the spectral structure of
seismic ground motion depends significantly on the size of the source
and this could be responsible for a different distribution of effects on the
anthropic environment. López-Casado et al. (2000) and Albarello and
D’Amico (2004) adopted attenuation relationships that include a term
proportional to I0 in the form

I = a + bD + c ln D + dI0 . (2.16)

Albarello and D’Amico (2004) obtain a = 1.31 and d = 0.705. Using
these values intensity expected at the epicenter can be calculated as I =
1.31 + 0.705I0. This implies that it is almost coincident with I0 only
for I0 = IV − V . Other authors have made this approach more explicit
including directly the magnitude in the attenuation equation (Chavez
and Castro, 1988; Bakun and McGarr, 2002; Bakun et al., 2003; Musson,
2005).

2.2.4 Functional form of attenuation law and re-

gression procedure

A first issue to be considered is the introduction of an intercept term.
As evidenced in section 2.2.3, if its value differs from 0, this could cause
a systematic deviation between epicentral intensity (irrespective of the
way it has been defined) and intensity expected at the epicenter from at-
tenuation law. So a formulation without intercept term is chosen. Also
introducing a coefficient of proportionality multiplying the epicentral in-
tensity would cause the same discrepancy. In fact a value different from 1
would lead to a deviation between epicentral intensity and that predicted
at the epicenter, whose size and sign depends on the value of epicentral
intensity. For this reason the coefficient of I0 is fixed to 1.

With respect to the function describing the distance dependence, I
choose a form analogous to the eq. 2.11 including two terms, the first
linear and the second logarithmic, due to its physical justification and
to its wide use in literature (see section 2.2.3). However, to check the
appropriateness of such choice, in section 2.7 the same regression proce-
dure used to estimate the log-linear model is applied to other functional
relationships used in literature.

The formula adopted for the attenuation law is

µ(IE, D) = IE + a(D − h) + b(ln D − ln h) , (2.17)
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where IE is the intensity expected at the epicenter and h represents a
common depth, for all earthquakes, from which seismic energy radiates.
To reduce the tradeoff between propagation and source terms, a two step
regression analysis is adopted. In the first step, the parameters describ-
ing the distance dependence (a, b, h) and the variance σ are estimated
independently of the source term IE. In the second step, IE is determined
from the results of the previous step or from other information.

first step

IE can be eliminated from eq. 2.17 by considering first an empirical av-
erage Im of the observed intensities relative to each m-th earthquake and
located within a given epicentral distance Rmax. It could be assumed rea-
sonably that Im coincides with the arithmetic average of the expectation
given by eq. 2.17, relative to the m-th earthquake. This corresponds to

Im = IE + a
1

Mm

Mm
∑

k=1

Dm
k − ah + b

1

Mm

Mm
∑

k=1

ln(Dm
k ) − b lnh , (2.18)

where Mm is the number of available observations for the m-th events at
distances shorter than Rmax. Then, subtracting eq. 2.18 from eq. 2.17,
gives

µ(Im, D) = Im + a(D − Dm) + b(ln D − ln Dm) , (2.19)

where Dm = 1
Mm

∑Mm

k=1 Dm
k and ln Dm = 1

Mm

∑Mm

k=1 ln(Dm
k ). Note that eq.

2.19 is independent of IE and thus can be used to empirically fit the
distance dependence without considering that parameter. According to
the probabilistic approach described in section 2.1, Im can be computed
by maximizing, for each m-th earthquake, the likelihood function

L =
Mm
∑

k=1

ln

[

1

σm

√
2π

12
∑

I=1

pj(I)
∫ I+0.5

I−0.5
exp−(i − Im)2

2σ2
m

di

]

(2.20)

In this way, the average intensity Im and the corresponding standard
deviation σm are computed for each earthquake to be considered in the
analysis.
Im can be introduced in eq. 2.19 to calculate µj. This is used in eq.
2.9 to calculate the overall log-likelihood. Such function is maximized to
determine the free parameters a, b, h and σ.

second step

It may be seen, from eq. 2.18, that IE can be computed easily for all
of the well-documented earthquakes, provided that parameters a, b, h
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and σ are computed in the first step. This can be achieved by using the
relationship

IE = µ(Im, h) = Im + a(h − Dm) + b(ln h − lnDm) (2.21)

These IE values can be used, in this second step, to fit empirical regres-
sions with different source parameters (magnitude, I0, Imax), which are
generally available for all the earthquakes in the catalog. Such relation-
ships allow IE to be estimated even for earthquakes that lack a suitable
macroseismic data set. As a result, eq. 2.17 can be used in place of eq.
2.19 to predict the intensity at a site for all of the earthquakes in the
catalog. Of course, a different parametrization of regression uncertainty
must be provided in the cases that IE is obtained directly by the use of
eq. 2.21 or is deduced from other epicentral parameters.

2.3 Quality of the attenuation model

2.3.1 Errors in parameter estimations

Under the hypothesis of Normal distribution, errors in parameters es-
timations can be evaluated from the diagonal terms of the variance-
covariance matrix. This can be computed approximately as the inverse
of the finite-difference Hessian of the log-likelihood L(θ̂, σ) at the max-
imum (Guo and Ogata, 1997). Since this estimate represents a lower
limit, errors are also evaluated by using a numerical resampling proce-
dure (bootstrap).

The basic premise of the bootstrap approach (Efron and Tbishirani,
1986; Hall, 1992) is that the empirical frequency distribution of data
provides an optimal empirical estimate (in the sense of maximum like-
lihood) of the probability distribution that characterizes the unknown
parent population. This hypothesis implies that any new data sets (usu-
ally called bootstrap samples or paradata sets) that are obtained by
randomly resampling (with replacements) the original set preserve the
statistical features of the parent population. Paradata sets can be used
to evaluate (via a distribution-free approach) the sampling properties of
a given population parameter from the analysis of the empirical values
of the parameter computed from each paradata set. In the present ap-
plication, several paradata sets are obtained from the original data set.
For each of them, a new set of parameters of the attenuation model is
obtained by maximizing the relevant likelihood function (eq. 2.9). Then
a distribution-free evaluation of the estimation errors is obtained from
these samples by computing the empirical variance-covariance matrix.
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2.3.2 Comparison of different models

An aspect to consider in comparing different attenuation models is their
ability in data fitting. The value of σ obtained from the maximization
of the likelihood function L of the data set (eq. 2.9) represents a first
measure of the goodness of fit characterizing each model. The lower the
σ the better its fit to the data.

Another useful parameter is the explained variance (R2), that repre-
sent the fraction of data variability explained by the model and can be
expressed in the form

R2 =
σ2

ave − σ2

σ2
ave

(2.22)

where σave is the standard deviation of observed intensities with respect
to the average value Im for each m-the earthquake and is given by

σ2
ave =

N
∑

m=1

σ2
mMm

N
∑

m=1

Mm

(2.23)

where N is the number of earthquakes and σm is computed by maximizing
eq. 2.20. In the case of a perfect data fitting R2 would assume the value
of 1. As the goodness of fit gets worse, the value of R2 approaches to
zero.

In comparing models with a different number of free parameters it
is important to remind that even if the fit improves for models with an
higher number of free parameters this does not necessarily imply that
their predictive ability is better. Information Criteria take into account
this point by a penalty term that depends on the number of free param-
eters. Bayesian Information Criterion (BIC) is defined as

BIC = L(θ̂) − k

2
ln

n

2π
(2.24)

(Schwarz, 1978; Draper, 1995) and Akaike Information Criteria (AICC)
is

AICC = L(θ̂) − k − k(k + 1)

n − k − 1
, (2.25)

(Akaike, 1974; Hurvich and Tsai, 1989). In these equations, θ̂ is the set
of parameter values maximizing the log-likelihood function L(θ̂), k is the
number of free parameters, and n is the number of independent data used
in likelihood maximization. The better model in this case is that related
to the higher score of Information Criteria. BIC and AICC represent
two alternative approaches to information theory in model evaluation.
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AICC is based on the frequentist approach, in which probability is de-
rived from observed frequencies in defined distributions or proportions in
populations, whereas BIC is related to Bayesian theory, that interprets
probability as subjective degree of belief in a certain proposition.

In section 2.7 different attenuation models are compared on the basis
of the above mentionated criteria.

2.4 The data set

2.4.1 Seismic compilations

The data set used for the analysis consists of the most recent version of
the Parametric Catalog of Italian Earthquakes (CPTI04) (CPTI Work-
ing Group, 2004) and the related Data Base of Macroseismic intensity
observations in Italy (DBMI04) (DBMI Working Group, 2007). These
databases were constructed by combining and elaborating previous macro-
sesismic data collections (Boschi et al., 1995, 1997, 2000; Monachesi and
Stucchi, 1997).

The CPTI04 catalog contains epicentral information for 2551 dam-
aging (or potentially damaging) earthquakes that have occurred in Italy
since 217 B.C. For 1042 of them, the DBMI04 macroseimic database re-
ports a collection of intensity estimates at different localities (macroseis-
mic field) based on documentary information. For most of the remaining
earthquakes, the parametrization is also based mainly on macroseismic
information, but documentation on effects at individual sites is lacking
(no associated macroseismic field is available).

For earthquakes provided with a macroseismic field, the reported epi-
center is computed as the barycenter of the localities at which the high-
est intensities were observed, according to the procedure described by
Gasperini et al. (1999) and Gasperini and Ferrari (2000). Such an al-
gorithm, using a robust estimator (trimmed mean), has proved to be
fairly stable with respect to site misplacement and errors regarding the
assessment of intensity.

For these earthquakes, the catalog also reports the epicentral inten-
sity I0. This value is computed according to another algorithm, also
described by Gasperini et al. (1999) and Gasperini and Ferrari (2000).
Generally, I0 corresponds to the highest intensity observed for the rele-
vant earthquakes. In cases for which local site amplification is likely to
have occurred, this maximum intensity has been suitably reduced. In a
few cases, the epicentral intensity has been manually adjusted to take
into account specific situations (e.g., epicenter located offshore).

The macroseismic database includes 58926 macroseismic observations
made at 14821 different sites. Some of these sites (about 100) are not
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associated with a well-defined location but refer to very rough geograph-
ical definitions (e.g. Northern Italy). These sites cannot be considered in
the analysis. About 10000 macroseismic observations are not expressed
in terms of standard intensity values (e.g., felt, damages) defined by the
Mercalli-Cancani-Sieberg (MCS) scale (Sieberg, 1931). Therefore, only
about 48000 observations are suitable for use in the statistical analysis
of intensity attenuation.

2.4.2 Data selection

Some data of CPTI04 have been excluded from computations to improve
the data reliability or to avoid the introduction of biases a due to a
peculiar geographical position of the epicenter.

Epicentral parameters based on few intensity data can be biased by
the uneven spatial distribution of observing sites and by local amplifi-
cation effects. Hence only earthquakes with a number of intensity data
reported in the catalog greater than a minimum threshold Nmin are con-
sidered. Initially Nmin = 10 is chosen. The influence of different choices
for the Nmin value on estimated parameters values is evaluated in section
2.8.

The first step of the regression procedure (section 2.2.4) requires the
definition of the threshold distance Rmax. Only intensity observations
situated at distances shorter than Rmax are included in the computation
of average intensities by eq. 2.18. The choice of the value Rmax is quite
arbitrary. Initially Rmax = 300 km is used, that corresponds to using
intensity points situated at any epicentral distance. Also the effects of
the Rmax value on the parameter estimation are evaluated in section 2.8.

Data relative to earthquakes that occurred before 1200 A.D. have
been escluded due to their possible uncompleteness. Moreover, all in-
tensity estimates that were deduced from the effects on single building
rather than on settlements were not considered, as such data may depend
on the particular structure of the building or may reflect amplification
or attenuation effects due to site mechanical properties.

Another relevant issue concerns earthquakes whose epicenters are lo-
cated offshore. Actually, in these cases, the asymmetric distribution of
observations might induce a drift of the possible off-shore epicenter to-
wards the coast and a bias of the relevant attenuation pattern. To detect
earthquakes whose epicentral location was possibly biased in this way, for
all of the events located close to the coastline, the intensity attenuation
pattern as well as the aspect ratio of the area that showed the largest
effects have been considered. Narrow areas along the coast are assumed
to indicate an offshore epicenter, while almost circular ones have been
associated with an epicenter located inland. Fortunately, there are few
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offshore seismogenic sources in Italy that show significant activity. Table
2.1 reports 30 earthquakes that are not used in this study because their
true epicenters are likely to be located offshore.

year mo da ho mi se lat lon epicentral area No. I0

1690 12 23 0 20 43.546 13.593 Ancona area 17 8.0
1743 2 20 16 30 39.852 18.777 Southern Ionian Sea 77 9.0
1823 3 5 16 37 37.993 14.094 Northern Sicily 107 8.0
1831 5 26 10 30 43.855 7.849 West. Liguria 33 8.0
1848 1 11 37.543 15.174 Augusta 41 7.5
1854 12 29 1 45 43.813 7.543 West. Liguria-France 86 7.5
1875 3 17 23 51 44.062 12.547 South-east. Romagna 144 8.0
1882 8 16 42.979 13.875 Grottammare 13 7.0
1887 2 23 5 21 50 43.891 7.992 Western Liguria 1517 9.0
1889 12 8 41.830 15.692 Apricena 122 7.0
1896 10 16 43.909 7.872 Albenga 60 6.0
1905 9 8 1 43 11 38.670 16.068 Calabria 827 10.0
1916 5 17 12 50 44.010 12.623 North. Adriatic Sea 132 8.0
1916 8 16 7 6 14 43.961 12.671 North. Adriatic Sea 257 8.0
1917 11 5 22 47 43.506 13.586 Numana 26 6.0
1919 10 22 6 10 41.462 12.637 Anzio 138 6.5
1924 1 2 8 55 13 43.736 13.141 Central Adriatic Sea 76 7.5
1926 8 17 1 42 38.567 14.825 Salina island 44 7.0
1930 10 30 7 13 43.659 13.331 Senigallia 263 8.0
1972 1 18 23 26 44.203 8.163 West. Ligurian Coast 41 6.0
1972 1 25 20 25 11 43.614 13.355 Central Adriatic Sea 24 6.0
1972 2 4 2 42 53 43.590 13.295 Central Adriatic Sea 75 7.5
1972 2 4 9 19 4 43.589 13.283 Central Adriatic Sea 56 7.5
1972 2 29 20 54 41.841 15.459 South. Adriatic Sea 21 6.0
1972 6 14 18 55 46 43.580 13.416 Central Adriatic Sea 17 8.0
1978 4 15 23 33 47 38.125 15.022 Gulf of Patti 333 8.0
1982 3 21 9 44 2 40.008 15.766 Gulf of Policastro 126 7.5
1984 4 22 17 39 21 43.617 10.313 Leghorn 39 6.0
1990 12 13 0 24 28 37.266 15.121 South-Eastern Sicily 304 7.0
2002 9 6 1 21 29 38.081 13.422 Palermo 132 6.0

Table 2.1: Earthquakes excluded from computation because the epicenter is known
or is supposed to be located in the sea.

As the aim of this part of the work is to define an attenuation law
that represents the intensity attenuation properties for the whole Italian
territory, the earthquakes that occurred at the volcanic areas of Mt. Etna
and Ischia island have been excluded from the data base. Both areas in
fact are known to be strongly attenuating, due to their volcanic nature
(Carletti and Gasperini, 2003; Azzaro et al., 2006). Two events that
occurred at Ischia island in 1881 and 1883, as well as all earthquakes lo-
cated within a radius of 25 km from the summit of Mt. Etna (Lat=37.73,
Lon=15.00) are excluded from the database.
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The application of all these selection criteria further reduces the num-
ber of earthquakes to about 470 and the number of intensity data that
are used in computations to 39000.

The intensity attenuation modeling assumes a spherical radiation
from a point-form source of seismic energy. This could not be valid, es-
pecially for seismic sources of magnitude larger than 5, which have fault
lengths larger than 5 km (Wells and Coppersmith, 1994) and could lead
to a overestimation of the distance from the source. A possible choice is
to discard intensity data that are closer than a minimum threshold Dmin.
Gasperini (2001) computes Dmin as a function of the macroseismic mo-
ment magnitude while Albarello and D’Amico (2004) assumes Dmin = 15
km for all earthquakes. Although the method by Gasperini (2001) might
appear more accurate, it could bias the analysis since it selects the data
points as a function of earthquake magnitude. As a result, only the data
coming from small earthquakes would be selected at short distances, and
thus the estimated attenuation properties in this range of distances would
only reflect the attenuation behavior for such earthquakes. On the other
hand, the assumption of a fixed threshold results in near-source data be-
ing discarded completely, while the prediction of intensity in the vicinity
of the sources is crucial in hazard assessment. On the basis of these con-
siderations, I assume initially that Rmin = 0 (i.e., no data are discarded).
I will discuss in section 2.8 the effects of applying different thresholds.

Gasperini (2001) and Carletti and Gasperini (2003) noted that in-
tensity estimates that are based on the feeling of shaking reported by
few or very few people (below degree IV MCS) are likely to be missed
by macroseismic reports that concern small settlements. Moreover, mild
effects, such as those characterizing low degrees, may be neglected due to
the low interest of macroseismic investigators. This incompleteness in re-
porting might result in the average intensity observed at relatively large
distances being overestimated: in fact, intensities that are greater than
average (perhaps exceeding the level of diffuse perceptibility) are more
likely to be reported by documentary sources or noted by surveyors than
those lower than average. Using these data in the fitting of the attenu-
ation equation would result in predicted intensity being overestimated;
hence, the attenuation would seem to be reduced at large distances.

To remove this bias, Gasperini (2001) suggested discarding from the
dataset all intensities observed at distances greater than those at which
an intensity below IV is expected on the basis of a preliminary attenua-
tion estimate. The precise selection criterion adopted (but not explicitly
reported in the original papers) Gasperini (2001) and by Carletti and
Gasperini (2003) is to exclude all the data (independently of the ob-
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(a) original (b) selection

Figure 2.1: Intensity average residuals of the Albarello and D’Amico (2004) attenua-
tion relationship for classes of predicted intensity. Error bars indicate 95% confidence
intervals.(a) original data set.(b) Selection rule proposed by Gasperini (2001) applied
to the data. Error bars indicate 95% confidence intervals.

served intensity) located at hypocentral distances D for which

I0 − 0.53 − 0.055 min(D, 45) − 0.022 max(D − 45, 0) < 4 (2.26)

Note that this selection criterion does not introduce a bias in the attenu-
ation regression because it applies to hypocentral distances (the indepen-
dent variable) and not to observed intensities (the dependent variable).

Albarello and D’Amico (2004) disagreed with this reasoning and the
corresponding criterion for selection. They argued instead for the absence
of the low-intensity bias by citing the lack of a statistically significant
skewness of the intensity residual distribution at large distances. The
overestimation of the predicted intensity at distances larger than about
120 km for the equation by Albarello and D’Amico (2004) with respect
to Carletti and Gasperini (2003) can be observed in the superposed plot
of the two attenuation functions displayed in figure 3 of Albarello and
D’Amico (2004).

The nature of this discrepancy can be shown clearly by testing the
behavior of the average residuals of the model as a function of the pre-
dicted intensity. These are plotted in figure 2.1. For the relation and
dataset used by Albarello and D’Amico (2004), it can be noted in figure
2.1.(a) that the observed intensities are significantly larger than those
predicted (positive average residuals) in the range of values lower than
IV and greater than VI.

By contrast, the positive average residuals tend to increase outside
this range. Moreover residuals are slightly negative for predicted in-
tensities IV and V (these latter two classes alone represent more than
half of all the intensity data). Although the overall average of residuals
is constrained to be zero by the least square procedure, the significant
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deviations (well outside the corresponding 95% confidence intervals) of
single intensity classes indicate a biased fit that could be the cause of
the overestimation of the expected frequencies of intensities larger than
VI with respect to the observed ones actually verified by Albarello and
D’Amico (2004). In fact, if the selection rule in eq. 2.26 adopted by
Gasperini (2001) and Carletti and Gasperini (2003) is applied to the
dataset used by Albarello and D’Amico (2004), the average residuals of
their attenuation relation become almost constant and very close to zero
for all predicted intensities (figure 2.1.(b)). This confirms that data for
distances from the source at which intensity lower than IV are expected
are incomplete and have to be excluded from the dataset to avoid an
overestimation of predicted intensity at large distances.

The above mentioned selection criteria reduce the data set to about
21930 intensity values, referring to 313 earthquakes.

2.4.3 Intrinsic variability of data set

Felt intensity at a certain locality mainly depends on source distance and
strenght. However, further variations could be induced by a number of
additional factors, such as near-source radiation pattern, local amplifica-
tion of seismic motion induced by the local stratigraphy and topography,
and regional differences in the energy propagation pattern. This implies
that whatever isotropic attenuation model is introduced, part of the vari-
ability in intensity remains unexplained and that a lower bound for the
model variance exists. It does not depend on the specific attenuation
model considered and could be called ”intrinsic” variability. To estimate
it, intensity observations relative to each m-th earthquake are grouped in
contiguous 5 km bins of epicentral distance. For each l -th bin, standard
deviation σm

l with respect to the average intensity µm
l is computed. To

be consistent with the likelihood formulation described in section 2.1, µm
l

and σm
l are computed by maximizing eq. 2.9, where µm

l and σm
l take the

place of σ and µj respectively. Only bins characterized by at least 10
observations were considered. The intrinsic standard deviation relative
to each distance bin for the entire intensity database was computed as

σintr
l =

√

√

√

√

∑Nj

m=1(σ
m
l )2Mm

l
∑Nj

m=1 Mm
l

(2.27)

where Mm
l is the number of intensity observations in the l -th distance

bin for the m-th earthquake, and Nl is the number of earthquakes with
at least 10 observations in the l -th distance bin. The results of these
computations are reported in figure 2.2. The intrinsic standard deviation
is nearly constant up to about 140 km from the source and its value
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Figure 2.2: Standard deviation of observed intensities in each distance bin.

is close to about 0.62 intensity degrees. It is worth noting that such
a value for the standard deviation is much lower than those relative
to empirical intensity relationships so far computed (Gasperini, 2001;
Albarello and D’Amico, 2004), which in all cases are greater than 1.0.
This difference indicates that such models do not represent optimally the
intensity attenuation in Italy.

2.5 Regression results

The data set is analyzed following the procedure described above and
using the initial choices for arbitrary parameters Nmin = 10 , Rmin = 0
km , Rmax = 300 km, w1 = 0.5. The maximization of eq. 2.9 with
µj = µ(Im, D) from eq. 2.17 gives a = −0.0086±0.0005 for the coefficient
of the linear distance term, b = −1.037 ± 0.027 for the coefficient of the
natural logarithm of distance and h = 3.91 ± 0.27 km for the average
depth. Hence, the attenuation law (eq. 2.17) becomes

µ(IE, D) = IE − 0.0086(D − 3.91) − 1.037(ln D − ln 3.91) (2.28)

with D =
√

R2 + 3.912. The corresponding model standard deviation is
σ = 0.69, close to the estimate of the intrinsic one determined above (see
section 2.4.3).
The variance explained by the model (R2) is 0.656. The errors reported
above along with the parameters estimations are evaluated as the square
root of the diagonal elements of the variance-covariance matrix, approxi-
mated as the inverse of the Hessian at the maximum of the log-likelihood
function. Such matrix is compared with the variance-covariance matrix
estimated by bootstrap (section 2.3.1) in table 2.2.
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(a) a b h (b) a b h
a 2.35 10−7 −1.19 10−5 8.99 10−5 a 3.07 10−7 −1.54 10−5 12.2 10−5

b −1.19 10−5 7.11 10−4
−6.04 10−3 b −1.54 10−5 9.23 10−4

−8.25 10−3

h 8.99 10−5 −6.04 10−3 7.31 10−2 h 1.22 10−4 −8.25 10−3 10.0 10−2

Table 2.2: Variance-covariance matrix estimated by means of the inverse of the Hes-
sian (a) and bootstrap (b).

a b h
a 0.77 0.77 0.74

b 0.77 0.77 0.73

h 0.74 0.73 0.72

Table 2.3: Ratios between the elements of the variance-covariance matrix showed in
table 2.2 (a) and 2.2 (b).

The bootstrap estimates are obtained from 1000 paradata sets ob-
tained by random resampling (with replacement) of 21932 intensity val-
ues from the original data set. In table 2.3 the two matrices are com-
pared by computing the ratios between their corresponding elements.
The values obtained indicate that the covariance elements from the Hes-
sian underestimate those provided by the bootstrap analysis by a factor
of 20-30%. This corresponds to an underestimate of parameter errors of
the order of 10-15%.
The off-diagonal terms of the variance-covariance matrix indicate the
presence of a significant multicollinearity. This can also be evaluated
considering the distribution of parameter values obtained from bootstrap
analysis (figure 2.3). A strong inverse correlation between the distance
coefficients a and b as well as between b and h is evidenced, while the
correlation between a and h is weaker. The high correlation among the
parameters indicates that different combinations of their values might
result in very similar attenuation equations. The high correlation could
also indicate that small differences in the data set will result in appar-
ently strong variations of the empirical parameters, despite the fact that
the intensities expected by the attenuation laws corresponding to such
parameters values will assume quite similar values.

2.6 Relations between IE and other earth-

quake size measures

For earthquakes included in the data set, the value of IE can be computed
simply according to eq. 2.21. To compute it for any other earthquake
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Figure 2.3: Distribution of parameter values obtained from 1000 bootstrap repetitions.
This highlights the high correlation between parameters. The explained variance R2

is reported in each plot.
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in the catalog, empirical relation between IE and other parameters that
describe earthquake size could be calculated. For each earthquake of the
CPTI04 catalog Imax, I0 and Maw are available. The first is the maximum
intensity observed for a certain earthquake, the second is the epicentral
intensity (see section 2.4.1) and the magnitude Maw results from combin-
ing the instrumental and macroseismic information. Moreover a reduced
set of moment magnitudes Msw, which were either measured directly by
moment tensor inversion or deduced from other instrumental magnitudes
using empirical conversion rules (Gasperini, 2004) is considered. Figure
2.4 and tables 2.4 and 2.5 show the results of ordinary least squares
(OLS) and general orthogonal regressions (GOR) of IE vs Imax, I0, Maw

and Msw. For the GOR, the procedure described by Fuller (1987) and
applied by Castellaro et al. (2006) is followed.

equation η c d σ
IE = c + dI0 0.09 −0.893±0.254 1.118 ± 0.033 0.70

IE = c + dImax 0.09 −1.418±0.289 1.154 ± 0.036 0.75

IE = c + dMaw 0.46 −5.862±0.301 2.460 ± 0.055 0.53

IE = c + dMsw 0.31 −5.230±0.645 2.210 ± 0.122 0.66

Table 2.4: Coefficients of regression of IE with I0, Imax, Maw and Msw from
general orthogonal regression (GOR). η indicates the assumed variance ratio
for each orthogonal regression (see Castellaro et al. (2006)).

equation c d σ
IE = c + dI0 0.791 ± 0.444 0.897± 0.057 0.63

IE = c + dImax 0.591 ± 0.464 0.898± 0.058 0.67

IE = c + dMaw −4.157±0.723 2.150± 0.131 0.50

IE = c + dMsw −1.343±0.877 1.621± 0.166 0.58

Table 2.5: Coefficients of regression of IE with I0, Imax, Maw and Msw from
ordinary least squares (OLS).

The GOR allows to consider that even the independent variable is af-
fected by errors. To apply this method the ratio between the variances of
dependent and independent variables (η) has to be defined. To estimate
such ratios the square of half a degree (corresponding to the resolution of
the macroseismic scale) is assumed as variance of both Imax and I0. The
variance of IE is assumed to be 0.0225 (corresponding to the average of
the empirical variances computed for each earthquake in the data set).
The variances of Maw and Msw (0.0484 and 0.0729 respectively) are com-
puted by averaging the squares of the estimation errors reported in the
CPTI04 catalog for each earthquake. Figures 2.4 shows that the correla-
tion of IE vs I0 is slightly better than that vs Imax. The regression slopes
are very similar, while there is a difference of about half of one degree
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Figure 2.4: Empirical relations of IE with I0, Imax, Maw and Msw. Solid lines indicate
the result of GOR regression, dotted and dashed lines indicate respectively results of
the direct and inverse OLS regressions.

between the intercepts (Table 2.4 and 2.5). On average, IE values result
slightly larger than those of I0 for high intensities and slightly lower than
those of I0 for low ones. In spite of this, there is a substantial coincidence
among them, with the average difference being lower than a tenth of a
degree. Concerning the relations involving magnitudes, in Table 2.4 and
2.5 the regression slopes for the two magnitudes Maw and Msw are quite
different. This might appear surprising, given that Maw (which is based
both on instrumental and macroseismic information) has been calibrated
on essentially the same set of Msw instrumental magnitudes (Gasperini,
2004). However, it could be noted that such calibration has been made
by weighting each instrumental magnitude estimate with the inverse of
the respective squared error. This procedure gives higher weights to mo-
ment magnitudes computed by the inversion of complete seismograms
and lower weights to instrumental magnitudes of the first half of the 20-
th century (mainly Ms) computed by maximum amplitudes measured on
historical seismograms. The calibration of mechanical instruments used
in Italy up to about 1980 is doubtful. Hence the Maw data set will be
generally more homogeneous and reliable than the Msw. This implies
that Maw values are to be preferred for computing IE.

I also test the alternative option of computing magnitude coefficients
at the same time as the distance terms by an OLS regression of the
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equation

µ(M, D) = c + dM + a(D − h) + b(ln D − ln h) (2.29)

Table 2.6 shows how the values of depth (h) and distance coefficients
(a, b) are very close to those deduced from two-step regressions (section
2.5), while the magnitude coefficients (c, d) differ significantly from those
reported in table 2.5 for the OLS method (the results from GOR analysis
are not comparable, so they were not considered). Such differences are

Maw Msw

c −3.062± 0.070 −1.147± 0.096
d 1.931± 0.010 1.567± 0.012
a −0.0126± 0.0005 −0.0104± 0.0007
b −0.900± 0.027 −0.912± 0.039
h 3.696± 0.302 4.155± 0.511
σ 0.81 0.79

Table 2.6: Simultaneous regression of distance dependence coefficients and magni-
tudes.

due to the different weighting of data. In fact, in the two-step regres-
sion, all earthquakes have the same weight while, in the regression of eq.
2.29, the weight of each earthquake is proportional to the number of ob-
servations. To validate this statement, I performed the regression of IE

vs. magnitude using independent estimates of IE made from individual
intensity observations (tables 2.7 and 2.8). These can be computed from
equation

IE = IS − a(D − h) − b(ln D − ln h) (2.30)

where IS is the individual intensity observed at a distance D from the
macroseismic hypocenter located at a depth h and parameters a, b and
h are those of eq. 2.28. The results of OLS regression (table 2.8) show
values of c and d coefficients close to those found by simultaneous regres-
sion. This means that, when the data are similarly weighted, two-step
and one-step standard regressions give consistent results.

Anyway, as GOR is more appropriate than OLS when the indepen-
dent variable is affected by errors and a simultaneous GOR of distance
and magnitude is not feasible, the procedure based on a two-step regres-
sion for distance and magnitude is preferable to one based on a one-step
regression. Moreover regression coefficients in table 2.4 should be used,
as they are not biased by the uneven distribution of intensity observa-
tions among different earthquakes (instead the coefficients of table 2.4
are characterized by this drawback). For the earthquakes in the CPTI04
catalog for which the Maw magnitude is simply deduced from I0 (accord-
ing to regressions computed by Rebez and Stucchi (1999) and Gasperini
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equation c d σ
IE = c + dI0 0.068 ± 0.023 0.976± 0.003 0.56

IE = c + dImax −0.451±0.026 1.019± 0.003 0.59

IE = c + dMaw −3.972±0.028 2.095± 0.005 0.45

IE = c + dMsw −2.129±0.034 1.774± 0.006 0.46

Table 2.7: Coefficients of regression of IE with I0, Imax, Maw and Msw from
general orthogonal regression (GOR), with one observation for each intensity
datum.

equation c d σ
IE = c + dI0 1.151 ± 0.055 0.851± 0.006 0.53

IE = c + dImax 0.796 ± 0.058 0.878± 0.006 0.55

IE = c + dMaw −2.868±0.082 1.910± 0.014 0.44

IE = c + dMsw −1.055±0.088 1.592± 0.015 0.44

Table 2.8: Coefficients of regression of IE with I0, Imax, Maw and Msw from
ordinary least squares (OLS), with one observation for each intensity datum.

(2004)), to avoid the double conversion from I0 to Maw and from Maw to
IE it is preferable to compute IE directly from the regression with I0.

The total standard errors of separate regressions can be obtained,
following the usual error law, by summing the relevant variances of the
involved empirical relationships. In the case that IE is computed (by
GOR regression) from I0 and Maw they are 0.98 and 0.87, respectively.
These standard errors are larger than the one computed for the two-step
procedure (σ = 0.69).

2.7 Other attenuation models

2.7.1 Alternative funcions to model the distance de-

pendence

Even if the log-linear model is physically grounded and widely used in
attenuation studies, it is interesting to test its performance in describing
attenuation pattern in comparison with other functional forms of attenu-
ation law. I apply the same two-step procedure and the same choices to fit
the bilinear, logarithmic and cubic root model (section 2.2.3). Moreover,
I consider a bilinear model with an added logarithmic term to account for
geometrical spreading phenomenon. To follow the two step procedure,
the attenuation law are rewritten as
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bilinear (BIL) logarithmic (LOG)

µ(IE , D) = IE +a[min (D, 45)−min (h, 45)]+
a′[max (D − 45, 0) − max (h − 45, 0)]

µ(IE , D) = IE + a[ln D − lnh]

cubic root attenuation model (CRAM) log-bilinear(BIL-LOG)

µ(IE , D) = IE + a[D
1

3 − h
1

3 ] µ(IE , D) = IE +a[min (D, 45)−min (h, 45)]+
a′[max (D − 45, 0) − max (h − 45, 0)] −

blnD − lnh

The attenuation laws obtained are compared using the criteria illustrated
in section 2.3.2. The results are shown in table 2.9. The log-linear model

model a a′ b h

BIL −0.591 ± 0.0005 −0.0182± 0.0003 - 0.00 ± 0.24

LOG - - −1.54± 0.15 7.77 ± 0.25

CRAM −1.2432± 0.076 - - 1.18 ± 0.25

LOG-LIN −0.0086± 0.0005 - −1.04± 0.27 3.91 ± 0.27

BIL-LOG −0.0187± 0.0026 −0.0108± 0.0007 −0.80± 0.06 2.78 ± 0.40

model σ R2 BIC AICC

BIL 0.7023 0.6435 -26105.1 -26097.8

LOG 0.6943 0.6515 -25898.3 -25893.0

CRAM 0.6896 0.6562 -25785.0 -25779.8

LOG-LIN 0.6894 0.6565 -25781.2 -25773.8

BIL-LOG 0.6891 0.6567 -25780.7 -25771.3

Table 2.9: Comparison between different functional forms of attenuation relation,
sorted for increasing BIC. The values of AICC agree with BIC.

performs better than other models previously used to describe intensity
attenuation in Italy for all the considered quality factors (σ, R2, BIC
and AICC). This is in contrast with the results of a similar compar-
ison made by Gasperini (2001) who, when considering the averages of
intensity differences ∆I = I0 − I over distance bins of 5 km (and not
single-intensity observations), found a clear preference for the bilinear
model with respect to the log-linear one. In fact, while such a discrep-
ancy could be attributed to the use of binning, it could also be attributed
to the near source portion of the intensity data set (excluded from com-
putation by Gasperini (2001)) where the logarithmic term, which ac-
counts for geometrical spreading (neglected in that intensity attenuation
model), assumes a crucial role. In fact, if a logarithmic term is added
to the bilinear model (BIL-LOG in table 2.9), the fit becomes slightly
better than the log-linear one. This could confirm the inference made by
Gasperini (2001) that anelastic dissipation properties are probably depth-
dependent. However, the improvement of the fit of the log-bilinear model
with respect to the simpler log-linear one is so small that in most cases,
the complications in hazard computational procedures that its adoption
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would seem to imply are not justified. For such reasons, the simple
log-linear model is preferable to describe intensity attenuation in hazard
assessment.

2.7.2 Alternative measure of earthquake size

In this work I choose to calculate epicentral intensity as the intensity
expected at the epicenter by the attenuation law. In particular, the
procedure followed assumes that the average of the intensities observed
within a certain distance from the epicenter of an earthquake coincides
with the intensity expected by the attenuation law at the corresponding
average distance.

Even if this choice is suggested by reasonable considerations, it would
be interesting to check the performance of the resulting attenuation law
with respect to the law that would be obtained simply imposing that the
intensity predicted at the epicenter is equal to the epicentral intensity
reported by CPTI04. In this case the attenuation law becomes

µ(I0, D) = I0 + a(D − h) + b(ln D − ln h) , (2.31)

where I0 is the epicentral intensity as reported in CPTI04. In table 2.10

a b h σ R2 BIC AICC

−0.0135 ± 0.0005 −0.87 ± 0.02 2.83 ± 0.13 0.89 0.43 −30428.4 −30421.0

Table 2.10: Attenuation law parameters and quality factors using epicentral intensity
reported by CPTI04.

the parameters values, along with σ, BIC, AICC and R2 are given. The
values of all the four quality factors (higher σ, lower BIC, AICC and
R2) indicate that the data fitting is worst than in the case of eq. 2.28.

Another interesting aspect to consider is the possible presence of resid-
uals trends with respect to dependent and independent variables (figure
2.5). Residuals almost horizontal and close to zero are desirable, whereas
deviation from this pattern may indicate a poor data fitting or problems
in modeling (Draper and Smith, 1981). Looking at the plot of residuals
versus distances (figure 2.5, above) it can be noted that for eq. 2.28
they are almost horizontal whereas for the last attenuation law consid-
ered their deviations from zero are slightly greater. The plot of residuals
versus intensity expected by attenuation law (figure 2.5, below) is al-
most horizontal until the 10-th degree for the preferred attenuation law,
whereas departure from horizontal with underestimation at lower degrees
and overestimation at higher degree are evident for the model described
by eq. 2.31.
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Figure 2.5: Residual versus distance (independent variable) and expected intensity
(dependent variable) for attenuation law calculating epicentral intensity from the data
set (black) or using epicentral intensity reported in CPTI04 (red).

These results confirm the choice of calculate the epicentral intensities
directly from the data set, without using those reported in CPTI04.

2.8 Sensitivity analysis

The results shown in section 2.5 may depend on the choices of four ar-
bitrary parameters. In fact, the values of Im, Dm and ln Dm, which are
used in the first step of the inversion procedure, depend on the value of
Rmax, that is the maximum distance from the epicenter of intensity data
considered for computing such averages. Moreover, the intensity obser-
vation that are actually used for computations are selected on the basis
of the values of Rmin and Nmin, i.e., the minimum epicentral distance,
and the minimum number of intensity data for each event to be con-
sidered in the analysis, respectively. Finally, different choices might be
made for the weight w1 that parametrize uncertainty on intensity data
(see section 2.1.2). In order to quantify the effects of these choices, a
sensitivity analysis is performed. In particular, different values of Rmax,
Nmin, Rmin, and weight w1 are considered and for each of them the likeli-
hood function (eq. 2.9) is maximized to obtain different parametrization
of eq. 2.17.

Figure 2.6 shows that for Rmax larger than 30 km, a and σ are al-
most insensitive to variations in Rmax. Parameter b stabilizes when
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Figure 2.6: Sensitivity of attenuation parameters to Rmax (the maximum epicentral

distance of data used in the calculation of Im, Dm and lnDm).

Rmax > 50 and in general shows relatively small sensitivity to Rmax. A
larger sensitivity is shown for h. In particular, h increases monotonically
for Rmax < 50 km, then it assume a steady value of about 4 km. Similar
results are obtained when different choices are considered for parameter
Nmin that is set to 10 in the analysis discussed in section 2.5 (figure 2.7).
In this case also, h shows the largest sensitivity for Nmin < 60. Whereas
the other parameters values are quite stable for any considered choice of
Nmin.

In figure 2.8, we can see that h also shows the highest variability with
respect to Rmin. In fact, the value of h decreases strongly with increasing
Rmin up to 20 km. This means that the average depth is controlled by the
data in the vicinity of the epicenter and that the exclusion of such data
makes the depth estimate unrealistic (< 1 km). It is also interesting to
note that if the data at distances shorter than 90 km are excluded from
computations, the linear term (coefficient a) becomes dominant over the
logarithmic one (coefficient b). It may be inferred that the data in the
vicinity of the source, although they are possibly biased by near-source
anisotropy for strong events, are still necessary to describe the overall
attenuation behavior realistically. These results indicate that h is the
parameter most sensitive to the data selection strategy, particularly with
respect to data in the epicentral area. However, it is worth noting that
the standard deviation of the model is almost unaffected by variations in
h.

Figure 2.9 shows that the regression results are almost insensitive to
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Figure 2.7: Sensitivity of attenuation parameters to Nmin (the minimum number of
intensity data for each earthquake included in the fit).

Figure 2.8: Sensitivity of attenuation parameters to Rmin (the minimum epicentral
distance of data used for the fit).
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Figure 2.9: Sensitivity of attenuation parameters by varying w1 (the probability as-
signed to the nearer lower degree) (left), attributing to uncertain degrees the corre-
sponding real value (center) and excluding uncertain degrees from the data set (right).

the choice of the weight w1. This quantity parameterizes the probability
distribution of uncertain intensity values and represent respectively the
probability of the nearer lower and higher integer degrees (see section
2.1.2). In figure 2.9 (”half degrees” inset), the parameter values obtained
following Gasperini (2001) are also represented. In this case uncertain de-
gree are considered simply as representative of real intermediate intensity
values (i.e. VII-VIII equal to 7.5). The results are affected negligibly and
are very similar to those obtained using equal weights (w1 = 0.5). This
might indicate that uncertain values are probably close to representing
ground motion levels intermediate to those associated to adjacent integer
intensities. In addition, the results are very similar (”no uncertain de-
grees” inset in figure 2.9) except with respect to h, even if the uncertain
data are totally ignored in the fit. This similarity indicates a substantial
coherence of attenuation properties for uncertain degrees with respect to
standard ones.

2.9 Discussion

In the precedent sections the attenuation pattern of macroseismic inten-
sity in Italy has been analyzed and modeled. The main objective was
to develop an attenuation relationship for the probabilistic seismic haz-
ard assessment in Italy in terms of macroseismic intensity. Thus, major
attention has been paid to the characterization of the attenuation re-
lationship in its complete probabilistic form. The statistical analysis of
intensity was carried out by carefully considering several factors that have
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generally been overlooked in previous analyses: the discrete character of
intensity, uncertainty on original data, completeness, etc.

On the assumption that the general attenuation pattern reflects mainly
the seismic energy radiation pattern, the local intensity value has been
considered as being dependent on two variables: an expression of the
energy radiated at the source and the hypocentral distance (computed
assuming a unique hypocentral depth for all the events). The first vari-
able appears to be the most problematic because it is not possible to
directly estimate such a parameter from the available documentary data.
In the present work this parameter is estimated from the whole macro-
seismic field available for each earthquake. In this regard, one should be
aware that the number of parameters actually involved in the inversion
procedure is much higher than that were included explicitly in the atten-
uation relationship (the coefficients relative to the source strength, the
geometrical spreading, the anelastic/scattering dissipation, the average
hypocentral depth, and the standard deviation) because a source term
relative to each of the events has to be included in the computation. In
most previous analyses, this role was played by the epicentral intensity
I0, which is usually determined a priori by catalog compilers. By con-
trast, in this work, a new estimate of radiated energy in terms of the
expected intensity at the epicenter IE for all earthquakes is introduced.
It is worth noting that although this parameter plays the same formal
role in all attenuation equations, it cannot be considered simply as a
new estimate of the epicentral intensity I0, however I0 is defined. In
principle, I0 should be an integer value, characterized in each case by an
additional uncertainty (e.g. VII-VIII or 7.5), which could be measured
directly if a suitable settlement, unaffected by anomalous site amplifi-
cation, exists at the epicenter. By contrast, the source term introduced
here is not constrained to be an integer ordinal value and can be con-
sidered as a macroseismic equivalent of magnitude, determined without
any direct reference to instrumental parameters. Rather, it is deduced
by considering the entire macroseismic field and not from a single or few
intensity observations as was done in the case of I0. That being so, it
is less influenced by local site effects or intensity assessment errors. Re-
gression analyses corroborate the feasibility of this interpretation, since a
satisfactory correlation exists between this energy term and magnitudes.
This last result also allows the attenuation relationship here defined to
be applied in cases in which knowledge about the relevant macroseismic
field is poor, cases that will include earthquakes known only in terms of
instrumental parameters. In these cases, IE can be computed from mo-
ment magnitude by using the conversion relationships here determined.
Of course, the standard deviation relative to intensities estimated by us-
ing such a change of variable must be increased appropriately (by the
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factor here estimated) to take into account the uncertainties of IE vs.
moment magnitude relationships.

A stability analysis shows that the resulting attenuation relationship
is robust with respect to arbitrary assumptions underlying the model-
ing approach. In particular, the only parameter seriously affected by
these arbitrary choices is the average source depth h, which is (weakly)
constrained by the intensity data located in the vicinity of the source
only. However, its variability has little influence on the other attenua-
tion parameters and the standard deviation of the regression and thus
is not relevant for computing seismic hazard. The stability analysis also
showed that uncertain intensities (e.g. III-IV) behave similarly to stan-
dard intensity estimates and are consistent with semi-integer intensity
values (e.g. 3.5). This could justify the use of semi-integer values in
simplified approaches.

The attenuation model determined here enables a number of difficul-
ties relative to previous estimates to be overcome. It is almost optimal,
because the relevant standard deviation is comparable to the intrinsic
one related to the scattering of original data (aleatory uncertainty). The
intrinsic standard deviation is almost independent of the epicentral dis-
tance and represents a lower bound for any empirical attenuation rela-
tionship that, like the present one, does not consider any regionalization
of the area under study, source directionality, or possible local effects.
In general, the standard deviation associated with the attenuation rela-
tionship here yielded results lower than those obtained in previous works
(Gasperini, 2001; Albarello and D’Amico, 2004). This could have impor-
tant consequences in hazard estimates in the Italian region, because the
standard deviation of the attenuation relationship is well known to affect
hazard estimates dramatically (Cornell, 1991; Brillinger, 1982; Albarello
and D’Amico, 2005). The best-fit values and standard errors of attenu-
ation coefficients (−0.0086 ± 0.0005 for the linear term, −1.037 ± 0.027
for the logarithmic one, and 3.91 ± 0.27 for the average depth) suggest
some further general considerations:

1. The inferred average source depth is significantly shallower than the
average hypocentral depth of strong Italian earthquakes (about 10
km) but quite similar to that (5.6 km) deduced by the attenua-
tion of PGA (Sabetta and Pugliese, 1987). This apparent discrep-
ancy could be explained by considering that the stability analysis
demonstrates that the average depth is constrained mainly by the
data in the vicinity of the epicenter (D < 20 − 30 km). It may
be argued that for relatively large sources (whose width is of the
order of some km), the shallower (and closer) portion of the seis-
mogenic fault contributes more than the deeper one in determining
the ground motion level at close sites. This might indicates that the



2.9. DISCUSSION 45

source depth estimated from macroseismic data is likely to reflect
a shallower point from which seismic energy appears to be radiated
at close sites, rather than the true (and deeper) hypocenter as was
assumed by past procedures for determining macroseismic depth
(Koveslighety, 1906; Blake, 1941; Musson, 1996).

2. The value of the linear term coefficient significantly differs from 0
(one order of magnitude larger than the associated standard er-
ror). This indicates that the contribution of anelastic dissipation
to intensity attenuation is not negligible with respect to geomet-
rical spreading (it becomes of the order of one intensity degree at
distances of 100 km).

3. The coefficient of the logarithmic term, close to -1 for the log-linear
model and around -0.8 for the log-bilinear model, implies that the
geometrical spreading exponent seen by seismic intensity should
range from -0.70 to -0.35. These estimates for the geometrical
spreading exponent depend on the attenuation model (log-linear
or log-bilinear) and on the assumed coefficient of the linear rela-
tion between intensity and the logarithm of PGA, which, for Italy,
could vary (in terms of natural logarithms) between the empiri-
cal estimate of 0.44 by Margottini et al. (1992) and the value of
0.69 assumed by the MCS intensity scale (Cancani, 1904; Sieberg,
1931). This confirms that surface waves (and perhaps reflected and
refracted phases), rather than body waves, are likely to have a dom-
inant role to play in determining the seismic intensity observed at
a site.
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Chapter 3

Seismic tomography

The study of physical systems often involves an inverse problem. This
consists of using the actual result of some measurements to infer the val-
ues of the parameters that characterize the system from a given point
of view. The results of the measurements are called data. The parame-
ters chosen to characterize the system are called model parameters, their
values are the unknown of the inverse problem. Actually, the relation
between data and model parameters may be known only approximately,
moreover data may be affected by errors. These facts imply that to obtain
reliable estimates of model parameter the problem has to be overdeter-
mined, i.e. the number of data has to be greater than the number of
unknown model parameters.

In some cases, the inverse problem could be solved by tomographic
method. This technique is used in a large number of disciplines including
geophysics. It is an imaging technique that allows to reconstruct the in-
ternal structure of an object using data recorded on its surface. The first
application of this method was the X-ray tomography in medicine. The
idea at the base of radiological tomography was expressed by the central
slice theorem by Radon (1917). It states that it is possible reconstructing
a 2-D image from a set of 1-D lines integrals, and a 3-D image from 2-D
slices trough the object. Cormack (1963) proposed a method for solving
the radiological imaging problem and Houndsfield (1973) got the method
to work by combining a computer and a X-ray scanner. In this system an
X-ray beam, of known intensity originated by a source, follows a linear
path inside the object ad arrives to a receiver on the opposite side of
the object. Due to the absorption, the intensity recorded by the receiver
will be reduced with respect to that of the beam before crossing the ob-
ject. To infer the absorption structure different paths inside the studied
object are illuminated by changing sources and corresponding receivers
positions. The greater the number of rays crossing a certain zone in the
object interior the more reliable the absorption estimate.
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In the geophysical field, seismic tomography allows to reconstruct an
image of the Earth interior using data recorded on (or near) its surface.
Seismic waves arriving at a certain receiver contain information about
the materials encountered along the path they followed to arrive from
the source to the recording position. The inverse problem involved in
seismic tomography is less well constrained by data than the X-ray to-
mography one. Source position and strength are not known precisely,
seismic ray path is not straight and often depends on the properties of
the materials it crosses. A common example of application of tomogra-
phy in the seismological field is the study of the velocity structure using
travel time data. As ray path depends on velocity properties of the ma-
terials where seismic waves propagate, usually a starting model, based
on precedent knowledge of the investigated area, is assumed and used
to calculate ray paths. Velocity variations with respect to such model
are calculated by solving the tomographic problem. On the basis of the
results, new ray paths are calculated and a new tomographic inversion is
carried on. The procedure is repeated iteratively until the results differ
significantly from those obtained in the previous inversion. As well as
travel times, amplitude data allow a better knowledge of Earth interior.
In particular they are useful to study the attenuation properties (Iyer and
Hirahara, 1993). Even the propagation pattern of macroseismic intensity
with distance may vary depending on the geostructural characteristics of
the underlying materials and lends itself to be studied by tomographic
method. In particular, the Italian territory presents strong lateral varia-
tions of its geostructural features that could originate evident variations
in the propagation properties of seismic intensity.

3.1 Inverse problem solution

Generally the inverse problem underlying the seismic tomography is de-
scribed by a system of linear equations that can be expressed trough
matrices as

d = Gm , (3.1)

where d is the data vector, m is the model parameter vector, that rep-
resents the unknown of the tomographic problem and G is a matrix
describing the linear relation between data and model parameters. If
the problem is overdetermined (the number of data is greater than the
number of unknown) and the uncertainties are Gaussian, the model pa-
rameters values can be estimated by least squares

m = (GTG)−1GTd . (3.2)
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This corresponds to find the unknown values that minimize the sum of
the squared residuals that quantifies the deviation between observations
and model predictions.

Even if the problem is overdetermined, the rays coverage of the in-
terest area might be not uniform hence the values of the unknown pa-
rameters situated in zones crossed by a low number of rays would be less
reliable than those referred to zones with an high ray coverage. So it is
preferable to obtain the model parameters values by the damped least
squares method

m = (GTG + λ2I)−1GT(d− Gm0) , (3.3)

where m0 is an a priori model summarizing the precedent information
available about the phenomenon described by eq. 3.1 and λ2 is a con-
stant called damping parameter that represents the ratio between data
and model parameters variances. When uncertainties of data and model
parameters are Gaussian, the damped least square solution (eq. 3.3)
minimizes

Φ(m) = (d− Gm)T(d− Gm)+λ2(m− m0)
T(m− m0) . (3.4)

The first term of eq. 3.4 is the sum of the squared data residuals and
corresponds to a measure of the distance between model prediction and
data. The lower this term the better the ability of the model in explaining
the data. The second term is a measure of the distance between model
parameter estimates and the a priori model. The damping parameter
λ determines the weight of this second term in the model parameters
estimation. A large damping value will force the solutions to assume
values close to the reference model m0, whereas low values will allow
large deviations between solutions and m0.

Errors on parameter values can be estimated as the square roots of
the corresponding diagonal elements in the covariance matrix. The latter
can be evaluated as

C = σ2(GTG + λ2I)−1(GTG + λ2)−1GTG . (3.5)

where σ2 is the variance in the data error and could be estimated as the
sum of the squares of the residuals divided by the number of degree of
freedom of the inversion problem (Aki and Lee, 1977)

σ2 =
(d− Gm)T(d −Gm)

Ndata − Nparameters

. (3.6)
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3.2 Intensity tomography

A first intensity tomography for Italian territory was presented by Car-
letti and Gasperini (2003). They assumed the bilinear attenuation law
proposed by Gasperini (2001) (eq. 2.14) as reference model and studied
the lateral variations of the slopes b and c with respect to the reference
model values.

The procedure presented in Chapter 2 allows to solve some drawbacks
characterizing the previous attenuation laws presented by Gasperini (2001)
and Albarello and D’Amico (2004). In particular the data fitting signifi-
cantly improves (section 2.5) with respect to such works.

In this section the results obtained in Chapter 2 are used to define the
a priori model and develop a new tomographic study of the propagation
pattern of seismic intensity in Italy.

3.2.1 Formulation of the tomographic problem

First of all, it is necessary to chose an a priori model as starting point
to develop the tomographic study.

In section 2.7 different intensity attenuation models are compared.
On the basis of all the considered criteria (BIC, AICC , R2, σ) the log-
bilinear model is chosen

µ(IE , D) = IE + a(min(D, 45) − min(h, 45))

+a′(max(D − 45, 0) − max(h − 45, 0))

+b(ln D − ln h) , (3.7)

where D =
√

R2 + h2, a = −0.0187± 0.0026, a′ = −0.0108± 0.0007, b =
−0.80±0.06 and h = 2.78±0.40. In this relationship a logarithmic term
accounting for geometrical spreading is added to a bilinear attenuation
law (section 2.2.3 and Appendix A).

A bilinear attenuation model for Italy was proposed for the first
time by Gasperini (2001). Its functional form is described by eq. 2.14.
Gasperini (2001) showed that, on the basis of the analysis of variance
(ANOVA) statistical test, the bilinear model fits the data significantly
better than other considered attenuation laws. The attenuation coeffi-
cients computed by Gasperini (2001) are β = 0.056 for distances shorter
that 45 km and γ = 0.022 at longer distances. These values indicate
that the intensity decrease at short distances is about two times faster
than the decrease at large distances. Gasperini (2001) supposed that
the attenuation coefficients decrease is due to subcrustal path of phases
controlling the observed intensity at distances longer than 45 km.

The short distance attenuation coefficient of the log-bilinear law (eq.
3.7) is about two times the one at large distances (their values are respec-



3.2. INTENSITY TOMOGRAPHY 51

tively (a = −0.0187 and a′ = −0.0108). These results roughly agree with
those presented by Gasperini (2001). Also in this case the short distance
parameter a may be related to direct crustal paths between source and
locality, whereas the lower value of the large distance parameter a′ may
indicate subcrustal paths crossing lower attenuation materials.

Because of the quite complex geostructural features characterizing the
Italian territory, relevant lateral variations in the propagation of earth-
quake effects are expected. As geometrical spreading is due to the in-
crease of the wavefront surface as the seismic waves propagate, the varia-
tion of the structural characteristics of the crust crossed by seismic waves
will scarcely affect this phenomenon. It is instead reasonable to assume
that such variations are mainly related to the anelastic and scattering
dissipation, which is influenced by rocks properties, fracturing, discon-
tinuities, temperature variations etc. In formulating the tomographic
problem, the coefficient of the logarithmic term of eq. 3.7 is considered
constant over the entire Italian territory. The tomographic method is
applied to study the lateral variation of the dissipation terms.

Following the procedure proposed in section 2.2.4, IE can be elimi-
nated from the log-bilinear attenuation model

µ(Im, D) = a

(

min(D, 45) − 1

Mm

Mm
∑

k=1

min(Dm

k , 45)

)

+

+ a′

(

max(D − 45, 0)− 1

Mm

Mm
∑

k=1

max(Dm

k − 45, 0)

)

+

+ b

(

lnD − 1

Mm

Mm
∑

k=1

ln(Dm

k )

)

+ Im . (3.8)

where Im is the average of the observed intensities relative to each m-th
earthquake and located within a given epicentral distance Rmax.

The distances traveled in cells at epicentral distances shorter and
longer than 45 km can be defined respectively ∆Dk and ∆D′

k, for k =

1, Ncells . The distance D between the source and a locality can be seen
as sum of distances traveled in each cell

D =

Ncells
∑

k=1

∆Dk +

Ncells
∑

k=1

∆D′

k . (3.9)

By substituting eq. 3.9 in eq. 3.8 the average log-bilinear reference
model, which assumes constant attenuation coefficient a and a′ over the
entire Italian territory, can be rewritten as

µ0(Im, D) =

Ncells
∑

k=1

a

(

∆Dk − 1

Mm

Mm
∑

l=1

∆Dl

)

+

Ncells
∑

k=1

a′

(

∆D′

k − 1

Mm

Mm
∑

l=1

∆D′

l

)

+
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+ b

(

D − 1

Mm

Mm
∑

l=1

Dl

)

+ Im. (3.10)

A tomographic attenuation model (µ1(Im, D)) that accounts for lateral
variations of attenuation properties can be formulated similarly

µ1(Im, D) =

Ncells
∑

k=1

ak

(

∆Dk − 1

Mm

Mm
∑

l=1

∆Dl

)

+

Ncells
∑

k=1

a′

k

(

∆D′

k − 1

Mm

Mm
∑

l=1

∆D′

l

)

+ b

(

D − 1

Mm

Mm
∑

l=1

Dl

)

+ Im. (3.11)

where ak and a′

k are the attenuation coefficients characterizing the k-th
cells. To make the problem similar to classic seismic wave tomography
the system of equations Gnpmp = dn that describes the inverse problem
can be defined in a differential form. Subtracting eq. 3.11 from eq. 3.10
gives

∆µ(Im, D) = µ1(Im, D) − µ0(Im, D) =

=

Ncells
∑

k=1

(ak − a)

(

∆Dk −
1

Mm

Mm
∑

l=1

∆Dl

)

+

Ncells
∑

k=1

(a′

k − a′)
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∆D′

k −
1
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l

)

=

=
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∆ak
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∆Dk −
1
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∆Dl
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+
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k=1

∆a′

k

(

∆D′

k −
1

Mm

Mm
∑

l=1

∆D′

l

)

(3.12)

The tomographic problem can be formulated as a system of linear
equations Gnpmp = dn. The known terms vector dn is composed of the
differences between observed intensity and the intensity expected by the
average reference model (eq. 3.7) at the same site, for an earthquake of
the same strength as that originating the observed intensity. Assuming
that such deviations are caused by discrepancies between reference and
tomographic model (dn = ∆µ), the ∆ak and ∆a′

k (with k = 1, Ncells) form
the unknown parameter vector mp (with p = 1, 2Ncells). The differences
between the distance traveled by seismic rays in the different cells and the
average of the distances traveled in the same cells, ∆Dk − 1

Mm

∑Mm

l=1 ∆Dl

and ∆D′

k − 1
Mm

∑Mm

l=1 ∆D′

l (with k = 1, Ncells), constitute the matrix Gnp

(with p = 1, 2Ncells).
Choosing the cell size is a particularly critical aspect of the problem,

as it determines the resolution of the tomographic model. Such choice
depends on the density of the source-site paths in the zone of interest. If a
too wide grid spacing is chosen some local features could be lost, whereas
a too thin grid spacing might cause data over-fitting so that the estimated
unknown values could not reflect the physics of the studied phenomenon
but could be determined by the randomness of the data. A possible
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empirical criterion to compare different grid spacings is to make several
inversions by moving the grid origin for each of them. When, using a
certain grid spacing, the solutions obtained for different positions of the
grid origin do not differ significantly, the maximum resolution allowed for
the considered data set has been achieved. A grid spacing of 25 km was
chosen initially. As moving grid origin caused not trascurable variation in
the inversion solution, the spacing was decreases to 30. Also in this case
the position of the grid influences the estimated parameter value. Then a
value of 25 was considered. In this case model parameter estimation are
quite independent on grid origin position, indicating that the maximum
resolution configuration has been found.

As the spatial ray coverage is not uniform and the reliability of the
parameter estimates depends on the number of rays that cross the corre-
spondent cell, the damped least square method is applied (section 3.1).
The damping parameter λ avoids that the solutions assume values too far
from the reference model, and this is particularly useful when a unknown
is constrained by a low number of data. Forcing the model values be close
to the reference model corresponds to reduce the model variability. This
can be quantified by the model length L =

∑Nm

i=1 m2
i . On the other side,

the aim of applying least square method is to obtain solutions that fits
well to data. Data fitting of the model can be measured by the variance
after inversion, σ, which is given by eq. 3.6.

The value of λ can be chosen empirically by plotting trade-off curves
between data variance after inversion and squared model length (Evans
and Aucher, 1993). The inversion is carried on for different values of
damping parameter, then for each of the considered damping value L
and σ are calculated. Each of the considered damping value corresponds
to a points on the bi-dimensional plot, where one axis represents model
variance and the other the data variance after regression. Damping values
corresponding to both lower variance after regression and lower model
length should be chosen. The trade-off plot is shown in figure 3.1. It can
be noted that increasing the damping value the model variance decreases
but the data variance increase. On the basis of this plot λ = 20 is chosen.
A further way to improve the solution reliability could be to restrict the
estimation of the parameter values only to cells crossed by a number of
rays greater than a certain threshold. When the number of data referring
to a cell is lower than the threshold, the attenuation parameter values for
that cell are assumed to coincide with the reference model. A threshold
value of Nmin = 30 is chosen.
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Figure 3.1: Data and model variance obtained for different damping values. Damping
values are indicated by the black numbers near the corresponding data variance-model
variance pair.

3.2.2 The data set

The data set used to study the lateral variations of intensity attenuation
parameters is CPTI04 (see section 2.4.1).

Most of the selection criteria described in section 2.4.2 for the ref-
erence model regression are applied also for the tomographic study. In
particular, earthquakes with a number of intensity observations lower
than 10, occurred before 1200 A.D. or whose epicenter is likely to be
located offshore (see table 2.1) are excluded from computation of tomog-
raphy parameters values.

However, as the aim of the intensity tomography is just to study
the lateral variations in the intensity attenuation properties (whatever is
the cause of such deviations from the average attenuation pattern), the
earthquakes occurred in volcanic areas are not discarded in this case.

Applying the above mentioned criteria a data set constituted of 23029
intensity observations, relative to 339 earthquakes, is obtained.

3.2.3 Tomography results

Figures 3.3 and 3.4 show the results of the inversion for the parameters
∆a and ∆a′, respectively. The areas and structures mentioned in the
following paragraphs are shown in figure 3.2.

As explained above, the parameters ∆a and ∆a′ represent the devi-
ation with respect to the parameters a and a′ of the log-bilinear model
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Figure 3.2: Map of Italy with the location of areas and structures mentioned in the
text (from Carletti and Gasperini (2003)).

(eq. 3.7) that describes the average intensity attenuation pattern in Italy.
Positive variations correspond to lower attenuation with respect to the
reference model, whereas negative ones mean higher intensity attenua-
tion. In cells excluded from the inversion because of a too low number of
rays crossing them (see section 3.2.1) it is assumed that the deviations
from the reference model are assumed to be zero.

The parameter ∆a describes the lateral variations in the intensity at-
tenuation pattern at short distances (≤ 45 km). Northern Italy is char-
acterized by low attenuation, with an evident spot of high attenuation in
the Veneto-Friuli area (northeast of Italy). High attenuation character-
izes the Tyrrhenian slope of northern and central Apennines, whereas the
Adriatic slope is characterized by low attenuation in the northern section
and high attenuation in the southern one. In southern Italy relatively
small zones of positive and negative attenuation alternate. In particular
the most evident ones are close to the Adriatic coast around latitude 42◦,
on the Tyrrhenian coast around latitude 39◦, and in Sicily, around the
Mt. Etna volcanic area.

The parameter ∆a′, which describes the intensity attenuation at large
distances (> 45 km), shows an intensity attenuation pattern quite dif-
ferent from ∆a. For this parameter in the North East of Italy there is a
pronounced low attenuation zone (in contrast with the high attenuation
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Figure 3.3: Results for attenuation coefficient ∆a.
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Figure 3.4: Results for attenuation coefficient ∆a′.
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spot evidenced by ∆a parameter). High attenuation still characterizes
the Tyrrhenian slope of northern-central Apennines, and it is also present
on the Adriatic coast, whereas in the inner zone a low attenuation zone
appears. The Southern part of the Italian Peninsula is still character-
ized by alternating positive and negative attenuation zones. The positive
spots on the Tyrrhenian coast at about 39◦ of latitude and corresponding
to the Mt. Etna are still present but less pronounced. The spot located
at latitude 42◦ is substituted by a slight low attenuation zone. An high
attenuation spot appears at about lat=39.7◦ and lon=16.1◦.

To check the reliability of these results the average site residual are
calculated for sites where more than 8 intensity observations are avail-
able. The existence of trends or regularities in the residuals distribution
would indicate a poor or biased fit. The absence of evident trends of
residuals (figure 3.6) confirms the reliability of the tomography results.
The tomography residuals can be compared with those obtained for the
same data set (section 3.2.2) using the reference log-bilinear model (fig-
ure 3.5). The tomographic residuals are generally lower, moreover their
distribution on the studied area is more homogeneous than those ob-
tained for the reference model. For example the Mt. Etna volcanic zone
is characterized in both cases by the prevalence of negative residuals,
that indicate an intensity decrease greater than the one expected by the
attenuation models, but some sites of the Etna area that show negative
residual for the reference model turn to a positive residual (observed in-
tensity higher than predicted one) for the tomographic one, indicating
that even if the intensity attenuation is still underestimated, the extent
of the average deviations between data and model predictions decreases.

Model parameters error are evaluated by eq. 3.5. Figure 3.7 and 3.8
show the errors on the short and large distance attenuation parameters
∆ak and ∆a′

k, respectively. In general higher errors are observed at the
boundary zones of the area interested by data, whereas the errors relative
to the inner zones assume quite low values. The minimum value of the
errors on the short distance attenuation parameters ∆ak is 0.0028 deg km
−1 and the maximum is 0.0187 deg km −1. The large distance coefficients
∆a′

k errors vary between a minimum of 0.0040 deg km −1 and 0.0186 deg
km −1. The average values for both errors is about 0.008 deg km −1. The
range of variation of parameters ∆a and ∆a′ is about 0.1 deg km−1 (from
-0.056 to 0.0482 and from -0.0537 to 0.0399 deg km−1, respectively). On
average the errors affects for 10-13% their value, indicating that they
really reflect lateral variations in the attenuation pattern characterizing
the territory of interest and are not due to casual errors in intensity
observations. Model parameters error are evaluated by eq. 3.5.
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Figure 3.5: Local residuals resulting from the application of the reference intensity
attenuation model.
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Figure 3.6: Local residuals resulting from the application of the tomographic intensity
attenuation model.
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Figure 3.7: Errors on the short distance attenuation coefficient ∆a.
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Figure 3.8: Errors on the large distance attenuation coefficient ∆a′.
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3.2.4 Previous intensity attenuation study

Even if the functional form of the reference model by Carletti and Gasperini
(2003) is different from the one assumed in this work (it includes an in-
tercept term and lacks a logarithmic term) the unknown of the inversion
problem (the coefficients at short and large distances) have similar mean-
ing. So the tomography results, that describe the lateral variation respect
to the average values of such coefficients, are comparable.

In general the results of this work agree with those of Carletti and
Gasperini (2003). The resolution is greater than those of the previous
intensity tomography. In fact the cell size is 25 km, whereas in the
previous work it was 50 km. Some local discrepancies between the two
models may be due to the improvement in the resolution characterizing
the second one and the different dataset used.

3.2.5 Comparison with surface heat flow

Attenuation of seismic waves in rocks depends strongly on temperature,
hence a spatial correlation between this quantity and the coefficients of
the linear terms in the intensity attenuation law is expected. As the
temperature profile in the Italian crust and upper mantle is not known
precisely, surface heat flow could be considered as an index of the thermal
state in the underlying lithosphere. Assuming a constant conductivity
and radioactive generation, the temperature would be roughly propor-
tional to the surface heat flow. This assumption is not valid for geother-
mal areas, where also the heat transport by fluid circulation is important.
However, at least at the first order, a direct correspondence between high
heat flux and high subsurface temperature could be assumed. In this sec-
tion the results of the intensity tomography are compared with the heat
flow map of Italy (Della Vedova et al., 1991; Cataldi et al., 1995) shown
in figure 3.9.

The spatial variations of intensity attenuation at short distances are
described by the parameter ∆a and show a very good correspondence
with the surface heat flow. In particular the geothermal area along the
Tuscany and Latium Tyrrhenian coast that presents qs values up to some
hundreds of mW m−2 corresponds to an high attenuation zone (negative
∆a values). Also the high heat flow observed near the Mt. Etna and
Campi Flegrei volcanic areas can be related to high attenuation zones
showed in figure 3.3. Moreover the high attenuation spot in north-eastern
Italy corresponds to a heat flow high (qs > 70 mW m−2). Low heat flow
along the Adriatic coast corresponds, at least in the northern portion, to
an high attenuation zone. Also in Northern Italy low heat flow generally
reflects high attenuation although in its Western boundary the corre-



64 CHAPTER 3. SEISMIC TOMOGRAPHY

Figure 3.9: Heat flow map of Italy, (Della Vedova et al., 1991).
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spondence is poor, probably due to the low number of rays crossing the
boundary zones.

A correspondence between the results for the ∆a′ parameter and the
heat flow distribution is less evident, although high attenuation is still
observed in the Tuscany-Latium Tyrrhenian coast.

3.2.6 Inferred attenuation structure

Lateral variations in the attenuation of seismic intensity with distance al-
low to infer the attenuation structure of the investigated area. Assuming
a linear relation between intensity and the logarithm of ground motion
amplitude, a log-linear intensity attenuation law is obtained (Appendix
A)

∆I = I0 − I =
1
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Where the first term accounts for the geometrical spreading and the
second one for the anelastic attenuation and scattering. When epicentral
intensity is calculated by the two step procedure described in Chapter 2
(I0 = IE), the log-linear model described by eq. 2.17 is obtained, with
a = π/(kTV Q ln 10) and b = n/(2kln10).

In the tomographic study of intensity attenuation, the reference model
is the log-bilinear (eq. 3.7). This could still be interpreted in terms of
seismic energy decrease caused by anelastic attenuation and geometrical
spreading. The values of attenuation parameters of the reference model
are a = −0.019 deg/km for distances shorter than 45 km and a′ = −0.011
deg/km at larger distances. These values indicate that the intensity
decrease due to anelastic attenuation at distances shorter than 45 km
is about two times that relative to longer distances. In fact the two
estimated parameter values correspond to about 5.38 and 9.26 km/deg
respectively.

The seismic quality factor Q describes the attenuation properties of
rocks encountered by seismic waves as they propagates between the earth-
quake source and the site where intensity data are observed (Appendix
A). From eq. 3.13 it can be written
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The Q values for shallower and deeper ray paths (Qa and Qa′ , respec-
tively) can be estimated from eq. 3.14 and eq. 3.15 by assuming that
ground motion amplitude doubles for an increase of one intensity degree
(k = log10 2), seismic wave velocity V = 3.5 km/s and T = 0.4 s (corre-
sponding to a frequency of 2.5 Hz, generally causing the greater damages
on buildings). From the reference model attenuation parameters average
Q estimation for the entire Italian territory could be obtained. They are
Qa = 173.2 and Qa′ = 298.9. The intensity tomography results allow
to calculate the lateral variation of seismic quality factor respect to the
average values, that added to these last ones allow to obtain the atten-
uation structure characterizing Italian peninsula showed in figures 3.10
and 3.11.

3.2.7 Discussion of intensity tomography results

In the preceding sections a tomographic study of the lateral variation
of seismic intensity attenuation properties in Italy has been developed.
The resolution achieved by using the data from CPTI04 increases with
respect to the intensity tomography by Carletti and Gasperini (2003).
In fact, such study was carried on with a grid spacing of 50 km, while in
the present one is possible to achieve a grid spacing of 25 km.

Both the marked reduction of locality residuals and their more uni-
form distribution with respect to the isotropic model, demonstrate that
the lateral variations of attenuation coefficients give a meaningful de-
scription of the properties of seismic wave propagation in the Italian
area. Also model parameter errors confirm the reliability of the results,
as, on average, the errors affect for 10-13% only the parameters values
(see section 3.2.3). Moreover by considering the spatial distribution of
errors it can be noted that the parameters estimates corresponding to
cells situated in the inner part of the area covered by data are more
reliable than those situated at the boundaries.

Attenuation of seismic waves in rocks is strongly influenced by tem-
perature, so a spatial correlation between tomography results and tem-
perature is expected. As the temperature profile in the Italian crust and
upper mantle is not known precisely, surface heat flow has be considered
as an index of the thermal state in the underlying lithosphere. Inten-
sity tomography results have been compared with the heat flow map of
Italy. The clear correlation found between the spatial variations of the
near-field (D ≤ 45 km) coefficient with the heat flow in Italy supports
the existence of a physical grounding for the presented approach.

Another interesting application of intensity tomography is to infer the
attenuation structure in terms of seismic quality factor Q. By assuming
a linear relation between the observed intensity and the logarithm of
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Figure 3.10: Decimal logarithm of seismic quality factor for shallower ray paths.
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Figure 3.11: Decimal logarithm of seismic quality factor for deeper ray paths.
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ground motion amplitude, average Q values for shallower and deeper
wave path have been calculated. Tomography results have been used to
obtain the lateral variations of the seismic quality factor with respect
to these average values. This procedure potentially allows to obtain
information about the attenuation structure for zones where instrumental
data are not available.
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3.3 Seismic quality factor tomography

Seismic waves arriving at a certain position on the Earth surface origi-
nate a motion of the medium constituting particles. The motion can be
converted into a signal by a seismometer or a geophone (in exploration
seismology). Depending on the kind of instrument used, ground motion
is recorded in terms of displacement, velocity or acceleration. Mechanical
seismometers were the first seismic recording systems. They are consti-
tuted by a frame and a mass connected to it by a spring and a damping
mechanism. Almost all seismometers are based on damped inertial pen-
dulum system. The frame of the seismometer is attached to the ground
and the pendulum is designed so that the movement of the internal mass
is delayed relative to the ground motion by the inertia of the mass. Each
pendulum system has an equilibrium position in which the mass is at rest
and to which it will return after small transitory disturbances. Ground
displacement originated by seismic waves is communicated trough the
spring to the mass, that in absence of damping would oscillate peri-
odically about its equilibrium position. The viscous damping tends to
restore the system to the equilibrium position. A mechanical or optical
system and a clock are used to produce the seismogram. If the ground
motion frequency is much lower than the resonant frequency of the un-
damped system (seismograph frequency), the seismograms record the
ground acceleration, whereas if it is much higher than the resonant fre-
quency, ground displacement is recorded. In electromagnetic instruments
the mass is attached to a coil and is subjected to a magnetic field. Its
motion produces an electrical current that is proportional to mass veloc-
ity. Also force feedback instruments are based on the same principle. In
this case a force proportional to the inertial mass displacement is applied
by a negative feedback loop to the mass to cancel its relative motion. An
electrical transducer converts the mass motion into an electrical signal to
asses how much feed back force has to be applied. The amount of force
required to hold the system at rest corresponds to ground acceleration.

Recorded ground motion is described in time domain by seismograms.
These are two dimension plots with one axis representing time and the
other the ground motion amplitude. A consequence of this representation
is that, historically, the attention of seismologists has been focused on
kinematic properties of wave motion (arrival time, travel time, velocities).
Because of its lower reliability of amplitude measures, it contributed less
to the early developments of seismology. With the introduction of mag-
nitude scale in 1930’s greater attention was paid to amplitude measures.

From direct analysis of seismograms the existence of different wave
types and the evidence of common characteristics of the records relative
to the same source regions were noted. This leaded to the development
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of waveform analysis, that works entirely in the time domain, generally
aiming to associating certain observed wave characteristics with any given
station, depending on the epicentral region.

Time domain approach is characterized by ease of measurements and
interpretation, but is not very suitable for comparing data relative to the
same event recorded at different positions. As seismic waves are a physi-
cal phenomenon which fluctuate in space and time, frequency (and wave
number) would be more informative than time as independent variable.
Unlike time domain representation, frequency domain allows to com-
pare different records unambiguously. Besides to be more informative,
the frequency-domain representation is often simpler to handle computa-
tionally. The representation of a function in frequency (or wave number)
domain is called spectrum and will be defined in details in section 3.3.1.

3.3.1 Spectral analysis

Given an arbitrary function f(t) representing a measured physical quan-
tity, its Fourier transform (or Fourier spectrum) is defined as

F (ω) =
∫

∞

−∞

f(t) exp(−iωt) dt, (3.16)

where ω is the angular frequency, in radians per second,

F (ω) = a(ω) − ib(ω) = |F (ω)| exp[iΦ(ω)], a(ω) =
∫

∞

−∞

f(λ) cosωλ dλ,

and b(ω) =
∫

∞

−∞

f(λ) sin ωλ dλ.

The inverse Fourier transform is given by

f(t) =
1

2π

∫

∞

−∞

F (ω) exp(iωt) dω . (3.17)

Eq. 3.16 expresses the Fourier analysis of f(t) and corresponds to a
mapping of the considered function from time to frequency domain. Eq.
3.17 express the Fourier synthesis, i.e. synthesize the various spectral
components F (ω) into the original function f(t).

The function F (ω) corresponds to a mapping of the considered func-
tion from time to frequency domain. By virtue of the orthogonal prop-
erties of trigonometric functions, exp(−iωt) acts like an operator picking
out from f(t) only components with frequency ω. More intuitively, this
means that the function f(t) is represented by a sum of sine wave com-
ponents characterized by a certain amplitude, phase and frequency (ω).

In particular, |F (ω)| = [a2(ω)+b2(ω)]
1

2 is the amplitude spectrum and

Φ(ω) = tan−1[− b(ω)

a(ω)
] + 2nπ for n = 0,±1,±2, ... is the phase spectrum.

Amplitude and phase spectra describe respectively the amplitude and the



72 CHAPTER 3. SEISMIC TOMOGRAPHY

phase associated to the various frequencies characterizing the sinusoidal
waves involved in the summation.

Fourier transform method assumes that the analyzed function as-
sumes a null value outside the integration interval. This condition is
satisfied by transient signals and in particular by seismic waves. In gen-
eral a seismograms and its properties are the result of source action,
medium properties and receiving seismograph characteristics and could
be explained in terms of filtering. The input signal generated by seismic
source is subjected to the action of a certain number of filters whose re-
sult is the recorded output signal. This could be described in frequency
domain as

S(ω)H1(ω)H2(ω)...Hn(ω) = X(ω) , (3.18)

where S(ω), H1(ω), ..Hn(ω) describe source and medium properties and
X(ω) is the spectrum of the recorded signal x(t). Eq. 3.18 can be split
in two parts, i.e. the amplitude spectrum

|S(ω)||H1(ω)||H2(ω)|...|Hn(ω)| = |X(ω)| , (3.19)

and the phase spectrum

ΦS(ω) + ΦH1
(ω) + ΦH2

(ω)... + ΦHn
(ω) + 2mπ = ΦX(ω) (3.20)

m = 0,±1,±2, ...

When a certain number of receivers record body waves produced by
various sources, eq. 3.18 can be rewritten by considering more in detail
the path effects affecting the seismic signal

A(f)ij = S(f)iK(f)jI(f)jGij exp (−πftij
∗
) , (3.21)

where f is the frequency (in cycles per second) and the superscripts i
and j identify respectively the source generating the seismic waves and
the receiver that recorded them. The term (f)i is the source spectrum
and is only influenced by source properties. K(f)j accounts for the site
effect. I(f)j is the instrumental response and describes the action of the
recording system on the signal. Gij accounts for geometrical spreading,
it is frequency independent and it is determined by the distance traveled
by seismic waves to arrive from source to receiver. The exponential term
exp(−πftij

∗
) accounts for anelastic attenuation along the path between

the i -th source and the j -th receiver, with

tij
∗

=
∫

ray

1

Q(r)v(r)
dr . (3.22)

Q(r) is the seismic quality factor, v(r) is the seismic velocity.
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3.3.2 Spectral ratio method

Eq. 3.21 evidences the various factors that influence the recorded seismic
signal. Usually both source and path effect are unknown, and cannot be
determined unambiguously by a single observation A(f)ij. To overcome
this problem various measurements could be compared. These should be
taken under similar conditions so that most of the factors of eq. 3.21 do
not vary between the different data and a single factor can be isolated
and studied. This procedure is referred to as equalization. Spectral ratio
method is an example of equalization procedure.

Taking the natural logarithm of eq. 3.21 gives

ln A(f)ij = ln S(f)i + ln K(f)j + ln I(f)j + lnGij − πftij
∗

(3.23)

The spectral ratio could be defined as the difference between the loga-
rithm of the observed amplitude spectrum (ln A(f)ij) and the average of
the logarithms of the amplitude spectra recorded at the same receiver

∆ ln A(f)ij = ln A(f)ij − 1

Nj

Nj
∑

l=1

ln A(f)lj (3.24)

= ln S(f)i + ln K(f)j + ln I(f)j + ln Gij − πftij
∗

+

− 1

Nj

Nj
∑

l=1

(ln S(f)i + ln K(f)l + ln I(f)l +

+ ln Gil − πftij
∗
)

As site effects and instrumental response are the same for all the spectra
relative to the same receiver, the corresponding terms disappear from
eq. 3.24. Spectral ratio method could be applied to seismic exploration
data. In this case the sources are not earthquakes and generate almost
the same signal for different shots. In this case the source spectrum is the
same for all data and also the source terms in eq. 3.24 can be deleted,
giving

∆ ln A(f)ij = lnGij − 1

Nj

Nj
∑

l=1

ln Gij − πf



tij
∗

+
1

Nj

Nj
∑

l=1

tlj
∗



 (3.25)

As the first and the second term on the right side of eq. 3.25 are frequency
independent, the spectral ratio follows a linear trend with frequency

∆ ln A(f)ij = lij + mij
1 f , (3.26)

with

lij = ln Gij − 1

Nj

Nj
∑

l=1

ln Gij (3.27)
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mij
1 = −π



tij
∗

+
1

Nj

Nj
∑

l=1

tlj
∗



 (3.28)

The slope m1
ij could be calculated (along with the intercept lij) by linear

regression and by eq. 3.22 allows to obtain information about the velocity
and attenuation structure of the investigated area.

3.3.3 Formulation of the tomographic problem

The area of interest could be parametrized with a grid constituted of N
cells: each cell is characterized by a seismic velocity Vk and a seismic
quality factor Qk. Eq. 3.22 can be discretized as

tij
∗

=
N
∑

k=1

rij
k

VkQk
, (3.29)

where rij
k is the distance traveled in the k-th cell for the observation

relative to the j-th receiver and the i-th source. From eq. 3.28 we can
be obtain:

mij
1 = −π

N
∑

k=1

rij
k

VkQk
−

Nj
∑

l=1

N
∑

k=1

rlj
k

VkQk
(3.30)

= −π
N
∑

k=1

1

QkVk



rij
k −

Nj
∑

l=1

rlj
k





(3.31)

where Nj is the number of sources for the j -th receiver.
By inverting simultaneously for velocity and attenuation, the number

of unknown could be too high in comparison with the number of data,
and may lead to unreliable solutions. A fixed velocity model could be
assumed and only the attenuation structure is calculated. In this case,
the linear system representing the inverse problem (eq. 3.1) becomes

−mij
1

π
=

N
∑

k=1









rij
k

Vk
−

Nj
∑

l=1

rlj
k

Vk





1

Qk



 (3.32)

To use the same inversion scheme applied in Chapter 2, eq. 3.32 can be
written in matrix form by defining

dn = −mij
1

π

mp =
1

Qk

Gnp =
rij
k

Vk

−
Nj
∑

l=1

rlj
k

Vk

(3.33)
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At this point, model parameters mp can be estimated by solving the
inverse problem dn = Gnpmp (see section 3.1).

3.3.4 The data set

The data have been recorded in the framework of the seismic reflection
profile Alcudia. In particular, the data used to calculate the tomographic
model cover a length of about 11 kilometers along the national road CM
403, in the province of Ciudad Real, (Castilla-La Mancha, Spain) between
the town of Ventas con Peña Aguilera and the Torre Abraham reservoir.

The sources were four 22 ton Vibroseis originating a signal with fre-
quency varying from 8 to 80 Hz and whose duration is 60 s. The four
Vibroseis acted contemporary in each vibration point. The distance be-
tween vibration point was about 70-100 m. The station spacing was
35-50 m, and each station was composed of 10-12 geophones. In figure
3.12 the first and the last of the 17 vibration point are represented with
stars whose label are respectively 01 and 17. The geophones were moved
along the red line as the four Vibroseis moved from one shooting point
to the following one.

Figure 3.12: Geographic position of sources and receivers used to record the data (see
text for more details).
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The seismic profile crosses different rock types in particular conglom-
erates, sands and gravel layers whose thickness is about 10 m, which over-
lie shales, quarzites, tabular quarzites. Figure 3.13 represents a schematic
geologic section of the zone interest by the seismic profile, deduced by
geological information available for the zone of interest (IGME, 1986,
1970).

Figure 3.13: Rock types characterizing the interest area. Deduced from IGME (1986)
and IGME (1970).

3.3.5 Data analysis

In order to apply spectral ratio method, data are processed using various
utilities of the CWP Seismic Unix package (Cohen and Stockwell, 2002),
which allow to calculate the amplitude spectra of each observation. Then
the slopes mij

1 of the regression line between spectra and frequency that
are necessary for the seismic quality factor tomography are calculated.

To evaluate the attenuation properties of the investigated area in
terms of inverse of P-waves seismic quality factor, travel times of first
arrivals are necessary. Travel time picking is done by the utility Xpicker
from the Seismic Unix package.

Observational data are necessary recorded in a limited time interval.
The consequence of a limited data window is that a correct spectrum is
impossible to obtain due to the finite integration interval. This causes
a smoothing of the computed spectrum and a lack of spectral resolution
that depends on time window length. This effects can be mitigated by
modifying the window shape. To minimize the spectral distortion, the
window w(t) has to be broad and without sharp corners. Using not a
particular window is equivalent to applying a rectangular (box-car) win-
dow, that does not cause signal distortion in time domain but leads to
strong distortions in frequency domain. Windows that taper off gradu-
ally towards both ends of the record interval under investigation cause
some distortion in time domain but mitigate the distortion in frequency
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domain. There is no straight-forward procedure to derive the shape of
the best window and generally it is derived by trial and error (Bath,
1974).

A linear taper that forces the amplitude values to get close to zero
at the time window bounds is chosen. The taper is applied during a cer-
tain time interval following the window starting time and preceding the
ending time. Tapering time interval and time window length are chosen
empirically. A compromise time window length avoiding the inclusion of
S-wave in the record but also providing the sufficient level of resolution
is desired. The values of 0.10 , 0.15 , 0.20 for the window length and
0.015, 0.045, 0.055, 0.060, 0.065 and 0.075 have been considered. From
the visual analysis of the obtained spectra a time window length of 0.015
s and a tapering time of 0.0055 were chosen.

If Fourier spectra are calculated for the raw traces, a pronounced
pick at a frequency of about 50 Hz can be noted sometimes. This is
probably related to anthropic activity, and can be eliminated by using
the Seismic Unix utility Suramp to apply a linear filter in time domain,
which becomes zero as frequency get close to 50 Hz.

After filtering, for each trace the logarithm of the Fourier spectrum
ln A(f)ij is recomputed and the corresponding spectral ratio ∆ ln A(f)ij

for each observed trace is calculated. Figure 3.14 illustrates the procedure
for the trace referred to the first source recorded at the 1250-th receiver.

Once the amplitude spectra have been calculated, intercepts qij
1 and

slopes mij
1 of the straight lines that describe the trend between spectral

ratio and frequency for each j-th receiver and i-th source are estimated
by least squares method (figure 3.15)

To describe the lateral variations of seismic waves attenuation, defin-
ing the geometry of the problem is necessary. As data concern a seismic
profile, with sources and receivers disposed approximately along a line
(figure 3.12), the tomographic problem is bi-dimensional. One dimension
is the depth (z) and the other (x) is defined fitting a straight line from the
sources and receiver geographic coordinates. The x coordinate of sources
and receivers is calculated by projecting the points on the straight line.
Sources and receivers elevation depends on topography. The maximum
elevation point corresponds to the zero of z axis.

The area of interest is rectangular and measures about 1 km in dept
and 11 km in length. It is parametrized trough a rectangular grid of 10
x 113 squared cells with side length of 0.1 km. Each cell of the grid is
characterized by a velocity and a Q-value that are constant inside the
cell.

A laterally homogeneous velocity model is assumed. It is constituted
by 10 horizontal layers whose velocity increases with depth from 3.025 to
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Figure 3.14: Amplitude spectrum computation for trace number 1250 and source 1.
Seismic trace (red), with signal amplitude approaching to zero at time window bounds
due to linear tapering. Amplitude spectrum (green) and logarithm of amplitude
spectrum (blue).
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Figure 3.15: Examples of linear fit between spectral ratio and frequency.

3.475 km/s (figure 3.16). The distance traveled by the waves in each cell

Figure 3.16: P -wave velocity model.

can be calculated by the program Ray Trace (Carbonell, personal com-
munication) if the geometry of the problem, the velocity model, the shots
and receivers positions are known. Figure 3.17 shows the ray coverage
of the zone of interest. The inversion problem is solved using the same
algorithm applied to intensity tomography. The data refers to depths
lower than 1 km and refer to a wide range of rock types (see figure 3.13)
that would correspond to different Q values. However, on the basis of
the average Q values for P -waves presented in literature (e.g. Cichowizc
et al. (1990), Spottiswoode (1993), Feustel et al. (1993)) an average value
of 300 is chosen for reference.

The choice for the damping value influences the weight of the reference
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Figure 3.17: Ray coverage. Cells crossed by at least one ray are in pink. Sources are
represented with blue points.

model in the evaluation of model parameters. Different damping values
have been considered, ranging from 0.01 to 20 and a value of λ = 0.5
is chosen. Figure 3.18 shows that as the damping value increases, the
solutions are constrained to assume values closer to the reference model.

Figure 3.18: Effect of different choices for the damping value.

3.3.6 Q-tomography results and discussion

Figure 3.19 shows the seismic quality factor obtained. Close to the
sources position, strong variations of the seismic quality factor are ob-
served. Moving away from such zone, the range of variations decreases
but their spatial frequency is high and does not allow to describe clearly
the attenuation structure. Lateral variations in attenuation properties
do not seems to be related to the rock type spatial distribution shown in
figure 3.13.

Differently from the intensity tomography case, for the Q tomography
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Figure 3.19: Q-tomography results.

it is not possible calculate the errors by eq. 3.5 because of negative com-
ponents in the matrix Gnp of eq. 3.33. A possible explanation of the lack
of a clear attenuation structure is that the noise in recorded seismic trace
causes strong fluctuations of the spectral ratio with frequency, hiding its
expected linear trend with frequency.

The spectral ratio method is based on the assumption that attenua-
tion is frequency independent. This is a common assumption for earth-
quakes frequency range (Aki and Richards, 2002), but it could not be
valid for the frequency band involved in exploration seismology and in
particular for the 8-80 Hz range covered by the sources related to the
data used in the present work.

Another possible explanation is that, for the range of distances con-
sidered in this study, the geometrical spreading effect prevails on the
anelastic attenuation in causing the seismic wave attenuation.
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Chapter 4

CONCLUSIONS

In chapter 2 the attenuation pattern of macroseismic intensity in Italy
has been analyzed to develop an attenuation relationship for the prob-
abilistic seismic hazard assessment in Italy. Hence, major attention has
been paid to the characterization of the attenuation relationship in its
complete probabilistic form. Moreover, several open issues concerning
seismic intensity and its use as shaking parameter have been reconsid-
ered.

The intensity that is observed at a certain site is assumed to depend
on source strength and on its distance from source, which is calculated
assuming a unique hypocentral depth for all the events. Differently from
previous intensity attenuation studies (Gasperini, 2001; Albarello and
D’Amico, 2004), the average hypocentral depth is deduced directly from
data. The value obrained is h = 3.91 ± 0.27, which is significantly shal-
lower than the average hypocentral depth of strong Italian earthquakes
(about 10 km) but quite similar to that (5.6 km) deduced by the at-
tenuation of PGA (Sabetta and Pugliese, 1987). Probably, it reflects a
shallower point from which seismic energy appears to be radiated at close
sites, rather than the true (and deeper) hypocenter.

In the present work the parameter that describes the source energy
is estimated from the whole macroseismic field available for each earth-
quake. In most previous analyses, this role was played by the epicentral
intensity I0, which is usually determined a priori by catalog compilers.
By contrast, in this work, a new estimate of radiated energy in terms
of the expected intensity at the epicenter IE for all earthquakes is intro-
duced. As it is deduced by considering the entire macroseismic field and
not from a single or few intensity observations, it is less influenced than
I0 by local site effects or intensity assessment errors.

A stability analysis shows that the only parameter seriously affected
by arbitrary assumptions underlying the modeling approach is the aver-
age source depth h. However, its variability has little influence on the
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other attenuation parameters and the standard deviation of the regres-
sion and thus is not relevant for computing seismic hazard. Moreover,
the stability analysis showed that uncertain intensities (e.g. III-IV) be-
have similarly to standard intensity estimates and are consistent with
semi-integer intensity values (e.g. 3.5). This could justify the use of
semi-integer values in simplified approaches.

The attenuation model determined in this chapter enables a number
of difficulties relative to previous estimates to be overcome. As the rele-
vant standard deviation is lower than those obtained in previous works
(Gasperini, 2001; Albarello and D’Amico, 2004) and in particular is com-
parable to the intrinsic standard deviation related to the scattering of
original data (aleatory uncertainty), overestimation of seismic hazard is
prevented.

The best-fit values and standard errors of attenuation coefficients are
a = −0.0086±0.0005 for the linear term, b = −1.037±0.027 for the loga-
rithmic one. The linear terms significantly differs from 0. This indicates
that the contribution of anelastic dissipation to intensity attenuation is
not negligible with respect to geometrical spreading. The coefficient of
the logarithmic term, close to -1 for the log-linear model and around
-0.8 for the log-bilinear model, implies that the geometrical spreading
exponent should range from -0.70 to -0.35, depending on the attenuation
model (log-linear or log-bilinear) and on the assumed coefficient of the
linear relation between intensity and the logarithm of PGA. This con-
firms that surface waves (and perhaps reflected and refracted phases),
rather than body waves, are likely to have a dominant role to play in
determining the seismic intensity observed at a site.

The decision to consider a unique attenuation pattern for the whole
Italian area could be considered a basic limitation of the previous anal-
ysis. In fact, the peculiar geostructural setting of the Italian peninsula
should reflect differentiated attenuation patterns and, in this respect, the
attenuation relationship here obtained cannot be considered as a defini-
tive characterization of macroseismic fields in the study area. However,
the definition of such a reference relationship is a basic preliminary step
towards a regionalization of the area under study by using objective
quantitative criteria. In chapter 3 the lateral variations in the attenua-
tion of seismic intensity are studied by applying the tomographic method.
The unknown parameter values are estimated by damped least squares
method. Although the functional form of the attenuation law is chosen
on the basis of empirical criteria between different options, the good cor-
relation of the attenuation coefficients estimates with the surface heat
flow map of Italy demontrate that also the log-bilinear model is physi-
cally grounded. The decrease of the absolute value of the coefficient of
the linear term in the refrence model from -0.0187 to -0.0108 for dis-



tances longer than 45 km may be due to subcrustal path of the waves
that influence the intensity observed at those distances. The tomogra-
phy results describe the lateral variations of the coefficients of the linear
term respect to the reference model values. The term proportional to
the logarithm of the distance is considered instead constant, as it can
be related to geometrical spreading, which is assumed independent on
lateral variations in the geostructural features of the investigated area.
The reliability of the tomography result is confirmed by the estimations
errors, which affects on average for 10-13% the parameters values.

An additional confirmation of good reliability of results is given by
the analysis of residuals. Their values decrease with respect to those
associated to the average reference model, moreover their spatial dis-
tribution is more uniform in comparison with those resulting from the
isotropic model. The remainig discrepancies between observations and
prediction of the tomographic model may be caused by topography and
local site characteristics. In fact in the considered case the resolution of
the tomography is 25 km, whereas the scale of such local variations may
be smaller than the cell area.

Intensity data temporal coverage for Italy spans from 1200 A.D. to
present days, whereas the time interval covered by instrumental data is
of the order of few tens of years. Tomography results can be used to
integrate attenuation studies based on instrumental data, expecially for
zones characterized by a low seismicity rate. Assuming a linear depen-
dence between intensity and logarithm of ground motion, lateral variation
of the seismic quality factor value have been considered.
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Appendix A

seismic attenuation law and

ground motion amplitude

Seismic wave amplitude generally tends to decrease with distance from
source. In particular, geometrical spreading and anelastic dissipation are
relevant in determining seismic waves attenuation. Moreover, multipath
scattering across crustal discontinuities and near-source effects may affect
significantly the observed wave amplitude.

Geometrical spreading is the seismic wave energy decrease related to
the wavefront surface increase. In fact as wavefront expands with time,
the total energy on the surface remains constant, whereas the energy
per unit surface area decreases. Wavefront of body and surface waves
could be assumed respectively spherical and cylindrical, at least at the
first order. This implies that wave energy decreases as seismic wave
propagates proportionally to R−2 in the first case and to R−1 in the
second one. As wave amplitude is proportional to the square of seismic
energy, it depends on distance as R−1 for body waves and R−0.5 for
surface waves.

Another possible cause of attenuation of a seismic waves is the in-
teraction with boundaries between materials characterized by different
seismic velocity. For example, when compressional (P) or shear waves
that vibrates in the vertical plane (SV) encounter a velocity boundary,
they split in four derivative waves (the refracted P, refracted SV, reflected
P and reflected SV) whose geometry depends on the Snells law. The split-
ting of a single incident wave in two or more reflected and refracted ones
implies that its energy will be partitioned between the derived waves.

Geometrical spreading and reflection and transmission of energy at
boundary would be the only mechanisms controlling the amplitude of
seismic pulse if the Earth would be perfectly elastic. This is not the case,
in fact part of the seismic wave energy it is lost due a variety of phenom-
ena collectively described as internal friction or anelastic attenuation.
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MOTION AMPLITUDE

A phenomenological model for seismic attenuation is represented by a
spring attached to a mass sliding on a surface. The anelastic attenuation
of amplitude as function of distance x is given by

A(x) = A0 exp

(

− fπ

Q
an

V
x

)

,

where A0 is the amplitude at distance x = 0, V is the velocity, f is the
frequency and

1

Q
an

= − ∆E

2πE
.

Q
an

is the seismic quality factor and represents the fractional energy loss
per cycle of oscillation.

Earth interior presents small scale heterogeneities. When a seismic
wave interact with such irregularities, high frequency wave field is parti-
tioned in a sequence of arrival called coda waves. This could decrease the
energy of direct waves, shifting the energy back in to the coda arrivals.
The wave interaction with small scale heterogeneities involve the con-
ventional effects of refraction, reflection, conversion and diffraction that
characterize the propagation of seismic waves in an elastic Earth, but the
resulting overall wave field is so complex that individual arrivals can not
be associated to singles velocity discontinuities, so they are described by
an exponential attenuation quality factor Q

sc
. As it is difficult distin-

guish between scattering and anelastic dissipation both phenomena could
be summarized by a unique seismic quality factor Q (Lay and Wallace,
1995).

Assuming that geometrical spreading, anelastic attenuation and scat-
tering are the main causes of seismic wave attenuation, the amplitude
decrease with distance R can be described by

A(R) = A0R
−n/2 exp

(

− πR

TQV

)

(A.1)

where the term R−n/2 accounts for geometrical spreading with n = 2
for body waves and n = 1 for surface waves and the exponential term
summarizes the effects of anelastic attenuation and scattering.

Although seismic intensity is an index based on qualitative description
of seismic effects, it may be related to ground motion amplitude. Cancani
(1904) proposed a linear relation between intensity and the logarithm
peak ground acceleration, and Sieberg compiled the Mercalli-Cancani-
Sieberg (MCS) macroseismic scale aiming at a linear dependence between
these two quantities. Empirical investigations in many parts of the world
seem to confirm the existence of such a linear relation (Margottini et al.,
1992; Boatwright et al., 1994; Wu et al., 2003; Kaka and Atkinson, 2004).
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Assuming that the source depth is h, I0 could be defined as the in-
tensity at the epicenter (D = h). In this case the intensity attenuation
law could be formulated in terms of deviation ∆I between epicentral in-
tensity I0 and intensity observed at a certain distance from the source
I(D). Assuming that

log10 A = l + kI , (A.2)

and substituting eq. A.1 gives

∆I = I(h) − I(D)

=
1

k
[log10 A(h) − log10 A(D)]

=
1

k
[
n

2
log10

D

h
+ log10 e

π

TV Q
(D − h)] (A.3)

Assuming that one intensity degree corresponds to a doubling of the
amplitude (Cancani, 1904), gives

1

k
=

1

log10 2
≈ 3 .

Another possible assumption is that intensity is mainly related to body
waves, whose spreading coefficient is n = 2. Substituting in A.3 gives
the attenuation law proposed by Koveslighety (1906)

∆I = I0 − I = 3 log10

D

h
+ 3α(log10 e)(D − h) (A.4)

with α = π/(TV Q).
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