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Abstract

In the last decades, there has been a huge evolution in the development and

application of Derivative Free Optimization (DFO) techniques. One of the

major emerging DFO application fields are the optimal design of industrial

products and machines and the development of efficient computer software.

This Ph.D. thesis focuses on the exploration of the emerging DFO techniques,

oriented especially in the optimization of real-world industrial problem. In

this thesis is firstly presented a brief overview of the main DFO techniques

and application. Then, are reported two works describing the development of

DFO approaches aimed to tackle the optimization of Computer Vision Algo-

rithms (CVA), employed in the automatic defect detection of pieces produced

by a real-world industries. At the end, are discussed the conclusions related

to the results obtained, their potential additional applications, and the fur-

ther promising area of theoretical research.
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Chapter 1

Introduction

1.1 Motivation

In this dissertation we examined the most known Derivative Free Optimiza-

tion (DFO) approaches focusing on their application to a real world industrial

problem, such as the emerging field of CVA employed in automated defect

detection. The industrial relevance of this application area is highly increas-

ing thanks to the great progress achieved by CVA accuracy and reliability.

The fine tuning of the CVA is highly time consuming when done manually,

thus enhancing the need of reliable and automated procedures to define the

optimal parameters in various use conditions. To the best of our knowledge,

no specific optimization method has been proposed in the literature for this

type of applications. This make the parameter tuning of CVAs an interesting

1



class of emerging problems. The fundamental motivations of this thesis are

thus resumable as follows.

• Analyze the state of the art of DFO approaches, in order to verify which

class of them is the more suitable in order to tackle the CVA tuning

problem.

• Search for the study and development of an effective optimization algo-

rithm within the chosen family of approaches, able to effectively tackle

the CVA tuning problem and to take advantage, where possible, of its

specific characteristics.

• Conduct a deep on-field experimentation of the developed algorithm,

in order to achieve representative results able to validate the proposed

approach and verify if it is suitable for this class of problems.

1.2 Thesis Contributions

The original contribution of this dissertation concerns (i) a survey of the

state of the art of DFO techniques, (ii) the presentation of a competitive DFO

approach able to tackle the CVA tuning problem, and (iii) the demonstration

that DFO, with application in CVA optimization, constitute a very effective

and promising methodology.
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1.3 Thesis outline

• Chapter 2 is focused on a brief introduction to the Derivative Free Op-

timization. An overview is given of the main resolutive methodologies.

Some example o the main DFO application are also presented.

• Chapter 3 describe the optimization of a Computer Vision Algorithm

trought an implemented DFO approach. CVA are widely used in sev-

eral applications ranging from security to industrial processes moni-

toring. In recent years, an interesting emerging application of CVAs

is related to the automatic defect detection in some production pro-

cesses for which quality control is typically performed manually, thus

increasing speed and reducing the risk for the operators. The main

drawback of using CVAs is represented by their dependence on numer-

ous parameters, making the tuning to obtain the best performance of

the CVAs a difficult and extremely time-consuming activity. In ad-

dition, the performance evaluation of a specific parameter setting is

obtained through the application of the CVA to a test set of images

thus requiring a long computing time. The problem falls into the cate-

gory of expensive Black-Box functions optimization. Here, is described

a simple approximate optimization approach to define the best param-

eter setting for a CVA used to determine defects in a real-life industrial

3



process. The algorithm computationally proved to obtain good selec-

tions of parameters in relatively short computing times when compared

to the manually determined parameter values.

• Chapter 4 describe an application of Sequential Approximate Op-

timization (SAO) to solve a Black-Box Optimization Problem arisen

during the calibration of several Computer Vision Algorithms (CVAs)

used in the defects detection of pieces produced by an industrial plant.

The performance of the CVAs depend on numerous parameters, mak-

ing the search for their optimal configuration extremely difficult. In

addition, linear constraints involving parameters are present, and some

of these can be of integer type, thus complicating both the selection of

the initial Design of Experiment necessary to initialize the search and

the subsequent parameter optimization phase. The performance eval-

uation of a specific parameter configuration is obtained applying the

CVA to a test set of images for which the defectiveness state is known.

The comparison between the actual defectiveness state of the items and

the relative CVA’s evaluations produces the true and false positive de-

tection ratio. These ratios are then linearly combined through weights

to obtain a unique objective function, that turned out to be highly

multimodal with respect to the input parameters. Moreover, since the
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evaluation of the objective function is computationally costly due to the

high dimension of the dataset and the CVAs long running time itself,

the problem falls into the category of Expensive Black-Box Functions

Optimization. To tackle this, being the objective function evaluation

not a monolithic experiment but a series of different images elabora-

tions, an effective time-saving strategy based on partial elaborations

of the images dataset is implemented. In this chapter it is described

the SAO approach developed to define the best parameter setting for

different CVAs used to detect defects in a real-life industrial process.

The overall approach is extensively tested first on an analytical bench-

mark function and then on data coming from a real-world application,

experimentally proving to be able to obtain good parameters sets in

relatively short computing times.
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Chapter 2

Overview of Derivative-Free

Optimization Approaches and

Applications

2.1 A short introduction to DFO

Derivative-Free Optimization is identified in literature as the collection of

methods, within Operational Research, that does not make use of the in-

formation about the derivative of the Objective Function f(·) to search the

optimal solution. In the target problem of the optimization typically the

derivative is not available. Examples of such class of problem are those one

in witch f(·) is computed by:
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• Running of computer code;

• Performing a physics experiments;

• Running (software) simulations.

In this class of problems, due to their nature, several complicating factors

related to the objective function may occur:

• It can be multimodal;

• Its value can be affected by noise;

• Its evaluation can be computationally expensive (time-costly).

Regarding DFO applications, they have grown exponentially in the last

years, and nowadays a lot of industrial problem can be solved only with

Derivative-Free Algorithms (DFA). This because the associated objective

function derivative, and even sometimes the analytical expression fo the ob-

jective function itself, are unknown. A detailed overview of the main practical

applications of DFO, with particular attention to the industrial field, is re-

ported in Section 2.5. In the following, a brief overview of the main DFO

approaches is presented.

As well described by Rios and Sahinidis [1], the study of DFO techniques

dates back many decades, starting with the work of Nelder and Mead [2] and

8



their simplex algorithm. A great number of approaches were presented in

literature till nowadays, for an exaustive classification of them we refer the

reader to [3].

DFAs can be mainly classified by three characteristics. The first one regards

which part of the search domain is considered by the DFA at each itera-

tion: depending on this, we can have local or global algorithms. The second

characteristic regards if a Surrogate Model (SM) is used in the search pro-

cess or not. As described later in Section 2.4, a SM is an approximation

of f(·) representing the relation between its value and the problem’s vari-

ables. A SM-based DFA builds and uses the SM to guide the search process,

whereas a direct DFA determines directly the domain points to sample. A

complete overview of Direct Search approaches can be found in [4]. The last

characteristic regards if the optimization process is deterministic or, instead,

stochastic-based decision are taken during the iterations. The following sec-

tions will provide a brief summary of the most known DFAs in literature that

fall in the above described categories.

2.2 Local DFA

Local Search Algorithms (LSA) are a class of optimization algorithms able

to perform the search only in a limited part of the domain, thus are not able
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to perform a global optimization and therefore cannot guarantee to reach

the global optimum. This because the candidate solution identified at each

iteration relies only in a neighborhood of the previously sampled ones. LSA

typically present an easier architecture and lower computational cost than

the global ones. LSA, in the end, can even be sub-classified in direct and

SM-based.

Nelder-Mead simplex algorithm is a direct LSA introduced in 1965

(see [2]). At the beginning, a set of points that form a simplex in the domain

space is selected. Then, at each iteration, the objective function at each

corner is computed and the corner with the worst one is selected. This is

then substituted by another vertex, that is searched in the domain in such

a way that the resulting polytope is still a simplex. Indeed, the core of the

algorithm is to try to relocate the simplex at each iteration, reaching vertex

points that allow to achieve the best objective function value. As to the

convergence property of the method, since McKinnon [5] proved that it can

stop at a point with non zero gradient even when optimizing a convex f(·),

successive improvement of the method were proposed in order to prevent

stagnation. Tseng [6] proposed a simplex based method that guarantee a

global convergence with convex functions.
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Trust-region methods are SM-based LSA techniques. These make use

of a surrogate model in order to represent only the part of the domain, called

the Trust Region (TR), where the search process, iteration after iteration,

focus on. The typical model used is the polynomial (often quadratic) inter-

polations. The core characteristic of this methods is that, at each iteration,

the size of the TR (its radius δ) can be modified. This decision is based

on the level of reliability that the SM is supposed to have. Being xk the

incumbent solution at iteration k, at iteration k + 1 the minimizer x∗ of the

SM predictor s(·) inside the TR is evaluated:

x∗ = arg min||x∗−xk||≤δ s(x
∗) (2.1)

then a check is performed in order to decide if the SM representing the TR

can still be considered reliable or not. This decision is taken by computing

the ratio r of the actual reduction on the f with respect to the predicted one:

r =
f(x∗)− f(xk)

s(x∗)− s(xk)
(2.2)

Fixed a lower threshold l and an upper threshold u, three possibility can

occur: 1) r < l 2) r ≥ l ∧ r < u 3) r ≥ u. In the case of the former,

x∗ is rejected and δ is reduced, since r suggest that the TR is not reliable
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and must be focused on a lower space. In the second and in the latter, x∗ is

accepted as the new incumbent solution:

xk+1 = x∗ (2.3)

Moreover, in the latter case, δ is augmented expanding the TR. The various

proposed TRM differs in the choose of the SM, the thresholds, and the way

in which the TR is redimensioned each times. In literature, two famous

approaches using a quadratic surrogate model are presented in [7] and [8].

2.3 Global DFA

As for LSA, even Global Search Algorithms (GSA) can be sub-classified.

Beside they can make use of a SM or not, and at the same time they can

be deterministic or stochastic. A brief overview of the main approaches in

literature is now presented.

The DIRECT algorithm is a direct and deterministic GSA proposed by

Jones in the 1993 (see [9]). It belong to the class of algorithms that sys-

tematically subdivide the search space using a particular branching scheme.

DIRECT, in particular, not allows the presence of constraints between the

12



design variables and, thus, consider as feasible all the hypercube given by

their lower and upper bound. This hypercube is recursively subdivided in

hyper-rectangles in such a way that they are not overlapping each others

and the union of their volume entirely cover the domain. At each iteration,

DIRECT decide which of the current existing rectangles must be split in

two. For every new generated rectangle, its center point c is evaluated. The

decision of which rectangles must be split is taken basing on two criteria: (i)

the rectangle size (ii) the more or less promising values of its base points.

The former criterion represents exploration, while the latter exploitation. DI-

RECT guarantee to reach a point arbitrarily close to the global optimum if

sufficient time is given and no constraint to the partitioning procedure are

imposed.

Genetic Algorithms are a direct and stochastic family of approaches that

aims to reply the natural selection and reproduction processes assuring the

survival of the fittest individual in a population. In this view, the sam-

pled points represents the individuals, and the value of the variables at each

points represents the individual’s characteristic, i.e., genes. Genetic algo-

rithms (GA) generate, at each iteration, a new set of s individuals (i.e. can-

didate points) and delete another one of the same size in order to maintain

constant the size n of the population. Tree key operation determine the way

13



in which the new individuals are generated: (i) Selection (ii) Crossover and

(iii) Mutation. With Selection, a subset of 2s individuals are chosen as ”par-

ents” for the creation of the next generation. The probability to be chosen

is a function of the fitness value (i.e. objective function) of the points. In

this manner, the next generation will be generated basing on the current

most fitting elements. With Crossover, form each couple of parents two new

individual are created, by randomly mixing the genes of the parents under a

specified rule. With Mutation, a portion of the genes of the new individuals

is flipped with a specified, and typically low, probability. While Selection

and Crossover tends to concentrate the search near the best solution sam-

pled (exploitation), this leading to local optimum, Mutation determine the

exploration of the search space. GA were initially proposed by Holland (see

[10]) and a huge amount of contributions followed.

Response Surface Methods (RSMs) is a collection of SM-based tech-

niques, typically deterministic, although they can make use of stochastic

steps in order to prevent the stagnation of the search if necessary. RSM in-

cludes a large number of methods, whose behavior can be quite complicated

depending on the implementations.
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2.4 The Response Surface Methodology

A dedicated section needs to be reserved for the so called Response Surface

Methodology, that represent one of the higher area of research inside the

DFO techniques. Three key aspect characterize RSMs: (i) the initialization

of the SM search through a selected strategy called Design Of Experiment;

(ii) the use of a SM, called Response Surface, in order to approximate the

optimizing functions f ; and (iii) the optimization over the SM and its update

at each iteration. The process starts with the DOE, in order to carry out an

efficient initial sampling of the domain space. Then the selected SM is firstly

built and the iterative process starts. At each iteration the optimization

over the SM is performed. Then the new candidate point is sampled and

the SM is updated. The process stops when the termination criteria are

fulfilled. Several techniques of DOE were proposed in literature, spacing from

classical to modern ones. The former were mainly proposed to control the

presence of noise in physics experiments, by performing a geometric sampling

of the space. The latter were introduces for the sampling of deterministic

experiments like computer simulations, and are aimed to the optimal filling

of the design space with an arbitrary number of points. However, apart to

the type of DOE used, as described in [11] a main classification of RSMs can

be obtained considering the two other aspect: the type of SM used and the
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search strategy adopted.

2.4.1 The Surrogate Models

SM can be subdivided in two types: interpolating and not-interpolating the

sample points. In the former, the resulting Response Surface (RS) pass

through all the sampled points, thus not allowing the presence of noise. In

the latter, the RS it is built in such a way to minimize the sum of the squared

errors from these, and noise is tolerated. A typical non-interpolating SM is

the fitting of a quadratic polynomial functions. Several possibility instead

exists for interpolating SM, and the most used are: Radial Basis Functions

(RBF) and Kriging. While the former represents an effective way to achieve

an interpolating surface, the latter are based on a statistical interpretation

that, at a cost of an higher computational cost, enables advanced search

strategies that make use of this information.

Radial Basis Functions Surrogate Models make use of a network of basis

functions φ(·) in order to exactly interpolate the n sampled points xj, j =

1, ..., n at their values f(xj), and easily predict the value of an unsampled

points x∗. The resulting SM is here defined as the weighted sum of n basis
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functions ϕ(·):

f̂(x∗) =
n∑
j=1

γjϕ(x∗,xj) (2.4)

where xj, j = 1, ..., n are taken as the centers of the radial functions and

γ = [γ1...γk]
T is a corresponding vector of weights to be determined. Several

types of radial functions are used in practice, the most common ones are

reported in Tab. 2.1:

RBF formulation

Cubic ϕ(x, c) = (‖ x− c ‖ +p)3

Thin plate spline ϕ(x, c) =‖ x− c ‖2 ln(‖ x− c ‖ p)
Multiquadric ϕ(x, c) =

√
‖ x− c ‖2 +p2

Gaussian ϕ(x, c) = exp(−p ‖ x− c ‖2)

Table 2.1: Radial Basis Functions

Here, c represent the center of the basis function and p is a shape pa-

rameter whose value highly influence the smoothness or bumpiness of the

resulting response surface, and thus must be carefully determined.

The γ coefficients are easily determined by solving the system:

Aγ = F (2.5)
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where:

A =


ϕ(x1,x1) · · · ϕ(x1,xn)

...
. . .

...

ϕ(xn,x1) · · · ϕ(xn,xn)

 F = [f(x1), ..., f(xn)] (2.6)

Kriging belongs to the family of Gaussian Process Regression (GPR) meth-

ods, that are based on a statistical assumption: the response of the system

to optimize is considered as the realization of a stochastic process, even if

it is actually deterministic. Each sampled points xj, j = 1, ..., n is viewed

as a random variable with known realization f(xj), and these variables are

correlated each others. In Kriging, the correlation function is analytically

expressed as follows:

Corr(xi,xj) = exp[−
H∑
h=1

θh|xih − xj
h|ρh ]

θh ≥ 0, ρh ∈ [0, 2]

(2.7)

where h is the index of the space dimensions (i.e. the number of variables of

the optimization problem), θh and ρh are shape parameters whose value can

be optimally determined by maximizing the likelihood of the observed data.

18



The resulting Kriging predictor can be expressed in RBF formulation:

f̂(x∗) = µ+
n∑
i=1

biCorr(x
∗,xj) (2.8)

where µ is the center of the Gaussian Process, and bi are the weight co-

efficients to be determined like in the RBF interpolation before described.

Kriging, being a GPR method, is capable to compute the confidence inter-

val associated to the prediction of an unsampled points, and thus estimate

the predictor error s2(x∗). This allow the use of more sophisticated search

strategy, as following described.

2.4.2 The search strategies

Search strategy can be mainly classified in two category: (i) One Stage Ap-

proaches and (ii) Two Stage Approaches.

One Stage Approaches carry out the building of the SM and the search

of the candidate solution in a single step. This because the SM itself is built

basing not only upon the already sampled points, but also over an hypoth-

esis about where the optimum solution could be located. In this way, the

parameter of the SM turn out to be as consistent as possible with both the

sampled data and the hypothesis made about the optimum. The next candi-
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date solution is identified as the point where the built SM results to be more

credible as possible. This credibility is typically estimated by analyzing the

shape of the response surface resulting by the model.

Two Stage Approaches carry out the search of the next candidate so-

lution in two phases. In the first, the SM is built by estimating its parameter

basing only on to the set of sampled points. For example, the parameters

of the Kriging predictor are estimated by the Maximum Likelihood, in order

to maximize the consistence with the sampled data. In the second phase,

the parameters of the model are assumed to be correct and the search of the

global optimum is performed. This approach is typically less computational

costly then the former but also less affordable, especially in the case that

the sampled points does not furnish a good sampling of the domain and the

resulting response surface is misleading.

2.5 Applications

The most known DFO applications in literature refer to:

• Engineering design. Here, DFO represent a fundamental support in

the optimal design of pieces to be manufactured, in order to maximize

their expected performances. DFO is highly applied in the aviation
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industries, for example in the Engineering Design of airplanes wings

profile [12].

• Software Tuning, where the object of optimization is a computer soft-

ware itself [13]. The cases studied in this dissertation fall in this cate-

gory.

• Electric circuit design, were DFO is used, for example, in the optimal

dimensioning of circuit constant [14].

• Dynamic pricing, were the problem consists in the optimal price assig-

nation to different customers [15].

In the next two section is illustrated a design and application of a Response

Surface Methods in order to optimize a very particular type of computer

software: Computer Vision Algorithms (CVA).
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Chapter 3

Initialization of Optimization

Methods in Parameter Tuning

for Computer Vision

Algorithms

3.1 Introduction

The calibration of computer vision algorithms (CVAs) is a time consuming

and critical step in the effective use of CVAs in many applications, such as

the automated defect detection of pieces produced by an industrial plant. In
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this case, the final quality control check at the end of the production chain

consists in the optical scan of the produced pieces by a set of several CVAs.

Each of them is designed to detect a specific type of defect and its behavior is

controlled by a large set of parameters, which influence the CVA sensibility

and accuracy and must be determined to maximize its detection efficacy on

specific types of images. For a general overview of automated defect detection

see [16] (see also [17] for an example in the textile industry).

More precisely, given a set of images, the efficacy of the error detection

is measured as a function of the positive and negative false ratios produced

by the CVA with a specific parameter set. As in many other applications

parameter tuning of the CVAs is, therefore, a crucial component for the

overall efficacy of the system. To the best of our knowledge, no optimization

method has been developed so far for parameter tuning in defect detection.

In the context of CVAs, the computation of the efficacy requires the ap-

plication of the CVA to a training set of test images. This is typically a

very time-consuming operation requiring several seconds per image, hence

minutes or even hours for a significant training set. Therefore, approaches

based on black-box function optimization (see, e.g., [11] and [18]) must be

used in this case. To this end, we developed a simple Sequential Approxi-

mate Optimization (SAO) algorithm (see, e.g., [19]) to identify the optimal

parameter values for a CVA used to detect a specific error on the images.
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During the optimization process, the solutions iteratively found by the al-

gorithm are evaluated by executing the target CVA on the training set of

images. The comparison between the CVA outputs obtained on the images

and their real defectiveness state produce the true/false positive index ratio

for the solutions tested. Our goal is the determination of the optimal in-

put parameter combination for the CVA, leading to the best possible false

positive and negative ratios for each particular type of defect.

In Section 3.2 we describe in detail the characteristic of the problem under

study. In Section 3.3 the structure of the proposed algorithm is given and

in Section 3.4 we present the results of an experimental validation of the

algorithm on data coming from a specific real-world application.

3.2 Problem Definition

The calibration of the parameters of a CVA is an optimization problem which

can be described as follows. The variables to be optimized are the input pa-

rameters of the CVA which are assumed here to be continuous and associated

with a lower and an upper bound) for their variation. The performance of the

CVA is measured in terms of two independent indicators, namely the number

of false-negative and false-positive in the solution, to be defined later.

More precisely, we have a CVA whose behavior depends on a subset I
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of parameters whose value has to be determined. For each parameter i ∈ I

we are given a lower and upper bounds li and ui, respectively. For each

parameter i ∈ I let xi be the decision variable which represents its value.

Given solution ~x we can evaluate its quality by measuring the performance

of the CVA on a training set S of images. To this end, let fp(~x) be the

number of false-positives returned by the CVA when applied to the set S

with parameters ~x, defined as the number of non-defective images which are

classified as defective by the CVA. Similarly, let fn(~x) be the number of false-

negatives returned by the CVA, defined as the number of defective images

which are classified as non-defective by the CVA. Finally, let αp and αn be

two nonnegative weights associated with the two performance measures. The

CVA Parameter Tuning Problem (CVAPTP) can be formulated as follows

(CV APTP ) z = minF (~x) = {αpfp(~x)+αnfn(~x)}, s.t. li ≤ xi ≤ ui ∀i ∈ I.

(3.1)

3.3 A Sequential Approximate Optimization

Algorithm

The Black Box Optimization (BBO) nature of the problem requires the use
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of an inference intelligence able to predict the objective function value of an

unsampled solution to guide the search process. In the literature, such rep-

resentation of the BB function it is referred to as the Surrogate Model (SM,

see [20]) for which a large number of types and formulations were proposed.

As frequently done in the recent literature the SM is used within a Sequen-

tial Approximate Optimization (SAO) algorithm that iteratively updates the

SM by adding the solution points that are determined at each iteration. This

sequential approach preserves a certain simplicity but provides some impor-

tant advantages. First, the rebuilding of the SM in order to capture the

incoming information improves its reliability at each iteration. Second, it

guarantees to perform a global optimization over the entire solutions do-

main, by reducing the possibility to being trapped into local optima. The

general scheme of the simple SAO algorithm we adopted is depicted in Figure

3.1.

The algorithm starts with the identification of the initial sample of so-

lution points, used to initialize the SM. Then, for each sample point, the

corresponding value of the objective function F (~x) in (3.1) is computed by

applying the parameter values associated with the point to the CVA over the

entire images test set. The incumbent solution is defined as the best solution

found so far, hence it initially corresponds to the best sample. The SM is

built from the current set of points (~x, F (~x)) and used to determine the next
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Figure 3.1: Outline of the Sequential Approximate Optimization Algorithm

candidate solution. After this, the SM is interrogated in order to search for

the best candidate solution possibly improving the incumbent. This phase

is generally called adaptive sampling criteria. The process is iterated until

termination criteria based on solution quality and running time are met.

As to the type of SM used, in this work due to the BBO nature of the

problem we adopted a specific type of the so called Meshfree methods, named

Radial Basis Function (RBF) interpolation techniques. These are relatively

easy to construct and are widely used to approximate Black Box function

responses. In RBF interpolation the model, s(~x), is defined as the sum of a
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given number K of radial functions φ:

s(~x) =
K∑
J=1

γjφ(‖~x− ~̄xj‖) (3.2)

where ~xj, j = 1, ·, K, is the set of sampled solution points representing the

centers of the radial functions φ(), γ is a vector of weights to be determined,

and ~x is the unsampled point whose value has to be predicted. Regarding

the radial functions φ, several type are available in literature, varying from

parametrized to not parametrized ones. In our case, the best trade off be-

tween a simple construction of the SM and an acceptable reliability resulted

with the use cubic basis function, that assume the form:

φ(‖~x− ~xj‖) = ‖~x− ~xj‖3 (3.3)

We refer the reader to [21] for an overview of Meshfree methods, and to [22]

for an example of industrial use of cubic RBF.

As to the initial sample generation through which initialize the SM, sev-

eral techniques exists in literature, typically referred to as Design of Exper-

iment (DoE). Since in our problem the parameters xj are not subject to

other constraints besides the upper and lower bounds, classical DoE as the

Factorial Design are suitable. In particular, a Full Factorial Design (FFD)

permit to cover the entire domain space, selecting all the points of the grid
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generated by the discretization of each design variable (i.e., the parameters

in our problem). This methodology is appropriate with the cubic RBF in-

terpolation since it guarantees a sufficient reliability only inside the convex

hull of the sampled points. However, in our case the computation of F (~x) is

extremely time-consuming and using grids in which the parameter’s values

are discretized is not practically possible. For this reason, we decided to

initialize our algorithm through a |I|2 FFD, using just the domain vertices

obtained with the lower and upper bounds of the parameters to be optimized.

To improve the initial sample quality we also considered an initialization in

which H additional random points selected inside the domain hypercube are

considered. The adaptive sampling strategy that we adopt to perform the

search of the candidate solution on the SM is the minimization of its pre-

dictor s(~x). To avoid to being trapped in a local minimum and perform an

efficient search over all the domain, we implement a multi-start gradient de-

scent algorithm and run it by using a discrete grid of starting points.

Finally, we terminate the algorithm after a maximum number of objective

function evaluations or after a given number of non-improving iterations.
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3.4 Experimental Validation

We applied our algorithm to the tuning of a CVA used to detect a specific

type of defects on tyre images obtained in a real-world production environ-

ment. The training set is made up of 160 images for which the presence or

absence of defects is known. Six parameters were selected as the target for

the optimization. Each such parameter has a maximum and minimum value

and a default value manually determined by the CVA designers. The behav-

ior of the CVA with the default parameter values is used here as a benchmark

reference to evaluate the performance of the optimized parameters set.

We tested the impact of three variants for the initialization step, leading

to three different overall algorithms A1, A2, and A3. In A1 we used H1 = 100

random points to initialize the algorithm. In A2 the sample set is constituted

by the 26 points of the simple FFD described in Section 3.3. Finally, in A3, we

added to the FFD set H3 = 36 random internal points. The overall algorithm

is run for a total of 200 objective function evaluations (including those for the

initialization step). The gradient descent search for the candidate solution is

performed from a 96 discrete grid of points.

To account for possible different relative importance of false positives and

false negatives in the defect detection, we considered two different pairs of

weights in the objective function (3.1). Namely, we considered (αp, αn) =
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{(1, 5), (1, 10)}.

The results for the three algorithms are illustrated in Figures 3.2 and 3.3

for the (1,5) and (1,10) weight combinations, respectively. The figures report

the evolution of the objective function for each algorithm compared with the

benchmark reference equal to 42 for both weight combinations. By observing

the figures it clearly appears that all proposed algorithms generate better

parameter combinations with respect to the manual ones. In particular, for

the (1,5) case A1, A2 and A3 produce solutions with value 29, 29 and 27,

respectively, which are 31% and 36% better that then manual ones. For the

(1,10) case, they find a solution with value 38, 40 and 32, which are 10%,

5%, and 24% better, respectively. In general, we can observe that the mixed

initialization of A3 provides better final results but the simple FFD of A2

improves quite rapidly and may constitute a good alternative when less time

is available.
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Figure 3.2: Evolution of the proposed algorithms with weight combination
(1,5) in comparison with the manual tuning.

33



Figure 3.3: Evolution of the proposed algorithms with weight combination
(1,10) in comparison with the manual tuning.
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Chapter 4

Parameter Tuning of Computer

Vision Algorithms Through

Sequential Approximate

Optimization

4.1 Introduction

In this chapter, we address the optimal calibration of Computer Vision Al-

gorithms (CVAs) used in the automated defect detection of pieces produced

by an industrial plant. The final quality control check at the end of the pro-
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duction chain consists in the optical scan of the produced pieces by a set of

several CVAs. Each of them is designed to detect a specific type of defect and

its behaviour is controlled by a large set of parameters controlling various

aspects, such as the image noise filtering and the edge detection capability.

Given an image of the piece to be checked, obtained with an appropriate

camera, the CVA returns a binary value indicating if it is judged as defected

or not. For a general introduction to defect detection and the use of com-

puter vision, see [23]. The various parameters influence the CVA sensibility

and accuracy, and must be optimally determined in order to maximize its

detection efficacy on specific types of images. As in many other applications,

the parameter tuning of the CVAs is, therefore, a crucial component for the

overall efficacy of the system. Given a set of test images, the efficacy of

the defect detection is measured as a function of the false positive and false

negative detection ratios produced by the CVA with a specific parameter

set. Its computation requires the application of the CVA to each image of

the set, which is typically a very time-consuming operations requiring from

seconds to minutes per image. Therefore, approaches based on expensive

black-box optimization (see, e.g., [24] and [11]) must be used in this case.

The presence of constraints between parameters and their possible integer

type represents further complicating factors. In the literature, there are

some general approaches to the parameters optimization of generic software,
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as illustrated, for example, by [13]. An early example of a CVA parameter

tuning approach, limited to few parameters in an unconstrained continuous

domain, can be found in [25]. However, to the best of our knowledge, no CVA

optimization method able to handle all the issue presented by our specific

application has been developed so far. We then developed a sequential surro-

gate based optimization algorithm to identify the optimal parameter values

to be applied to a CVA used to detect a specific defect on the images. During

the optimization process, each parameter solution iteratively found by the

algorithm is evaluated by comparing the CVA outputs obtained on the im-

ages and their true defectiveness state, obtaining the true and false positive

index ratio for the solutions tested. The set of the non-dominated parame-

ters solutions give an approximation of the receiver operative characteristic

(ROC) curve of the CVA. Since the various types of defects are very different

both because of the different occurrence frequencies in the production chain

and of the relative severity, every CVA must be optimized independently.

Our goal is the determination, within a limited amount of computing time,

of the optimal input parameter combination for a set of target-CVAs, leading

the best possible false positive and false negative ratios for each particular

type of defect. To reduce the large computing time required by the images

elaborations, we developed an effective time-saving strategy that exploits the

specific characteristic of the problem and is based on the partial elaboration
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of the images dataset at each algorithm iteration. This paper is organized as

follows. In chapter 4.2 we describe the characteristics of the problem under

study. In chapter 4.3 we present a brief literature survey on the approaches

we use in our solution algorithm: namely, the Black-Box Optimization and

the main surrogate modeling techniques. The structure of the developed

algorithm is presented in detail in Section 4, including the selection and vali-

dation of a surrogate model based on Gaussian process regression to support

the optimization process, and discussing how the constraints on the input

variables and their possible integer nature can be handled. In Section 5 we

discuss the results of an experimental validation of the algorithm on both an

analytical benchmark from the literature and on data coming from a specific

real-world application. Finally, in Section 6 we draw some conclusions and

outline directions of future research.

4.2 Problem Description

The calibration of the parameters of a CVA is an optimization problem which

can be described as follows. The variables to be optimized are the input pa-

rameters of the CVA. Preliminary tests have shown a high responsiveness

of the CVA’s behaviour even with respect to limited variations on the input

variables, and the response of the CVAs to parameter changes has shown to
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be multimodal. The variables associated with the parameters to optimize are

associated with a range of variation (i.e., a lower and an upper bound) and

are possibly subject to linear constraints on their values involving some pairs

of them. Furthermore, even though some of the parameters may assume

only discrete values, in the practical application that motivates our research

typically the variation ranges of such discrete variables are large (even hun-

dreds of values) and the CVA’s response to their variation can be considered

relatively “smooth”. The performance of the CVA is measured in terms of

two independent indicators, namely the number of false-negatives and false-

positives in the solution, to be defined later. It can, then, be considered a

Multi-Objective optimization problem. More specifically, since these indica-

tors are not analytically predictable but can be only empirically measured by

running the CVA with a specific set of parameters on a set of target images

for which the presence of the defect is known, it is a Multi-Objective Black

Bok Optimization problem.

More precisely, we have a CVA whose behaviour depends on a set H of pa-

rameters. A subset I ∈ H of parameters are subject to the optimization

while the remaining H \ I are fixed to a pre-determined value: in the follow-

ing the fixed parameters will be no longer considered. For each parameter

i ∈ I we are given lower and upper bounds li and ui, respectively as well as a

set of linear constraints C among their values. In general, the parameter set
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I is partitioned into two subsets I = Ic∪ Id, where Ic is the set of continuous

parameters and Id is that of the discrete ones. Moreover, for each parameter

i ∈ I let xi be the decision variable which represents its value. Given solution

x we can evaluate its quality by measuring the performance of the CVA on

a training set S of images. To this end, let fp(x) be the number of false-

positives returned by the CVA when applied to the set S with parameters x,

defined as the number of non-defective images which are classified as defective

by the CVA. Similarly, let fn(x) be the number of false-negatives returned

by the CVA, defined as the number of defective images which are classified

as non-defective by the CVA. Note that such values represent two different

objective functions depending on x which must be minimized. Therefore,

the problem can be formulated as the following two-objective problem.

Min[fp(x), fn(x)] (4.1)

subject to:

xi > li ∀i ∈ I (4.2)

xi 6 ui ∀i ∈ I (4.3)

Ax ≤ c (4.4)

xi integer ∀i ∈ Id (4.5)
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Where constraints (2) and (3) impose the lower and upper bounds. Con-

straints (4) represent the set of linear relations between the parameter values

and (5) define the integer variables.

As frequently done in the literature the two-objectives problem is transformed

into a single objective one by combining the two performance measures into

a weighted sum of their values. Hence the objective function (1) becomes

Min[a ∗ fp(x) + b ∗ fn(x)] (4.6)

where a and b are the non-negative weights. Moreover, since the objective

function value depends on the cardinality of the test set S and the associated

defectiveness state, it can be normalized so that it takes only values between

0 and 1.

4.3 Overview of Black-Box Optimization Ap-

proaches

In this section, we briefly present the main approaches presented in the liter-

ature for Black-Box optimization (BBO). A BBO problem is an optimization

problem in which at least one function, typically the objective function, is a

Black-Box function (BBF), i.e., a function that has the following properties:
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• It is not expressed in analytical form. For example, because the func-

tion represents the response to the input the variables of a system whose

internal behaviour is unknown. This implies that the computation of

its value can only be obtained thought an empirical experiment on the

system.

• The computation can be time-costly, especially if the evaluation of

system’s response consists in a physical experiment or in the run of a

dedicated computer simulation software.

• The computation of the function may not return, in addition to its

value, any other information of higher order such as the gradient.

• The response of the system can be multimodal with respect to the input

variables.

• The response of the system can be affected by noise (i.e., it is a so-called

a noisy Black-Box function).

There are several implications of the above-mentioned characteristics. For

example, due to the lack of analytical description of the internal behaviour of

the system, some kind of inference intelligence is necessary to select the can-

didate solutions to be evaluated, based on those evaluated previously. Several

types of inference intelligence and different criteria to select the new solution
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to be evaluated exists, and some of them will be discussed later. More-

over, the lack of higher order information, such as the gradient, increases

the difficulty in the building of the inference intelligence, since it can be

based on fewer information. A time-costly BBF evaluation implies that only

a few evaluations can be done in a reasonable time, contrary to traditional

optimization methods which rely on a huge amount of evaluations. Multi-

modality, implies that the BBF is not convex, hence there is the possibility of

not finding the global optimum and remaining trapped in local optima. As it

is well described in [24], to perform global optimization in such multimodal

condition it is necessary to perform both global and local search during the

optimization process, indicated as exploration and exploitation. Finally, the

presence of noise makes the response of the system is non-deterministic, i.e.,

it can vary from different evaluations even with the same input parameter

values and this should also be taken into account by the inference intelligence.

We observe that in the practical application that motivates this paper, the

BBF to be optimized is not affected by noise because it is obtained by run-

ning on the test images the CVA, which is a deterministic computer code.

Furthermore, the evaluation of the BBF through the CVA does not return

gradient information, and is extremely time-costly requiring approximately

30 minutes per evaluation with the dataset used.
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In the literature, there are several approaches to optimize single-objective

Black Box Optimization problems. One way of classifying them is with re-

spect to the type of the inference intelligence used. To this end, we can

distinguish between approaches which either use or not a surrogate model

(SM), see, e.g., [26]. A SM is a simplified representation of the BBF that

describes the relation between inputs (i.e., the problem variables) and out-

puts of the real system to be optimized, based on the values of the already

sampled points. An SM can be built in several ways and, in addition to the

function value at an unsampled point, the SM permits to infer different infor-

mation about the real system, such as the associated prevision error, which

can be used to better choose the next point to evaluate. The use of an ap-

propriate SM can greatly reduce the number of evaluations to be performed

during the optimization process. On the other hand, when no SM is used,

the optimization is performed through techniques that, to select the next

point to be evaluated, use only the values obtained from the sampled points

of the real system. General approaches not using SM such as, for example,

Genetic Algorithms or Direct Search (see, e.g., [26]), require a much larger

number of evaluations of the BBF, which makes these techniques impractical

when the BBF to optimize is time costly, as it is in our case. Therefore,

we concentrate on SM-based approaches only. In the following, we examine
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the different components of such methods. In particular, we first address

the strategy to select the initial set of points used to build the SM and then

we consider the SM building techniques. We next address the validation

of the SM and its optimal tuning in order to guarantee its higher possible

reliability. Finally, we describe the optimization process which includes the

search of the next candidate solution through the so-called adaptive sampling

criterion, and discuss the stopping criteria.

4.3.1 The selection of the initial set of points

The common technique used to select the initial sampling points is called

Design of Experiments (DOE). As explained in [27], the DOE aims at al-

locating sample points across the design space to maximize the amount of

information derived from the real system. Classic DOE methods were devel-

oped to support physical experiments and control the effects of the associated

random errors. The main example of such methods is the so-called Factorial

design, whose principle is to discretize each of the d design variables into n

values and then select the points from the resulting hyper-grid. Whenever

all the resulting points are considered, we have the so-called Full Factorial

Design (FullFD) and their number is equal to nd, with n usually small and

equal to 2 or 3. An alternative to overcome the exponential growth of the
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sample space is represented by selecting only a subset of them, leading to

the so-called Fractional Factorial Design (FractFD). Other examples of clas-

sical DOE methods are the Star Design (SD), where a central point and two

points for each design variable, usually corresponding to the lower, upper or

average values, and the Central Composite Design (CCD), which combines

SD and either FractFD or FullFD. Modern DOE methods were developed to

mainly support deterministic experiments unbiased by noise such as the run

of computer code, as it is in our case. The most used ones are known as Latin

Hypercube Sampling (LHS), Orthogonal Array Design (OAD) and Uniform

Design (UD). In LHS the points are sampled randomly in the design space

but, each design variable is discretized into n values, and points are selected

within this hyper-grid so that for each one-dimensional projection over each

variable, there is only one point for each of its n values. LHS is easy to im-

plement, but may provide non-uniform distributions of points, hence OAD

and UD are extension trying to achieve a more uniform distribution of the

sample points. We refer the reader to Giunta (2003) for a complete review

of modern DOE techniques. We note that all such methods assume that the

design space is a hypercube only bounded by upper and lower bound con-

straints on the design variables.

When, as it is our case, additional constraints on the variables are present,

such methods became not applicable. To address this, other methods were
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proposed in the literature and are often referred as Space-Filling Design

(SFD). SFD methods guarantee a good uniform distribution of points over a

highly constrained convex domain. Their core mechanism is that points are

iteratively moved in the space by optimizing a given distance measure such

as, for example, by maximizing the minimum distance between each pair of

design points. In this case, the SFD is called the MaxMin Design. If instead

the objective is to minimize the distance of each points of the domain from

the nearest SFD point it is called MinMax Design. Finally, several ways

were proposed in the literature to decide how to move the points, that range

from geometrical techniques to physics-inspired principles. For a survey on

SFDs, we refer the reader to [28]. Given the nature of our problem, we de-

cide to develop a simple but efficient MinMax SFD which will be described

in Sect. 4.4.1.

4.3.2 The surrogate model building technique

Different types of surrogate model building techniques were proposed in the

literature (see [27]), which can be classified into either Physical Surrogates

(PS) or Functional Surrogates (FS). The construction of a PS typically as-

sumes that some information of the internal structure of the system to model

is known. In this case, the main technique to build the PS is to use a sim-
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plified representation of the system. For example, by using either a coarser

discretization when a simulation software is used to obtain the values of the

system response, or a simplified analytical form of the relevant physics laws.

PSs are generally easy to design but computationally expensive to be evalu-

ated and typically not adaptable to other systems. In the case we consider in

this paper, a PS is clearly not usable since the system to describe is actually

a CVA.

An FS technique uses a mix of algebraic and statistical models to represent

the response of the real system. They do not require any knowledge about it,

since its behaviour is implicitly represented by the coefficients of the model

which are iteratively tuned. This feature make FSs generic and not bounded

to the specific target system. Instead, the correct choice of the coefficients,

beside the optimal selection of the algebraic model, represent a critical step

in their use. In fact, the definition of the coefficients is carried out by sam-

pling and fitting procedures. Starting from an initial set of sample points,

defined through the DOE techniques already described, during a fitting step

the coefficient values of the model are chosen so that they provide the best

fit of the current set of points. It is then clear that the suitability of the FS

in representing the real system is strictly dependent on the selection of an

appropriate sampling strategy.

48



Several different mathematical forms have been used as FS models to ap-

proximate the unknown behaviour of the system (see, e.g., [29]), most of

which are known as Response Surface Methodologies (RSM). For example,

non-interpolating techniques include Polynomial Regression (PR) and Ra-

dial Basis Function (RBF) approximation. In such cases, the response of the

model does not coincide with that of the real system at the sampled points

and the model structure and coefficients are chosen so as to provide a simple

functional structure that minimizes the sum of squared error with respect

to the actual model response at the sampled points. In PR the model is

actually a polynomial of given degree for which the coefficients have to be

chosen, while in RBF approximation the model, s(x), is defined as the sum

of a given number k of radial functions ϕ(·):

s(x) =
k∑
j=1

γjϕ(‖ x− cj ‖) (4.7)

where cj, j = 1, ..., k is the set of centres of the radial functions and y =

[y1...yk]
T is a vector of weights to be determined. Generally, k is smaller

than the number of sample points and several types of radial functions are

used in practice such as cubic, splines, Gaussian and Multiquadric functions.

As to the interpolating techniques, the model is constructed so that its re-

sponse coincides with the value of the sampled points of the real system. To
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this end, the centres of the RBF coincide with the sampled points and the

order of the model grows with the sample size. It is easily seen that inter-

polating techniques are applicable only if the system response is not affected

by noise.

A particular family of interpolating methods is represented by the Gaus-

sian Process Regression (GPR), also known as Kriging, which is one of the

most widely used approach in the literature. GPR is based on the assump-

tion that, even if the response of the system is deterministic, it can be viewed

as the realization of a stochastic process. The core principle in predicting the

response value at an unsampled point x is to use the previously performed

evaluations to identify the value that is more consistent, under specific statis-

tic assumptions, with the sampled data. Due to the fact that estimating of

the model parameters can be computationally costly, the building of GPR

require more effort compared to the other methods. However, several papers

prove that GPR generally provide better system approximation. For a com-

plete review of non-interpolating and interpolating techniques in SM building

the reader is referred to [11] and [29]. Our optimization problem is character-

ized by a noise-free response and by a highly time-consuming computation.

The first feature makes interpolating techniques usable. The second highly

reduce the number of response evaluation (i.e., sample points evaluations)
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that can be performed in the given time. For these reasons, we have chosen

the GPR as SM building method, and we will describe our implementation

in Sect. 4.4.2.

After the initial SM is built, a check of its reliability is often performed

to verify if it is appropriate for the specific application. Also in this case,

several techniques have been developed, among which the most used class

is that of Cross Validation (CV) techniques. Here, the dataset of known

samples of the system is split into a training set and a test set, then the

first is actually used to build the SM, while the second is used for its valida-

tion by comparing the values of the SM predictions with the actual values of

the system, thus obtaining relative and absolute errors. Depending on the

ways in which the two sets are defined several assessment procedures can be

defined, such as the Exhaustive CV, where all the possible ways to divide

the original set must be tested and the corresponding indicators collected, or

the Leave-One-Out CV (LOOCV), where the test set is made up by a single

element chosen from the sample. If the assessment of the SM reliability is

not satisfactory, different strategies exist to improve it. If the SM present

parameters than can be tuned, like in parameterized RBF interpolation or

in GPR, the model can be rebuilt by varying its parameters and trying to

improve the LOOCV performance. Obviously, such attempt is not possible
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if either the parameters are fixed during the initial building of the model,

or if model parameters are not present. In this case, the possible strategy is

to enlarge the training set. To this end, new points of the real system are

chosen in such a way to achieve the maximum augment of the SM reliability

according to a so-called infill criteria. In Sect. 4.4.3 we explain the strat-

egy we developed to efficiently tune the parameters of the GPR model we

implemented and to measure its reliability.

4.3.3 The search strategy for the candidate solution

The methods used to search the optimal solution within the SM built are

commonly called adaptive sampling methods, and the most common ones

are so-called two-stage approaches. Here, the SM is first built by using the

existing samples and estimating all the required parameters of the model.

Then, the search of the optimal solution is performed over the resulting re-

sponse surface, that is densely searched. Several search strategies exist, and

their usability depend on the type of SM used. The main discriminant is

associated with the use or not of a stochastic approach such as the GPR in

building the SM. In the negative case we cannot obtain information about

the standard error associated to the predictor, then the only applicable ap-

proach is the Minimization of the Response Surface (MRS), which consists
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in exploring the response surface to find its global minimum, for example

through a gradient descent algorithm coupled with a multistart mechanism

to reduce the probability of being trapped into a local optimum. Instead,

whenever the SM provides information about the standard predictor error,

various methods using such error of it are available, where the Maximization

of the Expected Improvement (MEI) represents the most common one. The

adaptive sampling strategy that we implemented is described in Sect. 4.4.4.

4.3.4 The overall search process

Surrogate-based optimization processes may be either one-shot or iterative,

where in the latter, known as Sequential Approximate Optimization (SAO,

see [19]), the SM is iteratively rebuilt, updated and used several times. SAO

approaches clearly are more time consuming but generally obtain much better

solutions than one-shot methods being able to perform global optimization

in highly multimodal or noise-affected contexts. The process starts with a

given sample of points tested on the real system, selected through a specified

DoE. Then, the SM is built through a specific model-building technique, such

as RBF or GPR, and is validated. If the model reliability is found unsatisfac-

tory, the model parameters are tuned or new points to test are selected by a

proper infill criteria, until a satisfactory reliability is achieved. An adaptive
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sampling criteria is used to find the candidate solution to test, for exam-

ple by using the MRS or MEI methods previously described. To achieve a

global optimization, the adaptive sampling criterion used must balance Ex-

ploitation and Exploration components. The former component is aimed at

improving the incumbent by intensifying the search in its neighborhood, thus

incurring the risk of remain trapped in local minima. The second component

instead aims at exploring the under-sampled regions of the solution space.

The candidate solution found is then evaluated on the real system and the

incumbent is possibly updated. The solution found is finally added at the

samples set, and the SM is rebuilt and the process is iterated until a stop

criteria is met.

4.4 The Implemented Algorithm

We now describe the implemented algorithm and the way in which we have

handled the major difficulties of the problem at hand, which are summarized

as follows:

• High cost of the single point evaluation, due to the fact that the single

solution’s evaluation is performed by running the target CVA on a large

dataset of images.

• Presence of constraints between the design variables.
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• Presence of integer variables;

• Two different objective function to minimize: false positive and false

negative index ratio.

• High multi-modality of the system response.

Being a time-costly BBO problem, we do not apply direct optimization to

the system response. In fact, because gradient information is not available,

the only possible direct optimization approaches are Derivative Free methods

such as Genetic Algorithm or Direct Search, that require a large number of

evaluations to produce satisfactory results and, in our case, could require an

impractically large computing time. Hence, we developed an optimization

algorithm based on a Sequential Approximate Optimization approach which

experimentally proved to obtain very good results within an acceptable com-

putational time. In the following, we describe in detail the component of the

implemented approach following the scheme outlined in Sect. 4.3.

4.4.1 A space-filling Design of Experiment

As seen in Sect. 4.3.1, the main goal in the initial DOE is the selection of n

points of the solution space in such a way to extract as much information as

possible from the real system to optimize. The choice of the DOE is clearly

crucial for the construction of the initial SM and thus for the overall efficiency
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of the SOA method.

We developed a Space Filling DoE that iteratively allocates an arbitrary

number n of points in the given convex domain so that they are as much

uniformly dispersed in the domain as possible. More specifically, we imple-

mented a MaxMin SFD (MmSFD), instead of a MinMax one, because it

guarantees a more uniform sampling thanks to the minimization of the size

of the “unsampled regions” and, at the same time, is able to easily han-

dle the domain constraints. As to the integrality constraints, our MmSFD

procedure enforces the sample points chosen to be integer. The principle

according which the MmSFD works is the simulation of the behaviour of a

particles system. Each point is associated with a particle with given mass

we assume the presence of repulsive forces between every pair of particles,

proportional to their distance. In addition, every point is subject to an or-

thogonal repulsive force from each hyperplane supporting a cosntraint of the

domain (including the lower an upper bound constraints). This avoids that a

point violates the domain constraints, since the repulsive force became expo-

nentially larger when the distance of the point from a constraint decreases.

For each point, the direction and distance in which it should be moved is

computed by considering the resultant of all the forces applied to it. At each

iteration, all points are moved and the process is repeated for a given number

of iterations. Let F be the complete set of linear constraints bounding the
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domain including the lower and upper bound constraints on each variable

corresponding to a parameter to be tuned. Moreover, let us assume for sim-

plicity that the domain is limited and that all parameters are continuous.

The procedure can be easily modified to account for integrality conditions

on some parameters. The procedure starts by randomly generating n sample

points into the domain, denoted as pt, t = 1, . . . , n.

At each iteration, for each point pt, t = 1, . . . , n, (called target point) we

compute the resultant of the repulsive forces between the point pt and all

other points ps,with s 6= t as well as all the constraints in F , by considering

the orthogonal projection of pt on each of the constraints in F . As previously

mentioned, the repulsive force is inversely proportional to the distance be-

tween the points, normalized with respect to the maximum distance between

two points in the domain. More precisely, the repulsive force between pt and

another point ps (i.e., both a sample and a projection over a constraint) is

defined as:

fs,t = (
dmax

‖ pt − ps ‖
− 1)h (4.8)

where dmax is the maximum distance between two points in the domain

and h is a suitable parameter, typically set to a value ≥ 2 to ensure a fast

convergence of the procedure. Once all repulsive forces are computed, their

resultant is computed for each point which is moved in that direction by a
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distance proportional to the force intensity, suitably scaled down n so as to

avoid that two points exchange their relative positions as an effect of their

movement.

The process is iterated until the position of the points become stable, e.g.

when their coordinates do not vary by more than a predetermined threshold

with respect to the previous iteration or after a given maximum number of

iterations. As previously mentioned, if integer values of the variables are

required these are obtained by a rounding step followed by a simple local

search step where neighboring feasible integer points are evaluated.

4.4.2 The Surrogate Model

To define our Surrogate Model (SM) we first need to define precisely the

objective function which represent the response value of our system. More

precisely, we used equation (6) which allows us to treat the multi-objective

BBO as a single-objective one and we normalized it by considering the max-

imum number of false positives and false negatives in the training set. This

allows to compare the objective function values also when different training

sets are used to evaluate different points.

The specific SM we used in our implementation is a GPR interpolating SM,

introduced in Sec. 4.3.2. In a GPR, the value of the response y(x) at a sam-
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ple point x is considered as the realization of a Gaussian variable Y(x) with

mean µ and variance σ2. All the variables Y are then assumed to be corre-

lated to each other, and the correlation is expressed as a parametric function

of the distance of the respective sample points. Several types of such func-

tions were proposed in the literature for GPR, all based on an exponentially

decaying structure and here we use the following, well-known, one:

Corr(Y (xi), Y (xj)) = e
−r(xi,xj)

2

a (4.9)

where r(xi, xj) is the spatial distance between two points (xi, xj), and the

parameter a determines how fast the correlation decreases with the increase

of r. We refer the reader to [30] for its derivation. In our implementation,

we used the weighted Euclidean distance

r(xi, xj) =

√√√√ d∑
l=1

(wl(xil − xjl))2 (4.10)

where wl representing the scaling factor for the l-th dimension. Since the

higher is the value of wl the larger is the correlation decrease with the increase

of the distance on the l-th dimension, the vector w is a sensitivity parameter

vector associated with the domain dimensions. Given the correlation matrix

R defined according to 4.9 we can define the GPR predictor ŷ(x∗) for a target
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point x∗ through the maximization of the likelihood function as follows (see

[11] for details):

ŷ(x∗) = µ̂+ ρ′R−1(y− 1µ̂) (4.11)

where

ρ = (Corr(Y (x1), Y (x∗)), ..., Corr(Y (xn), Y (x∗))) (4.12)

is the correlation vector between the target point x∗ and the n sampled

points, y being the sampled points value, and µ̂ the estimated mean of the

Gaussian variables Y:

µ̂ =
1′R−1y

1′R−11
(4.13)

The parameters a and w, used in the construction of matrix R are the only

ones that must be determined in order to build our GPR model. Details

on the determination of such parameters values are given in the next sec-

tion. GPR gives also the possibility of estimate the prediction error s2(x∗)

associated with a target point x∗ which is expressed as follows:

s2(x∗) = σ̂2(1− ρ′R−1ρ) (4.14)

where σ̂2 is the estimated variance of the Y variables:

σ̂2 =
(y− 1µ̂)′R−1(y− 1µ̂)

n
(4.15)
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4.4.3 The SM tuning and validation

We decided to use the LOOCV technique (see Sect. 4.3.2) to check the SM

reliability and perform the optimal tuning of the GPR model parameters a

and w. The choice is motivated by both the quality of LOOCV indicators and

by the relatively small computational effort associated with its use, because

the number of tests to be performed is equal to the number of sample points.

The prediction error indicator we used is the well-known Sum of the Squared

Errors (SSE):

SSE =
n∑
i=1

|Ŷi(xi)− Yi|2 (4.16)

where ŷi is the predictor of sample xi obtained with the SM built excluding

the point xi and yi is the actual value of system response at point xi.

The calibration of model parameters is performed by a two-steps iterative

procedure which aims at minimizing the SSE of the model. In a first step,

the sensitivity parameters w are all set to 1, and only the tuning of a pa-

rameter is performed. The optimal value of a is then searched from a set of

1000 candidate values that we choose randomly in the interval [10−2, 101] (see

[30]). However, since the sensibility of the model is higher for values close to

0, we adopted a logarithmic scale for the interval. Each computation of the

SSE indicator through LOOCV requires O(n4) time, because it calls n times
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the GPR SM algorithm which requires O(n3) time. The a parameter is fixed

to the value associated with the minimum SSE value the second step of the

procedure, used to calibrate the w parameters through a simple descent local

search is started. At each iteration, given the current vector w we examine

the neighborhood made up by increasing or decreasing by 10% each wl value.

The cardinality of the neighborhood is O(2d) and if a parameter vector im-

proving the SSE is found the process iterates, and is stopped otherwise. The

local search is anyway stopped after 50 iteration to keep the computing time

controlled.

4.4.4 The adaptive sampling criteria

The calibrated SM is used to search of the next candidate solutions to be

evaluated. Even though, as discussed in Sect. 4.4.2, the GPR-based SM pro-

vides the estimation of the predictor error we adopted MRS as the adaptive

sampling criteria because it performed experimentally better on our problem

according to a preliminary testing. In particular, we developed a multistart

gradient-descent procedure, implemented by using multiple threads to reduce

the overall running time.

The total number m of points from which perform the gradient search is
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fixed. The domain is then discretized by splitting the values for each of the d

dimensions (previously normalized in [0, 1]) in the same number s of interval,

where s is chosen as the larger integer such that sd ≤ m. Finally, m − sd

random points are added to those defining the grid. The gradient search is

then performed from each of the m points and the final point xg which min-

imizes the SM predictor ŷ(xg) is determined. If some decision variable must

take integer values the integrality is relaxed during the search and the final

coordinate is the rounded to the nearest feasible integer value. In our exper-

iments, we used relatively large values of m (e.g., m = 106) which allowed

computing times smaller than two minutes on a normal personal computer.

If xg seems able to improve the incumbent solution x∗, i.e., if ŷ(xg) < y(x∗),

then xg is returned as the new candidate solution to evaluate and the adap-

tive sampling procedure ends. Otherwise, we identify the new candidate

solution as the one which maximizes the predictor error s2(·) given by the

GPR model over all local minima found in the search. The rationale is that

the new candidate solution will improve the reliability of the SM used in the

next iterations thus representing an exploration strategy.
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4.4.5 The overall developed SAO approach

Figure 4.1: The developed SAO approach with time-saving strategy.

Fig. 4.1 illustrates the structure of the overall SOA algorithm we imple-

mented, whose main components were described in the previous sections. At

each iteration, the system response on a new candidate solution xg has to be

performed and this consists in running the CVA, with parameters xg on all

the images of the test set and computing the corresponding normalized value

of the objective function (4.6). As we already discussed, the time to run the
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CVA on a single image is not small and typically a large test set is used,

hence the evaluation step is highly time consuming. To speed-up the O.F.

computation, the images in the test set are ranked according to their average

contribution to the objective function in the previously evaluated solutions.

Then the images are evaluated in the ranking order and the evaluation stops

as soon as the current objective function is equal to the incumbent solution.

In fact, we observe that the contribution of each image evalutation to the

objective function value is non-negative. Therefore, an evaluation of the ob-

jective function on a subset of images represents a lower bound LB on the

value of the system response and if LB ≥ y(x∗) this ensures that the current

solution is not improving the incumbent. At the end of the evaluation the

current solution is added to the sample set and the incumbent is possibly

updated. The image ranking mechanism and the possible early termination

of the CVA evaluation proved extremely effective in the experimental eval-

uation of the algorithm in the real-world case study described in the next

section.

4.5 Experimental Results

In this section, we describe the experimental validation of the proposed al-

gorithm both on test problems from the literature and on a real-world case
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study of defect detection on tyre images. The overall algorithm, described in

Section 4 was implemented in c++ and run on a PC with Quad-Core 3.6Ghz

equipped CPU and 32Gb of RAM. In the real-world case study the image

evaluation by the CVAs is performed through a legacy software for image

processing which is called by the SAO algorithm. We initially tested our al-

gorithm on a well-known standard benchmark of BBO from the literature to

fine-tune its implementation and assess its quality with respect to the current

state-of-the-art in BBO. Then, in Sect. 4.5.2 the algorithm is tested on the

real-word industrial application of tuning CVA for defect detection of tyres

at the end of the production line. In particular, we considered the optimal

calibration of two used in the automated defect detection of tyres produced

by an industrial plant. More specifically, the experiments were conducted in

collaboration with one of the world’s largest tyre production company. The

target of the CVAs was the detection of defects like air bubbles, cuts and

other imperfections on the surface of the produced tyre at the end of the

production line.

4.5.1 Testing on a problem from the literature.

The overall SAO approach has been initially validated by optimizing a widely-

used mathematical benchmark in BBO: the 6-variables Hartmann function
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(see [31]). The performance of the SAO was compared with the recent ap-

proach proposed by [32] which was also validated using the same benchmark.

In [32], the authors tested different initialization methods, SM building tech-

niques and search strategies and the best performances were obtained with

a GPR-based SM, an MRS adaptive sampling method, and a Quasi-Monte

Carlo (QMC) initialization strategy. As described in Chapter 4.4 one of the

main differences of our SAO method with respect to that of [32] is the SF-

based DoE used to initialize the algorithm, while no specific details on the

implementation of MRS and the GPR-based SM are given in their paper.

In Fig. 4.2 we compare the evolution of the best solution found by three

different runs of our algorithm, corresponding to different random seeds and

denoted as BV 1, BV 2 and BV 3, with that of best algorithm developed

in [32] denoted as Benchmark. As in [32] we initialized our algorithm with

50 samples and run it until either the difference with respect to the known

global optimum is smaller than 10−3 or 300 iterations are performed. By ex-

amining Figure 3 we note that our algorithm strongly outperforms the best

results obtained by [32], in all three runs we reached the global optimum in

less than 70 iterations while those required by the best method presented in

the literature are more than three times larger. In addition, the improvement

rate is extremely steep and the behaviour of our algorithm is very similar in

all three runs showing clearly the benefits of the initialization and the specific
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implementation of the different components that we propose.

Figure 4.2: 50 points initialization - comparison with Wang et al. (2014).

4.5.2 Testing on a real-world industrial problem.

We discuss here the testing of the proposed SAO approach on the industrial

problem described in Section 4.2. To validate our approach, we optimize the

parameters of two different CVAs, hereafter called CVA1 and CVA2, dedi-

cated to detect two different type of defects. In our experiments, we initially

calibrated the parameters for CVA1 by using in the objective function (4.6)

three different combination of weights for the false positive and negative oc-

currences to evaluate the sensitivity of the approach to the weights. We also

examined the impact of the time-saving procedure for the image evaluation

described in Section 4.4.5. Finally, we performed the tuning of CVA2 by using

the complete algorithm with the time-saving procedure. In all experiments,

we compare the results obtained by the SAO approach with the performance
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of the CVA when using a set parameters manually optimized by an expert

designer of CVAs.

Let us first consider CVA1, which is characterized by six parameters to be

optimized. As training set we are given a set of 128 images for which the pres-

ence or not of defects is known. For the objective function (4.6) we considered

a=1 (i.e., the weight for the false positive results) and three different weight

combinations for the false negative result, namely b= 5, 10, and 20. In total,

we ran six experiments by considering the three weight combinations and by

enabling or not the time-saving procedure of Section 4.4.5. In all cases, we

used 50 points for the space-filling initialization step, thus initially requiring

a total of 6400 image evaluations. All runs were stopped when 100 iterations

were performed after the initialization. The results are illustrated in Figures

4.3 to 4.8 where it can be seen that our approach with all the three weight

combinations is capable of finding much better parameter settings with re-

spect to the manual benchmark within a relatively small number of objective

function evaluations. In addition, we may observe that the use of the time-

savings procedure may result in a slightly larger number of objective function

evaluations to reach the best result while it requires considerably less image

evaluations and thus less overall computing time. These two behaviors are

easily explained. First of all, the time-savings procedure uses a normalized
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objective function evaluation which is actually an approximation of the true

objective function. Thus, an early termination of the evaluation of a point

may result in a (slightly) greater prediction error of the SM which can lead

to the need of additional point evaluations before good SM approximations

can be obtained. On the other hand, the early termination limits the total

number of images that are actually tested thus reducing considerably the

computing time for the evaluation of the new points. Both described effects

are quite marginal for the case with b=5 and b=10, while are much larger

for the case b=20. More precisely, for b=5 the time-saving based algorithm

requires 1.2% less image evaluations to reach the best value and about 30%

less evaluations in total. The corresponding values for b=10 are 4.6% and

11.3%. As to the case b=20, it requires 14% less image evaluations to reach

the best value and about 22% less evaluations in total. In all cases, the algo-

rithm considerably improves the best solution found during the initialization

step. In particular for the three parameter combinations the improvement is

equal to 26%, 12% and 5%.
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Figure 4.3: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=5. The benchmark is the manual

solution and the evolution with respect to the total number of objective
function evaluations is reported.

Figure 4.4: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=5. The benchmark is the manual
solution and the evolution with respect to the total number of image

evaluations is reported.

71



Figure 4.5: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=10. The benchmark is the manual

solution and the evolution with respect to the total number of objective
function evaluations is reported.

Figure 4.6: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=10. The benchmark is the manual
solution and the evolution with respect to the total number of image

evaluations is reported.
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Figure 4.7: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=20. The benchmark is the manual

solution and the evolution with respect to the total number of objective
function evaluations is reported.

Figure 4.8: Impact of the time-saving procedure on the optimization of
CVA1 parameters with a=1 and b=20. The benchmark is the manual
solution and the evolution with respect to the total number of image

evaluations is reported.
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Time Benchmark Initial Best % # Obj. eval. # images eval.
savings solution solution solution impr. for Best for Best

b enabled (#fp, #fn) (#fp, #fn) (#fp, #fn) solution Total solution Total
5 No 42 (42, 0) 31 (21,2) 29 (24,1) 31.0 65 150 8320 19200
5 Yes 42 (42, 0) 31 (21,2) 29 (24,1) 31.0 67 150 8224 13455
10 No 42 (42, 0) 37 (27,1) 34 (24,1) 19.0 83 150 8320 19200
10 Yes 42 (42, 0) 31 (21,2) 29 (24,1) 19.0 67 150 8224 13455
20 No 42 (42, 0) 40 (40,0) 36 (36,0) 14.3 116 150 14848 19200
20 Yes 42 (42, 0) 40 (40,0) 36 (36,0) 14.3 125 150 12768 14936

Table 4.1: Summary of CVA1 experiments with the three different
combination of weight (b = 5, 10, 20) and the Time-Saving procedure

enabled and not.

images eval. % savings
for Best

b solution Total
5 1.2 29.9
10 4.6 11.3
20 14.0 22.2

Table 4.2: Summary of the image evaluations savings obtained with the
CVA1 optimizations with the three different weight combinations and using

the Time-Saving procedure.

When comparing the optimizations of CVA1, with the Time-Saving strat-

egy enabled, for all the three combinations of weights used, we note that the

number of images elaborations necessary to achieve the optimum grows with

the increase of the difference between the false positive and negative weights.

The reason is that, when the difference increases the interpolating surface

built by the surrogate model becomes more multimodal as the values of the

objective function at the sampled points are more variable.
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For all the three combination of weight, both with and without the Time-

Saving procedure enabled, the algorithm always found optimal parameter

solutions significantly better than the benchmarks. In particular, for b=5,

b=10 and b=20, the objective function improvement is respectively 31%, 19%

and 14%. Thanks to the Time-Saving procedure, the same optimal solution

are found with a savings of image evaluations (i.e., computational time) of

about 30%, 11% and 22%.

We also conducted a much more challenging experiment by considering CVA2

which requires eleven parameters to be optimized. Moreover, in this case the

dataset used for the training of the algorithm includes 912 images, thus re-

quiring 45,600 image elaborations just for the initialization step. In addition,

CVA2 detects a defect which is much more critical than that of CVA1 thus

a larger weight for the false negatives is required: we used a=1 and b=25

as weights. The evolution of the objective function with respect to the total

number of image evaluations is illustrated in Figure 4.9 and the results are

summarized in Table 4.3. We note that also in this case the proposed al-

gorithm finds parameter settings much better than those of the benchmark,

with an improvement equal to 22%, and that the improvement with respect

to best solution found in the initialization step is 11.2%.
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Figure 4.9: CVA2 Optimization with weight a=1 and b=25.

Benchmark Initial Best % # Obj. eval. # images eval.
solution solution solution impr. for Best for Best

(#fp, #fn) (#fp, #fn) (#fp, #fn) solution solution
591 (441, 6) 525 (125,16) 461 (311,6) 22.0 83 69088

Table 4.3: CVA2 Optimization results with weight a=1 and b=25.

4.6 Conclusions

In this work, we have developed and tested a Sequential Approximate Op-

timization approach specifically tailored to perform the parameter tuning of

Computer Vision Algorithms employed in automated defect detection. The

industrial relevance of this application area is highly increasing thanks to the

great progress achieved by CVA accuracy and reliability. However, the fine

tuning of the CVA requires to define specific parameter settings for differ-

ent defects and image types to be analysed and such activity is highly time

consuming when done manually by expert designers thus enhancing the need
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of reliable and automated procedures to define the optimal parameters in

various use conditions. To the best of our knowledge, no specific optimiza-

tion method has been proposed in the literature for this type of applications,

hence we developed a SAO approach specifically designed for CVA param-

eters tuning. The proposed approach was tested both on a benchmark for

Black Box optimization from the literature and on two real-world cases from

an industrial application in the field of tyre production. Our testing shows

that the proposed SAO algorithm is capable of producing, within reason-

able computing times, parameter settings which are much better than those

manually obtained by the designers. Furthermore, the various features of

our implementation such as the space-filling initialization Design of Experi-

ment and the time-saving procedure employed to reduce the number of image

evaluations, are highly effective in the improvement of its performance. As

already mentioned, this is an application area in rapid evolution. There-

fore, several important directions for further research exist. For example,

considering different initializations which require less sample points or more

efficient adaptive sampling for the detection of the new candidate point at

each iteration may be desirable. In addition, given the positive impact of

the image-ranking based time saving, new techniques to reduce the number

of image evaluations at each iteration should be developed.
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Chapter 5

Conclusions

In this dissertation we firstly analyze the state of the art of DFO approaches,

and then we developed a Sequential Approximate Optimization approach

specifically tailored to perform parameter tuning of CVAs employed in auto-

mated defect detection.

Our testing shows that the proposed SAO algorithm is capable of producing,

within reasonable computing times, very good parameter solutions. Further-

more, the various features of our implementation such as the time-saving

procedure employed to reduce the number of image evaluations, shown to be

highly effective in the improvement of its performance.

This results point out that our Derivative Free Optimization approach is

suitable in facing CVAs parameter tuning problems, especially when CVAs

are employed in automated defect detection and, therefore, the resulting
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problem consists in the optimization of their operating characteristic curve.

Moreover, the effectiveness of our method in term of solutions quality and

computational effort control, due to the time-saving procedure proposed,

suggest that space for further research exists. For example, the search of fur-

ther techniques aimed to highly reduce the computational effort, by partial

elaboration of the images dataset, seems to be promising.
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