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1. Introduction 

1.1. Cereals in the world 

Cereals are the main staple food in human diet and livestock feeding. Indeed, out of 1.4 billion of 

hectares of cultivated land, almost a half (0.72 Mha) are used for cereal production (FAOSTAT, 

2014). Almost 89% of world cereal production is from three main crops: maize (Zea mays), wheat 

(Triticum spp.) and rice (Oryza spp.). In the last 57 years, global wheat and rice production increased 

of more than 300% while maize production increased of almost five folds. This astounding result 

are not the consequence of higher land investments but rather of constant yield increase. This has 

been possible thank to a parallel development of agronomical practices and genetic improvement. 

At the same time, the proportion of peoples living under the hungry threshold moved from 30% 

to 10%. This none withstanding, malnutrition is still the main cause of death in the world with 

more than 668 million of people still living without an adequate nutrients intake, especially in 

Africa and Asia (Alderman et al., 2006; Mayer et al., 2008; Müller and Krawinkel, 2005). As 

consequence of that, United Nations declared sustainable food safety as one of the major goals 

of the humanity in the next future (https://sustainabledevelopment.un.org). Various factors 

hinder the reaching of such an ambitious goal. First, the global population will keep increasing at 

least until the 2050 until it will reach nine or ten billion individuals. Secondly, the parallel growth 

of per-capita income will cause a corresponding increase in per-capita food consumption (Tester and 

Langridge, 2010b). Last but not least, anthropic activity will severely impact the climatic 

equilibrium of the planet, with consequences which might be catastrophic. The global agro-system 

will have to respond to a more and more intense food demand in climatic conditions totally 

different from those of the last century. Droughts, floods and extremely high temperature will hit 

the planet with a frequency and strength never observed before (Mickelbart et al., 2015). Is 

therefore crucial that research focuses on those mechanisms which might guarantee a better 

resilience of the plants to such extreme conditions. Furthermore, this must be reached by reducing 

at the same time the agricultural environmental footprint. Given their role in human nutrition, 

this is particularly urgent for cereals. In this dissertation we will focus on the genetic and 

phenotypical dissection of those traits that are involved in drought tolerance mechanisms in 

durum wheat and maize. In particular, we will expose the results of two research conducted using 

high-throughput phenotyping techniques with the aim of discovery the genetic bases underling 

drought adaptive traits. 



 

2 

1.2. Gene, genotype, genome - phene, phenotype, phenome 

When referred to cultivated species, genetic improvement refers to all those voluntary or 

involuntary, conscious or unconscious strategies that humans have used to adapt plants to 

different growing environments and/or uses. In agriculture, genetic improvement has two goals: 

or to increase the amount of good produced per resource unit (yield, productivity, stability, 

sustainability…) or to ameliorate the suitability of the goods to the consumption chain (qualities) 

(Poehlman, 1987).  

From domestication to our days, genetic improvement has been essentially a two-step procedure: 

in the first step, we observe or measure one or more properties of individuals belonging to a 

certain population; in the second step, we destine to reproduction those individuals that, because 

of their superior ranking in the properties we are interested in, have more chances to produce a 

progeny superior to the population they come from. In order to be inheritable and therefore 

subjectable to genetic improvements, traits should have a genetic determinism; such traits are 

referred as phenes; the global set of phenes is usually referred as phenome. The set of phenes 

that functionally and or morphologically allow to distinguish between individuals of the same 

population is referred as phenotype (Fiorani and Schurr, 2013; Mahner and Kary, 1997). 

Phenotypes which are considered optimal for a certain scope are defined as ideotypes. Parallelly 

to phene, phenome and phenotype we could define gene, genome and genotype. Genes are 

parts of nucleic acids able to produce functional molecules. The genome is the set of genes plus 

non-coding and regulatory regions of the DNA. Genotypes are sets of molecular features of the 

DNA which allow to distinguish between individuals of the same population (Mahner and Kary, 

1997). Having this said, we can summarize that genetic improvement is the process that, by 

manipulating the genotype, makes the phenotype more similar to the ideotype. 

1.3.  A brief overview on crop genetic improvement 

Since there is a bi-univocal correspondence between genotype and phenotype, genetic 

improvement might be achieved both selecting phenotypes, selecting genotypes or both. Since 

domestication up to the second half of the XX century, genetic improvement was solely guided 

by phenotypic selection (Tester and Langridge, 2010b). Despite breeding history underwent 

dramatic changes in the way populations were constituted and the ideotypes inspiring the 

selection, the criteria used by humans to select the best individuals was exclusively the direct 

observation or measurement of phenes; since the modification of phenotypes is the goal of any 

genetic improvement effort, this strategy is theoretically the most solid; indeed, as long as the 

progeny is cultivated in the same environment and under the same management conditions of 
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their parentals, select the parentals with best phenotypes will guarantee a progeny with the best 

possible phenotypes. The limits of phenotypic selection came to the surface in the XIX century, 

when genetic improvement of crops started to be scientifically executed. Indeed, selection began 

to be performed in experimental stations where many individuals were evaluated in experimental 

conditions. Progeny of selected individuals, after multiplication, was cultivated in areas other than 

those where the selection was performed. This caused the phenotypic selection for target traits, 

chiefly yield and quality, to lack predictivity. The reason of that is basically that yield and, to a 

certain extent, qualities, are complex traits resulting from the complex interaction of simpler 

phenes. Phenes expression could either be beneficial, neutral or detrimental for a complex trait 

depending on environment and management conditions. E.g. resistance to a certain disease has 

no impact on yield in those environments where the disease is absent while it is advantageous 

under strong disease pressure. Another example is deep rooting: it might be advantageous in 

drought scenarios (if soils are deep and a deep water-plane is available) while, in well-watered 

conditions, it might just be a waste of carbon.  

The lack of predictivity of direct phenotypic selection for yield and qualities, caused ideotypes and 

phenotypes to include more and more phenes, each of which functionally involved in the resulting 

complex trait. One of the direct consequences of this approach was the more and more frequent 

– and successful – adoption of intraspecific hybridization for the constitution of breeding 

population (Borojevic and Borojevic, 2005b; Salvi et al., 2013; Scarascia Mugnozza, 2005). Indeed, 

to introduce a desired phene into the cultivated elite material, breeders begun to cross it with 

exotic germplasm which, despite it was not valuable from an agronomical standpoint, was carrier 

of few useful phenes. The impact of such approach has been tremendous. The pioneering work 

of Nazareno Strampelli in the early XX century is a glaring example of the successes obtained by 

phene manipulation (Salvi et al., 2013; Scarascia Mugnozza, 2005). Italian wheat breeding at the 

Strampelli’s time was facing three major challenges:  

1. adapt wheat to new farming conditions established after the introduction of ammonium 

fertilization in agriculture; 

2. reduce the dramatic yield reduction due to terminal drought; 

3. improve leaf rust resistance; 

Strampelli is the first scientist who obtained to adapt wheat to the fertility boost due to the 

introduction of ammonium fertilization in agriculture. One of the major constrain to ammonium 

fertilization was indeed the lodging phenomenon, overcame by Strampelli introducing in the elite 

“Rieti originario” derived material, dwarfing alleles of the Rht8 gene from Japanese local variety 

“Akakomugi” (Borojevic and Borojevic, 2005a, 2005b). The same cross allowed Strampelli to 
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introgress the early variant of the ppd-D1 gene producing a sensible reduction in flowering time 

(Salvi et al., 2013). This allowed, by reducing the length of the wheat cycle, to plummet the risk of 

droughts during flowering/grain filling, especially in Mediterranean climates. Finally the 

introduction of the resistant variant of the Lr34 (Kolmer et al., 2008; Lagudah et al., 2009) gene, 

conferred good levels of resistance to leaf rust.  Three decades later, the Nobel laureate Norman 

Borlaug used the Strampelli’s lines and strategy to constitute the lines of the green revolution. 

The progressive introgression of favorable alleles in the elite germplasm is one of the crucial 

factors that permitted the crops productivity to increase of more than 300%. Introgression of 

favorable alleles into the elite germplasm has several limitations that pushed breeders, 

physiologists and geneticists to develop strategies more and more sophisticated. One of the major 

constrain for phenes manipulation is for sure the limited, if not null, variability in terms of alleles 

affecting phenes in the desired direction. Different approaches have been used to enrich 

germplasm of potentially beneficial alleles. The first attempts in this direction have been through 

physical and chemical mutagenesis (D’Amato et al., 1962; Neuffer and Ficsor, 1963; Oladosu et 

al., 2016; Shama Rao and Sears, 1964). These techniques cause random changes in the DNA both 

at sequence or structure level. Most of the mutations occur in neither genic or regulatory regions 

of the DNA thus having no phenotypic consequences. In the case mutations occur in functional 

genomic regions, they might cause aminoacidic change and, therefore, changes in the protein 

which might in turn cause phenotypic variation. The International Atomic Energy Agency 

(IAEA), reports in its databases (https://mvd.iaea.org/) over 3200 cultivars of 232 species 

developed using one of the following mutagenesis-based breeding techniques: 

1. direct use of a mutant line obtained after physical or chemical mutagenesis 

2. use of a mutant as parent in crosses 

3. use of a mutant allele 

4. irradiation-facilitated translocation of genes from wild ancestors to elite germplasm. 

Rice is by far the specie with more mutagenesis-breeding derived cultivar (821), followed by barley 

(304), chrysanthemum (281), wheat (255) and soybean (173). The same database reports a total of 

31 durum wheat cultivar released after the use of one of the above-mentioned strategies. Being 

mutations randomly distributed in the genome, many individuals are needed to have good chances 

that at least one of them carry an ameliorative mutation. Furthermore, both physical and chemical 

mutagenesis cause mutations in numerous loci in the genome with possible negative effects on 

other phenes. These two aspects represent strong limitations to the effective employment of 

mutagenesis in breeding. Another major limiting factor is the fact that through mutagenesis it is 

not possible to tune gene expression levels.   
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Parallelly to mutagenesis, the development of genomics and biotechnologies marked the 

beginning of a new era in breeding. The use of biotechnologies in genetic improvement has had 

two major finalities: i) to enrich natural genetic variation, ii) to enhance selection efficiency by 

integration of phenotypic and genotypic information. Biotechnologies started to impact plant 

breeding as soon as genetic transformation through Agrobacterium was developed (Bevan et al., 

1983; Herrera-Estrella et al., 1983; Parmar et al., 2017). This strategy permits the stable integration 

of genetic material from any species into the genome of a recipient species. Individuals which 

genome was enriched by mean of this technology are commonly referred as Genetically Modified 

(GM).  Classic examples of GM uses are the incorporation in vegetal genomes of bacterial toxins 

from Bacillus thuringiensis to obtain insect resistant crops or the artificial enhancement or 

introgression of biosynthetic pathways to produce bio-fortified food i.e. “Golden rice” (Mayer et 

al., 2008; Sanahuja et al., 2011). Other biotechnological tools that allow the direct modification of 

the genetic pool of plants are referred as genome editing (GE) techniques. The most important 

family of these techniques is that of site direct nucleases (SDNs). SDNs permit the precise cut of 

a specific genomic region; they can either be DNA-binding restriction proteins able to recognize, 

bind and cut in a certain position of the genome (meganuclease) or heterodimers of two proteins 

having one the function to recognize the genomic region and the other to cause the actual cut. 

Zinc finger nucleases (ZFNs) and transcription activator‐like effector nucleases (TALENs) are 

two representative examples of this technology. These proteins are usually coupled with Fok1, 

which cause the actual cut of the DNA. In order to permit the editing to occur, is therefore needed 

that two genes encoding for the above-mentioned proteins are expressed in the cells. SDNs could 

be used for single point mutation, insertions or deletions of entire gene or genomic regions 

(D’Halluin et al., 2013; Osakabe et al., 2010; Petolino et al., 2010; Shukla et al., 2009; Townsend 

et al., 2009). In the last few years, an innovative technology is emerged which, because of its 

precision and ease of use, promises to revolutionize the impact of GE in plant breeding. This 

technology is named CRISPR/Cas9 and is a SDN where the Cas9 nuclease is directed to the target 

genomic region by an ad hoc designed RNA guide (Barrangou et al., 2007; Cai et al., 2018; Jinek 

et al., 2012; Wang et al., 2017; Zhou et al., 2016).  

Despite the above-mentioned biotechnological tools permit a much more accurate control of 

genetic modification as compared to mutagenesis, their application in breeding has faced several 

constrains which have strongly limited their wide diffusion. First of all, they need long and costly 

development for the discovery, modification and patenting of the genes to insert or modify; 

secondly, in several developed countries, especially in Europe, they found an harsh opposition by 

large part of the public opinion because of often unfounded safety concerns which translates; 
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finally, because they permit the modification of a relatively low number of loci thus being 

unsuitable for the improvement of very complex traits such yield or most of stresses tolerances 

(Hartung and Schiemann, 2014; Tester and Langridge, 2010a). 

As above mentioned, biotechnologies have not only allowed for the enrichment of genetic 

variability of germplasms but also they have been used to increase selection predictivity accuracy 

in breeding. The main use of biotechnologies in this direction is commonly referred as marker 

assisted selection (MAS). MAS fundamentally take advantage of detectable variation (molecular 

markers) present in the DNA sequence to track and monitor specific regions of the genomes 

during crossing and selection (Moose and Mumm, 2008). Because of linkage disequilibrium, 

markers might be predictive of the allelic status of the genetically linked loci. Those loci where one 

or more genes are involved in the control of a quantitative trait are referred as quantitative trait 

loci (QTLs). The allelic status at a certain marker linked to a QTL might therefore be predictive of 

a certain phenotype. MAS consists in the integration of phenotype-based selection with genotype 

information at critical loci. Mas is especially useful when the target traits have low heritability, the 

costs of phenotyping are high or if breeders are interested to introgress in elite material just a small 

part of the genome of a wild relative (i.e. backcrosses). Molecular markers are also crucial in gene 

cloning, the process that permits the identification of the gene causally controlling a certain phene 

(Salvi and Tuberosa, 2005). MAS has not faced the same ostracism as other biotech tools. 

Furthermore, it permits to contemporary track the entire genome and thus to be particulary 

suitable to complex traits breeding (Tester and Langridge, 2010b) In order to develop markers 

suitable for MAS, is crucial to identify those QTL controlling the target trait. The QTL discovery 

strategies are fundamentally statistical regressions where is tested the significance of the 

association between measured phenes values of a relatively high number of individuals and their 

genotypic information. As above mentioned, many stresses tolerance mechanisms, notably 

drought, have a complex genetic and phenotypic architecture. Is therefore crucial to dissect 

tolerance into component contributory phenes and to identify QTLs controlling them (Araus et 

al., 2002; Langridge and Reynolds, 2015; Tuberosa, 2012). The high number of individuals needed 

for QTL discovery jointly with the numerosity of phenes to be collected to dissect complex traits 

is the origin of what is known as the phenotyping bottleneck (Fiorani and Schurr, 2013; Furbank 

and Tester, 2011). High throughput phenotyping is the set of technologies developed to permit 

to obtain with adequate accuracy many phenes on QTL discovery suitable populations.  

In the next chapters, we will present two researches where, by use of high throughput 

phenotyping, we have been able to identify several loci involved in drought tolerance-related 

phenes in maize and durum wheat. 
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2. High throughput phenotyping of a maize 

introgression library for water use efficiency and growth-

related traits 

2.1. Introduction 

Water deficit is one of the major factors limiting crop yield potential. Despite this, the genetic 

basis of drought tolerance remains mostly unknown because of its intrinsic complexity. Modern 

breeding approaches try to tackle the complexity of drought tolerance first by dissecting it into 

simpler secondary traits by means of eco-physiological modelling (Abdel-Ghani et al., 2016; 

Reynolds and Langridge, 2016; Salvi et al., 2011; Szalma et al., 2007; Wei et al., 2015). Each 

secondary trait is supposed to have a simpler genetic control than yield under drought and, 

therefore, to be more easily manipulated by breeding. For instance, plant geneticists and 

physiologists focused on traits such as stomatal conductance, leaf water status and/or osmotic 

potential, root anatomy and architecture and others (Roy et al., 2011; Vadez et al., 2013).  

 The capability of plants to uptake water and maintain water use (WU) together with their 

capability of efficiently use it (water use Efficiency, WUE, defined as the amount of water needed 

to produce a certain amount of biomass) have been recognized as key components of drought 

tolerance (Blum, 2009; Reynolds and Tuberosa, 2008; Richards and Passioura, 1989). Several 

approaches permit to directly or indirectly estimate WUE both at field and plant levels. Despite 

just a part of the total biomass produced is finally harvested, biomass accumulation rate (BA) in 

specific growth phases (e.g. early vegetative growth) can be critical for the plant to successfully 

address later phases such as flowering, fertilization and grain filling. Furthermore, being leaves the 

main organ of the plant deputed to gas exchange with atmosphere, their extension, together with 

stomatal density and control, is critical to determine plant water consumption.  

One of the major hurdles in working with secondary traits is that their phenotyping can be more 

time consuming and less repeatable than directly measuring yield. This limitation will likely be 

mitigated by the advent of high-throughput phenotyping technologies, which appear as 

particularly suitable for the  dissection of abiotic stress tolerance. (Araus and Cairns, 2014; 

Cabrera-Bosquet et al., 2012; Reynolds et al., 2009; Tuberosa, 2012). One of the advantages of 

these technologies is the possibility to perform morpho-physiological measurements dynamically, 

thus enabling to study traits which are usually inaccessible to phenotyping based on single time 

point (or end-point) measurements.  
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Several types of populations have been conceptualized and developed to perform 

phenotype/genotype associations. Among them, introgression libraries (ILs, also referred to as 

chromosomal substitution lines), allow for the evaluation of chromosomal regions from a donor 

parent (DP) into a common genetic background from a recurrent parent (RP) (Zamir, 2001). This 

approach is especially useful for the exploitation of genetic diversity originating from exotic or 

unadapted plant materials. Indeed, the DP is usually chosen because of the presence of interesting 

traits despite its overall inadequacy to common farming conditions. On the contrary, the RP is 

usually a well-characterized highly productive elite line or genotype. Multiple introgression 

libraries have already been generated in maize (Abdel-Ghani et al., 2016; Salvi et al., 2011; Szalma 

et al., 2007; Wei et al., 2015).   

In this experiment, we used a high-throughput phenotyping strategy to evaluate drought tolerance 

related traits in a maize IL previously found to segregate for phenology and root system 

architecture (RSA) (Salvi et al., 2011, 2016). The phenotyping platform PhenoArch 

(https://www6.montpellier.inra.fr/lepse_eng/M3P/PHENOARCH-platform) is a conveyer 

based system which permit the dynamic, non-destructive evaluation of biomass and WU and thus 

to have a direct estimation of WUE (Cabrera-Bosquet et al., 2016; Coupel-Ledru et al., 2014; 

Lopez et al., 2015).  Furthermore, its design allowed for an accurate control of soil water status 

and atmospheric parameters such as temperature, relative humidity and photoperiod, thus 

permitting an accurate evaluation of the plant response to water deficit.  

We aimed to test whether genetic variation for phenology and RSA would affect BA and WU 

during the early phase of development, in an elite maize genetic background. 

2.2. Materials and methods 

Plant material and genetic characterization 

A total of 73 lines from a previously developed introgression library (IL) population (Salvi et al., 

2011) plus the two parents were tested. The RP of the IL was the elite dent line B73, an inbred 

line also used as reference for sequencing the maize genome (Schnable et al., 2009) while the DP 

was the early-flowering north American flint landrace Gaspé Flint (Vigouroux et al., 2008). The 

IL was obtained through five generation of SSR-marker-assisted backcross followed by two cycles 

of selfing (Salvi et al., 2011). The IL was previously found to segregate for phenology traits and 

seminal roots architecture (Salvi et al., 2011, 2016). In this work, the genetic characterization of 

the IL was refined in respect of the previously available data (Salvi et al, 2011) by means of the 

50k SNP ILLUMINA Infinium array (Ganal et al., 2011). A total of 48,361 SNPs were utilized 

after excluding SNPs with unknown or unclear physical map position on the maize reference 

https://www6.montpellier.inra.fr/lepse_eng/M3P/PHENOARCH-platform
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genome (Schnable et al., 2009) and those with >10% of missing data. A graphical genotype of the 

IL was constructed by creating chromosome BINs of consecutive SNPs with identical genotypic 

score and labelling the BINs with the first SNP of the BIN. BINs of length < 200 kb and with < 

5 SNPs were masked. Linkage Disequilibrium (LD) between BINs was evaluated using TASSEL 

5 (Bradbury et al., 2007). LD p-values were estimated by a two-sided Fisher's Exact test (Fisher, 

1922). Two BINs were considered in high LD when the calculated p-value was < 0.01. 

Experimental design and traits evaluation 

The high-throughput phenotyping platform PhenoArch is hosted in a greenhouse of the 

Laboratory of Plant Eco-physiology under Environmental Stresses (LEPSE) of the French 

Agricultural Research Institute (INRA) in Montpellier, France. The platform consists of 28 belt 

conveyers each of which can carry up to 60 pots, for a total throughput of 1680 pots/plants. 

Conveyers permit the automatic transport of the pots to both watering stations and imaging cabin. 

The platform hosts two automated watering stations consisting in balances with 1g accuracy (ST-

Ex, Bizerba, Balingen, Germany) and high-precision pumps (520U, Watson Marlow, Wilmington, 

MA, USA). The imaging cabin is provided with two RGB camera (1280×960 px, 3D Scanalyzer, 

LemnaTec, GmbH, Wüerselen, Germany) and a rotating lift which permits the acquisition of 

lateral plant pictures from up to 12 angles (0° to 330° with 30° steps) plus a single picture from 

the top. Biomass was estimated by a four steps process consisting in: 1) image segmentation to 

isolate the plant from the background and thus estimate the number of pixels it was made of; 2) 

extrapolation, through image analysis of geometrical properties of the picture of the plants such 

as width, height, convex hull etc…; 3) selection, among the 12 lateral pictures, of the frontal one 

(where the plant had the maximum width); 4) estimation of fresh biomass (B) and leaf area (LA) 

on the base of the number of pixels of the plant in the frontal and the top pictures by means of 

multiple linear models previously calibrated using destructive measurements. Air temperature, 

relative humidity and VPD was monitored in eight spots of the greenhouse. Day and night air 

temperature was maintained at 24 and 18 °C respectively. Natural lighting was integrated with 

HPS lamps light in order to impose a 18/6-hour (light/dark) photoperiod. Plants where grown in 

cylindrical pots (55x15 cm) filled with peat-based compost. Pots were weighted twice per day in 

order to evaluate soil water content and thus, on the base of a previously estimated soil water 

retention curve, soil water potential. Plants were subjected to two soil water status: well-watered 

(WW) and water deficit (WD). In WW, soil water potential was maintained at >1 MPa; in WD, 

irrigation was suspended when the population was averagely at the 8th leaf stage. When soil water 

potential was less of the target threshold of -4 MPa, each pot was irrigated dispensing the exact 

amount of water needed to bring the soil water potential back to -4 MPa. The experimental unit 
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consisted in a single pot where a single plant was grown. Per each water treatment, eight 

randomized replicates of the entire IL population and the two parents were grown up to the 13th 

leaf stage. A lattice design was used to avoid the neighbouring of two replicates of the same 

genotype.       

Thermal Time (TT) was estimated for WW and WD as 20 °C equivalent days as previously 

suggested (Parent et al., 2010). All time-related traits will be reported as referred to TT. As 

mentioned above, PhenoArch allows for two classes of automated measurements: ponderal (twice 

per day) and imaging (once every two days at night). Growth curves for biomass and leaf area 

were fitted using the package grofit (Kahm et al., 2010) in the statistical software R (The R Core 

Team, 2016). Three possible fitting models were evaluated: logistic, Gompertz, modified Gompertz and 

Richards (Zwietering et al., 1990). For each pot, the model with lower Akaike Information Criterion 

(AIC) was choose (Akaike, 1974). Ponderal measurements were took twice per day; each time the 

weight of the plant plus the pot and the tutor was measured immediately before and after watering. 

The amount of water evapo-transpired (ET) between two consecutive measurement was 

estimated as follow: 

𝐸𝑇 = 𝑊𝑎𝑖−1 −  𝑊𝑏𝑖 −  ∆𝐵 

Where: 

𝑊𝑏𝑖 is the weight of the pot plus the plant before watering at the ith measurement  

𝑊𝑎𝑖−1 is the weight of the plant plus the pot after watering at the measurement preceding the ith  

∆𝐵 is the increase in biomass between the two measurements. 

In order to obtain comparable observations, we analysed the traits just in an evaluation time 

window between the imposition of the final target soil humidity in WD and the harvest. Rate of 

Biomass Accumulation (BA) was calculated as the biomass increase between the start and the end 

of the evaluation window divided for the TT elapsed. Daily Water Use (WU) was estimated as the 

total amount of water evapo-transpired during the evaluation window and its duration expressed 

in TT. Water Use Efficiency (WUE) was estimated as the total biomass increase in the evaluation 

window and the total amount of evapo-transpired water in the same time. Specific Transpiration 

(T) was calculated as the average amount of water used between two phenotyping points and the 

average LA of the plant during the same interval. Early Vigor (EV) was measured as estimated 

fresh biomass before the water deprivation treatment (~ 8th leaf stage). BA, WU and T response 

to water deficit (BA_res, WU_res and T_res) were calculated as the ratio between the standardized 

phenotypic values of each trait in WW and WD.  
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The number of visible leaves was scored visually twice per week. An additional score was given 

to the last visible leaf according to its stage of development as follows: 

0.3 – leaf visible just inside the previous leaf sheath 

0.5 – leaf blade just emerged the previous one sheath 

0.8 – leaf blade fully visible and mostly expanded. 

Leaf number was calculated as the number of visible leaves plus the last visible leaf score. Linear 

fitting was then performed between leaf number and thermal time. We refer to the slope of this 

fitting as phyllochron (Phy). Thus, Phy approximates the number of leaves emitted per thermal 

day. Since WD affected Phy and just three scores were available in the evaluation period, the 

results relatives to Phy are referred to the only WW plants. 

Micro-environmental effect estimation 

In order to evaluate the effects of the micro-environmental variation on the observed traits, a two-

step strategy was adopted. First, for each trait the difference from the genotypic mean was 

calculated for each pot within the experimental design; secondly the micro-environmental effect 

of the XY position was calculated as the average of the difference of the pots surrounding the XY 

position. Outliers were detected using the Dixon’s Q test (Dixon, 1951) and excluded from further 

analysis. 

Statistical analysis and QTL detection 

Statistical analysis was performed using the software R (The R Core Team, 2016). All the graphics 

and plots were made using the ggplot2 package (Wickham, 2009). Two-tailed correlation tests were 

performed using the package psych v. 1.6.7 (Revelle, 2017) and the obtained p-values corrected 

according to Benjamini and Hockenberg (Hochberg and Benjamini, 1990) for false discovery rate. 

Correlation between traits measured in this experiment and experiments previously conducted on 

the same materials, were calculated on the BLUPs value of each line calculated by means of the 

lme4 package (Bates et al., 2015) using the variable “Genotype” as the only random variable and 

no other fixed-effect variate. Principal Component Analysis (PCA) was performed on scaled 

values using the princomp function of the stats package (The R Core Team, 2016). Dunnett’s 

multiple comparison test was carried out using the package multcomp (Dunnett, 1955; Hothorn et 

al., 2008). Broad sense heritability (h2) was calculated using the function repeatability of the package 

repeatability (Wolak et al., 2012). The genetic position of the markers was assigned according to the 

nearest marker on the reference map “Genetics” (Coe et al., 2002). Single BIN QTL analysis was 

performed by t-test comparison between the lines carrying the  given introgression and the lines 



 

6 

without the same introgression, and correcting the resulting p-values accordingly to Bonferroni 

(Bonferroni, 1936). We herein define QTL clusters those BINs or groups of BINs in strong LD 

(Fisher test p-value < 0.01) that showed evidence of trait-genotype association (p-value 

Bonferroni corrected <0.01) for at least two traits. In case of genetically linked QTL, QTL were 

considered as distinct in case of contrasting direction of genetic effect of the donor fragment. 

2.3. Results 

Effect of water regimes on vegetative growth and water use 

The two water regimes (well-watered: WW and water deficit: WD) strongly influenced Biomass 

accumulation (BA), Daily water use (WU), Transpiration rate (T) and Water use efficiency (WUE), 

with a reduction of 69%, 46%, 42% and 44%, respectively (Fig. 1; Table 1) in the WD treatment.  

As an exemplification of the data type and quality collected in this experiment, the time-course 

(per day) change of BA in the two water regimes for all B73 pots is shown in Fig. 2.  

Phy was measured in well-watered plants only. Early vigor (EV) was measured before starting the 

water deprivation period therefore no response to water regimes was made available. Trait 

repeatability (h2) was overall acceptable ranging 0.50 - 0.59 for BA, WU and WUE, and 0.38-0.39 

for T (Table 1). EV and Phy showed h2 values of 0.53 and 0.62, respectively (Table 1).  

Correlation among traits 

BA, EV, WU, WUE and Phy were positively correlated in both WW and WD conditions (Fig. 4; 

Table 2). Instead, T generally showed weaker correlation values, with the only significant values 

observed between T_wd and WU_wd (r = 0.33) and with T_ww negatively correlated with BA_res 

and WU_res (r = -0.39 and -0.48, respectively). The three ‘response to water deficit traits’ (BA_res, 

T_res and WU_res) resulted positively correlated (r values from 0.58 to 0.82. P < 0.001), as 

expected given their physiological connection (ie. water deprivation is expected to impact in the 

same negative direction on the three traits). A PCA-based multivariate analysis of platform trait 

variation showed that the first two principal components (PC1 and 2) explained >80% of total 

variability (Fig. 3). Overall, vectors for traits collected in platform clustered in a comparable 

manner in WW and WD. In WW, PC1 was the result of similar loadings assigned to all the five 

platform traits while PC2 was mainly the result of positive load of WUE and negative load of T. 

In WD conditions, PC1 had the same composition observed for WW while PC2 mainly showed 

a contribution from WUE (positive loadings) and EV (negative loadings).   

Correlations between platform traits with other morpho-physiological traits collected on the same 

IL lines in previous experiments (Salvi et al. 2011 and 2016) were also computed.  Concerning 
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root traits, it is interesting to note that Root/Shoot ratio (R/ST) was negatively correlated with 

BA, EV, WU, WUE and Phy in both WW and WD conditions (r ranging from -0.19 to -0.45. 

Table 2) while its components (Embryonal Roots Dry Weight and Shoot Dry Weight, ERDWT 

and STDW, respectively) were not. Phenology-related traits evaluated in the field (Leaf Number 

and Days to Pollen Shed, LEAN and DPS respectively), showed little correlation with platform 

traits, except for mild correlations observed between LEAN and WU_ww (r = 0.30, P < 0.05) 

and between DPS and WUE_ww (r = -0.28, P <0.05). 

Water use efficiency and response to water stress of IL lines 

In our experiment, the two main components of WUE (BA and WU) were independently 

assessed, which provided the opportunity to explore physiological and genetic mechanisms 

responsible for WUE variation . 

In WW, 18 IL lines showed higher WUE than B73 and just one line showed lower WUE (Table 

3).  For the ‘high WUEww’ lines, higher WUE was associated to higher BA coupled with non-

significant difference for WU (seven lines), a non-significant increase in BA coupled with a non-

significant reduction of WU (three lines) or an increase of both BA and WU but with a 

proportionally higher increase in BA (eight lines). The only IL line (IL38) with lower WUE in 

WW also showed lower WUE in WD; additionally, IL38 showed significantly lower values of WU 

in both water conditions, and lower BA and Phy, overall suggesting a developmental weakness 

likely caused by the homozygosity of low performance GF allele(s) not necessarily linked with 

water balance traits.  

In WD, seven lines were characterized by WUE higher than B73 and six by lower WUE. Among 

the seven with higher WUE, six lines had high WUE associated with either much higher BA 

matched with unchanged WU (++BA & =WU. IL56, 60, 66 and 72) or by a slightly higher BA 

matched with a slightly lower WU (+BA & −WU. IL57 and 67. Table 3). The same six lines 

showed WUE higher than B73 in WW too. However, the seventh line (IL63) showed higher WUE 

than B73 at WD only. This line reached higher WUE than B73 by reducing WU (−26.99 g; P < 

0.01. Dunnet test vs. B73, corrected for multiple tests) without affecting BA accumulation (Table 

3). For IL63, a marginally significant reduction of WU was observed in WW too, however this 

reduction was not enough to impact on WUE in WW. Finally, IL63 showed a negative water use 

response to water deficit treatment (WU_res < 0. P < 0.001) while did not show any negative 

response on BA accumulation (BA_res ≈ 0). The same line did not show any significant difference 

from B73 for other traits such as EV, Phyl and T. Overall, these results suggest that different 

mechanisms of plant water balance regulation are in place among the different IL lines.  
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QTL for plant growth-related traits, water use and water use efficiency 

A total of 20 QTL clusters and 8 non-overlapping QTL were detected in eight out of ten 

chromosomes confirming the complex genetic control of the nine physiological traits collected in 

platform (Fig. 5). Details on all QTL clusters composition and position, and single QTL position, 

effect, proportion of variance explained and statistical significance are reported in Table 4 also 

includes QTL for total number of leaf (LEAN), days to pollen shed (DPS), root to shoot ratio 

(R.ST), embryonic root dry weight (ERDW) and number of seminal roots (SRN) recomputed 

here using previously collected phenotypes (Salvi et al. 2011, Salvi et al. 2016) and the new 50k-

SNP genotype matrix.  

Overall, QTL for the tightly physiologically related traits BA, WU, and WUE showed a clear 

tendency to cluster, supporting the reliability of the results. Additionally, within the same cluster, 

QTL for these traits were characterized by highly concordant direction of genetic effect (eg. a 

positive BA genetic effect corresponded to a positive WUE genetic effect, as expected 

physiologically). In the following, when not specified, the QTL effect is discussed with reference 

to the Gaspé Flint (GF) allele.  

At Q1 (bin 1.01-02) the GF allele increased BA, WU, and WUE in WW condition and WU in WD 

condition. Similarly, at Q4 (bin 2.01-02) the GF allele showed a positive effect on EV, WUE (both 

WW and WD), BA (in WD) and WU_res. Q4 was in long-range LD with Q3 on chromosome 1. 

At Q6 (bin 2.06-08) the GF introgression showed a strong negative effect on BAwd and EV, 

which likely negatively contributed to the concurrent negative effect on WUwd and WUEwd. This 

was also confirmed by the negative effect recorded for BA_res and WU_res.   

At Q8 (chr. 3), the GF substitution had a negative effect on most traits (BA, EV, WU and WUE) 

in both WW and WS conditions. Accordingly, no effect was observed on responsive traits (BA_res 

and WU_res). Q8 encompassed a large portion of chromosome 2 (from 32 to 145 cM) due to the 

presence of very long GF chromosome introgressions and common introgressions among 

different IL lines.  

The GF allele substitution at Q11 (bin 4.03) induced a strong positive effect on EV (+8.5 g, P < 

1×10-4) and had the strongest effect on biomass accumulation throughout the whole experiment 

(Q11 BAww genetic effect: +3.97 g, P < 1×10-8). This effect likely drove the positive effect on 

WUEww and the negative effect on BA_res. It should be noticed that Q11 seemed to act at WW 

only and no effect was detected in WD on any of the traits.  

Q15 mapped at the bottom of chr. 6 and showed a negative genetic effect on EV and WUwd. The 

effect on EV was the strongest recorded in this experiment (−10.5 g, P = 6.4 × 10-9). 

Q16 (chr. 8) showed a strong reduction in BAwd and WUwd, with a connected effect on WU_res. 
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At Q17 (chr. 8), 19 (chr. 9) and Q20 (chr. 10) GF allele substitutions showed mostly positive 

effects on BAwd, EV, WUEwd, WUEww and others, with the exception of mild negative effect 

on WUww at Q17 only.  

Phy QTL were mapped at four QTL clusters (Q8, Q12, Q17 and Q18) with positive and negative 

genetic effects. At Q8 (chr. 3), the GF allele reduced Phy rate (−0.011 leaf × thermal day−1. P = 

3.6 × 10−5) in accordance with the negative effect recorded for all other traits at this QTL cluster. 

At Q12, Q17 and Q18, GF allele was associated with positive effects on Phy. Interestingly, at Q17, 

Phy QTL overlapped with the flowering time QTL Vgt1 and Vgt2, known to segregate between 

GF and B73 (Salvi et al. 2011); more precisely, at this QTL cluster the GF substitution increased 

Phy rate (0.007 leaf × thermal day−1. P = 9.3 × 10−3) while reducing the number of total nodes 

and number of days to flowering (Salvi et al. 2011. See Discussion). 

2.4. Discussion 

Correction for micro-environmental variability 

Semi-controlled environments such as a greenhouse provide the possibility to grow plants in 

relatively ideal conditions strongly reducing the possibility that extreme or uncontrolled 

environmental events negatively affect the accuracy and repeatability of the experiment. The 

advanced PhenoArch system additionally allowed for accurate control of the soil water status. 

Nevertheless, micro-environmental variability was still detectable thus decreasing the heritability 

(repeatability) of the traits, if left unaccounted for. In order to address this problem, we have 

applied a correction method (fully explained in Materials and Methods). The method strongly 

increased h2 values especially for those traits (T and EV) with low h2 before the correction (Table 

1). The main advantage of the proposed technique as compared to other methods is that it corrects 

for local non-random spatial effect not intercepted by other explanatory variables such as 

replicate, XY coordinate etc. Nevertheless, one of the limitation of the method is that while the 

spatial effect is limited to a specific position on the experimental grid, the moving replicates 

method extend the effect to the nearby positions owing to the limited number of plants for each 

moving rep, a problem that we partially addressed by discarding outliers from the moving rep 

prior to final analysis.  

WUE was significantly lower in WD than in WW. This finding can be explained by the way the 

global evapo-transpiration was estimated. In this experiment, water was poured directly on soil 

surface hence the transpiration component of ET was affected similarly by the water treatment 

because evaporation was comparable between WW and WD conditions. Thus, the reduction in 

rate of biomass accumulation was proportionally higher than the reduction in evapo-transpiration, 
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resulting in lower WUE in the plants subjected to WD. Indeed, the reduction of BA and WU 

consequent to water deficit was equal to 69.6 and 46%, respectively while the reduction of WU 

was of just 46.0%. 

Early vigor and its relationship with WUE 

Given its importance in field performance and abiotic stress tolerance, genetic variation and 

control of early vigor in maize have been addressed in several studies (Hund et al., 2004; Jompuk 

et al., 2005; Liao et al., 2004; Presterl et al., 2007; Ruta et al., 2010; Trachsel et al., 2010, 2016). In 

our study, EV was one of the more strongly correlated traits with BA and WU in both water 

regimes. This is explained by the fact that early-vigor plants have also a larger canopy, which can 

better sustain plant growth. Positive correlation was also found with WUE in both water 

scenarios. The positive correlation with WUE can be explained by the fact that in plants with 

larger leaf area, the transpiration component tends to prevail on evaporation, thus reducing the 

role of water lost through evaporation. This is confirmed by the fact that eight out of eleven lines 

with significantly higher EV than B73, were more WUE in WW. By contrast, just three of the EV 

lines were among those more WUE in WD. QTL analysis allowed us to genetically localize the 

loci affecting EV. In this respect, QTL of EV and WUE often overlapped, like in the case of QTL 

cluster Q1 (chromosome 1, BIN1.1) characterized by higher EV (+6.89 g) and WUE (+0.01%) in 

WW only. A similar effect was detected for Q11 (chromosome 4, BIN 4.03). In the case of Q4 

and Q19, EV was positively associated with WUE in both WW and WD. Given the high LD (p-

value <0.01) between these two BINs in our population, it was not possible to map the QTL to 

a single BIN. 

Root shoot ratio measured at seedling stage is negatively correlated with WUE 

Several studies have shown the importance of seminal RSA on adaptive capability of plants to 

abiotic stresses (Bishopp and Lynch, 2015; Hochholdinger and Tuberosa, 2009). In this study we 

had the opportunity to evaluate a population which was previously characterized for some RSA 

traits (Salvi et al. 2016). In Figure 4 we report the phenotypic correlations between root traits 

collected by Salvi et al. by means of the paper roll technique and shoot growth traits collected in 

this experiment. Unexpectedly, no significant correlation was detected between shoot dry weight 

at seedling stage and growth components. On the other hand, significant correlations were found 

between root/shoot ratio and BA and WUE in WW; BA, WU and WUE in WD, other than with 

EV and Phy. Among the lines used in this experiment, two were found to have a higher R.ST than 

B73 and six a lower one. Only one of the latter lines showed significantly different EV as 

compared to the RP while half of them were different in terms of BA in WW and three out of 
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eight in WD. Interestingly, the embryonal root dry weight was negatively correlated with Phy and 

not with the other measured traits. These results indicate that those plants preferentially allocate 

more carbon to the shoot at seedling stage, maintain similar behaviour across the entire vegetative 

growth. This explains also the negative correlation found between R.ST and WUE: a more shoot-

oriented allocation of metabolites resulted in improved shoot growth, water consumption made 

equal. This hypothesis seems to be confirmed by the colocalization of R.ST and WUE QTL in 

Q1 and Q17, although the low genetic resolution of this experiment does not permit us to exclude 

the action of linked but functionally distinct genes underlying the two traits. The confidence 

interval of Q1 indeed includes Rtcs, a gene previously characterized for its influence on RSA 

(Taramino et al., 2007) and already proposed as candidate for a QTL for number of seminal roots 

mapped in the same region (Salvi et al. 2016). Several QTL for RSA were also identified on the 

Q17 region in different genetic backgrounds (Burton et al., 2014; Pestsova et al., 2016; Wu et al., 

2015; Zurek et al., 2015). This notwithstanding, a constitutively reduced allocation of 

photosyntates to the RSA might be detrimental in case of nutrient/water limited field conditions. 

Notably, yield QTL have been detected in the same region of Q1 in WW field conditions but not 

in WD (Millet et al., 2016).  

Among the 73 IL lines, IL63 showed the higher WUE and could be considered an example of 

“conservative WUE” line. IL63 line showed lower WU and similar BA when compared to the RP 

(B73) in WD conditions. Interestingly, this line did not show lower T as compared to B73. IL63 

carries a 27.2 cM Gaspé Flint introgression between the BINs 3.04 and 3.05 (69.8 cM – 97.03 cM 

of the Genetics reference map) and was previously shown to be early flowering when compared 

with B73 due to a major QTL, named Vgt3 (Salvi et al. 2011), similarly mapped in several 

independent experiments (Romay et al. 2013; Hirsch et al. 2014; Millet et al. 2016). Additionally, 

the same line develops a higher proportion of juvenile leaves (Salvi et al. 2011) which are 

characterized by a much higher leaf epicuticular wax than adult leaves ((Poethig, 1990; Vega et al., 

2002). In IL63, transition occurs at leaf-10 rather than at leaf-7- 8 as in B73. Thus, the higher 

WUE of this line (and of the corresponding QTL) could be due to the fact that this line allocated 

less of its photosyntetates to canopy expansion than to other shoot sinks (e.g. stem, leaves 

thickness) thus maintaining low water use at the same time.  

Flowering time genes and WUE 

The IL lines studied in this experiment were formerly characterized for phenology traits such as 

DPS, LEAN and others (Salvi et al., 2011). Specifically, this population is known to segregate for 

vgt1 and vgt2 (Bouchet et al., 2013; Chardon et al., 2005; Salvi et al., 2002) and these two strong 

flowering time QTL map within the confidence interval of Q17, a QTL cluster where the Gaspé 



 

12 

Flint allele shortened flowering time and increased WUE in both WW and WD, with a significant 

effect on BA in both conditions. It is also interesting to notice that within the QTL cluster Q17, 

Vgt1 coincided with the peak of a Phy QTL (Bin 8.05, 104.6 - 138.2 Mb. Supp Tab. 2) where 

Gaspé Flint again contributed for the positive effect allele (in this case, increaed pace of leaf 

emission). Additionally, a large GWA study recently identified a major flowering time QTL (SNP 

marker AX-91405380, 159.5 Mb) near but distinct from Vgt1, characterized by a positive effect 

on yield in many water regimes (Millet et al. 2017). A simple, although still speculative explanation 

is that vgt1 (or perhaps the combination of different flowering time QTL at bin 8.05-06, in strong 

LD in this population) might act on flowering time not only by affecting the time of transition of 

the apical meristem to the reproductive phase, but also by acting on the vegetative developmental 

pace (either plastochron or Phy, or both), providing the opportunity for the early-Gaspé Flint 

allele to accumulate more biomass per unit of time. The use of the PhenoArch platform was 

instrumental for the detection of the genetic effect on Phy. 

2.5. Conclusions 

This study identified and characterized several maize IL lines with well-defined contrasting 

physiological responses to water regimes, in the B73 elite genetic background, the most extensively 

investigated line in maize from genetic and physiological standpoints. For the first time, we 

observed a correlation between root/shoot ratio at seedling stage and WUE at full vegetative 

growth. Indeed, it seems that the tendency of certain genotypes to preferentially allocate resources 

to the shoot results in an increase in WUE, especially in WW conditions. In the case of QTL 

cluster Q1, the presence within the confidence interval of a strong candidate gene such as Rtcs 

could indicate it as candidate gene for the reduced root/shoot ratio. In the other case, further fine 

mapping efforts are needed in order to identify the causal genes. As regard to phenology traits, a 

QTL for delayed juvenile to adult transition was shown to affect WUE in WD conditions and it 

is possible that this association is linked to an augmented number of wax-coated juvenile leaves. 

Additionally, for the first time a significant effect of a major flowering time QTL (Vgt1) was 

detected on maize Phy, with the early flowering allele also contributing to faster Phy and thus 

positively affecting biomass accumulation and WUE. Although the presence of more than one 

introgression in the same IL line often limited the capability to accurately localize the QTL, this 

study provided clear evidence of the power of high-throughput phenomics investigation on well 

characterized elite genetic materials, towards the genetic dissection of physiological processes of 

agronomic impact such as plant response to water deficit.  
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2.6. Tables and figures 

Table 1 Mean values of the observed traits for the entire population and the RP (B73) in both the experimental conditions. Broad sense heritability is reported both before and after the 

moving replicates correction. 

  

Variable 

ID 

Variable 

description 
Unit 

Population 

average WW 

B73 

WW 

Population 

average WD 

B73 

WD 

H2 before 

correction 

WW 

H2 after 

correction 

WW 

H2 before 

correction 

WD 

H2 after 

correction 

WD 

BA 
Daily biomass 

accumulation 
g/20°C day 11.15 11.08 3.422 3.55 0.32 0.57 0.33 0.55 

WU Daily water use g/20°C day 186.2 180.9 101.08 106.7 0.35 0.59 0.29 0.53 

T 
Specific 

transpiration rate 
g/m220°C day 113.8 115.2 66.51 69.74 0.33 0.38 0.20 0.39 

WUE 
Water use 

efficiency 
g/g 0.0594 0.053 0.0335 0.0329 0.37 0.50 0.34 0.52 

EV Early Vigor g  48.06 46.58 NA NA 0.22 0.53 NA NA 

Phy Phyllochron Leaves/20°C day 0.27 0.27 NA NA 0.43 0.62 NA NA 

BA_res 
BA response to 

water deficit 

Standard BA_ww/ 

Standard BA_wd 
NA NA 0.857 0.947 NA NA NA 0.40 

WU_res 
WU response to 

water deficit 

Standard WU_ww/ 

Standard WU_wd 
NA NA 0.979 1.169 NA NA NA 0.57 

T_res 

Transpirative 

response to water 

deficit 

Standard T_ww/ 

Standard T_wd 
NA NA 0.831 0.951 NA NA NA 0.47 
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Table 2 Correlation matrix reporting in the bottom left corner Pearson’s correlation among traits and in the top right corner significance of the correlation. Correlations between the following traits are reported: 

daily biomass accumulation (BA, g/20°C day), daily evapo-transpired water (WU, g/20°C day), early vigor measured as estimated fresh weight at eight leaves (EV, g), specific transpiration measured as 

WU per cm2 of leaf area(T, WU/cm2), water use efficiency, (WUE, BA/WU, g/g), Phyllochron (leaves emitted per 20 °C day). Suffixes “ww” and “wd” indicate whether the QTL was detected on 

well-watered or water deficit conditions respectively. Traits measured by Salvi et al. 2011 and Salvi et al. 2016 are reported as DPS (days per pollen shed), LEAN (leaf number), R.ST (root-shoot ratio, 

g/g), ERDW (embryonal root dry weight, g) and STDW (shoot dry weight, g).  

  WU_ww T_ww Phy WUE_ww BA_ww WU_wd T_wd WUE_ wd BA_wd WU_res BA_res T_res LEAN DPS ERDW STDW SRN R.ST EV 

WU_ww 1.00 *** *** *** *** *** 
 

* *** *** *** ** * 
     

*** 

T_ww 0.47 1.00 
    

* 
  

*** ** *** 
       

Phy 0.61 0.01 1.00 *** *** ** 
 

*** *** * * 
   

* 
  

*** *** 

WUE_ww 0.41 0.03 0.63 1.00 *** ** 
 

*** *** 
 

* 
  

* 
   

*** *** 

BA_ww 0.80 0.26 0.71 0.87 1.00 *** 
 

*** *** * *** 
      

** *** 

WU_wd 0.63 0.09 0.40 0.40 0.60 1.00 * *** *** * * 
      

* *** 

T_wd 0.03 0.33 -0.19 -0.03 -0.02 0.33 1.00 
    

*** 
       

WUE_wd 0.30 -0.09 0.54 0.79 0.65 0.48 0.09 1.00 *** 
     

* 
  

** *** 

BA_wd 0.52 0.02 0.54 0.70 0.73 0.83 0.25 0.88 1.00 
        

** *** 

WU_res -0.48 -0.48 -0.31 -0.12 -0.31 0.31 0.19 0.06 0.20 1.00 *** *** 
       

BA_res -0.41 -0.39 -0.30 -0.30 -0.41 0.28 0.26 0.17 0.26 0.82 1.00 *** 
       

T_res -0.36 -0.49 -0.18 -0.07 -0.24 0.23 0.64 0.14 0.21 0.62 0.58 1.00 
       

LEAN 0.30 0.06 0.08 -0.24 0.01 0.14 0.16 -0.19 -0.05 -0.24 -0.09 0.06 1.00 *** ** 
 

*** ** 
 

DPS 0.18 0.08 -0.12 -0.28 -0.08 0.05 0.20 -0.22 -0.10 -0.22 -0.11 0.08 0.78 1.00 ** 
 

*** *** 
 

ERDW -0.07 0.11 -0.32 -0.28 -0.21 -0.16 0.16 -0.30 -0.27 -0.05 -0.01 0.03 0.43 0.39 1.00 *** *** *** 
 

STDW 0.15 0.12 0.10 0.16 0.21 0.15 0.06 0.08 0.13 0.03 -0.01 -0.07 0.08 -0.07 0.56 1.00 
   

SRN 0.07 -0.03 -0.17 -0.14 -0.06 0.02 0.16 -0.01 0.00 -0.12 0.03 0.11 0.52 0.54 0.53 0.05 1.00 *** 
 

R.ST -0.19 0.04 -0.45 -0.45 -0.41 -0.31 0.15 -0.40 -0.41 -0.09 -0.02 0.10 0.37 0.48 0.71 -0.17 0.58 1.00 * 

EV 0.71 0.14 0.59 0.71 0.83 0.60 -0.03 0.64 0.73 -0.22 -0.21 -0.16 -0.04 -0.07 -0.21 0.07 0.02 -0.29 1.00 
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Table 3 Differences between the observed values of the IL lines vs. B73. Asterisks indicate significance levels calculated by the Dunnett’s multiple comparison test and indicate the following p-value: 

“*”≤ 0.05, “**” ≤  0.01 and “***” ≤ 0.001 

  WW WD Response to WD 

  BA WU EV T WUE Phy BA WU T WUE BA WU T 

B73_ita 9.781 180.855 35.526 0.023 0.053 0.268 3.55 106.735 0.014 0.032 1.34 1.235 1.132 

NILG01 0.775 7.991 1.933 0 0.002 0.005 -0.706 -14.286* 0 -0.002 -0.579** -0.571** -0.36. 

NILG03 3.141** 28.448** 4.692 0 0.009 0.005 0.127 9.099 -0.001. -0.001 -0.477* -0.191 -0.403* 

NILG05 1.682 10.993 1.712 0 0.006 0.006 -0.493 -12.633* -0.001*** -0.001 -0.583** -0.553** -0.404* 

NILG07 3.117** 23.087. 1.638 0 0.008 0.002 0.039 -1.824 -0.001*** 0.001 -0.509** -0.427. -0.565*** 

NILG09 0.91 -4.613 -1.774 0 0.006 0.006 -0.718 -17.093** -0.001*** -0.002 -0.604** -0.522* -0.452* 

NILG10 0.021 -9.504 -1.87 0 0.002 0.003 -0.225 -12.044* 0 0.001 -0.151 -0.249 -0.205 

NILG12 0.691 8.486 0.816 -0.001* 0.003 0.003 -0.033 -3.033 -0.001* 0.001 -0.186 -0.191 -0.036 

NILG13 3.856*** 22.082 10.038*** 0 0.014*** 0.007 -0.298 -11.904. -0.002*** 0.001 -0.701*** -0.627*** -0.814*** 

NILG14 1.959 0.282 3.235 0 0.011* -0.001 -0.635 -7.744 -0.001*** -0.002 -0.679*** -0.266 -0.602*** 

NILG15 1.947 35.261*** 2.84 0.002*** 0.001 0.011 0.343 8.579 0 0 -0.225 -0.245 -0.429** 

NILG16 2.961** 31.878** 7.697*** 0 0.006 0.003 0.32 6.495 0 0.001 -0.379 -0.288 -0.289 

NILG17 -0.097 -14.381 -8.297*** 0 0 -0.01 -0.779* -18.535*** 0 -0.002 -0.482* -0.432. -0.427** 

NILG18 -0.585 -10.723 -6.414* 0 0 -0.002 -0.916** -21.531*** -0.001*** -0.002 -0.491* -0.615*** -0.608*** 

NILG19 2.004 1.776 3.846 0 0.009 0.002 0.069 -5.755 -0.001* 0.004. -0.36 -0.224 -0.278 

NILG20 1.887 1.426 4.741 0 0.011* 0.014** 0.305 -3.14 -0.001. 0.004. -0.291 -0.132 -0.145 

NILG21 1.437 3.475 2.703 0 0.007 -0.001 -0.326 -7.029 -0.001* 0 -0.47. -0.292 -0.375 

NILG23 -2.153 -16.611 -7.821*** 0 -0.008 -0.021*** -1.173*** -13.839** 0 -0.007*** -0.295 -0.17 0.004 

NILG24 -1.594 -31.132** -8.281*** 0 -0.002 -0.034*** -1.393*** -21.933*** 0 -0.007*** -0.688*** -0.198 -0.228 

NILG25 -1.822 -18.84 -1.912 0 -0.003 -0.009 -1.07*** -23.642*** -0.001** -0.004 -0.303 -0.478. -0.567*** 

NILG26 0.701 11.805 -0.255 0 0 0.004 -1.33*** -26.291*** -0.001*** -0.004. -0.904*** -0.936*** -0.546*** 

NILG27 -0.497 -14.208 2.737 0 0 -0.01 -0.98*** -17.155*** -0.002*** -0.004 -0.519** -0.352 -0.699*** 

NILG28 2.043 20.999 7.446** 0 0.005 0.004 -0.172 -6.773 -0.001** 0 -0.476* -0.5* -0.58*** 

NILG29 -0.189 -11.526 -4.121 0 0.002 0 -0.56 -12.598* -0.001** -0.001 -0.323 -0.231 -0.428** 

NILG30 1.341 2.941 3.436 0 0.006 0.009 -0.479 -9.753 -0.001* -0.001 -0.534** -0.372 -0.468* 

NILG31 2.973** 43.206*** 4.368 0 0.005 0.013* -0.07 -0.896 -0.001*** 0 -0.538** -0.521* -0.645*** 
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  WW WD Response to WD 

  BA WU EV T WUE Phy BA WU T WUE BA WU T 

NILG32 3.06** 32.652*** 4.967 0 0.007 0.012. 0.058 3.221 0 0 -0.495** -0.367 -0.397* 

NILG34 3.278** 19.784 4.107 0 0.008 -0.001 0.125 4.517 0 0 -0.492* -0.193 -0.359. 

NILG37 -1.254 -16.439 -7.342** 0.001. -0.002 -0.02*** -0.874** -8.664 0 -0.006*** -0.295 0.067 -0.133 

NILG38 -2.85** -32.345*** -13.596*** -0.002*** -0.013** -0.014* -0.904** -4.319 -0.002*** -0.006*** 0.493* 1.151*** -0.068 

NILG40 1.116 26.523* 5.856* 0 0 0.007 0.254 -3.774 0 0.003 -0.1 -0.439 -0.321 

NILG42 1.907 7.043 0.512 0 0.008 0.006 -0.159 -10.871 0 0.002 -0.494** -0.482* -0.339 

NILG43 -0.172 6.839 1.63 0 -0.002 -0.009 0.072 -4.052 -0.001*** 0.001 -0.02 -0.25 -0.692*** 

NILG44 2.252. 9.308 5.689* 0 0.009. 0 0.608 5.423 0 0.003 -0.197 -0.036 -0.122 

NILG45 1.665 6.94 -3.873 0 0.005 0.006 -0.395 -10.781 -0.001. 0 -0.533** -0.455* -0.434** 

NILG46 2.175 17.177 3.358 0 0.009 0.007 0.023 -1.572 0 0.001 -0.445. -0.318 -0.386* 

NILG47 2.849** 26.489* 2.321 0 0.007 0.013* 0.013 3.981 -0.001** 0 -0.49* -0.287 -0.459** 

NILG48 2.174 2.502 5.254 0 0.012** 0.012. 0.28 -1.349 -0.001** 0.003 -0.29 -0.093 -0.168 

NILG49 3.891*** 30.512** 6.538* 0 0.012** 0.015** 0.299 5.61 -0.001 0.001 -0.453* -0.271 -0.317 

NILG50 0.816 17.649 -1.348 0.001 0 0.008 -1.135*** -19.179*** -0.001** -0.005* -0.823*** -0.782*** -0.577*** 

NILG51 0.446 -19.915 1.793 -0.001 0.008 -0.005 -0.613 -19.259*** -0.001. 0 -0.477* -0.356 -0.022 

NILG52 2.883** 14.859 5.386 0 0.01* 0.009 0.109 -2.437 0 0.002 -0.455 -0.312 -0.278 

NILG53 1.734 13.149 0.38 0 0.009 -0.005 0.271 -3.666 -0.001* 0.004 -0.224 -0.241 -0.448** 

NILG54 -3.177*** -38.258*** -7.157** 0 -0.01. -0.034*** -1.128*** -16.088*** 0 -0.006*** 0.431. 0.701*** -0.161 

NILG55 0.371 -1.821 -0.994 0 0.003 0.005 -0.393 -13.231* -0.001** 0.001 -0.421. -0.422 -0.328 

NILG56 4.157*** -0.176 0.532 0 0.023*** 0.021** 0.866** 2.261 0 0.007*** -0.317 0.08 -0.386* 

NILG57 1.695 -6.893 1.752 0 0.015*** 0.009 0.222 -7.668 -0.001* 0.005** -0.241 -0.096 -0.097 

NILG58 -0.989 -36.934*** -3.709 -0.001** 0.005 -0.003 -0.303 -13.204* -0.001*** 0 0.097 0.844*** 0.049 

NILG59 3.243*** 9.968 3.388 0 0.014*** 0.019*** -0.31 -9.991 -0.002*** 0 -0.658*** -0.466* -0.731*** 

NILG60 2.991** -20.018 5.752 0 0.018*** 0.01 0.916** -0.782 -0.001. 0.006*** -0.023 0.354 -0.175 

NILG61 0.459 -6.284 -1.075 0 0.004 0.007 -0.585 -12.308* -0.001* -0.001 -0.462* -0.319 -0.138 

NILG62 -0.993 -16.93 -1.672 -0.001 -0.001 -0.005 -0.544 -17.121*** -0.001*** 0 -0.097 -0.338 -0.383* 

NILG63 -0.092 -25.552* -3.436 0 0.007 0.002 -0.424 -26.991*** 0 0.005** -0.254 -0.676*** -0.276 

NILG64 4.237*** 32.065** 10.309*** 0 0.014*** 0.022*** 0.831* 12.194. 0 0.003 -0.338 -0.164 -0.045 

NILG65 2.109 37.392*** 8.288*** 0 0.004 0.004 0.733. 6.264 0 0.001 -0.094 -0.346 -0.403* 
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  WW WD Response to WD 

  BA WU EV T WUE Phy BA WU T WUE BA WU T 

NILG66 1.522 -16.242 4.64 0 0.015*** -0.003 0.755* -1.576 0 0.007*** 0.051 0.52* 0.177 

NILG67 2.087 -2.816 9.615*** 0 0.014*** -0.001 0.711. -0.872 -0.001. 0.006*** -0.125 0 -0.378. 

NILG68 3.364*** 7.107 6.737** 0 0.015*** 0.005 0.352 -5.575 0 0.004. -0.406. -0.363 -0.119 

NILG70 2.886** 7.965 6.363* 0 0.014*** 0 0.263 -3.229 0 0.003 -0.421. -0.229 -0.168 

NILG71 0.838 0.105 0.497 0 0.005 0.003 -0.217 -4.216 -0.001** 0 -0.318 -0.144 -0.4* 

NILG72 4.616*** 40.934*** 16.353*** 0 0.011** 0.002 1.071*** 11.081 -0.001. 0.005* -0.298 -0.281 -0.327 

NILG75 4.332*** 30.049** 9.304*** 0.001. 0.014*** 0.007 0.428 -2.608 -0.001* 0.004 -0.486* -0.473. -0.584*** 

NILG76 6.227*** 25.86* 9.552*** 0 0.023*** 0.003 0.364 0.229 0 0.003 -0.65*** -0.39 -0.339 

NILG77 1.342 9.582 -1.645 0.001 0.004 -0.01 -0.238 -5.961 0 -0.001 -0.357 -0.344 -0.474** 
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Table 4.  QTL clusters detected by single BIN regression for the following traits: daily biomass accumulation (BA, g/20°C day), daily evapo-transpired water (WU, g/20°C day), 

early vigor measured as estimated fresh weight at eight leaves(EV, g), specific transpiration measured as WU per cm2 of leaf area(T, WU/cm2), water use efficiency, (WUE, BA/WU, 

g/g), Phyllochron (leaves emitted per 20 °C day). Suffixes “ww” and “wd” indicate whether the QTL was detected on well-watered or water deficit conditions respectively. The suffix 

“res” indicate the response of the trait to water deficit. QTL for traits measured by Salvi et al. 2011 and Salvi et al. 2016 are reported as DPS (days per pollen shed), LEAN (leaf 

number), R.ST (root-shoot ratio, g/g), ERDW (embryonal root dry weight, g). 

Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q1 1 25.75 10.54 PZE.101018057 -3.674 0.11 DPS 5.65E-06 10.54 25.75 10.54 25.75 1.01 1.01 1.01 

Q1 1 25.75 9.43 SYN14147 6.692 0.02 EV 3.79E-03 9.43 25.75 9.43 25.75 1.01 1.01 1.01 

Q1 1 25.75 10.54 PZE.101018057 -1.599 0.08 LEAN 4.06E-04 10.54 25.75 10.54 25.75 1.01 1.01 1.01 

Q1 1 25.75 10.54 PZE.101018057 -0.239 0.13 R.ST 4.96E-03 10.54 25.75 12.26 28.50 1.01 1.01 1.01 

Q1 1 25.75 9.43 SYN14147 -1.570 0.13 SRN 2.58E-03 9.43 25.75 42.92 61.58 1.01 1.01 1.03 

Q1 1 25.75 9.43 SYN14147 16.808 0.06 WUwd 9.79E-06 9.43 25.75 9.43 25.75 1.01 1.01 1.01 

Q1 1 25.75 9.43 SYN14147 25.977 0.03 WUww 5.24E-03 9.43 25.75 9.43 25.75 1.01 1.01 1.01 

Q1 1 28.50 12.43 PZE.101021574 -2.146 0.08 LEAN 9.98E-04 12.43 28.50 12.43 28.50 1.02 1.02 1.02 

Q1 1 37.20 19.24 PZE.101031377 3.313 0.06 BAww 2.98E-06 19.24 37.20 24.69 42.50 1.02 1.02 1.02 

Q1 1 37.20 19.24 PZE.101031377 6.899 0.02 EV 9.85E-04 19.24 37.20 35.58 54.94 1.02 1.02 1.03 

Q1 1 37.20 19.24 PZE.101031377 0.010 0.03 WUEww 6.44E-03 19.24 37.20 19.24 37.20 1.02 1.02 1.02 

Q2 1 40.15 20.11 SYN35792 -0.064 0.05 BA_res 3.50E-05 20.11 40.15 35.58 54.94 1.02 1.02 1.03 

Q2 1 40.15 20.11 SYN35792 -3.314 0.06 DPS 3.90E-03 20.11 40.15 35.58 54.94 1.02 1.02 1.03 

Q2 1 40.15 20.11 SYN35792 -1.824 0.08 LEAN 4.53E-04 20.11 40.15 42.92 61.58 1.02 1.02 1.03 

Q2 1 61.58 42.92 SYN11249 -0.061 0.04 BA_res 2.01E-04 42.92 61.58 42.92 61.58 1.03 1.03 1.03 

Q2 1 61.58 42.92 SYN11249 -0.580 0.03 BAwd 3.89E-03 42.92 61.58 42.92 61.58 1.03 1.03 1.03 

Q2 1 61.58 42.92 SYN11249 -2.812 0.06 DPS 6.92E-03 42.92 61.58 42.92 61.58 1.03 1.03 1.03 

Q2 1 61.58 42.92 SYN11249 -0.398 0.09 T_res 6.19E-10 35.58 54.94 42.92 61.58 1.03 1.02 1.03 

Q2 1 61.58 42.92 SYN11249 -4.466 0.07 T_wd 1.19E-07 35.58 54.94 42.92 61.58 1.03 1.02 1.03 

Q2 1 61.58 42.92 SYN11249 -0.072 0.05 WU_res 5.15E-05 42.92 61.58 42.92 61.58 1.03 1.03 1.03 

Q2 1 61.58 42.92 SYN11249 -9.350 0.03 WUwd 6.62E-03 42.92 61.58 42.92 61.58 1.03 1.03 1.03 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q3 1 231.85 278.71 PZE.101229026 0.063 0.03 WU_res 3.17E-03 278.71 231.85 280.98 241.01 1.10 1.10 1.10 

Q3 1 228.35 274.71 SYN19653 0.003 0.03 WUEwd 8.36E-03 274.71 228.35 276.25 231.85 1.10 1.10 1.10 

Q3 1 228.35 274.71 SYN19653 0.253 0.04 T_res 5.20E-04 265.45 220.76 280.98 241.01 1.10 1.10 1.10 

Q3 1 242.00 283.39 PZE.101235852 0.467 0.09 T_res 6.74E-10 283.09 242.00 285.06 243.25 1.11 1.11 1.11 

Q3 1 242.00 283.39 PZE.101235852 4.253 0.04 T_wd 1.57E-04 283.39 242.00 285.06 243.25 1.11 1.11 1.11 

Q3 1 242.00 283.39 PZE.101235852 0.078 0.04 WU_res 4.40E-04 283.39 242.00 285.06 243.25 1.11 1.11 1.11 

S1 1 257.75 289.06 PZE.101242552 -5.241 0.12 ERDWppr 8.71E-03 289.06 257.75 289.57 258.58 1.11 1.11 1.11 

Q4 2 7.73 3.39 PZE.102006513 5.651 0.02 EV 1.71E-03 3.39 7.73 3.39 7.73 2.01 2.01 2.01 

Q4 2 20.58 6.00 PZE.102013873 0.757 0.04 BAwd 3.55E-04 6.00 20.58 9.13 23.51 2.02 2.02 2.02 

Q4 2 20.58 6.00 PZE.102013873 5.921 0.02 EV 5.81E-04 6.00 20.58 6.00 20.58 2.02 2.02 2.02 

Q4 2 20.58 6.00 PZE.102013873 0.006 0.06 WUEwd 8.03E-07 6.00 20.58 9.13 23.51 2.02 2.02 2.02 

Q4 2 20.58 6.00 PZE.102013873 0.010 0.04 WUEww 2.37E-04 6.00 20.58 6.00 20.58 2.02 2.02 2.02 

Q4 2 23.51 9.13 SYN1141 0.088 0.03 WU_res 6.74E-03 9.13 23.51 9.13 23.51 2.02 2.02 2.02 

Q5 2 42.00 16.78 SYN9947 -0.091 0.04 BA_res 3.36E-04 16.78 42.00 20.39 54.13 2.03 2.03 2.03 

Q5 2 42.00 16.78 SYN9947 -0.391 0.04 T_res 1.04E-03 16.78 42.00 20.39 54.13 2.03 2.03 2.03 

Q5 2 61.00 28.05 PZE.102050267 -0.066 0.03 BA_res 7.01E-03 28.05 61.00 28.05 61.00 2.03 2.03 2.03 

S2 2 54.13 20.52 PZE.102040935 9.698 0.02 EV 9.58E-04 20.52 54.13 20.52 54.13 2.03 2.03 2.03 

Q6 2 95.75 177.44 PZE.102127663 -7.445 0.03 EV 7.84E-07 177.44 95.75 194.63 113.45 2.06 2.06 2.07 

Q6 2 103.53 186.27 PZE.102137410 -0.686 0.04 BAwd 1.55E-04 186.27 103.53 205.94 126.85 2.06 2.06 2.08 

Q6 2 103.53 186.27 PZE.102137410 0.001 0.03 Tww 2.52E-03 186.27 103.53 194.63 113.45 2.06 2.06 2.07 

Q6 2 103.53 186.27 PZE.102137410 -0.004 0.03 WUEwd 2.70E-03 186.27 103.53 194.63 113.45 2.06 2.06 2.07 

Q6 2 103.53 186.27 PZE.102137410 -11.229 0.05 WUwd 1.36E-04 186.27 103.53 205.94 126.85 2.06 2.06 2.08 

Q6 2 120.18 203.63 SYN10567 -0.053 0.04 BA_res 1.21E-03 203.63 120.18 205.94 126.85 2.07 2.07 2.08 

Q6 2 120.18 203.63 SYN10567 -0.278 0.05 T_res 3.94E-05 203.63 120.18 205.94 126.85 2.07 2.06 2.08 

Q6 2 120.18 203.63 SYN10567 -0.074 0.06 WU_res 1.08E-06 186.27 103.53 205.94 126.85 2.07 2.06 2.08 

Q6 2 150.23 220.83 PZE.102178234 -0.053 0.04 BA_res 1.21E-03 220.83 150.23 220.83 150.23 2.08 2.08 2.08 

Q6 2 150.23 220.83 PZE.102178234 -0.585 0.04 BAwd 5.02E-04 220.83 150.23 220.83 150.23 2.08 2.08 2.08 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q6 2 150.23 221.24 PZE.102178542 -6.037 0.03 T_wd 4.47E-03 221.24 150.23 221.24 150.23 2.08 2.08 2.08 

Q6 2 150.23 220.83 PZE.102178234 -0.278 0.05 T_res 3.94E-05 220.83 150.23 220.83 150.23 2.08 2.08 2.08 

Q6 2 150.23 220.83 PZE.102178234 -0.074 0.06 WU_res 1.08E-06 220.83 150.23 220.83 150.23 2.08 2.08 2.08 

Q6 2 150.23 220.83 PZE.102178234 -10.366 0.05 WUwd 5.20E-05 220.83 150.23 220.83 150.23 2.08 2.08 2.08 

Q7 2 126.85 206.50 PZE.102160379 9.698 0.02 EV 9.58E-04 206.50 126.85 206.50 126.85 2.08 2.08 2.08 

Q7 2 126.85 206.50 PZE.102160379 -6.037 0.03 T_wd 4.47E-03 206.50 126.85 206.50 126.85 2.08 2.08 2.08 

Q7 2 134.70 210.31 PZE.102165681 9.698 0.02 EV 9.58E-04 210.31 134.70 213.21 140.81 2.08 2.08 2.08 

Q7 2 134.70 210.31 PZE.102165681 -6.037 0.03 T_wd 4.47E-03 210.31 134.70 213.21 140.81 2.08 2.08 2.08 

Q7 2 150.23 221.24 PZE.102178542 9.698 0.02 EV 9.58E-04 221.24 150.23 221.24 150.23 2.08 2.08 2.08 

Q8 3 32.35 12.13 PZE.103019668 -0.730 0.06 BAwd 7.94E-07 12.13 32.35 113.35 69.83 3.03 3.03 3.04 

Q8 3 32.35 12.13 PZE.103019668 -2.399 0.07 BAww 4.24E-08 12.13 32.35 170.46 100.30 3.03 3.03 3.06 

Q8 3 32.35 12.13 PZE.103019668 -0.011 0.05 Phy 3.64E-05 12.13 32.35 170.46 100.30 3.03 3.03 3.06 

Q8 3 32.35 12.13 PZE.103019668 -0.005 0.07 WUEwd 3.19E-07 12.13 32.35 97.37 63.65 3.03 3.03 3.04 

Q8 3 32.35 12.13 PZE.103019668 -0.009 0.06 WUEww 2.97E-06 12.13 32.35 170.46 100.30 3.03 3.03 3.06 

Q8 3 32.35 12.13 PZE.103019668 -8.864 0.03 WUwd 5.99E-03 12.13 32.35 170.46 100.30 3.03 3.03 3.06 

Q8 3 32.35 12.13 PZE.103019668 -18.491 0.04 WUww 3.91E-04 12.13 32.35 169.11 98.70 3.03 3.03 3.06 

Q8 3 41.73 17.18 PZE.103024586 -1.186 0.07 LEAN 3.68E-03 17.18 41.73 28.62 47.70 3.04 3.04 3.04 

Q8 3 45.43 20.74 PZE.103028239 -4.131 0.02 EV 5.11E-05 20.74 45.43 154.66 86.76 3.04 3.04 3.05 

Q8 3 53.56 38.60 PZE.103041877 -1.630 0.09 LEAN 2.44E-04 38.60 53.56 67.70 61.27 3.04 3.04 3.04 

Q8 3 69.83 113.35 SYN1588 -1.690 0.07 LEAN 2.73E-03 113.35 69.83 169.11 98.70 3.04 3.04 3.06 

Q8 3 86.76 157.02 PZE.103097269 -0.781 0.10 BAwd 1.25E-11 157.02 86.76 170.46 100.30 3.05 3.05 3.06 

Q8 3 86.76 157.02 PZE.103097269 -0.004 0.06 WUEwd 5.76E-06 157.02 86.76 176.33 105.90 3.05 3.05 3.06 

Q8 3 100.30 170.46 PZE.103109970 -1.124 0.07 LEAN 1.47E-03 170.46 100.30 176.33 105.90 3.06 3.06 3.06 

Q8 3 105.90 176.33 SYN7426 2.740 0.04 T_ww 9.58E-04 176.33 105.90 176.33 105.90 3.06 3.06 3.06 

Q8 3 112.85 178.15 PZE.103119393 -0.564 0.05 BAwd 2.36E-05 178.15 112.85 202.95 145.00 3.06 3.06 3.07 

Q8 3 112.85 178.15 PZE.103119393 -1.615 0.04 BAww 2.84E-04 178.15 112.85 202.95 145.00 3.06 3.06 3.07 

Q8 3 112.85 178.15 PZE.103119393 -0.003 0.04 WUEwd 6.75E-04 178.15 112.85 188.67 126.80 3.06 3.06 3.06 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q8 3 112.85 178.15 PZE.103119393 -0.007 0.05 WUEww 3.32E-05 178.15 112.85 188.67 126.80 3.06 3.06 3.06 

Q8 3 112.85 178.15 PZE.103119393 -9.003 0.05 WUwd 7.55E-05 178.15 112.85 202.95 145.00 3.06 3.06 3.07 

Q8 3 120.58 184.31 PZE.103127310 -1.567 0.09 LEAN 7.92E-05 184.31 120.58 205.03 149.50 3.06 3.06 3.07 

Q8 3 120.58 184.12 PZE.103126743 -0.009 0.04 Phy 1.15E-03 184.12 120.58 188.67 126.80 3.06 3.06 3.06 

Q8 3 120.58 184.31 PZE.103127310 -0.225 0.03 T_res 7.25E-03 184.31 120.58 184.31 120.58 3.06 3.06 3.06 

Q8 3 123.50 187.01 PZE.103130290 -2.878 0.10 DPS 3.68E-05 187.01 123.50 202.95 145.00 3.06 3.06 3.07 

Q8 3 123.50 187.01 PZE.103130290 -1.068 0.18 SRN 7.69E-05 187.01 123.50 202.95 145.00 3.06 3.06 3.07 

Q8 3 123.50 187.01 PZE.103130290 -19.426 0.05 WUww 1.08E-05 187.01 123.50 188.67 126.80 3.06 3.06 3.06 

Q8 3 128.18 191.37 PZE.103136011 -3.293 0.04 T_wd 2.07E-04 191.37 128.18 202.95 145.00 3.07 3.07 3.07 

Q8 3 128.18 191.37 PZE.103136011 -0.240 0.04 T_res 1.89E-03 191.37 128.18 202.95 145.00 3.07 3.07 3.07 

Q9 3 149.50 204.47 PUT.163a.60346254.2548 -6.473 0.04 T_ww 1.40E-03 204.47 149.50 205.03 149.50 3.07 3.07 3.07 

Q9 3 149.50 204.47 PUT.163a.60346254.2548 -42.400 0.05 WUww 6.43E-05 204.47 149.50 205.03 149.50 3.07 3.07 3.07 

Q10 4 9.38 2.65 PZE.104002805 -0.061 0.04 BA_res 6.23E-04 2.65 9.38 2.65 9.38 4.01 4.01 4.01 

Q10 4 9.38 2.65 PZE.104002805 -0.614 0.04 BAwd 2.26E-03 2.65 9.38 2.77 9.51 4.01 4.01 4.01 

Q10 4 9.38 2.65 PZE.104002805 -0.061 0.03 WU_res 7.63E-03 2.65 9.38 2.65 9.38 4.01 4.01 4.01 

Q10 4 9.38 2.65 PZE.104002805 -10.637 0.04 WUwd 8.24E-04 2.65 9.38 2.77 9.51 4.01 4.01 4.01 

Q10 4 9.51 2.77 PZE.104003099 -0.051 0.04 BA_res 5.65E-04 2.77 9.51 2.77 9.51 4.01 4.01 4.01 

Q10 4 9.51 2.77 PZE.104003099 -3.205 0.05 T_wd 6.45E-05 2.65 9.38 2.77 9.51 4.01 4.01 4.01 

Q10 4 9.51 2.77 PZE.104003099 -0.280 0.06 T_res 3.38E-06 2.65 9.38 2.77 9.51 4.01 4.01 4.01 

Q11 4 36.78 14.04 PZE.104014780 -0.074 0.03 BA_res 8.32E-03 14.04 36.78 14.04 36.78 4.03 4.03 4.03 

Q11 4 36.78 14.04 PZE.104014780 3.965 0.08 BAww 1.36E-09 14.04 36.78 14.04 36.78 4.03 4.03 4.03 

Q11 4 36.78 14.04 PZE.104014780 8.185 0.03 EV 1.46E-05 14.04 36.78 14.04 36.78 4.03 4.03 4.03 

Q11 4 36.78 14.04 PZE.104014780 0.013 0.06 WUEww 3.36E-06 14.04 36.78 14.04 36.78 4.03 4.03 4.03 

Q12 4 59.45 31.25 PZE.104026198 21.465 0.03 WUww 2.49E-03 31.25 59.45 31.25 59.45 4.04 4.04 4.04 

Q12 4 70.00 66.29 PZE.104044698 21.465 0.03 WUww 2.49E-03 66.29 70.00 177.35 109.00 4.05 4.05 4.07 

Q12 4 109.00 177.35 PZE.104100589 0.011 0.03 Phy 9.13E-03 177.35 109.00 177.35 109.00 4.07 4.07 4.07 

Q13 5 0.00 0.08 PZE.105000063 -5.496 0.12 DPS 3.84E-07 0.08 0.00 0.08 0.00 5.00 5.00 5.00 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q13 5 0.00 0.08 PZE.105000063 -2.859 0.12 LEAN 1.13E-06 0.08 0.00 0.08 0.00 5.00 5.00 5.00 

Q13 5 0.00 0.08 PZE.105000063 0.006 0.04 WUEwd 1.61E-04 0.08 0.00 0.08 0.00 5.00 5.00 5.00 

Q13 5 0.00 0.08 PZE.105000063 0.013 0.05 WUEww 9.18E-05 0.08 0.00 0.08 0.00 5.00 5.00 5.00 

Q14 5 116.80 188.83 SYN35847 9.698 0.02 EV 9.58E-04 188.83 116.80 188.83 116.80 5.05 5.05 5.05 

Q14 5 116.80 188.83 SYN35847 -6.037 0.03 T_wd 4.47E-03 188.83 116.80 188.83 116.80 5.05 5.05 5.05 

Q14 5 119.15 192.13 SYN31647 -0.077 0.03 BA_res 7.27E-03 192.13 119.15 192.13 119.15 5.05 5.05 5.05 

Q14 5 119.15 192.13 SYN31647 -0.087 0.03 WU_res 4.52E-03 192.13 119.15 192.13 119.15 5.05 5.05 5.05 

S3 5 160.90 212.76 SYN35270 0.081 0.03 BA_res 4.73E-03 212.76 160.90 212.76 160.90 5.08 5.08 5.08 

S3 5 169.18 215.84 ZM013240.0409 0.081 0.03 BA_res 4.73E-03 215.84 169.18 215.84 169.18 5.09 5.09 5.09 

S4 6 69.28 132.83 PZE.106077504 2.960 0.07 DPS 2.36E-03 132.83 69.28 147.93 79.75 6.05 6.05 6.05 

S4 6 79.75 148.25 SYN37017 -2.333 0.15 SRN 6.50E-04 148.25 79.75 150.46 79.75 6.05 6.05 6.05 

S4 6 79.75 148.25 SYN37017 13.457 0.04 WUwd 1.75E-03 148.25 79.75 148.25 79.75 6.05 6.05 6.05 

Q15 6 132.95 166.18 SYN7865 -10.463 0.04 EV 3.38E-09 166.18 132.95 166.18 132.95 6.07 6.07 6.07 

Q15 6 132.95 166.18 SYN7865 -14.633 0.04 WUwd 1.14E-03 166.18 132.95 166.18 132.95 6.07 6.07 6.07 

Q16 8 13.75 4.85 SYN12530 -1.105 0.05 BAwd 9.91E-06 4.85 13.75 4.85 13.75 8.01 8.01 8.01 

Q16 8 13.75 4.85 SYN12530 -0.097 0.04 WU_res 1.05E-03 4.85 13.75 4.85 13.75 8.01 8.01 8.01 

Q16 8 13.75 4.85 SYN12530 -19.766 0.07 WUwd 3.46E-07 4.85 13.75 4.85 13.75 8.01 8.01 8.01 

Q16 8 28.83 11.66 PZE.108011210 -10.300 0.05 WUwd 1.30E-04 11.66 28.83 12.99 32.32 8.02 8.02 8.02 

Q16 8 28.83 11.66 PZE.108011210 -16.942 0.03 WUww 6.32E-03 11.66 28.83 13.62 32.32 8.02 8.02 8.02 

Q16 8 20.78 7.62 SYN9898 -1.714 0.11 LEAN 1.03E-05 7.62 20.78 164.01 115.20 8.01 8.01 8.06 

Q16 8 28.83 9.88 PZE.108009251 -2.467 0.07 DPS 2.11E-03 9.88 28.83 164.01 115.20 8.01 8.01 8.06 

Q17 8 32.32 12.99 PZE.108012841 -1.022 0.17 SRN 9.89E-05 12.99 32.32 142.37 95.43 8.02 8.02 8.05 

Q17 8 40.20 17.87 PZE.108019899 -0.152 0.12 R.ST 9.56E-03 17.87 40.20 17.87 40.20 8.02 8.02 8.02 

Q17 8 44.50 20.82 PZE.108021947 -0.176 0.14 R.ST 1.52E-03 20.82 44.50 48.80 50.51 8.02 8.02 8.03 

Q17 8 44.50 20.52 SYN16954 0.050 0.05 WU_res 2.09E-05 20.52 44.50 20.52 44.50 8.02 8.02 8.02 

Q17 8 44.50 20.52 SYN16954 0.005 0.03 WUEww 4.83E-03 20.52 44.50 20.52 44.50 8.02 8.02 8.02 

Q17 8 44.50 20.52 SYN16954 -12.642 0.03 WUww 3.46E-03 20.52 44.50 20.52 44.50 8.02 8.02 8.02 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q17 8 71.15 101.96 PZE.108056925 -0.225 0.17 R.ST 2.06E-04 101.96 71.15 138.22 95.43 8.03 8.03 8.05 

Q17 8 71.15 101.96 PZE.108056925 0.007 0.05 WUEww 4.98E-05 101.96 71.15 138.22 95.43 8.03 8.03 8.05 

Q17 8 72.50 104.62 PZE.108058577 -6.929 0.17 ERDWppr 1.34E-04 104.62 72.50 138.22 95.43 8.03 8.03 8.05 

Q17 8 72.50 104.62 PZE.108058577 0.007 0.03 Phy 9.27E-03 104.62 72.50 138.22 95.43 8.03 8.03 8.05 

Q17 8 77.60 113.07 PZE.108063246 0.003 0.05 WUEwd 1.23E-04 113.07 77.60 138.22 95.43 8.04 8.04 8.05 

Q17 8 81.00 118.42 PZE.108066752 0.457 0.03 BAwd 4.04E-03 118.42 81.00 118.42 81.00 8.04 8.04 8.04 

Q17 8 81.00 118.19 SYN27931 1.356 0.03 BAww 5.71E-03 118.19 81.00 118.42 81.00 8.04 8.04 8.04 

Q17 8 81.00 119.04 PZE.108067299 -2.891 0.04 T_ww 1.35E-03 118.42 81.00 138.22 95.43 8.04 8.04 8.05 

Q17 8 95.43 138.91 PZE.108082144 0.071 0.04 WU_res 3.04E-03 119.04 81.00 138.91 95.43 8.05 8.04 8.05 

Q17 8 95.43 138.91 PZE.108082144 -22.441 0.03 WUww 3.76E-03 138.91 95.43 142.37 95.43 8.05 8.05 8.05 

Q17 8 103.30 149.15 PZE.108092139 -0.226 0.13 R.ST 3.54E-03 149.15 103.30 164.01 115.20 8.06 8.06 8.06 

Q18 9 0.00 1.73 PZE.109001250 25.044 0.03 WUww 5.82E-03 1.73 0.00 6.47 6.08 9.00 9.00 9.01 

Q18 9 0.00 0.07 PZE.109000332 6.196 0.03 T_ww 3.62E-03 0.07 0.00 0.07 0.00 9.00 9.00 9.00 

Q18 9 2.95 3.08 SYN36188 2.037 0.03 BAww 5.47E-03 3.08 2.95 3.08 2.95 9.00 9.00 9.00 

Q18 9 2.95 3.08 SYN36188 0.012 0.03 Phy 5.90E-03 3.08 2.95 3.08 2.95 9.00 9.00 9.00 

Q18 9 2.95 3.08 SYN36188 13.874 0.05 WUwd 1.24E-05 3.08 2.95 6.47 6.08 9.00 9.00 9.01 

Q18 9 6.08 6.47 PZE.109005850 6.368 0.01 EV 1.00E-02 6.47 6.08 6.47 6.08 9.01 9.01 9.01 

Q19 9 6.08 6.47 PZE.109005850 4.939 0.04 T_wd 3.95E-04 3.08 2.95 6.47 6.08 9.01 9.01 9.01 

Q19 9 48.93 23.54 SYN5266 0.547 0.04 BAwd 1.82E-03 23.54 48.93 23.54 48.93 9.03 9.03 9.03 

Q19 9 48.93 23.54 SYN5266 4.075 0.01 EV 9.40E-03 23.54 48.93 23.54 48.93 9.03 9.03 9.03 

Q19 9 48.93 23.54 SYN5266 0.004 0.04 WUEwd 4.12E-04 23.54 48.93 133.70 96.27 9.03 9.03 9.05 

Q19 9 48.93 23.54 SYN5266 0.007 0.04 WUEww 1.55E-04 23.54 48.93 133.70 96.27 9.03 9.03 9.05 

Q19 9 48.93 23.54 SYN5266 2.921 0.03 T_wd 3.50E-03 23.54 48.93 23.54 48.93 9.03 9.03 9.03 

Q19 9 48.93 23.54 SYN5266 0.247 0.04 T_res 9.40E-04 23.54 48.93 23.54 48.93 9.03 9.03 9.03 

Q19 9 51.10 27.09 SYN32275 0.652 0.06 BAwd 1.17E-06 27.09 51.10 133.70 96.27 9.03 9.03 9.05 

Q19 9 51.10 27.09 SYN32275 6.912 0.05 EV 1.06E-12 27.09 51.10 135.46 129.38 9.03 9.03 9.05 

Q20 9 131.50 142.66 PZE.109097083 8.837 0.03 EV 6.05E-07 142.66 131.50 147.67 146.98 9.06 9.06 9.06 
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Clustera Chr. Positionb Marker Effectc r2 Phenotype p_Bonferronid Lefte  Righte BINf BIN leftg BIN rightg 

    cM Mbp           Mbp cM Mbp cM       

Q20 9 141.83 146.92 PZE.109103626 1.219 0.04 BAwd 2.46E-03 146.92 141.83 147.67 146.98 9.06 9.06 9.06 

Q20 9 141.83 146.92 PZE.109103626 3.305 0.03 BAww 9.77E-03 146.92 141.83 146.92 141.83 9.06 9.06 9.06 

Q20 9 141.83 146.92 PZE.109103626 36.602 0.03 WUww 2.54E-03 146.92 141.83 147.67 146.98 9.06 9.06 9.06 

S5 10 133.00 148.50 PZE.110109364 38.907 0.04 WUww 6.28E-04 148.50 133.00 148.50 133.00 10.07 10.07 10.07 

 

a QTL clusters are defined as groups of QTL in high LD (p-value <0.01), contiguous on the genome and with comparable direction of the effects; singleton QTL are indicated by the prefix 

“S” while QTL clusters by “Q”.  

b Position of the most associated SNP; genetic positions refer to the positions of the closest marker on the genetics consensus map.  

c Effect of the Gaspé flint introgression with respect to the population mean.  

d p-value of the comparison between Gaspé flint and B73 alleles corrected for multiple comparisons using the Bonferroni method.  

e Left and right positions of the QTL peak; QTL peak are defined as physically contiguous chromosomal positions for which de Bonferroni corrected p-value was <0.01.  

f Classical BINs of the maize genome. 
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Figure 1 Box plots showing the distribution of the phenotypic values of the four traits, in the 73 IL line collection, under two water 

regimes (WW: well-watered; WD: water deficit). 
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Figure 2 Trend of rate of Biomass accumulation (BA) throughout the whole experiment. Values for B73 only are shown, as 

representative of the entire IL population. Each point represents a single BA estimate as detailed in Materials and Methods and each 

line of dots represent a single plant BA evolution throughout the experiment. Ten plants in WD and ten plants in WW were utilized. 

‘Evaluation window’ indicates the time period when trait values utilized for QTL analysis were collected. 

 

 

 

 

Figure 3 Plots of principal component analysis in WW and WD. 
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Figure 4 Correlations between platform and previously measured traits 
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Figure 5 QTL for the observed traits. Dot dimension is proportional to the –log10 of the Bonferroni corrected p-value of the difference between Gaspé flint and B73 allele. Colours indicate positive or 

negative effect of the Gaspé flint introgression. Coloured rectangles represent different QTL clusters
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3. Morphological characterization of a durum wheat 

association panel for root and shoot traits in a high-

throughput phenotyping platform 

3.1. Introduction 

Durum wheat: botany, genomic and economical relevance 

Wheat (Triticum spp.) is one of the three major staple food crops.  It is the main source of 

carbohydrates for one third of the global population (Shewry, 2009). All the wheats belong to the 

Triticeae tribe of the Poaceae family. The great majority of wheat production comes from two 

species: bread wheat (Triticum aestivum L., 2n = 6x = 42) and durum wheat (Triticum durum Desf., 

2n = 4x = 28). Bread and durum wheat are alloheaxaploid and allotetraploid species. Because of 

their size (17 and 12 Gbp, respectively) and richness in repetitive elements, sequencing of wheat 

genomes has been one of the major challenges in plant genomics (Ganal and Röder 2007; Mayer 

et al. 2014). Durum wheat (genome formula: AABB), evolved from the allo-polyploidization of 

Triticum uratu, donor of the pivotal genome A, and a species of the Aegilops genus strictly related 

to the modern Aegilops speltoides, donor of the homoeologous B genome (Sarkar and Stebbins 1956; 

Marcussen et al. 2014). A secondary allo-polyploidization of the durum wheat wild relative T. 

dicoccoides with Aegilops tauschii originated the wild relative of bread wheat (genome formula 

AABBDD) which therefore share two third of the genome with durum wheat (Marcussen et al., 

2014). As mentioned before, size and complexity of wheat genomes make their sequencing an 

ongoing challenge. This notwithstanding, several useful genomic tools have been made available 

from the scientific community. Up to date, several consensus genetic maps have been developed, 

the most advanced of which are based on high-throughput genotyping technologies (Maccaferri 

et al., 2014, 2015; Marone et al., 2012; Somers et al., 2004; Wen et al., 2017). As regard to physical 

maps, several bread wheat draft assemblies have been released, none of which might be considered 

as reference (International Wheat Genome Sequencing Consortium (IWGSC), 2014; Zimin et al., 

2017). An important available genomic tool is the assembly of the wild relative of durum wheat 

T. dicoccoides (Avni et al., 2017) which, beside its direct usefulness in gene discovery, together with 

the assembly of durum wheat might shade light on the domestication dynamics from a genomic 

standpoint.Durum wheat is the second most important wheat species, representing 5% of the 

total wheat production (Peng et al., 2013). Global production of durum wheat was more than 37 
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millions of tonnes versus a global wheat production of almost 750 millions of tonnes (FAOSTAT 

2016, http://www.fao.org/faostat/en/#data/QC). Durum wheat is the most important humans’ 

carbohydrates source in the Mediterranean basin, where more than half of the global acreage of 

this crop is grown. Durum wheat kernels are the base of semolina, a high protein and gluten flour 

used for cous-cous and pasta production. The production of durum wheat is concentrated in Italy, 

Spain, France and Greece in Europe, Canada, Mexico and USA in America, Algeria, Morocco and 

Tunisia in Africa, Turkey, Kazakhstan, Syria and India in Asia. Because its importance in the local 

cuisine, durum wheat is the most cultivated wheat in Italy. Since durum wheat is traditionally 

cultivated in rainfed conditions in drought prone environments, tolerance to drought is pivotal in 

most durum wheat genetic improvement programs (Araus et al. 2002, 2003a,b; Condon et al. 

2004).  

Importance of drought stress tolerance in wheat production 

There is increasing recognition that the optimization of root architecture is an important 

component in designing new crop ideotypes, which should enable to increase productivity and/or 

to maintain acceptable yield performance under low-input management systems or stressed 

environments (Collins et al., 2008; Zhu et al., 2011)  

Unexpectedly, wheat grain yield which has steadily increased for almost a century has started to 

stall (Ray et al., 2012). The yield plateau phenomenon has been recorded across many different 

countries and environments, including the highest yielding locations, and in industrialized 

countries such as Great Britain, France, US and others. The actual causes have not been identified 

yet, and exhausted genetic variation, new restrictions on use of agronomic inputs (eg. N fertilizers), 

economic disincentives to increase productivity and/or climate change effects have been 

proposed (Hochman et al., 2017). However, there is accumulating evidence that global climate 

change could be one of the most importance challenges to face in order to maintain or increase 

wheat productivity. For instance, there is already evidence that increasing global temperatures are 

negatively affecting grain yield (Asseng et al., 2015).  

Drought stress has been and will be the most important negative factor contributing to yield 

reduction in crops, including wheat. A recent meta-analysis-based estimate of the effect of drought 

episodes on wheat production confirmed their severity (21% yield reduction with 40% water 

reduction) and indicated that the most negative effects are usually experienced in relatively dry 

environments (Daryanto et al., 2016). Additionally, almost 50% of wheat cultivated in the 

developing world (50 million ha) is sown under rain-fed systems, which receive less than 600 mm 

of precipitation per annum and which could be as low as less than 350 mm per annum in areas 
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inhabited by the poorest and most disadvantaged farmers (Gupta et al., 2017), worsening the social 

effect of drought episodes. 

Phenotypic and genetic analysis of root traits 

Among the different options available to the breeders to develop more drought tolerant wheat 

cultivars, selection for optimized root traits appears one of the most promising (Fleury et al., 2010; 

Reynolds and Tuberosa, 2008). However, selection for root traits has so far been clearly left 

behind as compared to other physiological or morphological traits. One of the reasons is that root 

traits (anatomical, morphological, and general architectural) are intrinsically difficult to evaluate. 

Indeed, roots are i) hidden from direct non-destructive investigation and ii) extremely sensitive to 

environmental conditions (Hodge, 2004) and prone to unpredictable developmental responses to 

changing conditions (Malamy, 2005; Topp, 2016). Additionally, root phenotyping can be 

particularly cumbersome in genetic and breeding contexts where several thousands of plants are 

normally required to be screened to obtain information useful for genetic analysis and selection 

decisions. To circumvent these constraints, several phenotyping techniques in controlled 

environment conditions have been proposed and applied, in the perspective of a substantial 

correlation with root trait expression in field conditions (Kuijken et al., 2015). More recently, 

advances in root trait phenotyping directly in the field have also been made. In the following 

section, the main root phenotyping techniques and methods of some relevance to cereals and 

specifically to wheat, will be briefly presented. More extensive reviews can be found elsewhere 

(Fiorani and Schurr, 2013; Gregory et al., 2009; Tardieu et al., 2017; Zhu et al., 2011).  

Root phenotyping methods can be grouped in controlled environment (1) and field methods (2). 

The controlled-environment methods can be further subdivided in soil-based (1.1) and soil-free 

systems (1.2). Further distinctions include whether systems are destructive or enable real-time 

multiple inspections, or whether the imaging systems are based on optical (visual) access to roots 

or non-optical systems.  

Soil based systems in controlled environments 

Soil-filled rhizoboxes having at least one transparent (glass) plate-wall are being largely used in 

order to access root growth in real time and in a non-destructive manner (Nagel et al., 2012).  

Rhizoboxes are usually utilized in combination with digital imaging and analysis technologies and 

enable to perform relatively large-scale screens of plant populations. Not secondarily, thanks to 

the soil-based substrate, rhizoboxes represent a phenotyping system relatively close to field 

conditions and enable to acquire several shoot traits too (this depending on the species and on 

the developmental window under target). Similarly to rhizoboxes, transparent rhizotubes with 
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inner core of soil allow growing several plants simultaneously, at a maximum height of little more 

than 1 m and up to approximately two months, depending on plant species (Jeudy et al., 2016). 

Plastic (non-transparent, polyvinyl chloride - PVC - or similar) pots or pipes have also been 

utilized for growing plants followed by root inspection at the end of the growing (or treatment) 

phase, however these approaches are destructive and thus do not allow repeated analysis on the 

same plant (Becker et al., 2016; Tomar et al., 2016)  

A different type of approach is the investigation of root architecture in soil-filled pot without 

direct optical imaging, which is replaced by X-ray micro-computed tomography (X-ray μCT) or 

magnetic resonance imaging (MRI). X-ray μCT is a non-destructive imaging technique that can 

visualize the internal structure of opaque objects and can produce a 3D image of the sample (eg. 

roots in soil-filled pot) in which each image element contains a value proportional to the molecular 

density of the imaged object (Mairhofer et al., 2013; Millet et al., 2016). The target object (ie. the 

pot containing a growing plant) is placed on a rotating stage inside the imaging device. An emitter 

projects X-rays through the rotating sample to a detector on the other side of the device. The 

system acquires a series of projections by measuring the attenuation of ionizing radiation passing 

through the target object. These projections are combined to reconstruct a three-dimensional 

image. Thus, μCT is not subject to the constraints facing light-based imaging techniques and 

enables non-invasive, non-destructive imaging of roots growing in soil. MRI is another non-

destructive medical-derived imaging technology suitable for 3D root system reconstruction 

(Borisjuk et al., 2012). MRI enables spatially resolved nuclear magnetic resonance (a phenomenon 

where a strong magnetic field induces hydrogen nuclei to absorb and emit radio frequency signals, 

which can be recorded) to image water protons based on their local magnetic environment. 

Currently root imaging based on MRI does not reach the results obtained with μCT but remains 

a promising technique. In all, both μCT and MRI appear useful techniques for detailed non-

invasive 3D reconstruction of root apparatus, however they both currently lack the resolution 

power to detect smaller, finer roots and, because of costs of analysis and infrastructure, can 

realistically be applied to small number of plants. 

Soil-free systems 

Soil-free protocols are among the most popular because they usually enable to address large 

number of plants, although mostly at the seedling stage of development only, at least for species 

like wheat. These systems include: 

- transparent agarose gel (gel chamber) or gellan gum  (Bengough et al., 2004; Clark et al., 

2011; Iyer-Pascuzzi et al., 2010). In these approaches, different types of transparent or semi-
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transparent gel-like substrates have been utilized in order to sustain plant growth and root 

development and, at the same time, enable optical investigation of root traits. While 

extremely informative and suitable for high-throughput setups, some of these systems can 

induce abnormal root growth responses when compared with real soil or field experiment-

based results. 

- paper rolls, growth pouches or germination paper on  (Gioia et al., 2017; Hund et al., 2009; 

Maccaferri et al., 2016; Salvi et al., 2016; Watt et al., 2013; Zhu et al., 2005). In this systems, 

seeds or young seedlings are placed in humid filter or germination paper, sometime 

supported in plastic bags (pouches) or acrylic screens and let grow for a limited time (up to 

10 days without nutrients, or for longer if nutrient solution is provided). At the end, root 

phenotypes are collected both manually and/or by digital imaging. 

- hydroponic and semi-hydroponic systems (Chen et al., 2017; Jones, 1982; Tuberosa et al., 

2002). These systems enable high-throughput non-destructive analysis of large number of 

seedlings or even adult plants and testing the response to different nutrient concentrations 

or other type of conditions. However, these systems do not provide effective 3D root 

architecture information; additionally, the correlation between genetic variation observed in 

hydroponics with that present in field condition should be verified on a case-by-case basis. 

Field- based approaches 

Approaches enabling to carry out root phenotyping directly in the field have also been applied 

and are continuously improved. Traditional approaches based on excavation included soil coring, 

trenching and shovelomics (Wasson et al., 2014; Zhu et al., 2011). Shovelomics (Trachsel et al., 

2011), which has recently become relatively popular, consists of the excavation of single plants in 

order to access the above portions of the root stocks, which are cleaned by residual soil and 

subsequently phenotyped (most often through digital image acquisition and/or other methods. 

Trachsel et al. 2011). Although of proven utility for capturing several important root architectural 

traits, shovelomic-like approaches are labor-intensive, destroy or leave in the ground a large 

portion of the root system (including most of the lateral finer roots), and measurements cannot 

be repeated. Complementary to these approaches, tubular minirizothones are available. 

Minirhizotrons are transparent tubes which are installed vertically or at various angles in the 

ground, near plants. Roots growing outside the tube walls can be imaged by a digital camera 

inserted down the tube length. A number of different root traits can be observed or estimated 

such as root number per unit of soil volume, root density, depth etc, during a relatively long 

growing period. This notwithstanding, minirhizotrons only capture a very small portion of the 
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root systems (Zhu et al., 2011). 

Ground-penetrating radar (GPR) is a method based on pulses of high frequency radio waves, 

which cause differential responses of belowground structures (roots vs soil). GPR is rapid and 

relatively inexpensive, however detection power is limited to thick roots (> 5 mm) and in the 

shallow portion of the soil. It has so far been applied for measuring root biomass of woody species 

only (Zhu et al., 2011). Electrical resistivity is another method that is primarily useful for biomass 

measurements. This technique uses electrode arrays distributed on the area under investigation to 

measure soil resistivity upon application of an electric current. Under favorable conditions, soil 

resistivity appears function of root biomass (Wasson et al., 2012). A related approach is the 

recording of electric capacitance of the soil-plant system at the plant under investigation (Dalton, 

1995; Postic and Doussan, 2016), given that a correlation between capacitance and root dry mass 

in the soil was also demonstrated. This method has already been applied in wheat (Nakhforoosh 

et al., 2014). Capacitance values are relatively simple and fast to collect; however, they are strongly 

influenced by soil water content and therefore have inherently low heritability; thus, this method 

needs further refinement.  

More recently, DNA analysis of soil samples has been proposed and tested to quantify root mass 

in the field (Steinemann et al., 2016). The approach is based on representatively sampling soil 

portions in the area under investigation, followed by DNA extraction and PCR (or direct DNA 

sequencing using next generation methods). The extension of root apparatus in the soil can be 

estimated by the proportion of samples including the DNA of the target species. This approach 

will likely be further developed in the near future. 

The search of modified and improved root ideotypes 

Unfortunately, there is currently too limited information on root genetic control and on 

physiological relationship across traits (and between traits and yield) in order to easily propose 

new, more efficient root ideotypes (Collins et al., 2008; Comas et al., 2013). However, some 

consensus is emerging across studies. First, the main challenges ahead of modern agriculture (and 

specifically, cereals) appear to be increasingly more frequent and harsher drought episodes, decline 

in soil nutrient availability due to nutrient depletion, change in soil microflora and/or the necessity 

to reduce chemical fertilization, adapting wheat cultivation to new growing environments. 

Therefore, these should be the challenges to be addressed while breeding for new root (and crop) 

wheat ideotypes. Among the challenges above, drought has so far received the main attention, 

and studies addressing the physiological and genetic design of more efficient root systems are now 

proliferating.  

The species where the most innovative root ideotype for improved water acquisition has been 
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proposed is maize. The work of Jonathan Lynch at Penn U (Lynch, 2013) demonstrated, in a 

number of different theoretical and experimental papers, how a root system with narrow insertion 

angle on the stem axes, a lower number and longer axial crown roots and root with a simplified 

(less expensive) anatomy and rich in empty spaces (aerenchyma) (Chimungu et al., 2015) can be 

favorable at least in stressed (eg. water limited) environments (Saengwilai et al., 2014). This 

ideotype has been named “Steep, cheap and deep”.  

Newer wheat ideotypes and specifically new root ideotypes possibly more adapted to water limited 

cropping systems have also been proposed. Based on a first study, these new varieties should be 

characterized by a deeper root system, a higher density of lateral root density at deeper soil layers 

and a greater radial hydraulic conductivity at depth, which should be achieved by reducing xylem 

size and lowering axial resistance to water movement (Wasson et al., 2012). The same study 

suggested a positive effect of longer and denser root hairs. Similar conclusions were reached in a 

different study (Meister et al., 2014).  

At least in cereals, root morphological and architectural plasticity can be a favorable trait per se. 

In efforts to evaluate the magnitude of root plasticity across crop germplasm collections, it has 

been repeatedly reported (or suggested based on modeling analysis) a positive correlation between 

the degree of root plasticity and yield stability across environments (Sandhu et al., 2016; Topp, 

2016; Wissuwa et al., 2016). In wheat, relatively strong root plasticity was already shown in 

response to varying N fertilization regimes, where cultivars, on average, responded to low N 

supply by expanding their root surface area through increased total root number and/or length of 

lateral roots (Melino et al., 2015). At the same time, in a different study, it was shown that plasticity 

in stele and xylem diameter, and xylem number along the root length in wheat cultivars facilitates 

efficient use of available moisture under water-deficit stress (Kadam et al., 2015). 

Genetic dissection of root traits in wheat by QTL mapping 

Almost any breeding, marker-assisted and biotechnological approaches can be deployed to reach 

the target ideotypes. Therefore, once identified the most promising such root ideotypes, the 

challenge shifts to the identification of the source of useful allelic variation, mapping genes and 

QTL responsible for the target traits and finally to the implementation of experimental crosses, 

marker-selection and breeding schemes in order to transfer useful genetic variant to the future 

crop varieties. A number of studies have recently reviewed the use of genomic assisted approaches 

in breeding cereals and annual species (Barabaschi et al., 2016; Gupta et al., 2010).  

Biotechnological approaches to specifically improve root traits based on genetic engineering and 

aiming to increased tolerance to stress have also been reviewed (Ghanem et al., 2011). These 
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authors prioritized the following traits and/or genes to be modified using biotech tools: 

aquaporins and hormonal regulation of their expression, nutrient transporters, root morphology 

and architecture by modifying both developmental genes, expression level of hormones such as 

ABA, auxins and cytokinins (the latters being largely involved in lateral root formation) or genes 

which are hormones’ immediate target of regulation. Additionally, the need to identify and make 

available to genetic engineering highly efficient and specific (even at the level of specific tissue and 

sub-tissue) promoters was emphasized (Ghanem et al., 2011). 

Objectives of the study 

In this study we used a well characterized durum wheat association panel to dissect the genetic 

bases of both hypo and epigeal wheat morphology at vegetative stage. We used a high-throughput 

approach to evaluate the dynamics of plant growth thus dissecting final data point measures in 

their simpler components. This approach was expected to dramatically increase our QTL 

detection power by reducing the confounding effect of several segregating secondary traits. 

Furthermore, we wanted to know to what extent, if any, results from soil based root phenotyping 

are comparable with those from previous experiments conducted in soil-free systems (Maccaferri 

et al., 2016). Last but not least, we wanted to know if segregation for secondary source-related 

morphological traits correspond to segregation for yield in field condition by comparing our 

results with those from a multi-environmental trial conducted on the same plant material 

(Maccaferri et al., 2011). 

 

3.2. Materials and methods 

Plant material 

The population consisted of 183 durum wheat cultivars from Italy, Spain, Morocco, Tunisia, 

Southern USA, CIMMYT and ICARDA selected in order to sample the genetic diversity of the 

elite durum wheat germplasm and to limit heading date variation within a ten days window in 

Mediterranean environments.  The 183 cvs  thoroughly genotyped with SSRs and DARTs 

(Maccaferri et al. 2011) and with a 90k wheat SNP array genetically positioned in the genome 

projecting the SNPs in a durum wheat consensus map constructed using the same genotyping 

technologies (Maccaferri et al., 2015). The association panel (DP) was previously phenotypically 

characterized for root system architecture (RSA) at the seedling stage (Canè et al., 2014; Maccaferri 

et al., 2016) using polycarbonate screening plates in growth chamber. Importantly, the same 

genetic material was used by Maccaferri et al. for an association study on grain yield, yield 
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components and other phenological, morphological and physiological traits evaluated directly in 

field trials throughout different locations of the Mediterranean basin (Maccaferri et al., 2011). 

Based on the characterization of simple sequence repeat (SSR) markers, the population structure 

of the Unibo-DP accessions herein considered appeared to be structured into five main subgroups 

representing the main breeding lineages present in the germplasm, identified by well-defined 

breeding ideotypes (and corresponding hallmark founders developed and widely cultivated in 

subsequent decades of breeding). These subgroups corresponded to: S1, ICARDA and Italian 

accessions for dryland areas from the native Syrian and North African germplasm (from Haurani 

and related landraces); S2, ICARDA accessions bred for temperate areas (from Cham 1); S3, 

Italian cultivars related to Valnova and Creso founders and subsequently bred with CIMMYT and 

Southwestern US accessions (Desert Durum®); S4, widely adapted early CIMMYT germplasm 

introduced to several Mediterranean countries (from Yavaros 79, Karim, Duilio); S5, more recent 

high yield potential CIMMYT germplasm (from Altar84). Details are reported in Maccaferri et al. 

(2011) and in Letta et al. (2013). 

The GROWSCREEN-Rhizo phenotyping platform 

Plants were grown in the GROWSCREEN-Rhizo phenotyping facility at the Institut für Bio- und 

Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich forschungszentrum in Jülich, Germany. The 

phenotyping facility has been described by Nagel et al. (Nagel et al., 2012) and used for tetraploid 

wheat phenotyping (Gioia et al., 2015). Briefly, GROSCREEN-Rhizo consists of two rows of 36 

frames, for a total of 72 slots in which rhizotrons (90 × 70 × 5 cm) are inserted. The rhizotrons 

consist of polycarbonate boxes having one of the two sides made from transparent polycarbonate. 

The transparent side is shielded from light by mean of a black plastic plate combined with, black 

brush curtains. Each row of the platform is split into two blocks. Imaging was carried out by an 

automated moving cabinet provided with lights and RGB camera. The cabinet moves between 

the two rows of the platform. The rhizotrons are individually drew inside the imaging cabinet by 

a mechanical swivel arm. Images of the whole transparent rhizotrons surface were acquired with 

a high-resolution camera (16 MP camera, IPX-16M3-VMFB, Imperx, Inc., Boca Raton, FL, USA; 

combined with Zeiss Distagon T 2,0/28 ZF-I lens, Jena, Germany). The whole procedure is 

automated and driven by a custom software program implemented with LabVIEW (National 

Instruments, Austin, TX, USA). Plants are automatically irrigated by mean of drippers positioned 

at the top of each frame of the platform. 
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Experimental design and growing conditions 

In order to screen the entire population, three distinct and sequential sub-experiments were 

conducted. Four plants of two different cultivars had been transplanted in each rhizotron and 

each cultivar was replicated in two different rhizotron for a total of four plants per cultivar. The 

most representative lines of the five population structure groups had been replicated in the three 

sub-experiments as control lines. Thus, in each sub-experiment 63 cultivars plus the five controls 

were screened. The 63 cultivars were selected in order to uniformly sample the genetic diversity 

arisen from the population structure study. Within each of the main population structure 

subgroups, accessions were randomly sampled and assigned to each of the three sub-experiments. 

For each accession, healthy seeds with uniform size were pre-germinated on filter paper into 

individual petri dishes. In order to guarantee germination uniformity, seeds were allowed to pre-

germinate in dark and cold room (4 °C) for a week. After the pre-germination step, vital seedlings 

were transplanted into the rhizotrons. Rhizotrons were filled with ~ 18 l of black and nutrient 

rich peat-based compost. Each rhizotron was watered twice per day using 100 ml of tap water. 

Plants were grown for four weeks under semi-controlled conditions in the Phytec Greenhouse, 

with 16 h photoperiod, day/night temperatures of 24/18 °C. Plants were allowed grown for four 

to five weeks after transplanting up to the stage at which longest roots reached the bottom of the 

rhizotrons (corresponding to the Zadock scale 16, on average).  

Phenotyping and image analysis 

Picture of the visible root system were taken daily from transplanting to harvest. Leaf area (LA) 

was scored by manually measure the length (LL) and width (LW) of each leaf of the plants. LA 

per each leaf was than calculated according to the well-known formula (Kemp, 1960; Masle and 

Passiowa, 1987): 

𝐿𝐴 = 𝐿𝐿 ∗ 𝐿𝑊 ∗ 0.858  

Number of tillers (Tillers) and leaves (Leaves) were measured as well. These measurements were 

taken twice a week in the first two weeks of growth and once a week in the last weeks of the 

experiment as well as the day before harvest. At harvest the root system was separated from the 

shoot at the ground level and dry biomass was measured for both. 

Images of the root system were analysed by mean of the in-house software GrowScreen Root. Briefly, 

this software allows digitally drawing the root system, discriminating among three different root 

classes. In this experiment we classified the roots as seminal, nodal and lateral. The output 

provided by the software are the single root length, maximum depth and width of the root system, 

area under the convex hull, root length density for each chosen root level/layer at different depths. 
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Since multiple measurements were taken along the experiments, we were able to fit the root and 

shoot growth curves in order to retrieve dynamical growth parameters. Leaf chlorophyll content 

was estimated twice using the SPAD-502 chlorophyll meter (Minolta Corp., Ramsey, NJ, USA) at 

stages Z13 and Z14 of the Zadok scale. A summary of mean, range, heritability and description 

of the evaluated traits is reported in Table 1. 

Data analysis 

Data analysis was mainly carried out using the R statistical software (The R Core Team, 2016).  

Since phenotypes distributions were not always normal, all the data was transformed using the 

quantile normalization technique (Hicks et al., 2017). In order to remove the effects due to the 

subsequent sub-experiments, best linear unbiased estimators (BLUES) were calculated using the 

line ID as fixed effect and different sub-experiments as random effect variate. The mixed models 

were fitted using the lme4 R package (Bates et al., 2015).  

Mean cultivar repeatability was calculated using the formula: 

h2=σG2(σG2+σE2/r) 

where: σG2=genetic variance, σE2=residual variance, r=number of reps. 

Data for heritability estimation were first corrected for the sub-experiment effect. Calculations 

were conducted using the package “Heritability” (Wolak et al., 2012).  

Growth curves were fitted using the package “growfit” and using the Gompertz’s growth model 

(Kahm et al., 2010; Zwietering et al., 1990).  

GWAS 

Multi-locus mixed-model algorithm (MLMM) as implemented into the “mlmm” package (Segura 

et al., 2012) was used for phenotype/genotype association using both the kinship and population 

structure matrices as covariates. Briefly, this algorithm performs phenotypes correction for 

kinship and population structure and include associated markers, on the base of a certain p-value 

threshold, as covariates for further association tests until no improvement is gained in terms of 

explained heritability. Kinship was calculated as identity by state between informative markers. 

Non-redundant, informative markers were selected using the “tagger” function implemented in 

software Haploview (Barrett et al., 2005), setting an R2 threshold of 1.0. We chose to select just the 

non-redundant, informative markers in order to avoid biases due to uneven sampling of the 

genome based on the available SNPs from the iSelect array. 
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LD decay analysis 

We fitted the SNP decay curve according to Rexroad and Vallejo (Rexroad and Vallejo, 2009) and 

Sved et al. (1971), who based the analysis on the known relationship between LD as measured by 

r2 (squared correlation of allele frequencies at a pair of loci) and effective population size Ne,.

  

 

 

where:  

c is the recombination rate between loci, n is the experimental sample size. The constant α = 1 in 

the absence of mutation (Sved et al. 1971). The constant k was set to k = 4 for autosomes. 

Knowing r2 LD values and c, we estimated Ne by fitting this nonlinear regression model, 

 

Where is the observed LD (adjusted for chromosome sample size n) for marker 

pair i in chromosome j, cij is the recombination rate from two-point linkage analysis for marker 

pair i in chromosome j. The parameter βj is the estimator of effective population size for 

chromosome j where . The parameters αj and βj were estimated iteratively by using 

non-linear modeling. 

 

The decline of linkage disequilibrium with distance (recombination rate in Morgans) was estimated 

by fitting again  

 

Where is, as above, the observed LD between markers, the constant k = 4 for 

autosomes, dij is the recombination rate from two-point linkage analysis for marker pair i in 

chromosome j, bj is the estimate of effective population size for chromosome j, and eij is a random 

residual. The estimates of r2 for pairs of markers were adjusted for experimental sample size.  

In order to assess the significance threshold to include a marker in the QTL model, we first 

calculated the upper LD threshold for the background LD caused by population structure by 

inspecting the distribution of LD values for unlinked marker-pairs (>50 cM genetic distance in 

the consensus maps) and by selecting as threshold the r2 corresponding to the 95th percentile 
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distribution. This r2 value was used to set a tagger function in Haploview in order to retrieve an 

estimate of the genome-wide number of independent association tests, considering only those 

SNPs not in LD according to the r2 threshold. Bonferroni correction for multiple tests on the 

MLMM was applied to allow the alghorithm to include the markers in the GWAS-QTL model. 

Confidence intervals were assessed by inferring the genetic distance at which, on average, LD 

decayed to r2 value ≤ 0.3. The tag-markers associated to phenotypes falling within the same 

confidence interval were considered and discussed as belonging to a unique QTL cluster. We also 

reported those QTL  which significance p.value was higher than the genome wide threshold but 

lower than 0.001 considering them as putative QTL (Maccaferri et al., 2016). QTL effect direction 

was reported according the sign of the effect of the QTL which showed higher average LD with 

other markers of the same cluster. QTL effects are reported as percentage of the mean population 

value. 

3.3. Results 

Root and shoot Trait variation, heritability and correlations 

The use of the GROWSCREEN-Rhizo phenotyping facility allowed us to assess the root system 

architecture of the 183 durum elite panel accessions in greater details as compared to previous 

root system phenotyping conducted at seedling stage in paper-filter screen sheets (Canè et al. 2014; 

Maccaferri et al 2016). In total, 32 root traits and 18 shoot-related traits were measured and 

phenotypic data were subsequently subjected to GWAS analysis (Table 1). In particular, the 

GROWSCREEN-Rhizo platform allowed us to discriminate and specifically measure the three 

main distictinct components of the root system, i.e. seminal, nodal and laterals roots. Based on 

the root trait features, root phenotypes could be further distinguished and grouped according to: 

(i) root length, (ii) root depth and width, (iii) root dry weight and root to shoot ratio, (iiii) root 

dynamic traits (growth speed and day of occurrence of flex points). Shoot traits included (i) 

estimates of total shoot biomass at the end of the observation cycles, (jj) leaf length and width, 

leaf area and specific leaf weight, total leaf number, (iii) cholorophyll content, (iiii) tiller count and 

tiller emission rate.  

In Table 5 we report summary statistics for the analysed traits. A wide range of variation was 

observed for most root and shoot traits as well as for the three main root categories (seminal, 

nodal and lateral).  Heritability ranged between 0.12 and 0.77 for maximum seminal density 

(Seminal_dmax) and average leaf length (Leafl_ave). Most of traits showed h2 values comprised 

between 0.45 and 0.75, with a mean value of 0.55.  

Plant growth cycle in rhizotrons was terminated at GS16 (Zadock scale) for root and shoot 
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biomass harvesting. At that stage, the seminal root apparatus extended through most of the 

allowed vertical space in rhizothrons (Depth ranging from 34.09 to 75.91 cm) while the nodal 

roots were mostly limited to the top 35-cm layer. Considering root length, the seminal apparatus 

reached a maximum of 555.01 cm compared to a maximum of 366.67 cm (66.07%) and 187.85 

cm (33.84%) for the nodal and lateral apparatus, respectively. As expected from these statistics, 

the nodal/seminal ratio averaged across all accessions was equal to 0.26; however, the ratio varied 

widely among accessions, ranging from zero (no nodal roots emission, at least in the explored 

time-frame) up to 2.36. The width of the total root apparatus also showed a wide range of 

variation, from very narrow to wide root distributions in horizontal plane (from 5cm to 55.26 cm). 

Another trait that showed ample variation among accessions was the shoot to root ratio (from 

0.54 to 17.68 g/g). Considering the shoot-related traits, shoot development at the end of the 

growth cycle varied considerably among accessions (from 0.03 to 0.91 g/plant), mainly 

concomitantly with the number of tillers (from 1 to 11 tillers/plants). Other shoot traits of interest 

that varied considerably among accessions were the mean leaf area (from 1.99 to 13.50 cm2/leaf) 

and the chlorophyll content (from 23.92 to 50.15 SPAD units). 

Frequency distribution and correlations for the most relevant and discussed traits are reported in 

Figure 6. Shoot and root traits showed distributions approaching the normality in most cases, 

indicating quantitative inheritance for most of traits. For several traits, distributions were 

positively skewed or highly skewed (total Lateral root length, total nodal root length, maximum 

nodal root density, maximum lateral root density, root width), indicating that only relatively few 

genotypes showed extreme trait values at the top of the distribution (elongated tail at the right 

portion of the distribution). At least to some extent, in addition to genetic/inheritance reasons, 

the positively skewed trait distributions could have been caused by the still limited growth cycle 

length allowed to the plants grown in the rhizotrons, not reaching the physiological maturity and 

thus the maximum development. On the contrary, root system depth showed a negatively skewed 

distribution most probably due to some extent to the rhizotrons’ vertical space constrains. Most 

of the root traits were inter-related to some extent. Interestingly, nodal, seminal and lateral total 

root length were scarcely correlated to each other (seminal vs. nodal, r= 0.25***; seminal vs. 

lateral, r= 0.23***; nodal vs. lateral, r=-0.034 NS), indicating that a partially different genetic 

control is at the basis of the inheritance of the three root types.  Root system width showed limited 

correlations to all other root and shoot traits (r values ranging from NS to 0.28***) thus indicating 

its genetically distinct and unique inheritance features.  Shoot and root dry weight were correlated 

at r=0.62***, indicating a partial common inheritance of the two traits, as expected. Chlorophyll 

content is another vegetative trait that showed limited correlation vs. the other shoot traits. 
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However, some significant relationships were observed between SPAD and root dry weigth (r= 

0.38***) and, in particular, with nodal root apparatus traits (SPAD vs Nodal length, r=0.33 and 

SPAD vs. Nodal_dmax, r=0.31***), suggesting a possible relationship between the capacity to 

accumulate photosynthates and the subsequent growth of nodal roots, or viceversa. 

QTL models 

A total of 211 QTL were detected for the 41 analysed traits, with an average of 5.14 QTL per 

trait.  

In Table 6 we report details on the R2 of the QTL model and number of significant QTL 

detected, considering the QTL and population structure effects separately. We also report 

minimum, mean and maximum adjusted R2 of the QTL detected per each phenotype. The variance 

explained by the QTL model was firstly affected by the number of QTL included in the model 

(Pearson’s r = 0.89) and secondly by the maximum R2 explained by a single QTL in the model (r 

= 0.81). Based on the medium-to- high number of QTL identified for several traits (Table 6) and 

based on the global R2 fit of the multiple QTL models, MLMM proved to be an efficient QTL 

search method for quantitative root and shoot traits obtained from the rhizotron phenotyping 

platform.  

For some traits including root nodal length, total root length in the top layer, seminal deep, depth, 

shoot dry weight, leaf area, despite their medium-to-high h2, it was possible to identify two-to-

three QTL only, with global QTL models not exceeding R2 = 0.20. This could be interpreted as 

a consequence of relatively high-complexity in the genetic control of those traits, with a substantial 

absence of major QTL segregating in the germplasm considered and multiple alleles at the causal 

genes. Therefore the GWAS results for these traits could be considered as cases of missing 

heritabilities (Manolio et al., 2009).  

In other cases, such as the total root length, seminal root length in top layer, lateral roots in the 

top layers, lateral deep, root width, leaf length and leaf width, SPAD, tiller emission rate, GWAS 

identified seven up to 14 QTL, and total R2 models of 0.35-0.66, indicating the presence of major 

QTL (Table 6). Correlation between trait heritability and R2 of the QTL model (without 

population structure) was moderate (r = 0.3), indicating substantial effect of kinship and/or 

population structure or, again, the presence of several minor effect QTL that did not reached 

significance. In Table 7 and figures 7-22 we report the results of the GWAS for the analysed 

traits. Overall, the cumulative number of QTL identified for the dissected traits was higher than 

the number of QTL identified for their respective primary order traits (i.e. six QTL were spotted 

for Total_lenght while ten QTL were detected for its secondary traits Seminal, Lateral and 



 

44 

Nodal). GWASs for lateral and seminal roots related traits explained more variance than nodal 

roots traits GWASs in terms of both length and distributions. As regard to shoot traits, leaf 

morphology-related traits were better explained by the QTL models as compared to tiller-related 

traits, indicting a tight genetic control for the former traits as compared to the latter. 

QTL clusters 

QTL positioned at genetic distances less than 3.52 cM (double of LD decay at r2 0.3) with respect 

to each other were grouped into QTL cluster. A summary of the detected QTL clusters is reported 

in Table 8. A total of 156 QTL out of 211 was grouped in 49 clusters including at least two 

QTL/phenotypes. The number of QTL in each cluster ranged from 2 to 11. Twenty-four clusters 

consisted of two QTL, 10 of three, 9 of four QTL, three clusters contained 5 QTL and three 

single clusters were composed by six, ten and eleven markers. A cluster was detected in the sub-

centromeric region of chromosome 1A, four in chromosome 1B, four on 2A, six on 2B, five on 

3A, one on 3B and 4A, two on 4B, four on 5A, two on 5B and 6A, four, nine and five on 

chromosomes 6B, 7A and 7B respectively. Detailed information of position, number of QTL, 

phenotypes with indication of the hypothetical sign of the effect, confidence interval and max 

significance is reported on Table 8. Only three QTL clusters did not contain at least a major QTL 

(-log10 p-value > 3.7). We define as major clusters those clusters comprising, within their 

confidence interval, more than four QTL for four distinct traits.  

For several cases, the QTL-clusters included single QTL for both root and shoot traits, particularly 

leaf area, leafw or leafL, indicating major QTL clusters for whole plant vigour of architecture. 

Q1, a major QTL cluster at position 75.1 – 80.9 cM on chr. 1A, was essentially a cluster for whole-

plant vigour, positively affecting maximum root system depth (Depth), seminal and total roots 

below 35 cm (Seminal_deep, Total_ deep), total root length (Total_length), tiller emission rate 

(Tiller_emission_rate) and maximum root system width (Width). A second major QTL cluster 

(Q2) located on chromosome 1B between 74.1 and 87.1 cM, influenced, with concordant effect 

direction, depth of the deepest lateral root (Lateral_d), lateral roots length below 35 cm 

(Lateral_deep), seminal and total root length (Seminal and Total_length respectively), 

Seminal_deep and Total_deep, root dry weight (Root_dry), day of root deeping flex point 

(T0_dep), and average leaf area (Ave_leaf). A major QTL cluster (Q14) was detected on chr. 2B, 

c.i. 165.7 – 166.3 cM; it positively affected the depth of the deepest nodal root (Nodal_d) and 

Total_deep while it had a negative effect on total and lateral root length above 35 cm (Total_top 

and Lateral_top), and Total_length. A QTL clusters affecting shoot dry weight (Shoot_dry), shoot 

and roots dry biomass (Total_biomass), Lateral_d, Lateral_deep and leaf specific weight (LSW) 

was positioned on chromosome 3A at position 102.7 – 105.3 cM. Two major QTL clusters were 
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located on chromosome 7A. Q37 was located in a relatively wide c.i. (50.4 – 62.1 cM) and 

positively affected Lateral_d while had a deleterious effect on Shoot_dry, Total_biomass, Width, 

and nodal to seminal length ratio (Nod_Sem_ratio). The QTL cluster containing more QTL was 

Q40, on chr. 7A at position 112.6 – 114 cM. It affected negatively Depth, Lateral_deep, maximum 

root length speed (Mu_rlen), Seminal, Total, Seminal_deep, Total_deep while had a positive effect 

on shoot/root dry biomass ratio (Shoot_root), root specific weight (RSW) and maximum leaf 

expansion rate (Mu_LA).  

For a few traits showing unique inheritance features, mostly not related to other traits, though 

major QTL were identified, they were not included into QTL-clusters. One example is root system 

width. As much as seven single significant and highly significant QTL were found for root system 

width. Among those, four on chromosomes 2A, 5B, 6A and 7A showed R2 values ≥ 0.10 (10%) 

and were thus considered as major GWAS-QTL, including the one on chromosome 6A explaining 

up to 23% PEV.  Only three of them were included into QTL-clusters (one QTL on 6A and two 

on 7A). 

3.4. Discussion 

Trait correlations 

Unexpectedly, root system maximum width (Width) was not negatively correlated with root 

system depth (Depth). Despite it might seems counterintuitive, the cause of this discrepancy 

could be related to the adopted experimental conditions. Indeed, a wider root system is associated 

to a weak gravitropic response from the root system. Gravitropism acts by slowing down the 

activity of the down oriented part of the root tip meristem zone (Young et al., 1990) thus causing 

the curvature of the root. In the growing conditions of this experiment, roots were artificially and 

constantly exposed to gravitropic stimuli to allow them to grow on the transparent part of the 

rhizotrons. This might had caused the constant and experiment-wide slowdown of the more 

gravitropic root system and, therefore, compensate the favourable effect of a narrower root 

growth angle on root depth. 

Shoot_dry and Root_dry showed a moderate/high correlation (r = 0.62***) indicating an 

autocatalytic effect of plant vigor on both root system and shoot. Indeed, both shoot and root are 

totally dependent each other in terms of water and nutrient for the shoot and of metabolized 

carbon the root system. An increase in LA (tightly correlated with Shoot_dry) guarantee to the 

entire plant a higher light interception and, therefore, increased carbon metabolization for all the 

organs including roots. On the other hand, increase in root length guaranty a better nutrient and 

water caption thus sustaining a larger shoot. This nonetheless, is well-known that LA is tightly 
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correlated with water consumption causing a detrimental effect of wider LA in the most drought 

prone environments. Is therefore crucial to study their reciprocal relationships in order to 

understand to what extent, if any, is possible to tune root system independently to shoot. As 

logical, Shoot_root was positively correlated with Shoot_dry and negatively with Root_dry (r = 

0.42*** and r = -0.38 respectively). Lateral showed the highest correlation (r = -0.38***) with 

Shoot_root among root classes, with Seminal and Nodal showing much weaker r coefficients (-

0.14*** and -0.01 respectively). This could appear in contrast with the fact that visible lateral roots 

represented in this experiment only 6.8 % of Total_length, with Seminal and Nodal 

representing the 76.0 and 17.2 % respectively. Furthermore, Root_dry showed moderate and 

comparable correlations with the length of all the root classes (r = 0.47***, 0.39***, 0.40*** for 

Seminal, Lateral and Nodal respectively). This could be explained by the fact that Lateral did 

not correlated with Shoot_dry (r = 0.06) while, as above mentioned, Lateral and Root_dry did. 

Seemingly, Lateral was independent of the vigor-loop (+LA = more nutrients for the roots, 

+roots = more water and nutrients for the shoot) by pulling the carbon partitioning to root system 

with no beneficial effect on shoot. Our hypothesis is that lateral roots, since numerous and directly 

connected to roots phloem (Yu et al., 2016), are very strong metabolites sinks in the competition 

against shoot meristems for organic carbon,  more than seminal and nodal roots. As consequence 

of that, the advantages of a better soil exploration are equally counterbalanced by the higher 

carbon demand due to a greater number of carbon absorbing tips. It should be said that lateral 

root emission is stimulated by low nutrient content in the soil and, thus, that in not optimal 

growing conditions the prevalence of Lateral on total root length might be dramatically different 

from what was observed in this experiment. Furthermore, at least in early stages, lateral roots are 

not well differentiated from a histological standpoint and, therefore, they miss a proper gravity 

response apparatus, which results in a low gravitropism. This make us infer that Lateral 

underestimates the actual total lateral root length and prevalence on other root classes. This 

nonetheless, the moderate correlation with Root_dry makes us suppose that, in spite of its bias, 

Lateral is a good estimator of actual lateral root length. If more the higher investment in lateral 

roots drove the higher carbon partitioning to the root system, we would expect the same for 

Nodal. It was not the case, since Nodal, contrary to Lateral and to a lesser extent Seminal, did 

not correlated with Shoot_root. This might be because, as confirmed by this study, nodal root 

density is notoriously positively correlated with tillering (Belford et al., 1987; Klepper et al., 1984). 

As consequence of that, the nodal roots sink strength is counterbalanced by the highest amount 

of vegetative tips due to the increased number of tillers, resulting in no effect on carbon 

partitioning. 
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QTL modelling  

 None of the detected QTL explained more than 30% of variance, indicating the quantitative 

nature of all the analysed phenotypes. Despite moderate correlation (r = 0.3*) was found 

between traits heritability and the variance explained by the QTL, the linearity between the h2 

and R2 varies dramatically among phenotypes. This is a well-known issue in GWAS, referred as 

“missing heritability”. Several mechanisms have been proposed to explain this power constrain 

of GWAS. One of the possibility is the poor genome coverage of the SNP chip. This is for sure 

not the case of this study since the average genetic distance between subsequent markers was 

much lower than the LD decay at R2 = 0.3. Another possible explanation is that SNP chips only 

permit to detect two allelic forms of a certain locus thus ignoring the possibility of multiple 

haplotypes. No specific studies have been conducted to evaluate this possibility on the tested 

genetic material. This nonetheless, we cannot exclude this hypothesis given that an average of 

5.1 alleles per locus was observed among the SSR markers. Another possible cause of missing 

heritability might be the extremely complex genetic architecture of the traits. This results in an 

extremely high number of minor effect QTL underling the studied trait and therefore in a lack 

of power of the association analysis. Epistatic interactions, might also undermine the chances of 

QTL discovery. Last but not least, strong kinship relationships or population structure may 

account for most of the explained variance thus limiting its QTL explained portion. All these 

hypotheses need further investigation in order to increase the statistical power and thus the 

capability to identify QTL for root and shoot morphological traits. This said, we would like to 

remark how the dissection of complex traits into simpler ones allowed us to increase our QTL 

discovery capability. Indeed, we detected just two major QTL for total LA, while, its secondary 

traits (Leaves and LA_ave) were explained by 13 QTL. Same for root traits, were Total_length 

was explained by six QTL whereas 3, 4 and 3 QTL were detected for Seminal, Lateral and 

Nodal respectively. Among root classes, QTL for Nodal explained less variance as compared 

to Seminal and Lateral with the first globally explaining 0.15 of the variance versus 0.24 and 

0.25 of the QTL models of the latter. This might be due to stronger genotype/sub-experiment 

interaction for Nodal. Since Nodal and Tillers are correlated and being the latter notoriously 

affected by light intensity and quality (Casal, 1988), it might be that differences in these 

environmental parameters between sub-experiments might had differentially affected the trait 

expression resulting in lower QTL detection capability.  
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QTL discovery and comparison with previous experiments 

In this experiment we had the chance to morphologically characterize roots of a durum wheat 

association panel at a growth stage and phenotypic resolution that had never been explored before. 

Furthermore, we could dynamically investigate root classes development end their reciprocal 

relationships and effects on shoot growth. This nonetheless, it is important to compare the results 

obtained from this experiment with those obtained using cheaper and quicker phenotyping 

technique. It is indeed crucial, for geneticists and breeders, to know to what extent cheap and 

quick phenotypes are maintained in later growth stages and, thus, choose the proper phenotyping 

technology for population screening or QTL fine mapping. As expected, at least for the main 

QTL, is possible to find a certain degree of correspondence between RSA measured at seedling 

stage with paper-roll or paper-non-roll techniques and RSA traits observed at late tillering stage 

in rhizotrons. Q2 on chr. 1B at 74.1 - 87.1 cM, i.e. is one of the QTL cluster which have a 

correspond cluster in the work of Maccaferri et al. 2016 acting on comparable traits. Indeed, it 

was found in this study that this QTL affect the global plant vigour both below and above ground. 

In the paper-roll experiment, the authors found, in the same chromosomal region of Q2, QTL 

for total root number, average root length, primary root length and thousand kernel weight. The 

same could be said for Q14, a major QTL cluster for Lateral_top, Nodal_d, Total_length, 

Total_deep, Total_top which colocalized with major QTL for average root length, primary root 

length and total root length in found in paper roll. Q18 did not found any clear correspondence 

in the paper roll experiment but this could be expected since this QTL cluster affect lateral root 

traits which were not measured in paper-roll. It is interesting to notice that the QTL which had 

the highest R2 for root growth angle in paper roll, located on chr. 6A c.i. 119.9 – 124.9, 

corresponded to the QTL with the highest R2 (0.22) for width in the rhizotron experiment. We 

did not observe deeper roots in correspondence of this QTL but this might explained by the fact 

that, as we mentioned before, more gravitropic roots are slightly disadvantaged in terms of growth 

speed in rhizotron growing condition.  

As expected, several QTL clusters discovered in this experiment were not found in previous 

experiments, demonstrating the complementarity of the used strategies. The most interesting of 

this is Q40, the QTL cluster including more phenotypes (11). Located in the centromere of chr. 

7A, it is involved in most of the deep rooting traits (Depth2, Lateral_deep, Mu_rlen, Seminal, 

Seminal_deep, Total_deep, Total_Length, Seminal_top) and, importantly, it also affects 

Shoot_Root by inducing a more root oriented phenotype in accordance with deep rooting allelic 

form. In the study of Maccaferri et al. 2016, in the same region was found only a putative QTL 

for seminal root number. What make this QTL cluster particularly interesting is that the deep-



   

49 

 

rooting allelic form is clearly prevalent in the two sub populations from ICARDA and the Italian 

germplasm (S1, S2 and S3, deep rooting allele frequencies of 0.72, 0.80 and 0.92 respectively) while 

it is underrepresented in CIMMYT breeding program material (sub-populations S4 and S5, deep 

rooting allele frequency 0.37 for both the sub-groups). ICARDA breeding programs are 

specifically focused on the adaptation of durum wheat to dryland conditions. Italian material is 

traditionally cultivated in rainfed conditions. On the other hand, CIMMYT breeding programs 

are traditional run in optimal growing conditions in order to fully understand the genetic potential 

of a certain line. Our hypothesis is that, by providing artificial watering, CIMMYT breeders did 

not selected for deep rooting traits and on the contrary, privileged the allelic form which permit a 

more shoot-oriented carbon partitioning. The fact that this chromosomal region was not of 

particular interest in the paper-roll experiment might be a caused by the late display of the QTL, 

which could be linked to lateral roots appearance.         

3.5. Conclusions 

We have been able to perform an extremely detailed morphological characterization of a wheat 

association panel for both roots and shoot at full vegetative phase. Trait dissection permitted us 

to increase our QTL detection capability. Comparison with previously conducted experiments 

using other techniques, permit us to identify the most valuable strategy to adopt for QTL fine 

mapping.  A detailed plant modelling approach will permit us to better understand the 

physiological mechanisms underlying important drought adaptive traits such as shoot/root carbon 

partitioning. GWAS allowed us to identify novel loci which may had had a critical role in the 

durum wheat breeding history. The most interesting loci will be tested in bi-parental and 

homogeneous genetic backgrounds to better understand the environmental and farming 

conditions at which a certain allelic form may result in higher yield or better yield stability.
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3.6. Tables and figures 

 

Table 5 Trait description, summary statistics, and heritability 

Phenotype Description 

GWAS 

analysis 

in details Min Mean Max h2 

Root traits 
      

Length of root apparatus 
     

Total_Length Total root length (cm) 
 

80.96 331.03 833.34 0.60 

Seminal Seminal root length (cm) x 50.01 246.38 555.01 0.47 

Nodal Nodal root length (cm) x 0.00 61.75 366.67 0.66 

Lateral lateral root length (cm) x 0.00 23.13 187.85 0.68 

Nod_Sem_ratio Nodal/seminal ratio (cm/cm) 
 

0.00 0.26 2.36 0.59 

       
Depth and width 

      
Nodal_d Maximum nodal root depth (cm) 

 
1.89 21.40 62.45 0.46 

Depth Root system depth (cm) maximum x 34.09 61.91 75.91 0.67 

Depth2 Depth at the last but one phenotyping point (cm) 
 

30.75 57.30 75.91 0.65 

Width Root system width (cm) x 5.51 16.46 55.26 0.45 

       
Root_Dry Root Dry weight (g) x 0.00 0.05 0.11 0.54 

       
Density of root apparatus 

     
Total_top Density of roots above 35 cm (cm/cm2) 

 
0.10 0.42 1.12 0.67 
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Phenotype Description 

GWAS 

analysis 

in details Min Mean Max h2 

Seminal_top Density of seminal roots above 35 cm (cm/cm2) 
 

0.03 0.27 0.58 0.51 

Nodal_top Density of nodal roots above 35 cm (cm/cm2) 
 

0.00 0.13 0.69 0.65 

Lateral_top Density of lateral roots above 35 cm (cm/cm2) 
 

0.00 0.02 0.20 0.54 

Total_deep Density of roots below 35 cm (cm/cm2) 
 

0.00 0.16 0.52 0.60 

Seminal_deep Density of seminal roots below 35 cm (cm/cm2) 
 

0.00 0.15 0.44 0.60 

Nodal_deep Density of nodal roots below 35 cm (cm/cm2) 
 

0.00 0.00 0.10 0.35 

Lateral_deep Density of lateral roots below 35 cm (cm/cm2) 
 

0.00 0.02 0.24 0.65 

Total_dmax Maximum root density measured in the rhizotron (cm/cm2) x 0.21 0.54 1.31 0.66 

Seminal_dmax 

Maximum seminal roots density measured in the rhizotron 

(cm/cm2) 
 

0.07 0.35 0.79 0.12 

Nodal_dmax Maximum nodal root density measured in the rhizotron (cm/cm2) x 0.00 0.23 0.90 0.62 

Lateral_dmax Maximum lateral root density measured in the rhizotron (cm/cm2) x 0.00 0.09 0.78 0.62 

Total_dmaxdep Depth of the maximum density of the root apparatus (cm) 
 

1.89 14.71 70.02 0.25 

Seminal_dmaxdep Depth of the maximum density of seminal roots (cm) 
 

1.89 20.55 70.02 0.29 

Nodal_dmaxdep Depth of the maximum density of nodal roots (cm) 
 

1.89 5.13 43.53 0.21 

Lateral_dmaxdep Depth of the maximum density of the lateral roots (cm) 
 

1.89 25.75 70.02 0.51 

       
Root dynamic 

traits 
      

Mu_dep maximal deeping speed (cm/day) 
 

1.45 3.50 6.30 0.45 

T0_dep flex point in the deeping curve (day) 
 

2.24 6.05 15.80 0.53 

Mu_rlen Maximum root length speed (cm/day) 
 

2.74 14.34 30.44 0.39 

T0_rlen flex point total root length (day) 
 

3.26 8.15 22.75 0.55 
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Phenotype Description 

GWAS 

analysis 

in details Min Mean Max h2 

First_Nodal_day Day of apparence of the first nodal root 
 

1.00 16.28 28.00 0.45 

       
RSW root specific weight (g/cm2) x 0.00 0.00 0.00 0.41 

       
Shoot traits 

      
Shoot_fresh Shoot fresh weight (g) 

 
0.04 2.86 6.98 0.55 

Shoot_Dry shoot dry weight (g) x 0.03 0.36 0.91 0.50 

Shoot_Root Shoot/root ratio (g/g) x 0.54 7.34 17.68 0.59 

       
Leaves Final Total leaves (nb) 

 
6.00 16.94 37.00 0.44 

LA Final leaf area (cm2) 
 

22.87 99.51 204.84 0.64 

Ave_LA Mean leaf area of the measured leaves (cm2/leaf) x 1.99 5.98 13.50 0.72 

Leafl_max Max leaf length scored in a plant (cm) 
 

13.80 24.65 38.50 0.78 

Leafl_ave mean length of the leaves measured in a plant (cm) 
 

7.23 12.86 17.69 0.77 

Leafw_max Max leaf width scored in a plant (cm) 
 

0.50 0.74 1.10 0.60 

Leafw_ave mean width of the leaves measured in a plant (cm) 
 

0.27 0.44 0.60 0.76 

Mu_LA Maximum leaf expansion rate (cm2/day) 
 

1.18 8.60 183.15 0.05 

       
Tillers Final number of tillers (nb) x 1.00 5.31 11.00 0.45 

First_tiller_day Day of apparence of the first tiller (day) 
 

1.00 11.87 27.00 0.48 

Tiller_emission_rate Tillers emitted per day 
 

0.00 0.40 0.80 0.34 

       
LSW Leaf specific weight (g/cm2) 

 
0.00 0.00 0.01 0.31 
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Phenotype Description 

GWAS 

analysis 

in details Min Mean Max h2 

SPAD Chlorophyl content x 23.92 36.40 50.15 0.74 

Water_content Water content in the plant ((Shoot_fresh-shoot_dry)/shootdry) 
 

0.33 7.17 25.04 0.51 

       
Total_biomass Shoot + roots dry biomass   0.03 0.41 1.02 0.50 
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Figure 6 Correlation and distribution of the principal, untransformed row traits. In the top corner are reported the Spearman’s correlation coefficients and the significance level is 

reported as: p-value <0.05 *, <0.01 ** and <0.0001 *** 
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Table 6 Summary of the fitted QTL models; R2 values of the QTL model without the population structure, of the 

population structure and of the model including both. Summary statistics of R2 values of single QTL within each 

QTL model 

  QTL model (QTL+structure) R2 Single QTL R2 

Phenotype QTL Structure Global Min. Mean Max nb. 

Ave_LA 0.46 0.01 0.53 0.10 0.15 0.22 8 

Depth 0.21 0.07 0.26 0.05 0.08 0.13 3 

First_Nodal_day 0.12 0.01 0.17 0.04 0.06 0.10 3 

First_tiller_day 0.15 0.00 0.24 0.06 0.09 0.13 4 

LA 0.14 -0.01 0.16 0.09 0.10 0.10 2 

Lateral 0.25 0.01 0.30 0.07 0.10 0.16 4 

Lateral_d 0.48 -0.01 0.53 0.04 0.13 0.23 11 

Lateral_deep 0.51 0.00 0.54 0.07 0.12 0.16 10 

Lateral_dmax 0.27 0.00 0.27 0.08 0.12 0.19 4 

Lateral_top 0.46 0.01 0.46 0.06 0.11 0.21 7 

Leafl_ave 0.66 0.02 0.66 0.05 0.15 0.29 14 

Leafw_ave 0.54 0.02 0.68 0.04 0.17 0.30 13 

Leaves 0.31 -0.01 0.33 0.07 0.10 0.16 5 

LSW 0.44 0.15 0.50 0.09 0.13 0.16 7 

Mu_LA 0.28 0.00 0.28 0.07 0.09 0.13 4 

Mu_rlen 0.13 0.00 0.13 0.06 0.08 0.09 2 

Nodal 0.15 -0.02 0.14 0.05 0.06 0.09 3 

Nodal_d 0.20 -0.02 0.20 0.05 0.07 0.13 4 

Nodal_dmax 0.10 -0.01 0.11 0.07 0.08 0.09 2 

Nodal_top 0.08 -0.02 0.09 0.05 0.05 0.05 2 

Nod_Sem_ratio 0.16 -0.02 0.15 0.03 0.04 0.04 4 

Root_Dry 0.16 0.00 0.18 0.02 0.04 0.05 4 

RSW 0.20 0.01 0.23 0.03 0.06 0.11 4 

Seminal 0.24 0.02 0.25 0.07 0.10 0.15 3 

Seminal_deep 0.22 0.06 0.27 0.06 0.09 0.14 3 

Seminal_dmax 0.28 -0.01 0.35 0.04 0.08 0.11 7 

Seminal_top 0.47 0.01 0.51 0.08 0.11 0.16 9 

Shoot_Dry 0.17 0.02 0.23 0.06 0.09 0.12 3 

Shoot_Root 0.29 0.01 0.31 0.07 0.10 0.11 5 

SPAD 0.53 0.24 0.59 0.09 0.15 0.20 7 

T0_dep 0.33 0.01 0.32 0.04 0.08 0.13 6 

Tiller_emission_rate 0.17 0.01 0.36 0.03 0.06 0.13 7 

Tillers 0.11 0.00 0.21 0.07 0.08 0.10 3 

Total_biomass 0.17 0.02 0.22 0.06 0.09 0.11 3 
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  QTL model (QTL+structure) R2 Single QTL R2 

Phenotype QTL Structure Global Min. Mean Max nb. 

Total_deep 0.35 0.04 0.39 0.03 0.09 0.18 6 

Total_dmax 0.06 -0.01 0.07 0.08 0.08 0.08 1 

Total_dmaxdep 0.19 0.03 0.20 0.06 0.08 0.10 3 

Total_Length 0.35 0.00 0.38 0.06 0.10 0.16 6 

Total_top 0.19 -0.01 0.28 0.08 0.12 0.17 4 

Water_content 0.15 0.00 0.32 0.09 0.11 0.13 4 

Width 0.48 0.02 0.47 0.05 0.11 0.23 7 

 

Table 7 QTL analysis results. QTL are sorted according chromosomal position on the durum wheat consensus map. 

QTL within 3.5 cm were considered to belong to the same QTL cluster. The central marker of each cluster is reported 

as tag SNP. Significance is reported as -log10 of the p-value of the association. Effects are reported as percentage of the 

population mean 

SNP 
 -log10 
pvalue 

Phenotype Chr 
Pos 
(cM) 

Left 
(cM) 

Right 
(cM) 

Cluster 
Effect 

% 
R2 

IWB35897 3.18 Depth2 1A 75.1 72.1 78.1 Q1 -0.16 0.05 

IWB35039 3.25 Width 1A 75.1 72.1 78.1 Q1 -0.13 0.05 

IWA5174 3.47 Tiller_emission_rate 1A 77.5 74.5 80.5 Q1 -0.17 0.06 

IWA3419 3.44 Seminal_deep 1A 80.9 77.9 83.9 Q1 -0.17 0.07 

IWA3419 4.08 Total_Length 1A 80.9 77.9 83.9 Q1 -0.12 0.07 

IWA3419 3.84 Total_deep 1A 80.9 77.9 83.9 Q1 -0.13 0.05 

IWB884 4.24 Tiller_emission_rate 1A 102.8 99.8 105.8 S1 0.24 0.13 

IWB41745 4.12 Lateral_d 1A 132.7 129.7 135.7 S2 0.18 0.08 

tPt-7724 10.41 Leafw_ave 1A 140 137 143 S3 0.20 0.26 

IWB59696 3.41 Nod_Sem_ratio 1B 3 0 6 S4 -0.06 0.04 

IWB47566 4.96 Lateral_d 1B 74.1 71.1 77.1 Q2 0.11 0.10 

IWB71349 6.20 Lateral_deep 1B 79.6 76.6 82.6 Q2 0.12 0.16 

IWB71349 3.21 Root_Dry 1B 79.6 76.6 82.6 Q2 0.06 0.03 

IWB12327 3.86 T0_dep 1B 81.2 78.2 84.2 Q2 0.10 0.13 

IWA7317 5.84 Total_Length 1B 82.2 79.2 85.2 Q2 0.08 0.10 

wPt-3579 3.70 Seminal 1B 87 84 90 Q2 0.11 0.08 

IWA4090 7.18 Ave_LA 1B 87.1 84.1 90.1 Q2 0.14 0.19 

IWA2041 4.10 Total_deep 1B 87.1 84.1 90.1 Q2 0.12 0.13 

IWA2041 3.13 Seminal_deep 1B 87.1 84.1 90.1 Q2 0.09 0.06 

IWA2041 3.01 Root_Dry 1B 87.1 84.1 90.1 Q2 0.05 0.02 

IWB35875 8.59 First_tiller_day 1B 93.4 90.4 96.4 Q3 -0.11 0.10 

IWB65872 8.90 Leafw_ave 1B 93.5 90.5 96.5 Q3 -0.20 0.23 

wPt-2257 3.30 Leafw_ave 1B 115.7 112.7 118.7 S5 -0.07 0.07 

IWB72561 8.60 Lateral_dmax 1B 140.1 137.1 143.1 Q4 -0.18 0.19 
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SNP 
 -log10 
pvalue 

Phenotype Chr 
Pos 
(cM) 

Left 
(cM) 

Right 
(cM) 

Cluster 
Effect 

% 
R2 

IWB72561 5.79 Lateral 1B 140.1 137.1 143.1 Q4 -0.15 0.16 

IWB72561 5.99 Lateral_top 1B 140.1 137.1 143.1 Q4 -0.14 0.12 

IWB66474 3.38 First_tiller_day 1B 152 149 155 Q5 0.15 0.08 

IWB72247 8.35 SPAD 1B 156.3 153.3 159.3 Q5 0.12 0.18 

IWA1563 3.94 Lateral_dmax 2A 7.8 4.8 10.8 Q6 0.16 0.08 

wPt-7175 4.15 RSW 2A 8.6 5.6 11.6 Q6 -0.09 0.05 

IWB69417 4.46 Lateral_d 2A 53.4 50.4 56.4 S6 -0.10 0.09 

IWB70278 5.33 Lateral_deep 2A 101.6 98.6 104.6 Q7 0.11 0.12 

IWB1896 4.92 Water_content 2A 102 99 105 Q7 0.20 0.13 

IWB66894 5.02 Width 2A 117.6 114.6 120.6 S7 -0.16 0.11 

IWB12196 9.44 Leafl_ave 2A 193.4 190.4 196.4 Q8 0.13 0.18 

IWA4870 5.14 LSW 2A 197.6 194.6 200.6 Q8 0.11 0.11 

IWA5978 6.11 Leaves 2A 204.3 201.3 207.3 Q9 -0.08 0.16 

IWB9316 4.02 Leafl_ave 2A 208.7 205.7 211.7 Q9 -0.08 0.08 

IWB10465 3.26 Nod_Sem_ratio 2A 208.7 205.7 211.7 Q9 -0.05 0.04 

IWB28973 6.39 Lateral_deep 2B 12.2 9.2 15.2 Q10 -0.10 0.11 

IWB42208 3.87 Lateral_dmax 2B 12.2 9.2 15.2 Q10 -0.11 0.08 

IWB39434 4.01 Width 2B 17.7 14.7 20.7 Q10 -0.11 0.09 

IWB55339 3.00 Lateral_d 2B 51.8 48.8 54.8 Q11 -0.07 0.04 

IWB46470 4.92 Total_Length 2B 55.3 52.3 58.3 Q11 -0.09 0.11 

IWB66226 3.83 Seminal_dmax 2B 103.5 100.5 106.5 Q12 -0.18 0.11 

IWB66226 4.45 Seminal_top 2B 103.5 100.5 106.5 Q12 -0.14 0.10 

IWB68216 5.92 LSW 2B 108.2 105.2 111.2 Q12 -0.19 0.13 

IWA6122 4.36 Mu_rlen 2B 140.3 137.3 143.3 Q13 -0.15 0.09 

IWB22762 3.19 Seminal 2B 144.8 141.8 147.8 Q13 -0.15 0.07 

IWB22762 3.22 Total_deep 2B 144.8 141.8 147.8 Q13 -0.10 0.03 

IWB28961 4.36 Shoot_Root 2B 146.5 143.5 149.5 Q13 0.17 0.11 

IWB57663 4.06 Seminal_dmax 2B 156.6 153.6 159.6 S8 0.09 0.09 

IWB19170 3.74 Nodal_d 2B 165.7 162.7 168.7 Q14 -0.19 0.13 

IWB19170 3.07 Total_deep 2B 165.7 162.7 168.7 Q14 -0.17 0.07 

IWB36286 7.63 Total_top 2B 166.3 163.3 169.3 Q14 -0.18 0.17 

IWB39104 4.50 Lateral_top 2B 166.3 163.3 169.3 Q14 -0.18 0.09 

IWB36286 3.04 Total_Length 2B 166.3 163.3 169.3 Q14 -0.09 0.06 

IWB28826 5.77 Leafw_ave 2B 181.6 178.6 184.6 Q15 0.17 0.16 

IWB28826 3.71 Leafl_ave 2B 181.6 178.6 184.6 Q15 0.13 0.13 

IWB28826 3.81 Ave_LA 2B 181.6 178.6 184.6 Q15 0.14 0.10 

IWA2946 4.69 Seminal_dmax 2B 187.9 184.9 190.9 S9 0.15 0.11 

IWB44601 3.93 First_Nodal_day 3A 43.7 40.7 46.7 Q16 0.21 0.10 

IWB44601 3.76 Nodal 3A 43.7 40.7 46.7 Q16 -0.09 0.09 

IWB44601 3.51 Nod_Sem_ratio 3A 43.7 40.7 46.7 Q16 -0.06 0.04 

IWB48828 4.09 Leafw_ave 3A 49.9 46.9 52.9 Q17 -0.10 0.12 
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IWB72544 3.23 Mu_LA 3A 54.5 51.5 57.5 Q17 -0.08 0.07 

IWB67653 4.77 Shoot_Dry 3A 102.7 99.7 105.7 Q18 -0.08 0.10 

IWB67653 4.39 Total_biomass 3A 102.7 99.7 105.7 Q18 -0.07 0.09 

IWA1260 7.44 LSW 3A 105.3 102.3 108.3 Q18 -0.17 0.16 

IWB58656 7.38 Lateral_d 3A 105.3 102.3 108.3 Q18 -0.16 0.14 

IWB58656 4.97 Lateral_deep 3A 105.3 102.3 108.3 Q18 -0.13 0.12 

wPt-3133 4.41 Tillers 3A 123.5 120.5 126.5 Q19 -0.09 0.08 

wPt-3133 4.14 Leaves 3A 123.5 120.5 126.5 Q19 -0.08 0.08 

IWB5363 6.60 Leafl_ave 3B 30.2 27.2 33.2 Q20 -0.11 0.09 

wPt-1691 8.83 Lateral_d 3B 33.12 30.12 36.12 Q20 -0.21 0.19 

wPt-1349 3.79 Tillers 3B 36.64 33.64 39.64 Q20 0.07 0.10 

IWA3426 3.98 Lateral_deep 3B 43.2 40.2 46.2 S10 -0.11 0.10 

IWA4218 3.02 T0_dep 3B 100.9 97.9 103.9 S11 0.08 0.05 

IWB8243 3.31 Seminal_dmax 3B 144.8 141.8 147.8 S12 -0.06 0.04 

IWB67339 3.88 Shoot_Root 3B 191.8 188.8 194.8 S13 -0.18 0.10 

IWB70884 3.33 Tiller_emission_rate 3B 209.7 206.7 212.7 S14 -0.09 0.04 

IWB68749 7.80 Leafl_ave 4A 15.02 12.02 18.02 S15 -0.15 0.20 

IWB74418 3.44 T0_dep 4A 22.2 19.2 25.2 S16 -0.07 0.06 

IWB53508 4.65 Total_top 4A 51.3 48.3 54.3 S17 0.18 0.10 

IWA5123 3.30 Lateral_top 4A 64.1 61.1 67.1 Q21 0.10 0.06 

IWB26362 6.60 LSW 4A 68.4 65.4 71.4 Q21 0.12 0.15 

IWA6733 4.42 Total_Length 4A 91.1 88.1 94.1 S18 -0.09 0.09 

IWB1056 3.81 Water_content 4A 160.2 157.2 163.2 S19 0.11 0.09 

IWB24513 5.09 Seminal_top 4A 173.6 170.6 176.6 S20 0.09 0.11 

IWB34327 6.76 Seminal_top 4B 0 0 3 S21 0.17 0.16 

IWB73001 3.03 Lateral_deep 4B 26.4 23.4 29.4 Q22 0.10 0.07 

IWB12149 4.66 Leafl_ave 4B 30.8 27.8 33.8 Q22 0.12 0.05 

IWB11925 6.13 SPAD 4B 34.4 31.4 37.4 Q22 -0.08 0.13 

IWB51614 4.84 Mu_LA 4B 34.4 31.4 37.4 Q22 -0.10 0.11 

IWB35101 5.46 T0_dep 4B 44.3 41.3 47.3 S22 0.10 0.13 

IWB73006 3.49 Total_dmaxdep 4B 64.4 61.4 67.4 S23 0.09 0.06 

IWA1382 3.04 Tiller_emission_rate 4B 77 74 80 Q23 -0.13 0.05 

IWB7783 3.78 RSW 4B 80.6 77.6 83.6 Q23 -0.11 0.03 

IWB10847 3.40 Total_deep 4B 82.3 79.3 85.3 Q23 0.12 0.05 

IWB1109 3.41 Depth2 4B 83.1 80.1 86.1 Q23 0.13 0.05 

IWB66445 5.04 Ave_LA 4B 115.5 112.5 118.5 S24 0.12 0.14 

IWB39067 5.79 Leafw_ave 4B 135.5 132.5 138.5 S25 -0.15 0.16 

IWB50844 10.82 Leafw_ave 5A 14.3 11.3 17.3 Q24 0.22 0.30 

IWB25728 3.08 Leaves 5A 14.3 11.3 17.3 Q24 -0.08 0.07 

IWB30321 4.46 Mu_LA 5A 37.7 34.7 40.7 S26 -0.15 0.13 

IWB71919 3.17 Nodal_top 5A 67.3 64.3 70.3 Q25 -0.06 0.05 

IWB69492 3.35 Leafw_ave 5A 73 70 76 Q25 -0.06 0.04 
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IWB65371 3.35 Nodal_d 5A 102.2 99.2 105.2 S27 0.08 0.05 

IWB46815 3.05 Nodal_d 5A 136.3 133.3 139.3 S28 0.07 0.06 

IWA3887 4.02 Leaves 5A 146.5 143.5 149.5 S29 0.09 0.08 

IWB35863 3.18 Total_biomass 5A 160 157 163 Q26 0.07 0.06 

IWB35863 3.01 Shoot_Dry 5A 160 157 163 Q26 0.06 0.06 

IWB23336 3.35 Lateral 5A 196.2 193.2 199.2 Q27 0.17 0.07 

IWA3335 8.02 Ave_LA 5A 199.6 196.6 202.6 Q27 -0.24 0.22 

IWA420 6.20 Leafl_ave 5B 16.7 13.7 19.7 S30 0.09 0.11 

IWB69059 9.10 Leafl_ave 5B 40.3 37.3 43.3 S31 0.10 0.17 

IWB28778 9.73 SPAD 5B 47.4 44.4 50.4 Q28 -0.11 0.20 

IWB28778 4.09 Shoot_Root 5B 47.4 44.4 50.4 Q28 0.11 0.10 

IWB72812 6.32 SPAD 5B 112.5 109.5 115.5 S32 -0.15 0.13 

tPt-1253 3.22 Seminal_dmax 5B 144.98 141.98 147.98 Q29 -0.07 0.05 

wPt-3329 8.18 Lateral_d 5B 146.1 143.1 149.1 Q29 -0.20 0.13 

wPt-3329 3.95 Lateral_deep 5B 146.1 143.1 149.1 Q29 -0.15 0.09 

IWB9424 5.87 Width 5B 171.2 168.2 174.2 S33 0.16 0.16 

IWB60548 3.11 Leafl_ave 5B 192.7 189.7 195.7 S34 -0.07 0.06 

IWA6578 7.96 Leafl_ave 5B 206.2 203.2 209.2 S35 -0.10 0.15 

wPt-1377 4.15 Ave_LA 6A 0 0 3 S36 0.10 0.11 

IWB12224 3.20 Nodal_d 6A 16.6 13.6 19.6 S37 -0.06 0.05 

IWB38287 4.28 LSW 6A 43.1 40.1 46.1 S38 -0.10 0.09 

IWB30925 3.81 Nodal_dmax 6A 62.1 59.1 65.1 Q30 0.09 0.09 

IWB30925 3.50 Nodal_top 6A 62.1 59.1 65.1 Q30 0.07 0.05 

IWB30925 3.22 Nodal 6A 62.1 59.1 65.1 Q30 0.06 0.05 

IWA399 7.04 LSW 6A 62.6 59.6 65.6 Q30 0.16 0.15 

IWB57644 3.98 LA 6A 118.2 115.2 121.2 Q31 0.10 0.10 

IWA7572 6.96 Leafw_ave 6A 119 116 122 Q31 0.13 0.18 

IWB57413 4.26 Total_dmaxdep 6A 122.1 119.1 125.1 Q31 0.12 0.10 

IWB35245 9.59 Width 6A 122.4 119.4 125.4 Q31 0.18 0.23 

IWB60756 5.55 Lateral_top 6B 7.5 4.5 10.5 S39 0.25 0.13 

IWB54801 4.40 SPAD 6B 20.4 17.4 23.4 S40 -0.08 0.09 

IWB59107 3.78 Lateral 6B 29.5 26.5 32.5 S41 -0.11 0.09 

wPt-3309 4.95 Leafw_ave 6B 36 33 39 S42 -0.11 0.13 

IWB26976 3.00 T0_dep 6B 58.6 55.6 61.6 S43 -0.06 0.05 

IWA2975 6.05 Leafl_ave 6B 65.9 62.9 68.9 Q32 -0.07 0.06 

IWB33924 3.34 Lateral_top 6B 67.8 64.8 70.8 Q32 -0.10 0.06 

IWB29294 6.05 Leafw_ave 6B 74.9 71.9 77.9 Q33 -0.13 0.16 

IWA1501 5.50 Water_content 6B 77.6 74.6 80.6 Q33 -0.19 0.12 

IWB13090 3.22 Shoot_Root 6B 90.1 87.1 93.1 Q34 -0.15 0.07 

IWB73374 4.54 Leaves 6B 92.9 89.9 95.9 Q34 0.08 0.10 

IWB52227 3.05 Tiller_emission_rate 6B 124.4 121.4 127.4 S44 -0.10 0.03 
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IWB48362 4.53 Seminal_top 6B 134 131 137 S45 0.10 0.10 

IWB13062 3.51 Tiller_emission_rate 6B 145.3 142.3 148.3 S46 -0.06 0.03 

IWB2096 5.01 Seminal_top 6B 152.2 149.2 155.2 Q35 -0.15 0.11 

IWB2096 4.81 Seminal_dmax 6B 152.2 149.2 155.2 Q35 -0.17 0.10 

IWB52925 4.18 LA 6B 154.6 151.6 157.6 Q35 -0.13 0.09 

IWB52925 3.22 Root_Dry 6B 154.6 151.6 157.6 Q35 -0.10 0.05 

IWB67175 14.26 Leafl_ave 7A 14.1 11.1 17.1 Q36 -0.13 0.25 

IWB13845 8.48 Leafw_ave 7A 14.1 11.1 17.1 Q36 -0.15 0.24 

IWB67174 6.11 Ave_LA 7A 14.2 11.2 17.2 Q36 -0.12 0.15 

IWB68559 9.12 SPAD 7A 43.5 40.5 46.5 S47 -0.11 0.20 

IWB74024 4.49 Lateral_d 7A 50.4 47.4 53.4 Q37 -0.15 0.11 

IWB27639 5.03 Shoot_Dry 7A 53.1 50.1 56.1 Q37 -0.09 0.12 

IWB27639 4.76 Total_biomass 7A 53.1 50.1 56.1 Q37 -0.09 0.11 

IWB47149 3.18 Width 7A 58.9 55.9 61.9 Q37 -0.07 0.05 

IWB12626 3.05 Nod_Sem_ratio 7A 62.1 59.1 65.1 Q37 0.05 0.03 

IWB46670 3.22 First_Nodal_day 7A 82.2 79.2 85.2 Q38 -0.16 0.05 

IWB23424 3.11 Nodal 7A 82.6 79.6 85.6 Q38 -0.07 0.06 

IWB53919 3.49 Nodal_dmax 7A 89.6 86.6 92.6 Q39 -0.08 0.07 

IWB72815 9.60 Lateral_d 7A 89.8 86.8 92.8 Q39 0.19 0.23 

IWB70728 7.08 Total_deep 7A 112.6 109.6 115.6 Q40 -0.15 0.18 

IWB51612 7.03 Seminal 7A 112.6 109.6 115.6 Q40 -0.16 0.15 

IWB70728 5.68 Seminal_deep 7A 112.6 109.6 115.6 Q40 -0.14 0.14 

IWB70728 6.48 Lateral_deep 7A 112.6 109.6 115.6 Q40 -0.11 0.14 

IWB70728 5.83 Depth2 7A 112.6 109.6 115.6 Q40 -0.16 0.13 

IWB51612 3.09 Mu_rlen 7A 112.6 109.6 115.6 Q40 -0.09 0.06 

IWA3579 6.88 Total_Length 7A 112.7 109.7 115.7 Q40 -0.11 0.16 

IWB43420 7.14 Seminal_top 7A 113.1 110.1 116.1 Q40 -0.11 0.15 

IWB57877 4.25 Shoot_Root 7A 113.4 110.4 116.4 Q40 0.13 0.10 

IWB69251 3.30 RSW 7A 113.4 110.4 116.4 Q40 0.11 0.06 

IWB71893 4.11 Mu_LA 7A 114 111 117 Q40 0.08 0.07 

IWA2752 4.31 Width 7A 130.5 127.5 133.5 Q41 -0.16 0.11 

IWB11768 3.00 Tillers 7A 136.2 133.2 139.2 Q41 -0.08 0.07 

IWB57762 6.41 Lateral_d 7A 157.3 154.3 160.3 Q42 0.17 0.19 

IWB10093 5.79 First_tiller_day 7A 157.3 154.3 160.3 Q42 -0.13 0.13 

IWA7046 7.08 SPAD 7A 159.2 156.2 162.2 Q42 0.16 0.15 

IWB35048 15.04 Leafl_ave 7A 168.6 165.6 171.6 S48 -0.15 0.28 

IWB28062 6.25 Lateral_d 7A 181.8 178.8 184.8 Q43 0.21 0.13 

IWB28062 3.13 Total_dmaxdep 7A 181.8 178.8 184.8 Q43 -0.16 0.06 

IWB72649 6.91 Lateral_deep 7A 192.9 189.9 195.9 S49 0.17 0.16 

IWB61376 4.90 Seminal_top 7A 203.4 200.4 206.4 Q44 -0.10 0.11 

IWB49295 3.93 Total_top 7A 203.4 200.4 206.4 Q44 -0.08 0.08 

IWB61376 3.07 Root_Dry 7A 203.4 200.4 206.4 Q44 -0.07 0.05 
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IWB61376 3.56 Seminal_dmax 7A 203.4 200.4 206.4 Q44 -0.07 0.04 

IWB8973 4.15 Ave_LA 7B 0 0 3 Q45 0.10 0.11 

IWB25853 3.09 First_Nodal_day 7B 0 0 3 Q45 -0.11 0.04 

IWB72147 3.82 First_tiller_day 7B 58.4 55.4 61.4 S50 0.09 0.06 

IWB47779 6.19 Ave_LA 7B 90 87 93 Q46 0.24 0.14 

IWB47779 4.01 Leafw_ave 7B 90 87 93 Q46 0.20 0.13 

IWB72641 3.28 T0_dep 7B 92.9 89.9 95.9 Q46 -0.08 0.04 

IWB58920 4.99 Seminal_top 7B 96.1 93.1 99.1 Q46 -0.13 0.11 

IWB41721 5.92 Lateral_dmax 7B 114.2 111.2 117.2 Q47 0.15 0.13 

IWB54467 3.23 Lateral 7B 114.2 111.2 117.2 Q47 0.10 0.07 

IWB73754 4.44 Water_content 7B 120.4 117.4 123.4 Q48 0.21 0.09 

IWB65673 4.66 Lateral_deep 7B 122.1 119.1 125.1 Q48 0.13 0.11 

IWB25295 4.55 Tiller_emission_rate 7B 132.8 129.8 135.8 S51 -0.12 0.07 

IWB64809 5.53 RSW 7B 150.8 147.8 153.8 S52 0.16 0.11 

wPt-4814 3.94 Seminal_top 7B 161.7 158.7 164.7 Q49 0.07 0.08 

IWB68493 5.43 Total_top 7B 165 162 168 Q49 0.09 0.12 

IWB73409 3.02 Total_dmax 7B 166.2 163.2 169.2 Q49 0.08 0.08 

IWB72241 7.35 Lateral_top 7B 169.8 166.8 172.8 Q49 0.26 0.21 

wPt-6156 17.02 Leafl_ave 7B 175.9 172.9 178.9 S53 0.16 0.29 

IWB10818 4.90 LSW 7B 186 183 189 S54 -0.12 0.11 

IWB13260 4.05 Lateral_top 7B 208.1 205.1 211.1 S55 0.10 0.07 
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Figure 7-22 Manhattan plots of some key traits. The red horizontal line indicates the major QTL threshold, the blue one the 

putative QTL threshold 
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Table 8 QTL clusters. QTL were grouped into clusters when they were less than far twice the LD decay each other. Tag markers are those which had a higher mean R2 with all 

the other markers of the cluster. Confidence inerval reports the position of the left and right most markers of the QTL cluster. Direction of the effects is referred to the minor allele 

and is corrected depending on the sign of the correlation coefficients of each of the markers with the tag marker. QTL clusters showing overlapping confidence interval were considered 

as distinct in case of discordant direction of the effects 

Cluster 
Tag 

marker 
Chr 

Pos 

(cM) 
QTL nb Phenotypes 

Confidence 

interval 

Max -

log10(p.val) 

Q1 IWB35039 1A 75.1 6 
-Depth2; -Width; -Tiller_emission_rate; -Seminal_deep; -Total_deep; -

Total_Length 
75.1 - 80.9 4.1 

Q2 IWB12327 1B 81.2 10 
+Lateral_d; +Lateral_deep; +Root_Dry; +T0_dep; +Total_Length; 

+Seminal; +Ave_LA; +Root_Dry; +Seminal_deep; +Total_deep 
74.1 - 87.1 7.2 

Q3 IWB35875 1B 93.4 2 -First_tiller_day; -Leafw_ave 93.4 - 93.5 8.9 

Q4 IWB72561 1B 140.1 3 +Lateral; +Lateral_dmax; +Lateral_top 140.1 - 140.1 8.6 

Q5 IWB66474 1B 152 2 +First_tiller_day; +SPAD 152 - 156.3 8.4 

Q6 wPt-7175 2A 8.6 2 -Lateral_dmax; -RSW 7.8 - 8.6 4.1 

Q7 IWB70278 2A 101.6 2 +Lateral_deep; -Water_content 101.6 - 102 5.3 

Q8 IWB12196 2A 193.4 2 +Leafl_ave; +LSW 193.4 - 197.6 9.4 

Q9 IWB9316 2A 208.7 3 -Leaves; -Leafl_ave; -Nod_Sem_ratio 204.3 - 208.7 6.1 

Q10 IWB28973 2B 12.2 3 -Lateral_deep; -Lateral_dmax; +Width 12.2 - 17.7 6.4 

Q11 IWB55339 2B 51.8 2 -Lateral_d; -Total_Length 51.8 - 55.3 4.9 

Q12 IWB66226 2B 103.5 3 -Seminal_dmax; -Seminal_top; +LSW 103.5 - 108.2 5.9 

Q13 IWB22762 2B 144.8 4 -Mu_rlen; -Seminal; -Total_deep; +Shoot_Root 140.3 - 146.5 4.4 

Q14 IWB39104 2B 166.3 5 +Nodal_d; +Total_deep; -Lateral_top; -Total_Length; -Total_top 165.7 - 166.3 7.6 

Q15 IWB28826 2B 181.6 3 +Ave_LA; +Leafl_ave; +Leafw_ave 181.6 - 181.6 5.8 

Q16 IWB44601 3A 43.7 3 +First_Nodal_day; -Nodal; -Nod_Sem_ratio 43.7 - 43.7 3.9 
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Q17 IWB48828 3A 49.9 2 -Leafw_ave; -Mu_LA 49.9 - 54.5 4.1 

Q18 IWB67653 3A 102.7 5 -Shoot_Dry; -Total_biomass; -Lateral_d; -Lateral_deep; -LSW 102.7 - 105.3 7.4 

Q19 wPt-3133 3A 123.5 2 +Leaves; +Tillers 123.5 - 123.5 4.4 

Q20 wPt-1349 3B 36.64 3 -Leafl_ave; -Lateral_d; +Tillers 30.2 - 36.64 8.8 

Q21 IWB26362 4A 68.4 2 -Lateral_top; +LSW 64.1 - 68.4 6.6 

Q22 IWB11925 4B 34.4 4 +Lateral_deep; +Leafl_ave; -Mu_LA; -SPAD 26.4 - 34.4 6.1 

Q23 IWB1109 4B 83.1 4 -Tiller_emission_rate; -RSW; +Total_deep; +Depth2 77 - 83.1 3.8 

Q24 IWB25728 5A 14.3 2 +Leafw_ave; -Leaves 14.3 - 14.3 10.8 

Q25 IWB71919 5A 67.3 2 -Nodal_top; -Leafw_ave 67.3 - 73 3.3 

Q26 IWB35863 5A 160 2 +Shoot_Dry; +Total_biomass 160 - 160 3.2 

Q27 IWA3335 5A 199.6 2 +Lateral; -Ave_LA 196.2 - 199.6 8.0 

Q28 IWB28778 5B 47.4 2 +Shoot_Root; -SPAD 47.4 - 47.4 9.7 

Q29 wPt-3329 5B 146.1 3 -Seminal_dmax; -Lateral_d; -Lateral_deep 
144.98 - 

146.1 
8.2 

Q30 IWB30925 6A 62.1 4 +Nodal; +Nodal_dmax; +Nodal_top; +LSW 62.1 - 62.6 7.0 

Q31 IWB57413 6A 122.1 4 +LA; +Leafw_ave; +Total_dmaxdep; +Width 118.2 - 122.4 9.6 

Q32 IWA2975 6B 65.9 2 -Leafl_ave; +Lateral_top 65.9 - 67.8 6.0 

Q33 IWB29294 6B 74.9 2 -Leafw_ave; +Water_content 74.9 - 77.6 6.1 

Q34 IWB13090 6B 90.1 2 -Shoot_Root; +Leaves 90.1 - 92.9 4.5 

Q35 IWB2096 6B 152.2 4 -Seminal_dmax; -Seminal_top; +LA; +Root_Dry 152.2 - 154.6 5.0 

Q36 IWB13845 7A 14.1 3 -Leafl_ave; -Leafw_ave; -Ave_LA 14.1 - 14.2 14.3 

Q37 IWB27639 7A 53.1 5 +Lateral_d; -Shoot_Dry; -Total_biomass; -Width; -Nod_Sem_ratio 50.4 - 62.1 5.0 

Q38 IWB46670 7A 82.2 2 -First_Nodal_day; +Nodal 82.2 - 82.6 3.2 

Q39 IWB53919 7A 89.6 2 -Nodal_dmax; +Lateral_d 89.6 - 89.8 9.6 
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Q40 IWB51612 7A 112.6 11 
-Depth2; -Lateral_deep; -Mu_rlen; -Seminal; -Seminal_deep; -

Total_deep; -Total_Length; -Seminal_top; +RSW; +Shoot_Root; +Mu_LA 
112.6 - 114 7.1 

Q41 IWB11768 7A 136.2 2 +Width; -Tillers 130.5 - 136.2 4.3 

Q42 IWB57762 7A 157.3 3 -First_tiller_day; +Lateral_d; +SPAD 157.3 - 159.2 7.1 

Q43 IWB28062 7A 181.8 2 -Lateral_d; +Total_dmaxdep 181.8 - 181.8 6.2 

Q44 IWB61376 7A 203.4 4 -Root_Dry; -Seminal_dmax; -Seminal_top; -Total_top 203.4 - 203.4 4.9 

Q45 IWB8973 7B 0 2 +Ave_LA; -First_Nodal_day 0 - 0 4.2 

Q46 IWB47779 7B 90 4 +Ave_LA; +Leafw_ave; -T0_dep; +Seminal_top 90 - 96.1 6.2 

Q47 IWB41721 7B 114.2 2 +Lateral; +Lateral_dmax 114.2 - 114.2 5.9 

Q48 IWB73754 7B 120.4 2 +Water_content; +Lateral_deep 120.4 - 122.1 4.7 

Q49 IWB68493 7B 165 4 +Seminal_top; +Total_top; +Total_dmax; +Lateral_top 161.7 - 169.8 7.4 
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4. General considerations and perspectives 

Drought tolerance is an extremely complex trait, determined by complex mechanisms involving each 

organ of the plant all along its life cycle. High-throughput phenotyping platforms permit us to dissect 

part of this complexity allowing the detailed screening of populations suitable for genetic study. This 

notwithstanding, a simpler trait does not necessarily imply a simple genetic basis. Is therefore crucial 

not only to identify those key traits involved in drought response but also dissect the genetic basis of 

them to understand how heritable they are and therefore how easily they could be introgressed in a 

certain genetic background. Another critical point is to identify an optimal phenotyping technique 

which permits the screening of large populations in the cheapest and quickest way. From what we 

observed in these studies, root phenotyping, even when performed with less sophisticated 

techniques, might be very informative on the behaviour of plants and their relationships with water 

at least during the entire vegetative stage. Anyway, modern approaches cannot avoid investigating 

plants in their integrity, thus considering roots and shoots cross-relationships holistically. From the 

studies above exposed, emerged the crucial role of shoot and roots carbon partitioning. In the maize 

experiment we demonstrated that plants showing a more shoot-oriented carbon partitioning are also 

more water use efficient. How this might affect the behaviour of these plants in field conditions has 

to be verified since this strategy might be detrimental for root development and therefore on water 

uptake in harsher scenarios. On the other hand, the wheat experiment permitted us to identify, among 

others, a chromosomal region inducing a more root-oriented carbon partitioning. This region was 

found to be differentially selected from breeders with the deep rooting allelic form preferentially 

selected in drought tolerance-oriented breeding programs (ICARDA) and the shoot oriented allelic 

form predominant in CIMMYT germplasm selected to maximize productivity in optimal conditions. 

Understand the physiological mechanisms underlying shoot/root carbon partitioning is therefore 

crucial to properly select for a specific environment. What emerged from these studies is that a key 

role is played by root architecture. A low seminal root number was found to trigger a more shoot 

oriented carbon partitioning resulting in higher shoot water use efficiency. Lateral roots on the 

contrary, seem to be involved in a more root system favourable resource allocation. Unfortunately, 

to validate these hypothesis, it is compulsory to work on comparable genetic background. GWAS, 

by permitting the identification of the key chromosomal region underling a certain trait, will permit 

us to relatively easily introgress certain target QTL in homogeneous genetic background and, finally, 

to validate the most important QTL and move to the gene cloning procedure.             



   

71 

 

Bibliografy 

Abdel-Ghani, A. H., Hu, S., Chen, Y., Brenner, E. A., Kumar, B., Blanco, M., et al. (2016). Genetic 

architecture of plant height in maize phenotype-selected introgression families. Plant Breed. 135, 

429–438. doi:10.1111/pbr.12387. 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 

716–723. doi:10.1109/TAC.1974.1100705. 

Alderman, H., Hoddinott, J., and Kinsey, B. (2006). Long term consequences of early childhood 

malnutrition. Oxf. Econ. Pap. 58, 450–474. doi:10.1093/oep/gpl008. 

Araus, J. L., and Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding 

frontier. Trends Plant Sci. 19, 52–61. doi:10.1016/J.TPLANTS.2013.09.008. 

Araus, J. L., Slafer, G. A., Reynolds, M. P., and Royo, C. (2002). Plant Breeding and Drought in C3 

Cereals: What Should We Breed For? Ann. Bot. 89, 925–940. doi:10.1093/aob/mcf049. 

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2015). Rising 

temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147. 

doi:10.1038/nclimate2470. 

Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S. O., Gundlach, H., et al. (2017). Wild emmer 

genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–

97. doi:10.1126/science.aan0032. 

Barabaschi, D., Tondelli, A., Desiderio, F., Volante, A., Vaccino, P., Valè, G., et al. (2016). Next 

generation breeding. Plant Sci. 242, 3–13. doi:10.1016/J.PLANTSCI.2015.07.010. 

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007). CRISPR 

Provides Acquired Resistance Against Viruses in Prokaryotes. Science (80-. ). 315, 1709–1712. 

doi:10.1126/science.1138140. 

Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. (2005). Haploview: analysis and visualization of LD 

and haplotype maps. Bioinformatics 21, 263–265. doi:10.1093/bioinformatics/bth457. 

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using 

lme4. J. Stat. Softw. 67, 1–48. doi:10.18637/jss.v067.i01. 



 

72 

Becker, S. R., Byrne, P. F., Reid, S. D., Bauerle, W. L., McKay, J. K., and Haley, S. D. (2016). Root 

traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse study. 

Euphytica 207, 213–224. doi:10.1007/s10681-015-1574-1. 

Belford, R. K., Klepper, B., and Rickman, R. W. (1987). Studies of Intact Shoot-Root Systems of 

Field-Grown Winter Wheat. II. Root and Shoot Developmental Patterns as Related to Nitrogen 

Fertilizer1. Agron. J. 79, 310. doi:10.2134/agronj1987.00021962007900020027x. 

Bengough, A. G., Gordon, D. C., Al-Menaie, H., Ellis, R. P., Allan, D., Keith, R., et al. (2004). Gel 

observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262, 63–70. 

doi:10.1023/B:PLSO.0000037029.82618.27. 

Bevan, M. W., Flavell, R. B., and Chilton, M.-D. (1983). A chimaeric antibiotic resistance gene as a 

selectable marker for plant cell transformation. Nature 304, 184–187. doi:10.1038/304184a0. 

Bishopp, A., and Lynch, J. P. (2015). The hidden half of crop yields. Nat. Plants 1, 15117. 

doi:10.1038/nplants.2015.117. 

Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of 

crop yield improvement under drought stress. F. Crop. Res. 112, 119–123. 

doi:10.1016/j.fcr.2009.03.009. 

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubbl. del R Ist. Super. 

di Sci. Econ. e Commer. di Firenze 8, 3–62. 

Borisjuk, L., Rolletschek, H., and Neuberger, T. (2012). Surveying the plant’s world by magnetic 

resonance imaging. Plant J. 70, 129–146. doi:10.1111/j.1365-313X.2012.04927.x. 

Borojevic, K., and Borojevic, K. (2005a). Historic Role of the Wheat Variety Akakomugi in Southern 

and Central European Wheat Breeding Programs. Breed. Sci. 55, 253–256. 

doi:10.1270/jsbbs.55.253. 

Borojevic, K., and Borojevic, K. (2005b). The Transfer and History of “Reduced Height Genes” 

(Rht) in Wheat from Japan to Europe. J. Hered. 96, 455–459. doi:10.1093/jhered/esi060. 

Bouchet, S., Servin, B., Bertin, P., Madur, D., Combes, V., Dumas, F., et al. (2013). Adaptation of 

Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity 

Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. 



   

73 

 

PLoS One 8, e71377. doi:10.1371/journal.pone.0071377. 

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. (2007). 

TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 

23, 2633–2635. doi:10.1093/bioinformatics/btm308. 

Burton, A. L., Johnson, J. M., Foerster, J. M., Hirsch, C. N., Buell, C. R., Hanlon, M. T., et al. (2014). 

QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). 

Theor. Appl. Genet. 127, 2293–2311. doi:10.1007/s00122-014-2353-4. 

Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M. D., and Luis Araus, J. (2012). High-

throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding ConvergeF. 

J. Integr. Plant Biol. 54, 312–320. doi:10.1111/j.1744-7909.2012.01116.x. 

Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., and Tardieu, F. (2016). High-

throughput estimation of incident light, light interception and radiation-use efficiency of 

thousands of plants in a phenotyping platform. New Phytol. 212, 269–281. 

doi:10.1111/nph.14027. 

Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., et al. (2018). CRISPR/Cas9-mediated targeted 

mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol. J. 16, 176–185. 

doi:10.1111/pbi.12758. 

Canè, M. A., Maccaferri, M., Nazemi, G., Salvi, S., Francia, R., Colalongo, C., et al. (2014). Association 

mapping for root architectural traits in durum wheat seedlings as related to agronomic 

performance. Mol. Breed. 34, 1629–1645. doi:10.1007/s11032-014-0177-1. 

Casal, J. J. (1988). Light quality effects on the appearance of tillers of different order in wheat 

(Triticum aestivum). Ann. Appl. Biol. 112, 167–173. doi:10.1111/j.1744-7348.1988.tb02052.x. 

Chardon, F., Hourcade, D., Combes, V., and Charcosset, A. (2005). Mapping of a spontaneous 

mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL 

on chromosome 8. Theor. Appl. Genet. 112, 1–11. doi:10.1007/s00122-005-0050-z. 

Chen, Y., Ghanem, M. E., and Siddique, K. H. (2017). Characterising root trait variability in chickpea 

(Cicer arietinum L.) germplasm. J. Exp. Bot. 68, 1987–1999. doi:10.1093/jxb/erw368. 

Chimungu, J. G., Maliro, M. F. A., Nalivata, P. C., Kanyama-Phiri, G., Brown, K. M., and Lynch, J. 



 

74 

P. (2015). Utility of root cortical aerenchyma under water limited conditions in tropical maize 

(Zea mays L.). F. Crop. Res. 171, 86–98. doi:10.1016/J.FCR.2014.10.009. 

Clark, R. T., MacCurdy, R. B., Jung, J. K., Shaff, J. E., McCouch, S. R., Aneshansley, D. J., et al. 

(2011). Three-dimensional root phenotyping with a novel imaging and software platform. Plant 

Physiol. 156, 455–65. doi:10.1104/pp.110.169102. 

Coe, E., Cone, K., McMullen, M., Chen, S.-S., Davis, G., Gardiner, J., et al. (2002). Access to the 

maize genome: an integrated physical and genetic map. Plant Physiol. 128, 9–12. 

doi:10.1104/PP.010953. 

Collins, N. C., Tardieu, F., and Tuberosa, R. (2008). Quantitative trait loci and crop performance 

under abiotic stress: where do we stand? Plant Physiol. 147, 469–486. 

doi:10.1104/pp.108.118117. 

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., and Dierig, D. A. (2013). Root traits 

contributing to plant productivity under drought. Front. Plant Sci. doi:10.3389/fpls.2013.00442. 

Coupel-Ledru, A., Lebon, É., Christophe, A., Doligez, A., Cabrera-Bosquet, L., Péchier, P., et al. 

(2014). Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals 

inconsistencies between maintenance of daytime leaf water potential and response of 

transpiration rate under drought. J. Exp. Bot. 65, 6205–18. doi:10.1093/jxb/eru228. 

D’Amato, F., Scarascia, G. T., Monti, L. M., and Bozzini, A. (1962). Types and frequencies of 

chlorophyll mutations in Durum wheat induced by radiations and chemicals. Radiat. Bot. 2, 217–

239. doi:10.1016/S0033-7560(62)80104-5. 

D’Halluin, K., Vanderstraeten, C., Van Hulle, J., Rosolowska, J., Van Den Brande, I., Pennewaert, 

A., et al. (2013). Targeted molecular trait stacking in cotton through targeted double-strand 

break induction. Plant Biotechnol. J. 11, 933–941. doi:10.1111/pbi.12085. 

Dalton, F. N. (1995). In-situ root extent measurements by electrical capacitance methods. Plant Soil 

173, 157–165. doi:10.1007/BF00155527. 

Daryanto, S., Wang, L., and Jacinthe, P.-A. (2016). Global Synthesis of Drought Effects on Maize 

and Wheat Production. PLoS One 11, e0156362. doi:10.1371/journal.pone.0156362. 

Dunnett, C. W. (1955). A Multiple Comparison Procedure for Comparing Several Treatments with 



   

75 

 

a Control. J. Am. Stat. Assoc. 50, 1096. doi:10.2307/2281208. 

Fiorani, F., and Schurr, U. (2013). Future Scenarios for Plant Phenotyping. Annu. Rev. Plant Biol. 64, 

267–291. doi:10.1146/annurev-arplant-050312-120137. 

Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of 

P. J. R. Stat. Soc. 85, 87–94. doi:10.2307/2340521. 

Fleury, D., Jefferies, S., Kuchel, H., and Langridge, P. (2010). Genetic and genomic tools to improve 

drought tolerance in wheat. J. Exp. Bot. 61, 3211–22. doi:10.1093/jxb/erq152. 

Furbank, R. T., and Tester, M. (2011). Phenomics – technologies to relieve the phenotyping 

bottleneck. Trends Plant Sci. 16, 635–644. doi:10.1016/J.TPLANTS.2011.09.005. 

Ganal, M. W., Durstewitz, G., Polley, A., Bérard, A., Buckler, E. S., Charcosset, A., et al. (2011). A 

large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and 

genetic mapping to compare with the B73 reference genome. PLoS One 6, e28334. 

doi:10.1371/journal.pone.0028334. 

Ghanem, M. E., Hichri, I., Smigocki, A. C., Albacete, A., Fauconnier, M.-L., Diatloff, E., et al. (2011). 

Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. 

Plant Cell Rep. 30, 807–823. doi:10.1007/s00299-011-1005-2. 

Gioia, T., Galinski, A., Lenz, H., M�ller, C., Lentz, J., Heinz, K., et al. (2017). GrowScreen-PaGe, a 

non-invasive, high-throughput phenotyping system based on germination paper to quantify 

crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Funct. Plant 

Biol. 44, 76. doi:10.1071/FP16128. 

Gioia, T., Nagel, K. A., Beleggia, R., Fragasso, M., Ficco, D. B. M., Pieruschka, R., et al. (2015). 

Impact of domestication on the phenotypic architecture of durum wheat under contrasting 

nitrogen fertilization. J. Exp. Bot. 66, 5519–30. doi:10.1093/jxb/erv289. 

Gregory, P. J., Bengough, A. G., Grinev, D., Schmidt, S., Thomas, W. (Bill) T. B., Wojciechowski, 

T., et al. (2009). Root phenomics of crops: opportunities and challenges. Funct. Plant Biol. 36, 

922. doi:10.1071/FP09150. 

Gupta, P., Balyan, H., and Gahlaut, V. (2017). QTL Analysis for Drought Tolerance in Wheat: 

Present Status and Future Possibilities. Agronomy 7, 5. doi:10.3390/agronomy7010005. 



 

76 

Gupta, P. K., Langridge, P., and Mir, R. R. (2010). Marker-assisted wheat breeding: present status 

and future possibilities. Mol. Breed. 26, 145–161. doi:10.1007/s11032-009-9359-7. 

Hartung, F., and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: 

opportunities, safety and regulation in the EU. Plant J. 78, 742–752. doi:10.1111/tpj.12413. 

Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983). Expression of chimaeric 

genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213. 

doi:10.1038/303209a0. 

Hicks, S. C., Okrah, K., Paulson, J. N., Quackenbush, J., Irizarry, R. A., and Bravo, H. C. (2017). 

Smooth quantile normalization. Biostatistics. doi:10.1093/biostatistics/kxx028. 

Hochberg, Y., and Benjamini, Y. (1990). More powerful procedures for multiple significance testing. 

Stat. Med. 9, 811–818. doi:10.1002/sim.4780090710. 

Hochholdinger, F., and Tuberosa, R. (2009). Genetic and genomic dissection of maize root 

development and architecture. Curr. Opin. Plant Biol. 12, 172–177. 

doi:10.1016/j.pbi.2008.12.002. 

Hochman, Z., Gobbett, D. L., and Horan, H. (2017). Climate trends account for stalled wheat yields 

in Australia since 1990. Glob. Chang. Biol. 23, 2071–2081. doi:10.1111/gcb.13604. 

Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New 

Phytol. 162, 9–24. doi:10.1111/j.1469-8137.2004.01015.x. 

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous Inference in General Parametric 

Models. Biometrical J. 50, 346–363. 

Hund, A., Fracheboud, Y., Soldati, A., Frascaroli, E., Salvi, S., and Stamp, P. (2004). QTL controlling 

root and shoot traits of maize seedlings under cold stress. Theor. Appl. Genet. 109, 618–629. 

doi:10.1007/s00122-004-1665-1. 

Hund, A., Trachsel, S., and Stamp, P. (2009). Growth of axile and lateral roots of maize: I 

development of a phenotying platform. Plant Soil 325, 335–349. doi:10.1007/s11104-009-9984-

2. 

International Wheat Genome Sequencing Consortium (IWGSC), T. I. W. G. S. C. (2014). A 

chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. 



   

77 

 

Science 345, 1251788. doi:10.1126/science.1251788. 

Iyer-Pascuzzi, A. S., Symonova, O., Mileyko, Y., Hao, Y., Belcher, H., Harer, J., et al. (2010). Imaging 

and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant 

Physiol. 152, 1148–57. doi:10.1104/pp.109.150748. 

Jeudy, C., Adrian, M., Baussard, C., Bernard, C., Bernaud, E., Bourion, V., et al. (2016). RhizoTubes 

as a new tool for high throughput imaging of plant root development and architecture: test, 

comparison with pot grown plants and validation. Plant Methods 12, 31. doi:10.1186/s13007-

016-0131-9. 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A 

programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 

337, 816–21. doi:10.1126/science.1225829. 

Jompuk, C., Fracheboud, Y., Stamp, P., and Leipner, J. (2005). Mapping of quantitative trait loci 

associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. 

J. Exp. Bot. 56, 1153–1163. doi:10.1093/jxb/eri108. 

Jones, J. B. (1982). Hydroponics: Its history and use in plant nutrition studies. J. Plant Nutr. 5, 1003–

1030. doi:10.1080/01904168209363035. 

Kadam, N. N., Yin, X., Bindraban, P. S., Struik, P. C., and Jagadish, K. S. V (2015). Does 

morphological and anatomical plasticity during the vegetative stage make wheat more tolerant 

of water deficit stress than rice? Plant Physiol. 167, 1389–401. doi:10.1104/pp.114.253328. 

Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., and Kschischo, M. (2010). grofit : 

Fitting Biological Growth Curves with R. J. Stat. Softw. 33, 1–21. doi:10.18637/jss.v033.i07. 

Kemp, C. D. (1960). Methods of Estimating the Leaf Area of Grasses from Linear Measurements. 

Ann. Bot. 24, 491–499. doi:10.1093/oxfordjournals.aob.a083723. 

Klepper, B., Belford, R. K., and Rickman, R. W. (1984). Root and Shoot Development in Winter 

Wheat1. Agron. J. 76, 117. doi:10.2134/agronj1984.00021962007600010029x. 

Kolmer, J. A., Singh, R. P., Garvin, D. F., Viccars, L., William, H. M., Huerta-Espino, J., et al. (2008). 

Analysis of the Rust Resistance Region in Wheat Germplasm. Crop Sci. 48, 1841. 

doi:10.2135/cropsci2007.08.0474. 



 

78 

Kuijken, R. C. P., van Eeuwijk, F. A., Marcelis, L. F. M., and Bouwmeester, H. J. (2015). Root 

phenotyping: from component trait in the lab to breeding. J. Exp. Bot. 66, 5389–5401. 

doi:10.1093/jxb/erv239. 

Lagudah, E. S., Krattinger, S. G., Herrera-Foessel, S., Singh, R. P., Huerta-Espino, J., Spielmeyer, W., 

et al. (2009). Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers 

resistance to multiple fungal pathogens. Theor. Appl. Genet. 119, 889–898. doi:10.1007/s00122-

009-1097-z. 

Langridge, P., and Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. 

Curr. Opin. Biotechnol. 32, 130–5. doi:10.1016/j.copbio.2014.11.027. 

Liao, M., Fillery, I. R. P., and Palta, J. A. (2004). Early vigorous growth is a major factor influencing 

nitrogen uptake in wheat. Funct. Plant Biol. 31, 121. doi:10.1071/FP03060. 

Lopez, G., Pallas, B., Martinez, S., Lauri, P.-É., Regnard, J.-L., Durel, C.-É., et al. (2015). Genetic 

Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-

Watered Conditions: Towards the Identification of Morphotypes with High Water Use 

Efficiency. PLoS One 10, e0145540. doi:10.1371/journal.pone.0145540. 

Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize 

root systems. Ann. Bot. 112, 347–57. doi:10.1093/aob/mcs293. 

Maccaferri, M., Cane’, M., Sanguineti, M. C., Salvi, S., Colalongo, M. C., Massi, A., et al. (2014). A 

consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage 

disequilibrium analysis and genome-wide association mapping. BMC Genomics 15, 873. 

doi:10.1186/1471-2164-15-873. 

Maccaferri, M., El-Feki, W., Nazemi, G., Salvi, S., Canè, M. A., Colalongo, M. C., et al. (2016). 

Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J. Exp. Bot. 

67, 1161–78. doi:10.1093/jxb/erw039. 

Maccaferri, M., Ricci, A., Salvi, S., Milner, S. G., Noli, E., Martelli, P. L., et al. (2015). A high-density, 

SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat 

genomics and breeding. Plant Biotechnol. J. 13, 648–663. doi:10.1111/pbi.12288. 

Maccaferri, M., Sanguineti, M. C., Demontis, A., El-Ahmed, A., Garcia Del Moral, L., Maalouf, F., 

et al. (2011). Association mapping in durum wheat grown across a broad range of water regimes. 



   

79 

 

J. Exp. Bot. 62, 409–438. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21041372. 

Mahner, M., and Kary, M. (1997). What Exactly Are Genomes, Genotypes and Phenotypes? And 

What About Phenomes? J. Theor. Biol. 186, 55–63. doi:10.1006/JTBI.1996.0335. 

Mairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M. J., Mooney, S. J., et al. (2013). 

Recovering complete plant root system architectures from soil via X-ray μ-Computed 

Tomography. Plant Methods 9, 8. doi:10.1186/1746-4811-9-8. 

Malamy, J. E. (2005). Intrinsic and environmental response pathways that regulate root system 

architecture. Plant, Cell Environ. 28, 67–77. doi:10.1111/j.1365-3040.2005.01306.x. 

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). 

Finding the missing heritability of complex diseases. Nature 461, 747–753. 

doi:10.1038/nature08494. 

Marcussen, T., Sandve, S. R., Heier, L., Spannagl, M., Pfeifer, M., International Wheat Genome 

Sequencing Consortium, et al. (2014). Ancient hybridizations among the ancestral genomes of 

bread wheat. Sci. {(New} York, {N.Y.)} 345. doi:10.1126/science.1250092. 

Marone, D., Laidò, G., Gadaleta, A., Colasuonno, P., Ficco, D. B. M., Giancaspro, A., et al. (2012). 

A high-density consensus map of A and B wheat genomes. Theor. Appl. Genet. 125, 1619–38. 

doi:10.1007/s00122-012-1939-y. 

Masle, J., and Passiowa, J. (1987). The Effect of Soil Strength on the Growth of Young Wheat Plants. 

Aust. J. Plant Physiol. 14, 643. doi:10.1071/PP9870643. 

Mayer, J. E., Pfeiffer, W. H., and Beyer, P. (2008). Biofortified crops to alleviate micronutrient 

malnutrition. Curr. Opin. Plant Biol. 11, 166–170. doi:10.1016/J.PBI.2008.01.007. 

Meister, R., Rajani, M. S., Ruzicka, D., and Schachtman, D. P. (2014). Challenges of modifying root 

traits in crops for agriculture. Trends Plant Sci. 19, 779–788. doi:10.1016/j.tplants.2014.08.005. 

Melino, V. J., Fiene, G., Enju, A., Cai, J., Buchner, P., and Heuer, S. (2015). Genetic diversity for root 

plasticity and nitrogen uptake in wheat seedlings. Funct. Plant Biol. 42, 942. 

doi:10.1071/FP15041. 

Mickelbart, M. V., Hasegawa, P. M., and Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress 

tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251. doi:10.1038/nrg3901. 



 

80 

Millet, E. J., Welcker, C., Kruijer, W., Negro, S., Coupel-Ledru, A., Nicolas, S. D., et al. (2016). 

Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat 

Scenarios. Plant Physiol. 172, 749–764. doi:10.1104/pp.16.00621. 

Moose, S. P., and Mumm, R. H. (2008). Molecular Plant Breeding as the Foundation for 21st Century 

Crop Improvement. Plant Physiol. 147, 969–977. doi:10.1104/pp.108.118232. 

Müller, O., and Krawinkel, M. (2005). Malnutrition and health in developing countries. CMAJ 173, 

279–86. doi:10.1503/cmaj.050342. 

Nagel, K. A., Putz, A., Gilmer, F., Heinz, K., Fischbach, A., Pfeifer, J., et al. (2012). 

GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of 

root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 39, 891. 

doi:10.1071/FP12023. 

Nakhforoosh, A., Grausgruber, H., Kaul, H.-P., and Bodner, G. (2014). Wheat root diversity and 

root functional characterization. Plant Soil 380, 211–229. doi:10.1007/s11104-014-2082-0. 

Neuffer, M. G., and Ficsor, G. (1963). Mutagenic Action of Ethyl Methanesulfonate in Maize. Science 

139, 1296–7. doi:10.1126/science.139.3561.1296. 

Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., et al. (2016). Principle 

and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip. 

30, 1–16. doi:10.1080/13102818.2015.1087333. 

Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using 

custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. U. S. A. 107, 12034–9. 

doi:10.1073/pnas.1000234107. 

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., et al. (2017). Genetic 

engineering strategies for biotic and abiotic stress tolerance and quality enhancement in 

horticultural crops: a comprehensive review. 3 Biotech 7, 239. doi:10.1007/s13205-017-0870-y. 

Peng, J., Sun, D., Peng, Y., and Nevo, E. (2013). Gene discovery in Triticum dicoccoides , the direct 

progenitor of cultivated wheats. Cereal Res. Commun. 41, 1–22. doi:10.1556/CRC.2012.0030. 

Pestsova, E., Lichtblau, D., Wever, C., Presterl, T., Bolduan, T., Ouzunova, M., et al. (2016). QTL 

mapping of seedling root traits associated with nitrogen and water use efficiency in maize. 



   

81 

 

Euphytica 209, 585–602. doi:10.1007/s10681-015-1625-7. 

Petolino, J. F., Worden, A., Curlee, K., Connell, J., Strange Moynahan, T. L., Larsen, C., et al. (2010). 

Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 73, 617–628. 

doi:10.1007/s11103-010-9641-4. 

Poehlman, J. M. (1987). “Plant Breeders and Their Work,” in Breeding Field Crops (Dordrecht: Springer 

Netherlands), 1–15. doi:10.1007/978-94-015-7271-2_1. 

Poethig, R. S. (1990). Phase Change and the Regulation of Shoot Morphogenesis in Plants. Science 

(80-. ). 250, 923–930. doi:10.1126/science.250.4983.923. 

Postic, F., and Doussan, C. (2016). Benchmarking electrical methods for rapid estimation of root 

biomass. Plant Methods 12, 33. doi:10.1186/s13007-016-0133-7. 

Presterl, T., Ouzunova, M., Schmidt, W., Möller, E. M., Röber, F. K., Knaak, C., et al. (2007). 

Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor. Appl. 

Genet. 114, 1059–1070. doi:10.1007/s00122-006-0499-4. 

Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., and Foley, J. A. (2012). Recent patterns of 

crop yield growth and stagnation. Nat. Commun. 3, 1293. doi:10.1038/ncomms2296. 

Revelle, W. (2017). psych: Procedures for Psychological, Psychometric, and Personality Research. 

Available at: https://cran.r-project.org/package=psych. 

Rexroad, C. E., and Vallejo, R. L. (2009). Estimates of linkage disequilibrium and effective population 

size in rainbow trout. BMC Genet. 10, 83. doi:10.1186/1471-2156-10-83. 

Reynolds, M., Manes, Y., Izanloo, A., and Langridge, P. (2009). Phenotyping approaches for 

physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155, 309–320. 

doi:10.1111/J.1744-7348.2009.00351.X. 

Reynolds, M. P., and Langridge, P. (2016). Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171. 

doi:10.1016/J.PBI.2016.04.005. 

Reynolds, M., and Tuberosa, R. (2008). Translational research impacting on crop productivity in 

drought-prone environments. Curr. Opin. Plant Biol. 11, 171–179. doi:10.1016/j.pbi.2008.02.005. 

Richards, R., and Passioura, J. (1989). A breeding program to reduce the diameter of the major xylem 



 

82 

vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust. 

J. Agric. Res. 40, 943. doi:10.1071/AR9890943. 

Roy, S. J., Tucker, E. J., and Tester, M. (2011). Genetic analysis of abiotic stress tolerance in crops. 

Curr. Opin. Plant Biol. 14, 232–239. doi:10.1016/J.PBI.2011.03.002. 

Ruta, N., Stamp, P., Liedgens, M., Fracheboud, Y., and Hund, A. (2010). Collocations of QTLs for 

Seedling Traits and Yield Components of Tropical Maize under Water Stress Conditions. Crop 

Sci. 50, 1385. doi:10.2135/cropsci2009.01.0036. 

Saengwilai, P., Nord, E. A., Chimungu, J. G., Brown, K. M., and Lynch, J. P. (2014). Root Cortical 

Aerenchyma Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize. Plant Physiol. 

doi:10.1104/pp.114.241711. 

Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., et al. (2011). Genetic 

dissection of maize phenology using an intraspecific introgression library. {BMC} plant Biol. 11, 

4. doi:10.1186/1471-2229-11-4. 

Salvi, S., Giuliani, S., Ricciolini, C., Carraro, N., Maccaferri, M., Presterl, T., et al. (2016). Two major 

quantitative trait loci controlling the number of seminal roots in maize co-map with the root 

developmental genes rtcs and rum1. J. Exp. Bot. 67, 1149–59. doi:10.1093/jxb/erw011. 

Salvi, S., Porfiri, O., and Ceccarelli, S. (2013). Nazareno Strampelli, the “Prophet” of the green 

revolution. J. Agric. Sci. 151, 1–5. doi:10.1017/S0021859612000214. 

Salvi, S., and Tuberosa, R. (2005). To clone or not to clone plant QTLs: present and future challenges. 

Trends Plant Sci. 10, 297–304. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15949764. 

Salvi, S., Tuberosa, R., Chiapparino, E., Maccaferri, M., Veillet, S., van Beuningen, L., et al. (2002). 

Toward positional cloning of Vgt1, a {QTL} controlling the transition from the vegetative to 

the reproductive phase in maize. Plant Mol. Biol. 48, 601–613. 

Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T., and Christou, P. (2011). Bacillus thuringiensis: 

a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300. 

doi:10.1111/j.1467-7652.2011.00595.x. 

Sandhu, N., Raman, K. A., Torres, R. O., Audebert, A., Dardou, A., Kumar, A., et al. (2016). Rice 

Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation 



   

83 

 

and Stress Conditions. Plant Physiol. 171, 2562–76. doi:10.1104/pp.16.00705. 

Scarascia Mugnozza, G. T. (2005). The contribution of Italian wheat geneticists : From Nazareno 

Strampelli to Francesco D ’ Amato. 53–75. 

Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 maize 

genome: complexity, diversity, and dynamics. Science (80-. ). 326, 1112–1115. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/19965430. 

Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012). An efficient 

multi-locus mixed-model approach for genome-wide association studies in structured 

populations. Nat. Genet. 44, 825–30. doi:10.1038/ng.2314. 

Shama Rao, H. K., and Sears, E. R. (1964). Chemical mutagenesis in Triticum aestivum. Mutat. Res. 

Mol. Mech. Mutagen. 1, 387–399. doi:10.1016/0027-5107(64)90032-6. 

Shewry, P. R. (2009). The HEALTHGRAIN programme opens new opportunities for improving 

wheat for nutrition and health. Nutr. Bull. 34, 225–231. doi:10.1111/j.1467-3010.2009.01747.x. 

Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E., et al. (2009). 

Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 

459, 437–441. doi:10.1038/nature07992. 

Somers, D. J., Isaac, P., and Edwards, K. (2004). A high-density microsatellite consensus map for 

bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–14. doi:10.1007/s00122-004-

1740-7. 

Steinemann, S., Schön, C.-C., and Hochholdinger, F. (2016). Development and validation of a DNA-

based root phenotyping method in maize (Zea mays L.) List of contents. Available at: 

https://mediatum.ub.tum.de/doc/1286877/1286877.pdf [Accessed March 12, 2018]. 

Szalma, S. J., Hostert, B. M., LeDeaux, J. R., Stuber, C. W., and Holland, J. B. (2007). QTL mapping 

with near-isogenic lines in maize. Theor. Appl. Genet. 114, 1211–1228. doi:10.1007/s00122-007-

0512-6. 

Taramino, G., Sauer, M., Stauffer, J. L., Multani, D., Niu, X., Sakai, H., et al. (2007). The maize (Zea 

mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal 

and post-embryonic shoot-borne root initiation. Plant J. 50, 649–659. doi:10.1111/j.1365-



 

84 

313X.2007.03075.x. 

Tardieu, F., Draye, X., and Javaux, M. (2017). Root Water Uptake and Ideotypes of the Root System: 

Whole-Plant Controls Matter. Vadose Zo. J. doi:10.2136/vzj2017.05.0107. 

Tester, M., and Langridge, P. (2010b). Breeding technologies to increase crop production in a 

changing world. Science 327, 818–22. doi:10.1126/science.1183700. 

Tester, M., and Langridge, P. (2010a). Breeding technologies to increase crop production in a 

changing world. Science 327, 818–22. doi:10.1126/science.1183700. 

The R Core Team (2016). R: A Language and Environment for Statistical Computing. 

Tomar, R. S. S., Tiwari, S., Vinod, Naik, B. K., Chand, S., Deshmukh, R., et al. (2016). Molecular and 

Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive 

Stages for Drought Tolerance in Wheat. PLoS One 11, e0156528. 

doi:10.1371/journal.pone.0156528. 

Topp, C. N. (2016). Hope in Change: The Role of Root Plasticity in Crop Yield Stability. Plant Physiol. 

172, 5–6. doi:10.1104/pp.16.01257. 

Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., et al. (2009). High-

frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–

445. doi:10.1038/nature07845. 

Trachsel, S., Kaeppler, S. M., Brown, K. M., and Lynch, J. P. (2011). Shovelomics: high throughput 

phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87. 

doi:10.1007/s11104-010-0623-8. 

Trachsel, S., Messmer, R., Stamp, P., Ruta, N., and Hund, A. (2010). QTLs for early vigor of tropical 

maize. Mol. Breed. 25, 91–103. doi:10.1007/s11032-009-9310-y. 

Trachsel, S., Sun, D., SanVicente, F. M., Zheng, H., Atlin, G. N., Suarez, E. A., et al. (2016). 

Identification of QTL for Early Vigor and Stay-Green Conferring Tolerance to Drought in Two 

Connected Advanced Backcross Populations in Tropical Maize (Zea mays L.). PLoS One 11, 

e0149636. doi:10.1371/journal.pone.0149636. 

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 

3, 347. doi:10.3389/fphys.2012.00347. 



   

85 

 

Tuberosa, R., Sanguineti, M. C., Landi, P., Giuliani, M. M., Salvi, S., and Conti, S. (2002). 

Identification of {QTLs} for root characteristics in maize grown in hydroponics and analysis 

of their overlap with {QTLs} for grain yield in the field at two water regimes. Plant Mol. Biol. 

48, 697–712. 

Vadez, V., Kholova, J., Zaman-Allah, M., and Belko, N. (2013). Water: the most important 

“molecular” component of water stress tolerance research. Funct. Plant Biol. 40, 1310. 

doi:10.1071/FP13149. 

Vega, S. H., Sauer, M., Orkwiszewski, J. A. J., and Poethig, R. S. (2002). The early phase change gene 

in maize. Plant Cell 14, 133–47. doi:10.1105/TPC.010406. 

Vigouroux, Y., Glaubitz, J. C., Matsuoka, Y., Goodman, M. M., Sanchez G., J., and Doebley, J. (2008). 

Population structure and genetic diversity of New World maize races assessed by DNA 

microsatellites. Am. J. Bot. 95, 1240–1253. doi:10.3732/ajb.0800097. 

Wang, Y., Geng, L., Yuan, M., Wei, J., Jin, C., Li, M., et al. (2017). Deletion of a target gene in Indica 

rice via CRISPR/Cas9. Plant Cell Rep. 36, 1333–1343. doi:10.1007/s00299-017-2158-4. 

Wasson, A. P., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., Richards, R. A., and Watt, M. (2014). 

Soil coring at multiple field environments can directly quantify variation in deep root traits to 

select wheat genotypes for breeding. J. Exp. Bot. 65, 6231–6249. doi:10.1093/jxb/eru250. 

Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S., Rebetzke, G. J., et al. 

(2012). Traits and selection strategies to improve root systems and water uptake in water-limited 

wheat crops. J. Exp. Bot. 63, 3485–3498. doi:10.1093/jxb/ers111. 

Watt, M., Moosavi, S., Cunningham, S. C., Kirkegaard, J. A., Rebetzke, G. J., and Richards, R. A. 

(2013). A rapid, controlled-environment seedling root screen for wheat correlates well with 

rooting depths at vegetative, but not reproductive, stages at two field sites. Ann. Bot. 112, 447–

455. doi:10.1093/aob/mct122. 

Wei, X., Wang, B., Peng, Q., Wei, F., Mao, K., Zhang, X., et al. (2015). Heterotic loci for various 

morphological traits of maize detected using a single segment substitution lines test-cross 

population. Mol. Breed. 35, 94. doi:10.1007/s11032-015-0287-4. 

Wen, W., He, Z., Gao, F., Liu, J., Jin, H., Zhai, S., et al. (2017). A High-Density Consensus Map of 

Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. Front. 



 

86 

Plant Sci. 8, 1389. doi:10.3389/fpls.2017.01389. 

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York Available 

at: http://ggplot2.org. 

Wissuwa, M., Kretzschmar, T., and Rose, T. J. (2016). From promise to application: root traits for 

enhanced nutrient capture in rice breeding. J. Exp. Bot. 67, 3605–3615. doi:10.1093/jxb/erw061. 

Wolak, M. E., Fairbairn, D. J., and Paulsen, Y. R. (2012). Guidelines for Estimating Repeatability. 

Methods Ecol. Evol. 3(1)129-137. 

Wu, Q.-H., Chen, Y.-X., Zhou, S.-H., Fu, L., Chen, J.-J., Xiao, Y., et al. (2015). High-Density Genetic 

Linkage Map Construction and QTL Mapping of Grain Shape and Size in the Wheat Population 

Yanda1817 × Beinong6. PLoS One 10, e0118144. doi:10.1371/journal.pone.0118144. 

Young, L. M., Evans, M. L., Hertel, R., Jarret, H., Fantin, D., and Gilroy, S. (1990). Correlations 

between Gravitropic Curvature and Auxin Movement across Gravistimulated Roots of Zea 

mays. PLANT Physiol. 92, 792–796. doi:10.1104/pp.92.3.792. 

Yu, P., Gutjahr, C., Li, C., and Hochholdinger, F. (2016). Genetic Control of Lateral Root Formation 

in Cereals. Trends Plant Sci. 21, 951–961. doi:10.1016/j.tplants.2016.07.011. 

Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989. 

doi:10.1038/35103590. 

Zhou, H., He, M., Li, J., Chen, L., Huang, Z., Zheng, S., et al. (2016). Development of Commercial 

Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the 

CRISPR/Cas9- mediated TMS5 Editing System. doi:10.1038/srep37395. 

Zhu, J., Ingram, P. A., Benfey, P. N., and Elich, T. (2011). From lab to field, new approaches to 

phenotyping root system architecture. Curr. Opin. Plant Biol. 14, 310–317. 

doi:10.1016/J.PBI.2011.03.020. 

Zhu, J., Kaeppler, S. M., and Lynch, J. P. (2005). Mapping of QTL controlling root hair length in 

maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270, 299–310. doi:10.1007/s11104-

004-1697-y. 

Zimin, A. V, Puiu, D., Hall, R., Kingan, S., Clavijo, B. J., and Salzberg, S. L. (2017). The first near-

complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6, 1–7. 



   

87 

 

doi:10.1093/gigascience/gix097. 

Zurek, P. R., Topp, C. N., and Benfey, P. N. (2015). Quantitative trait locus mapping reveals regions 

of the maize genome controlling root system architecture. Plant Physiol. 167, 1487–96. 

doi:10.1104/pp.114.251751. 

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and van ’t Riet, K. (1990). Modeling of the 

bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–81. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16348228 [Accessed July 12, 2016]. 



 

88 

  

Ringraziamenti 

Vorrei ringraziare tutti coloro che hanno partecipato al lavoro da cui è nata questa tesi. Grazie per la 

professionalità con cui avete svolto il vostro compito. In particolare, vorrei ringraziare i miei supervisori, 

il prof. Silvio Salvi, il prof. Roberto Tuberosa e il dott. Marco Maccaferri. Vi ringrazio per la fiducia che 

avete riposto in me, per la passione che mi avete trasmesso, per il sapere che avete condiviso. Grazie per 

avermi aiutato quando più ne ho avuto bisogno.  

Ringrazio chi mi ha accolto quando sono stato all’estero, per la diponibilità, l’amicizia, per non avermi 

fatto sentire estraneo. 

Un ringraziamento particolare va a tutti i membri del mio gruppo. Grazie per avermi aiutato ma 

soprattutto per essere stati tra gli amici più cari che ho avuto. Grazie ad Eder, Danara, Fabio, Francesco, 

Giuseppe, Linda, Martina, Priyanka, Riccardo, Sandra e Simona. Sono stato bene con voi. Vi porterò 

sempre nel mio cuore.  

Grazie alla mia famiglia, a mio padre, mia madre, mio fratello e Loredana. Siete insostituibili. Ovunque 

sono stato, per quanto lontano, vi ho sentiti sempre accanto a me. Il vostro affetto travalica tutte le 

frontiere, supera tutte le asperità. Grazie per il vostro amore incondizionato. 

Ed infine grazie alla gioia mia, Rosalinda, la donna della mia vita. Con te accanto non ho mai temuto di 

non farcela, di non riuscire a rialzarmi. Il tuo amore riempie la mia vita e la rende degna di essere vissuta. 

Tutto ciò di buono che ho fatto in questi anni l’ho fatto per te, per vedere i tuoi occhi risplendere di 

felicità.        


