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Abstract 

The use of portable light detectors and smart supports and bioinspired materials to 

confine living cells and use them for field-deployable biosensors has recently 

attracted much attention. In particular, bioluminescent whole-cell biosensors 

designed to respond to different analytes or classes of analytes have been 

successfully implemented in portable and cost-effective analytical devices. 

The activity carried out during my PhD was mainly focused on the development of 

whole-cell bioluminescent (BL) biosensors for multi-analyte detection and their 

implementation into portable analytical devices for point-of-care and point-of-need 

applications. 

Thanks to the high maturity level of reporter gene technology and the availability of 

several bioluminescent proteins with improved features, bioluminescence 

smartphone-based biosensing platforms were developed exploiting highly sensitive 

luciferases as reporters. A 3D-printed smartphone-integrated cell biosensor based 

on genetically engineered human cell lines was developed for quantitative 

assessment of toxicity and (anti)-inflammatory activity with a simple and rapid add-

and-measure procedure.  

Moreover, since cells in 2D cultures do not often reflect the morphology and 

functionality of living organisms, thus limiting the predictive value of 2D cell-based 

assays, we implemented 3D cell-based assays. A non-destructive real-time BL 

imaging assay of spheroids for longitudinal studies on 3D cell models was first 

developed exploiting micropatterned 96-well plate format. The assay performance 

was assessed using the transcriptional regulation of nuclear factor K beta response 

element in human embryonic kidney cells. The assay can be implemented in any 

laboratory equipped with basic cell culture facilities and paves the way to the 

development of new 3D bioluminescent cell-based assays.  
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far”, Elisa Michelini, Luca Cevenini, Maria Maddalena Calabretta, Silvia Spinozzi, Cecilia 
Camborata, Aldo Roda, Anal Bioanal Chem (2013) 405:6155-6163  
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1.1 BIOLUMINESCENCE  
 

Bioluminescence (BL) is a spectacular phenomenon that naturally occurs in several 

living organisms, from fireflies to bacteria, abyss species, and mushrooms. The light 

emission derives from different chemical reactions that involve an enzyme, a 

luciferase, and an organic substrate, general called luciferin. Luciferase catalyses the 

oxidation of luciferin by molecular oxygen, and its conversion to an excited state of 

the oxyluciferin molecule, emits visible light that then returns to the ground state 

[1].  

The BL emission intensity depends on the overall quantum yield of the reaction (BL) 

and can be defined by following the equation: 

BL= C EX F 

where C reflects the chemical yield of the reaction, EX is the excited state 

production and F is the emission quantum yield of the excited state. 

Compared to conventional chemiluminescent (CL) systems, the peculiar photo-

physical property of BL reaction is that the light emission process derives from an 

enzyme-singlet excited state product complex.  

Due to the simple chemistry of BL reactions [2], the non-toxicity of luciferin, the high 

detectability and the remarkable high quantum yield, which is about one order of 

magnitude higher than that of CL reactions, many in vitro and in vivo analytical 

methods with BL detection have been developed, including gene expression assays, 

immunoassays, and non-invasive in vivo and in vitro imaging techniques.  

BL-based methods are sensitive and provide good spatial resolution, a wide dynamic 

range and simple quantitative signal assessment. Indeed, in contrast with 

fluorescence technique, BL does not require an external excitation light source and 

in the experimental measurements there are no interference from light scattering 

and background fluorescence.  
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Thanks to the possibility of exploiting signal amplification due to the turnover of the 

luciferase enzymatic reaction, BL systems represent a suitable detection principle 

for analytical applications where high sensitivity is required for example for 

detection of low concentrations of target analyte or small sample size [3].  

. 

1.1.1 Bioluminescent systems 
 

More than 30 different BL systems have been elucidated to date [2], however only 9 

natural luciferin structures have been identified.  

 

 

Figure 1: “Palette” of luciferin analogues. Native luciferins are highlighted with colored boxes. 

Brackets denote the wavelength (nanometers) of maximal bioluminescence emission observed 

upon incubation of the compound with luciferase. While many analogues can provide unique 

colors of light, most are not efficiently processed by native luciferases.  

 

Photinus pyralis (PpyLuc), is the most studied BL protein, with an emission in the 

yellow-green light (λem = 557 nm at pH 7.8), a glow-type kinetic and a broad 

emission band. PpyLuc is a 61 kDa monomeric protein that does not require any 

post-translational modifications. It is suitable for heterologous expression in both 
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prokaryotic and eukaryotic systems since PpyLuc does not show any toxicity to cells 

even at high concentrations. PpyLuc bioluminescence shows a remarkable red-shift 

at lower pH and higher temperatures.  
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Figure 2: Emission spectra of synthetic luciferases obtained incubating the purify protein at 25°C 

and 37°C (left panel) and at 25° C, pH 7.8 and 5.0 (right panel), respectively.  

 

The luciferase-catalyzed oxidation of luciferin involves the presence of ATP and Mg2+ 

as co-factors. In particular, as shown in Figure 3, in the first step, D-luciferin in the 

presence of ATP, is converted into luciferyl adenylate, the central intermediate in 

the BL reaction. Thanks to the presence of molecular oxygen, around 80% of 

adenylate is oxidized via a single electron-transfer mechanism [4] into peroxide 

whose ultimately leads to production of oxyluciferin and emission of a light 

quantum. Different tautomeric forms of the oxyluciferin in its excited state are 

possible, but it is thought that the actual emitters inside the luciferase pocket are 

keto-(-1) or enol-(-1’) forms.  
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Figure 3: The firefly luciferin/luciferase bioluminescence reaction. 

 

As ATP molecules are found in every living organism, the D-luciferin-luciferase 

reaction is widely employed for ATP detection to identify microbial contaminations 

and for analysis of seawater and water treatment plants, hygiene monitors in 

hospitals and cell viability studies [5]. 

Following P. pyralis luciferase, beetle luciferases derived from Pyrophorus 

plagiophthalamus are the second most popular choice [6] thanks to the availability 

in nature in a wide range colors, from green to red.  The possibility to have a wide 

range of natural and mutant BL reporters with different well-separated emission 

spectra and improved properties (e.g. thermal stability) is essential for the 

development of dual-color and multicolour assays [7]. We have also recently 

developed a dual-luciferase gametocyte assay with immature and mature 

Plasmodium falciparum gametocyte stages expressing red and green-emitting 

luciferases for anti-malarial drug screening [8]. In particular, this dual color assay 
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was allowed to quantitatively and simultaneously measure stage-specific drug 

effects on parasites at different developmental stages with significant reduction of 

assay time and cost in comparison to state-of-the-art analogous assays. 

New luciferases obtained from other species have been recently commercialized 

showing a good potential; for instance, a synthetic Nanoluc luciferase designed on 

the small Oplophorus luciferase domain was developed by Hall and colleagues in 

2012 [9]. NanoLuc is a 19.1 kDa luciferase enzyme that utilizes a synthetic 

furimazine substrate (a coelenterazine analogue) to produce high intensity and 

glow-type luminescence, providing a sensitivity superior than other luciferases 

(Figure 4). The BL signal intensity is increased by 2.5 million times with respect to 

the parent luciferase. Thanks to its small size and brightness, Nanoluc has been 

employed for several applications, for exploring gene regulation and cell signalling, 

for monitoring protein stability, for the development of novel based BL biosensors 

and BL imaging. 

 

 

Figure 4: Bioluminescence from the NanoLuc system. The synthetic furimazine substrate reacts 

with NLuc in the presence of molecular oxygen, producing furimamide and luminescence output. 

 

1.1.2 Bioanalytical applications of bioluminescence 

From an analytical point of view, the light emission produced by a chemical reaction 

allows quantitative analysis in which, under certain experimental conditions, the 

light intensity is closely related to the concentration of analyte. In comparison to all 
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methods based on the interaction of the light with the matter (absorption 

spectroscopy and fluorimetry), BL has better qualities since the detection of the 

signal is not influenced either by the drift of the light source and the detector or by 

interferences due to the light diffusion. For this reason, BL is a suitable method for 

the detection of analyte molecules in a complex biological matrix. 

Different molecular biology tools based on BL reactions have been developed, being 

suitable for both in vitro assays, with purified proteins and cells, and in vivo 

methods, i.e.  small animals. The investigation of protein–protein interactions, 

protein conformational changes, protein phosphorylation, second-messengers 

expression, and, in general, the study of gene expression and gene regulation in 

vitro and in vivo [5,10] are the typical bioanalytical applications of the BL.  

Since the luminescence reaction is quantitative, and has an extremely low 

background, in vitro BL imaging is particularly useful for longitudinal studies and 

quantitative imaging [11]. One of the most frequently used applications of in vivo 

bioluminescence imaging is cell tracking [12]. In this application, luciferase-

expressing cancer cells, immune cells, stem cells, or other types of cells can be 

imaged repeatedly in animal models, providing information about the number and 

spatial distribution of the cells.  

BL proteins can be detected down to very low levels and for this reason they allow 

an ultrasensitive detection of the target analytes and monitoring of the physiological 

phenomena under investigation. The recent technical advancement in 

instrumentation and miniaturization allows to obtain analysis of small-volume 

samples, which ultimately leads to the development of miniaturized and high-

throughput assays.  

Ultrasensitive bioassays have been reported, including whole-cell biosensors and 

miniaturized devices for high-throughput screening (HTS), with applications ranging 
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from clinical diagnostics to environmental monitoring and drug screening [13]. 

 

Figure 5: Bioanalytical applications of luciferases to in vitro and in vivo monitor activation of 

molecular pathways, protein-protein interactions and to quantify target analytes.   

 

1.1.3 Multiplexing bioluminescence 

Thanks to recent advances in molecular biology, the genes encoding several BL 

proteins have been cloned and mutated to obtain new BL proteins with improved 

emission properties. These new probes and labels found widespread use in in vitro 

and in vivo assays.  

Despite the portfolio of marketed luciferases (Table 1) is smaller than the green 

fluorescent protein palette, it is worth mentioning that most of such luciferases are 

available in customized variants that suit different applications. In particular, the 

incorporation of a protein degradation signal sequence in the luciferase gene 

confers the luciferase enzyme a shorter half-life [14]. These short-lived luciferases 

have been widely used in reporter gene assays to monitor transient dynamic 

changes in gene expression.  
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Table 1 Luciferases for which the coding sequence is commercially available for reporter gene applications, 

calcium detection and in vivo imaging 

Luciferase Organism Length (aa) Size (kDa) Substrate BL max (nm) Company 

PpyLuca Photinus  pyralis 550 61 D-luciferin 557 Several companies 

GLuca Gaussia princeps 185 19.9 Coelenterazine 482 Thermo Scientific, 

Targeting Systems 

RLuca Renilla  reniformis 312 36 Coelenterazine 475 Promega, Thermo 

Scientific, Targeting 

System 

Nanoluca Oplophorus 

gracilirostris 

171 19.1 Furimazine 465 Promega 

Lucia Derived from marine 

copepod 

210 23 Coelenterazine NR InvivoGen 

Red-emitting Luciola 

luciferase 

Luciola italica 548 61 D-luciferin 610 Targeting System 

CBG99 Pyrophorus 

plagiophthalamus 

542 64 D-luciferin 537 Promega 

CBR Pyrophorus 

plagiophthalamus 

542 64 D-luciferin 613 Promega 

Cypridina luciferase Cypridina noctiluca 555 62 Cypridina 

luciferin 

463 Prolume, Targeting 

Systems 

aa amino acids, BL bioluminescence, NR not reported 
a Luciferases available in different forms (e.g. intracellular, secreted, and shorter-lived forms) 

 

Bioluminescent reporters with well-separated and different emission spectra are 

commonly used for the development of dual color and multicolor reporter assays 

[8,15]. Dual luciferase assay system allows to perform simultaneous monitoring of 

gene expression, intracellular detection of bioactive compounds, and HTS in vitro. 

Because one of the main drawbacks of dual bioluminescence assays is the effective 

separation of bioluminescence signals emitted by two reporters, four main 

strategies can be envisaged (Figure 6): (1) the use of bioluminescent reporters 

whose emission can be distinguished by emission filters and suitable algorithms 

(spectral resolution) [16,17]; (2) the use of bioluminescent reporters requiring 
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different substrates [18]; (3) the use of bioluminescent reporters that are expressed 

in different cell compartments or are secreted outside the cells (spatial resolution) 

[19]; (4) the use of bioluminescent reporters that exhibit different emission kinetics, 

allowing sequential reading (time resolution) [20]. 

 

 

Figure 6: Four different strategies for bioluminescence signal separation in dual-reporter assays: 

the use of bioluminescent reporters that are expressed in different cell compartments or are 

secreted outside the cells (spatial separation), the use of bioluminescent reporters whose 

emission can be distinguished by emission filters and suitable algorithms (spectral separation), the 

use of bioluminescent reporters requiring different substrates and sequential reading (substrate 

discrimination), and the use of bioluminescent reporters that exhibit different emission kinetics, 

allowing sequential reading (temporal separation). RLU relative luminescence units.  

Thanks to theoretical and experimental studies of color modulation mechanisms, 

several mutants have been obtained, allowing elucidation of the catalytic 

mechanism of different luciferases [21-24], and a wide range of luciferases with 

tuned spectral properties have been reported. Major efforts were directed towards 

the obtainment of mutants with red-shifted emission for in vivo imaging [25-26] 
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and, when paired with green-emitting luciferases, for dual color reporter assays [27-

28]. 

A real step forward is needed to develop luciferases that maintain their emission 

properties in different experimental conditions, such as at different pH and 

temperature. It is well known that firefly luciferases generally exhibit pH- dependent 

emission, and very few mutants do not have this drawback. Interestingly, the 

bioluminescence of luciferases isolated from click beetles and railroad worms [29] is 

pH-independent, and such enzymes, together with firefly luciferase mutants 

showing the same property, are thus extremely useful for the development of cell-

based assays and in vivo models [30]. 

 

1.2 CELL-BASED ASSAYS  

Bioluminescence-based analytical tools are suitable for high-throughput and high-

content screening assays, finding widespread application in several fields related to 

the drug discovery process. Cell-based bioluminescence assays, because of their 

peculiar advantages of predictability, possibility of automation, multiplexing, and 

miniaturization, seem the most appealing tool for high demands of the early stages 

of drug screening. 

Living cells used as sensing systems have proved to be valuable for prediction of the 

physiological response to drugs, chemicals, and samples in complex matrices, whose 

toxic effects and specific biological activity can be evaluated in an easy and 

straightforward manner.  

Although many cell-based assays have been described, few can be regarded as true 

biosensors. According to IUPAC nomenclature, a biosensor is “A device that uses 

specific biochemical reactions mediated by isolated enzymes, immunosystems, 

tissues, organelles or whole cells to detect chemical compounds, usually by 

electrical, thermal, or optical signals” [31]. This definition embraces the concept of a 
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stand-alone integrated receptor-transducer device able to provide selective 

(semi)quantitative analytical information. The challenge of on-site analysis, 

irrespective of whether the application is environmental, food, or clinical, 

necessarily requires biosensors with high sensitivity, selectivity, robustness, rapidity 

(possibly approaching real time analysis), ease of operation, possibility of direct 

analysis of sample in complex matrices without preliminary sample treatment, and, 

last but not least, cost effectiveness.  

Cell-based assays include a variety of assays that measure cell proliferation, toxicity, 

production of markers, motility, activation of specific signalling pathways and 

changes in morphology. A large body of evidence suggests that cell-based assays 

and in vitro assays provide highly valuable information, and are thus able to provide 

reliable data on toxicity, biological activity, side effects, and metabolism of 

compounds [32-33]. Reporter gene technology is the main route for identifying 

leads from large chemical libraries. This approach relies on the use of 

bioluminescent reporter genes under the transcriptional control of a target gene’s 

regulatory sequences to monitor specific biological pathways. In particular cell-

based BL assays are based on cells genetically modified (yeast, bacteria, mammalian 

cells) containing a BL reporter gene fused to a regulatory DNA sequence (Figure 7). 

The activation of the regulatory sequence occurs in the presence of a specific 

analyte or stimulus, that ultimately leads with the production of the BL reporter 

protein (usually a luciferase), thus enabling correlation of reporter protein 

expression, measured as light signal, and transcriptional regulation. The availability 

of a wide portfolio of luciferase reporters that can replace the green fluorescent 

protein and its variants, multiplexing is no limited to fluorescence detection [34,28]. 



 18 

 

Figure 7:  Schematic representation of the dual-color bioreporter 

1.2.1 3D cell-based assays 
Cell-based assays based on two-dimensional (2D) represent one of the most 

appealing and well-established bioanalytical tools for the early stages of the drug 

discovery process, providing a simple, fast and cost-effective tool to avoid large-

scale and cost-intensive animal testing. The standard procedure for drug discovery 

starts with 2D cell-cultured tests in order to screen active compounds, followed by 

animal tests and finally to clinical trials.  As results, only 10% of these compounds 

can reach clinical development while the remaining fails during the most expensive 

clinical trials phase. For this reason, due to their altered response to drugs for 

unnatural microenvironment, preliminary 2D cell culture tests can provide non-

predictive and misleading data for in vivo responses [35-37]. Indeed, cells in 2D 

cultures do not often reflect the morphology and functionality of living organisms, 

thus limiting the predictivity of 2D cell-based assays. Conversely, thanks to 

hierarchical structure and cellular heterogeneity, 3D cell models can closely mimic in 

vivo tissue physiology, generating the extracellular matrix and diffusion barriers and 

restoring cell-to-cell communication.  Therefore, compared to the 2D monolayer, 3D 
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models replicate better intrinsic physiological conditions and in vivo cellular 

responses to external stimuli. As such, 3D-cultured cells are the ideal sensing 

element in cell-based sensors, providing biologically relevant information and 

predictive data for in vivo tests. It is known that cells in 3D culture environment 

differ in gene, protein, and cell receptor expression from 2D-monolayer [38-40] and 

they provide an excellent model as “near-to-in vivo” systems. The generation of 

spheroids is based on the common basic principle of self-assembly [41]. 3D structure 

spheroids exhibit enhanced cell viability, stable morphology and polarization, 

increasing proliferative activity and physiological metabolic function [42], which are 

markedly improved when compared to 2D cell monolayers. However, the open 

challenge is combining different cell types in co-culture spheroids mimicking the 

complex natural morphology and physiological tasks of natural tissues. 

Many 3D cell-cultures based biosensors can use natural or synthetic hydrogels in 

order to obtain different 3D cell structures. The wide variety of commercial 

hydrogels allow the selection of suitable matrices directed for each cell lines and 

biosensor application. Alternatively, it is possible exploit the intercellular polymeric 

linker to create 3D cellular aggregates supported by neighboring cells [43], 

preserving cell viability and exhibiting greater cell function. 

3D cell culture-based biosensors can be employed for many biomedical and 

bioanalytical applications [44], from early detection of illness [45] to environmental 

monitoring [46]. 

3D culture systems represent great promise for applications in drug discovery, 

pharmacological studies, cancer cell biology and tissue engineering, and they should 

be considered the obligatory step between the traditional 2D monolayer cell culture 

and animal models. 
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1.2.2 Whole-cell biosensors 

In according to IUPAC nomenclature [31], whole-cell biosensors require the 

integration of living cell into a device, e.g. by immobilization or encapsulation, in 

close contact with the transducer, e.g., light detector in optical biosensors. 

Differently from other biosensing configurations, for example immune and nucleic 

acid sensors, the use of cells as biorecognition elements enables to obtain 

informations about the bioavailability of chemicals and their combined effect (e.g. 

synergistic and/or antagonist and toxicity). 

In the past decade there has been increasing demand for in-vitro assays as 

alternatives to animal testing to investigate the effects of chemicals on biological 

targets. The European Union (EU) is encouraging the use of in-vitro assays and other 

approaches to replace animal testing. To this end, several programs and initiatives 

have been launched by the EU, for example banning of animal testing for cosmetics 

in 2009 [47] and the European Partnership for Alternative Approaches to Animal 

Testing (EPAA).  

Significant advances have recently been reported both in detection technology and 

in the genetic engineering of cells, enabling design of cells to respond to different 

analytes or classes of analyte, with the possibility of performing high-throughput 

and high-content screening assays on the basis of different transduction principles, 

even in label-free configurations [48-49]. Several whole-cell biosensors have been 

applied to different fields, from drug discovery [50] to environmental monitoring 

[51-53], food control [54], and anti-doping screening [55]. In particular, genetically 

modified BL biosensors have excellent analytical performance and flexibility of use, 

being suitable also for integration into field-deployable device [56-57]. By taking 

advantage of the peculiar features of nanomaterials, hybrid devices with 

immobilized or micropatterned cells, with great potential applications in biosensing 

and cell behavior monitoring, have also been obtained [58]. 
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1.3 3D PRINTING TECHNOLOGIES  

Three-dimensional (3D) printing is a fabrication process which enables to rapidly 

produce prototypes, and functional devices [59], such tissue grown scaffolds [60], 

electronics [61] microfluidics [62] and pneumatics [63]. The earliest printing 

technique was born in China around the year 200 with a woodblock printing. A block 

of wood was carved in order to obtain a prototype which was then used to 

repeatedly form an imprint on a substrate. Starting from this approach, the printing 

technologies have evolved from the printing press, movable type, lithography, 

xerography, laser printing to finally 3D printing in which a 3D computer design is 

converted in a physical pattern through the additive patterning of material using a 

print head, nozzle, or other mechanisms [64-66]. 

Stereolithography (SLA) technique was introduced by Charles W-Hull in 1986 (U.S. 

Patent 4575330) [67]. A laser UV light source is focused on a vat filled of liquid 

photopolymer resin where layer-by-layer selective polymerization builds 3D 

structures on a build platform [68-69]. Two different approaches for resin exposure 

can be used in this technique, free surface or constrained surface [70-71], and two 

different light sources for printing, laser o digital light projection (DLP). In the free 

surface approach, the photopolymerization occurs the polymer at the air interface, 

where the metal build stage in submerged further into the resin-containing vat after 

the formation of each layer.  In the constrained surface approach, the 

polymerization occurs against the bottom surface of the resin vat, where the metal 

build stage is suspended upside-down.  

One of the most widely rapid 3D prototyping technologies is represented by fused 

deposition modeling (FDM), introduced for the first time by Scott Crump [72]. FDM 

3D printers use thermoplastic materials that are fused and extruded trough a nozzle. 

In order to obtain a 3D structure, the thermoplastic material is deposited layer by 

layer on the build platform that then cools down and solidifies [70,73-74]. Thanks to 
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the possibility to print inexpensive and durable [75] biocompatible polymers as 

acrylonitrile butadiene styrene (ABS), poly(lactic acid) (PLA, a biodegradable 

polymer), polycarbonate, polyamide and polystyrene, this prototyping method 

represents an interesting technique for obtaining portable devices [76-77]. In 

alternative, FDM can be used for printing a wide range of liquid materials, such as 

metallic solutions, hydrogels, and cell-based solutions thanks to the possibility of 

extrude liquid precursor through a nozzle without heating. 

Another technology for printing polymers, ceramics, metal and biomaterials uses 

the material jetting 3D printers [78] in which wax-like materials are melted and 

printed using an inkjet print head onto a mobile build platform. The material, 

deposited layer by layer, cools and forma solid 3D structure. 

Photopolymer jetting, introduced for the first time by Hanan Gothait [79], is another 

approach for printing support liquid photopolymers onto a mobile build platform. 

Through UV light, the materials are cured and solidified, allowing layer-by-layer 

fabrication. Thanks to this technology, many microfluidic devices have been 

fabricated [80-84]. 

This 3D printer technology is used for printing any material that is available in 

powder form and it does not require any support structure. The process is fast, 

simple and cheap as powder particles are glued together to produce a solid 

structure and, when repeated, a 3D structure is built up layer-by-layer in the powder 

bed.  

Another process that does not require any support structures is the laser sintering in 

which laser source and scanning mirrors sinter layer-by-layer plastic powdered 

material. 

Laser melting 3D printing uses a similar concept to laser sintering, but this process 

builds 3D structures melting and fusing metal powders. Moreover, this approach 
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requires support structure to anchor the part to the build platform. 

Metal powders can be print also with an electron beam melting. In this contest an 

electron beam is used to melting metal powders, generating lower thermal stress in 

the structure. Furthermore, the amount of support structures is reduced while the 

fabrication speed increased. 

1.4 PORTABLE LIGHT DETECTORS   

To implement cell-based assays into portable formats and turn them into real 

biosensors with adequate analytical performance the selection of miniaturized light 

detectors is crucial. Indeed, due to the dim BL signals, to obtain the highest 

detectability, BL signal measurement requires instrumentation able to collect as 

much light as possible. Conversely, no specific optics geometry is required as for 

photoluminescence detection, where an external light source is required. 

1.4.1 Portable light detectors  

Portable light detectors, such as charge-coupled devices (CCD), complementary 

metal oxide semiconductors (CMOS), and silicon and organic photodiodes, have a 

great potential like alternative light sensors due to their compact size and their 

ability to image and quantify multiple spots simultaneously on the detections area 

of the sensor. [85-87]. Modern cooled back-side illuminated CCDs create high-

quality, low-noise images reaching a quantum efficiency (QE) of up to 90%, read-out 

noise of <5 e-, dark count rates of 0.001 e-/s, and formats as large as 4096 x 4096 

pixels with size down to 4 x 4 m [88]. 

Nowadays CMOS sensors represent an interesting alternative, thanks to their small 

and compact size, low power consumption, camera-on-a-chip integration and lower 

fabrication costs [89-90]. In comparison to the first generations of CMOS where the 

majority of the pixel area was dedicated to the support transistors, with a limited 

photon-sensing area (fill factor), modern back-illuminated CMOS uses the entire 
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area of each pixel for photon capture. In this configuration CMOS shows higher 

sensitivity, thus ensuring high signal-to-noise even in low-light conditions.  

For measurement of a large number of targets, Sandeau et al [91] reported a large 

area CMOS bio-pixel array for multiple CL assays directly addressed by single pixels.  

In order to obtain reasonable resolution and to prevent light cross-talk between 

adjacent objects, imaging with charge-transfer sensors needs a simple optics. In 

optics-free “contact imaging” configurations, the sensor is in contact directly whit 

the surface of the bioassay. Tanaka et al. reported CMOS sensor equipped with RGB 

color filter array for analyzing single cells assembled directly onto the sensor surface 

[92]. In order to obtain a thermal insulation between the bioassay components and 

the cooled CCD sensor, and a coherent photon transfer between the two surfaces, a 

fiber optic mosaic faceplate or tape was used for contact imaging. Exploiting a 

thermoelectrically cooled (double Peltier) CCD camera in contact imaging 

configuration, Roda et al. developed an ultrasensitive portable device for point-of-

need CL bioassays [93]. Thanks to this device, Mirasoli et al. developed a 

miniaturized multiplex biosensor for detecting parvovirus B19 DNA in serum 

samples [94], showing competitive analytical performance respect to conventional 

ELISA assay.  

 

1.4.2 Color detectors: CCD vs CMOS 

The possibility to combine several luminescent probes in a single assay with 

different specific emission wavelengths and bandwidths requires spectral resolved 

light imaging detection. CCD and CMOS sensors available in monochromatic version 

present an up to 90% QE across the full visible spectrum but commercially are 

available also their one-shot color version in which Bayer matrix (a red, green and 

blue filter patterns) is placed over the pixel array. Thanks to the continuous 
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improvement in the backside-illuminated CMOS (BSI-CMOS) integrated in 

smartphone/tablet camera allow advances in image quality, superior functionalities 

and compact size. Nowadays new developed CMOS sensors with higher pixel 

numbers (up to 41 MP) have an architecture and multi-lens systems that provide, in 

low light condition, low noise and high quality image capture. In this configuration 

smartphone cameras can be used for sensitive chemical luminescence detection 

allowing the analyte measurements at medium-abundant concentration, as was 

recently shown for CL-based point of care bioassays [95-96].  

Thanks to 3D printing technology, simple and compact 3D-printed low-cost 

smartphone accessories can be developed for transforming mobile device into a 

portable mini-luminometer for point-of care testing, exploiting dedicated 

applications for signal data elaboration, data handling and storage, connectivity, and 

cloud servicing, for remote sensing. 
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The activity carried out during my PhD was mainly focused on the development of 

portable whole-cell bioluminescent (BL) biosensors for multianalyte detection and 

their implementation into portable analytical devices for point-of-care and point-of-

need applications. In particular, through reporter gene technology, cells (bacteria, 

yeast and mammalian cell lines) have been genetically engineered with a 

bioluminescent reporter protein (e.g., luciferases from different organisms), whose 

expression is under the regulation of a specific promoter and/or regulatory 

sequence activated by a target analyte or a class of analytes. After addition of a 

suitable BL substrate (e.g., D-luciferin, coelenterazine, furimazine) the luciferase 

catalyzes a reaction that produces light and the BL is directly proportional to the 

activation of a molecular target or to the bioavailable fraction of an analyte. Using 

living cells as sensing systems it is possible to develop cell-based assays and whole-

cell biosensors to monitor physiological response to drugs, for detecting analytes for 

environmental and food monitoring and for the evaluation of specific biological 

activity and toxic effects. Indeed, the high detectability of the bioluminescent signal 

and the possibility to combine luciferases with different BL emission properties 

provides new analytical tools suitable for the development of cell-based 

bioluminescent assays in multiplex formats. Moreover, since BL signal is produced 

by a chemical reaction and it does not require an external light source, BL detection 

is suitable for the development of portable miniaturized devices. The assays were 

validated and characterized in terms of analytical performance and applied to 

different fields, from environmental monitoring to clinical diagnostics. Such devices 

were fabricated using a dual-extrusion 3D printer, using thermoplastic material 

(ABS) and bioluminescent whole-cell biosensors have been obtained by genetically 

engineered cells that respond to different analytes.  

In Chapter 3, a smartphone-based bioluminescence (BL) whole-cell biosensor is 

reported for acute toxicity evaluation. The developed whole-cell biosensor 

integrates bioluminescent living cells (HEK293T) constitutively expressing green 
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thermostable luciferase mutant and  a smartphone equipped with custom-designed 

accessories produced employing a low-cost desktop 3D printer. The add-on 

assembly comprises two parts: a smartphone adaptor, containing a plano-convex 

lens aligned with the camera and a slot for inserting the cartridge hosting pre-

loaded cells and reagents. The developed device demonstrated the feasibility to 

accurately detect and quantify the BL signals of genetically engineered human cell 

line expressing green-emitting luciferase with a limit of detection (LOD) of 5x103 

cells. The toxicity test showed performance comparable to that obtained using 

portable cooled CCD camera, confirming the suitability of this approach. Moreover, 

an android app was also developed to provide a user-friendly built-it data analysis. 

Real samples were analysed, including ubiquitous products used in everyday life. 

The results showed good correlation with those obtained with laboratory 

instrumentation and commercially available toxicity assays, thus supporting 

potential applications of the proposed device for portable real-life needs. 

In Chapter 4, a bioluminescence smartphone-based cell biosensor exploiting 

NanoLuc luciferase as sensitive reporter to assess the (anti)-inflammatory activity of 

a sample and its acute toxicity evaluation was developed. In particular, this 

biosensor was employed for quantitative assessment of (anti)-inflammatory activity 

and toxicity of a sample and its preliminary application for testing extracts of white 

grape pomace was evaluated. NanoLuc (Nluc) and its destabilized BL reporter 

(NlucP) were investigated to identify the most suitable intracellular BL reporter for 

smartphone-based detection in order to obtain cell biosensors with adequate 

analytical performance, especially in terms of sensitivity and short assay time. 

Human embryonic kidney cell lines (Hek293T) were genetically engineered to 

express NanoLuc luciferase either under the regulation of NFkB response element or 

a constitutive cytomegalovirus (CMV) promoter.  Results confirmed the suitability of 

the smartphone biosensing platform for analysis of untreated complex biological 

matrices. 
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Chapter 5 reports a non-destructive real-time BL imaging assay of spheroids for 

longitudinal and high-throughput studies on 3D cell models. 3D cell-culture models 

often promote levels of cell differentiation and tissue organization not possible in 

conventional 2D culture systems providing excellent in vitro models suitable to 

mimic in vivo tissue physiology. To this end, a high-throughput assay for tumor 

necrosis factor  (TNF ) detection in a 96 well- micro-patterned microplate using a 

transcriptional biosensor system relying on BL 3D spheroids is reported.  Three day-

old HEK293 spheroids, transfected with a reporter construct in which the PLG2 

luciferase is placed under the control of the NFkB response element, were incubated 

with different concentrations of TNF . Dose-response curves for TNFα were 

obtained with both monolayer cultures and spheroids, obtaining EC50 values of 2.6 

± 0.4 and 3.5 ± 0.5 ng/ml, respectively. Compared with the 2D format, a higher NFkB 

basal activation (4.1 ± 0.3 fold) was found in 3D spheroids. This result is consistent 

with in vivo data, thus corroborating the hypothesis that spheroids provide a more 

physiological condition than 2D cell-based biosensors. 
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Aldo Roda 
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4.1 INTRODUCTION  
The availability of toxicity sensors suitable for rapid field testing is highly valuable 

also considering the recent global security threats. The routine monitoring of water, 

food and the environment for chemical and biological threat agents is often 

hampered by the fact that most of the available techniques, such as those based on 

high performance liquid chromatography-tandem mass spectrometry, require clean 

samples and sophisticated equipment, and are thus unsuitable for real-time, cost-

effective and on-field testing [1]. Additionally, threats may derive from different 

sources, therefore conventional analytical methods able to detect one or few 

analytes are inappropriate [2]. Both enzymatic and microbial biosensors have been 

developed to detect general toxicity or environmental pollutants including heavy 

metals, endocrine disruptors, explosives [3-8]. The Microtox® toxicity test, based on 

the use of bioluminescent bacteria Vibrio fischeri, has been considered as the official 

standard for acute toxicity assay in several countries such as Germany (DIN 38412-

1990) and USA (ASTM method D5660-1995) [9]. This test relies on the use of 

bioluminescent bacteria where the light emission of bacteria after being challenged 

by a sample is compared to light output of a control sample. The difference between 

two light outputs is ascribed to the toxic effect of sample. Moreover whole-cell 

biosensors present the important feature of assessing not the total concentration of 

a given analyte in a sample but rather its bioavailability, i.e., the fraction of analyte 

which is able to permeate in the cell membrane and once entered into the cell 

interact with specific molecular targets. Such systems provide quantitative 

information about biological effects of a sample such is the case of biosensors for 

mercury and organic mercury (methylmercury) in water samples [10,11]. All 

chemical and biological threat agents share the ability to damage in some ways 

living cells, which can be therefore employed as “living sentinels”. We previously 

demonstrated the possibility to integrate microbial cells (including Escherichia coli, 

Saccharomyces cerevisiae and Magnetospirillum gryphiswaldense) into portable 
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analytical devices relying on the use of charge-coupled device (CCD) detectors 

[12,13]. The use of mammalian cells, which actually mirror what happens in-vivo, 

would provide a more reliable mean to assess cytotoxicity to humans, as previously 

demonstrated in proof-of-concept toxicity biosensor devices exploiting eukaryotic 

cells-lines [14,15]. Recently an automated bench-top mammalian cell-based toxicity 

sensor was reported incorporating fluidic biochips with endothelial cells and Electric 

Impedance Sensing (EIS) detection [14]. Such systems, being able to assess the 

cellular cytotoxic responses, were successfully applied to toxicity test screening and 

to early warning real-time biomonitor [16]. Despite adequate analytical 

performance of these biosensors, they still require additional instrumentation and 

cell culture facilities. Also portable prototype devices require detectors and laptop 

control computer for data elaboration. In this view, the implementation of an 

analytical platform requiring only disposable ready-to-use cartridges containing the 

sensing cells and a smartphone for light detection is extremely appealing. The 

possibility to run tests that are routinely performed by trained personnel in 

laboratories with benchtop instrumentation such as microscopes and 

spectrophotometers with smartphone-interfaced devices offers tremendous 

potential in those situations in which a rapid and reliable response is needed, for 

example self-monitoring of chronic pathologies, and for early detection of toxicity 

and pollutants in water, food and the environment. In contrast to conventional 

biosensors and point-of-care (POC) systems that require external components like 

detectors and power supplies, smartphones offer the unique opportunity to have an 

all-in-one device that integrates a digital camera with portability and wireless data 

transfer [17]. Ozcan pioneered the concept of cellphone-based devices [18] and 

applied it to several types of bioassays including lateral flow immunoassay and 

enzymatic assays for the detection of biomarkers in biological fluids and other 

bioanalytical applications [19]. Several examples can be cited from the literature, 

most of them relying on colorimetric or fluorescent assays [20-23]. Interestingly, 
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data connectivity and geotagging capabilities of smartphones can also be exploited 

for distributed sensing, as demonstrated by Wei et al who developed a smartphone-

based mercury(II) ion sensor platform with ppb sensitivity [24]. We previously 

demonstrated the feasibility of implementing enzyme-based assays with bio-

chemiluminescence detection into smartphones and we fabricated cartridges with 

facile and low-cost 3D printing technology [25,26].  

Nonetheless, to the best of our knowledge, the exploitation of bioluminescent cells 

as sensing elements in a smartphone-based platform has not been explored yet.  

Here we report a portable toxicity sensor incorporating bioluminescent cells into a 

smartphone-based device. We fabricated 3D printed cartridges to integrate an array 

of bioluminescent cells into ready-to-use cartridges and demonstrated the feasibility 

to accurately detect and quantify the BL signals. We used human embryonic kidney 

cells (Hek293T) constitutively expressing a green-emitting luciferase as “sentinel 

cells” and an Android app was developed to provide a user-friendly environment. 

Additionally, we obtained a smartphone accessory including pre-loaded cartridges 

with immobilized cells, reagents’ reservoirs and droppers to provide a ready-to-use 

device. The analytical performance of the smartphone-biosensor was evaluated with 

model and real samples. 

 

4.2 MATERIALS AND METHODS  

4.2.1 Chemicals and reagents 

Human embryonic kidney Hek293T cells were from ATCC (American Type Culture 

Collection [ATCC], Manassas, VA, USA) and materials used for culturing of cells were 

from Carlo Erba Reagents (Cornaredo, Milano, Italy). The enzymes required for 

cloning were from Fermentas (Vilnius, Lithuania). The kits for plasmid extraction and 
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purification and beetle D-luciferin potassium salt were from Promega (Madison, WI, 

USA). All other chemicals were purchased from Sigma (St. Louis, MO, USA). 

The mammalian expression plasmid pCDNA-PpyGRTS expressing the P.pyralis 

luciferase green thermostable mutant was obtained from vector pGEX-PpyGRTS 

[27],  kindly provided by Prof. Bruce Branchini (Connecticut College, New London, 

CT), by standard molecular cloning procedures. 

 

4.2.2 3D-printed cell minicartridges and smartphone adaptor fabrication 
 

Minicartridges and smartphone adaptors were fabricated using a desktop 3D printer 

Makerbot Replicator 2X (Makerbot, Boston MA, USA) using thermoplastic 

acrylonitrile butadiene styrene (ABS) polymer. Two cartridges were designed in this 

work: the first one was created for calibration purposes using black and white ABS 

and contains an array of 16 well of 50 µL each (3.5 mm x 3.5 mm x 4.5 mm). The 

second cartridge (Fig.1(b)), printed with white ABS, contains 4 wells (volume of 

about 150 µL each, size 4.5 mm x 4.5 mm x 7.5 mm) and two reservoirs, one for BL 

reagent and one for control. The cartridge also includes a sliding-lid created with 

dual-extrusion of black and transparent ABS. The adaptor, which provides a dark 

box, was designed to fit the Samsung Galaxy Note II smartphone. The open-source 

Tinkercad browser-based 3D design platform (Autodesk, Inc) was used to create 3D 

models. MakerWare v.2.4 software was used to set up printing options.     
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Fig. 1. (a) 3D printed smartphone adaptor designed for the Samsung Galaxy Note II with a black 

ABS dark box, comprising slots for droppers. (b) 3D printed cartridge, composed of a white ABS 

piece comprising 4 wells and BL substrate reservoirs and a black sliding lid with transparent ABS 

windows. (c) The assembled smartphone-based device with running the specifically designed 

application for BL signal acquisition and analysis. 

 

4.2.3 Android-based application 

We developed a custom application (Tox-App) running on Android using Python 

(https://www.python.org/) and Kivy Open source Python library 

(http://kivy.org/#home) to convert the camera images into a quantitative and user-

friendly output. The Tox-App functions as follows (see Fig. 2): 

(a-b) the user selects the TOX icon and then to the “start” button to run the 

application on the smartphone;  
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(c) in the home page several tabs can be selected; the user can choose among 

reading the “Procedure”, analyzing a sample with the “test sample” button, or 

opening previous data using “Select image”. The “Info” box provide information 

about App developer “Unibo, Laboratory of Analytical and Bioanalytical Chemistry”;  

d) in the “Procedure” box the user can read the instructions to perform the assay 

and some images provide a quick view of the steps; 

(e) the “Begin” button allows to proceed to the “Checklist” box where preset timers 

guide the user through the steps following the correct incubation time (30min) 

before image acquisition. At the end of the countdown the “Acquire” button 

activates the cellphone camera and the BL image is taken;  

(f) by clicking “Analyze” the BL image is rapidly processed on the smartphone within 

few seconds;  

(g) the result is displayed as percentage of “Cell viability” together with a warning 

message (“Safe”, “Harmful” or “Highly toxic”). Both BL raw image and results can be 

saved for downstream applications such as sending the results to a central 

laboratory or cloud computing.  
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Fig. 2. (a) Screenshots of Tox-App running on an Android smartphone are shown. By clicking the 

“start” button (b) the application runs and several tabs can be selected (c). The “Procedure” box 

(d) provide to the user the instructions to perform the assay, then the Begin button allow to 

proceed to the “Checklist” box (e) where preset timers guide the user through the correct 

incubation times before BL image acquisition. The instructions can be also eluded by selecting 

“Test sample” in the home page, which jumps the user directly to the checklist.  At the end of the 

countdown the smartphone camera is activated and the user can simply touch the “Acquire” 

button to capture the BL image of both the test and control wells. (f) The acquired images are 

rapidly analyzed on the smartphone and the sample toxicity result is displayed as “Cell viability” 

value and a warning message (Safe, Harmful, Highly toxic). BL image and results can be also saved 

for downstream application (i.e. sending results to a central laboratory). 

 

4.2.4 Cell culture and transient transfections 

HEK293T cells were routinely grown in Dulbecco Modified Essential Medium (DMEM 

high glucose 4,5g/L, GE Healthcare) supplemented with 10% fetal bovine serum, L-
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Glutamine 2mM, 50 U/μL penicillin, and 50 μg/mL streptomycin. FuGENE HD 

transfection reagent (Promega) was used for transient transfections according to 

the manufacturer instructions. One day before transfection cells were plated on 24 

well plate at a density of 8x104 cells/well and transfected with pCDNA-PpyGRTS 

expression vector using the FuGENE®HD:DNA ratio of 3:1 according to the 

manufacturer’s instructions and incubated at 37°C with 5% CO2 for 24h. 

 

4.2.5 Smartphone-based BL emission characterization of Hek293T cells 

expressing green-emitting luciferase 

Luminescence measurements of engineered HEK293T cells were performed in 

duplicate into the 16-well cartridge and with a Varioskan Flash multimode reader 

(Thermo Fisher Scientific, Waltham, MA, USA) for comparison. Briefly, 24h post 

transfection the cells were collected and resuspended in DMEM at 2x106 cell/mL 

and used for kinetic measurements and calculation of minimum number of 

detectable cells. Kinetic measurements were performed with Varioskan 

luminometer in 384-well plate, using 50 µL of cell suspension, for 5 min with 200ms 

integration time, after automatic injection of 50 µL of D-luciferin solution, 1mM pH 

5.5 in citrate buffer 0.1 M. A volume of 30 µL of serial dilutions of cells were 

pipetted into the multiwell cartridge and imaged with the smartphone after addition 

of 20 µL of D-luciferin 1mM solution. Images were taken at 0.9 MP with 5s 

integration time using Camera FV-5 Lite app (FGAE, Stuttgart, Germany) and 

analyzed using ImageJ software (National Institutes of Health, Bethesda, MD). The 

minimum number of detectable cells was calculated as the number of cells providing 

a BL signal corresponding to the blank signal plus three times its standard deviation. 

Blank signal was obtained by measuring same number of non-transfected cells.  

4.2.6 Toxicity assay and analytical performance evaluation 

Smartphone-based toxicity assays were performed using the 4-wells minicartridges. 

Briefly, 24h post transfection the cells were collected, resuspended in Dulbecco's 
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Modified Eagle Medium (DMEM), counted and transferred to the minicartridges at 

5x104 cells/well (50 µL). Each ready-to-use cartridge was prepared by assembling the 

sliding lid and dispensing 200 µL of BL reagent (1mM D-luciferin solution) in the 

reagent’s reservoir and 200 µL of PBS in the other reservoir. Dimethyl sulfoxide 

(DMSO) was used as model toxic compound and DMSO dilutions ranging from 0.25 

to 100% v/v were prepared in MilliQ water. A volume of 30 µL was dispensed in 

duplicate to the test wells while 30 µL of PBS was added to control wells. Following 

the Tox-App procedure, after 30 min incubation at room temperature, 50 µL of BL 

substrate was added to each well and BL images were taken and analyzed as 

previously described. All measurements were performed in duplicate and repeated 

with 6 different cartridges.  

The same experiments were also performed using the disposable droppers provided 

within the device: first one drop (about 30 µL) of PBS was added to control wells 

followed by sample addition using the same dropper, then the whole volume (200 

µL) of BL reagent was drawn from the reservoir with the other dropper and 

dispensed to all the four wells simultaneously through the central injection hole.  

Toxicity assays for DMSO were also performed using the Cell-TiterGlo assay 

(Promega) in 384 well plate with the Varioskan luminometer. All experiments were 

performed in triplicate and repeated at least three times.  

4.2.7 Real sample analysis 

To test the feasibility of the proposed smartphone-based toxicity biosensor we first 

assessed the toxicity of real-life samples, including tap water, moisturizers, stain 

removers, mineral and synthetic oils, bio-degreaser, floor and toilet cleaner and an 

alcohol based aftershave. Samples were tested in duplicate using either the Cell-

TiterGlo assay (Promega) in 384 well plate (50 µL of cells, 30 µL sample and 50 µL 

Cell-TiterGlo reagent) with the Varioskan Flash luminometer and with the 
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smartphone biosensor as previously described. All measurements were performed 

in duplicate and repeated at least 3 times with three different cartridges.  

4.2.8 “Sentinel cells” immobilization 

To evaluate the feasibility of obtaining actual ready-to-use cartridges with pre-

loaded “sentinel cells” we performed preliminary cell immobilization experiments. 

Cell suspensions were prepared in DMEM as described before at 2x106 cell/mL and 

mixed with 2% agarose solution (cooled down to about 40°C) at 1:1 ratio. Cell-

agarose mixtures were then transferred (50 µL/well) into 4-wells 3D-printed 

cartridges and stored at 4°C for 6 days. A cartridge was used each day to evaluate 

biosensor response using 5% v/v DMSO (final concentration) as moderate toxic 

sample. Briefly, each cartridge was equilibrated at room temperature (23°C) for 15 

min, then 30 µL of DMSO solution and 30 µL of PBS were dispensed in duplicate in 

sample and control wells, respectively, and incubated for 30 min at room 

temperature. After addition of 1mM D-luciferin solution (50 µL), BL images were 

taken and analysed as previously described and the biosentinel response of control 

wells at day 0 (freshly immobilized cells) was set as 100%. All measurements were 

repeated with 3 different cartridges. 

4.3 RESULTS AND DISCUSSION  
Main goal of the present work was the development of a low-cost smartphone-

based device with ability to easily and quantitatively assess toxicity of a sample. To 

develop a smartphone-interfaced biosensor we addressed two main shortcomings, 

related to both “hardware” and “software”, that decrease marketability and real-life 

uses of several smartphone-based biosensing platforms, i.,e., the need for external 

material, equipment, and/or specialized manpower (e.g., to perform precise 

pipetting of microvolume solutions) and easy readout [6, 28-30].  

To overcome such limitations and provide a stand-alone device we included i) a 

custom-developed Tox-App to provide the end-user an immediate and quantitative 
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result about toxicity of tested sample, ii) an all-in-one cartridge holding all reagents 

(BL reagent and control sample) and sampling material (droppers). Another non-

negligible advantage is the low cost production of the portable and compact device, 

which was completely fabricated by 3D printing, and the use of bioluminescent cells 

as power-free living biosentinels. 

4.3.1 3D printed all-in-one device  

We designed a smartphone holder suitable to i) integrate a minicartridge of pre-

loaded cells, ii) create a dark box, iii) integrate reagents’ reservoir and disposable 

droppers for easy sampling, iv) allow for light acquisition thanks to transparent 

windows in the cartridge’s lid. Facile and low-cost 3D printing technology was 

selected to include these features in a compact accessory and rapidly generate a 

number of prototypes [31]. 3D models were rapidly generated with a printing time 

of about 30 min for either the minicartridge and the cellphone adaptor. Computer 

aided design program was used to generate 3D models, then converted to stereo 

lithography (.stl) file format and elaborated with a slicer software. The 3D objects 

were then printed layer-by-layer from the bottom up by heating and extruding 

thermoplastic ABS filaments.  

The smartphone adaptor was designed to fit a Samsung Galaxy Note II (Fig. 1(c)) and 

was fabricated in three pieces to simplify the interchangeability between 

smartphones with central camera. In this way the black “dark box”, which also 

comprises two slits for the droppers, can be reused with different smartphone 

covers and the 3D printed cartridges are almost universal (Fig.1(a)).   

The ready to use, disposable cell-cartridges were designed as an all-in-one frame 

which provide duplicates for both control and test wells and two reservoirs for the 

BL substrate and PBS buffer (Fig. 1(b)). Since for BL signal acquisition the precise 

focal distance is not required (about 8 cm for this smartphone model), the depths of 

the cartridge array and the dark box were selected to allow the simultaneous 
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imaging of the wells while maintaining a compact size (device height 3 cm). The 

upper portion of the well array is specifically “carved” to allow an almost equal 

distribution of the BL substrate, injected through a central hole in the lid, to all the 4 

wells simultaneously. A black sliding lid with transparent windows was created to 

protect the cells and avoid crosstalk between wells while allowing to acquire the BL 

signals with only a 5% reduction of transmitted light with respect to those obtained 

without the lid.  

4.3.2 Android-Based Toxicity Application (Tox-App) 

In mobile-based sensing devices, smartphones are frequently used for data 

acquisition or visualization. In such configurations smartphone-based sensing 

exploits available apps for image storing and/or for sending results (eg., raw images) 

to labs for data handling and interpretation with pc image analysis software 

packages such as the open source ImageJ (http://imagej.nih.gov/ij). This leads to an 

increase in time-to-results and unsuitability for locations with scarce or no internet 

access, which is a common condition in developing countries or remote areas. 

Conversely, we developed an Android App for to provide i) user instructions and 

assay timing, )ii image capture, iii) automatic analysis and results.  

The main script of the application uses Python Imaging Library exploiting its image 

processing and graphics capabilities. Since samples and controls’ positions are fixed, 

the first step of our algorithm is the creation of four matrices of 150x150 pixels 

matching the cartridge wells. Each pixel in our matrices is represented by three 

numbers corresponding to its RGB values, then the mean RGB of each matrix is 

calculated and an additional average is computed between the two matrices of 

sample and control wells, respectively. The "Cell viability" value of the sample, 

discriminating between three different situations arbitrarily set as “Safe” (100-80%), 

“Harmful” (79-30%) and “Highly toxic” (<30%), is computed as percentage of BL 

signal normalized with respect to control set as 100%. 
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Major advantage of Tox-App, in comparison to previously reported apps is its data 

handling capability. In fact, similar apps often rely on a server that elaborates data 

and sends back results [32]. Although this data transfer occurs almost in real time 

(within two min) it cannot be used in those areas where connectivity is poor or 

limited. Contrarily, the Tox-App (Fig. 2) provides immediate and quantitative results 

about sample toxicity in terms of cell viability and with a user-friendly warning 

message that classifies sample toxicity accordingly as safe, harmful or highly toxic. 

  

4.3.3 “Sentinel cells” assay analytical performance 

In an effort to obtain a biosensor able to provide a response relevant to human 

physiology, we selected human embryonic kidney cell lines which are considered a 

good model for toxicity studies [33]. Additionally, these cells are easy to grow and 

can be transfected with high efficiency, thus being a good candidate for the 

integration into the biosensor. We selected as reporter protein the green emitting P. 

pyralis thermostable mutant PpyGRTS, which was previously described [27]. This 

human codon optimized luciferase is rapidly produced and accumulates in 

mammalian cell, even at 37°C, thus providing a sensitive reporter BL cell-line. In 

addition, its BL emission spectra (with maximum at 549nm and an half bandwidth of 

70nm) nearly overlaps the spectral transmittance of the green filter of the Bayer 

matrix in the smartphone CMOS sensor, allowing a better sensitivity and reduced 

noise in the green channel. 

To explore the suitability of using the integrated CMOS sensors of a smartphone to 

image the BL signals emitted by cells, we preliminary evaluated the minimum 

number of detectable Hek293T cells expressing luciferase PpyGRTS. To this end a 

4x4 mini cartridge (Fig. 3(a)) was fabricated as described in Materials and Methods 

section. Cell dilutions were imaged with the smartphone and compared to BL signals 

obtained with the reference Varioskan Flash luminometer (Fig. 3(b)) using 384 
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microwell plates. The cell number leading to a signal corresponding to that of the 

blank plus three standard deviations, was (6.5 ± 0.2) x103 cells for the smartphone 

device and about 10 cells for the Varioskan Flash. Measurements performed with 

the luminometer provided a minimum number of detectable cells three decades 

lower than those obtained with the smartphone. These results prompted us to use 

an average number of 5x104 cells per well to provide acceptable BL signal intensity 

in control wells. 

 

Fig. 3. (a) Picture of the 3D printed multi-well cartridge used for determination of minimum  

number of detectable cells. The minicartridge (dimensions: 36 mm x 50 mm x 24 mm) was 

fabricated with dual-extrusion of black and white ABS, contains 16 wells of about 3.5 mm x 3.5 

mm x 4.5 mm each. (b) BL emission kinetic of transfected Hek293T cells obtained with Varioskan 

luminometer after addition of D-luciferin solution. (c) BL image of serial dilution of cells, seeded in 

duplicate in the multiwell cartridge, obtained with the smartphone after addition of D-luciferin 

solution. Images were taken at 0.9 MP with 5s integration time using Camera FV5-lite App. (d) 

Elaboration of BL image with ImageJ software to quantify the BL signal of each well and to 

calculate the minimum number of detectable “sentinel cells”. Inset: interactive 3D surface plot of 

BL image of panel c. 
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The analytical performance of the toxicity assay with “sentinel cells” was evaluated 

by testing different concentrations of toxic simulated samples. We first used DMSO, 

chosen as model toxic compound for its well-known toxic effect [34]. A toxicity 

curve for DMSO in the range from 0.1 to 40% v/v was obtained with the smartphone 

(Fig. 4(b)). An IC50 of 8.9 ± 0.7 % v/v was calculated vs an IC50 of 5.7 ± 0.5 % v/v 

obtained with the commercial Cell-TiterGlo kit (data not shown). A within-run 

coefficient of variation of 9% and 12% was obtained by using 6 different cartridges 

at 1% and 10% v/v DMSO concentrations, respectively. Since the final device 

integrates droppers for reagents and sample addition without the need of additional 

instrumentation (e.g., laboratory micropipettes) we compared results obtained with 

the all-in-one-device assay format (with integrated droppers) with those obtained 

with same assay but precise manual dispensing using conventional laboratory 

micropipettes. As expected a higher, but still acceptable for on-site analysis, CV% 

(15%) was obtained with the provided droppers compared to 10% obtained using 

laboratory pipettes.  
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Fig. 4. (a) Pictures describing the easy steps required to perform a toxicity test: open the ready to 

use cartridge by sliding the lid and add one drop of sample to each test well, then close the lid and 

add the BL substrate from the reservoir with the other dropper. Insert the cartridge into the 

adaptor and acquire the BL image. The running Tox-App guide the user through the steps and 

process the images providing user-friendly results. (b) DMSO toxicity curve obtained with the 

smartphone and screenshots of BL image and relative result of selected DMSO concentrations of 

0.1, 5 and 20% corresponding to the three warning levels of the Tox-App, set as “Safe” (100-80%), 

“Harmful” (79-30) and “Highly toxic” (<30%). 

 

4.3.4 Ready-to use cartridges with immobilized “sentinel cells” 

We evaluated the feasibility of immobilizing the “sentinel cells” to obtain actually 

ready-to-use cartridges that can be stored for short periods of time, until needed. To 

this end several 3D-printed 4-well cartridges containing agarose-immobilized cells 

were prepared, stored at 4°C and daily used to assess the “sentinel cells” response 

using 5% DMSO as model sample. Preliminary results (Fig. 5(a)) clearly indicate that 

the cells rapidly loose the capability to act as “living sentinels”. This could be due to 
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the lack of optimal culture conditions (i.e. temperature, humidity, CO2 and pH) 

which negatively affect cell metabolism and the intracellular machinery involved in 

the luciferase production. Noteworthy, each cartridge contains two control wells 

whose mean BL signal is used by the Tox-App to normalize the mean BL signal of 

sample wells and calculate the cell viability value of sample wells, accordingly and 

normalize the analytical signals accordingly. This correction allows to extend the 

storage time of cartridges with immobilized cells. In fact, S since the loss of 

responsiveness due to cartridge storage equally affects both control and sample 

wells, an internal correction is obtained. As shown in Fig. 5(a) this auto-correction 

can be exploited up to day 3 in which, although control signal drops to 20% and 

sample signal to 14%, the Tox-App provides as output a cell viability of 65% which is 

consistent to 67% (both classified as “Harmful”) obtained with freshly prepared 

cells. After more than 3days of a 4-day storage the BL signal of control well 

decreases more than 95% and the Tox-App does not was unable to process the raw 

data, providing a “Test failed: unable to measure control wells” message.  

The short time stability of sentinel cells in the present configuration surely limits the 

supply of cartridges in decentralized laboratories, even so ready-to-use cartridges 

might be prepared in specialized manufacturing sites and transported or delivered 

within 2-3 days at quite remote distance within 2-3 days where the analysis is 

required, including small labs, hospitals and on the field. Indeed the smartphone-

based toxicity biosensor could also represent an alternative to expensive 

luminometers in small laboratories.  
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Fig. 5. (a) Immobilized “sentinel cells” responsiveness. Cartridges with pre-loaded “sentinel cells” 

immobilized in agarose-containing medium were prepared and stored at 4°C for 6 days. A 

cartridge was used each day to evaluate biosensor response using 5% v/v DMSO as moderate toxic 

sample. The biosentinel response of control wells at day 0 (freshly immobilized cells) was set as 

100%. The results obtained with the Tox-App (in terms of cell viability %) are also shown. After day 

3 data were not processed due to excessive cell-death even in control wells. (b) Real sample 

analysis. The toxicity of several “everyday life” products was assessed using the smartphone 

biosensor; samples included: (1) 10% Ethanol, (2) floor cleaner (3) toilet cleaner, (4) bio-degreaser, 

(5) mineral oil, (6) aftershave, (7) washing additive, (8) moisturizer, (9) liquid hand soap, (10) skin 

toner, (11) tap water. All measurements were repeated with three different cartridges. 

 

Further work will be focused to increase the stability of immobilized mammalian cell 

lines stored at unconventional conditions with respect to standard culture settings 

(usually 37°C, 5% CO2, 95% relative humidity). We are working to optimize a 

previously developed matrix combining natural and synthetic polymers able to keep 
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immobilized microbial bioreporters (E. coli and S. cerevisiae) alive and responsive for 

up to 1 month. [13]. The potential of hypothermic storage of mammalian cells has 

been recently outlined by Xu et al. who employed a cell-membrane-mimetic 

polymer hydrogel to keep mouse cells alive for more than 1 week at 4 °C and 4 days 

at 25 °C [35]. Even more promising is the possibility to obtain spheroids and exploit 

the long term metabolic arrest induced by air-drying. A 6-week long-term viability 

(at least 6 weeks) during storage in air, at room temperature of Hek293 cells was 

obtained by Jack et al. using partially dried 3-D multicellular spheroids  [36].  Such 

approaches could represent a significant step forward towards the development of 

robust cell-based biosensors and for their facile transport and storage.  

4.3.5 Real samples analysis 

To investigate the suitability of using the developed smartphone toxicity platform 

for actual applications we analysed real-life samples such as tap water, detergents 

and other products commonly handled in everyday life. Results are shown in Fig. 

5(b), in which the output of the Tox-App quickly highlights sample toxicity: 3 

samples were classified as safe, 3 as harmful, and 5 as highly toxic. The samples 

were analysed both with the smartphone-based biosensor and with a commercial 

toxicity assay for mammalian cells (CellTiterGlo® assay) that quantitates ATP, 

considered as an indicator of metabolically active cells. As previously described, the 

Tox-App provides both quantitative results in terms of cell viability and includes a 

qualitative readout for immediate understanding of potential health threats. Albeit 

most of the viability values correlate well with CellTiterGlo®, there are some 

discrepancies that could be ascribed to the diverse configuration of the two assays. 

In fact, in the smartphone-based assay the luciferase is expressed inside the cells 

and, by using a permeable D-luciferin solution, the BL reaction only relies on 

intracellular ATP of metabolically active cells. Conversely, in the commercial kit the 

luciferase and BL substrate are added together with a lysing reagent to release ATP 

from the cells, but also extracellular ATP that has been released from dead cells or 
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even due to plate contamination take part to the reaction, thus contributing to the 

light output. Nevertheless, the smartphone-interfaced whole-cell biosensor proved 

suitable for user-friendly, rapid and affordable toxicity testing.  

 

4.4 CONCLUSION  

We hereby report the first bioanalytical application of a smartphone to detect the 

BL signal of genetically engineered bioluminescent living cells. We developed an 

integrated smartphone-based toxicity biosensor, relying on BL “sentinel cells” into 

3D printed cartridges. The developed device, which includes all chemical reagents 

and droppers for sample and BL substrate addition, together with the custom 

designed Tox-App, provides a standalone platform for user-friendly quantitative 

toxicity testing. The 3D-printed smartphone adaptors could be easily designed and 

produced at low-cost for any kind of mobile device, resulting in a very versatile 

approach.   

Future work will be focused on the immobilization of mammalian cells into suitable 

biocompatible matrices to improve cell viability during cell storage [37-38] or on the 

use of alternative eukaryotic cell-lines which are less demanding in terms of 

culturing condition (e.g. trout cell lines, [15]. In addition, as direct 3D printing of 

living cells is an emerging approach for regenerative medicine and in vitro drug-

screening and toxicology applications, the use of “bio-inks” [39] could be also 

applied to enable a direct and robust deposition of “sentinel cells” into 3D-printed 

devices for the development of integrated biosensors.  

Conscious that huge efforts will be required to extend the lifespan of the integrated 

cells and to improve their responsiveness to reduce the time-to-response signal, the 

author believe that it could find significant application as rapid alerting tool. Such 

validated biosensor could represent a turnkey solution for rapid, sensitive, portable 
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toxicity sensor, currently not available in the market, suitable for detecting the 

presence of harmful pollutants in civil and military water supplies, for terrorism 

surveillance, and for detection of health threats in drinking water in developing 

countries.  
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5.1 INTRODUCTION  
According to a recent estimate (May 2015) of the International Telecommunication 

Union there are more than seven billion mobile cellular subscriptions worldwide, 

corresponding to 97% of the world population [1]. Although this percentage is 

biased by the fact that there is more than one mobile subscription per person in 

developed nations, it is clear that this ubiquitous distribution provides an 

unprecedented opportunity to provide people new affordable tools to address 

“mobile” needs, including recreational and self-diagnosis applications, e.g., 

electrocardiographic monitoring during physical exercise and glucose self-

monitoring [2-4], as well as public safety and environmental monitoring [5]. 

The disruptive potential of technologies enabling on-site environmental detection 

and medical diagnostics in resource-limited settings was already clear several years 

ago, as demonstrated by the huge number of portable biosensors and devices 

reported in scientific literature [6-8]. In the last five years we witnessed an 

exponential growth in the number of proof-of-concept smartphone biosensors [9] in 

which the smartphone integrated detector showed sufficient sensitivity to replace 

portable light detectors such as CCD and photodiodies for detecting medium-high 

concentrations of analyte [10]. For example, a comparison between a BI-CMOS 

sensor with 8-megapixel (8MP) camera of an Iphone 5S and a cooled MZ-2PRO CCD 

camera was reported. By analyzing standard solutions of H2O2 by CL reaction, the 

cooled camera was able to detect a concentration of H2O2 three decades lower than 

the BI-CMOS detector [11,12]. 

The smartphone-integrated CMOS has been exploited as optical detector for several 

biosensing configurations relying on fluorescence, absorbance, reflectance, surface 

plasmon resonance, electrochemiluminescence, and bio-chemiluminescence [13-

16]. Applications of this approach span from diagnostics of simplex virus type 2 

(HSV-2) with an integrated LAMP assay [17] to multiplexed homogeneous assays of 
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proteolytic activity exploiting quantum dots [18] and immunodetection of 

Escherichia coli and Salmonella [19].  

Another promising initiative is Google’s Project Ara, relying and Android-powered 

modular smartphone concept in which the user can select his own modules with 

custom specification, e.g., just as if they were Lego pieces [20]. 

The feasibility of integrating genetically engineered cells into a smartphone-based 

3D-printed device to obtain a cheap and user-friendly toxicity biosensor has been 

previously demonstrated [21]. Cell biosensors offer the peculiar feature of providing 

quantitative information about the actual biological activity of analytes present in a 

sample. Indeed, living cells respond either to analytes that bind to specific 

membrane receptors activating signaling cascades as well as to the fraction of 

analyte able to enter into the cell and interact with intracellular molecular targets. In 

this view, in comparison to bacterial bioreporters [22-24], the use of mammalian cell 

lines is particularly attractive since they represent a better model of human 

physiology, providing more predictive biological information [25,26]. 

Bioluminescent cell biosensors are obtained by introducing into the cell a synthetic 

DNA construct in which the expression of a luciferase is under the control of a 

promoter, which can be constitutive or regulated by response elements activated by 

specific receptors upon binding with target analytes [27-28].   

One of the main advantages of cell biosensors based on reporter gene technology is 

related to the internal amplification of the cell response, i.e. the activation of the 

promoter leads to the production of several luciferase proteins, allowing highly 

sensitive detection. In addition the availability of semi-synthetic luciferases with 

improved emission properties and emitting at different wavelengths, are 

continuously expanding the portfolio of BL reporter that can be exploited to develop 

cell biosensor even in multiplexed format [29-32]. 
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Nevertheless, when compared to cell lines constitutively expressing high levels of 

luciferase used as viability reporter, it is expected that cell biosensors with inducible 

response will result in lower expression of the reporter protein (e.g., at low-level 

promoter activity). Therefore, especially if the smartphone camera is used as 

detector, a more powerful luciferase might be required to obtain a sensitive 

detection. These considerations prompted us to exploit the NanoLuc luciferase, a 

small luciferase (less than 20 kDa) originally obtained from a deep sea shrimp [33], 

which is claimed to have higher specific activity than conventional firefly luciferase 

(>100fold). NanoLuc has been used for several bioanalytical applications ranging 

from reporter gene assays [34-35], to protein-protein interaction [36], immunoassay 

[37] and BL imaging [38]. The feasibility of using NanoLuc for smartphone based 

applications has been very recently demonstrated by Arts and colleagues, who 

reported a cell-free bioluminescence resonance energy transfer (BRET) for antibody 

detection [39]. This work is based on purified fusion proteins containing NanoLuc as 

BL donor and mNeonGreen fluorescent protein as acceptor and the presence of 

target antibody results in a color change from green-blue to blue which is detected 

with the smartphone camera and elaborated with a custom developed app.  

Here we report the development of cell biosensors based on NanoLuc luciferase as 

BL reporter and their integration in a smartphone-based device, to assess the (anti)-

inflammatory activity of a sample as well as its toxicity.  

As first proof of concept we decided to focus on inflammatory pathway, mediated 

by Nuclear Factor kappa B (NFkB) transcription factor, which has a pivotal role in 

mammalian cells regulating the expression of several genes involved in 

inflammation and innate immunity and also acts as crucial player in many steps of 

cancer initiation and progression. Since several chronic diseases and intense physical 

exercise states are characterized by elevated oxidative stress and inflammatory 

biomarkers, a current market trend is to provide anti-inflammatory and antioxidant 
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dietary supplements and functional foods to improve performance during athletic 

training or wellness. Several nutritional supplements were identified to suppress 

NFkB pathway, including omega-3 fatty acids [40], glucosamine sulfate [41], and 

squalene [42] among others, thus a simple device to rapidly assess the (anti)-

inflammatory potential and the toxicity of a given sample could be useful.    

To this end human embryonic kidney (Hek293T) cell lines were genetically 

engineered to express the NanoLuc luciferase either under the regulation of NFkB 

response element or a constitutive cytomegalovirus (CMV) promoter. Two different 

NanoLuc variants, namely the unfused NanoLuc (Nluc) and its destabilized version 

NanoLuc-PEST (NlucP), were tested to identify the most suitable intracellular BL 

reporter for smartphone-based detection.  

A 3D-printed smartphone adaptor designed to fit the Nokia Lumia 1020 and 4x4 

wells cell cartridges were fabricated using black acryl nitrile butadiene styrene (ABS) 

to provide a user-friendly apparatus. The analytical performance of the smartphone-

based cell biosensor was evaluated with the inflammatory cytokine tumor necrosis 

factor (TNFα) and white grape pomace extracts were analyzed as proof-of-concept 

real samples analysis.  

 

5.2 MATERIALS AND METHODS  

5.2.1 Chemicals and reagents 

Human embryonic kidney Hek293T cells were from ATCC (American Type Culture 

Collection [ATCC], Manassas, VA, USA) and cell culture reagents were from Carlo 

Erba Reagents (Cornaredo, Milano, Italy). Tumor necrosis factor-α (TNF ) was 

purchased from Sigma (St. Louis, MO, USA). The restriction enzymes required for 

cloning were from Fermentas (Vilnius, Lithuania). The mammalian expression 

plasmid pNL1.1[Nluc], pNL1.2[NlucP] and pGL4.32[luc2P/NF-kB-RE/Hygro], plasmid 
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extraction kit FuGENE HD transfection reagent and NanoGlo substrate were from 

Promega (Madison, WI, USA). NanoLuc luciferase variants Nluc and NlucP were 

cloned into either pCDNA vector and pGL4.32 backbone to replace Luc2P luciferase, 

yielding pCMV_Nluc, pCMV_NlucP, pNFkB _Nluc and pNFkB _NlucP respectively. 

Briefly, the CMV promoter (883bp) was extracted from pCDNA3 backbone using 

BglII and HindIII restriction enzymes, while the 170bp fragment containing five 

copies of an NF-kB response element and minimal CMV promoter was cut from 

pGL4.32[luc2P/NF-kB-RE/Hygro] using KpnI and NcoI. These fragments were purified 

after 1% agarose gel electrophoresis and ligated into pNL1.1[Nluc] and 

pNL1.2[NlucP] backbones (previously cut with corresponding restriction enzymes) 

obtaining pCMV_Nluc, pCMV_NlucP, pNFkB_Nluc and pNFkB_NlucP reporter 

vectors. The selection of correct clones was confirmed by restriction map analysis 

and sequencing. 

Ethanol extracts from white grape pomace (a mix of Vitis vinifera L., cv. Trebbiano 

and Verdicchio, by Cantine Moncaro wineries, Jesi, Ancona, Italy) were obtained as 

previously reported [43]. Grape pomace was washed with water in defined 

conditions (2 hours at 30°C for Sample 1; 6 hours at 30°C for Sample 2; 2 hours at 

37°C for Sample 3) and then extracted overnight at 24°C in 95% (v/v) ethanol. 

5.2.2 3D-printed cartridge and smartphone adaptors  

A cartridge of 40x40mm, 5 mm high, containing an array of 16 square wells (5mm 

wide and 5mm deep each) was created with a desktop 3D printer (Makerbot 

Replicator 2X) using black ABS. Smartphone adaptors were designed to fit a Nokia 

Lumia 1020 and printed using black ABS (FormFutura, Nijmegen, NL) at 300µm layer 

resolution.  
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Smartphone-based BL emission characterization of Hek293T cells expressing 

NanoLuc luciferase 

HEK293T cells were grown in Dulbecco Modified Essential Medium (DMEM high 

glucose 4.5g/L, GE Healthcare) supplemented with 10% fetal bovine serum, L-

Glutamine 2mM, 50 U/μL penicillin, and 50 μg/mL streptomycin. Cells were plated 

on 24 well plate at a density of 1x105 cells/well and transfected with 0.5µg 

pCMV_Nluc or 0.5µg pCMV_NlucP expression vector according to the 

manufacturer’s instructions, using a FuGENE HD:DNA ratio of 3:1 and incubated at 

37°C with 5% CO2. At 24h post transfection the cells were collected and 

resuspended in DMEM at 2x106 cell/mL and BL emission spectra (450-750 nm) and 

kinetic measurements (5 min with 200ms integration time) were performed with 

Varioskan luminometer (Thermo Fisher Scientific, Waltham, MA, USA) using 50 µL of 

cell suspension in 96-well plate, after automatic injection of 50 µL of NanoGlo 

substrate.  

To evaluate the minimum number of detectable cells, serial dilutions of cells (50 µL) 

were pipetted into the multiwell cartridge and imaged with the smartphone after 

addition of 50 µL of NanoGlo. Images were taken with 4s integration time and 

different sensitivity settings (from ISO100 to ISO4000) using Nokia Pro Cam App and 

analyzed using ImageJ software (National Institutes of Health, Bethesda, MD). The 

minimum number of detectable cells was calculated as the number of cells providing 

a BL signal corresponding to the blank signal (culture medium only) plus three times 

its standard deviation. All measurements were performed in duplicate and repeated 

at least three times with different cell cartridges. 

5.2.3 Evaluation of biosensor inflammatory response with the smartphone 

Biosensor response for TNFα was evaluated using Hek293T cells, transiently 

transfected with 0.5µg pNFkB_Nluc or 0.5µg pNFkB_NlucP in 24 well plates as 

previously described. 24h post transfection a 40µL-volume of resuspended cells was 



 71 

transferred (5x104 cells/well) into the 3D printed cell array and incubated in 

duplicate with 10µL of TNFα dilutions (0.1-20 ng/mL). Same volume of culture 

medium was used as control. After 2h incubation at room temperature or at 37°C 

and 5% CO2, a 50µL-volume of NanoGlo substrate was added to each well and image 

was acquired with the smartphone (4s, ISO 800) equipped with the 3D printed black-

box accessory. Images were analysed with ImageJ software and data plotted using 

GraphPad Prism v.5 (GraphPad Software, Inc. La Jolla, CA). All measurements were 

performed in duplicate and repeated at least three times with different cell 

cartridges. 

5.2.4 Smartphone-based real sample analysis  

(Anti)-inflammatory activity and toxicity of ethanol grape extracts was performed 

using a cell-cartridge prepared as follows. A 40µL-volume of Hek293T-pNFκB_NlucP 

resuspended in medium containing 2 ng/mL TNFα was seeded in duplicate in four 

rows (left side of the cartridge). In parallel, a 40µL-volume of Hek293T-pCMV_NlucP 

cells was seeded in duplicate in the right side of the same cartridge. A 10µL-volume 

of ethanol was added to both TNFα “reference” wells and viability control “CTR” 

wells. A 10µL-volume of each sample was added into each row, then the cartridge 

was incubated and analyzed as previously described. Statistical analysis was 

performed by using one-way Anova and p < 0.05 was accepted as significant. 

Activation of NFkB with 2 ng/mL TNFα was used to calculate fold induction of 

treated cells vs “reference” cells. 
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5.3 RESULTS AND DISCUSSION  

5.3.1 Assay design 

Thanks to the high maturity level of reporter gene technology [44] and the 

availability of several bioluminescent proteins with improved features, a cell-

biosensing smartphone platform was developed exploiting the highly sensitive 

NanoLuc luciferase as reporter. The possibility to use a smartphone camera to 

detect BL emitted from living cells or enzymatic reactions was previously reported 

[4]. In particular,   mammalian cell lines were transfected with a firefly luciferase and 

used them as “sentinel cells” [21] as a rapid tool to detect general toxicity of 

samples. Nevertheless, the integration into smartphone-based platform of 

bioluminescent cells able to respond to specific target analytes or to specific stimula, 

such as inflammatory or oxidant effects, surely represents an interesting evolution 

of smartphone-based cell-biosensors.  

To evaluate the feasibility of this approach Hek293T cells were engineered with a 

reporter construct in which the NanoLuc luciferase is placed under the control of 

NFkB (Nuclear Factor kB) response element; in such configuration, the binding of 

TNF to its specific receptor (TNFR) activates the intracellular inflammatory 

pathway which leads to the expression of NanoLuc luciferase (Fig. 1a). Upon 

addition of substrate furimazine, BL emission is acquired with a light sensor, such as 

a smartphone camera.  

In order to obtain cell biosensors with adequate analytical performance, especially 

in terms of sensitivity and short assay time, two NanoLuc luciferase variants were 

selected, i.e., Nluc and its destabilized version (NlucP), having the same coding 

sequence fused to a protein destabilization (PEST) sequence (Fig. 1b), as BL reporter. 

This enzyme is claimed to be about 150-fold brighter than firefly luciferase, 

producing a glow-type emission using the coelenterazine analogue furimazine (Fig. 

1c).  
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Fig. 1: a) Schematic representation of the cell biosensor developed for the evaluation of (anti)-

inflammatory activity. Hek293T cells were transiently transfected with a vector containing five 

copies of NF-kB response element (NFkB-RE) and the NanoLuc luciferase as reporter. The binding 

of TNFα to the TNFR receptor activates the intracellular signalling pathway which leads to the 

expression of NanoLuc luciferase. Light emission was obtained after addition of the substrate 

furimazine. b) Schematic representation of the genetic constructs developed in this work and used 

to transfect Hek293T cells. NanoLuc luciferase variants Nluc and NlucP (destabilized reporter with 

a C-terminal PEST sequence that lead to a more rapid intracellular degradation) were cloned under 

the control of either a constitutive CMV promoter (for cytotoxicity biosensor) and the NFkB 

response element (for inflammation biosensor). c) Diagram of chemical reaction catalyzed by 

NanoLuc luciferase using the coelenterazine analog furimazine (2-furanylmethyl-deoxy-

coelenterazine) as substrate 

 

In addition, the small size (19 kDa) and the absence of post-translational 

modifications and disulphide bonds, enable rapid synthesis and folding of the 

reporter upon induction, thus reducing total assay time. 

The smartphone Nokia Lumia 1020 was selected since it is equipped with a very 

powerful 41 MP camera and it is a widely distributed mobile device. Thanks to 6-

lens optics configuration and the possibility to control the shutter speed up to 4s, 

this device is suitable for low-light imaging applications. A 3D printed adaptor (Fig. 
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2a) and cell-cartridges (Fig. 2b) comprising 16 wells (100µL volume each) were 

fabricated with black ABS to provide a dark-box and avoid crosstalk between 

adjacent wells. The whole accessory device weights only 70g and maintains a 

compact dimension (65x65mm, 60mm height) for easy implementation with the 

smartphone (Fig. 2c).   

 

Fig. 2: a) 3D printed smartphone accessory designed to fit a Nokia Lumia 1020, providing a dark 

box for acquisition of bioluminescent emission. The accessory weights only 70g and maintains a 

compact dimension (65x65mm, 60mm height). b) Multiwell cartridge printed with black ABS 

containing 16 wells of 5x5mm (100µL volume each) and c) assembled self-standing smartphone-

based device 

 

5.3.2 Evaluation of NanoLuc variants expressed in Hek293T cells with 

smartphone-based detection 

To evaluate Nluc and NlucP suitability as reporter proteins for smartphone-based BL 

detection, their coding sequences were preliminary cloned into a mammalian 

expression vector under the regulation of a constitutive CMV promoter (Fig. 1b). As 

expected, both NanoLuc variants showed the same BL emission spectra with a 
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maximum peak at 450nm and half-bandwidth of 75 nm (Fig. 3a). This emission 

largely overlaps with the relative response of the blue filter of smartphone CMOS 

sensor allowing a sensitive BL signal acquisition (data not shown). Emission kinetics 

of same number of transfected cells reveal that cells expressing Nluc provide a BL 

signal about 10-fold higher than NlucP, the latter providing a more stable BL signal 

which allows a more reliable image acquisition (Fig. 3b). 

 

Fig. 3 a) Bioluminescent emission spectra obtained with Hek293T cells expressing the Nluc 

luciferase. The normalized emission spectra of NlucP is overlapping (data not shown).  b) Emission 

kinetics of Nluc and NlucP expressed in mammalian cells using NanoGlo substrate. c) Images of 

same number of cells expressing Nluc and NlucP, obtained with the smartphone (Lumia 1020) at 

different ISO settings (4s acquisition time) (See Materials and Methods for experimental details) 

BL images of 5.0x104 Hek293T cells expressing Nluc or NlucP obtained with the 

smartphone, using an exposure time of 4s, at different ISO settings are shown in Fig. 

3c. Due to the higher accumulation in the cells, Nluc emission is clearly detectable 

even at low sensitivity (ISO 100) but also produces unwanted aberrant images at 

higher ISO. On the contrary, NlucP emission requires higher ISO setting to be 

effectively detected with the smartphone-camera. According to these results, we 

selected to use 4 s acquisition time and ISO 800 settings, which allow to detect BL 
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signal of both luciferases, avoiding color shift and artifacts that could affect 

quantitative analysis.  

RGB measurements of BL images revealed that the blue channel accounts for the 

98.3% of emitted light, while signals on the red and green channels are negligible, 

contributing only for 0.4 and 1.3%, respectively. The fact that Nluc emission in the 

red and green channels is lower than 1.3% could permit its use in combination with 

a red or green-emitting luciferase to develop multiplex biosensors.  

BL images of serial dilutions of Hek293T cells expressing Nluc and NlucP are shown 

in Fig. S2, resulting in a LOD of 150±30 and 950±50 cells, respectively. Despite an 

higher amount of cells will be used for the assay, this low limit of detection 

corroborates the hypothesis that NanoLuc should provide a detectable signal even 

at low induction levels and with shorter incubation time. 

Time course expression of Nluc and NlucP under the control of NFkB response 

element, show that Nluc signal at high concentrations of TNFα is visible even at 30 

min whereas with NlucP longer incubation time is required for sensitive detection 

(Fig S3). However, we noticed that using Nluc also non-induced cells (control) emit a 

BL signal that increases with prolonged incubation time (1.2 times the background 

after 30 min and 2.6 and 4.5 times at 1h and 2h respectively); this is probably due to 

a basal activity of NFkB response element and/or crosstalk between signalling 

pathways. This basal activation is not observed using NlucP, since weak basal 

expression is counterbalanced by its rapid degradation thus avoiding intracellular 

accumulation with non-specific induction. Nevertheless, BL emission of NlucP is 

clearly visible within just 2 hours upon induction, even at low concentration, 

providing fold response values similar to those obtained with Nluc (i.e. 5.3±0.8 and 

4.7±0.3 at 2.5 ng/mL TNFα, for Nluc and NlucP respectively).  
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We also evaluated the capability of both NanoLuc variants for cell-viability 

assessment using DMSO as model toxic compound (data not shown). Differently 

from firefly-luciferases, the luminescent reaction catalysed by NanoLuc is ATP-

independent (Fig. 1c) and the high stability of Nluc, makes it unsuitable for such 

purpose, while the destabilized version NlucP, shows a remarkable decrease at 

increasing DMSO concentration, within the 2h assay time. 

Taken together, these results imply that both variants are suitable for smartphone-

based detection. Nevertheless NLucP represents the ideal reporter for the 

development of smartphone-interfaced cell-biosensors, since a low number of cells 

can be used in combination with shorter incubation time with analyte,  providing 

adequate analytical performance.  

5.3.3 Smartphone-based inflammation assay analytical performance: 

precision and reproducibility 

NanoLuc luciferase variants Nluc or NlucP were cloned under the control of five 

copies of an NFkB response element (NFkB-RE). BL images obtained with cells 

transfected with pNFkB_Nluc or pNFkB_NlucP, incubated with TNFα dilutions in the 

cell-cartridge, are shown in Fig. 4a and Fig. 4c, respectively. The assay in optimized 

conditions consists of incubation of 10 µL of TNFα dilutions (concentration range 

from 0.05-20 ng/mL) per each cartridge well containing 5x104 cells (40µL volume) for 

2h at room temperature. Cell cartridge is then imaged with Nokia Lumia equipped 

with the 3D-printed accessory, for 4s at ISO 800 after addition of 50 µL NanoGlo 

substrate and gentle resuspension to obtain an efficient and homogeneous cell lysis. 

Dose-response curves obtained by quantifying BL emission with ImageJ are shown in 

Fig. 4b and Fig. 4d.  
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Fig. 4: a) Image obtained with Hek293T cells transfected with NFkB-RE_Nluc reporter vector and 

incubated with indicated concentrations of TNF. b) Dose-response curve obtained by using three 

cartridges elaborated with ImageJ and plotted as fold response with respect to control (non-

induced cells). c) Image and d) dose-response curve obtained with Hek293T cells incubated with 

indicated concentrations of TNF, using the destabilized NlucP as reporter under the control of 

NFkB-response element 

 

Dose-response curves in optimized conditions showed the same LOD of 0.4±0.1 

ng/mL for both obtained Nluc and NlucP and an EC50 of 1.3±0.4 ng/mL and 1.7±0.2 

ng/mL, respectively.  

Results obtained by incubating the cartridges in the incubator were not significantly 

different from those obtained at room temperature, with a LOD of 0.5±0.1 ng/mL 

for Nluc, probably due to the short incubation time (2h) that does not enable cells to 

dramatically change their metabolism and, as a consequence, response to analytes 

is within intrinsic biological variability. 
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The concordance of results obtained with both luciferase variants confirms their 

suitability as sensitive reporters to be implemented in smartphone-based detection. 

The response was reproducible with an intra-assay variability of 7% for NlucP and 

15% for Nluc and an inter-assay variability of 10% and 18%, respectively. 

Additionally, the possibility to use NlucP even for cell-viability assessment, makes 

this variant more advisable for smartphone-interfaced toxicity biosensing. 

These values agree with those we obtained with benchtop measurements relying on 

NFkB reporter gene bioassays using Hek293T cells transfected with 

pGL4.32[luc2P/NF-kB-RE/Hygro] vector, but requiring longer incubation times (5h) 

and expensive instrumentation. The assay provided a LOD of 0.10±0.05 ng/mL and 

EC50=1.6±0.2 ng/mL for TNFα, (See supplementary material, FigS4).  

5.3.4 Smartphone-based (anti)-inflammatory cell biosensor: analysis of 

real samples  

In the perspective of using our smartphone-based assay for rapid and cost-effective 

characterization of bioactivity of unknown samples, we propose a cell-cartridge 

arrangement, comprising both cell biosensors for inflammatory and general toxicity 

activity detection, i.e., Hek293T_NFkB_NlucP and Hek293T_CMV_NlucP cells (Fig. 

5a), in which up to three samples or the same sample at different concentrations 

can be tested simultaneously. Each cartridge also contains reference wells incubated 

with 2 ng/mL TNFα and viability control wells (CTR). We selected to induce sample-

wells with 2 ng/mL TNFα, a concentration near the EC50, in order to evaluate both 

anti- and pro-inflammatory activity of samples, with high sensitivity.  

White grape pomace ethanol extracts, which are known to contain several bioactive 

compounds such as catechin, epicatechin, quercetin and gallic acid [45], were 

tested. BL image obtained with the smartphone (Fig. 5a) provides a direct visual 

estimation of sample bioactivity and cytotoxicity.  
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Quantitative analysis revealed that sample no.1 has both inflammatory activity 

(normalized BL signal 145 ± 5%) and cytotoxicity (normalized BL signal 50 ± 3%), 

Sample no. 2 has no significant effect on the cells, while sample no.3 shows a 

remarkable anti-inflammatory activity (normalized BL signal 25 ± 4%), probably due 

to suppression of cytokines-induced IκB degradation [46], although multiple 

mechanisms that could affect NFkB pathway at different levels of the signaling 

cascade cannot be excluded. No cytotoxicity was observed (Fig. 5b). 

 

Fig. 5: a) Image and b) graphical elaboration of real sample analysis using a cell-cartridge 

comprising either Hek293T-NFkB_NlucP cells (in duplicate on the left side) and Hek293T-

CMV_NlucP cells (in duplicate on the right side). Control sample for inflammatory activity was 

obtained by incubating cells with 2ng/mL TNFα while control for toxicity was obtained by 

incubating cells with a solution of 20% EtOH. Both BL signals of control wells were set at 100 to 

normalize results and enable both evaluation of anti and pro-inflammatory activity. As a proof of 

concept, three white grape extracts were analyzed: sample no. 1 shows both inflammatory activity 

and cytotoxicity, sample no. 2 has no effect on the cells and sample no. 3 shows a remarkable anti-

inflammatory activity and no cytotoxicity. All measurements were performed in duplicate and 

repeated at least with three different cell cartridges. 
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In an effort of obtaining a ready-to use cartridge we previously evaluated the 

feasibility of immobilizing cells and store them for few days, for example to mimic 

transport of the cartridge from the production laboratory to where the analysis is 

needed (e.g., small company, private consumer). The possibility of keeping the cell 

biosensors viable for 2–3 days has been demonstrated. This storage is consistent 

with transport or delivery of the cell cartridges where the analysis is required [21].  

Future work will be directed to optimize the shelf-life of cell cartridges, i.e. direct 

growth of cell-biosensor on 3D-scaffold inside the 3D-printed cartridges.  

For actual implementation of cell biosensors into portable smartphone-based 

devices two main challenges can be identified, i.e., the identification of innovative 

strategies for cell immobilization to keep biosensors alive and responsive for long 

periods of time, and the improvement of light emitted by the cells to enable 

detection with integrated CMOS, which are obviously less sensitive than benchtop 

detectors. The major goal of this work was to address the detectability issue by 

careful selection of reporter gene, optimization and standardization of assay 

conditions, and light acquisition parameters to provide researchers of the field new 

directions and tools. 

5.4 CONCLUSION  
In this work we report the development of a bioluminescence smartphone-based 

cell biosensor exploiting NanoLuc luciferase as sensitive reporter for quantitative 

assessment of (anti)-inflammatory activity and toxicity of a sample and its 

preliminary application for testing extracts of white grape pomace. Such 

smartphone-based biosensing platform could meet the needs of small medium 

enterprises not fully equipped with analytical laboratories and expensive equipment 

required for firs-level safety and efficacy tests and could be deployed as rapid 

screening tool for R&D activities of SME looking for new bioactive products. The 

proposed approach thus offers a valuable pre-screening tool to select the best 
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promising samples, e.g., pure molecules, active ingredients, food byproducts, 

vegetal extracts, to undergo more specific and accurate analysis by external 

authorized laboratories. This first pre-screening is not trivial, since it could in 

principle reduce the number of samples to be sent to outsource analysis and, by 

providing real-time results, it could enable a continuous in house management and 

tuning of procedures and protocols to obtain the most active products.  
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5.5 SUPPLEMENTARY MATERIAL 
 

 

 

Fig.S1 Schematic maps (Vector NTI) of final vectors created in this work and used to transfect Hek293T 

cells. The NFkB-RE driven Nanoluc plasmids pNFkB_Nluc (a) and pNFkB_NlucP (b) were obtained by cloning 

the 170bp fragment containing five copies of an NF-kB response element and a minimal CMV promoter 

from pGL4.32[luc2P/NF-kB-RE/Hygro] using KpnI and NcoI, into pNL1.1[Nluc] and pNL1.2[NlucP] backbone, 

respectively. The constitutive expression vectors pCMV_Nluc (c) and pCMV_NlucP (d) were created by 

cloning the full CMV promoter (883bp) from pCDNA3 backbone, into pNL1.1[Nluc] and pNL1.2[NlucP] 

backbone, respectively, using BglII and HindIII restriction enzymes. The selection of correct clones was 

confirmed by restriction map analysis and DNA sequencing. 
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Fig.S2 a) Images obtained with serial dilution of Hek293T cells (in duplicate from top left: 24000, 12000, 

6000, 3000, 1500, 750, 375, 0) constitutively expressing Nanoluc luceferase variants Nluc or NlucP 

(destabilized). b) Elaboration of BL images with ImageJ software to quantify the signal of each well and to 

calculate the minimum number of detectable cells. 

 

Fig.S3 a) Time course images of Hek293T cells expressing Nluc or NlucP luciferase variants under the 

control of NF-kB response element, obtained with indicated concentration of TNF, at different incubation 

time and b) corresponding fold responses obtained using ImageJ software for the quantification of BL 

signals. 
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Fig.S4 Dose response curve for TNF (EC50=1.60.2 ng/mL; LOD=0.100.05 ng/mL) obtained with a 

traditional cell-based assay using a benchtop luminometer, according to the protocol provided by Promega. 

Briefly, Hek293T cells (2x104 cells/well) were transfected with 0.1μg pGL4.32[luc2P/NF-kB-RE/Hygro] vector 

into 96-well plates and incubated for 24h in a humidified 37°C, 5% CO2 incubator. Then, culture media was 

replaced with 100µl of DMEM containing indicated TNF dilutions (induction solution) or DMEM alone 

(control solution) and the plate was incubated for 5h in the tissue culture incubator. Luciferase activity was 

determined using the Varioskan Flash multimode reader (300ms integration time) after addition of 100µl 

BrightGlo substrate. All experiment were performed in duplicate and repeated at least three times. Fold 

response was calculated as ratio between average relative light units of induced cells over control cells, and 

plotted using GraphPad Prism software.  
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Fig.S5 BL signals and corresponding images (inset) obtained with Hek293T_NF-kB_NlucP cells incubated at 

room temperature (25°C) for indicated time before performing the assay. A cartridge was used each day to 

evaluate the cell response using 2 ng/mL TNF (selected reference concentration) for 2h at room 

temperature and images were acquired for 4s at ISO 4000. BL signal intensity decreases with increasing 

“storage” time with respect to those obtained at day 0 (freshly prepared cells). After only 48h (day 2) about 

40% drop in bioluminescence and an increased variability (CV%=25%) was observed, affecting the analytical 

performace of the assay. These results indicate that a small cell incubator for storage and transport of the 

cartridges at controlled conditions (37°C, 5% CO2) would be required to obtain a robust portable analytical 

platform for on-field analysis.  
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CHAPTER 5 
 

 

Bioluminescence imaging of spheroids for high-throughput 

longitudinal studies on 3D cell culture models 
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6.1 INTRODUCTION  
Cell-based assays represent an invaluable tool for the early stages of the drug 

discovery process [1]. Thanks to their easy adaptability to high-throughput and high-

content screenings (HTS and HCS), cell models can identify bioactive molecules 

interacting with molecular targets well in advance of pre-clinical studies. In 

particular, owing to their high sensitivity and high dynamic range, cell-based assays 

relying on bioluminescent (BL) reporter proteins are highly favored in HTS when 

compared with well-established fluorescence-based assays [2]. In BL assays, a 

reporter protein, such as a luciferase, is expressed under the regulation of a target 

promoter sequence or enhancer elements, thus enabling correlation of reporter 

protein expression, measured as light signal, and transcriptional regulation [3].  

Moreover, thanks to the availability of a palette of luciferase reporters that can 

nowadays compete with green fluorescent protein (GFP) and its variants, 

multiplexing is no limited to fluorescence detection [4,5]. Multiplexed BL assays can 

be performed both in vitro and in vivo, i.e., in small animal non-invasive imaging [6]. 

Different luciferases have been obtained by cloning the genes from new organisms, 

by mutagenesis of the genes, and by combining the N-domain and C-domains of 

luciferases from different species [7-10]. This availability enabled the development 

of high-content assays and orthogonal assays, the latter relying on the use of two 

unrelated luciferases for monitoring the same target. This strategy was successfully 

applied to improve the robustness and reliability of large HTS [11,12]. 

Therefore BL cell-based assays based on two-dimensional (2D) monolayer cell 

culture models represent well-established reliable tools that improved the first steps 

of drug-screening, in compliance with the 3Rs (Replacement, Reduction, 

Refinement) principle [13-15]. However, cells in 2D cultures often do not reflect the 

morphology and functionality of their native three-dimensional (3D) phenotypes; 

thus, the relevance of information obtained by the 2D assay is reduced [16]. The 
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more in vitro models represent tissue-specific functionality and, possibly, in vivo 

physiology, the better the prediction of the potential impact of a drug candidate 

before it enters animal and clinical trials. Therefore, the cell microenvironment has 

to mimic in vivo physiological conditions including spatial and temporal dimensions 

and dynamics, physical interactions, such as cell-cell contact, and the cell-

extracellular matrix [17-19]. Several technologies are currently available to produce 

such microtissues with good control of the dimensions and that exhibit tissue-like 

phenotypes including porous scaffolds and polymers, hydrogels, and ultra-low 

attachment cell culture plates [20-23]. These methods take advantage of the natural 

self-assembly tendency that is typical of several cell types. When cells are grown as 

spheroids they are able to generate their extracellular matrix and communicate with 

other cells as in their native environment [24].  

Several 3D cell-based assays have been reported, although most of them rely on 

viability and morphology endpoints with fluorescent readouts [18, 24-25]. The 

transition from BL 2D cell-based assays to 3D is not trivial since most current BL 

assays were designed and optimized for monolayer or suspension cultures. To the 

best of our knowledge, BL non-lysing approaches have not yet been reported for 

imaging of live spheroids. Here, we report a non-invasive real time imaging assay of 

3D cell cultures for longitudinal and high-throughput studies that can be easy 

implemented for screening of drugs and new molecules of interest.  

  

6.2 MATERIALS AND METHODS 

6.2.1 Materials 

The Human Embryonic Kidney HEK293 cell line was obtained from ATCC (American 

Type Culture Collection [ATCC], Manassas, VA, USA). Dulbecco’s modified Eagle’s 

medium high glucose (DMEM), fetal bovine serum (FBS), L-Glutamine, penicillin and 

streptomycin were from Carlo Erba Reagents (Cornaredo, Milano, Italy). The 
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restriction enzymes required for cloning were from Fermentas (Vilnius, Lithuania). 

Tumor necrosis factor-α (TNFα) was from Sigma-Aldrich (St. Louis, MO, USA) and 

plasmid extraction kit, FuGENE HD transfection reagent and D-luciferin were from 

Promega (Madison, WI, USA). The PLG2 luciferase gene, previously obtained and 

described [10] was cloned into the pCDNA3 vector and pGL4.32[luc2P/NF-κB-

RE/Hygro] backbone to replace Luc2P luciferase, yielding vectors named 

pCMV_PLG2 and pNFkB_PLG2. 

6.2.2 2D cell cultures 

Hek293 cells were grown in DMEM supplemented with 10% (v/v) FBS, 2 mM L-

glutamine, 50 U/mL penicillin and 50 µg/mL streptomycin. Cells were plated in black, 

clear bottom 96-well plates at a density of 2x104 cells per well, with 100 µl of 

complete growth medium.  

6.2.3 3D cell cultures 

Hek293 spheroids were obtained using 96 well micro-space round bottom cell 

culture plates with a non-adherent surface generously provided by ElplasiaTM, 

Kuraray, Japan. Before cell seeding, 100 μL of complete culture medium was added 

to each well followed by 200 μL of cell suspension (2x104 cells per well). The plate 

was then incubated at 37°C with 5% CO2. Spheroids growth was monitored every 24 

h for a period of 4 days.             

6.2.4 Characterization of 2D and 3D Hek293 cultures expressing PLG2 

luciferase 

The day after seeding, cells grown in 2D and 3D format were transfected with 0.10 

µg of pCMV_PLG2 according to the manufacturer’s instructions, using a FUGENE 

HD:DNA ratio of 3:1 and incubated at 37°C with 5% CO2. At 24 h post transfection, 

BL emission spectra (450-750 nm) and kinetic measurements (10 min with 200 ms 

integration time) were obtained in 96-well plates with a Varioskan Flash 

luminometer (Thermo Fisher Scientific, Waltham, MA, USA) after automatic 
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injection of 100 µL of 1 mM D-Luciferin citrate solution pH 5.0. All experiments were 

performed in triplicate and repeated at least three times. 

6.2.5 2D and 3D bioluminescence imaging of Hek293 cells expressing PLG2 

luciferase 

Cells grown for 24 h in 2D and 3D microplates were transfected with 0.10 µg of 

pCMV_PLG2 using a FUGENE HD:DNA ratio of 3:1 and incubated for 24 h at 37°C 

with 5% CO2. BL imaging was performed using an inverted microscope (Olympus 

CK40) connected to an electron multiplying charge coupled device (EM-CCD) camera 

(ImagEM-X2, Hamamatsu). Images of 2D and 3D cell cultures were acquired using 

10X (Olympus A10PL) and 4X (SPlan4SL) objectives with an integration time of 30 

sec, at a gain level set to 500, after the addition of 100 µL of 1 mM D-luciferin  

substrate in citrate buffer pH 5.0. Overlay images were obtained using HCImage 

software (v 4.1.2.0). All experiments were performed in triplicate and repeated at 

least three times.  

6.2.6 Spheroid analysis 

Brightfield images of Hek293 spheroids were analyzed using ImageJ version 1.51d 

software to calculate the projected area (A) and perimeter (P) of each spheroid [26]. 

A sphericity factor, named ϕ, was then calculated as follows: 

 

 

 

 

 

    (1) 
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6.2.7 3D bioluminescence imaging assay for inflammatory pathway 

activation 

A 3D assay for inflammatory activity was developed by employing 3-day old Hek293 

spheroids. Briefly, Hek293 cells were plated in 96-well micro-space round bottom 

cell culture plates (Elplasia) at a concentration of 2x104 cells/well in a total volume 

of 100 µL of medium. After 72 h, cells were transfected with 0.10 µg of plasmid 

pNFkB_PLG2 per well using a FUGENE HD:DNA ratio of 3:1. At 48 h post transfection, 

medium was changed and cells were treated in triplicate with 50 µL of TNFα 

solutions in culture medium (0.1-20 ng/mL) or with 50 µL of culture medium as a 

control. After 4 h incubation at 37°C, 100 µL of 1 mM D-luciferin  substrate in citrate 

buffer pH 5.0 [27] was added to each well. Images were acquired with the 

ImagEMX2 EMCCD camera with an integration time of 30 sec, gain 500, using 4X 

objectives. Bioluminescence images were quantified using ImageJ software; a region 

of interest (ROI) was manually designed around each spheroid and its BL intensity 

was calculated with respect to the projected area (corrected BL emission). The mean 

of corrected BL emissions obtained from 20 spheroids was used for the dose-

response curve generated using GraphPad Prism software. All measurements were 

performed in triplicate and repeated at least three times. 

  

6.3 RESULTS AND DISCUSSION 

6.3.1 Characterization of PLG2 luciferase expressed in 3D cell 

cultures/spheroids 

A new enhanced chimeric luciferase mutant, named PLG2, was selected as a 

reporter protein for engineering spheroids. PLG2 is characterized by improved 

spectral and physical properties, i.e., enhanced activity compared with the Photinus 

pyralis wild-type luciferase (PpyWT) (about 35%), absence of red-shifting of 

bioluminescence at low pH (∼6.5), and improved thermostability (24 h vs. 20 min at 

37 °C). Stability to pH and temperature is a desirable feature for BL reporters to be 
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used within cells or living animals, where 37°C and low pH conditions, e.g., as 

consequence of cell metabolism, are commonly found. This luciferase has a Km 

value of 52 ± 6 µM for D-luciferin, which is about 3-fold higher than the value of 

PpyWT, and a Km value for Mg–ATP very similar to PpyWT (79 ± 5 µM vs 86 ± 7 µM, 

respectively). For evaluating the potential application of PLG2 luciferase in spheroid-

based assays, two main issues were considered: the possibility to perform 

bioluminescence measurements in non-lysing conditions, to enable repetitive 

measurements for longitudinal studies, and likely biodistribution issues that are not 

encountered with monolayer or suspension cultures. To this end, we first 

characterized PLG2 expression in spheroids to evaluate emission spectra, kinetics 

and highlight possible problems that could circumvent BL detection in 3D cultures, 

such as substrate and oxygen availability issues at the core of spheroids. As 

expected, the emission spectra did not change when compared with those obtained 

with Hek293 monolayer cultures (Fig.1a) and spectra with a maximum emission at 

556 nm and bandwidth at half-maximal intensity of 68 nm were obtained.  

 

Figure1. (a) Normalized emission spectra of PLG2 luciferase expressed in spheroids (solid line) and 

in 2D monolayer cell cultures (dotted line). Spectra were obtained in non-lysing conditions using 

D-luciferin as the substrate, as described in the Materials and Methods. (b) Comparison of BL 

intensities and kinetic profiles obtained with Hek293 cells (2x104 per well) expressing PLG2 

luciferase and cultured to form spheroids (solid line) or Hek293 cells (2x104 per well) grown in 2D 

monolayer cell cultures (dotted line) in 96 well plates. 
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Those values are consistent with those previously reported [10] in monolayer 

cultures. Bioluminescence emission kinetics were measured by adding a non-lysing 

formulation of D-luciferin previously optimized for live cell imaging [28]. Cells grown 

either in 2D and 3D culture format showed a glow-type emission with a peak 35s 

after substrate addition and the BL signal decreased by half after 5 min (Fig.1b). 

Thus, the emission kinetics obtained with 3D cell culture are suitable for BL imaging. 

An optimal acquisition time window was identified between 25 and 55s, when the 

mean BL signal is 97 ± 3% of maximum emission. However, despite the same 

number of cells were seeded in 3D and 2D format, BL intensities per well obtained 

with spheroids are approximately half of those obtained with 2D cultures. This may 

be partially explained by the inability of D-luciferin solution to penetrate spheroids 

in depth, thus only external cell layers contribute to BL emission. More studies will 

be required to address this point. Moreover, photon losses and scattering effects of 

PLG2 green emission must be considered. This aspect will be further investigated 

using a microscope equipped with optical emission filters and a combination of red- 

and green-emitting luciferases respectively expressed in the core region and in 

surface layers, to quantitatively assess and optimize the substrate concentration and 

distribution within the spheroids.   

The typical output from BL imaging of Hek293 cells (2.0x104 cells/well) cultured on 

conventional 96-well plates and transfected to constitutively express PLG2 is shown 

in Fig. 2a-c. Cells grew as a monolayer and were imaged before confluency using a 

20X objective to identify individual cells (about 800 cells with an average dimension 

of 20 ± 5 µm). Pseudocolor overlay was then used to quantify single cell emission 

corrected by the size of each cell. BL imaging also allows direct visualization of the 

transfection efficiency and to evaluate the metabolic activity of the cells. Indeed, 

despite that all cells are transfected with a plasmid for the constitutive expression of 

the same PLG2 luciferase, BL intensities might be quite different due to the 
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metabolic state of individual cells, which can affect the rate of protein expression 

and degradation, ATP content, etc.).  

Bioluminescence imaging of spheroids was performed using clear bottom 96-well 

micro-space culture plates, where the bottom of each well contains micro patterned 

cone-shaped holes (about 130 micro-spaces) treated with poly(2-hydroxyethyl 

methacrylate) to create a low-adhesion surface. Cells grown in such plates are 

forced to interact with each other forming multicellular aggregates within few 

hours, evolving into spheroids of homogeneous morphology during incubation for 

several days. The dimension and compactness of the spheroids can be defined by 

selecting the initial cell number and incubation time in the 3D culture plate. A 

seeding cell density of 4x104 cells was found to be suitable for efficient formation of 

spheroids with an average diameter of 210 ± 25 µm by day 3 (Fig.2d). The obtained 

spheroid size is suitable to avoid necrosis in the core and to maintain the 

functionality of the cells within the aggregate [29]. The sphericity factor ( ) of 30 

spheroids on day 3 was calculated according to equation [1] obtaining an average 

value of 0.943 ± 0.007. This is close to the icosahedron value (0.939) and indicates 

that the aggregates are quite uniform and of nearly spherical shape.      

Since PLG2 luciferase requires oxygen for BL emission, one issue is related to oxygen 

availability at the core of spheroid. According to a previous report [30], if we 

consider a partial pressure of 150 mm Hg for oxygen at 37°C, the outer layer of each 

spheroid, considered to have a depth of 10–20 μm, approximately reaches complete 

saturation (90%), and no oxygen limitations are observed with spheroids with an 

average diameter of 100 μm. A spheroid with a diameter of 150 μm contains less 

than 2% of cells within a hypoxic core, and 98% of cells composing the spheroids 

have sufficient oxygen for BL reactions. The BL imaging of Hek293 spheroids 

expressing PLG2 luciferase (Fig.2e-f) with a 4X objective allows simultaneous 

recording of the BL emission from at least 20 spheroids in each field. Then, ROIs are 
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manually selected around each spheroid to quantify the BL emission and 

corresponding surface area, to correct the signal from each spheroid according to its 

dimension. 

 

Figure 2. Brightfield, bioluminescence and pseudocolor overlay images of Hek293 cells expressing 

PLG2 luciferase, grown in 2D (a,b,c) or in 3D microplate format (d,e,f).   

 

In contrast with confocal fluorescence microscopy, BL emission cannot currently be 

scanned in z-axis to make a 3D reconstruction of emitted light. In the present 

configuration, i.e. using micro molded plates to create spheroids and an inverted 

microscope, it is only possible to focus on a few cells on the bottom surface of the 

spheroids, while BL emission originates in the upper portion of the aggregate. This 

results in more blurred images compared with the 2D format. Nevertheless, since 

the aim is to determine the global distribution and biological effect of a given 
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treatment/target in a more in-vivo like format, BL imaging of spheroids can 

represent a convenient, easy to use approach.     

6.3.2 3D Bioluminescence assay for inflammatory pathway activation   

To evaluate the feasibility of using 3D bioluminescence imaging of Hek293 spheroids 

for upgrading 2D drug screening, we first developed a 3D assay for inflammatory 

activity.  Three day-old Hek293 spheroids, transfected with a reporter construct in 

which the PLG2 luciferase is placed under the control of the NFkB (Nuclear Factor 

kB) response element, were incubated with different concentrations of TNFα 

(concentration range 0.1-10 ng/mL) for 5 h.  The binding of TNFα to its specific 

endogenous receptor (TNFR) activates the intracellular inflammatory pathway, 

leading to PLG2 expression.  

 

Figure 3. 3D bioluminescent assay for inflammatory pathway activation. Bioluminescence imaging 

of Hek293 spheroids (4X objective, 30 s acquisition) transfected with 0.10 μg of reporter plasmid 

pNFkB_PLG2 and treated, 48 h post-transfection with medium only as a control (a) or 0.1, 1.0 or 

10 ng/mL TNFα solutions (b,c,d). Magnification bar is 500 μm. 
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Hek293 spheroids of uniform size and shape (Fig.3a-d) had BL emission that 

increased with TNFα concentration in a dose dependent matter. Noticeably, the BL 

emission from individual spheroids was not homogeneous. This distribution is 

actually expected since cells have been transfected directly in 3D; thus, the cell 

response is affected by the diffusion of the transfection complex within the 

aggregates. We choose to transfect 1 day-old already formed aggregates (mean 

dimension 120 ± 15 µm, estimated 350 cells/spheroid) to simulate the delivery of 

the nano complex (i.e. plasmid DNA/ FugeneHD cationic polymer) and visualize its 

biodistribution and cell response after treatment, based on PLG2 expression. To 

evaluate the response of all the cells composing the spheroid, the establishment of 

stable cell lines will be required.  

Dose-response curves for TNFα were obtained with both monolayer cultures and 

spheroids, obtaining EC50 values of 2.6 ± 0.4 and 3.5 ± 0.5 ng/ml, respectively 

(Fig.4). Compared with the 2D format, a higher NFkB basal activation (4.1 ± 0.3 fold) 

was found in 3D spheroids. This is consistent with results obtained by Jack et al., 

who reported the presence of an intra-spheroid cytokine signaling that propagated 

inside the aggregate inducing NFkB and JNK pathways [31].  
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Figure 4. Dose-response curves obtained in 2D (dotted line) or 3D (solid line) cell-based assays. 

Hek293 cells were incubated for 4 h at 37°C with the indicated concentrations of TNFα, using PLG2 

as a reporter under the control of NFkB-response element. BL measurements were obtained after 

the addition of 1 mM D- luciferin. 

 

6.4 CONCLUSIONS 
A high-throughput bioluminescence assay based on micro-patterned multi-well 

plates is reported. The feasibility of the assay was tested using the well-known 

transcriptional regulation of the nuclear factor k beta (NFkB) response element in 

human embryonic kidney Hek293 cells. We obtained concentration-response curves 

and compared them with those obtained using conventional 2D cell cultures. One of 

the main advantages of this approach is the non-lysing nature of the assay, which 

allows for repetitive measurements on the same sample. The assay can be 

implemented in any laboratory equipped with basic cell culture facilities and paves 

the way to the development of new 3D assays in fields ranging from drug screening 

to drug delivery.  
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From an analytical point of view, living cells provide an excellent tool to obtain 

precise functional information, which is hard to obtain with conventional analytical 

techniques. This information is highly valuable in several fields including drug 

screening, food safety and quality assessment, and environmental monitoring.  

Whole-cell bioluminescent (BL) biosensors for multianalyte detection have been 

developed and implemented into smartphone-based devices for point-of-care and 

point-of-need applications. Cell biosensors offer the peculiar feature of providing 

quantitative information about the actual biological activity of analytes present in a 

sample. For achieving more valuable information, e.g., in terms of reliability of data, 

in particular in relation to toxicity and bioactivity, many 3D cell models will be 

developed providing an environment that faithfully mimics the in vivo physiological 

conditions.  

Conscious that one of the major limitation of the proposed smartphone-based 

assays is connected to the use of living mammalian cells, two main challenges will be 

addressed: the identification of innovative strategies for cell immobilization to keep 

biosensors alive and responsive for long periods of time, and the improvement of 

light emitted by the cells to enable detection with portable light detectors, while 

keeping adequate sensitivity, comparable with that obtained with  benchtop 

detectors. In particular, the feasibility of immobilizing the 3D “sentinel cells” will be 

evaluated to obtain ready-to-use cartridges that can be stored for long periods of 

time, without losing their responsiveness, until needed. For this reason, future work 

will be directed to optimize the shelf-life of cell cartridges i.e. direct growth of cell-

biosensor on 3D-scaffolds inside the 3D-printed cartridges and the immobilization of 

cells into suitable biocompatible matrices to improve cell viability during cell storage 

and reduce the time-to response signal. Moreover, the use of alternative eukaryotic 

cell lines will be also explored. In particular more robust cell lines (e.g. fish cell lines), 
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that are less demanding in terms of culturing condition and can be maintained at 

atmospheric CO2 will be explored. 

3D BL cell biosensors for multianalyte detection will be developed in order to 

evaluate the toxicity and presence of pollutants in water, food and the environment. 

To this end, a multicolor bioluminescent assay will be developed in a smartphone-

biosensing platform with improved analytical performance in terms of increased 

shelf-life and predictivity of results. To increase robustness of the biosensor we will 

include an internal viability control exploiting two red-green emitting luciferases 

requiring the same substrate, whose feasibility has been previously demonstrated in 

conventional 2D cell cultures. In this perspective, the proposed biosensing platform 

would aim to become a useful tool for a first level on-site screening of potentially 

harmful compounds or toxic substances, prioritizing samples for a more accurate 

chemical analysis. 
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