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GENERAL INTRODUCTION                                                                                                                                              
 

The ability to proliferate and participate in several cellular processes, such as 

morphogenesis, wound healing and adult tissue maintenance, can make cells gain access 

to a level of genomic information that is normally denied, allowing them to subvert the 

functions of normal tissues 1. During carcinogenesis, deregulation of several cellular and 

enzymatic processes is observed, and specific alterations have been characterised for 

many types of cancer 2. It is now largely accepted that cancer onset and progression are 

the result of genetic and epigenetic changes in a subset of cells that acquire advantageous 

phenotypes, leading to unrestrained clonal expansion. Such as it happens with Darwinian 

evolution, frankly neoplastic cells develop from such kinds of mutant clones 3. Therefore, 

tumour-forming cells are the result of a development gone awry1. Two classes of genes, 

essential to fundamental physiological processes (cell cycle regulation, DNA damage 

repair, control of cell polarity, endocytic pathways), are involved in tumourigenesis: 

oncogenes and tumour suppressor genes (TSGs). Dominant, gain-of-function (GOF) 

mutations lead to high protein production or increased protein activity, while TSGs are 

generally inactivated by loss-of-function (LOF) mutations 4. About 90% of human 

cancers have an epithelial origin, and the first genetic alterations usually cause local 

hyperplasia, dysplastic growth and subsequent evolution to an in-situ carcinoma, whose 

cells are confined within the basement membrane (BM). Subsequently, tumour mass 

starts to suffer from hypoxia and secretes soluble factors that activate the stromal 

endothelial cells. In time, tumour cells secrete molecules able to degrade the basement 

membrane (BM) and begin to spread in the underlying compartment, where they can 

enter lymphatic or blood vessels and move away from the primary site. Finally, cancer 

cells can seed micro-metastases that in time may develop into secondary lesions 1. This 

multi-step process, in which a series of subsequent mutations guides cell transformation, 

is complicated by the involvement of the microenvironment (Fig. INTRO 1) 5–7. 

Furthermore, studies performed in murine tumour models showed intra-tumour functional 

and phenotypic heterogeneity: different sections of the same tumour displayed cells with 

distinct growth rates, metabolism and metastatic potential 8.  
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Figure INTRO 1 | Stromal contribution during tumour progression 7. 

 

 

THE HALLMARKS OF CANCER 
To better define the complex biology of cancer, Hanahan and Weinberg classified and 

described the main characteristics of cancer cells (Fig. INTRO 2). 

 

 
 

Figure INTRO 2 | Phenotypic traits of cancer cells 9. 

 

The phenotypic traits of cancer cells include six main biological abilities acquired during 

tumourigenesis. They represent the first level of tumour complexity 9.  
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Sustaining Proliferative Signalling 

The most obvious capacity of a cancer cell is an uncontrolled proliferation. Normal 

tissues release and control production of growth-promoting signals, which promote access 

and progression into the cell cycle, ensuring the maintenance of cell homeostasis and the 

normal architecture and function of tissues. Due to deregulation of these signals, tumour 

cells cater for their own sustenance. Growth factors (GFs) are essential molecules in 

signal activation; they bind their receptors at the cell surface, turning on intracellular 

signalling pathways involved in cell cycle control (an increase of cell size and cell 

survival) and metabolic reprogramming 4,9. Tumour cells acquire the ability to sustain 

proliferative signals through some alternative ways: they can produce GFs by themselves 

and may respond by expressing related receptors, resulting in the stimulation of an 

autocrine proliferation 10; otherwise, cancer cells can stimulate tumour-associated stromal 

cells to supply them with GFs 11. Several studies have shown an active role of normal 

stromal cells in tumour growth and cancer cell dissemination 12. The signalling pathways 

can also be deregulated by receptor hyper-expression on the tumour cell’s surface or by 

structural aberration of receptor proteins, leading to a constitutively activated signalling 9; 

activation of downstream cytoplasmic circuits is also responsible for sustained 

proliferation: a central role is played by the RAS/RAF/MAPK cascade, altered in 25% of 

human tumours 13.  

 

Evading Growth Suppressors 

To be completely independent of cell’s regulatory systems, cancer cells must also 

circumvent the anti-proliferative signals dedicated to cell quiescence and tissue 

homeostasis. The anti-proliferative signals can act on cell cycle in two ways: they may 

allow cells to enter a reversible quiescent state in which they cannot divide (G0), or they 

may induce cells to differentiate 4. Many TSGs are involved in the regulation of cell 

growth and proliferation. The RB (retinoblastoma-associated) and TP53 genes are the two 

most important TSGs, which act as key regulators of cell proliferation or, alternatively, 

activate senescence/apoptotic death programmes. The pRb protein integrates anti-

proliferative signals from the extracellular environment, while the TP53 protein operates 

as a stress sensor, detecting intracellular dysfunction. In a normal condition, when the 

TP53 circuit is active, the cell cycle is stopped; cells try to repair the damage but, if they 

fail, apoptotic mechanisms are triggered. TP53 is often mutated in cancer cells: stress 

signals are not adequately transmitted and cells continue to divide 14. Therefore, 
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mutations in these two genes have deep consequences in cell’s capacity to respond to 

alarm signals, ultimately resulting in uncontrolled growth induction 9. 

 

Resisting Cell Death 

Apoptosis represents an important biological phenomenon in homeostasis regulation. It is 

activated by intracellular physiological stress (irreversible DNA damage, low oxygen 

levels, proliferative signal shortage) or by extracellular signals (loss of cell-cell or cell-

matrix interactions, unbalance between pro-apoptotic and proliferative factors in the 

surrounding environment) 15. In the ‘70s, massive apoptotic phenomena were observed in 

overgrown cells, and this led to the hypothesis that programmed cell death may be used 

by tissues as a barrier against tumour development 16.  Cancer cells have developed a 

number of strategies to overcome apoptosis, such as LOF of TP53, that is mutated in 

about 50% of human tumours 14. Alternatively, tumour cells can increase anti-apoptotic 

(Bcl-2, Bcl-xL, Bcl-w) and pro-survival (Igf-1, Igf-2) gene activity and/or they can down-

regulate pro-apoptotic genes (Bax, Puma, Bin) 4,9. 

 

Enabling Replicative Immortality 

The traits so far described are not sufficient to explain uncontrolled cell proliferation, as 

the replicative potential of a cell is limited: cells divide a definite number of times, after 

that, they stop growing and enter irreversible senescence 17. In cancer, TP53 or Rb 

inactivation permits cells to proliferate until they undergo massive cell death, along with a 

random acquisition of replicative immortality 4,9. In physiology, the replicative cycles are 

not endless, due to telomere shortening and attrition. Telomeres represent the 

chromosome ends and play a protective role on DNA. A ribonucleoprotein enzyme, the 

telomerase, is able to extend telomeres but, in normal cells, its activation is not sufficient 

and at each cell cycle a part of the telomeric sequences is lost. When telomere reaches a 

minimum length, cells enter senescence. Tumour cells gain the ability to replicate 

unlimitedly by maintaining high levels of telomerase: about 90% of tumour cell lines 

indeed express high rates of this enzyme 17–19. 

 

Inducing Angiogenesis 

Due to cancer cell hyper-proliferation, oxygen and nutrients become insufficient to 

sustain the growing mass. This condition triggers an angiogenic switch: normally, 

quiescent vascularisation proliferates and spreads new vessels, penetrating the tumour and 
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supplying it with oxygen and nutrients. A sustained angiogenesis allows tumour cells to 

access the bloodstream and metastasise at distant sites, an essential characteristic of 

cancer progression. Vessel formation is usually activated by tumour cells through the 

secretion of pro-angiogenic factors: VEGF (Vascular Endothelial Growth Factor) and 

FGF (Fibroblast Growth Factor), responsible for regulating vascular growth even during 

development and wound healing. VEGF plays an essential role in cancer for its ability to 

change endothelial permeability, by activating the MAP kinase signalling pathway 

(MAPK) 4,9. In addition to canonical angiogenesis, also known as “sprouting 

angiogenesis”, at least four other mechanisms are known, still poorly studied: a pre-

existing vessel can split into two or more minor calibre vessels due to mechanical forces 

resulting from the invagination of neo-formed capillaries, a phenomenon known as 

“intussusception”; in “vascular co-option”, tumour cells grow wrapped around the 

resident vessels instead, thus benefiting from direct oxygen and nutrient release; cancer 

cells can also form vessel-like structures in a process called “vascular mimicry”; finally, 

tumour cells can trans-differentiate into endothelial-like cells and contribute to the 

formation of vascular structures, a process called “trans-differentiation”. The last three 

vessel formation strategies are typical of cancer and are found in particularly aggressive 

tumours and/or in those undergone anti-angiogenic therapies 20,21. 

 

Activating Invasion and Metastasis 

The distinctive trait of malignancies is the ability to spread from the primary site to other 

districts through blood or lymphatic vessels. A metastatic disease considers the 

acquisition by cells of invasive and migratory capabilities. A typical alteration of the 

invading cells is the decrease of E-cadherin expression, a key molecule in cell-cell contact 

and in proper formation and maintenance of the epithelium. In human carcinomas, E-

cadherin down-regulation has often been associated with invasion. In addition to this, 

molecules that are normally expressed during organogenesis and cell migration have been 

found up-regulated in tumour cells (as an example N-cadherin, physiologically essential 

in neurons and mesenchymal cells during organogenesis) 22,23. Essential to cancer cells is 

the “epithelial-to-mesenchymal transition” (EMT) programme, through which cells 

change their structure and acquire invasive abilities. The EMT process is normally 

activated in response to a proliferative signal linked to migration capacity, such as during 

wound healing. The junctional and structural collapse, the release of lytic enzymes, 

especially the metalloproteases (MMP), dedicated to the extracellular matrix (ECM) 



 

6 
 

degradation, and the motility increase, allow cancer cells to invade, enter circulation and 

colonise other organs and tissues. In the new site, these cells can be eliminated by 

intrinsic tumour suppression or reside in a quiescent state, known as “dormancy”, until 

the conditions are favourable to proliferate again 4,9. 

 

The analysed traits represent specific capabilities that cancer cells acquire to proliferate, 

survive and disseminate. In the last decade, many studies suggested that two emerging 

traits are also involved in tumour progression: the ability of cells to reprogramme their 

metabolism and the escape from the immune system. The acquisition of every 

characteristic is finally helped by two additional promoting features: genomic instability 

and inflammation (Fig. INTRO 3) 9. 

 

 
Figure INTRO 3 | Emerging hallmarks and enabling characteristics of cancer cells 9. 

 

Deregulating Cellular Energetics 

In aerobic conditions, normal cells process glucose in the cytoplasm through glycolysis 

(glucose is transformed into pyruvate) and, subsequently, in the mitochondria through the 

oxidative phosphorylation (pyruvate is released as a carbon dioxide molecule and this 

process leads to the production of 36 ATP molecules). In anaerobic conditions instead, 

mitochondrial oxidation cannot occur, and pyruvate is partially oxidised and transformed 

into lactate with the production of 2 ATP molecules. In 1956, Warburg observed that 

tumour cells reprogrammed their metabolism towards the use of glycolysis even in the 

presence of oxygen. This phenomenon is known as aerobic glycolysis or “Warburg 

effect” 24. In cancer, this metabolic switch is partly provoked by the glucose transporter 

(GLUT1) up-regulation, that increases the intra-cytoplasmic glucose afflux. Moreover, 
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the most typical cell alterations (such as RAS oncogenic activation, MYC up-regulation 

and TP53 LOF mutation) support glycolysis: MYC and TP53 regulate glycolysis and 

oxidative phosphorylation respectively; in addition, RAS constitutive activation can 

increase the Hypoxia Inducible Factor (HIF) levels that, together with cancer cell’s 

peculiar hypoxia, up-regulate the glycolytic process 25. It is now asserted that tumour 

mass is a complex tissue, constituted by non-cancer and cancer cells interacting with each 

other. With the increase in mass, some internal cells, more distant from the vascular 

system, suffer from hypoxia and are subject to the Warburg effect. They release lactate as 

a waste product, which is used by the most peripheral cells as the main source of energy. 

The two cell populations cooperate in a symbiotic manner to support cell proliferation. 

The basis of this phenomenon, known as “metabolic commensalism”, are still poorly 

characterised 9,26,27. 

  

Avoiding Immune Destruction 

During cancer formation, a still unclear aspect is the role of the immune system. The 

immune surveillance theory proposes that it checks and eliminates the most part of the 

rising tumour cells. According to this concept, the succeeding solid tumours should have 

managed to limit the immune response control, eventually avoiding suppression. The 

immune evasion seems to be confirmed by the increasing of virus-induced tumours in 

immunocompromised individuals 9,28. Besides, experiments conducted in genetically 

modified mice and epidemiological studies suggest that the immune system operates as a 

barrier also during formation and progression of some non-viral cancers. Furthermore, it 

was observed that highly immunogenic cancer cells were usually eliminated in 

immunocompetent hosts, a phenomenon called “immunoediting”. Less immunogenic 

tumour cells persist in the tissue and can successively colonise both immunocompetent 

and immunodeficient hosts. Contrariwise, when immunogenic cancer cells are 

transplanted in an immunodeficient host, they can undertake unimpeded proliferation. 

Tumour cells are thus eliminated from the tissues when confronted with the immune 

system of the host for the first time 29–31. Clinical epidemiology supports the existence of 

anti-tumour immune responses in some forms of human cancers 32,33. All these 

argumentations try to elucidate the strategies that tumour cell use to evade the immune 

system components, but the evidence is still rudimentary and, for this reason, it is 

considered an emerging trait 9. 
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Genome Instability and Mutation 

Tumour progression is often represented as a succession of mutations conferring growth 

and expansion capabilities to cells. Damage detection and repair ensures proper 

maintenance of tissue homeostasis, and the spontaneous mutation rates are usually very 

low during cell division. Tumour cells often increase the mutation rates to trigger tumour 

processes 9,34. Cells must segregate their intact genetic material into daughters. When this 

process goes awry, genic and genomic alterations such as chromosomal translocations 

and/or aneuploidies occur. Genomic instability can initiate cancer in different ways: 

telomere attrition, centrosome amplification, epigenetic modifications and DNA 

alterations 35,36. In the last twenty years, substantial progress has increased the 

understanding of gene functions involved in genome integrity maintenance (for example, 

TP53). The behaviour of these genes is like that of TSGs, so, during tumour progression, 

their function can be lost through both inactivating mutations and epigenetic silencing 37. 

Moreover, telomeric DNA damage generates karyotypic alterations such as amplification 

and/or deletion of chromosomal segments 38. In cancer cells, the rate of DNA damage is 

high, and damaged cells are more susceptible to the onset of new mutations. Genomic 

instability can confer a selective benefit to pre-cancerous cells: some mutations can help 

cells proliferate, expand and adapt to different microenvironments; for this reason, DNA 

damage is considered an enabling characteristic 9. 

 

Tumour-Promoting Inflammation 

It is well known that tumours are composed of different cell types, including the immune 

system cells 33. This picture reminds the inflammatory state of non-tumour tissues. 

Already in the ‘80s, Dvorak defined cancer as “a wound that never heals” 39.  The 

inflammatory response was attributed to the attempt of the immune system to eradicate 

tumours, but it has successively been recognised as an enabling trait providing cells with 

growth, survival and angiogenic properties, and with signal molecules that trigger EMT, 

invasion and metastasis 40,41. Furthermore, inflammation cells can contribute to genomic 

instability by releasing Reactive Oxygen Species (ROS) 9,40.  
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DROSOPHILA CANCER MODELS 
As previously described, cancer is a complex disease affecting many organs, and its onset 

is driven by the accumulation of mutations and epigenetic changes. The complicated 

pathological picture reveals the need to use simple animal models to study the many 

alterations that contribute to cancer progression. The signalling pathways and regulatory 

system conservation between humans and flies have made Drosophila melanogaster a 

suitable model for cancer studies 42,43. Since the beginning of the XX century, Drosophila 

has been used to study biological complex processes, thanks to the simple use and 

breeding in the laboratory (its life cycle is completed in 10 days at 25°C) (Fig. INTRO 4), 

and to the availability of genetic manipulation techniques that allow the induction of 

cancer in a normal organ in vivo 44. In the ‘70s, the first tumour-related mutation has been 

found in Drosophila 45 in a sub-telomeric locus on the second chromosome left arm, 

subsequently associated with the lethal giant larvae (lgl) gene 46. 

 

 
Figure INTRO 4 | The life cycle of Drosophila melanogaster. At 25°C the cycle is completed in 10 days. 

The progeny is very abundant. Embryogenesis happens inside the egg shells, and 24 hours after egg laying 

(AEL) three larval stages follow (L1, L2, L3) during which larvae increase their size. Finally, 

metamorphosis occurs during the pupal stage and the adult, or imago, emerges at day 10 47.   

 

Later, other TSGs functionally conserved in mammals have been identified.  Fundamental 

developmental processes are highly preserved, such as organogenesis, nervous system 

formation, cell proliferation control, vessel formation and oxygen transport; this has 

allowed the identification of the mechanisms that govern tumour biology 42,48.  
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The Drosophila Nervous System as a Model for Brain Cancer 

Although the clear anatomic divergence between humans and flies, the nervous system 

development and its cellular lineages show many similarities. In the adult fly, many 

mature neural cells, such as the motor neurons and the interneurons, have an embryonic 

origin 49.  During the larval and pupal stages, a large number of neurons and mature glia 

are specified. The central nervous system (CNS) of L3 larvae develops from progenitor 

cells, the neuroblasts (NBs), comparable to the human neural stem cells, and is formed 

by two brain hemispheres connected by the ventral ganglion (VG). Each hemisphere is 

divided into two regions: a medial area contiguous to the VG, called central brain (CB), 

and a lateral region, the optic lobe (OL), dedicated to the vision (Fig. INTRO 5) 50. 

 

 

Figure INTRO 5 | Larval (A) and adult (B) CNSs schematic representation. Optic Lobe (OL), Central 

Brain (CB) and Ventral Ganglion (VG) are highlighted (original drawings by Simona Paglia). 

 
The NBs, progenitors of the mature neurons and glia, originate from the embryo 

neuroepithelium. The neuroepithelial (NE) cells divide symmetrically expanding the 

progenitor pool. Successively, some cells begin a differentiation programme and 

delaminate, becoming NBs 51. The NBs divide asymmetrically at any stage, and each of 

them originates two daughter cells: apically, a cell that preserves NB’s identity and self-

renewal capacity, and basally a small cell, named Ganglion Mather Cell (GMC) which, 

following a single division, differentiates into two neurons or two glial cells. Each 

hemisphere of the Drosophila CB contains about 100 NBs, subdivided into type I and II, 

differing in gene expression and lineages 52,53. Type II NBs are an attractive model to 

study the molecular networks involved in cell fate determination because their lineage 

resembles that of mammalian stem cells 54. Type II NBs constitute a small population 

(only 8 NBs/hemisphere) and divide asymmetrically into a NB and a smaller daughter 

cell, called Intermediate Neural Progenitor (INP). Successively, the immature INP 

becomes mature through a process dependent on Brat and Numb activity; after an 
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additional division cycle, the mature INP generates a new INP, with self-renewal ability, 

and a GMC (Fig. INTRO 6) 55.  

  

 
Figure INTRO 6 | Neuroblast lineages in the Drosophila larval brain 56. 

 

Mammalian neural stem cells generate transit-amplifying cells, that divide transiently and 

exist for a short period before terminal differentiation 54,57. Many genes, implicated in 

neuronal development and cancer, are evolutionarily conserved between humans and 

Drosophila.  

The multiple analogies with the human CNS make the fruit fly an excellent model to 

study both neurodegenerative pathologies (such as Alzheimer's, Parkinson's and SLA) 

and brain tumours 58. A fly model of glioblastoma (GBM) was built by Renée Read and 

colleagues 59. The authors focused on the signalling pathways altered in humans: the 

EGFR (Epidermal Growth Factor Receptor) and the PI3K (Phosphatidylinositol-4,5-

bisphosphate 3-kinase) cascades. They simultaneously expressed the constitutively active 

form of PI3K and EGFR in glial cells, using a pan-glial promoter called repo (reverse 

polarity). This co-activation in larval glia caused neoplasia, neurological defects and 

lethality 59,60. Even though this may be a good model for brain tumours, it has to be taken 

into account that several regions in the mammalian adult brain contain immature 

precursors and that brain tumours such as GBM are thought to originate from cell 

populations with stem properties. Alterations in the PTEN/aPKC/Lgl network have 

recently been associated with the GBM tumour-initiating cells 61,62. The same axis is 

preserved in the Drosophila brain. Very recently, our laboratory showed that PTEN loss 

of function induces aPKC cortical increase and Lgl inhibition in the fly brain and, in 

addition, they found that the tumourigenic potential is promoted by aPKC increase 
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specifically in the type II NBs 63. The genetic manipulation of this network can thus 

represent a good starting point for tracing GBM origin. 

 

Drosophila Imaginal Discs as a Model for Epithelial Tumours 

The Drosophila larval tissues are composed of larval and imaginal cells. During 

metamorphosis, larval tissues undergo histolysis, while imaginal tissues differentiate into 

the adult structures 64. Imaginal cells are highly proliferating epithelial cells organised in 

structures called “imaginal discs” 65 (Fig. INTRO 7). In particular, the imaginal wing disc 

is composed of a pseudo-stratified columnar epithelium (disc proper) and a squamous 

epithelium (peripodial membrane) 66 (Fig. INTRO 8). 

 

 
Figure INTRO 7 | Schematic representation of the Drosophila imaginal discs with the corresponding adult 

structures 67. 

 

Imaginal wing disc structure is morphologically and biochemically comparable to 

mammalian epithelia, and represents a good model for growth and proliferation studies 68. 

During embryogenesis, the wing disc consists of about thirty cells, known as founder 

cells, which proliferate throughout larval development; at the end of the larval life, about 

50.000 cells compose the wing disc. The imaginal tissue differentiation into adult 

structures occurs by eversion 69. To assure that imaginal wing disc development occurs 

properly, positional signals are needed, including the Wingless (Wg) protein, belonging to 

the Wnt glycoprotein family. These proteins can activate several intracellular pathways 

responsible for the imaginal disc formation 70. In embryos, the wing disc starts to 

assemble from a group of Distalles (Dll)-expressing cells. It originates in the intersection 

zone between the ectodermic cells secreting Wg and the ones that release 
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Decapentaplegic (Dpp), the fly orthologue of the human TGF-β (Transforming Growth 

Factor β). Cells destined to become wing disc migrate dorsally and start to express 

Vestigial (Vg) 70. At the end of the larval life, wing discs show a distal region, the “wing 

pouch”, which originates the adult wing, and more proximal regions: the “hinge” will 

originate the structure connecting wing and thorax, and the “pleura” and the “notum” will 

contribute to thorax formation 71. The wing disc is subdivided by the anterior-posterior 

border (A/P) into an anterior (A) and a posterior (P) compartment and, orthogonally to 

this, the dorsal-ventral border divides the disc into a dorsal and a ventral compartment. At 

the basal side of the disc, it is also possible to observe the stromal components of the 

wing disc: the “myoblasts”, that differentiate into the adult flight muscles, and a branch of 

the tracheal system, the “transverse connective”, which conveys oxygen to the organ (Fig. 

INTRO 8) 72.  

 

 
Figure INTRO 8 | Graphic representation of the territories, compartments and cell populations of the 

Drosophila larval wing disc 72. 

 

The development of the A/P boundary is defined by the engrailed (en) gene 73, which is 

precociously expressed in the P compartment. Successively, En induces Hedgehog (Hh) 

expression, a morphogen that spreads towards the A compartment and induces dpp 

activation, encoding another morphogen which leads to the A/P border determination. At 

the beginning of the second larval instar, determination of the dorsal and ventral 

compartments occur 74 thanks to Apterous (Ap) activity, which is only expressed in the 

dorsal compartment. Ap activates fringe (fg), which in turn induces the expression of 

Serrate (Ser), which encodes a ligand for the Notch receptor (Fig. INTRO 9) 75.  
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Figure INTRO 9 | Positional signals and compartment formation during Drosophila wing disc 

development 76. 

 

To exploit their function correctly, epithelia need a close association of the cells that 

compose them. Cell junctions, and a correct apical-basal cell polarity, are fundamental 

traits that maintain epithelial architecture and function. During tumourigenesis, the tissues 

lose these characteristics and overturn the normal biological processes of growth and 

tissue organisation. The cells change their normal architecture and acquire invasive and 

migratory traits. For the first time 

in Drosophila, Bilder found a 

correlation between loss of 

apical-basal polarity and 

proliferation dysregulation 77.  

Three large complexes establish 

and maintain the epithelial 

polarity in the fruit fly: the 

Crumbs/Stardust/ 

PATJ/Bazooka, the Par6/aPKC 

and the Scribble/Discs 

large/Lethal giant larvae complexes, which are respectively located at the apical, sub-

apical and basal-lateral membrane (Fig. INTRO 10). Alterations in any component of 

these complexes cause hyper-proliferation of the epithelial cells and alterations of the 

imaginal tissues 46,78. In epithelial tumours, the LOF of several genes involved in apical-

basal polarity regulation has been described in both flies and mammals 79–81.    

 

Figure INTRO 10 | The Apical-basal polarity regulation in 

Drosophila epithelial cells 84. 
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lethal giant larvae: Cell Polarity and Cancer Development 

Loss of cell polarity is a distinct trait of cancer cells, as it regulates many biological 

processes such as proliferation, migration and transformation 82,83. The Lethal giant larvae 

(Lgl) protein plays an essential role in cell polarity regulation, asymmetric division and 

tumourigenesis by interacting with other polarity proteins, regulating exocytosis, being 

involved in maintaining cytoskeleton and in several signalling pathways 84. lgl is the first 

TSG found in Drosophila, and it owes its name to the fact that mutant larvae show an 

amazing growth of the imaginal discs and brain. Therefore, these larvae do not enter 

metamorphosis and die as giant, bloated animals at the end of an extremely long larval 

stage 85. lgl encodes a 127 kDa protein, rich in WD40 domains involved in cell-cell 

interactions 46,86. Lgl localisation depends on its phosphorylation state: when aPKC is at 

the membrane, Lgl is phosphorylated and released into the cytosol 87. It is also known that 

Lgl inhibits aPKC recruitment at the basal-lateral membrane domain. Therefore, the two 

proteins are mutually exclusive, contributing to apical-basal polarity maintenance (Fig. 

INTRO 10) 77,88. Lgl protein function is also important in neural tissues: it indeed plays a 

key role in the asymmetric division of the NBs. The protein is necessary for a correct 

localisation of cell fate determinants: lgl LOF provokes NBs’ inability to divide 

asymmetrically, resulting in an accumulation of highly proliferative precursors 89. lgl 

mutant phenotype is partially masked by a strong maternal contribution of the wild-type 

product, sufficient as to ensure the development of homozygous mutant individuals until 

the last larval stage. lgl mutant individuals are commonly used to study the molecular 

basis of epithelial transformation 46,77,78,90: imaginal wing discs indeed display a severely 

altered morphology and show a considerably larger size than wild-type (wt) organs (Fig. 

INTRO 11) 46. Those neoplastic tissues transplanted in wt flies overgrow and acquire 

metastatic potential 91. Loss of cell polarity impacts on cell proliferation through 

deregulation of the “Hippo (Hpo) pathway”, an important signalling cascade that controls 

organ size through proliferation and apoptosis regulation 92. lgl LOF upregulates cell 

cycle inducers (such as Cyclin E and E2F1) and triggers nuclear translocation of Yorkie 

(Yki), the downstream effector of the Hpo pathway, with a consequent activation of its 

targets, mainly involved in growth, proliferation and resistance to apoptosis 78,93.   
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Figure INTRO 11 | Effects of lgl LOF: a wild-type imaginal wing disc (on the left) and an lgl mutant wing 

disc (on the right) 94. 

 

The clonal behaviour of lgl mutation is quite different. lgl mutant clones induced through 

X-rays in wt individuals do not show aberrant growth and/or morphological anomalies in 

the adult wing 95 and they are smaller than the neighbouring wt twin clones. Our 

laboratory found that MYC oncoprotein is involved in lgl-/- clonal phenotype. When 

MYC is overexpressed in lgl-/- clones, it supports their growth and enables them to 

develop into a tumour, while lgl mutant cells are not able to grow in a wt epithelium and 

undergo apoptosis 96 as the result of a phenomenon known as cell competition (see after) 
97,98. 

 

In humans, two lgl orthologues have been found: HUGL-1 and HUGL-2 79,80, whose LOF 

has been associated with many human cancers 80,99,100. 

 

Oncogenic Cooperation  

In cancer, different mutations can accumulate in the same cell and cooperate to promote 

neoplastic growth. In fact, in mammalian tumours, we can often observe the 

contemporary LOF of TSGs and aberrant activation of oncogenes. The Drosophila 

imaginal wing discs provide an excellent model for studying oncogenic cooperation, 

thanks to the advanced genetic tools able to mimic the onset of human cancer 42,101. 

Simultaneous induction of both TSGs LOF (for example mutations in cell polarity genes 

such as lgl, scrib and dlg) and oncogenic activating mutations (such as constitutively 

active forms of Ras) in single cells is indeed possible in the fly 101,102. Many well-

characterised TSGs such as PTEN or Hpo pathway components and interactors, and many 

cancer drivers (such as EGFR, Ras, MYC, Notch, Yki) control cell proliferation and 
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growth during development, and are also deregulated in cancer. Surprisingly, their single 

activation in imaginal discs is not sufficient to trigger malignant tumours, although in 

some cases it causes hyperplasia 42. By clone induction, with a combined activation of 

Ras signalling and LOF mutations of cell polarity genes, the Richardson and Xu 

laboratories showed neoplastic overgrowth of epithelial and brain tissues 101,103. These 

pivotal studies demonstrated that, as it happens in mammals, TSG mutations and 

oncogene activation cooperate in transforming cells into malignant derivatives. Cells 

expressing the constitutively active form of Ras (RasV12) grow in a hyperplastic manner 

due to Ras ability to increase at the post-transcriptional level both MYC and Cyclin E 

(CycE) 104, and mutations in cell polarity genes activate Yki, the final effector of the Hpo 

pathway, provoking tissue overgrowth 93,105–107 and alterations in tissue architecture 46. 

Also in human epithelial cancers, these mechanisms are deregulated and loss of cell 

polarity is frequently observed 108-110.  

 

Activation of the PI3K signalling pathway is not sufficient to promote malignant 

transformation instead 101,103,111.  

 

Drosophila Cancer Hallmarks 

Thanks to the high preservation of genes and signalling pathways involved in physiology 

and cancer between humans and fruit flies, it is possible to describe distinct traits of 

Drosophila cancers (Fig. INTRO 12) in order to clarify and highlight new molecular 

aspects of cancer, and to suggest new and innovative therapeutic strategies.   

 

 
 

Figure INTRO 12 | Drosophila cancer traits 112. 
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Sustained Proliferative Signals, Anti-Proliferative Stimuli Evasion and Cell Death 

Resistance 

In Drosophila, mutations in the Hpo signalling cascade promote growth and proliferation 

and also inhibit cell death by CycE and DIAP1 (Death-associated inhibitor of apoptosis 

1) hyper-expression respectively 113. The constitutive activation of signalling pathways 

such as Ras/Raf/MAPK, PI3K, JAK (Janus Kinase)-Stat and Dpp, and MYC up-

regulation, induce growth and uncontrolled cell proliferation 48 but also trigger apoptosis 

in epithelial models. Apoptosis evasion is an essential requirement of tumours both in 

mammals and in Drosophila. Different signals can allow limiting cell death: in addition to 

the Hpo pathway, Dpp was found involved in apoptosis control by modulation of bantam 

miRNA 114. bantam limits hid (one of the three pro-apoptotic genes in Drosophila) 

activation: when overexpressed, Hid protein levels result very low 115. bantam also 

promotes proliferation by stimulating cell growth and cell division 116. Moreover, the 

EGFR/Ras/MAPK pathway limits apoptosis 104: Hid is directly inhibited by Ras 

signalling 117 and, indirectly, through EGFR-dependent bantam expression 118. 

Drosophila development studies have revealed that cell growth and cell death are strictly 

interconnected: during tissue growth, unfit, stressed and damaged cells are eliminated, 

and apoptosis-induced proliferation occurs to compensate for cell loss. Dying cells secrete 

mitogenic signals that induce cell proliferation 114. These cells also activate JNK (c-Jun 

N-terminal Kinase) signalling, which induces MMP1 expression and EMT, supporting 

cancer formation 42.  

 

Invasion and Metastasis 

During cancer progression, cells acquire the capability to migrate and invade surrounding 

tissues. Several models recapitulate these traits in Drosophila. Transplantation of brain 

and epithelial cancer fragments (lgl, dlg and scrib mutants as an example) in the abdomen 

of adult flies results in the formation of secondary tumours in thorax, brain, wings, 

muscles, intestine and ovaries 91. The oncogenic cooperation between mutations of 

polarity genes and RasV12 triggers invasive and metastatic tumours 101 through JNK 

signalling induction. The JNK cascade triggers apoptosis (blocked by Ras activation) and 

MMP1 secretion, crucial to matrix degradation and to provide cancer cells with invasive 

potential 103,119. The same properties have been observed in intestinal cells 120.  

 

 



General Introduction 

19 
 

Genomic Instability 

Genomic instability is a common trait of cancers. In Drosophila, defects in the cell cycle, 

exposure to DNA damaging agents, telomere loss and centrosome alterations can provoke 

genomic aberrations (such as aneuploidies) which sometimes allow cells to escape 

apoptosis, resulting in tumour formation 121-123. Moreover, in Drosophila tissues, genomic 

instability triggers the JNK cascade that addresses cells to apoptosis programmes 122. This 

mechanism may suggest new hints on tumour suppression 42. Moreover, epigenetic 

studies indicate that histone modifications may drive cancer onset in the fly 124,125. 

 

Tumour Metabolism  

In Drosophila, the energetic metabolism is regulated by the TOR protein kinase and 

Insulin pathways 126. Hyper-activation of the Insulin signalling provokes nutrient 

accumulation in the fat body 127, where TOR controls the release of Insulin-like peptides 

from the Insulin-producing cells of the brain, working as a sensor for the amino acid 

concentration in the haemolymph 128. Tumour risk increases in patients with metabolic 

syndrome, and Drosophila is used as a model to study diet effect on cancer progression: 

high levels of glucose increased malignant tumour formation, accompanied by insulin 

resistance 129. Also, Ras/SRC-dependent tumours evaded the effects of ImpL2 

(homologue of Insulin Growth Factor Binding Protein, IGFBP, in mammals), an 

antagonist of the PI3K/AKT/TOR cascade, by Insulin signalling activation. Finally, 

models of oncogenic cooperation begin to identify enzymes involved in other metabolic 

cascades, suggesting an important cooperation between cancer and metabolism also in 

Drosophila 42.  

 

Tumour-Stroma Interactions 

In the host organs, the tumour is a new entity that competes with the normal tissue to 

grow and expand. Generally, this process leads to tumour suppression, but when 

something goes wrong, cancer cells recruit several components of the microenvironment 

to support their growth, resulting in a very complex picture 130. Drosophila models 

developed in our (unpublished data) and other laboratories 131 showed that the induction 

of cancer cells in epithelial tissues triggers an abnormal proliferation of the mesenchymal 

population. Herranz and colleagues found the malignant transformation depends on the 

interactions between cancer cells and the surrounding normal stromal cells 131. Despite 

these preliminary findings, a stromal signature has not been defined in Drosophila yet. 
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Inflammation 

Depending on the tissue context, the inflammatory process can promote or limit tumour 

onset. Usually, cancer cells secrete chemokines and cytokines recruiting the immune 

system cells 42. In the fruit fly, tumour formation activates the JNK cascade that leads to 

cytokine secretion and subsequent JAK/STAT signalling activation 102,132. The 

inflammation signals recruit the haemocytes (the Drosophila immune cells) that express 

Eiger (the orthologue of the Tumour Necrosis Factor, TNF, in mammals) 133. Drosophila 

haemocytes, such as macrophages in mammals, show functional plasticity and it is 

supposed that, even in Drosophila epithelia, their activation induces proliferation and 

tumour growth 134.   

 

Tumour Tracheogenesis 

In the fruit flies, the circulatory system is open: the haemolymph (blood in mammals) is 

pumped by the heart in the body cavity and the exchanges occur directly with the internal 

organs 112. An intricate network of branched and interconnected tubes conveys oxygen to 

the organs: the “tracheal system”. This system is particularly studied for its similarities 

with the mammalian circulatory system 135. We have found that the Drosophila tumour 

cells express Branchless (Bnl), the mammalian FGF, normally involved in branch 

morphogenesis, and suffer from oxygen shortage, as it is for mammalian tumours. This 

condition leads to the formation of new tumour vessels to provide cancer cells with gas 

exchange and nutrients. In addition, we have identified alternative strategies tumours 

undertake to replenish their supply of oxygen: the co-option of pre-existing tracheal 

branches, trans-differentiation of cancer cells into pseudo-tracheal cells and new vessel 

formation by cancer cells. These complex mechanisms of tumour tracheogenesis perfectly 

recapitulate what happens in mammalian tumours 136,137. These new Drosophila cancer 

traits can further help the study of these complex phenomena.  
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MYC AND CELL COMPETITION 
During normal tissue development, and in cancer, a phenomenon known as “cell 

competition” (CC) controls cell selection through combined proliferation and death. 

During normal development, MYC oncoprotein is mainly involved in cell growth and in 

cell death, and it has been shown to play an essential role in CC 138.  

 

Principal Functions of MYC Oncoprotein  

c-MYC is the principal member of a mammalian transcription factor family of the basic-

helix-loop-helix-leucine zipper class (BHLH-LZ), with a number of functions in cell 

growth, metabolism and cell death. Three family members (c-, L-, N-Myc) exist 139 and 

the most part of MYC’s transcriptional activity happens following dimerisation with its 

partner MAX 140. The only Drosophila homologue is diminutive (dm), identified in the 

‘30s as a spontaneous mutation, but associated with Drosophila MYC protein only in 

1996 141,142.  MYC/MAX dimerisation and its antagonists MAD/MXI/MNT are conserved 

in Drosophila but, as for dm (also called dmyc), only an isoform exists 142,143. Like in 

vertebrates, the MYC/MAX complex binds the E-box sequence CACGTG 142. Drosophila 

MYC protein is poorly conserved in sequence respect to its counterpart in mammals, but 

studies in experimental models have demonstrated its functional conservation 142,144. dm 

mutations show growth defects: mutant embryos hatch but do not complete larval 

development, and die at the second larval instar 145; the dmycP0,P1 hypomorphic alleles 

cause developmental delay, smaller fly size and a reduced cell number 146,147. On the other 

hand, overexpression of MYC increases cell size accelerating the G1/S transition 98,146. In 

fact, a correct MYC activity is required for an efficient cell transit from G1 into the S 

phase of cell cycle 145. Also in mice, MYC protein regulates growth: MYC mutant mice 

show small body size and, unlike flies, they display differences in cell number and not in 

cell size 144. Many growth defects caused by MYC down-regulation are similar to those 

provoked by mutations of genes encoding ribosomal proteins 148. MYC regulates growth 

also through the Insulin/TOR 149–151 and ecdysone signalling 152, and its expression is in 

turn regulated by several pathways involved in tissue morphogenesis and regeneration, 

such as the Wg/WNT and Dpp cascades 139,  but an important role in MYC regulation is 

played by the Hpo pathway 153,154. Following Hpo signalling deregulation, Yki, the 

homologue of human YAP (Yes-Associated-Protein), moves into the nucleus and 

transcribes, in addition to dm, other genes involved in growth, proliferation and survival 
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such as CycE, dIAP1 and bantam 155. While an increase in MYC levels stimulates cell 

growth, excessive MYC production can induce autonomous cell death 156: a really high 

MYC activity indeed triggers cell death in the eye and wing imaginal discs 98,157. In 

Drosophila, the autonomous cell death depends on the activation of the three pro-

apoptotic genes hid, reaper and grim, the expression of which can be directly induced by 

MYC 157. Their genic products negatively regulate dIAP1 that, in turn, inhibits the 

Caspase cascade 158,159. MYC pro-apoptotic function is conserved in mammals, both in 

development and during tumourigenesis 160–162.  

 

Studies in Drosophila have revealed a pivotal role of MYC in a fundamental process 

involved in tissue homeostasis, repair and development of adult tissues, and also in 

tumour modulation: cell competition.  

 

Cell Competition 

CC is a phenomenon by which cells compare their fitness, resulting in the elimination of 

the unfit cells and a compensatory proliferation of the fittest. CC has been observed for 

the first time in the ‘70s: Morata and Ripoll, while studying the growth rate of cells with 

mutations in ribosomal genes (Minute, M) 97,163 in Drosophila imaginal wing discs, 

noticed that wt clones induced in Minute heterozygous (M/+) flies (Minute heterozygous 

flies show a normal morphology, vitality and fertility while displaying slow development 

and a lower cell proliferation rate than the wt flies) triggered the apoptotic death of M/+ 

cells and over-proliferated colonising the whole organ 97. On this basis, CC has been 

proposed as a surveillance mechanism in which the fittest cells (called winners) kill the 

unfit cells (called losers) that undergo JNK-mediated apoptosis 164,165. Winner cells 

proliferate occupying the entire space left 166 (Fig. INTRO 13). The competitive 

interactions start when some cells carry a mutation that confers them a proliferative 

disadvantage 146,166 or a shortage of growth factor (such as Dpp), 165. Cells that confront 

each other release soluble factors 167 and express some specific molecules defining the 

loser or winner status 168,169. Cells can be eliminated by cell-cell intercalation 170 when 

embedded by winner cells, a phenomenon known as engulfment 171, or by extrusion from 

the tissue and phagocytosis by professional haemocytes 172,173. CC can also be triggered 

by local tissue crowding, without a specific molecular signature 174. In 2004, Oliver and 

colleagues found that Bst (Belly spot and tail, a mutation in a ribosomal gene) mutant 
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cells were eliminated by wt cells during development of chimeric blastocysts 175, 

summarising in mice the phenomenon observed in the fly. 

 

 

 
Figure INTRO 13 | Graphic representation of the cell competition mechanism 138. 

 

MYC Involvement in Cell Competition  

As mentioned above, MYC plays a central role in the induction of CC. In 2004, two 

studies displayed the competitive characteristics of cells with high MYC levels. In the 

Drosophila wing disc, MYC-overexpressing cells trigger apoptosis of surrounding wild-

type cells and proliferate colonising the space previously occupied by loser cells. This 

mechanism was defined super-competition 98,166. Soluble factors not yet identified seem 

to be sufficient to induce MYC-mediated cell competition (MMCC): in co-culture 

experiments, cells with different MYC levels secrete signals that induce a competitive 

behaviour without a mechanical contact 167. In an in silico analysis, nine miRNA targeting 

JNK signalling components have been identified, and it has been suggested that the 

exchange of signals between the competitive cells take place through extracellular 

vesicles 176. In Drosophila germinal stem cells (GSCs), MMCC has a physiological role 

driving cell differentiation and, in this situation, loser GSCs do not undergo apoptotic 

death but are excluded from the ovary germline niche 177. p53 is also essential to CC; it 
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has indeed been shown that MYC-overexpressing cells require a p53 wt function to 

successfully compete: in fact, p53 LOF compromises their metabolism and thus reduces 

their capacity to trigger CC 178. Competitive cells have been shown to exhibit a specific 

signature that governs their fate in the mechanism. Flower (Fwe), a trans-membrane 

protein, has been identified in 2010 and it seems to commit cells to a loser or winner 

status depending on the isoform that cell expresses: the FweUbi isoform is constitutively 

expressed by epithelial cells, and it is down-regulated in loser cells, which rather express 

the FweLose isoforms. FweLose knockdown in prospective loser cells rescues their loser 

status 168. Another CC fingerprint is SPARC (Secreted protein, acidic, cysteine-rich), a 

cell matrix glycoprotein up-regulated in loser cells at the beginning of CC. It seems to 

transiently inhibit the Caspase cascade activation 169. The most recent gene involved in 

CC is ahuizotl (azot), which seems to integrate FweLose and SPARC information in loser 

cells 179.   

 

In 2013, a physiological role for MMCC has been found in the mouse epiblast, that has 

been found to be normally composed of cells expressing different MYC levels. As in 

Drosophila tissues, competitive phenomena between cells with higher (winners) and 

lower (losers) MYC levels are triggered, and loser cells undergo apoptotic death 180. CC 

also shapes heart development in mammals: in this organ, MMCC induces proliferation 

of high MYC-expressing cardiomyocytes, which substitute the surrounding neighbours 

that do not show a sufficient proliferation rate 181,182.  

 

The involvement of MMCC in cancer will be discussed in the following chapters.   
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THESIS AIMS 
 

 

Cancers are complex communities, where intricate relationships among the different cells 

that compose the tumour mass guide the fate of the entire society. MYC plays a central 

role in tumour progression, being involved in many, if not all, biological processes, and is 

thus found at the centre of a multitude of signalling pathways.    

 

With the aim to study MYC involvement in these intricate relationships, I carried out a 

genetic dissection of some central cell behaviours associated with the onset and 

progression of tumours. 

 

The thesis is composed of three parts, as follows: 

 

Part 1. Onset:  

MYC-Expressing Epithelial Fields Are Prone to Multifocal Tumourigenesis 

 

Part 2. Growth and vessel formation: 

Growth and tracheogenesis are separable traits in Drosophila cancers 

 

Part 3. Overt malignancy: 

Highly Competitive Cancers Undergo Growth Decline Upon Apoptosis Inhibition 
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PART I - MYC-EXPRESSING EPITHELIAL FIELDS ARE PRONE TO 
MULTIFOCAL TUMOURIGENESIS  
 

The concept of “cancerisation field” derives from the observation of regions adjacent to 

the tumour area showing inappreciable histological alterations. These apparently normal 

pre-cancerous areas were discovered to be more susceptible to the development of 

malignancies compared to normal tissues 183.  

 

In both Drosophila and mammals, a mechanism known as MYC-mediated cell 

competition (MMCC) evokes the aforementioned phenomenon, hence the hypothesis of 

its involvement in the development of pre-cancerous fields 184,185.    

 

Here I used the Drosophila imaginal wing disc to mimic field formation by over-

expressing MYC in the P compartment and examining specific markers usually found in 

mammalian precancerous areas. I first showed that MYC up-regulation is sufficient as to 

induce specific cellular responses, characteristic of mammalian pre-cancerous fields. 

Successively, I induced different second mutations in the MYC-overexpressing epithelial 

tissue, demonstrating its propensity to the development of multifocal lesions, a typical 

tumour phenotype observed in human pre-cancerous fields.  

 

Summing up, I have identified MYC as a molecule possibly involved in the formation of 

a pre-cancerous field, thus establishing a genetic model in which to investigate the 

molecular basis of this intricate early cancer trait.  
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INTRODUCTION 
 

1.1 FIELD CANCERISATION 
The molecular mechanisms responsible for the initiation of tumourigenesis are largely 

unknown. It is now quite clear that cancer origin is clonal: each cancerous cell is an 

adapted form of a previous cell, in which a series of pre-neoplastic or “initiating” 

mutations happen, which make the cell more and more susceptible to further mutations.  

 

Despite the genetic alterations, cell clones with pre-neoplastic mutations can appear 

histologically and morphologically normal 186. In 1953 for the first time, Slaughter and 

colleagues introduced the concept of “field cancerisation”. Studying oral carcinomas, they 

observed that the probability to develop recurrences or second primary tumours were 

higher in areas adjacent to a primary tumour, even after surgical resection. A pre-

neoplastic field does not show malignant features but is defined by the presence of 

cancer-associated genetic or epigenetic alterations, and it does not necessarily display 

morphologically alterations (Fig. PART-I 1) 183,187.  

 
Figure PART-I 1 | Graphical description of field cancerisation 187 

 

In the carcinogenesis model proposed by Slaughter, the onset of genetic alterations in a 

healthy cell led to the formation of a clonal area or patch of homogeneously mutated cells 

resulting in a pre-cancerous field, susceptible to the onset of further mutations. 

Subsequent studies have found that this phenomenon was not only associated with human 

tumours of the oral mucosa, but with epithelial cancers in general, and with some brain 

tumours 186,188. 
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Therefore, a field cancerisation is defined as a tissue territory in which, despite its 

apparently unaltered morphology and histology, genetic alterations make cells prone to 

successive mutations, resulting in multifocal tumours, typical of pre-cancerous fields 183.   

 

1.2 THEORIES ON FIELD FORMATION  
Two principal hypotheses regarding pre-cancerous field formation have been formulated: 

- Polyclonal Origin: specific factors, such as exposure to carcinogens, and also, 

during organogenesis, some random mutations, can lead to the appearance of 

genetic alterations into cells of the same tissue, forming multiple patches which 

can successively originate a pre-cancerous area 189; 

- Monoclonal Origin: a single altered cell might colonise a part of territory by 

clonal expansion and, eventually, cell migration in different areas distant from the 

field of origin may originate secondary lesions 189. 

 

Although the monoclonal origin is unlikely in discontinuous tissues, such as the glands, 

both theories are plausible 186. In the last few years, a hypothesis suggesting CC as a 

possible initiator of a pre-cancerous field has been formulated. Some genes, among which 

MYC, can transform cells into super-competitors, which are able to over-proliferate 

colonising the tissue and eliminating the surrounding cells. This expanded cell population 

has a higher probability to acquire secondary mutations, to subvert tissue homeostasis and 

to evolve into a tumour (Fig. PART-I 2) 184,185. 

 

 
Figure PART-I 2 | MYC over-expressing cells kill the surrounding wt cells and expand, colonising the 

entire territory 185. 
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1.3 CELL COMPETITION AND CANCER 
As previously mentioned, CC has an important role also in the tumourigenic process. It 

permits mutant cell recognition and its elimination by surrounding wt cells 190. The 

assumption that CC operates as a tumour suppressor mechanism originates from studies 

on a Drosophila TSGs group: while analysing the oncogenic behaviour of genes involved 

in cell polarity, such as lgl, scrib and dlg, and also members of the endocytic pathway, 

such as Rab5, it has emerged that those mutant cells were eliminated when found in a wt 

background 103,107,191,192. Moreover, at the interface between the mutant and wt cells, 

apoptosis was observed, supporting the hypothesis that cell elimination was carried out 

through a competitive phenomenon 165,166. However, the simultaneous expression of 

oncogenes provided those cells with super-competitive characteristics, unveiling the 

oncogenic side of CC. In fact, mutant cells over-expressing MYC and bearing lgl LOF 

sent death signals to adjacent wt cells and proliferated at their expense 96. When a 

constitutively active form of PI3K was expressed in lgl mutant cells, these cells did not 

behave as super-competitors, but they just grew autonomously, showing that PI3K 

activation is not able to trigger CC 96.  

 

A Drosophila study by de la Cova and colleagues has revealed that PI3K is an important 

growth promoter when overexpressed but, unlike MYC, it does not trigger CC. MYC and 

PI3K increase protein synthesis in two different ways: MYC increases transcription of 

several components of the protein synthesis machinery, while PI3K increases the activity 

of the existing components. Their results prove that different proliferative rates are not 

sufficient to trigger CC between confronting populations 98,178. 

 

 

 

1.4 RAB5: ENDOCYTOSIS AND TUMOUR SUPPRESSION CONTROL 
The endocytic trafficking is involved in many processes, among which morphogenetic 

gradient formation and activation or inhibition of proliferative signalling 193,194. 

Endocytosis entails the internalisation of plasma membrane portions in order to form 

carrier vesicles. Multiple ways of internalisation exist, and these processes consist of 

blending vesicles (early endosomes) through specific membrane proteins, the syntaxins, 

involved in the formation of SNARE complexes that mediate the vesicle contact with the 
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plasma membrane. The entire process is regulated by a 

small protein with GTPase activity, Rab5. The early 

endosomes act as station both for recycling of the cargo 

receptors and for their transport to the lysosomes for 

degradation 195. The human genome contains about 60 

Rab genes and as many proteins, 26 of which are 

conserved in Drosophila. They are located on the 

cytosolic side of the cell membrane and, following 

binding with GTP, activate a series of effector proteins 

involved in vesicle formation, in actin/tubulin-dependent 

vesicular transport and in vesicle fusion to the membrane 

(Fig. PART-I 3) 196.  

 

In Drosophila, excluding the mutants for lgl, scrib and 

dlg that, thanks to the maternal contribution of the 

respective proteins, succeed in completing larval development 77,197,198, mutant organisms 

for other TSGs, including Rab5, 

die at the L1 larval instar, 

without any evident phenotype. 

The behaviour of these TSGs has 

been studied through the genetic 

mosaic technique, which allowed 

the induction of Rab5 mutant 

cells in non-essential organs, 

such as the imaginal eye or wing 

disc. It was then possible to observe a mutant phenotype 194. In Drosophila imaginal 

discs, Rab5 mutant clones provoked complete loss of tissue architecture, and neoplastic 

growth (Fig. PART-I 4) 194,199.  When surrounded by wt cells, Rab5 mutant cells, as for 

lgl mutants, were eliminated by CC-mediated apoptosis. When the Rab5 mutant clones 

were composed of a group of at least 400 cells, they developed into a highly proliferative 

tumour instead. The outermost cells continued to be eliminated, while the innermost cells 

proliferated bypassing CC. In this case, the apoptosis triggered by CC acted as a tumour 

promoter through the induction of high levels of JNK and, subsequently, of the Dpp/Wg 

pathway, resulting in cell proliferation. This may also indicate that a greater number of 

Figure PART-I 3 | The canonical 

signalling of the intracellular 

vesicle trafficking 193. 

Figure PART-1 4 | Neoplastic phenotype resulting from Rab5 

mutation. On the right, a Drosophila Rab5 mutant imaginal eye 

disc compared to the corresponding wt (on the left) 194.     
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cells together create a sort of mechanical barrier as, at the centre of the mass, the 

homotypic bulk is not exposed to out-competition and keeps on growing, thus eluding 

tumour suppressor mechanisms 192. 

 

1.5 MARKERS OF FIELD CANCERISATION 
Mohan and Jagannathan have grouped the principal markers found associated with the 

areas adjacent to a primary tumour, morphologically normal but genetically altered. 

These markers are copious and acquire a relevant role in the clinics, as they provide 

important indications on the early diagnosis of possible recurrences. Among the many 

markers, we find high levels of ectopic cytokeratin and cyclinD1, an increase of the 

proliferation rate, chromosome anomalies, mitochondrial genome modifications, genetic 

instability, oxidative stress and apoptosis (Fig. PART-I 5) 189. 

 

 
Figure PART-I 5 | Main phenotypic markers found in human pre-cancerous fields 189. 

 

1.6 MYC AND ITS POSSIBLE ROLE IN FIELD CANCERISATION 
As previously described, MYC is involved in many physiological but also pathological 

cellular processes. It is the most expressed gene in human neoplasias and it is well-

documented that its hyper-expression triggers oxidative stress and genomic instability 200. 

Moreover, MYC is the most potent inducer of CC and MYC over-expressing cells acquire 
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super-competitive behaviours 166,184. MYC high levels have also been observed in the 

prostatic intraepithelial neoplasia (PIN), a pre-cancerous lesion that can be of high or low 

grade, where MYC presence drives neoplastic transformation. Also in humans, MYC 

hyper-expression in the nuclei of prostatic luminal cells has been displayed. In this study, 

Gurel and colleagues show that these luminal cells, which do not complete differentiation, 

constitute the progenitor cells of a prostatic tumour 201. In a subsequent study, the MYC 

over-expressing luminal epithelium of transgenic mice prostate showed a faint pathology, 

defined as a histologically normal epithelium or low-grade PIN lesion. The apparently 

normal epithelium of these elder mice evokes the field cancerisation concept. MYC over-

expression in these cells could facilitate the acquisition of secondary mutations and the 

development of tumours 29. Recently, murine models of lung cancer highlighted the 

presence of MYC hyper-expression in the normal cells of bronchial tissues, with the 

successive development of invasive tumours. The authors have shown that MYC 

inhibition decreased tumour development by about 50-60% 202. All these observations 

lead to the hypothesis that MYC hyper-expression and stabilisation may be sufficient for 

a tissue to become susceptible to the onset of additional mutations and the subsequent 

development of tumours.  

 

It is also known that MYC deregulation promotes genomic instability 203. MYC hyper-

expression has often been associated with chromosome rearrangements and abnormal 

recombination 204, and with the amplification of many genes involved in cell cycle or in 

DNA synthesis, which confer a proliferative advantage to cells 205. Also, DNA 

sequencing highlighted that several chromosome regions were involved: c-MYC alters 

the stability of many genes and genomic sites 206,207. In Drosophila, Greer and colleagues 

have observed that MYC overexpression in the dorsal compartment of the wing disc 

provokes an increase of double-strand breaks (DSBs) and that the spontaneous mutation 

rate was twice compared to a control compartment. Therefore, when an increase in MYC 

levels persists, the mutation frequency in the entire genome is intensified 208.   

 

About a decade ago, MYC involvement in oxidative stress induction has been found in 

human and rat fibroblasts. It has been shown that MYC transcriptional activation 

triggered an increase of different factors involved in the metabolic balance. An alteration 

in these genes led to ROS production, which caused chromosome and DNA damage not 

associated with apoptotic death 209. Among the different MYC target genes, some are 
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directly involved in the oxidative stress control, such as TFAM (Transcription Factor A, 

Mitochondrial). TFAM is a mitochondrial gene that encodes a protein essential for a 

correct mitochondrial biogenesis and its deregulation results in ROS increase 210,211. Many 

genes regulated by MYC are involved in ROS level control and c-MYC triggers oxidative 

stress through several mechanisms 209. c-MYC mediates p53 activation, which induces 

the transcription of genes involved in the oxidative metabolism and ROS production; 

some MYC target genes, such as ODC (Ornithine DeCarboxylase), can directly cause an 

increase of ROS levels; finally some studies have shown that MYC-overexpressing cells 

present deletions also in mitochondrial DNA, opening the possibility that MYC-induced 

oxidative stress may directly depend on an imbalance of cell metabolism that also 

involves mitochondria functionality 209. Nevertheless, the molecular mechanisms at the 

basis of MYC-dependent ROS overproduction still present several unresolved issues.  

 

MYC ectopic expression provokes a sensitisation of cells to apoptosis. At the end of the 

‘80s, it has been displayed that rat fibroblasts presented more apoptotic signs when 

activated Ras was combined to MYC overexpression 212. Successively, a correlation 

between cell death and MYC overexpression in normal B lymphocytes was also observed 
213. These mechanisms involve mainly the TP53 and the pro-survival Bcl-2 pathways, and 

recent findings associated MYC with cell death rather than with cell cycle progression: 

MYC can drive cell transformation by inducing changes in cell death (for example 

increasing Bcl-2 proteins and breaking down TP53 function) 214. MYC is involved in 

apoptosis also in Drosophila: it is known that MYC overexpression induces autonomous 

cell death, and this process requires the pro-apoptotic genes rpr, grim and hid. Moreover, 

p53 is induced by MYC over-expression but it is not involved in MYC-mediated 

autonomous cell death. It was shown that lowering MYC levels protects the imaginal 

wing disc cells from death following DNA damage 157. CC provokes non-autonomous 

cell death instead, essential for the winner cells to repopulate the developing tissue 166,215. 

Being MMCC a possible strategy adopted by tumour cell to expand 216,217, it is plausible 

that cell signals released by loser cells are intercepted by tumour cells to promote their 

own growth 217.  
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RESULTS AND DISCUSSION  
 

The first observations about the existence of pre-cancerous fields happened while 

analysing tumours from the oral mucosa, and they were defined as tissue areas carrying 

histologically normal, but genetically altered, cells. These areas were shown to be more 

susceptible to the onset of new mutations, leading to the development of multifocal 

tumours 183,218.  

 

As previously described, MMCC has been hypothesised as a possible mechanism able to 

prime a pre-cancerous field 184,185. Moreover, activated forms of K-RAS have been 

frequently found in human cancerisation fields 188, and it is known that KRAS promotes 

MYC stabilisation and accumulation via the MAPK signalling 219. 

The hypothesis that MYC may pioneer field cancerisation is also supported by some 

evidence in mammals 29,202.  

 

Starting for these assumptions, the idea that a cell may be subject to selective forces and 

acquire the capacity to transiently express high MYC levels, forming in time a pre-

cancerous field, led me to develop a Drosophila epithelial model that would allow to 

mimic the formation of a MYC-overexpressing (hereafter referred to as MYCOVER) field 

as a possible result of MMCC.  

 

Using the UAS-Gal4 system (see Methods), I induced MYC expression under the control 

of the hedgehog (hh) promoter, active in the P compartment of the imaginal wing disc, 

and observed that the organ did not display evident morphological alterations, except for 

a slight increase in cell size: nuclei in the P compartment (marked with Ubi-GFP) were 

more distant than those in the A compartment, where MYC expression is untouched (Fig. 

RES-I 1). This evidence represented a MYC well-known property and recapitulated what 

happens in pre-cancerous fields 146,186.  
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Figure RES-I 1 | On the left, MYC staining displays protein overexpression (cyan) in the P compartment of 

the wing disc. On the right, the same wing disc marked by Ubi-GFPnls. The boundary between the A and P 

compartments is outlined by a dotted line.   

 

Successively, with the aim to verify if a MYCOVER tissue area could represent a 

cancerisation field, I investigated different typical markers found in human pre-cancerous 

fields (Fig. PART-1 5). I examined genetic instability, oxidative stress, proliferation and 

apoptosis by using the UAS-Gal4 system.  

 

I then overexpressed MYC under the control of the engrailed (en) promoter (the 

determinant of the larval P compartments) and compared my results with those obtained 

in imaginal wing discs overexpressing a constitutively active form of PI3K (PI3KCAAX), a 

strong growth inducer not involved in cell competition 98, with the aim to demonstrate 

that mutations conferring growth capabilities are not sufficient to provide cells with pre-

cancerous properties. 

 

Before analysing the specific markers, I verified that the expression of PI3KCAAX (marked 

by GFP) succeeded in activating the PI3K/AKT signalling cascade, and I found this was 

the case, as demonstrated by AKT activation (Figure RES-I 2).  

In humans, pre-cancerous fields are often associated with PI3K GOF mutations 220, and 

my laboratory previously demonstrated that transient PI3K clonal expression impacted 

MYC levels 150; therefore, it was mandatory to verify that our PI3KCAAX construct did not 

impact on the endogenous MYC levels, as PI3KCAAX overexpression is utilised as a 

control in my experimental model. As can be seen in Figure RES-I 2, PI3KCAAX 

overexpression did not increase MYC endogenous levels.  
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Figure RES-I 2 | PI3KCAAX Expression in the P compartment (GFP+). pAKT staining (cyan) shows active 

AKT (cyan). MYC staining (red) displays that in the P compartment it is expressed at comparable levels as 

in the A compartment. 

 

A statistical analysis supported the qualitative data: as can be observed in Figure RES-I 3, 

PI3KCAAX overexpression in the P compartment (green bar) of the wing disc does not 

increase MYC protein abundance over the endogenous levels (compare to the A 

compartment, grey bar).   

 

 
Figure RES-I 3 | Comparison between the MYC protein expression in the en-PI3KCAAX wing discs. The 

green bar represents the P compartment of discs in which PI3KCAAX is overexpressed, compared with the A 

compartments (grey bar). The comparison does not show significant difference. n is indicated. 

 

To investigate if MYCOVER territories showed an enhancement in genetic instability, I 

used an antibody against the γ variant of the phosphorylated H2 histone, which detects 

Double Strand Breaks (DSBs). If not repaired, DSBs damage triggers a number of cell 

signals, among which DDRs (DNA Damage Response proteins). The H2AX (or H2Av in 

Drosophila) histone phosphorylation is the first chromatin modification that occurs 

following a DSB, resulting in the assembling of multi-protein complexes which attempt 

to repair DNA damage 221.  
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The anti-γH2Av staining (red) in en-dm, GFP wing discs evidenced an increase in DSBs 

in the MYCOVER P compartment (GFP+) compared to the A compartment (Fig. RES-I 4). I 

performed the analysis both in early and in late L3 wing discs. The graph in Figure RIS-II 

4 shows an about twofold increase in DSBs in the P compartments (green bars) of both 

early and late L3 wing discs with respect to the A compartments. The increase is thus 

kept constant throughout development. 

 

 
Figure RES-I 4 | On the left, an immunostaining against γH2Av in en-dm, GFP imaginal wing discs. The P 

compartments of the imaginal discs (MYCOVER) are marked in green (GFP+). In the upper panel, an early L3 

wing disc is shown, and in the lower panel, the same analysis is observable in the late L3 wing discs. On the 

right, a graph representing the DBSs counted in the P (green bar) and A (grey bar) compartments. n are 

indicated. ***=p≤ 0.001. 

   

To verify that hyper-expression of a gene involved in cell growth is not sufficient to 

increase genetic instabiity in a tissue, I expressed PI3KCAAX in the P compartment of the 

wing discs and I analysed γH2Av expression. Differently to what happened with MYC 

overexpression, the activation of PI3KCAAX did not result in a significant increase of 

DSBs (Fig. RES-I 5).   
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Figure RES-I 5 | On the left, anti-γH2Av staining (red) in en-PI3KCAAX, GFP imaginal wing discs. The P 

compartments are marked in green (GFP+). In the upper panel, an early L3 wing disc is shown and, in the 

lower panel, the same analysis is displayed in late L3 wing discs. On the right, a graph representing the 

DBSs counted in the P (green bar) and A (grey bar) compartments. n are indicated.   

 

 

Figure RES-I 6 shows a comparison of the DSB signals across the different genotypes 

and compartments. While it is quite clear that MYC and PI3K overexpression in the P 

compartments shows a different impact on DSB activation, A compartments do not seem 

to respond consistently, demonstrating that, in this case, transgenic expression did not 

provoke non-autonomous effects.  

 

Altogether, these data indicate that MYC overexpression is sufficient to trigger genetic 

instability, and this damage does not seem to be induced by a simple increase in growth, 

as PI3KCAAX overexpression had no effects on this phenotypic trait. 
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Another typical marker associated with human pre-cancerous fields is an increase of the 

proliferative index 189. To detect this, I performed an immunofluorescence (IF) assay 

against the mitotic marker Phospho Histone H3 (PH3) in imaginal wing discs 

overexpressing MYC or PI3K in the P compartments. 

 

The H3.3 histone variant is indeed known to play a pivotal role during mitosis both in 

Drosophila and mammals 222,223.  

 

The analysis of PH3 staining highlighted a 23,3% increase in the PI3KCAAX P 

compartments (see upper panel, Fig. RES-I 7), and a 45,24% increase in MYCOVER P 

compartments with respect to their A counterparts (see lower panel, Fig. RES-I 7). This 

result was not unexpected, as PI3K activation plays an important role in cell growth and 

proliferation 224.  

Figure RES-I 6 | On the left, a graph showing the DSBs counted in the MYCOVER and PI3KCAAX  P 

compartments. On the right, a graph showing the DSBs counted in the respective A counterparts. n are 

indicated. ***=p≤ 0.001. 
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Figure RES-I 7 | On the left, PH3 staining (red) in en-PI3KCAAX GFP (upper panel) and en-dm, GFP (lower 

panel) in imaginal wing discs. The P compartments are marked in green (GFP+). On the right, the graphs 

display the PH3 signal comparisons between the MYCOVER and PI3KCAAX P compartments (green bars) and 

their respective A counterparts (grey bars). n are indicated. **=p≤ 0.01; ***=p≤ 0.001. 

 

 

 

Of note, MYC overexpression was able to induce a twofold PH3 signal increase respect 

to PI3K constitutive activation, compared to the respective A compartments (compare 

Fig. RES-I 7, lower panel with upper panel).  

 

Also in this case, no significant non-autonomous effects were observed, as the A 

compartments of both MYCOVER and PI3KCAAX -expressing P compartments showed 

comparable PH3 signals (Fig. RES-I 8, right graph). Figure RES-I 8 shows also a 

graphical comparison between the P compartments expressing MYC and PI3K. 
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Figure RES-I 8 | On the left, a graph showing the comparison between the PH3 signals counted in the 

MYCOVER (green striped bar) and PI3KCAAX (green dotted bar) P compartments. On the right, a graph 

showing the comparison between the PH3 signals counted in the A counterparts of MYCOVER (grey striped 

bar) and PI3KCAAX (grey dotted bar). n are indicated. ***=p≤ 0.001. 

 

 

I then analysed the oxidative stress through detection of the Reactive Oxygen Species 

(ROS), another typical marker associated with human field cancerisation 189, in MYCOVER 

and PI3KCAAX territories.  

 

ROS were visualised by the use of DHE (DiHydroEthidium), a compound that permeates 

cell membranes and reacts with the superoxide anion, resulting in a red fluorescent 

product intercalating DNA 225. 

  

Figure RES-I 9 shows a potent ROS activation (red) in the MYCOVER P compartment 

(GFP+), compared to the A compartment. This evidence is supported by a statistical 

analysis: DHE mean fluorescence intensity is considerably increased (197%) in the 

MYCOVER P compartment (in the upper panel, green bar) compared to that measured in 

the A compartment of the same wing discs (Fig. RES-I 9, upper graph). On the contrary, 

PI3KCAAX P compartment does not show evident signs of ROS activation (Fig. RES-I 9, 

lower panel).  

 

A comparison of the DHE mean fluorescence intensity between the A compartments of 

the two genotypes under exam revealed a significant difference between the en-dm and 

the en-PI3KCAAX organs (Fig. RES-I 10), suggesting some non-autonomous effects of 

MYC overexpression in the P compartment on the overall organ stress response. 
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Figure RES-I 9 | On the left, DHE staining (red) in en-dm, GFP (upper panel) and en-PI3KCAAX, GFP 

(lower panel) imaginal wing discs. The P compartments are marked in green (GFP+). On the right, the 

graphs display DHE mean fluorescence intensity in the MYCOVER and PI3KCAAX P compartments (green 

bars) and in their respective A counterparts (grey bars). n are indicated. ***=p≤ 0.001.  

 

 
Figure RES-I 10 | The graph shows an increase of DHE mean fluorescence intensity in the A compartment 

of en-dm, GFP wing discs (grey striper bar) compared to the A compartment of en-PI3KCAAX, GFP wing 

discs. n are indicated. ***=p≤ 0.001. 
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The last marker of field cancerisation examined was apoptotic cell death. It is well known 

that excess MYC provokes cell-autonomous apoptosis, resulting in a block of MYC 

activity that may be detrimental to cells 214, but the apoptotic process is sometimes 

beneficial to the tissue (see paragraph 3.1 of Part III). As expected, the P compartment 

(GFP+) of the en-dm wing discs displayed a strong activation of Caspase 3 (Cas3, red) 

(Fig. RES-I 11), while PI3KCAAX overexpression in the P compartment did not trigger cell 

death mechanisms.  

 

 
Figure RES-I 11 | On the left, Cas 3 staining (red) in en-PI3KCAAX, GFP (upper panel) and en-dm, GFP 

(lower panel) imaginal wing discs. The P compartments are marked in green (GFP+). On the right, the 

graphs display Cas3 mean fluorescence intensity in the MYCOVER and PI3KCAAX P compartments (green 

bars) and in their respective A counterparts (grey bars). n are indicated. ***=p≤ 0.001.  

 

Altogether, these findings confirmed that MMCC is an excellent candidate for the 

formation of a pre-cancerous field, as MYC overexpression is sufficient as to trigger a 

number of typical markers found in human pre-cancerous fields.  
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This evidence prompted me to investigate the phenotypic consequences of the induction 

of TSG mutations in MYCOVER territories vs wt territories. To address this question, I 

built a genetic system that allowed me to express MYC in a restricted area of the wing 

disc (the P compartment) and to induce secondary mutations of interest later in 

development in the same organ. I used a combination of the UAS-Gal4 and Flp-FRP 

systems in order to express MYC in the P compartment of the wing disc from the onset of 

development under the control of the hh promoter, and to induce mutant mitotic clones 

later in time. The A compartment has been used to assess the clonal phenotype promoted 

by the same mutations in a territory carrying the endogenous MYC expression.  

 

I first decided to analyse the lethal giant larvae (lgl) mutation (widely described in the 

General Introduction). Lgl protein regulates the apical-basal polarity in the epithelia and it 

is known that lgl mutant clones induced in a wt background are unable to grow in the 

wing pouch region of the wing disc, where MYC levels are very high, and they are 

eliminated by MMCC 96. Simultaneous MYC overexpression in lgl mutant clones indeed 

rescues them from death and transforms lgl-/- cells from losers into super-competitors 96. 

But what happens when lgl mutation is induced in a cell already addicted to MYC, 

surrounded by other MYCOVER neighbours? 

 

Out of 346 wing discs observed, only 79 showed the presence of lgl mutant tissue. 22 

discs (28%) displayed “regular” lgl mutant clones, that in the A compartment were 

smaller in size compared to their wt twin clones, or were eliminated by CC, as revealed 

by the permanence of wt twin clones 95. However, in the MYCOVER compartment, the lgl-/- 

clones were larger than the wt twins (data not shown). This suggests that the lgl mutant 

cells have a greater ability than the surrounding neighbours to exploit the excess MYC 

protein, hence the gain of a competitive advantage over the wt tissue. The remaining 57 

wing discs with lgl mutant tissue (72%) displayed a novel phenotype: the lgl mutant 

tissue was composed of small nests scattered all across the P compartment, which 

appeared punctated. In Figure RES-I 12 we can observe three examples of this novel 

phenotype with different severity. MYC staining (red) highlights preferential protein 

accumulation in the mutant cells, despite it is overexpressed in the whole P compartment. 

The middle and right panels are a magnification of the region squared in the left panel. 

The asterisk in Figure RES-I 12A, left image, shows a wt twin clone in the wing pouch 

region of the A compartment, indicating that the lgl mutant clone has been eliminated. I 
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then analysed the presence of apoptosis in the P compartment (MYCOVER) to understand 

mutant cells’ capacity to trigger death in the surrounding cells. As previously mentioned, 

MYC overexpression itself sensitises cells to apoptosis. Cas3 positivity (cyan) was often 

associated with high MYC levels in adjacent cells, whether they were wt or mutant (Fig. 

RES-I 12, middle and right panels, arrowheads), indicating that competitive interactions 

are at work in this tissue.  

 

 
Figure RES-I 12 | lgl-/- clones (GFP-) induced in a w, hs-Flp/+; lgl4, FRT40A/Ubi-GFP, FRT40A; hh-

Gal4/UAS-dm background (GFP+). wt twin clones are GFP2+. Magnifications allow a detailed view of cell-

cell dynamics in the P compartment. A: the asterisk indicates a wt twin clone (GFP2+) in the A 

compartment. Arrowheads indicate cells with high MYC levels (red), while arrows point to Cas3-positive 

cells (cyan).  
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During the analysis, I observed that 47% of these wing discs exhibited an extreme 

phenotype (Fig. RES-I 13). The MYCOVER P compartments of these organs were almost 

completely mutant (GFP-), and the whole disc structure appeared severely compromised. 

As indicated by the arrowheads, in these organs high MYC expression (red) was observed 

in the mutant areas (GFP-). This deep organ alteration suggests an invasive, malignant 

behaviour of these cells that was possibly promoted by clone confluence during growth. 

 

 
Figure RES-I 13 | lgl-/- clones (GFP-) induced in a w, hs-Flp/+; lgl4, FRT40A/Ubi-GFP, FRT40A; hh-

Gal4/UAS-dm background (GFP+). wt twin clones are GFP2+. The GFP- clonal area spreads throughout the 

entire P compartment. The arrowheads indicate some lgl mutant cells with high MYC levels (red). 

 

The most interesting aspect of this model is that it faithfully reproduced the distinctive 

characteristic of human pre-cancerous fields: multifocality 218. The multifocal phenotype 

had never been associated with lgl mutation in Drosophila, Therefore, it represents a 

novel trait acquired by lgl mutant cells in a MYCOVER field.  

 

To verify that a MYCOVER field represented a bona fide pre-cancerous area, and that 

multifocality did not result from specific interactions between lgl and MYC, I induced 

Rab5 mutation in the MYCOVER field. Like lgl, entire organs mutated for Rab5 show 

neoplastic growth, and Rab5 mutant cells induced in a wt background suffer from cell 

competition and are eliminated (see the dedicated section in the Introduction of this part) 
192,194,199,226. Using the same clonal system as above, I induced Rab5 mutant clones in 

animals whose P compartments overexpressed MYC. In Figure RES-I 14, the multifocal 

lesions are evident in the MYCOVER P compartment (MYC staining, red). Rab5 mutant 
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cells (GFP-) are scattered all across the MYCOVER field. In this case, 100% of the wing 

discs bearing mutant clones showed multifocal phenotype, while in the A compartment 

Rab5 clones were eliminated. I analysed the presence of apoptosis (Cas3 staining, cyan) 

in the P compartment (MYCOVER) and, as it happened with lgl mutation, cell death was 

observed both in wt and in mutant cells with equal/higher MYC expression compared to 

the P compartment background (in Fig. RES-I 14A, right image, dying cells are indicated 

by the arrows and neighbouring cells with higher MYC levels are indicated by the 

arrowheads). Even in this case, a preferential accumulation of the MYC protein in mutant 

areas is observable (MYC staining in red, cells are indicated by the arrowheads).  

 

 
Figure RES-I 14 | Rab5 mutant clones (GFP-) induced in a w, hs-Flp/+; Rab52, FRT40A/Ubi-GFP, FRT40A; 

hh-Gal4/UAS-dm background (GFP+). wt twin clones are GFP2+. Magnifications allow a detailed view of 

cell-cell dynamics in the P compartment. Arrowheads indicate cells with high MYC levels (red), while the 

arrows show Cas3-positive cells (cyan).  
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29% of the multifocal wing discs showed a severe phenotype: the organs appeared deeply 

altered, and I performed aPKC staining to observe possible impacts of multifocal growth 

on apical-basal cell polarity. As can be observed in Figure RES-I 15, the magnification of 

the squared region in A shows an altered aPKC localisation (cyan, cells are indicated by 

the arrows) in Rab5 mutant cells (GFP-). In panel B, the impairment of aPKC expression 

(cyan) is evident across the entire MYCOVER P compartment. This characteristic is 

consistent with Rab5 function: the endocytic trafficking is indeed essential in the 

maintenance of cell polarity, and mutations in genes involved in endocytosis provoke the 

expansion of cell’s apical domain in Drosophila 199.  

 

Altogether, this evidence indicated that MYC overexpression in a territory of the wing 

discs is able to promote multifocal malignant lesions following mutation of different 

TSGs. 

 

 
Figure RES-I 15 | Rab5 mutant clones (GFP-) induced in a w, hs-Flp/+; Rab52, FRT40A/Ubi-GFP, 

FRT40A; hh-Gal4/UAS-dm background (GFP+). wt twin clones are GFP2+. Magnifications allow a detailed 

view of the P compartment. A: in the magnification, the arrows show cortical expression of aPKC (cyan) in 

mutant cells (GFP-). B: aPKC staining (cyan) reveals an impairment in cell polarity throughout the P 

compartment of the wing disc. 
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To assess if multifocality may be considered a trait arising from specific properties 

conferred by MYC to the mutant cells, I repeated the same experiments as above in a 

PI3KCAAX territory.  

 

Using the same system as above, I overexpressed PI3KCAAX in the P compartment of the 

larvae and first analysed lgl mutant behaviour. In Figure RES-I 16 we can observe two lgl 

mutant clones (GFP-, indicated by the arrows) in the PI3KCAAX P compartment (marked in 

red by En staining). They are located outside the wing pouch where, instead, we observe 

the presence of wt twin clones (GFP2+) that indicate that mutant clones were eliminated 

by CC in this region. Therefore, despite the over-expression of PI3KCAAX, lgl-/- clones 

continue to die in this area of the wing discs where MYC is physiologically expressed. A 

statistical analysis of the clonal areas in the P and A compartments showed that lgl-/- 

mutant clones increased in size in the PI3KCAAX P compartment compared to the mutant 

clones in the A counterpart (Figure RES-I 16, graph). This evidence confirmed PI3K 

involvement in cell growth 224.  

 

 
Figure RES-I 16 | lgl-/- clones (GFP-) induced in a w, hs-Flp/+; lgl4, FRT40A/Ubi-GFP, FRT40A; hh-

Gal4/UAS-PI3KCAAX background (GFP+). wt twin clones are GFP2+. In the left panel, the P compartment is 

marked by En staining (red). The dotted line indicates the A/P boundary. In the graph, lgl-/- clonal areas are 

shown in P (green) and A (grey) compartments. n are indicated. ***=p≤ 0.001.  

  

The most important observation was the total absence of multifocal growth in this system. 

 

I then analysed the behaviour of the Rab52 mutation in a PI3KCAAX background. In Figure 

RES-I 17 the graph (right) indicates that the mutant clones do not show significant growth 

difference in the P and A compartments. PI3KCAAX overexpression in the P compartment 

is not sufficient to confer a competitive advantage to Rab5 mutant cells (GFP-); mutant 
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clones in the P compartment indeed appear of similar size as those originated in the A 

compartment (arrows). Finally, no multifocal growth was observed in all the samples 

analysed. 

 

 
Figure RES-I 17 | Rab5 mutant clones (GFP-) induced in a w, hs-Flp/+; Rab52, FRT40A/Ubi-GFP, FRT40A; 

hh-Gal4/UAS-PI3KCAAX background (GFP+). wt twin clones are GFP2+. In the left panel, the P compartment 

is marked by En staining (red). The dotted line indicates the A/P boundary. In the graph, Rab5-/- clonal 

areas are shown in P (green) and A (grey) compartments. n are indicated.  

 

These latter findings indicate that MYC may specifically confer lgl and Rab5 mutant cells 

the capability to grow in a disseminated manner all across the modified territory. This 

seems to be a specific characteristic of MYC, as the growth inducer PI3K, although 

increasing lgl growth abilities outside of the wing pouch region, did not induce any 

modifications in mutant cells’ behaviour. MYC thus seems to emerge as a good candidate 

to pioneer pre-cancerous fields by cell competition-mediated tissue colonisation. 
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METHODS  
 

GENETIC SYSTEMS 
UAS-Gal4 227  

 

                          
 

The UAS-Gal4 binary system has represented a true revolution in Drosophila gene 

analysis. This simple tool consists of two genetic elements from S. cerevisiae, the Gal4 

trans-activator protein and its target Upstream Activating Sequence (UAS). They are 

specific to each other, and when Gal4 is placed under the control of the desired promoter, 

the UAS-downstream sequence is transcribed in the desired pattern. 

 

Flp-FRT 228 

 

 
 

This simple system accounts for mitotic recombination to obtain a pair of genetically 

different twin cells through arm exchange in somatic tissues. FRT pericentromeric 

cassettes are recognised, bound and cut by an inducible Flippase and, at mitosis, a cell 

heterozygous for a recessive mutation and a cell marker (as an example, GFP) will 

generate a cell homozygous for the mutation (GFP-) and a cell homozygous for the cell 
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marker (GFP2+). The background will be GFP1+. This allows phenotypic analysis at a 

cellular level of recessive lethal genes.  

 

PROTOCOLS, REAGENTS AND STATISTICAL ANALYSIS 
Fly manipulation  

For Flp-FRT clones, larvae were heat-shocked at 48±4 hours AEL for 10 minutes in a 

water bath at 37°C and allowed to grow for additional 72 hours at 25°C before being 

dissected in PBS1X (Phosphate Buffer Saline, pH 7.5) and fixed for 20 minutes in 

formaldehyde (Sigma) 3.7% in PBS.   

 

Immunofluorescence  

Frozen or fresh larvae were permeabilised in PBS-Triton 0,3% for 1-hour RT, blocked for 

10 minutes in PBS-Triton 0,3%, 2% BSA (Bovine Serum Albumin, Sigma) and incubated 

overnight at 4°C in PBS-Triton 0,3%, 2% BSA with primary antibodies. Tissues were 

then incubated with secondary antibodies for 2-3 hours at room temperature. After 

opportune washes, imaginal wing discs were isolated from the carcasses and mounted on 

microscopy slides using the anti-quenching mounting medium FluoromountG (Beckman 

Coulter). The following antibodies and dilutions were used: mouse α-MYC (1:5 P. 

Bellosta), rabbit α-active Caspase 3 (1:100, Cell Signalling Technologies), rabbit α-

aPKCζ (1:200, sc-216 - Santa Cruz Biotechnology), rabbit α-pAKT (1:100, Cell 

Signaling), rabbit α-PH3 (1:100, Upstate Technology), mouse α-γH2Av (1:50, DSHB), 

mouse α-En (1:50, DSHB). Alexa Fluor 555 goat α-mouse and α-rabbit (1:500, 

Invitrogen) and DyLight 649-conjugated goat α-mouse and α-rabbit (1:800, Jackson 

ImmunoResearch Laboratories) were used as secondary antibodies. Nuclei were 

counterstained with DAPI (4',6-diamidine-2'-phenylindole dihydrochloride, Sigma). 

Samples were analysed with Leica TSC SP2 laser confocal microscope and entire images 

were processed with Adobe Photoshop software or ImageJ free software from NIH. All 

the images shown represent a single confocal stack unless otherwise specified. 

Magnification is 400X unless otherwise specified. 

 

DHE staining for ROS detection 

Larvae were dissected in PBS1X and imaginal wing discs were incubated in PBS1X - 

DHE (Dihydroethidium, Invitrogen Molecular Probes) at a final concentration of 30µM in 
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gentle shaking, before being fixed for 10 minutes in formaldehyde (Sigma) 3.7% in PBS 

and imaged immediately. 

 

Statistical analysis 

For the analysis of markers associated with field cancerisation, the number of wing discs 

analysed was 11÷21 from different larvae for each sample. Each experiment was 

performed at least in triplicate to strengthen statistics. For the experiment as to Figure 

RES-I 12, the total number of discs analysed was 346, and for the experiment as to Figure 

RES-I 14, the total number of discs analysed was 158. Mean Fluorescence Intensity and 

clone area (in pixel2) were measured using ImageJ free software (NIH) on images 

captured with a Nikon 90i wide field fluorescence microscope at a magnification of 200x. 

p-values are as follows: p≤0.01=**, p≤0.001=***. Mean, Standard Deviation and the t-

Student test p-value were calculated with GraphPad Prism software, San Diego, 

California, USA. 
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PART II - GROWTH AND TRACHEOGENESIS ARE SEPARABLE 
TRAITS IN DROSOPHILA CANCERS  
 

Drosophila cancers represent an excellent model to study the molecular basis of 

carcinogenesis, as a number of genetic tools have been developed by the fly community 
229. As previously described, many human phenotypic cancer traits are functionally 

conserved in Drosophila, and tumour growth and migration are particularly relevant, as 

they allow development of the primary mass and spreading of tumour cells in different 

districts of the organism.   

 

My laboratory previously identified MYC as a Hippo downstream target in Drosophila 
154, and also showed that its overexpression in cells carrying mutations in cell polarity 

genes was sufficient to confer them a proliferative potential and tumour features 96. 

Successively, in Drosophila imaginal wing discs we have also found a novel cancer 

hallmark: tumour-associated tracheogenesis, which is functionally and molecularly 

analogous to human tumour neo-angiogenesis 136.  

 

Here I have extended our previous work showing that tumour growth and tracheogenesis 

are separable traits in Drosophila epithelia. The Hippo, JNK and Ras/MAPK pathways 

are essential in cancer progression, and the activity of the two molecules I found involved 

in growth and tracheogenesis, MYC and FOS respectively, are at the intersection of these 

signalling cascades. 
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INTRODUCTION 
 

2.1 MAIN SIGNALLING PATHWAYS INVOLVED IN GROWTH AND MIGRATION 

IN COOPERATIVE CANCER MODELS 
The genetic system I have used in this part of the thesis to model epithelial cancer 

progression accounts on the oncogenic cooperation between lgl LOF and the 

constitutively active form of Ras (RasV12). Loss of cell polarity is a well-known alteration 

that provokes Hippo (Hpo) signalling pathway deregulation 93; this, in conjunction with 

Ras signalling activation, triggers uncontrolled growth and proliferation in the mutant 

cells. Moreover, the Hpo cascade inactivation provokes Yki nuclear translocation, which 

allows transcription of genes involved in cell proliferation, among which MYC. These 

mutated cells develop into malignant tumours, in which we observed signs of 

angiogenesis-like mechanisms 136. It was also observed that an activation of the JNK 

signalling cascade confers both migratory and invasion characteristics to tumour cells 

through MMP1 induction and, in Drosophila cancer models, recent studies have found a 

correlation between the Hpo and JNK pathways in cancer growth and migration 230. Here 

I am going to describe these three fundamental networks.    

 

2.1.1 The Hippo Pathway and Its role in Growth Control 

Described for the first time in Drosophila, the Hpo pathway represents the main 

regulatory signalling cascade in organ growth and proliferation. It is conserved from 

Drosophila to humans and it is largely involved in cancer development. The Hpo cascade 

transduces signals from the plasma membrane to the nucleus through its downstream 

transcription co-activator Yorkie (Yki), which promotes cell proliferation 231. The Hpo 

signalling is composed of a central kinase core consisting of four components: two central 

protein kinases, Hpo and Warts (Wts), that activate the signalling cascade, and two co-

factors, Salvador (Sav) and Mob As a Tumour Suppressor (Mats). A functional Hpo 

signalling leads to Wts phosphorylation, activating its kinase activity 232,233. The 

Wts/Mats complex phosphorylates Yki, and sequesters it into the cytoplasm, inhibiting its 

nuclear functions 234-236. 

 

The Hpo cascade is modulated by a number of upstream signallings, including cell 

polarity 237. Hpo regulation by Lgl-aPKC proteins has been shown to be tissue-specific: in 
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imaginal eye discs, lgl knockdown or aPKC activation are not sufficient to hamper cell 

polarity or to activate the JNK cascade in mutated cell clones but, despite this, there is a 

mislocalisation of RASSF (Ras-Associated Factors) and Hpo, resulting in Yki activation 

(Fig. PART-II 1, upper panel). How Lgl-aPKC deregulation influences Hpo in this organ 

is still an unresolved question 93, and being both Lgl and Hpo also involved in the 

endocytic trafficking, a hypothesis is that Lgl-aPKC regulate Hpo at the apical membrane 

where it is activated 238. In the imaginal wing disc, deregulation of lgl or aPKC genes 

affects cell polarity, and the JNK signalling is required to promote Yki activation 239: 

pJNK binds to and phosphorylates Ajuba (Jub), an upstream regulator of the Hpo 

cascade, which in turn binds to and inhibits Wts (Fig. PART-II 1, lower panel) 240.     

 

 
Figure PART-II 1 | Schematic representation of Hippo deregulation in imaginal epithelia: in the upper 

panel, a schematics of the imaginal eye disc, and, in the lower panel, a schematics of an imaginal wing disc. 

On the left, the tissue-specific physiological signalling pathways are represented. On the right, the 

mechanisms that lead to Hpo deregulation in the two epithelial organs following alterations in polarity 241.   

 

The main components of the Drosophila Hpo signalling are conserved in mammals, and 

include Mst1/2 (Hpo homologues) 242, Sav1 (Sav homologue) 243, Lats1/2 and Mob1 A/B 

(respectively Wts and Mats homologues) 244-248 and finally YAP and TAZ, the Yki 

homologues 249,250. Similarly to what happens in Drosophila, Mats1/2 and Lats1/2 are 

regulated by Sav1 and Mob1A/B, and phosphorylate YAP and TAZ (Fig. PART-II 2), 
234,251.  
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Figure PART-II 2 | The Hippo pathway components in Drosophila (on the left) and mammals (on the 

right) 252. 

 

In Drosophila, Yki knockdown reduces the excessive growth caused by mutants of the 

Hpo core proteins 253, and this property is conserved also in mammals 254. Therefore, Yki 

is the final effector of the Hpo cascade and regulates gene transcription. Being a 

transcriptional co-activator, it binds different tissue-specific partners in the nucleus: in 

Drosophila imaginal wing disc, the Yki main partner is Scalloped (Sd) and, in 

mammalian cells, the transcriptional factors TEAD 1-4, the orthologues of Sd, are key 

partners of YAP 255-258. More recently, other Yki co-transcriptional partners have been 

found: Homothorax (Hth) and SMAD proteins 259,260.  

 

Alterations in one of the core proteins of the Hpo signalling provoke a release of Yki, 

which moves to the nucleus and, binding different tissue-specific transcription co-factors, 

induces the expression of its target genes, such as CycE, dIAP1, MYC and the miRNA 

bantam, resulting in cell proliferation, tissue growth and resistance to apoptotic signals 
154,256,261,262.  Hpo pathway deregulation contributes to the excessive growth that 

characterises the oncogenic cooperation between Ras and polarity genes 106,107. In 

Drosophila imaginal eye discs, scrib-/-, RasV12 tumour cells show expression of Yki 

targets, and its knockdown reduces significantly tumour growth; despite this, mutant 

clones still display invasive abilities 106: other pathways are thus possibly involved in this 

trait.  
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2.1.2 The Ras/MAPK Signalling Cascade 

Ras family proteins belong to the small G protein class. Membrane receptors (such as 

EGFR) receive extracellular 

signals and activate Guanine 

nucleotide Exchange factors 

(GEFs), which subsequently 

induce transient Ras expression. 

Ras promotes activation of several 

downstream signalling cascades 

and, in physiological conditions, 

these signals are inhibited when 

GTP is hydrolysed to GDP through 

the GTPase-Activating Proteins 

(GAPs)1 109,263. Ras signalling 

pathways are involved in many 

cellular processes such as growth, 

proliferation, survival, migration 

and differentiation, and its 

mutations are found in about 30% 

of human tumours. The most represented Ras mutation is its constitutively active form, 

RasV12 (a Glycine-Valine exchange in position 12 takes place, resulting in a permanent 

bond with GTP). Mammalian genomes present three forms of Ras that encode H-RAS, K-

RAS and N-RAS. Even the Drosophila genome contains three Ras genes, but only Ras1 

has functional homology with mammalian Ras 109,263,264. The main downstream effectors 

of Ras, both in Drosophila and mammals, are the Raf/MAPK and PI3K signalling 

pathways (Fig. PART-II 3) 265. 

 

Among the Ras downstream signalling cascades, the Raf/MAPK pathway is the most 

studied. Raf proteins (serine-threonine kinase family) activate the MEK-MAPK cascade. 

Activated MAPK can phosphorylate the nuclear factors JUN and FOS, whose activation 

leads to transcription of genes involved in cell cycle control, survival, etc. Raf/MAPK 

                                                
1 The GTPase-Accelerating Proteins or GTPase-activating proteins are regulatory proteins which bind to 
activated G proteins and stimulate their GTPase activity, resulting in signalling arrest.  

Figure PART-II 3 | Ras regulation and its main downstream 

signalling pathways (Adapted from Schubbert, Shannon and 

Bollag, 2007). 
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activation can transform cells into malignant derivatives and Raf activating mutations are 

frequently found in human tumours 266. 

 

The Ras active form (Ras-GTP) can directly bind the catalytic subunit of PI3K, which 

moves to the membrane and phosphorylates PIP2 to PIP3. PIP3 is able to activate AKT (a 

Protein Kinase B), whose activity promotes growth and survival of cells. AKT is found 

activated in many tumours 266,267. 

 

Activation of the Ras signalling is considered a hallmark of cancer both in fruit flies and 

mammals. In fact, it promotes proliferation and migration of cancer cells, but also 

differentiation. For example, in Drosophila wing discs Ras triggers cell proliferation and 

also determines cell fate 104,268. Very recently, studies in Drosophila have shown that the 

Hpo pathway is essential in determining the output of Ras activity. Hpo deregulation 

switches Ras pro-differentiation functions into proliferation signals. In the physiology, 

Hpo controls two Ras target genes maintaining a correct equilibrium between 

proliferation and differentiation: the Yki-Sd complex directly transcribes Pointed (Pnt) 

and Capicua (Cic): Pnt allows cells to perceive Ras signalling inputs, while Cic inhibits 

Pnt function sending cells towards differentiation. Therefore, in healthy cells, the Hpo 

pathway acts as a tumour suppressor signalling by inhibiting mutated Ras, while Hpo 

alterations promote hyper-proliferation and tumour development 269. In cancer, Ras 

permits cells to increase their proliferative capacity through the transcriptional regulation 

of growth factors and their receptors, activation of nuclear proteins such as c-MYC and 

CycD, and inhibition of cell cycle negative regulators 263. In Drosophila, RasV12 ectopic 

expression is sufficient to induce cell proliferation and hyperplastic growth 270 by 

increasing MYC and CycE levels 104. Both Raf/MAPK and PI3K signalling pathways 

contribute to the inhibition of pro-apoptotic molecules and to the increase of pro-survival 

factors 263: an activated Ras signalling is able to block Hid activity 117,271. Moreover, in 

mammals, Ras promotes angiogenesis by producing inflammatory cytokines, which 

trigger the immune response, whose cells release pro-angiogenic factors 263. Also in 

Drosophila, Ras activation by the FGF/EGFR signalling (VEGF/VEGFR mammalian 

orthologues) is essential to tracheal cell migration 272 and, as previously described, the 

Drosophila tracheal system is comparable to the mammalian circulatory system.             
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2.1.3 The JNK Pathway and its Contribution to Cancer  

The Jun NH2-terminal Kinase (JNK) signalling 

pathway is an intracellular kinase cascade 

involved in fundamental biological processes, 

among which proliferation, migration, 

differentiation, morphogenesis and cell death 
273. In Drosophila, many conserved members 

of this signalling pathway have been 

characterised 274. It is activated by stress, and 

its final effector is the AP-1 transcriptional 

complex composed of Jra (Jun-Related 

Antigen or dJun) and Fra (or Fos-Related 

Antigen), encoded by the kayak (kay) gene 275. 

In the fruit flies, only one JNK exists: Basket 

(Bsk), whose activity is regulated by 

Hemipterous (Hep is a JNKK, the mammalian 

MKK7 homologue) phosphorylation 276-278. 

Therefore, the JNK signalling core is characterised by Hep→Bsk→Jun/Kay signal 

transduction 274. Hep phosphorylation is carried out by upstream JNKKKs (Tak1 and 12, 

Mekk1, Ask1, Slpr) 279,280. The JNKKKs can be activated by different stimuli: the Ras 

superfamily GTPases, members of the JNKKK kinase superfamily such as Misshapen 

(Msn), or factors binding the Tumour Necrosis Factor (TNF) receptor (Fig. PART-II 4) 
279,281-283. The JNK signalling is inhibited by the phosphatase Puckered (Puc), which is 

transcribed by the AP-1 complex itself (Fig. PART-II 4) 284.         

 

In Drosophila, the pro-apoptotic role of activated JNK is carried out through regulation of 

reaper, hid and grim, three pro-apoptotic genes 285 whose activity causes inactivation of 

the DIAP1 pro-survival protein 286: in imaginal discs, Rpr-dependent cell death is 

partially rescued by bsk knockdown, indicating a JNK signalling involvement in cell 

death. DIAP1 usually leads to dTRAF1 (a Drosophila JNKKKK) degradation, and being 

DIAP1 inhibited by Rpr, the apoptotic JNK cascade (dTRAF1→dASK1→Hep→Bsk) is 

available to transduce the signal 287. JNK-mediated apoptosis can be also activated by 

p53, resulting in rpr upregulation and, although JNK can trigger apoptosis through hid 

and rpr 288,289, JNK-dependent cell death cannot be arrested by caspase signalling 

Figure PART-II 4 | The canonical Drosophila 

JNK pathway 352.        
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inhibition 290: this evidence suggests the presence of caspase-independent apoptotic 

mechanisms downstream of the JNK pathway 291-293.       

 

In Drosophila epithelial cancers, JNK cascade activation plays a role both in tumour 

suppression and promotion 103,133,294. lgl, scrib and dlg mutant clones are eliminated by 

JNK-dependent apoptosis, resulting in tumour containment 103,111,294. On the contrary, in 

tumours where apoptosis is blocked by an active Ras signalling 48, JNK cascade 

activation acts as a tumour promoter by transcribing genes involved in growth and 

invasion 111,119,295-297.  Activation of JNK signalling in tumour cells increases cell motility 

through a Fra-dependent release of MMP1: MMP1 inhibition indeed abolished tumour 

invasion and Fra down-regulation decreased MMP1 levels 111,119. Cooperation between 

mutations in polarity genes and activated RasV12 up-regulates MYC levels 96,153, and 

recent Drosophila studies have found that MYC is directly involved in the suppression of 

tumour invasion: Ma and colleagues have shown that the MYC/MAX complex directly 

transcribes puc, which blocks the JNK cascade, while MYC inhibition promotes JNK 

activation and tumour cell migration 298. They also investigated MYC expression in 

human cancers to associate MYC levels with tumour aggressiveness and, by analysing the 

Oncomine database, they found that c-MYC levels were lower in metastatic than in non-

metastatic tumours 298.    

 

2.2  COOPERATIVE ONCOGENESIS IN DROSOPHILA IMAGINAL WING DISCS 

AS A MODEL TO STUDY GROWTH AND TRACHEOGENESIS  
As previously described, Drosophila epithelial tumours have helped explain many 

fundamental aspects of tumour biology. In Drosophila, genetic techniques of clonal 

induction allow mimicking the onset and progression of human cancer. Mutations in cell 

polarity genes and in the Ras/Raf/MAPK signalling pathway are found in a high 

percentage of human cancers, and in Drosophila these altered cells are able to survive and 

proliferate in a wt background, ultimately resulting in malignant masses 101-103,263. In lgl, 

RasV12 cells, the Hpo, Ras/MAPK and JNK pathways are all involved in a number of 

malignant traits (See 2.1 paragraph). As an example, in lgl, RasV12 cells, loss of cell 

polarity triggers JNK pathway activation, which promotes growth and invasion, the latter 

through MMP1 expression and consistent degradation of the basement membrane 
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111,119,299. Active Ras signalling inhibits JNK pro-apoptotic activities by stimulating, on 

the other hand, its pro-invasive properties 300.  

 

It is thus conceivable that a number of cells in the cancer mass up-regulate MYC and 

contribute to tumour expansion through JNK inhibition 298. In these cells, the JNK 

pathway is active and they may implement several strategies to migrate, co-opt vessels 

and grab oxygen: several phenotypes have indeed been observed which closely resemble 

those found in angiogenic mammalian tumours 136,137. 
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RESULTS AND DISCUSSION 
 

PRELIMINARY RESULTS 
As described in the dedicated Introduction, our and other laboratories have developed 

several models of epithelial cancers based on the oncogenic cooperation between LOF 

mutations in polarity tumour suppressor genes and activated/overexpressed oncogenes 
96,101,103,107. A number of phenotypic traits have been characterised in these models that 

closely resemble those encountered in human cancers, such as overgrowth 103, basement 

membrane degradation 96,101, invasiveness 101,102, tracheal co-option and branching 136,137 

and capability to trans-differentiate into distinct cell species 136,301. Many efforts have also 

been dedicated to the isolation of pathways and molecules supporting these different 

traits, and key questions are still open about the molecular basis of two opposite cell 

behaviours: the ability of cancer cells to grow in situ and the ability to migrate away from 

the developing mass. Is one ability the result of cell’s incompetence to accomplish the 

other? And what molecules are found at this crossroad? 

 

Our laboratory previously characterised some basic cancer hallmarks in a clonal model of 

epithelial neoplasia 136. Briefly, this model was obtained by combining the LOF of the 

polarity gene “lethal giant larvae” (lgl), extensively described in the general Introduction, 

with an activated form of the Ras oncogene, RasV12. As with other cooperative models, 

the fundamental traits of the tumour masses were obvious, but during my Master Degree 

Thesis I contributed to characterise for the first time a number of tracheal modifications 

supporting tumour growth, such as tracheal branching, tracheal co-option and tracheal 

mimicry, with tumour cells trans-differentiating in tracheal cells and forming chimeric 

vessels 136. Our data defined tracheogenesis as a new hallmark of Drosophila cancers, 

comparable to mammalian tumour-associated angiogenesis, and were successively 

confirmed by another study 137. 

 

Here I include two figure panels illustrating the essential molecular and structural markers 

found in lgl; RasV12 clonal tumours, necessary to gain a full understanding of the results 

of this Chapter. 
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Figure PREL-II 1 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, lucKD/+ late L3 larvae. Mutant clones are GFP+. A: 

aPKC (white) is a polarity marker, while MYC oncoprotein (red) marks clone cell nuclei. B: several cancer 

cells secrete MMP1. C: the basal side of the clone-containing organs shows abnormal tracheal networks 

mainly composed of cancer cells. Disc profiles are outlined where necessary. 

 

Figure PREL-II 1 displays some basic features of the larval epithelial organs carrying lgl; 

RasV12 clonal tumours induced by the MARCM system (see Methods section). The lucKD 

construct has been introduced as an irrelevant dsRNAi to make the collected data 

comparable with those obtained in the successive experiments. Throughout the chapter, 

the lgl; RasV12, lucKD genotype will be referred to as lgl; RasV12. GFP-positive mutant 

cells up-regulate the oncoprotein MYC (Fig. PREL-II 1A, bottom), secrete the 

metalloprotease MMP1 (Fig. PREL-II 1B) and compose tube-like structures connecting 

with the endogenous vessels at the basal side of the organ (Fig. PREL-II 1C, adapted 

from Grifoni et al., 2015). lgl; RasV12 mutant cells are thus able to grow in a wild-type 

background, as activated Ras confers lgl mutant cell the capability to escape apoptotic 

death induced by the wild-type neighbours and to form in situ masses which alter tissue 

and organ shape 96,107.    

 

The following panel shows that these mutant cells up-regulate the effector molecules of 

the main pathways known to be involved in cancer growth modulation. 
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Figure PREL-II 2 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, lucKD/+ late L3 larvae. Mutant clones are GFP+.  A: 

pAKT (upper, red) is a PI3K-effector molecule activated by Ras, while dpERK (bottom, white) is the final 

MAPK. B: cancer cells show reduced nuclear exclusion of Yki (white), the effector molecule of the Hpo 

pathway. Clone profile is outlined in B, lower panel. C, C’: some mutant cells/clones display from mild to 

high pJNK levels (red). Disc profiles are outlined where necessary. 

 

As can be appreciated in Figure PREL-II 2A, upper panel, some mutant cells up-regulate 

pAKT, the main effector of PI3K, that is in turn regulated by activated Ras 104. Despite 

this, findings obtained in my lab demonstrate that the essential traits of lgl; RasV12 mutant 

cells are conserved following PI3K knockdown; as a confirmation, tumour phenotypes 

are fully recapitulated in organs carrying lgl; Raf Act mutant cells, which do not show 

pAKT activation 302. As expected, lgl; RasV12 mutant cells show a potent up-regulation of 

the final MAPK dpERK (Fig. PREL-II 2A, lower panel, white), and the Hpo pathway 

downstream co-activator Yki shows partial nuclear localisation in the mutant cells (Fig. 

PREL-II 2B, white), as already observed in other studies 107,301. Finally, some groups of 

lgl; RasV12 cells up-regulate the final effector of the c-Jun N-terminal signalling cascade, 

pJNK (Fig. PREL-II 2C-C’, red), and this may sustain Yki activation downstream of 

mutated Ras through inhibition of the core kinase Warts (Wts), as it has been recently 

observed by Enomoto and colleagues 303. 
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RESULTS AND DISCUSSION 
In this Chapter, I will describe my work aimed at understanding the cell-autonomous 

molecular basis of a cancer cell’s tendency to contribute to the primary mass or to form 

secondary structures such as tracheal-like vessels. As introduced in the preliminary 

results, a number of pathways involved in mammalian cancer growth are found 

dysregulated in lgl; RasV12 mutant cells. In the attempt to genetically dissect the pro-

growth and pro-tracheogenic behaviours of the lgl; RasV12 cells, I knocked the different 

pathway effectors down and evaluated the rescue or the worsening of each trait. 

 

                        
Figure RES-II 1 | Upper panel: immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, 

UAS-GFP/w; l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-rlKD/UAS-RasV12 late L3 larvae. Mutant clones are 

GFP+. aPKC is marked in white, and no GFP+ cells secrete MMP1 (red). Lower panel: immunofluorescence 

staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w, UAS-bskDN; l(2)gl4, FRT40A/tub-Gal80, 

FRT40A; UAS-RasV12/+ late L3 larvae. Mutant clones are GFP+. aPKC is marked in white, and some GFP+ 

cells in the proximal disc secrete MMP1 (red). Disc profiles are outlined where necessary. 

 

As can be seen in Figure RES-II 1, upper panel, lgl; RasV12 mutant cells knocked down 

for rolled (rl), the gene encoding the core component of the Ras/MAPK pathway 

Mitogen-Activated Protein Kinase (MAPK), also called Extracellular signals-Regulated 

Kinase (ERK) 304, are no more able to form large masses, nor do they form tube-like 

structures connecting with resident vessels. Consistently, the protease MMP1 delineates 
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an endogenous tracheal vessel in the notum region 305, but no staining is detectable in the 

epithelium (upper-right figure). A statistical analysis of the clonal areas revealed that the 

average clone dimensions of the lgl; RasV12, rl KD cells is 10-fold smaller than the lgl; 

RasV12 counterparts (see Fig. RES-II 7). Moreover, no significant differences are seen 

compared to the wt controls. In light of this evidence, I concluded that the MAPK 

pathway effector transduces both growth and tracheogenic signals in lgl; RasV12 

transformed cells. 

 

I then investigated the contribution of the JNK pathway to the lgl; RasV12 tumour 

phenotype, by inhibiting the final effector pJNK, that in Drosophila is encoded by the 

basket (bsk) gene 306. The JNK signalling pathway has indeed been shown to be involved 

in tumour growth in different cancer contexts in Drosophila 103,111,119,136,294,296,298,303,307,308. 

Figure RES-II 1, lower panel, shows a larval wing disc displaying bskDN; lgl; RasV12 

clones (GFP+). As can be appreciated, the mutant clones are severely restricted with 

respect to the lgl; RasV12 clones (see Fig. PREL-II 1 for a comparison), showing an 

average 3-fold reduction in size. With regard to the tracheogenic phenotype, although I 

observed some epithelial cells expressing MMP1, no tube-like neo-structures were found 

at the basal side of the discs analysed.  

 

In this case, the growth rescue was less impressive than that seen following MAPK 

inhibition (see Fig. RES-II 7), but bskDN; lgl; RasV12 clones showed the same roundness 

coefficient as that of the MAPK-inhibited ones (0.34), lower than that shown by wt clones 

(0.42), indicating poor capacity to form three-dimensional structures (see Table RES-II 1 

at the end of the Chapter). Roundness is indeed a parameter of non-wt shape and 

characterises both hyperplastic and neoplastic growth. 

 

In conclusion, either MAPK or JNK inhibition rescued the ability of lgl; RasV12 mutant 

cells to form large and confluent clones and to participate in tracheogenic rearrangements 

during cancer evolution. 

 

The Hpo pathway, as described in the dedicated Introduction, is an evolutionarily 

conserved protein network whose components are able to intercept extracellular and 

intracellular signals and transduce them into plastic cell behaviours 309. The Hpo pathway 

may thus be considered as a key modulator in cancer, with different actors modifying 
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different behaviours in different tissues 310. As a consequence of Yki knockdown in lgl; 

RasV12 clones, I observed an about 3-fold reduction of the average clone dimensions, 

similar to that observed following JNK inhibition (see Fig. RES-II 7). As can be seen in 

Figure RES-II 2, upper panel, some lgl; RasV12, ykiKD clones secrete MMP1 (red) and 

some lose MYC protein expression (red, lower panel, outlined). This was not surprising, 

as my laboratory previously demonstrated that MYC is a transcriptional target of Yki 154 

and c-MYC and YAP show mutual regulation either in the fly 153 or in humans 311. Table 

RES-II 1 summarises the fundamental behaviours of these mutant cells, and while growth 

resulted significantly reduced across the whole disc, MYC expression and cell polarity 

showed position-dependent phenotypes.  

 

                           
Figure RES-II 2 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-ykiKD/UAS-RasV12 late L3 larvae. Mutant clones are GFP+. 

Upper panel: aPKC is marked in white, and some mutant clones secrete MMP1 (red). Lower panel: Yki is 

marked in white, and some clones showing low MYC levels are outlined in the lower-right panel. The panel 

shows apical-cross sections of the wing disc. Disc profiles are outlined where necessary. 

 

Concerning the tracheogenic phenotype, a surprising cell behaviour was observed at the 

basal side of these disc: MMP1 staining revealed that lgl; RasV12, ykiKD cells are able to 

migrate across the disc depth and form tube-like structures capable to connect with pre-
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existing tracheal vessels (outlined in red in Fig. RES-II 3). This happened predominantly 

in the wing pouch region, where some of the mutant clones shown in Figure RESII-2, 

upper panel, displayed MMP1 secretion. In Figure RES-II 3, lower panel, a mutant clone 

grown wrapped around a tracheal branch is also shown (arrowhead), a typical case of 

vessel co-option as those found in lgl; RasV12 samples 136.  
 

 

 
Figure RES-II 3 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-ykiKD/UAS-RasV12 late L3 larvae. Mutant clones are GFP+. Yki 

is marked in white, and mutant cells form tube-like structures while secreting MMP1 (red). The arrowhead 

indicates a clone wrapped around a tracheal vessel. In the right panel, the apical clones are false-coloured in 

blue. The panel shows basal sections of the wing disc. Disc profiles are outlined where necessary. 

 

 

Hpo pathway inhibition was thus extremely informative about the possibility to find 

different cascades involved in growth and tracheogenesis in our cancer model. Yki 

knockdown was indeed sufficient to restrict the growth of lgl; RasV12 cells, but it did not 

hamper cell migration and propensity to form vessels during tumour evolution. 
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The Hpo pathway is known to regulate/be regulated by the Ras/MAPK and JNK cascades 

in many ways: as an example, the Ajuba LIM protein (Jub) is known to be activated by 

phosphorylation both by dpERK and pJNK in Drosophila and mammals, and activated 

Jub binds the Warts/LATS core kinase and recruits it to junctions, thus promoting 

Yki/YAP activity 240,312,313.  

 

My laboratory previously investigated the impact of Jub knockdown on the behaviour of 

lgl; RasV12 clones, but no significant differences in growth and/or tracheogenesis were 

found 302, suggesting that other mechanisms are at work in the modulation of these 

specific traits in our cancer model.  

 

It has recently been shown that Ras signalling activates a series of transcription factors 

whose output is modulated by the Hpo downstream effector Yki 269,314. One of these 

factors is the oncoprotein MYC, which results up-regulated in most lgl; RasV12 cells (Fig. 

PREL-II 1, lower panel). Activated Ras is indeed known to increase MYC protein levels 

in the wing disc 104, and mammalian c-MYC is phosphorylated and stabilised by activated 

ERK 315. Moreover, c-MYC activity is regulated by pJNK at the post-transcriptional level 
316, and Drosophila MYC is known to inhibit JNK signalling by activating transcription 

of the downstream pathway inhibitor puckered (puc) 298. Finally, MYC is a transcriptional 

target of Yki 153,154 and ykiKD in lgl; RasV12 cells down-regulates MYC in the wing pouch 

region, where these same clones express MMP1 and show the capability to originate tube-

like templates and connect with endogenous vessels (Fig. RES-II 3).  

 

I thus investigated the impact of dm (diminutive, dm, is the locus encoding the MYC 

protein 142) knockdown on lgl; RasV12 cell behaviour.  

 

Figure RES-II 4 illustrates the growth phenotype of lgl; RasV12, dmKD mutant clones and, 

as can be seen, growth was severely restricted throughout the wing disc and completely 

abolished in the wing pouch region. In particular, apical, sub-apical and cross sections of 

the discs are shown, where the most part of stably growing clones are usually found. This 

incredible growth deficit was in line with the essential functions of MYC in cell 

proliferation and cell growth 146,317-319, but mass collapse is also known to occur in 

mammalian cancers following MYC inhibition 320,321. This is the reason why MYC family 

proteins are considered promising targets in cancer therapy 322,323.  
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Figure RES-II 4 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, UAS-dmKD/+ late L3 larvae. Mutant clones are GFP+. 

aPKC is marked in white, and some mutant cells secrete MMP1 (red). The panel shows apical-to-cross 

sections of the wing disc. Disc profiles are outlined where necessary.  

 

Such as it happened with ykiKD, the severe growth deficit of lgl; RasV12, dmKD mutant 

clones across the disc depth was associated with an amazing migration of the mutant cells 

towards the basal side of the disc, where they originated tubular structures 

interconnecting a number of mutant clones (Fig. RES-II 5, arrowheads) and/or connecting 

with existing tracheal vessels (Fig. RES-II 5, arrows). It is worth underlining the complete 

penetrance of this phenotype, obtained using two different RNAi constructs (see 

Methods).  
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Figure RES-II 5 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, UAS-dmKD/+ late L3 larvae. Mutant clones are GFP+. 

aPKC is marked in white, and mutant cells form tube-like structures while secreting MMP1 (red). 

Arrowheads indicate mutant cells organised in a tubular shape. Arrows indicate mutant cells connecting 

with resident vessels. The panel shows basal sections of the wing disc. Disc profiles are outlined where 

necessary. 

 

These findings were convincing evidence that MYC is necessary for the in situ growth of 

lgl; RasV12 cells; its deprivation induces a hyper-migratory behaviour of these cells, 

possibly mediated by JNK activation, such as it has recently been shown in other systems 
298. This aspect has to be seriously taken into account while considering MYC as an 

attractive target for anti-cancer therapy. 

 

As ERK and JNK knockdown were both able to rescue either growth or tracheogenesis, 

although at different levels (see Table RES-II 1 and Fig. RES-II 7), some common targets 

were supposed to be responsible for the migratory phenotype.  
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I concentrated my attention on Fos-Related Antigen (FRA, encoded by the kayak - kay - 

gene in Drosophila), as it is known to be post-transcriptionally regulated by both ERK 

and JNK by phosphorylation on distinct residues during fly development 324. Moreover, 

FRA and MYC were found among a handful of transcription factors that drive malignant 

growth of RasV12 scrib-/- tumours 314.  

 

 
Figure RES-II 6 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, UAS-kayKD/+ late L3 larvae. Mutant clones are GFP+. 

aPKC is marked in white, and mutant cells secrete MMP1 (red). The panel shows apical-to-cross sections of 

the wing disc. Disc profiles are outlined where necessary. 

 

As can be seen in Figure RES-II 6, kay KD does not seem to hamper growth of lgl; RasV12 

cells. A statistical analysis showed that the average lgl; RasV12, kay KD clone size does not 

differ significantly from that of the lgl; RasV12 samples (Fig. RES-II 7). Other traits 

associated with overgrowth, such as roundness, loss of apical-basal cell polarity and 

MYC up-regulation, were also comparable to those of the original lgl; RasV12 model 

(Table RES-II 1). MMP1 secretion was severely reduced compared to the lgl; RasV12 

samples, but this was expected, as FRA is known to regulate MMP1 transcription 

downstream of the JNK signalling 119. Differently to what happened with lgl; RasV12 cells, 

the most part of the lgl; RasV12, kay KD cells were found to compose the primary masses: 
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no cell scattering and no tube-like structures were indeed found throughout the organ, and 

very few MMP1-positive cells reached the basal side of the discs. 

 

                                                  
Figure RES-II 7 | A graph shows the average clone area of all the genotypes analysed, sampled all across 

the imaginal wing disc. The dotted line refers to the area of wild-type clones. Error bars indicate the 

standard deviation of the mean; n=25-40 each genotype. All the comparisons are statistically significant 

(***=p≤0:001) respect to the lgl; RasV12 samples, except for lgl; RasV12, kay KD. 

 
Table RES-II 1 | A summary of the malignant traits analysed for each genotype. The legend describes the 

symbols used in the Table. 
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To quantify the observations concerning the tracheogenic behaviour, I established a 

Tracheogenic Index (TI), calculated as the ratio between the MMP1-positive clone area 

found at the disc basal side (where the transverse connective tracheal trunk is found) and 

the total (apical+basal) clone area. The analysis was performed considering the whole 

GFP+ cells present in the wing pouch region. As an example, Figure RES-II 8 represents a 

wing disc containing lgl; RasV12, dm KD cells. The upper panel shows an apical section of 

the disc, whose GFP+ cells represent the “Growth area”. The lower panel displays a basal 

section of the same disc, where the GFP+ cells represent the “Tracheogenic area”. The 

four images marked with progressive numbers show an apical-to-basal sequence with the 

GFP+ area from the previous figure coloured in red. As can be appreciated from the 

merging yellow areas, cells form a continuum from the apical towards the basal side of 

the disc, where the most part of the mutant cells resides. 

 

 
Figure RES-II 8 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, UAS-dmKD/+ late L3 larvae. Mutant clones are GFP+. 

aPKC is marked in white and the red areas represent the GFP+ cells of the previous panel. The upper panel 

shows the apical section of the wing disc, while the lower panel shows the basal section of the same disc. 
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Let us observe what happens with the lgl; RasV12, kay KD cells. In this case, as it is 

displayed in Figure RES-II 9, the most part of the mutant cells reside at the apical part of 

the disc; the apical-to-basal sequence indeed shows a progressive reduction of the clonal 

area.  
 

 
Figure RES-II 9 | Immunofluorescence staining of wing discs from yw, hs-Flp, tub-Gal4, UAS-GFP/w; 

l(2)gl4, FRT40A/tub-Gal80, FRT40A; UAS-RasV12, UAS-kayKD/+ late L3 larvae. Mutant clones are GFP+. 

aPKC is marked in white and the red areas represent the GFP+ cells of the previous panel. The upper panel 

shows the apical section of the wing disc, while the lower panel shows the basal section of the same disc. 
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Figure RES-II 10 | Tracheogenic Index of wing discs carrying lgl; RasV12, dm KD and lgl; RasV12, kay KD 

clones, compared to that of lgl; RasV12 samples. n is indicated for each sample group. All the comparisons 

are statistically significant (***=p≤0:001) respect to the lgl; RasV12 samples. 

                                 

The TI calculated for the lgl; RasV12, dm KD and the lgl; RasV12, kay KD samples are 

compared to the TI calculated for the lgl; RasV12 samples in Figure RES-II 10. As can be 

observed in the graph, while about 35% of the MMP1-positive lgl; RasV12 cells are found 

at the basal side of the wing disc, the percentage climbs over 95% for the lgl; RasV12, dm 

KD cells, and drops below 1% in the lgl; RasV12, kay KD sample group. 

This was an astonishing finding and, beyond the efficiency of the RNAi constructs (see 

Methods), numbers are sufficiently distant to define the transcription factors MYC and 

FRA as the main effectors of growth and tracheogenesis downstream of the ERK and 

JNK pathways in lgl; RasV12 cancers.  

 

As oncogenic Ras upregulates integrins via the ERK/FOS signalling cascade 325, and 

MYC is known to suppress metastasis by transcriptional repression of the integrin genes 
326, a possible mechanistic process explaining the antagonistic activity of MYC and FRA 

in lgl; RasV12 mutant cells is the modulation of their integrin-dependent walking 

capability. This hypothesis is currently under investigation. Figure RES-II 11 

recapitulates the findings described in this chapter. 
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Figure RES-II 11 | A scheme summarising the findings described in the chapter. 

 

During cancer progression, cells provide the growing mass with different abilities which, 

in time, shape tumour history 327. Tumour growth and induction/formation of new vessels 

are both considered essential malignant traits 9. While mass expansion may hamper organ 

function, migrating cells may reach distant sites and develop into secondary lesions, 

typical of deadly cancers 328.  

 

The ERK/JNK pathways downstream effectors MYC and FRA have emerged from my 

study as potent inducers of growth and tracheogenesis, respectively, in Drosophila 

cancers. To evaluate possible rescue effects at the organismal level, I knocked these genes 

down in an lgl mutant background.  

 

As detailed in the general Introduction, lgl LOF mutations provoke malignant growth of 

the ectodermal derivatives, with individuals undergoing delayed larval development and 

untimely death caused by formation of huge cancer masses filling the whole larval body 
46. lgl knockdown under the control of the tubulin promoter reproduces with full 

penetrance the same phenotypes as the lgl-/- mutant (Grifoni, FlyBase communication).  
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As can be seen in Figure RES-II 12, middle panel, tub-lgl KD wing discs grow while 

fusing with contiguous thoracic discs, and brain tissues are fused with the eye complex 

and with other discs specifying head and mouth parts. tub-lgl KD, dm KD larvae did not 

survive beyond L1, while all the tub-lgl KD, kay KD individuals showed nearly complete 

rescue of both wing disc and brain structure (Fig. RES-II 12, lower panel, please compare 

the organs with those shown in the upper panel). This finding suggests that inhibition of 

the migratory and tracheogenic potential of cancer cells is sufficient as to re-establish a 

series of physiological constraints to cancer progression.    

  

                    
Figure RES-II 12 | Immunofluorescence staining of wing discs from control late L3 (upper panel), tub-lgl 

KD (middle panel) and tub-lgl KD, kay KD (lower panel) larvae. aPKC (white) marks organ structure. This 

panel is composed of images taken at 200X magnification. 
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Despite this surprising organ rescue during the larval life, these animals did not undergo 

differentiation. A possible explanation is that kay KD did not rescue the ecdysone defects 

observed in lgl mutant animals 329, so halting development at the larval-pupal transition.  

 

Taken together, my results identify a selection mechanism triggered by two related 

transcription factors, which seem to play opposite roles in shaping cells’ fate in cancer 

evolution.  

 

While I was working on my PhD Thesis, a graduate fellow in my laboratory, now 

enrolled in the PhD Programme, was developing a brain cancer model based on a 

neurogenic hypothesis. Through the overexpression of a mutant form of aPKC in the 

central brain, she was able to inhibit Lgl localisation and induce cancers which kept 

growing in the adult 63. Normally, aPKC phosphorylates Lgl restricting it at the basal-

lateral membrane of the epithelial cells and at the basal side of the neural stem cells 330; 

the mutant form of aPKC used in our study inhibited Lgl function throughout the cell 

membrane, thus preventing cell differentiation. Despite the highly malignant phenotype 

of these cancers, my colleague found complete lack of invasion/migration, and asked me 

to investigate MYC expression in those tissues. As expected, I found a massive MYC up-

regulation in the brain regions where the promoter induced Lgl down-regulation, both in 

larval and adult brains, which also up-regulated Yki (Fig. RES-II 13 A, D and E, arrow 

and arrowheads). MYC knockdown in this context completely abolished cancer growth 

(Fig. RES-II 13 C, arrow and arrowheads, compare organ dimensions with B).  

This evidence confirmed that MYC role in cancer growth is not tissue-specific, and its 

high expression in these brain cancers may explain their poor ability to colonise other 

tissues/organs.  
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Figure RES-II 13 | (A) MYC (red) and Lgl (white) staining of Optix-aPKCCAAX larval brains. Region II in 

the GFP+ inset indicates type II NBs. (B) The arrowhead points to the type II NBs in the DM region. (C) 

The same regions as in B are indicated in an Optix-aPKCCAAX dmKD brain. (D) MYC (red) and Lgl (white) 

staining of Optix-PI3KCAAX aPKCCAAX larval brains. The GFP+ inset shows the huge expansion of the type II 

NBs (region II). (E) Optix-aPKCCAAX adult brains from 1-4 days old animals showing MYC and Yki 

upregulation (arrows). Scale bars are 50µm 63.  
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METHODS  
 

GENETIC SYSTEMS 
MARCM 331 

 

                                 

                              
 

The MARCM system has been developed to induce combined loss-of-function (LOF) and 

gain-of-function (GOF) mutations in single cells. It takes advantage of the Gal4 repressor 

Gal80 to specifically inhibit Gal4 function in all but the mutant cells in the organ. The 

presence of a cell marker under the control of a UAS cassette allows recognising the 

mutant cells across the tissue of interest. 

 

UAS-Gal4 227 

See Methods - Part I 

 

PROTOCOLS, REAGENTS AND STATISTICAL ANALYSIS 
Fly manipulation  

For MARCM clones, larvae were heat-shocked at 48±4 hours AEL for 10 minutes in a 

water bath at 37°C and allowed to grow for additional 72 hours at 25°C before being 

dissected in PBS1X (Phosphate Buffer Saline, pH 7.5) and fixed for 20 minutes in 

formaldehyde (Sigma) 3.7% in PBS.   

 

Immunofluorescence  

Frozen or fresh larvae were permeabilised in PBS-Triton 0,3% for 1-hour RT, blocked for 

10 minutes in PBS-Triton 0,3%, 2% BSA (Bovine Serum Albumin, Sigma) and incubated 
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overnight at 4°C in PBS-Triton 0,3%, 2% BSA with primary antibodies. Tissues were 

then incubated with secondary antibodies for 2-3 hours at room temperature. After 

opportune washes, imaginal wing discs or brains were isolated from the carcasses and 

mounted on microscopy slides using the anti-quenching mounting medium 

FluoromountG (Beckman Coulter). The following antibodies and dilutions were used: 

mouse α-MYC (1:5 P. Bellosta); rabbit α-aPKCζ (1:200, sc-216 - Santa Cruz 

Biotechnology); mouse α-phospho-JNK (1:100, G9 - Cell Signaling Technology); mouse 

α-MMP1 (1:50, 3A6B4 - DSHB); mouse α-dpERK (1:50, MAPK-YT - Sigma); rabbit α-

pAKT (1:100, Cell Signaling); rabbit α-Yki (1:100, G. Morata); rabbit α-Lgl (1:400, D. 

Strand). Alexa Fluor 555 or 568 goat α-mouse and α-rabbit (1:500, Invitrogen); Cy3-

conjugated goat α-rabbit (1:200, Jackson ImmunoResearch Laboratories); Cy5-

conjugated goat α-mouse and α-rabbit (1:500, Jackson ImmunoResearch Laboratories) 

and DyLight 649-conjugated goat α-mouse and α-rabbit (1:800, Jackson 

ImmunoResearch Laboratories) were used as secondary antibodies. Nuclei were 

counterstained with DAPI (4',6-diamidine-2'-phenylindole dihydrochloride, Sigma). 

Samples were analysed with Leica TSC SP2 laser confocal microscope and entire images 

were processed with Adobe Photoshop software or ImageJ free software from NIH. All 

the images shown represent a single confocal stack unless otherwise specified. 

Magnification is 400X unless otherwise specified. 

 

Statistical analysis 

The number of wing discs analysed was 25÷40 for each sample. Clone shape was 

measured with ImageJ using the formula 4πA/L2, in which A = clone area and L = clone 

circumference. By use of this formula, a perfect circle has a value of 1 and more irregular 

shapes have values <1. All error bars are ± standard error of the mean (SEM), if not 

differently indicated. p-values are as follows: p≤0.01=**, p≤0.001=***. Mean, Standard 

Deviation and the t-Student test p-value were calculated with GraphPad Prism software, 

San Diego, California, USA. 

 

RNA Extraction and Purification, RT-PCR, Sybr Green qPCR  

15 L3 larvae were homogenised in a vial with TRI Reagent® (Sigma-Aldrich), centrifuged 

for 5 minutes at 12000g at 4°C, and the supernatant was processed as follows: 300µl of 

chloroform were added to 1ml of TRI Reagent® (Sigma-Aldrich) solution and vortexed 
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for 10 seconds. The samples were incubated for 10 minutes at room temperature and 

centrifuged for 12 minutes at 12000g at 4°C. The RNA-containing aqueous phase was 

transferred to a new tube, where 750µl of isopropyl alcohol were added. Samples were 

mixed, incubated for 10 minutes at room temperature and centrifuged for 12 minutes at 

12000g at 4°C. The pellet was repeatedly washed with 1 ml 75% EtOH and centrifuged at 

7500g for 5 minutes at 4°C. The supernatant was removed and the dried pellet was eluted 

at 55°C for 10 minutes in 50µl of mqH2O. A DNAse I-treatment followed to avoid 

genomic contamination.  

 

cDNA synthesis was performed using total DNA free-RNA with oligo(dT) in a 0,2ml 

tube by using the ThermoScript™ RT-PCR system. The ThermoScript is an engineered 

avian reverse transcriptase with reduced RNase H activity that shows high thermal 

stability and produces high amounts of full-length cDNAs. Each mix is prepared as 

follows: 1µg di RNA + 2X RT Reaction Mix (oligo dT 2,5µM, random hexamers 2,5 

ng/µl, MgCl2 10 mM, dNTPs) + RT enzyme Mix (Retro Transcriptase and RNase OUT) 

+ mqH2O up to the final volume.  

 

SYBR GreenER qPCR SuperMix (Invitrogen) is a ready-to-use cocktail containing all 

components, except primers and template, for real-time quantitative PCR (qPCR) on 

ICycler BioRad real time instruments that support normalisation with Fluorescein 

Reference Dye at a final concentration of 500nM. It combines a chemically-modified 

“hot-start” version of Taq DNA polymerase. SYBR GreenER qPCR SuperMix is supplied 

at a 2X concentration and contains hot-start Taq DNA polymerase, SYBR GreenER 

fluorescent dye, 1 µM Fluorescein Reference Dye, MgCl2, dNTPs and stabilisers. The 

SuperMix formulation is compatible with melting curve analysis. The amplification is 

based on 40 cycles x 3 steps: after 3 minutes denaturation at 95°C, each amplification 

step includes: 30 seconds at 95°, 15 seconds at 56°C, 30 seconds at 72°C. The resulting 

graph is the relative quantity of the target gene transcript compared to the transcript 

quantity of the reference gene. For each sample, an amplification curve is shown in a 

Cartesian graph: the x-axis represents the cycle number and the y-axis represents the 

Relative Fluorescence unit which is dependent on the amplified cDNA molecules.  
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Table 1 | Real-Time PCR primers used and main features. dm: Drosophila dm gene, encoding the MYC 

protein; kay: Drosophila kayak gene, encoding the FRA protein; Green Fluorescence Protein construct.  

Gene Primer sequences Size (bp) Melting (°C) GenBank Accession 

Drosophila melanogaster 

 

dm 

Forward: 

5’- TATTAGTCGTCAAACAGTGG-3’  

Reverse: 

5’-GCTGCATACTAAGCTCCTTC-3’ 

 

423 

 

55 

 

NM_080323.4 

 

kay 

Forward: 

5’-GAAGAAGTTGCTGCTCTG-3’  

Reverse:  

5’- ACGTTCTTAGGGTCTTTACT-3’ 

 

564 

 

54 

 

NM_167053.2 

 

GFP 

Forward: 

5’-GGATGCTCTTGGCTCTTC-3’  

Reverse: 

5’-GACAATCTTCTGGTGTCTGG-3’ 

 

352 

 

55 
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PART III - HIGHLY COMPETITIVE CANCERS UNDERGO GROWTH 
DECLINE UPON APOPTOSIS INHIBITION 
 

Evasion of apoptosis is one of the hallmarks of cancer, which help cells survive also in 

stress conditions 9. Cell death can be induced in a non-autonomous manner, as it happens 

in cell competition (CC) 98,165,166,332.  

 

In Drosophila cancer tissues, loss of cell polarity triggers MYC-Mediated Cell 

Competition (MMCC) and, in this background, apoptotic death may act by promoting 

mass expansion, as in the fruit fly a mechanism of compensatory proliferation following 

cell death has been observed and characterised. Dronc activation (the Caspase 9 

mammalian orthologue) stimulates the JNK signalling that, as described in the 

Introduction to Part II, induces apoptotic death but is also required to promote cancer 

growth 114,333–335. In mammals, the apoptotic cell features are described in different 

models and it has been observed that dying cells promote tumour angiogenesis and feed 

tumour growth 336. 

 

Here I follow the hypothesis that, in highly competitive cancers, the excess of apoptotic 

cells may stall the engulfment machinery, so persisting in the tumour tissue contributing 

to its growth 138 and, with the aim to investigate their role and contribution in cancer 

progression, I triggered MMCC in a Drosophila cancer model and I subsequently 

inhibited cell death. The preliminary results show that a block of apoptotic cell death 

results in a smaller tumour mass. 
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INTRODUCTION 
 

3.1 APOPTOTIC DEATH AND CANCER 
Evading apoptosis is a common trait of cancer and its reactivation is an adopted therapy 

to try blocking tumour growth and progression 9,337. Apoptosis is a process consisting of 

autonomous cell death following irreparable cell damage, but recently emerging cancer 

studies also define cell death as a non-autonomous mechanism 332. For example, CC (see 

Introduction and 1.3 paragraph) is a mechanism that triggers non-autonomous apoptosis 

and dying cells release mitogenic signals which stimulate a compensatory proliferation of 

the winner cells 166. Cancer cells try to subvert and exploit cell processes to their own 

benefit 338, and it is plausible that they take advantage of non-autonomous apoptosis to 

increase their own fitness: in a Drosophila model of intestinal adenoma, MMCC-

dependent growth was rescued by apoptosis inhibition 217, thus identifying a pro-

tumourigenic role of apoptosis in cancer. Our recent data in human cancers and 

preliminary data in Drosophila models suggest that CC is important not only in the onset 

but also during tumour progression, and it is precisely during progression that cell death 

seems to assume a fundamental role, allowing the expansion of tumour sub-clones within 

the growing mass 110,138. The close connection between CC and apoptosis emerged also in 

a recent computational model of tumour growth 339. In mammals, the role of apoptotic 

cancer cells has been studied in a murine model of B-cell lymphoma: dying cells 

expressed MMP and promoted tumour angiogenesis supplying the growing mass with 

oxygen. Therefore, also in this mammalian cancer model, apoptosis enhances tumour 

progression 336. In other studies, the apoptotic index has been associated with malignancy 

in several kinds of tumours: an increase of the apoptotic rate generally correlates with a 

poor prognosis 340–342. Finally, glioma dying cells have been found to promote 

angiogenesis through Caspase 3-dependent VEGF secretion 343.  

 

3.2 MYC-MEDIATED CELL COMPETITION IN HUMAN CANCERS 
The pivotal role of MMCC in cancer has been discussed in paragraph 1.3, and its 

contribution to the initial expansion of the tumour mass is well known in Drosophila. For 

the first time, my laboratory recently observed signs of MMCC in human cancers. 

Histological samples of colon, breast and lung human tumours have been analysed and 

they showed polarity loss and Hpo signalling deregulation. Cancer cells with high MYC 
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levels were surrounded by Cas3-positive stromal cells: these evidence recap the MMCC 

mechanism observed in Drosophila models. Interestingly, signs of MMCC have also been 

found in tumour cells surrounded by high-MYC expressing transformed neighbours, 

highlighting the presence of inter-clonal competition. These data have been supported by 

in vitro models of MMCC 110. 

 

But what is the role of this important mechanism during cancer progression, and what is 

the contribution of apoptosis?  

 

If the apoptotic cells secrete pro-mitogenic factors and support mass expansion and 

tumour angiogenesis, is it proper to perseverate in the use of chemotherapeutics that are 

known to commit cancer cells to apoptotic death?  
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RESULTS AND DISCUSSION 
 

PRELIMINARY RESULTS 
The mechanism of MYC-mediated cell competition (MMCC), extensively described in 

the general Introduction, has long been speculated to be active in cancer 185,215,344. Our 

and other laboratories demonstrated that this is true in different Drosophila organs 
42,96,105,107,192,217, and findings showing the existence of this phenomenon in human 

cancers are beginning to appear in the literature 110,345. Some aspects of the role of cell 

competition in tumour onset have been clarified in Drosophila, and it is widely accepted 

that cell death is an intrinsic feature of the process, necessary to tumour growth 216,217 as 

well as to tissue homeostasis in physiological conditions, from flies to mammals 

(reviewed by Penzo-Méndez and Stanger, 2014). 

 

We recently analysed MMCC in human cancers, and were able to correlate MYC 

abundance in the tumour parenchyma with the apoptotic cell death at the tumour/stroma 

interface 110. In addition, we found islets of dying cancer cells showing low MYC levels 

in close proximity to malignant neighbours expressing high MYC levels 110. It is indeed 

likely that this process, relevant to fitness maintenance, be active in cancer allowing to 

select and expand cells with the best performance, but functional assays are mandatory to 

clarify this important issue.  

 

Our laboratory has recently used a Drosophila well-characterised model of cancer to 

define the functional consequences of MMCC in overt malignancies (see Methods for 

details). In lgl -/- animals, the larval epithelial organs show unrestrained growth, complete 

loss of tissue architecture and ability to fuse with nearby tissues 241. In this malignant 

background, we elicited MMCC through induction of GFP+ lgl-/- myc-overexpressing 

clones, hereafter referred to as lgl mycOVER, at day 6 After Egg Laying (AEL), when these 

organs have already undergone neoplastic transformation 46. Neutral (GFP+ lgl-/-) clones 

were induced as a control. After two days from induction, larvae were dissected, and 

tumours were measured. The tumours were then dissociated into single cells and GFP+ 

and GFP- cells were counted (see Methods for details). Following our hypothesis, we 

expected an expansion of the fittest cancer cells, i.e. MYC-high expressing cells. With 

respect to the neutral control, where GFP+ cells were about 20%, lgl mycOVER samples 
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indeed contained about 35% GFP+ winner cells (Fig. PREL-III 1A). The overall increase 

in the final cancer mass with respect to the neutral sample is represented in Figure PREL-

III 1B, and the contribution of the GFP+ cells to the post-induction cancer mass can be 

found in Figure PREL-III 1C. This unprecedented experiment revealed a functional 

significance for MMCC in remodelling the final cancer mass and composition. 

 

 
Figure PREL-III 1 | Composition and mass analysis of lgl and lgl mycOVER samples. A: cell count. B: final 

tumour size. The plain grey regions represent the pre-induction masses. The two genotypes analysed are 

indicated, and the statistical significance is ***= p≤0.001 and **= p≤0.01. From: Simone Di Giacomo, PhD 

Thesis. 

 

Immunofluorescence (IF) assays for MYC and Caspase 3 (Cas3) on both samples 

revealed that cell dynamics are very different in highly competitive tumours respect to the 

neutral tumours. Figure PREL-III 2A represents an organ in which GFP+ neutral clones 

have been induced. Irrespective of the GFP signal, we can observe in cross sections 

sporadic cell clusters positive to Cas3 signal in which MYC staining is lower compared to 

the surrounding cells (arrows). Figure PREL-III 2A’ shows a closer view of the 

phenomenon: some cells expressing very low levels of MYC (arrow) are committed to 

die, as confirmed by Cas3 staining. These data suggest that MMCC shapes cancer 

evolution through a continuous selection of cells with higher MYC levels, such as it 

happens in developing organs 98,166,180,347. In the lgl mycOVER samples, widespread Cas3 

activation was observed in cells with low MYC levels encircled by or adjacent to GFP+ 

cells with high MYC expression (Fig. PREL-III 2B). Figure PREL-III 2B’ shows a close-

up of this phenomenon: large clusters of GFP- cells (arrows) die when surrounded by high 

MYC-expressing neighbours.  
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Figure PREL-III 2 | MYC (red) and Cas3 (cyan) staining of lgl (A, A’) and lgl mycOVER (B, B’) tumours 

from yw, hs-Flp/w; l(2)gl4/l(2)gl4; act::CD2::Gal4, UAS-GFP/+ and yw, hs-Flp/w; l(2)gl4/l(2)gl4; 

act::CD2::Gal4, UAS-GFP/UAS-dm larvae, respectively, collected at day 8 AEL in which GFP+ clones 

were induced at day 6 AEL. B: all the images represent disc cross-sections. Scale bars are indicated in each 

frame. From: S. Di Giacomo, PhD Thesis. 

 

Of note, besides a huge expansion of the winner population, we reported a post-induction 

increase of the GFP- mass in the lgl mycOVER sample (Figure PREL-III 1B, C). As it is 

known that dying cells emit pro-proliferative factors both in Drosophila and mammals 
348, in a cancer context cells competent to receive and use these signals may translate 

them into growth-boosters. 
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RESULTS AND DISCUSSION 
In this Chapter, I will describe my preliminary work dedicated to understanding the 

impact of apoptotic death on the growth of highly competitive malignancies. By taking 

advantage of the above-described cancer model, I fed larvae immediately after clone 

induction with a pan-caspase inhibitor to decrease cell death at the organismal level, and 

repeated the same measurements as those performed in the experiment illustrated in the 

preliminary results (see Methods for details).  

 

         
Figure RES-III 1 | Composition analysis of lgl and lgl mycOVER samples treated with the Pan-Caspase 

inhibitor Q-VD-Oph. A: cell count. B: cross-comparison of untreated and treated samples. The two 

genotypes analysed are indicated, and the statistical significance is ***= p≤0.001 and **= p≤0.01. 

        

As can be seen in Figure RES-III 1A, the percentage of GFP+ cells in the lgl mycOVER 

sample is still significantly different from that counted in the neutral lgl samples, but the 

expansion of the GFP+ cells in the lgl mycOVER sample is severely restrained respect to 

what happened in the untreated experiment (Fig. RES-III 1B), confirming that apoptosis 

inhibition following MMCC induction is sufficient to restrain winners’ proliferation.  

 

Concerning the final size of the treated samples, lgl mycOVER tumours appeared 

undersized with respect to the neutral ones (Fig. RES-III 2A), but the difference between 

the untreated and treated lgl mycOVER tumours was surprising: treated tumours were less 

than one-half of the untreated samples (Fig. RES-III 2B, red bars). 
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Figure RES-III 2 | Mass analysis of lgl and lgl mycOVER samples treated with the Pan-Caspase inhibitor Q-

VD-Oph. A: final tumour size. The plain grey regions represent the pre-induction masses. B: cross-

comparison of untreated and treated samples. The two genotypes analysed are indicated, and the statistical 

significance is ***= p≤0.001. 

 

Conversely, the lgl neutral samples treated with the pan-caspase inhibitor showed a 

modest although significant increase in size respect to the untreated siblings (Fig. RES-III 

2B, white bars). At the moment, I have no definite explanation for this. Possibly, the few 

apoptotic cells originating in the neutral samples are successfully removed by 

professional cells, and this has no impact on the growth of the final mass; apoptosis 

inhibition in this context may increment tumour volume by accumulating in the system 

cells which would otherwise have undergone untimely death.  

 

This means that apoptosis is relevant to mass expansion only in highly competitive 

cancers. 

 

In Figure RES-III 3, you can appreciate at a glance the amazing average difference in size 

between the lgl mycOVER tumours from untreated and treated larvae.  
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Figure RES-III 3 | Tumours isolated from lgl and lgl mycOVER untreated (- Q-VD-Oph, upper panel) or 

treated (+ Q-VD-Oph, lower panel) samples. 

 

 

         
Figure RES-III 4 | Composition analysis of lgl and lgl mycOVER samples treated with the Pan-Caspase 

inhibitor Q-VD-Oph. A: post-induction GFP+ vs GFP- mass comparison. B: cross-comparison of untreated 

and treated samples. The two genotypes analysed are indicated. 

 

Finally, I calculated the post-induction tumour masses and, as presented in Figure RES-III 

4A, while the GFP+ masses are comparable across the two treated samples, cross-
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comparison of the untreated and treated lgl mycOVER post-induction masses (Fig. RES-III 

4B) reveals a huge collapse of both the GFP+ and GFP- masses, suggesting that a massive 

presence of apoptotic cells in the system may stall the engulfment machinery, and the 

release of pro-growth factors by the dying cells may serve as a propeller to sustain the 

increase of the whole cancer mass 138. 

 

Figure RES-III 5 displays clone distribution (GFP+) and MYC/Cas3 staining in cross-

sections of lgl and lgl mycOVER samples respectively. As can be seen, MYC expression is 

not affected by the treatment and, despite the presence of a number of lgl mycOVER cells, 

cell death is nearly absent. 

 
Figure RES-III 5 | MYC (red) and Cas3 (cyan) staining of lgl (A) and lgl mycOVER (B) tumours from yw, 

hs-Flp/w; l(2)gl4/l(2)gl4; act::CD2::Gal4, UAS-GFP/+ and yw, hs-Flp/w; l(2)gl4/l(2)gl4; act::CD2::Gal4, 

UAS-GFP/UAS-dm larvae, respectively, collected at day 8 AEL, in which GFP+ clones were induced at day 

6 AEL, immediately before treatment with Q-VD-Oph. All the images represent disc cross-sections. Scale 

bars are indicated in each frame. 

 

I then tested the effect of the same compound as above on the clonal cancer system I 

investigated in PART II. We are thus going to analyse a heterotypic context, with cancer 

cells sharing the organ with wt cells. In this case, apoptotic death is not scattered across 

the transformed organ, but is mainly confined to the tumour/stroma interface 107, as it is 

for human cancers 110.  
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For this experiment, larvae were fed with the pan-caspase inhibitor Q-VD-Oph 24h after 

clone induction, and imaginal wing discs were isolated 48h after treatment. To obtain 

comparable measures, I calculated the total GFP+ area in the wing-pouch and normalised 

it to the total wing pouch dimensions. As can be seen in Figure RES-III 6, lgl RasV12 

clones grown in animals fed with the pan-caspase inhibitor show an average size 

reduction of about 40%, suggesting that, also in heterogeneous backgrounds, a systemic 

decrease of cell death restrains tumour growth. The wing discs in Figure RES-III 6 

represent the average clone phenotype of untreated/treated animals.  

 

 
Figure RES-III 6 | Ratio between the lgl; RasV12 GFP+ clonal area and the total area, calculated in the wing 

pouch region for each experimental sample group. n is indicated in the graph. The comparison is 

statistically significant (***=p≤0,001). The confocal images are cross-sections of representative wing discs 

from untreated (DMSO) and treated (Q-VD-Oph) larvae. Disc contour is outlined where necessary. 

 

These preliminary results encourage to plan a genetic dissection of the apoptotic 

pathways in different cancer models, to determine in vivo the impact of apoptosis on 

cancer growth and aggressiveness. 
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METHODS  
 

GENETIC SYSTEMS 
Flp-Out 349 

 

                                
The Flp-Out technique has been developed to induce clonal expression of UAS- 

constructs by combining the UAS-Gal4 227 and the Flp-FRT 228 binary systems. Briefly, a 

stop sequence containing a selection marker, flanked by two FRT cassettes, disrupts 

contiguity between the gene of interest and its promoter. When Flippase expression is 

induced, usually through a heat-shock, the stop sequence is removed, and the gene of 

interest is transcribed.  

 

MARCM 331  

See Part II Methods. 

 

PROTOCOLS, REAGENTS AND STATISTICAL ANALYSIS 
Fly manipulation and treatments 

At 144±2 hours development at 25°C, female larvae of the right genotypes were selected, 

transferred in an eppendorf vial plugged with foam and immersed for 2 minutes in a water 

bath at 37°C. After the heat-shock, larvae were immediately transferred to fresh food and 

allowed to grow for additional 48 hours at 25°C. Heat-shock duration was set to obtain 

about 1/5 of GFP+ cells in the final control mass 48 hours after clone induction. Q-VD-

OPh (Sigma-Aldrich) 350 was added to standard food at 500µM final concentration before 
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larvae transfer. For the MARCM experiment (Fig. RES-III 6), 48±4h larvae were heat-

shocked for 10 minutes in a water bath at 37°C and allowed to grow for additional 24 

hours at 25°C before being transferred to standard food supplemented with Q-VD-Oph at 

a final concentration of 500µM. After additional 2 days at 25°C, larvae were dissected, 

and imaginal discs were processed for image analysis. 

 

Disc isolation, dissociation and cell count 

192±4h larvae displaying GFP+ cells were selected under a Nikon SMZ1000 fluorescence 

stereoscope and dissected at 4°C in PBS1X (Phosphate Buffer Saline, pH 7.5). Tumour 

discs were isolated from the carcasses, photographed and incubated with gentle agitation 

for 2.5 hours in 1 ml PBT (4.5 mg/ml porcine trypsin-EDTA-Sigma-Aldrich- in PBS1X) 

prior to cell count. Cell count was carried out using the Bürker’s chamber applying the 

following equation: [(Average n° cells in 9 squares x 104) x Dil. Factor] x ml of cell 

suspension, obtaining the total number of cells suspended in the initial volume. 

 

Volume analysis 

Discs from 192±2 larvae were photographed each day before dissociation. 144±2h discs 

were also captured as a prior-to-treatment control. Major and minor axes were measured 

for each wing disc with ImageJ (NIH) and volumes were calculated approximating disc 

shape to a spheroid with depth=width. For cell volume, four different fields from confocal 

z stacks containing 55 ÷ 80 cells were measured for each sample. Cell perimeter was 

marked by aPKC staining. GFP+ and GFP- cell diameters were measured with ImageJ 

(NIH) and cell volumes were obtained approximating their shape to a sphere. 

 

Composition of the final masses 

Vt=tumour volume, Vg=GFP+ cell volume; Vb=GFP- cell volume, Pg=GFP+ cell 

percentage, Pb=GFP- cell percentage. Total number is Ct=Vt(VgxPg+VbxPb), GFP+ and 

GFP- cell number is Cg=CtxPg and Cb=CtxPb. GFP+ and GFP- final volumes are: CgxVg 

and CbxVb. Volumetric values are reported as mean number of voxels. 

 

Immunofluorescence  

Tissue isolated from 192±2h larvae were fixed and stained according to standard 

protocols. Primary antibodies: rabbit α-cleaved Caspase 3 (Cell Signaling #9961, 1:100), 
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mouse α-MYC (P. Bellosta, 1:5), rabbit α-aPKCζ (Santa Cruz Biotechnology #10800, 

1:100). Secondary antibodies: α-mouse 555 Alexa Fluor, 1:500 and α-rabbit Cy5 

DyLight (Jackson Laboratories), 1:800. Confocal images were processed as a whole with 

Adobe Photoshop software. All the images shown represent a single confocal stack. 

Magnification is 400X, unless otherwise specified. 

 

Statistical analysis 

For the experiments as in Figures RES-III 1, 2 and 4, all values are the mean of at least 3 

independent experiments where every single count was repeated twice. The number of 

wing discs analysed was 30÷90 for each sample. For the experiments as in Figure RES-III 

6, clone areas (in pixel2) were measured using ImageJ free software (NIH) on images 

captured with a Nikon 90i wide-field fluorescence microscope at a magnification of 200x. 

All error bars are ± standard error of the mean (SEM), if not differently indicated. p-

values are as follows: p≤0.01=**, p≤0.001=***. Mean, Standard Deviation and the t-

Student test p-value were calculated with GraphPad Prism software, San Diego, 

California, USA. 
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CONCLUSIONS AND PERSPECTIVES  
 

Cancer research takes giant steps every day, but many molecular mechanisms that 

underlie initiation, progression and dissemination of cancer cells are still unknown. 

 

As described in this thesis, cancer mass is composed of different cell types that make the 

tumour highly heterogeneous, which greatly complicates the understanding of the 

mechanisms governing it. Each cell type provides the tumour with peculiar properties and 

is associated with a community where each member, and therefore each group of different 

cells that composes it, is committed to perform certain tasks.  

 

In particular, during my PhD programme, I developed some Drosophila models that may 

allow studying these intricate relationships in vivo. 

In Drosophila, different genetic tools are available that allow the study of the onset, 

growth and invasiveness of tumours, and it is precisely on these traits that I focused my 

attention. MYC is one of the main genes involved in tumour processes, and I have studied 

its role in the aforementioned traits. 

 

In the first period I focused my attention on the phenomenon of field cancerisation, where 

I managed to show that MYC, contrariwise to other molecules involved in growth, is able 

to form a (histologically normal) field able to trigger several cell responses (genetic 

instability, ROS production, apoptosis, increased proliferation) typical of human pre-

cancerous fields, which predispose the tissue to the onset of secondary mutations. In 

particular, through clone induction systems, I allowed the onset of mutations belonging to 

different pathways, lgl and Rab5, and I have shown that MYC overexpression was 

specific and sufficient as to provide these mutant cells with a proliferative advantage, so 

that they succeeded in triggering tumourigenesis. This model may help further investigate 

the early molecular events underlying neoplastic transformation. 

 

I subsequently examined MYC’s role in tumour growth and migration/tracheogenesis 

using clonal systems in Drosophila. The two mutations I have induced to trigger 

tumourigenesis are the LOF of lgl and the overexpression of activated Ras (RasV12). In 

such mutant clones, we previously observed MAPK/dpERK pathway activation, and it is 

known to promote MYC stabilisation and accumulation. The Hippo pathway is also 
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deregulated in these cells and Yorkie moves into the nucleus where it transcribes, among 

others, MYC. In some groups of lgl RasV12 mutant cells, the JNK pathway is also active. 

Another characteristic of these tumour clones we previously observed is that they are able 

to form vessel-like structures which mimic both the structure and function of mammalian 

tumour angiogenesis, and supply the growing mass with oxygen (tumour tracheogenesis).  

 

I have thus tried to dissect the growth and tracheogenic phenotypes to understand what 

molecules downstream of these pathways may contribute to these central cancer traits. 

After inhibiting the effectors downstream of the main aforementioned pathways, I 

concluded that both MAPK and JNK signalling were responsible for the onset of both 

traits: in fact, their down-regulation rescued both the growth and the tracheogenic 

phenotypes. Yorkie knockdown downstream of the Hippo pathway was instead found to 

rescue growth while maintaining tracheogenesis. In these clones, MYC expression was 

low. Being MYC protein also a target of MAPK, I decided to inhibit its expression in the 

mutant clones and, as it happened with Yorkie, growth was unbelievably rescued, while 

the formation of new vessels was amazingly enhanced. Another downstream target of 

both the MAPK and JNK pathways is kay (the FOS gene in mammals, Fos-Related 

Antigen -FRA- the fly protein). Its down-regulation did not provoke any rescue of the 

primary mass, but I assisted to the disappearance of the tracheogenic trait: the 

tracheogenic index was much lower than that of the control lgl RasV12 clones. These 

findings allowed me to identify MYC and FRA as the main downstream effectors of these 

two traits. I hypothesise that these opposite phenotypes may be due to Integrin 

transcriptional control, which MYC and FRA regulate in opposite manners in mammals. 

This hypothesis is currently being verified.  

 

 In the last, still preliminary, section I analysed the involvement of non-autonomous cell 

death in tumour progression. Both in Drosophila and in humans, it has been observed 

that apoptosis triggered by mechanisms such as cell competition has an important role in 

promoting tumour growth, due to secretion of pro-mitogenic factors by dying cells. In my 

laboratory, signs of MYC-Mediated Cell Competition have been observed for the first 

time in human tumours, and an analysis in cellular models has allowed to confirm that 

cell competition plays an active role in growth also in humans. To confirm these data in 

vivo, we developed a tumour model of MYC-Mediated Cell Competition. We observed 

that this mechanism plays an important role not only in the initial stages of a tumour but, 
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even when the tumour is frankly malignant, MYC-Mediated Cell Competition continues 

to shape the mass both in size and cell composition. Considering that apoptosis is 

essential to Cell Competition completion, I investigated its role during the evolution of an 

expanding tumour. In the same model of MYC-Mediated Cell Competition, I inhibited 

cell death with a pan-caspase drug and found a decrease in organ size by about 40%. 

These data were confirmed in the clonal model of lgl, RasV12 oncogenic cooperation 

where, after cell death inhibition, the clonal areas were significantly reduced.  

 

These findings should make us think about the use of current therapies against cancer: 

when massive death occurs in the tumour mass due to chemotherapeutic agents, will these 

dying cells possibly secrete factors that make low-proliferating tumour cells reactivate 

malignant pathways? In Drosophila it is known that p35 (Caspase 3 inhibitor from 

Baculovirus) creates “undead” cells that secrete tumour-promoting factors. My data 

instead show that inhibition of the whole caspase pathway (the drug acts on both initiator 

and effector caspases) leads to a decrease of the final cancer mass.  

 

It will be worthwhile to examine and genetically dissect the apoptotic pathways to 

understand if the inhibition of the cascade at different levels has different effects on 

cancer evolution. 
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