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Abstract
DEI - Department of Electrical, Electronic and Information Engineering "Guglielmo
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Doctor of Philosophy

Ultra-Low Power IoT Smart Visual Sensing Devices for Always-ON Applications

by Manuele RUSCI

Due to the stringent energy requirements, bringing vision technologies into the
always-on end-node devices of the Internet-of-Things results extremely challenging.
A big opportunity to address the energy issues of current camera-based systems
arises from the integration of mixed-signal processing circuits on the imager focal
plane. Moreover, by leveraging a bio-inspired event-based data representation, sen-
sory systems reduce sensor-to-processor bandwidth and the computational require-
ments for data-analytics. This work presents the design of a Smart Ultra-Low Power
visual sensor architecture that couples together an ultra-low power event-based im-
age sensor with a parallel and power-optimized digital architecture for data pro-
cessing. By means of mixed-signal circuits, the imager generates a stream of address
events after the extraction and binarization of spatial gradients. When targeting
monitoring applications, the sensing and processing energy costs can be reduced by
two orders of magnitude thanks to either the mixed-signal imaging technology, the
event-based data compression and the use of event-driven computing approaches.
From a system-level point of view, a context-aware power management scheme is
enabled by means of a power-optimized sensor peripheral block, that requests the
processor activation only when a relevant information is detected within the focal
plane of the imager. When targeting a smart visual node for triggering purpose,
the event-driven approach brings a 10x power reduction with respect to other pre-
sented visual systems, while leading to comparable results in terms of detection ac-
curacy. To further enhance the recognition capabilities of the smart camera system,
this work introduces the concept of event-based binarized neural networks. By cou-
pling together the theory of binarized neural networks and focal-plane processing,
a 17.8% energy reduction is demonstrated on a real-world data classification with
a performance drop of 3% with respect to a baseline system featuring commercial
visual sensors and a Binary Neural Network engine. Moreover, if coupling the BNN
engine with the event-driven triggering detection flow, the average power consump-
tion can be as low as the sleep power of 0.3mW in case of infrequent events, which
is 8x lower than a smart camera system featuring a commercial RGB imager.
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Chapter 1

Introduction

1.1 Background

The rising Internet-of-Things (IoT) paradigm is opening new opportunities to en-
rich the experience of people’s everyday lives [8]. In a broad sense, Internet of
Things refers to a pervasive distribution of devices, which can both interact with the
physical world and communicate to each other through the internet connection. At
the edge of the growing IoT infrasture, an heterogeneous set of end-nodes devices,
such as smart sensors and actuators, are placed to build instances of cyber-phisical
systems, which include many technologies belonging to smart homes, intelligent
transportation and smart cities, among the others. In other words, the IoT vision
relies on a massive deployment of end-node devices to form "a worldwide network
of interconnected objects uniquely addressable, based on standard communication
protocols" [54]. By 2020, billions of physical devices are expected to be part of the In-
ternet of Things ecosystem [36]. This comes together with a terrific economic impact,
which is estimated around USD 2 trillion during the next five to ten years (Gartner
foresee [53]).

The Internet of Things revolution will affect a wide range of application fields,
spanning from agriculture to automotive, smart cities, consumer devices, retail, man-
ufacturing, supply chain and many others [49]. Within a real-world application sce-
nario, a network of widely distributed sensors captures data at the edge and sends
information to remote central stations or servers. Any cloud service running on the
server side will be capable of aggregating information from the many end-nodes
and continuously update the underlying models to provide proactive feedback to
the end-user [14]. Indeed, by adequately treating data, this multi-tier infrastructure
can bring an unprecedented benefit to many existing services. As an example, in the
context of public transportation, the offered services can be enhanced in real-time by
monitoring the current occupancy and predicting the next short-term demand. The
inferred information facilitate the decision process concerning the actions to take
(e.g. if it is necessary to provide more vehicles) and help to prevent potential com-
ing issues (e.g. collision between vehicles). On the same direction, the monitoring
of street congestions and traffic issues can produce useful information for drivers to
choose the fastest route and avoiding stacked conditions. Healthcare is another rele-
vant field for IoT devices. Monitoring devices for vital signs and relevant biometric
parameters, which may be also implanted under the skin of the patients, will enable
powerful caring services for early diagnosis, treatment assistance or diseases pre-
vention, or even remote supervision services without any impact on the individual
independence.

At the present, Internet of Things is growing and getting a reality. The intercon-
nected devices, namely the IoT End-Nodes, stand as the basic building blocks of
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the emerging infrastructure [60]. Among the others, multiple kinds of sensors, ac-
tuators and readers can be located at the edge of the network for sensing purpose
and data collection. Ideally, any IoT end-node should be able to perform perpet-
ually its assigned task when abandoned in the environment, without demanding
any periodic maintenance or replacement. Indeed, a suitable IoT node is expected
to be autonomous either in terms of functionality, energy, network connectivity and
possibly low-cost [3]. In the perspective of implementing a pervasive network of
untethered and autonomous devices, an IoT end-node requires being powered by
batteries or energy harvesters. Depending on the application environment, the bat-
tery recharge or replacement may be prevented for technical reasons or, however,
should occur with a low frequency to keep the maintenance costs contained (e.g.
once every one or more years). In this context, it is therefore essential to target a
power-optimized design at the device level to guarantee a long duration of the bat-
tery according to the provided specification. This also includes the implementation
of aggressive power savings techniques to avoid any kind of energy waste within
the system. Given that, it is clear that energy consumption is a key issue when
designing an IoT end-node [55].

To understand the design space and which are the potential knobs for regulating
the power consumption, it is necessary to delve into deep of system architectures of
IoT devices and their typical operating modes. Figure 1.1 illustrates the block dia-
gram of the main sub-systems of an IoT node: sensing, processing, communication
and power supply modules [23]. The sensing unit includes a mixed signal circuit for
transforming the transduced analog signal into a digital signal that can be handled
by a digital engine. To this scope, the sensor sub-system contains a signal condition-
ing block and an Analog-to-Digital Converter (ADC). The processing unit is the core
of the system and coordinates the operation of all the other blocks. A digital engine
is capable of running data analitycs on data coming from the sensors and dispatches
externally the extracted high-level information through the communication unit. In
contrast to simply streaming raw sensed data for off-node analysis, the node itself
performs data processing locally, henge bringing intelligence near to the sensor. To high-
light the importance and the advantages of local data processing, two fundamental
points must be considered.

1. The Internet-of-Things network infrastructure has to be capable of handling
the data traffic in a reliable and secure way. Due to the exponential increase of
flowing data, the network services can deteriorate or be affected by network-
ing issues in the upcoming future. To reduce the dimensionality of exchanged
data, data mining techniques can be applied to extract hidden high-level in-
formation from the sensor data [19]. Therefore, local data filtering provides
an opportunity for both reducing the wireless transmission bandwidth along
with avoiding network congestion issues. By moving data analytics at the edge,
a smarter object ecosystem can aggregate and filter data locally and drastically reduce
the amount of information circulating within the network.

2. From an energy perspective, streaming raw sensed data to a base-station does
not come for free. The transmission energy cost is generally high and increases
linearly with the bandwidth. This represents a bottleneck for sensory systems
characterized by high datarates (e.g. cameras) because the communication
sub-system features a higher energy consumption than the other system com-
ponents when continuously streaming raw sensor data. Indeed, despite the
advances achieved during the last 5-10 years, the current absorbed by the ra-
dio module during the transmission phase can reach peaks above 10mA [46]
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FIGURE 1.1: IoT end-node architecture.

while the digital processing logic can consume less than few mWs [6]. Within
this scenario, reducing the sensor data dimensionality by means of local "in-node"
processing enables a duty-cycled usage of the communication subsystem and leads to
a notable reduction of the average system power consumption.

The above reasons justify the necessity of moving data analytics into the sensor
nodes. By pushing intelligence at the edge, the IoT ecosystem can be enriched by
"smart" things, which generate more structured and meaningful information than
simply dispatching raw data. To this aim, platforms and algorithms for data ana-
lytics become central within the design process. Power-optimized devices, which
feature a high computational power within a limited energy budget, enable even
complex algorithms to run on resource-constrained end-nodes in real-time [28]. By
applying compression algorithms, such as for pattern recognition and classification,
on the sensed data, an IoT node can reduce the communication payload even to a
single-bit, e.g. to trigger the detection of an object crossing a virtual gate or a specific
human gesture recognition.

Typically, an IoT Smart node performs a periodic task, composed of data ac-
quisition, processing and transmission [4]. To save energy, the system is kept in a
fully-active state only for a short time TP with an energy cost Eact. During the rest
of the period, the node can be put in (deep) sleep mode, where only a minimal part
of the system, namely the always-on region, is still active to trigger the wakeup of
the rest of the system. In this state, the system consumes a power PalwON , which is
several orders of magnitude lower than the active power. Hence, the average power
consumption over the period can be expressed as Pavg = PalwON + Eact/TP. This
power consumption has to be kept as low as possible to gain an extended battery
life Tnode = Ebattery/Pavg. Given that, a power-optimized design process of an IoT
node aims at (a) reducing the average power PalwON of the always-on circuitry con-
stantly kept in a running state, (b) minimizing the energy Eact due to the active task
but also (c) reducing the latency TP related to the system activation rate. Figure 1.2 il-
lustrates how varies the battery-life depending on the average power consumption.
The plot shows that to reach the target of one or several years of battery lifetime, an
IoT end-node should draw a power consumption in the µW range. It is also straightfor-
ward that a larger battery can lead to an increased lifetime, but this comes together
with a larger node dimension and costs.

To meet the energy requirement, it should be clearly pointed out that saving en-
ergy by constraining node functionalities can come at the cost of performance and
quality degradation [91]. As a simple example, a system that stays in idle or sleep
state for the majority of the time and rarely activates for sampling and processing
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FIGURE 1.2: Battery Lifetime of an IoT end-node when powered by
small batteries [3].

consumes less than a system featuring higher sampling rates but suffers from pos-
sibly miss-detections and long latencies. Therefore, sensing quality must be taken
into account when discussing energy optimization.

1.1.1 Design Space and Challenges

To address the energy-quality trade-off concerning the design of smart visual IoT
end-node, the following design aspects need to be analyzed.

• Hardware-Software Co-Design. At the hardware level, the components choice
needs to be directed towards low-power but energy-efficient devices. From a
functional viewpoint, both processing and sensing units are expected to pro-
vide the needed computational resources to accomplish the targeted task. But,
on the other side, the power and energy costs increase with the complexity and
flexibility of the selected components. To address it, a synergetic and power-
optimized Hardware-Software design process needs to trade-off between func-
tionalities and energy requirements of the targeted platform, also considering
the partitioning between the hardware and software stacks.

• Data Management and Analysis. From an energetic perspective, the ability of
treating data in an efficient way becomes fundamental. A tremendous energy
savings can be achieved by making use of architectural solutions that support
low-cost operations (e.g. a low energy costs for every memory access) or by de-
signing lightweight data analytics models, which results into low-latency tasks
demanding a low energy cost. Hence, a crucial way for addressing the energy
issues at the system-level relies on refining or even re-designing models for
data analytics based on the application target, together with providing an op-
timized implementation, which fits the memory and computational constrains
of resource-constrained devices. In addition to this, but not less important, the
sensing quality must not be degraded alongside the optimization process.

• System Integration. The integration of heterogeneous components within a
single device has to be driven by energy metrics. In this context, an efficient
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power management scheme has to be defined at the top level to guarantee a
high sensing quality and, at the same time, to minimize the energy waste of
the single components. Ideally, every part should be activated only when nec-
essary and run with the minimal amount of energy to accomplish its assigned
task.

1.2 Smart Visual Sensing Devices

Among the existing sensing technologies for the IoT ecosystem, vision is attractive
because of the richness of sensed data. A distributed placement of camera sensors
enables a wide range of applications in the context of, among the others, smart cities,
security and environmental monitoring [107]. Recently, wearable and mobile cam-
eras are also becoming widespread for gaming, augmented reality and consumer
applications [5, 9]. Despite the great interest, the majority of the existing smart cam-
era systems consist of power-hungry components, which prevent the use of batteries
as power sources. Indeed, smart visual end-nodes typically include high-resolution
imagers (i.e. several Mpixels) and high-end processing units (e.g. ARM Cortex-A
processors but also FPGAs and GPUs) to handle the large amount of multidimen-
sional visual data and the complexity of computer vision algorithms [13, 88, 33, 89].
These design choices traduce into a high system power cost, spanning from several
hundreds of mW to several Watts [102]. As a consequence, when battery powered, a
smart camera node’s lifetime is restricted to few days or even much less, which does
not match the requirements of some applications (e.g. the experience of the Google
Glass [71]).

Instead, to meet the energy requirement discussed above, resource-constrained
devices have to be considered during the design process of the IoT end-nodes. A
viable solution includes the usage of imagers with small resolution (e.g. [52]) and
low-end processing units (e.g. ARM Cortex-M Family [7]). These latter ones are
characterized by a limited memory footprint (generally below 512kB) and a limited
computational power as provided by a single-core architecture with a system clock
running up to tens of MHz. However, these hardware limitations are justified by
the ultra-low power cost, which can be as low as 10 µA/MHz [6]. When deploying
computer vision applications on resource-constrained platforms, the implementa-
tion process has to be carefully addressed to optimally exploit the underlying re-
sources. Highly-promising but computationally-demanding visual data processing
implementations may not fit into the limited memory footprint or can present a la-
tency that is too high to run in real-time. Therefore, the design process needs to
address the implementation of data analysis tasks by keeping into account the
resource constraints as part of the energy-accuracy trade-off.

1.2.1 Aim of the Research Work

At the present, the plethora of state-of-the-art smart visual sensing devices for the
IoT ecosystem, which are extensively revised in Chapter 2, is missing of solutions
bridging the quality of leading edge computer vision models with the energy re-
quirements of autonomous battery-powered devices.

In this context, this thesis work aims at developing novel system-level design
strategies and techniques for filling the existing gap. More in details, this research
work targets advanced visual sensing solutions featuring both (a) an average power con-
sumption in the envelope of few mWs or sub-mW, such as a camera system can last for years
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when battery powered, and (b) smart embedded capabilities by leveraging state-of-the-art
computer vision models for data processing. To reach this aim, novel techniques, even in
contrast with traditional visual sensing device approaches, are needed for address-
ing the major design challenges described in Section 1.1.1.

1.3 Thesis Contribution

This work introduces a Smart Visual Sensing End-Node design which leverages
the Event-Based Paradigm to extremely raise the system energy-efficiency. In con-
trast with traditional smart camera designs, the proposed system includes a novel
ultra-low-power imager that generates a binary spatial-contrast information and dis-
patches only the (x,y) addresses of the asserted pixels after frame difference, i.e. the
generated events. The imager internal processing is enabled by the hardware integra-
tion of specialized mixed-signal circuits on the focal plane. This design choice allows
reducing the power cost of the imaging task and the sensor-to-processor bandwidth.
Indeed, only a relevant information is transferred to the processing unit’s memory
in correspondence of moving objects in the camera field of view. The imager is cou-
pled with a quad-core IoT processor, which is implemented in 28nm technology and
optimized for low-power consumption.

As a first major contribution, this work describes the HW-SW co-design and
the system architecture of an Event-Based visual system. Event-Based sensing and
processing techniques are evaluated for moving object detection applications. An
optimized implementation on a resource-constrained device is described along with
the energy evaluation. The results show an energy reduction of more than two or-
ders of magnitude with respect to low-power off-the-shelf architectures that make
use of traditional computer vision approaches for object detection.

Moving towards a system-level perspective, the interest falls into the power
management scheme to be exploited when dealing with event-based architectures.
To reduce energy wastes, the transition from sleep to the active state of the digital
processing unit is driven by the event rate of the sensor. Indeed, it is extremely in-
efficient to wake-up and transfer data to the processing unit when the amount of
generated events is too low, i.e. a very limited motion is detected in the field of view.
The second major contribution of the thesis regards the specification, design and
prototype of a camera peripheral IP, which is able both to handle the data trans-
fer from sensor to the processor and to drive the power management scheme of
the whole system. This strategy is referred to as event-driven power management, be-
cause, differently from a traditional frame-driven model of camera-based systems,
the wake-up rate of the processing unit depends on the context information (i.e.
context-aware) concerning the detected motion, which is triggered by the event gen-
eration process. To demonstrate the benefits of the proposed approach, the event-
based camera system is evaluated as a smart visual trigger on always-on monitoring
applications. From an energy viewpoint, an energy reduction of more than 10x is
measured against other proposed architectures.

To enhance the recognition capabilities but still keeping the energy consumption
low, this work also introduces the concept of Event-Based Binarized Neural Net-
work, which is the third major contribution of the thesis. The idea consists of cou-
pling the benefits brought by the event-based paradigm with the recognition ca-
pabilities of deep learning techniques optimized for low-power and low-end sys-
tems, the Binarized Neural Networks (BNNs). In the context of always-on vision
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FIGURE 1.3: Thesis Content Flowchart.

systems, an experimental study is conducted for demonstrating a classification ac-
curacy above 80% when training a BNN with binary input, on a 3-classes real-world
data. Also, a BNN optimized implementation on a 4-core processor is presented to
enable the proposed approach running in real-time on a resource-constrained de-
vice. The experimental result shows that this technique allows saving 17.8% energy
with respect to a visual system featuring an RGB traditional imager, at a cost of 3%
of classification accuracy drop. When running the classification BNN upon the trig-
ger generated by the event-driven processing, the energy saving raises up to 8x with
respect to the baseline system.

1.4 Outline of the work

The work is organized as follows.

• Chapter 2 reviews the technologies for low-power smart visual systems. A dis-
cussion regarding the state-of-the-art approaches for sensing and processing is
provided here, along with a description of existing camera-based architectures.
Moreover, this chapter reports previous work on Event-Based sensory systems.

• Chapter 3 focuses on Event-Based sensing and processing approaches and
highlights the energy benefits when they are used for ultra-low power visual
sensing. The HW-SW co-design strategies for enabling this paradigm are de-
scribed in this Chapter, alongside the algorithm implementation of lightweight
event-based processing models.

• Chapter 4 discusses power management issues from a system-level viewpoint.
To enable an event-driven power management scheme, a description of an
HW camera interface is provided here. Additionally, the chapter describes the
power-optimized camera system integration along with a complete evaluation
concerning the energy-accuracy trade-off when using the system as a smart
visual trigger.
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• Chapter 5 presents the concept of Event-Based Binarized Neural Network,
showing the implementation on a resource-constrained architecture and the
advantages of this kind of approach with respect to a traditional baseline camera-
based systems.

• Chapter 6 summarizes the findings of the thesis work and provides some per-
spective directions in the field of energy-efficient smart visual sensing devices.

Figure 1.3 graphically illustrates a flowchart of the themes discussed within the
thesis in response to the issues highlighted in Section 1.2.
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Chapter 2

Technologies for low-power smart
visual sensing

2.1 Overview

Visual IoT End-Nodes stand as the building blocks of large camera-based networked
systems. These devices enable a wide range of applications, including surveillance,
environmental monitoring, detection of dangerous conditions and advanced driver-
assistance systems. With respect to other mono-dimensional signal sources, cameras
generate a richer multi-dimensional data, which is unique for inferring high-level
information from the surrounding environment. In the perspective of building a
low-level sensing tier of visual nodes, which are placed in the environment and
"forgot", every device should be powered by energy-harvesters or small batteries
to ideally last for years while performing its assigned tasks and without demand-
ing any maintenance intervention. Within this scenario, the power consumption of
a camera-based system needs to be in the µW range to gain a lifetime of years on
a small battery [3]. Therefore, the design process of platforms for continuous and
always-on visual sensing needs to be strongly optimized to meet the energy re-
quirement dictated by the application and the network architecture.

Placing a vast amount of camera-based sensors in the environment leads to a
proliferation of data flowing through the network. For this reason, building a net-
work architecture that supports the streaming of raw-data from the single sensors
to a central station results to be weakly scalable and possibly causing network con-
gestions. In addition, other issues arise when considering privacy aspects of ex-
changing visual raw data and the costly computing resources on the remote servers.
Moreover, within the end-node device, the transmission subsystem is commonly the
energy bottleneck of the system. This is difficult to scale due to physical limitation
and causes a battery discharging in a very short time in case of continuous wireless
streaming of raw data [48].

An efficient solution to address the aforementioned issues consists of bringing
intelligence close to the sensor. According to the Near-Sensor Processing paradigm,
the sensed data are locally analyzed in-the-node by means of the embedded comput-
ing capabilities. Locally filtering data reduces the data dimensionality and decreases
the node’s transmission bandwidth with respect to stream out all the raw data. At
the same time, this leads to a notable reduction of the transmission energy cost, be-
cause the communication subsystem is activated only for a short time to transmit the
high-level information extracted from the visual signal. In the extreme scenario, the
transmission payload can be reduced to even a single bit which is asynchronously
triggered when a specific event of interest occurs.
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FIGURE 2.1: HW Architecture of a traditional Smart Camera system.

When featuring processing capabilities, a visual node is characterized by a more
complex architectural design than a streaming camera system. Typically, such a cam-
era node is labeled as Smart, as indicating a system that is not only able to capture
data but also can process it thanks to a dedicated processing sub-system for data
analytics. Due to the energy constraints of battery-powered devices, a data analytics
workload, which typically consists of computationally-demanding Computer Vision
algorithms, must run efficiently on the data processing engine. But, on the other
hand, to reduce the energy consumption, an optimized system design process in-
cludes low-end sensing and processing units, which are characterized by a limited
computational power and memory resource. Because of this trade-off, the design
process of Ultra-Low-Power Smart Camera systems becomes extremely challeng-
ing. More specifically:

• A power-optimized Smart Camera architecture must efficiently sustain the
processing workload in addition to carry out other system functionalities in
an efficient way, such as visual acquisition, sensor-to-processor data transfer
and power management tasks.

• The implementation of the visual processing pipeline must be optimized to
run efficiently on a resource-constrained device. This includes making use of
lightweight or approximated models to reduce latency and energy consump-
tion without leading to sensing quality degradation.

From a system-level viewpoint, a Smart Camera system combines in a compact
embedded platform the image sensing and the local visual processing engine [10].
Hence, a smart visual system is mainly composed by a sensing unit, i.e. the image
sensor, and a processing sub-system, which runs data analysis on the sensor data.
Optionally, an external memory can be included at the board-level to deal with the
memory requirement of sensing and processing tasks. A block diagram of a typical
hardware architecture is depicted in Figure 2.1.

Within the system architecture, the image sensor digitizes the visual signal before
dispatching data to the processing unit for data analytics. When dealing with con-
tinuous monitoring, the image source is kept always-on, therefore the power cost
for producing and digitally converting the data needs to be extremely contained.
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Moreover, the sensor-to-processor data transfer, whose bandwidth linearly increases
with the amount of produced data, determines an additional energy consumption,
impacting the total budget. Any compression scheme aiming at reducing the band-
width can lead to potential energy savings. A detailed review of existing low-power
visual sensing technologies is provided in Section 2.2, along with proposed tech-
niques for reducing the energy and power consumption.

The digital processor is the core of the systems and is responsible for running
computer vision algorithms on the visual data. Typically, some low-level features
are firstly extracted from the visual signal and then aggregated into a high-level
information through classification or regression models. To this aim, a process-
ing platform features a heterogeneous set of digital engines, which may include
general-purpose processors coupled with specialized HW accelerators, a memory
region and a peripheral subsystem, for interfacing the processor with external sen-
sors. The computational power of the processing unit is quantified as Operations per
Second (OP/S), which scales almost linearly with the clock frequency and the par-
allelism degree. The energy efficiency is another key metric that is computed as En-
ergy per Operation (J/OP), also corresponding to the power consumption spent
to provide a given computational power. To perform data analytics, a processing
unit needs to provide a sufficient computational power to run the computer vision
workload under the energy-efficiency constraints. Many kinds of processing units
do exist and can be featured by smart camera systems. Among the others, hard-
ware specialized processing circuits feature an energy-efficiency much higher than
software-programmable digital processors but lack flexibility, that can be essential
to run different types of applications on a given platform. Section 2.3 provides an
overview of system architecture of smart camera systems optimized for ultra-low-
power consumption.

From a system-level viewpoint, an optimized power management scheme is also
essential to limit the energy wastes of different blocks. To gain efficiency, any compo-
nent should be put in a low-power sleep state when idling. Typically, the processing
unit handles the system timing and controls the power management policy by dis-
abling the different components if not in a working state. Moreover, some novel
power-efficient approaches can drawn inspiration from neuromorphic sensing and
processing techniques, which are the subject of the review in Section 2.4.

2.2 Energy-Efficient Image Sensors

Imaging technology transforms the light signal into a digital format. The basic ar-
chitecture of an image sensor is illustrated in Figure 2.1. The sensing transducer is
composed by a a matrix of photodetectors, which produces a 2D analog visual sig-
nal feeding an analog chain serving for amplification and digital conversion. Gener-
ally, image sensors feature a single or a column-parallel analog chain, therefore the
photodetectors matrix needs to be sequentially scanned to digitize large 2D arrays.
Previous studies have confirmed that photodiodes arrays can feature a power cost
as low as few µW [50], while the analog chain requires orders of magnitude higher
power [72]. Outside of the analog domain, a digital controller handles the timing of
the pixel exposure and of the signal conversion. The digital domain can also include
a processing pipeline for filtering or adjusting the sampled values (e.g denoising)
and a readout module that manages IO operations.

Among the leading commercial power-optimized image sensors, AMS Interna-
tional AG/Awaiba NanEye2D [86] and OmniVision samples [87] feature a compact
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FIGURE 2.2: HW Architecture of a Smart Camera system featuring an
image sensor with Focal-Plane Processing capabilities.

form factor and generates (sub-)VGA pixel images at a power cost of few tens of
mWs. More recently, Himax [52] presented an image sensor for always-on applica-
tions with 160x120 resolution at the lowest power consumption of 1.1mW at 30fps.
Along with them, it is worth to mention the Stonyman camera from CentEye [18],
which provide as output the analog visual signal and can be employed for embed-
ded recognition systems [27].

Going into deep of typical image sensor architectures, the acquisition pipeline
is sized such as to sample the high-dimensional data with high-fidelity and resolu-
tion. However, such a signal is known to be largely redundant as, in a video stream,
it presents either high spatial and temporal correlations. Moreover, when dealing
with detection or classification tasks, only a subset of a few but significant features
result meaningful to solve the decisional problem [101]. Due to these motivations,
a viable way to cut the majority of the sensing energy costs relies on digitally con-
verting only the set of visual features used to feed computer vision models. To im-
plement this strategy, a feature-extraction layer needs to be pushed directly on the
focal-plane of the image sensors, therefore opening the way for new architectural
solutions [94], usually referred as Focal-Plane Processing. In fact, a mixed-signal
processing circuit, placed early in the analog chain, enables a first data compression
and extraction of low-level features on the sensor die, hence addressing the data di-
mensionality reduction within the analog domain. From an energy viewpoint, the
costly analog-to-digital sub-system can be activated for a reduced time than for con-
verting the entire raw 2D signal, due to the lower amount of data to be digitized,
and can optionally support a reduced bit-precision [85]. Given that, an image sensor
with early-processing capabilities can feature a simplified analog-to-digital chain de-
sign to reduce the sensor power consumption and bring the imager power cost close
or within the µW range.

Different strategies of Focal-Plane Processing have been already presented. Fig-
ure 2.2 illustrates the block diagram of an imager with focal-plane processing capa-
bilities within a smart camera architecture. The figure highlights the presence of an
analog (mixed-signal) processing blocks inside the sensing units, aiming at early-
extracting low-level features from the visual signal. The extracted features will be
then digitally sampled through the ADC converter and transferred to the process-
ing system by the readout interface. It is important to note that, in the perspective
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TABLE 2.1: Focal Plane Processing Imagers

Ref [58] [24] [39] [100] [47] [66] [20] [73]

Function Motion
Detec-

tion

Motion
Detec-
tion +
HOG

Extrac-
tion

Spatial
filtering
(4-conn)

Gaussia
Pyra-
mids

Spatial
Tem-
poral

Filtering

Optical
Convo-
lution

Analog
Multiply

(front-
end

only)

Stacked
Convo-
lution

Output
format

1b(mot)
9b(image)

1b(mot)
8b(HOG)

8b 8b 1b
(events)

8b 6b 10b

Array 128x128 128x128 174x144 176x120 128x64 96x64 no array 227x227
Tech 0.13µm 0.18µm 0.35µm 0.18µm 0.18µm 0.18µm 40nm 0.18µm

Power
Cost

467nW
(motion)

16µW
(image)

220nW
(motion)
2.4µW
(HOG)

2.9mW
(4x4

filters)

70mW 100µW 1.8mW 228µW 42mW
(sim)

of reducing the total system-energy, this approach results beneficial with respect to
a traditional smart camera system of Figure 2.1, because of (a) the reduced sensor-
to-processor bandwidth and (b) the lower demand for digital computation. Indeed, the
focal-plane processing approach implies moving the low-level feature-extraction op-
erations from the digital processor to the analog side. The early-extracted features
can also feed a wake-up block, which is included into the imager, to produce a wake-
up trigger signal in case of detection of interesting events within the camera field of
view.

Multiple flavors of Focal Plane Processing circuits have been proposed for low-
power sensing [47, 24, 58, 37, 100, 66, 73, 20]. Table 2.1 reports the more relevant
works. An ultra-low-power imager for always-on application is proposed by Kim
et al. [58]. The design features a 128x128 array with in-pixel motion detection real-
ized through analog frame difference. The fabricated sample consumes 467nW at
5fps. Viceversa, in imaging mode, the power cost increases up to 16µW at 6.4fps.
In [24], authors proposed the integration of HOG feature extractor circuits within
the pixel array. The HOG mixed-signal computation is triggered by motion detec-
tion. To this aim, a motion bitmap is generated at a very low-power cost (<220nW)
by thresholding the output of the frame difference between the current signal and
the last binary frame, which is stored through in-pixel capacitors. Once the mo-
tion is detected, the sensor dispatch externally an 8-bit HOG feature signals, while
consuming 3.4µW /frame. FLIP-Q [37] is a 176x144 imager featuring pixel-wise
analog processing elements. These latter enable spatial filtering and subsampling
over rectangular-shaped patches. The processing is performed on 4-connected pixel
groups and serves for generating a configurable multi-resolution scene representa-
tion. Every connection can be individually enabled or disabled. The output val-
ues from the analog blocks are then converted by a 8-bit SAR ADC. The measured
power consumption can be as low as 2.9mW when applying spatial filtering on 4x4
blocks. More recently, the front-end [100] permits to compute the 8-bit Gaussian
pyramids on the sensor die, by integrating a matrix of 88x60 analog processing el-
ements, each one operating on a 2x2 pixel patch (the pixel array is 176x120). The
Gaussian filtering, which is employed within object detection inference pipelines, is
realized using a diffusive and switched-capacitor grid. The power cost including the
analog-to-digital conversion is measured as 70mW, which outperforms architectures
composed by traditional imager and an external mid-high end processor that runs
the same task. Another relevant example of focal-plane processing is demonstrated
by the imager presented by Gottardi et al [47]. The proposed design embeds (a)
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mixed-signal circuits to extract binary spatial gradients and (b) a frame-difference
scheme to detect the moving edges on the camera plane. Differently the other solu-
tions, this imager features an event-based representation to compress and dispatch
the data out from the sensor. This compression scheme consists of sending only the
(x,y) addresses of the asserted binary pixels of the difference map. This is strongly
related to the neuromorphic principles illustrated in Section 2.4 and it will be later
better analyzed. Due to this unique combination, the proposed imager functionali-
ties are further explored within this thesis work. A more detailed description is also
provided in Section 3.2.1.

Given the raised interest for brain-inspired computer vision techniques, such as
deep learning approaches, recent solutions have tried to push specialized analog cir-
cuits on the focal plane to enable an early and energy-efficient computation of com-
mon functions, such as image convolutions [20, 66, 73]. The work presented in [20]
makes use of angle-sensitive pixels, which integrate diffraction gratings. Based on
the different orientations of the pixel-level filters, multiple convolutional feature
maps are optically computed as the outcome of the first convolutional output layer.
The total power cost results equal to 1.8mW. Also, to enable early-convolution, a
sensing front-end proposed in [66] can perform analog multiplication. Authors
introduce a MAC unit composed of only passive switches and capacitors to real-
ize a switched-capacitor matrix multiplier, which achieves an energy efficiency of
8.7 TOp/s/W, when running convolution operations, and a power cost of 228µW .
Besides them, RedEye [73] embeds column-wise processing pipelines in the analog
domain to perform 3D convolutions before of the digital conversion. The analog
processing circuits can perform convolution and pooling operations. A digitally-
clocked controller is responsible for handling the cyclic reuse of the computation
block to serve multiple stacked convolutional layers. Weights are stored in an inter-
nal memory with a maximum 8-bit resolution and converted in analog at runtime.
The chip is implemented in 0.18 µm technology and needs 1.4 mJ to process the ini-
tial 5 layers of GoogLeNet at 30fps, leading to an energy efficiency of less than 2
TOp/s/W.

2.3 Smart Camera Nodes and Local Data Processing

When targeting computer vision applications, a smart camera system shall feature
(a) high computational power, for running data processing tasks, (b) programmability,
to favor system flexibility and reduce the development time of a given product, and
(c) ultra-low-power consumption, to match the energy requirement of battery-powered
devices. To enable local data processing, multiple kinds of digital processing units
can be included within a smart visual system. Among the software-programmable
platforms, Graphic Processing Units (GPUs) provide a huge computational power by
exploiting a highly parallel architecture. However, this comes at the cost of a high
power consumption, within a range of tens of Watts, which is too high in the per-
spective of being powered by batteries. A largely diffused solution for smart camera
systems leverages mid-to-high end Central Processing Unit (CPU) architectures, e.g.
32-bit and 64-bit RISC ARM Cortex-A processors [7]. The software-programmability
and the high-clock frequencies (hundreds of MHz) featured by these platforms en-
able the implementation of many computer vision algorithms running with low-
latencies. But still, the power consumption can raise up to hundreds of mW [21]. At
the other side of the spectrum, MicroController Units (MCUs) have become largely
widespread as low-power embedded processors (e.g. STM32 ARM Cortex-M Family
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TABLE 2.2: Smart Camera Systems

Ref Eye of
Things

[33]

CMUcam5
[25]

CITRIC
[21]

Cyclops
[92]

MeshEye
[100]

Wi-FLIP
[40]

[16] [43]

Imager NanEye2D
[86]

Himax
HM01B0

[52]

OmniVi.
OV9715

(1280x800)
[87]

OmniVi,
OV9655

1280x1024,
640x480

[87]

Agilent
ADNS-

3060
(30x30),
Agilent
ADCM-

2700
(640x480)

Agilent
ADCM-

1700
(352x288)

FLIP-Q
[37]

SCAMP
[35]

(128x128
w/ focal

plane
pro-

cessing)

[47]
(64x128
w/ focal

plane
pro-

cessing)

Processor Movidius
Myriad2
MA2450

NXP
LPC4330

Intel
XScale

PXA2700

ATMEL
AT-

mega128L
(8-bit
RISC)

ATMEL
AT91

(32-bit)

Intel
XScale

PXA2700

IGLOO
FPGA
+ NXP

LPC1769

IGLOO
FPGA

Features Parallel
SIMD +
HW acc

Dedicated
engine
for the
extrac-
tion of
high-
level
infor-

mation

Image
down-

sampling
and

cropping
at the
hard-
ware
level

CPLD
frame-

grabber
halted
by the
MCU,
as well
as the

external
SRAM

High-
resolution
camera
acqui-
sition
is trig-
gered

once an
object is
detected

and
stereo

matched

Focal
Plane
Proc.

Focal
Plane
Proc. -
FPGA
wakes-
up by

the
MCU
after

image
acqui-
sition

Focal
Plane
Proc. -
Imager
sleep
mode

- Event
Driven
Camera
IF with

dual
clock

domain
and

clock-
gating

Data
Pro-

cessing

CV
Libraries
for de-
tection

and
recog-
nition

Color-
based
Object
Detec-
tion,
Con-

nected
Com-

ponents

Object
Detec-

tion and
Tracking

Optimized
Kernels

for
motion
detec-

tion and
bckg

subtrac-
tion

Object
Detec-
tion,

Stereo
match-

ing,
object
acqui-
sition

Triggering
of alert
condi-
tions

Object
detec-

tion and
counting
- Smart
trigger

Single
people
counter

Power
Cost

>1W 700mW
(typical
140mA
@ 5V)

751mW 33mW 175.9mW
[102]

>100mW 5.5mW 2.5-4.2
mW

[99]). These systems include a flexible peripheral subsystem and on-chip memories,
either volatile or not volatile, along with one or more CPUs. Off-the-shelf MCU de-
vices present a power consumption as low as 10 µW /MHz [6]. Despite the low cost,
MCUs feature limited computational power (the clock frequency is typically up to
few tens of MHz) and memory resources (typically up to 128kB), which may not
be sufficient to sustain the requirement of some data processing algorithms. There-
fore, the design and implementation of computer vision algorithms on these devices
results challenging and need to be highly optimized.

Recent surveys list camera nodes both from academia and industry [102, 2, 38].
Table 2.2 reports the principal features of the most relevant power-optimized smart
camera systems. Among the commercial flexible nodes, OpenMV [88], JeVOIS [56]
and RapsberryPI [89] show low-cost and high flexibility thanks to a featured high-
level programming models, supporting, among the others, Python or OpenCV li-
braries. The Blackfin Low Power Imaging Platform (BLIP) [13] includes a powerful
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Blackfin embedded processor running up to 400 MHz and a VGA imager by Omnivi-
sion [87]. Another design that includes off-the-shelf components is CMUcam5 [25],
which embeds a NXP LPC4330 processing unit. Despite the high flexibility given by
the high-end processing units and the wide range of algorithms that can be imple-
mented, these designs show a power consumption of several hundreds of mW on
typical application workload.

Additionally, among the systems including high-end processors, the smart cam-
era CITRIC [21] has been employed for object detection and tracking with a power
budget around 700mW. This platform couples an Intel XScale PXA2700 32-bit pro-
cessor with a 1280x1024 CMOS image sensor OV9655 by Omnivision. The processor
runs at a maximum speed of 624 MHz and includes a specialized camera interface.
To reduce the energy when running computer vision tasks, some HW-SW optimiza-
tions have been tested on the platform [17]. By means of HW down-sampling and
cropping, and performing SW detection and tracking in cropped regions, a 41% de-
crease in energy consumption and a 107% increase in battery-life can be obtained.
A more recent platform but still presenting a high power consumption is Eye of
Things [33]. This system features high computational power and flexibility thanks to
the processor Myriad2 MA2450 by Movidius. This processing unit is a heterogeneous
multicore processor that includes twelve 128-bit Very Long Instruction Word SHAVE
processors, two 32-bit RISC processors and a hardware acceleration pipeline cou-
pled with a shared memory subsystem and peripherals. Thanks to the SHAVE co-
processors and the video HW accelerators, the platform can sustain a workload up
to 1000 GFLOPs (16-bit fp type). The chip is designed to work at 0.9V and 600MHz
at a power cost of 600mW, which includes peripherals and the external 512MB DDR3
RAM. The Eye of Things node supports either NanEye2D [86] and Himax HM01B0 [52]
sensors. To eases the development of computer vision algorithms, the supported
programming framework includes low-level computing kernels which efficiently
exploit the underlying parallel hardware. When running a Deep Learning inference
task, authors showed a 1.1W power consumption at board-level.

Moving to the other side of the spectrum, Cyclops [92] features an ATMEL AT-
mega128L 8-bit processor together with a CIF-resolution (352x288) camera. An ad-
ditional CPLD is placed between the processing and the sensing units and acts as a
frame-grabber when enabled by the MCU. The system features a basic power man-
agement strategy by staying in sleep mode when waiting for a frame acquisition. A
power consumption of 33mW is reported when the node is employed for triggering
wake-up signals to upper layer network systems based on motion detection [63]. De-
spite the low power, the processor works with a clock frequency of 7.3MHz, leading
to a limited computational power (computation takes 240msec for basic background
subtraction and motion detection algorithms on 128x128 images).

A design approach to reduce system energy consumption employs a low power
early-detection pipeline to trigger the activation of power-hungry cameras and com-
plex visual analysis [51, 84, 77]. For instance, the visual system presented by Magno
et al. [77] contains a Passive Infra-Red (PIR) sensor that is used as always-on sensing
source to trigger a camera record. The PIR detects heat variations due to human
presences and movements. Based on the absence/presence of people in the scene,
the PIR can activate the camera recording and the local processing. The software-
based data analysis is optimized to run on a constrained processor, lacking Floating
Point Unit (FPU) coprocessors, and consists of background subtraction, clustering
and labeling to detect abandoned/removed objects. As a relevant outcome of this
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work, the battery lifetime depends on the event rate, as triggered by the PIR sen-
sor. Indeed, the power consumption of the steady state where only the PIR is ac-
tive differs more than one order of magnitude with respect to a fully active state.
This computational model is referred to as Event-Driven Computational Model since
the system is able to adapt the sub-systems activation based the context activity. Similarly
to this concept, other systems proposed a low-power secondary image pipeline for
the early-detection of interesting events. Mesheye [51] integrates a power-hungry
VGA image sensor that is activated based on the motion captured from a stereo low-
resolution camera. To this scope, the platform includes two 6-bit grayscale 30x30 Ag-
ilent ADNS-3060 sensor and a 32-bit Atmel AT91SAM7S MCU, which can be clocked
up to 55MHz. The processing pipeline on the data coming from the stereo camera
is composed of background subtraction and stereo matching. The higher resolution
camera is activated if a positive match is determined by the visual processing. The
reduced activation rate of the power-hungry camera enables a notable extension of
the battery lifetime with respect to a scenario where it is activated very often. More
recently, the Glimpse system [84] have presented a hardware-software flexible solu-
tion which includes a specialized imaging subsystem for always-on sensing. This
latter comprises of a low-power MCU and an FPGA for running coarse vision al-
gorithms. A filter rejection cascade is implemented on the platform for discarding
uninteresting frames and therefore to realize a frame-selection classifier. Glimpse is
able to detect frames representing events of interest over 87% (100%) of the time for
visual events longer than 1s (3s) while drawing roughly 41-54mW for frame selec-
tion.

To exploit the opportunity raised by the mixed-signal processing, the smart cam-
era Wi-FLIP [40] contains an imager with the focal-plane processing capabilities [37].
The digital processing unit is a Marvell PXA271 XScale, whose frequency can vary
from 13MHz up to 416MHz with dynamic voltage scaling. This block is the energy
bottleneck of the system, because the imager weights only for the 5% of the overall
power cost (above 100mW when running at the minimum frequency). Hence, de-
spite the available computational power and the proven functionalities, the power
consumption of this system still exceeds the targeted consumption for always-on
IoT applications due to the not-optimized processing platform. A more optimized
smart camera design is presented in [16]. This system contains a vision chip with a
large array of analog processing elements and a low-power FPGA, which is placed
between a digital MCU and the sensor. The MCU is put in deep-sleep mode during
the light integration period. The FPGA, which is fed by a 32kHz RTC, eventually
triggers the MCU’s wake-up for image readout and processing. By exploiting the
sleep power mode and duty cycling, which results to be limited by the power supply
and oscillator start-up times, authors report an average power consumption as low
as 5.5mW within a surveillance application. The system proposed by Gasparini et
al. [43] further exploit the event-driven model and focal plane processing by propos-
ing an FPGA-based smart camera featuring the binary vision chip [47]. The FPGA
design leverages two separate clock domains: a 15kHz low-speed clock drives the
image sensing operation while a 15MHz high-speed clock is enabled for the data
processing after the detection of a relevant motion on the focal plane. The presented
processing pipeline aims at counting single persons passing in front of the camera.
Thanks to ultra-low power cost of the imager and the power optimized design, the
system presents a power consumption of 2.5mW when no motion is detected, while
raises up to 4.2mW when fully active. But, despite that, the system lacks flexibility
due to the hard-wired data processing, which is also limited to a single moving ob-
ject detection. Recently, Kim et al. [57] presented an ultra-low-power smart camera
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FIGURE 2.3: Diagram of energy-efficient imaging technologies [Sili-
con Retina system - Credit: https://github.com/robotology/event-

driven].

that couples mixed signal and Event Driven digital processing on the same chip. The
imager includes an analog processing unit, implementing the Viola-Jones detector,
to filter out "non-face" images. To enable multi-scale face recognition, image analog
downsampling is obtained by a switched capacitor circuit. By filtering the signal
before the A/D conversion, a 39% power reduction is achieved. If candidate points
are not discarded by early-filtering, a digital processing circuit is activated to refine
the face detection based on the digitally-converted data. The digital circuit consists
of an integral image generator and a Haar-like filtering unit. Measurement shows
an average power dissipation of 96µW if a positive sample is identified by the ana-
log pre-processing when running at 1fps, while for "non-face" conditions the power
reduces as low as 24 µW .

2.4 Neuromorphic Visual Sensing and Processing

Biology has always been a source of inspiration for building intelligent and efficient
systems [95]. In the late 1980s, Carver Mead opened the way of Neuromorphic Com-
puting, which aims at mimicking neural architectures by means of analog, digital
and mixed-signal circuits or software stacks [79]. The challenging goal comprises
understanding and replicating the complexity of biological systems to increase the
energy-efficiency of artificial intelligent agents (as a reference the human brain is
estimated to consume less than 20W [34]).

In recent times, several research groups in the field of neuromorphic engineer-
ing are actively pursuing different approaches towards the emulation of neuronal
systems, either for sensing or processing purposes. A biological system is generally
modeled as a large network of neurons connected through synaptic links, through
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which signals flow asynchronously [106]. Every neuron acts as a small computa-
tional core by applying non-linear filtering on the input signals, which can be am-
plified or attenuated by the prior synaptic connections. Given the high amount of
neurons contained within a network, a biological architecture features a massive
level of parallelism and distributed computation. The flowing signal and the car-
ried information is typically coded in a spike-based fashion to emulate the neural
impulses circulating within a nervous system. To efficiently handle the processing
of this spike-based data, novel neuromorphic architectures support a data-driven
computation, also referred as Event-Driven, and feature distributed and extremely
parallel non von-Neumann architectures [80].

In the context of visual sensing, researchers have also pushed new imaging tech-
nologies to mimic the behavior of the human eye [31]. Likewise the biological coun-
terpart, a silicon retina features local processing and gain control, at the pixel-level,
to produce an asynchronous stream of digital spikes. With respect to a traditional
CMOS camera, in a silicon retina each individual pixel produces asynchronous events
based on the context dynamics. Hence, the digital output of a pixel circuit is a binary
signal that is raised to ’1’ to signify the event detection. Within this imaging technol-
ogy, the visual signal loses completely the meaning of frame. Such output is rather
driven by the individual pixel activity and moves towards a frame-free flavour [30].
Despite a more diffused time-driven readout scheme, where a host system pe-
riodically polls the sensor for reading the sampled image frame, silicon retinas,
also named Event-Based Cameras, act as a master in the communication: when-
ever a single event is detected on the focal plane, the sensor decides to trigger a
pulsed signal, which is indicated as an Event. This is completely in contrast with
traditional cameras, which produce sequences of highly redundant image frames.

To dispatch the generated events, Event-Based Cameras employ a de-facto stan-
dard encoding, namely the Address Event Representation (AER). According to this
scheme, any spike information is issued asynchronously by the retina output inter-
face by sending the (x,y) coordinates of the firing neuron within the 2D array of
the retina, i.e. the pixel coordinate. An optional information attached to the ad-
dress is the type of the event, needed if the retina features multiple kinds of spik-
ing processes. The majority of the silicon retinas, which can be found in the litera-
ture, feature the AER scheme to encode the generated events [70, 68, 90, 15, 69, 103,
12]. Among the presented designs, the Dynamic Vision Sensor (DVS) by Lichtsteiner
et al. [70] features two types of asynchronous events, namely ON and OFF Ad-
dress Events (AEs), to signal positive and negative scene reflectance changes. Any
photoreceptor circuit monitors the log-intensity change of the pixel voltage since
the emission of the last event. Once the log-intensity change exceeds a threshold
value, an ON or OFF event is emitted depending if the voltage level is increasing
or decreasing. A DVS camera with higher sensitivity has been shown by adding
more gain and bandwidth to the photoreceptor that precedes the differencing am-
plifier [68]. The ATIS sample by Posh et al. [90] integrates into the pixel circuit a tem-
poral DVS sub-pixel to trigger a time-based intensity readings in a second subpixel.
Doing this, the ATIS imager features an event-triggered and wide dynamic range in-
tensity readout at the price of a larger pixel size and small fill factor. More recently,
the DAVIS imager was proposed to generate either asynchronous brightness-change
events and synchronous intensity values [15]. The sensor showed a power consump-
tion between 5mW to 14mW depending on the DVS activity and not including the
ADC converter.

Thanks to the low-latency of the sensing process, several applications employ-
ing event-based cameras have been documented within the robotic [82, 32], urban
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monitoring [74] and gesture recognition domains [67]. To extract high-level features
and information from the spiking data, some Event-Driven Processing techniques can
be applied. So far, object tracking has represented one of the principal targets for
the event-driven computation [74, 67, 64]. To track moving objects, an event-based
camera is placed in a fixed position, i.e. it is not moving while capturing the visual
signal, and therefore the illumination-change events can be attributed to moving ob-
jects on the field of view. In this context, the tracking models can be updated based
on the spatio-temporal relation of the generated events, which are processed as soon
as they get triggered. Some of the reported algorithms exploit a temporal clustering
process to group together the visual events [74, 30]. More recently, novel mathemat-
ical models have been developed to build more complex tracking methods [64, 42].
In addition to these, other approaches focus on event-triggered convolutional pro-
cessing [97], which are still in a raw shape but a rapid growth is expected in the next
years thanks to the increasing number of research groups investigating in this area.

In the perspective of building ultra-low-power smart cameras, the innovative
neuromorphic technologies and the event-based paradigm have become extremely
relevant. From a system-level viewpoint, the following features result extremely
beneficial to reduce the energy consumption of current imaging technologies.

• A silicon retina dispatches only significant information to a host system, in the form
of events. The event generation process is enabled by focal-plane processing
circuits integrated at the pixel level and it is triggered in response to varying
lighting conditions in the camera field of view, also due to motion. A silicon
retina outputs a compressed AER information, therefore extremely reducing
the sensor-to-processor bandwidth of traditional imagers, which, on the con-
trary, produce a stream of highly redundant data frames.

• The (digital) post-processing action is triggered by the event reception. In absence of
any relevant occurrence (e.g. due to not moving objects) in the retina field of
view, a processing platform can be kept in idle mode, with low-power dissi-
pation. Instead, when the event-rate increases, event-based data can be trans-
ferred to the processing unit for data analytics. Therefore, data processing is
applied on non-redundant data, potentially demanding for lower computa-
tional cost than traditional frame-driven computation.

The aforementioned motivations have started to be explored to build smart cam-
era nodes. The event-driven camera system proposed by Texeira et al. [104], named
XYZ, is composed by a µW event-based imager [103] and a digital processor OKI
ML67Q5002 that features an ARM7TDMI core running at 58MHz and a wide vari-
ety of peripherals. Authors showed a lightweight event-based processing for ag-
gregating imager data by running basic recognition tasks. However, not any opti-
mization has been investigated to minimize the system power consumption. The
camera-based system in [75] also makes use of an embedded processor, a Blackfin
DSP BF537 from Analog Device with a maximum frequency of 600MHz, to imple-
ment an event-driven processing for visual tracking based on data coming from the
DVS sensor [70]. An external 32MB FIFO memory is placed between the imager and
the processor for buffering the asynchronous events. Still, the power consumption
results to be up to hundreds of mW due to the not-optimized system architecture and
the power-hungry processing system. In contrast, the event-based tracking system
eDVS [83] can consume less than 200mW. This is composed of a DVS chip connected
to a 64MHz 32bit MCU (NXP LPC 2106/01) with 128KB program flash memory and
64KB SRAM, which enables event-driven local processing and successfully serves
for tracking applications.
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2.5 Summary

This Chapter highlighted the issues and the current trends concerning the design
process of power-optimized smart camera systems. A diagram with the available
technologies for smart camera systems is depicted in Figure 2.3.

Traditional design approaches show energy-inefficient architectures due to power
hungry data processing units, mostly comprising of mid-to-high end CPU process-
ing platforms, and redundant image sensors. Despite the proven data analytic capa-
bilities and flexibility, these architectures show a power cost of several hundreds of
mW, which is not suitable for battery powered devices.

To address the energetic issues, novel techniques have recently emerged, also
inspired by biological systems.

• Focal-plane processing is enabled by integrating analog processing circuits on
the sensor die. When embedding these capabilities, an image sensor can per-
form the early-extraction of low-level visual features before the A/D conver-
sion. This reduces the computational workload of digital post-processing ac-
tions. Moreover, the power consumption can be extremely reduced with re-
spect to traditional image sensors, thanks to a power-efficient analog subsys-
tem.

• Neuromorphic approaches for sensing and processing have demonstrated a vi-
able way for reducing either the sensor-to-processor bandwidth and the visual
processing workload by means of Event-Driven computation. According to it,
data analytics is performed on relevant events while the system can be kept in
idle mode if no interesting information is early-detected. Such paradigm mo-
tivates also the usage of low-end processing units for data analytics, to even-
tually reduce the overall energy cost of ultra-low-power smart cameras.
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Chapter 3

Event-Based Sensing and
Processing for Ultra-Low-Power
Vision

3.1 Overview

Energy-efficiency is a key metric when addressing the design of autonomous visual
sensing devices for the IoT ecosystem. Any choice made at the design time can
severely affect the energy consumption of the node, potentially provoking a rapid
battery discharge. When targeting a low-energy consumption, the design flow must
trade-off between power costs and accuracies of the running computer vision tasks,
as discussed in Chapter 1. This is intuitively clear by considering an aggressive
duty-cycled approach. When reducing the sampling rate of the sensor (e.g. the
frame rate), the average power of the system consumption can be reduced as low
as the sleep power. But, this comes at the cost of a much longer latency and lower
reactivity. Potentially, some relevant data can be lost by means of such a simple
strategy, leading to a degraded sensing quality and performance.

To meet the energy requirement of IoT battery-powered smart cameras, a power
highly-optimized design process is required, either concerning the sensing and the
processing sides. Current off-the-shelf smart visual systems feature a power con-
sumption in the range of tens to hundreds of mW, which is far from the µW tar-
get needed to guarantee a battery lifetime in the order of years. A smart camera
system architecture include a CMOS imager (e.g. [87]), that produces a stream of
image frames at a fixed frame-rate, and an embedded processing unit, which reads
data from the sensor and runs computer vision algorithms on every image frame.
This execution flow, also referred to as frame-driven computational model, consists
of repetitive actions, namely sensing, transfer and processing, which can be redun-
dant within some applications scenarios. Therefore, to address the power issues of
traditional systems, a rethinking of the image acquisition and processing pipelines
becomes a need, comprising both of hardware and software complementary design.

Concerning the sensing action, potential benefits for ultra-low-power vision can
arise from novel focal-plane processing techniques, introduced in Section 2.2. Ac-
cording to this approach, some mixed-signal processing circuits can be integrated
on the focal plane of the image sensors to (a) lower the sensor bandwidth and (b)
perform a first filtering task in an efficient way. Thanks to the in-sensor processing,
the power-hungry A/D conversion circuit has to operate on a lower amount of data
and therefore the average power cost of the imaging task can be reduced if compared
with traditional imaging pipelines. The potential benefits of focal-plane processing
when serving for event-based sensing will be investigated in this Chapter.
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As introduced in Section 2.4, in recent years neuromorphic engineers have con-
siderably pushed the state-of-the-art of bio-inspired hardware circuits. In the con-
text of visual sensing, silicon retinas have been developed to study and emulate the
efficiency of biological sensory systems. These imagers feature an intelligent pixel
design, which makes use of integrated mixed-signal processing circuits to enable
pixel-level detection of relevant information. The sensor output signal is a stream of
events, which are asynchronous dispatched whenever a light change is triggered by
the pixel photodetectors. The generated events are encoded with an Address-Event
Representation (AER) scheme , which consists on dispatching out the (x,y) coordi-
nates of the firing neuron within the image plane. Image sensors featuring the AER
readout scheme are also referred to as Event-Based Cameras.

From a system-level viewpoint, the event-based paradigm provides relevant en-
ergy saving opportunities. As a first observation, the sensor-to-processor bandwidth
depends on the context activity. Since a silicon retina responds to changing stimuli
in the camera field of view, any event will not be generated when observing a fixed
scene and therefore the energy is not wasted for transferring useless or redundant
data. Potentially, the datarate is close to zero when observing a static background.
The second observation concerns the event-driven computation introduced in Sec-
tion 2.4. As the digital engine is fed by a set of non-redundant visual information,
the workload of the digital processing will be lower than if applying data analytics
on raw frame-based data. Hence, another energy saving contribution with respect
to tradition visual sensors is related to the lower computational complexity of visual
task when dealing with event-based data input.

The Chapter will discuss the hardware-software design process and the energy
benefits of exploiting event-based sensing, focal-plane processing and event-driven
computation for ultra-low power visual sensing. To demonstrate the design ap-
proach, this Chapter introduce a visual system architecture coupling an ultra-low-
power event-based camera with a programmable quad-core digital processor, which
is optimized for high-energy efficiency. The processing unit enables a local event-
driven processing on data coming from the sensor. To demonstrate the advantages of
the event-based sensing and processing, the presented architecture is benchmarked
against a visual monitoring application. An object tracking flow, derived from a
neuromorphic algorithm for tracking moving objects, is implemented and adapted
to efficiently run on a quad-core processor. Based on this implementation, an en-
ergy estimation is conducted along with a comparison with respect to traditional
frame-based camera systems.

Summarizing, this Chapter includes:

1. The HW-SW definition of an event-based smart camera system architecture,
featuring ultra-low power consumption.

2. The implementation of an event-driven algorithm for moving objects detec-
tion, which is optimized to run efficiently on a parallel embedded processor.

3. The detailed quantification of the energy efficiency improvements of the pro-
posed event-based system with respect to a traditional frame-based vision
flow.

The remainder of this Chapter is organized as follows. Section 3.2 provides a
detailed description of the system architecture, either regarding the event-based
camera and the processor. An event-driven algorithm is described in Section 3.3,
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FIGURE 3.1: Event-driven smart camera system architecture.

while Section 3.4 reports the implementation details on a 4-core platform. The im-
plementation is optimized to run faster on the selected platform, and at the same
time, reduce the energy consumption of the processing task. Section 3.5 contains the
experimental analysis of the proposed architecture conducted against a monitoring
application dataset. Lastly, Section 3.6 summarizes the main results of the Chapter.

3.2 Event-Driven Smart Camera System

To demonstrate the advantages of event-based sensing and processing for Ultra-
Low Power (ULP) visual sensing, this work considers a node architecture including
a ULP 128x64 spatial contrast binary imager [47] and a fully programmable 4-cores
ULP platform (PULP [96]). This architecture combines the mixed-signal focal-plane
processing of the imager, which is aimed at producing visually relevant events, with
the fully programmable parallel digital processing. The imager internally performs
pixel-level contrast extraction, binarization and temporal frame-differencing, and
produces address-event coded information, namely the Events, while consuming
100µW at 50fps. The processing platform processes the arrays of visual events pro-
duced by the imager to extract high-level information for a power cost of 2.9mW at
the frequency of 80MHz, and supply voltage VDD of 0.55V. This section details both
the sensing and processing devices, providing useful insights of their implementa-
tion. A block diagram of the system is reported in Figure 3.1.

3.2.1 Ultra-Low-Power Event-Based Camera

The event-based imager developed by Gottardi et al. [47] integrates pixel-wise mixed-
signal circuits on the focal plane to compute the spatial-contrast among neighboring
pixels. For any pixel location PO, the local gradient is computed with respect to
two adjacent pixels PN and PE. The spatial-gradient kernel is illustrated in Fig. 3.2a.
Assuming PO and PN to be respectively the more and the less exposed pixels to
light, the gradient will be proportional to the voltage difference between PO and PN
(fig. 3.2b). Figure 3.2c illustrates the circuit that implements this pixel-wise func-
tionality. The Contrast Block transduces the spatial gradient into a voltage level. As
soon the most illuminated PO voltage value crosses the Vq threshold, the comparator
comp1 switches the output value and activates the voltage linear integration within
the Contrast Block. The integration stops when the less illuminated pixel voltage PN
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FIGURE 3.2: (a) In-sensor pixel mask to compute the binary gradient
(b) Gradient extraction approach (c) Mixed-signal circuit for contrast

extraction that is placed at every pixel location.

goes above the Vq threshold. This implies a pixel-level self-exposure capabilities.
Then the output of the contrast block is binarized by means of the comparator comp2
with respect to a tunable level Vth. On the adopted prototype, Vq is generally tuned
between 2.7V and 3V with a minimal impact on the output image. On the contrary,
Vth is recommended to be tied to 0V to gain a higher sensitivity. After the binariza-
tion, a 1-bit analog buffer can store the binary pixel value of the latest acquisition. If
requested, the frame difference between the current binary image and the one stored
can be dispatched as an output by the sensor.

If looking at the supported analog processing capabilities, the mixed-signal cir-
cuit enables the following operations: (a) contrast-extraction, by directly dispatching
the binarized contrast value, (b) background subtraction, by differencing with respect
to an initial stored sample, (c) motion-detection, by performing the frame-difference
with respect to the latest frame. It is worth noting that, in this latter scenario, only
the changing contrasts will generate a non-zero value. When the camera is placed
in a fixed position, the motion-detection mode will generate a binarized information
describing the motion activity in the field of view of the sensor.

The image sensor only readouts the asserted pixels of the binary frames, i.e. the
pixels with a non-zero value after binarization and frame-difference. An AER cod-
ing scheme is employed to keep the bandwidth low in case of a sparse output, as
it is generally the case especially when in motion-detection mode. Therefore, the
sensor output is formatted as a stream of Events, each one described by its (x,y) co-
ordinate and the (optional) sign after frame difference (to distinguish between the
1− 0 and 0− 1 cases). Thanks to this feature, the sensor operates as an Event-Based
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camera but still preserving a discrete timing for the generation of the event-based in-
formation. Differently from silicon retinas of Sec. 2.4, the events detected within the
image plane are readout according to a raster scan order after an exposure period, in-
stead of being asynchronously dispatched. Nevertheless, the amount of transferred
data is varying depending on the context-activity, following the event-based sensing
paradigm.

To save energy, the sensor features two different readout modes. In Idle mode, the
asserted pixels (i.e. pixels with non-zero values after the binary frame difference) are
internally counted and only the counter value is provided as an output. Therefore,
no data transfer is occurring within this operating mode. In Active mode, instead,
the event-based data are dispatched out by means of a raster-scan process. The av-
erage power consumption is extremely affected by the readout mode because of the
expensive pad activity that can be saved in Idle mode. Indeed, the measurements
reported in [47] show a power consumption up to 40µW and 100µW when respec-
tively in Idle and Active mode (at a frame rate of 60fps and a 25% pixel activity).
The power scales linearly with respect to both the pixel activity and the frame-rate.
As a remark, the ultra-low-power consumption is due both to (a) the mixed-signal
focal-plane processing and (b) the event-based readout coding.

3.2.2 Parallel Platform

PULP (Parallel Ultra Low Power) is a multicore processing system targeting high-
energy efficiency to satisfy the computational requirements of a wide range of ap-
plications constrained by power budgets of few mW [96]. The PULPv3 System on
Chip (SoC) includes a 4-core cluster and several IO peripherals. A 28nm FD-SOI
chip prototype has been designed and fabricated. The SoC architecture is depicted
in Fig. 3.1.

The compute engine of the PULPv3 architecture is a cluster with 4 cores. The pro-
cessor micro-architecture is based on the OpenRISC Instruction Set Architecture (ISA),
which has been extended to support energy efficient DSP operations, such as Single
Instruction Multiple Data (SIMD) instructions. Moreover, the extended ISA features
zero-overhead hardware loops with L0 I-buffer, load and store operations embed-
ding pointer arithmetic and power management instructions [44]. In addition to the
processing cores, the Cluster Region includes a 48kBytes multi-banked Tighly Coupled
Data Memory (TCDM) working as software-managed L1 scratchpad memory, avoid-
ing memory coherency overhead of data cache. The TCDM features 8 word-level
interleaved banks connected to the processors through a non-blocking interconnect
to minimize banking conflicts, and a Direct Memory Access (DMA) engine to han-
dle data transfer with L2 memory.. The cores share 4Kb of instruction cache with
support for broadcast to exploit the SIMD behavior of several signal processing al-
gorithms, further increasing energy efficiency [76]. Among the cluster peripherals,
the Event Unit autonomously handles the clock-gating of individual cores in idle
state (e.g. if waiting at a synchronization barrier).

The off-cluster region, also named SoC Region, contains a 64kBytes L2 memory
and the peripheral subsystem, which includes several IO interfaces, such as SPI,
UART and I2C. Additionally, a specialized camera interface transfers data from the
imager to the L2 memory. The internal architecture of this module will be exten-
sively discussed in Chapter 3.

On this platform, an optimal power management model can be obtained by
means of Dynamic Voltage and Frequency Scaling (DVFS) techniques. To enable it,
the Cluster and the SoC Regions feature different power and clock domains. The
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clock frequencies are internally generated thanks to dedicated Frequency Locked Loops
(FLLs), which are placed in the so-called FLL region. This latter is powered at 1V. The
FLLs are fed by a 32kHz external clock oscillator and allow a fine-grain configura-
tion.

PULP is a fully programmable platform leveraging C and OpenMP for software
programming. This leads to a complete flexibility for application development and
eases the design of the signal-processing flows.

3.3 Event-Driven Processing

Tracking moving objects is a relevant application domain for event-based cameras [74,
30]. When a camera is placed in a staring configuration, changing temporal or spa-
tial gradients are detected in correspondence of object movements. In this context,
an event-based camera produces a sparse AER signal, whose bandwidth, i.e. the
event rate, varies depending on the context activity. As a simple observation, more
moving objects in the camera field of view will cause a higher event rate, while a
static background will potentially imply a near-zero event generation rate.

Litzenberger et at. [74] presented an event-driven tracking algorithm by applying
a clustering procedure on the visual events detected when moving objects appear
on the image plane. The proposed algorithm relies on a distance metric, considering
both the spatial and temporal domains. The output is a list of N blobs Bi, i = 1, ..N,
also referred as tracker, each one corresponding to a tracked object. Any detected
blob is characterized by a center of mass Ci = (cx, cy), a radius Ri (in case of circular
blobs) and a weights Wi. When an event p = (px, py) is triggered, it is assigned to the
closest tracker, determining an update of the blob list. To this aim, a Seek Region is
also defined to indicate the maximum distance for an assignment process. In case of
circular blobs, a radius Si describes the seek region. Therefore an event p is assigned
to one of the tracker Bi belonging to the blob list, labelled as b ∈ {1, N}, such as:

b = arg min
i
|p− Ci| i = 1, ..N

s.t. |p− Ci| ≤ Si

(3.1)

After the assignment, the blob’s characteristics Cb, Rb, Sb and Wb are updated ac-
cording to the following rules.

Cb = α · Cb + p · (1− α) (3.2a)
Rb = min(Rmin, α · Rb + |p− Cb| · (1− α)) (3.2b)
Sb = min(Smax, Rb ·m) 1 < m < 3 (3.2c)

Wb = Wb · α + 1/dt · (1− α) (3.2d)

where 0 < α < 1, usually set near 1 for smooth tracking, and dt is the time-
stamp difference between the current and the last event reception. Rmin and Smax
constraint the blob size and the seek distance to be kept within certain limits. If not
any existing tracker matches the condition 3.1, a new blob is initialized. The blob
list is periodically scanned to delete inactive trackers or for merging distinct items
belonging to the same moving objects. This event-driven tracking approach has been
used to control a robotic goalie, achieving an an effective frame rate of 550 FPS and a
reaction latency of 3ms with a 4% processor load using standard USB interfaces [32].
The algorithm has been also extended to feature blobs with multiple shapes and
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FIGURE 3.3: Blob features extracted through the event-driven pro-
cessing.

orientations, by considering Gaussian, Gabor, combinations of Gabor functions, and
arbitrary user-defined kernels at a cost of a higher computation complexity [64].

In this work, the tracking algorithm described above is adapted to be applied
on the data generated by the imager of Section 3.2.1, when configured in motion-
detection mode. Such image sensor generates an array of AER events with a discrete
timing and dispatches them in a raster scan order. Every pixel can trigger only a
single event for a given time slot (i.e. the frame period). Following the flow of
the event-driven tracking algorithm described before, a list of blobs is computed by
analyzing the array of NEV events p = (px, py) produced at a given frame time and
sorted by means of the raster-scan readout. It is worth to note that the amount of
data NEV depends on the motion detected in the context. The tracking is performed
by clustering the events based on a distance criterion and consists of the following
three steps:

1. Blob Formation, in which the events are clustered to form blob tracking struc-
tures, based on a distance metric and given the list of existing blobs.

2. Filtering, in which the blobs containing a low amount of events are deleted.

3. Merging, in which multiple blobs that are close to each other are merged to-
gether.

The extracted blobs Bi, i = 1, ..N feature a rectangular shape and are described
by the following characteristics: a center of mass Ci = (Cxi , Cyi), the number of
events Wi, the corners of the rectangular bounding box, φmaxi and φmini , and the seek
region distance Si = (Sxi , Syi). Figure 3.3 graphically illustrates the blob features.
Note that Ci, φmaxi , φmini and Si are two dimensional vectors, described by the x and
y components.

The blob formation is performed as follows. Let N be the number existing trackers
and let Ci and Si, i = 1, ..N, respectively, be their centers of mass and their seek dis-
tances, defined as before. Additionally, the 2D vector Ωi = (∑ px, ∑ py) accumulates
the event coordinates sums along both axes.
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1. Each of the NEV events p = (px, py), is assigned to one of the existing blob,
with index b, which satisfy the following criteria.

b = arg min
i

dL1(p, Ci) i = 1, ..N

s.t. |pk − cik | ≤ Sik , k ∈ {x, y}
(3.3)

where dL1(·) is the L1 distance. If such a blob exists, its descriptors are updated
as follows:

Ω = Ω + p (3.4a)
W = W + 1 (3.4b)

φmax = max(φmax, p) (3.4c)
φmin = min(φmin, p) (3.4d)

where, Wi and Ωi are initialized to 0. Once the whole set of NEV events is
scanned, the center of mass of the blobs in the final list can be computed as
Ci = Ωi/Wi.

2. Events not assigned in the previous step seed a new set of blobs, stored in a
separate list. For notation purpose, the new blobs, along with their features,
are marked with the symbol ∼. Hence, B̃ is the list of new Ñ blobs. The first
unassigned event instantiates a new blob, whose center of mass corresponds
to the event coordinates. Its seek distance S̃ distance is setup to be (δ, δ), where
δ is a user-defined parameter. Let Ñ be the number of new blobs detected at a
given point. A pixel p is assigned to one of them such that:

b = arg min
i

dL1(p,
Ω̃i

W̃i
) i = 1, ..Ñ

s.t. |pk −
Ω̃ik

W̃ik

| ≤ S̃ik , k ∈ {x, y}
(3.5)

In this equation Ω̃, W̃ and S̃ are the new blobs descriptors, which are updated
after any pixel assignment according to (3.4a-d) and:

S̃ = min((φ̃max − φ̃min)/2 + δ, RMAX) (3.6)

where RMAX has been introduced to limit the increment of the seek region
distance and, hence, of the blobs size. This parameter is tuned according to
the dimension of the object to be detected. To save computation resources, an
approximation is introduce in equation 3.6, such as (φ̃max − φ̃min)/2 ≈ (φ̃max −
φ̃min)� 1.

After formation, the Filtering phase aims at removing from the lists B and B̃ any
blob formed by a low number of events. The resultant filtered items are collected
back in the original blob list B.

Eventually, a Merging phase produce a final blob list by merging together blobs
that are close to each other or even overlap. The merging operation between blobs
Bi and Bj takes place if:

|Cik − Cjk | ≤ Sik or |Cik − Cjk | ≤ Sjk , k ∈ {x, y} (3.7)
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TABLE 3.1: Blob Descriptor Structure

Symbol Description Format Bytes
C Center of Mass 2x16 vector 4
S Seek Region Distance 2x16 vector 4

φmax {max(px), max(py)} 2x16 vector 4
φmin {min(px), min(py)} 2x16 vector 4

R (φmax − φmin) >> 1 2x16 vector 4
Ω {∑ px, ∑ py} 2 unsigned int 8
W Number of events unsigned short 2

pntr Pointer to next item in the list unsigned int 4

Eventually, another filtering pass is performed after merging to further refine the
final blob list.

3.4 Implementation of an Event-Driven Object Tracking Al-
gorithm on a 4-core Embedded Processor

This section describes the implementation of the Event-Driven algorithm on the par-
allel processor described in Section 3.2.2. Initially, the implementation targets a sin-
gle core execution and then it is extended to a 4-cores processing.

The cores included within the PULP platform feature a OpenRISC extended ISA,
which supports SIMD vector instructions. Due to the (x,y)-vector format, either the
events triggered by the imager and the blob features (centers of mass, boundary
coordinates of the bounding boxes, seek-region distances) can be mapped straight-
forwardly on 2x16 bit vectors. Table 3.1 details a stored descriptor for any blob item,
along with the memory requirement. Every entry of the list occupies a total of 34
Bytes. Both the blob lists B and B̃ can contain a limited number of items, generally
set as 16. If more blobs are detected, a new item will be instantiated by replacing one
of the blobs with the lowest number of events. During the computation, the tracker
structures are stored in L1 memory to reduce the memory access latency and there-
fore speed-up the execution. After completion, the output list is copied back to the
L2 memory, due to the data retention property.

The algorithm implementation is optimized by benchmarking against the visual
dataset that will be described in the next section. Within the implementation, the
Eq. 3.5 is verified by avoiding any numerical division, which is expensive due to the
absence of any HW dividers. Indeed, a more lightweight formulation is obtained
by reversing the equation. Figure 3.4 summarizes the execution time of the event-
driven processing after applying multiple optimization steps. The execution time
is normalized with respect to the number of clock cycles required to run the video
benchmarks on an ARM-Cortex M4 core (exploiting only 32-bit arithmetic instruc-
tions). On a single PULP core, the average execution time is reduced by 4%.

A reduction of 25% is achieved by fully exploiting the ISA vector extension (in-
dicated with label HW Ext in the figure). The operations of the Event-Driven al-
gorithm imply a computation on both the x- and y- coordinates, either for solving
the minimization problems (Eg.3.3-3.5) and for updating the blob descriptor (Eg.3.4-
3.6). Therefore, a relevant latency saving is achieved by means of instruction-level
parallelism, enabled by 2x16 bit vector SIMD operations.

To exploit the full computational power of the PULPv3 4-core cluster, the com-
putational load is distributed among the available cores, by means of thread-level
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FIGURE 3.4: Comparison of software execution time (clock cycles)
for different algorithm implementations. Values are normalized with
respect to the execution time of the not-optimized algorithm running

on an ARM Cortex-M4 core.

parallelism. To this aim, the input array of events is split into 4 separate sub-arrays
and processed as described in Section 3.3. The blob formation phase represents the
heaviest computational section of the entire algorithm (95% of the time on the col-
lected visual dataset) and therefore benefits more from a parallel computation. The
operations belonging to the step 1 of the blob formation procedure are highly paral-
lelizable since the minimization problems can be solved independently by the dif-
ferent cores. Only a few write operations during the descriptors update are coded in
a critical section to handle mutually exclusive access to the blob list B, that is instan-
tiated as a shared variable. If an event cannot be assigned during this step, it will
be processed for the formation of new blobs stored in the list B̃ (point 2 of the algo-
rithm). To preserve the raster-scan order, the not-assigned events are marked within
the first parallel scan and processed later by a single core. This fact represents a criti-
cal bottleneck for the parallel runtime. For instance, if the initial blob list B is empty,
the blob formation phase needs to be entirely performed by a single core because the
assignment condition of Eq. 3.3 will never be verified (N=0). For this reason, this
first attempt of parallelization leads to a limited speed-up of 1.27x over the theo-
retical maximum of 4x, which is enabled by the available computational power of
the 4 cores. More in details, the parallel runtime results to be intrinsically limited by
Amdahl’s law on this considered dataset. Indeed, only the 36.2% of the computation
related to the blob formation phase is spent on the highly-parallelizable block (step 1
of the Blob Formation algorithm). Considering also a parallel filtering operation and
a sequential scheme for the merging, a maximum speed-up of 1.4x is computed by
applying the Amdahl’s law, still far from the maximum 4x.

To overcome this limitation, the algorithm flow is modified, causing also some
algorithmic drifts. Instead of marking the not-assigned events for later processing,
every core handles a private list of new blobs which is filled by analyzing the data
within the private input. Therefore, new blobs will be detected according to equa-
tions 3.5-3.6 based on the information contained in the private sub-array, instead
of considering the whole sorted set of not-assigned events. The partial results will
be independently filtered by the different cores and then collected together during
the merging phase. A synchronization point is placed after filtering to wait for the
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FIGURE 3.5: Block Diagram of the Optimized parallelization scheme.

(A) (B)

FIGURE 3.6: The pictures on top show two frames as captured by the
imager. The detected blobs and their centers of mass are highlighted
respectively in green and red. The corresponding ground-truth im-

ages are displayed on the bottom.

completion of the cores computation. The block diagram in Figure 3.5 illustrates the
optimized parallelization scheme. Tests on the video dataset reveal that now 94%
of the execution time is spent on the parallelizable section, which turns into a the-
oretical maximum speed-up of 3.39x according to Amdahl’s law. Despite that, this
optimized implementation (labelled with OPT in the figure) presents a slightly lower
speed-up of 2.5x, due to (a) the unbalancing of threads concurrently running on the 4
cores (48% of the overhead) and to (b) the accesses to the critical section, paralleliza-
tion overhead and contention in L1 memory. However, by running the optimized
version on the 4-cores cluster, an execution time reduction of 60% is obtained with
respect to that of not-optimized parallel implementation.
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3.5 Evaluation

The proposed Event-Based Smart Visual System is evaluated on a real-life appli-
cation consisting of tracking moving people within an indoor space. To this aim,
an evaluation dataset is collected with the Event-Based Camera, which is placed in
a staring configuration within an indoor room and configured in motion-detection
mode. When collecting the dataset, the maximum integration time of the image sen-
sor is set to 100msec. This determines an acquisition frame rate of 10fps, which is
considered suitable for monitoring applications. Some examples of captured frames
are shown in Figure 3.6. To test the proposed event-driven processing technique,
six collected video sequences, each one composed of 340 frames, include moving
people entering and exiting the camera field of view. In the entire dataset, the 36%
of the frames show one moving person, the 3% show two moving persons, while
the rest of the frames does not contain moving people. The evaluation of the event-
driven algorithm implementation is conducted by gathering runtime statistics when
the code is running on the PULPv3 cycle-accurate FPGA emulator. For each video,
the object tracking starts by assuming that the blob list is initially empty.

Accuracy Evaluation. To quantify the accuracy and precision of the event-driven
local processing, the following metrics are defined as follows and evaluated after
manually extracting the bounding boxes of moving objects within the benchmarking
videos.

accuracy =
1
|M| ∑

i∈M

|GTi ∩ BBXi|
|GTi ∪ BBXi|

(3.8)

where M denotes the set of frames which contain moving objects, |M| is the cardinal-
ity of M, GTi and BBXi are the union sets of the bounding boxes of the ground-truth
objects and of the detected blobs, respectively;

precision =
ntarget

ntarget + n f p
(3.9)

recall =
ntarget

ntarget + n f n
(3.10)

where ntarget, n f p and n f n denote respectively the number of marked ground-
truth objects, false positives and false negatives. On the collected video dataset, an
accuracy of 0.70 and 0.71 respectively is obtained for the event-driven blob detection
algorithm and its optimized parallel version. The precision achieved is 0.95 for the
baseline low-parallelism algorithm, while the algorithm optimized for parallelism
achieves 0.93. The recall is above 0.98 in both cases. Hence, the event-based ap-
proach is effective and its optimizations for increased efficiency do not compromise
accuracy, precision and recall. An extended comparison among the event-based ap-
proach a traditional frame-based approach will be provided in next Chapter.

Local Event-Driven Data Processing. Table 3.2 contains some statistics after
applying data processing on the benchmarking videos (labelled as vid0-vid5). The
number of events per frame and consequently the imager bandwidth (denoted by
Avg Pixel and Imager BW, respectively) depend on the context activity. In addition,
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TABLE 3.2: Event-Driven Blob Detection Statistics

Benchmark Video vid0 vid1 vid2 vid3 vid4 vid5
Avg Events (NEV/ frame) 99.6 138.6 118.5 176.1 104.3 138.2
Imager BW [B/sec] 1992 2771 2370 3522 2085 2764
Avg MOPS 0.029 0.041 0.033 0.060 0.031 0.046
Peak MOPS 1.12 1.01 1.54 1.48 1.16 2.13
Avg Detected blob 0.45 0.70 0.68 1.17 0.60 0.77
System BW [B/sec] 144.0 224.0 217.6 374.4 192.0 246.4
BW Reduction -92.8% -91.9% -90.8% -89.4% -90.8% -91.1%

TABLE 3.3: Event-Driven vs Frame-Based Comparison

Approach Avg Pixels Imager BW (KBps) Avg MOPS
Event Driven 129.2 2.52 0.040
Frame Based 8192 80 1.876
Gain 63.4x 31.7x 46.9x

the table reports the numbers of average and peak MOPS1 needed to execute the al-
gorithm and the number of detected blobs on each video sample averaged over the
number of frames (Avg Detected Blobs). It is worth noting that the workload varies
during the execution because of the variable input event rate. By considering a pay-
load of 32 bytes to transmit externally a blob descriptor (the pointer feature is not
necessary), the system bandwidth (System BW) results extremely lower (-90% lower)
if compared to a streaming architecture that has to transmit the imager raw data
(Imager BW).

In Table 3.3, the proposed event-driven system is compared with a traditional
frame-based embedded vision system that uses an image sensor running at 10fps with
128x64 8bit pixels resolution. The data bandwidth generated by the traditional im-
ager is 80KBps, 31x higher than that of the event-based camera due to the address
coding readout style. Moreover, a traditional system processes entire frames, hence
the number of operations does not significantly vary frame by frame. For both the
approaches, the table reports the mean number of operations per frame averaged
over the videos (Avg MOPS) needed to perform the clustering of foreground pixels
associated with moving objects. Within this evaluation, the frame-based baseline
features a processing pipeline composed by several filters (frame difference, bina-
rization, dilation and erosion) and the extraction of connected components.

Energy Evaluation. For the analysis of system energy costs, the PULPv3 cluster
power model is applied, which is reported in Table 3.4. The cluster power densi-
ties, along with the maximum frequencies, are illustrated in Table for several VDD
voltages. The peak energy-efficiency is evaluated considering equivalent OpenRISC
operations without ISA extension. The power and frequency figures reported in
the Table are estimated with Synopsys PrimeTime on the post-layout database of the
PULP cluster, which is implemented in 28nm UTBB FD-SOI RVT technology [41].
The 28nm UTBB FD-SOI libraries used for power and timing analysis are charac-
terized for power supplies ranging from 0.5V to 1.0V in the typical corner case at

1Equivalent OpenRISC operations.
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TABLE 3.4: PULPv3 Power Model

VDD [V] Max Fre-
quency [MHz]

Dynamic
Power Density

[µW/MHz]

Leakage
Power [µW]

Peak Energy
Efficiency
[GOPS/W]

0.5 55 19 41 301
0.6 119 27 44 218
0.7 238 37 66 159
0.8 366 42 100 141
0.9 480 53 150 110
1.0 498 78 231 76

TABLE 3.5: System Energy Costs Estimation and Comparison

Scenario Frame Based Event Driven
Camera [87]

+ STM32 [99]
Async

Retina [12] +
STM32 [99]

Imager[47] +
STM32 [99]

Imager[47]
+ Apollo [6]

Imager [47] +
PULPv3 [96]

Avg
Ev/Frame

8192 130 130 130 130

Imager En
[µJ/ f rame]

62.2 28.4 1.06 1.06 1.06

Proc Clk
Freq [MHz]

26 26 26 24 82

Proc Act
Pow [mW]

8.6 8.6 8.6 2.7 2.9

Duty Cycle 72.1% 1.21% 1.21% 1.31% 0.11%
Proc En

[µJ/ f rame]
623.7 10.82 10.82 3.67 0.73

System En
[µJ/ f rame]

685.9 39.22 11.88 4.73 1.79

FIGURE 3.7: PULPv3 processing energy cost per frame on different
operating points
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FIGURE 3.8: System Energy Cost Comparison

the temperature of 25C. The activity file (.vcd) used for the power analysis is ex-
tracted running a typical high-utilization workload. In addition to the cluster power
consumption, an active power consumption of 1mW is estimated for the SoC, that
includes L2, bus, clock and supply voltage generation and IOs.

To estimate the processing energy cost per frame during the tracking application,
the event-driven execution is modeled as running to completion. Periodically, after
imager readout, both SoC and cluster regions are enabled for data processing. When
computation completes, the platform is put into deep sleep mode. The duty cycle
is determined as the ratio between the event-driven execution time and the frame
period (10msec). Figure 3.7 illustrates the processing energy cost per frame on sev-
eral operating points (voltage and frequency). The minimum energy point is found
for a cluster voltage of 0.56V (VBB = 0V) and a maximum operating frequency of
82MHz. Given this operating frequency, the average application duty cycle results
to be 0.11%, therefore the deep sleep power assumes a relevant role for energy bud-
get requirements. On PULPv3 platform, by considering the leakage power of SoC,
L2 memory and IO pads required to implement the protocol with the imager, the
deep sleep power amounts to 4.2µW.

Table 3.5 reports an energy comparison between the proposed system and other
ultra-low power solutions. Power consumption figures related to the image sensor
are measured on silicon samples [47] and scaled down according to sensor typical
activity observed during the benchmark execution. The comparison baseline sys-
tems include a Ambiq Apollo processor [6], which features an ARM Cortex-M4F core
and up to 64kBs RAM, and the off-the-shelf STM32L476 [99], an ULP MCU with
an ARM Cortex-M4 core and 128kB SRAM. Among MCUs, Ambiq Apollo achieves
the lowest power in sleep mode, as 0.33µW, and the highest reported energy ef-
ficiency (8.6MOPS/mW). Its active power amounts to 2.77mW at maximum fre-
quency 24MHz. On the other hand, the STM32L476 is an energy-efficient MCU
that consumes 8.64mW in low-power-run at 26MHs, while achieves 3.54µW in deep
sleep mode2. The processing energy costs for the MCU platforms, as it was done for
PULPv3, are computed according to a run-until-completion behavior.

2STM32L476’s Stop2 Mode is considered as deep sleep mode
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Moreover, in Table 3.5 the proposed event-driven system is compared with a tra-
ditional frame-based vision system and with an event-based imaging system com-
posed by an STM32L476 MCU as processing unit coupled with, respectively, an
ultra-low-power CMOS imager [87] and an asynchronous retina [12]. Both sensors
power consumption are linearly scaled to match the resolution and the frame-rate
of the considered imager. For the retina-based system, a time window is defined as
long as the frame period and it is assumed to retrieve the same data as the considered
imager within this time window. As a consequence of these optimistic assumptions,
the system is able to exploit an efficient computational model and can be kept in
deep sleep mode for a long time.

For every smart-camera scenario, both the image sensor and the processing plat-
form unit contribute to the system energy cost. On the low power STM32 MCU,
applying an event-driven processing approach results in a 57.7x less energy cost
with respect to a frame-based scenario, due to the reduction of either processing
or imager energy cost. Thanks to the parallel and efficient operation, the PULPv3
processor is much more energy efficient compared to the others MCUs. Despite the
very low-utilization of the available computation power, it reduces the processing
energy cost per frame by 14.8x and 5x compared with respectively the STM32 and
the Apollo. Figure 3.8 reports the system energy reduction. By coupling PULPv3
with the imager, the proposed node architecture achieves an energy cost per frame
of 1.79µJ, providing an overall energy boost of almost 383x and 21.8x, in terms
of energy saving, compared to, respectively, a frame-based visual system and an
asynchronous retina-based imaging system. If powered by a coin cell battery with
a capacity of 250mAh at 3V, the proposed smart sensor node will ensure a battery-life
of about 248 weeks, thanks to the estimated average power consumption of 17.9µW.

3.6 Summary

This Chapter reported the description of an Ultra-Low Power Smart Camera Archi-
tecture composed by an Event-Based image sensor and an energy efficient quad-core
processor. The system is benchmarked against a monitoring application to quantify
the benefits of exploiting event-based sensing and processing techniques.

Besides the individual low power consumption, the imager features continuous
mixed-signal processing to produce significant vision events. When coupled with
the Address Event Representation encoding, the data bandwidth is reduced by 31x,
if compared to an imager that continuously sends full pixel frames.

The event-driven processing of the visual data runs on a fully programmable
multi-core platform. This Chapter described the implementation and optimization
strategies of the data analytics flow. Compared to most common approaches, based
on image processing from traditional frame-based cameras, the event-driven pro-
cessing enables a 57.7x processing energy-frame saving when running on an ultra-
low-power MCU platform.

When also exploiting the parallel computation provided by the PULP platform,
the overall estimated energy cost of the proposed smart camera system results
383x and 21.8x lower than, respectively, a traditional frame-based visual system
and an asynchronous retina-based imaging system.
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Chapter 4

Smart Camera System-Level
Design and Implementation

4.1 Overview

Locally processing data in an energy efficient way is an essential characteristic for
smart sensory systems belonging to the IoT ecosystem. Despite featuring power-
optimized components, an IoT device must implement an optimal Power Manage-
ment Control Strategy to gain the requested services and performance levels with
a minimum number of active components or a minimum load on such compo-
nents [11]. In fact, when working at the maximum performance level, i.e. in the
Active state, a component draws a power consumption that can be several orders
of magnitude higher than if it is kept in Idle or Sleep modes. Due to the typical non-
uniform behavior of the workload, meaning that various phases alternate at runtime
spanning from zero activity to high-workload conditions, it is extremely convenient
from an energy perspective to turn a component, or part of it, off if not currently
used. Given that, an optimal power management policy aims at minimizing the total
energy consumption by controlling the operating modes of the single blocks. Such a
power management strategy leads to keep a Sensor Always-ON while featuring a
minimum average power consumption [4].

From an architectural viewpoint, a system controller coordinates the power man-
agement scheme and controls the operating modes of the single components de-
pending on the functional requirements. To be effective, a finely-tuned system power
management policy needs to be driven by the computational model of the system.
For instance, within a smart sensory system, the sensing and processing units can
be put in Active mode during, respectively, the acquisition and the processing tasks,
while they can be kept in sleep state for the rest of the time.

A traditional smart camera system relies on a time-driven operating framework,
according to which the processing unit performs a frame-by-frame analysis of data
periodically sampled by the image sensor [59]. To run an energy-efficient frame-
driven computational model, the processing unit periodically wake-ups from the deep-
est sleep state and triggers the image capture of the camera, which is also placed in
the idle state before the request. After transferring the image data into the internal
memory, the processor runs data analytics and then go back into the sleep mode.
The transition from the sleep to the active state is driven by a timer unit featured
by the always-on region of the processor architecture. A graphical illustration of the
Frame-Driven Computational Model is provided in Figure 4.1a. Although this main-
stream approach is effective, it is power-inefficient because it requires transferring
image data and wake-up the digital processing unit even if no interesting elements
appear on the camera field of view.
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FIGURE 4.1: Power usage comparison between frame-driven and
event-driven computational frameworks.

Focal-Plane Processing and Event-Driven paradigms discussed in previous Chap-
ters provide a valuable opportunity to address this issue. Thanks to the extrac-
tion of low-level features on the analog side, an image sensor can assess the pres-
ence of relevant information at an early stage. Only when detecting a meaning-
ful data, the image sensor itself can drive the wake-up of the digital processor for
post-processing actions. In opposition to the frame-driven computational model,
this working framework is labeled as Event-Driven because the power management
scheme is guided by the context-activity. Figure 4.1b schematizes the power usage
within a system featuring an event-driven computational model. On average, the
power cost results extremely lower than the frame-driven counterpart and, poten-
tially, can reach the idle power in case of rare or very infrequent external events, but
still being fully functional.

This Chapter describes the HW architectural solutions to enable an Event-Driven
Computational model within the Event-Based Smart Visual Sensor presented in Chap-
ter 3. More in details, the chapter presents:

• The design of a specialized camera interface IP to be integrated within the
architecture of the processing unit, which enables a fine-grain control of the
operating modes of both the event-based imager and the processing units. In-
deed, the power control is moved close to the sensor to favorite a context-
aware power management scheme.

• The implementation of the camera interface by exploiting a low-power off-the-
shelf FPGA device. Also, a description of the full-system operation is provided
to understand the global event-driven power management strategy.

The Smart Visual System system, along with the Event-Driven computational
model enabled by the camera interface, is evaluated against three always-on moni-
toring applications. To this aim, the sensor node operates as a Smart Visual Trigger,
hence generating alarms whenever an event-of-interest is detected over the moni-
tored area. The triggering process is also compared with common vision approaches
featured by traditional systems with RGB imager sensors. This exploration con-
cludes that the event-driven approach does not lead to performance degradation
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FIGURE 4.2: Block diagram of the Camera Interface IP and its inte-
gration within the Processing Unit.

over the considered application case-study unless the scene illumination is consid-
erably reduced. Within the presented monitoring scenarios, the Smart Visual Sys-
tem can reach an overall power consumption as low as 277µW thanks to the imple-
mented power-management strategies and by selectively activating the digital pro-
cessing unit. Such consumption is an order of magnitude lower than other reported
smart camera systems.

The remainder of this Chapter is organized as follows. Section 4.2 describes the
design of the camera interface for enabling an Event-Driven Computational model.
The implementation of the camera interface on a low-power FPGA is detailed in Sec-
tion 4.3 along with the adopted power management strategy. Section 4.4 describes
the considered visual applications and the employed triggering process approach.
The experimental evaluation, both in term of detection accuracy and power con-
sumption, is reported in Section 4.5 while Section 4.6 provides the summary of the
Chapter.

4.2 Design of a Camera Interface for Event-Driven Sensing

This Section describes the design of a Camera Interface IP to be integrated within
the Smart Visual System presented in Chapter 3. A block diagram of the peripheral
module, which is placed between the vision chip and the processor, is detailed in
Figure 4.2. From a system-level point of view, the camera interface is in charge of:

1. Handling the communication between the vision chip and the PULP platform.

2. Autonomously managing the sensing operation and the power modes transi-
tions of the imager without the processor intervention.

3. Driving the system power management strategy and enabling an Event-Driven
Computational Model.

As mentioned in Section 3.2.1, the employed Event-Based Ultra-Low Power Im-
ager implements two different operating modes, named Idle and Active. When oper-
ating in Idle mode, the sensor outputs a 13 bits counter value related to the number of
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events detected during the last integration period (and after the frame difference).
Instead, in Active mode the sensor outputs a stream of addresses, i.e. the Events,
which correspond to the coordinates (x,y) of the asserted pixels. In Idle, the power
consumption is mainly due to the sensor internals and accounts about 10µW at 10fps
and 25% pixel activity. In Active mode an additional energy consumption is incurred
due to the increased pad activity, which is proportional to the number of asserted
pixels and to the frame rate. Given that, the power raises up to 100µW at 50fps.

The vision chip features a native interface, which consists of control and data IO
pins. To operate a continuous focal-plane processing, a periodic control sequence
is provided in input, as detailed in [47]. When in Active mode, the asserted pixels
are dispatched out according to a raster-scan readout process. The triggered events
can be sampled by reading the 8-bit Data Bus signal in correspondence of the rising
edge of the Write-Enable output pin. This signal features 7 bits representing the
column coordinate (y-coordinate) and 1 bit for the sign. An additional End-Of-Row
(EOR) output pin indicates the increase of the row index during the readout process.
Therefore, the x-coordinate of an event is computed by accounting the number of
EOR pulses up to the pixel reception. The Event stream is considered terminated
when the EOR signal have pulsed for 64 times (the number of rows). Note that
the peak data rate reaches 80Mpixel/sec during the readout process, leading to a
complete readout time of less than 300µsec.

To connect with the Event-Based Camera, the proposed camera interface, which
is integrated within the PULP architecture, contains a Control Unit (CU) and a Dat-
aPath (DP) subsystems. The CU drives the sensor control signals depending on the
current readout mode and the programmable internal register values (e.g. the inte-
gration time value). Moreover, the CU manages the transition scheme between Idle
and Active modes based on a user-defined threshold, as also proposed in the work
of Gasparini et al. [43]. More in details, when the sensor is in Idle mode, the camera
interface readouts the event counter through the sensor data bus. If the value over-
comes the specified threshold, the CU switches the imager to the Active mode by
generating the proper timing signals. To enable an always-on sensing, the CU must
be permanently active and driven by a low-speed free-running clock. To this aim,
the Control Unit is placed within the always-on region of the SoC region, which is
fed by the external 32kHz clock.

On the other side, the Datapath (DP) serves for (a) triggering data coming from
the sensor when in Active mode and (b) transferring them to the L2 memory of the
processing unit. Such a DP firstly converts visual data from the native protocol to
a (x,y) format, through the Input Stage, and then counts them (through the Events
Counter). An additional Dual-Clock FIFO (DC-FIFO) is needed to cross the boundary
between the imager clock domain and the internal Data Path clock domain. The
DP block features opposite requirement in terms of clock speed with respect to the
CU since it needs to be sufficiently high to sustain the sensor peak output rate of
80Mpixel/sec during the short readout period. For this reason, the Data Path clock
is driven by the SoC clock.

When the sensor is in Idle mode, the SoC region, including the Datapath of the
Interface but not the always-on region, and the Cluster are kept in deep sleep mode.
If the CU, that is continuously running, detects an increasing amount of events, i.e.
a number of events above the threshold, it switches the imager to the Active mode to
enable the output dispatch. Before the readout phase, the CU also issues a Wake-Up
Event to the PULP Power Management Unit (PMU) to request the SoC activation,
and therefore the activation of the camera interface DataPath. Once the readout
process is completed, the DP is disabled and all the received data are available in the
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TABLE 4.1: FPGA Resource Utilization

Resource Used Total Percentage
VersaTiles 1 3758 6144 61.17%
RAM 4,608-Bit Blocks 8 8 100%
VersaNet Globals 2 6 18 33.33%

L2 memory. At this time, the Data Event can be asserted to trigger data analytics on
the Cluster.

By means of the proposed system architecture and the camera interface, the
Event-Driven computational model can be enabled. Indeed, the system is fully ac-
tivated only when a relevant information is detected by the sensor (a number of
events above a predefined threshold). During the rest of the time, instead, the com-
ponents are kept in a Idle state to consume a minimal power. Still, the continuous
sensing operation is guaranteed thanks to the imager and the camera interface.

4.3 System Implementation and Power Management

Camera Interface FPGA Implementation. To enable the communication between
the prototyped PULPv3 chip and the Event-Based Imager, the camera interface ar-
chitecture has been adapted to be implemented on a low-power flash-based FPGA
Microsemi’s IGLOOnano AGLN250V2 [81]. Differently from the architecture pre-
sented in the previous chapter, the Camera Interface contains an SPI Slave interface
through which the processing unit can set up the acquisition parameters (e.g. the
frame-rate and the exposure time) and read the data. Moreover, a Storage First-In-
First-Out (FIFO) Buffer is included into the DataPath to temporarily store the data
before the SPI readout. As discussed before, two different clock domains are de-
fined for the CU and DP subsystems. The CU is still fed by low-speed free-running
32 kHz clock to allow a continuous sensing. Instead the DP clock, which needs to
be sufficiently high to register the events coming from the image sensor, is internally
generated by means of a ring-oscillator. To save power, this high-speed clock can be
enabled only for the short readout period, which lasts less then 300µsec per frame, if
the sensor is in Active mode. Considering a frame period of 100msec (corresponding
to 10fps), a power saving of 39x is achieved by disabling the ring-oscillator for the
majority of the frame time with respect to keep both the clock drivers continuously
active. When the FPGA core works at 1.2V, which is the lowest nominal supply volt-
age, critical timing issues are reported if the high-speed clock is at 80Mhz, which cor-
responds to the peak sensor output rate. To overcome this bottleneck, the DP Input
Stage features a shift register to gather 4 incoming events, which are then pushed into
the DC FIFO. Thus, to relax the timing constraints, the ring-oscillator frequency is
set to 25MHz, which results to be sufficiently high to handle the transfer of 4-events
packets to the Storage Memory. Due to the FPGA resource constraints, the internal
memory buffer (Storage Memory) has been sized to collect a maximum amount of
1024 events, corresponding to 12.5% of the theoretical maximum amount, which is
sufficient to store the amount of pixels in most common typical monitoring applica-
tion scenarios, as shown in the previous chapter. Tab. 4.1 reports the FPGA resource
utilization.

1Equivalent to a three-input lookup table (LUT) or a D-flip-flop/latch with enable
2Global clock distribution network



44 Chapter 4. Smart Camera System-Level Design and Implementation

FIGURE 4.3: System Architecture and Block Diagram of the Cam-
era Interface when implemented as external component with a Low

Power FPGA.

FIGURE 4.4: Power management strategy within the smart camera
system.
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TABLE 4.2: Power consumption of the system components

Component Fully-Active Power Idle Power Note
Vision Chip 20µW 10µW Measured at

10fps and 25%
activity [47]

FPGA Camera IF 3mW 68µW Additional
456µW due to SPI
transfer (5MHz)

PULPv3 Chip
Cluster Region 946µW - At 0.5V, 30MHz
SoC Region 313µW 99µW At 0.5V, 30MHz
FLL Region 3.2mW - At 1V

System Power Management. The vision chip, once coupled to the camera inter-
face, enables a context-aware system-level power management strategy. According
to this Event-Driven approach, the device exploits information from the context to
select the appropriate power mode. This concept is is graphically illustrated in Fig-
ure 4.4 when applied to the considered system. When the sensor is in Idle mode,
the other components are put in the lowest power saving mode. In this state, the
system still continuously senses the environment thanks to the vision chip and the
camera interface operation. Differently from common frame-based vision systems,
the digital processor is normally kept in deep-sleep mode and activated depending
on the context-activity. When the amount of sensed data overcomes the pre-defined
threshold, the camera interface switches the sensor to Active mode and then triggers
the processor wake-up. Within the interface, the ring-oscillator is only activated
within the readout phase, leading to a small increment of the average power con-
sumption with respect to the Idle power state. After completing the readout, the
camera interface issues a wake-up event to the external power manager. This latter
requests the power-on of the platform, by triggering an activation signal to both the
power-gates of the cluster and the FLL regions.

Tab. 4.2 reports the measured components power consumption, either in Fully-
Active and in Idle states. When operating at the peak capacity (with DP clock run-
ning), the camera interface consumption is dominated by the dynamic power associ-
ated to the high-speed clock domain. When the ring oscillator is disabled, the FPGA
power is due to the leakage and the 32kHz clock activity, resulting in an extremely
lower value of 68µW. Therefore, to save power when the sensor is in Active state,
the ring-oscillator is activated only during the short period of data readout. Acting
such a duty cycle technique, an average power of 77µW is achieved within the frame
period. In addition to this, a power contribution of 456µW is accounted during the
SPI data transfer. In the Idle state, instead, the FPGA power consumption is limited
to 68µW.

Within the PULPv3 processor chip, both the Cluster and the SoC regions are pow-
ered at 0.5V while the FLL region requires a higher supply voltage of 1V. The Idle
state of the processor refers to the implemented deep-sleep mode. Within such state,
the FLL and the Cluster regions are power-gated, while the SoC region remains
continuously powered to guarantee data and executable code retention on the L2
memory. This is essential for a fast start-up process since loading the executable
(45kBytes) from an external non-volatile memory requires 1.7msec through a quad-
SPI interface at 50 MHz [1]. Moreover, even assessing the increased latency as a
non-critical issue, the energy consumption associated to the read transfer operation
from the external flash memory results to be 7x higher than the energy consumed
within the frame period due to the leakage of the always-on SoC region.
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TABLE 4.3: System Delay Timing Parameters

Parameter Description Value [µsec]
TRO Sensor readout Time 300
TON Power-on and FLL lock time 590
TBOOT Boot-up process time [30

MHz]
61

FIGURE 4.5: PULP External Power Manager state machine

A Power Manager controller is implemented on the FPGA, along with the cam-
era interface, to manage the transitions between the Active and Deep Sleep modes
of the PULP processor, through discrete onboard power gate components. The in-
ternal state machine of the PULP power manager is illustrated in Figure 4.5. After
the reception of the wake-up event from the camera interface, the power manager is
in charge of powering-on the PULP processor by controlling the power-gates. The
fetch-enable signal is then asserted after the reception of the acknowledge from the
power-gates components. Eventually, the controller goes back in Idle state once the
End-Of-Computation (EOC) signal is asserted by the PULP processor. Table 4.3 lists
the start-up timing delays of the PULP platform when powered-on. Specifically, TON
refers to the power-on time of the supply voltages and the FLL lock time when in
the closed-loop configuration. TBOOT indicates the boot-up time of the processing
platform. These start-up phases determine a fixed energy cost for every activation
of the digital processor

4.4 Smart Visual Triggering Applications

To evaluate the proposed design, the event-based smart camera acts as a Smart Vi-
sual Trigger, aimed at generating alarms when an event of interest is detected in the
camera field of view. Depending on the user preference, a control action can take
place after the alert generation, such as a counting operation or the activation of a
secondary high-resolution RGB camera.

The trigger generation process runs on the digital processor upon the reception
of a wake-up signal from the imager, therefore only if a relevant motion is early
detected within the imaging pipeline. From a high-level viewpoint, the visual pro-
cessing flow is composed of the following steps.

1. Object Detection. The event-driven process presented in Section 3.3 is exploited
to detect moving objects within the camera plane. As previously highlighted,
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FIGURE 4.6: Monitoring scenarios for the considered applications.
Frames on the left are captured by the event-based imager (active pix-
els are drawn in white) and frames on the right come from a commer-

cial RGB camera.

this task analyzes the stream of AER (x,y) events triggered by the Event-Based
ultra-low power camera.

2. Object Tracking. A Kalman filtering scheme is implemented on top of the event-
driven processing to keep track of the detected moving objects along with
their temporal properties. To this aim, every tracked object is modeled with
a Kalman Filter. The assignment problem between any moving object and the
existing Kalman models is solved through the Hungarian algorithm [62] after
defining a cost function cost(i, j) between the i-th object and the j-th tracker
as costi,j = bdL1(Ci, Cj)c + dL1(φmax,i − φmin,i, φmax,j − φmin,j). An assignment
is performed only if the cost value is lower than a threshold. The resolution
of the optimization problem is handled by a sequential task, while the update
process of the Kalman filters is split over the available cores.

3. Triggering. An alert signal is generated whenever one of the tracked objects
matches a predefined condition. For instance, if the center of mass of a tracked
objects crosses a virtual gate or enters a virtual loop in the camera plane.

To assess the performance of the presented smart visual trigger, three environ-
mental monitoring scenarios are considered and listed below. Figure 4.6 illustrates
some frames captured from each scenario.

• Parking Entrance Monitoring. The outdoor entrance of a parking space is
monitored to detect cars entering from the left gate. The triggering process is
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TABLE 4.4: Monitoring Application Dataset Statistics

Application #frames #events
Parking Entrance Monitoring 4000 9
Vehicles Street Monitoring 4000 63
People Activity Monitoring 1446 19

activated when a moving object crosses the virtual gate corresponding to the
parking target entrance (Fig. 4.6a).

• Vehicle Street Monitoring. The smart trigger is employed to monitor vehicles
at a crossroad. Here, the triggering condition is associated with any tracked
vehicle entering one of the defined virtual loops corresponding to different
crossroad directions (Fig. 4.6b). In this scenario, the presence of shadows due
to the high illumination makes trigger generation a more tricky task, possibly
causing extra alert signal assertions.

• People Activity Monitoring. The third application deals with people crossing
an indoor area and possibly stopping by a landmark or a point of interest (Fig.
4.6c). To detect these latter events, an alarm is triggered when any detected
and tracked object disappears from the tracking list. Motionless objects are
not detected by the sensor because of the internal frame difference operation.
Therefore, any tracker associated with moving people is expected to disappear
when a person stops. To increase the reliability of the trigger generation, track-
ers disappearing at the frame borders do not cause any alarm since they are
most likely associated with people exiting the scene. Likewise, limited spa-
tial movements of tracker’s center of mass, such as those generated by people
standing still, is filtered to avoid generation of false alarms.

4.5 Evaluation

Smart Trigger Generation. The trigger generation process has been evaluated on
a dataset of images taken for all the considered applications. The frame rate of the
camera is set to 10 frames per second. The evaluation has been initially conducted
with nominal environmental conditions (i.e. good lighting). For every scenario, the
camera has been placed in a fixed position to not degrade the motion estimation,
which is internally performed on the sensor side through the frame difference oper-
ation. During the acquisition sessions, a secondary RGB camera has been used for
the ground truth (Sony Playstation EyeTM camera).

Table 4.4 reports the characteristics of the visual dataset for the three monitoring
scenarios, in terms of the number of frames and occurring events of interest. Every
raised alert signal is manually marked as True Detection (TD), when an event of
interest is correctly detected, False positive (FP), if an unwanted trigger is generated,
and False Negative (FN), in case of miss-detection. Based on that, the following
metrics are computed for the evaluation:

precision =
#TD

#TD + #FP
(4.1)

recall =
#TD

#TD + #FN
(4.2)
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FIGURE 4.7: Performance metrics for event-based and frame-based
implementations on dataset from (a) monitoring applications and (b)

on different lighting exposures

where # refers to the events’ cardinality. Note that both the indicators should be
equal to 1 for an optimal detection.

For comparison purpose, a basic triggering process is implemented on the ground
truth RGB images, following a typical computer vision flow such as [22]. Every RGB
frame is transformed and scaled to match the resolution of the Event-Based imager.
Pixel values are also converted into a grey-scale representation. For any of the con-
sidered applications, objects are extracted by computing the connected components
after applying a background subtraction, based on a Mixture of Gaussians (for ve-
hicle detection and street monitoring) or frame difference (for people activity moni-
toring), and morphological filters. Blobs with a low number of pixels are filtered out
to improve detection accuracy. Then, an alert signal is triggered whenever a tracked
object matches a predefined condition. Tracking is obtained by associating objects
from successive frames based on the centroid’s distance and the bounding box’s size
differences.

Figure 4.7a reports the statistics and the performance metrics computed for the
triggering process on the two domains: event-based and frame-based. The Park-
ing Entrance Monitoring application shows optimal precision and recall on both the
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FIGURE 4.8: Monitoring scenarios with different light exposure.
Frames on the left are captured by the event-based imager (active pix-
els are drawn in black) and frames on the right come from a commer-

cial RGB camera.

domains because of the clear vehicle appearances. On the contrary, the scenario ad-
dressed for Vehicle Street Monitoring is more challenging. Both the event- and frame-
based implementations suffer from a high number of false positive alarms caused by
moving people in the scene. Along with it, the event-based approach also presents
extra FP alarms due to the fact that a single vehicle can be tracked by multiple blobs,
each one attached to different parts of a vehicle. On the other side, the frame-based
approach shows a higher precision but lower recall. The increased number of false
negatives arises from the loss of trackers due to the merge of close vehicles after
background subtraction and morphological filtering. The People Activity Monitoring
application presents similar performance metrics for both domain implementations.
False Positives are caused mostly by slight movements of people standing still or
crossing persons. Based on these results, the performance triggering accuracy of the
Event-Based system is not degraded with respect to a typical frame-based approach
within the evaluated environmental scenarios.

To evaluate the robustness of the proposed system to different light exposures,
the People Activity Monitoring application is tested against an additional video dataset,
collected in an outdoor scenario. The considered application involves the monitor-
ing of people entering and exiting a building gate. A trigger signal is generated
whenever a person or a group of compact people enter or exit the virtual loop cor-
responding to the door. Figure 4.8 shows the targeted scenario with three different
light conditions: high-brightness (captured at midday), medium-brightness (early
in the morning) and low-brightness (late in the evening). Figure 4.7b reports the
statistics of the triggering process within the above-mentioned scenarios, along with
a comparison with the same approach in the frame-based domain. In this case if
low-light conditions, performance metrics appears degraded with respect to the
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FIGURE 4.9: Tuning of the wake-up pixel threshold by observing
the distribution of the number of pixel for frames that contains ob-
jects (blue class) and not (red class). The class distribution is built by
picking 120 uncorrelated samples per class from the "People Activity

Monitoring" dataset.

frame-based approach. This is a consequence of a reduced spatial contrast within
the images. Most likely, the object detection processing of Section 4.4 fails because
of the low number of input data. On the contrary, background subtraction of the
frame-based approach still performs properly, independently from the environmen-
tal lighting.

Power Consumption. In the following, the evaluation of the proposed event-
based system is reported in terms of power consumption. To this purpose, mea-
surements have been taken from a system prototype in correspondence of the power
modes described in Section 4.3. When fully-active, the smart camera system presents
a power consumption of 7.62mW, mainly due to the contribution of the PULP plat-
form and the FPGA interface. Individual power measurement values are indicated
in Tab. 3.5. Thanks to the lightweight application signal processing, the processor
is not required to run at the maximum speed all the time. Therefore, as a first op-
timization step, the digital processor is activated after every frame acquisition and
then put in the deep-sleep mode when the data processing action completes. Such
kind of computational framework is here referred as Periodic-Polling. In addition to
this, the high-speed clock of the FPGA camera interface is enabled only for a short
readout period. By applying this power management strategy, the average power
consumption of the individual components is extremely reduced. The FPGA camera
interface achieves an average power of 77µW, mainly dominated by the consump-
tion associated with the 32kHz clock domain. The processor power in sleep mode is
due to the SoC region leakage power of 99µW. In active mode instead, the energy
consumption depends on the processing time, the data transfer operation and the
start-up process, which accounts the power-up, the FLL activation and the boot pro-
cess. For frames composed of a minimal amount of events, these latter contributions
dominate the whole energy cost. Table 4.5 contains the average power consumptions
values on the monitoring application when applying the described power manage-
ment strategy. With respect to a fully active system, a power reduction of at least 25x
is achieved thanks to the periodic-polling framework.

The second optimization step concerns shifting the computational model from
the Periodic-Polling to the Event-Driven framework, which is enabled by the designed
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TABLE 4.5: Power Consumption within the considered Applications
Case-Studies

Application Event
Thresh-
old

% rel-
evant
frames

App
Duty
Cycle

Periodic-
Polling
Power

Event-
Driven
Power

Reduc.

Parking Entrance Monitoring 100 16% 0.7% 226µW 193µW -14.6%
Street Traffic Monitoring 40 60.5% 1.1% 294µW 277µW -6%
People activity Monitoring 80 65.4% 1% 267µW 252µW -5.6%

camera interface. The Event-Driven computational model is intended to keep the
processor in deep sleep mode until the sensor produces a relevant amount of motion
data from the external context. Consequently, the camera interface transfers data to
the processor unit only if the frame contains at least a specific number of meaning-
ful data. The wake-up threshold value corresponds to the value defined within the
filtering stage of the blob detection module. Basically, the system is not awake when
any objects will not surely be detected by the post-processing operation because of
the low-amount of produced spatial-contrast pixels. The mentioned filtering param-
eter is manually tuned based on the average amount of pixels describing the objects
of interest. Within the People Activity Monitoring application, a further analysis is
done to investigate a finer tuning. Figure 4.9 shows the probability distribution of
the number of pixel in frames belonging to two classes: the red one includes frame
with no object presence, while the blue one corresponds to frames with the presence
of one or more moving object. Based on that, the threshold is set slightly higher than
the filtering value (80 instead of 40), leading to higher power savings because of the
reduced number of activations of the digital processing sub-system.

When motion is not detected in the camera field of view, the system exploits the
Idle state as described in Section 4.3. In this state, the vision chip works in Idle and
the ring-oscillator of the FPGA camera interface is not enabled. Considering also
the processor leakage due to the SoC region consumption, an overall Idle power of
176.88µW is achieved. Potentially, the average power consumption of the system
converges to this bottom limit when no meaningful information is detected within
the context. Tab. 4.5 highlights the power reduction considering a selective proces-
sor activation in correspondence only to the subset of relevant frames (those with
a number of events higher than the defined threshold). Clearly, a higher reduction
is assessed for the application featuring a lower percentage of interesting frames
(16%). In this scenario, a power consumption of 193µW is achieved, closer to the
Idle power lower bound. Instead, within the other application scenarios, a power
consumption between 252µW and 277µW is reported, coming from a percentage of
processor activation slightly higher than 60%. In these cases, a power saving of about
6% is achieved if compared with the correspondent periodic-polling computational
framework.

Figure 4.10 depicts the average power consumption breakdown on the two con-
sidered computational frameworks. The higher energy-efficiency of the event-driven
computational model mostly arises from the power saving exploited within the
Cluster region and the FLL region. More precisely, a power saving of about 65%
is accounted within the first application in the two mentioned power domain re-
gions. Instead, a 15% reduction is reported for the other two applications, because
of the higher processor activation rate. The saved energy is mostly related to the
energy fixed costs regarding the processor wake-up procedure (power-up, FLL acti-
vation and boot). In addition to this, an FPGA power saving between 5% and 10%
is accounted, due to less high-speed clock activations and SPI transactions.
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FIGURE 4.10: Power consumption breakdown of the system.

Comparison with Related Works. Many of the existing smart camera nodes fea-
ture a high computational power to deal with the complexity of computer vision
algorithms [25, 17, 88, 56, 13, 33]. These architectures include power-hungry com-
ponents to handle image acquisition and frame-by-frame data analytics. For this
reason, the overall power consumption reaches several hundreds of mW, which is
much higher than the power cost of the event-based visual system presented before.

The achieved sub-mW average consumption is enabled by leveraging novel tech-
niques, such as focal-plane processing, and the event-driven local computation. In
contrast, the system Wi-FLIP [40], which also includes a mixed-signal imager, presents
a not power-optimized processing unit and draws a power of more than 100mW.
Other systems present an event-driven model to lower the energy consumption. The
camera presented by Magno et al. [77] triggers the image acquisition upon the de-
tection of human movements by using a PIR sensor, which however carries a much
lower information and consumes a higher power than the event-based camera when
in Idle mode. MeshEye [51] proposed a low-resolution stereo camera for triggering
scope, but it is still drawing more power than the proposed solution.

Close to the Event-Based smart visual camera discussed in this work are the
nodes proposed by Gasparini et al. [43] and Carey et al [16]. The first one couples
the same event-based imager with an IGLOO FPGA, which implements either the
camera interface and the digital processing circuit. This design features a dual-clock
domain, where the high-speed clock, that drives the data transfer and processing
circuits, is clock-gated to save power if the imager is in the Idle state. By doing this,
the power consumption can be reduced from 4.2mW to 2.5mW. However, the sys-
tem lacks flexibility because of the hard-wired event-driven processing, specialized
in counting single persons passing in front of the camera. The system proposed in
this work, in contrast, allows to detect and track multiple moving objects and it is ex-
tremely flexible thanks to the software fully-programmable architecture. The smart
camera presented by Carey et al. features a mixed-signal imager with SIMD pro-
grammable processing capabilities coupled together with an FPGA interface and an
MCU processing unit. The authors proposed a power-optimized frame-driven com-
putation, leading to a power cost of 5mW within a monitoring application. With
respect to this, the presented event-based camera shows an average power con-
sumption 10x lower, thanks to the optimized system power management and the
event-driven computation.
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4.6 Summary

This Chapter discussed the system integration steps to enable an optimized Event-
Driven Computational model. To this aim:

• A specialized camera interface is designed to handle the sensing process and
to drive the power management policy of the system. Thanks to this, the most
power-hungry blocks of the visual architecture can be kept in sleep mode un-
less a relevant information (motion) is detected on the camera field of view.
Despite the minimal activity of the system when working at the lowest power
mode, the system is still actively sensing the environment.

• To deploy a power-optimized smart camera prototype, the camera interface is
implemented on a low-power flash-based FPGA. When tested as a smart vi-
sual trigger, the presented system show a power consumption of up to 277µW,
which results to be more than 10x lower of other state-of-the-art devices. This
is possible thanks to the Event-Driven computational model, enabled by the
camera interface, and the Event-Based ultra-low power imager.
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Chapter 5

Event-Based Binarized Neural
Networks

5.1 Overview

The design process of battery-powered IoT devices must trade-off between perfor-
mance and energy consumption. Shifting from a traditional frame-based to a neuro-
inspired event-based paradigm provides a big opportunity to reduce the energy cost
of visual sensing. As discussed in previous chapters, the average power consump-
tion can be brought below the mW level by means of event-based sensing and pro-
cessing and a finely optimized system-level design integration. Thanks to this strat-
egy, a visual system with triggering capabilities has been introduced to be part of
the IoT stack. This Chapter further investigates the design the data processing tasks
to enhance the visual capabilities of the node and refine the triggering process. The
challenge consists of pushing an additional intelligent layer on top of the optimized
event-driven computation without degrading the achieved energy-efficiency level.

In the field of Computer Vision, Deep Learning techniques are nowadays the
leading technologies for enabling artificial vision [65]. Bio-inspired Convolutional
Neural Networks (CNNs) achieve state-of-the-art performance on several recognition
tasks, such as image classification, object detection and voice recognition. Despite
the promising capabilities, the high computational cost and the high memory re-
quirements are preventing their deployment on resource-constrained and ultra-low
power devices.

To address this issue, recent approaches have investigated the quantization of
CNN models to reduce the storage and computational costs of the inference en-
gines. As an extreme approximation, Binarized Neural Networks (BNNs) makes use
of a 1-bit precision to represents both the weights and the values of the activation
layers of the network [29, 93]. This implicitly reduces the memory requirement by
32x with respect to full precision CNNs, while not significantly degrading the classi-
fication accuracy on several public datasets [29]. By reducing the internal precision
to a single bit, the convolution operation, which is the most demanding kernel of a
CNN inference algorithm, transforms into a bit-wise logic XNOR followed by a bit
counting operation. This has enabled, in addition to the less constrained memory
requirement, the deployment of deep networks into low-power programmable pro-
cessors, also thanks to their flexibility and easy programming legacy [78]. However,
due to the stringent energy requirement of always-on sensors, a BNN inference en-
gine needs to be be coupled with power-optimized smart sensing devices to further
reduce the system power consumption.

This Chapter provides the specification of a system that couples the visual per-
formance of Binarized Neural Networks with the energy gains enabled by Event-
Based sensing and processing models. The approach is referred to as Event-Based
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Binarized Neural Network. By leveraging a mixed-signal imager, the early stages of
the convolution operations can be moved into the analog domain of the image sen-
sor. This reduces the workload of the digital processor along with the overall energy
cost. With respect to other mixed-signal designs [66, 73], the proposed approach fea-
tures the in-sensor computation of binary convolutions at an ultra-low power cost.
Indeed, concerning the employed Event-Based binary imager [47], it is argued that
the performed spatial contrast and binarization of Figure 3.2.1 reflect the operations
of a binarized pixel-wise convolution and can be seen as embedding the first binary
convolutional layer within the image sensor die.

In the follows, a mixed-signal HW-SW codesign of an Event-Based Binarized Neu-
ral Network is described and implemented on the smart camera architecture de-
scribed in Section 3. To this aim, a BNN is trained and tested on binary data pro-
duced by the Event-Based binary spatial constrast imager. A software implemen-
tation of the BNN is optimized to run efficiently on the programmable 4-core RISC
processor. To assess the performance of the proposed Event-Based Binarized Neural
Network solution, a real-world dataset collects image samples belonging to three
different classes. During the classification task, the proposed solution reduces the
system energy by 17.8% in reference to a frame-based baseline system that includes
a low-power RGB imager and a traditional BNN approach, while paying only a
3% reduction of classification performance on a 3-classes scenario. Moreover, when
considering a long-term monitoring application, the system can leverage the event-
based sensing scheme to reduce the start-up activity of the processor and to trigger
a classification run upon the detection of a relevant event. This leads to an energy
reduction of up to 8x with respect to the frame-based system featuring an RGB cam-
era.

As a summary, this Chapter describes:

1. The specification of an Event-Based Binarized Neural Network model, which
fits the energy requirements and resource constraints of deeply-embedded always-
on visual sensing front-end.

2. An optimized implementation of a BNN on a 4-core embedded processor.

3. The energy evaluation of the proposed solution and the comparison with a
baseline BNN model with RGB data input.

The remainder of the Chapter is organized as follows. Section 5.2 provides some
background of Binary Neural Networks. Section 5.3 reports the insight of the pro-
posed Event-Based Binarized Neural Network, while an optimized implementation
is detailed in Section 5.4. Section 5.5 reports the experimal results and lastly the
Section 5.6 summarizes the chapter.

5.2 Binarized Neural Networks

A Convolutional Neural Network model is structured as a sequence of convolutional
and fully-connected layers, where the convolution operation demands the highest
workload of the inference task. This operation produces OF output feature maps
o by applying a non-linear function f (·) to the pre-activation values ϕ, obtained
by convolving the IF input feature maps I with a battery of weight filters w, as
expressed by Equations 5.1 and 5.2.

ϕ(x, y) = ∑
d,i,j

w(d, i, j) ∗ I(d, i, j, x, y) (5.1)
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FIGURE 5.1: Binary convolution flow for every convolutional layer.
For any of the OF output feature maps, the binary value at position
(x,y) is produced by overlapping the mth weight filter to the array
of the receptive field of the input feature map centered at the spatial

position (x,y).

o(x, y) = f (ϕ(x, y)) (5.2)

A Binarized Neural Network aims at binarizing the synaptic weights w and neuron
values o by opportunely training a convolutional network. When looking at the
inference task, a binary convolution operation is expressed as Equation 5.1 where
I, w ∈ {0, 1}. Due to this constraint, the operation can be rewritten as:

ϕ(x, y) = popcount(w xnor I) (5.3)

where w, I are binary arrays that store the binary filter weights and inputs and
popcount(·) returns the numbers of asserted bits of the argument. Note that the
convolution output ϕ(x, y) is an integer value.

As presented by the original paper [29], the pre-activation value is binarized after
a batch normalization layer, by means of the sign(·) function.

obin(x, y) = sign(
ϕ(x, y) + b− µ

σ
· γ + β) (5.4)

where b is the convolution bias and µ, γ, σ and β are parameters learned by the
batch normalization layer. These parameters are floating point but thanks to the
sign(·) and the integer input ϕ(x, y) the expression can be reduced to:

obin(x, y) =

{
ϕ(x, y) ≥ thresh(m) if γ > 0
ϕ(x, y) ≤ thresh(m) if γ < 0

(5.5)

where thresh(m) is computed offline after the training procedure as bµ− b− β · σ/γc
if γ > 0 or dµ− b− β ·σ/γe if γ < 0. Therefore only an integer threshold and a single
bit sign(γ) have to be stored for binarizing any output layer.

As shown by equations 5.3 and 5.5, a binarized convolution operation is then ex-
pressed as a couple of instructions, requiring bit-wise and bit counting (popcount)
operations, along with an integer comparison. A binarized convolutional layer com-
putation flow is illustrated in Figure 5.1.
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FIGURE 5.2: Comparison between a traditional BNN flow and the
proposed Event-based BNN scheme, which exploits focal-plane pro-

cessing for in-sensor binarization.

5.3 Event-based BNN

The Event-based Binarized Neural Network scheme is depicted in Figure 5.2. The
presented approach combines the paradigm of event-based sensing with the new
concept of Binarized Neural Networks (BNNs). If compared with traditional BNN
architectures that operate on 3-channels RGB images, the Event-Based BNN is fed by
sensor data that has been pre-processed and binarized on the image sensor die. This
latter exploits a pixel-wise hardwired spatial filtering operation: a per-pixel mixed-
signal circuit computes the weighted gradient across a neighboring pixel mask. Fol-
lowing this, gradient values are binarized by thresholding. This mixed-signal pro-
cess can be seen as embedding the first binary convolution of the inference pipeline
on the sensor die because it consists of binarizing the output of a local spatial gradi-
ent (illustrated in Figure 3.2).

The BNN is implemented on the digital signal processor and refers to the model
presented by Courbariaux et al. [29]. Thanks to the input and weight binarization,
any convolution reduces to a logic XNOR and a bit counting operation, resulting
suitable to be implemented on ultra-low-power processors based on RISC architec-
tures.

A preliminary experiment to assess the capability of the approach is conducted
by benchmarking against the CIFAR-10 dataset [61]. To simulate the in-sensor pro-
cessing of the event-based imager, a basic sensor model is used to convert RGB im-
ages of the dataset into the binary representation space. As a first approximation,
the gradient contrast VEDGE is computed as:

VEDGE =
max(|pE − pO|, |pN − pO|)

max(pE, pO, pN)
(5.6)

where pX is the greyscale value of the correspondent RGB pixel value. The bina-
rization is formulated as:

VO = sign(VEDGE −Vth) (5.7)
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FIGURE 5.3: Image of a car taken with an RGB sensor (a) and with
the binary imager (c). Image (b) is obtained by applying the transfor-
mation of Eq. 5.6-5.7 on the left RGB image to simulate the in-sensor

processing.

TABLE 5.1: Accuracy on CIFAR10 dataset

Model Accuracy

CNN with RGB input 91.36%
BNN with RGB input 86.78%
CNN with binarized input 72.50%
Event-Based BNN 68.94%

Figure 5.3 illustrates the qualitative result when transforming an RGB image into
the representation space of the binary imager. The images labeled with (a) and (c) are
captured respectively with an RGB image sensor and with the Event-Based sensor,
while figure (b) is obtained by applying the transformation of equations (5.6)-(5.7)
on the RGB image.

A VGG-like [98] BNN model is trained either with the original RGB data of the
CIFAR dataset and with binarized data obtained from the transformation 5.6-5.7 of
the original data space. The model is composed of 12 convolutional layers and 2
fully-connected layers and is trained following the approach of [29]. Table 5.1 lists
the accuracy on the test set composed of 10k samples picked from the CIFAR-10
dataset. The evaluation also includes a baseline floating point CNN model with
the same VGG topology, trained with RGB and binarized data. The results show
that the specific kind of imager binarization leads to an 18.8% performance drop
with respect to the baseline, while the additional binarization of the model leads to a
further 3.5% reduction. Despite the not-negligible accuracy degradation, the training
process actually leads to model convergence and hence can be exploited for training
event-based binarized neural networks for an application-specific scenario. Section
5.5 shows that the accuracy degradation significantly attenuates by considering a
reduced-complexity classification scenario, which is a more typical use-case for an
always-on sensing front-end.

5.4 Implementation

The BNN software implementation is based on the code architecture presented in [78].
The proposed implementation aims at reading single binary values belonging to ev-
ery receptive field and performs a 2D convolution and popcount. After accumulat-
ing the popcount results to the 3D convolution output (Eq. 5.3), the value is cast
to floating point for the normalization and then thresholded, following Equation
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FIGURE 5.4: Average execution time to run a 3x3 convolution kernel
for several optimization steps and their relative gains.

5.4. Several optimizations have been performed on the original code version to ac-
celerate the computation and, at the same time, minimize the memory footprint.
As major improvements, (a) the binary weights needed to produce an output layer
are stored contiguously in memory to minimize the memory requirement instead
of storing a 3x3 binary filter into a 3 bytes format, (b) the XNOR operation is per-
formed on 32-bit data registers, to fully exploit the datapath length and (C) thanks
to the convolution formulation expressed by Equation 5.5, the proposed implemen-
tation does not require any floating-point operation, with the exception of the last
fully-connected layer, whose workload is however negligible in reference to the rest
of the network inference task.

Memory Management. An BNN is implemented on the ultra-low power 4-core
platform PULPv3 [96], described in Section 3.2.2. The BNN weight parameters are
permanently stored in the L2 memory, besides the code region and the data input
memory space. L1 memory serves for temporary storing of input and output data
from the network layers. To this aim, two memory regions are sized as the maximum
layer output capacity in the network, which is 2KB in case of the BNN topology of
Table 5.2. At run-time, each core transfers a weight bank needed to produce a single
output layer to a private L1 memory buffer, which has a size of 72 Bytes in this case.

Code Optimization and Parallelization. To optimize the BNN computation, the
inference time of the model described in Tab. 5.2 is measured by running the BNN
software on the instruction-accurate simulator of the parallel platform. Note that
the BNN input is also binary, hence requiring only 1KB for transfer and storage, as
opposed to the 12KB required by the system based on a RGB camera. When running
on a single core, the baseline implementation spends the 96% of the computation
on the convolution kernels of Equation 5.3, suggesting that this is the part that can
benefit more from intensive optimization. For any output pixels, the mentioned
operation consists of loading IFx3x3 binary input pixels and compress them in 32-
bit registers, to be xnored with the correspondent weights before the popcount.

Fig. 5.4 illustrates the performance gain achieved by performing the optimiza-
tion steps described below. The plot reports the average time to perform a 3x3 con-
volution, normalized with respect to the baseline. A first 18% cycles reduction is
reached by padding every input layer before the convolution, hence avoiding to
check border conditions in the inner loop. As a side effect, the L1 storage buffer
has to be re-sized to contain the padded input (+13% memory for the considered
network topology). An additional 27% reduction is achieved by exploiting loop un-
rolling. Doing this implies coding separately convolutional layers with different
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FIGURE 5.5: Optimized binary convolution kernel applied on every
image plane. Three binary image rows are loaded and aligned with
a battery of 3x3 convolution kernels. The masked popcount of the
xored inputs resulting from any kernel position is accumulated and
then the input is shifted to account all the possible input-filter align-

ment.

kernel size. For VGG-like models, which makes use only of 3x3 kernels, this is how-
ever not an issue. Others topologies featuring layers with different kernel sizes will
pay an increased memory code footprint.

Going further, the implicit bit-level parallelism of data can be exploited by read-
ing multiple input bits within a single load instruction. Thanks to this approach, any
convolution of Equation 5.3 requires only IFx3 readings because a 3-bit row can be
loaded by using a single load operation. This allows saving an additional 18% of the
computation time.

To fully exploit the bit-level parallelism, the convolution operator can be applied
to separate image input channels. The popcount results are accumulated along all
the input channels before the binarization. Each image plane is tiled and scanned
along the vertical direction. The spatial data order is exploited to load and analyze
in parallel 32 binary pixels that belong to the same row. A battery of 9 identical
binary filters is aligned to the loaded rows, by replicating the 2D weight filters, and
xored. Figure 5.5 illustrates the process. For any of the filter masks, the popcount
result from the several rows is accumulated and the input is shifted. After this, the
row pointers are increased by 1 up to reach the bottom line. The process repeats on
the next vertical tiles for every input channel. A significant 69% cycles reduction
is achieved thanks to this strategy. From a memory viewpoint, an accumulation
L1 memory space is required, sized as the maximum input spatial layer dimension
(64x64 in this case).

On the considered digital processing platform, the BNN computation is paral-
lelized over the 4-cores by dividing the workload along the output feature dimen-
sion. This contributes to speed-up the code execution by 3.88x, which is close to
theoretical maximum 4x.

5.5 Evaluation

Classification accuracy The Event-Based BNN is evaluated with a real-life dataset,
tailoring an always-on monitoring application for visual systems. A dual-camera
setup, which includes a commercial RGB camera and the binary imager, is used for
collecting 64x64 images, each one belonging to one of the three following categories:
cars, cyclists and pedestrians. The acquisition system synchronizes the data capture
of the two sensors, which are physically aligned to match their fields of view. Two
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FIGURE 5.6: (a) dual-camera experimental setup (b) image samples
corresponding to three different classes.

datasets for testing purpose are collected, one with RGB images and one with binary
gradient images, containing 100 samples per class each. Figure 5.6 illustrates the
dual camera experimental setup (a) and some examples of the acquired data (b).

A binarized VGG-like model is trained to classify the acquired images. The net-
work is composed of 5 convolutional layers and 2 fully-connected layers (for a total
of 23Mop/img). Table 5.2 reports the network parameters layer by layer. A pool-
ing layer is placed after every convolution. The presented topology is defined to fit
the memory requirements of the smart camera architecture. In total, the memory
footprint required by this model is less than 20KB. As a baseline for the proposed
event-based BNN, a binarized neural network with the same topology is trained
and tested on 8-bit RGB data.

Both the BNN models are trained using Torch [26] for 100 epochs using the
adaMax shift-based version proposed by [29] and a batch size of 128. Learning rate
is set to 0.01 and divided by 10 every 15 epochs. To increase the generalization of
the training process, the training and validation datasets are built by combining la-
beled patches from the KITTI [45] and MIO-TCD [105] datasets. Training data is
augmented with random rotation to increase the number of training samples up to
about 60k. The validation set is composed of 900 unique samples. When training the
event-based BNN, training and validation data are binarized with Equations 5.6-5.7.
Trained models with the highest accuracy on the validation dataset report an accu-
racy on the real-life testing data of 84.6% and 81.6%, for RGB and gradient binarized
input scenario, respectively. Therefore, the event-based BNN architecture presents a
contained performance drop of 3% over the 3-classes application scenario.

Energy Evaluation. To assess the energy efficiency of the proposed solution, the
event-based binary visual node is benchmarked against a baseline system featuring
a state-of-the-art low-power RGB imager [52] and the same processing unit, which
runs a BNN with 8-bit 3 channels data inputs.

1Conv3x3(x,y) is a convolutional layer with 3x3 weight filter size, x input layers and y output layers,
FC(x, y) is a fully connected layer with x input neurons and y output neurons, #ich=3 for RGB input
and #ich=1 for binary input

2The imager features a 324×244 resolution with Bayer color filter map, which roughly corresponds
to a 3-channel QQVGA resolution
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TABLE 5.2: VGG-like BNN Model

Model Topology 1

Conv3x3(#ich, 16) + MaxPool2x2
Conv3x3(16, 32) + MaxPool2x2
Conv3x3(32, 48) + MaxPool2x2
Conv3x3(48, 64) + MaxPool2x2
Conv3x3(64, 96) + MaxPool2x2

FC(384, 64)
FC(64,3)

TABLE 5.3: Event Based BNN Energy Comparison

Scenario BNN with Event-based
RGB input BNN

Image Sensor Power Consumption 1.1mW @30fps 100µW @50fps
Image Size 324×244 (617kbits) 2 128×64 (8kbits)
Image Sensor Energy for frame capture 66.7 µJ 2 µJ
Transfer Time (4bit SPI @50MHz) 3.1 msec 0.04 msec
Transfer Energy (8.9mW @0.7V) 28 µJ 2 µJ
BNN Execution Time (168MHz) 81.3 msec 75.3 msec
BNN Energy consumption (8.9mW @0.7V) 725 µJ 671 µJ
Total System Energy for Classification 820 µJ 674 µJ

Table 5.3 reports the energy comparison between the event-based BNN and the
baseline system for image acquisition and classification. It includes the contribu-
tion of the imager, sensor-to-processor data transfer and the 4-core processor that
runs the binarized network. The active power of the processing unit is measured as
8.9mW when operating at 168MHz with a voltage supply of 0.7V. The platform is
kept in the active state during data transfer and BNN computation. Because of the
higher amount of input data (a total of 324×244 8-bit pixels [52] instead of a single
128x64 binary channel), the baseline scenario features a 77.2x higher data transfer
time. Furthermore, the event-based BNN shows a smaller BNN computation time
by 7.4% thanks again to the reduced amount of input data. Given all these contri-
butions, the event-based BNN scenario reports a system-level energy reduction of
17.8% with respect to the baseline.

FIGURE 5.7: Event-Based Binarized Neural Network analysis flow
applied to always-on monitoring applications.
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TABLE 5.4: Event-Based vs Frame-based

Statistics per frame Frame-Based Event-based
Idle (no motion)
Sensor Power 1.1mW (grey) 20µW
Avg Sensor Data 19764 Bytes -
Transfer Time 790µsec -
Processing Time 3.02 msec -
Avg Processor Power 1.45mW 0.3mW (sleep)
Detection
Sensor Power 1.1mW (grey) 60µW
Avg Sensor Data 19764 Bytes ∼536 Bytes
Transfer Time 790µsec 21.4µsec
Processing Time 3.47 msec 187.6µsec
Avg Processor Power 1.57mW 0.511mW
Classification
Sensor Power 2mW (RGB) 60µW
Avg Sensor Data 79056 Bytes 1024 Bytes
Transfer Time 3.16 msec 41µsec
Processing Time 81.3 msec 75.3 msec
Processor Energy 760 µJ 677 µJ

Event-Driven Sensing Evaluation. As highlighted in Chapter 4, a design method-
ology relying on an event-based computational model leads to major energy-efficiency
improvements over state of the art solutions. When dealing with always-on moni-
toring applications, the optimized BNN classification engine can be run on top of the
triggering process to leverage the benefits of the Event-Based Smart Visual Systems.
Therefore, the system enhances its recognition capabilities by assigning a unique
label to a detected interesting event. Figure 5.7 illustrates the working flow of the
proposed scheme. As a case-study, a parking entrance monitoring scenario is targeted,
where an alert signal is triggered when a moving object (a car) enters the parking
gate while the system is kept in sleep mode, but still working, if no motion is de-
tected. The BNN execution starts once an alert is generated to classify it. In the
following, a comparison between the proposed Event-Based BNN scheme and a tra-
ditional frame-based system is provided.

In the analyzed case, the sensing activity is driven by moving cars passing in
front of the camera. Any of them generates 2.7 seconds of data recording. Tab. 5.4
reports the average statistics to acquire and elaborate the signals on both the event-
based and the frame-based scenario, along with the different energy costs for any
of the following phases: (i) idle, when no motion is detected by the mixed-signal
image processing because of a static background, (ii) detection, aiming at generating
alert signals, and (iii) classification upon detection, which implies transferring data
and running the BNN classifier. Concerning the idle and detection phases, the energy
cost is expressed in terms of average power consumption. A frame rate of 30fps
is considered, along with the usage of duty cycling to reduce the energy consump-
tion of the digital processor. When in the sleep state, the processing unit consumes
0.3mW @0.7V, due to the memory region that cannot be power-gated because of
data-retention. The event-based system keeps the digital platform in the sleep state
during the idle phase, due to the low amount of generated events. Within the de-
tection phase, a higher sensor datarate causes the processor to wake up for data
processing. The power costs are still contained because of the limited number of
events to be transferred and elaborated. Once a relevant event is detected through
event-driven processing of Section 3.3, the classification task is triggered. On the
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FIGURE 5.8: Average power consumption of event-based (in red) and
frame-based (green) visual nodes with respect to a varying external

event rate within an always-on monitoring application.

contrary, within the frame-based scenario, the sensor always transfers image data to
the processor to determine the presence of relevant objects either on the idle or the
detection phase. Hence, these phases are characterized by a similar power cost. The
data analytic flow includes the background subtraction, morphological filtering and
the extraction of the connected components. During the detection phase, the work-
load slightly increases due to the additional Kalman filtering and triggering process.
As a data source, the image sensor provides QQVGA greyscale 8-bit data at a power
cost of 1.1mW [52].

Fig. 5.8 shows the average power consumption for a varying number of moving
objects per hour accessing to the parking gate. On the frame-based system the power
is weakly dependent on the event frequency, while the event-based system presents
an increasing power cost due to the increased activation rate of the digital processor
at a higher event rate. When the number of event per hour increases, the event-based
visual system presents an energy saving of 4x, which can raise up to 8x at a reduced
event activity. Moreover, if the context activity tend to decrease, the system average
power consumption is kept as low as the sleep power of 300µW .

5.6 Summary

This Chapter presented the concept of Event-Based Binarized Neural Networks,
which couples together the energy benefits of an Event-Driven Sensing and Process-
ing approach with the visual performance of Binarized Neural Networks (BNNs).
The Event-Based imager provides binarized data as an input of the BNN, which is
implemented in an efficient way on a parallel digital engine. If compared with a
baseline systems featuring an RGB imager, the proposed approach presents a power
consumption reduced by 17.8% due to the in-sensor early-computation. Moreover,
when considering an always-on monitoring application, the BNN can be triggered
by the detection of moving objects. In this case, thanks to the Event-Based visual
system, the average power consumption can be up to 8x lower than the one of the
baseline system in case of infrequent detections, while reaching an average power
consumption as low as the sleep power of 0.3mW.
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Chapter 6

Conclusion

The Internet of Things revolution is nowadays driving the development of novel
technologies for collecting and processing a massive amount of data. At the edge of
the envisioned infrastructure, a plethora of interconnected and autonomous devices
is expected to form a widespread sensing layer, that transmits sensed data through
the network to other nodes or to a central system. However, due to the stringent
energy requirements, the design process of the end-node devices results extremely
challenging. In the context of visual sensing, the high power cost of most diffused
smart camera devices cannot be sustained by battery-powered autonomous devices.
In fact, a camera-based system typically includes power-hungry components to per-
form visual data sampling and for running computationally demanding computer
vision tasks.

The thesis work describes novel design strategies and techniques to enable a
smart ultra-low power visual sensing at the edge of the IoT network. As a design
target, this work aims at building a smart and flexible visual sensor node, which achieves
the detection performance of leading-edge computer vision models but under the energy con-
straints of autonomous devices, i.e. a power cost within the ambitious micro-watt range. To
reach the goal, the following challenges have been addressed.

• HW-SW Co-Design. Edge devices require high-energy efficiency but high
computational power to handle complex computational vision models. Con-
cerning the HW, this implies a design effort either on the technology side but
also at the architectural level. Optimized programmable engines for data an-
alytics enable an efficient computation and provide the needed flexibility to
ease the design process. Associated to this, the software implementation needs
to be oriented toward energy minimization and therefore able to leverage the
underlying HW architecture in an efficient way.

• System Integration. From a system level point of view, the components’ oper-
ations need to be coordinated to minimize the energy wastes. To this purpose,
a system power management strategy must be designed and implemented,
such that controls the system operating modes without degrading the sensing
quality.

• Data Analytics. The computer vision algorithm design needs to be aware of
the architectural resource constraints. An optimal data analytics flow aims at
minimize the energy consumption while presenting high detection capabili-
ties.

The thesis work addressed the mentioned challenges by proposing an Ultra-Low
Power Event-Based smart camera design, which relies on novel design techniques
such as (a) focal plane processing and (b) event-driven sensing and computation.
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According to the first one, part of the visual processing is moved on the sensor
die by exploiting mixed-signal processing circuits. This enables an efficient early-
extraction of low-level visual features and brings the power cost down to the µW
range. Thanks to the usage of mixed-signal circuits, a smart camera architecture can
shift the sensing paradigm from the traditional frame-based to a bio-inspired event-
based flavor. In this scenario, the image sensor triggers illumination changes and
dispatch them to the progressing unit, in the form of Events. To anaylize visually rel-
evant data, the digital processing engine features a more lightweight computation
than traditional frame-based architectures.

Concerning the aforementioned challenges:

• Chapter 3 described the HW-SW co-design of a smart camera architecture cou-
pling a parallel processor with a mixed-signal image sensor. This latter em-
beds focal plane processing capabilities and address-event readout. The dig-
ital computation is applied to the generated visual events, leading to a 57x
processing energy reduction with respect to a traditional frame-based compu-
tation over a monitoring application. Moreover, thanks to the parallel engine
and the ultra-low power event-based camera, the overall system energy cost
results to be two order of magnitude lower than a baseline system featuring
off-the-shelf components.

• Chapter 4 showed a power-optimized system integration and the design of a
specialized camera interface to enable the implementation of a context-aware
system power management strategy. Differently from other smart camera de-
signs, the power management strategy, which controls the components operat-
ing modes, depends on the motion detected on the camera field of view. Such
an event-driven computational model is enabled by means of the event-based
image sensor and the specification of the camera interface, which handles the
sensor operation but also drives the power control strategy. If compared with
other proposed camera-based system, the proposed implementation achieves
more than a 10x lower average power consumption.

• Chapter 5 described the implementation of a Binarized Neural Network for
classification purposes on the Event-Based mixed-signal visual system. The
implementation exploits both the analog processing and the computational
power of the digital parallel engine. The BNN model, which reduces the bit-
precision of a convolutional neural network to a single bit to favor the deploy-
ment on a resource-constrained device, is implemented such as to leverage the
maximum computational capabilities offered by the parallel platform. The sys-
tem shows a processing time of 75 msec for the inference task and an energy
consumption reduced by 17.8% with respect to a baseline system featuring an
RGB image sensor. Moreover, when the BNN computation is triggered by the
event-driven object detection flow, the average power consumption can be up
to 8x lower than the one of the baseline system. In case of infrequent detec-
tions, the Ultra-Low Power Smart Visual system achieves a power cost as low
as the sleep power of 0.3mW.

Based on the presented results, the design techniques discussed within the thesis
have demonstrated improved energy characteristics with respect to state-of-the-art
solutions, showing a viable way to enable microwatt vision technologies at the edge
of the Internet of Things infrastructure but featuring a visual performance quality
not degraded with respect to more diffused computer vision models.
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6.1 Future Directions

The thesis work discussed the implementation of novel techniques for ultra-low
power visual sensing. By leveraging a mixed-signal event-based sensing and pro-
cessing architecture, the energy-efficiency of smart camera systems raises up to match
the energy requirement of battery-powered IoT devices. Thanks to this, new oppor-
tunities arise for vision-based applications, which are currently limited by power-
hungry devices. Differently from the actual state, the presented visual technology
enables the placement of autonomous devices within the environment, featuring
smart capabilities for early detection and triggering of interesting events. However,
due to the novelty of this design techniques, tools and design methodologies are still
in early stage and need more work to gain higher maturity and robustness. This is-
sue needs to be addressed in the upcoming future to make the design process more
solid.

To favor the design automation of mixed-signal visual systems, the HW com-
ponents are expected to feature a higher flexibility than current available samples.
As an example, the early-extraction of visual features through mixed signal-circuits
can include some extra knobs to realize multiple and even more complex paramet-
ric filtering on the sensor side. This will eases the mapping of visual data analytics
at the pixel level in an energy efficient way. More in general, new architectural so-
lutions can investigate an optimal partition of the visual workload between analog
and digital processing together with the programmability level of early-processing
circuits. For instance, an image sensor could also embeds more complex operating
modes and decision rules to trigger the wake up of the digital part, without loos-
ing generality. Along with it, the HW design must consider the trade off between
flexibility and power. Featuring highly-flexible devices commonly implies a lower
energy efficiency and viceversa. This should be strictly considered when designing
future enabling technologies for the IoT domain.

At the system level, novel tools should be tailored to automate the application
development into resource-constrained mixed-signal architectures, also taking into
account the energy requirements. This includes the specification of novel HW-SW
co-design flows, which consider both the analog filtering and the SW digital pro-
cessing. To fully exploit the HW capabilities, the algorithm design flow for data
analytics should be part as well of the system level design process. Currently, the
design of computer vision algorithms for constrained devices mostly relies on ap-
proximation techniques of leading strategies (e.g. the case of BNNs). In contrast,
the development of more sophisticated models should take into account the sensor
data generation process and the underlying HW architecture. For instance, in the
context of event-driven processing, a general end-to-end framework would be ex-
tremely beneficial for designing data analytic flows, depending on the mixed-signal
architecture, and, at the same time, match the requirement of the visual applications
enabled by the novel proposed design techniques.
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