
 

 

1 
 

Alma Mater Studiorum – Università di Bologna 

 
 

DOTTORATO DI RICERCA IN 
 

Scienze e tecnologie agrarie, ambientali e alimentari  

 
Ciclo XXX 

 
Settore Concorsuale: 07/I1 

 

Settore Scientifico disciplinare: AGR/16 (Microbiologia Agraria) 

 

 

Beneficial microorganisms for honey bees 

health 
 

 

Presentata da: Daniele Alberoni 

 

 

Coordinatore Dottorato             Supervisore 

Prof. Giovanni Dinelli       Prof. Diana Di Gioia 

 

         Co- Supervisori 

         Dr. Loredana Baffoni 

         Dr. Francesca Gaggìa 

 

 

Esame finale anno 2018 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

 

2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

 

3 
 

Thesis Abstract 
 

Honeybees (Apis mellifera and other species) are considered as the most economically 

important insect species for humans and the ecosystems, not only as honey producers but 

also and especially as pollinators of agricultural, horticultural crops and wild plants 

(approximately 90 different farm-grown foods, including many fruits and nuts, depend on 

honeybees), contributing at the pollination of 35% of the global food production. 

Unfortunately, honeybee decline started about 30 years ago, with the arrival from Asia of 

the bee mite Varroa destructor. Since then, honeybees have been damaged by different 

kinds of biotic and abiotic stressor factors, cumulating any kind of damages, and posing a 

serious threat to the agricultural field. Many scientists agree that bee decline is a 

multifactorial process in which a mechanism seems to be more important in a given period 

of the year than in another, and different mechanisms may predominate in another period 

or in other environments. Of those multifactorial processes, leading factors are the new 

emergent pathogens, such as Nosema ceranae a gut pathogen causing serious threat to 

bees and the consequent death of the colony; Viruses such as “deformed wing virus”, “Black 

queen cell virus”, “chronic paralysis virus” and many others that are often over transmitted 

by the mite parasite Varroa destructor. Pesticides and other environmental stress factors 

are furthering enhancing the high pathogenicity on bees, weakening more and more the 

delicate beehive superorganism balance. The major science concern about the bees usually 

regards the study of the bee pathogens and their interaction with an increasingly anthropized 

environment (e.g.: pollution and sub lethal poisonings). Only few research projects (of high 

scientific importance) have been carried out using an approach aimed to fix the problems 

linked with it. Even less are the researches investigating probiotic microorganisms as growth 

promoter, in order to obtain a better wealth and wellbeing of the bees. In the light of these 

possibilities the aim of my research is the development of -environmental friendly- microbial 

technologies aimed to increase the health of the bees. 

 

 

 

Keywords: Hymenoptera, Apoidea, Apis mellifera, gut microbiota, beneficial bacteria, 

Nosema ceranae, EFB, Lactobacillus, Bifidobacterium, Bacteriocins, antimicrobial activity, 

DGGE, next generation sequencing (NGS), climate change. 
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PhD Thesis Conceptual Flow:  
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and honey bees: 
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change to honey bee 
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anthropogenic pressure 
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making in the beekeeping 
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modifications: 
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and parasites are 

coevolving. 

Paper 3: Bifidobacterium xylocopum sp. 

nov. and Bifidobacterium aemilianum sp. 

nov., from the carpenter bee (Xylocopa 

violacea) digestive tract. 

Isolation: List of microorganisms isolated 

from Apoideae and Vespulae, and habitat. 

Paper 4: Lactobacillus spp. from Apis 

mellifera gut are a source of Helveticin like 

bacteriolysins.  

Paper 6: Impact of antibiotics and natural 

medicaments on the microbial community 

of honey bee Apis mellifera subsp. 

ligustica SPIN. 

Paper 5: Gut microbiota of the Maltese 

honey bee Apis mellifera ruttneri SHEP. 

Chapter 4: Counteracting diseases for a 
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Beneficial microorganisms against the gut 

parasite Nosema ceranae.  

Chapter 3: Honey bee gut microbiota 

exploited with NGS studies: 
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anthropogenic pressure are affecting the gut 

microbial community population? 
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Microorganisms for 

honey bees, problems 

and progresses: 

State of the art in the 

research field, and 

possible implementation 

for biotic and abiotic honey 

bee stressors mitigation  

Paper 7: Effect of dietary supplementation 

of Bifidobacterium and Lactobacillus 

strains in Apis mellifera L. against Nosema 

ceranae. 

Paper 8: Impact of beneficial bacteria 

supplementation on the gut microbiota, 

colony growth and productivity of Apis 

mellifera L. 

Chapter 5: Conclusions 

Future perspectives for beneficial 

microorganism-based strategy 

implementation. 

Chapter 2: Isolation of gut microorganisms 

from Hymenopetra: 

Identification of bacterial species inhabiting 

the gut microbiota, and their potential 

antimicrobial activity 
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Antimicrobial Activity: Screening of 

antimicrobial activity of isolated strains. 
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Environment and Honey bees: An Insights on the Emilia-Romagna region  
 

Climate change, a look to a case study: the year 2017. 

Extreme and unusual hot temperatures and draught were the ingredients of the past summer 

2017. An endless summer that represents a further step towards the overall climate warming 

of the Emilia-Romagna region, i.e. the Italian region where University of Bologna is located. 

A problem joined by most of regions facing the Mediterranean Sea. Having a look at the 

registered records of temperatures, Summer 2017 is the 3rd hottest summer since 1961, 

preceded only by Summer 2003 and 2012. Taking into account then average temperature 

from the year 1961 to the year 1991, temperatures have been of +4.5°C degrees above 

average in year 2003, +3.4°C in year 2012, whereas in 2017 temperatures were “only” +3°C 

above average (See Bar Chart 1 and Figure 1). Summer 2017 had the prerogative to 

celebrate its own first place in terms of absolute temperature: +42.2°C represents the 

highest temperature registered in the region in the last 150 years. This peak was registered 

the first week of August 2017, and, with the humidity typical of the region (continental 

climate), the perception by the human population (and consequently by animal and plants) 

was + 54°C. 

 
Bar Chart 1: Average temperature anomaly in the Emilia Romagna region in comparison with the average 

climate temperature calculated from 1961 to 1990. Source ARPA Emilia-Romagna. 

Extreme temperatures were not the only deleterious factor. Rainfalls were missing as well, 

recording a -80% in the period January-October 2017. Moreover, scarce rainfalls and snow 

accumulation on the Apennine during Autumn 2016 didn’t help as well. In 2017, the 

agricultural sector was brought to its knees already in the spring. The Emilia Romagna 

regional government was forced to officially claim the natural calamity status at the 
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beginning of the summer (16 June 2017). Following the claim, the Italian government 

authorized emergency measures to counteract agricultural production losses on June 22, 

2017. Emilia Romagna (E.R.) region was so authorized to increase beyond the traditional 

limit the water collection amount in the Po river, a measure that, however, was able to satisfy 

only few areas of the region.  

a) 

 
b)  

 

Figure 1: a) Maximum temperature anomaly in the Emilia Romagna region from 31 July to 6 August 2017. b) 

Maximum temperature anomaly in the Emilia Romagna region on the 4th of August. Source ARPA Emilia-

Romagna. 
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The most significant climatic output of the year 2017 is that high temperatures combined 

with low rainfalls (Figure 2) determined the worst water deficit (ground water, rivers, basins) 

of the regional history. This fact determined the first recorded extensive forest death of the 

modern history. Defoliation, desiccation from the roots of extensive forest areas, especially 

in the low-medium altitude hills. Forest fruits losses (chestnuts, small fruits, etc…) were 

impressive, with premature total drop in certain areas. This fact together with an extensive 

wild animals’ death was detected all over the region with different gravity degrees. 

 
Figure 2: The missing rain; Rainfalls deficit from 1 January to 3 December 2017 expressed in millimetres 

(mm). Source ARPA Emilia-Romagna. 

 

Unfortunately, 2017 is neither the sole case of emergency in the region, nor the sole region 

of the Mediterranean basin suffering. In the last decades, climatic instability has primed a 

fast reshaping of the ecosystem and landscape of the region. Entire plant genus like 

Carpinus betulus have been eradicated from the majority of their natural habitat (Po river 

valley). Other genus like Quercus robur and Quercus pubescence, well known for their 

resistance to extreme climatic condition, were highly stressed (figure 3a; 3b, 3c and 3d). 

Draught enhances fungal diseases proliferation on Castanea sativa (Waldboth and 

Oberhuber 2009) contributing to the reduction of the chestnut Apennine vegetation belt. 

Herbaceous vegetation also suffers from this unnatural condition and, for instance, meadow 

of Taraxacum officinale are rarer and rarer to see in spring.  
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Figure 3: a) Quercus robur and Q. pubescences mixed forest under drought stress in the high Apennine 

(Castel D’Aiano, Bologna district, about 800m a.s.l. – 17 August 2017). b) Q. pubescences dried out. c) 

Contrast of irrigated garden with the background forest in draught stress (Castello di Serravalle, Bologna 

district, about 149m a.s.l. – 8 August 2017). D) young plants in a 10years old reforestation project, dead. 

This is the contest in which I wish to introduce the decline of honeybees (Apis mellifera 

subsp. ligustica) in the Emilia-Romagna region. 

 

Honeybees suffering climate change 

In Italy there are countless honeybees’ ecotypes that are closely associated with their 

environment. They all belong to Apis mellifera subsp. ligustica that coevolved with the 

environment in close niches protected by natural barriers. These barriers prevented for 

thousands of years any cross contact with other neighbour ecotypes, making a unique and 

diversified genetic patrimony. This genetic diversity is endangered by a fast climate change. 

In fact, climate change seems to be faster than evolution in remodulating bee ecotypes 

behaviour and genetic potential to allow survival, making bees weaker and totally dependent 

on mankind support.  

In the 80s, the worldwide spread of Varroa destructor declared a stated dependency of 

honeybees to beekeepers; in other words, bees cannot survive without the help of 

beekeepers. It's been more than 30 years ago, and since then beekeepers (but not bees) 

have learnt to live with Varroa very well. It is not paradoxical to compare climate change 

seriousness to a new Varroa destructor –like advent. Honeybees require once again human 

protection, because of their importance not only in agricultural production as pollinators but 

also for the economical sector. Beekeepers are going to spend again efforts to save them 

as they did once with Varroa.  

Climate change estimations predict, in few decades starting from now, an increased 

desertification and retreating icecaps or snowmelt. Processes that will somehow change 
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rainfall patterns leading to a greater frequency of extreme climate events will be generated 

(Le Conte and Navajas 2008). 

The floral distribution is already changing, often reducing colony harvesting capacity due 

to scarce production or out of time blooming. Honeybees have lost their rhythm and cannot 

adapt to changing conditions so easily. For instance near Bologna, Robinia pseudoacacia, 

that constitutes the main honey harvest of the region, has bloomed in 1st of May in 2015 and 

on the 6th of April in 2017. Tree weeks of difference is a big-time shift for the honeybees’ 

biological clock that may lead to the missed harvest of natural resources. In the Emilia-

Romagna region, considering the two main food components, i.e. nectar and pollen, it is a 

fact that a scarcity of pollen and impoverishment of its nutritional quality have been observed 

since the beginning of summer. Nectar flow is more and more replaced by honeydew. The 

positive influence of a diet rich in pollen for bees is well known: It stimulates a higher brood 

deposition, but it can also help fighting diseases, for instance significantly prolonging the 

lifespan of bees infected with pathogens such as Nosema ceranae (Di Pasquale et al., 

2013).  

 

How will the pathogen/bee interaction evolve? 

Studies related to colony collapse disorder (CCD) in the U.S.A. or colony death in Europe 

have shown that honeybee colonies are infested by numerous pathogens. Moreover, there 

is feeling that symptomatology does not frequently reflect the effective causative agent of 

disease. In fact, it has been shown that biotic and abiotic stressor synergy can modify 

symptomatology to the extent of sudden colony collapse as happened with CCD in the 

U.S.A. 

Although with a lower extent, also Italy had to face a change of symptomatology for 

certain diseases. The case of European Foulbrood (EFB), that is going to be fully described 

in paper 1 (page 7), is a very explicative and clamorous example. Italian beekeepers had to 

face for years a symptomatology hybrid of both EFB and American Foulbrood (AFB), that 

has treaked both the veterinary institutions and beekeepers. The major question was 

“Should I set this beehive on fire or not?”. Then beekeepers realized that this peculiar 

foulbrood was disappearing with a simple queen bee supersedurre. Consequently, it could 

not be the “true” AFB, known to be incurable. Italian beekeepers developed a new name for 

the disease that can be translated in “Fake - AFB”. A deep investigation on honeybee 

infected larvae brought to the discovery that the symptomatology change was caused by a 

substitution of the secondary invader of the main EFB disease agent Melisococcu plutonius. 

Paenibacillus alvei was substituted by Paenibacillus dendritiformis, a less virulent secondary 

invader that brought to death the larvae a couple of days later than normal. The secondary 

invader allows the complete or partial capping of the diseased brood cells leading to a 

symptomatology closer to AFB than EFB. This is the first example of symptomatology 

change. The reason is still unknown, but it might be therefore hypothesized that climate 

change enhanced also a microbial niche evolution. 

A second case is the disappearing of Nosema apis. In the last 10 years, no beekeepers 

had fortunately the chance to face this disease, causing strong dysenteries to honeybees. 

It seems that Nosema ceranae has completely replaced Nosema apis, for unknown reasons, 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

 

7 
 

but most probably to be linked once again with climate change. The synergy of climate 

change and N. ceranae has been well experienced by Italian beekeepers in the last years. 

N. ceranae seem to be easily controllable when strong pollen importation into the beehive 

is possible. On the contrary, pollen deficit has often lead to rapid (3 weeks) honeybee colony 

death. This rapid death has often been confused by beekeepers as a failure in the V. 

destructor control. Differently, N. ceranae is a silent killer, easily taking advantage, in 

summer, of environmental disorders. 

 

Economic Factors 

From the data picked by the “Italian Honey Production Observatory” overall national 

territory, from January until August 2017 the recorder production of honey is of -80% if 

compared with the average of past years. The harvest of the main honey kinds (Orange, 

Acacia, Eucalyptus, Linden) has been disastrous due to excessive draught as main reason 

followed by out of range temperatures. Beekeepers in the most of Italy were forced to 

nourish honeybees to winter hives in acceptable conditions (report from Italian National 

Honey Production Observatory, September 2017). 

 

Mitigation measure is the answer of this thesis to honeybee stressors  

Several approaches are feasible to mitigate stressors deriving from climate change. In 

this thesis we propose a microbial mediated control method. Following laboratory and In 

field test, it was clear how mixtures of beneficial bacteria can: 

1. Fight N. ceranae, when administered in an early disease proliferation stage 

2. Stimulate honeybees’ population development, allowing a better harvest of honey 

and especially pollen as storage for extreme events. 
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Abstract 

Culture-dependent and culture-independent techniques were applied to investigate the 

bacterial communities occurring in 5-6 days-old honey bee larvae (Apis mellifera L.), with 

evident symptoms of disease and healthy-looking ones. Samples were collected by the Bee 

Emergency Service Team (BeeNet Project) from two apiaries located in different 

geographical sites (North and South Italy). Observed symptoms were atypical, but very close 

to those attributed to the European Foulbrood (EFB) and to the American Foulbrood (AFB), 

which are severe diseases affecting honey bee larvae worldwide. Isolates from diseased 

larvae were identified as Enterococcus faecalis Schleifer et Kilpper-Balz and Paenibacillus 

dendritiformis Tcherniakov. Melissococcus plutonius Bailey et Collins, the causative agent 

of EFB, was detected by polymerase chain reaction in both diseased and healthy-looking 

larval samples, whereas Paenibacillus larvae White, the causative agent of the AFB, failed 

to be detected. Microbial profiles obtained by denaturing gradient gel electrophoresis did not 

show relevant differences among samples, thus evidencing that the healthy-looking samples 

were partially affected. Besides confirming the presence of E. faecalis and P. dendritiformis, 

as found by plate count, the technique confirmed the presence of M. plutonius in all samples. 

The study has evidenced that honey bee larvae were affected by the EFB, with the presence 

of an atypical Paenibacillus species as second invader, which presumably confers a different 

symptomatology to the diseased brood.  

 

Keywords: European foulbrood, American Foulbrood, honey bee larvae, atypical symptoms, 

Paenibacillus dentritiformis, denaturing gradient gel electrophoresis (DGGE)  

 

Introduction 

Honey bees (Apis mellifera L.) are one of the insect species more relevant for humans as 

pollinator for the production of many fruits, vegetables and stimulant crops (Abrol, 2011). In 

recent years, larvae and adult honey bees are subjected to different kind of biotic and abiotic 

stresses, leading to a severe colony loss and decrease in hive products with large economic 

damages. The parasites and pathogens, affecting larvae and bee health, include mites 

(Varroa destructor Anderson et Truemann), microsporidia (Nosema spp.), fungi 

(Ascosphaera apis (Maassen ex Claussen) Olive et Spiltoir), bacteria (Paenibacillus larvae 

White, Melissococcus plutonius Bailey et Collins) and viruses (Genersch, 2010). 

The most known diseases affecting the bee larval stage are the European Foulbrood (EFB) 

and the American Foulbrood (AFB). EFB is a severe bacterial brood disease, caused by the 

Gram-positive bacterium Melissococcus plutonius. The disease is widely distributed, leading 

to brood losses and the consequent colony collapse (Bailey and Ball, 1991). The ingestion 

of contaminated food induces the proliferation of the pathogen in the larval midgut and its 

consumption of the larval food. Larvae are susceptible at any stage before cell capping and 

usually death occurs during the 4th-5th day of life. Infected larvae die from starvation (Bailey, 

1983), twisted around the cell wall or stretched out, and are then decomposed by secondary 

invaders like Paenibacillus alvei Cheshire et Cheyne and Enterococcus faecalis Schleifer et 

Kilpper-Balz, two saprophytic bacteria frequently associated with EFB (Forsgren, 2010). 

Diseased larvae are easily identifiable, since larvae move in the brood cell leaving off the 
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normal coiled position. Moreover, their colour changes from pearly white to yellow, then 

brown and finally, when they decompose, greyish black (Bailey, 1960). Affected brood may 

have a very stale or sour odour, sometimes acidic, like vinegar, but often there is no smell 

(OIE, 2008). 

The causative agent of AFB is the Gram positive, spore-forming bacterium Paenibacillus 

larvae (Genersch et al., 2006), which contaminates the first instar larvae leading them to 

death after cell capping. P. larvae passes from the midgut throughout the epithelium and 

invades the hemocoel (Davidson, 1973; Bailey and Ball, 1991). It is reported that during the 

vegetative growth and infection it secretes highly active extracellular proteases (Hrabak and 

Martinek, 2007), which probably cause the degradation of the epithelial barrier, thereby 

allowing the hemocoel invasion. In a second stage the larvae become a brownish, semi-

fluid, glue-like colloid (ropy stage) releasing a putrid smell. The ropy aspect (dead larvae 

adhere and form a thread span when touched with a wooden stick) confirmed the presence 

of AFB. Finally, the larval remains dry out to a hard scale (foulbrood scale), which tightly 

adheres to the lower cell wall. The scales contain millions of spores, which could distribute 

the infection for many years within and between colonies (Bailey and Ball, 1991). 

The current work was performed in spring 2012, following the warning of beekeepers from 

all Italy, denunciating, to the Bee Emergency Service Team (BeeNet Project), misleading 

symptoms very close to both EFB and AFB, affecting honey bee larvae. Suspected diseased 

brood looked like a mosaic with open cells (typical symptoms of EFB) and pierced cells 

(tipycal symptoms of AFB). It was possible to observe simultaneously in the same frame, 

dead larvae before and after the cell capping. Compared with the classic EFB symptoms, 

the larvae often died 2-3 days later, closer to AFB death timing). Uncapped diseased larvae 

quickly lost their shape and then liquefied in the bottom of the cells. Larvae had white-ivory 

colour without any characteristic smell. Partially capped cells showed diseased larvae (6th-

7th day) softly adhering to the lower cell wall; if touched with a wooden stick the larvae 

explode realising a non-colloid, not smelling, white-brown liquid. Dried scales (similar to 

those observed in the AFB) were easily removable. To understand deeply the observed 

symptomatology, available material of diseased and healthy-looking larvae was sampled 

from two apiaries, one in North Italy and one in South Italy. Culture dependent (plate-count, 

16S rDNA sequencing) and independent techniques (denaturing gradient gel 

electrophoresis, PCR-DGGE) were applied to allow the most accurate microbiological 

investigation. 

 

Materials and Methods 

Larvae sampling 

5-10 honey bee larvae (5th-6th day of life) were collected from an infected hive in two apiaries 

located one at North and one at South Italy. Based on their aspect and position, the larval 

material was pooled, and samples were classified as follows: NHHL (healthy-looking honey 

bee larvae from North Italy) NDHL (diseased honey bee larvae from North Italy), SHHL 

(healthy-looking honey bee larvae from South Italy), SDHL (diseased honey bee larvae from 

South Italy).  
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Bacteria isolation and enumeration from diseased honey bee larvae  

1 gram of pooled diseased honey bee larvae, previously washed in sterile water and 

homogenised with a plastic pestle, was dissolved in 9 ml of phosphate-buffered saline (PBS) 

and tenfold serial dilution prepared. For the presumable detection of M. plutonius, the 

resulting suspension was streaked out onto SYPG agar (Bailey and Ball, 1991) and 

anaerobically incubated at 35±1 °C for 3-5 days. Isolation and enumeration of P. larvae was 

attempted on MYPGP agar (Dingman and Stahly, 1983) after a pasteurization treatment on 

NDHL and SDHL samples (NDHL-P and SDHL-P) at 80 °C for 10 min (aerobic incubation 

at 35±1 °C, 24h). Experiments were performed in triplicate and results were expressed as 

mean log10 of colony-forming units (cfu) per gram of triplicates ± standard deviation (sd). 

Between 20 and 40 colonies from each sample and from both media (SYPG and MYPGP 

agar), randomly selected, were re-streaked and purified. For long-term storage, purified 

isolates were stored at -80 °C.  

 

DNA extraction 

DNA was extracted from isolated bacterial colonies, from M. plutonius ATCC 35311, P. 

larvae ATCC 9545 and from P. alvei ATCC 6344 using the InstaGene Matrix DNA extraction 

kit following the manufacturer’s instructions (Bio-Rad, Hercules, CA, USA). Total genomic 

DNA from pooled samples of diseased and healthy-looking larvae was extracted in duplicate 

with the QIAamp DNA stool kit (Qiagen, West Sussex, UK). Following extraction, the purity 

and concentration of DNA were determined by measuring the ratio of the absorbance at 260 

and 280 nm (Infinite® 200 PRO NanoQuant, Tecan, Manne-dorf, Switzerland). The DNA 

was stored at -20 °C. 

 

BOX-PCR analysis  

Bacterial isolates were fingerprinted by BOX-PCR. The reaction was carried out in a 30 μl 

volume containing 1 U Taq DNA polymerase (AmpliTaq Gold, Applied Biosystems, Foster 

City, CA, USA), 3 μl 10X PCR Gold Buffer (Applied Biosystems), 200 nM of each dNTPs 

(Fermentas International Inc., Thermo Fisher Scientific Inc., Waltham, MA, USA), 2 mM 

MgCl2 (Applied Biosystems), 0.4 μM of primer BOXA1R (5’-

CTACGGCAAGGCGACGCTGACG-3’) (Eurofins Genomics, Ebersberg, Germany), 0.1% 

(wt/vol) Bovine Serum Albumin (BSA, Fermentas), 2 μl of DNA template, and sterile MilliQ 

water. The PCR reaction was performed on a TGradient Biometra thermocycler (Biotron, 

Göttingen, Germany) under the following thermocycling program: 7 min of initial 

denaturation at 95 °C, 30 cycles of 94 °C for 1 min, 53 °C for 1 min, 72 °C for 3 min followed 

by a final elongation step of 72 °C for 10 min. After electrophoresis (2% w/v agarose gel at 

75 V for four hours), gels were stained with ethidium bromide and visualized with the gel 

documentation system Gel DocTM X+R (Bio-Rad). A dendrogram was constructed using the 

Dice similarity coefficient and the UPGMA (unweighted pair group method with arithmetic 

mean) algorithm with GelCompar II software, version 6.6 (Applied Maths, Sint-Martens-

Latem, Belgium). 
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16S rDNA amplification 

Representative isolates (SDHL-5 and NDHL-P1) were selected after BOX-PCR analysis and 

the 16S rDNA amplification was performed with universal primers 27f and 1492r, according 

to Gaggìa et al. (2013). The 50 µl reaction mixture contained 1X PCR Gold Buffer (Applied 

Biosystems), 200 nM of each dNTPs (Fermentas) 0.2 µM of each primer (Eurofins 

Genomics), 1.5 mM MgCl2 (Fermentas), 1 U Taq polymerase (AmpliTaq Gold, Applied 

Biosystems), 4 µl of DNA template (20-50 ng/µl) and sterile MilliQ water. The PCR reaction 

was performed on a TGradient Biometra thermocycler (Biotron, Göttingen, Germany) under 

the following thermocycling program: 7 min of initial denaturation at 95 °C, 30 cycles of 94 

°C for 1 min, 55 °C for 1 min, and 72 °C for 1 min and a final extension step at 72 °C for 7 

min. After electrophoresis (1.5% w/v agarose gel at 75 V), gels were stained with ethidium 

bromide and visualized with the gel documentation system Gel DocTM XR (Bio-Rad).  

 

Detection of Melissococcus plutonius and Paenibacillus larvae by species-specific 

PCR 

A PCR method was used to selectively amplify the 16S rDNA of M. plutonius from a pure 

culture (ATCC 35311) and from DNA samples (NDHL, SDHL, NHHL, SHHL), according to 

Govan and Brözel (1998). Detection of P. larvae from the same samples was performed 

according to Bakonyi et al. (2003) with a modified annealing temperature, which was set at 

55 °C. P. larvae ATCC 9545 was used as positive control. The molecular weights of the 

PCR products were determined by electrophoresis in a 1.5 % agarose, stained with ethidium 

bromide and visualized with the gel documentation system Gel DocTM XR (Bio-Rad).  

 

PCR-DGGE analysis 

The V2-V3 region of the 16S rRNA gene (rDNA) of the four samples in duplicate (NDHL, 

SDHL, NHHL, SHHL,) was amplified by PCR with the universal primer set HDA1-GC (5′-

CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG GGG GAC TCC TAC 

GGG AGG CAG CAG T-3′) and HDA2 (5′-GTA TTA CCG CGG CTG CTG GCA-3′) (Walter 

et al., 2000). An identification ladder was also prepared with the DNA of the strains M. 

plutonius ATCC 35311, Enterococcus faecalis SDHL-5, and Paenibacillus dentritiformis 

NDHL-P1. The reaction was carried out in a 50 µl volume containing 1.5 U AmpliTaq Gold 

DNA polymerase (Applied Biosystems), 5 µl of 10X PCR Gold Buffer (Applied Biosystem), 

200 µM of each deoxynucleotide triphosphate (Fermentas), 1.50 mM MgCl2 (Fermentas), 

0.45 µM of each primer (Eurofins Operon), 2.5% (w/v) bovine serum albumin (BSA; 

Fermentas), 4 µl DNA template, and sterile MilliQ water for adjustment of the volume to 50 

µl. The PCR reaction was performed on a TGradient Biometra thermocycler (Biotron, 

Göttingen, Germany) under the following thermocycling program: 7 min initial denaturation 

at 95 °C; 35 cycles of 95 °C for 30 s, 54 °C for 60 s, 72 °C for 40 s; followed by a final 

elongation step of 72 °C for 7 min. The size and amount of the PCR products were estimated 

by analysing 5 µl of samples by agarose gel (1.5% w/v) electrophoresis and ethidium 

bromide staining. 

The DGGE analysis was performed as first described by Muyzer et al. (1993), using a 

DCode System apparatus (Bio-Rad). Polyacrylamide gels [8% (w/v) acrylamide: 
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bisacrylamide (37.5 : 1) (Bio-Rad)] in 1X Tris-Acetate-EDTA (TAE) buffer were prepared 

using a Bio-Rad Gradient Delivery System (Model 475, Bio-Rad), using solutions containing 

40–60% denaturant [100% denaturant corresponds to 7 M urea (Sigma-Aldrich, Milan, Italy) 

and 40% (v/v) formamide (Sigma-Aldrich)]. The electrophoresis was run at 55 V for 16 h at 

60 °C. Gels were stained in a solution of 1X SYBR-Green (Sigma-Aldrich) in 1X TAE for 20 

min and their images captured in UV transillumination with Gel Doc™ XR apparatus (Bio-

Rad). Cluster analysis was performed with the software GelCompar II version 6.6 (Applied 

Maths), by the UPGMA algorithm based on the Pearson correlation coefficient with an 

optimization coefficient of 1%. 

Selected bands, particularly those migrated at the same distance of the reference species, 

were cut from the gel with a sterile scalpel and DNA was eluted by incubating overnight the 

gel fragments in 50 µl of sterile deionised water at 4 °C. 2 µl of the solution were then used 

as template to re-amplify the band fragments with the same PCR condition describe above. 

After amplification and repeated DGGE, purity and co-mobility with amplified DNA obtained 

directly from larvae samples were assured. Bands were excised again and after overnight 

elution in sterile deionized water, an amplification without GC-clamp was performed. 

 

Sequence analysis of 16S rDNA of bacterial isolates and DGGE bands 

The amplified 16S rDNA from the isolated strains and the obtained amplicons from DGGE 

bands were then purified (PCR clean-up; Macherey-Nagel GmbH & Co. KG, Germany) and 

sequenced (Eurofins Operon) with primers 27f and 1492r and HDA-2 respectively. 

Sequence chromatograms were edited and analysed by using Finch TV software version 

1.4.0 (Geospiza Inc., Seattle, WA, USA) and percentage of similarity was determined 

searching against the NCBI GenBank database using megablast algorithm 

(http://www.ncbi.nlm.nih.gov/BLAST/). 

 

Results 

Plate count, BOX-PCR and sequence analysis of 16S rDNA 

The results of viable counts obtained in SYPG and MYPGP agar from diseased larvae 

samples are reported below, indicating the average of triplicate expressed as log10 (cfu/g of 

sample) ± standard deviation. High colony counts were obtained from SYPG agar in SDHL 

(8.75±0.05), whereas less colonies were obtained in plates referred to NDHL samples 

(3.37±0.04). Enumeration of sporogenic bacteria (NDHL-P and SDHL-P samples) was 

comparable in both geographical areas (4.57±0.08 vs 5.71±0.02). The cluster analysis of 

BOX-PCR of all isolates (NDHL, NDHL-P, SDHL and SDHL-P) evidenced two clusters 

(similarity of 30%). All of the isolates on SYPG agar, belonging to NDHL and SDHL samples, 

displayed a unique fingerprinting (100% similarity), as well as isolates from MYPGP agar 

NDHL-P and SDHL-P, whose profiles were 100% similar. The strains SDHL-5 and NDHL-

P1 (one from each cluster) were identified by sequence analysis of the 16S rRNA gene, 

based on the closest match on GenBank database. SDHL-5 sequence was ascribed to 

Enterococcus faecalis (100% similarity; Accession number KR073926) while the strain 

NHDL-P1 was identified as Paenibacillus dendritiformis Tcherniakov (100 % similarity; 

Accession number KR073927). 
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Melissococcus plutonius and Paenibacillus larvae detection by species-specific PCR 

Results of the amplification reaction for the detection of M. plutonius are shown inFigure 1a. 

All the analysed samples (in duplicate), including the positive control M. plutonius ATCC 

35311, produced a band of 812 bp. On the other hand, the amplified product was absent in 

the negative control (E. faecalis SDHL-5). With regard to P. larvae, all samples were 

negative except for the positive control P. larvae ATCC 9545 (Figure 1b). 

 

 
 
Figure 1. Species-specific PCR for the detection of M. plutonius (a) and P. larvae (b) from one replicate of 

DNA samples. M: 100 bp DNA Ladder: NHHL: healthy-looking honey bee larvae from North Italy; NDHL: 

diseased honey bee larvae from North Italy; SHHL: healthy-looking honey bee larvae from South Italy; SDHL: 

diseased honey bee larvae from South Italy; ATCC 35311: M. plutonius; SDHL-5: E. faecalis; NDHL-5: P. 

dendritiformis; ATCC 6344: P. alvei; ATCC 9545: P. larvae 

 

PCR-DGGE and band sequencing 

The PCR-DGGE analysis on diseased and healthy larval duplicate samples showed profiles 

with a few bands. UPGMA dendrogram and bacterial communities fingerprinting are shown 

in Figure 3a and 3b, respectively. Overall, the analysis revealed high similarity of the DGGE 

patterns obtained from each of the two replicates. The cluster analysis showed a distinct 

division between samples of South Italy and North Italy. The diseased samples in both 

geographical area clustered separately from healthy samples (similarity less than 60% and 

85% respectively). 

Sequencing results of excised bands (Figure 3b) are shown in Table 1. Bands 1, 3, 4 and 5 

belonged to different species of Lactobacillus, detectable in all samples, mainly in SHHL 

and SDHL. Interestingly, bands 6, 8 and 10 showed a migration distance comparable to the 

reference strains in the ladder profile (E. faecalis SDHL-5, M. plutonius ATCC 35311 and P. 

dendritiformis NDHL-P1). Band 6, common to all profiles, was identified as M. plutonius. 

Band 8, excised from sample SDHL was identified as E. faecalis. Bands migrating at the 

same level, although showing a decreased intensity, were also detected in SHHL. Finally, 
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band 10 excised from SDHL, was identified as Paenibacillus spp.. A weak band migrating 

at the same distance is also present in NDHL. Band 7 (NDHL) was identified as Gilliamella 

apicola Kwong et Moran. 

 
Table 1 Eubacteria sequence alignment with the megablast algorithm in the GenBank database 

Band Closest match 
% 

similarity* 

GenBank accession 

number 

1 Lactobacillus helsingborgensis 99 KR073912 

2 Nd - - 

3 Lactobacillus kunkeei 99 KR073913 

4 Lactobacillus kimbladii 98 KR073914 

5 Lactobacillus kunkeei 100 KR073919 

6 Melissococcus plutonius 100 KR073920 

7 Gilliamella apicola 97 KR073925 

8 Enterococcus faecalis 100 KR073918 

9 Nd - - 

10 Paenibacillus spp. 100 KR073924 

 

* similarity represents the % similarity shared with the sequences in the GenBank database. 

nd: not determined (scarce quality of the obtained sequencing) 

 

  
Figure 2 UPGMA dendrogram (a) and DGGE profiles of eubacteria (b) from the amplified V2-V3 region of 16S 

rRNA obtained from one replicate of DNA samples. The bands indicated by the numbers were excised, re-

amplified and subjected to sequencing. L: ladder with reference strains; NDHL: diseased honey bee larvae 

from North Italy; NHHL: healthy-looking honey bee larvae from North Italy; SDHL: diseased honey bee larvae 

from South Italy; SHHL: healthy-looking honey bee larvae from South Italy 
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Discussion 

The microbial investigation by plate count on diseased honey bee larvae, exhibiting atypical 

clinical symptoms closely related to both EFB and AFB, allowed the massive isolation of two 

microorganisms further identified as E. faecalis and P. dendritiformis respectively. Plates did 

not evidence neither M. plutonius, nor P. larvae. E. faecalis is one of the typical second 

invaders often described in the EFB (Forsgren, 2010). It does not multiply in bee larvae in 

the absence of M. plutonius, and its presence is a presumptive evidence of EFB (OIE, 2008). 

E. faecalis is morphologically similar to M. plutonius and it has frequently been confused as 

being the causative agent of EFB (Bailey and Gibbs, 1962; Hornitzky and Wilson, 1989). 

Interestingly, pasteurized samples allowed the isolation of P. dendritiformis and the 

unsuccessful recovery of P. larvae on MYPGP plates. P. dendritiformis is a soil-borne 

bacterium, which can be found in various plant-related niches (Campos-Herrera et al., 

2011); nowadays, no data on its presence in honey bee larvae are available. Its genome 

encodes various genes for the production of offensive compounds (toxins, lytic enzymes, 

antibiotics) to regulate its population size and compete with other bacteria (Sirota-Madi et 

al., 2012). It could be hypothesized that, in low nutrient availability as in larval remains, this 

antimicrobial arsenal could provide a competitive advantage, replacing neighbouring 

species as the EFB second invader P. alvei, conferring atypical symptoms to the disease. 

Indeed, P. alvei usually confers a characteristic stale or sour odour to the EFB (OIE, 2008), 

which was not perceived in the current study. Moreover, Australian researchers suggested 

that in vitro reared larvae only developed EFB symptoms when both M. plutonius and P. 

alvei were present (Hornitzky and Giersch, 2008). 

These findings let us suppose that analysed honey bee larvae in both geographical areas 

exhibited an advanced disease status, presumably ascribed to the EFB. The confirmation 

came out from molecular techniques (both qualitative PCR and PCR-DGGE), which 

evidenced the presence of M. plutonius in all samples, including larvae without symptoms.  

Obtained molecular data are in contrast with plate counts. However, it is always reported 

that M. plutonius is a fastidious microorganism and culture methods could be very 

insensitive, detecting less than 0.2% of microscopically counted cells (Djordjevic et al., 1998 

and Hornitzky and Smith, 1998). Moreover, E. faecalis, if present in high quantity as resulted 

in this study, could overgrow SYPG plates, thus avoiding M. plutonius detection (Bailey and 

Ball, 1991; OIE, 2008). Detection of M. plutonius in healthy colonies has been already 

reported (Pinnock and Featherstone, 1984, Mckee et al., 2003 and Forsgren et al., 2005). It 

could be supposed that healthy-looking larvae (not affected in the aspect and in the 

morphological position) were in an early stage of infection and their microbiota was 

changing; the DGGE profile revealed, indeed, a high similarity to the diseased samples. 

However, in some cases, infected larvae without apparent symptoms, could survive and 

successfully pupate and emerge as adults, thus withstanding the infection (OIE, 2008). 

Contrarily to M. plutonius, P. larvae was not detected, neither by species-specific PCR nor 

by DGGE, thus excluding any implication of the AFB.  

Overall, the combination of traditional and molecular techniques was successful in 

evidencing the disease origin. Besides confirming plate count results and species-specific 

PCR, PCR-DGGE analysis and band sequencing provided a more complete picture of the 
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bacterial communities shift on the analysed samples. Interestingly, DGGE bands ascribed 

to Lactobacillus spp. were detected in all samples; as reported by Vojvodic et al. (2013), 

Lactobacillus spp. is the most representative genus of honey bee larvae gut microbiota.  

The absence of the band ascribed to E. faecalis in NDHL profile probably reflects the low 

colony detection observed by plate count. It should be emphasized that DGGE shares with 

the other PCR-based molecular biology techniques some limitations in terms of detection 

limits and of quantitative comparison of detected populations (Marzorati et al., 2008). 

Sequencing of band 10, identified as Paenibacillus spp. in DNHL and SDHL, was not able 

to discriminate at species level, since the 100% similarity was referred to P. dendritiformis 

but also to Paenibacillus popiliae Dutky and Paenibacillus thiaminolyticus Nakamura. 

However, considering that from plate count the only strain isolated and identified by 16S 

rDNA sequencing was P. dentritiformis, band 10 presumably refers to this bacterial species. 

A further confirmation derives from the presence in the ladder of the isolated strain P. 

dendritiformis NDHL-P1, whose migration distance is comparable to the excised band.  

 

The current work represents a preliminary investigation on the microbiology of the honey 

bee larvae and put in evidence the importance to combine culture dependent and 

independent techniques. With the above-described approach, a different bacterial species 

has been detected in honey bee larvae affected by the EFB. Further research is envisaged 

(e.g. infection trial in healthy larvae) to better understand the role of P. dentritiformis in the 

development of the disease.  

 

Acknowledgment 

This work was partially founded the Italian Agricultural Food and Forestry Policies Ministry, 

within the project "BeeNet: apiculture and environment in network". 

 

  

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

 

18 
 

PAPER 2 

 

Beneficial Microorganisms for Honey bees, problems and progresses 

 

 

Daniele Alberoni1, Loredana Baffoni1, Francesca Gaggìa1, Diana Di Gioia1,  
 

1Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, 

Italy 

 

 

 

 

 

 

“with kind permission of Springer Science + Business Media” 

 

 

This paper has been published in: 

Applied Microbiology and Biotechnology  
 

 

 

 

 

 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

19  
 

Abstract 

Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may 

compromise to some extent the pollination service and the hive productivity. The EU ban of 

antibiotics as therapeutic agents against bee pathogens has stimulated the search for 

natural alternatives. The increasing knowledge on the composition and functions of the bee 

gut microbiota and the link between a balanced gut microbiota and health status have 

encouraged the research on the use of gut microorganisms to improve bee health. 

Somehow, we are assisting to the transfer of the “probiotic concept” into the bee science. In 

this review, we examine the role of the honey bee gut microbiota in bee health and critically 

describe the available applications of beneficial microorganisms as pest-control agents and 

health support. Most of the strains, mainly belonging to the genera Lactobacillus, 

Bifidobacterium and Bacillus, are isolated from honey bee crop or gut but some applications 

involve environmental strains or formulation for animal and human consumption. Overall, 

the obtained results show the favorable effect of applied microbial strains on bee health and 

productivity, in particular if strains of bee origin are used. However, it is actually not yet 

possible to conclude whether this strategy will ever work. In particular, many aspects 

regarding the overall set up of the experiments, the dose, the timing and the duration of the 

treatment need to be optimized, also considering the microbiological safety of the hive 

products (i.e. pollen, honey). In addition, a deep investigation about the effect on host 

immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. 

beekeepers, should be taken into account for the achievement of high quality, cost-effective 

and easy-to-use products. 
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Introduction 

Pollination is one of the most important service provided by insects, with a strong ecological, 

economic and cultural impact. The European honey bee Apis mellifera is regarded as the 

most relevant pollinating agent, even if a significant contribution comes also from less known 

Apoidea species, such as bumble bees (Bombus spp.) and wild bees (Macropis spp., Osmia 

spp. and Xilocopa spp.). The maintenance of genetic diversity in plant population, the 

productivity of crops and orchards for human nutrition and the floral variety in the 

environment are unequivocally assured and satisfied by this “free” ecosystem service, 

whose preservation is also dependent on human actions (Gill et al. 2016). Nowadays, bees 

are stressed by a number of biotic and abiotic factors which affect honey bee health and 

productivity. In addition to pathogens, pesticides and lack of flowers, whose implications in 

insect health have been deeply studied (Goulson et al. 2015; Porrini et al. 2016), climate 

change, habitat loss and invasive species are becoming equally crucial for beehive integrity 

(Potts et al. 2010; USDA 2012; Nieto et al. 2014). The parasite Varroa destructor and the 

microsporidium Nosema ceranae moved, in the last decades, from their natural Asiatic host 

(Apis cerana) to the European one, finding fertile ground for their development (Higes et al. 

2010 and Rosenkraz et al. 2010). Moreover, the presence of V. destructor in every colony 

seems to exert an important pressure on bee health since the mite found in Apis mellifera a 

less resistant host (Le Conte et al. 2010). The use of veterinary medicines in the beekeeping 

sector has a strong limitation due to the big concern about antibiotic resistance 

acquisition/transmission, antibiotic residues in beehive products and to a lesser extent the 

risk of unbalancing the bee gut microbiota. Consequently, antibiotics were banned in EU 

countries, whereas some acaricides are still permitted (Regulation (EU) No 37/2010). 

Natural substances, such as oxalic acid and thymol, are highly efficient in controlling mite 

populations if they are correctly applied. The proper handling is important to avoid bee 

intoxication and, most importantly, to achieve efficacy. Honey bee management needs a 

deep knowledge of bee behaviour and seasonal cycles and appropriate skills to recognize 

problems and threats at a given time, in order to successfully employ the colonies for crop 

pollination or for the hive products. What is often underestimated is that a compromised 

health status, due to different stressors, can negatively affect the activities of a balanced 

and healthy gut microbiota both in humans and in animals (Gaggia et al. 2010). The honey 

bee gut microbiota displays high affinity with that of mammals (Kwong and Moran 2016); the 

huge number of bacterial symbionts, inhabiting selected niches in the gut (from honey crop 

to the rectum), are represented by host-adapted species contributing to host defence, 

nutrition and physiology (Hamdi et al. 2011). Recent advances on metagenomics have 

brought new insights in the knowledge of honey bee gut microbiota and its genes (Moran 

2015). The host-microbe interaction derives from a long co-evolution process strictly 

associated with insect labour division, developmental stage and social transmission 

(Hughes et al. 2008). It is quite surprisingly to observe that most members of this gut 

microbiota are maintained by horizontal social transmission (with the exception of the queen) 

and interaction with the hive environment (Tarpy et al. 2015), providing unique functions 

related to food storage and transformation. Moreover, the finding that the honey bee genome 

has significantly fewer immune genes than expected allowed to speculate a contribution of 

the gut endosymbiont genes in supporting honey bee immunity (Evans et al. 2006) in 
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association with the social immune response described in eusocial insects (Wilson-Rich et 

al., 2009). Recent works on Drosophila melanogaster have given a picture of the molecular 

dialog between the microbiota and the insect gut. Many authors described the role of gut 

microorganisms in supporting the immune system, influencing the epithelial homeostasis, 

promoting lifespan, larval growth in food shortage and driving the host mating preference 

(Brummel et al. 2004; Ryu et al. 2008; Buchon et al. 2009; Sharon et al. 2010; Storelli et al. 

2011). For these reasons, as in vertebrates, the prosperous gut symbionts community 

should be considered pivotal for insect life and should be preserved. Beneficial 

microorganisms have been widely exploited in humans and animals both as food/feed 

supplements and as pharmaceutical formulations, representing a valid tool to support gut 

health and alleviate several disorders (Gaggia et al. 2010; Di Gioia et al. 2014). The use of 

commensal gut microorganisms and their related secondary metabolites are more and more 

taken into account to re-establish a disbiotic insect gut community and control disease 

spread (Crotti et al. 2012; Berasategui et al. 2016). Insects are probably a simpler system 

to investigate, but such applications, in social bees, could result more difficult to monitor 

since many variables should be considered (environment, genetic diversity, high complexity 

at hive level). Researchers are focusing on honey bee microbial gut inhabitants to better 

understand the host-microbiota interaction and transfer the acquired knowledge from human 

and animal to bees.  

In this review, we discuss the role of the honey bee gut microbiota, focusing on its main 

activities and we give an overview of the available applications of beneficial microorganism 

on bee larvae and adults, looking at their potential as pest-control agents and health support. 

 

A look inside the honey bee gut microbiota 

In the last decade, the new available techniques led scientists to investigate the microbial 

gut symbionts with a particular focus on the functional aspect of host-symbiont interaction. 

Next Generation sequencing (NGS) has allowed the identification of a distinctive gut 

bacterial community, which consists of eight dominant groups, comprising over 95% of the 

whole community, as described in Moran (2015) and Kwong and Moran (2016). The Gram-

negative Gilliamella apicola and Frischella perrara, belonging to the Gammaproteobacteria 

class, and the Betaproteobacterium Snodgrassella alvi are predominant in the midgut. The 

rectum is preferentially colonized by the clades Firm-4 and Firm-5, including different 

Lactobacillus species (e.g. L. mellis, L. mellifer L. helsingborgensis, L. kullabergensis, L. 

melliventris, and L. kimbladii) and two species belonging to the genus Bifidobacterium (B. 

asteroides and B. coryneforme). Alphaproteobacteria (related to the genera 

Bartonella/Brucella and the Acetobacteraceae family) have been described but they are less 

abundant (Moran 2015; Kwong and Moran 2016). The microbial gut community, evolving in 

the days following pupae hatching, reaches its definition in 3-5 days (Anderson et al. 2016). 

The same authors hypothesized that many strains of Lactobacillus Firm-5 are pioneer 

species, being particularly abundant within the hive, and that cell cleaning and other early 

behaviours are pivotal in newly emerging bees for promoting the composition of the adult 

gut microbial community. However, further behavioural mechanisms, such as the grooming, 

the oral trophallaxis and the oral-faecal route are reported as well (Martinson et al. 2012; 
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Powell et al. 2014). As in humans and animals, this bacterial core group is composed of 

facultative anaerobic and microaerophilic bacteria (Kwong and Moran 2016), which are 

strictly associated with the gut epithelial cells and are involved in several host functions. It 

is interesting to point out that several species have been only recently isolated and identified 

(Engel et al. 2013; Kwong and Moran 2013; Olofsson et al. 2014) and studies on their role 

and interaction with the host are still at the beginning. Besides this core microbiota, some 

caste-related differences may be found in relation to the social function that honey bees 

cover during their life (Kapheim et al. 2015). Moreover, a recent study (Rokop et al. 2015) 

has suggested the presence of a “non core” microbial group associated with the hive 

environment, including the food prepared by the bees, which may trigger the development 

of the gut core microbiota.  

 

The role of gut microorganisms in honey bees 

 

1. Nutritional support 

Social insects create a partnership with the microbial gut symbionts as they possess genes 

encoding for enzymatic activities (i.e. cellulases, hemicellulases and lignase) essential for 

the energy uptake from a plant-based diet (Newton et al. 2013). Moreover, the microbial 

consortium produces fatty acids, amino acids and other necessary nutrients and metabolites 

(Gündüz and Douglas 2009). Honey bees also require vitamins, including the vitamin B 

complex and gut bacteria could represent a relevant source (Brodschneider and Crailsheim 

2010). A summary, indicating the main activities of gut symbionts, is reported in Table 1. 

Fructobacillus species, isolated from bee bread, brood cells and larval gut, were found to 

utilize the plant complex molecule lignin, which is a component of pollen, thus beginning the 

breakdown of this important high-protein plant-derived food (Rokop et al. 2015). In a recent 

metagenomic study, involving 150 pooled guts of A. mellifera worker bees, Engel and Moran 

(2013) evidenced the presence of different sugar uptake systems in Gammaproteobacteria, 

Firmicutes, and Bifidobacteriaceae (phosphotransferase system families and the arabinose 

efflux permease family). This is in agreement with Lee et al. (2015) who identified, through 

metatranscriptome sequencing, the aforementioned bacterial groups as the major 

contributors (91%) of the protein-coding transcripts, participating in the breakdown of plant-

derived macromolecules and in the fermentation of the monomeric subunits. Interestingly, 

the energy uptake of the betaproteobacterium S. alvi exclusively relies on the aerobic 

oxidation of the products of the fermentation process (citrate, malate, acetate and lactic 

acid), thus avoiding any competition for nutrients with neighbouring species (Kwong et al. 

2014). This represents a simple example of co-evolution within the same niche. A further 

interesting finding (Engel and Moran 2013) is the pectin degradation activity of G. apicola 

that is strain-specific and leads to pollen cell wall degradation, thus leaving the protein 

content available for the host. It is clear from these studies that a high degree of genetic 

diversity can be found within the microbial symbionts, thus suggesting a high adaptability of 

microorganisms to host metabolic requirements within the same niche (Engel and Moran 

2013). The catabolic pathways in lactobacilli (commonly defined Lactic Acid Bacteria; LAB) 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

23  
 

and bifidobacteria are well known since these two microbial groups are involved in numerous 

fermentation processes and have a long history of safe use as probiotic and protective 

microorganisms (Gaggia et al. 2011). Lee et al. (2015) described a wide range of glycoside 

hydrolase (GH) activities in the bee gut, such as GH13 and GH16 families, acting on plant 

cell wall components and highly transcribed within the lactobacilli group. Other GH families 

were described for their activities on the soluble disaccharides maltose, cellobiose and 

sucrose. The importance of LAB is also emphasized by their ecological distribution, which 

is not limited to adult bee gut. They have been isolated from larval guts (Gaggìa et al. 2015) 

and from the honey stomach of adult bees (Olofsson and Vasquez 2008), which is a further 

relevant microbial niche associated with food storage and liquid transfer (water, nectar and 

royal jelly), adjacent to the midgut. Moreover, LAB are also dominant in the hive environment 

(bee bread, honey, wax and comb) (Anderson et al. 2013). Among bifidobacteria, some 

isolates from social insects are known to possess a complete trehalose degradation IV 

pathway, which is absent in the majority of the other bifidobacterial taxa. Trehalose is indeed 

used as carbohydrate storage and hemolymph-sugar by many insects including honey bee 

(Milani et al. 2015). Moreover, Milani et al. (2015) confirmed the significant differences in the 

glycobiome composition of bifidobacterial taxa isolated from social insects compared with 

human and animal taxa, highlighting a discrete set of GH43 (for the breakdown of complex 

plant glycans, xylan and arabinoxylans) and GH3 family members. Bottacini et al. (2012) 

showed that Bifidobacterium asteroides was able to metabolize a range of simple 

carbohydrates broader than any other tested bifidobacterial species (72 carbohydrate-active 

proteins). This is consistent with Lee et al. (2015), who detected a class of β-glucosidases 

within the Actinobacteriaceae family, whose activity is addressed towards oligosaccharides 

with diverse sizes and compositions and it has been associated with pollen cell wall 

degradation. The genome sequencing of B. asteroides also confirmed the presence of a 

complete biosynthetic pathway for folate (vitamin B9), but not for other B vitamins (Bottaccini 

et al. 2012). Overall, the above studies showed again that species isolated from different 

hosts possess specific gene sets, suggesting host-specific adaptation. Bifidobacteria are 

recognized as strictly anaerobic microorganisms, but B. asteroides, inhabiting the honey 

bee hind gut, possesses genes associated with a respiratory metabolism that help the 

bacterium to adapt to the oxygen-rich bee gut environment (Bottaccini et al. 2012; Sun et al. 

2015). 

 

2. Immunity support 

Host protection is another important aspect that is frequently associated with a balanced gut 

microbiota. It is a fact that different stress factors, such as parasites/pathogens, deficient 

nutrition and pesticides, can cause immunosuppression (Antúnez et al. 2009; Alaux et al. 

2010b; Anbutsu and Fukatsu 2010; Fang et al. 2010; Di Prisco et al. 2013). As already 

mentioned, honey bee has a simpler immune system compared to other model insects 

(Evans et al. 2006 ; Barribeau et al. 2015), in favour of more convenient and less expensive 

social defence strategies which combine prophylactic and activated responses as well as 

behavioural, physiological and spatial mechanisms (Cremer et al. 2007). However, a 
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significant contribution to host protection is provided by the antagonistic activity of the gut 

microbiota and its interaction with the humoral and systemic immunity (Dillon et al. 2005; 

Hedges et al. 2008; Jaenike et al. 2010). In three species of wild bumble bees, a low 

presence of S. alvi and G. apicola strains was associated with a higher incidence of the 

pathogen Crithidia spp. (Cariveau et al. 2014). Dillon and Charnley (2002) reported in the 

desert locust Schistocerca gregaria a real contribution of the gut microbiota to host defence 

against pathogens by producing antimicrobial phenolic compounds and synthesizing key 

components of the locust cohesion pheromone. Alterations of this microbiota could 

consequently compromise honey bee defence mechanisms. In particular, this paragraph will 

focus on how microorganisms could play a role in host protection, i) by directly stimulating 

the bee’s immune system; ii) by directly inhibiting pathogens through antimicrobial 

compound production (Table 1). 

Given that individual and social defence mechanisms are diverse and complex, one of the 

main effectors of the innate immunity in honey bee, and more in general in insects, is 

represented by antimicrobial peptides (AMPs), whose synthesis is under the control of the 

Toll and Imd signalling pathways (Lemaitre and Hoffmann 2007). Honey bees possess six 

AMPs, mainly activated at epithelial surfaces, following the exposure to the major cell wall 

component of Gram-positive bacteria, the Lys-type Peptidoglycan (PG): Abaecin, 

Hymenoptaecin, Apidaecin, Defensin-1, Defensin-2, and Apisimin (Casteels et al. 1989; 

Casteels et al. 1990; Casteels et al. 1993; Bilikova et al. 2002; Klaudiny et al. 2005). 

Antimicrobial activity is mainly achieved through alteration of the microbial membrane 

properties (Imler and Bulet 2005) and intracellular metabolic processes (Brogden 2005). A 

selective AMP synthesis is induced following exposure to various honey bee larvae/adult 

pathogens with variable responses (Evans and Lopez 2004; Jefferson et al. 2013; 

Yoshiyama et al. 2013). Evans and Pettis (2005) showed a higher abaecin expression in 

colonies with a lower incidence of Paenibacillus larvae (the ethiological agent of the 

American Foulbrood, AFB). However, some studies also evidenced an increased level of 

AMPs in response to non-pathogenic bacteria. Higher RNA levels for the abaecin gene have 

been reported in bee larvae fed with probiotic bacteria of human origin and fermented foods 

(Evans and Lopez 2004; Yoshiyama et al. 2013). Janashia and Alaux (2016) fed larvae with 

five different LAB species previously isolated from worker honey bee guts and bee bread, 

and among them, two strains (Bifidobacterium asteroides 26p and Fructobacillus 

pseudoficulneus 57) significantly upregulated the expression of apidaecin, while no effect 

was observed on abaecin, hymenoptaecin and defensin-1 levels. These results, taken 

together, showed that the honey bee immune response through AMP synthesis is fairly non-

specific and the increase of the transcription levels of the different AMPs genes is strain 

specific and is not related to either the species or the source of the strains. Jefferson et al. 

(2013) also found a strong positive correlation between the amount of total honey bee gut 

bacteria and transcript levels of two AMPs, defensin-1 and apidaecin. The hypothesis that 

the resident gut microorganisms may determine a basal immune response to control its 

proliferation and consequently harmful microorganisms through AMPs synthesis has not yet 

be investigated in honey bee; however, studies on D. melanogaster and Anopheles 

mosquitoes go in that direction. An interesting observation in D. melanogaster has revealed 
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that appropriate AMP levels could guarantee the preservation of a balanced gut microbial 

community structure, with the species Commensalibacter intestini dominant within the 

Acetobacteraceae family. An induced-up regulation of AMP gene expression led to a drastic 

change in the microbial composition, exerting the growth promotion of the pathogenic  

 
Table 1 Summary of the main activities correlated with honey bee gut symbionts 

 
commensal Gluconobacter morbifer (Ryu et al. 2008). Acetobacteraceae is indeed a 

relevant symbiont group of insect gut (adult and larvae) and crop and has significant 

implications related to both host nutrition and protection (as reviewed by Crotti et al. 2010). 

Dong et al. (2009) showed that microbe-free aseptic Anopheles mosquitoes displayed an 

increased susceptibility to Plasmodium infection with a reduced expression of the anti-

Plasmodium factors FBNs 6, 9, and 36.  

Concerning the production of antimicrobial compounds for host protection, Saraiva et al. 

(2015) found a relative high presence of genes involved in the biosynthesis of streptomycin 

and secondary metabolites in the gut microbiota of honey bee, which could play a role in 

shaping the microbiome. A considerable amount of information also derives from the LAB 

community and bifidobacteria, which are well-known antimicrobial compound producers. 

The finding that an important component of the honey bee gut microbiota was represented 

by lactobacilli and bifidobacteria have increased the interest of scientists in looking for 

similarity and analogy with the probiotic bacteria widely investigated in humans and animals. 

Once lactobacilli and bifidobacteria started to be isolated (from honey bee stomach, gut and 

hive products), numerous in vitro trials confirmed their ability to inhibit honey bee pathogens; 

in particular Paenibacillus larvae, Melissococcus plutonius and Ascosphaera apis, the 

agents of the American and European foulbrood (AFB and EFB) and Chalkbrood disease 

Generic function of the honey 

bee gut microbiota 

 

Specific function Target microorganisms 

(where available) 

References 

Nutritional support Source of vitamins, fatty acids, amino acids                   - Gündüz and Douglas 2009; Brodschneider and Crailsheim 

2010  

 Lignin degradation  Fructobacillus spp. Rokop et al. 2015 

 Sugar uptake systems Gammaproteobacteria, 

Firmicutes, 

Bifidobacteriaceae 

Engel and Moran 2013 

 Breakdown of plant-derived macromolecules Gammaproteobacteria, 

Firmicutes, 

Bifidobacteriaceae 

Lee et al. 2015 

 Pectin degradation activity (strain specific) G. apicola Engel and Moran 2013 

 Aerobic oxidation of the end-products of the 

fermentation process 

S. alvi Kwong et al. 2014 

 Glycoside hydrolase activities  Lactic acid bacteria Lee et al. 2015 

 Trehalose degradation IV pathway Bifidobacterium spp. Milani et al. 2015 

Direct stimulation of the bee’s 

immune system 

Increased expression level of antimicrobial peptides 

(AMPs) under pathogen exposure in bee larvae 

- Evans and Lopez 2004; Evan and Pettis 2005; Jefferson et al. 

2013; Yoshiyama et al. 2013 

 Increased expression level of selected AMPs in bee 

larvae upon feeding with probiotic bacteria 

- Evans and Lopez 2004; Yoshiyama et al. 2013; Janashia and 

Alaux 2016 

 Strong positive correlation between the amount of 

total honey bee gut bacteria and transcript levels 

AMPs  

- Jefferson et al. 2013 

Host protection: other strategies  Antimicrobial activity against Paenibacillus larvae, 

Melissococcus plutonius and Ascosphaera apis 

Bacillus spp., Lactobacillus 

spp., Bifidobacterium spp. 

Sabaté et al. 2009; Yoshiyama and Kimura 2009; Forsgren et 

al. 2010; Audisio et al. 2011; Vásquez et al. 2012; Butler et al. 

2013; Wu et al. 2013; Killer et al. 2014 

 Biofilm formation and structures resembling 

extracellular polymeric substances 

LAB symbionts from honey 

crop 

Vásquez et al. 2012 

 Biosynthesis of cell wall exopolysaccharides  “Firm4” and “Bifido” 

groups 

Ellegaard et al. 2015 

 Genes encoding a relevant number of functions 

related to biofilm formation and host interaction 

(Type IV pili, outer membrane proteins, and 

secretion) 

G. apicola and S. alvii Martinson et al. 2012 
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respectively (Sabaté et al. 2009; Yoshiyama and Kimura 2009; Audisio et al. 2011; Vásquez 

et al. 2012; Wu et al. 2013; Killer et al. 2014). Although in vitro activity does not necessarily 

correspond to action in in vivo systems, these assays could provide useful information on 

the antimicrobial equipment possessed by each strain. Organic acids, strain-specific 

metabolites and/or bacteriocin production have been described as powerful antimicrobial 

molecules (Servin 2004; Kleerebezem et al. 2010) and are widely exploited in human and 

animal food/feed additives, in the food industry to preserve food and in bio-control strategy 

against phyto-pathogens (Gaggìa et al. 2011; Tontou et al. 2015). Nevertheless, the 

interactions between microorganisms in the gut of larvae and adult bees are very complex 

and pathogens are not at all defenceless exposed to the weapons of the gut microbial 

symbionts. As example, P. larvae with its secreted non-ribosomal peptides (NRP) and 

NRP/polyketide hybrids (Müller et al., 2015) is able to eliminate all microbial competitors, 

despite their antimicrobials, resulting in a pure P. larvae culture in the degraded larval 

cadavers (Holst 1945). 

A recent genomic analysis of 13 LAB strains, isolated from the honey crop, put in evidence 

that most of them produced extracellular proteins of known/unknown function related with 

antimicrobial action, host interaction, or biofilm formation. In particular, a putative novel 

bacteriolysin with 51% homology with Helveticin J was detected in L. helsinborgensis 

Bma5N (Butler et al. 2013). At the same time, some strains did not evidence any 

“antimicrobial function”, thus confirming the high variability among the gut microorganisms 

inhabiting the same niches. Vásquez et al. (2012) analysed the interaction of some LAB 

symbionts with the honey crop by SEM and fluorescence microscopy. The resulting images 

evidenced biofilm formation and structures resembling extracellular polymeric substances 

(EPS), which are known to be involved in host protection/ colonization and cellular 

recognition (Flemming and Wingender 2010). A further support comes from the work of 

Ellegaard et al. (2015), which evidenced at genome level the presence of gene clusters 

associated with the biosynthesis of cell wall exopolysaccharides in both “Firm4” and “Bifido” 

groups. Martinson et al. (2012) reported, in honey bee workers, the presence of genes in G. 

apicola and S. alvii encoding a relevant number of functions related to biofilm formation and 

host interaction (Type IV pili, outer membrane proteins, and secretion), whose expression 

could be relevant for the establishment of a micro-niche insensitive to pathogens 

colonization. Finally, the Bacillaceae family includes several spore forming bacteria, isolated 

from the bee gut and from the hive environment, showing in vitro a strong antibacterial 

activity against bee pathogens. In this case, it is known from decades, that inhibition activity 

is mainly due to the production of antibiotic molecules (lipopeptides and iturin-like 

lipopeptides) (Alippi and Reynaldi 2006; Lee et al. 2009; Sabaté et al. 2009; Yoshiyama and 

Kimura 2009). However, as mentioned above, it must be again emphasized that P. larvae 

itself, as spore forming bacteria, produces antibiotics molecules which help the pathogen 

during infection to defend its niche and dominate the larval gut environment towards resident 

microorganisms. 
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The “Probiotic Concept” in honey bee 

It is clear that a balanced gut microbiota offers a wide range of metabolic, trophic and 

protective functions, which confer health benefit to honey bees. In this perspective the 

FAO/WHO probiotic definition (FAO/WHO 2002), which encompasses strain specificity 

(Sanders et al. 2014), is more than appropriate. However, the transfer of the probiotic 

concept from vertebrates to invertebrates still requires further considerations and several 

questions still need to be investigated and debated. In particular, beyond the health aspect, 

probiotic microorganisms fulfil a list of biological requirements and safety criteria, e.g. to be 

non-toxic and non-pathogenic, to have an accurate taxonomic identification, to be normal 

inhabitants of the targeted host-species, to adhere to the gut epithelium (Hooper and Gordon 

2001; Gaggìa et al. 2010). For these reasons, in the present review authors will refer to 

“beneficial microorganisms” rather than to probiotic microorganisms, since honey bee gut 

symbionts characterization is far to be completed. From our and general experience in 

humans and animals, biotic and abiotic stresses could negatively affect the composition of 

the gut microbiota and therefore induce specific changes in the microorganism activities at 

gut level (Gaggìa et al. 2010). The analysis of the honey bee microbial gut community in 

colonies suffering from Colony Collapse Disorders (CCD) evidenced a variation of some 

microbial phyla in healthy colonies compared to diseased ones (Cox-Foster et al. 2007); in 

affected colonies a decrease of Firmicutes and Alphaproteobacteria was observed. We can 

deduce that this alteration could reflect physiological changes due to the incoming infection 

or support the hypothesis that the low presence of beneficial species could weaken host 

defence. Anyway, we have to ask ourselves if any kind of microbiota modulation, by the 

administration of selected strains, could restore this perturbation, reduce bee mortality 

and/or improve honey bee health. In other studies, by introducing a given stress, no 

perturbation was observed (Babendreier et al. 2007; Hui-Ru et al. 2016). In particular, Hui-

Ru et al. (2016) did not evidence significant difference in the microbial gut community of 

honey bees, under laboratory conditions, following exposure to sub-lethal dose of the 

neonicotinoid Imidacloprid, whose adverse effects on honey bees have been already 

documented (Medrzycki et al. 2003; Dively et al. 2015). Nevertheless, it has been also 

verified how exposure to sub-lethal concentration of pesticides could significantly enhance 

bee susceptibility towards pathogens (Alaux et al. 2010a; Vidau et al. 2011; Doublet et al. 

2015), thus weakening honey bee health and compromising the gut microbiota. Attempts of 

gut microbiota modulation have been already performed in some insect species (Wittebolle 

et al. 2009; Ben Ami et al. 2010; Robinson et al. 2010), showing the importance of the 

endogenous gut microbial community. In the next section, a description of the main 

application of beneficial microorganisms in honey bees will be reported and commented, 

including assays in larvae and adults both under laboratory and field conditions.  

Application of beneficial microorganisms: state of the art 

Beneficial microorganisms in honey bee are mainly applied to fight the most widespread 

pathogens affecting both larvae and adults (Table 2). Most of the bacterial strains used in 

these studies are isolated from honey bee crop or gut, whose selection derives from in vitro 

tests based on direct antagonism towards target pathogens. However, some other 

applications rely on the use of bacterial strains isolated from the environment or on 
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formulation for animal and human consumption. With respect to the AFB, Forsgren et al. 

(2010) used a mixture of twelve isolates from honey crop - L. kunkeei, L. mellis, L. kimbladii, 

L. kullabergensis, L. helsinborgensis, L. melliventris, L. apis, L. mellifer, B. asteroides and 

B. coryneforme - with a final concentration of 107 bacteria/ml. The exposure assay was 

performed by rearing 1st instar honey bee larvae, infected with two different spores 

concentration of P. larvae. The LAB mixture was supplemented with sugar syrup, both in 

combination with P. larvae at the time of spore inoculum and 48 hours post infection. Results 

showed the positive effect of LAB supplementation only in the group challenged with the 

highest dose of P. larvae with a significant reduction of larvae mortality. However, these 

results are of little biological relevance because the reduced larvae mortality, from 70% to 

55%, is not enough to combat a notifiable epizootic and the colony will probably succumb to 

the disease, although it might take one week longer. Recently, a probiotic mixture, based on 

two spore forming bacteria (SFB; Bacillus thuringiensis HD110 and Brevibacillus 

laterosporus BMG65) in association with Saccharibacter spp., has been developed for the 

protection of bee larvae against the AFB (Hamdi and Daffonchio, 2011). The efficacy of the 

invention was tested on P. larvae infected-larvae and the experiments showed that the 

addition of the bacterial mix to the diet decreased the mortality level from 70% in the control 

to 22% in larvae fed with the microorganisms’ mix. Although the mortality reduction is 

encouraging, the invention should be investigated in infected apiaries in open field to assess 

the biological relevance of the microorganisms-based product. Concerning EFB, a single 

laboratory assay has been performed in Apis mellifera (Vásquez et al. 2012). The same LAB 

strains isolated from honey crop and used by Forsgren et al. (2010) were orally administered 

to honey bee larvae challenged with M. plutonius at three concentrations (107, 106 and 105 

bacteria/ml). Irrespective of the infectious dose, mortality was significantly reduced in groups 

treated with the LAB mixture. However, as outlined in Forsgren et al. (2010), these data 

does not prove the efficacy of these microorganisms since the reduced mortality between 

10-20%, although significant, is biologically irrelevant. Based on these results, it could be 

interesting to investigate the efficacy of the LAB mixture in infected larvae with a lower dose 

of the pathogen and perform the treatments as preventive measure before the infection step. 

The native microbial community inhabiting the honey crop is mainly involved in the 

production of the bee bread nourishing the brood and constitute the first defence line against 

potential brood pathogens acquired from the floral environment (Vásquez et al. 2012). 

Therefore, an application of beneficial microorganisms prior to infection to boost the gut 

microbiota composition could be more successful in contrasting brood pathogens. However, 

no data are actually available. 

An interesting observation from this study is the antibiotic susceptibility of the LAB strains 

towards oxytetracycline and tylosin, two antibiotics used in apiculture to fight P. larvae and 

M. plutonius. All LAB strains were highly sensitive to tylosin, while L. kunkeei Fhon2, L. apis 

Hma11, L. melliventris Hma8 and L. mellis Hon2 showed resistance to oxytetracycline. 

Antibiotic resistance is an important concern for insects and human health, if we look at the 

risk of an increased antibiotic resistance among bee pathogens and accumulation in the 

hive products. These are some of the reasons leading to the ban of antibiotics in apiculture 

in EU. Unfortunately, this regulation has not yet been adopt in non-EU countries.  
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With respect to adult honey bees, beneficial microorganisms are targeted against the 

emergent pathogen Nosema spp., in particular Nosema ceranae, which multiplies within gut 

cells and no relevant symptoms can be detected during infection (see details in Higes et al. 

2010) (Table 2). The microsporidium is prevalent in southern Europe (Fernandez et al. 2012; 

Porrini et al. 2016) and it has been associated with reduced honey bee life span and colony 

weakening (Goblirsch et al. 2013). However, according to the investigation of Fernandez et 

al. (2012) in Spanish apiaries, N. ceranae does not necessarily kill honey bee colonies and 

does not influence beehive production. Almost all the reported experiments are performed 

in plastic cages under laboratory conditions with newly emerging honey bees. Many issues 

can be argued about the use of cage experiments. Although the laboratory assessment 

allows the standardization of the variables and the direct observation of the introduced 

perturbations (e.g. diet change, pathogen inoculation, beneficial microorganisms, 

pesticides), most of the behavioural and social interactions both inside and outside the hive 

are lacking. Moreover, this confinement can also introduce stress factors and influence the 

experiment itself. 

The trial performed by Corby-Harris et al. (2016) showed an improve resistance to Nosema 

spp. in honey bee adults individually challenged with 104 spores and originating from larvae 

fed with pollen patty mixed with an inoculum of Parasaccharibacter apium C6. P. apium 

(Corby-Harris et al. 2014), of Acetobacteraceae family, is particularly abundant in honey 

crop, hypopharyngeal glands, royal jelly and larval gut through nurse worker bees feeding 

behaviour. However, spore load reduction was always biological irrelevant since the 

decrease was less than 40% compared to the control group. Similarly, Baffoni et al. (2016), 

observed a significant decrease of N. ceranae in infected honey bees orally fed with 

Lactobacillus and Bifidobacterium strains. The ~1 log reduction observed in challenged and 

treated insects could be considered irrelevant since the spore number remained high and 

honey bees would surely die. However, Baffoni et al. (2016) also evidenced a significant 

reduction in spore load from 2.04±0.91 and 0.78±0.81 (mean Log spores/bee±sd) in honey 

bees exposed to a low natural infection and treated with the microorganisms; in this 

particular case a hypothetical protective effect, contrasting the low infection rate, might be  

Table 2 Overview of beneficial microorganism applications for the treatment of the main honey bee microbial 

infections 

 

 

Honey bee disease Infection dose Microorganisms/metabolites Source Reported effect(s) References 

P. larvae - AFB 103 and 104 spores/ml  L. kunkeei, L. mellis, L. kimbladii, L. 

kullabergensis, L. helsinborgensis, L. 

melliventris, L. apis, L. mellifer, B. 

asteroides and B. coryneforme 

(107 bacteria/ml) 

Honey crop Reduced larvae mortality Forsgren et al. 2010 

 Not described B. thuringiensis HD110, B. laterosporus 

BMG65. 

Honey bee gut Reduced larvae mortality Hamdi and Daffonchio 2011 

 M. plutonius - EFB 107-106-105 bacteria/ml L. kunkeei, L. mellis, L. kimbladii, L. 

kullabergensis, L. helsinborgensis, L. 

melliventris, L. apis, L. mellifer, B. 

asteroides and B. coryneforme 

(107 bacteria/ml) 

Honey crop Reduced larvae mortality Vasquez et al. 2012 

N. ceranae 1st trial: 104 spores/μl 

2nd trial: natural infection 

L. kunkeei Dan39, L. plantarum Dan91 

and L. johnsonii Dan92, B. asteroides 

DSM 20431, B. coryneforme C155, B. 

indicum C449. (106-107cfu/ml of sugar 

syrup) 

Honey bee gut Reduced spore detection Baffoni et al. 2016 

Nosema spp. 103 spores/μl P. apium C6 (106 cfu/500 μl) 2nd instar larvae Reduced spore detection Corby-Harris et al. 2014 

 Diseased bees L. johnsonii CRL1647 (105 cfu/ml)  

 

Honey bee gut Reduced spore detection Audisio et al. 2015 

 Diseased bees 105 spores/mL of Bacillus subtilis Mori2 

spores  

Honey Reduced spore detection Sabaté et al. 2012 
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considered of biological relevance. Sabaté et al. (2012) and Audisio et al. (2015) observed 

a decrease in the amount of spores in field conditions in honey bees orally fed for several 

months with strains isolated from the gut of healthy insects, namely B. subtilis Mori2 and L. 

johnsonii CRL1647. In both cases, the biological relevance of the reduction (less than 1 log) 

is still questionable since the spore numbers are still high. The decrease in Nosema 

incidence observed by Sabaté et al. (2012) is only evident in September and October when 

a slight spore increase can be observed in the control group. When the control group showed 

a physiological decrease in the spore number, no relevant reduction is observed in the 

treated groups. From these data, firm evidences on the positive effect of beneficial 

microorganism administration against Nosema spp. cannot be drawn. Conversely, 

Andrearczyk et al. (2014) found an increase of Nosema spp. infection, following 

administration in both winter and summer bees of a probiotic product recommended for 

animals. Likely, Ptaszyńska et al. (2016) observed an increased mortality rate in Nosema-

infected honey bees fed with the probiotic microorganism L. rhamnosus, both as preventive 

measure and along the infection. The authors argued that the increased infection was 

associated with a pH reduction of the honey bee midgut, because of the metabolic activity 

of the supplemented microorganism. However, this consideration relies on previous data 

(Ptaszyńska et al. 2013), where this association is not clearly, and statistically demonstrated 

and further investigations are envisaged to better understand such interactions. Moreover, 

the honey bee midgut is a multi-niche environment, harbouring a complex microbial 

community and fermentation products (as lactic and acetic acids) may be taken up and 

utilized by some components of this community or by the bee host (Kwong and Moran 2016), 

thus limiting their contribution to the reduction of gut pH. An interesting approach to study 

N. ceranae-host interactions comes from Gisder and Genersch (2015). The authors 

developed a cell culture model by using the lepidopteran cell line IPL-LD 65Y, from 

Lymantria dispar, which was susceptible to N. ceranae infection and could support the entire 

microsporidium life cycle. By this approach, the authors tested several molecules for 

cytotoxicity and inhibition of N. ceranae intracellular development and demonstrated the 

efficacy of the synthetic antibiotics metronidazole and tinidazole, while a surfactin from 

Sigma-Aldrich did not show any inhibition and at low concentration was also cytotoxic for 

the cells.  

Microbial gut symbionts could be useful to sustain honey bee health and productivity since, 

as already described, bacteria from honey bee crop and gut are highly specialized in 

performing thousands of metabolic activities necessary to honey bee for a normal 

development (Table 3). However, most of the published data are still not very convincing 

and experiments should have more replicates. An improved wax gland cells development 

was observed by Pătruică et al. (2012), following the supplementation of organic acids and 

two probiotics for human consumption. In particular, lactic acid and a probiotic product 

containing Lactobacillus and Bifidobacterium spp., both individually and in combination, 

positively influenced the number, the morphology and the diameter of the wax cells. Audisio 

and Benítez-Ahrendts (2011) performed two different trials to assess colony health and 

performance on honey bee hives treated with a cell suspension (105 ufc/ml sugar syrup) of 

L. johnsonii CRL1647 (every 15 days for three months and a monthly administration for one 
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year). All the parameters analysed (open and operculated brood area, bee number, honey 

storage), with some fluctuations every month, were significantly higher in the treated groups. 

Sabaté et al. (2012) obtained comparable results with the supplementation in field conditions 

of spores of B. subtilis Mori2, isolated from honey, once a month for eight consecutive 

months. Alberoni et al. (2015) found a significant increase in honey supers production 

following the administration of a mixture of lactobacilli and bifidobacteria in hives before the 

linden (Tilia spp.) honey flow. Moreover, authors investigated at the end of the 4 weeks 

treatments the composition of the honey bee microbial gut community by NGS; surprisingly, 

lactobacilli showed a significant decrease, whereas a significant increase was observed for 

bifidobacteria and Acetobacteraceae compared to non-treated hives. The bifidobacteria 

increase confirmed the results obtain under laboratory conditions (Baffoni et al. 2016). The 

increase of the Acetobacteraceae in the treated group could be considered a promising 

result since many members of the family have recently emerged as important 

endosymbionts for honey bees (Crotti et al. 2010). However, further investigations are 

envisaged to better understand if and how these compositional changes can affect the host-

gut microbe interaction.  

Overall, data are too sparse and weak to support the hypothesis that beneficial 

microorganisms have a role in improving honey bee health. Moreover, the introduction within 

the hive of biological agents, even if beneficial, should be carefully treated, in particular for 

spore-forming bacteria (SFB). Notably, the use of SFB into the hive pose a serious issue 

regarding the finding of such bacteria in the stored honey. The European Food Safety  

Table 3 Overview of beneficial microorganism applications for the support of honey bee health 

 

Authority (EFSA) is requested to verify, through the qualified presumption of safety (QPS) 

assessment, the safety of a broad range of biological agents in the context of notifications 

for market authorization (EFSA Journal 2015), including SFB. The chemical composition in 

natural honey make the growth of microorganisms difficult (Snowdon and Cliver 1996); 

however, SFB can survive and may become a risk for human health. Actually, no data are 

available on the microbiological quality of honey, following SFB application into the hive.  

Microorganisms Field/laboratory Duration Reported effect(s) References 

Enterobiotics and Enterolactis Plus (1.2-

2.5g/1.4 L syrup) 

Field 1 application a week for 3 weeks Improved wax gland cells Patruica et al. 2012 

105 cfu/ml of L. johnsonii CRL1647 in syrup Field 1st trial: 3 months (1 application every 15 days) 

2nd trial: 13 months (1 application a month) 

Increase of open and opercolated brood 

Increased honey production 

Audisio et al. 2011a 

105 spores/mL of Bacillus subtilis Mori2 

spores in syrup 

Field 1 application a month for 8 months Increase of open and opercolated brood 

Increased honey production 

Sabaté et al. 2012 

L. kunkeei Dan39, L. plantarum Dan91 and 

L. johnsonii Dan92, B. asteroides DSM 

20431, B. coryneforme C155, B. indicum 

C449. (106-107cfu/ml of sugar syrup) 

Field 1 application a week for 1 month Increased honey production 

Decrease of Lactobacillus spp. 

Increase of Acetobacteraceae and 

Bifidobacterium spp.   

Alberoni et al. 2015 

Biogen-N (1 mg in 100 g of pollen 

substitute) and Trilac (7 capsules in 100 g of 

pollen substitute) 

Laboratory 1st trial: every day for 14 days 

2nd trial: two consecutive applications in 14 days 

Better bee survival 

Higher dry mass and crude fat level 

No differences in total protein 

No correlation with feeding duration 

Kaznowski et al. 2005 

Biogen-N (0.5 mg-2 mg in 100 g of pollen 

substitute) and Trilac (0.724-2.534 mg in 100 

g of pollen substitute)  

Laboratory 1st trial: every day for 20 days 

2nd trial: every day for 20 days 

No increase in feed intake 

Decreased death rate of bees 

Stimulation of fat body growth 

Kazimierczak-Baryczko and 

Szymas 2006 

Biogen-N (0.5 mg-2 mg in 100 g of pollen 

substitute) and Trilac (0.724-2.534 mg in 100 

g of pollen substitute) 

Laboratory Every day for 14 days Better bee survival 

Higher dry mass and crude fat level 

Greater  quantities  of  peritrophic 

membranes 

Szymas et al. 2012 
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The use of pollen substitute and its fortification with probiotic microorganisms have been 

also investigated in different trials (Kaznowski et al. 2005; Kazimierczak-Baryczko and 

Szymaś 2006; Szymaś et al. 2012), although such alternatives required more studies due 

to the harmful effect of their components on honey bee gut and the few available data. All 

three studies used a mixed of protein ingredients (fish meal, egg powder, soybean flour etc.) 

with two different probiotic products, for animal ((Biogen-N; Biogen Idec Sp. z.o.o, Poland) 

and human consumption ((Trilac®; Allergon Health Care, Sweden). Overall, the trials 

showed an improved condition of bees, confirmed by lower mortality, more developed 

pharyngeal glands, higher dry matter, and fat body content. A positive influence was also 

assessed on the morphological changes in the midgut epithelium. After 14 days, midgut 

analysis evidenced a high epithelium, cytoplasm slightly vacuolized and the presence of 

considerable quantities of peritrophic membranes, which are associated with duration of the 

feeding, presence of beneficial bacteria and protection towards harmful compounds 

(Szymaś et al. 2012).  

Finally, we are still far to conclude that beneficial microorganisms could actually limit 

pathogen widespread, support honey bee health and the hive productivity, even if a starting 

point has been set. Research activities are still sparse and further implementations are 

envisaged. 

Conclusions 

The preservation of the European honey bee Apis mellifera is imperative; the beekeeping 

sector and the ecosystems depending on pollinators are suffering from missed pollination 

and lack of productivity with an associated loss of biodiversity in the long run (Aizen et al. 

2009; Klein et al. 2007). Nowadays beekeepers too often rely on subspecies hybrids, with 

the false hope to increase disease resistance, but the resistance mechanisms against bee 

pathogens/parasites are usually a result of a co-evolution in local ecosystems (Ruottinen et 

al. 2014). Overall, the described applications offer to some extent a picture of the favourable 

influence of beneficial microorganisms on bee health, in particular their potential activity 

against some pathogens. However, information is scarce and limited to specific 

investigations. It could be useful, as in human and animal applications, to define some 

guidelines in order to standardize the studies and drawn up appropriate protocols. The dose, 

the timing, the duration of the administration and the number of strains may influence the 

efficacy of the treatments. The number of experimental replicates and the repetition along 

the years should be accurately established. Moreover, investigation methods (i.e. N. 

ceranae spore number detection) ought to be uniformed in order to improve as major as 

possible the output accuracy and the trial comparison. It is necessary to address the study 

towards gut symbionts isolated from healthy honey bee gut possessing the QPS status, and 

omit the use of probiotics for human and animal consumption. This is in authors’ opinion a 

key factor, since the main issue, which stand out from this review and from the literature, is 

the specificity of each microbial strain within its gut niche. In particular, metagenomic and 

transcriptomic studies are envisaged to better describe the bacterial strain(s) and their 

interaction with the host, following the supplementation. A deep investigation about the effect 

on host immunity, physiology and composition of the honey bee gut microbiota could 

improve the rationale of such supplementation. This is finalized to build a robust 
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experimental structure, to minimize risk associated with bio-treatments and to analyse 

results in a comparable way. Finally, this will allow the realization of microorganisms-based 

products with a reliable scientific literature, which will be more appreciated by beekeepers 

who are constantly looking for high quality products combined with an excellent ratio 

quality/price. The beekeeping sector includes operators having a particular feeling towards 

honey bees, but sometimes a deep knowledge on their biological activities, including the 

wide world of gut symbionts, is lacking.  

This article does not contain any studies with human participants or animals performed by 

any of the authors  
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ISOLATION 

 

Isolation of gut bacteria from Apoideae and Vespulae, and related habitat. 

 

The aim of this work was to isolate microbial strains from different Apoideae and Vespulae 

sources and their related environment in order to explore the biodiversity of the cultivable 

microorganisms in the studied samples and to obtain a large number of strains that can be 

potentially used in further researches. A collection of the isolated strains has in fact been 

created at the Department of Agricultural Science, University of Bologna, and the strains will 

be available to all researchers as soon as the related results have been published.  

Isolation source and procedure: 

 Isolation of bacteria was carried out from the gut of the following Hymenoptera:  

- Apis mellifera spp. ligustica (Italian Golden Bee);  

- Apis mellifera spp. ruttneri (Maltese Bee); 

- Osmia cornuta (European Orchard Bee);  

- Osmia bicornis (Red Meson Bee);  

- Xylocopa violacea (Carpenter bee);  

- Polystes gallica (Paper Wasp);  

- Vespa crabro (European hornet). 

A further isolation was carried out from other sources related to Apis mellifera spp. ligustica:  

- wax,  

- fermented pollen,  

- honey  

- dead larvae obtained from diseased hives of the Bologna area, but also collected at 

national level with the BeeNet monitoring programme (False AFB – paper 1) 

 

The samples obtained were serially diluted (serial 10-fold dilutions), and plated on the 

suitable agarized medium of interest. After picking up colonies, they were inoculated again 

on the same isolation medium, stroked on plates and these steps were repeated until strain 

purity was reached. The isolation media used are listed in Table 1. 

Table 1: Media used for the isolation of bacteria and further purification of the isolated strains.  

Base medium * Additives  Abbreviation  

Tripton Pepton Yeast extract (Mazzola et al., 2015) - TPY 

Tripton Pepton Yeast extract Cycloheximide TPY + Chx 

de Mann, Rogosa and Sharpe (BD, Milan, Italy) - MRS 

de Mann, Rogosa and Sharpe Chloramphenicol  MRS + Chp 

de Mann, Rogosa and Sharpe  Cysteine  MRSC 

de Mann, Rogosa and Sharpe Cysteine and Fructose  MRSCF 

Brain Heart Infusion (BD, Milan, Italy) - BHI 

Nutrient (BD, Milan, Italy) - N 

Columbia Blood (Oxoid, Rodano, Milan, Italy) - CB 
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Glucose, Yeast, Calcium Carbonate (Gosseld et al. 1983) - GYC 

Mueller-Hinton, Yeast, Peptone; Glucose, sodium Pyruvate 

(Dingman, D.W. and Stahly 1983) 

- MYPGP 

Starch, Yeast, Peptone; Glucose (Bailey and Ball 1991) - SYPG 

*1.5% agar added when necessary 

During the 3-year PhD work, a total of 625 strains were isolated from 22 different sources 

as listed in Table 2. Fingerprinting of the isolated strains was obtained with different standard 

fingerprinting techniques. An approach relaying on multiple fingerprinting techniques is 

necessary because often fingerprinting techniques are failing in discriminating genetic 

variability as shown in Figure 1.  

Table 2: Isolation Source of Bacteria. 

Isolation Source Number of Stocks/Pools Pools composed of: 

Apis mellifera spp. ligustica flying 1 100 Honey bee guts 

Apis mellifera spp. ruttneri flying 3 30 Honey bee guts 

Osmia cornuta edged 1 10 Orchard Bee guts 

Osmia cornuta 30 days fly 1 10 Orchard Bee guts 

Osmia bicornis edged 1 10 Meson Bee guts 

Osmia bicornis 30 days fly 1 10 Meson Bee guts 

Xylocopa violacea flying 1 1 Carpenter Bee gut 

Polystes gallica flying  1 15 Paper Wasp guts 

Vespa crabro flying 1 3 European Hornet guts 

Wax  1 - 

Fermented Pollen 1 - 

Honey  4 - 

Dead Larvae 5 - 

 

Fingerprinting techniques used in this study are described below: 

1- BOX-PCR analysis  

Bacterial isolates were fingerprinted by BOX-PCR. The reaction was carried out in a 

30 μl volume containing 1 U Taq DNA polymerase (AmpliTaq Gold, Applied 

Biosystems, Foster City, CA, USA), 3 μl 10X PCR Gold Buffer (Applied Biosystems), 

200 nM of each dNTPs (Fermentas International Inc., Thermo Fisher Scientific Inc., 

Waltham, MA, USA), 2 mM MgCl2 (Applied Biosystems), 0.4 μM of primer BOXA1R 

(5’-CTACGGCAAGGCGACGCTGACG-3’) (Eurofins Genomics, Ebersberg, 

Germany), 0.1% (wt/vol) Bovine Serum Albumin (BSA, Fermentas), 2 μl of DNA 

template, and sterile MilliQ water. The PCR reaction was performed on a TGradient 

Biometra thermocycler (Biotron, Göttingen, Germany) using the following 

thermocycling conditions: 7 min of initial denaturation at 95 °C, 30 cycles of 94 °C for 

1 min, 53 °C for 1 min, 72 °C for 3 min followed by a final elongation step of 72 °C for 

10 min.  

 

2- RAPD-PCR analysis  

RAPD (Randonly Amplified Polymorphic DNA)-PCR was carried out with a reaction 

mixture composed of 10μL HotStarTaq Master Mix (QIAGEN GmbH, Hilden, 
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Germania), 2 μL of 20 μM primer M13 (5'-GAGGGTGGCGGTTCT-3') (Andrighetto et 

al., 2001), 1.2 μL of template DNA and water to the total volume of 20 μL. 

The PCR reaction was performed on a SymplyAmpl thermicycler (Thermo Fisher 

Scientific, U.S.A) under the following thermocycling program: 10 min of initial 

denaturation at 95 °C, 30 cycles of 94 °C for 1 min, 55 °C for 1 min, 72 °C for 3 min 

followed by a final elongation step of 72 °C for 10 min. 

 

3- ERIC-PCR analysis  

ERIC-PCR were carried out using the same protocol except for the primers ERIC-1 

(5'-ATGTAAGCTCCTGGGGATTCAC-3') and ERIC-2 (5'-

AAGTAAGTGACTGGGGTGAGCG-3') (Versalovic et al., 1991) added at the PCR 

mixture as 0.5 μL for a concentration of 20 μM each primer.  

The PCR reaction was performed on a SymplyAmpl thermicycler (Thermo Fisher 

Scientific, U.S.A) under the following thermocycling program: 10 min of initial 

denaturation at 95 °C, 30 cycles of 94 °C for 1 min, 57 °C for 1 min, 72 °C for 3 min 

followed by a final elongation step of 72 °C for 10 min. 

 

PCR products were loaded on 2% w/v agarose gel, and run at 75 V for four several hours. 

Gels were stained with ethidium bromide and visualized with the gel documentation system 

Gel DocTM X+R (Bio-Rad), See Figure 2. 

 

 
 
Figure 2 Example of a fingerprinting Gel visualized with Gel DocTM X+R (Bio-Rad). 

 

A dendrogram was constructed using the Dice similarity coefficient and the UPGMA 

(unweighted pair group method with arithmetic mean) algorithm with GelCompar II software, 

version 6.6 (Applied Maths, Sint-Martens-Latem, Belgium) Figure 1. 
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Figure 1: Example of a dendrogram where two fingerprinting techniques are compared for the same samples. 

It is interesting to point out that, in some circumstances, identical profiles on the left (RAPD-PCR) correspond 

to completely different profiles in the left column (BOX-PCR) for the same samples, E.g.: Red Box. 
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DNA of unique strains according to their combined fingerprinting profile analysis was 

sequenced for the conserved region coding for the small ribosomal unit (16S rRNA). Primers 

27f (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492r (5'-GGTTACCTTGTTACGACT-3') 

were used for the PCR reaction (Lane, 1991) according to Gaggìa et al. (2013). Amplicons 

were sequenced by a commercial sequencing facility (Eurofins MWG, Edersberg, 

Germany). Sequence chromatograms were edited and analyzed using the software program 

Finch TV version 1.4.0 (Geospiza Inc., Seattle, WA, USA) and deposited in the GeneBank 

nucleotide database after classification using the RDP classifier (Wang et al., 2007). 

Identified strains and GeneBank Accession Number are reported in Table 3 and 4. 

 
Table 3: Strains isolated during the Ph.D. activity and related taxonomic identification Strain reference, sample 

collection date and GeneBank Accession Number are also indicated. 

 

Microorganism Isolation Source 
Strain 

reference 
Collection 

Date 

GeneBank 
Accession 
Number  

Achromobacter xylosoxidans  Gut of Apis mellifera subsp. ligustica X1X 21-mar-2014 MG650022 

Acinetobacter nectaris Gut of Osmia cornuta Sp45 1-apr-2016 MG645298 

Acinetobacter nectaris Gut of Osmia cornuta Sp82 1-apr-2016 MG645306 

Acinetobacter nectaris Gut of Osmia cornuta Sp84 1-apr-2016 MG645307 

Acinetobacter nectaris Gut of Osmia bicornis Sp93 1-apr-2016 MG645309 

Acinetobacter nectaris Gut of Osmia bicornis Sp100 1-apr-2016 MG645310 

Acinetobacter nectaris Gut of Osmia bicornis Sp106 1-apr-2016 MG645311 

Actinomyces odontolyticus Gut of Osmia cornuta OCN12 1-apr-2016 MG597264 

Arthrobacter oryzae  Unfermented Pollen  XB1 01-may-2017 MG649992 

Bacillus aerius  Gut of Apis mellifera subsp. ligustica Sp11 21-mar-2014 MG650014 

Bacillus aerius  Gut of Apis mellifera subsp. ligustica Sp12  21-mar-2014 MG650015 

Bacillus aerius  Dead Honey Bee Larvae SP38 01-oct-2015 MG650038 

Bacillus amyloliquefaciens  Honey Bee fermented pollen  Sp16 21-mar-2014 MG650017 

Bacillus amyloliquefaciens  Dead Honey Bee Larvae Sp20 01-oct-2015 MG650040 

Bacillus amyloliquefaciens  Honey Bee fermented pollen  Sp25 01-oct-2015 MG650044 

Bacillus amyloliquefaciens  Gut of Apis mellifera subsp. ligustica SP43 01-oct-2015 MG650055 

Bacillus aryabhattai Gut of Apis mellifera subsp. ligustica SP36 01-oct-2015 MG650052 

Bacillus aryabhattai Gut of Apis mellifera subsp. ligustica SP41 01-oct-2015 MG650053 

Bacillus cereus Dead Honey Bee Larvae Sp21 01-oct-2015 MG650041 

Bacillus cereus Dead Honey Bee Larvae Sp23 01-oct-2015 MG650042 

Bacillus cereus Dead Honey Bee Larvae Sp24 01-oct-2015 MG650043 

Bacillus cereus Honey  Sp35 01-jul-2015 MG650051 

Bacillus cereus  Honey bee wax CE1 01-may-2017 MG649990 

Bacillus licheniformis Gut of Apis mellifera subsp. ligustica Sp1 21-mar-2014 MG650010 

Bacillus licheniformis Gut of Apis mellifera subsp. ligustica Sp2 21-mar-2014 MG650011 

Bacillus licheniformis Gut of Apis mellifera subsp. ligustica Sp9 21-mar-2014 MG650013 

Bacillus licheniformis  Debrides  F2 01-oct-2015 MG650060 

Bacillus mojavensis  Honey Bee fermented pollen  Sp17 21-mar-2014 MG650018 

Bacillus pumilus Honey Bee fermented pollen  Sp26 01-oct-2015 MG650045 

Bacillus pumilus Gut of Osmia bicornis Sp114 1-apr-2016 MG645313 

Bacillus safensis Gut of Osmia bicornis Sp122 1-apr-2016 MG645314 

Bacillus simplex Gut of Osmia bicornis LRV34 1-apr-2016 MG645295 

Bacillus simplex Gut of Osmia cornuta Sp57 1-apr-2016 MG645300 

Bacillus simplex Dead Honey Bee Larvae Sp37 01-oct-2015 MG650039 

Bacillus subtilis  Gut of Apis mellifera subsp. ligustica Sp8 21-mar-2014 MG650012 

Bacillus thuringiensis  Honey Bee fermented pollen  Sp15 21-mar-2014 MG650016 

Bacillus toyonensis Honey Bee fermented pollen  Sp27 01-oct-2015 MG650046 

Bacillus toyonensis  Gut of Apis mellifera subsp. ligustica Q1Q 21-mar-2014 MG650020 

Bifidobacterium actinocoloniiforme Gut of Xylocopa violacea XV11B 1-mar-2016 MG597283 
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Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica Dan1 5-dec-2014 MG601136 

Bifidobacterium asteroides Gut of Osmia bicornis LRV11 1-apr-2016 MG645294 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB5 21-mar-2014 MG650000 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB6  21-mar-2014 MG650001 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB7 21-mar-2014 MG650002 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB8  21-mar-2014 MG650003 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB10 21-mar-2014 MG650004 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica BB23 21-mar-2014 MG650006 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica Dan10 21-mar-2014 MG650023 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica Dan44 21-mar-2014 MG650024 

Bifidobacterium asteroides Gut of Apis mellifera subsp. ligustica Dan19 21-mar-2014 MG650026 

Bifidobacterium coryneforme Gut of Osmia cornuta OCV28 1-apr-2016 MG597271 

Bifidobacterium coryneforme Gut of Osmia bicornis ORV8 1-apr-2016 MG597273 

Bifidobacterium coryneforme Gut of Osmia bicornis ORV23 1-apr-2016 MG597275 

Bifidobacterium coryneforme Gut of Osmia bicornis ORV27 1-apr-2016 MG597276 

Bifidobacterium coryneforme Gut of Apis mellifera subsp. ligustica BB11 21-mar-2014 MG650005 

Bifidobacterium coryneforme Gut of Apis mellifera subsp. ligustica BB25 21-mar-2014 MG650007 

Bifidobacterium coryneforme Gut of Apis mellifera subsp. ligustica BB26 21-mar-2014 MG650008 

Bifidobacterium coryneforme Gut of Apis mellifera subsp. ligustica BB33 21-mar-2014 MG650009 

Bifidobacterium coryneforme Gut of Apis mellifera subsp. ligustica Dan103 21-mar-2014 MG650025 

Bifidobacterium coryneforme  Gut of Osmia bicornis ORV30 1-apr-2016 MG597277 

Bifidobacterium coryneforme  Gut of Apis mellifera subsp. ligustica BB1 21-mar-2014 MG649993 

Bifidobacterium sp. Gut of Xylocopa violacea XV2B 1-mar-2016 MG597278 

Candidatus Bifidobacterium xylocopae  
 

 
 

Bifidobacterium sp. Gut of Xylocopa violacea XV10B 1-mar-2016 MG597282 

Candidatus Bifidobacterium aemilianum   
 

 
 

Bifidobacterium sp. Gut of Xylocopa violacea XV16B 1-mar-2016 MG597285 

Ewingella americana Gut of Osmia bicornis Sp112   1-apr-2016 MG645312 

Fructobacillus fructosus Gut of Osmia bicornis LRV37 1-apr-2016 MG645296 

Fructobacillus fructosus Gut of Osmia cornuta Sp61 1-apr-2016 MG645301 

Fructobacillus fructosus Gut of Osmia cornuta Sp63 1-apr-2016 MG645302 

Fructobacillus fructosus Gut of Osmia bicornis Sp125 1-apr-2016 MG645315 

Fructobacillus fructosus  Gut of Osmia cornuta LCV 67 1-apr-2016 MG645282 

Gilliamella apicola  Gut of Apis mellifera subsp. ruttneri  MT1 1-apr-2016 MG601164 

Gilliamella apicola  Gut of Apis mellifera subsp. ruttneri  MT6 1-apr-2016 MG601169 

Hafnia alvei Gut of Apis mellifera subsp. ligustica AC1 21-mar-2014 MG649994 

Klebsiella oxytoca  Gut of Apis mellifera subsp. ruttneri  MT11 1-apr-2016 MG601168 

Lactobacillus apis Gut of Apis mellifera subsp. ligustica Dan63 5-dec-2014 MG601154 

Lactobacillus apis Gut of Osmia bicornis LRV 4 1-apr-2016 MG645292 

Lactobacillus apis Gut of Osmia bicornis LRV55 1-apr-2016 MG645297 

Lactobacillus apis  Gut of Apis mellifera subsp. ruttneri  MT61 1-apr-2016 MG601166 

Lactobacillus apis  Gut of Apis mellifera subsp. ruttneri  MT76 1-apr-2016 MG601165 

Lactobacillus bombi  Gut of Xylocopa violacea XV2L 1-mar-2016 MG597279 

Lactobacillus bombi  Gut of Xylocopa violacea XV5L 1-mar-2016 MG597280 

Lactobacillus bombi  Gut of Xylocopa violacea XV8L 1-mar-2016 MG597281 

Lactobacillus bombi  Gut of Xylocopa violacea XV17L 1-mar-2016 MG597286 

Lactobacillus graminis  Gut of Osmia cornuta LCV 62 1-apr-2016 MG645281 

Lactobacillus helsinborgensis Gut of Apis mellifera subsp. ligustica Dan16 5-dec-2014 MG601141 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan4 5-dec-2014 MG601138 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan51 5-dec-2014 MG601148 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan56 5-dec-2014 MG601150 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan61 5-dec-2014 MG601152 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan70 5-dec-2014 MG601155 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan75 5-dec-2014 MG601156 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan101 5-dec-2014 MG601159 

Lactobacillus helsingborgensis Gut of Apis mellifera subsp. ligustica Dan102 5-dec-2014 MG601160 

Lactobacillus jhonsonii Gut of Apis mellifera subsp. ligustica Dan92 5-dec-2014 MG601158 

Lactobacillus kimbladii Gut of Apis mellifera subsp. ligustica Dan46 5-dec-2014 MG601146 
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Lactobacillus kimbladii Gut of Apis mellifera subsp. ligustica Dan47 5-dec-2014 MG601147 

Lactobacillus kimbladii Gut of Apis mellifera subsp. ligustica Dan62 5-dec-2014 MG601153 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan21 5-dec-2014 MG601142 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan23 5-dec-2014 MG601143 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan25 5-dec-2014 MG601144 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan54 5-dec-2014 MG601149 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan59 5-dec-2014 MG601151 

Lactobacillus kullabergensis Gut of Apis mellifera subsp. ligustica Dan104 5-dec-2014 MG601161 

Lactobacillus kullabergensis  Gut of Apis mellifera subsp. ligustica Dan6 5-dec-2014 MG601139 

Lactobacillus kullabergensis  Gut of Apis mellifera subsp. ligustica Dan14 5-dec-2014 MG601140 

Lactobacillus kunkeei Gut of Osmia bicornis LRV 5 1-apr-2016 MG645293 

Lactobacillus kunkeei  Gut of Apis mellifera subsp. ruttneri  Gh1 1-apr-2016 MG601170 

Lactobacillus kunkeei  Gut of Apis mellifera subsp. ruttneri  Gh2 1-apr-2016 MG601171 

Lactobacillus kunkeei  Gut of Apis mellifera subsp. ruttneri  Gh3 1-apr-2016 MG601172 

Lactobacillus kunkeei  Gut of Apis mellifera subsp. ruttneri  MT39 1-apr-2016 MG601167 

Lactobacillus kunkeii Gut of Apis mellifera subsp. ligustica Dan39 5-dec-2014 MG601145 

Lactobacillus mali  Gut of Vespa Crabro VC29 01-may-2017 MG650029 

Lactobacillus melliventris Gut of Apis mellifera subsp. ligustica Dan2 5-dec-2014 MG601137 

Lactobacillus melliventris  Gut of Apis mellifera subsp. ruttneri  MT53 1-apr-2016 MG601163 

Lactobacillus plantarum Gut of Apis mellifera subsp. ligustica Dan91 5-dec-2014 MG601157 

Lactobacillus sp. Gut of Xylocopa violacea XV13L 1-mar-2016 MG597284 

Candidatus Lactobacillus xylocopus  
 

 
 

Lactococcus lactis subsp. cremoris  Gut of Polystes gallica PG29 01-may-2017 MG650033 

Lactococcus lactis subsp. hordniae Gut of Osmia cornuta Sp79 1-apr-2016 MG645305 

Lactococcus lactis subsp. hordniae  Gut of Polystes gallica PG69 01-may-2017 MG650032 

Leuconostoc mesenteroides Gut of Osmia cornuta LCV 77 1-apr-2016 MG645284 

Leuconostoc mesenteroides Gut of Osmia cornuta LCV 79 1-apr-2016 MG645286 

Leuconostoc mesenteroides Gut of Osmia cornuta LCV 83 1-apr-2016 MG645288 

Leuconostoc mesenteroides Gut of Osmia cornuta LCV 100 1-apr-2016 MG645289 

Leuconostoc mesenteroides  Gut of Osmia cornuta LCV 78 1-apr-2016 MG645285 

Leuconostoc mesenteroides  Gut of Vespa Crabro VC32 01-may-2017 MG650027 

Leuconostoc mesenteroides  Gut of Vespa Crabro VC30 01-may-2017 MG650028 

Leuconostoc pseudomesenteroides Gut of Osmia cornuta Sp89 1-apr-2016 MG645308 

Macrococcus equipercicus  Honey bee wax CF1 01-may-2017 MG649989 

Microbacterium azadirachtae  Gut of Apis mellifera subsp. ligustica T1T 21-mar-2014 MG650021 

Micrococcus yunnanensis  Honey bee wax PA1 01-may-2017 MG649988 

Obesumbacterium proteus Gut of Apis mellifera subsp. ligustica AC9 21-mar-2014 MG649997 

Obesumbacterium proteus Gut of Apis mellifera subsp. ligustica AC10 21-mar-2014 MG649998 

Paenibacillus alvei  Honey  Sp30 01-jul-2015 MG650049 

Paenibacillus alvei  Honey  Sp33 01-jul-2015 MG650050 

Paenibacillus chitinolyticus  Honey Bee fermented pollen  Sp18 21-mar-2014 MG650019 

Paenibacillus dendritiformis Dead Honey Bee Larvae PA(B) 01-oct-2015 MG650034 

Paenibacillus dendritiformis Dead Honey Bee Larvae PA(C) 01-oct-2015 MG650035 

Paenibacillus dendritiformis Dead Honey Bee Larvae PA(A) 01-oct-2015 MG650036 

Paenibacillus humicus Honey  Sp29 01-jul-2015 MG650048 

Paenibacillus larvae Dead Honey Bee Larvae Sp19 01-oct-2015 MG650037 

Paenibacillus larvae Honey Bee fermented pollen  Sp28 01-oct-2015 MG650047 

Paenibacillus larvae Dead Honey Bee Larvae SAN 01-oct-2015 MG650056 

Paenibacillus peoriae Gut of Osmia cornuta OCV20 1-apr-2016 MG597268 

Paenibacillus taichungensis Honey  596op 01-oct-2015 MG650057 

Paenibacillus xylanilyticus Gut of Apis mellifera subsp. ligustica SP42 01-oct-2015 MG650054 

Paenibacillus yonginensis Debrides F3 01-oct-2015 MG650058 

Propionibacterium acnes Gut of Osmia cornuta OCN3 1-apr-2016 MG597262 

Propionibacterium acnes Gut of Osmia cornuta OCN10 1-apr-2016 MG597263 

Propionibacterium acnes Gut of Osmia cornuta OCV2 1-apr-2016 MG597265 

Propionibacterium acnes Gut of Osmia cornuta OCV18 1-apr-2016 MG597267 

Propionibacterium acnes  Gut of Osmia cornuta OCN2 1-apr-2016 MG597261 

Propionibacterium acnes  Gut of Osmia cornuta OCV21 1-apr-2016 MG597269 
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Propionibacterium acnes  Gut of Osmia bicornis ORV20 1-apr-2016 MG597274 

Propionibacterium granulosum Gut of Osmia cornuta OCV7 1-apr-2016 MG597266 

Propionibacterium granulosum Gut of Osmia cornuta OCV26 1-apr-2016 MG597270 

Rosenbergiella epipactidis Gut of Osmia cornuta Sp65 1-apr-2016 MG645303 

Rosenbergiella epipactidis Gut of Osmia cornuta Sp69 1-apr-2016 MG645304 

Serratia liquefaciens Gut of Apis mellifera subsp. ligustica AC4 21-mar-2014 MG649995 

Serratia marcescens  Gut of Apis mellifera subsp. ligustica AC8  21-mar-2014 MG649996 

Serratia nematodiphila Debrides 1A 01-oct-2015 MG650059 

Staphylococcus epidermidi Gut of Osmia cornuta LCN 137 1-apr-2016 MG645275 

Staphylococcus epidermidis Gut of Osmia cornuta LCN129  1-apr-2016 MG645273 

Staphylococcus epidermidis Gut of Osmia cornuta LCN 138 1-apr-2016 MG645276 

Staphylococcus epidermidis Gut of Osmia cornuta LCN 142 1-apr-2016 MG645278 

Staphylococcus epidermidis Gut of Osmia cornuta LCN 148 1-apr-2016 MG645279 

Staphylococcus epidermidis Gut of Osmia cornuta LCN 148 1-apr-2016 MG645280 

Staphylococcus epidermidis  Gut of Osmia cornuta LCN122 1-apr-2016 MG645271 

Staphylococcus epidermidis  Gut of Osmia cornuta LCN127 1-apr-2016 MG645272 

Staphylococcus epidermidis  Gut of Osmia cornuta LCN 141 1-apr-2016 MG645277 

Staphylococcus hominis  Honey bee wax CD1 01-may-2017 MG649991 

Staphylococcus lugdunensis  Gut of Apis mellifera subsp. ligustica BB2 21-mar-2014 MG649999 

Streptomyces pseudogriseolus Gut of Osmia cornuta Sp49 1-apr-2016 MG645299 

Vagococcus entomophilus Gut of Osmia cornuta OCV32 1-apr-2016 MG597272 

Vagococcus entomophilus  Gut of Vespa Crabro VC23 01-may-2017 MG650030 

Vagococcus entomophilus  Gut of Vespa Crabro VC21 01-may-2017 MG650031 

Weissella cibaria Gut of Osmia cornuta LCN136 1-apr-2016 MG645274 

Weissella cibaria Gut of Osmia cornuta LCV 68 1-apr-2016 MG645283 

Weissella cibaria Gut of Osmia cornuta LCV 81 1-apr-2016 MG645287 

Weissella cibaria Gut of Osmia cornuta LCV 117 1-apr-2016 MG645290 

Weissella cibaria Gut of Osmia cornuta LCV 118 1-apr-2016 MG645291 

 

NOTE: Most of GeneBank Accession Numbers have a programmed release for the public 

set for January 2019. 

Table 4: Table of isolates; identified species compared with total number of the same isolate and strains 

number. 

Scientific Name  
Total 

isolates  

Different 
fingerprinting 

pattern  

Representative Strain reference according to 
fingerprinting analysis 

Achromobacter xylosoxidans  1 1 "x" 
Acinetobacter nectaris  13 7 sp 43; Sp45; sp84; Sp92; Sp93; Sp100; Sp106; 
Bacillus aerius  4 3 Sp11; Sp12; Sp38  
Bacillus amyloliquefaciens  6 4 Sp16; Sp20; Sp25; Sp43 
Bacillus aryabhattai 2 2 Sp36; Sp41; 
Bacillus cereus 4 4 Sp21; Sp23; Sp24; Sp35 
Bacillus licheniformis 3 3 Sp1; Sp2; Sp9 
Bacillus mojavensis  1 1 Sp17 

Bacillus pumilis 
2 1 Sp26; 
1 1 Sp114; 

Bacillus safensis 1 1 Sp122; 

Bacillus simplex 

1 2 LRV15; LRV34 
1 1 Sp57: 
1 1 Sp37 

Bacillus sp. 1 1 F2 
Bacillus subtilis  10 2 Sp8; K84 
Bacillus thuringiensis  1 1 Sp15 
Bacillus toyonensis 2 2 Sp27; "o" 
Bifidobacterium actinocoloniiforme 12 2 XV 11 Bif; XV 16 Bif;  
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Bifidobacterium asteroides 

2 2 LRV11 

11 11 
Dan1; Dan10; Dan19; Dan44; Dan66; BBee10; 
BBee23;BBees5; BBees6; BBees7; BBees8; 

2 2 OCV28; OCN12 

Bifidobacterium coryneforme 
12 4 ORV8; ORV23; ORV27; ORV30 

5 5 Dan103; BBees11; BBees25; BBees26; BBees33 
Bifidobacterium sp. 1 1 1 XV 2 Bif 
Bifidobacterium sp. 2 1 1 XV 10 Bif 
Ewingella americana  8 1 Sp112; 

Fructobacillus fructosus 
8 2 LRV37; LCV 67 
9 3 Sp61; Sp63; Sp125; 

Hafnia alvei  1 1 AC1 

Lactobacillus apis 
4 2 LRV 4; LRV55; 
1 1 Dan63 

Lactobacillus bombi 16 3 XV 2 Lac; XV 5 Lac; XV 8 Lac; XV 17 Lac  
Lactobacillus graminis 1 1 LCV 62 

Lactobacillus helsingborgensis 30 8 
Dan4; Dan16; Dan51; Dan56; Dan70; Dan75; Dan101; 
Dan102 

Lactobacillus jonsoni 1 1 Dan92 
Lactobacillus kimbladii 3 3 Dan46; Dan47; Dan62 
Lactobacillus kullabergensis 33 7 Dan6; Dan14; Dan21; Dan25; Dan54; Dan59; Dan104 

Lactobacillus kunkeei 

14 1 LRV 5 
70 10 Gh1; Gh2; Gh3; Gh4; Gh5; Gh6, Gh7; Gh8; Gh9; Gh10  
1 1 Dan39 

Lactobacillus mali  4 1 VC28;  
Lactobacillus melliventris 1 1 Dan2  
Lactobacillus plantarum 1 1 Dan91 
Lactobacillus sp. 1 1 XV13 Lac 
Lactococcus lactis subsp. cremoris 5 1 PG29  

Lactococcus lactis subsp. hordniae  
2 1 Sp79; 
1 1 PG69 

Leuconostoc mesenteroides 
18 5 LCV 77, LCV 78, LCV 79; LCV 83; LCV 100; 
4 2 VC32; VC30;  

Leuconostoc pseudomesenteroides 2 1 Sp89; 
Mellissococcus plutonius 1 1 PA(MP) 
Microbacterium azadirachtae  1 1 "[]" 
Paeniacillus xylanilyticus 2 1 Sp42 
Paenibacillus alvei 3 3 PA(A); Sp30; Sp33 
Paenibacillus chitinolyticus  1 1 Sp18 
Paenibacillus dendritiformis  3 3 PA(P); PA(B); PA(C); 
Paenibacillus humicus 1 1 Sp29 
Paenibacillus larvae 3 3 SAN-AFB; SP19; SP28 
Paenibacillus peoriae 1 1 OCV20  
Paenibacillus Sp.  1 1 F3 
Paenibacillus taichungensis 1 1 596op 
Pantoea brenneri  1 1 Sp78; 

Propionibacterium acnes 
11 1 ORV20 

22 7 ORN3; OCN2; OCN3; OCN10; OCV2; OCV18; OCV21 

Propionibacterium granulosum 1 2 OCV7; OCV26 
Rosenbergiella epipactidis  6 2 Sp65; Sp69, 
Serratia liquefaciens  7 1 AC4 
Serratia marcescens  9 1 AC8 
Serratia nematodiphila 2 2 F1A; F1B  

Staphylococcus epidermidis  25 8 
LCN122; LCN127; LCN129; LCN 137;LCN 138; LCN 
141;LCN 142; LCN 148 

Streptomyces pseudogriseolus 1 1 Sp47: 

Vagococcus entomophilus  
2 1 OCV32 
2 2 VC23; VC21;  

Weissella cibaria  8 5 LCV 68; LCV 81; LCV 117; LCV 118; LCN136; 

 

Table 5: Table of isolation sources in relation to diversity detected.  
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ISOLATION SOURCE BACTERIAL SPECIES ISOLATED 

Gut of Apis mellifera subsp. ligustica Achromobacter xylosoxidans  

Bacillus aerius 

Bacillus amyloliquefaciens 

Bacillus aryabhattai 

Bacillus licheniformis 

Bacillus subtilis 

Bacillus toyonensis 

Bifidobacterium asteroids 

Bifidobacterium coryneforme 

Hafnia alvei 

Lactobacillus apis 

Lactobacillus helsingborgensis 

Lactobacillus jhonsoni 

Lactobacillus kimbladii 

Lactobacillus kullabergensis 

Lactobacillus kunkeei 

Lactobacillus melliventris 

Lactobacillus plantarum 

Microbacterium azadirachtae 

Obesumbacterium proteus 

Paenibacillus xylanilyticus 

Serratia liquefaciens 

Serratia marcescens 

Staphylococcus lugdunensis 

Gut of Apis mellifera subsp. ruttneri  Gilliamella apicola 
Klebsiella oxytoca 
Lactobacillus apis 
Lactobacillus kunkeei 
Lactobacillus melliventris 

Gut of Osmia bicornis Bacillus pumilus 

Bacillus safensis 

Bacillus simplex 

Bifidobacterium asteroids 

Bifidobacterium coryneforme 

Ewingella Americana 

Fructobacillus fructosus 

Lactobacillus apis 

Lactobacillus kunkeei 

Propionibacterium acnes 

Vagococcus entomophilus 

Gut of Osmia cornuta Acinetobacter nectaris 

Bifidobacterium coryneforme 

Fructobacillus fructosus 

Lactobacillus graminis 

Lactococcus lactis subsp. hordniae 

Leuconostoc mesenteroides 

Leuconostoc pseudomesenteroides 

Paenibacillus peoriae 

Propionibacterium acnes 

Propionibacterium granulosum 

Rosenbergiella epipactidis 

Staphylococcus epidermidis 

Streptomyces pseudogriseolus 

Weissella cibaria 

Gut of Xylocopa violacea Bifidobacterium actinocoloniiforme 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

45  
 

Candidatus Bifidobacterium xylocopae 

Candidatus Bifidobacterium aemilianum 

Lactobacillus bombi 

Candidatus Lactobacillus xylocopus 

Dead honeybee larvae Bacillus aerius 

Bacillus amyloliquefaciens 

Bacillus cereus 

Bacillus simplex 

Paenibacillus dendritiformis 

Paenibacillus larvae 

Honeybee fermented pollen Bacillus amyloliquefaciens 

Bacillus mojavensis 

Bacillus pumilus 

Bacillus thuringiensis 

Bacillus toyonensis 

Paenibacillus chitinolyticus 

Paenibacillus larvae 

Honey Bacillus cereus 

Paenibacillus alvei 

Paenibacillus humicus 

Paenibacillus taichungensis 

Honeybee wax 

Bacillus cereus 

Macrococcus equipercicus 

Micrococcus yunnanensis 

Staphylococcus hominis 

Gut of Vespa crabro Lactobacillus mali 
Leuconostoc mesenteroides 
Vagococcus entomophilus 

Gut of Polystes gallica Lactococcus lactis subsp. cremoris 
Lactococcus lactis subsp. hordniae 

 

A virtual machine (Microsoft Azure Services https://azure.microsoft.com/it-it/ ) consisting of 

120 GB of RAM memory and 16 Processors was used for any bioinformatic analysis. 

Phylogenetic three representing the diversity of isolates was obtained with Qiime 2 (Figure 

3), using the Python scripts: 

align_seqs.py -i Seq_PhD_all.fasta -m pynast -a uclust -e 50% -p 0.50 -o 

dani_aligned/ 

 
where: 
-i, --input_fasta_fp 

-m, --alignment_method 

-a, --pairwise_alignment_method 

-e, --min_length 

-p, --min_percent_id 

-o, --output_dir 

 
make_phylogeny.py -i /media/data/Tree/dani_aligned/Seq_PhD_all_aligned.fasta -t 

fasttree -o dani2.tre -r midpoint 

 

where: 

-i, --input_fp 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086
https://azure.microsoft.com/it-it/


 

46  
 

-t, --tree_method 

-o, --result_fp 

-l, --log_fp 

-r, --root_method 

 

Final phylogenetic three Figure 3 was obtained loading the Qiime 2 output in MEGA6. 

 

 

 
Figure 3: philogenetic three of isolates, colors reported rapresent the main bacterial family in the colored clade 
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In this isolation work, a total of 4 novel species were detected:  

- Bifidobacterium sp. Xv2 

- Bifidobacterium sp. Xv10 

- Lactobacillus sp. Xv13L 

- Bacillus sp. F2 

 

The full characterization of Xv2 and Xv10 as novel species is described in the following 

chapter, whereas characterization of strains Xv13L and F2 is still ongoing, and it was 

decided not to consider it from this thesis work. 
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Abstract: 

Social bees, including honeybees, harbor a community of gut mutualistic bacteria, among 

which bifidobacteria occupy an important niche. Recently four novel species have been 

isolated from guts of different bumblebees, thus allowing us to suppose that a core 

bifidobacterial population may also be present in wild solitary bees. To date there is only 

sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., 

this study is therefore focused on the isolation and characterization of bifidobacterial strains 

from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia 

cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp., strains 

belonging to Bifidobacterium asteroides and Bifidobacterium coryneforme species have 

been detected whereas among Xylocopa isolates four strains (XV2, XV4 XV10 and XV16) 

belonging to putative new species were found. The newly isolated strains are gram-positive, 

non-spore-forming, lactate- and acetate-producing and possess the fructose-6-phosphate 

phosphoketolase enzyme. Full genome sequencing and genome annotation were 

performed as well as phenotypic tests. Phylogenetic relationships were determined using 

complete 16S rRNA sequences and hsp60 restriction analysis. The presence of genes 

involved in sugar utilization, hemolytic activity and vitamin biosynthetic pathway are 

discussed. The results support the proposal of two novel species Bifidobacterium xylocopae 

sp. nov. whose type strain is XV2 (=DSM 104955T = LMG 30142T), reference strain XV16 

and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T = LMG 

30143T), reference strain XV4. 

 

Introduction: 

Bifidobacteria are commensal anaerobic bacteria of the human and animal gut, where they 

exert important functions for the host. In-depth studies of bifidobacteria type-strain genomes 

support the hypothesis of co-evolution with the host with both DNA acquisition and loss 

events (Milani et al., 2014). This taxon constitutes one of the most numerous groups of 

beneficial bacteria in the gut contributing to the intestinal microbiota in different percentages 

depending on the host species, age and diet (Turroni et al., 2008). Different molecules have 

been described and characterized to date as mediators of the Bifidobacterium cross-talk 

with the host (Ruiz et al., 2016; Grimm et al., 2014, Ventura et al., 2012) and accountable 

for a number of positive effects in host development and physiology (Bottaccini et al., 2014; 

Sommer and Bäckhed, 2013). As mammals, insects rely on a mutualistic gut microbial 

community. In some insects, such as several ant species, the microbiota seems to be 

acquired from the food and the environment (Engel and Moran 2013), whereas in honeybees 

and bumble bees it looks more host-specific (Kwong and Moran 2015). These specialized 

bacteria may influence host nutrition, as they contain genes involved in carbohydrate 

digestion (Engel et al. 2012), and contribute to host defense and physiology (Mohr et al. 

2006; Hamdi et al. 2011). Whether gut microbes are environmentally acquired or host-

specific, they are extremely important for the host health status and bifidobacteria represents 

an important gut taxon to be investigated for its beneficial properties. Bifidobacterial 

population has been characterized in the sixties in some pollinating insects, including the 

honeybees Apis mellifera and Apis cerana, and isolated strains were classified as new 

species: Bifidobacterium coryneforme, Bifidobacterium asteroides and Bifidobacterium 
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indicum (Scardovi and Trovatelli, 1969). Later studies, aimed at the identification of 

dominant and recurring honeybee-associated gut microorganisms, confirmed bifidobacteria 

as stable colonizers/inhabitants of honeybee gut (Sabree et al. 2012). Honeybees are not 

the only pollinators harboring bifidobacteria: in the last decade four novel species have been 

identified from Bombus spp. gut: Bifidobacterium bombi, Bifidobacterium actinocoloniforme 

and Bifidobacterium bohemicum from the digestive tract of Bombus lucorum and 

Bifidobacterium commune from Bombus lapidarius (Killer et al. 2009 and 2011; Praet et al. 

2015). However, no information is available in the literature on the presence of bifidobacteria 

in solitary bees such as Xilocopa spp., known as carpenter bees for their ability to burrow 

into hard plant material, and Osmia spp., known as mason bees for their habit of using mud 

or other “masonry” products to construct their nests. These bees exert a highly efficient non-

contracted pollination service (Woodcock et al. 2013). Xylocopa species are known to 

pollinate several crops, such as legums, aubergine, broccoli etc. (Thapa, 2006; Vicidomini 

1997) and several fruit crops, especially Prunus spp. (Vicidomini 1997, Dar et al., 2013), 

thus assuming great value for crop pollination strategies. Osmia spp., especially Osmia 

cornuta, are also of utmost importance for orchard pollination, especially for Rosaceae 

family plants, like pear and apple and also for almond (Maccagnani et al., 2003; Bosh, 1994).  

The health status of solitary bees is crucial for the maintenance of the pollination service. In 

the last century, many wild bee populations, including solitary bees, have become reduced 

in number and the loss of their genetic diversity makes them more vulnerable to infectious 

diseases and other stressors such as pesticides (Graystock et al. 2013; Sgolastra et al., 

2017). Moreover, the spread of parasitic infections from managed bees to wild bees has 

been reported and recently reviewed by Graystock et al. (2013), and represents a potential 

threat for wild bees’ population. The gut of insects may harbor one of the largest reservoirs 

of a yet unexplored microbial diversity. A deeper knowledge of the gut microorganisms of 

alternative pollinators, such as Osmia and Xilocopa, could be of great importance, since 

their health status depends on the presence and activity of commensal microorganisms as 

for any other animal. Novel strains might show a potential as beneficial bacteria for pollinator 

insects, reinforcing attempts to establish a beneficial bacteria strategy for bee health (Baffoni 

et al. 2016; Alberoni et. al., 2016; Alberoni et. al., 2018). This work is therefore aimed at 

increasing the knowledge on the presence and diversity of cultivable bifidobacteria in solitary 

bees, in particular in the genera Xilocopa and Osmia.  

Materials and methods and results: 

In spring 2016, worker carpenter bees were collected in a flowery meadow in Spilamberto 

(Modena, Italy), whereas builder and red mason bees were collected in a rearing field 

located in Cadriano (Bologna, Italy) and promptly transferred to the laboratory. All bees were 

anesthetized, and their gut content was extracted, weighted, serially diluted and plated on 

two different media for bifidobacteria isolation: Tryptone, Phytone, and Yeast extract (TPY) 

agar medium (Mazzola et al., 2015) supplemented with mupirocin (200 mgL-1) and de Man 

Rogosa Sharpe (MRS) agar medium (Scharlau Chemie, Gato Perez, Spain) supplemented 

with fructose (10 gL-1), cysteine (1 gL-1) (Olofsson et al., 2014) and cycloheximide (0.01 mgL-

1). Antibiotics were purchased from Sigma Aldrich (Steinheim, Germany). Plates were 

incubated 5 days at 35 °C, in both anaerobic and microaerophilic atmosphere generated in 
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jars with GasPakTM EZ (Becton, Dickinson Co., Sparks, MD, USA). Morphologically different 

colonies were randomly picked from both media, re-streaked on the corresponding agar 

medium and purity checked prior to further analysis. A total of thirty-three, thirty-four, twenty-

four bifidobacteria isolates were obtained from Xylocopa violacea, Osmia cornuta and 

Osmia rufa (synonym Osmia bicornis), respectively. Pure cultures were prepared for 

cryoconservation in stocks at -80°C. Chromosomal DNA was extracted from each isolate 

with Wizard® Genomic DNA Purification Kit (Promega, Madison, Wi, USA). Isolates were 

characterized with two PCR-dependent fingerprinting techniques. Randomly amplified 

polymorphic DNA (RAPD) PCR was carried out in a reaction mixture composed of 10 μL 

HotStarTaq Master Mix (QIAGEN GmbH, Hilden, Germania), 2 μL of 20 μM primer M13 (5'-

GAGGGTGGCGGTTCT-3') (Andrighetto et al., 2001), 1.2 μL of template DNA (50 ng/µl) 

and water to the total volume of 20 μL. Enterobacterial repetitive intergenic consensus 

(ERIC) sequence PCR were carried out using the same protocol except for the primers 

ERIC-1 (5'-ATGTAAGCTCCTGGGGATTCAC-3') and ERIC-2 (5'-

AAGTAAGTGACTGGGGTGAGCG-3') (Versalovic et al., 1991) (0.5 μM of each primer). The 

amplification products were run on a 2% (w/vol) agarose gel, containing 0.05 μL/mL SYBR 

Safe, in a Tris-borate-EDTA (TBE) buffer, at 120 V for 4 hours. Gel images were captured 

with GelDoc (BioRad Laboratories, Hercules, CA, USA). Fingerprinting profile patterns were 

analyzed with GelCompar II 6.6 (Applied Maths, Kortrijk, Belgium) using the DICE coefficient 

and the UPMGA clustering algorithm. In cluster analysis the cut-off value was defined 

obtaining 5 clusters in fingerprinting profiles of microbial isolates from X. violacea (Figure 

S1), and 9 clusters in fingerprinting profiles of microbial isolates from O. cornuta and O. rufa 

(Figure S2).  

 

Figure S1 ERIC-PCR on isolates from Xylocopa violacea. Cluster analysis of ERIC-PCR fingerprinting on 

bacterial isolates from Xylocopa violacea. 
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Figure S2 ERIC-PCR on isolates form Osmia cornuta and Osmia rufa. Cluster analysis of ERIC-PCR 
fingerprinting on bacterial isolates from Osmia cornuta and Osmia rufa. 
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A representative strain for each cluster was further processed. DNA amplification of the 16S 

rRNA gene was performed with primers 27f (5'-AGAGTTTGATCCTGGCTCAG-3') and 

1492r (5'-GGTTACCTTGTTACGACT-3') (Lane, 1991) according to Gaggìa et al. (2013). 

Amplicons were purified (NucleoSpin® Gel and PCR Clean-up kit; Macherey-Nagel GmbH 

Co. KG, Germany) and sent to a commercial sequencing facility (Eurofins MWG, Edersberg, 

Germany). Sequence chromatograms were analyzed using the software program FinchTV 

version 1.4.0 (Geospiza Inc., Seattle, WA, USA), manually edited, classified using the RDP 

classifier (Wang et al., 2007) and deposited in GeneBank nucleotide database (accession 

numbers MG597261- MG597286) (Table 1). Recent studies show how gut microbial 

population of honeybees (Apis mellifera) is transmitted horizontally through contact with 

nurse bees, fresh faces or hive surfaces (Martinson et al. 2011), therefore it can be defined 

as a “socially transmitted gut microbiota”. On the contrary, Osmia and Xylocopa genera 

consist of solitary bees, therefore social transmission at the time of edging is hardly occurring 

as also evidenced by Lozo et al. (2015). In recent studies (Lozo et al., 2015 and Keller et 

al., 2013) Bifidobacterium species were not detected in mason bees alimentary tract. In our 

study, on the contrary, isolates from Osmia spp. in TPY agar medium were identified as 

Propionibacterium acnes, Propionibacterium granulosum, B. asteroides, B. coryneforme 

and B. indicum (Table 1), showing a similarity with Apis mellifera bifidobacteria core species.  

One can hypothesize an acquisition of bifidobacteria from food sources (flowers) that might 

be occasionally shared between solitary and honeybees (McFrederick et al. 2012; Koch et 

al 2013). Novel species were not detected in Osmia spp. gut.  

Table 1 Identification of isolates based on 16S rDNA sequences and RDP SeqMatch tool. 

Strain Microorganism Isolation source 
GenBank (Accession 

number) 
S_ab score* 

OCN2 Propionibacterium acnes  Osmia cornuta MG597261 1.000 

OCN10 Propionibacterium acnes Osmia cornuta MG597263 1.000 

OCV2 Propionibacterium acnes Osmia cornuta MG597265 0.909 

OCV7 Propionibacterium granulosum Osmia cornuta MG597266 0.956 

OCV18 Propionibacterium acnes Osmia cornuta MG597267 0.989 

OCV20 Paenibacillus jamilae Osmia cornuta MG597268 0.948 

OCV21 Propionibacterium acnes  Osmia cornuta MG597269 0.993 

OCV26 Propionibacterium granulosum Osmia cornuta MG597270 0.969 

OCV28 Bifidobacterium indicum Osmia cornuta MG597271 0.946 

OCV32 Vagococcus entomophilus Osmia cornuta MG597272 0.998 

ORV8 Bifidobacterium coryneforme Osmia rufa MG597273 0.943 

ORV20 Propionibacterium acnes  Osmia rufa MG597274 0.998 

ORV27 Bifidobacterium coryneforme Osmia rufa MG597276 0.934 

ORV30 Bifidobacterium indicum Osmia rufa MG597277 0.940 

XV2 Bifidobacterium sp. Xylocopa violacea MG597278 

Complete: MH043275 

0.842 

XV2L Lactobacillus bombi  Xylocopa violacea MG597279 0.952 

XV4 Bifidobacterium sp. Xylocopa violacea MH043274 0.834 

XV5L Lactobacillus bombi  Xylocopa violacea MG597280 0.945 

XV8L Lactobacillus bombi  Xylocopa violacea MG597281 0.943 

XV10 Bifidobacterium sp. Xylocopa violacea MG597282 

Complete: MH043276 

0.859 

XV11B Bifidobacterium actinocoloniiforme Xylocopa violacea MG597283 0.932 

XV13L Lactobacillus sp. Xylocopa violacea MG597284 0.864 

XV16 Bifidobacterium sp. Xylocopa violacea MG597285 0.928 

XV16L Lactobacillus bombi Xylocopa violacea MH043277 0.942 

XV17L Lactobacillus bombi  Xylocopa violacea MG597286 0.944 
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*S_ab score is the percentage of shared 7-mers between two sequences and do not require an alignment 

 

Among TPY and MRS isolates from X. violacea (Table 1), XV2 (together with XV16), XV10 

(together with XV4), and XV13L 16S rDNA partial sequences gave a similarity score that 

deserved an in-depth analysis. For this purpose, the web tool EMBOSS-Water (EMBL-EBI 

release), relaying on the Smith-Waterman algorithm, was used to calculate local alignment 

and similarity percentages of full 16S rDNA sequences obtained from full genome 

sequencing. A similarity of 95.7, 97.7 and 96.8% for XV2, XV10 and XV13L respectively was 

obtained comparing each strain with its closest type strain. These scores are below the 

threshold of 98.5% and consequently potential novel species candidates (Kim et al., 2014). 

Other isolates from Xylocopa violacea were Bifidobacterium actinocoloniiforme and 

Lactobacillus bombi, therefore allowing us to assume a certain affinity for food sources 

between carpenter bee and Bombus spp. Lactobacillus strain XV13L needs further 

characterization, so it will not be discussed in this paper, whereas Bifidobacterium sp. XV2 

and Bifidobacterium sp. XV10 are described and proposed as novel species.  

Genomic DNA from XV2 and XV10 strains was sequenced on the Illumina MiSeq NGS 

platform by BMR Genomics facilities (www.bmr-genomics.it), according to Illumina protocol 

for Nextera XT DNA library preparation. Reads were assembled into contigs with SPAdes 

3.7 according to Bankevich et al. (2012) and assembly quality assessed with QUAST 

(Gurevich et al., 2013). XV2 fastq output counted 2,634,000 reads whereas XV10 fastq 

output counted 3,007,626 reads corresponding to an esteemed coverage of 350x and 400x, 

respectively. The reads assembly output consisted in 242 contigs (1.95 Mbp) for XV2 and 

241 contigs (2.12 Mbp) for XV10. Average Nucleotide Identity values were calculated with 

PYANI (Pritchard et al. 2016), a python3 module, using different methods: ANIb (based on 

BLAST algorithm), ANIm (based on MUMmer algorithm) and TETRA (Tetranucleotide 

Signature Frequency Correlation Coefficient) as described by Richter and Rosselló-Móra 

(2009). ANI and TETRA values were obtained comparing XV2 and XV10 genomes between 

them and among genomes of bifidobacteria type strains reported in Table S1.  

 

Table S1 General features od Bifidobacterium genomes 

Ta

xon 

N° 

Bifidobacterium 

strains 

Genome 

size 

Covera

ge 

Sequencing 

Platform 
Isolation source 

RefSeq Assembly 

Accession 

01 
B. actinocoloniiforme 

DSM22766 
1,823,388 278.3x HiSeq 

Bumblebee digestive 

tract 
GCF_000771585.1 

02 B. adolescentis DSM 2,051,152 
unknow

n 
HiSeq Human adult gut GCF_000702865.1 

03 
B. aesculapii 

DSM26737 
2,693,486 418x MiSeq 

Faeces of baby 

common marmosets 
GCF_001417815.1 

04 
B. angulatum 

DSM20098 
1,993,784 278.3x HiSeq Human faeces GCF_000771205.1 

05 
B. animalis subsp 

animalis LMG10508 
1,915,007 61x IonTorrent Rat Faeces GCF_000741485.1 

06 
B. animalis subsp. 

lactis DSM10140 
1,938,483 

unknow

n 
unknown Fermented milk GCF_000022965.1 

07 
B. aquikefiri 

LMG28769 
2,408,364 96.25x MiSeq 

Household water 

kefir 
GCF_002259795.1 

08 
B. asteroides 

DSM20089 
2,138,592 278.3x HiSeq Honeybee hindgut GCF_000771125.1 

09 
B. biavatii  

DSM23969 
3,262,679 278.3x HiSeq Faeces of tamarin GCF_000771645.1 
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10 
B. bifidum  

DSM20456 
2,201,251 181x illumina 

Brest-feed infant 

faeces 
GCF_000466525.1 

11 
B. bohemicum 

DSM22767 
2,054,900 278.3x HiSeq 

Bumble bee digestive 

tract 
GCF_000771605.1 

12 
B. bombi  

DSM19703 
1,912,794 278.3x HiSeq 

Bumble bee digestive 

tract 
GCF_000771085.1 

13 
B. boum  

DSM20432 
2,161,188 278.3x HiSeq 2000 Bovine rumen GCF_000687615.1 

14 
B. breve  

DSM20213 
2,331,386 

unknow

n 
unknown Infant intestine GCF_000158015.1 

15 
B. callitrichos 

DSM23973 
2,867,214 278.3x HiSeq 

Faeces of common 

marmosets 
GCF_000771665.1 

16 
B. catenulatum  

DSM 16992 
2,082,756 31.2x Ion Torrent Adult intestine GCF_000741565.1 

17 
B. choerinum  

DSM 20434 
2,049,941 278.3x HiSeq Piglet faeces GCF_000771425.1 

18 
B. commune  

R-52791 
1,633,662 691x unknown Bumble bee gut GCF_900094885.1 

19 
B. coryneforme 

LMG18911 
1,755,151 182x IonTorrent Honeybee hindgut GCF_000737865.1 

20 
B. crudilactis 

LMG23609 
2,362,816 20x 454 Raw cow milk GCF_000738005.1 

21 B. cuniculi DSM20435 2,512,691 278.3x HiSeq Rabbit faeces GCF_000771465.1 

22 
B. dentium  

DSM 20436 
2,668,067 681x unknown Oral cavity GCF_900105745.1 

23 
B. eulemuris  

DSM 100216 
2,913,389 75.23x MiSeq 

Faeces of black 

lemur 
GCF_002259685.1 

24 
B. gallicum  

DSM 20093 
1,989,850 278.3x HiSeq Adult intestine GCF_000771165.1 

25 
B. gallinarum  

DSM 20670 
2,128,566 278.3x HiSeq Chicken caecum GCF_000771505.1 

26 
B. hapali  

DSM100202 
2,834,308 109.83x MiSeq 

Faeces of baby 

common marmosets 
GCF_002259755.1 

27 B. indicum LMG11587 1,734,546 108x IonTorrent 
Asiatic honeybee 

hindgut 
GCF_000706765.1 

28 
B. kashiwanohense 

DSM21854 
2,307,960 

64x 

 

IonTorrent 

 
Infant faeces GCF_000741605.1 

29 
B. lemurum 

DSM28807 
2,944,293 71.87x MiSeq 

Faeces of the ring-

tailed lemur 
GCF_002259665.1 

30 
B. longum subsp. 

infantis ATCC15697 
2,832,748 

unknow

n 
unknown Intestine of infant GCF_000020425.1 

31 
B. longum subsp. 

longum LMG13197 
2,384,703 34.8x IonTorrent Adult intestine GCF_000741245.1 

32 
B. longum subsp. suis 

DSM 20211 
2,389,965 278.3x HiSeq Pig faeces GCF_000771285.1 

33 B. magnum DSM20222 1,819,235 278.3x HiSeq Rabbit faeces GCF_000771365.1 

34 
B. merycicum  

DSM 6492 
2,274,683 508x HiSeq Bovine rumen GCF_900129045.1 

35 
B. minimum  

DSM 20102 
1,863,807 278.3x HiSeq Sewage GCF_000771245.1 

36 
B. mongoliense  

DSM 21395 
2,154,054 

278.3x 

 
HiSeq 

Fermented mare’s 

milk 
GCF_000771525.1 

37 
B. moukalabense DSM 

27321 
2,515,335 82.0x Ion Torrent 

Faeces of wild 

western lowland 

gorilla 

GCF_000522505.1 

38 
B. myosotis  

DSM 100196 
2,944,195 57.03x MiSeq 

Faeces of baby 

common marmosets 
GCF_002259745.1 

39 
B. pseudocatenulatum 

DSM 20438 
2,284,490 

278.3x 

 
HiSeq Infant faeces GCF_000771445.1 

40 

B. pseudolongum 

subsp. globosum  

DSM 20092 

1,915,040 278.3x HiSeq Bovine rumen GCF_000771145.1 

41 

B. pseudolongum 

subsp. pseudolongum 

DSM 20099 

1,901,000 278.3x HiSeq Swine faeces GCF_000771225.1 

42 
B. psychraerophilum 

DSM 22366 
2,621,124 278.3x HiSeq Pig caecum GCF_000771565.1 
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https://www.ncbi.nlm.nih.gov/assembly/219571/
https://www.ncbi.nlm.nih.gov/assembly/204361/
https://www.ncbi.nlm.nih.gov/assembly/219451/
https://www.ncbi.nlm.nih.gov/assembly/779621/
https://www.ncbi.nlm.nih.gov/assembly/202391/
https://www.ncbi.nlm.nih.gov/assembly/202511/
https://www.ncbi.nlm.nih.gov/assembly/219471/
https://www.ncbi.nlm.nih.gov/assembly/867841/
https://www.ncbi.nlm.nih.gov/assembly/1175361/
https://www.ncbi.nlm.nih.gov/assembly/219321/
https://www.ncbi.nlm.nih.gov/assembly/219491/
https://www.ncbi.nlm.nih.gov/assembly/1175401/
https://www.ncbi.nlm.nih.gov/assembly/186541/
https://www.ncbi.nlm.nih.gov/assembly/204381/
https://www.ncbi.nlm.nih.gov/assembly/1175351/
https://www.ncbi.nlm.nih.gov/assembly/41468/
https://www.ncbi.nlm.nih.gov/assembly/204201/
https://www.ncbi.nlm.nih.gov/assembly/219381/
https://www.ncbi.nlm.nih.gov/assembly/219421/
https://www.ncbi.nlm.nih.gov/assembly/910181/
https://www.ncbi.nlm.nih.gov/assembly/219361/
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43 
B. pullorum  

DSM 20433 
2,100,948 278.3x HiSeq Faeces of chicken GCF_000771405.1 

44 
B. reuteri  

DSM 23975 
2,836,004 278.3x HiSeq 

Faeces of common 

marmosets 
GCF_000771685.1 

45 
B. ruminantium  

DSM 6489 
2,230,329 278.3x HiSeq Bovine rumen GCF_000770925.1 

46 
B. saeculare  

DSM 6531 
2,251,259 278.3x HiSeq Rabbit faeces GCF_000770965.1 

47 
B. saguini  

DSM 23967 
2,773,425 278.3x HiSeq Faeces of tamarin GCF_000771625.1 

48 
B. scardovii  

DSM 13734 
3,143,954 736.0x MiSeq Human blood GCF_001005065.1 

49 
B. stellenboschense 

DSM 23968 
2,812,864 109x Ion Torrent Faeces of tamarin GCF_000741785.1 

50 
B. subtile  

DSM 20096 
2,761,997 278.3x HiSeq Sewage GCF_000771185.1 

51 

B. thermacidophilum 

subsp. porcinum  

DSM 17755 

2,062,568 278.3x HiSeq Piglet faeces GCF_000771045.1 

52 

B. thermacidophilum 

subsp. 

thermacidophilum 

DSM 15837 

2,220,989 278.3x HiSeq Anaerobic digester GCF_000771005.1 

53 
B. thermophilum DSM 

20210 
2,224,837 278.3x HiSeq Bovine rumen GCF_000771265.1 

54 B. tissieri DSM 100201 2,873,483 66.77x MiSeq 
Faeces of baby 

common marmosets 
GCF_002259645.1 

55 
B. tsurumiense  

DSM 17777 
2,164,426 

unknow

n 
HiSeq 

Hamster dental 

plaque 
GCF_000429745.1 

56 
B. vansinderenii 

Tam10B 
3,111,005 138x MiSeq 

Faeces of emperor 

tamarin 
GCF_002234915.1 

57 
Bifidobacterium sp. 

XV2 
1,879,339 350.6x MiSeq Carpenter bee gut PDCH00000000 

58 
Bifidobacterium sp. 

XV10 
2,051,263 400.5x MiSeq Carpenter bee gut PDCG00000000 

 

XV2 and XV10 showed the highest identity values between them with 78%, 86% and 95% 

respectively for ANIb, ANIm and TETRA. This percentages are far below the threshold of 

96% for ANIb and ANIm and 99% for TETRA proposed by Richter and Rosselló-Móra 

(2009), and mirroring the DDH value of 60-70% (Figure 1a, 1b). 
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https://www.ncbi.nlm.nih.gov/assembly/219551/
https://www.ncbi.nlm.nih.gov/assembly/338401/
https://www.ncbi.nlm.nih.gov/assembly/204481/
https://www.ncbi.nlm.nih.gov/assembly/219331/
https://www.ncbi.nlm.nih.gov/assembly/219261/
https://www.ncbi.nlm.nih.gov/assembly/219241/
https://www.ncbi.nlm.nih.gov/assembly/219371/
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Figure 1 Average Nucleotide Identity. Grafical outpur of Python module for average nucleotide identity 

analyses a) ANIb (BLAST+ algorithm) b)ANIm (MUMmer algorithm). 

 

a) 
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b) 

 
 

Three annotation programs based on different algorithms were used for the identification of 

the ORFs and subsequent functional annotation: i) PROKKA - rapid prokaryotic genome 

annotation software - (Seemann, 2014) implemented with HMMER package for ribosomal 

RNA profile annotation (Eddy, 2011); ii) BASys web server for in-depth annotation of raw 

genomes (Van Domselaar et al. 2005), providing valuable graphical information on genes 

orientation, as shown Figure 2a, 2b (and Figure S3, S4) 
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Figure 2 Genome annotation with BASys. Circular representation of the chromosome of a) Bifidobacterium sp. 

XV2 and b) Bifidobacterium sp. XV10 annotated with BASys (Bacterial Annotation System) according to van 

Domselaar et al. (2005). In the representation, red arrows are protein coding genes on the forward strand 

whereas blue arrows are protein coding genes in the reverse strand. With other colours the Clusters of 

Orthologous Groups (COG) functional categories of the protein coding genes in the forward (outermost circle) 

and reverse (innermost circle) directions are colour-coded as designated in the inset.  

 

 iii) Blast KOALA (KEGG tools), a web tool which performs KO (KEGG Orthology) 

assignments to characterize individual gene functions and reconstructs KEGG pathways, 

BRITE hierarchies and KEGG modules to infer high-level functions of the organism or the 

ecosystem (Kanehisa et al., 2016) (Figure 3a, 3b and Figure S5, S6). Raw reads, contigs 

assembly and feature tables were deposited on the NCBI database (Accession number 

PDCH00000000 and PDCG00000000). Genome annotations resulted in the prediction of 

1556 genes of which 1457 coding sequences (CDS), 54 genes for RNA and 45 pseudo 

genes for Bifidobacterium sp. XV2 strain, whereas for the Bifidobacterium sp. XV10 strain 

the annotation resulted in 1717 genes of which 1589 CDS, 55 genes for RNA and 73 Pseudo 

Genes. Both strains have ORFs for two different B vitamin pathways (B6 and B9). Pyridoxin 

(B6) pathway ORFs are involved only in the "salvage pathway" for pyridoxal 5'-phosphate 

recycling (through pyridoxal kinase, PdxK). ORFs annotated in the Folate Biosynthesis also 

regard a “savage pathway” because of the absence of enzymes for precursors formation 

(the pteridine ring and the para-aminobenzoic acid unit pABA). Only XV10 strain contains 

ORFs annotated as biotin (B7) biosynthesis, however the genes present are only involved 

in biotin uptake (i.e. BioY, component of biotin ECF transporter). Concerning ORFs for 

antibiotic resistance, a gene for tetracycline resistance has been annotated both in XV2 and 
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XV10 strains (a ribosome protection type tetracycline resistance gene) and 4-

fluoroquinolone resistance mutations in the parC, parE, gyrA and gyrB genes have been 

found. In the fermentation tests, negative results were obtained for lactose fermentation 

while the presence of β-galactosidase activity was observed with the use of RAPID ID32A. 

However, this apparent contradiction is explained by the absence, in both strains, of LacS 

gene coding for the lactose-galactose permease, as shown in genome annotations. Some 

genes related to maltose and maltodextrin utilization are present in XV10 strains but also in 

this case not all genes for the production of the maltose/maltodextrin transporters were 

shown and indeed fermentation did not occur with this carbon source (Table 2).  

 
Table 2 Characteristic that differentiate the proposed novel species of Bifidobacterium from the closest 

relatives. Strains: 1) Bifidobacterium sp. XV2; 2) Bifidobacterium sp. XV16; 3) Bifidobacterium sp. XV10; 4) 

Bifidobacterium sp. XV4; 5) B. bombi DSM 19703T; 6) B. asteroides DSM 20089T; 7) B. coryneforme DSM 

20216T ; 8) B. indicum DSM 20214T ; 9) B. actinocoloniiforme DSM 22766T; 10) B. bohemicum DSM 22767T; 

11) B. commune LMG 28292 T; 12) B. minimum ATCC 27538T; 13) B. subtile DSM 20096T. Biochemical test 

were performed using API CH50 and Rapid ID32 tests (bioMérieux). +, Positive; w, weakly positive; -, negative; 

ND, not determined; 
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Characteristics 1 2 3 4 5 6 7 8 9 10 11 12 13 

Temperature range for 

growth (°C) 
25-37 25-37 25-37 25-37 10-37 21-42 22-43 22-43 25-37 10-37 10-37 15-35 ND 

DNA G+C content 

(mol%) 
61.3 ND 61.9 ND 50.5 59 55 60 52.7 51.2 54.3 61.5 61.5 

Growth under 

microaerophilic conditions 
- + + + - + + + + - + - - 

Peptidoglycan structure 

A4α  A4α   A3α A4α A4α    A3α A4α 

L-Lys- 

D-Asp 

ND L-Lys- 

L-

Ala2-

Gly* 

ND ND 
L-Lys- 

Gly 
L-Lys- 

D-Asp 
L-Lys- 

D-Asp 

ND ND ND 
L-Lys- 

L-Ser* 

L-Lys- 

 D-Asp 

Acid production from               

L-Arabinose W W W W W - W + - + - - - 

D-Ribose W + + + + + + + W + - - W 

D-Xylose - - + + - - - - - W - - - 

D-Galactose - - - - + - + W - + + - + 

D-Glucose + - + + + + + + + + + + + 

D-Fructose + + + + W + + + - - - + + 

D-Mannose - - + + W - - W - + - - - 

D-Lactose - - - - - - + W - - - - W 

D-Sorbitol - - - - - - W - - - - - - 

Methyl α-D-

glucopyranoside 
- - W - W - - W - + + - W 

Arbutin W W + W + + W + W + + - - 

Aesculin + + + + + + + + + + + - - 

Salicin  + + + + + + +  + + + + - - 

Amygdalin - - - - + + + - + - + - - 

D-Cellobiose  - - - - + + - + + - - - - 

D-Maltose - - - - W - + W - W - + + 

D-Melibiose - + W - + - + + W + + - + 

D-Sucrose + + + + W + + + - - W - + 

D-Trehalose - - - - - - - - - - - - - 

Inulin  - - W - - - - - - - - - - 

D-Raffinose - - + + + - + + - + + - + 
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Starch - - W - - - - - - - - + + 

Glycogen  - - - - - - - - - - - + + 

D-Turanose - - W - - - - W - - - + + 

Gentiobiose - - - - + + + +  + + - - - 

L-Fucose - - - - - - - W - - - - - 

Potassium Gluconate - - - - - - - - - W - - - 

Potassium 5-

Ketogluconate 

- - W - - - - - - W - - - 

Enzymatic activity              

α-Galactosidase + + - - + + + + + - + - + 

β-Galactosidase + + + - + + + + + - + - + 

α-Glucosidase - + + + + + + + + + + + + 

β-Glucosidase + + + + + + + + + + + - + 

α-Arabinosidase + + + + + + + + + + + - + 

N-Acetyl-β-

glucosaminidase 
- - + + - - - - + - - - - 

α-Fucosidase + + - - - + - - - - - - - 

Alkaline phosphatase - - - - - - - - - + - - + 

Arginine arylamidase + + + + + + + + + + + + + 

Proline arylamidase + + + + + + + + + + - + + 

Leucyl glycine 

arylamidase 
+ - W - - + + - - - - + + 

Phenylalanine 

arylamidase 
+ + + + + + + + + + + + + 

Leucine arylamidase + + + + + + + + + + + + + 

Tyrosine arylamidase + + + + + + + + - + + + + 

Alanine arylamidase + - W - - + + - - - + + - 

Glycine arylamidase + + + + + + + + - + + + + 

Histidine arylamidase + + + + + + + + - + + + + 

Serine arylamidase + + + - + + + - - - + + + 

*α-carboxyl group of D-Glu substituted by glycine 

 

Genes for arabinose utilization using AraBAD pathway are present in both XV2 and XV10 

strains, L-arabinose residues are widely distributed among many heteropolysaccharides of 

different plant tissues. In Bifidobacterium sp. XV10 a full ribose utilization operon and ribose-

5-phosphate isomerase enzyme have been annotated, moreover the strain has a xylose 

transport system permease (protein XylH) together with genes of the XylAB pathway, 

therefore it is capable of fermenting xylose. As already reported and fully annotated in B. 

asteroids PRL2011 (Bottacini et al., 2012), a simplified respiratory metabolism was also 

evidenced in Bifidobacterium sp. XV2 and XV10 together with enzymes involved in the 

antioxidant activity such as catalase and superoxide dismutase (the latter present only in 

XV2 strain). This is consistent with the description of the bee gut as an environment with a 

higher oxygen concentration compared to humans and other mammals.  
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Table of abrreviations for Krona charts  

Met Metabolism GenIP Genetic_Information_Processing Other Other 
Car Carbohydrate Tsc Transcription Cpath Common_Pathways 
Energy Energy Tsl Translation DR Drug_Resistance 
Lipid Lipid FSD Folding_Sorting_Degradation RepR Replication_Repair 
Nuc Nucleotide RRep Replication_Rerepai IS Immune_System 
AA Amino_acid EnvIP Environmental_Information_Processing 

 

OAA Other_Amino_acid MTnp Membrane_Transport 
GlyBst Glycan_biosynthesis STsd Signal_Transduction 
CVit Cofactors_Vitamins CellP Cellular_Processe 
TeKe Terpenoids_Polyketides TC Transport_Catabolism 
SMB Secondary_Metabolites_Biosynthesis CGwDt Cell_Growth_Death 
Xdeg Xenobiotics_biodegradation CCP Cellular_Community_Prokaryotes 

 

 
Figure 3 Krona Charts of a) Bifidobacterium sp. XV2 and b) Bifidobacterium sp. XV10 annotated with BALST 

KOALA and elaborated with KronaTools v2.7 (Ondov et al., 2011). 

 
Figure S5 Krona Charts of Bifidobacterium sp. XV2 annotation elaborated with KronaTools v2.7 supplied in 

html format.  [ Fig. S5_XV2.html ] 

 

Figure S6 Krona Charts of Bifidobacterium sp. XV10 annotation elaborated with KronaTools v2.7 supplied in 

html format.  [ Fig. S6_XV10.html ] 

 

Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016) and exported in 

Newick format. The iTOL web-based software (Letunic and Bork, 2016) has been used for 

the annotation and management of the published phylogenetic trees. Partial 16S rDNA 

sequences were used to verify the relatedness of XV2 and XV10 with XV16 and XV4 

respectively, the tree was inferred by using the Maximum Likelihood method based on the 

Tamura-Nei model (Tamura and Nei, 1993) (Figure 4b). On the other hand, fifty-nine 

complete 16S rRNA sequences were retrieved from whole genome sequencing repository 

database of NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/) to infer the 

phylogeny of the new species (Figure 4a). Seven Bifidobacterium species (B. aerophilum 

DSM 100689T; B. aesculapii DSM 26737T; B. apri CCM 8605T; B. avesanii DSM 100685T; 

B. callitrichidarum DSM 103152T; B. faecale JCM19861; B. ramosum DSM 100688T) were 

excluded from the 16S rRNA based phylogenetic tree due to only partial 16S rRNA 
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sequence available. The evolutionary history was inferred by using the Maximum Likelihood 

method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest 

log likelihood (-10975.2528) is shown. The percentage of trees in which the associated taxa 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search were 

obtained by applying the Neighbor-Joining method to a matrix of pairwise distances 

estimated using the Maximum Composite Likelihood (MCL) approach. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites (5 categories (+G, 

parameter = 0.3807)). The rate variation model allowed for some sites to be evolutionarily 

invariable ([+I], 65.2412% sites). The tree is drawn to scale, with branch lengths measured 

in the number of substitutions per site. All positions with less than 95% site coverage were 

eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases 

were allowed at any position. There were a total of 1512 positions in the final dataset. XV2 

clustered close to B. actinocoloniiforme in the B. asteroides group while Bifidobacterium sp. 

XV10 clustered with B. subtile DSM 20096, a bacterium isolated from sewage.  

 
a) 
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b) 

 
 

Figure 4 Phylogenetic trees on 16S rDNA. a) 16S rRNA gene complete sequences of recognized 

Bifidobacterium species, Bifidobacterium sp. XV2 and Bifidobacterium sp. XV10. The analysis involved 59 

nucleotide sequences with the Micrococcus luteus DSM 20030T strain as outgroup. b) 16S rRNA gene partial 

sequences of recognized Bifidobacterium species, Bifidobacterium sp. XV2, XV4, XV10 and XV16. The 

analysis involved 61 nucleotide sequences with the Micrococcus luteus DSM 20030T strain as outgroup. 

 

The bifidobacteria core- and pan-genome were analyzed using BPGA (Bacterial Pan 

Genome Analysis tool) (Chaudhari et al., 2016). The pipeline calculates shared genes after 
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stepwise addition of each individual genome and plots the trend as core and pan-genome 

profile curve (data not shown). According to this curve, the pan-genome can be considered 

as “open”, as also recently evidenced by Lugli et al., 2018. Moreover the pipeline generates 

a phylogenetic tree based on pan-matrix data (Figure 5a). For the core-tree, after evaluation 

of core-genes with BPGA, the amino acid sequences of 273 genes were concatenated and 

aligned to generate the phylogenetic tree using the Neighbor-Joining method (Figure 5b). 

To better evidence the relationship among Bifidobacterium species, no outgroup was used 

for the pan-genome tree. The phylogenetic analysis highlighted distinct groups (Figure 5a) 

that were, however, not confirmed in the core-genome tree. In the latter, the presence of an 

outgroup species restricts the core-genes of the Bifidobacterium taxon and probably 

underestimates peculiarities linked to the adaptation to different ecological niches including 

horizontal gene transfer events (Yun et al., 2014; Ventura et al., 2012).  

 

a) 
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b) 

 

 
 

 
 

Figure 5 Core- and Pan-genome. a) Phylogenetic tree based on pan-genome analysis. b) Phylogenetic tree 

based on the concatenation of 273 core amino acid sequence genes of XV2, XV10 and members of the 

Bifidobacterium genus. 

 

PCR-RFLP analysis of hsp60 gene allows a rapid and accurate identification of common 

species of the genus Bifidobacterium (Baffoni et al. 2013; Stenico et al. 2014). The restriction 

of XV2 and XV10 hsp60 gene, as well as of closely related species, was therefore performed 

according to Stenico et al. (2014). An in silico analysis was preliminary done to obtain the 

B. bifidum group  B. pullorum group  B. adolescentis group  B. boum group  B. pseudolongum group  B. asteroides group  B. subtile group  
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theoretical restriction profiles for the species that were not previously reported in Stenico et 

al. 2014, using the hsp60 sequences retrieved from the GenBank and RefSeq databases 

and using Webcutterb2.0 (http://rna.lundberg.gu.se/cutter2/) (Table 3). The in silico analysis 

showed two new and distinct restriction profiles for XV2 and XV10 confirming the high 

discriminating ability of HaeIII enzyme. Moreover, restriction profiles were confirmed on 

agarose gel for species in bold in Table 3 and for the XV4 and XV16B strains. The restriction 

profiles of XV4 and XV16B were respectively the same of XV10 and XV2 (data not shown). 

Estimation of the G+C content was performed by DSMZ Identification Service 

(Braunschweig, Germany) according to the following protocol. Cells were disrupted by 

French pressing and DNA purified on hydroxyapatite according to Cashion et al. (1977). The 

DNA was hydrolyzed with P1 nuclease and the nucleotides dephosphorylated with bovine 

alkaline phosphatase (Mesbah et al., 1989). The resulting deoxyribonucleosides are 

analyzed by HPLC (Tamaoka and Komagata, 1984). Lambda-DNA and three DNAs with 

published genome sequences representing a G+C range of 43-72 mol% were used as 

standards. G+C values are calculated from the ratio of deoxyguanosine and thymidine. The 

type strains XV2 and XV10 showed a G+C content of 61.3 and 61.9 mol% G+C, respectively. 

All values were within the G+C content range of the genus Bifidobacterium (52-67 mol%) 

(Biavati et al., 2000; Killer et al., 2010). Enzymatic activities and substrate fermentation 

capabilities for the novel strains and the species closely related to them (listed in Table 3) 

were obtained with API 50 CHL and Rapid ID 32A kits (bioMérieux, Lyon, France) according 

to the manufacturer’s instructions (Table 3) with a slight modification: 10 µL-1 of a cysteine 

sterile solution (1 gL-1) were added to the API 50 CHL medium.  

 
Table 3 Expected fragment sizes obtained with in silico digestion of the hsp60 gene sequences (updated from 

Stenico et al., 2014) 

Bifidobacterium species 

 

Gen Bank entry/ 

Refseq genome 

database 

Predicted fragment sizes 

B. actinocoloniiforme † +  GCF_000771585.1 14-16-16-17-31-42-45-53-75-81-200 

B. adolescentis AF210319 31-36-81-103-339 

Bifidobacterium sp. XV10 † PDCG00000000 9-16-22-31-36-42-59-63-76-78-158 

B. angulatum AF240568 42-54-59-139-296 

B. animalis subsp. animalis AY004273 17-53-86-97-114-223 

B. animalis subsp. lactis AY004282 71-86-96-114-223 

B. asteroides AF240570 30-38-75-97-109-242 

B. biavatii AB674321 14-16-42-45-53-123-281 

B. bifidum AY004280 22-31-59-181-297 

B. bohemicum † + GCF_000771605.1 No sites 

B. bombi EU869281 16-115-178-281 

B. boum AY004285 22-117-200-251 

B. breve AF240566 106-139-139-200 

B. callithricos AB674319 16-22-31-59-462 

B. catenulatum AY004272 53-198-338 

B. choerinum AY013247 36-42-51-52-54-59-97-200 

B. commune † ***  GCF_900094885 53-537 

B. coryneforme AY004275 16-32-54-158-338 

B. cuniculi AY004283 16-42-53-70-128-281 
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B. dentium AF240572 22-31-42-68-130-139-158 

B. gallicum AF240575 42-253-297 

B. gallinarum AY004279 16-31-42-81-139-281 

B. indicum AF240574 16-32-36-42-45-123-296 

B. longum subsp. longum * AF240578 42-113-138-139-158 

B. longum subsp. infantis * AF240577 42-113-138-139-158 

B. longum subsp. suis * AY013248 42-113-138-139-158 

B. mongoliense KF751642 16-40-70-78-106-254 

B. merycicum  AY004277 22-31-42-59-139-297 

B. minimum AY004284 16-51-60-66-70-327 

B. pseudocatenulatum AY004274 42-53-198-297 

B. pseudolongum subsp pseudolongum AY004282 17-22-30-32-42-42-109-297 

B. pseudolongum subsp. globosum AF286736 16-17-22-30-32-42-109-323 

B. psychraerophilum AY339132 No sites 

B. pullorum AY004278 16-31-36-42-81-87-297 

B. reuteri AB674318 53-59-139-339 

B. ruminantium AF240571 31-106-114-339 

B. saguini AB674320 53-59-181-297 

B. stellenboschense KF294527 16-42-53-59-123-139-158 

B. subtile † GCF_000771185.1 16-53-240-481 

B. thermacidophilum subsp porcinum** AY004276 20-42-53-59-97-139-180 

B. thermacidophilum subsp thermacidophilum** AY004276 20-42-53-59-97-139-180 

B. thermophilum AF240567 54-59-117-139-222 

B. tsurumiense *** AB241108 53-537 

Bifidobacterium sp. XV2 †  PDCH00000000 16-112-139-323 

† Sequences obtained from whole genome sequencing (Refseq genome database) 

+ errata corridge of Stenico et al. 2014 

 (*, **, ***) species and subspecies not discernible 

 

API 50 CHL inoculated galleries were incubated in anaerobiosis, except for XV10 that was 

incubated in microaerophilic conditions. Catalase and Oxidase tests were performed 

according to Modesto et al. 2015. XV2 and XV10 strains tested negative for catalase and 

oxidase activities; however the genome annotation underlined the presence of a catalase-

related coding sequence both in XV2 and XV10 strains. In XV2 a superoxide dismutase 

CDS was also evidenced, even if XV2 strain resulted more affected by oxygen presence 

than XV10. It is possible to speculate that the diverse phenotypes can be related to different 

regulatory mechanisms. According to the protocol described by Schumann, 2011, the cell 

wall murein composition was determined by DSMZ Identification Service. Peptidoglycan 

type resulted different for the two strains and is reported in Table 2.  

Analyses of cellular fatty acids were carried out at DSMZ Identification Service according to 

Miller (1982) and Kuykendall et al. (1988) with minor modifications: fatty acid methyl ester 

mixtures were separated using Sherlock Microbial Identification System (MIS) (MIDI, 

Microbial ID, Newark, DE 19711 U.S.A.) which consisted of an Agilent model 6890N gas 

chromatograph fitted with a 5% phenyl-methyl silicone capillary column (0.2 mm x 25 m), a 

flame ionization detector, Agilent model 7683A automatic sampler, and a HP-computer with 

MIDI data base. Peaks were automatically integrated and fatty acid names and percentages 

calculated by the MIS Standard Software (Microbial ID). The gas chromatographic 

parameters were as follows: carrier gas, ultra-high-purity hydrogen; column head pressure 
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60 kPa; injection volume 2 µl; column split ratio, 100:1; septum purge 5 ml/min; column 

temperature, 170 to 270 °C at 5 °C/min; injection port temperature, 240 °C; and detector 

temperature, 300 °C. Results are summarized in Table 4.  

 
Table 4 Cellular fatty acid profiles of insect related Bifidobacterium. Strains: 1) Bifidobacterium sp. XV2; 2) 

Bifidobacterium sp. XV10; 3) B. bombi DSM 19703T; 4) B. actinocoloniiforme DSM 22766T; 5) B. bohemicum 

DSM 22767T. Data are from this study and a previous study of Killer et al. [28]. Relative concentrations (%) of 

total fatty acids were calculated. 

 

Fatty acid UPAC name Common name 1 2 3 4 5 

C10 : 0 Decanoic acid Capric acid 0.11 0.06 - - - 

C12 : 0 Dodecanoic acid Lauric acid 0.71 0.46 - - - 

C14 : 0 Tetradecanoic acid Myristic acid 1.28 1,43 - 1.97 2.86 

C15 : 0 Pentadecanoic acid Pentadecylic acid  - - - - - 

Iso-C15 : 0  13-Methyltetradecanoic acid Methylmyristic acid - - - - - 

C16 : 0 Hexadecanoic acid Palmitic acid 39.68 21.29 7.14 20.17 15.97 

C16 : 1 ω9c (7Z)-7-Hexadecenoic acid cis-7-Palmitoleic acid  1.11 0.41 - - - 

C17 : 0 Heptadecanoic acid Margaric acid - - 4.21 2.11 2.56 

C17 : 1 ω9c (8Z)-8-Heptadecenoic acid - - 1.10 - - - 

Cyclo-C17 : 0  cis-9,10-Methylene-Hexadecanoic acid - 0.13 - - - - 

C18 : 0 Octadecanoic acid Stearic acid - 3.85 5.91 7.05 6.56 

C18 : 1 ω6c cis-12-Oleic acid - 1.19 - - - - 

C18 : 1 ω7c cis-Vaccenic acid - 2.58 6.6 - - - 

C18 : 1 ω9c (9Z)-9-Octadecenoic acid Oleic acid 19.3 57.92 7.49 9.99 4.69 

C18 : 1 ω9c DMA (9Z)-1,1-Dimethoxy-9-Octadecene - - 8.47 - - - 

C18 : 2 ω6c (9Z,12Z)-9,12-Octadecadienoic acid Linoleic acid 6.05 - 7.34 - - 

C20 : 0 Icosanoic acid Arachidic acid - - 7.18 3.25 4.62 

Iso-C19 : 0  17-Methylstearic acid - 0.6 0.74 - - - 

C22 : 0 Docosanoic acid Behenic acid - - 5.87 - - 

C23 : 0 Tricosanoic acid Tricosylic acid - - 5.38 - - 

C24 : 0 Tetracosanoic acid Lignoceric acid - - 4.68 - - 

C15 : 1 ωnc (nZ)-n-Pentadecenoic acid - - - 2.47 - - 

- Summed features 3a* NA 0.49 - ND ND ND 

- Summed features 3b* NA - 0.84 ND ND ND 

- Summed features 7* NA 26.49 1.12 ND ND ND 

- Summed features 8* NA 3.76 - ND ND ND 

- Summed features 10* NA - 5.96 ND ND ND 

- Summed features 12* NA - 0.66 ND ND ND 

 
*Summed features are groups of two or more fatty acids that cannot be separated by GLC (MIDI System). 

Summed feature 3a contained C16 : 1 ω6c and/or C16 : 1 ω7c; Summed feature 3b contained C16 : 1 ω7c 

and/or C15 : 0 ISO 2-OH. Summed feature 7 contained C19 : 0 CYCLO ω10c and/or C19 : 1 ω6c; Summed 

feature 8 contained C18 : 1 ω7c and/or C18 : 1 ω6c; Summed feature 10 contained C18 : 1 ω7c and/or 

unknown ECL 17.834; Summed feature 12 contained unknown ECL 18.622 and/or iso-C19 : 0. 

 

Since the discovery in Bifidobacterium scardovii of a weak haemolytic activity (Hoyles et al. 

2002), haemolysis should always be checked in new Bifidobacterium species. Indeed, 

haemolytic activity of XV2 and XV10 was tested in three different media: Columbia Blood 

Agar (BIOLIFE, Milan, Italy), MRS and TPY supplemented with 5% of defibrinated sheep 

blood. XV2 and XV10 showed α-haemolytic activity in all media as a greenish discoloration 

that surrounds bacterial colonies in the tested media. In relation to this activity, genome 

annotation with Prokka as well as the annotation provided by the NCBI pipeline during 

sequence submission highlighted two distinct ORFs annotated as Haemolysin and 

Haemolysin III. Haemolysin sequence is a membrane protein of the CCB3/YggT family 

(IPR003425) and UniProt BLAST results showed its presence in several bifidobacterial 

strains with identity scores ranging from 85.6% to 57.9% (taking into consideration only the 

first 47 hits). A YggT protein characterized in E. coli seems to be related to osmotic shock 
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protection (Ito et al. 2009), even if the length of E. coli YggY protein is 180 amino acids while 

bifidobacteria sequences are about 100 aminoacid-long. Concerning the annotation of 

Hemolysin III, this protein is an integral membrane component of the AdipoR/Haemolysin-

III-related (IPR004254) family. This family, among others, groups proteins from pathogenic 

and non-pathogenic bacteria, including characterized pore-forming proteins. UniProt BLAST 

results showed the presence of similar proteins in several bifidobacteria strains, the first 50 

hits were downloaded, aligned in MEGA6 with MUSCLE and the best ML substitution model 

was evaluated (WAG+I+F) to generate the tree (Figure S7).  

This protein seems to have a high intra-species conservation, moreover proteins from bee 

species clustered apart, including XV2, while XV10 strains clustered with its respective 

closest neighbour. Being this protein poorly characterized, it is not possible to infer a 

correlation with the haemolytic activity. However, a correlation between haemolytic activity 

and iron availability in the intestine can be discussed. What is clear is that iron is essential 

for bacterial physiological processes and microorganisms have developed different 

strategies for iron uptake such as reduction of ferric iron with subsequent transport, iron 

acquisition from heme or iron-containing proteins of the host and production of siderophores 

(Caza and Kronstad 2013). Iron is essential also for humans, both heme and non-heme iron 

present in diet are absorbed preferentially in the duodenum and the absorptive process is 

strictly regulated in order to avoid an excessive uptake (Sharp and Srai 2007). The intestinal 

microorganisms and the host are therefore in competition for some nutrients, but the 

competition is also between the different microbial taxa. This peculiar weak hemolytic activity 

is therefore not to be seen only as a pathogenic trait. As also shown in the probiotic strain 

E. coli Nissle, although with a different uptake strategy, microorganisms evolve specific 

tricks/stratagems in order to survive in a harsh environment, and these tricks can, at last, 

give a greater advantage to harmless bacteria with respect to known pathogenic bacteria 

(as, for example, Salmonella enterica serovar Typhimurium) (Lustri et al., 2017). Concerning 

iron uptake, genome annotations reported the presence of a ferrous iron transport protein 

and an iron transporter permease both in Bifidobacterium sp. XV2 and XV10.  
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Figure S7 Phylogenetic tree based on hemolysin III-related gene sequences of Bifidobacterium 

species, including Bifidobacterium sp. XV2 and Bifidobacterium sp. XV10. The analysis involved 

49 amino acid sequences.  
 

 

Description of Bifidobacterium xylocopae sp. nov. (XV2) 

Bifidobacterium xylocopae [Xy.lo.co.pe N.L. gen. f., of Xylocopa, a wood cutter, the genus 

name of the insect from which the strain was isolated]. Cells are Gram-positive, non-motile, 

non-sporulating, F6PPK-positive, catalase- and oxidase-negative, indole-negative. XV2 

strain grows in anaerobic conditions and cannot survive in microaerophilic conditions. 

Colonies, grown on the surface of TPY agar plate, are white and circular. The diameter of 

each colony ranges from 0.5 to 1.0 mm. Strain XV2 grows in the temperature range 25–40 

°C; no growth occurs at or below 20 °C. Cells grow in the pH range 4.5-9.0. Optimal 

conditions for growth occur at pH 6.5 and 35°C. Fermentation profiles of B. xylocopae XV2 
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show that it is able to ferment a narrow range of mono and di-saccharides: D-glucose, D-

fructose and D-sucrose. Moreover, the strain hydrolyzes aesculin and salicin, while it 

displays scarce growth on L-arabinose, D-ribose and arbutin. Positive enzymatic activity is 

observed for α- and β-galactosidase, β-glucosidase, α-arabinosidase, α-fucosidase, 

arginine arylamidase, proline arylamidase, leucyl-glycine arylamidase, phenylalanine 

arylamidase, leucine arylamidase, tyrosine arylamidase, alanine arylamidase, glycine 

arylamidase, histidine arylamidase and serine arylamidase. Whereas, α-glucosidase, N-

acetyl-β-glucosaminidase and alkaline phosphatase activities are negative (Table 3). The 

major fatty acids identified are palmitic acid, oleic and linoleic acid plus a mixture of 

unresolved fatty acids (referred to as summed features 7 in the related table) (Table 4). The 

peptidoglycan type is A4α L-Lys – D-Asp. The DNA G+C content is 61.3 %. The type strain 

XV2 (=DSM 104955T = LMG 30142T) and the reference strain XV16 (waiting for DSM and 

LMG culture collection number) were isolated from gut samples of carpenter bees (Xylocopa 

violacea).  

 

Description of Bifidobacterium aemilianum sp. nov. (XV10) 

Bifidobacterium aemilianum [E.mi’lia.num L. neutr. Adj., aemilianum, from the Emilia region, 

referring to the Italian region where the bacterium was first isolated]. Cells are Gram-

positive, non-sporulating, F6PPK-positive, catalase- and oxidase-negative, indole-negative. 

XV10 strain grows in microaerophilic conditions but it cannot survive in both anaerobic and 

aerobic conditions. Colonies, grown on the surface of MRS agar plates supplemented with 

cysteine and fructose, are white and circular. The diameter of each colony ranges from 0.2 

to 0.5 mm. Strain XV10 grows in the temperature range 20–40°C; no growth occurs below 

20°C. The strain grows in the pH range 5.0-9.0. Optimal conditions for growth occur at pH 

6.5 and 35°C. Fermentation profiles of B. aemilianum XV10 reveal that it is able to ferment 

a wide range of mono and di-saccharides:D-ribose, D-xylose, D-glucose, D-fructose D-

mannose, D-raffinose and D-sucrose. The strain hydrolyzes aesculin, arbutin and salicin, 

while it displays scarce growth on L-arabinose, Methyl α-D-glucopyranoside, D-melibiose, 

inulin, methadone, D-turanose and potassium 5-Ketogluconate. Positive enzymatic activity 

is observed for β-galactosidase, α- and β-glucosidase, α-arabinosidase, N-Acetyl-β-

glucosaminidase, arginine arylamidase, proline arylamidase, phenylalanine arylamidase, 

leucine arylamidase, tyrosine arylamidase, glycine arylamidase, histidine arylamidase and 

serine arylamidase. On the contrary, enzymatic activity is negative for α-galactosidase, α-

fucosidase, alkaline phosphatase, leucyl glycine arylamidase, alanine arylamidase (Table 

3). The major fatty acids identified are palmitic acid, oleic and stearic acid and (9Z)-1,1-

Dimethoxy-9-Octadecene (Table 4). The peptidoglycan type is A4α L-Lys-L-Ala with a D-

Glu at position 2 substituted by Gly. The DNA G+C content is 61.9 %. The type strain XV10 

(=DSM 104956T = LMG 30143T) and the reference strain XV4 (waiting for DSM and LMG 

culture collection number) were isolated from gut samples of carpenter bees (Xylocopa 

violacea).  
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Figure S3: Circular representation of the chromosome of Bifidobacterium sp. XV2 in high definition with BASys. 
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Figure S4: Circular representation of the chromosome of Bifidobacterium sp. XV2 in high definition with BASys. 
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ANTIMICROBIAL ACTIVITY 
 

Antimicrobial Activity  

The discovery of the first antimicrobial compound by Alexander Fleming in 1929 primed a 

leading revolution in the approach to diseases. For 60 years a continuous discover of new 

antimicrobial substances allowed the control of dangerous diseases and the massive 

production of food items, especially animal derived. Antimicrobial compounds were used as 

growth promoters for livestock, poultry and swine. The beekeeping sector was not an 

exception. Chloramphenicol, Erythromycin, Tetracycline, Fumagillin and many other 

antibiotics are an example of the wide range of medicaments authorized around the world. 

Often antibiotics in the animal sector, including the beekeeping one, are used not only for 

the treatment of disease foci but also, and this is the largest use, as “growth promoters”. In 

the beekeeping sector this means to ensure the best honey and royal jelly production, more 

than the health of bees. Many of these antibiotics are still widely used in several countries, 

with minor restriction for preventing food contamination, but in Europe they have been 

banned since 2001 by revocation of commercial licences for honeybee treatments of 

antibiotic based medicaments. The potential of bacteria in counteracting microbial 

pathogens is not only expressed by antibiotic production, but also in other ways such as: 

Production of Short Chain Fatty Acids (SCFA), as acetic acid, or other acidic molecules as 

Acetic Acid. 

• Enhancement of the production of secondary metabolites  

• Occupation of ecological niches competing with the pathogenic microorganisms.  

• Immune stimulation of the host organism (E.g.: enhanced defencin production) 

• Production of bacteriocins 

 

Bacteriocins differ from antibiotics in particular because of their reduced antimicrobial 

spectrum indirectly leading to a targeted antimicrobial activity. Differences between the two 

groups of molecules are briefly described in Table 1. 

 
Table 1 Main differences between bacteriocins and antibiotics (according to Gómez-Sala B. 2013) 

  Bacteriocins   Antibiotics  

Composition   Protein   Variable, and only occasionally proteic  

Synthesis   Metabolites of ribosomal synthesis, 

generally as inactivated precursors. 

 Secondary metabolites Non-Ribosomal 

synthesis (Multi-enzymatic Complex) 

Antimicrobial 

activity range  

 Usually reduced to closest 

phylogenetically related genus. 

 Variable, Gram negative and/or Gram-

positive bacteria. 

Action mode  Generally, through pores in the 

cytoplasmic membrane. Occasionally, 

by inhibition of the cell wall synthesis. 

 Inhibiting different cell functions (E.g. 

Synthesis inhibition of Proteins, DNA and 

RNA, or cell wall synthesis) 

Target cell 

Requirements  

 Specific receptors.  Specific receptors. 

Self-immunity of the 

cell producer  

 Presence of genes coding for 

resistance. 

 Undescribed. 

Resistance  Modification of cell membrane 

composition. 

 Specific resistance genes, modification of 

specific receptors.  
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Transposition of genes for multiple 

resistances. 

Toxicity  Not yet investigated.  Variable according to the kind of 

antimicrobial. 

Application   Food   Clinical  

 

Bacteriocins and antibiotics are divided in sub groups, however their sub-grouping is at 

present not yet completely defined. There are strong debates on their classification, and 

even if classification attempts have been made based on their temperature of denaturation, 

dimension, post transduction modifications, and shape, these classifications are not 

standardized and internationally recognized. 

 

During my Ph.D. work every isolated strain of potential interest to counteract bee diseases 

were tested for antimicrobial activity, against indicator strains (including bee pathogenic 

bacteria) and against themselves to exclude competition if used as a mixture. Tests were 

carried out according to the agar well diffusion assay (described in the following paper 4 and 

Figure 1).  

 

 

 
 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

77  
 

Figure 1: Examples of antimicrobial activity assess with the agar well diffusion assay. Agar plates were 

inoculated with the indicator strain Lactobacillus delbrueckrii subsp. bulgaricus. Supernatants containing the 

antimicrobials were inoculated in the prepared wells in the agar plates. Strain producing bacteriocins or 

antibiotics active against Lactobacillus delbrueckrii subsp. bulgaricus inhibited its growth, forming a halo of 

growth inhibition whose extent depends on the antimicrobial power. 

 

It turned out that most of bacteria can produce antimicrobials, as shown in Table 2. 

Moreover, most of the antimicrobials detected are bacteriocins (active against closely 

related strains) rather than antibiotics, this most probably due to their need to protect their 

ecological niches.  

 
Table 2 An example of antimicrobial activity tested with 35 honeybee environment isolated strains against a 

selection of 16 indicators including Paenibacillus larvae and Melissococcus plutonius. Antimicrobial activity: 

++++ very powerful; +++ excellent; ++ sufficient; + scarce; non  

 

  
 

A test of the ability to produce SCFA or other acidic molecules capable of inhibiting the 

growth of other strains was carried out with the spot agar test method. A modification of the 

protocol of Kizerwetter-Swida and Binek (2005) was employed. 70 µl of concentrated 

overnight cultures of the six selected LABs and bifidobacteria cultures (A600 of about 0.1) 

were spotted on TPY agar plates (Scardovi 1986), and were incubated anaerobically for 

24 h at 37 °C. Once growth was reached, plates were overlaid with 10 ml of SYPG agar 

(Table 5; Bailey and Ball 1991) auditioned with 0,8% agar inoculated with a suspension 

(MacFarland 0.5) of Melissococcus plutonius ATCC 3511. Plates were then incubated under 

microaerophilic atmosphere at 35 °C, and after 24–48 h the presence of inhibition zones 

was evaluated. Each assay was performed in triplicate, an example of inhibition results is 

showed in Figure 2. 
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All the isolates belonging to the family Lactobacillales (Lactobacillus sp., Fructobacillus sp., 

Leuconostoc sp., etc…) and to the Bifidobacterium genus were able to produce acidic 

molecules capable of counteraction, by acidification, the proliferation of M. plutonius, P. 

larvae and Aschospaera apis.  

 

L. johnsonii L. kunkeei L. plantarum 

   
B. asteroides B. coryneiforme Lactobacillus sp. 

   

 

Figure 2: Examples of antimicrobial activity assess with the spot agar test method regarding L. johnsonii, L. 

kunkeei, L. plantarum, B. asteroides, B. coryneiforme, Lactobacillus sp.. It is visible the central spot of the 

tested bacteria followed by a growth inhibition of the Mellissococcus plutonius pathogen, and then a ring of 

melissococcus in the border of plates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

79  
 

PAPER 4 
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Introduction 

The genus Lactobacillus comprises over 200 species (Sun et al., 2015), populating diverse 

environmental niches, such as the gut of vertebrates and invertebrates, plants and 

fermented foods. Their ability to colonize different environments contributed to the 

development of the wide genetic diversity typical of this genus (Sun et al., 2015). Focusing 

on invertebrates, metagenomics studies allowed the detection of Lactobacillus in different 

orders of insects. For instance, Lactobacillus spp. were detected in the larval gut of 

Lepidoptera (Tang et al., 2012), in the gut of Drosophila melanogaster (Diptera) (Chunli et 

al., 2007), in the gut of predatory ground beetle, Poecilus chalcites (Coleoptera) (Lehman et 

al. 2009) and Imenoptera (Moran, 2012). Recently, the attention of researchers in the 

isolation and identification of new Lactobacillus species has been focused on the 

insectsuperfamily of Apoidea, leading to the discovery of a considerable number of new, 

extremely host specific, species of Lactobacillus. Indeed, the hindgut of honeybees (Apis 

mellifera L.) is colonized by a large community within the Lactobacillus genus. 8 novel 

Lactobacillus species from honeybee gut were recently isolated by Olofsson et al., 2014a 

and Killer et al., 2014a (L. apis, L. apinorum, L. helsingborgensis, L. kimbladii, L. 

kullabergensis, L. mellifer, L. mellis, and L. melliventris). These species have been deeply 

characterized and were shown to comprise multiple strains with highly diverse genetic 

content (Ellegard et al., 2015) indicating the presence of a extremely specialized microbiota 

within the bee gut. As well, Lactobacillus kunkeei was reported to colonize only the crop of 

honeybees but also stingless bees (Melipona spp.) (Tamarit et al., 2015). Other 

Lactobacillus from Apoidea and Vespidea, e.g. L. bombis (Killer et al., 2014b) and L. 

bombicola (Praet et al., 2015) isolated from Bombus terrestris, L. vespulae (Hoang et al., 

2015) from Vespula vulgari, have been recently described but their potential is to date 

unexploited.  

The Lactobacillus microbial gut community is acquired by young insects through trophallaxis 

with nest mates (Engel and Moran, 2013), or by direct contact with processed feed or feces. 

Presumably the Lactobacillus microbial gut community is also acquired from the 

environment (McFrederick et al., 2012), but independently from the acquisition root it plays 

multiple rules. On the nutritional point of view, these insect-adapted Lactobacillus can store 

trehalose, a sugar functioning as an energy storage compound in insects (Ellegard et al., 

2015). They are capable of fermenting toxic sugars for bees, like mannose (Ellegard et al., 

2015; Lee et al., 2015), helping thus the honeybee gut processing indigested sugars 

acquired with feed. Lactobacillus spp. together with other acidophilic bacteria 

(Acetobacteriaceae and Bifidobacteriaceae) cover an important role in the production of 

short chain fatty acids (SCFAs) such as acetic acid or other acidic compounds such as lactic 

acid that are assimilated by the insect hindgut, supplementing honeybee nutrition, especially 

during winter (Martison et al., 2011). Moreover, they could be involuntarily used as a marker 

of already exploited nectar sources by forager honeybees. Indeed, honeybees avoid the 

harvest of nectar in flowers colonized by L. kunkeei (Good et al., 2014). 

To date about 36 Lactobacillus species have been accepted as food grade and listed in the 

QPS list (EFSA 2013), therefore they have such a widespread use in the food industry to 

produce fermented foods and as protective cultures (Adedokun et al., 2015; Gómez-Sala et 

al., 2016). The pharmaceutical and nutraceutical applications of Lactobacillus spp. is of 
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interest as well: their ability to stimulate the host immune system and compete with gut 

pathogenic microorganisms is favourable for their application as probiotics to re-establish 

the unbalanced gut microbiota in humans and animals. In addition to the acidification 

properties, Lactobacillus spp. can synthetize a wide range of antimicrobial compounds (AC) 

counteracting pathogenic bacteria like Staphylococcus aureus (Cotter et al. 2005). The 

Lactobacillus AC belong to a wide range of categories: lantibiotics, two-peptide bacteriocin 

and bacteriolysins, (formerly classified as Class III bacteriocins (Cotter et al. 2005) such as 

Helveticin J (Fremaux and Klaenhammer 1986). Alongside Helveticin J, other two 

bacteriolysins produced in L. helveticus have been identified. Helveticin V-1829 (Vaughan 

et al. 1992) and a partially characterised Helveticin from L. helveticus G51 (Bonade et al. 

2001) with all three being narrow spectrum and heat labile (Slattery et al. 2017). Whole 

genome sequencing technologies allowed the identification of putative Helveticin J or 

Helveticin like bacteriolysins produced by other Lactobacillus species as in the case of L. 

acidophilus and L. casei and interestingly, also in 4 honeybee related Lactobacillus strains 

(Butler et al., 2013) (see table 1). This allows us to assume that bacteriolysins in 

Lactobacillus are more popular than expected, even if the reasons for a so energetically 

expensive bacteriolysins production are still unknown. In this study, we identified 3 new 

bacteriolysins produced by honeybee gut isolates L. helsingborgensis Dan 75, L. kimbladii 

Dan 47 and L. kullabergensis Dan 23 respectively named Helveticin H, K1 and K2 showing 

a homology degree with Helveticin J of 72%, 70%, 70% and a Nisin like bacteriocin showing 

60% similarity with Nisin A of Lactobacillus kunkeei. Also a Microcin J25 was detected and 

turned out to be inactivated by incomplete synthesis gene complex. We therefore 

hypothesize that these new bacteriolysins, acting alone or in combination, prevent the 

diffusion of exogenous Lactobacillus spp. acquired from the environment into the gut lumen, 

thus preserving the honeybee core lactobacilli microbiota. Confirmation of this theory may 

open to a new application of insect gut microbes as potential specific probiotic for insects. 

 

Results 

Isolation and Fingerprinting results  

A total of 170 strains of Lactobacillus were isolated on MRS agar. According to Baffoni et al. 

2015, the partial bacterial 16S rDNA gene was amplified and sequences from 36 isolates 

(Accession number KP114138-KP114147 and MG601136-MG601161) were subjected to 

taxonomical identification using RDP tools classifier and seqmatch. Out of 104 putative 

Lactobacillus, 36 different PFGE fingerprinting profiles were identified (Figure 1), belonging 

to 8 Lactobacillus species (L. apis, L. helsingborgensis, L. kimbladii, L. kunkeei, L. 

kullabergensis, L. mellis, L. melliventris, L. johnsonii and L. plantarum). 
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Figure 1: Pulsed Field Gel Electrophoresis (PFGE) analysis of 22 out of 36 Lactobacillus strains isolated 

from honeybee gut. 

 

Antimicrobial activity  

Test of antimicrobial activity clearly showed an inhibition halo against indicator strains of 

Lactobacillus. In particular it is worthy noting that the antimicrobial activity showed by Dan 

70 against two indicator strains of L. delbrueckrii subsp. lactis DSM 20072  and L. 

delbrueckrii subsp. bulgaricus DSM 20081. Against the same strains, antimicrobial activity 

of Lactobacillus kimbladii Dan47 and Lactobacillus kullabergensis Dan 23 was much 

weaker. This is most probably caused by a low gene expression of the bacteriocin 

compound by the last two strains. 

 

 
Figure 2: Antibacterial activity of supernatants. L. delbrueckrii subsp. lactis DSM 20072, L. delbrueckrii 

subsp. bulgaricus DSM 20081, L. delbrueckrii subsp. delbrueckrii DSM 20074 (Savino et al. 2011), 

Paenibacillus larvae ATCC4595, P. dendritiformis PA(C), Melissococcus plutonius ATCC35311 
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ORF prediction of antimicrobial proteins in Dan70 

ORFs annotation for antimicrobial peptides has been performed with BAGEL web tool. The 

annotation allowed the identification of three different antimicrobial molecules, putative nisin 

operon (Figure 3 and 4), microcin (Figure 5) and a helveticin-related peptide (Figure 6). 

Lantibiotics are class I antimicrobials consisting of a group of post-translationally modified 

peptides. They are characterized by the presence of unusual amino acids including the 

thioether amino acids lanthionine and b-methyllanthionine first identified in nisin, the best 

characterized representative of the group (Mokoena, 2017). The genes for lantibiotics 

production can be plasmid or chromosome encoded and includes regulatory proteins, 

transport proteins, specific proteases and immunity proteins. The identified putative nisin-

related ORFs seems to include all the different genes for antimicrobial peptide production, 

post-translational modification proteins and transporters (Figure 3 and 4). The immunity 

protein was not annotated by the programme, but the manual annotation of the 

uncharacterized proteins is still in progress. Nisin, as antimicrobial peptide, has an inhibitory 

activity against Gram positive bacteria like bacilli, lactococci, micrococci and clostridia 

(Sharma et al., 2014). Its broad spectrum of action allows a great competition for the 

colonization of ecological niches. Microcin peptides are subdivided in two different classes 

(Duquesne et al., 2007), they are typically produced as ribosomally synthesized precursors 

and subsequent modified by additional enzymes. In our case poor characterization of the 

operon has been obtained and manual annotation of neighbour ORFs should be 

accomplished to understand if the peptide is actively produced or deactivated. The 

annotated ORFs showed similarity to Microcin J25 (Figure 5) which belong to class I 

microcins with lower molecular masses. It was firstly identified in E. coli and seems to have 

antibacterial activity against few genera of enterobacteria.  

The third antimicrobial peptides recognized by BAGEL programme has been annotated as 

putative Helveticin J. Helveticin J belongs to class III bacteriocins, a class consisting in large 

and heat-labile proteins larger than 30 kDa. In a recent work about bacteriocin identification 

in Lactobacillus Pan-genome, Collins et al. (2017) found a surprising abundance of 

homologs of helveticin-like bacteriolysins. They suggest that this trait may derive from a 

common ancestor and then disseminated by horizontal transfer. These peptides are active 

against a limited number of related lactobacilli probably giving an advantage in the 

competition for the same niches. 

Additional work is needed to understand the regulation of all the annotated antimicrobial 

peptides that probably play different roles in different situations, according to environmental 

signals.  
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Figure 3: Lactobacillus helsingborgensis Dan 70 genome analysis of a 9264bp fragment shows the presence 

of Nisin A gene (red arrow), near transporters of different kinds (ATP binding permeases) (blue arrows), 

bacteriocin post-translation modification genes (orange arrows) and finally regulatory genes (green arrows). 

 

 
Figure 4: Lactobacillus helsingborgensis Dan 70 genome analysis of Nisin A gene complex continues about 

400.000 base pairs downstream in the genome, were other Nisin A bacteriocin post-translation modification 

genes (orange arrows) are identified. Their position so far away from the other Nisin related ORFs is justified 

by presence of transposases (violet arrows). 
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Figure 5: Lactobacillus helsingborgensis Dan 70 genome analysis shows a gene coding for Microcin J25. 

Unfortunately, post translation genes are missing, allowing us to suppose that this gene is deactivated. 

 

 

 
Figure 6: Lactobacillus helsingborgensis Dan 70 genome analysis shows the presence of Helveticin J gene 

(red arrow), near a transporter (blue arrow), and finally regulatory genes (green arrows). Helveticins do not 

require a complex core of genes for post translation modifications. 
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Physical and chemical characterization 

Physical and chemical characterization of the Bacteriolysin showed its sensibility to high pH 

(deactivated above pH 7.0) and temperature (deactivated above 55°C) letting suppose that 

the antimicrobial compound is a large proteinaceous bacteriocin whose secondary and 

tertiary structure is easily denatured when exposed to high temperatures. 

 

Isolation and characterization of the bacteriocins detected into the genome. 

Any attempt performed to date (MALDI-TOF, Cationic and anionic binding in columns, 

membranes with different kDa cut off, HPLC, SDS-FAGE, UPLC, LPLC, amino acid 

sequencing) failed in the characterization of bacteriocins.  

 

Further research is necessary to characterize this bacteriocin. The next attempt will be 

CRISPR-CAS9 on the target regions identified.   

 

Experimental procedure (Materials & Methods) 

Lactobacillus isolation  

Adults of honeybee (Apis mellifera), violet carpenter bee (Xylocopa violacea), European 

hornet (Vespa crabro) and paper wasp (Polystes gallica) were collected in countryside 

environments near Bologna and were surface-sterilized (Yoshiyama and Kimura 2009) 

according to Baffoni et al. 2016. Lactobacilli were isolated and enumerated by surface 

inoculation on the deMan Rogosa Sharpe (MRS) medium (Becton Dickinson & Co., 

Mountain View, CA), containing 0.2% (w/v) sorbic acid (Sigma-Aldrich, Milan, Italy) and 

0.1% (w/v) cycloheximide (Sigma-Aldrich) to inhibit yeast growth. After 48 h incubation in 

anaerobic condition at 35±1 °C, putative Lactobacillus colonies were picked according to 

colony colour, shape and growth speed.  

DNA extraction 

Microbial DNA extraction from pure cultures was performed using the Promega Wizard® 

Genomic DNA extraction kit (Promega, Madison, USA). The extracted DNA concentration 

and purity were determined by measuring the absorbance ratio at 260 and 280 nm (Infinite 

200 PRO NanoQuant, Tecan, Mannedorf, Switzerland). The extracted DNA was stored at -

20 °C until further analysis.  

PFGE  

Isolated Lactobacillus were grown on standard MRS with addition of 2% fructose, 0.1% L–

cysteine hydrochloride (Olofsson at al. 2014) and 20 mM/L-1 D–threonine (Sygma-Aldrich) 

to facilitate lysis, according to Guidone et al. 2014. Cells were harvested from 0.5 mL of 

culture by centrifugation at 13.000 rpm, washed once in 500 µL 10 mM Tris HCl, 1 M NaCl 

(pH 7.6) buffer, and re-suspended in the 300 µL of the same buffer. The suspension was 

mixed with an equal volume of 2% of PFGE low melting point agarose (Bio-Rad, UK) before 

solidification in plugs. Plugs were incubated in a lysis buffer containing Mutanolysin 20 

units/mL as suggested by Sympson et al. 2003 and successively treated with proteinase K 

overnight at 55°C. Successively plugs where exposed overnight to restriction enzymes Sma 

I and Not I (New England BioLabs, Hertfordshire, UK) with a final enzyme concentration of 

1 UI/µL. DNA fragments were resolved using a CHEF-DR III pulsed-field system (Bio-Rad 
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Laboratories, Richmond, Calif.) at 6 V/cm for 16 h with pulse time ramped from 1 to 20 

seconds. In every gel a Low Range PFGE marker (New England BioLabs, Hertfordshire, 

UK) was used as a ladder for gel normalization. Gels were stained with 0.5 mg/mL ethidium 

bromide and gel images were digitized using gel documentation system Gel DocTM X+R 

(Bio-Rad). 

RAPD–PCR and ERIC-PCR fingerprinting 

Isolates were also characterized by PCR dependent fingerprinting techniques. RAPD-PCR 

(Randonly Amplified Polymorphic DNA) was carried out with a reaction mixture composed 

of 10μL HotStarTaq Master Mix (QIAGEN GmbH, Hilden, Germania), 2 μL of 20 μM primer 

M13 (5' - GAG GGT GGC GGT TCT - 3') (Andrighetto et al., 2001), 1.2 μL of template DNA 

and water to the total volume of 20 μL. ERIC-PCR was carried out using the same protocol 

except for the primers ERIC-1 (5' - ATG TAA GCT CCT GGG GAT TCA C - 3') and ERIC-2 

(5' - AAG TAA GTG ACT GGG GTG AGC G - 3') (Versalovic et al., 1991) added at the PCR 

mix as 0.5 μL of 20 μM each primer. The amplification products were run on an agarose gel 

2% (w/vol), stained with 0.05 μL/mL SYBR Safe, 1x TBE as running buffer, at 120 V for 4 

hours. Gel images were captured with GelDoc (BioRad Laboratories, Hercules, CA, USA).  

Fingerprinting analysis  

Profile band patterns were analysed with Gel Compar II 6.6 (Applied Maths, Kortrijk, 

Belgium). The similarity coefficient was calculated with Pearson correlation. The 

dendrogram was obtained with Unweighted Pair Group Method (UPGMA), using the 

algorithm of arithmetic mean of grouping (Clustering). A cut-off coefficient of 11 % was 

calculated according to Jérôme et al. 2016. The reproducibility of the fingerprinting was 

investigated on three different strains of isolated Lactobacillus and three different strains of 

type strains Lactobacillus. For each isolate, reproducibility was determined as the similarity 

value among the three replicates. Then, the six values were averaged to obtain the mean 

reproducibility, used as a threshold to define identical genotypes. 

16S rDNA amplification 

16S rDNA amplification was performed with primers 27f (5' - AGA GTT TGA TCC TGG CTC 

AG - 3') and 1492r (5' - GGT TAC CTT GTT ACG ACT - 3') (Lane, 1991) according to Gaggìa 

et al. (2013). Amplicons were purified (Nucleospin gel and PCR clean-up kit; Macherey-

Nagel GmbH & Co. KG, Germany) and sequenced by a commercial sequencing facility 

(Eurofins MWG Operon), using primers 27f and 1492r. Sequence chromatograms were 

edited and analyzed using the software program Finch TV version 1.4.0 (Geospiza Inc., 

Seattle, WA, USA) and the corrected sequences were subjected to taxon classification using 

RDP classifier, an available tool at the RDP-II website (Wang et al., 2007).  

Bacteriolysin production  

A modified MRS (mMRS) was used to induce bacteriolysin production from the isolated 

Lactobacillus strains. The mMRS was composed of 2 g/L glucose, 8.7 g/L K2HPO4 and 8.0 

g/L KH2PO4 according to Cho et al. 2010. Moreover also 2 g/L fructose and 1 g/L of L-

cysteine hydrochloride were added to the mMRS (Olofsson at al. 2014). Lactobacillus strains 

were incubated at 37 °C for 36 hours, until the stationary phase was reached. Cell free 

supernatants were obtained by centrifugation of the supernatants at 11000 g for 2 minutes. 
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The pH of the supernatants was corrected to 5.8 with sterile NaOH 3 M, and the supernatant 

was stored at -20 °C until further analysis. 

Agar well diffusion assay 

The agar well diffusion essay was carried out as described by Cintas et al. 1995, on soft 

agar inoculated with indicator strains. The indicator strains used are according to O’Shea et 

al. 2008 with the exclusion of Clostridium sp., Enterococcus sp., Listeria monocitogenes and 

Streptococcus sp. and with addition of L. delbrueckii subsp. delbrueckii DSM 20074 (Savino 

et al. 2011), Paenibacillus larvae ATCC 4595, P. dendritiformis PA(C) and Melissococcus 

plutonius ATCC 35311 

HiSeq 

The whole genome sequence of the strains giving an inhibition halo in the agar well diffusion 

assay (Lactobacillus sp. Xv13, L. bombi Xv6, L. kimbladii Dan47, L. kullambergensis Dan23 

and L. helsingborgenis Dan70, L. apis Dan63 was obtained by a commercial sequencing 

facility (MicrobesNG, West Midlands, UK). The genomic DNA was prepared according to 

Illumina protocols for genomes preparation (MicrobesNG, Birmingham, U.K.). Fragmented 

genomes where then loaded on an Illumina HiSeq platform. 

Genome analysis and primers design  

The obtained whole genome sequences of Lactobacillus Xv13, Dan47, Dan23 and Dan 70 

and the sequences of Lactobacillus Bma5, Hma2 and Biut2 deposited by Ellegaard et al. 

2015 were run in BAGEL 2, an online open platform for bacteriocin mining (De Jong et al. 

2010). Based on the BAGEL 2 outputs, the putative bacteriolysins ORFs were obtained. 

Multiple consensus sequence of the bacteriolysin ORFs were generated using DNAMAN 

and loaded on the online platform PRIMER 3 to design specific primers (Untergasser et al. 

2012; Koressaar and Remm (2007)).  

Antimicrobial compound annotation 

Bacteriocin annotation has been performed with the web tool BAGEL. BAGEL is a web 

server that identifies ribosomally synthesized and post-translationally modified peptides in 

(meta)genomic data using novel, knowledge-based bacteriocin databases and motif 

databases. BAGEL can identify biosynthetic gene clusters of antimicrobial peptides, and 

classify and analyse the putative products (de Jong et al., 2006). 

 

Bacteriocin concentration and partial characterization.  

The protein content of the supernatants of Dan 75, Dan 47 and Dan 23 were concentrated 

up to 30 µg/µL by centrifuging 100 mL of the supernatant in Amicon® Ultra 15 centrifugal 

filters with 10 kDa cut off cellulose membrane, for 4 hours at 5000 rpm. The concentrates 

and the flow through were stored at 4°C until further analysis. To confirm the proteinaceous 

nature of the target antimicrobial, the concentrated supernatants were treated with ethylene 

acetate and proteinase K. Ethylene acetate was evaporated with rotavapor and the obtained 

extract was, re-suspended in both MRS and MRS + 20 % DMSO. Retention of antimicrobial 

activity was tested in indicator plates of L. delbrueckii subsp. delbrueckii DSM 20074. Heat 

stability was assessed by exposing supernatant at an increasing temperature gradient, from 

40 °C to 100 °C. The workflow is reported in the Figure 7 below: 
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Figure 7: workflow of Helveticin like purification through SDS -PAGE 
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CHAPTER 3 

 

Honeybee gut microbiota 

exploited with NGS studies 
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Introduction 

The fast development of NGS techniques has helped and simplified the study of microbial 

populations in different ecological niches. Honey bees, in particular their gut microbiota, 

have been a favourite object of NGS studies, considering their key role in crops pollination 

and the economic importance of their refined products. Honeybee gut microbiota is simple, 

distinctive and apparently stable (Moran et al. 2012). Just twenty years ago in Malta a new 

subspecies of honey bees, Apis mellifera subsp ruttneri, has been identified by Shepard et 

al. (1997). It belongs to the African bees subgroup and it is classified close to Apis mellifera 

subsp intermissa and Apis mellifera subsp siciliana and far from the European subspecies. 

The Maltese bee shows peculiar characteristics of adaptation to the drought, hotness and 

the sea wind. It developed these characteristics after thousand years of isolation in the Malta 

islands, presumably during Pleistocene, colonizing the Maltese islands. In this study, we 

investigated the gut microbiota of A. mellifera subsp ruttneri through culture dependent and 

independent techniques, hypothesizing some distinctive differences from the European 

bees, having evolved separately in an isolated niche. 

A. mellifera subsp ruttneri is an endangered subspecies due to the importation of alien 

subspecies of Apis mellifera subsp ligustica and subsp siciliana. For a long time, 

international community of entomologists believed in its total extinction. Luckily, they were 

wrong, and to date about 100 pure Apis mellifera subsp ruttneri beehives are present in the 

Maltese main island, under the protection and coordination of a NGO “Breed of Origin”. This 

research attempts to characterize the aspects related to the gut microbial community of this 

endangered subspecies, enriching the scarce existing knowledge. As a curiosity, the 

Maltese honey bee is, to some extent, still reared in the terracotta hives typical of the Maltese 

Island (Figure 1), a unique case in Europe to the best of our knowledge. 

 

  
Figure 1a and 1b Terracotta hives typical of the Maltese island, populated with Apis mellifera subsp ruttneri. 

Apiary of Mario Sant, beekeeper promoting Maltese bee preservation. 

 

In the present work, Maltese honey bees were sampled in 3 different localities of the main 

Maltese island, depicted in Figure 2. The 16S rRNA of the gut microbial community obtained 

both from single bee gut and from a pool of 10 bee guts per location of interest was 

sequenced. Then the sum of the OTUs obtained from single samples per location was 

compared to OTUs obtained from samples pooled per location. In addition to the sequencing 
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results, the aim was to validate the pooling method as representative of the main status of 

the gut microbial population of the bee hive analysed.  

 

Materials and Methods 

20 bees for culture dependent techniques and 30 bees for microbial culture independent 

techniques were sampled from 3 different beehives of pure Maltese bees located in 

Gharghur (GH), Msida (CM)and Zejtun (ZT) (Figure 2). Gut samples were immediately 

shipped on dry ice (-70°C) to the University of Bologna,  

 

 
 
Figure 2 Maltese main Island, geo-localization points where Maltese honey bees gut samples were picked. 

 

Tenfold serial dilution of gut content (0,5 g) stored in glycerol broth and inoculation on MRS, 

TPY and TSA agar plates was carried out, leading to the isolation of about 300 isolates, 

nowadays only one hundred analysed. Genomic DNA was extracted from 10 single bee gut 

per collection locality with Quick-DNA™ Insect Microbe Miniprep Kit - Zymo Research 

(ZYMO, California, USA). Moreover, a pool of 10 intestines per locality were also extracted 

with Quick-DNA™ Fecal/Soil Microbe Miniprep Kit - Zymo Research (ZYMO, California, 

USA). The V3-V4 regions of 16S rRNA were amplified, analyzed via DGGE and sequenced 

on the MiSeq Illumina platform with an average sequence yield 200.000 seq. per bee. 

Sequencing results were compared with the results obtained by Moran et al. (2012) on Apis 

mellifera in USA. Bioinformatic analyses were performed with Qiime1, and representative 

OTUs blasted against the most updated SILVA database (SILVA release 128). OTUs present 

in less than 0.1% abundance were removed and bar charts generated. 

 

Results and discussion 

The Maltese honey bee gut microbial community profile shows the major microbial groups 

also detected by Moran et al. (2012). Honeybee gut microbiota is surprisingly stable, having 
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a unique microbial profile typical of honey bees. The same microbial taxa (or phyla) were 

also detected in A. mellifera subsp. ruttneri (Figure 3 ): Firmicutes (with Lactobacillus spp.); 

Actinobacteria (with Bifidobacterium spp.); Alphaproteobacteria (with Commensalibacter 

spp and Bartonella spp.); Betaproteobacteria (with Snodgrasella spp.); 

Gammaproteobacteria (with Acinetobacter spp., Pseudomonas spp., Giliamella spp. and 

Frischella spp.) and Tenericutes (with Spiroplasma spp.). In addition, Arsenophonus sp. was 

detected, an indicator of the poor health of bees usually due to varroa infestation. 

 
 
Figure 3 OTUs (Operational taxonomic unit) relative abundance of gut microbiota represented with bar charts, 

and divided in groups.  
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Contrarily, two taxa have been evidenced that are distinctive with respect to A. mellifera: 

Bombella spp. and Apibacter spp. Bombella genus, like Commensalibacter, belongs to 

Acetobacteraceae family in the Alphaproteobacterium phylum, while Apibacter genus 

belongs to Flavobacteraceae family in the Bacteroidetes phylum. These two taxa are 

correlated with the African bee subspecies according to the genetic phylogenies of the 

Maltese bee. In Apibacter mensalis genome annotation, Praet et al. (2016) evidenced 

complete or nearly complete vitamin biosynthetic pathways, together with twogene-

abundant subsystems related to protein and amino-acid metabolism. Kwong and Moran 

(2016b) indicated that different bee hosts may harbour their own specialized species or 

strains of the genus Apibacter. Considering this aspect, a full metagenome analysis could 

be of particular interest for an in-depth characterization of bee-subspecies-related 

microbiota. Also the full-genome sequence of Bombella intestini, recently analysed by Li et 

al. (2016) revealed peculiar traits related to bee gut environment and host-microbiota 

interaction. According to Yun et al. (2014), insect gut bacterial diversity is determined by 

environmental habitat, diet and host phylogeny. The adaptation of gut symbiont to external 

factor and host genetic heritage allows microorganisms to play an important role in 

regulating the host’s metabolism, extracting the maximum energy from ingested foods and 

protecting the host from other potentially harmful microbes.  

Statistical analysis comparing the different location has been accomplished with QIME1 

using three different metrics of alpha-diversity estimation: chao index, observed_otu and 

PD_whole_tree (Figure 4).  

 

 
Figure 4: Box plots on statistic of Maltese Honeybee 
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The chao index estimates diversity from abundance data (importance of rare OTUs), the 

comparison revealed no significant differences between locations. The observed_otu metric 

is a richness measure that considers the number of species (or OTUs) observed in the 

sample; also in this case the no differences have been reported. The PD_whole_tree metric 

is Faith's Phylogenetic Diversity, and it is based on the phylogenetic tree. Basically, it adds 

up all the branch lengths as a measure of diversity. So, a new OUT, closely related to 

another OTU in the sample, will be a small increase in diversity. On the contrary, a new 

OUT, coming from a totally different lineage than anything else in the sample, will contribute 

a lot to increase the diversity. Gharghur and Zejtun resulted significantly different (p=0.027). 

The results evidenced that the three locations are similar for what concern richness and 

abundance distribution of the estimated OUT, however, a substantial difference among 

Gharghur and Zejtun has been evidenced when phylogenesis is taken into account. Beta 

diversity analysis among the different locations has been performed using UniFrac distance 

metric. It incorporates information on the relative relatedness of community members by 

taking into account phylogenetic distances between observed organisms in the computation. 

The unweighted (qualitative) variant of UniFrac considers the presence or absence of 

observed organisms and is displayed in PCoA plot of Figure 5, underlined again the 

difference between Gharghur and Zejtun.  

 

 
Figure 5: PCoA plot: in red samples from Campus Msida, in blue samples from Ghargur, in orange samples 

from Zejtun  
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The use of Qiime1 script to compare single OUT abundance among locations, with 

Bonferroni correction, revealed significant differences in specific taxa. An OUT, classified as 

Rhizobiales_unknown, was significantly lower in Zejtun samples. After extracting the 

reference sequence associated with this OUT, the sequence was blasted using NCBI 

database (on type material) and classified as Bartonella apis (99%, 439nt/440nt), but the 

second assignment was Shinella fusca (99%, 436nt/440nt). Bartonella apis, an 

Alphaproteobacteria of the Bartonellaceae family, has been firstly isolated from honey bee 

gut and described by Kešnerová et al. (2016). A comparison of six genomes of Bartonella 

apis (Segers et al., 2017) revealed that B. apis encodes a large set of vertically inherited 

genes for amino acid and cofactor biosynthesis (i.e. heme, vitamin B12, vitamin B6, 

molybdopterine and tetrahydrofolate) and nitrogen metabolism. The nitrogen-limited plant 

diet of the host may act as selective pressure to retain these vertically inherited biosynthetic 

capabilities. In Zejtun samples, three OTUs were found to have a higher number of 

sequences than the other two locations and they were classified as Chryseobacterium spp., 

Arsenophonus spp. and Spiroplasma spp. As already stated, Arsenophonus high number 

can be an indicator of the poor health of bee. Concerning Spiroplasma spp., Shokal et al. 

(2016) evidenced, in Drosophila melanogaster, a possible correlation between Spiroplasma 

presence and the modulation of immune signalling against pathogenic bacteria. 

Chryseobacterium genus has been already detected in insect gut however its role is still 

unclear, in the gut of the wood-boring beetle Anoplophora chinensis it seems to help in 

cellulose and/or aromatic compounds degradation (Rizzi et al., 2013). 

The overall information seem to suggest that bee sampled in Zejtun location were 

particularly stressed and not in gut health. Further analysis on observed OUT could be 

appropriate to find correlation between decrease and increase of specific OTUs and bee 

health status. 

 

The sum of the single bee gut profiles of Figure 3 is shown in Figure 6 and named as “ZT 

sum; CM sum; GH sum”. These sums were compared with the profiles obtained from a pool 

of 10 bee guts per location (named as “ZT mix; CM mix; GH mix”, and results showed a non-

significant (p<0.01) difference among profiles when considering the whole microbial 

communities composition (Beta-Diversity). However, when abundance of a single genus is 

compared, a significant difference was highlighted for many genus.  
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Figure 6  OTUs (Operational taxonomic unit) relative abundance of gut microbiota represented with bar charts 

summed and compared with pre extraction pools of intestines.  

 

These are preliminary data, research on this topic is going on. 
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Introduction 

In the last decades honeybees have been afflicted by several gut diseases, such as the 

American Foulbrood (caused by Paenibacillus larvae), the European Foulbrood 

(Melissococcus plutonius) and Nosemosis (Nosema apis and N. ceranae). The virulence of 

these diseases is enhanced by synergies with abiotic stressors causing noteworthy 

significant losses in honeybee hives and honey production. To counteract losses, 

pharmaceutical companies have developed specific medicaments for microbial mediated 

honeybee diseases generally classifiable as antibiotics or chemotherapics. Antibiotics are 

widely used in the beekeeping sector as both growth promoters and therapeutic agents for 

the main microbial diseases affecting honeybees (Apis mellifera spp.). A certain number of 

antibiotics are used worldwide: Oxitetracicline-HCl (Terramicin®), authorized to control 

Paenibacillus larvae, the causative agent of American Foulbrood (Genersch 2006), Tylosine 

(Tylovet®), used to control Melissococcus plutonius, the first invader of European 

Foulbrood, and Fumagilin B (Fumidil-B®), the only effective antibiotic known to control 

Nosema spp..  After the ban of antibiotics at European level in 2001, a strong input in finding 

alternative solutions has stimulated both researchers and companies. Consequently, 

several new strategies, such as natural oils (e.g. thymol, Neem oil) or probiotics, have 

been proposed on the veterinary market or suggested by researchers as possible 

alternatives. However, the use of any oral medicament represents an anthropogenic 

pressure that can lead to modification of the honeybees’ gut microbial community.  

To date, the antibiotic shaping effects on the bee microbiota as well as the effects on the 

beehive ecosystem (e.g.: selective pressure on the yeast and moulds responsible of the 

beebread fermentation (Gilliam 1979)) is poorly investigated. It is well known that humoral 

and cellular defences are used by insects to defend themselves from pathogens and 

parasites. The intestinal protective microorganisms act in synergy with the insect immune 

system, underlying their importance in modulating the insect defence response to the 

pathogen. Commensal bacteria can both modulate the innate immune system and 

contribute to the integrity of the intestinal barrier, acting as a further protection sheath, which 

partially edges the contact between the epithelial cells and the pathogens. Any unbalance 

of the microbial populations in the intestine, defined as intestinal dysbiosis (Sartor 2008), is 

caused by a multitude of factors, including pharmacological treatments. In particular, the use 

of antibiotics is known to have side effects on humans and animals, including insects. 

In this work, we investigated if and how traditional chemotherapeutics strategies and 

new approaches can shape the honey bee gut microbial community. The effects at the gut 

level of antibiotic treatments in honey bees is evaluated, comparing it with two eco-friendly 

strategies involving the use of probiotic strains and oils (a particular focus will be made on 

beneficial microorganisms in the bee gut such as Lactobacilli and Bifidobacteria. The 

microbial composition of the bee gut of the new-borns is detected through high-throughput 

pyrosequencing of 16S rDNA (V3-V4 regions) amplicons. The advantage of this technique 

is the determination of the sequence data from amplified single DNA fragments, avoiding 

the need for cloning of DNA fragments. 
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Materials and Methods 

Two different trials have been designed to test eco-friendly and antibiotic/chemotherapeutic 

strategies, respectively (Figure 1): 

1. In field trial to test beneficial microorganisms and natural oils. 

For each thesis, six micro hives were prepared and established in an experimental 

field. The developed thesis were: Thymol + Tween80 [T], Neem Oil + Tween80 [N], 

Probiotics [P], Tween80 [W] and Control [C]. Regarding the thesis with probiotics, a 

mixture of 6 strains, belonging to the Bifidobacterium and Lactobacillus genera, was 

freshly prepared (Baffoni et al. 2016, Alberoni et al. 2018) 

 

2. Laboratory trial to test antibiotics.  

For each thesis, six micro hives were prepared and established in a controlled 

laboratory environment, i.e., in a thermostat with controlled temperature and 

humidity (37°C and 60RH). The developed thesis were: Tylosin [TL], Tetracycline 

[PT], Sulfaquinoxaline [S], Antibiotic Control [CA]. 

 
Figure 1 Schematic representation of in field (1) and laboratory (2) tests. In the figure are stated also 

dimensions of the tests and how many bees and beehives have been used to achieve the aim.  

 
All micro hives were treated once a week for three weeks by spraying honeybees (in field) 
or by nourishment (laboratory cages) with 30 mL of the assayed treatment 
(antibiotic/oil/beneficial bacteria brought to volume with sugar syrup (1:1 sugar-water)) 
supplemented with the respective treatment. A weekly administration was decided according 
to the instructions of veterinary medicament manufacturers to cover all the honeybee 
workers brood circle (21 days), and simulate as accurately as possible the beekeeping 
practices. Gut content of 30 bees per replicate was picked, pooled and extracted at the 
beginning of the experiment (T0) and after 4 weeks (T4). Microbial gut DNA was extracted 
with Quick-DNA™ Fecal/Soil Microbe Miniprep Kit - Zymo Research (ZYMO, California, 
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USA) and 16S rDNA was amplified with a primer targeting V3-V4 region. Libraries were 
prepared and sequenced on Illumina MiSeq platform. Bioinformatic analyses were 
performed with Qiime1, and representative OTUs blasted against the most updated SILVA 
database (SILVA release 128). OTUs present in less than 0.1% abundance were removed. 
Percentage Based Cognitive Illusion Correction was applied to all the data, in order to 
identify microbials groups that are actually changing in proportion if compared with unvaried 
microbial taxa (Squartini et al., 2017) 
 
Table 1 Table of medicaments used and doses per treatment preparation per hive. All antibiotics or 

antimicrobial agents was brought to a total volume of 30mL with sugar syrup and sprayed on bees  

 

Antibiotic/Antimicrobial/Beneficial 

Microorganisms 

Dose per treatment Reference article 

Oxitetraciclin 267 mg Skinner J.A. et al.; Mutinelli F. 2003 

Tylosin 200 mg Mutinelli F. 2003; Huvepharma® 

Sulfaquinoxaline  1 g Mutinelli F. 2003 

Tween 80 + (Essential oil -below specified) 1,5 mL - 

- Neem Oil  1,5 mL - 

- Tymole 0,01 mL - 

Beneficial bacteria mixture* 0,2 g Audisio M.C. et al., 2015; Baffoni et al. 

2016 

Control [CTR] - - 

Control Antibiotics [CTR-ANT]  - 

Control [CTR] + (Tween 80) - - 

*prepared according to Baffoni et al. 2016 
 

Results and discussion 

A total of 35 million sequences were obtained; of these, 16.7 million passed the quality 

control and Kimera check for an average of 86,074 joint reads per sample.  

Analysis on obtained OTUs showed that (Figure 2), beneficial microorganisms’ 

administration on honeybees did not show a significant perturbation of the distribution of the 

major representative genera. Surprisingly the treatments with oxytetracycline, 

sulfaquinoxaline and tymol didn’t significatively modify the core microbial community. The 

most significant output of the research was the decrease of Lactobacillus and eradication of 

Bifidobacterium member after Tylosin antibiotic administration, that represent the only 

significant honeybee core gut microbiota modification. Moreover, interestingly PCoA 

analysis of the distribution of samples according to their microbial profile, showed a clear 

division between in field and laboratory trials (Figure 3), highlighting the importance of the 

environmental conditions in shaping the gut microbiota. 
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Figure 2 OTUs (Operational taxonomic unit) relative abundance of gut microbiota represented with bar charts, 

and divided in groups per treatment. In every group is present T0 and T4 profiles. Moreover a third column 

represent the Percentage Based Cognitive Illusion Correction (PBCIC). 
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Figure 3 PCoA showing distribution of samples according to their microbial profile. In Yellow samples from 

laboratory tests; in light blue samples from the in-field tests; 

 

Although further elaborations of the results are necessary to draw definitive conclusions, it 

can be preliminary outlined that the gut microbial community of honeybees shows a great 

resilience to most of the treatments applied after 3 weeks of administration plus 1-week 

wash-out. This is somehow different from the achievements of Raymann et al. (2017), 

which showed that tetracycline can strongly shape the gut microbial community after a few 

days from administration.  

 

These are preliminary data, research on this topic is ongoing. 
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CHAPTER 4 

 

Counteracting diseases for 

a honeybee wealth and 

health 
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Abstract 

Nosema ceranae is a widespread microsporidium of European honeybee Apis mellifera L. 

affecting bee health. The ban of Fumagillin-B (dicyclohexylammonium salt) in the European 

Union has driven the search for sustainable strategies to prevent and control the infection. 

The gut microbial symbionts associated to the intestinal system of vertebrates and 

invertebrates and its impact on host health, are receiving increasing attention. In particular, 

bifidobacteria and lactobacilli, which are normal inhabitants of the digestive system of bees, 

are known to protect their hosts via antimicrobial metabolites, immunomodulation and 

competition. In this work, the dietary supplementation of gut bacteria was evaluated under 

laboratory conditions in bees artificially infected with the parasite and bees not artificially 

infected but evidencing a low natural infection. Supplemented bacteria were selected among 

bifidobacteria, previously isolated, and lactobacilli, isolated in this work from healthy 

honeybee gut. Four treatments were compared: bees fed with sugar syrup (CTR); bees fed 

with sugar syrup containing bifidobacteria and lactobacilli (PRO); bees infected with N. 

ceranae spores and fed with sugar syrup (NOS); bees infected with N. ceranae and fed with 

sugar syrup containing bifidobacteria and lactobacilli (NP). The sugar syrup, with or without 

microorganisms, was administered to bees from the first day of life for 13 days. N. ceranae 

infection was carried out individually on anesthetized 5-day-old bees. Eight days after 

infection, a significant (P<0.05) lower level of N. ceranae was detected by real-time PCR in 

both NP and PRO group, showing a positive effect of supplemented microorganisms in 

controlling the infection. These results represent a first attempt of application of 

bifidobacteria and lactobacilli against N. ceranae in honeybees. 

 

Keywords: honeybee pathogens, gut microbiota, real-time PCR, beneficial bacteria 
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Introduction 

Pollination by honey bee is widely recognized as an important service for wild plant 

communities as well as for the agricultural ecosystems. Besides the economic benefits due 

to crop pollination, bees should also be considered for the contribution to the global 

biodiversity (Hamdi et al., 2011). Unfortunately, in many European and North American 

countries honey bee population have registered a significant decrease (Aizen and Harder, 

2009) as a result of habitat destruction, pesticide use, pathogens and climate change or 

some combination of these factors (Vanengelsdorp and Meixner, 2010). The microsporidium 

Nosema ceranae is becoming a serious threat, affecting honey bee health, particularly in 

countries with temperate climate. It has been found to be highly virulent in field, and a direct 

correlation has been shown between N. ceranae infection and the death of honey bee 

colonies in a study performed in Spain (Higes et al., 2010). N. ceranae belongs to the fungal 

phylum Microsporidia, a group of obligate intracellular single-cell spore-forming parasites 

that can infect a variety of insects, including honey bees. Infection and replication cycles 

take place in the midgut once spores germinate by extrusion of a polar tube, injecting the 

sporoplasm inside the epithelial cells (Higes et al., 2007). Within three-four days, the host 

epithelial cells are filled with offspring spores and the cells burst to release a new generation 

of primary spores (Gisder et al., 2011), which can germinate again infecting more cells or 

leave the insect with feces. The severe energetic stress observed in N. ceranae-infected 

bees is probably due to the parasite itself, which develops exploiting the host cell 

mitochondria (Chen et al., 2009; Higes et al., 2007) and competing directly for key nutrients 

and energy resources. The infection firstly causes increased food consumption (Martin-

Hernández et al., 2011), immune suppression (Antùnez et al., 2009), degeneration of gut 

epithelial cells and shortened life spans (Higes et al., 2007). Consequently, a decrease on 

population size can be observed, associated with a loss of adult bees. Evidences show that 

the microsporidium, due to epithelial lesions, increases the susceptibility to other pathogens, 

in particular facilitating trans-enteric viral infection (Higes et al., 2008). In addition, the 

exposure to sub-lethal concentration of neonicotinoids in immature bees significantly 

enhanced the number of spore production per bee (Vidau et al., 2011). Nowadays, the 

antibiotic Fumagillin-B (dicyclohexylammonium salt) is the only available compound to 

treat N. ceranae infection; however, it is no longer licensed in the EU states and recent 

reports provide controversial results about its efficacy and its effects related to residues in 

honey (Lopez et al., 2008; Williams et al., 2008). Considering that a multi-factorial approach 

is suggested to face out this hard issue, a possible role of gut microbial symbionts, 

commonly isolated from the bee digestive system, could be envisaged to contain and/or 

reduce N. ceranae spread and provide an eco-sustainable tool to beekeepers. Bifidobacteria 

and lactobacilli are known to confer health benefits to their host (Vasquez et al., 2012). 

Recently, they have received special attention as a new option for the management of the 

natural bee microbiome (Hamdi et al., 2011; Pătruică et al., 2013). Commensal gut 

bifidobacteria and lactobacilli, whose beneficial effect is commonly exploited in vertebrates 

and invertebrates, can modulate the innate immune system and strengthen the epithelial 

barrier, limiting pathogenic contact with the epithelium by the secretion of antimicrobial 

compounds (bacteriocins) or direct competition (Crotti et al., 2012; Hamdi et al., 2011). In 

the present study, the effect of orally administered bifidobacteria and lactobacilli strains, 
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isolated from the gut of healthy honey bee adults and partially identified in this work, was 

investigated on N. ceranae artificially and naturally infected honey bees (Apis mellifera L.). 

Real-time PCR on DNA extracted from honey bee gut was performed to evaluate the 

effective probiotic colonization and N. ceranae load.  

 

Materials and Methods 

 

Bacteria isolation and culture growth conditions 

Bifidobacterium asteroides DSM 20431, Bifidobacterium coryneforme C155 and 

Bifidobacterium indicum C449 were previously isolated from hindgut of bee (Scardovi and 

trovatelli, 1969) and available at the BUSCoB collection (Bologna University Scardovi 

Collection of Bifidobacteria) of the Department of Agricultural Sciences (Bologna). All three 

strains were grown on Tryptone Peptone Yeast extract (TPY) medium (Scardovi, 1986) in 

anaerobic atmosphere at 37 °C±1 for 24-48 h. To isolate lactobacilli, adult bees were 

collected from the apiary at CRA-API (Bologna, Italy) and surface-sterilized as suggested 

by Yoshiyama and Kimura (2009). The gut content of 100 honey bees was pooled, diluted 

in phosphate-buffered saline (PBS) and tenfold serial dilutions were prepared. Lactobacilli 

were isolated and enumerated in anaerobic condition at 35±1 °C by surface inoculation on 

the Man Rogosa Sharpe medium (MRS) (Becton Dickinson & Co., Mountain View, CA), 

containing 0.2% (w/v) sorbic acid (Sigma-Aldrich, Milan, Italy) and 0.1% (w/v) cycloheximide 

(Sigma-Aldrich) to inhibit yeast growth. Analysis were performed in triplicate. Following 

incubation, the number of colony forming units (cfu/g) of gut content was recorded, and 

mean Log values and standard deviations were calculated. Ten isolated colonies were 

selected and according to size, color and morphology, they were re-streaked and purified 

for further characterization. For long-term storage, isolates were stored at - 80 °C.  

 

Pure cultures DNA extraction, 16S rDNA amplification and sequencing 

Genomic DNA extraction was carried out using the Promega Wizard® Genomic DNA 

extraction kit (Promega, Madison, USA) from 2 ml of an overnight culture of the bacterial 

isolates, according to the manufacturer’s instructions. The purity and concentration of 

extracted DNA were determined by measuring the ratio of the absorbance at 260 and 280 

nm (Infinite 200 PRO NanoQuant, Tecan, Mannedorf, Switzerland). 16S rDNA amplification 

was performed with primers 27f (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492r (5’-

GGTTACCTTGTTACGACT-3’) (Lane, 1991) according to Gaggìa et al. (2013). After 

electrophoresis (1.5% w/v agarose gel at 75 V), gels were stained with ethidium bromide 

and visualized with the gel documentation system Gel DocTM XR (Bio-Rad, Hercules, CA, 

USA). Amplicons were then purified (Nucleospin gel and PCR clean-up kit; Macherey-Nagel 

GmbH & Co. KG, Germany) and sequenced by a commercial sequencing facility (Eurofins 

MWG Operon), using primers 27f and 1492r. Sequence chromatograms were edited and 

analyzed using the software program Finch TV version 1.4.0 (Geospiza Inc., Seattle, WA, 

USA) and the corrected sequences were subjected to taxon classification using RDP 

classifier, an available tool at the RDP-II website (Wang et al., 2007). 
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N. ceranae spore suspension  

N. ceranae-infected bees were obtained from an apiary located in Castello di Serravalle 

(Bologna, Italy), where infection is endemic. Twenty bees were crushed in saline solution 

(0.85% w/v), filtered through nylon mesh, and the resulting suspension was washed twice 

in distilled water, centrifuged (5,000 g, 5 min) and re-suspended in distilled water. Spore 

suspension was then overlaid on 40 ml of a 95% (w/v) Percoll® solution (Sigma P1644). 

Following 75 min of centrifuge at 9,000 g, spores, appearing as a cloud floating almost in 

the bottom of the tube, were sucked with a long pipette, washed and centrifuged three times 

with PBS to eliminate the residual Percoll® solution. The concentration of N. ceranae spores 

was then determined by haemocytometer count (Cantwell, 1970). Purified spores were 

suspended in 50 % (w/v) of sucrose solution necessary to yield a final concentration of 

13,000 spores/μl. An aliquot was used for DNA extraction and species identification by a 

multiplex PCR-based method, according to Martìn-Hernández et al. (2007). 

 

Experimental design 

Honey bees were kept in small polyethylene, glass-sided cages measuring 10 × 10 × 20 cm, 

provided with gravity feeders. Each cage contained 22 bees and was incubated at 33 °C 

and 65 % RH in the dark (Costa et al., 2010). Each treatment was replicated three times, 

thus yielding 12 cages: bees fed with sugar syrup (1:1 sugar-water) (CTR); bees fed with 

sugar syrup enriched with bifidobacteria and lactobacilli (PRO); bees fed with sugar syrup 

and infected with N. ceranae at the 5th day of life (NOS); bees fed with sugar syrup enriched 

with bifidobacteria and lactobacilli, and infected with N. ceranae at the 5th day of life (NP). 

 

Lactobacillus and Bifidobacterium feed additive preparation 

The selected bifidobacteria (B. asteroides DSM 20431, B. coryneforme C155 and B. indicum 

C449) and lactobacilli (L.kunkeei Dan39, L. plantarum Dan91 and L. johnsonii Dan92) were 

grown in TPY broth (Scardovi et al., 1986) and MRS broth with 2 % (w/v) fructose (Olofsson 

et al., 2014), respectively. The overnight cultures were harvested and centrifuged to obtain 

a fresh pellet that was re-suspended in 100 mL of a 1:1 sugar/water sterilized solution. The 

final concentration of the microorganisms was between 106-107cfu/ml of sugar syrup. The 

microbial inoculum was prepared twice, stored at 4 °C and used daily to feed honey bees.  

 

Bees, feeding and infection 

Newly emerged honey bees (Apis mellifera L.) were obtained from a colony in the apiary at 

CRA-API (Bologna, Italy). Frames with emerging bees capped into cells close to emergence 

were brought into the laboratory and incubated at 33 °C and 65 % RH, in the dark. Emerged 

bees were picked one by one and caged in the plastic boxes. The sugar syrup, with or 

without microorganisms, was administered to bees via gravity feeders (Costa et al., 2010) 

fitted into each cage from the first day of life for 13 days. N. ceranae infection was carried 

out individually on anesthetized 5-day-old bees (Martin-Hernández et al., 2011) with one µl 

of sugar syrup containing 13,000 spores. 
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DNA extraction from gut samples 

DNA extraction was performed at day eight post-infection (13-day-old bees). Bees were 

anesthetized with CO2 and guts were extracted with a sterilized tweezers by stretching their 

abdomen (Fries et al., 2013). For bifidobacteria and lactobacilli quantification, DNA 

extraction was performed on 200 mg of pooled guts derived from five bees per cage by using 

the QIAamp DNA Stool Mini Kit (Qiagen, West Sussex, UK), according to the manufacturer's 

instructions. The recommended lysis temperature was increased to 95 °C. DNA extraction 

for N. ceranae analysis was carried out from individual gut derived from ten bees per cage 

(thirty bees per treatment). Each single sample was then processed using the ZR Tissue 

and Insect DNA MicroPrep extraction kit (Zymo Research, CA, USA) with a modified 

protocol, including two hours of incubation at 55 °C with 20 µL of 20 µg/µl proteinase K 

(Sigma-Aldrich). Purity and concentration of extracted DNA were measured with the Infinite 

200 PRO NanoQuant. The DNA was stored at -20 °C until use. 

 

Real-time PCR 

Quantification of Bifidobacterium spp. and Lactobacillus spp. was carried out by real-time 

PCR in both supplemented (PRO, NP) and unsupplemented groups (CTR, NOS) according 

to Baffoni et al. (2012). Obtained data were then transformed to obtain the Log number of 

bacterial cells/g of gut content, according with the rRNA copy number available at the rRNA 

copy number database (Klappenbach et al., 2001; Lee et al., 2009). Quantification of N. 

ceranae was carried out on DNA extracted from individual honey bee guts (ten/cage) from 

all experimental groups (CTR, PRO, NOS and NP) according to Forsgren and Fries (2010). 

Data were then transformed to obtain the Log number of spores/bee, according with 

preliminary evidence for 10 copies of the 16S rRNA gene in the N. ceranae genome (J. 

Evans, personal communication).  

 

Statistical analysis 

Real-time PCR data on the experimental groups were analysed using R software (R 

Development Core Team, 2005) and tested for normality (Shapiro–Wilks test) and 

homogeneity of variance (Levene's test). In case that one of those conditions was not met, 

the normalization was attempt with Box-Cox analysis on X’=log(X+0.1) (Box and Cox, 1964). 

If assumption of normality could not be satisfied by transformation, data were analysed by 

Kruskal-Wallis test (P < 0.01) followed by the pairwise Kolmogorov-Smirnov test. P < 0.05 

was considered significant. 

 

Results 

Enumeration and characterization of isolates by 16S rRNA gene sequence analysis 

Presumptive lactobacilli were isolated from honey bee guts on MRS agar plates and count 

was 8.67±0.03 Log cfu/g of gut content. The partial bacterial 16S rDNA gene sequences 

from ten isolates (Accession number KP114138-KP114147) were subjected to taxonomical 

identification by the use of RDP tools classifier and seqmatch (Table 1).  
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Table 1 Identification of isolates based on 16S rRNA sequences and Ribosomal Database Project tool. 

 

Strain Closest match (accession number) 
Gene Bank 

(accession) 

S_ab 

score* 

Dan6 Lactobacillus kullabergensis (S004044228) KP114138 1.000 

Dan10 Bifidobacterium asteroides (S002908335) KP114139 0.981 

Dan25 Lactobacillus kullabergensis (S004044228) KP114140 1.000 

Dan39 Lactobacillus kunkeei (S004079211) KP114141 0.988 

Dan44 Bifidobacterium asteroides (S002908335) KP114142 0.981 

Dan47 Lactobacillus kimbladii (S004044226) KP114143 0.995 

Dan70 Lactobacillus helsingborgensis (S004044231) KP114144 1.000 

Dan91 Lactobacillus plantarum (S000118676) KP114145 1.000 

Dan92 Lactobacillus johnsonii (S000925461) KP114146 1.000 

Dan101 Lactobacillus helsingborgensis (S004044231) KP114147 0.999 

*S_ab score is the percentage of shared words between sequences compared. 

 

Real-time PCR 

Results of the bacterial counts are shown in Table 2. Statistical analysis showed that 

differences in bifidobacteria as well as lactobacilli population were highly significant among 

groups (Kruskal-Wallis test; P<0.01). The pairwise comparison with the Kolmogorov-

Smirnov test (CTR vs PRO; NOS vs NP) indicated that bifidobacteria and lactobacilli 

population PRO and NP groups had a significant increase compared to groups fed with only 

sugar syrup (P<0.05), whereas no significant changes were observed between CTR and 

NOS (P = 0.27), PRO and NP (P = 0.08 for bifidobacteria; P = 0.06 for lactobacilli).  

At day 13, 90% of the bees were still alive in all groups, independently from the treatments, 

with a significant difference in N. ceranae level (Kruskal-Wallis, P < 0.01), (Figure 1). A high 

number of N. ceranae was detected in NOS and NP groups (7.75±0.35 and 6.67±1.81 mean 

Log spores/bee±sd respectively), whereas bees not artificially infected, CTR and PRO, 

showed a low natural presence of the microsporidia (2.04±0.91 and 0.78±0.81 mean Log 

spores/bee±sd respectively). Post hoc pairwise comparison indicated a significant 

difference between NOS and NP, as well as CTR and PRO (P < 0.05). Both treated groups 

NP and PRO showed more than one Log reduction of spore count, resulting in more than 

90% reduction of the parasite load. N. ceranae detection was positive in all samples, both 

in NOS and NP groups, with 20.7% of samples presenting a spore count under the 

inoculated dose in NP. The PRO group showed the absence of N. ceranae in 53.3% of 

insects, whereas in CTR the detection was positive in all samples. 

 
Table 2 Bifidobacterium spp. and Lactobacillus spp. quantification by real-time PCR 

Group Bifidobacterium 

spp. 

Lactobacillus 

spp. 

CTR 5.94±0.96 8.41±0.32  

PRO 8.13±0.14 8.92±0.09  

NOS 6.31±0.20 8.28±0.26  
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NP 8.00±0.12 8.83±0.09  

 

CTR: control group fed with sugar syrup (1:1 sugar-water); PRO: group fed with sugar syrup 

enriched with bifidobacteria and lactobacilli; NOS: group fed with sugar syrup and infected 

with N. ceranae; NP: group fed with sugar syrup enriched with bifidobacteria and lactobacilli 

and infected with N. ceranae. Quantification was performed via qPCR using SybrGreen 

chemistry. Results are the mean (±sd) of three independent PCR analysis and expressed 

as Log cfu/g.  

 
Figure 1 N. ceranae quantification by real-time PCR. CTR: group fed with sugar syrup (1:1 sugar-water); PRO: 

bees fed with sugar syrup enriched with bifidobacteria and lactobacilli; NOS: bees infected with spores of N. 

ceranae and fed with sugar syrup; NP: bees infected with spores of N. ceranae and fed with sugar syrup 

enriched with bifidobacteria and lactobacilli. Results are given as box plots, where the horizontal line indicates 

the median, the box the first quartile of the data above and below the median.  

 

Discussion 

The use of gut microbial symbionts as dietary supplementation has been scarcely 

investigated in honey bees and only a few studies confirm the hypothesis that such 

microorganisms (multiple strains or single strain) or their metabolites could improve the 

health status of bees (Audisio and Benítez-Ahrendts, 2011; Audisio et al., 2015; Pătruică 

and Mot, 2012; Pătruică et al., 2012). In this work, the administration of multiple strains, 

isolated from honey bee gut, was preferred to single strain administration. The combination 
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of several strains with different properties may result more effective in restoring the 

commensal community of the gut microbiota when a disturbance arises. The supplemented 

bifidobacteria, which represent the three species of the bee gut so far described, were 

already available in the BUSCoB collection of our laboratory. Among isolated lactobacilli, L. 

johnsonii was selected considering the results obtained by Maggi et al. (2013), who showed 

the efficacy of lactic acid obtained from a culture of L. johnsonii CRL1647 to reduce the 

intensity of N. ceranae infection. L. plantarum was chosen as it is a widely spread species 

and most of the strains are bacteriocin producers (Nes et al., 1996). L. kunkeei is a dominant 

species in honey bee gut, and a number of characterized strains exhibit antimicrobial activity 

against some bacterial bee pathogens (Vasquez et al., 2012). Interestingly, the identification 

of the further strains from plate led to the recovery of L. kullabergensis, L. kimbladii and L. 

helsingborgensis, which are the new species recently isolated by Olofsson et al. (2014). 

Since few information is available on those strains, they were not considered for the dietary 

administration. 

Probiotic bacteria, such as bifidobacteria and lactobacilli, find their main application in the 

prevention of gastrointestinal infection and disease more than a curative approach (Gaggìa 

et al., 2010); therefore, the supplementation was performed daily from the first day of insect 

life, whereas N. ceranae spore infection was induced in 5-day-old bees, as described by 

Martin-Hernández et al. (2011). Bifidobacteria and lactobacilli daily fed to bees with sugar 

syrup significantly increased their population in honey bee gut and led to a significant 

decrease of N. ceranae spore load in artificially infected bees, thus showing an antagonistic 

behaviour to the parasite spread. Moreover, their concentration was not influenced by 

infection. Interestingly, the low spore number detected in CTR evidenced that bees were 

naturally infected with the parasite; this number significantly decreased in PRO group, which 

only differ from CTR in the bacterial supplementation. As reported by Higes et al. (2008), N. 

ceranae is frequently found in both healthy and weak honey bee colonies. Unexpectedly, 

our results also outlined the importance of a preventive, long-term supplementation in the 

presence of a lighter infection, as probably occurs in field condition. In that sense, the 

treatment could be more effective if compared to artificially infected bees where the spore 

load immediately reaches a high sprawling number and the gut bacteria could only contain 

the infection. Although the experiments could not be properly compared, Audisio et al. 

(2015) observed a reduced intensity of Nosema spp. in hives treated with Lactobacillus 

johnsonii CRL1647. The mechanisms at the basis of the observed spore reduction is far to 

be elucidated, since many aspects of the Nosema-honey bee interactions remain not 

understood and no studies are available. However, it is known that lactobacilli and 

bifidobacteria exert an antagonist effect against a wide range of pathogens through the 

production of antibacterial metabolites, e.g. organic acids and bacteriocins (Gaggìa et al., 

2011). Recently, this activity has been assessed against Paenibacillus larvae and 

Melissococcus plutonius (Audisio et al., 2011; Wu et al., 2013; Yoshiyama and Kimura, 

2009), the causal agents of the American and European foulbrood, respectively. Moreover, 

the increased number of beneficial gut microorganisms due to feed supplementation may 

provide the host with protection by competitive exclusion, reducing the chance of pathogen 

contact with the epithelial cells. With respect to N. ceranae, considering that germination 

occurs only at pH values higher than five (De Graaf et al., 1993), it could be also 
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hypothesized that the natural presence of these bacteria, in certain amount, could lower the 

intestinal pH and contrast the germination process, leading to spore elimination along with 

undigested residues. The laboratory trials performed by Maggi et al. (2013) support this 

hypothesis, as mentioned above. 

 

 

Considering that, beekeepers constantly treat hives with formic, lactic and acetic acids to 

prevent pathogen infections and parasites, the use of bifidobacteria and lactobacilli, in the 

light of their metabolites production, may represent a natural tool to protect honey bee from 

pathogens. In our opinion, this study shows the possible role of beneficial bacteria 

supplementation to support honey bee health against N. ceranae infection as a preventive 

measure and new tool for the management of the bee microbiome. Further studies are 

necessary to investigate the efficacy of the supplemented bacteria under field conditions. 
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Abstract 

Honey bees are important pollinators of several crops and for that reason have great 

biological and economic value. Several threats are seriously affecting honey bees resulting 

in an increasing need for natural products to sustain the beekeeping sector. This need has 

been emphasised by the engagement of researchers in recent years towards bee health 

and in particular towards bee interaction with its own gut microbiota. The modulation of the 

microbiota has been recognized as a practical and successful approach in the entomological 

field for the management of insect-related problems. However, to date, only a few studies 

have attempted to investigate the effect of bacterial supplementation as a strategy to 

improve the health status of colonies, in terms of productivity and boosting the presence of 

beneficial microorganisms within the gut of new generation bees. To this purpose, a 

preparation of sugar syrup containing bifidobacteria and lactobacilli isolated from bee gut 

was sprayed on the frames of an apiary located in open field. Treated and control hives were 

monitored for one month for brood extension, honey and pollen harvest. The presence of 

beneficial gut microorganisms within bee gut was investigated with denaturing gradient gel 

electrophoresis and next generation sequencing. The administered bacteria led to a 

significant increase of brood population, pollen and harvestable honey in honey supers; 

analysis of the gut microbiota on the new generation of bees showed an increase of 

Acetobacteraceae and Bifidobacterium spp., which are known to be involved in bee nutrition 

and protection. Although further experiments are envisaged, the research stresses the long-

term effects of the microorganism-based approach to sustain bee health. 
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Introduction 

Honey bees are widely recognized as important pollinators of several crops, thus 

contributing to the diversity and quality of the human diet (Eilers et al., 2011). Moreover, hive 

products (honey, propolis, royal jelly) are extensively used as dietary supplements for their 

high nutritional value and antimicrobial properties (Ellis et al., 2015). Considering the 

ecological and economic value of this insect, threats affecting honey bees (e.g. pathogens, 

parasites, agro-chemicals, climate change, anthropogenic disturbances) have prompted the 

scientific community to look for new mitigation tools, as alternatives to therapeutic agents, 

to preserve honey bee health. In the last decade, gut microbial symbionts have received 

much attention for their contribution to the health status of bees (Anderson et al., 2011; 

Hamdi et al., 2011). As in vertebrates, the honey bee gut microbiota has pivotal functions 

(Crotti et al., 2012; Martinson et al., 2011), involving multiple interactions that depend on 

microbiota composition, host genotype, and environmental factors (Wong et al., 2014). The 

core microbiota of honey bee gut (Moran et al., 2012) seems to be highly specialized to 

guarantee the overall functionality of the microbiome and its interaction with the host (Kwong 

and Moran, 2016).  

Lactobacilli and bifidobacteria are among the microbial groups that provide health benefits 

to honey bees (Crotti et al., 2010; Vasquez et al., 2012). In particular, they assure enzymatic 

activities for nutrient absorption, facilitate a vigorous immune response against invading 

pathogens (Crotti et al., 2010), preserve hive products from spoilage microorganisms and 

interact with host genome and physiology (Kwong and Moran, 2016). They are present in 

the gut microbiota of adults bees and larvae, in the honey stomach and in the hive 

environment (Anderson et al., 2013; Olofsson and Vaquez, 2008; Gaggìa et al., 2015). 

Both lactobacilli and bifidobacteria, currently used as probiotics in human and animal 

nutrition, have been shown to decrease in numbers when exposed to stress (Baffoni et al., 

2012; Gaggìa et al., 2010). Specific changes in the composition of the microbial gut 

community and perturbation of gut functionality, referred to as dysbiosis (Crotti et al., 2012), 

can influence the health status of bees (Hamdi and Daffonchio, 2011). For example, Koch 

and Schmid-Hempel (2012) reported that gut microbiota changes in Bombus terrestris can 

be responsible for specific immune phenotypes. 

The modulation of the gut microbiota has been recognized as a practical approach with 

strong potential in the entomological field for the management of insect-related problems 

(Crotti et al., 2012). This is particularly useful within eusocial insects living in a dense 

population of individuals that make up a colony and are continuously in contact due to 

grooming and trophallaxis activities. In the present work, we explored the hypothesis that 

the ingestion of selected gut bacteria can provide great benefits to bees, both improving 

productivity and boosting the presence of beneficial gut microorganisms. A sugar syrup 

solution containing bifidobacteria and lactobacilli was sprayed on the frames of an apiary 

located in open field close to linden trees (Tilia spp.) and before their bearing period. In order 

to assess hive productivity, treated and control hives were monitored for two months for 

brood extension, honey and pollen harvest. In addition, gut microbiota was studied with 

denaturing gradient gel electrophoresis (DGGE) and next generation sequencing (NGS) at 

the end of the experiment. 
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Materials and Methods 

Beehive standardization and environmental conditions. 

The experimental apiary was established nearby Bologna, Emilia Romagna (Italy). The 

apiary was positioned into a local regional park (Parco dei Gessi Bolognesi e Calanchi 

dell’Abbadessa, Bologna, Italy) at 210 m a.s.l and was composed of 18 hives. The climate 

is continental, with an average temperature of 23.5 ±2 °C during the experimental period 

(May 2014) (ARPA, 2014). Frames were obtained from beehives managed with organic 

beekeeping practices and treated for Varroa destructor with oxalic acid (4.2%) during the 

winter of 2013/2014 (Nanetti et al., 2003). The bee colonies were kept in standard modified 

Dadant Blatt hives (Zappi-Recordati, 1956) of nine frames each, and all of which were 

equally treated with regard to food resources, bee population, and sealed/open brood 

(Delaplane et al., 2013). The beehives were then divided in two equal groups as follows: 

control (CTR)- hives receiving either a 1:1 solution of sugar syrup (50% sugar and 50% 

deionized water; treated (TRT)- hives receiving the bacterial supplement suspended in a 1:1 

solution of sugar syrup. Both CTR and TRT hives where randomly placed in the 

experimental apiary; in addition, landmarks and paintings on the hives entrance were used 

to limit worker drift between colonies according to Von Frisch (1967).  

 

Bacterial strains, supplement preparation and administration 

Bifidobacterium asteroides DSM 20431, B. coryneforme C155 and B. indicum C449 

(Scardovi and Trovatelli, 1969), available at the Bologna University Scardovi Collection of 

Bifidobacteria, were grown anaerobically at 37 °C in Tryptone Peptone Yeast extract (TPY) 

liquid medium (Scardovi, 1986). Lactobacillus kunkeei Dan39 (KP114141), L. plantarum 

Dan91 (KP114145) and L. johnsonii Dan92 (KP114146) isolated from bee gut (Baffoni et 

al., 2016) were grown in de Man Rogosa Sharpe medium (MRS broth) (Becton Dickinson & 

Co., Mountain View, CA) with 1 % (w/v) fructose (Sigma-Aldrich, Milano, Italy), as suggested 

by Olofsson et al. (2014). Overnight cultures were inoculated in 500 ml flasks in the same 

conditions mentioned above for 48h. Cells of bifidobacteria and lactobacilli were then 

harvested by centrifugation (4000g) to obtain fresh pellets that were mixed and re-

suspended in five 400 ml flasks of a 1:1 sterilized solution of sugar syrup (50% sugar and 

50% deionized water). The final concentration of the microorganisms, assessed between 

107-108 cfu/ml of sugar syrup, was checked in TPY agar for bifidobacteria and MRS agar for 

lactobacilli by plating 1 ml of ten-fold serial dilutions of the bacterial supplement. The 

microbial inoculum was prepared weekly before use and administered within 3 hours of its 

preparation. Tolerance of the selected strains to 1:1 solution of sugar syrup was tested by 

plating the final suspension after 5-hour-storage at room temperature and after 24 hours at 

4°C.  

Before the Tilia spp. honey flow, CTR and TRT hives received their respective treatment 

once a week for 4 weeks (the last three weeks of May and the first week of June). Treatments 

were directly sprayed onto the surface of each frame to reach adult bees and the brood. 

Each hive received approximately 130 ml of sugar solution.  

 

 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

121  
 

Bee productivity assessment and sample collection 

To monitor the productivity of the colonies, the following parameters were evaluated in the 

hive brood chambers according to Audisio et al. (2015): brood areas, stored pollen and 

honey. In addition, honey in the hive supers was also monitored. In the brood chambers, 

data were collected at the beginning of the experiment (T0), after 30 days (T30), and 60 

days (T60) by estimating the box surface covered with brood, honey or pollen with the help 

of a mask frame counting 260 squares of 4 cm2 each (Figure 1). A picture of each frame 

(both sides) was taken and then analyzed with Fiji, an open platform for scientific image 

analysis, freely available online (Schindelin et al., 2012). Harvestable honey (from honey 

supers) was collected at T60 (at the end of the Tilia spp. bearing) and extracted according 

to the beekeeping practice, centrifuged and weighted separately. 

A month after the last treatment (T60), 4-5 bees per hive (30 bees from CTR hives and 30 

bees from TRT hives), expected to be approximately 16 days old, were captured from the 

external frames (Moran et al., 2012; Moore et al., 1987); guts were immediately extracted 

with a sterilized tweezers by stretching the abdomen and conserving on dried-ice until 

transport to the laboratory. 

 

 
Figure 1 Mask frame to count brood, honey and pollen surfaces 

 

DNA extraction 

Pooled digestive tracts were used for total genomic DNA extraction, which was performed 

in triplicate using the QIAamp DNA Stool Mini Kit (Qiagen, West Sussex, UK), according to 

the manufacturer's instructions. The recommended lysis temperature was increased to 95 
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°C. The quality and quantity of DNA samples were quantified using Infinite® 200 PRO 

NanoQuant (Tecan, Mannedorf, Switzerland).  

 

PCR-DGGE 

Three PCR-DGGE analyses were performed to investigate total eubacteria, Lactobacillus 

and Bifidobacteriaum populations. Primers for DNA amplification are listed in Table 1. The 

PCR programs and DGGE analyses of the amplified products, using the Dcode Universal 

Mutation Detection System (Bio-Rad Laboratories, Hercules, CA, USA), were performed as 

described previously (Aloisio et al., 2014; Gaggìa et al., 2015; Gaggìa et al., 2013). Cluster 

analysis were carried out using the Gel compare II v6.6 (Applied Maths, St. Martens-Latem, 

Belgium), by the UPGMA algorithm based on the Pearson correlation coefficient with an 

optimization coefficient of 1%. Relevant bands in the gels were excised from the gels and 

purified (Gaggìa et al., 2015). Sequencing was carried out by Eurofins Genomic (Ebersberg, 

Germany) and obtained sequences were assigned to bacterial phyla based on comparisons 

with the GenBank database by using the BLASTN algorithm (Altschul et al., 1990).  

 
Table 1 DGGE and NGS primers targeting 16S rRNA 

Target Primer Sequence References 

Eubacteria (DGGE)   

HDA1 

HDA2 

GC-clamp (F) 

5'- ACTCCTACGGGAGGCAGCAGT-3' 

5'- GTATTACCGCGGCTGCTGGCA-3' 

5’-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG-3’ 

Walter, 2000 

Bifidobacterium spp.   

Bif164-F 

Bif662-R 

GC-clamp (R) 

5'- GGGTGGTAATGCCGGATG-3' 

5'-CCACCGTTACACCGGGAA-3' 

5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG-3’ 

Satokari et al., 2001 

Lactobacillus spp.   

Lac1 

Lac2 

GC-clamp (R) 

5'-AGCAGTAGGGAATCTTCCA-3' 

5'-ATTYCACCGCTACACATG-3' 

5’- CGCCCGGGGCGCGCCCCGGGCGGCCCGGGGGCACCGGGGG-3’ 

Walter, 2001 

Eubacteria (NGS)   

Fw 

 

Rev 

5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG 

NGGCWGCAG-3’ 

5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH 

VGGGTATCTAATCC-3’ 

Illumina, 2017 

(F) and (R) refers to the clamped primer: (F) forward, (R) reverse 

 

 

Preparation of 16S V3 and V4 rRNA amplicons for Illumina MiSeq sequencing 

The V3-V4 regions of the 16S gene were amplified using the primers listed in Table 1 as per 

Illumina 16S metagenomic sequencing library preparation guide (Illumina, 2017). Illumina 

sequencing adapters and dual-index barcodes were added to amplicons using the Nextera 

XT index kit (Illumina, San Diego, CA). Amplicons were cleaned and quantified using the 

Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA) and were pooled in an 

equimolar mode following library preparation and sequenced on the MiSeq platform. 

Samples were sequenced on the Illumina MiSeq platform at the Teagasc Food Research 

Centre Moorepark facility using a 2x300 nucleotide paired-end protocol. 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY2pDAzMjXAhXFXhoKHc1ZBy8QjRwIBw&url=https://lifeofgaia.wordpress.com/2013/05/11/karl-von-frisch-il-linguaggio-delle-api-1950/&psig=AOvVaw3MJRp6t-xX7L_FdMhtyjBI&ust=1511110784241086


 

123  
 

Bioinformatic analysis 

Resulting 300 bp paired-end reads were assembled using FLASH (Magoč and Salzberg 

2011). Further sequence read processing was performed using QIIME suite of tools, 

(Caporaso et al., 2010a) including quality filtering based on a quality score of > 25 and 

removal of mismatched barcodes and sequences below length thresholds. Denoising, 

chimera detection and clustering into operational taxonomic units (OTUs) (97% identity) 

were performed using USEARCH version 7 (Edgar, 2010). OTU sequences were aligned 

using PyNAST (Caporaso et al., 2010b) and taxonomy assignment was determined using 

the SILVA SSU Ref database release 111. Considering the reclassification of some genera 

in newly described families (Adeolu et al., 2016, Kwong and Moran, 2013), the taxonomy 

assignment was changed accordingly. 

 

Statistical analysis on bee colonies parameters 

Bee colonies parameters (brood, pollen and honey within the frames) were analysed using 

gls function of ‘nlme’ package (Pinheiro et al., 2016) in R 3.3.1 (R Core Team, 2016). The 

repeated measure structure in the data sets was included using the grouped data function 

specifying that observations were repeated within colonies. Models with different variance-

covariance structure (compound symmetry, unstructured, autoregressive and 

autoregressive with heterogeneous variances) were compared. Model comparison was 

performed using the ANOVA function. Best fitting models were selected according to AIC 

and logLik values, the unstructured model resulted to be the best one. Data on honey super 

production were collected at the end of the experiment and analyzed with R software using 

ANOVA since they showed normality and homoscedasticity. 

 

Results  

Bacterial survival in the sugar syrup 

Microbial analyses of the inocula demonstrated no influence of 1:1 sugar syrup solution on 

the viability of bifidobacteria and lactobacilli monitored at T0 (7.73±0.05 and 8.93±0.02, 

respectively) and after 5-hour-storage at room temperature (7.69±0.01 and 8.90±0.01, 

respectively). The same test was repeated after 24 hours and the viability count was reduced 

by 1 log (6.69±0.02 and 7.83±0.02, respectively).  

 

Honey, pollen and brood production  

Nine hundred and fifty pictures from the hive brood chambers were obtained and analysed 

with Fiji software at T0, T30 and T60, respectively, in both CTR and TRT hives. The 

extension areas were calculated, taking into account separately the different parameters for 

each hive; results are reported in Figure 2. Brood surface was significantly higher (p<0.05; 

Figure 2A) in TRT hives compared to CTR hives at T30, with a 46.2% increase. Stored 

pollen was significantly higher in supplemented hives at T60 (p<0.05; Figure 2B), while 

stored honey did not show any significant difference (Figure 2C). With respect to the 

harvestable honey from hive supers, a remarkable increase (p<0.01) in TRT group was 

observed at T60. The hive supers contained 242 kg and 152 kg of pure linden honey in TRT 

and CTR hives, respectively, corresponding to 59.21% higher productivity (p<0.05) in hives 

supplemented with beneficial microorganisms (Figure 2D). 
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Figure 2 Box plot on productivity parameters. A) Brood; B) Pollen; C) Honey area; D) Honey in hive supers. 

Asterisk indicates a significant value (*=p<0.05, **p<0.01) of the treated group compared with the control group 

at the considered time point with respect to the previous time point. 

 

PCR-DGGE  

Three different 16S rDNA PCR-DGGE analyses (Eubacteria, Lactobacillus group and 

Bifidobacterium spp.) were performed to investigate the structure of the microbial 

communities associated with the honey bee gut, following the administration of the selected 

gut microorganisms. Cluster analysis of the three different PCR-DGGE revealed more than 

90% similarity between CTR and TRT groups, although the two groups clustered separately 

(Figure S1). The nucleotide sequences from excised DGGE bands have been deposited in 

GenBank (Table 2). Three major bacterial species were identified by partial 16S rRNA band 

sequencing in the PCR-DGGE targeting Eubacteria (Figure 3A): Giliamella apicola, 

Snodgrassela alvi and Commensalibacter intestini, belonging to the Orbaceae, 

Nesseiraceae and Acetobacteraceae families respectively. Several species were identified 

from the PCR-DGGE targeting lactobacilli: L. kullabergensis, L. mellis, L. kimbladii, L. apis 

L. melliventris and L. kunkeei (Figure 3B). No bands having the same migration distance of 

the lactobacilli used in the administration trial (ladder of Figure 3B) were detected. The PCR-

DGGE addressed to the identification of Bifidobacterium spp. (Figure 3C) led to the recovery 

of two species, B. asteroides and B. coryneforme. Some bands assigned to B. asteroides 
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and B. coryneforme had the same migration distances of the administered strains both in 

control and treated samples. 

 

 
Figure 3 DGGE profiles and bands. A) DGGE bands obtained with universal primers; B) DGGE bands obtained 

with primers targeting Lactobacillus spp., C) DGGE bands obtained with primers targeting Bifidobacterium spp. 

Letters in ladder profiles indicate administered bacteria (a: L. kunkeei Dan39 and L. plantarum Dan91; b: L. 

acidophilus Dan92; c: B. asteroides DSM 20431; d: B. indicum C449; e: B. coryneforme C155). 

 
Table 2 Best-match phylotypes identification of excised DGGE bands 

Ba

nd 

pb Closest match Accession 

Number 

% identity 

1 169 Commensalibacter intestini KU764720 99 

2 156 Snodgrassella alvi KU764721 99 

3 155 Snodgrassella alvi KU764722 100 

4 163 Giliamella apicola KU764723 99 

5 163 Giliamella apicola KU764724 99 

6 159 Giliamella apicola KU764725 99 

7 293 Lactobacillus kullabergensis KU764726 99 

8 293 Lactobacillus kullabergensis KU764727 99 

9 292 Lactobacillus mellis KU764728 100 

10 293 Lactobacillus kimbladii KU764729 100 

11 293 Lactobacillus kimbladii KU764730 100 
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12 293 Lactobacillus apis KU764731 100 

13 293 Lactobacillus melliventris KU764732 100 

14 292 Lactobacillus kunkeei KU764733 100 

15 430 Bifidobacterium spp. KU764735 99 

16 430 Bifidobacterium spp. KU764736 99 

17 431 Bifidobacterium spp. KU764738 99 

18 431 Bifidobacterium spp. KU764742 99 

19 432 Bifidobacterium spp. KU764743 99 

20 432 Bifidobacterium spp. KU764744 99 

 

NGS 

MiSeq sequencing yielded a total of 2,949,934 raw reads, which were qualitatively filtered 

to obtain an average of 184,749 reads per sample. Sequences were then clustered into 92 

OTUs, which were assigned to taxa from phylum to genus level (Figure 4). Phylum 

Proteobacteria included the vast majority of OTUs, with 86 and 90% relative abundances 

for CTR and TRT groups, respectively. Orbaceae family participated in the microbial 

community of Proteobacteria with the highest relative abundance both in the TRT (57%) and 

CTR (64%) groups. The other two most represented families of Proteobacteria were 

Neisseraceae and Acetobacteraceae with a relative abundance of 16.3% and 3.6% in CTR 

group and 15.9% and 8.8% in TRT group. Firmicutes and Actinobacteria were the second 

and third most represented phyla with a relative abundance of 10.9% and 1.2% in CTR 

group and 7.03% and 1.8% in TRT group respectively. OTUs of phylum Actinobacteria were 

totally assigned to family Bifidobacteriaceae and genus Bifidobacterium. OTU assigned to 

Firmicutes were predominantly of family Lactobacillaceae with a 100% assignment to the 

Lactobacillus genus in both groups with a relative abundance of 10.8% and 7% in CTR and 

TRT groups, respectively. 

 
Figure 4 Pie charts representing families relative abundance in CTR and TRT groups  
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Discussion 

This pilot study aimed at evaluating the effects of a microbial supplement on honey bees 

reared in a natural environment. by monitoring the productivity of the colonies and the gut 

microbiota composition. The microbial supplement, consisting of bifidobacteria and 

lactobacilli strains, was chosen according to a previous study (Baffoni et al., 2016). A weekly 

administration for one month was selected to cover all the edging brood (approximately 21 

to 24 days) and the spraying method was adopted relying on the hygienic behaviour of bees. 

It is already established that a balanced gut microbiota offers a wide range of metabolic, 

trophic and protective functions, supporting honey bees’ activities (Ellegaard et al., 2015; 

Evans and Pettis, 2005; Hamdi et al., 2011; Lee et al., 2015). The positive effect of beneficial 

bacteria application has been already reported and reviewed by several authors (Alberoni 

et al., 2016; Audisio and Benítez-Ahrendts, 2011; Audisio et al., 2015; Corby-Harris et al., 

2016; Pătruică and Mot, 2012; Pătruică et al., 2012) and notably host-derived 

microorganisms are preferred, as also underlined by Ptaszyńska et al. (2016). The 

administered bacteria lead to a significant increase in brood population, pollen and 

harvestable honey in honey supers. The significant increase evidenced in stored pollen and 

harvestable honey at T60 could be associated to brood increase assessed at T30, according 

to the studies performed by Pankiw et al. (2008 and 1998). Authors observed that brood 

increase was directly proportional to brood pheromone levels, which positively affect pollen 

foragers and consequently pollen foraging. Moreover, a higher amount of pollen supports 

both brood and bee health status and the brood increase generates an expansion of bee 

colonies and, consequently, a higher production of harvestable honey (Di Pasquale et al., 

2013; Keller et al., 2005). Similar results have been obtained by Audisio and Benítez-

Ahrendts (2011) and Audisio et al. (2015), although different experimental settings have 

been used. The authors performed two different trials with a cell suspension (105 ufc/ml 

sugar syrup) of L. johnsonii CRL1647 (every 15 days for three months and a monthly 

administration for one year). All the analysed parameters (open and operculated brood area, 

bee number, honey storage and honey yield) were significantly higher in the treated groups. 

Sabaté et al. (2012) obtained comparable results with the supplementation of spores of B. 

subtilis Mori2, isolated from honey. Concerning the analysis of the honey bee gut microbiota, 

our previous experiment reported a significant increase of lactobacilli and bifidobacteria 

soon after bacterial administration (Baffoni et al., 2016). However, in laboratory conditions, 

it is not possible to monitor the long-term effects. In this study, the analysis of the gut 

microbial community on the new generation of bees confirmed the presence of Alpha- 

(Acetobacteraceae), Beta- (Neisseraceae with S. alvi), Gamma- Proteobacteria (Orbaceae 

with G. apicola), Firmicutes and Actinobacteria, which represent the main groups of the 

honey bee core gut microbiota (Moran et al., 2012; Kwong and Moran, 2013). In particular, 

the increase of Acetobacteraceae in TRT hives is interesting because of its important role 

in nutrition and protection as reviewed by Crotti et al. (2010). For example, the genome 

sequencing of C. intestini (Acetobacteraceae family) revealed the presence of different 

pathways for the degradation of sugars (e.g. xylose, arabinose, sucrose) and the sugar rich 

digestive system of bees could represent an ideal environment to be colonized (Chouaia et 

al., 2014). Moreover, Aceti Acid Bacteria (AAB) tolerate and grow at acidic pH and could 
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have taken advantage from lactate production by lactobacilli and bifidobacteria which may 

provide a carbon source for AAB proliferation (Mamlouk and Gullo, 2013; Crotti et al., 2010). 

Concerning lactobacilli and bifidobacteria, a controversial finding has been reported. NGS 

analysis highlighted in TRT group, an increase of Bifidobacterium spp. and a decrease of 

lactobacilli, compared to CTR group. It could be hypothesised that the micro-niche that 

bifidobacteria inhabit has, to some extent, the potential to expand as observed Baffoni et al. 

(2016). The decrease of lactobacilli could also be partially due to a competition for nutrient 

uptake and catabolism with both Acetobacteraceae and bifidobacteria. PCR-DGGE 

analyses did not reveal substantial differences between TRT and CTR groups and no bands 

related to administered lactobacilli were detected, whereas two administered bifidobacterial 

strains revealed the same migration distance as the endogenous strains. It should be 

emphasized that DGGE, as PCR- and Gel-based molecular technique, has some limitations 

in terms of detection limits and relative quantification of detected populations (Marzorati et 

al., 2008). In conclusion, the administration of beneficial bacteria has improved colony 

productivity and influenced the composition of the honey bee gut microbiota in new 

generation of bees. Moreover, the application of molecular techniques gives a broader view 

of the gut microbiota composition following supplementation. Further investigations are 

envisaged to understand the impact on host immunity and physiology to improve the 

rationale for such supplementations.  
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Figure S1 and S2:  Honeybees sprayed with sugar syrup. The hygienic behaviour lead honeybees to clean 

themselves and the frames surface, inducing ingestion and consequent trophallaxis of any medicament/food 

additive mixed with sugar syrup. 
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CHAPTER 5 

 

CONCLUSIONS 
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The increasing interest in the use of beneficial microorganisms in animal rearing basically 

derives from diverse driving factors: 

- The consumer awareness and desire for natural products;  

- The application of the EU legislation that bans the use of chemotherapeutic agents 

at sub-therapeutic levels as growth promoters in animals; 

- The increased warming and drought conditions in several countries of the planet. 

 

On the other hand, the proliferation in the world population and the reduction of agricultural 

production areas due to the changing climatic conditions will require the intensification of 

production systems. Therefore, it will be essential to have tools as substitutes to antibiotics 

to help animal and zoonotic pathogens control and thus improve animal and public health. 

Beneficial microorganisms belong to this approach. The increasing knowledge on the 

composition and functions of the bee gut microbiota and the link between a balanced gut 

microbiota and health status of several animals have encouraged researchers on the use of 

gut microorganisms to improve bee health. The work described in this dissertation was 

therefore aimed at increasing the knowledge, at present still limited, on the characterization 

and application of beneficial microorganisms in the beekeeping sector. 

 

The experimental results and data analyses performed in this work has allowed to reach the 

following achievements: 

 

1. Awareness of the troubles generated by changing climatic conditions in the 

Emilia-Romagna region. The average temperature increase and drought in the 

Italian region where most of the described work has been performed (Emilia-

Romagna) has generated serious troubles to the agricultural production system, 

including the cultivation of plants and breeding of animals. The impact on bees is 

dramatic, and honey bees need more and more protection from stressors afterwards.  

 

2. Awareness of the lethal synergy between disease and the environment. This 

sinergy might occur once the immune system of honey bees is compromised due to 

absence of an adequate source of feed. Perfect examples are synergies between 

Nosema and scarcity of pollen, and the case of honey bee larvae affected by the 

EFB,  which present an atypical Paenibacillus species as second invader, conferring 

a different symptomatology to the diseased brood. 

 

3. Creation of a collection of microorganisms isolated from bees, bee pathogen 

and the related environment. This work includes the characterization of two new 

Bifidobacterium species. This collection is an impressive stock of genetic variability 

wich shows adaptation to insects gut.  

 

4. Composition and resilience of the honey bee microbial community. The 

community is composed of 12 core bacterial families showing resilience to 

perturbations caused by biotic and abiotic factors.  
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5. Core gut microbial community of honey bees’ subspecies, evolved in isolation 

like the Maltese Bee, does not vary significantly from honey bees’ microbial 

community analysed in Europe or America. Only few bacteria families, of apparently 

marginal importance might distinguish European subspecies from African subspecies 

of Apis mellifera. 

 

6. Potentiality of the use of Lactobacillus strains as diet supplements in bees. This 

effect is due to their capability of producing bacteriocins. Possible detection and 

selection of active bacteriocins against bee pathogens might increase the potential 

of beneficial bacteria strains.  

 

7. The supplementation of Bifidobacterium and Lactobacillus strains to honey 

bees helps to control Nosema ceranae infection if honey bees are infected with a 

low spore content in the gut. Nosema proliferation is hypothesized to be controlled 

by acidification of the gut lumen.  

 

8. The supplementation of Bifidobacterium and Lactobacillus strains to honey 

bees has a positive effect on bees. It affects colony growth, speeding up brood 

deposition and consequently productivity, perhaps thanks to immune stimulation and 

enhancmento of hygienic behivour of the bee superorganism. 

 

 

However, the attention should be posed on beekeepers and on their real needs: what the 

market requires are high-quality, cost-effective and easy-to-use products. A lot of work still 

needs to be done in this field.  

 

A much more extensive and accurate in field test has been planned within the H2020-MSCA-

RISE-2017 project entitled “Nourishing PRObiotics to Bees to Mitigate Stressors” (No-

PROBleMS) (Grant 777760). The research project is expected to see its official start on 

January 2018.  

 

 

 

Therefore, the research aimed at honeybee health support will continue! 
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