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Abstract 

 

Despite the great advantages in using glycoconjugates for generating a protective 

immunity, the molecular mechanism of T cell epitope recruitment and MHC-II 

presentation has to be clarified. Dissecting the mechanism that controls 

glycoconjugates/peptide-MHC-II interactions will allow defining a rational for a 

better design of glycoconjugate vaccines. It is well accepted that polysaccharides 

function as T cell–independent antigens, since they fail to induce T cell–mediated 

immune responses (IgM to IgG class switching, booster antibody response and T 

cell memory). On the contrary, when a polysaccharide is linked to a carrier 

protein, the protein provides the T cell epitopes that engage the T cell receptor 

(TCR) and trigger the release of cytokines that help the B cell to differentiate and 

proliferate. With the aim to analyze glycoconjugate/MHC-II interactions and 

evaluating the efficacy of glycoconjugate MHC-II processing and presentation, 

different glycoconjugates were synthesized. ß-1,3-glucans oligosaccharides were 

covalently linked to the lysine side chains of recombinant proteins from Neisseria 

meningitidis and Streptococcus pneumoniae. Testing the glycoconjugates in 

mice, we highlighted differences in the immune response probably due to different 

pattern of glycosylation that can lead to a different MHC-II peptide interaction. 

Using proteomic and glycoproteomic approaches, we evidenced differences in the 

pattern and extent of conjugation. Mutated recombinant carriers lacking the 

identified conjugation-sites were produced, conjugated, and tested as carrier in 

mice. This represents a first step in the design of experiments that will provide 

insight in the understanding of the peptide/glycopeptide-MHC-II interaction. 
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1. Introduction 

 

1.1  History of vaccination 

 

Vaccination represents one of the key developments in fighting infectious 

diseases. It is estimated to prevent 2.5 million of deaths each year1. The history of 

vaccine began in 1796 when Edward Jenner discovered that people could be 

protected against smallpox by being previously injected with the cowpox virus. 

Jenner’s idea of using a poxvirus from animal to prevent smallpox was essentially 

based on believing that an agent virulent for animals might be attenuated in 

human2. The concept of attenuation (i.e. bacteria killed by heat or chemical 

treatment) was well described and applied by Pasteur almost 100 years later. At 

the end of the 19th century, he successively developed attenuated rabies virus in 

animals and humans, anthrax in sheep, and Pasteurella multocida in chicken3. 

The concept of isolation, inactivation and injection of a causative microorganism, 

developed by Pasteur, provided the scientific basis for vaccinology and its 

evolution during the 20thcentury. During the 1900s, many discoveries and 

successes have been registered on vaccine development and the effectiveness of 

vaccination has been proved on the human health. The impact on public health 

has been clearly proven by the eradication of smallpox and the reduction of 

mortality and morbidity caused by various diseases. Over the last three centuries, 

vaccinology has enabled the realization of numerous vaccines; furthermore 

modern approaches appear promising for the selection and the design of novel 

protective antigens that will increase the number of preventable diseases in the 

future. Understanding the concept of ‘antigen’ and that the whole pathogen is not 

always needed to induce immunity, lead to increase vaccines’ safety and 

efficacy4.  

As reported in Table 1, the development of vaccines has involved different 

approaches (e.g the traditional whole pathogens live attenuated; killed or 

inactivated pathogens; and toxin isolated from the pathogen and inactivated). 

Subunit vaccines such as proteins produced by recombinant DNA or from 

genetically detoxified microorganism as well as capsular polysaccharides (CPSs), 

alone or covalently linked to a carrier protein (glycoconjugates), have been used.  
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Live attenuated Killed whole organisms 
Purified proteins or 

polysaccharides 
Genetically engineered 

18th Century 

   

19th Century 

Rabies (1885) 

 

Typhoid (1896) 

Cholera (1896) 

Plague (1897) 

  

Early 20th Century, first half 

Tuberculosis (bacilli 

Calmette-Guérin) (1927) 

Yellow fever (1935) 

Pertussis (1926) 

Influenza (1936) 

Rickettsia (1938) 

Diphtheria toxoid (1923 

Tetanus toxoid (1926) 

 

20th Century, second half 

Polio (oral) (1963) 

Measles (1963) 

Mumps (1967) 

Rubella (1969) 

Adenovirus (1980) 

Typhoid (SalmonellaTY21a) 

(1989) 

Varicella (1995) 

Rotavirus reassortants 

(1999) 

Cholera (attenuated) (1994) 

Cold-adapted influenza 

(1999) 

Polio (injected) (1955) 

Rabies (cell culture) (1980) 

Japanese encephalitis 

(mouse brain) (1992) 

Tick-borne encephalitis 

(1981) 

Hepatitis A (1996) 

Meningococcal conjugate 

(group C) (1999) 

Anthrax secreted proteins 

(1970) 

Meningococcus 

polysaccharide (1974) 

Pneumococcus 

polysaccharide (1977) 

Haemophilus 

influenzae type B 

polysaccharide (1985) 

H.influenzae type b 

conjugate (1987)* 

Acellular pertussis (1996) 

Hepatitis B (plasma derived) 

(1981) 

Hepatitis B surface antigen 

recombinant (1986) 

Lyme OspA (1998) 

Cholera (recombinant toxin 

B) (1993) 

21st Century 

Rotavirus (attenuated and 

new reassortants) (2006) 

Zoster (2006) 

Japanese encephalitis 

(2009) (Vero cell) 

Cholera (WC only) (2009) 

Pneumococcal 

conjugates*(heptavalent) 

(2000) 

Meningococcal conjugates* 

(quadrivalent) (2005) 

Pneumococcal 

conjugates*(13-valent) 

(2010) 

Human papillomavirus 

recombinant (quadrivalent) 

(2006) 

Human papillomavirus 

recombinant (bivalent) 

(2009) 

Human papillomavirus 

recombinant (9-valent) 

(2014) 

Meningococcal group B 

proteins (Fh-factor) (2014) 

Meningococcal group B 

(reverse vaccinology) 

(2015) 

*Capsular polysaccharide conjugated to a carrier protein 

 

Table 1: Outline of the development of Human vaccine
 5
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1.2  Carbohydrate based vaccines 

 

Carbohydrates are the most abundant and structurally diverse molecules in 

nature. They are largely present on pathogens surface such as viruses, bacteria, 

parasites and fungi. They can form an amorphous layer of extracellular 

polysaccharide surrounding the cell that may be further organized into a distinct 

structure termed capsule6. Capsular polysaccharides (CPs) have several 

functions: they protect bacteria from desiccation during transmission from host to 

host and mediate adhesion of the bacteria to surfaces and to each other. 

Polysaccharides can also confer resistance to the specific/nonspecific host 

immunity allowing the pathogen to escape the host immune system by either 

mimicking the host structures or conferring resistance to the complement-

mediated killing7. Even though a small set of polysaccharides are poorly 

immunogenic, most of them can elicit an immune response and be used as 

pathogen signatures. 

CPs are homo or heteropolymers, composed of monosaccharide repeated units 

joined with glycosidic linkages7. These can be recognized by the immune system 

and induce an immune response8. Avan and Heidelberg already described this 

effect in the 1920, showing that Streptococcus pneumoniae CPs are immune 

reactive components9-10. However, the parallel introduction of antibiotics put aside 

the development of carbohydrate vaccines. Indeed, the first polysaccharide 

vaccine, PneumoVax (Merck & Co.), was introduced only in the 1983. It consisted 

of CPs extracted from 14 pneumoniae serotypes. Today, the Pneumo Vax 23 

includes 23 out of 90 known serotypes.  

(Merck & Co., Inc. Pneumovax 23 (pneumococcalvaccinepolyvalent). 

Merckwebsite [online] http://www.merck.com/product/usa/pi_circulars/p/ 

pneumovax_23/pneumovax_pi.pdf) 

Unfortunately, CPs vaccines have failed to induce an immune memory response 

in young children below two years of age and only partially have induced 

protection in the elderly and patients with chronic diseases11. Moreover, every few 

years, a boost is needed regardless of age because of the vaccine’s inability to 

induce immune memory12. The absence of immune memory is mainly due to the 

mechanism involved in the carbohydrate immune response. Antigens can follow 
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different pathways of internalization and processing (Figure 1). Typically, proteins 

are thymus –dependent antigens (Td), in which the antigen is internalized and 

processed by an antigen presenting-cell (APC). Then, the antigen-peptides are 

presented to the MHC-II complex molecules for the binding with an antigen-

specific CD4+T cells via their specific T cell receptor (TCR)13,14. The activated 

CD4+T cells promote the release of cytokines leading to B cell proliferation, 

maturation, isotype switching and, immunological memory formation15 (Figure 

1.b). CPs act as thymus independent antigen (Ti) and do not active T cells16-17. 

They are not presented on the MHC-II but directly activate B cell independently of 

the interaction of the CD4+ T-cells, avoiding the affinity maturation and isotype 

switching, as well as the generation of T and B cell memory18 (Figure 1.a). CD4+ 

T-cell epitopes must be usually provided in the form of a carrier protein in order to 

recruit CD4+T-cell for antibody responses to the glycan. Avery and Goedel, as 

early as 1931, reported that the immunogenicity of carbohydrates could be 

enhanced when the glycans were conjugated to protein scaffolds19. Due to the 

lake of immune-memory with the vaccination of pure CPs the studies moved 

towards the development of glycoconjugates. 
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Figure 1 - Pathways of immune cell activation by protein: (1.a) T-cell-independent pathway. 

(1.b)T-cell-dependent pathway. The generation of immune response by the T-cell-dependent 

pathway requires the presence of both B-cell and T-cell epitopes. After the recognition of the B-

cell epitope by BCR, the B-cell will process and present the T-cell epitope to the MHC class II 

molecule. Meanwhile the uptake and processing by professional APCs lead to the presentation of 

the T-cell epitope on MHC class II to naïve T-cells that will be activated for the recognition of the 

antigen-primed B-cell, releasing cytokine signals required for the switching of B-cells into plasma 

cells. The T-cell-independent response occurs instead with the activation of the B cell via the 

BCRs, maturating into plasma cells after the release of cytokine signal
20

 (Adapted from Kumar S. 

et al.). 
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1.3  Glycoconjugate vaccines 

 

It is now well known that immunization with capsular polysaccharides covalently 

linked to an immunogenic protein carrier (Glycoconjugates) induces memory 

response against the encapsulated bacteria, even among people in high risk 

groups (neonates, children under two years of age, and elderly).21 In 1930, Avery 

& Goebel were pioneers in demonstrating the ability to enhance the 

immunogenicity of polysaccharide19. The authors showed that the poor 

immunogenicity of the S. pneumoniae type III polysaccharide could be enhanced 

by conjugation of the polysaccharide to a carrier protein.  

Earlier studies in 1980s led to the development of the first licensed conjugate 

based vaccine, in which a capsular polysaccharide of H.influenzae type b (Hib) 

was covalently conjugated to diphtheria toxoid (DT) protein22. The success of the 

Hib conjugate has accelerated the design of other capsule-based vaccines. For 

two decades, conjugate vaccines against Meningococcus serogroup C, and 

against seven serotypes of pneumococcus were licensed; in particular in the past 

decade, the same technology was used to develop vaccines against 

meningococcus serogroup A, C, Y, W23,24 and against six extra pneumococcus 

serotypes leading to a 13-valent pneumococcal conjugate vaccine25.  

Currently, the carrier proteins used for glycoconjugation are typically proteins 

obtained in sufficient amount and purity. These are generally not toxic and stable 

under the chemical conditions applied during the conjugation procedures (pH, 

concentration, ionic strength, temperature)26. Specifically, the most used carrier 

proteins consist in denatured bacteria toxoids, i.e. tetanus toxin (TT), diphtheria 

toxin (DT) and a nontoxic DT mutant, CRM197
27. Different chemistries can be 

applied for the conjugation of polysaccharides to these carrier proteins. All of 

them take advantage of a suitable spacer and a functional group for conjugation 

that can be aldehyde, thiol, activated ester, hydrazide, carboxyl acid or amine that 

can be either presented or generated on the polysaccharides for the subsequent 

linkage to the protein28,29. Until very recently, non-specific methods for site-

conjugation of the glycan antigen have been available and most of the 

glycoconjugates still result in different glycoforms. This heterogeneity may show 

differences in the immunological properties and pharmacokinetic due to a 
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different epitope density and glycosylation sites. Hence, increasing attentions 

have been putting on the chain length, presence of ramification points and charge 

on the polysaccharide motif. A great effort has been done to improve the 

conjugation chemistry and the type of spacer employed, which may direct the 

immune response away from the antigen carbohydrate. At the present, 

Glycoconjugates represent a promising strategy to combine the antigenic of 

polysaccharide with the use of a carrier protein for the induction of a T cell 

dependent response based on the carrier protein-derived peptide presentation by 

the MHC-II molecules on the APCs.  

 

1.3.1 Characteristics of Carriers proteins in conjugate vaccines 

Production of glycoconjugate vaccines involves the chemical conjugation of 

glycans to an immunogenic carrier protein to elicit a strong and long-lasting 

immune response (T-cell dependent). To date, 5 carrier proteins have been used 

in licensed conjugate vaccines: meningococcal outer membrane protein complex 

(OMPC), diphtheria toxoid (D), tetanus toxoid (T), H. influenzae protein D (HiD) 

and CRM197 a genetically modified cross reacting material of diphtheria toxin. All 

of these carriers are effective in increasing vaccine immunogenicity but they differ 

in the quantity and avidity of antibodies produced, the ability to carry multiple 

antigens in the same product and the efficiency to be given with other vaccines30. 

The first-generation of carrier proteins used are represented by diphtheria toxin 

and tetanus toxin that required detoxification with formaldehyde. They were 

initially selected as carriers because of safety track record established over 

decades of vaccination against tetanus and diphtheria31. The OMPC of N. 

meningitis serogroup B is used as carrier for Hib conjugate developed by Merck. 

Protein D, which derived from non-typeable H. influenza (NTHi), is used as carrier 

for most of polysaccharides included into the multivalent pneumococcal conjugate 

vaccine by GSK. At the moment, the most wildly used and highly effective carrier 

protein is the CRM197, a non-toxic mutant of diphtheria toxin. It differs from the 

wild-type diphtheria toxin in that a point mutation at the amino acid position 52 

substitute glycine with glutamic acid, which eliminates enzymatic activity and 

toxicity32. CRM197 shows several advantages as protein used for the conjugation: 

it is nontoxic and has more lysine side-chains available for conjugation comparing 
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to the diphtheria toxin. It is still extensively used as carrier for licensed conjugate 

vaccines against Streptococcus pneumoniae, Neisseria meningitis and H. 

influenza type b. Among the 5 carriers, CRM197 shows a greater versatility when it 

is used in combination with other vaccines and also on multiple polysaccharides 

conjugates30. 

 

1.3.2 Glycosylation and antigen processing 

1.3.2.1 Major histocompatibility complex structure 

As already described in this introduction, the MHC-II molecule is involved in the 

regulation of the adaptive immune system against invading pathogens detecting 

the presence of foreign pathogens. 

The MHC-II histocompatibility complex is a heterodimer composed of two 

membrane chains, α and β. The proximal membrane domains (α2 and β2) are 

folded into Ig-like domain and a trans-membrane sequence for anchoring. The 

distal membrane region α1 and β1 are folded together in a single groove-shape, 

which is defined by a β sheets floor and two parallel helical sides33.  

The MHC-II molecule binds peptides of around 12-24 aa in length34. It is possible 

to distinguish two main sub structures of interaction: a central core of binding 

represented by the groove, which establishes a nonameric binding region and, 

residues outside the nonameric binding region called peptide flanking residues 

(PFRs), which is also able to interact with the MHC-II complex (Figure 2). 

The peptide flanking residues, not bound in the groove, can enhance the binding 

and stability conformation of the complex35. It is also widely accepted that they 

can contribute to the T cell mediated peptide-MHC-II recognition, and influence 

the TCR activation as well as the residues in the core binding region36. 
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37
Figure 2 - structure and peptide 

interaction to the MHC-II: Protein crystal 

structure of MHC-II molecule (HLA-

DRB1*0101) interacting with peptide (PDB 

id: 1AQD). The α-chain is shown in dark 

blue, while the β-chain in grey. The peptide 

(GSDWRFLRGYHQYA) is shown as sticks: 

in red the peptide binding core and in pink 

the flanking amino acids.  

 

 

 

 

1.3.2.2 Peptide glycopeptide antigen presentation 

The capacity of the T-cell-dependent antigen to recruit CD4+T cells during the 

primary immune response represents a critical step to the generation of a 

memory immune response38. The T cell dependent antigen can be internalized by 

the B cell using its B cell receptor (BCR) and then processed and presented 

within the MHC-II on the surface of the B cell13. This allows the B cell to interact 

with the related CD4+T cells following the recognition of the peptide/MHC-II 

complex by the T-cell receptor (TCR). In contrast, T cell independent type 2 (TI-2) 

antigen including isolated polysaccharides of encapsulated bacteria such as 

Neisseria meningitidis and Streptococcus pneumoniae cannot, in general, be 

presented to the MHC-II complex and are thus unable to recruit CD4+T cells for 

the classical isotype switching of memory B cells39. Conjugates vaccines, 

targeting encapsulated bacteria, are able to overcome the limitation of 

polysaccharide immune response through their covalent linkage to an 

immunogenic carrier protein for the presentation to the MHC-II complex40. As 

previously discussed, the current dogma states that polysaccharides act as T cell-

independent antigens. Being highly hydrophilic, they cannot dock to the groove of 

the MHC molecules; therefore, they cannot be presented to the T cell receptor41 

(Figure 3.a). Nevertheless, some studies suggest that the polysaccharide can be 

presented to the MHC-II complex after depolymerization within the APC 

endosomes/lysosomes by nitric oxide-derived reactive nitrogen species (RNs) 

and/or superoxide-derived reactive oxygen species (ROSs)42,43.Few years ago, 
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Avici et. al.44described also a new molecular mechanism, in which the 

glycoconjugates internalized in the B cells are processed and then presented to 

the MHC-II as glycopeptides.  

The presentation of the carbohydrate motif is possible thanks to the peptide that 

act as an anchor binding to the MHC-II. This new proposed mechanism also 

contributes to indicate that the carbohydrate can interact with a specific 

carbohydrate specific T cell clone (Figure 3.b). It is necessary to specify that only 

small saccharides form 1 to 4 carbohydrate units could be inserted within the 

binding site of T cell receptor45, whereas the B cell receptor could theoretically 

bind up to six units46. Even though 4-6 repeating units of carbohydrate can 

interact with the T cell receptor, the glycoconjugate vaccines present on the 

market show a different scenario. Except for the Cuban anti–H influenzae47 

vaccine, the glycoconjugate vaccines, commercially available, present safety 

issue due to the inherent lot-to-lot variability. From an immunological point of 

view, the carbohydrate structures on these glycoconjugates are too large and 

randomly distributed at the carrier surface, limiting the possibility that 

carbohydrate processed in the lysosome could result in a sufficient quantity of 

homogenous glycopeptide suited for the T cell binding48. 

This complex mechanism is still under discussion and the current literature is not 

able to clarify the mechanism of glycan processing and carrying yet.  

 

Figure 3 - Model proposed for antigen processing and presentation
 41

: (3.a) Current dogma: 

The peptide epitope is processed, presented by the MHC-II and recognized by a peptide-specific 

T cell; (3.b) the new mechanism presented by Avci et al.: the peptide presented to the MHC-II acts 

as an anchor for the sugar epitope, allowing the presentation of the sugar epitope to a 

polysaccharide-specific T cell. (Adapted from Rappuoli et al. 2011).  
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1.4 Background for the study 

 

In a previous study performed in the host laboratory, a group of twenty-seven 

proteins, derived from different pathogens and expressed as recombinant 

proteins in E. coli, were conjugated to the polysaccharide Laminarin (Lam)49. Lam 

is a β-(1, 3) glucan with β-(1, 6) branches, that has been studied as vaccine 

candidate against C. albicans infections50-51-52. The carrier proteins of this study 

were selected using the following criteria: 

 not expected toxicity based on available information  

 solubility in physiological buffers at concentrations of 0.4–6 mg/mL 

 presence of a sufficient number of lysines for conjugation 

 proteins with molecular weight between 40 and 100 kDa 

These recombinant carriers were conjugated with Lam modified at its end 

reducing group. The succinimido diester of adipic acid (SIDEA) was used as 

linker obtaining in such a way a terminal succinimido ester group available to 

react with the primary amines on the side-chain of the lysine on the proteins.  

The conjugates were tested in mice without the use of any adjuvant highlighting 

the intrinsic value of the carrier only. Seven proteins (pathogenic E. coli Orf3526 

and Upec-5211, S. pneumoniae spr907, spr1418, and spr1875 N. meningitidis 

GNA2091-fHbp53,and S. agalactiae RrgB I-II-III, were demonstrated to function as 

proteins carrier for Lam with a level of anti-Lam antibodies inferior or equal to 

1145 (GMT ± 95% CI) which is comparable to the level of anti-Lam antibodies 

produced by CRM197–Lam. The only conjugate able to induce an IgG anti-Lam 

antibody titer significantly higher than the CRM197–Lam was the spr96/2021. 

Spr96/2021 is a recombinant fusion composed of two pneumococcal proteins: 

spr2021 (secreted PcsB protein) and spr0096 (LysM protein) 54-55. Curiously,  no 

response was induced by the spr0096 conjugate and very low by the spr2021 

one, indicating that some characteristics derived from the fusion of the two 

proteins were critical for the carrier activity. By conjugated to meningococcal 

serogroup C (Men C) oligosaccharides, the spr96/2021 conjugate induced anti 

Men C polysaccharide IgG titers comparable to those developed by CRM197 

conjugate; while Upec-5211, Orf3526, and spr1875 conjugate responses were 

comparable to the positive control and RrgB I-II-III, spr907, spr1418 and 
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GNA2091-fHbp conjugates were inferior to the control. Moreover, spr96/2021 was 

also tested as carrier for serogroup A, W and Y meningococcal saccharides, 

which are currently part of licensed vaccines56-57 and serogroup meningococcal X 

polysaccharide (Men X), recently identified as a potential candidate for vaccine 

development58, at a comparable level to CRM197 conjugates49.  

As already mentioned in this section, several factors are important in determining 

the ability of a protein to work as carrier, but the main role of the carrier in 

glycoconjugate vaccines is to provide T-cell epitopes which bind to the class II 

MHC. At the time, the data were published and no correlation between the 

numbers of MHC-II predicted peptides and IgG production was identified. 
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2. Aim of the study 

 

Glycoconjugates have been demonstrated to very safe and efficient vaccines. In 

spite of their success, their design is still very empirical, and their mode of action 

is not well understood. In particular, the influence of the glycosylation on the 

molecular mechanism of T cell epitope recruitment and MHC-II presentation has 

to be clarified. Dissecting the mechanism that controls glycopeptide/peptide MHC-

II interactions will allow defining a rational for a better design of glycoconjugate 

vaccines. For this purpose, the aim of the thesis is to: 

 Draw a hypothesis on the parameters able to influence the efficacy of a 

protein to function as a carrier for glycoconjugate vaccine by comparing 

production of anti-saccharide IgG of a large number of potential carriers 

reported in literature to the presence of prediction of MHC-II-presenting 

peptides on these carriers.  

 Select a carrier protein model to validate the hypothesis that efficacy of a 

protein carrier is correlated to predicted MHC-II-presenting peptides with high 

affinities and that when these predicted MHC-II-presenting peptides contained 

lysine residues, these ones should not be conjugated. 

 Use mass spectrometry (proteomics and structural mass spectrometry) to 

assess the pattern and extent of conjugation of the carriers (S. pneumoniae 

carrier protein spr2021 alone or in fusion constructs). 

 Correlate the efficacy in mice of the S. pneumoniae carrier protein spr2021 

with the absence of conjugation on lysine residues present in predicted MHC-

II-presenting peptides, by assessing the pattern and extent of conjugation of 

the carrier alone or in fusion constructs by proteomics. 

 Based on the hypothesis and analytical data, construct and validate mutated 

protein carriers with a higher efficacy in terms of IgG production. 
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3. Materials and methods 

 

3.1 Mutants’ generation of GNA2091-fHbp, spr2021/96 and 

spr2021 

 

Site-directed mutagenesis on GNA2091-fHbp, spr2021/96 and spr2021 DNA 

sequences was performed to produce the set of mutants listed below. Mutants 

were constructed using the polymerase incomplete primer extension cloning 

method (PIPE). The mutagenesis reactions were transformed into chemically 

competent E. coli Mach1™-T1R (Thermo Scientific). After sequencing, each 

plasmid was used to chemically transform E. coli BL21(DE3)  T1R cells (NEB) for 

protein production.  

spr2021 mutant Plasmid characteristics 

Spr2021_Lys204Arg 
pET151/D-TOPO derivative for expression of recombinant spr2021, 

containing a Lys204Arg mutation, AmpR 

Spr2021_Lys248Arg 
pET151/D-TOPO derivative for expression of recombinant spr2021, 

containing a Lys248Arg mutation, AmpR 

Spr2021_Lys204Arg_Lys246A

rg_Lys248Arg 

pET151/D-TOPO derivative for expression of recombinant spr2021, 

containing a Lys201Arg, Lys256Arg,Lys248Arg mutations, AmpR 

Spr2021/96 mutant Plasmid characteristics 

Spr2021/96_Lys172Arg 
pET21b(+), derivative for expression of recombinant spr2021, containing a 

Lys172Arg mutation  AmpR 

Spr2021/96_Lys216Arg 
pET21b(+), derivative for expression of recombinant spr2021/96, containing 

a Lys216Arg mutation  AmpR 

Spr2021/96_Lys172Arg_Lys2

16Arg 

pET21b(+), derivative for expression of recombinant spr2021/96, containing 

a Lys172Arg and Lys216Arg mutations  AmpR 

Spr2021/96_Lys172Arg_Lys2

14Arg_Lys216Arg 

pET21b(+), derivative for expression of recombinant spr2021/96, containing 

a Lys172Arg, Lys214Arg and Lys216Arg mutations  AmpR 

Spr2021-CRM197-96 

 

pET21b(+), derivate for expression of recombinant  spr2021/96 in which the 

linker  GSGSGGGG have been substituted with GIALSSLMVAQAIPLVG , 

AmpR 

GNA2091-fHbp mutant Plasmid characteristics 

GNA2091-CRM197-fHbp 

pET24 derivative for expression of recombinantGNA2091-fHbp,  which the 

linker  GSGSGGGG have been substituted with GIALSSLMVAQAIPLVG, 

AmpR 

GNA2091-2021-fHbp 

pET24 derivative for expression of recombinantGNA2091-fHbp,  which the 

linker  GSGSGGGG have been substituted with 

GRRASQQQSVLASANTG, AmpR 
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3.1.1 Protein expression and purifications 

Escherichia coli strain BL21(DE3) cells (Novagen) were used for protein 

expression. Cells were grown using BioSilta medium (Enpresso B Animal-free 

growth systems), at 30 °C for 12 h, and recombinant protein expression was 

induced by the addition of 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 

25 °C. After an additional 24 h, cells were harvested by centrifugation and re-

suspended in 50 mM NaH2PO4, 250 mM NaCl, pH 7.4, followed by lysis via 

sonication (Qsonica Q700). Cell lysates were clarified by centrifugation at 10000 

g for 30 min, and the supernatant, containing the expressed protein, was filtered 

using a 0.22 μm membrane filters (EMD Millipore filters) before starting the first 

chromatography step. All proteins were purified at room temperature (RT, 25 °C) 

using an AKTA purifier 100 system (GE Healthcare). A first purification step by 

using Co2+ affinity chromatography (5 mL HiTrap TALON crude, GE Healthcare) 

was performed for those proteins that presented His tag motif. Conversely, a first 

purification step by ionic exchange chromatography, either anionic or cationic 

depending on the isoelectric point of the proteins by 5 mL SP or Q HP (GE 

healthcare) columns, was carried out if the His tag motif was not evidenced.. A 

second step of purification was performed using Hydrophobic chromatography 

(4.7 mL Hiscreen Phenyl HP), followed by size-exclusion chromatography on a 

Superdex 200 16/60 column equilibrated in 20 mM NaH2PO4, 50 mM NaCl, pH 

7,4). The purity of the proteins was checked using 4–12% SDS–PAGE gradient 

gels in MES buffer. The content of lipopolysaccharide (LPS) on the purified 

protein was checked using the Endosafe nexgen-PTS system (Charles River). 

When the content of LPS was out of the range, they were removed using either Q 

HP (GE healthcare) columns or EndoTrap Red columns (Hyglos). 

 

3.1.2 Differential Scanning Calorimetry 

The thermal stability of the proteins was assessed by differential scanning 

calorimetry (DSC) using a MicroCal VP-Capillary DSC instrument (GE 

Healthcare). A protein concentration of 0.4 mg/mL in PBS buffer was used to 

prepare samples. The DSC temperature scan ranged from 20 °C to 140 °C, with a 

thermal ramping rate of 150 °C/h and a 4 s filter period. Data were analysed by 
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subtracting the reference buffer data through the use of the Origin 7 software. The 

mean values of the melting temperature (Tm) were determined. 

 

 

3.2 Preparation of oligosaccharide 

 

3.2.1 Reductive amination 

Laminarin (Sigma-Aldrich) was treated by reductive amination to introduce an NH2 

group at the reducing end of the sugar through the use of the following conditions: 

Polysaccharide with a final concentration of 4 mg/mL was added with sodium 

acetate to a final concentration of 300 g/L. Sodium cyanoborohydrate was added 

in a quantity of 1/5 mole of ammonium acetate. The pH of the reaction was 

checked and constrained between 7.4 and 7.6. The polysaccharide was 

incubated for 5 days at 50 °C. The aminated laminarin was then purified from the 

reaction mixture by Tangential fast flow on regenerated cellulose membrane (cut-

off 1 kDa; Sartorius Stedim) and the amount of amino group introduced was 

determined. Amino group was determined by colorimetric assay as described in 

paragraph 3.7 

 

3.2.2 Derivatization of Laminarin amino polysaccharide to active ester 

The purified aminated polysaccharide was dried under-vacuum and re-suspended 

to a concentration of amine of 40 µM/mL in H2O:DMSO 1:9 (v/v). Thriethylamine 

was added in a molar excess of 5 fold compared to the primary amine, and 

Succinoamido diester of adipic acid (SIDEA) was added in a 12 fold molar excess 

compared to the primary amine. The reaction was kept under gentle stirring for 2 

h at room temperature. The activated polysaccharide was purified form the 

reagents by precipitation with ethylacetate. The precipitate was washed 10 times 

and then dried under vacuum. Content of N-hydroxysuccinimide ester introduced 

was determined as described in paragraph 3.7 
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3.3 Conjugation of polysaccharide with carrier proteins and 

purification of glycoconjugate 

 

The SIDEA activated Laminarin was conjugated to the carrier proteins. The 

conjugation was carried out in 20 mM NaH2PO4, 50 mM NaCl pH 7.2; the reaction 

was carried overnight with gentle stirring. The molar ratio carrier protein: active 

ester polysaccharide was kept at 20:1. The conjugates obtained were purified 

from the unreactive sugar by ultrafiltration on polyethersulphone membrane with a 

cut-off of 10 kDa (Vivaspin, Millipore) using PBS pH 7.4. 

 

3.3.1 Determination of the total and free saccharide in the conjugates 

preparation 

Total and free laminarin saccharide was determined by anionic exchange pulsed 

amperometric detection (HPAE-PAD, (Dionex ICS 3000 system). 

 

3.3.1.1 Laminarin saccharide determination 

Total laminarin was determined by HPAE-PAD analysis using a CarboPAC1 

column coupled to a CarboPAC1 guard column connected to a Dionex ICS3000 

system. Sample was treated with 2 M trifluoroacetic acid (TFA), heated at 100 ºC 

for 4 h in a closed screw-cup tube. The sample was then dried under vacuum, 

dissolved in water and then filtered. The separation was performed with a flow 

rate of 1 mL/min using an isocratic elution of 40 mM NaOH for 12 min and 

followed by a washing step of 5min with 500 mM NaOH. The chromatographic 

data were processed using Dionex ChromeleonTM software. The glucose was 

used for generating the calibration curve, at a concentration range of 0.5–10.0 

μg/mL.  

 

3.3.1.2 Determination of laminarin free saccharide content in the conjugates 

preparations 

Determination of free saccharide in the conjugate formulation was determined 

through the separation of the free saccharide and the conjugated by using the 
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cartridges Bioselect C4 300 Å. The saccharide quantification has been then 

performed as described in the previous paragraphs. 

 

 

3.4 Protein and glycoconjugate characterization 

 

3.4.1 Entire protein mass analysis  

To verify the molecular of the proteins and mutants produced entire mass was 

performed. The samples were diluted with formic acid (Sigma-Aldrich) 0.1%, and 

injected on a Waters SynaptG2 ESI mass spectrometer equipped with a standard 

ESI source (Waters®). The protein samples were trapped and desalted for 2 min 

at a flow rate of 800 µL/min using a Protein Micro Trap column (Michrom 

BioResources) equilibrated with 100% buffer A (0.1% formic acid in water (v/v)). 

Proteins were directly eluted into the mass spectrometer at a flow rate of 600 

µL/min with 55% solvent B (acetonitrile/water, 0.1% formic acid (v/v)). The ESI 

source was set as following: capillary voltage, 3.0 kV; sampling cone, 35V; 

extraction cone, 4 V; source temperature, 80 °C; desolvation gas flow and 

temperature, 600 L/h and 180 °C, respectively; cone gas flow, 20 L/h; trap 

collision energy, 4 V. Mass spectra were acquired in resolution mode (m/z 100-

2000) and the calibration was performed in positive mode using a 2 mg/mL 

cesium iodide (Sigma) solution prepared in 50% isopropanol. The spectra were 

processed with MassLynx 4.1 software (Waters). 

 

3.4.2 Chemical deglycosylation 

For the identification of the sites of conjugation a chemical method using 

Trifluoromethanesulphonic acid (TFMSA) for a specific solvolysis of glycosidic 

bonds was chosen for the removal of carbohydrates from the glycoconjugates. In 

detail the glycoconjugates were desalted by ultrafiltration using a 

polyethersulphone membrane with a cut-off of 10 KDa (Vivaspin, Millipore) and 

then freeze-dried for at least 24 h. Dried glycoproteins were treated with pre-

cooled TFMSA containing 10% (v/v) anisole in anhydrous condition and incubated 

at -20 ºC for 2 h. The TFMSA/conjugates solution is then neutralized in a dry ice/ 
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ethanol bath, by a 40% pyridine/water (v/v) a ratio v/v 3:1 to the volume of 

TFMSA initially added. The de-glycosylated carriers were isolated from the 

reagents by dialysis against a solution of 20 mM Sodium phosphate pH 7.4.  

 

3.4.3 Glycoconjugates digestion and LC-MS/MS analysis   

Glycoconjugates and de-glycosylated proteins were characterized by LC-MS/MS 

analysis. 25 µg of sample was denatured 10 min at 100 ºC with Rapigest® 

(Waters). If a protein contains disulphide bridges 5 mM DTT were added to the 

denaturation solutions for the sequent alkylation of side chain of cysteine, 

iodoacetamide at 50 mM final concentration was added and the reaction was 

allowed to proceed in the dark for 30 min.  

Trypsin (Gold Mass Spectrometry Grade Promega®) was added in a ratio 

protein/enzyme of 1:20 (w/w). Digestion was carried out at 37 °C overnight. The 

digestion was stopped by adding formic acid FA at 0.1% (v/v) solution to acidic 

pH (pH~2).  

The peptide mixtures were then desalted using OASIS cartridges (Waters) 

following the manufacturer's protocol. Desalted peptides were concentrated with a 

Speedvac (Eppendorf) and re-suspended in 50 μl of 0.1% (v/v) FA.  

Peptides solution were analyzed by LC-MS/MS performed on a nanoAcquity 

UPLC system (Waters®) coupled a Waters SynaptG2 ESI mass spectrometer 

equipped with a nanospray source (Waters®). Samples were loaded onto a trap 

Symmetry C18 180 μm x 20 mm, 5 μm (Waters®) using a full loop injection at a 

flow rate of 600 nL/min in a mobile phase A (0.1% FA). Peptide were than 

separated on a nano Acquity UPLC Peptide BEH C18 Column 75 μm x 100 mm 

(Waters®) using a 70 min gradient 3-98% mobile phase B (98% (v/v) ACN, 0.1% 

(v/v) FA) at a flow rate of 300 nL/min.  

An automated data-dependent acquisition (DDA) using the Mass Lynx software 

(waters) was used for the acquisition of the eluted peptides. An MS survey scan 

was used to automatically select multi charged peptides over the m/z ratio range 

of 300–2,000 for further MS/MS fragmentation. Up to eight different peptides were 

individually subjected to MS/MS fragmentations following each MS survey scan. 

After data acquisition, individual MS/MS spectra were combined, smoothed, and 

centroided using ProteinLynx, (Waters®) to obtain the peak list file (pkl).  
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Peptide and glycopeptides identification was carried from the generated peak list 

using the Mascot engine software (Matrix Science). Search parameters were: 

i. Fixed modification was the carboamidomehtylation on the Cysteine 

residues (when cysteine alkylation was performed).  

ii. Variable modifications for carriers and deglycosylated carriers were: 

methionine oxidation, glutamine and asparagine deamidation; SIDEA-Glc 

(+291,13180 Da) was added to the variable modification for the analysis of 

the deglycosylated carriers. 

iii.  Peptide mass tolerance as 0.5 Da, peptide MS/MS tolerance as 0.5 Da, 

missed cleavage = 2, ion charge states: +2, +3, +4). Only significant hits 

were considered as defined by the Mascot scoring and probability system 

>15. 

 

3.4.4 Epitope Mapping and HDX 

3.4.4.1 Peptidic map 

Neisseria meningitidis proteins GNA20191-fHbp and fHbp (which do not contain 

cysteine residue) or Streptococcus pneumoniae proteins spr2021, spr96-2021 

and spr2021-96 (which contain disulfide bridge) were treated for 1 h at 60 ºC with 

2 M guanidinium chloride or 3.5 M Urea, 0.4 M TCEP, 0.2 M Guanidinium 

chloride. Following this denaturating treatment, proteins were subsequently 

injected into nanoACQUITY ultra-performance liquid chromatography system for 

the digestion, that was performed online for 2.5 min at 20 °C with a pepsin column 

(Poroszyme® Immobilized Pepsin Cartridge). The generated peptides were 

trapped, concentrated and desalted using a pre-column (VanGuard BEH 1.7 μm, 

2.1x5 mm) and separated using a ACQUITY UPLC BEH C18 reverse phase 

column, 1.7 μm, 1.0x100 mm (Waters) with a linear gradient from 3 to 45% of 

acetonitrile/water, 0.1% formic acid over 6.8 min at 40 μl/min. The mass spectra 

were acquired in a resolution mode (m/z 100-2000) on a Waters SynaptG2 mass 

spectrometer equipped with a standard ESI source. Mass accuracy was ensured 

by continuously infusing a GluFib solution (600 fmol/μL in 50% acetonitrile, 0.1% 

formic acid) through the reference probe of the ESI source. The identity of each 

peptide was confirmed by MSe analyses. MSe was directly performed by a 

succession of low (6 V) and high collision (25 V) energies in the transfer region of 



21 

the mass spectrometer. Data were processed using Protein Lynx Global Server 

3.0 (Waters). The DynamX 3.0 software (Waters) was used to select the 

considered peptides. Only the peptides present in at least four samples out of five 

were considered for the analysis. 

 

3.4.4.2 Protein deuteration 

54 pmol of protein was diluted in PBS deuterated buffer (excess of deuterium 

90%). The labeling exchange was monitored at 6 different time points: 30 s, 5 

min, 10 min, 30 min, 24 h. The labeling reaction was quenched either with 7 M 

Urea, 0.8 M TCEP, 0.4 M guanidinium chloride pH 2.4 or 2 M guanidinium 

chloride at pH 2.4 depending on the proteins immediately frozen in liquid nitrogen 

and stored in dry ice. Labelled proteins were thawed rapidly to 0 ºC and injected 

into the Synapt_G2 mass spectrometry system, where the AQUITY UPLC BEH 

C18 reverse phase column, 1.7 μm, 1.0x100 mm (Waters) and associated tubing 

were kept to 0 ºC to limit the back exchange. The Dynamix 3.0 software was used 

for the subsequent analysis of the labelled peptides.  

 

 

3.5 Vaccine Formulation and Immunoassay 

 

3.5.1 Immunization schedule 

Formulations were made using PBS and isotonic saline solution, under sterile 

wood. All the formulation had a pH range of 7.4 ± 0.5 and an osmolarity of 300 ± 

60 mOsm/Kg. When allum phosphate was added as adjuvant to the formulations 

the pH range was kept to 6.5 ± 0.5 and the osmolarity to 300 ± 60 mOsm/Kg. 

Proteins have been administered to mice in 5 µg protein content for dose; 

Glycoconjugates with laminarin were administered to mice in 5 µg for dose in 

polysaccharide content. 

Balb/c mice female were immunized subcutaneously at day 1, 14 and 28. 

Bleeding was performed at day 0 (pre-immune) day 28 (post2) and day 42 

(post3). 
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All animal studies were carried out in compliance with the arrive guidelines, the 

current Italian legislation about the care and use of animals in experimentation 

(Legislative Decree 116/92), and with the GSK Animal Welfare Policy and 

Standards. Protocols were approved by the Italian Ministry of Health 

(authorization 249/2011-B). 

 

3.5.2 Antibody titer determination by ELISA assay 

The Antibody response induced by protein carriers and glycoconjugates were 

measured by ELISA. The coating was done overnight at 4 °C on Maxisorp plates 

by adding 100 μL/well of either protein or polysaccharide. Coating for the proteins 

was done using 2 μg/mL protein solution in PBS buffer at pH 7.2. Instead for the 

polysaccharide coating, was performed at 50 μg/mL in 0.05 M sodium carbonate 

buffer at pH 9.6. The coating solution was removed by three washes with PBS 

buffer containing 0.05% of tween 20 (TPBS) (Sigma-Aldrich). A blocking step was 

then performed using adding a 100 μL/well solution of 3% (w/v) BSA in TPBS and 

incubating the plates at 37 °C for 1 h. The blocking solution was then removed by 

washing three times the plates with TPBS. 200 μL of pre-diluted serum (diluted in 

TPBS containing 0.3% (w/v) of BSA) is added on the first well of each column 

while on the others wells 100 μL of TPBS 0.3% (w/v) BSA was dispensed. A 2-

fold dilution on each well was performed transferring 100 μL of sera solution from 

well to well. The plates were incubated for 2 h at 37 °C. After incubation the 

solutions were removed and the plates were washed three times with TPBS, and 

a secondary alkaline phosphate conjugate antibodies (antimouse IgG 1:1000) in 

100 µL TPBS containing 0.3% (w/v) BSA solutions is added for 1 h at 37°C. After 

three washes with TPBS 100 µL /well 0.5 M diethanolammine buffer pH 9.6 

supplemented with 1 mg/mL para-Nitrophenylphosphate (p-NPP) (Sigma-Aldrich) 

was added and the plates were incubated at room temperature for 30 min and 

then read at 405 nm by using plate reader Biorad. Raw data were acquired with 

Microplate Software (BioRad). Sera titers were expressed as the reciprocal of 

sera dilution corresponding to a cut-off Ottical density (OD) of 1 in the case of 

carrier protein IgG titer determination or OD = 0.2 in the case of polysaccharide 

IgG titer determination. The immunization group was represented with the 
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geometrical mean of the single mouse titer with a confidential interval of 95%. The 

graphical analysis was done using GraphPad Prism 6.0 software. 

 

 

3.6 Bioinformatic analysis for MHC-II prediction 

 

The prediction analysis was performed using the IEDB analysis source.  The 

tested proteins were analyzed applying both the Consensus method(63) 

(SMM/NN) and the SMM-align methods64.. 

 

3.7 Colorimetric assays for the determination of proteins 

concentration and oligosaccharides activation  

 

During the purification process, protein content was determined by Bradford 

colorimetric assay. In the conjugates, it was determined by BCA protein assay59.  

Amino groups were determined by colorimetric assay60.  

Active ester groups, introduced in the oligosaccharides, were determined by the 

analysis of released N-hydroxy-succinimido groups61. 
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4. Results 

 

As extensively reviewed in the introductive section, several factors are important 

to determine the ability of a protein to function as a carrier. The main role of the 

carrier in glycoconjugate vaccines is thought to provide T-cell epitopes, which 

bind to the class II MHC. In the specific case of glycoconjugate vaccines, 

understanding the role of presenting peptides as well as the impact on the carrier 

efficacies, when potential MHC-II peptide binders are glycoconjugated, is 

fundamental for the selection of efficient new protein carriers and for the rational 

design of conjugation strategies. 

 

 

4.1 Selection of carrier proteins for the study 

 

4.1.1 Efficacy of the protein carriers previously tested to produce IgG anti-

saccharide 

In order to draw a working hypothesis, concerning on the importance of the MHC 

presenting peptides and their glycosylation, we analyzed the efficacy, in term of 

production of IgG anti-saccharide, of a set of 27 different carrier proteins reported 

in Tontini et al., as a function of the affinity of the predicted MHC-II binder 

peptides. The investigated carrier proteins derived from different bacteria: extra-

intestinal pathogenic E.coli (ExPEC), N. meningitidis serogroup B, group A 

Streptococcus (GAS), group B Streptococcus (GBS), and S. pneumoniae (spr); 

while the sugar antigens used for the conjugation to these carriers was laminarin. 

These proteins were selected on the basis of an absence of expected toxicity 

considering the available information: solubility in physiological buffers at 

concentrations 0.3 - 5.0 mg/mL; presence of a sufficient number of lysines for 

conjugation and molecular weight between 40 and 100 kDa. These were all 

conjugated with modified laminarin at the end reducing group. The succinimido 

diester of adipic acid (SIDEA) was used as linker to have a terminal succinimido 

ester group available to react with the primary amine group of lysine residues on 

the proteins. All the conjugates were tested in mice without the use of adjuvant in 
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order to highlight the intrinsic value of the carriers only. CRM197–Lam was used in 

each immunogenicity study as benchmark. As determined by ELISA, 15 of the 27 

conjugates did not induce anti-Lam antibody titers or induce them to a level of 5 

time inferiors49.   

 

4.1.2 MHC-II binding prediction of the 27 carrier proteins studied 

Access to bioinformatics analytic tools and curated databases on immune 

reactions and specific pathogens have been becoming more frequently crucial for 

the discovery of epitopes and the vaccine design. Currently, the Immune Epitope 

Database and Analysis Resource is the most common and used bioinformatics 

tools due to its freely availability on the IEDB website (http://www.iedb.org//). It 

includes several practical tools and methods to analyze and forecast epitopes, but 

also a broad amount of immune epitopes experimentally measured. For instance, 

the IEDB analysis resource software was applied for a direct prediction of the 

peptides presented to the MHC-II of all the carrier proteins analyzed in the study 

of Tontini et al. Since the 27 carrier proteins were tested on the Balb/c mice; the 

specific haplotype of interest, H2-IAd was used for the prediction. According to 

the peer-reviewed scientific literature, new available data and information are 

periodically used to update the database. Particularly, the last update reports has 

showed a number over 18940 of curated references, a database containing over 

424000 epitopes and over 1500000 B cell, T cell, MHC binding, and MHC ligand 

elution assays (positive and negative)62.  

The software, directly available on the IEDB website at the following 

url:http://tools.iedb.org/mhcii, allows comparing the predicted affinity of every 

peptide with that of a greater sample randomly selected. It calculates the 

percentile rank by using various available prediction methods including, 

Consensus63-64, netMHCIIpan65, SMM-align, Sturniolo, and NN-align66.  

In this study we tested proteins using the SMM-align method67, which parsed the 

input protein sequences into a series of 15-mers that overlap by 10 residues, and 

submited these series instead of the entire protein sequence. With an overlap of 

10 amino acids it was possible to capture the minimal number of 15-mers with all 

possible 9-mers binding cores with at least one flanking residues (PFRs) on both 

sides and predicts the binding affinity for each peptide. The results of these 



26 

analyses were provided as a nominal SMM-align rank (nominal value) and a 

prediction SMM-align (IC50 nM). Briefly the lower is the SMM-align rank, the 

higher is the binding interaction with the MHC-II. The SMM-align method predicts 

the IC50 of the peptide MHC binding affinity values, making it suitable for rational 

epitope discovery67. As guide, we considered a good and medium affinity for the 

predicted peptide ≤1000 nM68. 

 As examples of the outcome of the software, Figure 4 shows the predictions for 

the proteins CRM197 (see panel a), spr96/2021(see panel b) and GNA2091-fHbp 

(see panel c). For a better visualization, the data in the figure are shown as 

reciprocal of the nominal percentile rank, where the higher is the value, the 

stronger is the affinity for the specific MHC-II haplotype. The CRM197 protein 

showed a high affinity for the MHC-II, displaying IC50 between 539 nM and 615 

nM for the three peptides with high SMM-align rank. The spr96/2021 (see panel 

b) exhibited stronger binder affinity of predicted peptides compared to the CRM197 

protein and it had a high affinity with a low IC50 (see panel b).The GNA2091-

fHbp (see panel c) had a lower number of predicted MHC-II binders compared to 

the CRM197, and spr96/2021, having only few peptides with an IC50 lower than 

1000 nM. 

Because the side chain of lysine residues consisted in the site of conjugation, a 

specification were needed: in the case of CRM197 the predicted epitopes did not 

present any lysine residues in their sequences, while spr96/2021 and GNA2091-

fHbp, contained lysine residues. It is remarkable to stress it out considering that 

the MHC-II presentation could be influenced by the poly/oligosaccharide 

conjugation.   
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Figure 4 - Examples of SMM-align predictions: CRM197 (panel a), spr96/202 (panel b), 

GNA2091-fHbp (panel c) data prediction are shown as reciprocal of the nominal 

percentile rank (y axis), while the x axis represents the amino acid composition starting 
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from the N-terminus of the proteins. In each panel is also displayed the SMM align rank 

and IC50(nM) for the most highly affinity predicted peptides of the three proteins. 

4.1.3 Predicted MHC-II peptide affinities as a function of carrier efficiencies 

The emitted working hypothesis was very simple. We wondered if a read-out as 

macroscopic and easy that the measurement of IgG amount could reflect a 

process as complex as the binding, internalization, processing, presentation on 

MHC-II and creation of the synapse with the T-cell receptor. For this task, the 

anti-laminarin IgG titer, for each glycoconjugate, was plotted as the affinity-value 

of the carrier peptide with the highest affinity (Figure 5). We arbitrary defined a 

protein as an efficient carrier whether the anti-laminarin IgG was equal or superior 

to 1/5 of the anti-laminarin IgG produced by the benchmark CRM197, and 

according to the recommendation of the IEDB, we selected as high-affinity 

peptide those with a 1/SMM-align rank of 8, i.e. a value equivalent to IC50 not 

higher than 1000 nM. Based on the threshold used, four groups of carriers have 

been identified: 

I. Eleven carrier proteins able to induce high anti-Lam IgG titers that we 

arbitrary defined as superior or equal at 1/5 of the anti-Lam IgG titers 

induced by CRM197 contain at least one predicted high affinity MHC-II 

peptide (Figure 5, group a). 

This group indicated a potential correlation between the presence of at 

least one high MHC-II affinity peptide and a high efficacy of the protein as 

glyco-carrier. It is also interesting to notice that, with the exception of the 

two fusion proteins RrgB III-II-I and RrgB I-II-III, the spr2021 (alone or 

fused with the protein spr0096), and the GNA2091-fHbp, all the other 

carriers of this group did not contain lysine residues so as to indicate that 

the conjugation should not influence the binding of the predicted peptides. 

The protein spr2021was particularly interesting because it could function 

as an efficient or even highly efficient carrier. 

  

II. Six carriers, unable to induce high IgG titers, contained only low affinity 

predicted MHC-II peptides (Figure 5, group c). 

As for the previous group, this observation evidenceed a potential 

correlation between the presence/absence of high affinity MHC-II peptides 
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and level of IgG titers. In this particular group, the absence of predicted 

MHC-II peptides resulted in the incapability of the carrier to induce anti-

saccharide IgG.  

 

III. Seven carrier proteins, unable to induce high IgG titer, contained high 

affinity predicted MHC-II peptides (Figure 5, group b). 

At priory, this set of protein carriers did not fit with a model of “prediction of 

high affinity MHC-II peptide correlated with high efficacy of the carrier 

protein”. Specifically all those carrier predicted MHC-II peptides, except 

one, contained high affinity predicted peptides carrying lysine residues, to 

indicate the importance of lysines and their potential state of conjugation in 

the immune response.  

 

IV. Two carrier proteins able to induce high IgG titer contained low affinity 

predicted MHC-II peptides (Figure 5, group d).  

These two carriers did not fit with the model and might represent an error 

in the prediction of the MHC-II binder peptides  
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Figure 5 - The Y axis is the reciprocal of the SMM rank of the carrier peptide with the 

highest affinity (the higher the value is, the stronger the MHC-II prediction binding is); the 

X axis is the anti laminarin IgG titer normalized by CRM197 which is used as benchmark 

The vertical dashed line represents the separation between efficient (superior to) and 

non-efficient (inferior to) carriers. The horizontal dashed line represents the separation 

between high and low affinity peptides. Each dot represents a different protein. The 

CRM197 is represented in green, while in blue and yellow respectively the proteins 

containing high affinity predicted peptides with and without lysine residues. In grey the 

proteins with low immune affinity and Immune response, in red the proteins that do not fit 

the model 

 

4.1.4 Elaboration of a working hypothesis and design of the study 

The following observations allowed drawing a working hypothesis:  

1. The software of prediction applied in this analysis allowed the hypothesis 

of correlation between presence on the carrier proteins of a high affinity 

MHC-II binder peptides and IgG production efficacy could be evidenced.  
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2. The MHC-II peptide prediction allowed speculating that 

conjugated/unconjugated lysine residues in the predicted MHC-II peptides 

may drive the production of IgG. 

3. The production of IgG seemed to be driven by the peptides of the highest 

affinity. 

4. The fact that a correlation between predicted MHC-II peptides and carrier 

efficacy could be established implied that glycoconjugates were efficiently 

internalized and processed. These steps were not limited and only the 

MHC-II association was monitored.  

To test these hypotheses, the protein spr96/2021 was selected as a carrier 

model. The spr96/2021 exhibited stronger binder affinity predicted peptides 

compared to the CRM197 protein (Figure 4). In fact CRM197 had SMM-align 

affinity IC50 of 539 nM with peptides not containing lysine residues. Whereas 

spr96/2021 showed a SMM-align affinity IC50 of 373 nM and 399 nM for the 

two peptides with the strongest affinity, which contained three lysine residues. 

Regarding the efficacy of the proteins as carrier, the conjugate spr96/2021 

induced an anti-Lam antibody titer significantly higher than the one induced by 

CRM197–Lam (Figure 5). Spr96/2021 is a recombinant fusion of the two 

pneumococcal proteins: spr0096 (LysM domain secreted protein) and spr2021 

(secreted PcsB protein)69,70,71. To address the question whether one of the two 

moieties could be responsible for this strong carrier effect, Lam conjugates 

with spr0096 and spr2021 respectively, were tested in mice. No response was 

induced by the spr0096 conjugate and very low by the spr2021 one, indicating 

that some feature derived from the fusion of the two proteins was critical for 

the carrier activity. The planed acitivities were: 

 Include the fusion protein spr2021/96 

 Empirically determine if the predicted MHC-II peptides bind the MHC-II 

complex 

 Evaluate the immunogenicity of the carrier proteins 

 Evaluate a relationship between carrier protein and pattern of 

glycosylation.  

 Generation of mutant constructs based on the evaluation of different 

pattern of glycosylation in the protein carriers. 
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4.2 Evaluation of the S. pneumoniae spr96/2021, 2021, 2021/96 

proteins immunogenicity in mice 

 

To evaluate the ability of the S. pneumoniae carriers spr96/2021, 2021, 2021/96 

at generating an immune response, the proteins (5 µg) were used to immunize 

mice. The study was performed with and without the presence of alum adjuvant 

and CRM197 was used as positive control. The anti-protein antibodies IgG titers 

were evaluated after the third immunization. All the S. pneumoniae proteins 

tested showed a significant higher IgG titers than the one induced by the CRM197 

(as shown in Figure 6). The protein spr2021 alone or in fusion with the spr0096 as 

spr96/2021 or 2021/96 were highly immunogenic in mice showing a high IgG titer 

(GMT value) without the use of adjuvant, compared to the IgG titer for the 

CRM197. The GMT value obtained for the spr96/2021, 2021/96 and 2021 were 

respectively 5290, 8947, 2706, while the one obtained for the CRM197 was 31. 

The three forms of the proteins spr2021 were able to produce a similar 

immunological response, indicating that without any modification of the lysine 

residues, the three proteins were highly immunogenic. We also attempted to 

correlate the efficacy in the production of IgG to the affinities to the predicted 

MHC-II peptides (370 nM for spr2021 and 548 nM for CRM197, Figure 4), 

although it could not be excluded that other factors such as the binding, the 

internalization and the processing could affect the immunogenicity of the proteins. 

Indeed, alum may exert its role as a delivery system to immune cells directly 

being engulfed by immune cells within the draining lymph nodes72, supporting the 

internalization of the antigen protein. In fact the CRM197 protein in presence of 

Aluminium phosphate had a significant increase in its immunogenicity. It had a 

GMT IgG titer value of 10773 in presence of Alum while a GMT of only 31 when 

administered without it. It could be speculated that even if the CRM197 had high 

immunogenic predicted peptide, its ability to generate an immune response could 

be affected by the internalization and processing. Instead the proteins spr2021, 

spr96/2021 and 2021/96 in presence of alum adjuvant did not show a substantial 

increase in immunogenicity (Figure 6). The following step of the study was to 

identify the lysine residues involved in the conjugation, for doing this the spr2021, 
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the fusions spr96/2021 and 2021/96 were conjugated with the Laminarin 

polysaccharide. 

 

 

 

 

Figure 6 - Anti-protein IgG response induced by spr2021, spr96/2021 or spr2021/96 without and 

in presence of adjuvant, compared with the CRM197 used as positive control.  

Anti-carrier IgG represented by each dot indicates a single mouse ELISA titer; the horizontal 

bar(red) represents the GMT of the group, instead the vertical bar shows the statistical 95% CI.  

 

4.3 Conjugates preparation of laminarin glycoconjugates 

spr96/2021, spr2021 and spr2021/96 

 

The Laminarin glycoconjugates were generated by chemical derivatization at the 

reducing end of the polysaccharide with an adipic acid linker (succinimido diester 

of adipic acid) as described in the materials and methods section. The activated 

polysaccharide was reacted with the different protein carriers using the same 

activated polysaccharide/protein molar ratio.  

Figure 7 reports a schematic description of the chemical reactions to produce the 

laminarin conjugates.  
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The conjugates spr96/2021, 2021, and 2021/96 were analyzed by SDS-PAGE 

electrophoresis to control the efficacy of the reaction (Figure 8). Figure 8 overleaf 

shows the classical smear of glycoconjugates due to variable sugar chains bound 

to the protein, and the band corresponding to the starting recombinant protein is 

not anymore visible to indicate a complete conjugation of the carrier.  

As described in chapter 2 – Material and methods, the glycoconjugates were 

purified from the unreacted polysaccharide and the glycosylation degree was 

calculated in term of total saccharide and free saccharide (not conjugated). The 

glycosylation degree for protein was between 0.22 and 0.36 in term of 

saccharide/protein ratio (w/w); the content in free saccharide was quite 

 

Figure 7: Schematic reaction of Laminarin glycoconjugates formation  



35 

homogenous between 9.2 and 12.1 % (Table 2), in agreement with the previously 

published data(49). 

 

Figure 8: SDS-page of spr96/2021, 2021, and 2021/96 proteins (respectively a, b, c) and their 

relative laminarin glycoconjugates(a1, b1, c1).  

 

Laminarin conjugates 

 

Total Saccharide 

µg/mL 

Saccharide/protein 

(w/w) 

Free 

saccharide 

% 

Spr2021  550.9 0.36 11.1 

Spr96/2021  412.9 0.22 12.1 

Spr2021/96  541.5 0.29 9.2 

Table 2: Free saccharide and saccharide/protein (w/w) ratio determination in Laminarin 

glycoconjugates. 

 

4.4 Immune response evaluation of the S.pneumoniae 

spr96/2021, 2021/96, 2021 Laminarin conjugates 

 

The S.pneumoniae laminarin conjugates generated were tested in mice and the 

anti laminarin response was evaluated monitoring the antilam IgG titer by ELISA 

assay. The CRM197-Lam conjugate was used as control.  The study was 

performed without adjuvant with an immunization dose of 5 μg in term of 

saccharide. The anti-laminarin antibodies IgG titers were evaluated after the third 

immunization. Regarding the efficacy of the conjugate spr96/2021 the anti-

laminarin IgG titer (Figure 9) was significantly higher than the one induced by 
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CRM197-Lam as previously described (p value =0.0023). It was also confirmed 

that the spr2021-Lam had a lower immunogenicity when compared to the fused 

conjugate spr96/2021-Lam (p value=0.007). Interestingly, the fused conjugate 

spr2021/96-Lam showed a lower immune response compared to the spr96-2021-

Lam (p value=0.0011). These results accentuated the possibility that some 

features derived from the fusions were critical for the glycoconjugates activity. A 

different rearrangement in the two fused protein structures and the possible 

different glycosylation pattern in the conjugates may drive to a different immune 

response.  

 

 

 

Figure 9: Anti-polysaccharide IgG antibody titer induced by Laminarn conjugates in S. 

pneumoniae conjugates, CRM197–Lam is used as benchmark. Each spot indicates a single mouse 

ELISA titer, the horizontal red bar refers to the GMT of the group and the vertical bar shows the 

95% CI. Non parametric Mann–Whitney test has been used for p value calculation. 
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4.5 Determination of glycosylation factors in S. pneumoniae 

constructs 

 

Because differences in term of immunogenicity against the polysaccharide 

antigen were identified for the three different carrier constructs spr96/2021, 

spr2021 and spr2021/96, we tried to identify features in the protein structures and 

glycosylation in the conjugates that could lead to a different immune response. 

Two approaches were used:  

a. Determination of the glycosylation pattern. 

b. Determination of differences in the dynamics of the proteins leading to a 

different glycosylation.  

 

4.5.1 Pattern of glycosylation for the spr2021, spr96/2021 and spr2021/96 

conjugates 

The different glycoconjugates were analyzed to identify possible differences in the 

glycans distribution especially regarding the lysine residues present in the 

predicted MHC-II peptide binder. Chemical deglycosylation method and Mass 

Spectrometry techniques were combined to identify the glycosylation sites. We 

took advantages of the differences between the glycosidic bonds and the covalent 

linking of the glycan to the protein. To be more specific, the amide bond of the 

protein-SIDEA-Sugar and the glycosidic bond of the rest of the oligosaccharide 

are very different from the chemistry point of view (Figure10). After the chemical 

deglycosylation process, only the SIDEA-monosaccharide was retained on the 

glycosylated lysines allowing to distinguish between glycosylated/unglycosylated 

lysine residues by mass spectrometry. 



38 

 

 

Figure 10 - (a) Different chemical effect of TFMS treatment on glycosidic bond and N-linkage of 

reduced glycan bound to SIDEA. (b) Principal of the glycosylation method coupled with MS 

analysis. 

 

4.5.2 Chemical deglycosylation 

The chemical deglycosylation was performed by chemical solvolysis as described 

in section 3. The deglycosylation procedure removed all sugars that contained 

covalently bound sugar chains. Amide bonds were stable to TFMS and so the 

integrity of the protein was maintained. After the deglycosylation of the 

conjugates, sugars were removed and only the SIDEA-monosaccharide linked to 

the side chains of lysine residues remained. This adduct served as label for the 

identification of conjugated lysines .  

The integrity of the proteins after the deglycosyation were checked by SDS-PAGE 

(Figure 11). The characteristic smear of the glycoconjugates was not anymore 

present after the chemical reaction and to assess that the carriers did not show 

evident degradations due to the harsh deglycosylation reaction, the starting 

recombinant proteins were also loaded on the SDS-PAGE gel. No difference in 

the apparent molecular weight of the carriers and the deglycosylated carriers 

were observed.  
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Figure 11 - Deglycosylated fractions analyzed by SDS-PAGE the single band characteristic of the 

spr96/2021, spr2021 and 2021/96 proteins is shown after the treatment with TFMS on the 

glycoconjugates confirming the removal of the sugar. 

 

 4.5.3 Glycosylation pattern identified by mass spectrometry 

Almost all currently marketed glycoconjugate vaccines contains large and 

heterogeneous glycans, conjugated by different methods, to the carrier proteins 

(Section 1.3). Many parameters such as length of the glycan, incorporation into 

the protein, conjugation linker and the distance from the protein can influence the 

immunogenicity of the vaccine conjugate73,74. Although the correct arrangements 

of the polysaccharide antigens make it available to interact with the APCs, the 

attachment site of the carbohydrates to the carrier protein can also be crucial for 

the induction of a T-cell response75,44. Most of the glycoconjugate in clinical use 

are prepared by covalent linkage of the carbohydrate to the side chain of lysine. 

This conjugation generally is considered highly random, and hard to control, also 

inducing batch-to-batch variability in the immunological properties of the vaccine. 

Analysis and localization of the glycosylation sites on conjugate vaccines are very 

important for the understanding of their mechanism of action76. The identification 

of the lysine residues involved in conjugation has only recently started to be 

explored76,77. Different groups have studied the possible conjugation on the 

common carrier protein CRM197, demonstrating that the conjugation reaction take 

place with preferences for particular sites lysine residues. Crotti et al. and more 

recently Möginger et al., identified that not all the lysine residues are equally 

reactive and prone to the conjugation. It has been demonstrated that the steric 

https://www.ncbi.nlm.nih.gov/pubmed/?term=M%26%23x000f6%3Bginger%20U%5BAuthor%5D&cauthor=true&cauthor_uid=26841683
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accessibility, the local amino acid environment and the protein secondary 

structure are the most relevant parameters; influencing the conjugation reaction 

under not-denaturating conditions.  

 

Considering all these aspects, we identified which were the most abundant 

glycosylation on the three different conjugates. The approach used in this study 

had the advantage to easily determine the glycosylation sites obtaining intact 

proteins tagged on the conjugated lysine residues, minimizing the problem related 

to hindrance of the polysaccharide that can reduce the efficacy of the trypsin 

proteolitic enzyme used for the digestion. 

The deglycosylated carriers were analyzed by LC-MS/MS analysis after tryptic 

digestion performed as described in section 3. The peptides and glycopeptides 

identification was carried out from the generated peak list using Mascot engine 

software or the peaksoftware adding the modifications of SIDEA-Glc(+291.13180 

Da) corresponding to the modification due to the presence on the side chain of 

lysine of SIDEA- glucose (SIDEA-Glc) leftover from the deglycosylation. To 

assign glycosylation side localization, we only considered the peptides in which, 

the modified peptide, was shown in MS/MS spectra as fragment ion displaying the 

b and/or y fragments of the modified lysines (Figure 12).   
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Figure 12 - example of tandem mass spectrum of the identified glycopeptides 

(R.QAELK
#
AAELSLAAEK.A; R.AAAVAEAAYK

#
EK

#
R.A ) from protein spr2021 and spr2021/96. In 

red on the sequences are highlighted the b and y transitions carrying the modified lysines.   

 

Besides the results obtained using the MS/MS ion search, for increasing the 

identification of the unmatched spectra and monitored potential uncharacterized 

modifications on the modified lysine residues, the Mascot Error Tolerant 

Search was used, or the de novo sequencing function in peaks software was 

used. These tools allowed increasing the coverage of the proteins and identifying 

other modifications on the lysine residues. In particular, three other modifications 

were highly recurrent: +128.1075 Da associated to the modification of the lysine 

residues with the SIDEA linker, +218.1671 Da and +100.0160 Da. It was not 

possible to define these unknown modifications. These modifications probably 

derived from a rearrangement of the glycan structure after the treatment of 

solvolysis.  
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The Table 3 below lists some of the glycosylation that were identified in this work 

for the S. pneumoniae protein carriers. It is interesting to notice that the peptides 

predicted to have the highest affinity for the MHC-II complex also presented a 

different pattern of glycosylation. In particular, we identified that the peptides 

AAAVAEAAYKEKR and QAELKAAELSLAAEK were found mainly glycosylated in 

spr2021 and spr2021/96, while these modified peptides were not identified in 

spr96/2021 according to the stringent conditions we applied to the identification of 

modified peptides (Figure 13). 

 

Conjugate Sites Ion score Peptide sequence# 

Spr2021-Lam 245 93.4 R.AAAVAEAAYK#EKR.A 

 245, 247 79 R.AAAVAEAAYK#EK#R.A 

203 102.1 K.QAELK#AAELSLAAEK.A 

    

    

Spr2021/96-Lam 213, 215 80.8 R.AAAVAEAAYK#EK#R.A 

 171 66.7 K.QAELK#AAELSLAAEK.A 

 

Table 3 - Example of peptides presenting lysine residues glycosylated (#) in spr2021-Lam, and 

spr2021/96-Lam. 
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Figure 13 - Glycosylation pattern for spr96/2021 and 2021/96: In red are marked the 

glycosylated lysine in the two fusion proteins. In violet and yellow are highlighted the peptides with 

highest affinity for the predicted MHC-II peptides. 

 

4.5.4 HDX-MS analysis on spr2021, spr96/2021 and spr2021/96 carrier 

proteins for structural differences 

After the identification of a different pattern of glycosylation for the three different 

constructs we tried to better characterize the factors that could have lead to a 

different glycosylation. Due to differences in the steric interactions among the 

three constructs, the lysine residues could not be equally accessible for 

conjugation resulting in a different pattern of glycosylation. The spr2021 alone or 

in the two fusions were analyzed by Hydrogen deuterium exchange (HDX) 

technique with on-line pepsin proteolysis digestion, to evaluate the possible 

differences in conformation and dynamics structure among the proteins. 
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The rate of backbone amide hydrogen exchange in solution is directly dependent 

on the structure and dynamics of the protein. Therefore regions not exposed will 

exchange more slowly than regions fully exposed to the solvent.  

The spr96/2021 was used for the pepsin peptide map, to generate a full map 

covering the full length of the protein in order to monitor the deuterium uptake in 

the entire sequences of spr2021, 96/2021, 2021/96. The peptides were assigned 

to the sequence according to their fragmentation in MS/MS. nº of 65 peptides 

were identified in at least 4 of 5 repeated analysis and represented a coverage of 

85%. The HDX-MS analysis was performed at 6 deuteration points (30 s, 5min, 

10min, 30min, 1 h and 24 h). When the experiment was performed at room 

temperature, no significant differences in incorporation were verified for the three 

S. pneumoniae proteins (data not shown). A difference in the incorporation was 

instead identified at 0 °C when the dynamics of the protein is slowed down. 

Figure 14 illustrates the difference index of incorporation between the spr96/2021 

and the spr2021/96. The data are plotted as the difference in relative uptake of 

each peptide (dots) in the selected state (lines). The closer the dots and lines are 

to the zero, the lower is the difference (in term of incorporation) between the 

proteins compared. 1 Da of difference in the incorporation was used as threshold 

to define a difference considered to be significant. Differences in the dynamics of 

the proteins were pointed out on the spr0096 region comparing the fusion 

proteins spr96/2021 and 2021/96 with a maximum difference of incorporation of 5 

Da when the analysis was performed a 0 °C. The peptides in the C terminus path 

of the spr0096 region in the fusion of spr96/2021 present a faster kinetics of 

labeling due to a more accessible structure compared to the spr2021/96; however 

this difference was displayed only when the analysis was performed at 0ºC, when 

the dynamic of the proteins was reduced. 
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Figure 14 - Difference index of incorporation for the protein spr96/2021 and spr2021/96 each dot 

represents a peptide and each line represents a different state of deuteration. In the green box is 

represented the difference in the incorporation for the spr0096 in the two fusion proteins. In the 

blue box the difference in the incorporation for the spr2021. 

 

Focusing our attention on the spr2021region of the proteins, that was the one 

carrying the predicted MHC-II peptides found differently glycosylated in the three 

constructs, we observed that the proteins appear at highly dynamics, displaying a 

high level of deuterium incorporation. Figure 15 panel a shows the deuterium 

incorporation for the protein spr2021. Briefly, each line represents a different time 

point and each dot represents a peptide. The lower is the uptake of deuterium, 

the closer are the line and dot to the zero. A lower incorporation is related to a 

more structured region, in which the peptide is not accessible to the solvent and 

viceversa.  

We distinguished among high, medium and low dynamics of the peptides 

considering a high incorporation≥40%, 15%≤medium≤40%, low≤15% respectively 

in term of relative uptake. When the experiment was performed at room 

temperature, almost all the spr2021 protein showed a relative incorporation higher 

than 40% (data not reported). The analysis performed a 0 °C, allowed to better 
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characterize the protein structure, and in the identification of regions with a lower 

incorporation. At this temperature, the uptake of deuterium was slowed down in 

the regions more prone to interact. This aspect was in agreement with the 

crystallography structure available for the spr2021 protein78.  

In Figure 15 panel b the crystal structure of the spr2021 is shown and compared 

to the relative uptake of deuterium for each region identified. The region with high, 

medium, and low incorporation assigned in the relative uptake Figure 15 in panel 

a (indicated as A, B, C) are highlighted to the crystallography structure in panel b. 

In blue and green on the crystallography structure are showed the regions with an 

incorporation of deuterium ≤15% (blue) and between 15 and 40% (in green) are 

reported. The interhelix interactions in the coil-coil domain, mainly mediated by 

hydrophobic interactions and hydrogen bonds, leads to a lower incorporation.  

The C-terminus domain presented β-sheet with a robust network of hydrogen-

bond interactions also leading to a more structured region in agreement with the 

lower deuterium incorporation. The high dynamic of the proteins did not allow 

identifying differences, in term of protein structure that could help the 

understanding of the different pattern of glycosylation among the three constructs. 

As described, the spr2021 showed a similar incorporation among the three 

constructs (Figure 14).The proteins were highly dynamics and it was not possible 

to define a correlation between differences in the pattern of glycosylation and the 

deuterium exchange. However, it could be observed, comparing the pattern of 

glycosylation and the structure analysis performed by HDX that, in all the three 

constructs the lysines involved in the conjugation were presented on the more 

dynamic regions of the proteins. Lysines presented in the interhelix interaction in 

the coil-coil domains, and the C terminus region highlighted in blue and green on 

the crystallography structure (Figure 15 panel b), were found not glycosylated. In 

agreement with the possibility that lysines more exposed to the solvent were also 

more likely glycosylated.  

 

 



47 

 

 

Figure 15 - Dynamics of the spr2021 at 0°C. In panel a is shown the relative uptake for the 

protein spr2021, each dot represents a peptide and each line represents a different state of 

deuteration. Incorporation: high ≥40%, 15%≤medium≤40%, low≤15%. Each region with high , 

medium, and low incorporation assigned in the relative uptake figure in panel a (indicated as A, B, 

C) are assigned to the crystallography structure in panel b highlighted in red (high incorporation, 

green(medium), and blue(low). 

 

 

4.6 Generation of proteins mutant and laminarin glycoconjugates 

 

Differences in the pattern of glycosylation were identified for the three carrier 

proteins spr96/2021, 2021 and 2021/96. The two peptides predicted to have the 

highest affinity for the MHC-II complex presented different pattern of glycosylation 

(Figure 13). The peptides AAAVAEAAYKEKR and QAELKAAELSLAAEK were 

found mainly glycosylated in spr2021 and spr2021/96, the two constructs with the 

lower immunogenicity against the polysaccharide antigen. These modified lysines 
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were not identified in spr96/2021, the carrier protein that leads to a higher 

immunogenicity against laminarin. Based on correlation that predicted MHC-II 

peptides were mainly glycosylated on the proteins that raise a lower anti-laminarin 

IgG titer, we speculated that the glycosylation on the presented MHC-II peptide 

could affect the MHC-II CD4+T cells  interaction and so the immune memory 

against the polysaccharide antigen. For evaluating the rule played by the 

glycosylation on the MHC-II predicted peptides two strategies were used. The first 

strategy considered: 

I. Generating a series of mutants for the spr2021 and 2021/96 protein in 

which the lysines residues on the predicted MHC-II peptides 

AAAVAEAAYKEKR and QAELKAAELSLAAEK were substituted with an 

Arginine residue. In this way it can be possible to prevent the glycosylation 

on the specific site and evaluate the rule played by these peptides.  

II. Insertion of the MHC-II predicted peptide from the CRM197 protein 

IALSSLMVAQAIPLV as linker between the spr2021 and spr0096 proteins. 

As a second strategy we selected another carrier protein, the GNA2091-fHbp 

previously analyzed in term of immune response against laminarin antigen. This 

glycoconjugate displayed a low immune response compared to the CRM197 

conjugates used as control. The GNA2091-fHbp showed in is structure low affinity 

MHC-II predicted peptides (IC50 772 nM) also containing lysine residues (see 

Figure 4). We produced mutants of this protein in which the linker between the 

GNA2091 and fHbp proteins were substituted with the predicted CRM MHC-II 

peptide IALSSLMVAQAIPLV and with the predicted spr2021 MHC-II peptides 

KRASQQQSVLASANT. In this last case, the lysine residues presented on the 

peptides were also substituted with Arginine residues (i.e. 

RRASQQQSVLASANT) avoiding the possible conjugation on the specific lysine 

residue. 

 

4.6.1 Proteins production and characterization 

To perform the conjugation, high pure amount of proteins was needed. 

Recombinant constructs of these proteins were produced and purified as 

described in materials and methods. The purified proteins showed a high degree 

of purity, which was verified by analytical size-exclusion high-performance liquid-
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chromatography (SEC-UPLC); this was around 90-97% among all the proteins 

produced. The SEC-UPLC chromatography of the purified spr96/2021 and 2021 

are shown in Figure16 as an example of the analysis. To verify the molecular 

weight of the proteins entire mass were performed verifying the correct molecular 

weight. The entire mass, assessed by MS, are shown in Table 4; some of the 

proteins showed N-terminal methionine excision (NME)79 with a loss of 131.1986 

Da from the theoretical molecular weight. The entire masses obtained were in 

agreement with primary sequences of the proteins produced. 

The content in lipopolysaccharide was evaluated using the endotoxin testing 

system (Charles River). When the content of endotoxins was higher than 0.05 

EU/mL, the lipopolysaccharides were removed as described in Chapter 3.  

 

 

Protein Expected Mass (Da) Obtained Mass (Da) 

spr2021  42743.16 42745.77±2.59 

Spr2021_Lys204Arg 42771.18 42772.08±0.65 

Spr2021_Lys248Arg 42771.18 42771.70±0.35 

Spr2021_Lys204Arg_Lys246Arg_Lys

248Arg 

42827.20 42827.53±0.32 

Spr2021/96  58854.37 *58727.85±1.76 

Spr2021/96_Lys172Arg 58882.38 *58750.22±3.38 

Spr2021/96_Lys216Arg 58882.38 *58753.96±1.69 

Spr2021/96_Lys172Arg_Lys216Arg 58910.39 *58778.29±3.83 

Spr2021/96_Lys172Arg_Lys214Arg_

Lys216Arg 

58938.41 *58805.56±5.79 

Spr2021-(CRM197)-96 59959.90 *59827.77±5.54 

GNA2091-fHbp 46282.00 *46149.89±2.75 

GNA2091-(2021)-fHbp 47531.66 *47401.07±2.42 

GNA2091-( CRM197)-fHbp 47622.50 *47491.13±2.97 

 

Table 4 - Entire mass of the S.pneumoniae and N. meningitidis proteins produced, the 

star (*) is indicating the loss of methionin. 
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Figure 16 - SEC-UPLC profile of purified spr2021(A), 2021/96_Lys172Arg(B), the absorbance 

(AU) was acquired at 280nm wavelength, the elution time for each peak is indicated in each panel. 

The peak % area indicates the % of the peak component among the total 'detectable' peaks. 

 

To further characterize possible disorders in the protein structures correlated to 

the mutations on the native sequences of the Streptococcus pneumoniae 

spr2021-96 and spr2021, and Neisseria meningitis GNA20191-fHbp, the thermal 

stability of the generated proteins was analyzed by differential scanning 

calorimetry (DSC). The same thermal stabilities for the spr2021, spr2021/96 and 

their relative mutants were verified. Two peaks corresponding to melting 

temperature transitions (Tm) at 29.96 and 52.68 ºC were showed for the 

spr2021/96 and its relative mutants (Figure 17). The same analysis was 

performed for the spr2021 and its mutants; a Tm of 29.96 and 55.02 ºC was 

showed (Figure 18). All the point mutation did not significantly affect the melting 

temperature of the proteins. Different thermal stability were instead showed for 
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the spr2021-(CRM)-96 mutant in which the linker GSGSGGG was substituted 

with the sequence GIALSSLMVAQAIPLVG corresponding to the CRM197 MHC-II 

predicted peptide. In this case the Tm1 was maintained at 30 ºC but the Tm2 was 

instead lower from 52.68°C to the initial construct to 47.68 ºC (Figure 19). The 

modification of the linker between the two proteins srp2021 and spr96 led to a 

change in the structure conformation. Same thermal stability was verified for the 

GNA2091-fHbp and its relative mutant. Two different peaks were observed at Tm1 

66 ºC and Tm2 83 ºC (Figure 20). In both the two constructs the change of the 

linker did not affect the melting temperature of the GNA2091-fHbp protein.  

 

 

 

Figure 17 - DSC profiles of spr2021/96 protein and  mutants with the relative Tm associated to 

each peak. Samples are indicated as shown in the legend. 
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Figure 18 - DSC profiles of spr2021 protein and the respective mutants with the relative Tm 

associated to each peak. Samples are colored as follow: red spr2021_Lys204Arg, green 

spr2021_Lys248Arg, blue spr2021_lys204Arg_Lys246Arg_Lys248Arg and light blue for the 

spr2021 

 

 

 

Figure 19 - DSC profiles of spr2021/96 protein and the spr2021-(CRM)-96 mutants with the 

relative Tm associated to each peak. Samples are indicated as shown in the legend. 
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Fig20: DSC profiles of GNA2091-fHbp protein and its mutants GNA2091-(2021)-fHbp, GNA2091-

(CRM)-fHbp with the relative Tm associated to each peak. Samples are indicated as showed in the 

legend. 

 

4.6.2 Immune response evaluation of S. pneumoniae and N. meningitidis 

mutated proteins in mice 

For evaluating the ability of the mutated S. pneumoniae and N. meningitidis 

produced to maintain an immune response, the mutants were tested in mice; the 

spr2021 and spr2021/96 were used as controls from which the immune response 

should be increased on the mutated proteins. Studies were performed without the 

use of adjuvants for all the proteins and mutants with an immunization dose of 5 

µg in term of total protein. The anti-protein antibodies IgG titers were evaluated 

after the third immunization (Figure 21). All the S. pneumoniae mutants tested 

showed an IgG titer that is comparable to the spr2021 and spr2021/96 proteins 

(Figure 21 panel a, b). The same behavior was showed for the N. meningitidis 

mutants when compared to the control GNA2091-fHbp (Figure 21 panel c). Non 

significant differences were obtained in term of immunogenicity for mutated 

carriers. The mutations did not significantly affect the immunogenicity of the 

carrier proteins. It was possible to speculate that the immunogenicity of the 

modifications made, did not affect the process of presentation and internalization 

of the new carriers produced.  
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Figure 21 - Anti-carrier IgG response induced by spr2021, spr2021/96 or GNA2091-fHbp proteins 

in comparison with the corresponding mutants. 

In panel (a) is shown the anti-carrier IgG response induce by mutated spr2021 without presence of 

adjuvant in comparison with the positive control spr2021.  

In panel(b) is shown the anti-carrier IgG response induce by mutated spr2021/96 without 

presence of adjuvant in comparison with the spr2021/96 original construct. 

In panel(c) is shown the anti-carrier IgG response induce by mutated GNA2091-fHbp without 

presence of adjuvant in comparison with the GNA2091-fHbp wild type. 
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4.6.3 Conjugates preparation of laminarin glycoconjugates for spr2021, 

2021/96 and GNA-fHbp wild type and mutants 

The Laminarin glycoconjugates were obtained as already described in Section 4.3 

where Figure 7 illustrates schematic description of the chemical reactions to 

obtain the laminarin conjugates. The conjugates were analyzed by SDS-PAGE 

electrophoresis to control the efficacy of the reaction. The classical smear of 

glycoconjugates due to variable sugar chains bound to the protein was observed, 

and the band corresponding to the starting recombinant protein was not any more 

visible indicating the complete conjugation of the carriers (Figure 22). The 

glycoconjugates were purified from the unreacted polysaccharide as described in 

Section 3, and the glycosylation degree was calculated in term of total saccharide 

and free saccharide (not conjugated). The saccharide content among the S. 

pneumoniae and N. meningitidis conjugates to Laminarin polysaccharide is 

reported in Table 5. The glycosylation degree for protein was between 0.19 and 

0.7 in term of saccharide/Protein ratio(w/w), the content in free saccharide was 

quite homogenous waving between 6.1 and 13.7 % for the spr2021/96 conjugates 

and between 5.3 and 6.5% for the GNA2091-fHbp proteins and mutants. 

 

 

 

Figure 22 - Examples of SDS-page for the generated conjugates: Proteins 

spr2021/96_Lys172Arg,spr2021/96__Lys172Arg_Lys214Arg_Lys216Arg,spr2021_Lys204Arg, 

and spr2021_Lys204Arg_Lys248Arg (respectively a, b, c, d) and their relative laminarin 

glycoconjugates(a1, b1, c1,d2). 
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Laminarin conjugates 

 

Total Saccharide 

µg/mL 

Saccharide/protein 

(w/w) 

Free 

saccharide 

% 

Spr2021_Lys204Arg  354.4  0.21 12.1 

Spr2021_Lys248Arg 269.7 0.61 10.0 

Spr2021_Lys204Arg_Lys246

Arg_Lys248Arg 
421.4 0.41 16.6 

Spr2021/96_Lys172Arg 465.1 0.34 10.7 

Spr2021/96_Lys216Arg 569.3 0.20 13.2 

Spr2021/96_Lys172Arg_Lys

216Arg 
491.3 0.39 6.1 

Spr2021/96_Lys172Arg_Lys

214Arg_Lys216Arg 
437.7 0.19 13.7 

Spr2021-(CRM)-96 582.1 0.35 10.9 

Spr2021/96  541.5 0.29 9.2 

GNA2091-fHbp 663.6 0.41 6.5 

GNA2091-(CRM)-fHbp 201.3 0.47 5.3 

GNA2091-(2021)-fHbp 581.5 0.7 - 

 

Table 5 - S. pneumoniae and N. meningitidis Laminarin glycoconjugates: total content of 

saccharide, free saccharide and saccharide/protein (w/w) ratio.  

 

 

4.7 Immune response evaluation of mutants Laminarin 

conjugates in mice 

 

For testing the ability of the new glycoconjugates produced to increase the 

immune response against the polysaccharide antigen, Laminarin conjugates 

spr2021, spr2021/96 and mutants were tested in mice. The study was performed 

without the use of adjuvants with an immunization dose of 5µg in term of total 

saccharide. The anti-Laminarin antibodies (IgG) were evaluated after the third 

immunization. Comparing the spr2021 conjugates and its relative mutants (Figure 

23 panel b), the point mutations made on the predicted MHC-II peptides did not 

allow a significant increase in the immunogenicity against the polysaccharide 

antigen. The same effect was showed in the case of the spr2021/96 and its 

relative mutants (Figure 23 panel a). The spr2021-CRM-96 conjugate, in which a 
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predicted MHC-II peptide from the CRM197 sequence was added to the fusion 

protein spr2021/96 also showed a similar immune response compared to the 

original construct spr2021/96-Lam. In all constructs we obtained a similar immune 

response and a non significant increase among them was identified. Regarding 

the N. meningitidis conjugates, predicted MHC-II peptide from the CRM197 protein 

and the spr2021 were added to the sequence with the aim of increasing the 

immune response of GNA2091-fHbp. Comparing the mutant tested to the original 

construct GNA2091-fHbp a non significant increase in the immunogenicity was 

observed. (Figure 23 panel c). 
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Figure 23 - Anti-laminarin IgG response induced by spr2021 spr2021/96, or GNA2091-fHbp 

conjugates in comparison with the corresponding mutants. 

In panel (a) is shown the anti-laminarin IgG response induce by mutated spr2021 without 

presence of adjuvant in comparison with the spr2021.  

In panel(b) is shown the anti-laminarin IgG response induce by mutated spr2021/96 without 

presence of adjuvant in comparison with the spr2021/06. 

In panel(c) is shown the anti-laminarin IgG response induce by mutated GNA2091-fHbp without 

presence of adjuvant in comparison with the GNA2091-fHbp. 

Anti-carrier IgG represented by each dot indicate a single mouse ELISA titer, the horizontal 

bar(red) is the geometric mean of the group, instead the vertical bar shows the statistical 95% CI. 
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5. Conclusions 

 

Currently, glycoconjugate vaccines are among the safest and most efficacious 

vaccines developed so far, however they are still not completely characterized. 

Data show that the immunogenicity of conjugate vaccines can be affected by 

many variables such as the carrier protein, the conjugation chemistry and the 

carbohydrate antigen, resulting in different immunological properties. For 

instance, several studies have been published focusing on the influence of the 

carbohydrate on the immunogenicity of glycoconjugate vaccines and suggesting 

that chain length, conjugation process, saccharide loading onto the protein could 

somehow influence the glycoconjugate immunogenicity80,81,82. While these factors 

are often stated in publications, the attention on the protein carrier as the key 

factor on vaccine profile83 has not been widely reported. The mechanism of action 

of glycoconjugate vaccines and in particular the role played by both the 

carbohydrate and the protein carrier during antigen presentation, the interaction 

with the MHC-II complex and the following interactions with the T cell receptor are 

still not completely clarified. Polysaccharides are generally considered to be T cell 

independent antigens and so not able to bind the MHC-II complex84. For this 

reason, the elicitation of T cell helpers by glycoconjugates is generally attributed 

to the peptide moieties, which is generated from the protein carrier processing. 

Avici et al. showed that carbohydrate motifs can be presented to the MHC-II 

thanks to the peptide that act as anchor for the binding to the MHC-II. In fact, the 

authors identified specific T cell clones for the specific carbohydrate antigen. A 

further consideraton is that most of the conjugate vaccines are produced from 

large poly/oligosaccharides, randomly distributed at the carrier surface, limiting 

the possibility that carbohydrate processing in the lysosome results in a sufficient 

quantity of homogenous glycopeptide suited for the T cell binding48. Aiming at 

bringing light to the influence of conjugation on processing and presentation of 

glycoconjugates, we first clustered the efficacy of 27 protein carriers reported in 

litterature49, as a function of the presence in their sequences of peptides predicted 

to bind MHC-II with high affinities, as well as the presence/absence in these 

peptides of lysine residues, the amino acid involved in the conjugation49. We were 

able to evidence that carriers that did not induce anti-Lam antibody titers or 



60 

induce them to a level 5 time inferiors to the CRM197-Lam used as benchmark, 

either do not bear predicted MHC-II-binder peptides of high affinity, or contain 

predicted MHC-II-binder peptides of high affinity that carry lysine residues. From 

this observation we made the hypothesis that the conjugation of the lysine 

residues present in predicted MHC-II-binder peptides of high affinity might 

considerably reduce the capability of a protein to function as an efficient carrier. 

The hypothesis was also supported by analyzing the set of proteins that function 

as efficient carriers and bear high affinity MHC-II binder peptides. Most of these 

peptides do not contain lysines (and the conjugation should not influence their 

high efficacy as carrier), but it was interesting to evidence that spr96/2021 that 

contains in the sequence of the spr2021 predicted high affinity MHC-II binder 

peptides with lysines induced an anti-Lam antibody titer significantly high, that is 

not the case of the spr2021. The same senario was observed from the GNA2091-

fHbp carrier protein.  

With the attempt to confirm the influence of glycosylation extent of MHC-II 

presenting peptides on the efficacy of the carrier, spr96/2021, spr2021 as well as 

the new fusion protein spr2021/96 were selected as a model to validate our 

hypothesis. We first showed that the three proteins induced a similar strong 

immune response in agreement  with the presence of high affinity predicted MHC-

II peptides identified. The observed immunogenicity did not increase when 

adjuvant was co-administrated, a situation that is quite different from what 

observed with CRM197. These aspects led us to speculate that even if factors, 

such as binding, internalization or processing may be involved in the immune 

response, the selected model is not highly affected by them. 

The three protein carriers were randomly conjugated with laminarin and their 

ability to induce an immune response against the polysaccharide antigen was 

tested. As previously showed, the fusion spr96/2021 showed a high IgG anti-

laminarin antibody titer when compared to the spr2021. Curiously, the new 

conjugate tested spr2021/96 did not display a similar immunogenicity of its 

counterparty spr96/2021. To evaluate the extend of conjugation of the carrier, we 

used a new in house method, combining a chemical deglycosylation and mass 

spectrometry technique. We were able to identify a different pattern of 

glycosylation for the three constructs. In agreement to the hypothesis that 
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glycosylation on the MHC-II predicted peptides influences the efficacy of the 

carrier.  

With the aim to improve to efficacy of the spr2021/96 and spr2021 carriers, we 

generated mutants in which the lysine residues involved in the conjugation were 

substituted with arginine residues. Moreover, insertion of predicted MHC-II 

peptide from the CRM197 protein was also inserted as spacer between the 

spr2021 and spr0096 proteins. As a second strategy, we selected another carrier 

protein, the GNA2091-fHbp in which the linker between the GNA2091 and fHbp 

protein was substituted with the predicted CRM197 MHC-II peptide and with one of 

the predicted spr2021 MHC-II peptide. All the mutated proteins showed a high 

level of immunogenicity comparable to the native forms. All the mutant conjugates 

were tested in mice for evaluating their ability to generate an immune response 

against the polysaccharide antigen. No increase in the immunogenicity was 

observed when the mutant conjugates were tested in mice. In all the tested group 

mice, a broad range of immune response was observed with the administration of 

the same conjugate; this wide range of immunogenicity together with the low IgG 

titer obtained for different mice in the same group increased the confidence 

interval for the GMT value obtained, implying the impossibility of applying any 

statistical analyses in order to identify differences among the constructs. The 

conjugates generated were deeply characterized and no differences were 

identified in term of sugar and protein/sugar ratio compared to the previous 

reported data49. Also the same strand, age and sex of mice was maintained to 

avoid any change in the immunogenicity response. The still low immunogenicity 

after the modification made on the carrier proteins could be due to the high 

number of predicted MHC-II peptides with a medium affinity, identified for the S. 

pneumoniae constructs that have not been taken into account in this study. Much 

effort was put in the identification of the peptides presented to the MHC-II for 

confirming the data obtained from the prediction software and the binding of the 

predicted peptides to the MHC-II. Mass spectrometry was extensively used for the 

detection of peptides presented by major histocompatibility complex class I and II, 

allowing rapid identification of a high number of peptides in a single 

experiment85,86.  

However, the analysis of MHC I and II peptides ligands from cells isolated in 

mouse was very challenging especially regarding the cost and amount of work 
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involved in each experiment. A high number of APCs were generally needed (in 

the order of 5 to 10 billion of APCs). Collecting a so high number of APCs 

required sacrificing from 50 to 100 mice87. Nevertheless, some laboratories were 

able to reduce the number of mice used allowing a reduction in term of amount of 

work. For instance, in vivo enrichment of mouse spleen DCs by Flt3L-B6 

melanoma treatment was described, expanding the subset of dendritic cells of 

around 10 fold88. Even if it is possible to reduce the amount of mice necessary, 

other limitations came with the subsequent step of purification and identification. 

The techniques used for the purification of the MHC bounded peptides required 

an immunoaffinity purification, which is highly specific but come with the cost of a 

very low yield89. A further restriction of this approach, is the unpredictable 

cleavage sites of the peptides generated for the presentation to the MHC 

complex. The cleavage generated by specific proteases, led to have known C-

terminus amino acid facilitating the MS/MS data analysis. Because of the 

impossibility of predicting the C-terminus region on these analyses, all the 20 

amino acid must have been considered as potential terminal residues, increasing 

the possibility in misidentifying the peptides. The main limitation in our case was 

due to the unfeasibility to have a so high number of mice and/or to use 

hematopoietic factors such as the Flt3L for enhancing the number of APCs. We 

were forced to limit our experiments to the use of 10 mice, in which all the 

splenocytes (dendritic cells, B lymphocytes, macrophages) were collected. Briefly, 

the splenocytes were infected with the protein spr96/2021, after 6h of infection, 

the cells were lysated and the MHC-II bounded peptides were purified using an 

immunoaffinity purification. The sample was then analyzed by mass spectrometry 

but no peptides from spr96/2021 were identified. The impossibility to perform 

experiments with a higher number of mice and the intrinsic limitation of the 

experiment above described prevented to verify that the two peptides predicted 

with a high predicted affinity for the MHC-II complex were empirically presented 

on the MHC-II. Due to the failure in identifying the MHC-II bounded peptides we 

were forced to rely only on the prediction software. Future study will be necessary 

to well define the role played by glycosylation in generating a memory response. 

Other approaches that may be used to study the influence of glycosylation in 

developing an immune response, and the role played by the glycosylation on 

MHC-II presented peptides, may be accomplished by using specific glycosylation 
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on the T cell epitopes of interest. Recently, an in vivo conjugation process for the 

generation of the so called bioconjugate vaccines have been developed90. This 

technology allows the biosynthesis of polysaccharide and carrier proteins in E. 

coli cells with the subsequent in vivo coupling of the carrier to the polysaccharide 

by using a specific oligosaccharyl transferase enzyme from the N-linked 

glycosylation system of Campylobacter91,92. Without going to much in detail on 

this engineered glycosylation process, the antigenic oligosaccharide can be 

enzymatically introduced on the Asparagine residues of the consensus sequence 

D/E-Xaa-N-Xaa-S/T, where Xaa can be any amino acid except Proline. The 

consensus sequence was inserted into different proteins such as EPA, Hla that 

are not glycosylated in their original organism, leading to develop of bioconjugate 

candidate vaccines against Staphylococcous aureus and Shigella flexneri 2a93,94. 

The consensus sequence used to generate the bioconjugates could be inserted in 

carrier proteins containing predicted MHC-II peptides of high affinity, modulating 

in a specific way the site of conjugation. Using this technology it will be possible to 

understand the rule played by the glycosylation on specific T cell epitope when 

glycosylated and correlate the IgG titer to the affinity of the predicted MHC-II 

peptides. 
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