
 

Alma Mater Studiorum – Università di Bologna 

 
 

DOTTORATO DI RICERCA IN 

 

Scienze Biotecnologiche e Farmaceutiche 

 

Ciclo XXX 

 

Settore Concorsuale: 03/D1 

 

Settore Scientifico Disciplinare: CHIM/08 

 

 

Fully Flexible Binding of Taxane-Site Ligands to Tubulin 

via Enhanced Sampling MD Simulations 

 
 

 

 

Presentata da: Dario Gioia  

 

 

 

 

 

Coordinatore Dottorato Supervisore 
Prof. Santi Mario Spampinato Prof. Maurizio Recanatini 

  

 Co-Supervisore 
 Dott. Federico Falchi 

 

 

 

 

Esame finale anno 2018 



 

 

 

 

 

 

“Non troverai mai la verità,  

se non sei disposto ad accettare anche 

 ciò che non ti aspettavi di trovare.” 

 

 

 

 

 

 

 

  



 

I 

Table of Contents 

ABSTRACT .................................................................................................................... 1 

LIST OF ACRONYMS ................................................................................................. 2 

LIST OF FIGURES ....................................................................................................... 5 

1. INTRODUCTION ............................................................................................. 10 

1.1. The Traditional Approach to Molecular Docking ................................................................... 12 

1.1.1. Posing .................................................................................................................................. 13 

1.1.2. Scoring ................................................................................................................................ 14 

1.1.3. Combining Docking and Molecular Dynamics Simulations ............................................... 16 

1.2. Towards Dynamic Docking ........................................................................................................ 19 

1.2.1. Unbiased-MD Approaches ......................................................................................................... 20 

1.2.1.1. Long Plain MD Simulations ........................................................................................... 20 

1.2.1.2. Adaptive Sampling Methods .......................................................................................... 22 

1.2.2. Enhanced Sampling Methods in Molecular Dynamics .............................................................. 25 

1.2.2.1. Methods Relying on CV(s) ............................................................................................. 26 

1.2.2.2. Methods Relying on Tempering ..................................................................................... 28 

1.3. The MD-Binding Approach ....................................................................................................... 30 

1.3.1. On the Choice of the “Right” CV(s) ................................................................................... 30 

1.3.2. An Adaptive Bias for Ligand Binding ................................................................................ 31 

2. TUBULIN AS A TEST CASE .......................................................................... 34 

2.1. Microtubules Structure and Functions ..................................................................................... 34 

2.2. MTs Dynamic Behavior.............................................................................................................. 36 

2.3. MTs bricks: α and β-tubulin ...................................................................................................... 39 

2.4. Tubulin as Target in Cancer Therapy ...................................................................................... 42 

2.5. Chemical Compounds that Interact with Tubulin ................................................................... 43 



 

II 

2.5.1. The Taxane-Site .................................................................................................................. 46 

2.6. Aims of the Thesis ....................................................................................................................... 49 

3. MATERIAL AND METHODS ........................................................................ 51 

3.1. MD Simulations Setup ................................................................................................................ 51 

3.1.1. System Preparation .............................................................................................................. 51 

3.1.2. Plain MD Simulations ......................................................................................................... 52 

3.2. Binding Pocket Analysis ............................................................................................................. 52 

3.3. MD-Binding Protocol Setup ....................................................................................................... 53 

3.3.1. Ligands Parametrization ...................................................................................................... 53 

3.3.1.1. Epothilone A................................................................................................................... 53 

3.3.1.2. Discodermolide .............................................................................................................. 53 

3.3.1.3. Taxol ............................................................................................................................... 53 

3.3.2. Ligand(s) Positioning .......................................................................................................... 54 

3.3.3. Systems Preparation and Equilibration ............................................................................... 54 

3.3.4. MD-Binding Simulations .................................................................................................... 54 

3.3.5. Molecular Docking .............................................................................................................. 56 

3.3.5.1. Traditional Static Docking ............................................................................................. 56 

3.3.5.2. Induced-Fit Docking ....................................................................................................... 56 

3.3.6. Scoring of MD-Binding Poses ............................................................................................ 56 

3.3.6.1. Rescoring with MM/GBSA ............................................................................................ 56 

3.3.7. Figure Preparation ............................................................................................................... 57 

4. RESULTS AND DISCUSSION ........................................................................ 58 

4.1. Pocket Behavior Investigations .................................................................................................. 58 

4.1.1. Model Selection .................................................................................................................. 58 

4.1.2. Classical MD-Simulation .................................................................................................... 61 

4.1.3. Tracking the Binding Pocket ............................................................................................... 64 

4.2. Considerations on the MD-Binding Protocol Setup ................................................................. 71 

4.3. Protocol Validation ..................................................................................................................... 74 



 

III 

4.3.1. Traditional Docking Procedures .......................................................................................... 74 

4.3.2. The Two Epothilone A Binding Modes at Test ................................................................... 75 

4.3.3. Dynamic Docking of Epothilone A ..................................................................................... 77 

4.3.3.1. Posing ............................................................................................................................. 77 

4.3.3.2. The importance of the His227 ........................................................................................ 83 

4.3.3.3. Scoring ........................................................................................................................... 84 

4.4. Dynamic Docking of Discodermolide and Taxol ...................................................................... 87 

4.4.1. Discodermolide ................................................................................................................... 87 

4.4.2. Taxol ................................................................................................................................... 90 

5. CONCLUSIONS AND PERSPECTIVES ....................................................... 93 

APPENDIX: RESIDUE NUMBERING CORRESPONDENCE ............................ 95 

REFERENCES ............................................................................................................. 97 

 

 

 

 



 

 

1 

ABSTRACT 

Microtubules (MTs) are cytoskeleton components involved in a plenty of cellular 

functions such as transport, motility, and mitosis. Being polymers made up of α/β-tubulin 

heterodimers, in order to accomplish these functions, they go through large variations in 

their spatial arrangement switching between polymerization and depolymerization phases. 

Because of their role in cellular division, interfering with MTs dynamic behavior has 

been proven to be suitable for anticancer therapy as tubulin-binding agents induce mitotic 

arrest and cell death by apoptosis. However, how microtubule-stabilizing agents like taxane-

site ligands act to promote microtubule assembly and stabilization is still argument of debate. 

As in the case of tubulin, traditional docking techniques lack the necessary capabilities 

of treating protein flexibility that are central to certain binding processes. For this reason, 

the aim of this project is to put in place a protocol for dynamic docking of taxane-site ligands 

to β-tubulin by means of enhanced sampling MD simulation techniques. 

Firstly, the behavior of the binding pocket has been investigated with classical MD 

simulations. It has been observed that the most flexible part of the taxane site is the so-called 

“M-loop”, the one involved into the lateral associations of tubulin heterodimers and that is 

supposed to be stabilized by taxane-site ligands. 

Secondly, the protocol for the dynamic docking has been put in place using the MD-

Binding technique developed by BiKi Technologies. It showed to be effective in reproducing 

the binding mode of epothilone A and discodermolide as in their X-ray crystal structures. 

Finally, the protocol has been tested against paclitaxel, a drug for which no X-ray crystal 

structure is currently available. 

These results showed the potential of such an approach and strengthen the belief that in 

the future dynamic docking will replace traditional static docking in the drug discovery and 

development process.   
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1. Introduction 

Proteins are inherently flexible objects, capable of undergoing large motions in their 3D 

structure and adopting different conformations in order to exert their functions. Without this 

capability, almost all the processes crucial for cellular life like cytoplasmic organization, 

metabolism, enzymatic activity, and signal transduction could not be possible. This is mostly 

related to the plethora of partners with whom proteins interact, ranging from ions and 

substrate molecules to small peptides and other proteins. The mechanism by which proteins 

identify their partner(s) is at the foundation of their biological activity and understanding the 

driving forces of this process is mandatory to design new drugs able to inhibit or enforce a 

specific biological process. 

When enough structural data is available, computational techniques applied to the 

pharmaceutical and chemical fields, generally referred as computer-aided drug design 

(CADD) [1], showed to be effective throughout the entire drug discovery and development 

process. Following this process, CADD can be useful from the initial rational identification 

of novel compounds showing some activity against a biological target (hit compounds), in 

the subsequent optimization so as to increase their potency and physicochemical properties 

in vitro (lead compounds), to the final improvement in efficacy and pharmacokinetic 

properties [2] in vivo (drugs). 

Conventionally, the search of hit compounds relied mostly on expensive and time-

consuming biological assays (such as high-throughput screening, HTS [3]). Besides, the 

chemical space that can be screened is limited to the compounds that are present in a 

particular library owned by a company or by an academic institution. On the contrary, the 

availability of virtual libraries let the researchers extend their studies to compounds that do 

not necessarily exist physically but that can be readily obtained through purchase or 

synthesis [4] and, even further, to that chemical space that has not been explored yet [5], nor 

chemically neither computationally. 

However, it has to be stressed that one cannot consider CADD as an alternative to the 

conventional (HTS) assays. Together, the two share strengths and weaknesses and should be 

used in combination so as to improve efficacy reducing the waste of resources in synthesis 

and screening. Taking into account the cases in which CADD helped in the discovering of 

chemical compounds nowadays used in therapy, some examples can be the ACE inhibitor 

Captopril (Bristol Myers-Squibb) and the renin inhibitor Aliskiren (Rasilez, Novartis) used for 



 

 

11 

the treatment of hypertension or the carbonic anhydrase inhibitor Dorzolamide (Merk) used 

against glaucoma eye pathologies [6]. 

In the subsequent pages, molecular docking, one of the most useful application of CADD 

techniques, will be introduced along with the reasons that have made it so popular and the 

reasons why a paradigm shift to dynamic docking is needed in order to deal with protein 

flexibility. 
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1.1. The Traditional Approach to Molecular Docking 

When it comes to discovering novel hit compounds (i.e. compounds that show a first 

weak affinity with their target), virtual screening (VS) by molecular docking is still the 

method of election in structure-based drug discovery (SBDD) [7,8]. Molecular docking is 

an in silico technique that aims at predicting the binding mode of a specified compound 

within the active site of the protein of interest [9]. Thanks to the constant growth of available 

protein structures [10] and to the improvement in algorithms and hardware architectures, 

molecular docking and its fast implementation, high-throughput docking (HTD), has proven 

to be an invaluable tool for drug discovery campaigns [6,11]. It allows the rapid screening 

of large virtual libraries of compounds in a fraction of the time required by in vitro studies. 

Accordingly, only compounds that are likely to have an action against the target of interest 

are selected and move forward to biological tests, thus saving costs and time. Therefore, the 

optimization of the speed in VS approaches is crucial. In order to do so, simpler scoring 

functions are used and some features, necessary for a better accuracy, are omitted or 

underestimated. 

This brings out a number of problematics: 

 Protein flexibility is not treated extensively; 

 Water molecules are treated only implicitly; 

 Only a static picture of the binding process is provided. 

 

As a consequence, especially when dealing with cases in which large target 

rearrangements are observed upon ligand binding [12] or when water molecules are crucial 

for ligand-target complexes, molecular docking shows its weaknesses. Therefore, a reliable 

estimation of key thermodynamic observables and kinetic quantities is not allowed. From 

this point of view, it is worth noting that binding kinetics has emerged as a more reliable 

predictor of in vivo drug efficacy than affinity [13,14] but the static picture provided by 

molecular docking cannot be used to estimate kinetic quantities. 

Back in time, the first attempts of molecular docking were reported by Kuntz and co-

workers in 1982 [9]. Initially, both ligand and protein were treated as rigid bodies but, 

nowadays, almost all docking programs have implemented proprietary algorithms to treat 

the ligand as a full flexible entity. For some of them, a partial flexibility for the receptor can 

be incorporated too [15,16]. It is known, in fact, that residues involved in the catalytic 
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mechanism of enzymes often show some grade of flexibility [17] and different side chains 

conformations must be considered. 

Briefly, a typical docking algorithm can be divided into two distinct steps, the posing 

phase and the scoring phase [18]. 

1.1.1. Posing 

The first one, the posing phase, is entrusted to a searching algorithm, which can be either 

stochastic or deterministic. It takes care of both roto-translational and internal (usually 

conformational) degrees of freedom of the ligand in order to generate a set of reasonable 

conformations at the receptor’s binding site. For practical reasons, mostly due to limited 

computational resources, the early docking implementations commonly dealt with a single 

rigid conformation of the target. However, as already stated, proteins are intrinsically 

dynamic, and it is not wise to neglect their flexibility. 

Among the recent interpretations of protein-ligand recognition mechanism, it is worth 

mentioning the induced-fit model proposed by Koshland in 1958 [19]. According to it, there 

is a mutual adaptation of the two partners upon binding in order to maximize favorable 

contacts and strengthen the interaction. Likewise, another interpretation of binding, the 

conformational selection or population shift model [20,21], thinks of proteins as a 

conformational ensemble. Only upon binding, one of the available conformations is 

thermodynamically selected, resulting in a population shift to a new equilibrium with respect 

to the one in the apo form [22]. 

Nevertheless, it is clear that receptor’s degrees of freedom should be introduced in 

standard docking procedures and a number of strategies have been implemented trying to 

mimic these recognition mechanisms. Unfortunately, due to the computational complexity 

of the problem, receptor and ligand degrees of freedom cannot be sampled simultaneously 

and the above strategies rather than a solution to the problem appear to be as a workaround. 

These strategies can be classified as either single-structure methods or ensemble methods. 

Single-structure methods resemble the induced-fit model in which the binding pocket 

(or, at least, a number of user-preselected residue side-chains) is perturbed on-the-fly after 

ligand binding conformational search. As expected, no large perturbation in protein structure 

is allowed [23]. Alternatively, in ensemble methods, a series of independent docking 

procedures are run on an ensemble of previously generated protein conformations (either 
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experimentally or theoretically by means of other sampling techniques), in a similar fashion 

to the population shift model. Anyway, the results obtained by induced-fit approaches and 

the information provided by multiple protein conformations must be properly handled to be 

effectively exploited [24–26]. 

1.1.2. Scoring 

The second phase of a docking protocol is mainly related to the evaluation of the binding 

modes obtained during the first phase. Usually searching algorithms provide more than one 

solution, i.e. more than one pose (or binding mode) for a particular protein-ligand complex 

that must be evaluated. At the same time, in the context of VS simulations, all the ligands 

must be ranked according to their propensity to bind the protein of interest in order to 

prioritize only a subset of molecules [27] promoting them to further studies and analysis. 

This task is performed by the scoring functions. 

Generally, the association (noncovalent) between a protein (P) and a ligand (L) to form 

the complex (PL), 

 

𝑃 + 𝐿 ⇆ 𝑃𝐿 (1) 

 

is described by the equilibrium (or association) constant Ka or its reciprocal dissociation 

constant Kd: 

 

𝐾a =
[𝑃𝐿]

[𝑃][𝐿]
=

1

𝐾d
 (2) 

 

The two constants are related to the standard free energy of binding as follows: 

 

∆𝐺b
° = −𝑘B𝑇 ln(𝐾a 𝐶∘) = 𝑘B𝑇 ln (

𝐾d

𝐶∘
) (3) 

 

where kB is the Boltzmann constant and C° is the standard concentration. As it is 

common to all entropy-related quantities, sampling remains a major problem and together 
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with other approximations, the estimation of the free energy of binding is often a complex 

task. From a statistical mechanics standpoint, equation (3) translates to [28]: 

 

∆𝐺b
° = −𝑘B𝑇 ln (

Z𝑃𝐿

𝑍𝑃𝑍𝐿
𝐶∘)  (4) 

 

where ZPL, ZP, and ZL are the configurational integrals of the bound complex, the protein, 

and the ligand, respectively. For each i-th species, the configurational integral Zi can be 

expressed as [28]: 

 

𝑍𝑖 = ∫ e−(𝑈(𝐱𝑖)+𝑊(𝐱𝑖))/𝑘B𝑇d𝐱𝑖 (5) 

 

where U(xi) and W(xi) are the potential energy and the solvation free energy of the i-th 

component in the configuration x. At this point, it is evident that both solvation and 

desolvation effects (and the inherent entropy quantities) caused by the binding event must 

be carefully taken into account to evaluate the configurational integrals and the relative free 

energy of binding. 

Unfortunately, as already mentioned, molecular docking procedures aim at being fast 

and the evaluation of these quantities would require more expensive computational 

procedures. Therefore, a number of different strategies have been implemented in order to 

address this daunting task and to reduce the computational burden, mostly introducing 

approximations in solvent treatment (force-field based scoring functions) or by adopting 

phenomenological descriptions (empirical and knowledge-based scoring functions). 

Nowadays, there are a plethora of different scoring functions and the user can decide which 

one (or which combination of them) to use for a specific task (for a comprehensive list, see 

[29]).  
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1.1.3. Combining Docking and Molecular Dynamics Simulations 

To sum up, there are no doubts about molecular docking capabilities at identifying 

crystallographic binding modes and at selecting promising compounds from large databases 

of molecules when protein flexibility does not play a relevant role. Likewise, its limitations 

and weakness regarding scoring and sampling problems are clear when dealing with protein-

ligand complexes that require large loop rearrangements rather than small local movements. 

In principle, all these problems can be overcome by molecular dynamics (MD) simulations 

and related methods [30].  

The initial idea was that of supporting molecular docking with MD simulations with the 

purpose of giving insights into dynamic aspects of the binding event. The serial use of the 

two approaches, in fact, aims at solving the flexibility problem or, at least, making docking 

results less subjected to the protein model(s) used to evaluate ligands binding modes and 

affinities.  

Clearly, MD simulations can be performed prior or after molecular docking and the 

order in which they take place is relative to the issue that one wants to address. In the 

framework of ensemble-based VS, for example, the ensemble of protein conformations is 

generated running MD simulations before doing docking (Figure 1). Doing so, protein 

flexibility is taken into account as a series of different conformations (that are “snapshots”, 

frames of an MD trajectory) against which a series of parallel VS is run. It can be cited the 

“relaxed complex scheme” developed by Lin et al. [31] and improved by Amaro et al. [32] 

according to which a long MD simulation of the protein of interest in the apo-form is run in 

order to extract, at regular intervals, different protein conformations. Subsequently, parallel 

VS are run against each of the extracted MD frames. However, it is not trivial to choose the 

appropriate protein conformations to build the ensemble and, as it has been shown, the use 

of too many conformations could be detrimental rather than useful for VS results [24]. In 

this respect, with the aim of selecting from the MD simulations only that structures that are 

clearly dissimilar so as to reduce redundancy and improve VS efficiency, cluster analysis 

approaches can be very helpful [33–35].  

On the other hand, MD simulations can be started from docking outcomes with the aim 

of validating or refining docking results with higher-level theories or sampling approaches 

(Figure 2). In this case, MD simulations may be useful to address two different problems, 

one related to posing phase and the other related to scoring phase of docking. In respect to 
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the former, MD simulations can reveal unstable binding modes, helping in filtering out 

physically unreliable docking solutions or even identifying new ones [36–38]. In particular, 

MD simulations allow accounting for protein flexibility and induced-fit effects, although 

only in a second phase. In respect to the latter, instead, MD simulations can be used to refine 

energetics estimated by the simple scoring functions used by docking algorithms, with re-

scoring purposes. A number of re-scoring approaches are currently available, based on 

different theoretical methods [39], but they approach a more rigorous description of binding 

computing energies as ensemble averages. Re-scoring schemes range from partially 

empirical methods such as Linear Interaction Energy (LIE [40]) through to authentic free-

energy approaches such as Free-Energy Perturbation (FEP [41]) or Thermodynamic 

Integration (TI [42]). It has also to be cited the Molecular Mechanics-Poisson-Boltzmann 

Surface Area and Molecular Mechanics-Generalized Born Surface Area (MM-PB/GB SA) 

re-scoring method, maybe the most popular among them as it provides a good balance 

between reasonable accuracy and computational costs [40].  

 

 

Figure 1 – MD simulations are employed for generating a conformational ensemble of protein 

structures. A number of snapshots are selected by cluster analysis and then docking is performed 

against these multiple rigid receptor conformations to evaluate protein flexibility. 
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Figure 2 – MD simulations run after docking with the purpose of refining and rescoring the 

obtained binding modes. 
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1.2. Towards Dynamic Docking 

As it is now clear, standard molecular docking procedures handle the problem of protein 

flexibility only partially or, when combined to MD simulations, in two different moments, 

in a way that protein and ligand degrees of freedom are not treated simultaneously, as it 

should be. At the same time, they lack the required accuracy to obtain a reliable estimation 

of binding free energy and cannot be used to estimate kinetics quantities. Hence, a paradigm 

shift from a static perspective to a dynamic approach of the binding process is now inevitable 

[43,44]. 

With the advent of faster (mainly Graphics Processing Unit (GPU)-based clusters [30]) 

and specific-developed (such as ANTON, design and built by D.E. Shaw Research [31]) 

hardware architectures along with the improvement of computation algorithms, classical 

MD simulations are gaining everyday more importance in drug design and development 

programs. MD simulations are inherently able to deal with the structural flexibility of drug-

target systems at a fully atomistic description [30]. Moreover, on the condition that 

simulations are long enough to cover the entire drug-binding process (i.e., from the drug 

fully solvated in water to the final bound state), thermodynamics and kinetics quantities can 

be evaluated straightforwardly [30,43]. Nowadays, it is possible to reach and sometimes 

exceed milliseconds-long MD simulations [45,46] However, in order to evaluate 

thermodynamics observables and kinetic quantities, the event of interest (i.e. the binding 

event, in this case) has to be observed multiple times along the simulation so as to  thoroughly 

sample the configurational space and collect adequate statistics. This usually requires multi-

milliseconds simulations making the whole process computationally demanding, even when 

studying just a single molecule with the help of specialized hardware. In other words, there 

is a long road ahead before “brute force” plain MD simulations will be routinely used by 

industry in place of standard docking techniques at the beginning of the long drug discovery 

process when novel compounds have to be identified. The same applies when a series of 

compounds in the hit-to-lead optimization have to be evaluated. To overcome these 

limitations, during the last years, a number of different enhanced sampling methods [47] 

have been introduced. These approaches, by applying biasing forces or altering the potential 

energy function allow researchers to accelerate MD simulations increasing the probability 

of observing the event of interest, such as ligand-protein (un)binding. Thanks to these 

approaches and to the ever-increasing computational power, MD simulations are going to 
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replace the old-fashioned view of static molecular docking with a novel concept commonly 

referred as “dynamic docking” [43,44]. 

The main difference in respect to the traditional docking techniques is that dynamic 

docking simulations aim at characterizing the protein-ligand binding process at a fully 

dynamic level. However, similarly to traditional docking methods, there are two issues that 

need to be addressed: the first is related to the ability to generate binding modes, which 

strongly depends on the sampling strategy used (classical unbiased MD simulations vs 

enhanced sampling methods); the second is related to the evaluation of the identified binding 

modes that can be done by estimating the free energy of binding or by relying on statistical 

approaches. 

1.2.1. Unbiased-MD Approaches 

As previously introduced, the improvement in computer architectures (i.e. GPUs, 

specialized hardware or distributed computing networks such as GPUGRID.net) allowed 

several groups reaching and breaking the millisecond barrier in MD simulations timescales. 

Therefore, what ten years ago was no more than a hope, that is simulating a spontaneous and 

unrestricted drug-binding event without applying any bias to the system, has now become 

possible. Unbiased-MD approaches are all that approaches in which the dynamics is not 

altered through the use of external forces. Even though some workarounds have been 

proposed to reduce the required computational none of them relies on enhanced sampling 

methods. 

1.2.1.1. Long Plain MD Simulations 

The first example of a spontaneous drug binding events was reported by Shan et al in 

2011 [48]. The authors randomly placed two Src kinase inhibitors within a simulation box 

together with their target protein and let them freely diffuse to their binding site. Not only 

several spontaneous binding events forming complexes nearly identical to those resolved by 

X-ray crystallography were recorded, but they also identified a previously unknown 

allosteric pocket, underlining the potential of these simulations as a suitable tool in standard 

drug discovery programs. The same trail was trodden by Buch and co-workers in order to 

completely reconstruct the benzamidine to trypsin binding process in terms of the pathway 

and related energetics, giving insights into the mechanism of association of a drug to its 

target without neglecting the intermediate states [49]. Similar works were then conducted 

for membrane receptors (the β-adrenergic GPCRs coupled to agonist and antagonist small 
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molecules [50] and spontaneous binding of tiotropium and acetylcholine to M2/M3 

muscarinic receptors [51]) and, recently, for the purine nucleoside phosphorylase enzyme 

and its picomolar inhibitor, the transition state analog DADMe-immucillin-H [52]. 

Similarly, it has been shown the feasibility of applying unbiased MD simulations in the 

context of fragment-to-lead development [53], where as well as reproducing all the 

crystallographic poses of carboxy-thiophene fragments present in the X-ray structure of 

AmpC β-lactamase, trajectory analysis was able to discriminate distinct binding modes from 

both a thermodynamic and a kinetic standpoint [54]. Hence, this dynamical approach to 

docking shed light on ligands route to binding, helping to characterize the major energetic 

barriers along it and the factors that may be of influence on them such as transient 

interactions, dehydration, ligand geometry, and so on, many of which mistreated by 

traditional docking techniques. As a matter of facts, dynamic docking can also be used to 

reveal binding sites and poses of known binders without having previous knowledge of them. 

As reported by Dror and co-workers, who studied the M2 muscarinic acetylcholine receptor 

along with a number of experimentally identified allosteric modulators for which no crystal 

structure was available. They were able to identify an extracellular-facing vestibule to whom 

several modulators can bind, observing that the binding driving force was a set of cation-π 

interactions rather than the previously proposed aromatic-aromatic contacts. It is worth 

noting that their results were validated by mutagenesis analysis and radioligand binding 

experiments, confirming the predictive power of this kind of simulations [55]. 

Taken as a whole, brute force unbiased-MD simulations set a striking landmark in the 

development of dynamic docking but also pointed out their main limitations. The binding of 

a small molecule to its binding pocket, in fact, can still be considered a rare event especially 

when considering ligands that have unfavorable on-rates (i.e. low kon). To this end, the 

easiest and most popular approach to overcome this hurdle was to place in the simulation 

box more than one ligand molecule, so as to increase the probability of observing a binding 

event. Although this strategy may be of some help, in order to sample thoroughly the 

configurational space and collect enough statistics, multiple long trajectories are still needed. 

Therefore, it is not surprising that most of the above-reported applications took advantage of 

specialized hardware or massive computing architectures to carry out the simulations. That’s 

the reason why, in the context of unbiased simulations, a number of solutions have been 

proposed to bring dynamic docking to a more practical and effective usage. These strategies 

include adaptive sampling methods, supervised approaches, and multiscale modeling. 
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1.2.1.2. Adaptive Sampling Methods 

Adaptive sampling methods entail a class of unbiased-MD approaches relying on the 

framework of Markov State Model (MSM) [56,57]. They aim at identifying under-sampled 

states along the binding process in order to run new simulations from these points (a process 

usually termed “seeding”) so as to lower the statistical error related to thermodynamic 

quantities. In this way, few ultra-long simulations are replaced by many short ones, allowing 

one to save valuable computational time. In the earliest implementations, human intervention 

was essential to manually select from where restarting a simulation [58], but in 2014, Doerr 

and De Fabritiis, presented an automated protocol capable of reconstructing the binding 

process for the trypsin-benzamidine system in a totally unsupervised fashion [59]. The 

automated learning method showed to be able to achieve a converged binding affinity one 

order of magnitude faster than classical sampling. They implemented their strategy in a 

freely available environment (known as High Throughput-MD, HTMD [60] that is also 

amenable to replace MSM with other adaptive sampling algorithms) and used it to elucidate 

the cooperative recognition mechanism of ionic cofactors and substrate in the myo-inositol 

monophosphatase enzyme [61], and the binding process of the lipid inhibitor ML056 to 

sphingosine-1-phosphate receptor [62]. The latter is an informative example since described 

the diffusion of the lipophilic ligand ML056 from the bulk solvent to the membrane bilayer 

prior to moving to its orthosteric binding site that is not accessible from the extracellular 

environment like other transmembrane receptors. 

A strikingly different approach is the supervised molecular dynamics (SuMD) protocol 

devised by Sabbadin and Moro [63]. While in adaptive sampling methods seeding is 

employed to resample under-sampled states, in the SuMD implementation, simulations that 

are unlikely to conduct to a productive binding event are discarded on-the-fly through the 

use of a tabu-like algorithm. During short simulations windows, at defined time intervals, 

the distance between the center of masses of the ligand and the binding site is saved and 

subsequently fitted in a linear function. If the slope of the resulting line is negative it means 

that the ligand is moving toward its binding site, and the simulation is evolved. Otherwise, 

the current simulation is interrupted and a new run is restarted from the latest saved 

coordinates through velocity reassignment. Finally, at a user-defined distance value, the 

supervision algorithm is switched off and continuous dynamics is restored. The method has 

been tested against a number of complexes of both globular and membrane proteins [64,65] 

and showed to be effective in reproducing ligand-receptor complexes in the range of 
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nanoseconds. On the other hand, its limitation is the need of an a priori knowledge of the 

binding site location, which, at least in principle, precludes the possibility to discover novel 

and unexplored binding sites like in brute force dynamic docking simulations. Moreover, 

while the protocol has proven valuable in identifying relevant metastable states along the 

recognition process, because of the discontinuous nature of the trajectories, the binding route 

followed by the ligand is not necessarily close to the minimum free energy pathway. 

Similarly, multiscale approaches aim at reducing the time spent by a ligand diffusing in 

the solvent probing its binding site which is not a relevant part of the association pathway. 

The idea behind that is to limit the full atomistic resolution and computationally expensive 

MD simulation only to those regions that are close to the binding site. Very recently, Zeller 

et al. introduced a multiscale approach to Dynamic Docking that also allows the evaluation 

of kinetics of the binding using as test case two H1N1 neuroaminidase inhibitors, oseltamivir 

and zanamivir [66]. Their implementation made use of Brownian Dynamics (BD) [67] when 

the distance between the ligand and the binding site was more than properly defined value. 

Therefore, in this region, ligands and protein are treated as rigid bodies that undergo 

translational and rotational diffusion in an implicit continuum solvent. When the ligand 

reaches the so-called encounter surface, BD switches to all-atom MD and the solvent is 

treated explicitly. They succeeded in reproducing X-ray crystal structures but, as they stated, 

this approach could be useful only for those cases where binding pathways are diffusion 

controlled, having the same usual simulation limitations when the binding involves large 

conformational changes. 
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Author 

(Year) 
Complex 

Multiple 

Ligands 

No. of 

Runs 

Aggregate 

Time 

Productive 

Runs1 

Time to 

Binding 

Brute Force MD 

Shan et al. 

(2011) 

PP1 / Src kinase y 7 115 µs 3 
15.1 / 1.9 / 0.6 

µs 

Dasatinib / Src kinase y 4 35 µs 1 2.3 µs 

Buch et al. 

(2011) 

Benzamidine / 

Trypsine 
n 495 49.5 µs 187 15-90 ns 

Dror et al. 

(2011) 

Dihydroalprenolol / 

β2AR 
y 40 111.8 µs 5 NA 

Alprenolol / β2AR y 10 14 µs 1 NA 

Propranolol / β2AR y 21 35.7 µs 0 - 

Isoprotenerol / β2AR y 1 15.0 µs 0 - 

Dihydroalprenolol / 

β1AR 
y 10 55.5 µs 2 NA 

Kruse et al. 

(2012) 

ACh / M3 R y 1 25 µs 1 9.5 µs 

Tiotropium / M3 R y 3 18 µs 0 - 

Tiotropium / M2 R y 3 16.2 µs 0 - 

Decherchi et al. 

(2015) 

DADMe-immucilin-H 

/ PNP 
y 14 7 µs 3 340 ns 

Discontinuous approaches 

Sabbadin et al. 

(2014) 

ZM241385 / hA2A n 3 - 1 59 ns 

T4G / hA2A n 3 - 1 62 ns 

T4E / hA2A n 3 - 1 105 ns 

Caffeine / hA2A n 3 - 1 15.2 ns 

Cuzzolin et al. 

(2016) 

Ellagic Acid / CK2 n 3 - 0 - 

SAPS / GSTP1-1 n 3 - 2 27 - 19 ns 

Benzen-1,2-diol / 

PRDX5 
n 3 - 3 

17.4 / 31.2 / 18 

ns 

(S)-naproxen / HSA n 3 - 0 - 

(S)-fluoxetin / LeuT n 3 - 0 - 

NECA / hA2A n 3 - 0 - 

Zeller et al. 

(2017) 

Oseltamivir / 

neuraminidase 
n 676 50.0 µs ~20 NA 

Zanamivir / 

neuraminidase 
n 606 35.7 µs ~20 NA 

1 “Productive” refers to simulations that reproduced the crystallographic pose within a given RMSD 

threshold (usually lower than crystal resolution). 

Table 1. Comparative time scales of brute-force MD simulations versus discontinuous approaches 

as reported in retrospective studies. Owing to the inherent difficulties in comparing timescales of 

several short trajectories, works relying on adaptive sampling methods have not been included in 

this table. 
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1.2.2. Enhanced Sampling Methods in Molecular Dynamics 

As shown in the previous paragraph, even though is possible to record and sample a 

binding event using classical MD, these simulations are often too demanding in terms of 

computational cost to be routinely used in the drug discovery and development process. 

Therefore, all the works that have been done seem to be more proofs of concept rather than 

usable and practical tools. Most of the times, because of the large number of the degrees of 

freedom that are needed to be explored and the time spent by the ligand in the bulk solvent 

prior to finding its way to the binding site(s), exploiting these methodologies is not accessible 

with the currently available computational resources. As is often the case with molecular 

dynamics simulations, the system, eventually trapped in a local minimum, is not able to 

overcome the energy barriers and follow the path that separates the absolute minimum 

corresponding to the complex bound state. At the same time, higher energy regions are not 

well sampled so as to make hard to evaluate free energy differences. 

For these reasons, a number of methods, generally referred as enhanced sampling 

methods, have been introduced in order to overcome the energy barriers and improve the 

sampling of the configurational space by using different and, often, elaborate methodologies 

but always relying on a full-atomistic description of the event of interest. For the sake of 

clarity, they can be divided into two categories [30,47]. A first one comprises all the methods 

that enhance the sampling among one of few user-predefined collective variables (CV) 

which are functions of the atomic coordinates, such as metadynamics (MetaD[68]), steered 

MD [69], and umbrella sampling (US, [70]). A second one, in which the configurational 

space is explored at different temperature values or as a function of the potential energy. 

Replica exchange MD (REMD [71]), accelerated MD (aMD [72]), potential scaled MD [73], 

and multicanonical MD (McMD [74]) are examples of methodologies that fall among this 

category. 

Strictly speaking, the strength of the former methodologies is a powerful but complex 

and delicate tool to handle. Seeing that they relying on the user choice of one or more CVs 

(see paragraph 1.3.1., On the Choice of the “Right” CV(s)), they give results that have to be 

carefully evaluated. Moreover, if some important degrees of freedom for the process of 

interest are not taken into account (mainly because a “wrong” set of CVs is chosen), the 

calculated free energy relative to the chosen path can have no physical meaning [47]. 
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Tempering methods, instead, are free from this problematic, as they act on all the degrees of 

freedom of the system at the same time. 

Focusing on the results that have been achieved, the following are some of the cases in 

which enhanced sampling methodologies have been successfully exploited in the dynamic 

docking contest.   

1.2.2.1. Methods Relying on CV(s) 

One of the earliest enhanced sampling methods used to characterize the ligand binding 

process is the metadynamics (MetaD) method introduced by Laio and Parrinello in 2002 

[68]. In MetaD, a history-dependent repulsive potential acting on a few CVs is added to the 

underlying dynamics, discouraging the system from exploring previously visited regions of 

the CV space (Figure 3). In 2005, Gervasio et al. conducted the first application of MetaD 

to ligand binding [75]. To the best of our knowledge, this is the first example of dynamic 

docking. The authors used MetaD to successfully reproduce the binding mode and the 

experimental binding free energy for four complexes:  

 β-trypsin/benzamidine; 

 β-trypsin/chlorobenzamidine; 

 Immunoglobulin McPC-603/phosphocoline; 

 Cyclin-dependent kinase 2 (CDK2)/staurosporine. 

 A few years later, Provasi et al. reported another successful example of the utility of 

MetaD for simulating protein-ligand binding events. Here, they investigated the binding 

pathway of the nonselective antagonist naloxone to the alkaloid binding pocket of a delta 

opioid receptor [76]. Notably, the authors accurately assessed the association constant from 

the free-energy profile reconstructed through MetaD. This was made possible by efficiently 

sampling the ligand in the bulk region, and allowing multiple (un)binding events, which are 

the key to accurately determining the binding free energy. To do so, they confined the 

unbound state of the ligand using a conically-shaped restraint whose contribution to the 

association constant can be taken into account analytically. Similarly, in 2013, Limongelli 

et al. developed the so-called funnel metadynamics, in which the previously described 

confinement is replaced by a funnel-shaped restraint, further reducing the space to explore 

for the ligand in the bulk [77]. Despite the successful results in predicting the mechanism of 

ligand binding, MetaD suffers the same drawbacks of any other CV-based method, i.e., the 

need to choose an optimal set of CVs [78]. Moreover, the simulation time increases 
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exponentially with the number of CVs, and the MetaD performance rapidly deteriorates. 

This makes it difficult to accurately simulate systems characterized by a high degree of 

complexity. In 2007, to overcome these difficulties, Laio et al. developed a new method, 

bias-exchange metadynamics (BS-MetaD), which combines concepts of MetaD and replica 

exchange (see paragraph 1.2.1.2., Methods Relying on Tempering) [79]. In particular, 

multiple MetaD simulations are performed in parallel and exchanged at fixed time intervals. 

Each replica is biased with a time-dependent potential acting on a different CV, thus 

alleviating the problem of CV selection. In 2009, Pietrucci et al. used the BS-MetaD 

technique to successfully describe the binding mechanism of a small peptide to the HIV-1 

protease [80]. Even though the authors accurately computed the free energy associated with 

ligand binding and unbinding as a function of 7 CVs, almost 2 μs of simulation were required 

to converge the free energy. Despite this, they managed to characterize the kinetics of the 

(un)binding process using a discrete-states kinetic model, including the relevant metastable 

states along the recognition pathway. Another variant of MetaD, reconnaissance 

metadynamics (RMD [81]), provides a valid alternative to bias-exchange in considering a 

larger set of CVs. In particular, RMD is a machine-learning approach where the algorithm 

tunes the applied bias using data obtained from short MD simulations. Compared to 

conventional MetaD, this procedure relieves the user of the a priori selection of a small 

number of CVs, and thus provides a way to efficiently explore previously uncharacterized 

mechanisms. In 2012, Soderhjelm et al. applied RMD  to identify and score protein-ligand 

binding poses of the well-known trypsin/benzamidine system [81]. 

 

Figure 3 - In MetaD, a bias is applied to a defined CV (q) in order to fill the underlying free energy 

(F(q)) and discouraging the system to sample already sampled states. 
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1.2.2.2. Methods Relying on Tempering 

Of the various tempering methods, the REMD method has emerged as one of the most 

widely used techniques to enhance conformational sampling [82]. In classical REMD, 

several replicas of the system are simulated independently in parallel, at different 

temperatures. At regular intervals, exchanges between neighboring pairs of replicas are 

attempted according to a Metropolis acceptance criterion (Figure 4). Because an efficient 

exchange requires a significant overlap of the potential energies sampled at adjacent 

temperatures, a high number of replicas is typically required for the method to be effective. 

Hamiltonian REMD (H-REMD), in which the different replicas are simulated at the same 

temperature while the system’s force field is modified, provides a valid alternative to 

temperature REMD. An advantage of H-REMD compared to classical REMD is the 

possibility of varying only part of the Hamiltonian of the system among the replicas, 

improving the exchange probabilities [83]. This computational framework was adopted by 

Luitz et al. to obtain the correct binding modes for protein-ligand systems through explicit 

solvent simulations [84]. In particular, the H-REMD approach was based on softening the 

ligand-protein non-bonded interactions along the replicas in order to prevent the sampling 

of irrelevant states before reaching the native binding mode. The method was tested on three 

different systems: human FKBP protein (FKBP-52) in complex with the high-affinity ligand 

FK506 and with the lower affinity ligand SB3, the peptide-binding domain of murine MHC 

class 1 molecule in complex with a viral antigen. aMD is another enhanced sampling 

technique that does not rely on the a priori definition of CVs. aMD speeds up the 

configurational space sampling by locally adding a non-negative boost potential to the 

system’s potential energy. The potential energy is added only to those regions of the potential 

energy that are below a certain threshold energy value, while leaving those above this level 

unaltered [72]. Recently, Kappel et al. used aMD simulations to simulate processes of ligand 

binding to the M3 muscarinic receptor, a G-protein-coupled receptor (GPCR) [85]. In 

particular, this work used long-timescale aMD simulations (hundred-nanosecond timescale) 

to identify the metastable ligand-binding sites of three known molecules: the antagonist 

tiotropium, the partial agonist arecoline, and the full agonist acetylcholine (ACh). 

Reweighting procedures recover the canonical distribution, from which the free-energy 

landscape can be calculated. However, it is still challenging to estimate the exact population 

for each configuration. This is because the reweighting procedure is subject to a statistical 

error, especially when longer timescales are simulated. In this work, where aMD simulations 
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were performed on the 100–1000 ns timescale, the authors focused on identifying metastable 

ligand-binding sites on the M3 receptor, in agreement with unbiased MD simulations, in a 

significantly shorter time (about 80 times faster for ACh). In 2007, Kamiya et al. provided 

interesting results by performing McMD simulations to successfully dock the inhibitor tri-

N-acetyl-d-glucosamine [86]. McMD is an enhanced sampling method, in which a random 

walk sampling through the energy space is made possible by the bias applied to the system 

[74]. In the McMD method, higher energy states and lower energy states have an equal 

probability of being sampled because different temperature regions defined by the bias are 

simulated simultaneously. A merit of the McMD method is that the canonical ensemble can 

be reconstructed at 300 K relatively easily by a reweighting procedure. Recently, Bekker et 

al. also performed long McMD simulations to dock the inhibitor CS3 to cyclin-dependent 

kinase 2 [87]. To accelerate the reproduction of the native complex, the ligand was restrained 

in a cylindrical region near the binding pocket. In addition, after having identified the correct 

binding mode, they accurately predicted the binding free energy by TI in accordance with 

the experimental data. 

 

Figure 4 – Among the methods that do not rely on CVs, REMD simulates independently several 

replicas of the system at different temperature (T) giving them the possibility to exchange 

coordinates at regular intervals. Background color indicates the Temperature. Rep1-4 are indicated 

with different colors. 
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1.3. The MD-Binding Approach 

1.3.1. On the Choice of the “Right” CV(s) 

As a matter of facts, the possibility of choosing a suitable CV in a molecular dynamics 

simulation represents a practicable way to reduce the complexity of the large number of 

degrees of freedom to a much lower dimensional space [88]. Thus, few simple parameters 

can be either analyzed or manipulated (biasing or “forcing” the system to follow the reaction 

coordinates along this path). However, defining a good (or the so-called “right”) CV for a 

biological process is not a trivial task. The ideal CV has to be representative of the process 

of interest, and capable of describing it in all its aspects without neglecting other important 

variables that have to be taken into account for a complete and effective analysis. In other 

words, the chosen set of CVs may not provide a physical description of the process and of 

the inherent energetics, obtained evaluating the energetic minima and the barriers crossed 

by the system along the specified path[47]. 

Usually, most of the CVs are relative and defined only for a specific issue that one 

wants to address. Some examples can be the torsion angles for analyzing conformational 

changes, the center-of-mass (COM) distance between two sets of atoms, likely a molecule 

and some residues of a binding site in the contest of (un)binding studies, and so on. In 

principle, it is necessary to possess a good and detailed a priori knowledge of the process of 

interest, and this is not common. Moreover, the set of CVs that have proven to be efficacious 

in describing a specific process for one system perhaps is not generally transferable to other 

systems. 

At the same time, every chosen CV has to satisfy a number of conditions[47,68,78]:  

 It has to be function of the coordinates of the system;  

 It has to be defined by a continuous and differentiable mathematical function; 

 It has to be capable of describing all the slow events that are relevant the 

process of interest; 

 It has to be able to discriminate among initial, intermediate and final states. 

 

For all these reasons, choosing a set CV(s) is usually a complex task that hides not few 

difficulties. The choice is mostly related to the experience of the researcher and it is 

conducted on a trial-and-error procedure.  
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Still, in the framework of ligand recognition mechanism, is there a common ground to 

develop a CV that can be extended to every system or, at least, to a vast majority of them? 

Dealing with the case of DADMe-immucillin-H and PNP, Decherchi et al. noticed that the 

driving force of the binding was a strong electrostatic field, due to ligand and binding site 

opposite charges. In a broader perspective, it is well-known the role played by the 

electrostatic interactions in the context of molecular recognition [89–91]. Hence, they started 

to think of a way to take advantage of this electrostatic field even for that cases in which the 

binding event is not naturally driven by electrostatics. 

Under this assumption, they decided to introduce an artificial electrostatic bias 

between the binding partners, i.e. the ligand and a set of residues of the binding site, so as to 

guide the ligand to its target without spending time floating around in the bulk solvent. The 

idea can be exploited introducing fictitious charges on the two sets of interacting atoms with 

a functional form of the type [92]: 

 

𝐶 ∑
𝑄𝑎𝑄𝑏

𝑟𝑎,𝑏
𝑑(𝑟𝑎,𝑏 , 𝜆)

𝑎∈𝐴,𝑏∈𝐵

 (6) 

 

 where A and B are the two interaction partners, and a and b are the atoms comprised 

in A and B, respectively, that are selected by the user, ra,b is the distance between each of 

them, C is a modulation parameter, and 𝑑(𝑟𝑎,𝑏, 𝜆) is a function that modulates the effect of 

the potential according to the distance r and a parameter 𝜆 (see below).  Conventionally, 

these charges Qi have opposite sign and are spread among all the atoms composing each set 

of atoms in order to make the process as natural as possible without forcing unusual 

interactions [92,93]. 

1.3.2. An Adaptive Bias for Ligand Binding 

The next question to address is related to the implementation of this CV in a standardized 

procedure. The ligand has to be guided, rather than “pushed”, to its naturally occurring 

binding mode in a way that the whole procedure is performed as gently as possible avoiding 

unphysical pathways. With this in mind, Spitaleri et al. devised an adaptive behavior of the 

external bias acting on the ligand introducing a series of conditions that have to be satisfied. 

They can be summarized as follows: 
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 The strength of the bias is user-defined but is always kept at a fraction of the 

intensity of the physical forces naturally felt by the ligand; 

 The biasing force is gradually lowered as the process moves forward, which 

means that the ligand is moving to its binding site; 

 Once switched off, the biasing force cannot be turned back on even if the ligand 

leaves the binding site moving further to the solvent. 

 

Mathematically, this is obtained modulating the coefficient C of equation (6) during the 

course of the simulation in a way that the modulus of the additive forces acting on the subset 

of ligand atoms (e.g. 𝑎 ∈ 𝐴) is kept at a predefined fraction of the modulus of the overall 

force originated by the gradient of the regular potential energy of the system. Besides, the 

modulating function 𝑑(𝑟𝑎,𝑏 , 𝜆) of equation (6) assumes the form of an exponential decay 

function: 

 

𝑑(𝑟𝑎,𝑏 , 𝜆) = 𝑒𝑥𝑝 (
−𝑟

𝜆
) (7) 

 

In order to delineate a way to measure the distance from the binding site, they introduced 

the definition of a subset of atoms (�̃�) of the selected residues (𝐵) of the binding site as 

“switching-off” residues. The choice is left to the user and should be guided either by a 

priori knowledge of the system of interest, or by considerations leading the user to 

identifying which pocket residues are potentially relevant  for ligand binding. As an 

example, it can be based on NMR studies or on user assumptions, i.e. one of the deepest 

residues of the binding pocket, for that cases where no data is available. 

The switch-off is obtained via a scaling pre-factor 𝛾 that modulates the biasing force, 

calculated via a switching function as follows [92]: 

 

𝛾 =
1

1 + exp(−𝑠𝑠 ∗ (𝑑𝑖𝑠𝑡 − 𝑡ℎ))
 (8) 

 

where ss and th are two parameters and dist is evaluated as follows [92]: 
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𝑑𝑖𝑠𝑡 = 𝑚𝑖𝑛𝑥∈𝐴𝑚𝑖𝑛𝑦∈�̃�𝑑𝑠(𝑥, 𝑦) (9) 

where ds(x,y) is the pairwise distance between the two atoms x and y. In this way the 

bias is switched-off when any atom of the ligand A falls below a predefined distance from 

any atom belonging to the subset �̃� of 𝐵. 

It is clear that the user, as is the case with all the methodologies relying on CV(s)-biasing 

and for any SBDD study, should have an idea about the location of the binding site for the 

system of interest. However, the main advantage in respect to a traditional molecular docking 

approach is the possibility of depicting the binding process as a whole, from the ligand in 

the bulk, fully solvated, to the final bound state, without neglecting the eventual metastable 

states. There is also another point that has to be highlighted: it can be done at a fraction of 

the time required by long unbiased MD simulations. 

The protocol is now available in BiKi Life Sciences [94] developed by BiKi 

Technologies. 
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2. Tubulin as a test case 

2.1. Microtubules Structure and Functions 

Microtubules (MTs), together with microfilaments and intermediate filaments, are 

protein polymers composing the cytoskeleton of eukaryotic cells whose main function is 

maintaining cell shape and structure [95]. They serve as a rail for the internal trafficking of 

vesicles and organelles driven by kinesin and dynein motor proteins [96] and play a central 

role in cellular division (mitosis and meiosis), being the major constituents of the mitotic 

spindle, the cellular apparatus responsible of separating sister chromatids.  

MTs are hollow cylindrical polymers built from the lateral association of usually 13 

protofilaments [97] made up of α/β-tubulin heterodimers bound in a head-to-tail fashion (see 

Figure 5 and Figure 6). However, in vitro [98], in bacteria [99] or for other reasons (i.e. the 

interaction with proteins or drugs [100]), it is possible to observe MTs formed by a different 

number of protofilaments.  

In general, the most common assembly is referred as “13-3” [101], where the first 

number, 13, indicates the protofilaments that are bound together to form the MT, and the 

second, 3, the vertical offset between tubulin monomers due to the helicity of the turn. In 

this regard, MTs with different vertical offsets have been observed [102]. This offset 

between tubulins causes a pseudo-helical arrangement with a lattice discontinuity called the 

seam (red line in Figure 7). With respect to its dimensions, for the 13-3 assembly, the MT 

external diameter is about 25 nm whereas the internal about 14 nm. The length varies 

depending on its polymerization status and can reach up to 50 µm [103].  

The order in which tubulin dimers are added to the growing polymer generates a polarity 

at the ends of the resulting structure, which is an essential feature of microtubules. 

Conventionally, the end that is capped by β-tubulin is known as “plus end”, and the other, 

capped by α-tubulin, “minus end” (see Figure 5). These terms arise from the rate of growth 

that takes place at the two ends, which is much faster at the plus end than at the other [102] 

as observed in in vitro studies. In the same context, the polarity of the MT is essential to the 

function of many MAPs (Microtubule-Associated Proteins), which, thanks to this property, 

can recognize the plus end and alter MT dynamics guiding the growth toward specific 

cellular locations, especially during cell division [104]. 
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Figure 5 – Structure of a 15 protofilaments MT generated from the cryo-electron microscopy (cryo-

EM) in complex with the Drosophila melanogaster kinesin-13 KLP10A (PDB ID: 3J2U - 10.8 Å) 

after the removal of the kinesin protein. From the top view (on the left) it is possible to observe the 

internal lumen that is characteristic of MTs. The way tubulin dimers are assembled generates a 

polarity in MT structure (side view, on the right). β-tubulin monomers are depicted in blue 

surfaces, α-tubulin in cyan. 

 

 

 

 

Figure 6 – Tubulin heterodimers. β-tubulin monomers are depicted in blue surfaces, α-tubulin in 

cyan. 
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Inside the cell, MTs are usually anchored through their minus end to the microtubule 

organizing centers (MTOCs), the major of which in animal cells is the centrosome [105]. 

MTOCs serve as an initiation site for MTs growth, where the γ-tubulin ring complex 

(γTuRC, formed by the association of γ-tubulin monomers together with the gamma complex 

associated proteins 2-6 (GCP2-6)) specifically interacts with the MTs minus end. In 

particular, the pseudo-helical-shaped γ-tubulin cap forms strong longitudinal interactions 

with the α-tubulin providing a template for the nucleation of the growing polymer [106]. In 

a broader perspective, nucleation does not always rely on a template and in vivo MAPs, and 

other factors, affect this crucial step [107]. It is worth noting that, in vitro, MTs showed the 

ability to nucleate starting from solutions containing only purified tubulin heterodimers, 

GTP, and Mg2+ ions [108], despite this spontaneous nucleation is a kinetically restrained 

process that requires high tubulin concentrations (for a general view of the process, see 

Figure 7). 

 

Figure 7 – Spontaneous MTs nucleation and growth. The figure depicts the whole process, starting 

from a solution of purified tubulin heterodimers with GTP and Mg2+ (on the left) to the complete 

assembly (on the right). The red line indicates the seam, i.e. the discontinuity in the lattice due to 

the vertical offset between tubulin monomers. 

 

2.2. MTs Dynamic Behavior 

As already mentioned, in order to carry out the functions they are responsible for, MTs 

exploit major conformational changes and go through large variations in their spatial 

arrangement, likely their foremost characteristic, involving a continuous switching between 

polymerization and depolymerization phases. 
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MTs can exert their dynamic behavior through two different mechanisms known as 

treadmilling and dynamic instability.  

Treadmilling (as shown in Figure 8), in a similar manner as for actin filaments, 

involves the addition of tubulin heterodimers at the plus ends of MTs, and the simultaneous 

loss at the minus end. Albeit this process has been observed in vivo [109] and may be 

important in mitosis [110], the resulting biological implications still have to be clarified 

[111] seeing that, inside the cell, most of the time, MTs’ minus end is anchored to the 

MTOCs. In this respect, dynamic instability [112–114], the mechanism that involves the 

addition and the loss of tubulin subunits at the same MTs’ end, appears to be the most 

reasonable and acquires a major role in MTs dynamics. The switch from polymerizing to 

depolymerizing phases is referred as “catastrophe”, the reverse as “rescue” [115]. 

Dynamic instability (Figure 9) is mainly driven by GTP hydrolysis [116]. Going into 

details, each tubulin monomer binds one nucleotide; however, there is a significant 

difference between the two sites. The nucleotide in the α-tubulin site cannot be exchanged 

and cannot be hydrolyzed, therefore it has been called N-site (nonexchangeable-site) 

nucleotide, whereas the one in the β-tubulin is both exchangeable and hydrolyzable, and is 

referred as E-site (exchangeable-site) nucleotide. Tubulin heterodimers can be incorporated 

in the growing filaments only when a GTP molecule is present in both sites. After the 

assembly, only at the level of β-tubulin E-site, GTP is quickly hydrolyzed [117] to GDP, 

which means that MT lattice has an equal concentration of GTP (at the level of α-tubulin N-

site) and GDP. This condition is necessary for MTs depolymerization, as GDP-bound tubulin 

is less stable and promotes depolymerization. For instance, in experiments where GTP has 

been replaced by a slowly hydrolyzable analog (GMPCPP) it has been possible to observe 

MT polymerization but not the subsequent disassembly [116]. 

As a matter of facts, the nucleotide at the N-site is responsible for the curvature of the 

heterodimer: GTP-bound dimers are straighter than GDP-bound ones (for a schematic 

representation see Figure 8) and this feature can somehow explain why the hydrolysis is 

linked to the stability of MTs and the related dynamic capabilities [117]. In addition, for 

reasons that have still to be clarified, in the MT lattice it is possible to find “islands” of GTP-

bound β-tubulin that may act as a trigger for switching from the catastrophe to the rescue 

phase in the context of MTs dynamic instability [117]. 
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Figure 8 – The influence of nucleotide hydrolysis on tubulin dimer curvature and MTs 

treadmilling. GTP-bound tubulin islands (in red, at the center of the MT) may act as a trigger for 

switching among depolymerizing/polymerizing phases. 

 

 

 

Figure 9 - Microtubule dynamic instability. GTP-bound tubulin assembles at the microtubule plus 

end. After GTP hydrolysis occurs, the microtubule becomes unstable and depolymerizes at the 

same end. When GDP is exchanged with GTP in the free tubulin dimers, the cycle can begin again. 
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2.3. MTs bricks: α and β-tubulin 

As it is now evident, tubulin is a highly dynamic entity that can exist in three major 

forms: heterodimers, curved oligomers, and assembled in microtubules. For this and other 

reasons (i.e. the instability of the protein in solution, post-translational modifications and so 

on) gathering three-dimensional (3D) tubulin crystals is a complex task. The first 3D 

structure of the tubulin dimer was reported by Nogales et al. in 1998 [118] obtained by 

electron crystallography (EC) of zinc-induced tubulin sheets stabilized by Taxoetere at a 

resolution of 3.7 Å. The authors were then able to refine their model obtaining a α/β-tubulin 

structure in complex with Taxol at a resolution of 3.5 Å [119] (Figure 10). The use of the 

zinc showed to be a good way of incorporating tubulin dimers in two-dimensional sheets 

[120] that are ideal samples for EC studies. However, the resulting protofilaments, albeit 

similar to those in microtubules, are arranged in an antiparallel way, which, in principle, can 

give rise to artifacts. Nevertheless, the same group was able to dock the above-mentioned 

crystal structure in a 20 Å density map of frozen-hydrated microtubules obtained by cryo-

EM [121]. The 15 protofilaments MT showed to be useful for giving insights into tubulin 

dimer orientation within the MT with respect to the inner lumen, and for identifying lateral 

and longitudinal interactions between other dimers.   

Both α and β-tubulin have a molecular weight of approximately 50 kDa. Each subunit is 

composed of ~450 residues, 40% of which are homologous. The authors [118] proposed to 

divide the structure of each monomer into three functional domains (see Table 2 and Figure 

10), although there were no clear differences in the EC density map. The first domain, the 

N-terminal, constitutes a Rossmann fold [122], typical of those proteins that bind 

nucleotides, therefore called nucleotide-binding domain. The second, a central domain, 

referred as drug-binding domain, which binds Taxol and its derivatives. A final C-terminal 

domain, formed by two helices that within the MT are located on the outer surface, is 

probably involved in the binding of MAPs and motor proteins. The last C-terminal residues, 

consisting of intrinsically disordered tails, were not resolved in the model. Most of the 

differences among different tubulin isotypes (taking human tubulin as an example, there are 

6 isotypes of α-tubulin and 7 of β–tubulin [123]) are located in this region that is also the 

hotspot for a complex series of post-translational modification involved in the regulation of 

MT dynamics [124,125]. These differences give rise to what is now referred as “the tubulin 

code” and more information about it and its implications in various diseases can be found 

elsewhere [126,127]. 
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Residues Name Functions Secondary Structures 

1-205 
Nucleotide-binding 

domain 
Binds the nucleotide GTP/GDP 

6 parallel β-strands (S1-S6) 

6 helices (H1-H6)  

206-381 
Drug-binding 

domain 

Binds Taxol, Colchicine and their 

derivatives 

- 4 β-strands (S7-S10) 

4 helices (H7-H10) Contains the “M-loop” involved in 

lateral contacts between 

protofilaments 

382-end* C-Terminal domain 

Binds MAPs and motor proteins 

- 
2 antiparallel helices (H11-

H12) Hotspot of post-translational 

modifications that give rise to the 

“tubulin code” 

* Residue number is different for α and β-tubulin and may vary among different isotypes. 

Table 2 – Tubulin functional domains 

 

 

Figure 10 – Tubulin in complex with Taxol (PDB ID: 1JFF – 3.5 Å) and GTP (in the α-tubulin, 

down in the picture) and GDP (β-tubulin, up). Functional domains, as reported in [118], are colored 

differently: N-terminal domain in yellow; drug-binding domain in slate blue; C-terminal domain in 

light magenta. 
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A step forward in tubulin structural characterization was represented by the work of 

Knossow and his group [128]. In 2000, they discovered a new way of stabilizing tubulin for 

crystallization. Using the stathmin-like domain of the neural protein RB3 (RB3-SLD), a 

stathmin family protein, they succeeded in obtaining an X-ray structure of two tubulin 

heterodimers in the “curved” conformation. Stathmin proteins are a family of proteins 

involved in the regulation of microtubule dynamics. They are able to inhibit tubulin 

polymerization sequestering two α/β-tubulin heterodimer thanks to their “stathmin-like 

domain” [129,130], and, from another point of view, they can increase the catastrophe rate 

of MTs [131]. 

The T2R structure (T2 stands for two α/β-tubulin heterodimer, R for RB3-SLD) provided 

a clear model for tubulin sequestration by stathmin family proteins. Moreover, the curvature 

of the complex is similar to that of the depolymerization products of MTs bound to GDP, 

suggesting that the binding of the stathmin-like domain does not affect the overall shape of 

curved tubulin protofilaments [131]. 

Figure 11 shows the structural differences between the two complexes. 

 

Figure 11 – Structural differences between heterodimers in straight polymerized protofilaments as 

within microtubules (on the left), and in curved complexes as it happens upon binding of the 

depolymerizing protein stathmin (on the right). 
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Their work paved the way for the further studies that brought to the discovery of almost 

all tubulin binding sites, starting from the colchicine [132] and the vinblastine [133] sites to 

the recent peloruside/laulimalide [134] and maytansine [135] sites. The same can be said 

regarding the tubulin tyrosine ligase (TTL) protein that catalyzes the post-translational re-

tyrosination of detyrosinated α-tubulin, whose molecular mechanism has been elucidated in 

2013 when Prota et al. have solved a T2R-TTL complex [134].  

Indeed, most of these structures rely on the assumption that these drugs can bind to both 

free tubulin and assembled MTs providing only a preliminary and static picture of the 

complex process that is at the basis of their mechanisms of action. 

2.4. Tubulin as Target in Cancer Therapy  

Among all the different cellular functions in which tubulin is involved, from a 

pharmaceutical standpoint, mitosis could be considered the most interesting one. Contrarily 

to the interphase, when MTs turnover (the exchange rate of GDP-bound tubulin dimers with 

soluble GTP-bound ones) is relatively slow, during mitosis, MTs show a much prominent 

dynamic behavior [136]. In particular, during prometaphase, MTs attached to the two 

MTOCs have to grow and shorten quickly and continuously in order to “find” and bind the 

chromosomes at their kinetochores [137] (Figure 12). If only one single chromosome is not 

attached by the MTs of the two MTOCs and is not correctly aligned during the metaphase, 

the cell cannot move to the next phase (anaphase) and, eventually, undergoes apoptosis. 

 

 

Figure 12 – The mitotic spindle [138]. 
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Interfering with MTs dynamic behavior has been proven to be suitable for anticancer 

therapy [139,140] as cancer cells divide more frequently than normal cells, thus they are 

more vulnerable to antimitotic compounds (the so-called “mitotic poisons” that induce 

mitotic arrest and cell death by apoptosis). 

In light of the success of the drugs derived from this class of compounds, one could argue 

that MTs represent the best target for cancer identified so far, and it will continue to be so 

even when more selective approaches will be developed [136]. As a matter of facts, MTs are 

“popular” also among plants (i.e. algae or superior plants as the famous Taxus brevifolia) 

and animals (such as sea hares). They both produce toxic molecules that target MTs 

presumably for self-protective purposes. Besides, most of the antimitotic compounds that 

have been discovered derive from large-scale screens of natural products. It is possible to 

cite the Vinca alkaloids, which were isolated more than 40 years ago from the Catharanthus 

roseus [141], or Taxol, isolated from Taxus brevifolia in 1971 [142]. 

2.5. Chemical Compounds that Interact with Tubulin 

Going into the details, since the first evidences gathered during the seventies, a large 

number of compounds that bind either the free tubulin dimer in solution or the formed MTs 

polymers have been identified. Initially, they were thought to have an influence on MTs 

mass inside the cell but is now clear that is not the case or, at least, the observed effect is an 

indirect consequence of their direct influence on MTs dynamics [143].  

They show large differences in their chemical scaffolds (Table 1Table 3) and act 

through distinct mechanisms of action. For this reason, usually these compounds have been 

classified into two main groups: 

 Microtubule-destabilizing agents (MDAs); 

 Microtubule-stabilizing agents (MSAs). 

MDAs can act in three ways: promoting the depolymerization of the MT; preventing the 

incorporation of tubulin dimers in the growing protofilaments; precluding that the newly 

added tubulin dimer adopt a straight conformation. Within this group fall Vinca alkaloids 

(i.e. vinblastine, vincristine), colchicine, combretastatins, maytansine, rhizoxin and others.  

On the contrary, MSAs promote polymerization and stabilize the polymer, avoiding the 

subsequent depolymerization. They have also the ability to induce the formation of the 

polymer starting from GDP-bound tubulin dimers [144], in contrast to what happens in 
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normal condition. This second category includes Taxol and its derivatives, the epothilones, 

discodermolide, laulimalide, peloruside, etc. 

Despite their different chemical structure (for an overview, see Table 3) and their 

different effects, they all bind only to the β-tubulin subunit. At the time of writing, five 

different binding sites have been identified, which are schematically shown in Figure 13. 

Usually, when discussing MDAs, one can refer to the intradimer interface as the interface 

between α and β-tubulin subunits of the same heterodimer. For example, the colchicine 

binding site is located in proximity of the intradimer interface. In the same way, the 

interdimer interface is the one that lies between two adjacent heterodimers. Vinca alkaloids 

bind at this level and hamper the curved-to-straight transition that is necessary to correctly 

assemble the MT (more detailed lists can be found elsewhere [145–147]). 

 

Figure 13 – The five different binding sites in the β-tubulin subunit. Colchicine (yellow dots) binds 

at the level of the intradimer interface. Vinca alkaloids (dark green dots), such as vinblastine, bind 

at the interdimer interface, so as maytansine-site ligands (purple dots). MSAs, such as taxane-site 

ligands (i.e. Epothilone A, white dots) and peloruside A (lime green dots) bind close to the lateral 

interface between protofilaments. 
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Binding  

Site 
Ligand(s) 

Microtubule-Stabilizing Agents 

Taxane-Site 

 

Taxol 

 

(+)-Discodermolide 

 

Epothilone A 

Peloruside-Site 

 

Peloruside A 

Microtubule-Destabilizing Agents 

Vinca-Site 

 

Vinblastine 

Colchicine-Site 

 

Colchicine 

Maytansine-Site 

 

Maytansine 

 

PM060184 

Table 3 – Examples of molecules that interact with tubulin.  
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From a conceptual perspective, understanding the mechanism of action of the MDAs 

should be, in principle, easier. The molecules that bind to the maytansine-site exert their 

activity inhibiting the addition of further tubulin subunits. Similarly, molecules of the vinca 

domain, as said before, destabilize the MT acting as a wedge.  

The same cannot be said for the MSAs. How do they stabilize the MT? 

2.5.1.  The Taxane-Site 

Taxol, the first microtubule stabilizing agent described in literature [148], is a complex 

diterpenoid isolated from the bark of the tree Taxus brevifolia [142]. Rao et al. first located 

taxol binding site on β-tubulin in 1992 by direct photoaffinity-labelling [149]. Since then, 

many structural works confirmed that taxol binds with a 1:1 stoichiometry in the 

intermediate domain, occupying a site that is closer to the interface between protofilaments 

facing the lumen of the MT (Figure 14) [119,146,150]. 

 

 

Figure 14 – Location of the two MSA sites within the MT shown from the plus-end perspective. 

Taxol binds on β-tubulin (dark grey spheres) facing the lumen of the MT. Peloruside also binds at 

the interface between protofilaments, but facing the external part of the MT. 

 

The binding site, located in the drug-binding domain (Figure 10), is composed by the 

helices H6, H7 (the so-called core helix), part of the helix H1, the β-strand S7 and the loops 

S9-S10 and S7-H9 (Figure 15). The latter is a very long loop, called M-loop for its 

characteristic shape, which is directly involved in the lateral interaction between 

protofilaments [102]. The hypothesis was that the MSAs, pushing the M-loop toward the 

adjacent protofilament, strengthen this interaction avoiding the depolymerization of the MT. 
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Unfortunately, the protofilaments in zinc-stabilized sheets are arranged in an alternating, 

antiparallel fashion. As a consequence, the M-loop interaction that exists within the natural 

MTs assembly cannot be studied correctly. 

 

 

Figure 15 – The tubulin taxane-site when Taxol is bound as in the EC crystal structure (PDB ID: 

1JFF) 

 

Despite the early works based their assumptions on these “artificial” zinc-induced 

tubulin sheets, this theory has been confirmed by the recent x-ray crystallographic studies 

conducted by Prota et al. [135] on others MSAs (Epothilone A and the covalent binder 

zampanolide). Moreover, in 2014, Nogales and co-workers were able to examine the effects 

of taxol binding on MT dynamic behavior using high-res cryo-EM structures (4.7-5.6 Å). 

They noticed that Taxol is able to counteract the effect of GTP hydrolysis reverting the 

conformational changes induced by it [151,152]. Upon taxol binding, GDP-bound MTs 

appear to have the same shape as GTP-bound MTs (they utilized the nonhydrolyzable GTP 

analog, GMPCPP, to reproduce a GTP-like state). However, as they stated, in order to clarify 

the molecular mechanism of this transition further structural analysis at near-atomic 

resolutions are required. 
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 The same group, whose firstly obtained EC structure shed light into tubulin molecular 

details, solved the complex of Epothilone A and tubulin in the same way as they did before 

[151]. However, their results were in a contrast with the first tubulin-bound conformation of 

Epothilone A determined by solution state NMR experiments using a nonpolymerized 

soluble form of α/β-tubulin [153]. For this reason, the binding mode of Epothilone A 

remained elusive until recently, when a high-resolution X-ray crystal structure of the drug 

in complex with a “curved” α/β-tubulin was determined [135] showing clear differences 

from the previously proposed one (Figure 16). Another proof came from the results of Diaz 

and co-workers obtained by Saturation Transfer Difference (STD)-NMR analysis [154], 

which were in agreement with the X-ray model. 

   

 

Figure 16 – Comparison between the originally proposed EP binding mode (on the left, PDB ID: 

1TVK) and the recently one obtained through X-ray (on the right, PDB ID: 4I50). It is possible to 

note how the EC model lacks the necessary resolution to unambiguously assign the position of EP 

atoms, as is the case of the X-ray structure. 

 

In light of these discordant results, a number of questions regarding taxol binding mode 

arise: does the zinc-induced tubulin sheets represent a good model for the straight 

conformation of tubulin? How accurate is the taxol binding mode proposed in 1998?  

At the time of writing, there are still no X-ray structures available to confirm or confute 

the EC structure. New insights can only come from the recent advances in the cryo-electron 

microscopy field. It is now possible to reach near-atomic resolutions that can help in 

portraying the effects of MSAs on the overall MT structure (a recent work from Nogales and 

co-workers, through the use of cryo-EM reconstructions obtained at 3.9-4.2 Å, showed the 
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effects of taxol and peloruside on the MT lattice [155]). Furthermore, traditional docking 

techniques that rely on inaccurate crystallographic data, cannot deal with such a flexible 

binding site without incurring in the same mistakes [156]. 

For these reasons, exploring the possibilities offered by the recent advances in the 

dynamic docking field could be useful in shedding light on the mechanism of recognition of 

taxane-site ligands. 

2.6. Aims of the Thesis 

Despite MDAs and MSAs have proven to be successful in the clinic treatment of a 

number of different type of cancers, it is not clear why some of them, are so effective against 

certain types of tumors, but basically useless against other types. For example, Taxol is 

routinely used against ovarian, mammary and lung tumors but has no effects on other solid 

tumors, such as kidney, or colon carcinomas. Clearly, some cells are more sensible than 

others to specific antimitotic drugs for a number of reasons that range from the expression 

of diverse protein isotypes to developed resistances [156].  

However, their mechanisms of action is still argument of debate and there are also 

many doubts regarding their specific binding mode. These uncertainties derive from the 

intrinsic difficulties of dealing with a highly dynamic entity, as it is tubulin, a protein with 

the capability of undergoing a transition from a curved to a straight conformation that is a 

consequence of three different forms it can adopt (free soluble dimers, oligomers and 

polymerized in microtubules). Besides, due to the inherent difficulties of obtaining crystal 

structures of the straight conformation of tubulin, the available data is mainly related to the 

curved inhibited conformation of tubulin and, as shown by the case of Epothilone A binding 

mode, this can lead to discordant results. 

From a computational standpoint, dealing with protein flexibility is not easy at all. 

However, in the last years, a number of different methodologies have been implemented to 

bring the study of the molecular interactions to a new level. Molecular dynamics and the 

related enhanced sampling methods are everyday gaining more importance in drug discovery 

and development programs. 

With this in mind, the aim of this project is that of study the binding process of taxane-

site ligands from a fully dynamic perspective. Above all, for unveiling the way these ligands 

exert their stabilizing action on the microtubule, it is necessary to acquire a better 
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understanding of the interactions that are at the basis of the molecular recognizing 

mechanism of these ligands by tubulin. In order to do so, the behavior of the binding pocket 

will be studied by means of classical molecular dynamic simulations. The resulting 

information will be used for the set-up of a fully dynamical protocol through the use of the 

approach recently implemented in the MD-Binding technique. The protocol will then be 

tested against three different ligands (epothilone A, discodermolide, and taxol) of the β-

tubulin taxane-site to evaluate its feasibility and reliability. The relative performances, in 

terms of both strengths and weaknesses, against a traditional static approach, will be 

discussed. 
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3. Material and Methods 

3.1. MD Simulations Setup 

3.1.1. System Preparation 

The protein structural model for the simulations was taken from the experimental 

crystallographic structure accessible at the PDB code 4I4T. Simulations were performed on 

a single α/β-tubulin heterodimer. Therefore, chains A and B, corresponding to the other 

heterodimer, E (stathmin), and F (TTL), were removed along with calcium and chloride ions. 

The GTP and GDP molecules and the Mg2+ ions found in the X-ray structure were included 

in the modelling. The same was done with the covalently bound zampanolide molecule. 

Water molecules involved in the interaction with the Mg2+ ions were maintained. 

Residues of β-tubulin have been renumbered according to the UniProtKB [157] entry 

Q6B856. Therefore, the gaps in the numbering introduced by Lowe et al. [119] based on the 

alignment with the α-tubulin are not present (see APPENDIX: Residue Numbering 

Correspondence for more details). The resulting structure possesses 440 out of 451 residues 

of the α-tubulin (in respect to the UniProtKB P81947) and 431 out of 445 residues of the β-

tubulin (UniProtKB Q6B856). Missing residues belong to the intrinsically disordered C-

terminal domain and haven’t been remodeled. 

An initial guess for missing hydrogens and ambiguous protonation states have been 

evaluated through Schrödinger 2015-2 Protein Preparation Wizard [156] and chosen after a 

visual inspection. The histidine 227 of the helix H7 of taxane-site has been protonated at the 

epsilon position. 

The protein structure has been solvated with TIP3P-model [156] water molecules in a 

truncated octahedron box using 12 Å as minimum distance between the protein and the box 

edges. The system has been neutralized by adding Na+ ions resulting in a total of 123776 

atoms. 

The force field Amber-ff99SB-ILDN [158] has been used for the protein. Parameters for 

MG2+ ions and GTP/GDP molecules have been taken from the AMBER parameter database 

of Bryce Group [156]. MG2+ ions parameters have been developed by Allner et al. [159] 

whereas GTP/GDP parameters by Meagher et al. [160]. Accordingly, the O3 atom type has 

been manually inserted in the leaprc.ff99SBildn force field file. 
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The system has been assembled with the LEaP tool inside AmberTools 14 package [161]. 

Resulting coordinates and topologies files have been converted to GROMACS file formats 

with ACPYPE [162]. 

3.1.2. Plain MD Simulations 

Molecular dynamics (MD) simulations have been performed with GROMACS 4.6.7 

[163]. The prepared system has been minimized with 5000 cycles of the steepest descent 

algorithm. At this point, the system has been equilibrated in four different stages using the 

V-rescale thermostat [164] and the Parrinello-Rahman barostat [165] with a relaxation time 

τ of 2 ps and 0.1 ps, respectively, to keep the system at the desired target temperatures and 

pressure. The first three stages were run for 100 ps each, in the NVT ensemble with an 

integration time step of 1 fs, at increasing temperature values of 100 K, 200 K, 300 K, two 

of which with the backbone heavy atoms harmonically restrained with a force constant of 

1000 kJ/mol/Å2. The last stage was run in the NPT ensemble for 1 ns with an integration 

time step of 1 fs. Bonds involving hydrogen atoms were restrained with the LINCS algorithm 

[166]. A short-range nonbonded cut-off of 9 Å was applied, whereas long-range 

electrostatics were treated with the particle mesh Ewald (PME) method [167]. Periodic 

boundary conditions (PBC) were applied. 

After the equilibration stage, a 100 ns-long classical MD simulation has been conducted 

with an integration time step of 2 fs in the NPT ensemble at a target temperature and pressure 

of 300 K and 1 atm. 

3.2. Binding Pocket Analysis 

Pockets were identified and tracked during the MD simulations by means of the 

Pocketron [168] module implemented in BiKi Life Sciences. For the analysis, the α-tubulin 

subunit, the nucleotides, the ions, and the water molecules were removed. Small and large 

probe radii were set to 1.4 and 3 Å, respectively. Additionally, the minimum volume of a 

detectable pocket was set to the equivalent of 5 water molecules. 

Static pockets and their relative “points of entrance” were evaluated using NanoShaper 

[169] using the same setting as for pocket tracking analysis. 
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3.3. MD-Binding Protocol Setup  

3.3.1. Ligands Parametrization 

3.3.1.1. Epothilone A 

Atomic coordinates of Epothilone A (EP) were taken from the PDB ID 4I50 

corresponding to the X-ray structure of the T2R-TTL-EP complex. The electrostatic 

potential has been computed at the ab-initio HF/6-31G* level theory with NWChem [168], 

as implemented in BiKi Life Sciences in its Residue Parametrization procedure, imposing a 

net charge of 0. The general amber force field (GAFF [170]) was employed to parameterize 

the ligand, while partial charges were fitted using the restrained electrostatic potential 

(RESP) procedure (via Antechamber of AmberTools 14), following the implementation of 

BiKi Life Sciences. 

3.3.1.2. Discodermolide 

No X-ray structure of Discodermolide (DDM) was available at the beginning of this 

study. The isomeric SMILES (simplified molecular-input line-entry system) of (+)-DDM, 

corresponding to the PubChem CID 643668, was used to produce an initial guess of the 3D 

structure by means of the LigPrep utility of Schrödinger Suite 2016-4. The structure has been 

then treated as reported in refs [171,172]. The lowest energy geometry has been obtained by 

conformational search with the MacroModel software (Schrödinger Suite 2016-4). The force 

fields AMBER* and OPLS3 have been used. As searching and minimization algorithms, the 

mixed torsional/low-mode sampling method and the truncated Newton conjugate gradient 

procedure have been used, selecting 40000 structure generation steps (1000 per bond) and 

an energetic cutoff of 29.5 kJ/mol. 

This obtained conformation has been further optimized at the ab-initio HF/6-31G* level 

theory with the Gaussian03 code [173] and relative electrostatic potential has been evaluated. 

As for EP, the general amber force field (GAFF [167]) has been employed to parameterize 

the ligand DDM, while partial charges have been fitted using the RESP procedure via 

Antechamber of AmberTools 14. 

3.3.1.3. Taxol 

Taxol (TAX) structure has been prepared using the same procedure of DDM. The 

isomeric SMILE used corresponds to the PubChem CID 36314. The only difference is 

relative to the QM optimization. Before the optimization at the HF/6-31G* level theory, the 
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initial lowest energy structure derived from the conformational search has been optimized at 

the semi-empirical method AM1 with the Gaussian03 code. 

3.3.2. Ligand(s) Positioning 

The three ligands were placed nearby the binding site using the Reside Placement tool 

of Biki Life Sciences. The binding site pocket has been visually individuated trough VMD 

1.9.3 [174] after the static pocket analysis of the MD frame whose pocket volume resulted 

the highest throughout the entire simulation course (for the relative analysis, see paragraph 

3.2). The relative pocket entrance file has been used and, for the ligands, four different 

starting points and four random rotations were selected. 

The last frame of the MD simulation was selected as protein model; concerning the 

ligands, respectively were used the X-ray model and the optimized conformations, for EP 

and for DDM and TAX. 

3.3.3. Systems Preparation and Equilibration 

The resulting 16 systems for each ligand were prepared using the automated protocol 

implemented in BiKi Life Sciences. The first set of systems consisted each of a dimeric αβ-

tubulin and one EP molecule. The subsequent set of systems included only the β-tubulin 

monomer and one of the ligands of interest among EP, DDM, and TAX. 

System boxes, prepared trough BiKi Life Sciences were then minimized and then 

equilibrated in five different stages, similarly to the tubulin dimeric system described in 

3.1.2. The first two stages consisted of a total simulation time of 200 ps in the NVT ensemble 

at a temperature of 100 K and 200 K respectively. The equation of motion has been 

integrated every 1 fs and the heavy atoms of ligand and protein backbone were restrained. 

The other three stages, instead, were run with a time step of 2 fs. The third and the forth, 100 

ps of simulation each, in the NVT ensemble at 200 K and 300 K, with no restraints on protein 

backbone. The fifth stage was run in the NPT ensemble for 1 ns. In all the equilibration 

stages ligand heavy atom have been restrained. 

3.3.4. MD-Binding Simulations 

MD-Binding Simulations were run with the GROMACS 4.6.1 MD engine patched with 

PLUMED2 [175], ad-hoc modified by BiKi Life Sciences. A series of different settings were 

used to validate the protocol and for productive simulations, which are summarized in Table 
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4. All the simulations were run in the NPT ensemble at 300 K and 1 atm, with an integration 

time step of 2 fs. 

 

Reference 

(Setup) 
Ligand 

Simulation 

Time (ns) 
K_GAIN MAX_K 

Switch-off 

residue(s)2 
Attractive Residues2 

αβ-tubulin heterodimer 

1 EP 15 0.4 NA1 710, 712 

463, 655, 667, 668, 670, 

671, 710, 712, 713, 714, 

719, 722, 723, 724, 798, 

799, 801 

2 EP 15 0.4 NA1 710, 712 

463, 655, 667, 668, 670, 

671, 710, 712, 713, 714, 

798, 799, 801 

3 EP 15 0.4 NA1 712 
655, 664, 668, 710, 713, 

714, 719  

4 EP 15 0.4 NA1 712 
655, 664, 667, 710, 712, 

714, 719 

5 EP 15 0.4 NA1 712 
655, 667, 710, 712, 714, 

719 

6 EP 10 0.4 NA1 712 
655, 667, 710, 712, 714, 

719 

7 EP 10 0.1 0.001 712 
655, 667, 710, 712, 714, 

719 

8 EP 15 0.1 0.001 712 
655, 667, 710, 712, 714, 

719 

9 EP 10 0.2 0.001 712 
655, 667, 710, 712, 714, 

719 

10 EP 15 0.2 0.001 712 
655, 667, 710, 712, 714, 

719 

11 EP 10 0.3 0.00001 712 
655, 667, 710, 712, 714, 

719 

12 EP 15 0.3 0.00001 712 
655, 667, 710, 712, 714, 

719 

β-tubulin monomer 

13 EP 15 0.3 0.00001 272 
215, 227, 270, 272, 274, 

279 

14 DDM 20 0.3 0.00001 272 
215, 227, 270, 272, 274, 

279 

15 TAX 30 0.3 0.00001 272 
215, 227, 270, 272, 274, 

279 
1 NA stands for Not Available. The first version of the algorithm did not have this feature. 

2 Residue number as in the prepared system structures. They differs from the numbering adopted by 

Lowe et al. [119] for the reasons explained in the paragraph 3.1.1. See the appendix for Residue 

Numbering Correspondence. 

Table 4 – Different setups used for MD-Binding simulations used in this work 
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3.3.5. Molecular Docking 

3.3.5.1. Traditional Static Docking 

The software Glide [173] was used to test traditional molecular docking capabilities at 

reproducing the binding mode for the T2R-TTL-EP complex. The receptor grid was 

generated using, as protein conformation, the last frame of the classical MD simulation of 

the αβ-tubulin heterodimer. The grid center was defined as the centroid of residues His667 

and Pro712. Default values were used for vdW radii and electrostatic scaling factors. Protein 

was treated as rigid body and ligand as flexible. For comparison purposes, both Glide scoring 

functions, GLIDE SP (Standard Precision) and GLIDE XP (Extra Precision), have been 

tested in different runs. It has been select to return 20 poses as output of docking calculations 

(the default is 1). 

The ligand structure used has been previously prepared with the LigPrep utility of 

Schrödinger Suite 2016-2. 

3.3.5.2. Induced-Fit Docking 

Induced-Fit docking module implemented in Schrödinger Suite 2016-2 was tested 

against the same protein conformation as for the traditional static docking. The “enhanced” 

protocol has been selected. It consists of an initial Glide SP docking using a softened 

potential (vdW radii scaling factor of 0.5) followed by a Prime [176] Refinement (i.e. the 

minimization of the side-chains of receptor residues) of the obtained complexes and a final 

redocking with the default values for the scaling factors. The grid center was defined as for 

the traditional docking. For the minimization step were included all the residues at 6 Å from 

the ligand.    

3.3.6. Scoring of MD-Binding Poses 

To evaluate MD-Binding poses at the end of the simulations water molecules were 

removed. As suggested by Glide user manual, when selecting the “minimize only” docking 

mode for rescoring purposes, the GLIDE SP scoring function has been chosen. 

3.3.6.1. Rescoring with MM/GBSA 

In order to rescore the poses obtained by the MD-Binding simulations, the protein and 

the ligand of last frames of each trajectory were extracted in two different files and 

subsequently fed to the Prime MM/GBSA module of Schrödinger Suite 2016-2. The 
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OPLS_2005 force field was used along with the VGBSA implicit solvation model [176], the 

one implemented in Prime.  

Protein flexibility has been evaluated minimizing all protein residues at 6.0 Å from 

ligand atoms. 

3.3.7. Figure Preparation 

The figures of this work have been rendered either with the open-source version of Pymol 

1.8.4.0 [177] or with VMD 1.9.3 [174]. Graphs were prepared using Gnuplot 4.6 [178].  
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4. Results and Discussion 

4.1.  Pocket Behavior Investigations 

4.1.1. Model Selection 

The first step in every computational work is the choice of the starting structure. Due to 

the fact that this work is focused on the taxane-site, the chosen protein structure should not 

have any gap in this region. At the same time, in order to investigate dynamic docking 

capabilities in dealing with protein flexibility, it would be preferable to avoid any bias that 

could somehow help the implemented protocol.  

The best-case scenario would be the possibility to have an apo structure of the protein of 

interest. Unfortunately, this does not apply to the tubulin case. As previously introduced, the 

taxane-site is composed by a number of stable helices (H6, H7, and part of H1), and two 

loops, one of which has a very peculiar shape that gives him the name, the so-called “M-

loop”. It is highly flexible and no electron density associated to it is found in the crystal 

structure of the tubulin-stathmin-TTL-apo complex (PDB ID: 4IIJ). It can be stabilized either 

by the lateral interactions with other protofilaments within the MT or by the presence of 

certain MSAs bound to the taxane-site or to the peloruside-site. 

These circumstances reduced the number of possible usable structures to the ones 

summarized in Table 5. 

 

PDB ID Resolution (Å) Ligands Reference 

4I50 2.3 Epothilone A [135] 

4I4T 1.8 Zampanolide [135] 

4O4J 2.2 Peloruside A [134] 

4O4H 2.1 Laulimalide [134] 

4O4I 2.4 Laulimalide – Epothilone A [134] 

4O4L 2.2 Peloruside A – Epothilone A [134] 

Table 5 – αβ-tubulin X-ray structures where the M-loop is present. 
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Avoiding the complexes where epothilone A is present, for the reasons exposed above, 

the structure with the highest resolution is the one where zampanolide occupies the taxane-

site. Despite its side-chain can be superimposed well to that of epothilone A, their macrolidic 

cores are involved in a completely different set of interactions (the planes of the macrocycle 

are oriented at a ~90° angle [135]). In addition, zampanolide is covalently bound to the NE2 

(epsilon nitrogen) atom of His229 of the helix H7 (Figure 17). Indeed, the conformation of 

the amino acids of the binding site is certainly influenced by the bound molecule but, from 

the perspective of this work, this was going to be nothing more than another possibility to 

make things more fascinating. 

 

 

Figure 17 – Zampanolide binding mode as in its X-ray crystal structure (PDB ID: 4I4T – 1.8 Å). 

The ligand is covalently bound to the His 229 of Helix H7. Other than two hydrogens bond with 

the backbone of Thr 276, it is possible to identify many hydrophobic interactions. 

 

We, therefore, decided to use the αβ-tubulin heterodimer of the T2R-TTL-Zampa 

complex, removing the tubulin tyrosine ligase, the other heterodimer lacking the ligand, and 

the stathmin-like domain of RB3. The same was done for the covalently bound zampanolide, 

imposing the His229 (i.e. the one involved in the binding with zampanolide) as epsilon 

protonated. 
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The resulting complex consisting of the two subunits and their relative nucleotide GTP 

or GDP, along with the Mg2+ ions and the water molecules coordinated with them, is 

highlighted in Figure 18. 

 

 

Figure 18 – The selected protein structure for this work. Chains removed from the PDB 4I4T are 

transparent, as it is the ligand zampanolide in the β-tubulin taxane-site. β-tubulin is colored in 

marine blue, α-tubulin in light cyan. 

 

There are no gaps in the selected structure, apart from a number of residues 

corresponding to the C-terminal tails of both subunits, which are known to be intrinsically 

disordered for the reasons explained in paragraph 2.3. These have an influence on MT 

dynamic instability but not on the internal stabilization of the monomers, thus have not been 

remodeled. 

Nevertheless, with the aim of reducing the effects of the ligand in the taxane-site, we 

decided to run a 100 ns-long classical MD simulation of the complex from which select and 

retrieve a sort of apo-like conformation of the protein. In other words, this choice was mainly 

Taxane-site 
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driven by the preliminary condition of getting rid of any bias that could interfere with our 

simulations, both positively and negatively. 

Before going into details, for a better understanding of the results, it is necessary to make 

an annotation regarding the residue numbering. Lowe et al. [118], aligning α and β 

sequences, noticed that in order to match their secondary structures it was necessary to insert 

two gaps into β tubulin primary structure numbering. This is more evident at the level of the 

loop S9-S10, which is eight residues longer in the α-tubulin subunit. As a matter of facts, 

this insertion occupies the taxane-site and explains why no ligands bind at the level of the α-

tubulin monomer. Anyway, for compatibility reasons with the MD engines that have been 

used in this work, we renumbered all the residues based on the correct amino acids sequence 

that is reported in the UniProtKB database (the corresponding ID is Q6B856). Therefore 

binding site residues numbering does not correspond to that reported in literature.  For more 

details, it is possible to find a correspondence table in the APPENDIX. 

4.1.2. Classical MD-Simulation 

In order to gain a deeper understanding of the structural and dynamic behavior of the 

taxol binding site, we ran one 100 ns-long MD simulation in explicit solvent, using the well-

established atomistic force field Amber-ff99SB-ILDN [158]. From the initial conformation, 

the root mean square deviation (RMSD) of the Cα carbons of the complex stabilizes after 

~40 ns, and then oscillates around 1.8 Å for the remaining time of the simulation (Figure 

19A). Considering the two subunits separately, the RMSD of the α-tubulin stabilizes after 

~40 ns, whereas the one of the β-tubulin stabilizes in a much shorter time (~10 ns). After 

this period, the two remain stable around values of ~ 1.5 and 1.25 respectively (Figure 19B-

C). 

It is worth noting that some residues of the intrinsically disordered C-terminal tails are 

still present in both subunits and their contributions must be carefully taken into account 

when computing the RMSD. In order to do so, we calculated the RMSD of the Cα carbons 

of both C-terminal domains with and without considering these residues (Figure 20). As 

expected, the overall shape of the curves is very different, showing a remarkable impact of 

just few residues (five for the α-tubulin and seven for the β-tubulin) on the result, which is 

consistent with the experimental data available [124]. We, therefore, decided to remove them 

from the subsequent analysis in order to provide a much clearer picture of protein stability. 
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Figure 19 - Calculated RMSD of the αβ-tubulin heterodimer (A), α-tubulin (B), and β-tubulin (C) 

subunits from their initial X-ray structure plotted as a function of time. The lightest lines represent 

the effective sampling of the RMSD during the entire simulation, whereas the darkest ones are 

smoothed in order to cut-off the noise. 

 

 

Figure 20 - Calculated RMSD of the C-terminal domains (CTDs) of both subunits from their initial 

X-ray structure plotted as a function of time. The red lines represent the RMSD computed taken 

into account the contribution of the entire CTD, while the blue ones have been obtained removing 

the last disordered residues. 
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Following this observation, we reevaluated independently the RMSD of the Cα carbons 

of the three functional domains (see Table 2 and the Appendix for more information) of both 

subunits. The outcome of the analysis shows an even more reassuring result. Especially when 

considering the β-tubulin monomer (i.e. the one we are more interested into, seeing that it is 

where the taxane-site is located), the three domains are very stable along the entire MD 

simulation.  

 

 

Figure 21 – Calculated RMSD of the Cα carbons of the three domains from their initial X-ray 

structure plotted as a function of time. On the left, the RMSD associated to the α-tubulin subunit. 

On the right, the one of the β-tubulin monomer. 

 

These observations, taken together, indicate that the simulation was long enough to relax 

and equilibrate each tubulin subunit within the heterodimer, giving the ground for the next 

studies. In this perspective, we computed the root mean square fluctuations (RMSF) of β-

tubulin Cα carbons with the aim of identifying the most flexible regions of the protein. 

Again, the shows a situation that is in line with the experimental data. Only two regions 

show an RMSF of around 2.5 Å. One, corresponding to a small loop in the N-terminal 

domain (residues 54-58), and another one that lies in the drug-binding domain (residues 275-

284) and relates to the M-loop that is part of the taxane-site. The latter, once loss the 

stabilizing effect of the interaction with the zampanolide side-chain, started to oscillate 

vigorously as expected (the X-ray structures of the apo protein do not have density associated 

to this loop). 
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Figure 22 – Calculated RMSF of the Cα carbons of the β-tubulin subunit during the simulation. For 

clarity reasons, the data coming from the most flexible C-terminal tails (residues 426-431) has been 

removed. 

 

4.1.3. Tracking the Binding Pocket 

Following the assessment of the overall structural stability of the αβ-tubulin heterodimer, 

we focused our attention on the binding site pocket. The tool pocketron [168] of the BiKi 

Life Sciences suite has been used to analyze pocket dynamics. Its underlying algorithm for 

pocket detection is based on the solvent excluded surface (SES) concept [179] (i.e. the 

Connolly–Richards surface [180], obtained by rolling a spherical probe of a specific radius 

over the van der Waals surface of the biomolecular system). Following its assumptions, 

pockets are identified by calculating the volumetric difference between the regions enclosed 

by two different SESs, generated using two different probe radii, as implemented in 

NanoShaper [169].  

In our analysis, we selected the default values of 1.4 and 3 Å for the probe radii, and, 

additionally, the equivalent of 5 water molecules as cutoff value for the minimum detectable 

volume. These settings have been chosen in order to filter the output and retrieve only those 

pockets that can be considered potential binding sites. Moreover, to reduce the 

computational cost of the analysis, we pre-extracted 1000 snapshots of only the β-tubulin 

subunit from our 100-ns long simulations, at defined time intervals. 
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Starting from the first frame of the simulation, pocketron monitors the evolution of the 

initially identified set of pockets, storing the inherent volumes and the residues that 

constitute them. At the same time, it is able to give information regarding pockets 

interactions, tracking the “merging” and “splitting” events that occur throughout the 

analyzed frames. Essentially, it counts all the times that a particular pocket splits into two 

different ones or, from the other point of view, when two different pockets join together in 

a single one. This analysis lets to examine the influence that a particular pocket can have on 

another one, even a very distant one. 

The selected parameters led to the identification of 36 pockets on the β-tubulin subunit, 

four of which have average volumes greater than 100 Å3 (Table 6). Another interesting 

aspect that has to be evaluated is the persistency of these pockets throughout the simulation, 

which indicates the fraction of the total simulation time in which a particular pocket is 

present. Nine of them were present for more of 40 % of the simulation time. As expected, 

being populated by the GDP, the corresponding binding site (pocket ID 5) was present for 

the entire simulation. Remarkably, we recorded the presence of two pockets in a region to 

whom binds the microtubule-stabilizing agent colchicine (pocket ID 7 and 8 with a 

persistency of about 69 and 90 %, respectively). In this respect, it is worth noting that during 

the simulation the analysis revealed also the presence of the peloruside A binding pocket, 

albeit for only the 15 % of the total time. As a matter of facts, this is another evidence of the 

tremendous power of MD simulations. 

The taxane pocket, or at least the main part of it (pocket ID 4), was stable for the 95.8 % 

of the simulation with an average volume of 363.54 Å3. Close to it, in fact, another smaller 

pocket with a persistency of the 46.3 % is formed by some residues of the M-loop and 

comprises that region in which can accommodate epothilone A side-chain. Considering the 

high flexibility of the loop, as shown by the RMSF analysis (Figure 22), the lower 

persistency value comes not unexpected. Moreover, it is also possible that in some of the 

analyzed frames the two pockets are merged in one single entity, hence the 40 % persistency 

value represents only that fraction of the simulation time in which the two pockets were split. 

To verify this hypothesis we analyzed the merge and splitting events recorded during the 

analysis. 
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Pocket ID Average Volume (Å3) Persistency (%) Notes 

1 19.70 20.1  

2 59.48 46.3 Taxane-site 

3 39.68 40.8  

4 363.54 95.8 Taxane-site 

5 344.49 100.0 GTP/GDP site 

6 109.34 81.0  

7 86.97 68.8 Colchicine-site 

8 81.85 73.8  

9 198.10 89.9 Colchicine-site 

10 16.95 16.7  

11 4.85 6.0  

12 15.62 15.3 Peloruside-site 

13 25.49 29.9  

14 20.04 24.8  

15 0.52 0.7  

16 41.53 38.2  

17 7.24 8.7  

18 3.65 3.5  

19 45.80 44.7  

20 6.28 6.9  

21 0.74 0.9  

22 3.34 3.9  

23 9.35 9.8  

24 1.77 2.3  

25 0.37 0.5  

26 2.74 3.2  

27 0.59 0.8  

28 6.89 7.4  

29 21.66 22.1  

30 0.92 0.9  

31 3.25 3.2  

32 1.20 1.4  

33 4.42 5.2  

34 0.14 0.2  

35 0.14 0.2  

36 5.59 5.9  

Table 6 – Identified pockets and relative average volume and persistency. 
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Figure 23 – Marge matrix of the 36 identified pockets. Values from 0 to 40 represent the merging 

probability between two pockets. For clarity reason, values over 40 have been removed. 

  

We noticed that the two matrices (i.e. representing splitting and merging events) have 

similar values, hence we show only one of them. From the merge matrix represented in 

Figure 23 it is possible to observe a crosstalk between pockets ID 2 and 4, therefore our 

initial guess was somehow correct. 

Nevertheless, the most interesting observation that comes out from this analysis is a 

series of merging events (albeit with a low probability) between pocket ID 4 and 6, the latter 

of which is strongly interconnected with pocket ID 5, that coincides with the GDP binding 

site. Once more, this is another evidence of the efficiency of our MD simulations. The 

experimental data, in fact, shows that when a GTP molecule is hydrolyzed to GDP, the 

induced conformational change causes instability within the MT, especially at the level of 

the lateral interactions between protofilaments [151], in which the M-loop seems to play a 

key role [155].  Moreover, MSAs like the drug taxol, are able to revert the conformational 

change induced by the hydrolysis of GDP [151] restoring and stabilizing these lateral 

interactions. In light of these considerations, it is reasonable to think that it should be 

communications between these pockets. 
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Pockets crosstalk can also be shown visually, as in Figure 24, where each node represents 

the geometric center of the atoms that form the corresponding pocket and the edges indicate 

how often two pockets exchange atoms. 

 

 

Figure 24 - 3D network graph of pocket communication. The nodes represent pockets, and the 

edges indicate communication between two pockets. The thickness of each edge is directly 

proportional to the frequency of the merging events. Only pockets with a persistency greater than 

40 % are shown. 

 

We then focused our attention on the residues at the edge between the two pockets 

forming the taxane-site, pocket ID 4 and 2. These residues may act as a gate, mediating the 

opening and closing of the main pocket, thus modulating the entrance of the different 

ligands. Essentially, some atoms belonging to these residues can be involved in the formation 

of both pockets. Their relative persistency (for those that have it greater than 30%) have been 

Pocket ID 4 and 2  

- 

Taxane-site 

Pocket ID 5 

- 

GDP binding site 

Pocket ID 6 

Pocket ID 7 and 9  

- 

Colchicine-site 
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plotted in Figure 25, where it is possible to observe their relative contributions to the 

formation of both pockets. These are mainly residues belonging to the M-loop, such as 

Arg722, Gln716, Thr714 with long side chains or the smaller Ala723 and Pro712. Therefore, 

we had another confirmation that taxane-site is directly influenced by the flexibility of this 

loop. 

 

 

Figure 25 - Time persistency of residues that define the main taxane pocket (blue bars, pocket ID 4) 

and its correlated pocket (green bars, pocket ID 2). Only residues with a persistency greater than 

30% are shown. 

 

Following this consideration, we monitored the volumes of the two pockets along the 

simulations. We already knew that the main pocket (ID 4) is persistent for the major part of 
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the simulation (Table 6). However, the presence of pocket ID 2, and its volume thereof, is 

correlated to the merging events that occur throughout the simulation (Figure 26). 

 

 

Figure 26 – Volume over time (expressed as frame number) of the two taxane-site pockets (ID 2 

and 4). Light colored lines represent the effective sampling of the volume during the simulation, 

whereas the dark colored ones represent their approximation with a Bezier curve. 

 

We noticed that when the volume of the main pocket increases, the other decreases, and 

vice versa. This behavior is more evident around the 500th frame when the main pocket 

almost vanishes or the frames 350th (35 ns of simulation) and 870th (87 ns) when it is the 

only one to be present. Specifically, the latter is related to a merging event recorded at the 

863rd frame and the subsequent splitting at the 880th. This was the longest lasting period in 

which the two pockets were merged in one entity. 
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4.2. Considerations on the MD-Binding Protocol Setup 

Going back to the traditional docking realm, the first aspect that has to be considered is 

the selection of the protein structure against which perform the docking calculation. 

Sometimes it may be right to select more than one protein model to work with, for example, 

if there are significant conformational shifts due to certain factors, such as the presence of 

other ligands, post-translational modifications, etc. [179].  

For the reasons exposed above, conversely, a fully dynamical approach is free from this 

hurdle. Our 100-ns long simulations, other than for the evaluation of pocket behavior, was 

motivated by the need of getting rid of the binding site conformation induced by the ligand 

zampanolide. We wanted to put the MD-Binding protocol to the test with a challenging 

exercise and, because no complete X-ray structures were available, we regenerated a sort of 

“apo-like” protein status. Thus, we selected as starting structure for the subsequent enhanced 

sampling MD simulations, the last frame of our plain MD simulation. 

Essentially, the MD-Binding protocol follows the workflow illustrated in Figure 27, and 

shares some of its steps to both docking and MD simulations. 

 

 

Figure 27 – MD-Binding workflow. 

 

1
• Localization of binding site pocket

2
• Ligand placement in the simulation box

3
• Minimization 

4
• Equilibration with protein and ligand restrained

5
• Equilibration with ligand restrained

6
• Dynamic docking simulations

7
• Scoring of obtained poses
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As a matter of facts, if from one end the MD-Binding technique overcomes the problems 

related to the selection of the conformation, from the other it introduces a series of delicate 

issues that are needed to be addressed (see paragraph 1.3). Firstly, the ligand molecule has 

to be placed in the simulation box in a way that it can reach its binding site in the user-

selected simulation time (i.e. between 10 and 30 ns). Secondly, the method requires the 

selection and the tuning of a number of parameters: 

 Attractive residue(s) - the residue(s) to whom the bias should be applied; 

 Switching-off residue(s) - the residue(s) whose distance from the ligand 

determines the adaptiveness of the bias; 

 Bias strength. 

 

Regarding the former topic, we used the Residue Placement utility inside BiKi Life 

Sciences. The utility needs a “pocket entrance” file, generated by the NanoShaper static 

pocket detection tool. NanoShaper, in fact, identifies all the possible entrances to the given 

pocket and positions a set of points on each of them. In a second step, these points are 

clustered, and the centroid relative to each cluster is considered as a putative access door of 

the ligand to the pocket. Seeing that it depends from the shape of the relative pocket and that 

the taxane site is highly mutable through the entire simulation, we had to select which frame 

to employ for the static pocket analysis. According to the volume-over-time plot (Figure 26), 

we decided to select one of the frames belonging to the longest lasting period in which the 

two related pockets of the taxane-site were merged in one single entity. Specifically, we 

selected the 875th frame, the one in which we recorded the highest volume for the binding 

site pocket.  

For comparison, Figure 28 shows the different shapes assumed by the pocket in the 875th 

frame (the one used for generating the pocket entrance file) and the last frame of our 

simulation (the one selected as starting point for the subsequent enhanced sampling MD 

simulations). 

Once these access doors have been identified, the utility place a ligand molecule 10 Å 

away from each of them along the normal to the relative point, with a series of different 

random orientations. In our case, we identified 4 points of entrance and selected to use 4 

random ligand orientations. 
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Figure 28 - Pocket volume (showed in blue surface) at different times during the simulation 

generated by NanoShaper. On the left, the 875th frame used for generating the pocket entrance file, 

and, on the right, the last frame of the simulation, where the taxane-site pocket is split into two 

different pockets, therefore pocket ID 4 volume is much smaller. 

 

We then prepared the resulting structures according to the paragraph 3.3.3, restraining 

the ligand heavy atoms during the equilibration steps. We did this in order to avoid having 

it floating around the binding site, invalidating the simulations. 

Regarding the rest of the parameters for the production runs, we based our settings on a 

step-by-step approach. Our first attempts were defined without using any a priori knowledge 

(Reference setups 1, 2 of Table 4). We used as attractive residues, the ones composing the 

taxane pocket at the end of the plain MD trajectory and, as switching off residues, Pro710 

and Phe712. We imposed a simulation time of 15 ns and a K_GAIN of 0.4, the defaults 

values suggested by BiKi Life Sciences. In our first set of simulations, we used the entire 

αβ-tubulin heterodimer. 

We then tested a different sets of atoms for both attractive and switching-off sets of 

residues (Reference setups 3-5 of Table 4) and lowered the K_GAIN parameter to a value 

as minimum as possible to reduce the bias strength and, at the same time, the influence of 

the bias itself on the simulations (Reference setups 6-12 of Table 4). Latest versions of the 

protocol implemented also a MAX_K parameter in order to avoid a too abrupt introduction 

of biasing force at the beginning of the simulations. We tested two different settings for the 

MAX_K parameter (Reference setups 10-12 of Table 4). 
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4.3. Protocol Validation 

In line with any traditional docking workflow, the very first aspect to consider is if the 

implemented protocol is able to recover the experimental binding mode. We had to 

discriminate between the two different epothilone A binding modes, knowing that one of 

them is likely to be incorrect (the EC structure obtained at 2.9 Å, PDB ID: 1TVK) or 

remarkably different from the one adopted in free-tubulin heterodimers, the structure we are 

studying. In the best-case scenario, our protocol should be able to recover only the X-ray 

crystallographic pose (PDB ID: 4I50 – 2.3 Å) or, at least, to recover the X-ray pose a number 

of times higher than the EC one. 

4.3.1. Traditional Docking Procedures 

In this respect, before putting the MD-Binding protocol in place, we verified the 

capabilities of one of the major docking software currently available, Glide [181], to 

reproduce the X-ray pose using as protein conformation the one we previously selected. We 

tested both its scoring function, the standard precision (GLIDE SP) and the extra-precision 

(GLIDE XP). In the same perspective, knowing the importance of the taxane-site flexibility,  

we also tested the induced-fit module [23] implemented in the same suite (Schrödinger Suite 

2016-2). For the induced-fit docking, we did not specify any particular residue but we 

selected to sample side-chains conformations of all the residues within 6 Å of any of the 

ligand atoms, using the “extended sampling” procedure. 

The results did not come unexpected. None of them was able to recover both the X-

ray pose and the EC one. Considering the conformation of the receptor we used (Figure 28, 

on the right), just from a purely visual inspection it seems clear that a molecule like the 

epothilone A cannot fit in such a narrow space. Even the specifically developed induced-fit 

module cannot deal with the large loop rearrangements of the binding site. Thinking on the 

way it works, the first step is always a traditional docking procedure, therefore, the ligand is 

completely flexible whereas the protein is kept rigid. Besides, despite the use of a 

considerable scaling factor for the vdW radii (0.5), it is unreasonable to think that the 

subsequent side-chains rearrangements could produce enough space for the ligand 

accommodation. 

From another standpoint, it is worth noting that, using the protein conformation of the 

X-ray structure (4I50), the Glide algorithm succeeded in the self-docking test, it correctly 
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reproduced the crystallographic binding mode. Once again, this put the emphasis on the 

impact that the selection process of the protein conformations would have in traditional 

docking procedures, especially for those cases where large loop rearrangements are reported 

upon binding. 

4.3.2. The Two Epothilone A Binding Modes at Test 

Proceeding with our studies, we wanted to assess the stability of the two crystallographic 

binding modes. In order to do so, we ran two 100-ns long plain MD simulations starting 

from the two crystal complexes, corresponding to the PDB ID 1TVK and 4I50. From the 

initial conformation, the RMSD of the ligand heavy atoms showed an evident different 

behavior for the two binding modes (Figure 29). 

 

 

Figure 29 - Calculated RMSD of the ligand heavy atoms from their initial crystallographic structure 

plotted as a function of time, after fitting on binding site Cα carbons. 

 

Whereas the X-ray binding mode is stable for the entire simulation (the average RMSD 

value is 1.23 Å), the trend in the RMSD plot for the simulation that started from the EC 

crystallographic structure is typical of an unstable pose (the average RMSD value is 5.78 Å, 

with peaks of 10.46 Å). During the simulation, the macrolidic core of the ligand rotates 

around its center-of-mass (COM) and the side chain, being solvent exposed, does not make 

and durable interaction with the protein. 
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In the same context, it is interesting to note that the RMSF of the β-tubulin Cα carbons in 

the simulation that started from the X-ray complex (Figure 30) is similar to that computed for 

the previously simulated apo-structure with a significant exception. The M-loop region 

(corresponding to residues 272-285) is now less flexible due to the stabilization effect of 

epothilone A (1.5 Å vs 2.5 Å. For comparison, see Figure 22 and Figure 30). Conversely, in the 

simulation that started from the EC complex, the M-loop is way less stable than both the two 

other simulations (5.5 Å vs 1.5 Å - Figure 30). Given the importance of the M-loop in the lateral 

interactions with other protofilaments, and the stabilization effect shown by epothilone A on the 

MT lattice, this can be considered another proof against the validity of the binding mode 

proposed by the EC density map. 

  

 

Figure 30 - Calculated RMSF of the Cα carbons of the β-tubulin subunit during the simulations of 

the two complexes. For clarity reasons, the data coming from the most flexible C-terminal tails 

(residues 426-431) has been removed. 
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4.3.3. Dynamic Docking of Epothilone A 

4.3.3.1. Posing 

We then moved to the analysis of the MD-Binding approach to dynamic docking. We 

ran our simulations through the BiKi Life Sciences interface and monitored the ligand’s 

heavy atoms RMSD against the two crystallographic structures 1TVK and 4I50. 

As stated in paragraph 4.2, we started with a generic approach, selecting all the residues 

of the binding pocket as “attractive residues” and the deepest among them, as “switching-

off residues” (Figure 31 - Reference setups 1 of Table 4.). This kind of approach does not 

exploit any a prori knowledge of the system of interest, apart from the location of the binding 

site itself. From this perspective, looking at the single tubulin heterodimer in solution, the 

taxane-site looks more like a superficial binding site rather than an inner cavity, as it is the 

colchicine-site (Figure 13). 

 

 

Figure 31 – Reference setup 1 of Table 4. Attractive residues are shown in blue, switching-off 

residues in magenta. 
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Our first set of simulations did not recover any of the crystallographic poses (Table 7) 

and we thought that it was due to our residues selection. Despite the adaptiveness of the 

methodology, it seemed to us that the amount of residues we selected attracted the ligand to 

various directions, producing a diffused effect of the virtual charges. 

 

Run ID 
Final RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

EC Structure (Å) 

1 6.96 5.27 8.04 

2 10.53 6.78 12.76 

3 4.98 4.06 7.80 

4 8.14 7.44 4.92 

5 7.91 6.77 5.21 

6 9.49 8.26 4.10 

7 8.26 7.82 4.81 

8 6.59 6.22 4.63 

9 9.18 6.33 7.27 

10 9.98 7.97 9.32 

11 9.43 8.13 6.35 

12 6.32 5.56 9.16 

13 9.72 7.94 6.23 

14 7.17 6.21 7.08 

15 15.78 14.7 15.18 

16 8.80 7.71 5.20 

Table 7 – Computed RMSD of the ligand’s heavy atoms during the MD-Binding simulations run 

according to the parameters specified in Table 4 - reference setup 1.  

 

Moreover, it is useful to remember that as soon as any atom of the ligand reaches any of 

the atoms of the switching-off residues (i.e. the pairwise distance between them should be 

less than 4 Å), the bias is gradually lowered and the simulation reaches a plain-MD like 

status. With this in mind, we decided to put a different rationale on the choice of the residues 

trying different setups. We looked at the pocket and, at the end, we imposed as switching-

off residue only the Pro712, avoiding the unnecessary addition of the Phe710. The latter is 

positioned in a way that does not smooth the interaction with the ligand, therefore its 

switching-off control is not exploited. Additionally, we reduced the number of the attractive 

residues to six: Leu655, His667, Phe710, Pro712, Thr714, and Gln719 (Figure 32). 
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Figure 32 - Reference setups 5-12 of Table 4. Attractive residues (Leu655, His667, Phe710, 

Pro712, Thr714, and Gln719) are shown in blue, the switching-off residue Pro712 in magenta. 

 

According to the crystallographic binding mode of PDB ID 4I50, some of these are 

the residues that make contact with epothilone A. We avoided the use of Asp664, despite its 

known interaction with one of two macrocycle hydroxyl groups because, being located at 

the surface of the protein, it has not been identified as part of the pocket by the NanoShaper 

software.  

With these new parameters, in one out of the 16 different runs, we recorded an RMSD 

value as low as 0.69 Å for ligand’s heavy atoms compared to the X-ray crystal structure 

(Table 8). We initially thought to have recovered the X-ray binding mode but, looking more 

carefully at the structure, we noticed some discrepancies. Despite the hydrophobic 

interactions with the pocket wall and the macrolidic part of epothilone A are maintained 

(Phe710, Pro712, Leu668, and Leu655), the M-loop helix induced by the MSA zampanolide 

is now less ordered, and the relative residues are in a different conformation. As illustrated 

in Figure 33, the h-bond between the side chain of Gln719 and the macrocycle hydroxyl 

group does not take place. Instead, Gln719 is involved in another h-bond with the backbone 
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of Leu655. The same can be said for the h-bond between the hydroxyl group of the Thr714 

and the thiazole nitrogen of epothilone A lateral chain. 

 

 

Figure 33 – Comparison between the crystallographic binding mode of epothilone A (top) and the 

one obtained by means of MD-Binding (bottom). Residues with a different conformation (Thr714 

and Gln719) are highlighted in orange. 
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 Run ID 
Final RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

EC Structure (Å) 

1 2.78 1.90 7.41 

2 9.18 8.33 4.65 

3 7.97 7.72 5.85 

4 7.31 7.13 5.98 

5 8.34 7.91 9.57 

6 8.54 8.04 9.03 

7 8.93 8.13 4.35 

8 9.00 8.52 4.02 

9 1.08 0.69 8.86 

10 6.64 5.42 6.77 

11 6.63 4.88 7.58 

12 8.17 7.27 5.57 

13 8.69 6.89 5.31 

14 6.55 6.20 7.52 

15 7.97 6.24 7.93 

16 8.80 8.42 4.97 

Table 8 – Computed RMSD of the ligand’s heavy atoms during the MD-Binding simulations run 

according to the parameters specified in Table 4 - reference setup 6.  

 

In light of these results, we considered the possibility to reduce the strength of the 

imposed artificial bias. We, therefore, tested different values for the K_GAIN (0.1, 0.2, and 

0.3) parameter. At the same time, BiKi Life Sciences implemented a new adaptive 

parameter, MAX_K, with the aim of attenuating the effect of the bias at the beginning of the 

simulations and avoiding to have a harsh acceleration for the ligand when it is in the bulk 

solvent.  

With the K_GAIN set to 0.1 and 0.2, we did not recover the X-ray structure. Conversely, 

we found the perfect balance with a K_GAIN value of 0.3 and a MAX_K value of 0.00001. 

With these settings, corresponding to the reference setup 11 and 12 of Table 4 that differs 

only for the simulation time (10 and 15 ns, respectively), succeeded in recovering the 

crystallographic binding mode. Besides, aware of the previous mistake, instead of 

monitoring only the RMSD of ligand’s heavy atom, we included in the computation also the 

backbone of the binding-site residues. This addition produced a better picture of the binding 

event (Table 9) letting us to properly identify the crystallographic binding mode (Figure 34). 



 

 

82 

Run ID 
Final RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

X-Ray Structure (Å) 

Best RMSD against 

EC Structure (Å) 

1 7.44  7.15  6.01 

2 9.20  7.35  11.0 

3 9.85  9.50  9.32 

4 7.42  2.77  8.08 

5 1.61  1.13  7.99 

6 7.07  5.87  7.73 

7 8.58  6.00  5.39 

8 7.03  4.38  8.17 

9 8.59  6.78  5.71 

10 8.79  7.35  5.47 

11 5.02  3.86  8.15 

12 7.43  6.27  6.85 

13 8.90  8.36  6.93 

14 9.83  9.28  8.78 

15 8.97  7.29  3.41 

16 11.89 10.46 11.73 

Table 9 - Computed RMSD of the ligand’s heavy atoms and the backbone of binding-site residues 

during the MD-Binding simulations run according to the parameters specified in Table 4 - 

reference setup 12. 

 

 

Figure 34 – The correctly reproduced binding mode of epothilone A with MD-Binding. Reference 

setup 16 of Table 4, Run ID 5. For comparison, see Figure 33 (top). 
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For comparison, Figure 35 shows the different evolution of the bias (dictated by the 

parameter k) with the above-mentioned two different setups. The introduction of the 

MAX_K value smooths the switching-on of the bias in the first part of the simulation and.  

Its effect is noticeable from the trend of the distance between the ligand and the switching-

off residue. The ligand, in fact, moves slower toward its binding site following a more natural 

behavior. 

 

 

Figure 35 – Evolution of the bias (grey area) for two different MD-Binding setups. The green line 

represents the distance between the ligand and the switching-off residue Pro712 monitored along 

the MD simulations. The red line is the imposed threshold value of 4 Å that controls the bias 

switch-off. 

 

 

4.3.3.2. The importance of the His227 

An interesting observation that came out looking at the simulations is the role played by 

the His227. We noticed that in many different runs, when the ligands struggled to reach the 

crystallographic binding mode, the histidine side-chain was located in a way that prevented 

the proper positioning of the epothilone A macrolidic core. Accordingly, despite the 

interaction with the backbone and the side chain of Thr274 are maintained, allowing the 

correct positioning of the epothilone A lateral chain, the macrocycle assumes a different 

conformation that is unsuitable for establishing the hydrogen bonds with the side chains of 

Asp224 and Gln279. The latter is central to the stabilization of the small M-loop alpha helix, 

which, for this reason, is almost completely unfolded (Figure 36). 
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Figure 36 – The orientation of the His227 is important for the correct positioning of epothilone A 

macrolidic core. His227 is colored in orange when its position, as observed in many MD-Binding 

runs, does not allow the proper positioning of epothilone A. In green, as reported in the 

crystallographic structure (PDB ID: 4I50). 

 

 

4.3.3.3. Scoring 

Staying on the traditional docking analogy, the MD-Binding approach can be seen as the 

searching algorithm. Therefore, it accounts only for the sampling part of the task and needs 

a scoring function to discriminate among all the obtained poses. In principle, one could 

monitor all the interactions that are formed or broken during the course of the simulations, 

rebuild the ligand’s path to binding and evaluate the free energy associated to it. However, 

given the number of obtained poses (and the relative paths), this would have been a 

cumbersome task. Our aim was that of using a docking-like scoring function, fast and easy 

to handle, but enough accurate to weight the different poses. 

We put our attention to the last frames of the MD-Binding simulations, where the bias 

has been switched off and the simulations reached a plain-MD-like status. We extracted the 

protein and the ligand only, and tested the obtained binding mode using a classical docking 

scoring function, the GLIDE SP one, to test its ability of selecting among all the poses, the 

one similar to the X-ray crystal structure. In order to remove any clash between the protein 
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and the ligands, we select to minimize the complex. Moreover, we removed all the waters 

from the computation because, for the way the GLIDE SP scoring function works, they all 

would have been considered as positive interactions, even that waters that are not bridging 

interactions with the protein. The results for the set of simulations run with the reference 

setup 12 (Table 4) are shown in Table 10 where it is possible to note that, according to the 

GLIDE SP score, the best pose has an RMSD value of 7.43 Å in respect to the X-ray crystal 

structure. 

 

Run ID 
RMSD against X-

Ray Structure (Å) 
GLIDE SP Score 

1 7.4408 -4.351 

2 9.2039 -3.465 

3 9.8533 -5.800 

4 7.4249 -4.443 

5 1.6150 -6.591 

6 7.0734 -4.624 

7 8.5892 -3.587 

8 7.0393 -6.486 

9 8.5903 -4.913 

10 8.7936 -2.988 

11 5.0268 -5.193 

12 7.4327 -7.783 

13 8.9014 -4.942 

14 9.8397 -6.338 

15 8.9710 -2.919 

16 11.8945 -3.244 

Table 10 – GLIDE score for the 16 different poses obtained by means of MD-Binding (Table 4 - 

reference setup 12) and the relative RMSD to the X-ray structure (PDB ID: 4I50). The best-scoring 

pose is highlighted in red. The one that is closest to the X-ray structure in green.   

 

For this reason, we decided to use a more accurate scoring function, the Prime 

MM/GBSA approach of the Schrödinger Suite 2016-2. Also for this method, we select to 

optimize all the residues at 6 Å from the ligand in order to avoid steric clashes between the 

ligand and the protein and reduce possible angle deviation from the equilibrium parameters. 

Even though is known that MM-GBSA absolute energy values have no physical 

meaning, in this case, the best-ranked pose is the one that correctly reproduced the 

crystallographic binding mode (Table 11). 
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Rank Run ID 
RMSD against X-

Ray Structure (Å) 
ΔGbind (kcal/mol) 

1 5 1.6150 -72.07 

2 14 9.8397 -71.09 

3 12 7.4327 -68.74 

4 11 5.0268 -62.30 

5 4 7.4249 -57.27 

6 9 8.5903 -56.02 

7 6 7.0734 -55.18 

8 8 7.0393 -54.52 

9 3 9.8533 -52.36 

10 1 7.4408 -51.08 

11 13 8.9014 -49.29 

12 2 9.2039 -44.45 

13 7 8.5892 -42.54 

14 16 11.8945 -41.99 

15 10 8.7936 -41.09 

16 15 8.9710 -39.88 

Table 11 – ΔGbind (kcal/mol) calculated using Prime MM/GBSA method for the 16 different poses 

obtained by means of MD-Binding (Table 4 - reference setup 12) and the relative RMSD to the X-

ray structure (PDB ID: 4I50). 

 

We repeated the analysis for other two set of simulations run with the same setup (Table 

4 - reference 12) and found results in agreement to those above-reported. 
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4.4. Dynamic Docking of Discodermolide and Taxol 

Once validated our protocol with the epothilone A case, we decided to repeat our 

simulations with other two known binders of the taxane-site, discodermolide and taxol. For 

these cases, in order to speed-up the sampling phase, instead of using the whole αβ-tubulin 

heterodimer we used only a β-tubulin monomer. Essentially, in the short time of an MD-

Binding run (10-30 ns), it is unlikely to observe large conformational changes in the protein 

structure. Nonetheless, we re-run a set of MD-Binding simulations for epothilone A and with 

the new setup (Table 4 - reference setup 13), we were able to reproduce the crystallographic 

binding mode and to correctly rank it with MM/GBSA. 

4.4.1. Discodermolide 

At the beginning of this study, conversely to the epothilone A case, no X-ray structures 

of discodermolide were available in the protein data bank. Therefore, we proceeded in a 

similar way as for traditional docking studies. Starting from the 2D structure (see Table 3), 

we generated an initial guess of the tridimensional conformation using the LigPrep utility of 

Schrödinger Suite 2016-4. Due to the high number of degrees of freedom of the molecule, we 

then performed an accurate conformational search with the MacroModel software using the same 

parameters as reported in ref [171,172] that resulted to produce results in agreement with NMR 

studies for the DDM conformation in solution. We further optimized the resulting lowest energy 

structure at the ab-initio HF/6-31G* level theory with the Guassian code and derived the RESP 

partial charges derived as for the epothilone A molecule. 

Despite discodermolide binds at the same site of taxol, there were enough evidences by NMR 

[182], photo labeling [183], and HDX MS (Hydrogen-Deuterium Exchange coupled to Mass-

Spectroscopy) [184] studies, that the two exert their activity through two different mechanisms, 

having different effects on the M-loop stability. After we started our simulations (Table 4 - 

reference setup 14), the X-ray structure of T2R-TTL-DDM complex came out (PDB ID: 

5XLT) [185] and we had the possibility to check the crystallographic binding mode and 

compare it to the one of epothilone A and the one resulted by our simulations. 

As expected, DDM does not make the same interactions as epothilone A. Specifically, 

the former does not interact with the Gln279, and thus it does not stabilize the M-loop to an 

α-helix form. For this reason, there is no density associated to some of the residues of the 

loop in the X-ray crystal structure, similarly to what is reported for the apo form of tubulin, 



 

 

88 

PDB ID 4I55. Besides, DDM interacts with the S9-S10 loop, at the level of the backbone of 

Arg359 (Figure 37). There is also a water-mediated h-bond with the Ser230. 

 

 

Figure 37 – Comparison between the binding mode of DDM (on the left) and EP (on the right) as 

reported in their respective X-ray structures. The highly flexible M-loop, not interacting with 

DDM, is not resolved. 

 

Thanks to the available structure, we were able to monitor the RMSD of the ligand and 

of the binding site residues during the course of our simulations. Looking at the graph (Figure 

38) is possible to note that for a set of 20 simulations, we recovered the X-ray binding mode 

three times.  

 

Figure 38 - Calculated RMSD of DDM and pocket backbone to the X-ray structure (PDB ID: 

5LXT) plotted as a function of time. 
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We then looked carefully at the final poses and noticed a remarkable result: not only all 

the main interaction with the protein were recovered but also the water-mediated hydrogen 

bond with the Ser230 (Figure 39).  

 

 

Figure 39 – The correctly reproduced binding mode of DDM with our MD-Binding protocol ( 

Reference setup 14 of Table 4, Run ID 4). For comparison, see Figure 37 (left). The induced α-

helix is still well folded. 

 

Besides, our simulations provided more information than the static view of the crystal 

structure. We noticed a fluctuation in the hydrogen bond between the nitrogen of the 

backbone of Thr274 and carbonyl group of DDM. This was due to the formation of a weak 

interaction between the carbamate group of DDM and the side-chain of Thr274 (that is not 

present in the X-ray structure). 

Moving to the scoring phase, Prime MM/GBSA resulted useful also in this case. It 

showed to be capable of ranking at the top places all the three simulations whose binding 

mode was closer (in terms of RMSD) to the X-ray crystal structure (PDB ID: 5LXT). The 

results are summarized in Table 12. 

 

Ser230 

Thr274 
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Rank Run ID 
RMSD against X-

Ray Structure (Å) 
ΔGbind (kcal/mol) 

1 20 5.17 -84.94 

2 12 8.28 -76.77 

3 4 6.21 -69.64 

4 5 1.20 -64.34 

5 6 6.01 -56.78 

6 9 6.74 -56.75 

7 14 8.97 -55.48 

8 19 7.55 -52.57 

9 8 9.08 -52.35 

10 1 7.67 -52.29 

11 3 11.4 -50.41 

12 18 1.95 -48.61 

13 11 8.52 -46.31 

14 17 6.93 -43.15 

15 10 8.53 -43.07 

16 7 10.4 -42.06 

17 13 11.2 -38.06 

18 16 8.60 -36.26 

19 2 7.94 -30.81 

20 15 1.77 -30.45 

Table 12 – ΔGbind (kcal/mol) calculated using Prime MM/GBSA method for the 20 different poses 

obtained by means of MD-Binding (Table 4 - reference setup 14) and the relative RMSD to the X-

ray structure (PDB ID: 5LXT). 

 

4.4.2. Taxol 

Lastly, we performed a number of MD-Binding simulations for taxol, starting from the 

optimization of the 2D structure analogously to what we did for discodermolide. Despite the 

low resolution of the available crystal structure (PDB ID: 1JFF – 3.5 Å), the binding mode 

proposed by the authors is in agreement with the results obtained by the photoaffinity 

labeling experiments of a series of taxol analogs [186]. Therefore, we decided to compare 

the outcome our simulations to the binding mode proposed in the 2001 by electron 

crystallography of Zn-induced tubulin sheets (see Paragraph 2.5.1 and Figure 10). 

Specifically, we conducted a series of 30-ns long simulations using the same setup as for EP 

and DDM (Table 4 - reference setup 15). For the comparison, we considered only those 

simulations in which taxol made contact with the switching-off residue Pro272, hence a plain 

MD-like status has been recovered (for visual explanation, see Figure 40). 
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Figure 40 – Comparison of bias and distance evolution during the course of TAX MD-Binding 

simulations. On the left, a simulation in which TAX did not make contact with the switching-off 

residue Pro272; on the right, the bias is completed switched off at about 7 ns, and the simulation 

reached a plain MD-like status. 

 

Unfortunately, none of the simulations recovered the crystallographic binding mode, 

thus we did not proceed to the scoring phase. 

However, visual inspecting our simulations, we noticed that in most of them the bias 

switched off because of the contacts made by one of the lateral phenyl groups, rather than 

by the baccatin main core (Figure 41). 

 

 

Figure 41 – The taxol obtained discordant binding modes. The selected switching-off reside Pro272 

is shown in orange. 

 

In light of these results, we hypothesize that a different selection for the taxol group 

should have been done. In particular, instead of spreading the virtual charges across all the 
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taxol atoms, we should have selected only those forming the baccatin core (Figure 42). In 

analogy to traditional docking techniques, this could resemble, in some way, the constraining 

of a particular set of atoms, a procedure particularly useful when dealing with a congeneric 

series of compounds. 

 

Figure 42 – The taxol baccatin core highlighted in red. 

 

In our case, it could have driven the accommodation of the main core and, after the bias 

switching-off, to the subsequent arrangement of the lateral chains. 

Nonetheless, further simulations and analysis are required. 
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5. Conclusions and Perspectives 

Even though there are no doubts about the importance of the role played by docking 

simulations in discovering and developing novel compounds of pharmaceutical interest, to 

make sense of often-discordant experimental results and to gain a better understating about 

the driving forces of a binding event, a paradigm shift to a dynamical approach is mandatory. 

Proteins are inherently flexible entities and, especially for those cases in which large 

conformational rearrangements are observed upon binding, the static picture provided by 

traditional docking techniques can’t elucidate the mechanisms at the basis of the binding 

process. In line with this reasoning, molecular dynamics and the related enhanced sampling 

methods are everyday gaining more importance and, in the last few years, several 

computational approaches have been developed in order to exploit their potential in drug 

discovery and development programs. 

In this dissertation, we made use of one of these state-of-the-art strategies, the MD-

Binding technique, to devise a protocol for the dynamic docking of taxane-site ligands to 

tubulin, a protein that by its own nature can exist in three major forms: heterodimers, curved 

oligomers, and straight assembled microtubules. We showed that molecular dynamics 

methods, by taking into account protein flexibility of both backbone and side-chains, have 

the capabilities to overcome many of the limitations of which traditional docking techniques 

suffer. 

After an initial plain MD simulation, thanks to which we gathered valuable information 

regarding the behavior of the binding pocket and, specifically, of its highly flexible M-loop, 

we validated our MD-Binding protocol against the remarkable case of epothilone A. Its 

binding mode, in fact, remained elusive until recently, when the high-res X-ray crystal 

structure of the drug in complex with a curved α/β-tubulin heterodimer was determined and 

showed clear differences from the one proposed using EC data of Zn-induced tubulin sheets. 

Our protocol was able to discriminate between the two selecting the correct one. Besides, by 

comparing it with a traditional software, we showed how the MD-Binding approach relieves 

the user by the arduous work of choosing one or more suitable protein conformations against 

which to perform the docking simulations. 

We had similar results for another ligand, discodermolide, but not for the well-known 

microtubule-stabilizing agent taxol. For the latter, although there are no high-res X-ray 

crystal structures to compare with and verify our results, our protocol was not able to select 
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any relevant binding mode for the drug. We, therefore, hypothesized that a less generic 

approach must be evaluated when dealing with a ligand of its size but further simulations 

and analysis are needed. 

In conclusion, our study showed the feasibility and the potential of the MD-Binding 

method in correctly reproducing the binding modes of two highly flexible ligands, epothilone 

A and discodermolide, in the as much flexible binding site of tubulin at a fraction of the time 

that is generally needed by plain MD simulations. However, the scoring phase represents 

still an open issue for every computational method, and further advancements in the field are 

required. Nonetheless, we believe that, with the advent of more powerful hardware 

architectures and of more accurate and efficient algorithms, dynamic docking will take the 

place of traditional methods at any level of drug discovery programs. 
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APPENDIX: Residue Numbering Correspondence 

 

Numbering correspondence for β-tubulin residues. UniProtKB indicates the exact 

amino acids sequence for the Bos Taurus (bovine) tubulin beta-2B chain encoded by the 
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gene TUBB2B. This residue numbering was used throughout the dissertation when referring 

to the monomeric system. In the αβ-tubulin heterodimeric system, the numbering is shifted 

by 440, which is the number of residues of the α-tubulin subunit. 

Lowe et al. introduced two gaps (at the level of residues that colored in red in the 

Table) due to the alignment of α and β tubulin subunits. α-tubulin, this is more evident when 

considering the second gap (Pro360-Arg369), has 9 more residues in the corresponding loop. 

The three protein domains are colored differently for clarity reasons: the N-terminal 

domain in light yellow, the drug-binding domain in light blue, and the C-terminal domain in 

light magenta. 

Secondary structures that create the taxane-site are highlighted.  
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