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ABSTRACT 

 

 The model updating technique allows the understanding of the dynamic behavior of a 

system and its damage state. In the last years, the structural monitoring has increased its 

applicability thanks to the decrease of the cost of sensors and improvements in the computational 

power. More and more structures are today instrumented in order to assess the intervention of 

progressive damages, understand their structural behavior and safety in almost real time. Nowadays, 

the real time identification of structural parameters and damage assessment is no longer 

unachievable. Moreover, the uncertainties evaluation is another important task required by the 

model updating procedures. Combining real time assessment and uncertainties evaluation, the 

algorithms can drive to a judgment about unsafety conditions in the buildings, with possible 

evacuation and securing of the structures, which is more and more required to structural health 

monitoring systems. 

The algorithms developed in this work are focused on these topics, especially on very quick model 

updating procedure, with uncertainties evaluation, which allows to estimate the structural 

parameters along with an error assessment. The quickness of the algorithm enables for its use in real 

time monitoring of actual structures. The algorithm itself is based on an innovative two steps 

procedure, with uncertainties evaluation, solving the inverse eigenvalues problem. The first step is 

achieved with closed form solution (without considering the determinant equations). If the solution 

does not satisfy the fixed thresholds, the second iterative step should be performed in order to 

improve the agreement between experimental outcomes and numerical ones. This procedure allows 

us to write the partial derivatives of the problem itself, with respect to the experimental outcomes, 

in closed form. Therefore, the parameters uncertainties are computed using the errors propagation. 

A second procedure is developed facing the complete problem entirely in iterative way, using a 

genetic algorithm with response surfaces (the so-called DE-Q algorithm). The uncertainties 

evaluation is done also for this procedure in closed form. 

A sensitivity analysis has been performed on 2-D and 3-D infilled framed structures varying the 

perturbation values on frequencies and mode shapes and varying the parameters arrangement. 

Comparison between the two procedures has been done in terms of mean values and coefficients of 

variations of parameters. Another comparison has been performed in order to understand the 

influence of the determinant equations and the number of modes used.  

Two real structures have been then analyzed with the algorithm, the first one is a three storey, two 

bays 2-D infilled frame tested with shake table in San Diego, CA, US, of which seven damage 
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states were achieved scaling accelerogram of actual earthquakes. The second one is a two storey,   

3-D infilled framed structure located in El-Centro, CA, US, tested with ambient vibrations and 

forced vibrations through shaker. Four damage states were achieved artificially through infills 

removal at the first storey. For both the structures, a damage assessment has been achieved and, for 

the last one, a sensitivity analysis using several data windows for ambient vibrations is reported. 

Then, a generalization of the procedure in order to take into account the possibility of non-linear 

parameters is studied. 

In the last part of this thesis, the algorithm is used in order to find a first trial solution for the 

retrofitting problem of existing structures. Two sample structures are analyzed and the comparison 

between numerical and expected parameters is performed. A generalization for non-linear 

parameters is then developed. 

 

Keywords: Model Updating, Damage Assessment, Dynamic identification, Inverse Eigenvalues 

Problem, Statistical Analysis, Error Propagation, Infilled Frames, Stick Model, Ambient Vibrations, 

Sensitivity Analysis, Monte Carlo Procedure, Genetic Algorithm, Response Surfaces Methodology, 

Seismic Retrofitting, Modal Assurance Criterion, Shake Table Tests, Shaker, Matlab, OpenSEES. 
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SOMMARIO 

 

 La procedura di model updating è una tecnica alquanto datata che permette di comprendere 

il comportamento dinamico di un sistema e il suo stato di danno. Negli ultimo anni, il monitoraggio 

strutturale ha incrementato la sua applicabilità grazie al ridotto costo dei sensori e al miglioramento 

della potenza computazionale. Sempre più strutture sono oggi strumentate per valutare i loro danni 

e capire il comportamento dinamico stesso. La valutazione in tempo reale dei parametri strutturali e 

dello stato di danno è oggigiorno non più irraggiungibile. La valutazione delle incertezze sui 

parametri (deviazioni standard) è, inoltre, richiesta ai moderni algoritmi di model updating. La 

combinazione della valutazione in tempo reale e dell'incertezza possono portare a un giudizio di 

situazioni potenzialmente pericolose in strutture esistenti con possibile evacuazione e messa in 

sicurezza della struttura stessa. Questa valutazione è sempre più richiesta ai sistemi di monitoraggio 

strutturale. 

L'algoritmo sviluppato in questo lavoro è incentrato su questi aspetti, in particolare sulla rapida 

valutazione dei parametri strutturali (usando il model updating) e delle relative incertezze. La 

velocità dell'algoritmo permette l'uso dello stesso per il monitoraggio in tempo reale delle strutture. 

L'algoritmo è basato su una procedura innovativa a due fasi, con valutazione dell'incertezza, 

risolvendo un problema inverso agli autovalori. La prima fase è risolta con formulazione chiusa del 

problema (senza considerare le equazioni ai determinanti). Se la soluzione non soddisfa delle soglie 

prefissate per i parametri di controllo, la seconda fase, iterativa, deve essere eseguita in modo da 

migliorare la corrispondenza tra risultati sperimentali e numerici. La procedura permette, inoltre, di 

scrivere le derivate parziali del problema stesso, rispetto ai risultati sperimentali, in formulazione 

chiusa; pertanto le incertezze sui parametri sono calcolate mediante la teoria della propagazione 

degli errori. 

Una seconda procedura è sviluppata affrontando direttamente il problema completamente in forma 

iterativa, usando un algoritmo genetico con superfici di risposta (chiamato algoritmo DE-Q). Le 

incertezze sono calcolate in formulazione chiusa anche per questo caso. 

L'analisi di sensitività è stata eseguita su telai tamponati 2-D e 3-D variando il valore della 

perturbazione su frequenze e modi e, inoltre, variando la disposizione dei parametri. Il confronto tra 

le due procedure è stato fatto in termini di valori medi e coefficienti di variazione sui parametri. 

Inoltre, un confronto per capire l'influenza delle equazioni con i determinanti ed il numero di modi 

usati è stato analizzato.  
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Due strutture reali sono state successivamente analizzate con l'algoritmo, la prima è un telaio 

tamponato bidimensionale a tre piani e due campate, sottoposto a prove con tavola vibrante in San 

Diego, CA, US, raggiungendo sette stati di danno scalando accelerogrammi derivanti da sismi reali. 

La seconda è una struttura tridimensionale con telai tamponati a due piani in El-Centro, CA, 

sottoposta a prove con vibrazioni ambientali e mediante vibrodina. Quattro stati di danno sono stati 

artificialmente prodotti rimuovendo alcune tamponature al primo piano. Per entrambe le strutture, la 

valutazione del danno è stata eseguita; inoltre, per la seconda, un'analisi di sensitività è stata svolta 

sulla base dei dati derivanti da diverse finestre temporali di acquisizione per le vibrazioni 

ambientali.  

Successivamente, la generalizzazione dell'algoritmo per tenere in conto di parametri non lineari è 

sviluppata. 

Nell'ultima parte della tesi, l'algoritmo è usato per trovare una prima soluzione di tentativo per il 

problema del miglioramento/adeguamento sismico di strutture esistenti. Due strutture campione 

sono state analizzate ed il confronto tra i parametri ottenuti e quelli attesi è riportato. La 

generalizzazione a parametri non lineari è successivamente studiata. 

 

Parole Chiave: Aggiornamento del Modello, Valutazione del Danno, Identificazione Dinamica, 

Problema Inverso agli Autovalori, Analisi Statistica, Propagazione degli Errori, Telai Tamponati, 

Modello Stick, Vibrazioni Ambientali, Analisi di Sensitività, Procedura Monte Carlo, Algoritmo 

Genetico, Superfici di Risposta, Adeguamento sismico, Modal Assurance Criterion, Tavola 

Vibrante,Vibrodina,Matlab,OpenSEES.
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CHAPTER 1 

 

INTRODUCTION 

 

 The model updating is a dated technique which allows to understand the dynamic behavior 

of a structure or, more generally, a system whose dynamic behavior must be analyzed. In the last 

years, the structural monitoring increased its applicability thanks to the decrease of the cost of 

sensors and improvements in the computational power. More and more structures are today 

instrumented in order to monitor their dynamic behavior, to assess their damages and safety in 

almost real time. In this context, more powerful and less computationally demanding model 

updating procedures are needed in order to achieve a real time evaluation of structural parameters 

and real time damage assessment of the structure itself. Moreover, the uncertainties evaluation is 

another important task required by model updating algorithms. The real time assessment combined 

with uncertainties evaluation can drive to a judgment about dangerous situations in actual buildings, 

which is more and more required to structural health monitoring systems. 

The algorithms developed in this work are focused on these topics, especially on very quick model 

updating procedure, with uncertainties evaluation, which allows to estimate the structural 

parameters along with an error assessment. The quickness of the algorithm enables to its use for real 

time monitoring of actual structure. 

 

1.1 Background about model updating and damage assessment 

 Several literature proposals are available for the solution of model updating problems. Two 

main types of model updating mehods are described in literature: (a) methods relying on 

comparison between experimental and numerical outcomes (frequencies, mode shapes, FRFs) using 

comparison coefficients; (b) methods which solve directly the system of eigenvalues equations. 

A general review of those methods can be found in Ewins, 2000, Friswell and Mottershead, 1995, 

Mottershead and Friswell, 1993 and Imregun and Visser, 1991. 

Different proposals for the first method has been found in literature. First of all a direct comparison 

between experimental frequencies and numerical ones (obtained using modeling of the structure) is 

described in the literature (Ewins, 2000). In order to compare the mode shapes, different 

coefficients were defined, starting with the most common one: the Modal Assurance Criterion 

(MAC coefficient) (Allemang, 1984; Allemang, 2003).  
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in which 
j

  is the j-th experimental modes and 
i

  is the i-th numerical one. The vectors with the 

star as apex are the complex conjugated of the corresponding without star as apex;  and  

mean the norm of the vector and the dot product between vectors, respectively. In the case of real 

eigenmodes, the formula must be simplified in this way: 
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this coefficient can assume values between 0 (no matching between experimental and numerical 

modes) and 1 (complete matching between the abovementioned modes). 

In Savoia and Vincenzi, 2008; Vincenzi and Savoia, 2010; Vincenzi et al., 2013,  there is the 

definition of the subsequent function to minimize as target function:  
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ii
 ,  is the i-th pair of corresponding modes and ii ff ,  is the i-th pair of corresponding 

frequencies. 1w  e 2w  are weighting functions, n is the number of experimentally identified modes. 

Improvements about MAC coefficient have been performed in order to overcome some limits of the 

parameter itself. The Normalized MAC (NCO) (Ewins, 2000) takes into account also a weighting 

matrix in order to take into account also the mass matrix in the procedure and the Improved MAC 

(IMAC) is less sensitive to the DOFs chosen. In order to compare, in the same plot, frequencies and 

mode shapes, the Frequency-scaled MAC (FMAC) has been created (Ewins, 2000; Friswell and 

Mottershead, 1995). If the comparison is made for the i-th component of the mode, the COMAC 

has to be used (Ewins, 2000). In order to melt together frequencies and mode shapes comparisons, 

not only the FMAC was introduced in Literature. More recently target functions to minimize, which 

have one portion related to frequencies comparison and another one related to mode shapes 

comparison, have been defined. In Savoia and Vincenzi, 2008; Ewins, 2000 and Peeters and De 
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Roeck, 1999, a comparison in frequencies and NMD coefficient ("Normalized Modal Difference", 

related to MAC coefficient) are used to define a target function. In Teughels, 2003; Teughels and 

De Roeck, 2005 a sensitivity-based FE model updating strategy is defined, in which the structure is 

divided into substructure having the same value of parameters (or damages). Indications in order to 

reduce the estimation uncertainties were given in Mares et al., 2002. The last procedure was 

applied, for instance, in Moaveni et al.,2008; Moaveni et al., 2010; Moaveni et al., 2013 and Song 

et al., 2017. Other type of model updating uses the comparison between individual response 

functions or the correlation between the complete set of FRFs (Ewins, 2000, Friswell and 

Mottershead, 1995). 

The second type of model updating relies on the solution of the dynamic eigenvalues problem. A 

review of the various proposals can be found in Mottershead and Friswell, 1993 and He, 1987. The 

first attempt was made in the 70s with the Direct Matrix Updating (DMU) in which the mass and 

stiffness matrices were updated directly (He, 1987). An enhanced procedure, with respect to the 

previous one, was developed by Lin, 1991 called Error Matrix Method (EMM) in which the error 

mass and stiffness matrices are computed. Another family of methods is the so-called indirect 

updating methods starting from the simplest and earliest case called Eigendynamic Constraint 

Method (ECM) in which the eigenvalues problem is solved iteratively (Ewins, 2000). The one with 

greatest application in practice, for the second type of model updating, is the Inverse 

Eigensensitivity Methods (IES) based on an equation of exactly the same general form as the ECM 

methods with the difference that the system matrix and vector are composed of properties which 

derive from the analytical model sensitivities and the discrepancies between predicted and measured 

modal properties. Also for this type, a method which uses the FRFs, the Response Function 

Methods (RFM), was developed (Visser, 1992 and Ewins et al., 1980). A probabilistic analysis of 

the problem has been done in Beck and Katafygiotis, 1998; Ching et al., 2006 and Muto and Beck, 

2008. 

 

1.2 Background about the optimization algorithms 

 

1.2.1 Description of the Differential Evolution DE-Q Algorithm 

 The DE-Q algorithm is a Differential Evolution algorithm that looks for the minimum value 

of a target function H. This type of algorithm combines the genetic algorithm with the response 

surface methodology. The main aspect of this algorithm are summarized in the following points, 
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taken from Vincenzi and Savoia, 2010, Vincenzi and Savoia, 2015 and Vincenzi and Gambarelli, 

2017. 

Genetic Evolution algorithm (DE algorithm) 

Differential Evolution (DE) is a heuristic direct search approach where NP vectors: 

Gix , with NPi ,....,2,1  

are used (Storn and Price, 1997). Subscript G indicates the G-th generation of parameter vectors, 

called population. Vectors Gix ,  contain a number D of optimization parameters. The number NP of 

vectors of the population is kept constant during the minimization process. 

In order to minimize the objective function, a direct search method is a strategy that generates 

variations of parameter vectors. Once a variation is generated, a decision must be made whether or 

not to accept the new parameters. A new vector of parameters is accepted only if it reduces the 

value of the objective function. A robust algorithm requires that the solution does not converge to a 

local minimum. Techniques like genetic and evolution algorithms are based on a calculation 

involving several vectors simultaneously (Goldberg, 1989; Vanderplaats, 1984). Hence, if some 

vectors reach local minima, they can be excluded because they are associated with higher values of 

the cost function.  

The algorithmic scheme of the DE approach is shown in Figure 1.1. First of all, the initial 

population is chosen randomly. Then, DE generates a new parameter vector by adding the weighted 

difference vector between two vectors of the population, so generating a third vector (the mutant 

vector). This operation is called Mutation. Then, in the Crossover operation, a new trial vector is 

generated by selecting some components of the mutant vector and some of the original vector. If the 

trial vector gives a lower value of objective function than that of the old population, the new 

generated vector replaces the old vector (Selection operation). 

 Mutation 

For each vector of the G-th population: 

Gix , with NPi ,...,2,1  

a trial vector Giv ,  is generated by adding to Gix ,  a contribution obtained as the difference between 

two other vectors of the same population. 

Three different combination strategies can be used during the mutation process: the “random” 

combination, the “best” combination and an intermediate combination called “best-to-rand”. 

According to Storn and Price, 1997, in the random combination, the mutant vector is generated 

according to the expression: 
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)( ,3,2,11, GrGrGrGi xxFxv                                                 (1.5) 

where },...,2,1{,, 321 NPrrr   are mutually different integer numbers. Moreover, F is a positive 

constant (scale parameter) controlling the amplitude of the mutation. The scale parameter F is taken 

smaller than 2. Figure 1.2 shows the mutation process according to “random” combination. “Best” 

combination is similar to the random combination, but the mutant vector is defined from the 

equation: 

)( ,2,1,1, GrGrGbestGi xxFxv                                                (1.6) 

where Gbestx ,  is the vector giving the minimum value of the object function of the G-th population. 

Finally, in the “best-to-rand” combination, mutant vector is generated according to the expression: 

)()( ,2,1,,,1, GrGrGiGbestGiGi xxFxxFxv                                  (1.7) 

The effectiveness of one method depends on the regularity of the objective function. For regular 

functions with only one (global) minimum, “best” combination converges more rapidly since the 

best vector obtained from the previous generation is taken as the basic vector. In the presence of 

more minima, “random” or “best-to-rand” combinations are the best choices, since convergence to 

local minima can be avoided. 

 Crossover 

In order to increase the diversity of the vectors, crossover process is introduced in the DE algorithm. 

The trial vector 1, Giu  is obtained by randomly exchanging the values of optimization parameters 

between the original vectors of the population Gix , and those of mutant population 1, Giv , i.e.: 

),...,,( 1,1,21,11,   GDiGiGiGi uuuu                                                 (1.8) 

where: 
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In Eq. 1.9, Dj ,...,2,1 , where D is the number of optimization parameters, and jiu  is the j-th 

component of vector iu . Moreover, )( jrand is the j-th value of a vector of uniformly distributed 

random numbers, and CR is the crossover constant, with 0 < CR < 1. Constant CR indicates the 

percentage of mutations considered in the trial vector. 

 Selection 

In order to decide if a vector iu  may be element of new population of generation G+1, each vector 

1, Giu is compared with the previous vector Gix , . If vector 1, Giu  gives a smaller value of objective 
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function H than Gix , , 1, Giu  is selected as the new vector of population G+1; otherwise, the old 

vector Gix ,  is retained: 
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with NPi ,...,2,1 . 

 Convergence 

In the convergence rule, values of the objective function obtained from the population G+1 are 

compared. Vectors are ordered depending on values of objective function as: 

1,1,21,1
~...~~

 GNPGG xxx   

such that: 

)~(...)~()~( 1,1,21,1   GNPGG xHxHxH  

Convergence rule is then based on the difference of values H of the objective function of the first 

NC vectors and the distances between the same vectors, NC being the number of controlled vectors. 

The first, convergence test can be expressed as: 

1
1,

1,11,

)~(

)~()~(
VTR

xH

xHxH

Gi

GiGiH
i 






                                          (1.10) 

where NCi ,...,2,1 and 1VTR  is the prescribed precision. 

Control of values of objective function H only can be not sufficient when the object function has a 

low gradient close to the minimum solution. For this reason, convergence requires also that the 

relative distance between the components of the first NC vectors is small, i.e.: 

2
1,

1,11,

~
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GjiGjix
ij 
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


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                                              (1.11) 

The response surface methodology 

The basic concept of the response surface method is to approximate the original complex or implicit 

target function using a simple and explicit interpolation function. 

The response surface method was originally proposed by Khuri and Cornell (1996) as a statistical 

tool, to find the operating conditions of a chemical process at which some response was optimized. 

Subsequently, the use of RSMs has been extended to other fields, especially to engineering 

problems involving the execution of complex computer analysis codes. In this case, in fact, RS 

methods can be used to alleviate the computational effort. Khuri and Cornell (1996) provided 
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modern perspectives of RS method applied to structural reliability analyses. The base idea of the 

surface response method is that a cost function can be defined, such as: 

)(xgH                                                                 (1.12) 

where x  denotes the D-dimensional vector of design parameters and )(xg  is called response 

function.  

If )(xg  is a continuous and differentiable function, it can be locally represented with a Taylor series 

expansion from an arbitrary point kx  : 

pxgppxgxgH k
TT

kk  )(
2

1
)()( 2                                    (1.13) 

where )( kxg  and )(2
kxg  are, respectively, the gradient vector which contains the first-order 

partial derivatives of function g and the Hessian matrix (second-order partial derivatives) evaluated 

at kx . Many practical evaluation techniques are available to define )(xg . Among those methods, 

reduction of Eq. 1.13 to a polynomial expression is the idea of RSM. 

In classical RSM, the response surface is obtained by combining first or second order polynomials 

fitting the objective function defined in a set of sampling points. Second order approximations are 

commonly used in structural problems due to the computational efficiency with acceptable 

accuracy. Higher order polynomials are rarely used because the number of coefficients to be 

determined strongly increases with the order. Furthermore, some authors used quadratic 

polynomials without the cross terms, originating incomplete polynomials. 

Adopting a second-order approximation function, Eq. 1.13 can be written as follows: 

02

1  xLxQxH TT                                                (1.14) 

where Q  is a DD  coefficient matrix collecting the quadratic terms, L  is a D-dimension vector 

of linear terms and 0  is a constant. 

Following the procedure proposed by Khuri and Cornell (1996), a limited number of selected 

numerical simulations (called experiments) is used in order to obtain an analytical relation between 

the mean values of identification parameters 21, xx  and the target function H. Without loss of 

generality and for the sake of simplicity, in the following only 2 parameters (x1, x2) will be 

considered. Therefore, Eq. 1.14 can be written as follows: 

215
2
24

2
1322110 xxxxxxH                              (1.15) 
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where coefficients   are unknown. In this method, response surface function includes the first and 

second order terms. 

If NS observations are available, Eq. 1.14 can be expressed in a linear matrix notation as: 

 ZH                                                                (1.16) 

where vector   collects the unknown parameters of the response surface and: 
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Constants   are determined by applying the least square estimates method, so obtaining: 

     HZZZ TT  1)(                                                   (1.19) 

In Eq. 1.19, all coefficients   have equal weight. However, a good RSM must be generated such 

that it describes the target function well close to the solution point. The following weighted 

regression method is proposed in Myers and Montgomery (1995) and Kaymaz and McMahon 

(2005) to determine the coefficients of the RSM: 

HWZZWZ TT  1)(                                               (1.20) 

where W  is an NSNS  diagonal matrix of weight coefficients. For them, the following expression 

can be used: 

)
)(

exp(
best

besti
i y

yxg
w


                                                    (1.21) 

where: 

))(min( ibest xgy                                                          (1.22) 

Many algorithms have been proposed to select appropriate set of sampling points kx , in order to 

obtain better fitting of response function. Detailed description of RSM methods including 

implementation and sampling strategies can be obtained from Khuri and Cornell (1996).The main 

(1.17) 

(1.18) 
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disadvantage of the use of RSM is that a local minimum can be reached if the target function 

presents more than one local minima. The use of the so-called general response surface method 

(GRSM) (Alotto et al., 1997) can partially resolve this problem, but this approach is applicable to 

low dimensional problems only, since its practical efficiency deteriorates with a high number of 

design variables. 

Implementation 

The RSM methodology is introduced in Differential Evolution algorithm to improve performance in 

term of speed rate and to obtain higher precision of results. The algorithmic scheme of the modified 

DE algorithm by the use of a quadratic response function (called in the following DE-Q) is shown 

in Figure 1.3. 

First, the initial population is selected randomly. At each iteration, NP sets containing NS vectors 

are chosen (with NS < NP). Starting from the NS sampling points, a RS is calibrated to fit the cost 

function H. Solving the linear system of Eq. 1.20, coefficients   can obtained and, from them, it 

can be checked if the RS function has a convex shape. If it is the case (Figure 1.4(a)), the new 

parameter vector is defined as the minimum of a second-order polynomial approximation, i.e.: 

))(min()(| **
1, xgxHxv Gi                                                (1.23) 

Otherwise (Figure 1.4(b)), classical Mutation operation based on linear combination is performed to 

obtain the trial vector 1, Giv , Crossover and Selection operations are then defined as in the original 

DE algorithm. 

It is worth noting that the shape of objective function is usually unknown. If it presents only one 

(global) minimum, second-order approximation provides for the solution in a very low number of 

iterations. On the other hand, even if local minima are present, global minimum is expected to be 

reached since multiple search points are used simultaneously. Moreover, if the minimum of second 

order approximation gives a higher values of target function (see Figure 1.4(c)), it can be rejected in 

the Selection operation (the old vector Gix ,  is retained). Finally, in order to detect the global 

minimum, several evaluations must be performed by using Genetic and Evolutionary algorithms, in 

order to obtain the prescribed precision. Close to the solution (Figure 1.4(d)), the second-order 

approximation gives very good performance in term of speed rate and higher accuracy with respect 

to original algorithm. 

For these reasons, global performance in term of speed rate is strongly improved by introducing the 

second order approximation by RSM and high precision of results of the original DE algorithm is 

preserved. This procedure appears to be more efficient with respect to GRSM proposed in (Alotto et 
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al., 1997), where DE and RSM method are used alternatively, because the latter is characterized by 

sensitivity of performance with respect to rules governing the switch between the algorithms. 

 

1.2.2 Trust-Region Algorithm 

 Starting from a function to minimize, f(x), where the function takes vector arguments and 

returns scalars. Considering the unconstrained minimization problem, if you are at a point x in n-

space and you want to move toward point with a lower function value, the basic idea is to 

approximate f with a simpler function q, which reasonably reflects the behavior of the original 

function f in a neighborhood N around point x. A trial step s is computed by minimizing over N 

(which is called Trust-Region). The sub-problem can be written as follows: 

 Nssqs ),(min                                                         (1.24) 

The current point is updated to be sx   if )()( xfsxf  , otherwise the current point remains 

unchanged and N is shrunk and the trial step computation is repeated. 

In the standard Trust-Region method (Moré and Sorensen, 1983), the quadratic approximation q is 

defined by the first two terms of the Taylor approximation of f at point x. N is usually spherical or 

ellipsoidal in shape. The Trust-Region sub-problem is stated as follows: 



  gssHs TT

s

~
2

1
min  such that  sD                                  (1.25) 

where g  is the gradient of f  at current point x, H
~

 is the Hessian matrix, D  is a diagonal scaling 

matrix,   is a positive scalar and   is the 2-norm. The algorithm used for solving Eq. 1.25 

involves the computation of a fill eigensystem and a Newton process applied to the secular 

equation: 

0
11


 s
                                                             (1.26) 

Such algorithm provide an accurate solution to Eq. 1.25 but requires time proportional to several 

factorizations of H
~

. Therefore, for Trust-Region problems a different approach is needed. Several 

approximation and heuristic strategies, based on Eq. 1.25, have been proposed in literature (Byrd et 

al., 1988; Steihaug, 1983). The approximation approach followed, for instance, in MATLAB 

(MathWorks, 2005, MathWorks, 2017) is to restrict the Trust-Region sub-problem to a two-

dimensional subspace S (Branch et al., 1999; Byrd et al., 1988). Once the subspace S has been 

computed, the work to solve Eq. 1.25 is trivial even if full eigenvalue/eigenvector information is 



 
11 

 

needed (since in the subspace, the problem is only two-dimensional). The predominant work has 

now shifted to the determination of the subspace. 

The two-dimensional subspace S is determined with the aid of the preconditioned conjugate 

gradient (PCG) process. The solver defines S as a linear space spanned by 1s  and 2s , where 1s  is in 

the direction of the gradient g  and 2s  is either an approximate Newton direction, achieved solving: 

gsH  2

~
                                                            (1.27) 

or a direction of negative curvature: 

0
~

22  sHsT                                                             (1.28) 

A sketch of unconstrained minimization process using Trust-Region algorithm is now easy to give: 

1. Formulate the two-dimensional Trust-Region sub-problem. 

2. Solve Eq. 1.25 to determine the trial step s. 

3. If )()( xfsxf  , then sxx ' . 

4. Adjust   of Eq. 1.25. 

These four steps have to be repeated until convergence. The Trust-Region dimension   is adjusted 

according to standard rules. In particular, it is decreased if the trial step is not accepted, i.e. 

)()( xfsxf   (Coleman and Verma, 2001; Sorensen, 1994). 

An overview of the entire method, also considering the case of constrained minimization process, 

can be found in Coleman and Li, 1996; Conn et al., 2000 and MathWorks, 2005. 

 

1.3 Infills modeling criteria 

 A lot of researchers, in the early 90s, paid attention in defining a numerical models which 

simulate the behavior of R.C. infilled frames. These models, suggested by the different authors, for 

the study of interaction between infill panels and frames could be classified , through consolidated 

approach, in micro, meso and macro-models. Micro and meso-modeling are currently used to 

analyze portion of a buildings or single infill panels, which results too onerous (in terms of 

calculation time) for the study of whole buildings. Among the macro-models proposed to reproduce 

the interaction between frames and infills, almost all of them are based on the concept of equivalent 

strut (Crisafulli et al., 2000; Asteris et al., 2011; Tarque et al., 2015). Further classification among 

these models can be made on the basis of the number of equivalent struts considered to model the 

presence of the infill panel. In Crisafulli et al., 2000 it is shown how the single equivalent strut is 

not suitable to represent the distribution of stresses in the infilled frame and, when these stresses are 

required or necessary, modeling with multi-struts has to be made. Proposals of models with multi-
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struts can be found in Thiruvengadam, 1985; Chrysostomou et al., 2002; El-Dakhakhni et al., 2003; 

Crisafulli and Carr, 2007. In Crisafulli et al., 2000 and Asteris et al., 2011 it is shown how these 

methodologies of modeling with single or multiple struts provides almost equal results when the 

knowledge of the global behavior of the structure is required (e.g. determination of mode shapes 

and frequencies of the structure). Polyakov, 1960 was the first who model the masonry infill, 

inserted in a frame, as diagonal strut having only axial stiffness. Then different authors have 

analyzed that issue using analog approach. The various models herein considered give different 

methodologies and expression to define the width (w) of the equivalent strut that, if multiplied for 

the thickness of the panel (t), gives the cross-sectional area to be assigned to diagonal strut. 

Regarding the definition of the elastic properties of the material constituting the strut is used to 

adopt the elastic modulus E of the masonry panel. In Table 1.1 are listed the proposals of various 

authors for the definition of the ratio w/d where, as said before, w is the width of the equivalent strut 

while d is the length of the strut. For further details about the different definitions of w/d from 

different authors, one can see the references. The different author's proposals have been tested on a 

real structure, a seven storey, R.C. framed building infilled with hollow clay blocks. The different 

literature proposals gave very different results in terms of frequencies and mode shapes (Tondi et 

al., 2018) 

In this work the procedure outlined by Stavridis (Stavridis, 2009) is used for fixing the stiffness of 

infills which are not subject of updating. This procedure is used for intact infill panels but also for 

infill panels with opening(s) and infill panels already damaged. The definition of the reduction 

parameters for taking into account the openings and the damages can be found, again, in Stavridis, 

2009. 

 

1.4 Organization of the thesis 

 The method proposed in this work is based on the inverse eigenvalues problem in the second 

family of the abovementioned methods of model updating. Starting from the experimental 

frequencies and mode shape vectors, the eigenvalues/eigenvectors problem can be written in matrix 

form. For the purposes of this work, two procedures will be analyzed. The first one relies on a Two 

Step algorithm in which the first one is in closed form, facing the eigenvalues/eigenvectors problem 

without considering the determinant equations. Comparison parameters must be computed before 

running the second step because, if these parameters satisfy fixed thresholds, the second one can be 

avoided. If the thresholds are not satisfy, the first trial solution will be the starting point for the 

subsequent iterative procedure (with Trust-Region algorithm) in which also the determinant 
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equations have been taken into account. With this procedure also the uncertainties in the parameters 

can be computed, starting from known values of uncertainties in frequencies and modes 

components. Closed relations can be achieved for partial derivatives and the parameters standard 

deviations can be computed using the theory of error propagation. This algorithm is very quick and 

the time saving, with respect other algorithm, can be up to 98%, as will be pointed out in Chapter 4. 

The quickness of the algorithm, along with the possibility to evaluate the uncertainties in the 

parameters, allows us to use it also for real-time assessment using real-time structural monitoring.   

The second procedure uses a genetic algorithm with response surfaces (the so-called DE-Q 

algorithm, Savoia and Vincenzi, 2008) in which the entire minimization problem is faced by the 

genetic algorithm and the solution is completely iterative. It will be found that the two steps 

procedure with Trust-Region optimization is more computationally efficient with respect to the DE-

Q one. All these procedures will be outlined in Chapter 2. In the same Chapter will be also treated 

the statistical analysis of parameters starting from generally distributed frequencies and mode shape 

vectors. A general algorithm will be given for the two abovementioned procedures in order to 

achieve the statistical analysis of the problem. In the last part of Chapter 2, the distribution analysis 

of parameters will also be introduced. 

In Chapter 3 will be reported some theoretical results for the procedure in order to compute the 

maximum number of parameters achievable by the algorithm for fixed number of frequencies and 

mode shapes, all the calculations for the closed form solution and uncertainties evaluation given in 

Chapter 2, the goodness-of-definition (uniqueness of the solution) of parameters themselves and a 

procedure to find the maximum number of parameters for a non-ideal case.  

These procedures were originally conceived for the model updating of infilled framed structures 

and therefore the sensitivity analysis of Chapter 4 were done for infilled framed buildings. The 

sensitivity analysis were performed on 2-D and 3-D infilled frames with different values of 

perturbations in frequencies and mode shapes and different parameters arrangements. In Chapter 4 

will be also reported a comparison between the two procedures (in term of mean values and 

coefficients of variation of parameters) and also the comparison between systems with or without 

determinant equations. Moreover, the influence of the mode shapes number at disposal in the 

procedure was also studied. 

In Chapter 5 two real cases, in which frequencies and mode shape vectors were available, will be 

analyzed in order to figure out the parameters values and to detect damages in the structures for 

different damage states. The first structure is a three storey, two bays 2-D infilled frames, tested 

through shake table in San Diego, CA, US, in which seven damage states were created scaling the 
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accelerograms of real earthquakes. The second one was a two storey 3-D infilled framed structure 

(located in El-Centro, CA, US), tested with ambient vibrations and forced vibrations with shaker, in 

which the damages were created artificially through walls removal. Four damage states were 

induced for this specimen. Two models with different number of parameters were analyzed.  For 

this structure a lot of data windows for ambient vibrations were at disposal and therefore a statistical 

analysis was also done. 

In Chapter 6 will be introduced the generalization of the procedure in order to take into account the 

presence of non-linear parameters and the case of viscous damping for classically damped 

structures. 

In the last part of this work, Chapter 7, the algorithm will be used for achieving a first trial 

retrofitting for existing structures using the eigenvalues/eigenvectors equations without determinant 

ones. Two sample cases will be analyzed and the trial solutions for the retrofitting compared with 

respect to expected ones. The algorithm will be then generalized in order to consider the case of 

non-linear parameters. 

Three Appendix will be reported in which simple cases will be analyzed. The first one will treat the 

distribution analysis for a simple case with matrices of grade 3 and only one parameter. The second 

Appendix will treat the analysis of the maximum number of parameters for a sample case. The last 

Appendix will be focused on the statistical analysis of a case with related non-linear parameter. 
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Table of Chapter 1 

 

Author (year) Expression Notes 
Holmes (1961) w/d = 1/3 𝜆௛ < 2 

Stafford Smith (1967) 0.10 < w/d < 0.25 The value graphically depends on 𝜆௛ 
Mainstone (1971) w/d = 0.16λh

-0.3 For 𝜆௛ see Ref. 

Mainstone (1974)  w/d = 0.175λh
-0.4 Adopted by FEMA-274 (1997) and 

FEMA-306 (1998) 
Bazan & Meli (1980) w = (0.35 + 0.022β)hm 0.9 ≤ β ≤ 11; for β see Ref. 

Hendry (1981) 𝑤 =
1

2
ට𝑧௕

ଶ + 𝑧௖
ଶ For zb e zb see Ref. 

Tassios (1984) w/d = 0.20βsinθ 1 ≤ β ≤ 5 

Liauw & Kwan (1984) 𝑤/𝑑 =
0.95sin (2𝜃)

2ඥ𝜆௛

 25° ≤ θ ≤ 50° 

Decanini & Fantin (1987) 
For uncracked panels 

𝑤

𝑑
= 0.085 +

0.748

𝜆௛

 

𝑤

𝑑
= 0.130 +

0.393

𝜆௛

 

For 𝜆௛ ≤ 7.85 
 

For 𝜆௛ > 7.85 

Decanini & Fantin (1987) 
For cracked panels 

𝑤

𝑑
= 0.010 +

0.707

𝜆௛

 

𝑤

𝑑
= 0.040 +

0.470

𝜆௛

 

For 𝜆௛ ≤ 7.85 
 

For 𝜆௛ > 7.85 

Paulay & Priestley (1992) w/d = 0.25 For 𝜆௛ < 4.00 
Durrani & Luo (1994) w/d = γ ∙ sin (2θ) For γ see Ref. 

Cavaleri et al. (2005) 
Amato et al. (2008) 

Campione et al. (2014) 

𝑤

𝑑
=

𝑘

𝑧
∙

𝑐

(𝜆∗)ఉ
 

 

c e 𝛽 take account of the Poisson's 
ratio, k takes into account the vertical 

load and z is a geometrical 
parameter. 

 

Table 1.1: Relations proposed in literature for the calculation of w/d ratio (Tarque et al., 2015). 
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Figures of Chapter 1 

 

 

Figure 1.1: Algorithm scheme for DE method (Vincenzi and Savoia, 2010). 

 

 

Figure 1.2: Mutation process by random combination (Vincenzi and Savoia, 2010). 
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Figure 1.3: Flowchart of the DE-Q algorithm (Vincenzi and Savoia, 2015). 

 

 

(a)                                                             (b) 

 

(c)                                                             (d) 

Figure 1.4: Approximation of cost function by quadratic response surface. (Vincenzi and Savoia, 

2010).  
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CHAPTER 2 

 

DESCRIPTION OF THE INNOVATIVE PROCEDURE 

 

2.1 Introduction 

 In this chapter, the definition of a Two Step algorithm, with uncertainties evaluation, will be 

developed starting from the definition of the system of equations to be solved and the new target 

function. Even the weighting functions will have to be defined and introduced in the procedure. 

Firstly, the first step, in which system without determinant equations is used, will be studied and a 

closed form solution will be achieved.  

Secondly, an improvement of the solution itself, with the second step, will be done using the Trust-

Region algorithm with starting point being the previously computed solution (from direct 

formulation). 

The system of equations allows us to to write the partial derivatives in closed form, with respect to 

the frequencies and modes components. The standard deviations of parameters can therefore be 

achieved with direct formulation (using the theory of errors propagation). In this way the 

uncertainties in the parameters, starting from standard deviations in frequencies and modes 

components, can be achieved.  

The statistical analysis utilizing the Monte Carlo procedure will then be introduced. For all these 

procedures, a numerical example will be studied. 

After that, procedure with DE-Q algorithm will be introduced.  

Eventually, a statistical distribution analysis of parameters, starting from known distributions for 

the frequencies and modes components, will be performed. 

 

2.2 First step: system without eigenvalues equations 

 The new target function relies on the superimposition of the stiffness and mass matrices of 

the system with the parameters chosen for the model updating. This procedure has got a general 

applicability, in all the civil structures. In the following paragraphs, such procedure is presented 

with respect to the problem of model updating of infilled frames (because of was originally 

conceived for that type of structure) but its applicability, once again, could be generalized. 
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2.2.1 Parameters definition and stiffness matrix decomposition 

 Starting from a structure with N different parameters, it is called TK  the total stiffness 

matrix of the model representing the actual structure, with all parameters having the proper value. 

0K  is, instead, the stiffness matrix with all the parameters set to null value. Then the jK  is the 

stiffness matrix with the j-th parameter having unit value and the other ones having null values. 

Then, through subtraction, one can obtain: 

011,
KKK

r
  

022,
KKK

r
  

∙                                                                                (2.1) 

∙ 

∙ 

0,
KKK

NNr
  

therefore, the total stiffness matrix can be reconstructed in the following way: 

NrNrrT
KaKaKaKK

,2,21,10
                                       (2.2) 

in which Naaa ,,, 21  are the unknown parameters. 

This procedure is illustrated graphically in an example of two bays three storey infilled frame, with 

two parameters, in Figure 2.1. 

 

2.2.2 Eigenvalues/Eigenvectors problem 

 In order to define the new target function, the global eigenvalues/eigenvectors problem has 

to be analyzed. The problem can be set in the following way: 
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                                      (2.3) 

in which 
sr

KK
,0

,  are matrices previously defined, i  is the i-th experimentally identified 

frequency, 
i

  is the corresponding experimentally identified mode shape, i  is the vector of 

residue deriving from the equations of i-th frequency and mode shape. If the exact value of 
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frequencies, mode shapes and parameters were used, the system would be simplified with all the 

residue equal to 0. 

Each of the n matrix equations previously described contains m scalar equations, in which m is the 

size of the problem (the size of the stiffness and mass matrices). These scalar equations are not all 

linearly independent but there is a precise relation which connects the number of linearly 

independent equations (and therefore the maximum number of parameters obtainable). In Chapter 3 

the relationship will be analyzed. 

In order to include the possibility that also the mass matrix presents some unknown values (and 

therefore it needs the definition of some parameters), the system of Eq. 2.3 can be modified in the 

following way: 
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                      (2.4) 

in which q is the number of parameters in the stiffness matrix and N-q being the number of 

parameters in the mass matrix. 
s

M is the mass matrix associated with the s-th coefficient. 

Using the residue obtained in this way, the target function (to minimize) can be defined as the 2-

norm of the residual vector: 


 


n

i

m

j
jiH

1 1

2  

 

2.2.3 Definition of weight functions 

 The introduction of weight functions has been made in order to drive the solution to a better 

understanding of dynamic behavior of those modes which have more influence in the global 

behavior of the structure. For this purpose the ip  coefficients have been defined as follows: 

 For 2D structures: 

i
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M
p










 1

1

~

~
                                                        (2.6) 

 in which: 

(2.5) 
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                                                         (2.7) 

 is the effective modal mass excited from the i-th mode of vibration and i  is the i-th 

 circular frequency. 

 For 3D structures: 
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                                          (2.8) 

 in which iiyix MMM ,,,

~
,

~
,

~
  are the effective modal masses, computed with respect to 

0
M , for 

 the i-th mode of vibration in the x, y direction and rotation about the vertical axes, 

 respectively.  i  is the i-th circular frequency. 

Another weighting parameters, without physical meaning,  have been included in the equations in 

order to take into account the different unit and order of magnitude of rotational DOFs with respect 

to the translational ones, only in 3-D problems (Ewins, 2000). These coefficients are not shown in 

the equations already written because of they have to be inserted in the stiffness and mass matrices. 

These parameters have to be calibrated from time to time in order to obtain the same order of 

magnitude of residue values. For 3-D infilled frames has been seen that if all the rotational rows of 

the stiffness and mass matrices are divided by the coefficient presented in Eq. 2.9, the results are 

satisfactory. 

lt

l
l M

M
p

,

,
,


                                                                  (2.9) 

in which lM ,  is the rotational mass and ltM ,  is the translational mass ( xM  or yM ), l=1,2,...,t in 

which t is the number of the storey. Once again, this coefficients are computed with respect to 
0

M . 

 

2.3 Closed form solution of the first step 

 The direct non-iterative formulation is presented for the system of Eq. 2.4. Two 

formulations have been achieved, the first one uses the pseudo-inverse of the coefficient matrix. 

Rewriting the system, a second formulation has been reached through partial derivatives of the 

problem. 
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2.3.1 Direct formulation 

System of Eq. 2.4 can be rewritten in order to find a closed formulation of the problem: 

caB                                                  (2.10) 

in which B  is the coefficients matrix of dimensions n x N, a  is the parameters vector of 

dimensions N x 1 and c  is the know-values vector of dimensions n x 1. 

The abovementioned matrix and vectors have the following definition (rewriting system of Eq. 2.4): 
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in which qs ,...,2,1  and Q
 
is a n∙m x q matrix. 
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in which Nqqs ,...,2,1   and R
 
is a n∙m x N-q matrix, 

sm
Q

,:1
 and smR ,:1  indicating the rows 

from 1 to m and s-th column of matrix Q  and R respectively. 

The complete coefficients matrix is as follows: 

 RQB 
 

which is a n∙m x N matrix. 
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is the parameters row. 

(2.13) 
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is the known-values row. 

The weighting functions defined in Eq. 2.9 have to be applied also in this case in order to meet the 

requirement of same order of magnitude between equations in the system of Eq. 2.4. 

The system of Eq. 2.4, rewritten in the form of Eq. 2.10, is usually a over-determined system and 

can be solved with pseudo-inverse procedure: 

cBa  

 

or 

cBBBa TT  1)(
 

in which B  is the pseudo-inverse of matrix B ; or through matrix decomposition and SVD 

(Ewins, 2000). Both look for a least-squares solution of the system.  

The maximum number of parameters achievable through this procedure, the same of the procedure 

described above, in function of the number of modes available, will be treated in Chapter 3. 

 

2.3.2 Alternative solution of the system 

 Using the procedure with partial derivatives (all the mathematical computations are given in 

Chapter 3) another closed-form relation can be achieved in which the system is determined (the 

solution is the same as in the previous case): 
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





































~;~~

~;~~

~;~~

~;~~

~;~~

~

1

,

2,

1,

N

q

qr

r

r

M

M

K

K

K

b





                                                        (2.20) 

in which: 




























srn

sr

sr

sr

Kp

Kp

Kp

K

,

,2

,1

,

00

00

00

~









                                       (2.21) 

for qs 1 ; 




























snn

s

s

s

Mp

Mp

Mp

M

2

2
22

2
11

00

00

00

~














                          (2.22) 

for Nsq 1 ; 























n








2

1

~                                                                 (2.23) 

 ~~~~~
00
 KM                                                       (2.24) 




























0

02

01

0

00

00

00

~

Kp

Kp

Kp

K

n







                                        (2.25) 




























0

2

0

2
22

0

2
11

0

00

00

00

~

Mp

Mp

Mp

M

nn 












                             (2.26) 

 and  mean the norm of the vector and the dot product between vectors, respectively. 
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A
~

 matrix is symmetric, because of the dot products satisfy the commutative property, is semi-

positive defined and, for the uniqueness condition, is positive defined (the demonstrations are 

reported in Chapter 3). 

One parameter can be written in the following closed relation, from the Cramer formulation (Casali 

et al., 2016): 

)
~

det(

)
~

det(

A

A
a s

s                                                             (2.27) 

for Ns ,,2,1  , in which 
s

A
~

is the A
~

matrix with the s-th column replaced by the b
~

vector (vector 

of known terms). 

Otherwise solving the determined system through matrix inversion: 

bAa
~~ 1



 

 

2.3.3 Comparison parameters 

 After obtaining the complete set of parameters, the stiffness matrix can be computed through 

Eq. 2.2. After that, a posteriori eigenvalues analysis can be performed, frequencies and mode shapes 

( if ,
i

 ) can be computed. With those parameters and the experimental ones, one can perform a 

comparison in terms of MAC and frequencies error: 

22

2

;
),(

ii

ii

ii
MAC









 

  100*%
i

ii
i f

ff
f


  

in which ni ,2,1 ; 
i

  and if  being the experimental modes and frequencies. If the values of 

comparison parameters don't satisfy fixed thresholds, the second step must be performed; otherwise 

the analysis can stop after the first one. 

 

2.4 Numerical example 

 A structure with matrix of grade 3 (for example three storey, 2-D framed structure) is going 

to be studied considering 2 parameters updated (only in the stiffness matrix) and only 1 frequency 

and 1 mode shape included in the procedure. First of all the general equations is going to be 

rewritten for this particular case, after that the numerical values will be included in the example. 

(2.28) 

(2.29) 

(2.30) 
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2.4.1 Direct formulation of the problem 

 For a structure with matrix of grade 3, 2 parameters updated (only in the stiffness matrix) 

and only 1 frequency and 1 mode shape included in the procedure, Eq. 2.18 can be written in 

extensive way as follows: 

























































;

;

;

;

2,

1,

2

1
2

2,2,1,

2,1,

2

1,

r

r

rrr

rrr

K

K

a

a

KKK

KKK

 

in which, having only one mode: 


















31

21

11





                                                                (2.32) 

 
00

2
1 KM                                                    (2.33) 

Matrix A
~

 is semi positive defined: 

0
2

1,


r
K                                                             (2.34) 

0;)
~

det(
2

2,1,

2

2,

2

1,
 

rrrr
KKKKA                             (2.35) 

Eq. 2.35 is the inequality of Cauchy-Schwartz (particular case of Eq. 3.63 of Chapter 3). 

The uniqueness of the solution is ensured if: 

0;
2

2,1,

2

2,

2

1,
 

rrrr
KKKK                                      (2.36) 

2

2,1,

2

2,

2

1,
;  

rrrr
KKKK                                         (2.37) 

therefore, if: 

 
2,1, rr

KlK                                                         (2.38) 

l , which is a particular case of Eqs. 3.51 and 3.52 of Chapter 3. 

The solution can be written as follows (particular case of Eq. 2.27): 









































2

2,2,1,

2,1,

2

1,

2

2,2,

2,1,1,

1

;

;
det

;

;;
det









rrr

rrr

rr

rrr

KKK

KKK

KK

KKK

a                                     (2.39) 

(2.31) 
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
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;
det
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det
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rrr

rrr

rrr
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KKK

KKK
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a                                    (2.40) 

or, developing the calculations: 

2

2,1,

2

2,

2

1,

2,1,2,

2

2,1,

1

;

;;;










rrrr

rrrrr
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KKKKK
a                           (2.41) 

2

2,1,

2

2,

2

1,

2,1,1,

2

1,2,

2

;

;;;










rrrr

rrrrr

KKKK

KKKKK
a                         (2.42) 

 

2.4.2 Numerical example 

 A numerical example is performed using the following matrices as known ones (only 4 

decimal digits are going to be used): 























110

121

012

0
K

 





















000

011

012

1,r
K

 



















110

110

000

2,r
K

 


















02.000

002.00

0002.0

0
M

 

sradref /104031.2 22
,1 

 

Hzf ref 4672.2,1 
 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 
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
















7813.0

5466.0

3012.0

ref


 

All the relations introduced in paragraph 2.4.1 take the subsequent values: 






















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

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
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






































7813.0

5466.0

3012.0

110

121

012

7813.0

5466.0

3012.0

02.000

002.00

0002.0

104031.2 2

00

2
1  KM

 


















5204.3
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3918.1

                                                            (2.50) 
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

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
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
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



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


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0
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

r
K                                      (2.51) 
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




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










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









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2347.0

0
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5466.0

3012.0

110

110

000
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

r
K                                    (2.52) 

  7197.0

5204.3

6164.2

3918.1

02454.00558.0;
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















 

r
K                             (2.53) 

  2122.0
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3918.1

2347.02347.00;
2,

















 

r
K                           (2.54) 

  0633.0

0

2454.0

0558.0

02454.00558.0
2

1,



















r
K                              (2.55) 

  1102.0

2347.0

2347.0

0

2347.02347.00
2

2,



















r
K                           (2.56) 

  0576.0

2347.0

2347.0

0

02454.00558.0;
2,1,

















 

rr
KK                        (2.57) 

Using Eqs. 2.41 and 2.42, the solution becomes as follows: 

(2.49) 
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90.24
0033.01102.00633.0

0576.02122.01102.07197.0
1 




a                                   (2.58) 

93.14
0033.01102.00633.0

0576.07197.00633.02122.0
2 




a                                   (2.59) 

The reference solution, used to compute the circular frequency and the mode shape of Eqs. 2.47 and 

2.49 is as follows: 

25,1 refa ,  15,2 refa                                                      (2.60) 

Comparing the reference values of Eq. 2.60 with the ones achieved using the optimization 

procedure (Eqs. 2.58 and 2.59), one can see the good agreement between the two pairs of values 

(the error in the first parameter is about -0.40%, in the second parameter about -0.47%). 

Computing the frequency and first mode components using values of Eqs. 2.58 and 2.59, the results 

obtained are as follows: 

srad /103936.2 22
1   

Hzf 4623.21   


















7814.0

5466.0

3011.0



 
The difference between the reference value and the computed one of the first frequency is very low, 

about -0.20%. The MAC value assumes value approximately equal to 1.00. The agreement is 

therefore very good for both frequency and mode components. 

 

2.5 Second step: system with eigenvalues equations 

 Starting from the system defined in paragraph 2.2, an improvement can be done in order to 

take into account the eigenvalues equations. This improvement was done because the eigenvalues 

equations allow us to achieve better agreement between experimental and numerical frequencies. 

The mode shapes, conversely, are practically insensitive to the introduction of the new equations. 

Eq. 2.3 can be therefore modified as follows, adding the eigenvalues equations: 

(2.63) 

(2.61) 

(2.62) 
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A generalization, in order to take into account the presence of parameters in the mass matrix, can be 

performed: 
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the values of ip  and lp ,  have been already introduced. The residual vector presents (m+1)∙n 

different components. 

The other set of parameters, iw , have been used in order to make all the equations in the problem of 

the same order of magnitude. Because of the residue from the eigenvalues equations, for the same 

set of values sa , are much higher with respect to the ones from the eigenvectors equations, these 

(2.64) 

(2.65) 
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additional parameters have been added to the system with eigenvalues equations. These ones have 

no physical meaning and they serve only from the mathematical point of view. These weights are 

defined in the following way: 

 the system has to be run with iw  all equal to 1; 

 the trial residue are obtained and the new weights are achieved with the following relation: 

ji
mj

i
i

r
w


,,2,1

max


                                                          (2.66) 

 in which ji  is the j-th component of residual vector i . 

After this procedure, the residue have all the same order of magnitude inside the system. 

The coefficients lp ,  must be applied only in the eigenvalues/eigenvectors equations in the system 

of Eq. 2.64 and not in the equations deriving from determinant of the system (last n equations). 

Using the residue obtained in this way, the target function (to minimize) can be defined as the 2-

norm of the residual vector: 


 


n

i
i

n

i

m

j
ji rH

1

2

1 1

2  

The system of Eq. 2.65, unfortunately, cannot be written in a closed relation because of the 

nonlinearities of the eigenvalues equations. The closed form solution from Eq. 2.16 or Eq. 2.28 can 

be used as starting point for a iterative solution with Trust-Region algorithm, described in the next 

paragraph. 

 

2.6 Description of the two steps algorithm 

 In Paragraphs 2.2 and 2.3 the target function definition and a direct formulation have been 

given. Starting from Eq. 2.4 and the knowledge of frequencies and modes, the definition of weights 

ip  and lp ,  has to be made. After that, solving Eq. 2.16 or Eq. 2.28 in closed form, a first trial 

solution has been achieved. The computation of comparison parameters from Eqs. 2.29 and 2.30 

must be performed. If these values satisfy a fixed thresholds, the procedure stops; otherwise the trial 

solution will be the starting point for a gradient-type algorithm (the Trust-Region algorithm, 

Coleman and Li, 1996; Conn et al., 2000; MathWorks, 2005) used for the model updating of the 

system of Eq. 2.65. The definition of weights iw , using Eq. 2.66 and the procedure of Paragraph 

2.5, has to be done. The iterative solution of the complete system, eventually, leads to the final 

parameters values which satisfy the eigenvalues/eigenvectors equations; minimizing the target 

(2.67) 
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function defined in Eq. 2.67. The comparison parameters can be eventually recomputed. In Figure 

2.2 the flowchart for the complete process of the algorithm is depicted. 

 

2.6.1 Numerical example 

 Analyzing the same example of paragraph 2.4.2 and starting from the results achieved there, 

the procedure outlined in paragraph 2.6 is used in order to improve the solution. The starting points 

for the iterative procedure are the parameters values of Eqs. 2.58 and 2.59. Running the algorithm, 

new parameters values are achieved: 

00.251 a ,  02.152 a                                                    (2.68) 

Comparing with the reference values of Eq. 2.60, one can see that the solution is achieved in a 

almost perfect way (error of about 0% for the first parameter and about 0.13% for the second one). 

Computing the frequency and first mode components, the values obtained are as follows: 

Hzf 4675.21   


















7812.0

5468.0

3013.0



 
The difference between the reference value and the computed one of the first frequency is about 

0.01%. The MAC value assumes value approximately equal to 1.00. 

An improvement in the solution is therefore achieved using the iterative procedure. 

 

2.7 Parameters uncertainties evaluation 

 The procedure outlined in the previous paragraphs is exploitable if deterministic frequencies 

and mode shapes are available from experimental tests. In order to improve that procedure, a 

statistical development has been done to include the possibility of several experimental outcomes 

(different data windows of acquisition) or, anyway, to make a statistical analysis of parameters 

achieved with numerical perturbation of frequencies and mode shapes (procedure followed for 

sensitivity analysis and presented in Chapter 4) or, very common in practice, having at disposal 

from experimental tests the values of frequencies and modes components and their standard 

deviations. 

 

2.7.1 Statistical analysis of experimental outcomes 

 Assuming of having several data windows of acquisition in which several values of 

frequencies and mode shapes, for the same structure and same damage state, have been obtained, 

(2.70) 

(2.69) 
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the most important statistical parameters are mean values, standard deviations and coefficients of 

variation (CoVs) for the frequencies and modes themselves. 

The means have the following relations, assuming l data windows acquired: 

l

f
f

l

k

k
i

i


 1                                                              (2.71) 

l

l

k

k

i

i


 1


                                                              (2.72) 

in which ni ,,2,1  , k
if  and k

i
  are the frequency and mode acquired from the k-th data 

windows. 

The standard deviations are as follows: 

1
1

2

, 






l

ff
l

k
i

k
i

if                                                      (2.73) 

1
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, 






l

l

k
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k
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ji


                                                      (2.74) 

and 
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
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





















                                                           (2.75) 

in which ni ,,2,1  . Eventually, the coefficients of variation are as follows: 

i

if
if f

CoV ,
,


                                                          (2.76) 

ji

ji
jiCoV





,

,                                                          (2.77) 
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CoV
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,


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








                                                      (2.78) 

From if  and ifCoV ,  is possible to compute 2
i and 

i
CoV

,2
which are needed for the solution of the 

eigenvalues problem: 

22 )2( ii f                                                          (2.79) 

2
,,

22 )](2[2 ifiiiii CoVffCoV   
                                    (2.80) 

and therefore: 

)2(4 ,
2

,
22

,

2
2 ififiii CoVCoVfCoV  


                                  (2.81) 

ififi
CoVCoVCoV ,

2
,,

22 


                                              (2.82) 

or, using the same procedure 

)2(4 ,
2

,
2

,2 ifiifi
f 


                                           (2.83) 

 

2.7.2 Closed form relations for partial derivatives 

 Starting from system of Eq. 2.4, the problem can be rewritten in the following way (all the 

computations are reported in Chapter 3): 





N

qs
ss

q

s
srs MaMKaK

1
0

1
,0

~~~~~~~~
min                              (2.84) 

with matrices and vectors defined in Eqs. 2.21 to 2.26. The function to minimize, therefore, is 

defined as follows: 

 ~~~~~
),,,(

11
,21  



N

qs
ss

q

s
srsN MaKaaaaf                             (2.85) 

deriving it with respect to the experimental outcomes ( ji and 2
i ), all the partial derivatives are 

achieved (all the partial derivatives are computed with parameters values known, point of 

calculation, and achieved using procedure developed in paragraph 2.6, for sake of brevity the point 

in which the partial derivatives are computed will be omitted hereafter). The systems to be solved 

are of the following form (the complete computations are reported in Chapter 3): 
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i
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r
a
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2

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  

for ni ,,2,1  ; mj ,,2,1  ; A
~

 already defined in Eq. 2.19; 
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
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2
i

a




 and ir~  defined as 
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                                                          (2.88) 
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with: 

  


q

k
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for qs ,,2,1   and 
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k
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(2.86) 

(2.87) 
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   

for Nqqs ,,2,1  ; in which )(:, j  means the j-th column of the matrix. The matrices with 

tilde were defined in Eqs. 2.21 to 2.26. 
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for qs ,,2,1   and 
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or, in the same way: 
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Solving systems of Eqs. 2.86 and 2.87, all the partial derivatives are achieved: 
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for mj ,,2,1  ; ni ,,2,1  ; in which 
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for ni ,,2,1  ; in which 
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~

 matrix with the s-th column replaced by ir~  vector. 
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Otherwise solving the determined system through matrix inversion: 
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2.7.3 Variance propagation 

 For the experimental outcomes, the covariance matrix can be defined in the following way: 
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(2.102) 

2
, ji , 2

,2 i  are the variance (square of the standard deviation) for the j-th component of i-th mode 

shape vector and the variance of the square of the i-th circular frequency, respectively as defined in 

Eq . 2.71 to 2.83. );cov( hkji  , );cov( 2
kji  , );cov( 22

ki   are the covariance between modes 

components, between modes components and square of circular frequencies and between square of 

circular frequencies respectively. C  matrix is symmetric, because of covariance definition satisfy 

the commutative property.  

Knowing all the partial derivatives with respect to the experimental outcomes from Eqs. 2.100 and 

2.101 (or through Eqs. 2.98 and 2.99) and using the theory of the error propagation (Taylor, 1997), 

also called theory of variance propagation, the standard deviations can be achieved using the 

following equations: 
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for Ns ,,2,1  , with );cov(2
, jijiji   , );cov( 222

,2 iii
  . Defining the gradient vector of 

parameter sa  (partial derivatives of parameter sa ) as follows: 

(2.100) 

(2.101) 

(2.103) 
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                                                          (2.104) 

the rule of error propagation can be rewritten in the following way: 

s
T

ssa aCa ,                                                    (2.105) 

for Ns ,,2,1  . 

The variance for parameter sa can be computed as the square of the standard deviation obtained in 

Eq. 2.105. The CoV can be achieved in the following way: 
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Then, the standard deviation vector of parameters can be defined as follows: 
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the variance and CoV vectors can be defined as follows: 
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if all the covariance terms are null, Eq. 2.103 simplifies itself in: 
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Ns ,,2,1  . Otherwise, in matrix form: 

s
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                              (2.112) 

 

2.7.4 Algorithm for obtaining of the mean values and standard deviations of parameters 

 Starting from the solution of the system of Eq. 2.10 or 2.18, using the mean values for 

modes components and circular frequencies (Eqs. 2.71, 2.72 and 2.79), the first trial mean values of 

parameters can be achieved. Then, the comparison parameters have to be computed and if they don't 

satisfy the thresholds, the second step of the procedure must be performed. Following the procedure 

outlined in paragraph 2.6 and the flowchart in Figure 2.2, the iterative solution is achieved and these 

values are labeled as the mean values of parameters. 

After that, all the systems of Eqs. 2.86 and 2.87 must be computed for ni ,,2,1  ; mj ,,2,1  . In 

this way all the partial derivatives of parameters with respect to the experimental outcomes are 

computed. Then, using Eq. 2.103 or 2.105 (for Ns ,,2,1  ), the standard deviations of parameters 

are obtained. 

The solution can therefore be written as follows: 

sass aa ,
~                                                             (2.113) 



 
42 

 

for Ns ,,2,1  . 

If the identification procedure gave only mean values and standard deviations for frequencies and 

mode shapes, the procedure abovementioned works again but Eqs. 2.71 to 2.83 are no longer 

needed by the algorithm itself and directly the standard deviations of experimental outcomes have 

to be put in Eq. 2.103. The flowchart of the algorithm is depicted in Figure 2.3. 

The main limit of this procedure is that I cannot find the distribution of parameters starting from 

fixed distributions of frequencies and modes components. Therefore, this procedure can be used in 

order to obtain an estimation of the sa ,  if the complete statistical analysis is not run and in order to 

obtain the error propagation inside the algorithm itself. In Chapter 4 is presented the analysis of the 

distribution of parameters (with 2  test) starting from normally distributed frequencies and modes 

components. Unfortunately the parameters are not all normally distributed and therefore a general 

rule cannot be achieved. 

Anyway, if one is not interested in the distribution of parameters but only to the standard deviation, 

the procedure outlined in this paragraph allows to find the mean values and errors of parameters 

themselves. Moreover is very quick and usable in real time evaluation problems. 

 

2.8 Two steps algorithm for complete statistical analysis of the 

procedure 

 In order to overcome the issues outlined in the previous paragraph, a complete statistical 

analysis will be treated in this paragraph. Unfortunately, the procedure outlined in this paragraph is 

quite computational demanded and therefore it cannot be used for real time evaluation of 

parameters.  

 

2.8.1 Definition of data 

 If different sets of data are available (with different sets of experimental frequencies and 

mode shapes), the systems of Eqs. 2.4 and 2.65 must be solved and the procedure outlined in 

Paragraph 2.6 must be followed for each of those experimental data. 

Otherwise, if only one value for frequencies and modes is available from the tests, with the 

associated standard deviation, a set of modified experimental outcomes has to be created following 

the subsequent procedure: 

 values of ifCoV , and jiCoV , can be obtained with Eqs. 2.76 to 2.82 for all the experimental 

frequencies and modes components; 
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 the k-th realization for frequencies and mode shapes is as follows 

)1( ,, ifiki
k

i CoVrff                                               (2.114) 

)1( ,, jijikji
k
ji CoVs                                              (2.115) 

in which lk ,,2,1  . k
if and k

ji  are the k-th realization of the i-th frequency and i-th mode 

shape, j-th component, if  and ji
 

are the experimental outcomes, ikr ,  and jiks , are 

independent normally distributed random numbers with unitary CoV, ifCoV , and jiCoV , are 

the coefficients of variation for the i-th frequency and the i-th mode shape, j-th component. 

With these procedure, a set of l frequencies and mode shapes, for each experimental one, can be 

obtained, in which l is the number of realization performed. 

 

2.8.2 Description of the procedure 

 Once the data are defined, the procedure of Paragraph 2.6 has to be applied for each of the l 

realizations of the experimental outcomes. In Figure 2.4 is presented the flowchart of the procedure. 

After all these run, a set of l different parameters are obtained, k
sa with Ns ,2,1 and lk ,2,1 . 

From these outcomes, a statistical analysis has to be carried out in order to obtain the mean values, 

standard deviations and coefficients of variation of parameters themselves: 

l

a
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k
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and 

s

sa
sa a

CoV ,
,


                                                         (2.118) 

The solution can therefore be written in the same form as Eq. 2.113. 

 

2.8.3 A posteriori statistical analysis of comparison parameters 

 After obtaining the complete set of parameters, the stiffness matrix can be computed through 

Eq. 2.2, for each of the l realizations. After that, a posteriori eigenvalues analysis can be performed 

and frequencies and mode shapes (
k

if ,
k

i
 )  can be computed. With these numerical outcomes and 
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the ones from the realizations, one can perform a comparison in terms of MAC parameters and 

frequencies error: 
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in which lk ,2,1  and ni ,2,1 ; k

i
  and k

if  being the k-th realization of experimental modes 

and frequencies. 

With those outcomes, a statistical analysis of parameters MAC and f can be performed in order to 

obtain mean values, standard deviations and coefficients of variation: 
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2.8.4 𝝌𝟐 test of results 

 From the analysis results, one can perform 2  test on parameters in order to figure out in 

which way those quantities are distributed. Starting from k
sa  with Ns ,2,1 and lk ,2,1 , the 

statistical absolute frequencies t
saF ,  can be computed, assigned some intervals t for the parameters 

itself. 

An assigned distribution for the parameters can be reconstructed: 

);,()ˆ( ,
2

,
1 iaias PPDaD 

 

in which P1
a,i, P

2
a,i, ... are known coefficients for the distribution itself. The new statistical absolute 

frequencies can be computed in the same way as for the ones of original parameters, using the same 

intervals used before: 

t
saDF ),(  

after that, the chi-square test (Ross, 2014) can be performed: 
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),(,2 )(

  

from the values of chi-square, using the tables of the distribution with fixed number of degrees of 

freedom, one can evaluate if the assumption of assigned distribution matches the numerical one or 

not. Usually a 5% level of significance is chosen for the comparison: 

2
%5,

2
kk    

if the inequality 2.129 is satisfied, the assigned distribution is acceptable. 

 

2.9 Numerical example 

 In this paragraph is analyzed the same example of paragraph 2.4.2. In the first part, the 

equations introduced in paragraph 2.7.2 are particularized for the example studied. Then, the 

numerical values are going to be introduced, using the results already achieved in paragraph 2.4.2 

and 2.6.1. 

 

2.9.1 Direct formulation of partial derivatives 

 Starting from Eq. 2.31 and following the procedure outlined in paragraph 2.7.2 and 3.4, the 

partial derivatives with respect to 11 , 21 , 31  and 2
1  can be obtained solving the subsequent 

systems of equations: 

 Derivative with respect to 11 :  

(2.128) 

(2.129) 

(2.127) 
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)1(:,  means the 1st column of the matrix. 

 Derivative with respect to 21  : 
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)2(:,  means the 2nd column of the matrix. 

 Derivative with respect to 31  : 

(2.130) 

(2.134) 
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)3(:,  means the 3rd column of the matrix. 

 Derivative with respect to 2
1  : 
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2.9.2 Variance propagation 

 Once obtained all the partial derivatives, and being the standard deviations of the 

experimental outcomes known, Eq. 2.110 can be used (it is used the simplified relation because it is 

conjectured that all the experimental outcomes are independent each other). The relation can be 

written as follows: 
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(2.138) 

(2.142) 

(2.143) 
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2.9.3 Numerical example 

 If CoVs of 5% are used for the frequency 1f  and for all the mode components, using the 

direct and inverse relations introduced in Eqs. from 2.76 to 2.83, the variances assume the following 

values: 

7157.606,105261.1,104693.7,102680.2 2

1,

32
31,

42
21,

42
11, 2  

         (2.145) 

Computing all the partial derivatives from Eqs. 2.130, 2.134, 2.138, 2.142 and applying the variance 

propagation of Eqs. 2.143 and 2.144, the results listed in Table A.1 are achieved. In Table A.1 are 

also listed the results from Monte Carlo analysis of the complete system of Eq. 2.64 or 2.65. The 

results are in good agreement with the standard deviation of the first parameter, practically they are 

coincident. More error is reached for the second parameter (parameter with less value and therefore 

less influence in the global behavior). For two parameters and only one mode shape considered the 

results are anyway very good. 

The distributions of parameters from the Monte Carlo analysis are depicted in Figure 2.5. 

 

2.10 Generalized procedure with DE-Q algorithm 

 Starting from the generalized version of the problem (Eq. 2.65), using the target function 

definition in Eq. 2.67 and the DE-Q algorithm defined in paragraph 1.2.1, it can be obtained the 

procedure and the statistical one using the genetic algorithm. These procedures are depicted in 

Figures 2.6, 2.7 and 2.8 as flowcharts. In this case the procedures don't require the initial evaluation 

of the trial solution because of the algorithm handles directly with the entire system of Eq. 2.65. 

Nonetheless, in Chapter 4 is shown how the two steps procedure reduces the computational effort. 

 

2.11 Direct statistical distribution analysis 

 In order to overcome the problems of the direct statistical analysis (mentioned in paragraph 

2.7.4) and avoiding the Monte Carlo analysis, a direct statistical distribution analysis can be 

performed. 

Starting from Eq. 2.4, the experimental outcomes can be considered as random variables of known 

distribution: 
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for ni ,2,1 , mj ,2,1  and ;; ,
2

,
1

jiji PP  , ;; ,
2

,
1

22 ii PP   are known coefficients of the 

distributions. 

Equation 2.4 can be rewritten as follows: 
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in which: 
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The system of Eq. 2.18 is still valid with: 
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in which 
sr

K
,

~
, 

0

~
K are defined in Eqs. 2.21 and 2.25 respectively; 
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for Nsq 1 ; 
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The analytical solution of the system can be achieved using Eq. 2.27 or 2.28. 

After the achievement of the analytical solution, the parameters are functions of the random 

variables of modes components and circular frequencies: 

),,,,,,,( 2121 nnss YYYXXXaa                                         (2.156) 

for Ns ,,2,1  . 

All the parameters have the following form (see Eq. 2.27): 

),,,,,,,(

),,,,,,,(

2121,2

2121,1

nns

nns
s YYYXXXg

YYYXXXg
a




                                        (2.157) 

the rules of distributions propagation may be applied on Eq. 2.157 (Feller, 1966; Papoulis, 1991). 

For sg ,1  and sg ,2 , first of all the multiplications must be performed and then the additions and 

subtractions following the subsequent rules: 

1. if YXZ   





 dyy

y

z
f

y
zf XYZ ),(

1
)(                                            (2.158) 

in which )(zfZ is the probability density function (pdf) of the resulting random variable Z, 

),( yxf XY  is the joint pdf of random variables X and Y. 

2. if YXZ   





 dyyyzfzf XYZ ),()(                                            (2.159) 
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in which )(zfZ is the probability density function (pdf) of the resulting random variable Z, 

),( yxf XY  is the joint pdf of random variables X and Y. 

If the two random variables X and Y are independent, Eq. 2.159 simplifies into: 





 dyyfyzfzf YXZ )()()(                                        (2.159') 

in which )(xf X  and )( yf X  are the pdf of random variables X and Y. 

In the particular case ww XbXbXbZ  2211  in which );( 2
111 NX  , 

);( 2
222 NX  ,  , );( 2

www NX   are all normally distributed independent random 

variables, the pdf of Z is still normally distributed: 

);( 222
2

2
2

2
1

2
12211 wwww bbbbbbNZ                (2.160) 

Using several times Eqs. 2.158 and 2.159, in a concatenated way, one is able to achieve the 

distribution for the two functions sg ,1  and sg ,2 . After that, using the rule for the ratio between 

random variables (Feller, 1966; Papoulis, 1991), the parameters distributions are achieved: 
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yg

xg
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s

s
s                                                         (2.161) 





 dyyyzfyza XYs ),()(                                             (2.162) 

for Ns ,,2,1  . 

In this way the parameters distributions are obtained from the distributions of the experimental 

outcomes without the need of a Monte Carlo analysis. The flowchart of the procedure is depicted in 

Figure 2.9 and a simple case will be analyzed in Appendix A. 

 

2.11.1 Mean values and standard deviations of parameters 

 Knowing the parameters distributions, the mean values and standard deviations can be 

computed using the following relations: 





 dzzaz ssa )(,

 





 dzzaz ssasa )()( 2

,, 
 

for Ns ,,2,1  . 

 

 

(2.163) 

(2.164) 
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2.12 Conclusions 

 In the present chapter, the definition of the new two steps algorithm, with uncertainties 

evaluation, has been developed starting from the definition of the system to be solved and of the 

new target function. The weighting functions needed by the procedure have also been introduced.  

The first step has firstly been studied, involving the solution of the system, without determinant 

equations, in a closed form. The comparison parameters must be then computed and, if these values 

satisfy the fixed thresholds, the procedure stops here. 

A numerical example has been studied and the results, in terms of parameters values, frequencies 

error and MAC value, were very in good agreement with respect to the reference solutions.  

The algorithm has then been improved describing the second step, in which the complete system of 

equations (with determinant equations) has to be faced. In this step a Trust-Region optimization is 

used in order to find the solution, using the previously computed one as starting point for the 

iterative procedure. The previously introduced numerical example has then been improved using the 

second step. The solution achieved is better with respect to the case of system without determinant 

equations.  

The system of equations allows us to write, in closed form, the partial derivatives with respect to the 

frequencies and modes components. The standard deviations of parameters can therefore be 

achieved with direct formulation (using the theory of errors propagation). In this way, the 

uncertainties of parameters can be achieved, starting from known values of perturbations in 

frequencies and modes components.  

The complete statistical analysis, utilizing the Monte Carlo procedure, has then been introduced. 

Even in this case, a numerical example has been performed and a comparison between direct 

uncertainties evaluation and Monte Carlo procedure gave a very good results. 

Moreover, procedure with DE-Q algorithm has also been introduced.  

Eventually, a statistical distribution analysis of parameters, starting from known distributions for 

frequencies and modes components, has been performed. 
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Table of Chapter 2 

 

Parameter 
Uncertainties 

evaluation 
Monte Carlo 

Analysis 

a1 
Standard Deviation 2.92 2.92 

CoV [%] 11.70 11.69 

a2 
Standard Deviation 3.68 4.20 

CoV [%] 24.55 26.97 

 
Table 2.1: Standard deviations and CoVs of parameters from uncertainties evaluation and          

Monte Carlo realizations. 
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Figures of Chapter 2 

Figure 2.1: Two bays three storey infilled frame decomposition with two parameters. 

 
 

 

Figure 2.2: Flowchart of the two steps algorithm. 

 

  =                    + a1·                      + a2·                   
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Figure 2.3: Flowchart of the two steps algorithm with uncertainties evaluation. 
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Figure 2.4: Flowchart of the two steps algorithm for complete statistical analysis of the procedure. 
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Figure 2.5: Frequencies histograms of parameters a1, a2 from Monte Carlo analysis. 

 
 

 

Figure 2.6: Flowchart of the algorithm with DE-Q procedure. 
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Figure 2.7: Flowchart of the algorithm with DE-Q procedure and uncertainties evaluation. 
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Figure 2.8: Flowchart of the algorithm with DE-Q procedure for complete statistical analysis. 
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Figure 2.9: Flowchart of the algorithm for the direct statistical distribution analysis. 
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CHAPTER 3 

 

THEORETICAL BASIS 

 

3.1 Introduction 

 In this chapter will be analyzed the maximum number of parameters obtainable from the 

innovative procedure, from a theoretical point of view. Subsequently, the procedure with partial 

derivatives, in order to achieve the least squares solution, will be performed and the solution 

introduced in paragraph 2.3.2 will be demonstrated. After that, all the relations for the errors 

propagation, reported in paragraph 2.7, will be analyzed and demonstrated. Then, the linear 

independence of parameters and uniqueness of the solution will be investigated. The maximum 

number of parameters for non ideal case will be then analyzed. Eventually, description of the 

correctness of rigid diaphragm assumption will be performed from the theoretical standpoint. 

 

3.2 Maximum number of parameters 

 Starting from the general eigenvalues/eigenvectors problem, it can be demonstrated that the 

maximum number of parameters obtainable from inverse procedure follows the subsequent 

equation: 







nm

i

m

i

iiN
11

  or  



n

i

imnN
1

)1(                                          (3.1) 

in which m is the size of the problem (number of rows or columns of matrices) and n is the number 

of known eigenvalues/eigenvectors, N the maximum number of parameters achievable. 

 

3.2.1 Demonstration 

 The problem can be written, for the i-th eigenvalue and eigenvector, as follows: 

  02 
ii φMωK                                                         (3.2) 

in which K  and M  are the stiffness and mass matrix of the problem (of rank m), 2
i is the i-th 

square circular frequency (i-th eigenvalue) and 
i

φ is the i-th mode shape (eigenvector of length m); 

0  is a vector (of length m) with all null terms. 

K  and M  are symmetric and positive defined matrix: 
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) (SM,K m  

DM,K  

M  can be decomposed in the following way: 

MMM                                                               (3.3) 

and therefore: 

111   MMM                                                         (3.4) 

subsequently: 

0211  

imi φM]IωMKM[M   i                                   (3.5) 

in which mI  is the identity matrix of order m. 

Then, it can be obtained: 

0ˆ211  

imi φ]IωMKM[   i                                          (3.6) 

in which 
ii

φMφ ˆ ; changing notation: 

11ˆ   MKMK                                                        (3.7) 

the new matrix is still symmetric and positive defined matrix (Casali et al., 2016; Lang, 2001 and 

Lang, 2005): 

)(SK m ˆ  

DK̂  

Then, the problem can be rewritten in this way: 

0ˆˆ 2 
imi φ]IωK[   i                                                      (3.8) 

which is a standard eigenvalues problem. 

Using the Spectral Theorem (Casali et al., 2016; Lang, 2001 and Lang, 2005), the new matrix can 

be decomposed using eigenvectors and eigenvalues from the problem of Eq. 3.8: 

1ˆˆˆ 
 PΛPK                                                               (3.9) 

in which P̂  is the matrix whose columns are the eigenvectors 
i

φ̂ , Λ  is the matrix in which the 

diagonal presents the eigenvalues of the problem: 
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                                                   (3.10) 

Considering that K̂  is symmetric, once again for the Spectral Theorem (Casali et al., 2016; Lang, 

2001 and Lang, 2005), the matrix P̂  is orthogonal: 

)(ˆ  mOP  

and also it can be imposed the normalization for the norms of the eigenvectors: 

ijji
 ˆ;ˆ                                                              (3.11) 

in which ij  is the Kronecker delta. This equation can be rewritten as follows: 

ijji
MM   ;                                                    (3.11') 

Subsequently, it can be written: 

T
PΛPK ˆˆˆ                                                              (3.12) 

MKMK  ˆ                                                         (3.13) 

then: 

MPΛPMK
T
 ˆˆ                                                   (3.14) 

changing the notation: 

PMP ˆ                                                              (3.15) 

in which P  is the matrix whose i-th column is the eigenvector of the original generalized 

eigenvalues/eigenvectors problem, premultiplied for the M  matrix,  
i

φM   (Eq. 3.2). 

Lastly, the problem can be rewritten: 

TPΛPK                                                              (3.16) 

From the formulation of Eq. 3.14 is possible to compute the number of maximum parameters 

obtainable for a problem of size m and having at disposal n eigenvalues and eigenvectors. 

Starting from the knowledge of n pairs of known eigenvalues and eigenvectors: 

),(;);,();,( 2

2

2
21

2
1 nn     mn 1                                        (3.17) 

for Eq. 3.11'  
n

MMM   ,,,
21
  is a base of the subspace n . 
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In order to complete the base of the space of order m, m-n vectors have to be defined. In this way, 

the new base of m  is  
mnn

MMMMM  


,,,,,,
121
 . The matrices P̂

 

and Λ
 
can be rewritten as follows: 

 
mnn

MMMMMP  


,,,,,ˆ
121
                     (3.18) 
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                                                         (3.19) 

in which: 
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
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                                                   (3.20) 

)(S'Λ nm
nm  

  is a symmetric and positive defined matrix. K , therefore, can be rewritten: 

MP
'Λ

Λ
PMK

T

nm

n 







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

ˆ
0

0ˆ                                             (3.21) 

MP
'Λ

PMMP
Λ

PMK
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nm

n
T

nm

n 




















ˆ
0

00ˆˆ
00

0
ˆ                    (3.22) 

therefore K is an affine subspace of order 
2

)1()(  nmnm
, the same order of unknown matrix

nm'Λ  . Following the procedure outlined in Chapter 2, matrix K can be written as follows: 

NrNrr
KaKaKaKK

,2,21,10
                                        (3.23) 

which is an affine subspace of order N. 

Remembering the theorem about affine spaces, there is the following relation between subspaces of 

Eqs. 3.22 and 3.23 

                                    


















0

0

0

2

)1(

2

)1()( mmnmnm
N                                

Therefore, the maximum number of parameters is: 

2

)1()(

2

)1( 





nmnmmm
N                                           (3.25) 

or, rewriting it: 

Infinite solutions 

   Exact solution 

Optimal solution, 
least squares 

(3.24) 
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



n

i

nimnN
1

                                                       (3.26) 





n

i

imnN
1

)1(                                                       (3.27) 







nm

i

m

i

iiN
11

                                                           (3.28) 

 

3.2.2 Final remarks 

 The formula found for the maximum number of parameters (Eq. 3.1) refers to the maximum 

unknown quantities of the eigenvalues/eigenvectors problem without regard if the unknown 

parameters are in the stiffness or mass matrix. Therefore, parameters even in the mass matrix could 

be taken into account. Moreover, the maximum number can be achieved only if those parameters 

are chosen "linearly independent". This aspect will be clarified in paragraph 3.5. 

 

3.3 Least squares solution of the problem 

 Starting from the system of Eq. 2.4, rewritten here for convenience: 
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the following matrices and vectors can be defined, as already introduced in paragraph 2.3.2: 
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                                       (3.30) 

for qs ,,2,1  ; 
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for Nqqs ,,2,1  ; 
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The least squares solution of Eq. 3.29 is equivalent to find the minimum of the subsequent function: 
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q

s
srsN MaMKaKaaaf                 (3.35) 

defining: 

 ~~~~~
00
 KM                                                       (3.36) 

the function becomes: 
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or, that is the same: 
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,21  


N

qs
ss

q

s
srs

N
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s
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 and  mean the norm of the vector and the dot product between vectors, respectively. 

Making the partial derivatives, remembering the properties of the derivatives themselves: 
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(3.39) 

for qs ,,2,1   and 
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(3.40) 

for Nqqs ,,2,1  . 

The minimum solution is achieved if all the partial derivatives are null (stationary point): 
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                                                              (3.41) 

using the distributive properties of the dot product and remembering that: 

2
; XXX                                                             (3.42) 

The system can be rewritten as follows: 
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Defining: 
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the system can be written as follows: 

baA
~~

  

which is no longer a overdetermined system ( A
~

 is a square matrix of order N). 

 

3.3.1 Uniqueness of the solution 

 Keeping in mind the rule for maximum number of parameters, analyzed in paragraph 3.2, 

the system of Eq. 3.46 takes unique solution if and only if: 

0)
~

det( A  

A
~

 is a symmetric matrix, because of the commutative property of the dot product, and also is semi-

positive defined (as illustrated in the next paragraph). Therefore the condition of Eq. 3.47 is 

essential in order to assure the uniqueness of the solution. 
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 (3.48) 

It is equivalent to say that the columns are linearly dependent if and only if   0,,1  N   for 

which: 

(3.46) 

(3.47) 
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summing all the rows: 
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sssrs MKMK                        (3.50) 

Because of the two vectors in the dot product of Eq. 3.50 cannot be orthogonal, the linear 

dependence of the columns can be achieved with these relation: 

0~~~~~~~~~~
11,2,21,1 
 

NNqqqrqrr
MMKKK          (3.51) 

if   0,,1  N  , Eq. 3.47 is not satisfied and the problem doesn't allow for unique solution. 

Otherwise, if Eq. 3.51 is satisfied if and only if: 

0),,,( 21 N                                                       (3.52) 

the problem has got only one solution. This is the 1st uniqueness condition, that is equivalent to say 

that vectors  ~~
,,~~

,~~
,,~~

1,1,


 Nqqrr
MMKK   are linearly independents (Casali et al., 2016; 

Lang, 2001). 

If the condition in Eq. 3.51 is achieved for 0),,,( 21 N  , and therefore vectors 

 ~~
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 Nqqrr
MMKK   are linearly dependents, also rows of vector b

~
 are linearly 

dependents and 

)
~

()
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|
~

( ArankbArank                                                     (3.53) 

in which bA
~

|
~

 is the complete matrix of the system. Follows that, if the abovementioned vectors 

are linearly dependents, the system is never impossible and it always allows for infinite solutions. 

Remembering the assumptions ( 0~~
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made in the demonstration, other uniqueness conditions must be defined in order to avoid the case 

(3.49) 
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in which one column of the A
~

 matrix is already a null vector. Having noticed that in the columns 

there is always one constant vector in the dot product, the conditions, in order to avoid that one 

column is the null vector, can be written as follows: 

0~~
,


sr

K                                                               (3.54) 

for qs ,,2,1   and 

0~~


s
M                                                               (3.55) 

for Nqqs ,,2,1  . 

These are the 2nd to (N+1)th uniqueness conditions. These conditions are also needed by the first 

uniqueness condition because one null term of type ~~
,


sr
K  or ~~


s

M  leads to the existence of one 

not null vector of Eq. 3.52 which satisfies Eq. 3.51. 

The condition for the maximum number of parameters given in paragraph 3.2 is still valid and 

represent a sort of zero condition for uniqueness of the solution. If more than the maximum number 

of parameters are chosen, the problem is native undetermined and therefore no unique solution is 

reached. 

 

3.3.2 Definiteness of Hessian matrix 

 In order to understand if the stationary point derived in paragraph 3.3 is a minimum, 

maximum or saddle point, the second derivatives, with respect to the parameters, must be computed 

and the Hessian matrix must be analyzed. 
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For the commutative property of the dot product, the Schwarz theorem is satisfy (Lanconelli, 2000; 

Lanconelli and Obrecht, 2001). 
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The Hessian matrix is as follows: 
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(3.59) 

therefore: 
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~
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                                                               (3.60) 

In order to demonstrate the definiteness of the Hessian matrix, the definition of definiteness of 

matrices itself is used (Casali et al., 2016): 
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Therefore the Hessian matrix H
~

 and the coefficient matrix A
~

 are semi-positive defined. 

Knowing that A
~

 is semi positive defined, and knowing that all the eigenvalues of a semi positive 

defined matrix are greater or equal than 0: 

(3.61) 

(3.62) 
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(3.63) 

which is a generalization of the Cauchy-Schwarz inequality. 

With the 1st uniqueness condition,   0
~

det A , the matrices A
~

 and H
~

 are, eventually, positive 

defined: 

 DSH N ),(
~

 

A unique stationary point associated to a positive defined Hessian matrix is a global minimum point 

for the function (Lanconelli, 2000; Lanconelli and Obrecht, 2001) and therefore the demonstration 

is completed. 

 

3.3.3 Solution of the system 

 The solution for the system of Eq. 3.46 can be achieved, in closed relations, using the 

Cramer formulation (Casali et al., 2016): 

)
~

det(

)
~

det(

A

A
a s

s                                                             (3.65) 

for Ns ,,2,1  , in which 
s

A
~

is the A
~

matrix with the s-th column replaced by the b
~

vector (vector 

of known terms). 

Otherwise the system can be solved through matrix inversion: 

bAa
~~ 1




 

(3.64) 

(3.66) 
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3.4 Partial derivatives procedure for errors propagation 

 The procedure introduced in paragraph 2.7.2 is here developed in all the details. 

Starting from system of Eq. 3.43, the partial derivatives with respect to ji  and 2
i  have to be 

computed. All the partial derivatives are computed with parameters values known and achieved 

using the procedure developed in paragraph 2.6, for sake of brevity the point in which the partial 

derivatives are computed will be omitted in the demonstration. 

 

3.4.1 Derivatives with respect to ji  
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deriving the generic s-th row of the system, one can achieve the following relations.: 
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)(:, j  means the j-th column of the matrix. Then Eq. 3.68 can be rewritten as follows: 
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in which: 
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The solution can therefore be written as follows: 
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The uniqueness of the solution is ensured by uniqueness conditions of original system (paragraph 

3.3.1) because the coefficient matrix is the same as for the original system ( A
~

 matrix). 

 

3.4.2 Derivatives with respect to 2
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deriving the generic s-th row of the system, one can achieve the following relations: 
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Then Eq. 3.78 can be rewritten as follows: 
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in which: 

 

(3.78) 
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 for Nqqs ,,2,1  : 
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or, in the same way: 
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The solution can therefore be written as follows: 
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                                                            (3.88) 

The uniqueness of the solution is ensured by uniqueness conditions of original system (paragraph 

3.3.1) because the coefficient matrix is the same as the original system ( A
~

 matrix). 

 

3.4.3 Solution of the systems 

 The systems of Eqs. 3.74 and 3.86 can be solve, in order to achieve all the partial 

derivatives, using the Cramer formulation (Casali et al., 2016): 
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                                                         (3.89) 

for ni ,,2,1  ; mj ,,2,1  ; Ns ,,2,1  ; in which 
sji

A
,

~
is the A

~
 matrix with the s-th column 

replaced by jil
~

 vector; 

(3.86) 
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for ni ,,2,1  ; Ns ,,2,1  ; in which 
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 matrix with the s-th column replaced by ir~  

vector. 

Otherwise solving the determined system through matrix inversion: 
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3.5 Linear independence of parameters and uniqueness of the 

solution 

 Starting from the considerations done in paragraph 3.2, the maximum number of parameters 

can be (theoretically) achieved only if the distribution of parameters themselves respects the 

criterion of linear independence and uniqueness of the solution. 

In paragraph 3.3.1 the uniqueness conditions were achieved (Eqs. 3.51, 3.52, 3.54 and 3.55), 

reported here for convenience: 

0~~~~~~~~~~
11,2,21,1 
 

NNqqqrqrr
MMKKK   

if: 

0),,,( 21 N   

0~~
,


sr

K  

for qs ,,2,1   and 

0~~


s
M  

for Nqqs ,,2,1  . 

In order to ensure the 1st uniqueness condition (Eqs. 3.51 and 3.52), one has to check that the N-ple 

),,,( 21 N  which satisfies Eq. 3.51 is only the one in which all the parameters are null. If this 

happens, the initial definition of parameters Naaa ,,, 21   and the decomposition of the stiffness 

matrix are correct. 

(3.91) 

(3.92) 
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Otherwise, if there is one N-ple ),,,( 21 N  with at least one value not null, the problem is ill-

conditioned and unique solution cannot be achieved. 

The 2nd to (N+1)th uniqueness conditions (Eqs. 3.54 and 3.55) have to be satisfied in order to ensure 

that the s-th parameter plays a role in the model updating. 

With the usual modes vectors, Eqs. 3.51 and 3.52 simplify themselves and, in order to evaluate a 

simplified 1st uniqueness condition, the following criterion can be used: 

0
11,2,21,1 
 NNqqqrqrr

MMKKK                     (3.93) 

if: 

0),,,( 21 N                                                       (3.94) 

One has to check that the N-ple ),,,( 21 N  which satisfy Eq. 3.93 is only the one in which all 

the parameters are null.  

If the simplified 1st uniqueness condition is satisfied, the general 1st uniqueness condition is also 

satisfied and the uniqueness (if also Eqs. 3.54 and 3.55 are satisfied) is ensured. 

 

3.6 Maximum number of parameters in real structures 

 Eq. 3.1 gives the maximum number of parameters in function of the number of experimental 

frequencies and modes shapes for ideal structures without truncation errors in the decimal digits or 

uncertainties in the experimental outcomes. All the tests performed present those problems and 

therefore Eq. 3.1 gives an upper-bound of the real maximum number of parameters achievable with 

the model updating. 

The procedure which has to be used is as follows: starting from a real problem, the maximum 

number N of parameters given by Eq. 3.1 has to be found (knowing the number of experimental 

frequencies and modes available from tests) and the stiffness and mass matrices has to be 

decomposed (remembering Eqs. 3.51, 3.52, 3.54 and 3.55) in order to obtain the system of Eq. 2.65. 

After that, the procedure summarized in paragraph 2.7 has to be followed in order to obtain the 

mean values and CoVs of parameters themselves. All the CoVs must be checked with respect to 

thresholds and if: 

sasaCoV ,, 
 

for all Naaa ,,, 21  , with Naaa ,2,1, ,,,    thresholds, which depend upon the structure itself and 

what the parameter represents, the procedure stops and N is the maximum number of parameters for 

the non ideal structure too. 

(3.95) 
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If the check fails, the parameter with the largest value of CoV must be fixed in other way (from 

literature proposals or through other techniques) and the procedure outlined above has to be 

repeated with a number of parameter decreased of one unit. Moreover, the parameters with 

maximum CoV (above the threshold) should likely be the one whose variation affects very little the 

dynamic behavior of the structure and therefore that parameter represents a sort of ill-conditioning 

of the problem. 

This iterative procedure must be repeated as long as all the CoVs are below the thresholds. The 

largest number of parameters whose CoVs satisfy Eq. 3.95, is the maximum number of parameters 

achievable for the case under study. This procedure is summarized in the flowchart of Figure 3.2. 

In Appendix B will be presented a simple case in which this procedure is applied. 

 

3.7 Correctness of rigid diaphragm assumption 

 From a dynamic test with shaker or through ambient vibration, the outcomes are frequencies 

and modes components at selected point of measurement. From that data, in existing buildings, one 

has to choose whether or not to use the rigid diaphragm configuration in the model for comparison 

purposes with the experimental data.  

In the following is presented one criterion in order to evaluate if the choice of rigid diaphragm is 

acceptable or less. 

Starting from the modal components at one storey (here we limit our study at only one storey but 

the following procedure has to be used at all the storey of the building), for sake of generality, l 

components of displacement in x-direction and p components in y-direction are considered (Fig. 

3.1). 

In the first phase, the three rigid diaphragm components (2 translations and 1 rotation) are 

computed. Sorting the mode components vector in order to get first the l components in x-direction 

and then the p components in y-direction (using a right-hand convention), the formula is as follows: 
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in which luuu ,,, 21  are the l components in x-direction and plll vvv  ,,, 21   are the p components 

in y-direction. lyyy ,,, 21   are the y coordinates of the points in which the x-direction modal 

components are measured, Gy  is the y coordinate of the center of the mass, plll xxx  ,,, 21   are the 

x coordinates of the points in which the y-direction modal components are measured, Gx  is the x 

coordinate of the center of the mass (in whatever reference system), GGG vu ,,  are the rigid 

diaphragm components (displacement in x direction, displacement in y direction and rotation about 

a vertical axes passing through the center of the mass). 

Eq. 3.96 can be summarized: 

GuTu   

Using the pseudo-inverse procedure, the rigid diaphragm components are computed (the pseudo-

inverse procedure uses a least squares optimization). 

uTuG  

 

in which T  is the pseudo-inverse of matrix T . 

Having the rigid diaphragm components at disposal, one can obtain the modes components at each 

measured point following the inverse way, in order to compute a re-built u  vector, using the same 

above-defined T  matrix. 

Gbuiltre uTu   

After that a comparison between u  and builtreu   can be made through MAC, NMAC or NMD. 

),( builtreuuMAC   

If this parameter is close to 1, the two modes shapes are very close one another and therefore the 

rigid diaphragm assumption can be justified; conversely, if the value is lower than 0.90, the rigid 

diaphragm assumption should be avoided. 

For buildings with m storey, the above procedure is the same, except that the T  matrix is a block 

diagonal matrix. The problem can be written in this way: 
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(3.97) 
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in which muuu ,,, 21   are the modes vectors at each storey, GmGG uuu ,,, 21  are the rigid 

diaphragm components at each storey and 
m

TTT ,,,
21
  are the transformation matrices. Following 

the same procedure described above, a MAC vector can be defined in which 

),( ,ibuiltrei uuMAC   

is the i-th component of MAC vector containing the MAC value between the original mode shape at 

the i-th floor and the re-built vector at the i-th floor. The rigid diaphragm assumption can be 

justified if all the values are close to 1. 

 

3.8 Conclusions 

 In the present Chapter, the theoretical basis of the procedure presented in Chapter 2 have 

been studied. In the first part, the maximum theoretical number of parameters has been investigated 

and a closed relation was given with the related demonstration. In the subsequent part, the 

procedure with partial derivatives has been studied and all the demonstrations of uniqueness of the 

solution and considerations regarding the stationary point have been performed. The procedure for 

the errors propagation has been then performed and relations for the partial derivatives, with respect 

to the experimental outcomes, have been achieved. After that the problem of ill-conditioning on the 

choice of the parameters has been examined and a criterion for understanding if one set of 

parameters can give unique solution, before running the procedure, has been achieved. The 

procedure for finding the maximum number of parameters for non ideal case has been then 

analyzed. Eventually, a criterion in order to evaluate the correctness of rigid diaphragm assumption 

has been developed.  

(3.102) 
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Figures of Chapter 3 

 

 

Figure 3.1: General representation of rigid diaphragm components from l+p displacements. 

 

 

Figure 3.2: Flowchart of the procedure for obtaining of the maximum number of parameters in real 

structures.  
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CHAPTER 4 

 

PRELIMINARY SENSITIVITY ANALYSIS ON SIMPLE 

STRUCTURES AND COMPARISON BETWEEN PROCEDURES 

 

4.1 Introduction 

 In this chapter will be performed a sensitivity analysis of some simple structures in order to 

assess the variability of parameters varying the frequencies and modes of vibration. In the first part, 

the analysis of 2-D infilled frames with and without the variation of modes shapes will be 

developed. In the second part the sensitivity analysis of more complex 3-D structures will be 

performed. The analysis of the results will be done for each case studying the variation of 

parameters as a function of the perturbations on frequencies and modes. In the last part, a 

comparison between the two algorithm and a statistical analysis of parameters will be carried out. 

 

4.2 Procedure for the sensitivity analysis 

 The sensitivity analysis are performed on 2-D and 3-D sample structures with the same basic 

concept. The complete structure with fixed values of parameters is analyzed, frequencies and modes 

of vibration are obtained. These values are the "reference" ones for the sensitivity analysis. After 

that, perturbations are applied on frequencies, modes components or both depending upon the case 

through the randn MATLAB function that generates random normally distributed numbers with 

constant mean value and coefficient of variation. The mean values are set equal to the reference 

values of frequencies and modes components, in all the analysis; instead the CoVs are set equal to 

2% or 5%. In order to take into account also possible errors on the original data, a bias equal to 2% 

is also included in the analysis. 

Using these perturbed frequencies and modes components, a Monte Carlo procedure has been run 

for 100 realizations for each model and the new parameters are obtained, the mean values and CoVs 

of those parameters were computed in order to evaluate the stability of parameters themselves. The 

stiffness matrices were obtained using software OpenSEES (McKenna and Fenves, 2001; 

OpenSEES, 2016) for all the cases. 

For these first analysis, the procedure with DE-Q algorithm was used (Flowchart of Figure 2.6). 
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4.3 2-D infilled frame sample 

 The first sample analyzed has been a 3 storey, 2 bays infilled framed structure. Only 3 DOFs 

(the horizontal displacements of the 3 storey) have been selected for this type of idealization (this 

sample structure is taken from specimen of Chapter 5.3). The assumption of shear-type frame has 

not been followed and a static condensation of rotational DOFs has been made in order to achieve 

the 3x3 stiffness and mass matrices. Therefore the maximum number of modes and frequencies 

achievable is 3. The view of the structure with the measures is depicted in Figure 4.1. For this 

sample, 3 parameters (the w/d ratio of the struts replacing the infills) has been used, the 

arrangements of them is depicted in Figure 4.2. In the 2 bays, it has been assumed the same type of 

infills and therefore the same values of parameters. Four different cases has been analyzed: 

 Case A: Identification made with System of Eq. 2.3, using 3 modes and frequencies; 

 Case B: Identification made with System of Eq. 2.3, using 2 modes and frequencies; 

 Case C: Identification made with System of Eq. 2.64, using 3 modes and frequencies; 

 Case D: Identification made with System of Eq. 2.64, using 2 modes and frequencies. 

In all of them, a CoV of 5% in frequencies and modes components has been used, no bias was 

considered in the procedure. 

The reference values of parameters, expressed as w/d ratio in percentage (where w is the width of 

the equivalent struts replacing the infill panel and d is the length of the diagonal), and for all the 

four cases, are listed in Table 4.1. The value of the thickness of the infill panels has been set to 18.8 

cm and the values of the Young's modulus equal to 5410, 6820 and 6520 MPa for the ground, first 

and second storey infills respectively (these values are taken from Stavridis, 2009). The algorithm 

used for the sensitivity analysis is the one depicted in Figure 2.8 (procedure with DE-Q algorithm). 

The analysis of the 100 realizations is made with the comparison between parameters mean values 

and reference ones, besides the CoVs of parameters themselves are analyzed. The mean values of 

the realizations are computed as follows: 

s

a

a

s

j
ij

i


 1

,

                                                               (4.1) 

in which i stand for i-th parameter and s is the number of realizations in the Monte Carlo procedure. 

The percentage errors in the parameters are computed with the following relation: 
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from the Monte Carlo procedure, the standard deviations σ of the realizations are also computed. 

From that value, the CoVs of parameters are computed as follows: 

100
i

i
i a

CoV


                                                           (4.3) 

In Table 4.2 are summarized those results for all the four cases. 

In Figures 4.3 to 4.6 are reported the histograms of the realizations. 

 

4.3.1 Analysis of results 

The results listed in Tables 4.2 and depicted in Figures 4.3 to 4.6 show a great stability for the 

algorithm and the cases studied. The errors in the means reached the maximum value of 4.89% with 

no great differences among the four cases. The CoVs give very good results too. In all the cases 

except one (in which CoV is equal to 10.10%) the CoVs are less than the summation of the CoVs in 

frequencies and modes components. Moreover the sharpness of the histograms shows very low 

scattering about the mean values in the parameters realizations. 

 

4.4 3-D infilled frame samples 

 With the same procedure described above, three 3-D infilled framed structures have been 

analyzed and a sensitivity analysis has been carried out for each of them. The three buildings 

present only 1 bay in the two horizontal directions and three storey. A rigid diaphragm assumption 

has been used in this type of buildings. Also in these cases, a static condensation has been made in 

order to achieve a problem size of 9 (2 translations and 1 rotation per storey). 

The three cases are labeled as follows: 

 AA: building asymmetric in both horizontal directions; 

 AS: building asymmetric in one horizontal direction and symmetric in the other one; 

 AAv: building asymmetric in both horizontal directions and with model error. 

The last case highlights the possibility that one infill panel is modeled in the FE procedure but, 

actually, that panel doesn't play any role in the dynamic behavior of the structure (to take into 

account one model error). 

The plan view of the structure is depicted in Figure 4.7. The four views for the three cases are 

depicted in Figures 4.8,4.9 and 4.10. 

From each case, 4 sub-cases are generated: 

 0: Without perturbations; 
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 1: Frequencies and modes components are considered as independent random variables with 

CoVs equal to 2%; 

 2: Frequencies and modes components are considered as independent random variables with 

CoVs equal to 2% for frequencies and 5% for modes; 

 3: Frequencies and modes components are considered as independent random variables with 

CoVs equal to 2% for frequencies and 5% for modes, in addition a bias equal to 5% is 

considered in the first frequency. 

Another subdivision is made in order to take into account different types of application of the 

perturbations themselves on modes components. The perturbations can be assigned directly on the 

rigid diaphragm modes components or to the displacement components of a sensor placed in a 

certain position on the structure and then, through Eq. 3.98, the rigid diaphragm components are 

reconstructed. 

3 sub-cases are considered: 

 I: Perturbations applied directly on the modes rigid diaphragm components; 

 II: Perturbations applied on the sensors modes components, considering 4 sensors per storey 

(at four corners), 2 each horizontal directions; 

 III: Perturbations applied on the sensors modes components, considering 8 sensors per 

storey (at four corners),  4 each horizontal directions. 

For the concrete frame has been assumed a Young's modulus equal to 30000 MPa, for the masonry 

panels equal to 3000 MPa. The thickness of the infill panels has been set to 30 cm. 6 modes and 

frequencies have been used in the procedures, all of them are below 25 Hz. 4 parameters are 

considered in all the cases. 

The cases are labeled with three indices; for instance Case AS-2-III means sample symmetric-

asymmetric, with perturbations of  2% in frequencies and 5% in modes and perturbations applied on 

the sensors, considering 8 sensors per storey. 

The algorithm used for the sensitivity analysis is the one depicted in Figure 2.8 (procedure with DE-

Q algorithm) without taking into account the determinant equations. 

In Table 4.3 are listed the reference values of parameters, calibrated using the proposals of Decanini 

and Fantin (Decanini and Fantin, 1987). 

In Tables 4.4 to 4.8 are listed some results from the sensitivity analysis (Tondi et al., 2017). 

In Figures from 4.11 to 4.13 are depicted the histograms of parameters for the cases AA-2-I, AS-2-I 

and AAv-2-I. 
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4.4.1 Analysis of results 

 Analyzing the results, some general conclusions can be drawn: first of all, very little 

discrepancies are achieved in terms of errors and CoVs if no perturbations are assigned to 

frequencies and modes components (Table 4.4). This aspect indicates that the procedure doesn't 

create bias inside the mathematical formulation itself.  

For case AA-1-I the mean errors are very low, the coefficients of variations are also low for the first 

parameter (with greatest value) and a little bit higher for the other three parameters. This is due to 

the fact that the first parameter rules the dynamic behavior of the structure and therefore the other 

ones present greater CoVs. Increasing the perturbation on modes components, the system behaves 

worse with greater mean values errors and CoVs. The introduction of one bias (equal to 5%) in the 

first frequency doesn't affect so much the procedure which is quite stable with respect to the 

frequencies perturbations (Table 4.5). 

The same conclusions can be achieved, also, for the symmetric-asymmetric case (Table 4.6).  

Changing the distribution of the perturbations on the mode shapes, from perturbations applied 

directly to rigid diaphragm components to perturbations on 4 and 8 sensors, the results are improved 

in terms of both mean values errors and CoVs. This is due to the fact that the perturbations on 4 or 8 

sensors are "mediate" when they have been transformed into rigid diaphragm components and 

therefore errors and CoVs reached lesser values with respect to the case of direct rigid diaphragm 

components perturbations (Table 4.7). 

The last sample, with modeling error, gives very good results and the modeling error is detected by 

the procedure in a very good way (Table 4.8). 

 

4.5 Comparison between sensitivity analysis using the two 

procedures 

 Using the two different procedures outlined in Chapter 2 and depicted in Figures 2.4 and 

2.8, a comparison is made with respect to the cases AA-2-I and AS-2-I. In Table 4.9 and 4.10 are 

summarized the mean values and CoVs for the two procedures and the two cases. For case AA-2-I 

one can see how the mean values of all the parameters are found with smaller error in the two steps 

procedure with Trust-Region updating with respect to the DE-Q procedure. Moreover, the CoVs of 

the two steps procedure are very smaller than the ones obtained with DE-Q algorithm. The second 

case AS-2-I achieves better results using two steps procedure for all the quantities (except for one 

mean value error that is a little bit smaller for DE-Q procedure); therefore, for the cases studied, the 
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new procedure is more stable with respect to face directly the entire system with a genetic 

algorithm. 

In terms of computational effort and computational time, e.g. for 100 realizations and for case AA-

2-I, the two steps procedure with Trust-Region updating needs 447 seconds to run, conversely the 

DE-Q algorithm, with the same thresholds set, needs 11676 seconds to run. The time saving using 

the first procedure is about 96%. In the case AS-2-I, the two steps procedure with Trust-Region 

updating needs 262 seconds to run, conversely the DE-Q algorithm, with the same thresholds set, 

needs 11898 seconds to run. Again, the time saving using the first procedure is about 98%. 

 

4.5.1 Comparison of sensitivity analysis between algorithms with and without determinant 

equations 

 In order to understand the sensitivity of the model to the use of the incomplete set of 

Equations (Eq. 2.3 or 2.4) with respect to the use of the complete system of equations, adding the 

determinant equations (Eq. 2.64 or 2.65), one case is analyzed with both the systems using the two 

steps procedure with Trust-Region updating. The results are summarized in Table 4.11 in terms of 

mean values, errors and CoVs. One can see that the errors in the parameters decrease very much 

with the complete system and the CoV in the first parameter (the most important parameter in the 

dynamic behavior of the structure) decreases. The other CoVs have small increments. Therefore, the 

use of the determinant equations is not negligible in the procedure. 

 

4.6 Analysis of the dependence upon the number of modes and 

statistical distribution analysis 

 Starting from case AA-2-I (with CoV equal to 2% on frequencies and 5% on modes 

components), the dependence of the solution on the number of modes used in the system is 

analyzed. In Table 4.12 are summarized the results with 6 and 9 modes, obtained from Monte Carlo 

analysis with 100 realizations, using the two steps procedure of Figure 2.4. The procedure is stable 

with respect to the number of modes used and the solution is not so sensible passing from 6 modes 

to 9 modes. 

The cases AA-2-I and AS-2-I, with 6 modes used in the algorithm, are also analyzed in order to 

figure out the statistical distributions of parameters starting from normally distributed perturbations 

on frequencies and modes components. For the comparison (Chapter 2), chi-square tests have been 

performed. The statistical distributions of parameters have been compared with five distributions: 

 Beta distribution; 
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 Normal distribution; 

 Lognormal distribution; 

 T-student distribution; 

 Weibull distribution. 

All these distributions have been firstly fitted with the values of parameters from Monte Carlo 

procedure through a probability distribution fitting techniques (Cramer, 1946). 

The chi-square values with evaluation of the levels of significance for the two cases are summarized 

in Table 4.13. The test is overcome if the value for the level of significance is greater than 0.05 

(5%). One can see that the distribution changes from parameter to parameter and even from case to 

case. For AA-2-I the normal distribution overcomes, for all the parameters, the chi-square test (with 

5% level of confidence) but other distributions for two parameters give better probability of 

goodness (for parameters 2 and 4, Weibull and Beta distributions respectively). For case AS-2-I, for 

some parameter, the normal distribution fails the test. In Table 4.14 the statistical distributions 

found are summarized. As anticipated in Chapter 2, no general rule can be given for statistical 

distributions of parameters from normally distributed perturbations on frequencies and modes 

components. In Figures 4.14 and 4.15 the histograms of the four parameters along with the main 

fitted distributions are depicted. 

 

4.7 Conclusions 

 In this Chapter, the sensitivity analysis of simple structures have been performed in order to 

figure out the stability of the algorithms. In the first part, the sensitivity analysis of 2D structures is 

done and the results are very stable, in terms of errors in mean values and CoVs. Then, a 3D 

structures were analyzed utilizing two algorithm (DE-Q and two steps procedure with Trust-Region 

updating). The results are quite good for both the procedure, the two steps one yielded more stable 

results in terms of both errors in mean values and CoVs. Eventually, statistical analysis with chi-

square tests have been performed in order to understand the parameters distribution starting from 

normal distribution for frequencies and modes components. Unfortunately, no general rule can be 

achieved for the statistical distributions themselves. 
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Tables of Chapter 4 

 

Case a1 a2 a3 
A 0.250 0.200 0.100 
B 0.250 0.200 0.100 
C 0.250 0.200 0.100 
D 0.250 0.200 0.100 

 
Table 4.1: Reference values of parameters. 

 

Parameter A B C D 
 Mean value 0.246 0.245 0.246 0.247 

a1 Error [%] 1.61 2.16 1.83 1.41 
 CoV [%] 6.06 6.94 6.02 6.64 

 Mean value 0.195 0.191 0.193 0.190 
a2 Error [%] 2.77 4.57 3.39 4.89 
 CoV [%] 8.18 9.13 7.59 10.10 

 Mean value 0.097 0.097 0.097 0.097 
a3 Error [%] 2.93 2.63 3.23 3.38 
 CoV [%] 9.28 8.63 9.73 9.27 

 
Table 4.2: Mean values, errors and CoVs of parameters for 2-D sample. 

 

Case a1 a2 a3 a4 
AA 0.257 0.069 0.058 0.076 
AS 0.257 0.069 0.058 0.076 

ASv 0.257 0.069 0.058 0.000 

 
Table 4.3: Reference values of the equivalent strut widths. 

 

Parameter AA-0-0 AS-0-0 AAv-0-0 
 Mean value 0.257 0.257 0.257 

a1 Error [%] 0.00 0.01 0.03 
 CoV [%] 0.02 0.01 0.07 

 Mean value 0.069 0.069 0.069 
a2 Error [%] 0.02 -0.02 0.05 
 CoV [%] 0.02 0.06 0.11 

 Mean value 0.058 0.058 0.058 
a3 Error [%] 0.03 -0.03 0.06 
 CoV [%] 0.06 0.14 0.13 

 Mean value 0.076 0.076 0.000 
a4 Error [%] 0.03 0.02 - 
 CoV [%] 0.06 0.05 - 

 
Table 4.4: Mean values, errors and CoVs for case AA-0-0, AS-0-0 and AAv-0-0. 

 



 
96 

 

Parameter AA-1-I AA-2-I AA-3-I 
 Mean value 0.250 0.238 0.238 

a1 Error [%] -2.5 -7.2 -7.2 
 CoV [%] 7.1 14.3 15.3 

 Mean value 0.069 0.067 0.066 
a2 Error [%] 0.0 -3.8 -4.6 
 CoV [%] 14.0 28.3 33.5 

 Mean value 0.057 0.057 0.052 
a3 Error [%] -2.9 -3.1 -11.5 
 CoV [%] 27.8 49.6 46.8 

 Mean value 0.077 0.071 0.070 
a4 Error [%] 2.0 -6.4 -8.0 
 CoV [%] 18.0 36.7 36.9 

 
Table 4.5: Mean values, errors and CoVs for case AA-1-I, AA-2-I and AA-3-I. 

 

Parameter AS-1-I AS-2-I AS-3-I 
 Mean value 0.246 0.225 0.213 

a1 Error [%] -4.3 -12.3 -17.0 
 CoV [%] 9.7 30.2 30.4 

 Mean value 0.066 0.084 0.078 
a2 Error [%] -4.4 21.5 11.8 
 CoV [%] 24.3 59.0 64.0 

 Mean value 0.059 0.087 0.085 
a3 Error [%] 0.3 49.2 45.1 
 CoV [%] 41.0 80.0 81.4 

 Mean value 0.072 0.061 0.059 
a4 Error [%] -4.4 -19.0 -22.7 

 CoV [%] 16.9 49.7 52.8 

 
Table 4.6: Mean values, errors and CoVs for case AS-1-I, AS-2-I and AS-3-I. 

 

Parameter AA-2-I AA-2-II AA-2-III 
 Mean value 0.238 0.243 0.249 

a1 Error [%] -7.2 -5.5 -3.3 
 CoV [%] 14.3 11.4 9.4 

 Mean value 0.067 0.065 0.067 
a2 Error [%] -3.8 -7.8 -3.9 

 CoV [%] 28.3 23.7 18.1 

 Mean value 0.057 0.053 0.056 
a3 Error [%] -3.1 -10.1 -4.7 
 CoV [%] 49.6 45.0 33.3 

 Mean value 0.071 0.069 0.071 

a4 Error [%] -6.4 -10.0 -6.8 
 CoV [%] 36.7 34.8 24.9 

 
Table 4.7: Mean values, errors and CoVs for case AA-2-I, AA-2-II and AA-2-III. 
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Parameter AAv-2-I AAv-2-II AAv-2-III 
 Mean value 0.228 0.234 0.246 

a1 Error [%] -11.3 -9.0 -4.5 
 CoV [%] 13.1 11.3 7.3 

 Mean value 0.073 0.068 0.069 
a2 Error [%] 4.4 -3.2 -1.3 
 CoV [%] 28.5 22.6 18.3 

 Mean value 0.054 0.053 0.055 
a3 Error [%] -8.0 -9.2 -5.9 
 CoV [%] 24.3 18.1 15.6 

 Mean value 0.022 0.018 0.010 
a4 Error [%] - - - 
 CoV [%] - - - 

 
Table 4.8: Mean values, errors and CoVs for case AAv-2-I, AAv-2-II and AAv-2-III. 

 

Parameter AA-2-I DE-Q  
AA-2-I two steps 

procedure 
 Mean value 0.231 0.252 

a1 Error [%] -10.2 -1.9 
 CoV [%] 12.4 7.2 

 Mean value 0.069 0.069 
a2 Error [%] -1.9 -0.8 

 CoV [%] 28.3 14.7 

 Mean value 0.057 0.059 
a3 Error [%] -2.5 0.4 
 CoV [%] 47.0 11.3 

 Mean value 0.075 0.076 

a4 Error [%] -1.8 -0.2 
 CoV [%] 26.8 11.3 

 
Table 4.9: Mean values, errors and CoVs for case AA-2-I with DE-Q and two steps procedures. 

 

Parameter AS-2-I DE-Q  
AS-2-I two steps 

procedure 
 Mean value 0.223 0.257 

a1 Error [%] -13.3 0.0 
 CoV [%] 13.5 4.6 

 Mean value 0.067 0.065 
a2 Error [%] -4.8 -6.7 
 CoV [%] 35.1 13.9 

 Mean value 0.063 0.057 
a3 Error [%] 6.9 -3.6 
 CoV [%] 56.7 32.5 

 Mean value 0.064 0.081 
a4 Error [%] -16.7 6.0 

 CoV [%] 22.8 22.0 

 
Table 4.10: Mean values, errors and CoVs for case AS-2-I with DE-Q and two steps procedures. 



 
98 

 

Parameter AA-2-I without det eq. AA-2-I with det eq. 
 Mean value 0.219 0.252 

a1 Error [%] -14.8 -1.9 
 CoV [%] 10.3 7.2 

 Mean value 0.072 0.069 
a2 Error [%] 2.3 -0.8 
 CoV [%] 8.9 14.7 

 Mean value 0.061 0.059 
a3 Error [%] 3.3 0.4 
 CoV [%] 9.3 11.3 

 Mean value 0.073 0.076 
a4 Error [%] -4.2 -0.2 
 CoV [%] 8.5 11.3 

 
Table 4.11: Mean values, errors and CoVs for case AA-2-I with and without determinant equations 

using two steps procedure (for the system without determinant equations only the first step is 

needed). 

 

Parameter AA-2-I - 6 modes AA-2-I - 9 modes 
 Mean value 0.252 0.257 

a1 Error [%] -1.9 -0.3 
 CoV [%] 7.2 5.7 

 Mean value 0.069 0.073 
a2 Error [%] -0.8 4.1 
 CoV [%] 14.7 12.1 

 Mean value 0.059 0.060 
a3 Error [%] 0.4 1.5 
 CoV [%] 11.3 12.3 

 Mean value 0.076 0.079 
a4 Error [%] -0.2 3.4 

 CoV [%] 11.3 9.9 

 
Table 4.12: Mean values, errors and CoVs for case AA-2-I with 6 and 9 modes. 

 

 

 

 

 

 

 

 

 

 



 
99 

 

 

Parameter 
Level of confidence 

AA-2-I AS-2-I 
 Beta 0.50 - 0.60 ≈ 0.25 

a1 Normal ≈ 0.62 ≈ 0.29 
Levels of significance Lognormal 0.50 - 0.60 < 0.20 

 T-student 0.50 - 0.60 < 0.20 
 Weibull ≈ 0.60 ≈ 0.27 

 Beta < 0.05 < 0.10 
a2 Normal 0.05 - 0.10 0.10 - 0.50 

Levels of significance Lognormal < 0.05 < 0.05 
 T-student 0.05 - 0.10 0.10 - 0.50 
 Weibull 0.10 - 0.50 > 0.50 

 Beta > 0.60 < 0.05 
a3 Normal > 0.60 < 0.05 

Levels of significance Lognormal > 0.60 < 0.05 
 T-student > 0.60 < 0.05 
 Weibull 0.50 - 0.6 > 0.05 

 Beta ≈ 0.14 < 0.10 
a4 Normal ≈ 0.13 < 0.05 

Levels of significance Lognormal ≈ 0.13 > 0.10 
 T-student 0.05 - 0.10 < 0.05 
 Weibull < 0.05 < 0.05 

 
Table 4.13: Chi-square tests for cases AA-2-I and AS-2-I. 

 

Parameter AA-2-I AS-2-I 
    

a1 Distribution Normal Normal 
    

    

a2 Distribution Weibull Weibull 
    

    
a3 Distribution Normal Weibull 
    

    
a4 Distribution Beta Lognormal 

    
 

Table 4.14: Statistical distributions of parameters for cases AA-2-I and AS-2-I. 
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Figures of Chapter 4 

 

 
Figure 4.1: View of the 2-D sample structure. 

 

 

Figure 4.2: Parameters arrangement. 
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Figure 4.3: Frequencies histograms of parameters a1, a2, a3 for 2-D sample - Case A. 

 

  

 

Figure 4.4: Frequencies histograms of parameters a1, a2, a3 for 2-D sample - Case B. 
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Figure 4.5: Frequencies histograms of parameters a1, a2, a3 for 2-D sample - Case C. 
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Figure 4.6: Frequencies histograms of parameters a1, a2, a3 for 2-D sample - Case D. 

 

 

Figure 4.7: Plan view of 3-D samples. 

 

 
                     (a)                        (b)                          (c)                          (d) 

Figure 4.8: Views of 3-D samples - Case AA: (a) North elevation, (b) West elevation,                   
(c) South elevation, (d) East elevation. 
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                      (a)                         (b)                          (c)                         (d) 

Figure 4.9: Views of 3-D samples - Case AS: (a) North elevation, (b) West elevation,                   
(c) South elevation, (d) East elevation. 

 

 
                      (a)                        (b)                         (c)                         (d) 

Figure 4.10: Views of 3-D samples - Case AAv: (a) North elevation, (b) West elevation,                   
(c) South elevation, (d) East elevation - The blue infill is the model error. 
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Figure 4.11: Frequencies histograms of parameters a1, a2, a3, a4 for 3-D sample - Case AA-2-I. 

 

  

  

Figure 4.12: Frequencies histograms of parameters a1, a2, a3, a4 for 3-D sample - Case AS-2-I. 
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Figure 4.13: Frequencies histograms of parameters a1, a2, a3, a4 for 3-D sample - Case AAv-2-I. 
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(d) 

Figure 4.14: Frequencies histograms of parameters a1, a2, a3, a4 for 3-D sample - Case AA-2-I 

along with main fitted distributions: (a) parameter a1, (b) parameter a2, (c) parameter a3,                

(d) parameter a4. 
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(d) 

Figure 4.15: Frequencies histograms of parameters a1, a2, a3, a4 for 3-D sample - Case AS-2-I 

along with main fitted distributions: (a) parameter a1, (b) parameter a2, (c) parameter a3,                

(d) parameter a4. 
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CHAPTER 5 

 

DAMAGE IDENTIFICATION OF EXISTING INFILLED R.C. 

FRAMES 

 

5.1 Introduction 

 In this Chapter, the damage identification of two existing infilled R.C. frames will be 

performed, for which the frequencies and mode shapes are available from experimental tests. The 

first step will be the definition of the damage function in order to evaluate the percentage of damage 

at fixed damage state with respect to the initial state of the structure before the test. After that two 

different damage identification will be performed on two structures in paragraphs 5.3 and 5.4. 

The model updating was performed using both the two steps algorithm and the DE-Q one. The 

results are practically the same for both the structures analyzed. 

 

5.2 Damage parameter 

 The damage percentage parameter, for the j-th parameter and for the i-th damage state, 

following a consolidated literature technique (e.g. Moaveni et al., 2013), can be defined as follows: 

100
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with this definition, the damage parameter is able to range from 0% (undamaged parameter) to 

100% (total damaged parameter). 

For the damage identification, from damage state to damage state, the boundary constraints of the 

DE-Q algorithm were updated every time in order to take into account the fact that parameters must 

decrease, increasing the damage state. 

 

5.3 UCSD sample 

 

5.3.1 Description of the 3-storey infilled R.C. frame 
 The infilled frame considered here is a two-thirds-scale model of an exterior frame of a 

prototype structure, designed by Stavridis (Stavridis, 2009) to have non-ductile reinforcing details 

representative of the 1920s R.C. construction in California. The plan view of the prototype structure 

(5.1) 
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and the elevation view of the exterior frame are presented in Figures 5.1 and 5.2 respectively. In 

these pictures, the dimensions are for the prototype structure, the specimen is a two-thirds-scale of 

it. The design of the specimen and the cross sections of columns and beams are reported in Figures 

5.3 and 5.4 respectively.  The design was based on the allowable stress design approach, 

considering only gravity loads in accordance with engineering practice of that era. However, the 

design was based on properties of contemporary construction materials, which were used for the 

construction of this specimen. The frame is infilled with three wythes unreinforced masonry walls 

on the exterior. Such structural systems can be found in many existing older buildings in the 

western United States, including pre-1930s buildings in California. This type of construction is also 

common in many regions of the world with high seismicity, such as the Mediterranean and Latin 

America regions. 

The specimen tested on the large outdoor shake table at UCSD is shown in Figure 5.5. The structure 

included slabs that simulated the scaled gravity mass of the external frame of the prototype 

accounting for the two-thirds-length scale factor. Because the prototype structure has infill walls 

only in its exterior frames, the exterior frames are significantly stiffer and stronger than the interior 

frames. Consequently, their tributary seismic mass is significantly larger than the gravity mass as 

illustrated in Figure 5.1 for the exterior frame along column line A, which was modeled by the test 

specimen. The test specimen did not have additional gravity load-carrying systems. Therefore, it 

was decided that the mass carried by the specimen should accurately represent the gravity mass to 

induce the same vertical stresses as those experienced by the R.C. columns and infill walls of the 

prototype. To account for the effect of the seismic mass not included in the specimen, the input 

ground acceleration time histories had to be scaled in time and amplitude (Stavridis, 2009) to satisfy 

the similitude requirement for the seismic forces. It should be pointed out that the ground motion 

levels referred to in the subsequent sections are always with respect to the full-scale prototype 

structure. Two steel towers were erected on the shake table on the north and south sides of the test 

specimen to prevent a potential out-of-plane collapse of the structure during severe shaking. These 

towers did not interact with the structure during the tests as they were placed with a 2-cm gap from 

the specimen. Further details on the design and configuration of the specimen and the shake table 

tests can be found in Stavridis, 2009 and Stavridis et al., 2011. 

 

5.3.2 Instrumentation layout 
 The specimen and steel towers were extensively instrumented with an array of 265 sensors, 

including 135 strain gauges, 71 string potentiometers and linear variable differential transformers 
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(LVDTs), and 59 uniaxial accelerometers. The accelerometers were used to measure the 

accelerations along the x, y, and z directions, with x being the direction of the base excitation 

(longitudinal), y the transverse (out-of-plane) direction, and z the vertical direction. In this study, 

the measured response from three longitudinal, three vertical, and two transversal acceleration 

channels on each floor are used (total of 24 channels) to identify the modal parameters of the test 

structure. The locations of the accelerometers at each floor level are shown in Figure 5.6. The 

measured acceleration responses were sampled at 240 Hz resulting in a Nyquist frequency of 120 

Hz, which is significantly higher than the modal frequencies of interest in this study (< 60 HZ). 

Before applying the system identification method to the measured data, all acceleration time 

histories were band-pass filtered between 0.5 and 70 Hz using a high-order (1024) finite impulse 

response filter. 

 

5.3.3 Dynamic tests performed 

 The specimen was subjected to a sequence of 44 dynamic tests including ambient-vibration 

tests, free-vibration tests, and forced vibration tests (white-noise and seismic base excitations). The 

main events and tests are shown in Table 5.1. The testing sequence consisted of earthquake ground 

motions of increasing intensity. Before and after each earthquake record, low-amplitude white-noise 

base excitation tests were performed to provide data for the model updating and damage 

identification. The input ground motions were obtained by scaling the time and amplitude of the 

ground acceleration time history recorded along the NS direction at the Gilroy 3 station during the 

1989 Loma Prieta earthquake. For structures with a fundamental frequency close to that of the 

infilled frame studied here, the Gilroy 3 motion scaled at 67% corresponds to a moderate design 

level earthquake for Seismic Design Category D, while the original (unscaled) motion corresponds 

to a maximum considered earthquake (MCE). The MCE event selected as the reference base motion 

intensity in this study has spectral accelerations, Ss = 1.5g and Sl = 0.6g, and represents the worst-

case scenario for San Diego and a moderate scenario for the Los Angeles area (Stavridis, 2009). In 

the Table, 7 different damage states are pointed out, damage state DS0 represent the reference state 

for undamaged structure, corresponding to the uncracked state of the structure before its exposure to 

the first base excitation, while damage states DS1 to DS7 correspond to the conditions of the 

structure after it was subjected to different levels of the Gilroy earthquake. 

Using these tests, a system identification was made by Moaveni (Moaveni et al., 2013), frequencies 

and mode shapes were achieved for all the damage states. 4 modes were identified (2 translational, 

1 rotational and 1 coupled modes were found), for this study only the two translational modes are 
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taken into account. The polar plot of the two modes for damage state DS0 and a graphical 

representation are reported in Figure 5.7. The frequencies obtained for all the damage states are 

listed in Table 5.2. From the polar plot one can see how the modes are almost real modes. 

 

5.3.4 Model updating 

 For the purpose of model updating, a stick model of the structure has been created. Only 

translational degrees of freedom are considered in the analysis. The mass are concentrated in the 

nodes of the stick model and the parameters to obtain are defined as follows: 
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                                                               (5.2) 

in which iK  is the storey stiffness at the i-th floor, cb  and ch are the base and width of the columns 

section (both equal for all the columns to 0.279 m), cl is the columns height (equal for all the 

columns to 2.060 m). iK  was divided by the term in Eq. 5.2 only to limit the values of parameters 

themselves. All the geometrical features and values for masses are taken from Stavridis, 2009. 

Figure 5.8 depicts the stick model (y axis is normalized with respect to the interstorey height). 

In Figures 5.9, 5.10 and 5.11 are depicted the parameters values, the storey stiffness and the damage 

parameters for the seven damage states. In Table 5.3 are listed the experimental and numerical 

frequencies along with the MAC values. In Figure 5.12 a comparison between experimental and 

numerical modal shapes is reported. 

 

5.3.5 Analysis of results 

 Analyzing the results one can see how the first mode is, for all damage states, found by the 

procedure with MAC values equal to 1.00. The second mode has always MAC values greater than 

0.90 and therefore is found with acceptable precision. The frequencies are matched with very good 

agreement up to DS6 in which the agreement is poorer. This is due to the fact that for DS6 and DS7 

the damages undergone by the structure were severe and a refined model, with respect to the stick 

model used here, should be used. 

The damage parameters can capture the huge damages at the first storey, mainly in DS6 and DS7, 

and even some damages in the second storey at DS7. This matches with experimental evidences 

after the tests, especially, after Gil120, extensive damages are found at the ground storey and severe 

damage at the first storey, as well. 
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The match between experimental and numerical modal shapes is practically perfect for the first 

mode, is poorer for the second one especially for DS6 which is the worst FE identified mode. 
 

5.4 El-Centro building 

 

5.4.1 Description of the structure 

 As reported in Yousefianmoghadam et al., 2015, the structure under study is a two-story 

reinforced concrete moment frame structure with a basement, located in El Centro, CA, US shown 

in Figure 5.13. The building was constructed in the 1920s and it was typical of the construction 

practice in California in that era. It had sustained damage during the Imperial Valley Earthquakes of 

1940 and 1979, and the 1987 West Westmoreland Earthquake. The exterior frames and infills of the 

ground floor were repaired and retrofitted after the first three earthquakes. However, the structure 

was red tagged and evacuated after the 2010 Baja California Earthquake due to extensive damage in 

the first story. With all non-structural components removed from the building, only its structural 

members, including the RC frame and the infill walls, was in place during the tests. The structure 

was demolished after the completion of the tests as it could not be repaired cost-effectively 

considering the economy in the area. Figure 5.14 shows the 26 m by 32 m plan view of the structure 

at the first floor level. The plan was rectangular except for the west exterior frame which was 

curved. Plan view of the first floor was similar to that shown in Figure 5.14 except that the exterior 

infills on the northern side had one frame recess to allow for a pedestrian side walk passage as 

shown in Figure 5.13. On the south, there was a one-story wooden structure attached to the main 

building as indicated in Figure 5.14. 

The structure comprised of six reinforced concrete frames in the north-south direction connected by 

arch-type joists in the east-west direction. The dimensions and reinforcement details of the joists are 

shown in Figure 5.14. The interior columns were 40 cm diameter circular. The exterior ones were 

40 cm by 40 cm square except for the columns in south side and the ground story columns in north 

side which were 40 cm diameter circular. 

The ground story of the structure had been repaired and retrofitted in the late 1980s after the 1987 

earthquake. The retrofit had focused on the strengthening of the masonry infills of the ground story. 

As a result, there were three types of infill in this floor: reinforced concrete, unreinforced masonry 

and combinations of the two. The exterior frames in the basement had reinforced concrete walls 

with openings near the top, while the first story had a masonry infill of two independent wythes in 

all the exterior frames. The wythes had a distance of 10 cm and the gap in between was filled with a 
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powder; most probably for insulation reasons. The stiffness and strength discontinuity between the 

ground and first stories resulted in severe damage of the first story infills and frames in the north, 

west and south bays during the 2010 Baja California earthquake. The east side on the first floor that 

had a solid infills and the entire first story that was strengthened did not develop any visible cracks. 

 

5.4.2 Induced damages 

 The exterior infill walls were part of the lateral load resisting system and their removal could 

affect the lateral stiffness and strength of the structure. Four infill walls were removed at three 

stages introducing four levels of damage to the building (DS1, DS2, DS3 and DS4). The first 

damage state (DS1) was the initial condition of the structure prior to the experiment, which included 

a wall already removed in the bay A3-A4 of the first floor. This wall was removed prior to the test 

to allow the sliding of the shaker inside. The second damage state (DS2) resulted once the infill in 

D6-E6 bay in the first story (Y-direction) was removed. The third damage state (DS3) resulted from 

the removal of the infill in E6-F6 bay in the same exterior frame in the first floor. The fourth and 

last damage state (DS4) was introduced after the removal of infills in F6-G6 and G5-G6 in the first 

floor. The walls removal procedure is summarized in Table 5.4 and the locations, along with the 

sequence, of the removed walls are shown in Figure 5.15. 

 

5.4.3 Dynamic testing 

 A total  of 97 sensors including accelerometers, string pots and LVDTs were installed on the 

building to measure accelerations and displacements. To measure the accelerations, 21 uniaxial and 

39 triaxial force-balance accelerometers were utilized. The accelerometers were installed close to 

the four corners and the center of the ground and the first floor and the roof. In every location, they 

measured the acceleration in two horizontal directions and one vertical direction (X, Y and Z), so 

that 15 acceleration measurements were obtained at each level as shown in Figure 5.16. The X 

direction corresponds to the east-west direction with positive measurements being towards the west 

and the Y direction corresponds to the north-south direction with positive towards the north. 

Moreover, two triaxial accelerometers were installed at the north-west and south-east corner of the 

basement, while three additional uniaxial accelerometers were mounted on the extension building at 

its north and west sides. Eventually, two triaxial accelerometers were installed on the ground close 

to the structure at the north and west side of it. For the purposes of this work, only the horizontal 

DOFs of the structure have been taken into account, at ground, first and roof levels. Therefore 10 

mode shape components per story have been used with total amount of 30 components. The sensors 
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were connected to a data logger with data sampling rate of 200 Hz and were synchronized by GPS 

timing. 

Two type of tests were conducted: Ambient Vibration (using wind vibrations) and Forced Vibration 

with shaker. A series of shake tests were performed on the structure to investigate its dynamic 

properties in the quasi-linear and nonlinear ranges of behavior. The experiments were conducted 

using two mobile shakers owned and operated by NEES@UCLA. Initially a small, linear, one-man 

portable shaker was used to identify the natural frequencies of the building. The other shaker, was a 

mobile eccentric mass shaker with a force capacity of 445 kN (100 kips). The shaker could produce 

harmonic excitations within a range of frequencies (0-5.5 Hz). The shaker was mounted on the 

second floor at the north-west corner and bolted to the concrete slab (Figure 5.15). The excitations 

produced by the latter shaker were sine sweeps and sine steps which were used to excite both the X 

and Y directions. 

Force vibration and ambient vibration tests were conducted in all the damage states, before and after 

the wall removal. A total of 26 force vibration tests were performed and 166 ambient vibration 

recordings (80 hours) were obtained in the four damage states over a four-day period. 

For the purposes of this work only the ambient vibration tests have been considered because of 

forced vibration ones overcame the linear range of the structure. 

 

5.4.4 System identification 

 Modal parameters of the test structure were estimated at each damage state from the ambient 

measurements. The system identification was performed using time-domain (NExT-ERA) and 

frequency-domain (Peak picking) methods (Ferrar and James, 1997; Bendat and Piersol, 1980). 

First of all the NExT-ERA method is discussed. The natural excitation technique combined with the 

eigensystem realization algorithm (NExT-ERA) was used to identify the modal parameters of the 

building. The data cleaning process included: (1) filtering between 0.5 and 7 Hz with a Finite 

Impulse Response (FIR) band-pass filter, and (2) down-sampling the data from 200 Hz to 50 Hz. 

Based on the length of available data in each damage state, the ambient acceleration measurements 

were divided into 30 sets for DS1, 5 sets for DS2, 2 sets for DS3, and 20 sets for DS4. Each set of 

data corresponds to approximately 10 minutes of measurements for DS1-DS3 and 5 minutes for 

DS4. The system identification algorithm was applied for all 57 datasets. For each set, the signal 

was divided into 4 Hamming windows with 50% overlap to compute the cross power spectral 

density. SW-X on 1st floor and SW-X on roof were chosen as two reference channels for 

computing cross-correlation functions which were then used as free vibration data and fed into the 



 
120 

 

ERA method. The order of ERA was chosen manually for each of the 57 sets based on the 

stabilization diagrams. The modal parameters (natural frequencies, damping ratios and mode 

shapes) were then identified for each set of DS1 and DS4. 

The peak-picking method was also used to find the natural frequencies and mode shapes of the 

building at different damage states. The transfer functions between all of the accelerometers 

recordings (outputs) and a reference accelerometer were computed from their power spectral 

densities using one set of data in each damage state, with each set corresponding to approximately 

20 minutes of measurements for DS1,DS2, and DS4 and 10 minutes of measurements for DS3. As 

reference, the accelerometers at north-west corner of the second floor measuring in either the X 

direction or Y direction depending on the direction considered, were selected. In the next step, the 

peak and the corresponding frequencies were estimated from the transfer function between the 

signals at the roof and at the reference location. The mode-shape components were then estimated 

using the values of the transfer functions between all the locations and the reference accelerometer 

at the identified frequency. The damping ratios of the reference channels were also found and 

averaged using the half power bandwidth method on their power spectral densities. Power-cross 

spectral densities of the acceleration measurements were estimated using the Welch method and 

averaged over Hanning windows of 8192 data points with 50% window overlap. The same window, 

window function, and overlap was used to find the Fourier transform of the measurements. 

The identified frequencies are summarized in Table 5.5 for both NExT-ERA and peak picking 

methods. The identified frequencies are decreasing for both modes as expected. The rate of change 

is different for different damage states showing different contribution of each removed wall on the 

overall stiffness due to the location but also due to the prior damage. 

The first mode involved motion mainly in the X (east-west) direction, however the west corners of 

the building also moved in the Y (north-south) direction. This happened because of the damage in 

the west infills that shifted the center of rigidity towards the undamaged east well. As a result, a 

combination of translational and torsional motion was introduced. The second mode was mainly 

torsional with the center of rotation close to the east side of the building. As in the first mode, the 

movement in the X direction at the south side is more than the north side one. The infill walls at the 

east side appeared undamaged and as a result, stiffer than the damaged walls at the west side. 

Furthermore, there was a stairway shaft close to the north-east corner of the building having 

reinforced concrete walls which provided lateral stiffness. Hence, the center of the rigidity moved 

toward the north-east corner of the structure. Figure 5.17 depicts the deformed shapes of the 

structure at roof level for both modes in DS1 and DS4. The comparison of these two damage states 
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in mode 1 indicates that the structure tended to displace more in the Y direction after the wall 

removal, which was expected because three walls were removed in this direction. 

For the purposes of this work the NExT-ERA identified frequencies and mode shapes are used in 

order to perform the model updating. 

 

5.4.5 Model updating for 4 parameters case 

 For the goal of model updating of the structure, in order to figure out the contribution in 

stiffness of the infills, the structure was modeled with software OpenSEES (McKenna and Fenves, 

2001; OpenSEES, 2016). All the columns and beams were modeled using 2D Beam-Column 

elements with modulus of elasticity equal to 9997 MPa (1450 ksi), obtained through experimental 

tests. As usual, the infills were replaced by equivalent struts (linear truss elements). The four 

parameters used in the model updating were the AE   for the struts replacing the infill panels at the 

first story. The distribution of parameters is depicted in Figure 5.18. The struts stiffness for infill 

panels at the ground story and in the underground were calibrated using the relations proposed by 

Stavridis (Stavridis, 2009) taking into account a reduction factor in order to reduce the stiffness 

because of the openings and the already present damages in the infill panels. The reduction factor 

was defined as follows: 

                                                                    (5.3) 

in which   is the stiffness loss due to the damage of the infill which is a value between 0 and 1, 

with 1 corresponding to healthy and 0 to totally damaged walls, respectively. This parameter was 

estimated based on engineering judgment after the inspection of the walls. The parameter   is the 

stiffness reduction due to the infill opening(s), estimated from the formula proposed by Stavridis 

(Stavridis, 2009) for masonry infills: 
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where 
Total

Opening

A

A
 is the ratio of the opening area to the gross area of the infill. 

In order to perform the model updating, the 10 modes components per story are condensed into 3 

rigid diaphragm components (translations in X and Y direction and the rotation about the center of 

the mass). The assumption of rigid diaphragm (at least for the ambient vibration case) has been 

revealed correct and the comparison between original modes components and re-built ones 

(following the procedure of paragraph 3.7) gave very good results (Table 5.6). Moreover, having 

noticed that the two modes gave practically the same value of ip , both of them were set equal to 1. 
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The model updating has been done for all the damage states and the results achieved, in terms of 

parameters values, are listed in Table 5.7; frequencies, errors and MAC values are summarized in 

Table 5.8. The parameters values are depicted in Figure 5.19, the evolutions of the damage 

parameters are listed in Table 5.9 and depicted in Figure 5.20. The comparison between updated 

parameters and the ones obtained with calibration (following the procedure described by Stavridis, 

2009) is presented in Figure 5.21. The modes components along with the experimental ones are 

depicted in Figure 5.22. In the last Figure, the comparison is made with respect to the modes 

components at the location of the accelerometers, therefore 10 graphs are depicted (5 

accelerometers per 2 displacement components). 

 

5.4.6 Analysis of results for 4 parameters case 

 The results from the model updating are very in good agreement with the experimental 

outcomes. The MAC values are almost 1.00 for all modes and in all the damage states. The errors in 

frequencies are very low, with maximum value equal to 1.56%. The damage parameters match very 

well the state of the structure after each test and is able to point out the walls removal. The damage 

parameters for 1a  and 2a  are practically 0% for all the damage states because of no walls are 

removed in the north and east elevation. The damage parameter for 3a  is 0% up to DS4 in which 

one wall was removed from the south elevation. The damage parameter for 4a  can figure out the 

progressive walls removal in the west elevation. 

 

5.4.7 Sensitivity analysis for 4 parameters case 

 The model updating made in the previous paragraphs was done using the frequencies and 

modes shapes from NExT-ERA procedure. A set of experimental outcomes were also obtained 

through peak-picking for 15 minutes acquisition windows. For DS1 285 different values of 

frequencies and modes components were obtained (for a total time of measurements of about 71 

hours); for DS2 18 different data windows; for DS3 3 data windows and for DS4 11 ones. The 

procedure outlined previously was applied for each data windows acquired and the results are given 

in terms of mean values, standard deviations and CoVs of parameters, mean values, standard 

deviations and CoVs for the frequencies and MAC values. The mean values for experimental 

frequencies, along with standard deviations and CoVs are reported in Table 5.10. The mean values, 

standard deviations and CoVs of parameters are listed in Table 5.11. The mean values, standard 

deviations and CoVs for computed frequencies (after parameters achievement) along with the errors 

between mean values of experimental frequencies and mean values of the numerical ones are listed 
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in Table 5.12. In the same Tables, the MAC values along with their CoVs are listed. In Figure 5.23 

the histograms of parameters are depicted for DS1 case. In Figure 5.24 the mean values of 

parameters for all the damage states along with values with   are depicted. 

The results achieved are in very good agreement with the ones obtained before (one run analysis) 

for all the parameters and damage states. Also the walls removal is understood well by the 

procedure, the first two parameters remain practically unchanged from DS1 to DS4, the third has 

significant change only between DS3 and DS4; the last one changes at each damage state, as 

already found with other procedure. The CoVs in the parameters assume acceptable values. The  

mean values of numerical frequencies are very close to the mean values of the experimental ones 

with errors quite negligible. The mean values of MAC coefficients are always greater than 0.92 

with small CoVs. 

 

5.4.8 Model updating for 8 parameters case 

 With the same procedure outlined in paragraph 5.4.5,  the structure was updated considering 

8 parameters, adding the ground story infills too. The parameters arrangement is shown in Figure 

5.25. Once again, the infills were replaced by equivalent struts and, again,  the parameters are the 

AE   for the struts replacing the infills at the ground and first storey. The problem didn't have a 

single solution, therefore the starting point has been given from the already achieved solution for 

the 4 parameters case. The results in terms of parameters values are presented in Table 5.13. In 

Table 5.14 are listed the numerical frequencies, errors with respect to the experimental ones and 

MAC values. In Table 5.15 the damage parameters are listed. 

In Figure 5.26 the bar graph of parameters values is depicted. In Figure 5.27 the damage parameters 

are also reported. In Figure 5.28 a comparison between undamaged structure parameters and DS1 

ones is given. In Figure 5.29 the damage parameters between undamaged structure and damage 

state DS1 are also depicted. 

 

5.4.9 Analysis of results for 8 parameters case and final remarks 

 The results achieved updating 8 parameters are in good agreement with respect to the ones 

obtained updating only the infills at the first storey (4 parameters case). The values of parameters at 

the first storey are practically the same in both 4 parameters and 8 parameters cases. The damage 

parameters for the infills at the first storey give the same results as well. Using 8 parameters some 

improvement in terms of frequencies errors and MAC values are achieved (those values are very 

good also for the 4 parameters case). Moreover, the procedure can capture also the more infills 
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stiffness at the ground storey. The main problem is that some damages are found at the ground 

storey. Those damages didn't have any visual confirmation in the structure. They can be loss in 

stiffness due to shaker tests which led to decreases in the stiffness and not in the strength of the 

infill panels. Nonetheless, using the procedure with 8 parameters only for DS1 and then keeping 

constant the infill panels values at the ground storey for damage states DS2, DS3 and DS4; the 

results achieved are listed in Table 5.16 in terms of frequencies, errors and MAC values. 

Comparing Tables 5.14 and 5.16 one can see that the updating of the ground storey infills has 

negligible influence on the global behavior of the structure at damage states DS2, DS3 and DS4. 

 

5.5 Conclusions 

 In the present Chapter, two real structures have been analyzed in order to achieve the model 

updating starting from experimental outcomes (frequencies and modes components). The first 

structure was a three storey infilled frames with two bays. This structure was analyzed using a stick 

model and the parameters updated were the storey stiffness. The second one was an actual two 

storey building. The parameters updated were the AE  of struts replacing the infill panels. First of 

all only the infills at the first storey were updated. After that a sensitivity analysis was carried out. 

Eventually, a 8 parameters case (the parameters were the struts replacing the  infill panels at the 

ground and first storey) has been analyzed. 
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Tables of Chapter 5 

 

Test number Test date Test description Damage state 
5 03/11/2008 0.03g RMS WN, 5 min DS0 
8 03/11/2008 20% Gilroy EQ  
9 03/11/2008 0.03g RMS WN, 5 min DS1 

12 06/11/2008 40% Gilroy EQ  
13 06/11/2008 0.03g RMS WN, 5 min DS2 
21 10/11/2008 67% Gilroy EQ (DE)  

25 12/11/2008 0.04g RMS WN, 5 min DS3 
26 12/11/2008 67% Gilroy EQ (DE)  
27 12/11/2008 0.04g RMS WN, 5 min DS4 

28 12/11/2008 83% Gilroy EQ  
29 12/11/2008 0.04g RMS WN, 5 min DS5 
33 13/11/2008 91% Gilroy EQ  

34 13/11/2008 0.04g RMS WN, 5 min  
35 13/11/2008 100% Gilroy EQ (MCE)  
36 13/11/2008 0.04g RMS WN, 5 min DS6 

40 18/11/2008 120% Gilroy EQ  
41 18/11/2008 0.04g RMS WN, 5 min DS7 

Note: WN = white noise base excitation; EQ = earthquake base excitation; 
DE = design earthquake; MCE = maximum considered earthquake. 

 
Table 5.1: Dynamic tests performed in the specimen (from Moaveni et al.,2013). 

 

Damage state 
Frequencies [Hz] 

Mode 1-L Mode 2-L 
DS0 18.18 41.22 
DS1 18.11 41.09 
DS2 17.99 41.56 

DS3 16.74 40.21 
DS4 15.93 38.56 
DS5 14.78 35.50 

DS6 8.47 27.34 
DS7 5.34 22.57 

 
Table 5.2: Identified frequencies from white noise tests. 

 

Damage state 
 Frequencies [Hz] 

MAC 
 Experimental Numerical Error [%] 

DS0 
Mode 1 18.18 18.18 0.00 1.00 

Mode 2 41.22 41.86 1.54 0.96 

DS1 
Mode 1 18.11 18.10 -0.05 1.00 

Mode 2 41.09 41.14 0.12 0.95 

DS2 
Mode 1 17.99 17.98 -0.02 1.00 

Mode 2 41.56 40.75 -1.95 0.95 

DS3 
Mode 1 16.74 16.74 0.00 1.00 

Mode 2 40.21 38.32 -4.69 0.95 

DS4 
Mode 1 15.93 15.93 0.00 1.00 

Mode 2 38.56 36.86 -4.41 0.94 
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DS5 
Mode 1 14.78 14.78 0.00 1.00 

Mode 2 35.50 35.35 -0.44 0.94 

DS6 
Mode 1 8.47 8.13 -4.04 1.00 

Mode 2 27.34 31.35 14.68 0.90 

DS7 
Mode 1 5.34 4.78 -10.48 1.00 

Mode 2 22.57 21.49 -4.80 0.99 

 
Table 5.3: Comparison between experimental and numerical frequencies and MAC values. 

 
Damage state Demolished wall(s) 

DS0 - 
DS1 A3-A4 (1st floor) 
DS2 D6-E6 (1st floor) 

DS3 E6-F6 (1st floor) 
DS4 F6-G6 and G5-G6 (1st floor) 

 
Table 5.4: Walls demolition sequence and resulted damage state. 

 

Damage 
state 

Mode 1 - Frequencies 
[Hz] 

Mode 2 - Frequencies 
[Hz] 

Mode 1 - Damping 
Ratio [%] 

Mode 2 - Damping 
Ratio [%] 

Peak-
Picking 

NExT-
ERA 

Peak-
Picking 

NExT-
ERA 

Peak-
Picking 

NExT-
ERA 

Peak-
Picking 

NExT-
ERA 

DS1 2.29 2.26 3.32 3.37 1.7 1.6 3.1 2.3 
DS2 2.17 2.14 3.03 3.08 2.2 1.3 2.1 2.0 
DS3 2.12 2.07 3.00 2.96 2.4 2.0 2.5 2.7 

DS4 2.05 1.97 2.81 2.72 1.4 1.6 2.5 2.7 
 

Table 5.5: Summary of system identification results (Yousefianmoghadam et al., 2015). 

 

Damage state 
 MAC 
  

DS1 
Mode 1 0.998 

Mode 2 0.997 

DS2 
Mode 1 0.998 

Mode 2 0.998 

DS3 
Mode 1 0.998 

Mode 2 0.998 

DS4 
Mode 1 0.997 

Mode 2 0.998 

 
Table 5.6: Comparison between modes components and re-built modes components. 

 

Damage state 
Parameters values [x 104] [kN] 

a1 a2 a3 a4 
DS1 4.34 37.25 17.33 11.35 

DS2 4.26 37.25 17.33 6.65 

DS3 4.26 37.25 17.33 4.73 

DS4 4.26 36.43 13.66 3.52 

Table 5.7: Values of parameters for 4 parameters case. 



 
127 

 

Damage state 
 Frequencies [Hz] 

MAC 
 Experimental Numerical Error [%] 

DS1 
Mode 1 2.26 2.27 0.54 0.99 

Mode 2 3.37 3.38 0.36 0.99 

DS2 
Mode 1 2.14 2.16 1.12 0.99 

Mode 2 3.07 3.19 0.92 0.99 

DS3 
Mode 1 2.06 2.08 1.10 0.98 

Mode 2 2.96 2.99 0.92 0.97 

DS4 
Mode 1 1.96 1.99 1.56 0.98 

Mode 2 2.72 2.75 1.25 0.99 

 
Table 5.8: Comparison between experimental and numerical frequencies and MAC values for 4 

parameters case. 

 

Parameter 
Damage parameters [%] 

DS1 DS2 DS3 DS4 

E1 0.0 1.7 1.7 1.7 

E2 0.0 0.0 0.0 2.2 

E3 0.0 0.0 0.0 21.2 

E4 0.0 41.4 58.3 69.0 

 

Table 5.9: Damage parameters for 4 parameters case. 

 

Damage state 
 Experimental frequencies [Hz] 
 

Mean value 
Standard 
deviation 

CoV [%] 

DS1 
Mode 1 2.29 0.07 3.24 

Mode 2 3.34 0.09 2.56 

DS2 
Mode 1 2.11 0.08 3.93 

Mode 2 3.04 0.12 4.06 

DS3 
Mode 1 2.05 0.00 0.00 

Mode 2 2.93 0.00 0.00 

DS4 
Mode 1 1.97 0.05 2.74 

Mode 2 2.75 0.13 4.71 
 

Table 5.10: Mean values, standard deviations and CoVs for experimental frequencies. 
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Damage state 
 Parameters values [x 104] [kN] 

a1 a2 a3 a4 

DS1 
Mean 4.61 35.52 18.93 11.33 

S. deviation 1.55 8.16 3.18 1.63 

CoV [%] 33.61 22.96 16.80 14.38 

DS2 
Mean 4.73 33.08 17.94 6.51 

S. deviation 2.36 9.69 0.98 1.42 

CoV [%] 49.81 29.28 5.44 21.87 

DS3 
Mean 4.42 36.82 17.58 4.34 

S. deviation 0.16 1.19 0.09 0.28 

CoV [%] 3.73 3.23 0.49 6.34 

DS4 
Mean 4.81 34.04 12.75 4.37 

S. deviation 1.26 7.59 3.15 2.56 

CoV [%] 26.12 22.30 24.69 58.69 
 

Table 5.11: Mean values, standard deviations and CoV values of parameters. 

 

Damage 
state 

 Numerical frequencies [Hz] MAC 

 
Mean 
value 

Standard 
deviation 

CoV [%] Error [%] 
Mean 
value 

CoV [%] 

DS1 
Mode 1 2.30 0.08 3.42 0.64 0.97 10.26 

Mode 2 3.37 0.09 2.79 0.72 0.98 6.75 

DS2 
Mode 1 2.15 0.08 3.79 1.67 0.94 23.47 

Mode 2 3.06 0.11 3.69 0.80 0.94 20.67 

DS3 
Mode 1 2.08 0.00 0.06 1.43 0.99 0.40 

Mode 2 2.97 0.01 0.20 1.43 0.99 0.23 

DS4 
Mode 1 1.99 0.05 3.41 1.44 0.97 4.94 

Mode 2 2.78 0.13 3.37 1.04 0.92 19.17 
 

Table 5.12: Mean values, standard deviations, CoVs and errors for frequencies and MAC values. 

 

Damage state 
Parameters values [x 104] [kN] 

a1 a2 a3 a4 a5 a6 a7 a8 
DS1 315.38 188.86 244.83 145.03 4.06 37.25 17.33 10.03 

DS2 315.38 173.78 191.04 139.63    4.06   37.25   17.33   5.70 

DS3 315.38 124.69 188.62 139.63 4.06 35.61 17.33 4.19 

DS4 315.36 124.69 188.62 139.63 4.06 35.61 13.83 2.92 
 

Table 5.13: Values of parameters for 8 parameters case. 

 

Damage state 
 Frequencies [Hz] 

MAC 
 Experimental Numerical Error [%] 

DS1 
Mode 1 2.26 2.26 0.10 0.99 

Mode 2 3.37 3.37 0.07 0.99 

DS2 
Mode 1 2.14 2.13 -0.16 0.99 

Mode 2 3.07 3.08 0.35 0.99 

DS3 
Mode 1 2.06 2.06 -0.12 0.98 

Mode 2 2.96 2.98 0.56 0.99 
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DS4 
Mode 1 1.96 1.96 -0.10 0.99 

Mode 2 2.72 2.74 0.75 0.99 

 
Table 5.14: Comparison between experimental and numerical frequencies and MAC values for 8 

parameters case. 

 

Parameter 
Damage parameters [%] 

DS1 DS2 DS3 DS4 

E1 0.0 0.0 0.0 0.0 

E2 0.0 8.0 34.0 34.0 

E3 0.0 22.0 23.0 21.2 

E4 0.0 3.7 3.7 3.7 

E5 0.0 0.0 0.0 0.0 

E6 0.0 0.0 4.4 4.4 

E7 0.0 0.0 0.0 20.2 

E8 0.0 43.1 58.2 70.9 

 
Table 5.15: Damage parameters for 8 parameters case. 

 

Damage state 
 Frequencies [Hz] 

MAC 
 Experimental Numerical Error [%] 

DS1 
Mode 1 2.26 2.26 0.10 0.99 

Mode 2 3.37 3.37 0.07 0.99 

DS2 
Mode 1 2.14 2.14 -0.09 0.99 

Mode 2 3.07 3.10 0.81 0.99 

DS3 
Mode 1 2.06 2.06 -0.02 0.98 

Mode 2 2.96 3.00 1.31 0.99 

DS4 
Mode 1 1.96 1.96 -0.01 0.99 

Mode 2 2.72 2.75 1.34 0.99 

 
Table 5.16: Comparison between experimental and numerical frequencies and MAC values for 8 

parameters case without updating the ground storey parameters for DS2, DS3 and DS4. 
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Figures of Chapter 5 

 

 
Figure 5.1: Plan view of the prototype structure (from Moaveni et al.,2013). 

 

 
Figure 5.2: Elevation view of the prototype structure (from Moaveni et al.,2013). 

 

 

Figure 5.3: Design of the tree storey specimen (dimensions in m) (from Stavridis et al., 2011).  
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Figure 5.4: Cross sections of R.C. members (dimensions in mm) (from Stavridis et al., 2011).  

 

 

Figure 5.5: Front view of the specimen (from Moaveni et al., 2013).  

 

 

Figure 5.6: Location of accelerometers at each floor level (from Moaveni et al., 2013).  

   

 

  

 

 

 

 

 

 

                                                          (a)                                        (b) 

Figure 5.7: Modes for damage state DS0: (a) Polar plot representation for complex mode shapes; 

(b) Vibration mode shapes (from Moaveni et al., 2013). 
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Figure 5.8: Stick model representation. 

 

Figure 5.9: Parameters values for all damage states. 

 

Figure 5.10: Story stiffness for all damage states. 
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Figure 5.11: Damage parameters for all damage states. 

 

               

                                        (a)                                                                        (b) 

               

                                        (c)                                                                        (d) 
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                                        (e)                                                                        (f) 

               

                                        (g)                                                                        (h) 

Figure 5.12: Comparison between experimental and numerical mode shapes (the red lines are the 

experimental mode shapes, the blue lines are the numerical ones): (a) DS0; (b) DS1; (c) DS2; (d) 

DS3; (e) DS4; (f) DS5; (g) DS6; (h) DS7. 

 

 

                                           (a)                                                                      (b) 

Figure 5.13: Views of the structure under study: (a) north-west view; (b) north-east view (Song et 

al., 2017). 
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Figure 5.14: First floor plan view with joists details (Yousefianmoghadam et al., 2015). 

 

 

Figure 5.15: Walls demolition sequence and resulted damage state (Yousefianmoghadam et al., 

2015). 

 

 

                                              (a)                                                                        (b) 
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(c) 

Figure 5.16: Structure instrumentations: (a) ground floor; (b) First floor; (c) Roof level.  

 

 

                                            (a)                                                                     (b) 

Figure 5.17: Mode shapes for roof level: (a) Mode 1; (b) Mode 2 (Yousefianmoghadam et al., 

2015). 
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(a) 

 

                                     (b)                                                                        (c) 

 

                                     (d)                                                                        (e) 

Figure 5.18: Parameters definition for 4 parameters case: (a) Plan view of the first storey; (b) North 

elevation, 1st parameter (in red); (c) East elevation, 2nd parameter (in orange); (d) South elevation, 

3rd parameter (in green); (e) West elevation, 4th parameter (in blue). 

 

a4 a2 

a1 

a3 
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Figure 5.19: Parameters values for all the damage states for 4 parameters case. 

 

 

Figure 5.20: Damage parameters for all the damage states for 4 parameters case. 
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Figure 5.21: Comparison between parameters for undamaged structure and DS1 for 4 parameters 

case. 
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   (h) 

Figure 5.22: Comparison between experimental and numerical mode shapes (the red lines are the 

experimental mode shapes, the blue lines are the numerical ones): (a) DS1 - Mode 1; (b) DS1 - 

Mode 2; (c) DS2 - Mode 1; (d) DS2 - Mode 2; (e) DS3 - Mode 1; (f) DS3 - Mode 2; (g) DS4 - 

Mode 1; (h) DS4 - Mode 2. 
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Figure 5.23: Frequencies histograms of parameters a1, a2, a3 and a4 for damage state DS1. 

 

 

Figure 5.24: Mean values of parameters along with standard deviations for all the damage states. 
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                                               (a)                                                        (b) 

 

                                     (c)                                                                        (d) 

 

                                     (e)                                                                        (f) 

Figure 5.25: Parameters definition for 8 parameters case: (a) Ground floor plan view; (b) First floor 

plan view; (c) North elevation, 1st parameter in yellow, 5th parameter in red; (d) East elevation, 2nd 

parameter in black, 6th parameter in orange; (e) South elevation, 3rd parameter in violet, 7th 

parameter in green (f) West elevation, 4th parameter in dark blue, 8th parameter in blue. 
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Figure 5.26: Parameters values for all the damage states for 8 parameters case. 

 

 

Figure 5.27: Damage parameters for all the damage states for 8 parameters case. 
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Figure 5.28: Comparison between parameters for undamaged structure and DS1 for 8 parameters 

case. 

 

 
                                                      Ground Story                                          First Storey 

Figure 5.29: Damage parameters between undamaged structure and DS1 for 8 parameters case. 
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CHAPTER 6 

 

GENERALIZATION OF THE PROCEDURE TO NON-LINEAR 

PARAMETERS IN MODEL UPDATING 

 

6.1 Introduction 

 In this Chapter the generalization of the procedure developed in Chapter 2 will be done in 

order to take into account non-linear parameters. In the first part, the case in which the matrices 

decomposition can be done (and therefore the parameters are unrelated each other) will be analyzed. 

In the second part the general case in which the parameters are connected each other will be also 

treated. In the last part, a generalization taking into account the viscous damping for classically 

damped system will be studied. 

 

6.2 Unrelated non-linear parameters 

 In this first case, unrelated non-linear parameters are taken into account. Since the 

parameters are unrelated, the matrices decomposition can be done also in this case. The general 

system to be solved, from Eq. 2.65, can be modified in the following way: 
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in which )( ss af  is a non-linear function of parameter sa (for Ns ,,2,1  ). 

(6.1) 
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Defining the auxiliary variables in the following way: 

)( sss aft                                                                 (6.2) 

for Ns ,,2,1  , the system can be rewritten as follows: 
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which is the transformation of Eq. 2.4, solvable with closed formulation and: 
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which is the transformation of Eq. 6.1. Therefore all the results from Chapter 2 and 3 for the 

original system of Eq. 2.65 can be applied to this case, having ts as unknown instead of as. 

In this way all the ts and σt,s values can be achieved. 

After that, in order to find the as parameters values, the following relation can be used: 

)(1
sss tfa                                                                  (6.5) 

for Ns ,,2,1  ; which gives unique solution if and only if sf  is a bi-univocal function. Otherwise 

criteria must be defined in order to choose the right solution of Eq. 6.5. The solution of Eq. 6.5 can 

be performed, in some cases,  in iterative way depending on the definition of the function sf . 

(6.4) 
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In order to find the standard deviations of parameters as, the following criteria can be used 

(Lanconelli, 1998): 

)( ,, sasssts aft                                                         (6.6) 

sas
s

s
sssts a

da

df
aft ,, )()(                                                  (6.7) 

sas
s

s
st a

da

df
,, )(                                                            (6.8) 

)(

,
,

s
s

s

st
sa

a
da

df


                                                              (6.9) 

for Ns ,,2,1  ; in which as is the parameter value computed using Eq. 6.5. Eq. 6.9 gives, if the 

higher order terms are not so important, a good estimation of the standard deviations σa,s of 

parameters as. Better approximations can be achieved solving the following equation (Lanconelli, 

1998): 

0)(
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st
l

sasl
s

s
lc

l

a
da

fd

l
                                               (6.10) 

for Ns ,,2,1  ; in which c is the order of the Taylor's polynomial taken into account in the 

procedure. Eq. 6.10 can be solved in numerical way (through Trust-Region algorithm, having as 

unknowns σa,s) starting from the estimation done in Eq. 6.9. 

After that, the CoVs of parameters can be computed using Eq. 2.106. 

The flowcharts for two steps algorithm, two steps algorithm  with uncertainties evaluation and 

complete statistical analysis are depicted in Figures 6.1, 6.2 and 6.3 respectively. 

 

  



 
152 

 

6.3 Related non-linear parameters 

 

6.3.1 Solution of the system 

 If the parameters are related each other, and therefore the stiffness and mass matrices 

decomposition cannot be performed, the entire system of equations can be written as follows: 
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This system must be, unfortunately, solved with iterative algorithm which faces directly the entire 

system of Eq. 6.11. Therefore the DE-Q algorithm (which avoids the achievement of local 

minimum of the function) must be used to achieve the solution. The parameters are inside the 

matrices ),,,(K 21 Nr
aaa  and ),,,( 21 Nr

aaaM   which are functions of the parameters themselves. 

In this way, Naaa ,,, 21   are found. 

 

6.3.2 Uncertainties evaluation 

 Starting from Eq. 2.4, the system can be modified in the following way: 
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the least squares solution of that system can be achieved using the procedure introduced in 

paragraphs 2.3.2 and 3.3, finding the minimum of the subsequent function: 

2

21021021
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~~~

),,,(   NrNrN aaaMMaaaKaaaf   

with: 

(6.11) 

(6.12) 

(6.13) 
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Following the procedure of paragraph 3.3, the partial derivatives, with respect to the parameters, 

can be computed: 


 ~~~~~

;~
~

~
~

2
~~~~~

;~~~~~















rr

s

r

s

r

s

rrrr MK
a

M

a

K

a

MKMK

 

(6.19) 

for Ns ,,2,1  , in which: 

 ~~~~~
00
 KM                                                       (6.20) 

The minimum solution can be achieved if all the partial derivatives are null (stationary point): 
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therefore: 
































































0~~~~~
;~

~
~

~

0~~~~~
;~

~
~

~

0~~~~~
;~

~
~

~

0~~~~~
;~

~
~

~

11

11









rr
N

r

N

r

rr
q

r

q

r

rr
q

r

q

r

rr
rr

MK
a

M

a

K

MK
a

M

a

K

MK
a

M

a

K

MK
a

M

a

K





                                (6.22) 

in which 
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 are element by element partial derivatives. From these equations, the 

partial derivatives, with respect to the experimental outcomes, can be performed: 
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 for Ns ,,2,1  . Developing the calculations: 


























~~~~~

);(:,

~
~

~

)(:,

~
~

~ 22

rr
s

r

sji

r

s

r

sji

r MKj
a

M

a

M
j

a

K

a

K

0)(:,
~

)(:,
~

)(:,
~~

~

)(:,
~~

~

;~
~

~
~

00




















 jMjKjM

M
jK

K

a

M

a

K

r
ji

r
r

ji

r

s

r

s

r 





  

(6.24) 

 in which (:,j) means the j-th column of the matrix. The s-th equation of the system is as 

 follows: 
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 for Ns ,,2,1  . Solving the system in which the s-th equation is of the form of Eq. 6.25, 
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for Ns ,,2,1  . Developing the calculations: 
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in which:  
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 or, in the same way: 
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The s-th equation of the system is as follows: 
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for Ns ,,2,1  . Solving the system in which the s-th equation is of the form of Eq. 6.29, 
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Once all the partial derivatives have been obtained, the procedure of paragraph 2.7.3 has to be 

followed in order to obtain the standard deviations of parameters: 
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The solution can therefore be written as follows: 

sass aa ,
~                                                              (6.33) 

(6.29) 
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for Ns ,,2,1  . 

 

6.3.3 Complete Statistical analysis 

 The procedure introduced in paragraph 2.8 can be used for the complete statistical analysis 

in which the two steps procedure with Trust-Region updating has to be replaced by the iterative 

solution with DE-Q algorithm of system of Eq. 6.11. 

The flowcharts of the procedure for the parameters analysis, the parameters analysis with 

uncertainties evaluation and the complete statistical analysis are depicted in Figures 6.4, 6.5 and 6.6 

respectively. 

An example of parameters analysis with uncertainties evaluation will be presented in Appendix C. 

 

6.4 System with damping 

 If one wants to take into account the damping in the structure, the system of Eq. 6.11 must 

be changed according to the type of damping presents in the structure. Only the case of viscous 

damping for classically damped structures will be analyzed because in the other cases the damping 

matrix must be known (this matrix can be computed only with very huge approximations). 

 

6.4.1 System with viscous damping - classically damped system 

 If the system is classically damped, the modal shapes for undamped structure and the ones 

for damped structure are the same (Ewins, 2000; Chopra, 2016). The natural circular frequencies 

follow the subsequent criterion (Chopra, 2016): 

21 iiiD                                                            (6.34) 

in which iD  is the i-th damped natural circular frequency, i  is the i-th undamped natural circular 

frequency and i  is the damping ratio for the i-th mode. For the usual values of i  for civil 

structure, iiD    (Chopra, 2016) and therefore, for classically damped system, the damping 

doesn't play a role for free vibrations. System of Eq. 6.11 is therefore still valid. 

 

6.5 Conclusions 

 In this Chapter the generalization of the procedures developed in Chapter 2 has been done in 

order to take into account non-linear parameters. In the first part, the case in which the parameters 

are unrelated each other and the decomposition of matrices can be performed has been analyzed. In 

the second part the more general case in which the parameters are related has been analyzed, an 



 
158 

 

application of it is reported in Appendix C. In the last part, a generalization taking into account the 

viscous damping for classically damped system has been studied. 
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Figures of Chapter 6 
 

 
Figure 6.1: Flowchart of the two steps algorithm for unrelated non-linear parameters. 
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Figure 6.2: Flowchart of the two steps algorithm with uncertainties evaluation for unrelated non-

linear parameters. 
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Figure 6.3: Flowchart of the two steps algorithm for complete statistical analysis for unrelated non-

linear parameters. 
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Figure 6.4: Flowchart of the algorithm with DE-Q procedure for related non-linear parameters. 

 

 

Figure 6.5: Flowchart of the algorithm with DE-Q procedure and uncertainties evaluation for 

related non-linear parameters. 
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Figure 6.6: Flowchart of the algorithm with DE-Q procedure for complete statistical analysis for 

related non-linear parameters. 
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CHAPTER 7 

 

APPLICATION OF THE PROCEDURE FOR THE 

RETROFITTING OF EXISTING R.C. STRUCTURES 

 

7.1 Introduction 

 In this Chapter, the algorithm is used in order to perform a first trial retrofitting of existing 

R.C. structures. In the first part the algorithm will be introduced. After that two case studies will be 

analyzed in order to achieve the values of parameters for reaching a first trial retrofitting of the 

structures. Eventually, the procedure for unrelated non-linear parameters and related non-linear 

ones will be introduced.   

 

7.2 Description of the procedure 

 In order to perform a first trial retrofitting of existing structures, the algorithm outlined in 

Chapter 2 can be used. The main goal of this procedure is to uncouple the modal shapes in order to 

obtain a centering of the center of rigidity on the center of mass and reaching the regularity in 

height. This procedure can give to the designer a first trial values of parameters (e.g. the thickness 

of some R.C. walls used as retrofitting) in order to achieve, first of all, the uncoupling of the modal 

shapes. 

To perform these goals, the algorithm in closed form introduced in paragraph 2.3 (Eq. 2.4 with 

solution of Eq. 2.16 or 2.28) can be used. 

The procedure has to follow the subsequent steps: 

 From the initial structure, the computation of natural frequencies must be done; 

 A set of parameters (remembering the maximum number of parameters given in Chapter 3) 

must be defined; 

 Definition of stiffness and mass matrices needed by the Equations 2.4; 

 Check the goodness-of-definition of parameters (paragraph 3.5); 

 Modes components definition (usually the ones listed in Table 7.1); 

 Rotational equations weighting functions definition (Eq. 2.9); 

 Solution in closed form of Eq. 2.4 through Eq. 2.16 or 2.28; 

 Check the presence of unrealistic negative parameters; 
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 If some parameters achieve negative values (instead of expected positive ones), these 

parameters must be set to null value and the procedure must be re-run again with smaller 

number of parameters. 

The flowchart of the procedure is depicted in Figure 7.1. 

 

7.3 Case 1: Symmetric-Asymmetric structure 

 

7.3.1 Description of the structure 
 The sample structure used for the first case is a three storey, three bays in X direction, one 

bay in Y direction, R.C. frame with R.C. walls at ground and first storey (Figures. 7.2 and 7.3). This 

structure is symmetric in X direction and asymmetric in Y direction. The sources of asymmetry are 

only due to the R.C. walls. For all the structural members the modulus of elasticity for the concrete 

is fixed at the value of 30000 MPa. The spans in the X direction are 5 m long, the one in the Y 

direction is 6 m long. The interstorey height is equal to 3 m. All the columns have 40 cm by 40 cm 

square sections, the beams have 40 cm by 50 cm rectangular sections.  

The R.C. walls are modeled as equivalent struts. For the two walls in the X direction a value of 

25.0
d

w

 
is fixed (being w  the width of the struts and d  the length of the diagonal of the R.C. 

wall), with thickness t  equal to the dimension of the columns. For the walls in Y direction, a value 

of 35.0
d

w

 
is fixed. Three parameters (the 

d

w
 ratio for the new walls used in the retrofitting) are 

considered; two walls per storey in X direction and one wall per storey in Y direction (Figure 7.2). 

 

7.3.2 Description of the mode shape vectors and results 

 Three mode shapes are used for the procedure of Eq. 2.4. The modes components used 

(remembering they have 9 rigid diaphragm components) are listed in Table 7.1. Running the 

procedure, the parameters achieved are listed in Table 7.2. As expected, the two parameters for 

walls in X direction give negative values because of the system is already symmetric in X direction 

(therefore uncoupled with respect to Y direction and rotation about the center of the mass). The two 

parameters have to be set to null values. The other parameter assumes the correct value in order to 

symmetrise the structure also in Y direction. The original natural frequencies and the ones after 

retrofitting are listed in Table 7.3. One can see how the procedure is quite insensible about the 
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initial values of the natural frequencies (because of the determinant equations in Eq. 2.65 are not 

taken into account for this procedure). 

Changing the mode shape vectors (preserving the uncoupling of modes, as in Table 7.4), the 

solution doesn't change. Moreover, the procedure is almost insensitive also to the change of the 

sequence of modes. If before the retrofitting the first mode is a predominant X direction mode, after 

the procedure the first mode could be a Y direction one. 

 

7.4 Case 2: Totally asymmetric structure 

 

7.4.1 Description of the structure 
 The second structure studied is, once again, a three storey, three bays in X direction, one bay 

in Y direction, R.C. frame with R.C. walls at ground and first storey (Figs. 7.2 and 7.4). This 

structure is asymmetric in both X and Y directions. The sources of asymmetry are only due to the 

R.C. walls. For all the structural members the modulus of elasticity for the concrete is fixed at the 

value of 30000 MPa. All the geometrical features are the same as the previous case. 

The R.C. walls are modeled as equivalent struts. For the walls in the X direction a value of 

25.0
d

w

 
is fixed. For the walls in Y direction, a value of 35.0

d

w

 
is chosen. Three parameters 

(the 
d

w
 ratio for the new walls used in the retrofitting) are considered; one wall per storey in X 

direction (for ground and first storey) and one wall per storey in Y direction (once again, for ground 

and first storey); another parameter is chosen at the second floor (Figure 7.4), this parameter should 

achieve null value in the iterative procedure (it was chosen as parameter in order to understand if 

the procedure can capture wrong choices in the parameters definition). 

 

7.4.2 Results 

 Three mode shapes are used for the procedure of Eq. 2.4. The mode components used 

(remembering they have 9 rigid diaphragm components) are listed in Table 7.1. Running the 

procedure, the parameters achieved are listed in Table 7.5. As expected, the first two parameters 

achieve the correct values and the third parameter (the modeling error) reaches a null value. No 

negative values are achieved and therefore the modification of them is not necessary. After the 

procedure the structure produces perfectly uncoupled mode shapes.  
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The original natural frequencies and the ones after retrofitting are listed in Table 7.6. One can see 

again how the procedure is quite regardless about the initial values of the natural frequencies. 

Changing the mode shape vectors, the solution doesn't change. Moreover, the procedure is again 

almost insensitive also to the change in the sequence of modes. 

 

7.5 Non-linear parameters 

 

7.5.1 Unrelated parameters 

 If unrelated non-linear parameters are used in the procedure, the algorithm must be changed 

according to the following steps: 

 From the initial structure, the computation of natural frequencies must be done; 

 A set of parameters (remembering the maximum number of parameters given in Chapter 3) 

must be defined; 

 Definition of stiffness and mass matrices needed by the Equations 6.3; 

 The auxiliary variables (Eq. 6.2) must be defined; 

 Check the goodness-of-definition of parameters (paragraph 3.5); 

 Modes components definition (usually the ones listed in Table 7.1); 

 Rotational equations weighting functions definition (Eq. 2.9); 

 Solution in closed form of Eq. 6.3 through Eq. 2.16 or Eq. 2.28; 

 The original parameters must be computed (Eq. 6.5); 

 Check the presence of unrealistic negative parameters; 

 If some parameters achieve negative values (instead of expected positive ones), these 

parameters must be set to null values and the procedure must be re-run again with smaller 

number of parameters. 

The flowchart of the procedure is depicted in Figure 7.5. 

 

7.5.2 Related parameters 

 If related non-linear parameters are used in the procedure, the algorithm must be changed 

according to the following steps: 

 From the initial structure, the computation of natural frequencies must be done; 

 A set of parameters (remembering the maximum number of parameters given in Chapter 3) 

must be defined; 

 Modes components definition (usually the ones listed in Table 7.1); 
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 Rotational equations weighting functions definition (Eq. 2.9); 

 Solution of the system of Eq. 6.12 through iterative DE-Q algorithm; 

 Check the presence of unrealistic negative parameters; 

 If some parameters achieve negative values (instead of expected positive ones), these 

parameters must be set to null values and the procedure must be re-run again with smaller 

number of parameters. 

The flowchart of the procedure is depicted in Figure 7.6. 

 

7.6 Conclusions 

 Starting from two sample structures, of which the parameters values are known (called 

expected values), in order to obtain the modes uncoupling, the procedure has been run and the 

expected values have been obtained for both symmetric-asymmetric case and asymmetric one even 

with the numerical procedure. The procedure is quite insensitive to the change of the natural 

frequencies and, moreover, to different choices of the modes with uncoupled components. In the 

last part of the Chapter, the cases of non-linear parameters have been analyzed. 
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Tables of Chapter 7 

 

Component 
Mode components 

Mode 1 Mode 2 Mode 2 
X-1st storey 0.33 0 0 

Y-1st storey 0 0.33 0 
θ-1st storey 0 0 0.33 
X-2nd storey 0.66 0 0 
Y-2nd storey 0 0.66 0 
θ-2nd storey 0 0 0.66 
X-3rd storey 1.00 0 0 
Y-3rd storey 0 1.00 0 
θ-3rd storey 0 0 1.00 

 
Table 7.1: Modes components chosen for the procedure 

 

Parameter 
w/d values 

Expected values Procedure values Rectified values 

a1 0.0 -0.39 0.0 

a2 0.0 -0.39 0.0 

a3 0.35 0.35 0.35 

 
Table 7.2: w/d values for the 3 parameters - Case 1 

 

Mode 
Frequencies [Hz] 

Original structure After retrofitting 

Mode 1 3.55 5.51 

Mode 2 5.78 5.78 

Mode 3 6.48 7.18 

 
Table 7.3: Frequencies before and after retrofitting - Case 1 

 

 

 

 

 

 

 

 



 
172 

 

Components 
Mode components 

Mode 1 Mode 2 Mode 2 
X-1st storey 0.25 0 0 

Y-1st storey 0 0.25 0 
θ-1st storey 0 0 0.25 
X-2nd storey 0.50 0 0 
Y-2nd storey 0 0.50 0 
θ-2nd storey 0 0 0.50 
X-3rd storey 1.00 0 0 
Y-3rd storey 0 1.00 0 
θ-3rd storey 0 0 1.00 

 
Table 7.4: Modified modes components chosen for the procedure 

 

Parameter 
w/d values 

Expected values Procedure values 

a1 0.25 0.25 

a2 0.35 0.35 

a3 0.0 0.0 

 
Table 7.5: w/d values for the 3 parameters - Case 2 

 

Mode 
Frequencies [Hz] 

Original structure After retrofitting 

Mode 1 2.38 3.59 

Mode 2 5.32 5.79 

Mode 3 6.34 6.50 

 
Table 7.6: Frequencies before and after retrofitting - Case 2 

 

 

 

 

 

 

  



 
173 

 

Figures of Chapter 7 

 

 
Figure 7.1: Flowchart of the procedure. 

 

 
Figure 7.2: Plan view for Case 1 (dimensions in cm). 
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                                                         (a)                                                              (b) 

 

                                                         (c)                                                              (d) 

Figure 7.3: Elevation views for Case 1: (a) South elevation; (b) East elevation; (c) North elevation; 

(d) West elevation. 

 

 

                                                         (a)                                                              (b) 
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                                                         (c)                                                              (d) 

Figure 7.4: Elevation views for Case 2: (a) South elevation; (b) East elevation; (c) North elevation; 

(d) West elevation. 

 

Figure 7.5: Flowchart of procedure for unrelated non-linear parameters. 
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Figure 7.6: Flowchart of procedure for related non-linear parameters. 
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CHAPTER 8 

 

SUMMARY AND CONCLUSIONS 

 

 In the first part of this work, the definition of the innovative procedure was given starting 

from the eigenvalues/eigenvectors problem. The algorithm relies on a two steps procedure with 

uncertainties assessment. The first step is a closed-form evaluation of the first trial parameters using 

the eigenvalues/eigenvectors problem without considering the determinant equations. The closed 

solution was achieved exploiting the partial derivatives of the problem (as pointed out in Chapter 2 

and 3). The comparison parameters (percentage frequencies errors and MAC) have to be computed. 

If those values satisfy fixed thresholds, the procedure stops with the first step, otherwise the second 

one is required. In order to improve the agreement between experimental and numerical 

frequencies, the second step (which considers also the determinant equations) has to be run in 

iterative way, having as starting point the trial solution computed in the first step. After the second 

one, the comparison parameters have to be recomputed and the procedure stops. With this algorithm 

the partial derivatives, with respect to the experimental outcomes, can be computed in closed form 

too. This fact allows us to perform the errors propagation and we can achieve the parameters 

standard deviations from the knowledge of the standard deviations in frequencies and modes 

components. Therefore the two steps algorithm allows us to achieve the uncertainties in the 

parameters themselves (flowchart of Figures 2.2 and 2.3). 

After that, a second algorithm was described relying on genetic algorithm with response surface 

methodology (the so-called DE-Q algorithm) in which the entire problem is faced completely in 

iterative way. Also in this case the direct uncertainties evaluation can be performed in closed form 

(flowchart of Figures 2.6 and 2.7). 

A complete statistical analysis were also achieved for both the procedures outlined above 

(flowcharts of Figure 2.4 for two steps procedure and Figure 2.8 for DE-Q one). 

In the last part of Chapter 2, the distribution analysis of parameters has also been introduced. 

The relations and the demonstrations for the maximum number of parameters achievable by the 

procedure (Eq. 3.1) has been given as a function of the natural frequencies and mode shapes 

available from tests. All the computations for the least squares solution and the uncertainties 

evaluation have been given in paragraphs 3.3 and 3.4 respectively. The goodness-of-definition of 

parameters themselves and the uniqueness of the solution have been then analyzed and relations 
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(Eqs. 3.51, 3.52, 3.54 and 3.55) have been found. After that the analysis of maximum number of 

parameters for non-ideal case has been studied and a procedure (outlined in flowchart of Figure 3.2) 

has been found. Moreover, a procedure for testing the rigid diaphragm assumptions for 

experimental tests on structures has been studied. 

After the definition of the target functions and the procedures in order to obtain the values of 

parameters, several sensitivity analysis (using the Monte Carlo procedure) have been carried out in 

order to test the stability of the algorithm itself. Firstly, a 2-D infilled framed structure has been 

studied and the results are listed in Table 4.2. The results are very stable because the CoVs of 

parameters are always lesser than the sum of the perturbations on frequencies and modes 

components. After that a 3-D infilled framed structures have been analyzed varying the parameters 

arrangement, the perturbations on frequencies and modes components, the perturbations on mode 

shapes (directly on rigid diaphragm components or on accelerometers placed on the structures). The 

results are listed in Tables 4.4 to 4.8. Even in this case the results are stable for all the cases 

analyzed. Subsequently a comparison between procedure with DE-Q algorithm and two steps 

algorithm with Trust-region updating has been done for two cases. The results from two steps 

procedure are better, both in term of mean values and CoVs, with respect to the ones obtained using 

DE-Q algorithm. The time saving using the two steps algorithm is very important and is about 95% 

less than the time required by the DE-Q procedure. The comparison between procedures with or 

without determinant equations was performed and, unfortunately, the procedure without 

determinant equations led to worse results especially for the most important parameter, which play 

the most important role in the dynamic behavior of the structure. A comparison between procedures 

with 6 or 9 modes utilized led to improvements on results but not so significant. From the 

distribution analysis, unfortunately, no general rules could be achieved for parameters distribution 

starting from normally distributed perturbations on frequencies and modes components. 

The procedures were then used in order to perform the damage assessment for two real structures of 

which the experimental frequencies and modes components were at disposal. The first one is a two-

dimensional three storey two bays infilled frame, tested at UCSD, CA, US, through shake table 

(which induced the damages). For this structure a stick model has been used and the parameters to 

achieve were the storey stiffness. The results in terms of frequencies errors and MAC coefficients 

are listed in Table 5.3, the storey stiffness, the damage parameter and the mode shapes are depicted 

in Figures 5.10, 5.11 and 5.12. The errors in frequencies are quite low (except for DS6) and MAC 

coefficients are always greater than 0.90. The second structure analyzed was a two storey three-

dimensional infilled framed structure located in El-Centro, CA, US, subjected to ambient vibration 
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and forced vibration tests. The damages were artificially introduced through infills removal. The 

parameters to update were the stiffness of infills at the first storey (4 parameters case) and at the 

ground and first storey (8 parameters case). The infills were replaced by equivalent struts. The 4 

parameters case gave very good results in terms of frequencies errors and MAC values (Table 5.8). 

Also the damage parameters is able to point out the wall removals with great accuracy. Having at 

disposal a lot of data windows of acquisition for ambient vibration tests, sensitivity analysis have 

been carried out and parameters along with standard deviations (and CoVs) were obtained and 

depicted in Figure 5.24. The results are in agreement with the previous ones and, also in this case, 

the infills removals can be captured by the procedure. Eventually, a 8 parameters case has been 

analyzed and the results are listed in Tables 5.14 and 5.15. The results were improved respect the 4 

parameters case. The parameters at the ground storey (the infills at that storey) were, unfortunately, 

quite insensitive to the model updating as summarized in Table 5.16. 

Subsequently, in Chapter 7, the generalizations of the procedures in order to take into account non-

linear parameters were performed. In paragraph 7.2,  unrelated non-linear parameters, in which the 

stiffness and mass matrices can be decomposed in the same way as for the original system, have 

been studied. Another generalization was made for related non-linear parameters in which the entire 

problem must be faced in iterative way. The uncertainties evaluation can be performed for both 

unrelated and related non-linear parameters exploiting the partial derivatives and errors propagation. 

In the last part of Chapter 7, the analysis of viscous damping for classically damped structures have 

been performed. 

The last part of this work is focused on finding the first trial values of parameters in order to 

perform a retrofitting of existing structures. Using the algorithm already described in the closed 

relation (Eq. 2.4 with solution of Eq. 2.16 or 2.28) the uncoupling of mode shapes can be 

performed. Two sample structures have been analyzed: symmetric-asymmetric three storey frame 

structure, totally asymmetric one. For these structures the solutions, in order to uncouple the mode 

shapes, have been achieved with hand calculations and labeled as expected solutions. The solutions 

achieved by the procedure were the same as the expected ones and the procedure produced the 

uncoupling of the modes. Generalizations for unrelated and related parameters have been performed 

and presented in paragraph 7.5. 

  



 
180 

 

  



 
181 

 

APPENDIX A 

 

EXAMPLE OF DIRECT DISTRIBUTION ANALYSIS 

 

A.1 Introduction 

 In this Appendix one simple case of direct distribution analysis of parameters, using the 

relations of paragraph 2.11, will be analyzed. A case with matrices of grade 2 and only one 

parameter and one mode is considered. 

 

A.2 Numerical example 

 The matrices are defined as follows: 
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It is conjectured that the mode components are normally distributed with 5% of CoVs (the Gaussian 

distributions will be introduced with mean value and variance as parameters of the distribution 

itself), the frequency is conversely assumed as deterministic quantity: 
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                                                                                       The solution is written as a function of the distributions of the two mode components. Now the 

distribution propagation relations (Eqs. 2.158, 2.159 and 2.162) must be used. The numerator 

presents the sum of two normally distributed independent random variables, therefore the 

distribution of the sum is: 
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Eq. 2.162 must be then applied. The joint pdf for the case of normally distributed random variables 

( )(xX and )(yY ) is as follows: 
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in which X  and Y  are the standard deviations, X  and Y  the mean values of the )(xX  and 

)(yY  random variables respectively,   is the correlation coefficient between )(xX  and )(yY . If 

the two random variables are independent ( 0 , as for the case analyzed), Eq. A.17 simplifies 

itself in: 
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For parameter 1a , the distribution is achieved solving the integral of Eq. 2.162 (remembering Eqs. 

2.165 and A.16): 
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Integral of Eq. A.20 is solved numerically with software MATLAB. 

The reference value of the parameter (from which the mode shape components and the circular 

frequency were computed), the mean value, variance, standard deviation and CoV from the 

distribution propagation are listed in Table A.1. In the same Table are also listed the mean value, 

variance, standard deviation and CoV from Monte Carlo analysis. 

In Figure A.1 the analytical distribution along with calibrated Gaussian and Cauchy distributions 

are depicted. The Gaussian distribution fits very well the analytical one, the Chi-square test 

confirmed this results (level of confidence greater than 10%). 

In Figure A.2 the analytical distribution along with the normalized histogram from Monte Carlo 

analysis are depicted. The agreement is satisfactory. 

 

A.3 Conclusions 

 The distribution propagation is used, in this Appendix, in order to evaluate the distribution 

of one parameter starting from normal distributions in the mode shape components. The results 

obtained are in very good agreement with respect to the ones obtained through Monte Carlo 

analysis. 
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Table of Appendix A 

 

Parameter Reference value 
Distribution 
propagation 

Monte Carlo 
Analysis 

a1 

Mean value 0.5000 0.5013 0.5074 

Variance - 0.0165 0.0204 

Standard Deviation - 0.1284 0.1429 

CoV [%] - 25.62 28.16 

 
Table A.1: Mean values, variances, standard deviations and CoVs of parameter from distribution 

propagation and Monte Carlo procedure. 
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Figures of Appendix A 

 

 
Figure A.1: Analytical distribution along with calibrated Gaussian and Cauchy distributions. 

 

 

 

Figure A.2: Analytical distribution along with normalized frequencies histogram from Monte Carlo 

analysis. 
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APPENDIX B 

 

MAXIMUM NUMBER OF PARAMETERS 

 

B.1 Introduction 

 In this Appendix the maximum number of parameters for a sample case, starting from the 

upper bound given by Eq. 3.1, will be found. The number of parameters will be reduced in order to 

make sure that all the CoVs are below a fixed thresholds, following the procedure outlined in 

paragraph 3.6. 

 

B.2 Numerical example 

 The case analyzed has got matrices of grade 3, all the modes and frequencies are considered 

(3 eigenvalues and 3 eigenvectors used), therefore Eq. 3.1 gives the following upper bound for the 

number of parameters: 
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6 is therefore the upper bound for the number of parameters. 

The matrices are defined in the following way: 
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The reference values of parameters, in order to compute the frequencies and mode shape vectors, 

are as follows: 
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The procedure of paragraph 3.6 is followed, computing the CoVs for all the parameters, fixing one 

parameter if the related CoV is greater than a fixed threshold and running again the procedure. The 

threshold is fixed, for all the parameters, as follows: 

%12a                                                               (B.11) 

In Table B.1 are listed the CoVs for different number of parameters updated. One can see how 

already for 4 parameters the procedure gives, for this particular case, good results. Therefore, for 

the fixed threshold, 4 is the maximum number of parameters. 

The CoVs are not monotonically decreasing if the number of parameters used is reduced but the 

maximum value of CoVs is instead monotonically reduced iteration after iteration. 

 

B.3 Conclusions 

 The procedure used in this Appendix allows us to compute the maximum number of 

parameters achievable after the definition of the thresholds for the CoVs. For the case studied, the 
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upper bound for the number of parameters is 6 but the procedure can achieve only 4 parameters 

with CoVs below the fixed threshold. Moreover, the CoVs associated to small parameters values are 

usually greater than that of larger parameters values (as already found for other cases in Chapter 4). 
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Table of Appendix B 

 

Parameter 
CoV [%] 

6 parameters 
case 

5 parameters 
case 

4 parameters 
case 

3 parameters 
case 

2 parameters 
case 

a1 7.09 9.09 7.00 8.99 8.23 

a2 7.98 9.13 8.21 8.84 8.31 

a3 8.56 9.84 8.58 9.71 - 

a4 11.05 11.39 11.25 - - 

a5 15.46 18.24 - - - 

a6 216.03 - - - - 

 
Table B.1: CoVs of parameters changing the number of parameters updated. 
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APPENDIX C 

 

RELATED NON-LINEAR PARAMETER CASE 

 

C.1 Introduction 

 A quite simple case of related non-linear parameter is studied in this Appendix. The 

structure studied is a two storey, one bay reinforced concrete building and the parameter to identify 

is the interstorey height. The analysis in order to compute the value of the parameter will be 

performed and then a statistical analysis will be carried out. Eventually, a comparison with Monte 

Carlo realizations will be reported. 

 

C.2 Theoretical relations 

 

C.2.1 Definition of solving system for chosen parameter 

 The sample structure under study is a two storey, one bay reinforced concrete shear-type 

frame (in Figure C.1 is depicted the structure analyzed). Only one parameter, one frequency and 

mode shape are considered, therefore the system of Eq. 6.11 simplifies into: 
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in which: 
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in which J  is the second moment of inertia of the columns,  cE  is the modulus of elasticity for the 

concrete, H  is the total height of the frame and 1a  is the parameter to update. 
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being m the lumped masses at the storey level. 
1

φ  and 2
1  was found solving the eigenvalues 

problem for the subsequent reference value of the parameter: mma ref 3000,1  . All the weighting 

functions are defined following the criteria outlined in Chapter 2. 

 

C.2.2 Definition of solving system for partial derivatives 

 Starting from the theoretical results outlined in paragraph 6.3.2, for the case under study Eq. 

6.25 can be simplified: 
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for 1i ; 2,1j . Solving the system of Eq. C.5, 
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The partial derivatives of the matrices, with respect to ji , are as follows: 

































4
1

4
1

4
1

4
1

4
1

1

)(

6

)(

6
)(

6

)(

66

12

~

aHaH

aHaHa
JE

a

K
c

r                               (C.7) 





































4
1

4
1

4
1

4
1

4
11

)(

6

)(

6
)(

6

)(

66

12

~

aHaH

aHaHaa
JE

K

ji
c

ji

r


                        (C.8) 





































5
1

5
1

5
1

5
1

5
11

1

2

)(

24

)(

24
)(

24

)(

2424

12

~

aHaH

aHaHaa
JE

a

K

ji
c

ji

r


                        (C.9) 

For the case under study, Eq. 6.29 can be simplified: 
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for 1i . Solving the system of Eq. C.10, 
2
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can be achieved. 

The partial derivatives of the matrices, with respect to 2
1 , are as follows: 
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Once all the partial derivatives have been obtained, the procedure of paragraph 2.7.3 has to be 

followed in order to obtain the standard deviations, considering that all the experimental outcomes 

are independent each other, Eq. 6.30 becomes: 
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C.3 Numerical example 

 The sample structure under study has got columns with sections of 40 cm by 40 cm (having 

therefore second moment of inertia 491013.2 mmJ  ), modulus of elasticity ( cE ) equal to 30000 

MPa and lumped mass at the storey level equal to 18000 Kg ( tm 18 ). The total height of the frame 

is equal to 6.50 m ( mmH 6500 ) and the interstorey height is assumed the parameter to update ( 1a

). The matrices have the following definition ( cE  in MPa, J  in 4mm , H  in mm , masses in 

Kg310 ): 
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Running the procedure, solving system of Eq. C.1, the solution is achieved and listed in Table C.1, 

this solution is labeled as the mean value for the parameter itself. 

Using the procedure for the uncertainties evaluation outlined in paragraph 6.3.2, the partial 

derivatives of the parameter must be computed using Eqs. C.5 and C.10. The values for the standard 

(C.14) 

(C.15) 

(C.16) 



 
198 

 

deviations of the frequency and the mode components are fixed in order to give a 5% CoVs. Having 

the values of the partial derivatives and the standard deviations, Eq. C.13 can be used in order to 

obtain the standard deviation of the parameter. This quantity, along with variance and CoV, are 

listed in Table C.1. 

A Monte Carlo analysis, with 300 realizations, was then performed using a normally distributed 

frequency and mode shape components and giving a 5% CoV to all these quantities. The mean 

value, the standard deviation, variance and CoV of the parameter are also listed in Table C.1. 

The target function H (Eq. 2.67), as a function of the unknown parameter, is depicted in Figure C.2. 

The figure shows the non-linearity of the function and the presence of a minimum at mma 30001 

which is the same value as for the reference solution. 

In Figure C.3 the frequencies histogram for the Monte Carlo analysis is depicted. 

 

C.4 Conclusions 

 The case presented in this Appendix needs the definition of a non-linear parameter which 

cannot allow us for the use of the stiffness matrix decomposition. The general procedure, outlined 

in paragraph 6.3, is followed in order to achieve the parameter value (then compared to reference 

solution) and to achieve the standard deviation of the parameter itself. The parameter value was 

achieved properly by the procedure, as indicated in Table C.1, and the uncertainties evaluation gave 

results very similar to the ones obtained through Monte Carlo procedure, with errors in terms of 

mean value, standard deviation and CoV negligible. These results are also listed in Table C.1. The 

procedure is also very stable with CoV of the parameter approximately equal to 2% starting from 

CoVs equal to 5% in the frequency and in the two mode shape components. 
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Table of Appendix C 

 

Parameter Reference value 
Uncertainties 

evaluation 
Monte Carlo 

Analysis 

a1 

Mean value 3000 3000 3001 

Variance - 3697 3858 

Standard Deviation - 60.80 62.12 

CoV [%] - 2.03 2.07 

 
Table C.1: Mean values, variances, standard deviations and CoVs of parameter from uncertainties 

evaluation and Monte Carlo procedure. 
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Figures of Appendix C 

 

 
Figure C.1: View of the sample structure. 

 

 

Figure C.2: Target function H for not perturbed system. 

 

 

Figure C.3: Frequencies histogram of parameter a1 from Monte Carlo analysis. 
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