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2 ABSTRACT 

During the last two decades, microdroplets have attracted increasing interest among 

researchers due to the wide spread of promising technological applications such as biological 

analysis, cancer diagnosis, drug discovery and chemical reactions. With respect to traditional 

emulsion methods which are usually able to produce droplets with a broad size variation 

(polydispersed emulsions), microfluidic devices have been developed to produce 

monodispersed microdroplets with a controllable size. The diameter and size variation of 

droplets are controlled by a series of parameters, including the geometries and dimensions of 

the microfluidic devices, properties of the liquids, flow rates and surfactant concentrations. 

Although a massive amount of experimental studies have been performed, the effects of 

controlling parameters and relevant mechanisms have not been completely understood and 

supplementary work is needed in this direction. In many cases, the application of 

monodispersed emulsions in biological and pharmaceutical areas involves the generation of 

non-Newtonian droplets (i.e. in blood or DNA analysis) and in this field there are a series of 

aspects which are, up to now, under-investigated. 

In this Ph.D. thesis, droplet formation has been analyzed experimentally, thanks to a 

series of specific tests on simple microfluidic devices devoted to droplet generation based on 

the use of  T-junctions or micro cross-junctions. The experimental work has been focused on 

the analysis of the control of droplet regime which can be activated in a microfluidic droplet 

generator in presence of Newtonian and non-Newtonian dispersed phases, with or without the 

addition of surfactants. The mechanism of the droplet formation has been studied by following 

the evolution of the interface between the immiscible liquids at the microjunction thanks to the 

post processing of images acquired by using a speed camera connected to an inverted 

microscope. In order to study the behavior of non-Newtonian shear thinning liquids during 

droplet formation, Xanthan gum aqueous solutions have been used because their rheological 

properties are very similar to those of blood.  The effect on the droplet regimes of the main 

controlling parameters, such as the flow rates of the immiscible liquids introduced in the 



 

microfluidic device, fluid viscosity and interfacial tension has been studied with the aim to 

individuate the range of these controlling parameters for which the microfluidic device is able 

to produce monodispersed droplets with an assigned volume and frequency. 

 

 

 

 

 

 

 

 

 

 

 



 

3 SOMMARIO 

In questa tesi di Dottorato viene effettuata una analisi sperimentale della generazione di 

gocce liquide mono-disperse mediante l’uso di micro-giunzioni a T e a croce. E’ possibile 

generare un flusso di gocce liquide con caratteristiche geometriche predeterminate 

introducendo il liquido da suddividere in gocce all’interno di una micro-giunzione assieme ad 

un altro liquido (immiscibile) utilizzato come vettore per le gocce. Le dimensioni delle gocce 

possono essere variate aggiustando le portate dei due liquidi introdotti nella giunzione. 

L’analisi si è concentrata sull’individuazione delle principali modalità di formazione delle 

gocce utilizzando diverse combinazioni di liquidi immiscibili Newtoniani (acqua, olio 

siliconico) e non newtoniani (soluzioni di Xanthan gum in acqua) con o senza l’introduzione 

di surfattanti, quali il Tween 20. 

Variando i principali parametri di controllo (portate in ingresso, rapporto di viscosità tra 

i liquidi introdotti nella giunzione, tensione all’interfaccia liquido/liquido) è possibile osservare 

un cambiamento nel meccanismo di formazione delle gocce all’interno della giunzione e quindi 

ottenere gocce con dimensioni diverse e con una diversa stabilità delle dimensioni delle gocce 

all’uscita della giunzione. Questo soggetto è stato estensivamente investigato da molti 

ricercatori negli ultimi anni in quanto la formazione di emulsioni mono-disperse è un topic di 

estremo interesse in molti campi industriali che vanno dall’industria alimentare, a quella dei 

cosmetici, all’area medica e biologica. Per questo motivo in questa Tesi ci si è dedicati 

all’analisi di una serie di aspetti tecnici che non hanno ricevuto la dovuta attenzione sino a 

questo momento in letteratura quali ad esempio: 

 Il ruolo svolto dal rapporto tra le viscosità dei liquidi immiscibili introdotti nella 

giunzione in presenza di liquidi non –Newtoniani con caratteristiche reologiche 

simili a quelle del sangue umano; 



 

 L’uso di giunzioni a T in cui i due liquidi immiscibili vengono introdotti nella 

giunzione attraverso i due canali contrapposti in presenza di liquidi non-

Newtoniani; 

 Lo studio dettagliato del meccanismo di breakup delle gocce in un ampio range 

di condizioni operative imposte all’ingresso della giunzione; 

 Misura della frequenza delle gocce generate, del tempo di breakup, delle 

dimensioni delle singole gocce al variare dei liquidi utilizzati e delle condizioni 

operative imposte; 

 Valutazione della varianza della dimensione delle gocce al variare delle 

condizioni operative imposte all’ingresso della giunzione al fine di individuare la 

combinazione di condizioni operative in corrispondenza delle quali la 

generazione di emulsioni mono-disperse viene garantita. 

Questo tipo di informazioni sono preziose per tarare accurati modelli numerici in grado 

di simulare il processo di formazione delle gocce all’interno di microdispositivi a fluido e di 

ottimizzarne il funzionamento.  

I principali risultati ottenuti in questa tesi possono essere così riassunti: 

 Il meccanismo di formazione delle gocce è influenzato dal rapporto tra le portate 

volumetriche introdotte nella giunzione (α), dal valore del rapporto tra le viscosità 

associate ai due liquidi immiscibili (λ), dal numero di Capillarità (Ca) associato 

alle due fasi. 

 Le giunzioni a T a flussi contrapposti possono essere utilizzate per generare 

emulsioni di liquidi Newtoniani monodisperse in soluzioni acquose solo in 

presenza di canali con comportamento idrofilico. In presenza di pareti idrofobiche 

la generazione di gocce mono-disperse risulta fortemente inibita. 

 Le giunzioni a croce garantiscono la produzione di emulsioni mono-disperse per 

un ampio range di condizioni operative per liquidi Newtoniani 

immiscibilicaratterizzati da un basso valore del rapporto tra le viscosità della fase 

dispersa e continua. 

 La formazione di gocce avviene per “schiacciamento” (squeezing) a basse portate 

volumetriche dei liquidi introdotti nella giunzione. Quando la portata volumetrica 

della fase continua introdotta nella giunzione aumenta, la goccia viene formata a 
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seguito dell’azione prodotta dalla fase continua sull’interfaccia liquido/liquido 

(dripping). Aumentando ancora la portata volumetrica della fase continua si 

genera una instabilità dell’interfaccia liquido/liquido che finisce per produrre il 

distacco della goccia fuori dalla giunzione (jetting). 

Quando la fase dispersa è un liquido non-Newtoniano dotato di una viscosità che 

diminuisce all’aumentare dello sforzo di taglio, prima del distacco della goccia si forma un 

lungo filamento tra la matrice dispersa in ingresso nella giunzione e la goccia in fase di 

formazione. Quando la goccia si stacca, il filamento si rompe generando una serie di gocce 

satellite che possono unirsi con la goccia principale aumentando la variazione del diametro 

delle gocce prodotte. 

I dati raccolti hanno permesso di costruire delle mappe generali in base alle quali è 

possibile conoscere con quale meccanismo (squeezing, dripping e jetting) le gocce vengono 

prodotte al variare delle condizioni operative imposte. 
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7 NOMENCLATURE 

a half of inner channel width (μm) 

A aspect ratio (= H/W) 

b, c function of geometry 

C dimensionless constant 

Ca Capillary number (= μu/σi) 

d thickness of the neck (μm) 

D droplet diameter (μm) 

f frequency (Hz) 

F force (N) 

G shear rate (= ∆u/∆z) 

h depth of flow (μm) 

H height of the channel (μm) 

k consistency index (Pa.sn-1) 

l thread length (μm) 

L length of plug (μm) 

m, n fitting parameter 

N number of the droplets 

p pressure (Pa) 

Pl polydispersity 

Pr perimeter (μm) 



 

q constant value 

Q volumetric flow rate (ml/h) 

r radius of curvature (μm) 

R restriction ratio (= Wj/Ww) 

R2 correlation coefficient 

Re Reynolds number (= ρuDhl/μ) 

S surface cross-section  (μm2) 

t time (ms) 

u velocity (m/s) 

V volume (m3) 

w width of the interface (μm) 

W width of the channel (μm) 

x, y mass center 

z downstream distance of the channel (μm) 

Greek Letters  

α flow rate ratio (= Qd/Qc) 

β depth ratio (= hd/hc) 

ε fitting constant 

δ blocking coefficient 

ρ density (kg/m3) 

μ viscosity (cP) 

κ radius of curvature 

υ kinematic viscosity (cSt) 

λ viscosity ratio (= μd/μc) 

Λ width ratio (= Wd/Wc) 

ω fitting constant (= d/Wc) 
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σ tension (Nm-1) 

θ contact angle (°) 

τ dimensionless time  

ξ onset of shear thinning 

χ dD*/dCac 

  shear rate (s-1) 

Subscripts  

a axial 

b breakup 

B buoyancy 

block blocking 

c continuous 

com complete 

cr critical 

d dispersed 

Def modified drag 

det detachment 

DL dynamic lift 

f formation 

fl filament 

g growth 

G gravity 

growth elongating rate 

h horizontal 

hl hydraulic 

i interfacial 



 

I inertial 

in induction 

j at the junction 

ll liquid-liquid 

m modified 

M gas momentum 

max maximum 

micro microthread 

min minimum 

neck necking 

or orifice 

outlet outlet 

r radial 

ref reference 

s surface 

S shear 

sl solid-liquid 

squeeze decreasing rate of the neck 

SP static pressure 

w far from the junction 

0 shear-rate 

Superscripts  

n power-law index 

x power-law coefficient 

* dimensionless 

 



 

1 Chapter 1 

Droplet Generation in Microfluidics: State-of-the-Art 

1.1 Introduction 

In recent years, microdroplets have attracted broad interest all over the world due to their 

vast range of applications. They have been extensively applied in a variety of fields. Two 

distinct but complementary motivations gave rise to the interest in droplet manipulating within 

microjunctions [1]. First, the desire to generate well-calibrated droplets in material science 

applications such as food industries or pharmaceutical areas. In this context, microfluidic 

devices have been devised to produce droplets with low size variations and reproducible 

diameters, also to allow complex combinations to be designed and investigated [2, 3]. A second 

aim emerges from lab on a chip applications where the droplets are treated as microreactors in 

which small (femto – to nanoliter) liquid volumes are manipulated [4]. The miniaturization of 

the system is an important advance in search for drugs which demand robust methods to find, 

refine and test a probable drug candidate, drug discovery [4]. Consuming just a few microliters 

of sample, requiring small cell numbers, less than a single human patient biopsy and a high 

degree of automation are the advantages of droplet microfluidics in biomedical and single-cell 

studies [5]. The introduction of microfluidics facilitated the production and manipulation of 

chemical or biochemical reactions in emulsions [1] which were initiated before the birth of 

microfluidics via reactions in many small volumes [6, 7]. Intermolecular reactions of various 

reagents and reactants may take place in merging channel geometries including T shapes. A 

very prominent benefit of miniaturized reactions highlighted by the researchers is the reaction 

time which is of the order of milliseconds. 

Emulsion droplets are small containers that can be used to contain biological material 
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including DNA, cells, molecules and bacteria [5]. Cellular compartmentalization is crucial for 

evolution of living organisms. High throughput structure-based systems with the ability to 

control the supply of reactants and to produce droplets with low size variation has attracted 

broad interest in molecular evolution [7] and protein crystallization [8-10]. Multiple parallel 

reactions are needed in a number of applications (from drug discovery to gene-expression 

analysis) and the capabilities of microfluidics to reduce the use of expensive reagents makes 

microscale reaction an unrivaled option [11]. The droplets form small reaction three 

dimensional containers that can be filled by the compounds at the moment of formation, mixed 

rapidly by the reactants and transported along channel. Nowadays, microfluidic devices can be 

fabricated easily thanks to soft lithography with PDMS or 3D printing, as examples of rapid 

fabrication method. Unlike conventional methods, combining droplet-based valve 

microfluidics and luminescence-based colorimetry makes a novel platform in blood and DNA 

analysis in which the determination of biomolecules is achieved by means of visualization with 

a small consumption of reagents, low cost detection system and a short time. With the 

development of microvalve-based droplet techniques, this method may be applied in 

identifying anticancer drug by color assays and it can be employed for drug discovery and 

biological screening [12]. Single-cell study is made possible by encapsulation of single cells 

into microdroplets in which the cell is later analyzed. To analyze the intracellular components 

such as DNA and RNA, the cells can be lysed. Moreover, mammalian cells can be cultivated 

inside microdroplets for several days [5]. Aqueous droplets as the cell-sized compartments can 

be efficiently used in order to keep together genes, RNAs and proteins. 

The generation of the droplets with homogeneous diameter can be obtained thanks to the 

microfluidics devices in a very efficient way with respect to traditional methods such as 

agitated dispersion [13], solvent evaporation method [14] and emulsification/gelation method 

[15] in which droplets with broad size variations were usually produced. Hitherto, a number of 

different microdroplet generators were proposed to generate droplets, like micro T-junctions 

[16], flow-focusing [17, 18] and co-flow devices [19] as shown in Figure 1.1. 

Thorsen et al. [16] firstly used a micro T-junction for the generation of monodispersed 

droplets [16, 20] as well as bubbles [21]. In a T-junction configuration the dispersed phase (or 

droplet forming phase) and the continuous phase (or carrier fluid) are introduced by using two 

different inlets of the junction. The dispersed and the continuous phase can be introduced 

perpendicularly each to other or face-to-face. The dispersed phase stream starts to penetrate 
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into the main channel and forms a droplet which leaves the junction along the outlet of 

microchannel [22]. In this way the dispersed phase breaks into monodispersed droplets 

regularly spaced along the outlet of the junction. 

 

Figure 1.1. Three most common microfluidic geometries used for droplet generation; (a) T-junction, 

(b) flow-focusing and (c) co-flow device [5]. The dispersed phase is indicated in blue while 

continuous phase is in yellow. 

Flow-focusing configuration has been also proposed as droplet generator during last 

years. The dispersed phase is usually sheared-off symmetrically by a continuous phase which 

is introduced into the junction from two opposite directions (Figure 1.1b). Axisymmetric flow-

focusing microdevices confine droplets in central axis of the outlet microchannel by protecting 

droplets from shear or damage due to adhesion or wetting at the walls.  

Rayleigh-Plateau instability of the dispersed phase which is injected by a Capillary tube 

or orifice into another immiscible co-flowing fluid is the reason of drop forming in co-flow 

devices. A sample of co-flow microdevice is depicted in Figure 1.1c. 

The three above-explained devices for the generation of monodispersed droplets are the 

most common ones but other types of microdroplet generators have also been devised such as 

microchannel terraces [23], to enhance the productivity of the emulsions. Thanks to 5000 to 

30000 assembled microchannels per chip which increase drastically the throughput. This 

solution can be an attractive option for the applications in which high productivity is needed. 
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Although the low productivity of T-junctions and flow-focusing devices as compared to 

microchannel terraces can be a big drawback, they are the most preferred configurations 

because of their relative ease in fabrication and simplicity in drop controlling. The main 

characteristics of an emulsion generator is its ability to generate reproducible droplets with low 

size variation. The controlling parameters in drop diameter and size variation are geometry and 

dimension of the microchip [24-26], properties of liquids [27, 28], flow rates of working fluids 

introduced into the junction [29-31] and surfactant concentration [32-34]. In this thesis 

different geometries of the microjunctions will be studied in order to optimize the generation 

of both Newtonian and non-Newtonian monodispersed emulsions. 

1.2 Geometry and dimension of the junction 

The effect of junction geometry is an important aspect to be investigated for the correct 

design of microdroplet generators. 

 T-junction configurations 

A typical micro T-junction can be used as droplet generator by adopting configurations 

depicted in Figure 1.2. The configurations differ in terms of introduction of the dispersed phase 

(DP) and of the continuous phase (CP) as shown in Figure 1.2. 

 

Figure 1.2. Typical illustration of T-junction with three distributions of the continuous phase CP and 

dispersed phase DP along them for (a) cross-flow, (b) perpendicular cross-flow and (c) opposed-flow. 

More in detail 

(i) Figure 1.2a shows a T-junction used in a “cross-flow” configuration. In this case 

the droplet is generated thanks to the introduction of a dispersed phase along the 

vertical arm which shear-off the continuous phase flowing along the main 

channel. 
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(ii) Figure 1.2b shows a T-junction under a cross-flow configuration in which the 

introduction of the continuous and dispersed phase is reversed with respect to the 

first case. In this case the main channel is filled with the dispersed phase and the 

continuous phase penetrates the main channel through the vertical branch. 

Interruption of the dispersed phase by the continuous phase which creates an 

obstruct causes the droplets generation. This configuration is used to generate 

large droplets [35]. 

(iii) Figure 1.2c shows a T-junction under an opposed-flow configuration; dispersed 

and continuous phase are introduced face-to-face and the generated droplets pass 

through the main channel to the outlet. The configuration is mainly used for 

bubble generation [36]. Recently Shui et al. [32] tested the opposed-flow 

configuration also for liquid droplet generation. 

(iv) By varying θ (< 90°) (Figure 1.2a) a Y-junction or λ-junction can be obtained. 

The effect of introduction of a liquid with different angle with respect to the main 

channel can be beneficial or not to the droplet generation. 

 Flow-focusing configurations 

The typical flow-focusing microdevices can be subdivided into three types, according to 

the geometry of the junction as depicted in Figure 1.3. 

 

Figure 1.3. Three typical categories of microfluidic flow-focusing devices; (a) axisymmetric capillary 

co-flowing device, (b) flow-focusing channel and (c) cross-junction geometry from Fu et al. [37]. 

Figure 1.3a and Figure 1.4 show a typical configuration of the droplet generation. 

Pressure driven flow drives a liquid into parallel microchannels surrounding a central parallel 

stream containing a second immiscible liquid. The central channel ends within the microdevice 

and the liquids are forced to flow along a downstream contraction. Viscous stresses and 
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squeezing pressure are responsible of the generation of droplets at the outlet [28]. The other 

configurations shown in Figure 1.3b and c work in a similar way, but in the case of Figure 1.3c, 

no contraction is present after the merging of the immiscible liquids. 

 

Figure 1.4. Schematic of a planar flow-focusing geometry from Lee et al. [28] where Wor and Wout 

represent orifice and outlet channel width values, respectively, 2a is the inner channel width and ∆z is 

a distance downstream of the end of the inner channel. 

1.3 Droplet formation and controlling mechanisms 

Droplets can be generated in the junctions in different ways thanks to the different 

predominant forces acting on the immiscible liquids. Based upon both experimental and 

numerical investigations, it is now possible to distinguish different droplet regimes which can 

activated under different operative conditions. In order to obtain the generation of the droplets, 

the dispersed phase must penetrate the main channel, this is possible only if its pressure 

overcomes the Laplace pressure (Equation (1-1)) where ra and rr are the radius of axial and 

radial curvature of the interface between the immiscible liquids. 

1 1

 

   
 

L

a r

p
r r

 (1-1) 

The classification of the droplet regimes can be done in two distinct ways: 

(i) By observing the position in which the droplet breakup occurs (i.e. at the junction 

or downstream) 
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(ii) By considering the physical mechanism which is the responsible of the breakup 

Following the first criterion at low values of continuous flow rates Qc, the shear force is 

usually negligible and the droplet generation is observed when the pressure drop force is able 

to overcome the interfacial force opposes to the interface. At low values of Qc, droplets are 

generally formed at the junction (DJ) thanks to the dominance of the pressure which is 

responsible of the squeezing of the neck connecting the droplet to the source of the dispersed 

phase, squeezing mechanism [38]. Since the droplet partially blocks the channel, a pressure 

build-up is produced [39]. If Qd increases, the droplet breakup moves downstream of the 

junction (DC). In fact, an increase of Qd means that more material is injected into the junction. 

In this case, the interface is not easy to pinch-off and the breakup position is shifted far from 

the center of the junction [39]. When the droplet breakup occurs downstream of the junction, 

an elongated filament is observed before the breakup. The filament is broken during the droplet 

generation in an abrupt way and it can generate satellite droplets. Parallel flow (PF) takes place 

at high values of Qd because the continuous flow is not able to oppose the dispersed flow. In 

this case no droplets are generated and only two parallel flows can be observed at the outlet of 

the junction [39, 40].  

If the second criterion is used in order to distinguish the droplet regimes in which a 

different physical mechanism is the responsible of the droplet generation: squeezing regime 

(SR), dripping regime (DR) and jetting regime (JR). In squeezing regime (which usually 

corresponds to DJ regime) the droplet blocks the main channel and the pressure exerted by the 

continuous phase increases. Then the dispersed phase is squeezed by the continuous phase at 

the center of the junction and a droplet is formed at the junction. 

Dripping regime is generated if Qd or Qc are increased. In this case, the growing droplet 

still fills the channel but only partially. The detachment point moves downstream of the 

junction thanks to the action of the continuous phase which produces a shear stress on the 

interface by creating a filament before the breakup. As the shear force exerted on the filament 

increases by increasing the continuous phase flow rate, the breakup tends to take place 

downstream of the junction. In spite of the squeezing regime in which the pressure drop is the 

dominant, in dripping regime shear force plays a more important role. 
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Figure 1.5. Illustration of droplet generation in a typical flow-focusing device; (a) squeezing regime, 

(b) dripping regime and (c) jetting regime from Lee et al. [28]. 

Jetting regime can be activated at high values of Qc, shear force is still predominant but 

the droplets are generated downstream of the junction while a long and unstable thread is 

sustained. It is possible to consider dripping and jetting regimes to coincide with DC regime. 

In Figure 1.5 a representation of squeezing, dripping and jetting regimes obtained in a 

flow-focusing droplet generator similar to the scheme of Figure 1.3a is given. 

The works appeared in literature demonstrate that the control of the droplet 

characteristics in terms of volume and frequency can be obtained if one is able to control the 

droplet regimes at the junction. The droplet regimes can be varied by the changing the values 

governed by two dimensionless parameters, the Capillary number Ca (see Equation (1-2)) and 

the flow rate ratio (Equation (1-3)) defined as follows. 

,
 

 
 c c d d

c d

u u
Ca Ca  (1-2) 

  d

c

Q

Q
 

(1-3) 

However, although a huge number of studies has been performed on the control of the 
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droplet generation, not all the physical aspects of the phenomenon have been clarified. Many 

contradictory findings have been reported in the papers published in the past and some aspects 

are still open questions. 

In this section a critical review of the main conditions reported in the published works 

has been made with the aim to highlight the main aspects which are still under-investigated. 

 Effect of flow rate 

As a rule of thumb, an increase of dispersed flow rate Qd or a decrease of continuous 

flow rate Qc, thanks to the reduction of the viscous force is responsible of larger droplets. 

In squeezing regime (SR) (low Qc and Qd) Garstecki et al. [41] claimed that the droplet 

production is mainly controlled by the flow rates. They argued that the length of drop or bubble, 

at low values of Cac, is determined by two steps; the first step is linked to the growth of the 

dispersed phase neck which continues till it blocks the carrier fluid; the length of plug is 

approximately equal to the width of the main channel Lblock = Wc. Then the upstream pressure 

increases and squeezes the neck by reducing the neck characteristic width (d) (see Figure 1.6). 

Assuming the decreasing speed of the neck width approximately equal to the mean velocity of 

the continuous phase (usqueeze ≈ uc) and elongating of the drop at rate ugrowth, they proposed a 

simple expression for the prediction of the final length of the droplet in the form of 

 c growth

squeeze

d
L W u

u
 (1-4) 

which can be rewritten as (Equation ( 1-5)) if the cross-section does not vary through the 

junction. 

c d

c

d
L W Q

Q
   (1-5) 

Equation (1-5) can be rewritten in the dimensionless form as follows: 
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1
c

L

W
   (1-6) 

where L is the length of the plug generated (see Figure 1.6) scaled with Wc which is the width 

of the main channel, ω (= d/Wc) is a fitting constant of order one related to typical neck width 

and α is the flow rate ratio defined by Equation (1-3). 

 

Figure 1.6. The interface between two immiscible fluids and the dispersed phase neck from Garstecki 

et al. [41]. 

The simple correlation between the dimension of the droplet and the flow rate ratio α 

proposed by Garstecki et al. [41] for squeezing regime (Equation ( 1-6)) was verified by 

numerical and experimental studies for T-junctions by Chiarello et al. [42], Piccin et al. [43] 

and Xu et al. [44] and also for flow-focusing devices by Liu and Zhang [39]. Since Lblock is not 

always equal to Wc but depends on channel geometry, the Equation (1-6) can be written in a 

more general form by considering Lblock = εWc. In this way the correlation proposed by 

Garstecki et al. [41] becomes: 

c

L
L

W
     (1-7) 

where ε is a fitting constant which depends on junction geometry. The values of ε and ω change 

from one publication to another one because of junctions having different geometries are 

generally studied. As a logical outcome of Equation (1-7) it becomes evident that larger flow 

rate ratio α mean longer microdroplets as confirmed by many studies. Gupta and Kumar [24, 

26], Liu and Zhang [39, 45] (see Figure 1.7) and De Menech et al. [46] analyzed theoretically 

the dependence of the size of the droplet on the flow rate ratio α while Xu et al. [47] Garstecki 

et al. [41] and Xu et al. [44] confirmed Equation (1-7) experimentally. 
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Figure 1.7. Non-dimensional length of plugs as a function of flow rate ratio (here Q) and continuous 

Capillary number (here Ca) from Liu and Zhang [39]. 

Another common experimental observation is that the size of the droplet decreases with 

increasing Qc (Cac) while α is kept constant. The observation highlight that continuous 

Capillary number Cac plays a role on the size of the droplet even in the squeezing regime but 

the parameter is not as significant as it is in dripping and jetting regimes. It can be concluded 

that α is not the only parameter effective on the size of the droplet but it seems that both flow 

rates are controlling the droplet size. 

Garstecki et al. [41] studied experimentally a water flow as the dispersed phase in a 

silicone oil flow at a T-junction. As demonstrated in Figure 1.8 dimensionless length of the 

drop shows a linear dependence on flow rate ratio α (for α > 1) while in the cases of α ≤ 1 the 

droplet size is not a strong function of flow rate ratio. This behavior was explained by the 

‘shearing’ model: at low values of Qd (Qwater in Figure 1.8) the flow of the dispersed fluid 

would be much slower than that of host fluid and therefore it would not affect the balance 

between the shear stress and the interfacial tension. On the contrary by increasing Qd, the shear 

stress exerted by the continuous liquid on the droplet decreases thanks to the reduced difference 

of the velocity of the two fluids [41]. In Figure 1.8 the x-axis is the flow rate ratio α defined in 

Equation (1-3). 
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Figure 1.8. Linear dependence of the drop size on flow rate ratio when α > 1 from Garstecki et al. [41] 

where water droplets in different oil flows with diverse viscosities. 

In spite of squeezing regime in which flow rate ratio is important, in dripping regime 

(DR), due to the enhancement of Qc (Cac), the size of the droplet depends strongly on Capillary 

number [46]. A very sharp decrease of the size of the droplet is predicted by De Menech et al. 

[46] and Liu and Zhang [45, 48]. Going from squeezing to dripping regime, in dripping regime 

the balance between the shear force and interfacial force determines the drop size [38]. An 

increase of Qc pinches-off the droplet earlier and the droplet size is reduced. 

The few available models proposed to study the transition from dripping to jetting regime 

were summarized in a review paper by Christopher and Anna [49]. They studied the methods 

for synthesizing uniform streams of droplets and bubbles, focusing on those systems utilizing 

pressure-driven flows. The droplet diameter was found to decrease monotonically with increase 

of continuous flow rate Qc. It is possible to increase the droplet diameter by reducing the 

interfacial tension between the immiscible liquids by introducing surfactants. 

With a constant increase of continuous flow rate Qc flow pattern shifts from dripping to 

jetting regime (JR). As the Capillary number is further increased, the breakup point moves 

progressively downstream and a jet is formed [46]. There exists a scarcity of studies focused 

on jetting regime due to the unsteady essence of the jet formed along the outlet channel and the 

production of multiple satellite droplets after breakup of the main droplet. In the jetting regime, 
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the dispersed fluid can flow out of the source as a single thread or jet, the length of which may 

be several times the dimensions of the nozzle before the jet destabilizes and droplets pinch-off 

from the tip [50]. 

 Effect of geometry 

Qian and Lawal [36] simulated the Taylor flow in the three configurations of T-junctions 

(shown in Figure 1.2). They found theoretically that the bubbles produced by using the cross-

flow (Figure 1.2a) and opposed-flow (Figure 1.2c) configurations are of comparable lengths, 

but shorter than those generated by the configuration of Figure 1.2b. However, the conclusion 

was reversed by the experimental data obtained by Xu et al. [47] who tested the two 

configurations of Figure 1.2a and b by observing longer droplets with the configuration of 

Figure 1.2a. Raj et al. [51] simulated the bubble formation process for different T-junction 

modes (including cross-flow (Figure 1.2a) and opposed-flow (Figure 1.2c)) and a Y-junction. 

The bubble length was found to be totally independent of the geometry of the device used. 

 

Figure 1.9. (a) The illustration of λ-junction from Yeom and Lee [52] and (b) Y-junction from Raj et 

al. [51]. 

Other studies focused on the effect of geometry of the junction were made by Yeom and 

Lee [52] who studied the λ-junction of Figure 1.9a, Raj et al. [51] and Steegmans et al. [53] 

who studied the Y-junction of Figure 1.9b by changing the angle between the inlet and main 

channel. Das and Das [54] simulated the drop movement over an inclined surface. 

Wang et al. [55] studied T-junction microfluidic device with an embedded capillary. The 

introduction of a capillary tip into the main channel of a T-channel (see Figure 1.10) is able to 

greatly reduce the dimension of the droplets with low consumption of continuous phase. This 

kind of droplet generator can be applied into many fields, as monodispersed droplets smaller 

than the channel scale can be easily prepared in this way and it can be used for many 

applications such as the preparation of microbead and microspheres (Figure 1.10). 
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Figure 1.10. The dispersion processes in the three kinds of microchannels in the same range of 

continuous phase flow rate from Wang et al. [55]. 

Simple modifications on the ordinary T-junction by introducing a Venturi-shaped 

microchannel (Figure 1.11) has been studied by Lattice-Boltzmann method verified by 

experimental investigations [56] in order to observe the effects on the size of droplet and on 

the frequency of droplet. The results proved clearly that the smaller droplets may be generated 

under the operation of high flow rate ratios high-efficiently in contrast to the much bigger 

droplets in ordinary T-junction geometry under the same conditions. This work verified that 

multiphase flows can be very sensitive to tiny difference in terms of channel geometry. 

 

Figure 1.11. Droplet generation along a venturi-shaped micro T-junction from Wang et al. [56] for (a) 

an ordinary T-junction and (b & c) modified T-channels. 

A series of works have been focused on the analysis of the effects of the width ratio 

(Equation (1-8)) and the aspect ratio (Equation (1-9)) of the junction. 
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It has been demonstrated that a change of these two key parameters in the design of a 

droplet generator can influence the characteristics of droplets in terms of size, spacing and rate 

of production. Garstecki et al. [41] discussed the role of Λ and A for five different T-junctions 

and concluded that when Λ ≥ 0.5, the size of the droplet could be correctly predicted by 

Equation ( 1-7) for squeezing regime but not for Λ < 0.5 in which shear force distorts the 

droplet. In order to stay in squeezing regime, Ac (= H/Wc) should be kept less than unity while 

Λ ≥ 0.5. The critical Capillary number for transition from the squeezing to dripping regime was 

on the order of 10-2 in the case of square cross-section (A and Λ = 1). Raj et al. [51] performed 

an analysis on the effect of the channel size on the drop/slug lengths. The drop/slug size was 

found to be independent of the channel size in the transitional region between squeezing and 

dripping regimes (Cac > 0.01) when the flow rate ratio between the dispersed and continuous 

phase (α) is less than 0.5. For α > 1 a parallel flow was observed against the experimental 

results when Ac & Ad < 1 and 0.5 ≤ Λ ≤ 1 but a slug flow with an over-predicted length occurred 

for Λ = 0.5, Ac < 1 & Ad > 1. Christopher et al. [57] indicated Λ as a crucial factor for the 

droplet size by fixing Ac = 1/3 and varying Λ from 0.4 to 2.5. They studied the droplet volume 

against ratio of channel widths Λ within a T-junction. The volume of droplet diminished by 

increasing Cac. At low values of Λ (< 1) the measured volume was approximately constant but 

as the width ratio exceeds unity (Λ > 1), the droplet size increases approximately linearly with 

width ratio. The lower values of Capillary number Cac, the more sensitivity of the droplet 

volume on the width ratio Λ could be seen. Varying the width ratio (0.3 < Λ < 1), Glawdel et 

al. [38] carried out the experiments in transitional regime and observed larger droplet were 

produced with larger width ratio Λ values. They tested the effect of variation of Λ from 0.3 to 

1, while Ac was in the range of 0.3 to 0.6, in the transitional region between squeezing and 

dripping regimes. They observed that larger values of Λ determines larger droplets at lower 

frequencies, even if Λ < 1. In the aforementioned paper the pinch-off is controlled solely by 

Ac. Gupta and Kumar [24] employed Lattice Boltzmann method to investigate the effect of Ac 

on the plug size. The plug size increased with the increase of the channel depth for a fixed 
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Capillary number Cac and flow rate ratio α. 

In order to take into account all the geometrical factors which play role on the droplet 

generation, Lee et al. [28] defined a modified Capillary number for planar flow-focusing 

geometry containing all of the geometrical dimensions of the junction as follows: 

1 1

2

c c c
c

or c

a Q au
Ca

z H z W W

 

 

 
   

   
 (1-10) 

where Wor and Wout represent orifice and outlet channel width values, respectively, 2a is the 

inner channel width and ∆z is a distance downstream of the end of the inner channel. 

The restriction ratio of the channel width R (Equation ( 1-11)) is another important 

parameter especially in flow-focusing devices. This parameter is defined when the width of the 

junction varies along the microchannel. 


j

w

W
R

W
 (1-11) 

where Wj and Ww represent the width values at the junction and far from it, respectively. 

The critical shape of the neck before the breakup stage was controlled by Hc varying from 

0.3 to 0.6. Lee et al. [28] confirmed that the upstream geometry in a planar flow-focusing 

device plays little role in the transient growth of the thread. They adopted four restriction ratios 

R (= 0.05, 0.0625, 0.1 & 0.25) in their study and obtained longer threads if the restriction ratio 

is increased. 

Dang et al. [58] considered three different flow-focusing micordroplet generators to 

study the effect of the input, orifice and output width values on the particle size. By 

investigating of various experimental geometrical conditions, continuous and dispersed flow 

rates and concentration of poly (ethylene glycol) (PEG) hydrogel solution, PEG hydrogel 

microparticles were optimized. Li et al. [59] performed an analysis for the geometry 

optimization of a flow-focusing device and revealed that despite the squeezing volume which 

can be tuned by manipulating the continuous phase flow rate, the blockage volume in the 
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squeezing regime depends solely on the focusing region geometry. Abate et al. [60] 

summarized the stability of microdroplet generators with different inlet channel geometries. In 

flow-focusing devices with three different junction geometries, due to the symmetric injection 

of fluids, they evidenced unstable polydispersed droplet at low Capillary numbers while 

monodispersed droplets were generated at high Capillary numbers. 

Gulati et al. [61] reported the effect of variation in degrees of rounding in flow-focusing 

geometries. The ratios of the radius of curvature to channel width was the parameter taken into 

account in this study and it was found that the largest rounding caused largest droplets to be 

generated (Figure 1.12). Castro-Hernández et al. [62] identified three geometrical parameters 

including the distance between the inner inlet channel and the outlet channel in a flow-focusing 

geometry, the width of the outlet channel and its length for a finite element simulation on a 

non-planar three-dimensional flow-focusing device. It terminated in fabrication of four 

optimum designs by the use of soft lithography techniques and testing the built channels 

experimentally. 

 

Figure 1.12. Droplet formation in the four rounded flow-focusing devices at two different flow rate 

ratios where R is the radius of the curvature from Gulati et al. [61]. 
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 Effect of viscosity 

Viscosity is another important parameter governing the droplet size. Based upon the 

study performed by Garstecki et al. [41], later supported by numerical investigations by De 

Menech et al. [46] and Liu and Zhang [45], the droplet size was found to be approximately 

independent of viscosity ratio λ (Figure 1.13) in squeezing regime, as confirmed by Equation 

(1-6) proposed by Garstecki et al. [41]. The main contribution in the droplet final size comes 

from the growth stage in which λ plays a negligible role. The effect of continuous phase 

viscosity on pressure drop force is limited because of the short breakup stage resulting from 

high magnitude of pressure drop force [22]. 

 

Figure 1.13. The effect of viscosity ratio λ in droplet formation process at a fixed flow rate ratio α = 

0.25 and Cac = 0.006 from Liu and Zhang [45]. 

Viscosity plays a complex role in droplet generation and contradictory findings have been 

reported in literature. Due to the contribution of μc to pressure drop force, the interface is 

sheared-off earlier and smaller droplets are expected by increasing μc. As expected, the more 

viscous continuous phase (higher values of μc), the smaller droplets should be generated, as 

confirmed by Garstecki et al. [41], Husny and Cooper-White [63], Raj et al. [51] and Yeom 

and Lee [64]. On the contrary Christopher et al. [57] observed that droplet diameter increases 

if the continuous phase viscosity is higher. The same inconsistency may be observed in 

investigations in which viscosity ratio was considered as an operative parameter. Unlike De 
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Menech et al. [46] and Liu and Zhang [45], Bashir et al. [65] obtained larger droplets for higher 

values of viscosity ratio λ defined as the ratio between the viscosity of the dispersed and the 

viscosity of the continuous phase (Equation (1-12)). 





 d

c

 (1-12) 

More studies with clear information on adopted parameters are needed in order to fully 

understand the role of viscosity on the droplet volume. There is a scarcity of works dealing 

with the effect of the viscosity of the dispersed phase on the droplet characteristics. When the 

viscosity of the dispersed phase increases, the neck becomes longer and the detaching time 

enhances, so the smaller droplets are produced by increasing dispersed phase viscosity. 

In dripping regime, shear force increases proportional to the continuous phase viscosity 

μc, so the size of droplets is inversely proportional to μc. As expected, the larger viscosity ratio 

λ is, the larger droplet should be generated which was confirmed by the earlier works [57, 63, 

64]. Nevertheless different results are reported for the dependence of drop size on viscosity 

ratio λ [26, 45, 46]. An increase of μd determines an increase of viscous pressure in thread 

which opposes the Capillary pressure; it leads to less material being transferred within longer 

threads and smaller droplets generated as supported by [64]. They found a decreasing behavior 

for drop size as a function of both viscosities. In their study, an increase of μc and/or μd 

determines smaller droplets [64]. 

In jetting regime shear force is the predominant force and the droplets are sensitive to μc 

but μd plays a marginal role. Increase of continuous viscosity μc leads to generation of smaller 

droplets [63]. The drag force within the shear-driven regime exerted on the droplet depends 

very weakly on the viscosity of the droplet, so the viscosity of the dispersed phase μd does not 

influence the size of droplets appreciably [46]. Liu and Zhang [48] studied the droplet 

formation in a micro cross-junction by using the Lattice-Boltzmann method in dripping regime. 

They observed a very weak dependence of the droplet size on viscosity ratio λ; they proposed 

a correlation in which the viscosity ratio λ is absent and the drop size is found to be linked to 

the Capillary number Cac and flow rate ratio α only. 

Droplet formation and breakup dynamics in flow-focusing devices from dripping to 
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jetting regime were investigated experimentally by Fu et al. [37]. They found out that in 

dripping regime for low viscosity ratios the minimum width of the thread varied with a power-

law dependence on the remaining time and the droplet size changes with flow rate ratio α and 

Capillary number Cac. On the other hand with an increase of the viscosity ratio λ, the dispersed 

thread showed a linear thinning procedure. They concluded that in jetting regime viscosity ratio 

λ and flow rate ratio α influence the stable jet width. 

Cubaud and Mason [66] measured the droplet size and linked it to fluid properties, flow 

parameters and channel geometry in dripping and jetting regimes. In their study the regimes of 

thread instabilities were classified and the critical thread length before jetting droplets and the 

critical length of a viscous tail before breakup in dripping were also examined. Seo et al. [29] 

declared the surface energy of the device which influences the emulsification of the liquids as 

an important parameter amongst various controlling factors. Combining two consecutive flow-

focusing microdroplet generators, they made a double droplet generator useful for the 

production of double emulsions. Nunes et al. [50] reviewed the investigations linked to both 

dripping and jetting regimes in flow-focusing and co-flow devices as well as T-junctions (see 

Figure 1.14). 

  

Figure 1.14. Phase diagram of flow-focusing geometry and T-junction from Nunes et al. [50]. 

 Effect of interfacial tension 

Due to the dominance of surface forces in microscale (high surface to volume ratio), 

interfacial tension σi is one of the most important terms playing role in droplet formation. The 

addition of surfactant to the fluids simplifies the generation of the droplets and lessens the 
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chance of the coalescence of the droplets. Since the droplet size depend on Cac, the value of 

droplet size can be seen as a function of interfacial tension and shearing force. With the 

variation of the surfactant concentration, the interfacial tension is reduced, which causes the 

variation of the droplet size at the same shearing force. The surfactant adsorption in liquid-

liquid system acts dynamically in the droplet formation and influences the interfacial tension 

at the detaching moment. In order to make the adsorption process shorter and weaker and 

consequently to keep the interfacial tension at minimum and constant value, large concentration 

of surfactant, over the critical micelle concentration (CMC), defined as the concentration of 

detergents above which micelles are spontaneously formed, are usually employed. Reducing σi 

decreases the mixing energy and helps the formation of the stable interface between liquids 

[32]. Lower concentration of surfactant can be responsible of a variation in droplet sizes caused 

by the unsaturated adsorption. 

A typical surfactant molecule consists of a hydrophilic head and a hydrophobic tail and 

in the solution these molecules go spontaneously to the interfaces where hydrophilic part stays 

in the water and hydrophobic tail can stick out in the air. A liquid tends to have a surface as 

small as possible, so it is easier to make spherical shape by a soup as compared to water. Soups 

are called surfactants because of acting on surface, they reduce surface tension. Hydrophilic-

Lipophilic Balance (HLB) value could be used to determine if a surfactant is hydrophobic or 

hydrophilic. Emulsifiers with high HLB values (more hydrophilic) make O/W droplets; on the 

contrary, surfactants with low HLB values (more hydrophobic) give W/O emulsions [32]. 

According to the previous studies, the adsorption of surfactant on the interface can be 

divided into three steps. The first step is diffusive and/or convective transport of the surfactant 

molecules from the volume phase to the so-called “subsurface”, a boundary layer located 

directly adjacent to the interface with a thickness approximately equal to the diameter of a 

single surfactant molecule. In the second step, surfactant molecules are self-assembled from 

the “subsurface” into the interface. With the proceeding of the adsorption, the surfactant 

molecules become less in the volume phase, which causes an imbalance in the equilibrium 

between the micelles and molecules. The concentration gradient between the micelles and 

molecules leads in a third step to disaggregation of the micelles and dissolution of the surfactant 

molecules into the volume phase. High concentration can accelerate the dissolution of the 

surfactant molecules, so the dynamic interfacial tension decreases with the increase of the 

surfactant concentration [67]. 
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 Effect of wettability in droplet generation 

Wettability of the channel walls is an important factor in droplet generation. It can be 

achieved by either the use of coating on the inner walls or addition of surfactant to the 

continuous phase flow. The interaction of a droplet with the channel wall is characterized by 

the contact angle. Liu and Zhang [45] simulated the droplet generation with different contact 

angles of the walls, i.e., θ = 110°, 130°, 150° and 180°. They observed that the contact angle 

influenced droplet shape, frequency, the distance between two neighboring droplets and the 

detachment point. The droplet diameter decreased as the contact angle increased but the 

squeezing-to-dripping transition occurred at the same critical Cac for different wetting 

conditions. The wetting property had more significant effect on droplet size at small Cac and 

its effect diminished gradually when Cac increased. 

 Effect of non-Newtonian properties 

Despite the importance and application of non-Newtonian fluids in industrial and 

pharmaceutical fields, the analysis of dispersed non-Newtonian fluids was disregarded till now. 

Among non-Newtonian properties of the fluids, the elasticity and molecular weight has 

received more attention. The elasticity of the fluid as well as channel dimension on polymeric 

drop formation was studied by Steinhaus et al. [68] while a Newtonian fluid was the carrier 

medium using poly(ethylene oxide) (PEO) solutions with different molecular weight (MW) 

and varying microchannel dimensions with constant orifice width to depth ratio. Higher MW 

Boger fluids possessing longer relaxation times and larger extensional viscosities exhibited 

longer thread lengths and longer pinch-off times. 

Hong and Cooper-White [69] utilized Carbopol dispersions to study the drop formation 

and breakup mechanism in silicone oil in a flow-focusing channel. By the use of Carbopol 

which shows shear thinning and elastic properties as the dispersed phase, they observed that 

the drop size of these non-Newtonian fluids showed bimodal behaviour varying the viscosity 

ratio λ. 

Based upon a work carried out by Husny and Cooper-White [63] on the effects of 

viscosity ratio and fluid elasticity on the mechanism of drop formation, two distinct regions of 

filament thinning dynamics, a “pre-stretch” region and an exponential self-thinning region, 
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were observed for the highest molecular weight of polyethylene oxide (PEO) studied. The 

presence of elasticity within these low viscosity fluids resulted in the production of secondary 

drops of varying sizes upon final breakup. 

Lee et al. [70] studied the effect of viscoelasticity of Boger fluids used as dispersed phase 

on the breakup dynamics to quantify the impact of viscoelasticity on the tipstreaming 

phenomenon, caused by surfactant transport to, from, and along, deforming interfaces that 

leads to the generation of long filaments. 

Arratia et al. [71, 72] used polyacrylamide solutions with different molecular weights 

and elasticity as the dispersed phase to study the filament thinning and droplet breakup. The 

polymeric filaments showed much slower evolution and their morphology featured multiple 

connected drops. Measurements of filament thickness as a function of time exhibited different 

thinning behavior for the different aqueous fluids. For Newtonian fluids, the thinning process 

showed a single exponential decay of the filament thickness but for low MW fluids decay rate 

was slower than for the Newtonian fluid and the decay time increased with polymer having a 

large MW. For high MW fluids, the initial exponential decay crossed over to a second 

exponential decay in which elastic stresses were important. 

Effect of molecular weight and concentration on drop formation and breakup of low 

viscous elastic fluids was studied by Tirtaatmadja et al. [73]. Measurements of the relaxation 

times of polyethylene oxide solutions having different molecular weights were significantly 

higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions 

were within the dilute concentration region. The effective relaxation times exhibited expected 

scaling with molecular weight but with an additional dependence on the polymer concentration. 

Table 1.1 summarizes some of the above-mentioned studies in a compact way to 

highlight the different studies carried out in microdroplet generation. 
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Table 1.1. A comparison of the previous works in T-junction and flow-focusing devices. 

Regime Cac Aim of the study 

(The effect of) 

Method Ref. 

T-junction     

SR 0.001 – 0.01 Geometry LBM 24 

DR 0.01 – 0.08 Viscosity and geometry LBM 26 

SR & DR – Unsteadiness of flow rate Experimental 31 

SR, DR & JR 0.001 – 0.01 Interfacial tension Experimental 32 

SR & DR 0.07 – 1.18 Flow rates Experimental 35 

SR 0.002 – 0.005 
Geometry and Capillary 

number, flow ratio, viscosity 
Experimental 38 

JR & PF 2 E-4 – 0.8 Flow rates Experimental 40 

SR ≤ 0.01 
Flow rates, viscosity and 

geometry 
Experimental 41 

SR 7 E-4 – 0.02 
Flow rate ratio, Capillary 

number 
Experimental 42 

SR – Surface treatment Experimental 43 

Flow-Focusing     

DR & JR 6 E-4 – 0.1 Viscosity Experimental 27 

SR, DR & JR 0.08 – 8 Geometry and fluid properties Experimental 28 

DR & JR – Flow rates Experimental 29 

DR & JR 0.00004– 0.05 Viscosity ratio Experimental 37 

DJ, DC & PF 0.001 – 0.008 
Flow rate ratio and Capillary 

number 
LBM 39 

SR & DR 0.002 – 0.035 
Flow rate ratio, viscosity ratio 

and Capillary number 
LBM 48 

SR – Flow rate and geometry Experimental 58 

JR 0.33 – 2.6 Viscosity ratio Experimental 69 

DR & JR 0.03 – 0.8 Viscoelasticity & surfactant Experimental 70 

SR ≤ 0.01 Flow rates Experimental 105 

SR – Variation in rounding degree 
Experimental & 

computational 
61 
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1.4 Droplet characteristics 

The dynamics of the generation of microdroplet within confined geometries shows 

marked differences with pendant drops. Droplet formation from a nozzle is mainly under the 

influence of gravity. On the contrary in confined geometries, blockage of the microchannel 

creates the pressure difference along the microdroplet which accelerates the breakup. Although 

the process of the droplet generation in microchannels is much faster than that of nozzle due to 

the existence of a continuous phase, it is more complex because of both confinement of the 

microchannel and interaction of two fluids. Studying droplet formation dynamics could be a 

real challenge and trouble because of short time needed for droplet generation. 

 Droplet formation time 

The droplet formation time tf is generally a sum of two parts: (i) the time required for 

growing tg mainly governed by the mean velocity of dispersed phase and (ii) the time taken for 

necking and breakup tb mainly determined by the mean velocity of continuous phase [45]. An 

extra stage named induction stage tin, when the dispersed phase pressure overcomes the Laplace 

pressure should also be considered [69]. The droplet formation time tf is influenced by the same 

parameters controlling droplet size including flow rate and viscosity of the working fluids. The 

effect of the continuous flow rate Qc on the drop periodicity was studied as a function of 

viscosity ratio λ and the dispersed phase fluid type by Husny and Cooper-White [63] while Qd 

was kept fixed. An increase of the cross-flow shear resulted in an exponential decrease of the 

period between subsequent drops, as seen previously [74]. An increase of λ caused a substantial 

reduction in the period between drops. Increasing λ provides a very effective way of decreasing 

drop size and increasing drop number per unit time f at a chosen cross-flow rate. Zhang et al. 

[45] plotted dependence of drop formation time as a function of both Qc and Qd. They observed 

a descending trend of tf with increasing Qc and/or Qd. They showed that the droplet formation 

time decreased as Capillary number, coupled effect of continuous phase viscosity and 

interfacial tension together with the mean velocity of continuous phase, increased. Arrarita et 

al. [72] presented an experimental investigation of the effects of elastic stresses on the drop 

breakup processes in a cross-flow microchannel. The breakup time increased as the MW 

increased and for all fluids, the breakup time decreased exponentially with flow rate ratio. Hong 

and Cooper-White [69] showed that the elasticity of dispersed phase tends to shorten the drop 

generation time and to prevent the generation of secondary drops. 
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 Filament, thread and microthread 

A filament from the inlet of the dispersed phase to the tip of the droplet is found in 

dripping and jetting regimes. The studies about filament length and diameter in pendant drops 

has received much attention. On the contrary the characteristics of the filament in 

microjunctions are under-investigated. For instance; Zhang [75] studied dynamics of growth 

and breakup of viscous pendant drop (Figure 1.15). The effects of physical and geometric 

parameters on the nonlinear dynamics of drop growth and breakup were investigated with the 

focus on drop breakup and subsequent formation of satellite droplets. The maximum or limiting 

length that a drop attains prior to its breakup and the volume of a drop increased significantly 

with increasing Reynolds and Capillary numbers. 

 

Figure 1.15. Schematic diagram of a pendant drop from a nozzle from Zhang [75]. 

The breakup of a low viscous fluid is initially governed by a potential flow scaling law 

controlled by a balance between inertial and capillary forces while in high viscosity fluids the 

dynamics may initially follow viscous scaling law where only viscous and capillary forces are 

important. 

Unlike the extensive researches on filament dynamics of pendant drop, filament study in 

confined geometries like microchannels is scarce. Analysis of the filament dynamics during 

the drop detachment stage revealed that there are two distinct regions; a pre-stretch region and 

an exponential self-thinning region [63]. Dimensionless filament length and diameter and 
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Hencky strain were studied as a function of time-to-breakup of the filament tfl. Both length and 

diameter of filaments produced at the T-junction exhibited a linear dependence on tfl. 

Steinhaus et al. [68] showed that higher MW Boger fluids exhibit longer thread lengths 

and longer pinch-off times. Based upon the works performed by Arratia et al. [71, 72] 

polymeric filaments exhibited much slower evolution and their morphology featured multiple 

connected drops. Measurements of filament thickness showed two main temporal regimes: 

flow- and capillary-driven. At early times both polymeric and Newtonian fluids were flow-

driven, and filament thinning was exponential. At later times, Newtonian filament thinning 

crossed over to a capillary-driven regime, in which the decay was algebraic. 

Hong and Cooper-White [69] confirmed that shear thinning Carbopol fluids produce 

large secondary drops, when compared to Newtonian-like Carbopol fluids as a result of this 

thicker filament between the primary and subsequent drop undergoing breakup. 

Experimental visualization of tiny microthread forming the neck between thread and 

droplet has been obtained by Kowalewski [76] as shown in Figure 1.16. 

 

Figure 1.16. Tiny microthread before the droplet detachment from Kowalewski [76]. 

1.5 Models of droplet formation 

Many studies over the last years have been dedicated to microfluidic droplet formation. 
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Flow parameters including continuous and dispersed phase flow rates and viscosities, 

interfacial tension and wettability, as well as junction geometry influence the droplet 

characteristics. The above-mentioned controlling factors as well as confinement exerted by the 

microchannel make the droplet generation of complex prediction.  

The governing forces of a droplet formation are interfacial tension force Fσ, liquid inertial 

force FI, shear force FS, dynamic lift force FDL, static pressure difference force FSP, gravity FG, 

liquid momentum FM and buoyancy FB [77-79] whilst gravity, gas momentum and buoyancy 

effects are negligible. Detailed calculations of the forces are illustrated in literature [77, 80]. 

Droplet formation at a permeable membrane is a two-stage process and the force 

equilibrium is applied at the end of growth stage while the detachment time is normally 

correlated to continuous flow rate or dispersed phase pressure. Some of these models [79] have 

led to satisfactory predictions but no comparison with other researchers’ data has been made. 

The continuous phase at a permeable membrane is regarded as infinite in extent and a similar 

assumption can be made for droplet formation in microchannels controlled by jetting regime. 

Therefore, the force balance models for droplet formation at a permeable membrane provide 

the basis for the theoretical study of droplet formation in the dripping and jetting regimes. 

 Droplet formation models in squeezing regime 

As mentioned before, in squeezing regime droplet size is mainly controlled by the 

pressure drop force and interfacial tension whereas the shear force is negligible. Some studies 

have been presented the models for predicting the droplet diameters under squeezing and 

transitional regimes. These models can be divided in these categories: 

1.5.1.1 Correlations dependent on flow rate ratio α 

As shown in Section (1.3.1), Garstecki et al. [41] provided a scaling law to predict the 

length of the plug in squeezing regime. Garstecki et al. [41] considered droplet formation time 

tf as the filling and breakup times. The filling time tg is controlled by channel size and dispersed 

phase flow rate as tg ∝ 1/Qd while the breakup time tb depends on continuous flow rate tb ∝ 

1/Qc. Therefore the droplet size can be estimated as tf × Qd while tf = tg + tb agrees with the 

correlation given by (Equation (1-6)). 
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1.5.1.2 Two-stage models 

Two-stage models in squeezing and dripping regimes are suggested to fit better 

experimental and numerical data the by consisting both growth and detachment stages [81]. 

The final droplet volume is obtained as a sum of two values including an initial volume (growth 

stage) Vcr and a volume generated during the detachment stage (Vdet (= tb Qd)). 

D cr b dV V t Q   (1-13) 

where Vcr is the critical volume that represents the volume at which drag force exerted on the 

droplet is just as large as the interfacial tension-based force that attaches the droplet to the pore 

mouth, determined by a force or torque balance; tb is the time needed for necking; and Qd is 

the dispersed phase flow rate. Vcr is in fact the droplet volume that would be obtained when the 

droplet detachment process was very fast (tb → 0) and only a force or torque balance is relevant. 

The value of Vcr depends on, among other parameters, the interfacial tension and the shear 

stress caused by the continuous-phase flow rate. The droplet volumes were made dimensionless 

by relating them to the volume of a droplet having a diameter equal to the hydraulic diameter 

of the cross-flow channel. These dimensionless droplet volumes were plotted as a function of 

the capillary number. The droplet volume decreases as a function of Capillary number, and the 

droplet size increases somewhat with an increasing dispersed phase flow rate. 

Van der Graaf et al. [82] correlated Vcr and Vdet to Cac and they proposed a model able 

to work in a good way for both squeezing and jetting regimes. The volume of the droplet (VD) 

is calculated as a function of Capillary number and of the flow rate of the dispersed phase. 

, , m n

D cr ref c neck ref c dV V Ca t Ca Q  (1-14) 

where Vcr,ref is the critical volume at Ca = 1 and tneck,ref is the necking time at Ca = 1 was used 

to fit all of the data and m and n are fitting parameters which depend on the junction geometry. 

It was found that the equation could be simplified to m = n and for this a value of ˗ 0.75 was 

found, together with Vcr,ref = 2.5 × 10 ˗5 µL and tneck,ref = 0.135 ms. This means that Vcr scales 

with Ca ˗0.75 and the diameter of the droplet scales with Ca ˗0.25. This scaling behavior is a result 

of the specific force or torque balance in this specific geometry. For other geometries, such as 
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that for droplet formation from a pore in a system in which the droplet is not distorted by 

channel walls, Vcr will scale with Ca -1, assuming a torque balance model, or with Ca -3/2, 

assuming a force-balance model. 

Zhang et al. [83] suggested a similar model by expressing the droplet volume as: 

 m n

D g c d c n d c cV C W S Ca C W S Ca  (1-15) 

where Cg and Cn are dimensionless constants depending on junction geometry, Sc and Sd are 

the cross-sectional area of the channel used in order to introduce the continuous and the 

dispersed phase into the junction, Wc and Wd are the width values of the channel. 

1.5.1.3 Models based on a force balance 

None of the correlations presented until now are able to predict droplet formation in an 

accurate way as evidenced by Steegmans et al. [81] because of their dependence on fitting 

parameters. Models based on force balance are able to predict the droplet characteristics in a 

more precise way. 

Few force balance models have been proposed for droplet generation in microchannels 

with the drop size smaller than size of microchannel (i.e. for dripping and jetting regimes) [63, 

84]. Garstecki et al. [41] calculated controlling forces including pressure drop force, interfacial 

tension and shear force in squeezing regime. Christopher et al. [57] provided a force balance 

model in transitional regime. Glawdel et al. [85] decomposed the droplet formation into three 

stages as the lag, filling and necking stages and modeled it in squeezing to transitional regime 

based upon the work performed previously [41, 57]. Failing to estimate the forces especially 

pressure drop force led to an unsuccessful model. However a force balance model was not built 

successfully, they emphasized on the importance of the pressure drop force and interfacial 

tension. In dripping regime with a filament through the channel Steegmans et al. [86] 

considered wall effect corrections in force balance model for a microfluidic Y-junctions.  

 Droplet formation models in dripping and jetting regimes 

No correlations have been proposed until now for the droplet generation in jetting 

regimes. The two-stage models may not be used in the jetting regime due to the long unstable 
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jet which modify the droplet breakup with respect to dripping regime. An analytical force 

balance model has been proposed by Husny and Cooper-White [63] and Liu and Zhang [45] 

but this model is unable to predict data from other publications. 

1.6 Governing forces and droplet size 

The droplet generation is controlled by different governing forces. In this chapter the 

main governing forces involved in droplet generation in squeezing regime in T-junction and 

flow-focusing devices are summarized with the aim to see the droplet generation as the result 

of a force balance between pressure drops, interfacial tensions and the shear forces. 

 Governing forces on a droplet 

The forces acting on a growing droplet are pressure drop force, interfacial tension and 

shear force. The forces acting on the emerging immiscible thread in the filling stage are 

indicated in Figure 1.17. 

 

Figure 1.17. The forces acting on the emerging droplet in the filling stage from Glawdel et al. [85]. 

As the droplet grows, a pressure difference across the droplet and a shear stress on the 

interface due to the obstruction of the continuous phase are two forces which are countered by 

the interfacial tension force. 
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1.6.1.1 Pressure drop 

As the droplet grows, a pressure difference across the droplet and a shear stress on the 

interface due to the obstruction of the continuous phase are two forces which are countered by 

the interfacial tension force (Figure 1.18). 

Since the tip of dispersed phase fluid intrudes the main channel, the upstream pressure 

increases gradually until the convex interface approaches the opposite wall of the junction. 

Then it begins to decrease nearly to the initial level before the introduction of the dispersed 

phase. In the stage between the end of the droplet formation and the initiation of a new droplet, 

the dispersed phase is retracted to the inlet channel [41]. 

 

Figure 1.18. The related regimes corresponding to pressure variation upstream of a T-junction from Li 

et al. [87]. 

When the upstream pressure reaches the maximum value, due to the existence of the gap 

between the droplet and the opposite channel wall, the pressure drop does not. In fact, the 

pressure drop is not large enough to either break or push the droplet downstream. Increasing 

pressure drop moves the interface along the channel and it shows a decrease in upstream 

pressure because the droplet moves and the blockage decreases. After that, a constant pressure 

is observed because of the continuous downstream flow of the droplet. Then the interface turns 

into a concave neck and the droplet is close to the detachment. The pressure increases since the 

emerging droplet will clog the main channel. A surge in pressure before the detachment may 
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be observed and in this case the channel is almost blocked by the interface.  

A theoretical evaluation of the pressure around the droplet can be obtained by applying 

to the junction the Hagen-Poiseuille equation or lubrication analysis. Garstecki et al. [41] 

proposed to estimate the pressure drop over the length of the tip which is on the order of the 

width (~ w) of the main channel by using the Hagen-Poiseuille equation: 

3

gap

c cQ w
p

Hw


   (1-16) 

where the meaning of the symbols is explained by Figure 1.19; usually, the gap between the 

droplet and the channel walls wgap << w. The force acting on the droplet due to the pressure 

drop can be estimated by multiplying the pressure drop for the surface (= H.w): 

3

2

gap

c c
p

Q w
F pHw O

w

 
 
 
 

    (1-17) 

 

Figure 1.19. A schematic illustration (top view) of the shape of the tip of the immiscible thread at an 

intermediate stage of break-up from Garstecki et al. [41]. 

Christopher et al. [57] estimated the squeezing pressure arising from the obstruction of 

the channel by the emerging droplet in a similar way to Garstecki et al. [41], using the 

lubrication theory for a pressure-driven flow in a thin gap with aspect ratio wgap/b where b is 

the length of the emerged droplet. They obtain an expression of the force linked to the pressure 

drop similar to the expression derived by Garstecki et al. [41]: 
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 
     (1-18) 

where ugap is the velocity through the gap and Qc = ugap (wgap.H). Similarly, Glawdel et al. [85] 

obtained the pressure drop force by the use of lubrication analysis between two parallel plates: 

 
2

2

2

12 12

gap
gap

c c c c
p

Q b Q b
F pHw bH

w Hw H

 
     (1-19) 

In this thesis the cross-junction employed during the experimental tests has a constant 

height (H = 190 μm) with width at the junction (Wj = 195 μm) and far from the junction (Ww = 

390 μm). The cross-section is elliptical. The fully developed velocity profile of the continuous 

phase (i.e. silicone oil) through elliptical microchannel is following in polar coordinates (ρ, φ): 

   
2

2

2

2

2
, 1

8

p W H
u

L W H
  




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
 (1-20) 

From the velocity profile integrated on the channel cross-section the volumetric flow rate 

can be calculated (  
2 1

0 0

.
,

4

W H
Q d u d



       ): 
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 (1-21) 

From Equation (1-21) it is possible to obtain the pressure drop across the droplet by 

considering W equal to the width of the gap (Wgap). 

2
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Q
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H W






   (1-22) 

The expression of the pressure drop force can be generalized by considering non-

Newtonian fluids. The fully developed velocity profile of a power-law flow through two 



Droplet Generation in Microfluidics: State-of-the-Art  35 
 

 

 

parallel plates with a width W can be written as follows: 

 
1 1 1 1 1

2
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n n n
n p W x

u x
n kL W
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
 


 (1-23) 

where k is the flow consistency index of the Ostwald–de Waele relationship, ∆p is the pressure 

drop and n is the flow behavior index. If n = 1 (Newtonian fluid), Equation (1-23) takes the 

well-known expression: 

 
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   (1-24) 

From the velocity profile the volumetric flow rate can be obtained by integrating on the 

channel cross-section (  
0 0

H W

Q dy u x dx   ):  
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 (1-25) 

From Equation (1-25) the pressure drop across the growing droplet in presence of a non-

Newtonian fluid can be written as follows: 
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 (1-26) 

where Wgap is width of the gap between droplet and the channel wall and H is channel height.  

However, as observed by van Steijn et al. [88], in rectangular microchannels a portion of 

the continuous phase passes through the gap and corners between the growing droplet and 

microchannel walls. The corners increases the cross-section available for the continous phase 

and reduces the value of the pressure drop. For this reason, a leakage factor, defined as the 

percentage of the continuous phase flow through the gap and corners, has to be introduced in 
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the evaluation of the pressure drop. The leakage factor fleak can be estimated as the ratio of the 

area linked to the gap and corners to the area of the main channel, therefore by assuming an 

elliptical cross-section of the droplet, fleak can be written as follows: 

.
41 1 0.21

.

elliptical

leak

channel

W HS
f

S W H



      (1-27) 

From Equation (1-27) the area of the corners can be estimated as Sgap = 0.21 WH. 

By introducing the leakage factor, the pressure drop force can be calculated as Fp = 

∆p.Selliptical where 
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 (1-28) 

1.6.1.2 Shear force 

As pointed by Husny and Cooper-White [63], a droplet formed at a T-junction is 

subjected to hydrodynamic drag imposed by the continuous phase. 

 

Figure 1.20. Schematic representation of drop creation in the presence of cross-flow shear from 

Husny and Cooper-White [63]. 

Assuming a fully developed laminar flow in the continuous phase channel, the expression 

for local liquid velocity for a power-law flow within two parallel plates can be written as: 
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where the hydraulic diameter of the channel Dhl is equal to width of the channel W. DD is the 

droplet diameter. The drag force Fτ acts in the positive x-direction and serves to detach the 

droplet from the dispersed phase channel. It can be obtained as: 

 
21

2
cdr d effectiveF C u u S    (1-30) 

where Cdr is the drag coefficient, (u – ud) is the relative local velocity of the fluid u with respect 

to the droplet velocity ud. The effect of viscosity ratio λ (between the dispersed phase viscosity 

and the continuous phase viscosity) is taken into account if a modified drag coefficient (Cdr), 

for creeping flow outside a fluid sphere, as defined by Hadamard [89] and Rybczinski [90], is 

introduced in Equation (1-30): 
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where the Reynolds number (ReD) for the liquid flowing around the drop is given by: 
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Combining and summing up Equations (1-29) to (1-32), the drag force equation is given 

in Equation (1-33) for power-law fluids. 
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1.6.1.3 Interfacial tension 

The interfacial tension force Fσ is the opposing force acting in negative x-direction. It is 

associated with the Laplace pressure difference between upstream and downstream ends of the 

emerging droplet interface. The Laplace pressure jump ∆p across a static interface is: 

1 1
iL

a rr r
p 

 
 
 

   (1-34) 

where ra is the axial curvature and rr is the radius of the radial curvature of the neck 

(Figure 1.19). The radial curvature is bounded by the height of the channel (rr = H/2) whereas 

the axial curvature is greater at the downstream tip of the thread (ra = W/2) than at the upstream 

side of it (ra = W) [41]. 

The static Laplace pressure jump over the droplet interface is described as: 

1 2
d back i

W H
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 
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   (1-35) 
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From Equation (1-35) and (1-36) it is possible to observe that the pressure difference 

back frontp p p   between upstream and downstream of the droplet is equal to:  

i

L
W

p


   (1-37) 

The interfacial tension force Fσ is obtained by the multiplying the cross-section of the 

channel with the pressure difference: 

.Lp SF   (1-38) 
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where ∆pL is the Young-Laplace pressure and the surface area S is (S = W.H for a rectangular 

cross-section and .
4

S W H


  for an elliptical cross-junction).  

Fσ for a rectangular and an elliptical cross-section can be written as follows: 

i HF   (1-39) 

4
i HF


  (1-40) 

The droplet size at the detachment can be obtained by means of a force balance of the 

above-mentioned forces, by imposing that the following equation is verified: 

0pF F F     (1-41) 

1.7 Scope of the thesis 

Previous investigations have shown that microfluidic droplet generators enable the 

production of droplets with a low size variation and reproducible diameters. It has been 

reported that droplet size is controlled by a number of parameters including the geometry of 

the junctions, properties of liquids (viscosity, interfacial tension, etc.), flow rates of two 

immiscible phases and surfactant concentrations. The droplet production can be classified into 

three controlling regimes, namely, squeezing, dripping and jetting which can be obtained by 

varying operatively α and Cac. Since droplet formation is controlled by different forces, the 

effect of controlling parameters varies. Although controlling parameters have been investigated 

by a large number of researchers, their effects have not been completely elucidated. 

Although most solutions in biological and pharmaceutical applications are non-

Newtonian in nature, the studies of non-Newtonian droplets are limited if compared with those 

focused on generation of Newtonian droplets. There is a dearth of experimental data on non-

Newtonian droplet production. Studies of droplet formation dynamics have been performed 

extensively for pendant drops, but there is a paucity of published works on droplet formation 

dynamics at a microchannel. Publications on pendant drop formation show that varying the 
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controlling parameters (flow rate and viscosity) changes the drop formation dynamics 

significantly including the drop formation time, thread length and diameter, and changes the 

final drop size. Limited available investigations report that non-Newtonian properties also 

affect the droplet formation dynamics, but the exact effects have not been clarified. 

Hitherto, theoretical understanding of droplet production has been limited and there is a 

need to develop models to predict the droplet size. Although a series of correlations and two-

stage models have been proposed, they are not able to predict all the experimental data. The 

force balance model appears to be a good option to predict droplet diameter and obtain an 

insight into the controlling mechanism. Since the governing forces are different in various 

controlling regimes, different force balance models have to be built for each regime. 

Based on the review of literature, following objectives were established for this research: 

 To experimentally investigate and understand the effect of the main droplet 

controlling parameters (i.e. flow rate, viscosity and device geometry) on droplet 

production by considering a T-junction and two micro cross-junctions operating 

in different regimes, by considering the generation of both Newtonian and non-

Newtonian (Xanthan gum) dispersed fluids. 

 To study the effects of the use of surfactant on the variation of the two-phase flow 

from parallel flow to the droplet-based flow by the modification of the interfacial 

tension. 

 To study the dynamic behavior of droplet production investigating the droplet 

formation time, elongation of the filament and thread length, droplet growth, and 

the breakup mechanism of the droplets at low values of Qc and Qd (squeezing 

regime). A comparison of the influence of the non-Newtonian properties on the 

change in the dynamics of droplet formation will be made related to the 

Newtonian fluids used. 

 To obtain a theoretical model based on the experimental observations through 

force balances with the aim to predict the droplets produced in squeezing regime. 

1.8 Outline of the thesis 

This thesis is structured into seven chapters: 
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Chapter 1 reviewed the existing literature and established the objectives of this thesis. 

Chapter 2 details the experimental setup and data reduction, procedure followed during 

the investigation. An accurate description of the preparation of non-Newtonian solutions and 

of the measurement of relevant fluid properties is given. A description of the post-processing 

for image analysis developed in MATLAB is done. 

Table 1.2. The range of volumetric flow rates Q and Capillary number Ca employed in Chapter 3. 

CP 

DP 

W W+T 

Flow rate (ml/h) Capillary number Flow rate (ml/h) Capillary number 

SO 
0.8 < Qc < 49.9 16E-4 < Cac < 1E-1 0.3 < Qc < 15 3E-3 < Cac < 16E-2 

0.016 < Qd < 59 1E-6 < Cad < 4E-3 0.01 < Qd < 8 6E-6 < Cad < 5E-3 

 0.3 XG+T 0.5 XG+T 

 Flow rate (ml/h) Capillary number Flow rate (ml/h) Capillary number 

SO 
0.3 < Qc < 20 34E-4 < Cac < 23E-2 0.3 < Qc < 15 4E-3 < Cac < 2E-1 

0.01 < Qd < 3 98E-4 < Cad < 45E-3 0.01 < Qd < 3 3E-2 < Cad < 1E-1 

 

Chapter 3 is focused on the experimental investigation of droplet production within a 

micro cross-junction. Different combination of dispersed and continuous phases are 

considered. The effects of controlling parameters (flow rates) and fluid properties (viscosity) 

are studied and their impact on the droplet size, flow regime transitions, droplet formation time 

and filament length is analyzed. The breakup mechanism of the generation of the droplet is 

discussed and the effect of the junction geometry on the size of the droplets is investigated. A 

large range of volumetric flow rates has been investigated as indicated in Table 1.2. 

Chapter 4 presents a detailed analysis of the droplet generation at a micro T-junction. 

The role of the surfactant on the flow regime is discussed to put in evidence its role on the 

transition from parallel flow to the droplet-based flow for Newtonian fluids. The range of the 

flow rates investigated is indicated in Table 1.3. 
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Table 1.3. The range of volumetric flow rates Q and Capillary number Ca employed in Chapter 4. 

DP 

CP 

W+T W 

Flow rate (ml/h) Capillary number Flow rate (ml/h) Capillary number 

SO 
1 < Qc < 25 4E-4 < Cac < 1E-2 2 < Qc < 120 1E-4 < Cac < 7E-3 

0.1 < Qd < 13 75E-5 < Cad < 97E-3 0.05 < Qd < 100 6E-5 < Cad < 1E-1 

 0.2 XG+T 0.2 XG 

 Flow rate (ml/h) Capillary number Flow rate (ml/h) Capillary number 

SO 
0.5 < Qc < 20 37E-3 < Cac < 13E-2 1 < Qc < 30 9E-3 < Cac < 34E-3 

0.01 < Qd < 8 6E-5 < Cad < 5E-2 0.01 < Qd < 16 1E-5 < Cad < 2E-2 

 

The effects of the microfabrication technique and its quality on the flow regime have 

been studied by considering another microchannel with the same characteristics for the rest of 

the chapter. The possibility of the generation of silicone oil droplets within Newtonian (water 

with and without surfactant) and non-Newtonian (0.2 wt% Xanthan gum aqueous solution in 

the absence and presence of the surfactant) carrier medium has been studied. In spite of the 

first T-channel employed, by the second microchannel it is possible to generate monodispersed 

droplets in case of pure Newtonian and non-Newtonian continuous phase without surfactant. 

The variation of non-dimensional length of the microdroplet has been studied as a function 

flow rate ratio α, continuous Cac and dispersed Capillary number Cad. The results of the second 

microchannel in terms of Polydispersity and flow maps has been compared with the first 

microchannel. 

Chapter 5 presents the main conclusions of the thesis and recommendations for future 

work. 

 



 

2 Chapter 2 

Experimental Setup and Data Reduction 

In this chapter the microchannels employed in this dissertation, experimental setup, 

preparation and measurements of the working fluid properties and the post-processing method 

are presented 

2.1 Experimental apparatus 

The injection of the flow into the microchannel has been depicted in Figure 2.1. After the 

generation of the droplet the continuous and dispersed phase flows pass through the channel to 

the outlet reservoir. 

 

Figure 2.1. Microchip on the working desk of the inverted microscope with the indication of the inlets 

(Qc and Qd) and outlet. 
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The lay-out of the experimental setup for the analysis of the droplet generation is 

illustrated in Figure 2.2. An inverted microscope (1 in Figure 2.2, Nikon Eclipse TE2000-U) 

with an air immersion lens (3 in Figure 2.2, Nikon CFI DS 10X, NA = 0.25) is the heart of the 

apparatus used to visualize the droplets across the microchannel during the experimental runs. 

The junction is illuminated by the use of a double illumination system obtained by coupling 

the light of a 100 W halogen lamp (2a in Figure 2.2, Nikon HMX Lamphouse) from the bottom 

of the channel and the light made by a COB LED lamp (2b in Figure 2.2, 100 W, 9000 Lumens) 

from the top of the microchannel. A high-speed camera (4 in Figure 2.2, Olympus I-speed II) 

connected to the inverted microscope allows to acquire a series of images by means of which 

it becomes possible to follow the dynamic evolution of the interface between the immiscible 

liquids during the droplet formation; a LCD monitor (5 in Figure 2.2) connected to a PC 

equipped with Olympus I-speed II software (6 in Figure 2.2) allows a run-time visualization of 

the flow within the microdevice during the experiments.  

The volumetric flow rates of the continuous phase and of the dispersed phase are imposed 

by two independent low-noise syringe pumps (7, Cole-Parmer Version Hills and 8, Harvard 

Apparatus PHD 4400 Programmable in Figure 2.2) and introduced at the inlets of the junction 

(11 in Figure 2.2) by two gastight Hamilton syringes (9 and 10 in Figure 2.2). 

 

Figure 2.2. The lay-out of the experimental setup. 

The experimental setup has been depicted in Figure 2.3 and Figure 2.4. 
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Figure 2.3. An overview of the experimental apparatus. 

 

Figure 2.4. Zoomed view of the inverted microscope. 

The experimental tests are conducted as follows: before starting each experiment, the 

junction has been primed by filling all the microchannel with continuous phase flow. Once 

primed, the pump of the dispersed phase is switched on. On the contrary, the pump of the 

continuous phase is switched on only after the dispersed phase reaches the junction. Each 

experimental test is started with the fluids at rest in order to obtain independent runs. In order 

to be sure that the system is in steady state conditions, data are recorded after at least 5 min 
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from the production of the first droplet. Once steady-state conditions are achieved, high-speed 

camera is activated and the video files of the droplets are recorded. 

2.2 Data reduction and governing parameters 

As explained in Chapter 1 by using the main results published in the open literature about 

droplet generation in microjunctions, the main physical parameters useful to control the droplet 

generation in a confined junction are:  

1. The flow rates associated to the continuous (Qc) and dispersed phase (Qd); 

2. The main physical properties of the fluids involved (i.e. density ρ and dynamic 

viscosity μ) for both continuous and dispersed phase fluids;  

3. The interfacial tension σi between the immiscible liquids;  

4. The parameters which define the geometry of the junction. The number of these 

parameters depends on the complexity of the junction (i.e. planar co-flow 

junction, cross-junction, T-junction, Y-junction, λ-junction). In the case of the 

junctions considered in this thesis the main geometrical parameters are: (i) 

channel height (H), (ii) channel width of the junction arm used for the introduction 

of the dispersed phase (Wd), (iii) channel width of the junction arm used for the 

introduction of the continuous phase (Wc) and (iv) minimum channel width at the 

junction (Wj). 

The Buckingham-Pi theorem allows to determine the minimum number of independent 

parameters that one has to consider for the analysis of droplet generation. 

It is easy to demonstrate that the following dimensionless quantities define the set of the 

independent governing parameters of a droplet generator: 

1. Aspect ratio at the junction Aj, defined as the ratio between the channel height and 

width at the junction: Aj = H/Wj; 

2. Aspect ratio of the inlets Aw,c and Aw,d, defined as the ratio between the inlet 

channel height and width for both the inlets of the junction: Aw,c = H/Wc and Aw,d 

= H/Wd; 

3. Restriction ratio Rc and Rd, defined as the ratio between the channel width at the 

junction and the channel width of the inlets Rc = Wj/Wc and Rd = Wj/Wd; 
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4. Width ratio Λ, defined as the ratio between the channel width linked to the inlets 

of the junction: Λ = Wd/Wc; 

5. Volumetric flow rate ratio α, defined as the ratio between the volumetric flow rate 

of the dispersed phase and the volumetric flow rate of the continuous phase: α = 

Qd/Qc; 

6. Viscosity ratio λ, defined as the ratio between the viscosity of the dispersed phase 

and of the continuous phase:  λ = μd/μc; 

7. Reynolds number linked to the continuous and dispersed phase: Rec = ρcucDhl/μc 

and Red = ρdudDhl/μd where u (= Q/S) is the phase velocity, S is the microchannel 

cross-section area and Dhl is the hydraulic diameter. 

8. Capillary number linked to the continuous and dispersed phase: Cac = μcuc/σi and 

Cad = μdud/σi; 

It is possible to observe that, from a theoretical point of view, each droplet characteristic 

D (i.e. volume, length and diameter) can be considered as a function of the above mentioned 

dimensionless parameter: 

, , c( , , , , , , , , , , , )  j w c w d d c d c dD f A A A R R Re Re Ca Ca  (2-1) 

However, it is possible to decrease the number of the independent parameters by 

considering the specific operative conditions investigated in this dissertation. 

1. For the flow regimes under consideration, Reynolds numbers (Rec, Red) are very 

small (Re < 10) and does not influence significantly the droplet production. 

2. The junctions considered here are characterized by the same channel width of the 

inlets (Wc = Wd) then Λ = 1, Aw,c = Aw,d = Aw and Rc = Rd = R = Aw/Aj. 

Under these hypotheses a drastic reduction of the governing parameter can be obtained:  

( , , , , , )  w c dD f A R Ca Ca  (2-2) 

When Newtonian fluids are considered as dispersed phase, if the liquid properties can be 

considered as constant, the four parameters α, λ, Cac and Cad are not independent at all because 

it is easy to demonstrate for micro cross-junction and T-junction, respectively that: 
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In this case Equation (2-2) can be written as: 

( , , , , )  w cD f A R Ca  (2-5) 

On the contrary, when a non-Newtonian dispersed phase is considered, Cad is not 

constant during an experimental runs due to the variation of the fluid viscosity with the shear 

rate and this fact has to be considered for interpretation of the experimental results because the 

droplet characteristics can become a function of Cad too. 

2.3 Microchannels 

In the current dissertation three different microchannels including two cross-slot 

microchannels with different geometries and one T-junction have been studied. 

 Cross-slot microchannels 

Two micro cross-junctions have been employed in the current thesis to consider the 

effects of both flow parameters and geometry variation on the droplet size (Figure 2.5). 

In Figure 2.5 the sketch of the micro cross-junctions and how the working fluids are 

injected into the microchannel through tubes along with connectors has been shown. 

The cross-slot microchannels employed in this work to create liquid droplets by focusing 

a liquid stream (dispersed phase) into another immiscible fluid (continuous phase) are two 

commercial glass micro cross-junctions #1 and #2 shown in Figure 2.6a and b (Dolomite 

Microfluidics Co.). The continuous phase is introduced into the junction by means of the lateral 

arms of the cross-junction; on the contrary, the dispersed phase flows in the central 

microchannel (see Figure 2.6a and b) where Qc and Qd represent the inlet volumetric flow rates 
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of the continuous and dispersed phase, respectively. The generated droplet produced by 

pinching-off the dispersed phase by two continuous flows from the lateral branches passes 

through the outlet. 

 

Figure 2.5. Micro cross-junction (Dolomite Microfluidics Co.) with two linear 4-way connectors. 

 

Figure 2.6. Cross-slot microchannels used for the experiments: (a) geometry of junctions #1; (b) 

geometry of junction #2; (c) channel cross-section at the junction and (d) channel cross-section far 

from the junction. 

The experimental study of the generation of droplets in two microchannels different in 
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size has been studied with the aim of verifying the influence of the channel cross-section size 

on the generation of the emulsion. Two commercial micro cross-junctions (Dolomite 

Microfluidics Co.) with the hydrophobic walls enable the generation of aqueous emulsions. 

The microchannels fabricated in glass have a stadium shape cross-section (Figure 2.6c and d). 

The cross-junction is characterized by a cross-section restriction at the junction in which the 

width of the channel varies along the junction. The width of the channel far from the junction 

Ww is equal to 390 µm for channel #1 while it is 300 µm for channel #2. For channel #1 Wj 

which stands for the width at the junction is 195 µm while in channel #2 Wj = 105 µm. The 

restriction ratio R = Wj/Ww changes from 0.5 for channel #1 to 0.35 in channel #2. The uniform 

height of the junction through the channel #1 and #2 is equal to H = 190 and 100 m, 

respectively. The aspect ratio Aw = H/W is equal to Aj = 0.97 at the junction and Aw = 0.49 out 

of it for channel #1 while in second channel these values are Aj = 0.95 and Aw = 0.33. The glass 

channel surface is naturally hydrophilic and generally a surface coating is needed to make it 

hydrophobic and appropriate for the generation of aqueous droplets in silicone oil carrier fluid. 

 T-junction 

A commercial T-junction microfluidic chip having the square cross-section area with the 

dimension of 300 μm has been chosen to produce silicone oil droplets in aqueous solutions 

(Figure 2.7). The geometrical ratios derived from the Buckingham-Pi analysis, width ratio Λ 

(= Wd/Wc) and the aspect ratio A (= H/W), for this configuration are equal to 1 due to the square 

cross-section of the T-junction. Since there is not any restriction at the junction, the restriction 

ratio R is 1. 

Based upon the information provided by the manufacturer, the glass surfaces of the chip 

produced by Translume Co. are pure fused silica glass and have not been coated. However, the 

surface "wettability" is a strong function of not only the channel material but also the 

manufacturing method. The top surface of the microfluidic channel is polished (optical 

polishing), as such it is hydrophilic. In contrast the sidewalls and the bottom (translucent floor) 

of the microfluidic channel have been machined and have a certain roughness (surface RMS 

roughness is typically one micron or less). As such, they are not as hydrophilic as polished 

glass and in some area that have been more heavily machined they may even be considered 

hydrophobic. 
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Figure 2.7. Geometry of the T-junction (a) top view and (b) side view. 

The geometry of the opposed-flow T-junction used in this study is shown in Figure 2.7. 

Two inlet microchannels are arranged against each other head-to-head and the generated 

droplets at the junction pass through the main channel to the outlet; where Wc and Wd, the width 

of the continuous and dispersed channels, are equal to W; H is the channel depth. 

2.4 Working fluids 

Different fluids have been used during the tests 

 Pure distilled water (W) 

 Water with surfactant (W+T) 

 Silicone oil (SO) 

 Xanthan gum aqueous solutions (XG) 

 Xanthan gum aqueous solutions in which surfactant is added (XG+T) 

The aqueous solutions containing either Tween 20 or Xanthan gum have been prepared 

for the maximum use of five days. Then the old samples were discarded and new solutions with 

similar concentrations were prepared. 
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Pure distilled water is obtained by using a fully-automatic cabinet water stills of all-glass 

construction with Pyrex borosilicate glass boiler and condenser and silica sheathed heating 

element (Aquatron A4000D) depicted in Figure 2.8. 

 

Figure 2.8. Automatic cabinet water stills (Aquatron A4000D) for production of pure distilled water. 

Xanthan gum (Sigma Aldrich) is an exocellular heteropolysaccharide produced by an 

aerobic submerged fermentation. Xanthan gum solutions are highly pseudoplastic due to the 

high-molecular weight molecule, which forms complex molecular aggregates through 

hydrogen bonds and polymer entanglement. Shear thinning pseudoplasticity results from 

disaggregation of this network and alignment of individual polymer molecules in the direction 

of shear force. 

The physical properties of the working fluids play important roles on the droplet 

formation mechanism. An accurate measurement of fluid density, viscosity, surface and 

interfacial tension has been made for a complete characterization of the immiscible liquids. 

 Density measurement 

The density of working fluids is measured by using an analytical balance (RADWAG AS 

220.R2) and its specific kit (Figure 2.9) for liquid density measurement based on a double 

measurement of weight of a suspended sinker immerged in two different fluids, air and water. 
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Figure 2.9. Analytical balance (RADWAG AS 220.R2) used for density measurements. 

Table 2.1. Measured density of the working fluids. 

Fluid Density (kg/m3) 

Acronym Fluid/Solution 

SO Silicone Oil 950 ± 5.2 

W Pure Distilled Water 998 ± 0.9 

W+T Water + Tween 20 1001 ± 0.6 

0.2 XG 0.2 wt% Xanthan gum solution 1000.5 ± 0.47 

0.2 XG+T 0.2 wt% Xanthan gum solution + Tween 20 1003 ± 0.1 

0.3 XG+T 0.3 wt% Xanthan gum solution + Tween 20 1004 ± 0.1 

0.4 XG+T 0.4 wt% Xanthan gum solution + Tween 20 1004 ± 0.04 

0.5 XG 0.5 wt% Xanthan gum solution 1001.9 ± 0.4 

0.5 XG+T 0.5 wt% Xanthan gum solution + Tween 20 999 ± 3.3 

 

For each liquid, the density is obtained as average of three measurements. In Table 2.1 

the density values of the working fluids used in this work are shown; it is evident that the 
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density of the Xanthan gum solutions is very similar to the density of the pure distilled water 

due to the small concentrations of Xanthan gum considered. The same occurs for water with 

the addition of Tween 20. The measured density of silicone oil is in a good agreement with the 

value declared by the manufacturer. 

 Viscosity measurement 

Silicone oil and water (with and without surfactant) can be considered as Newtonian 

fluids under the operative conditions of the experimental tests described in this work and their 

viscosity is independent of the shear rate. Viscosity of pure water, water with Tween 20 and 

silicone oil is measured at room temperature (23°C) by using appropriate Cannon-Fenske 

Viscometers (Figure 2.10). 

The viscosity of each fluid, reported in Table 2.2 is obtained by averaging ten repeated 

measurements (at fixed room conditions). The measured values for pure fluids (water and 

silicone oil) confirm that the selected silicone oil is characterized by a viscosity twenty times 

larger than pure water viscosity. 

 

Figure 2.10. The Cannon-Fenske Viscometer. 
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On the contrary, when Xanthan gum is added to pure water, the solution shows a typical 

pseudo-plastic behavior, i.e., viscosity tends to decrease with the increase of the shear rate. For 

these solutions, the dependence of the viscosity on the shear rate has been tested by using a 

viscometer with rotating discs able to measure fluid viscosity at given shear rates (Brookfield 

DV-II +Pro) (Figure 2.11). 

 

Figure 2.11. Viscometer with rotating discs (Brookfield DV-II +Pro) used to measure the viscosity of 

non-Newtonian working fluids. 

Table 2.2. The viscosity of Newtonian and non-Newtonian fluids. 

Fluid  Viscosity (cP) 

  k n R2 

SO  18.07 ± 0.078 1.00 - 

W  0.877 ± 0.002 1.00 - 

W+T  1.009 ± 0.009 1.00 - 

0.2 XG  861.15 0.38 0.999 

0.2 XG+T  1152.6 0.337 0.999 

0.3 XG+T  2562.4 0.269 0.999 

0.4 XG+T  5186.8 0.21 0.999 

0.5 XG  8493.5 0.18 0.999 

0.5 XG+T  10530.2 0.162 1.000 
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When the Brookfield spindle-type viscometer is used for measuring the viscosity of 

Xanthan gum solutions, a different viscosity can be obtained if spindles are changed [91]. In 

order to eliminate these differences, by overlapping correctly the measures obtained with 

different spindles, a comparison with literature values of viscosity for aqueous solutions of 0.2 

wt% and 0.5 wt% Xanthan gum concentrations, 0.2 XG and 0.5 XG, has been implemented 

[91]. The apparent viscosity of Xanthan gum solutions can be correlated to the shear rate by 

using the Carreau equation [92]: 

   
1

2 2

0 1    



  
 

n

 (2-6) 

where μ0 is the zero (shear-rate) viscosity. The index n represents the degree of shear-thinning, 

while the time constant ξ indicates the onset of the shear-thinning behavior (higher time 

constant means a shear-thinning behavior shifted to lower shear rates and vice versa). In 

Equation (2-6)   is the shear rate for a unidirectional flow and   is the norm of the strain-

rate tensor. 

The result of the calibration is shown in Figure 2.12; a good agreement between the 

experimental results and the literature values can be observed for solutions in the range of shear 

rate ( ) between 1 s-1 and 100 s-1; it is evident that in this range the viscosity of Xanthan gum 

solutions follows a power-law relationship, typical of shear thinning fluids. 

The data reported in Table 2.2 highlight that the presence of 2 wt% of Tween 20 in pure 

water is able to increase the viscosity of 15% with respect to pure water but the behavior of the 

fluid is still Newtonian. 

By using the Brookfield spindle-type viscometer, the apparent viscosity of Xanthan gum 

aqueous solutions with and without Tween 20 (2 wt%) is measured as a function of the imposed 

shear rate   in the range 0.8 s-1–102 s-1 (Table 2.3). As confirmed by Figure 2.12, in the range 

of shear rate   between 1 s-1 and 104 s-1, the apparent viscosity of the Xanthan gum aqueous 

solutions can be correlated to the shear stress by means of the classical Ostwald-de Waele 

relationship: 
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The values of k and n obtained by applying Equation (2-7) to the experimental data are 

reported in Table 2.2; R2 in Table 2.2 is the correlation coefficient. 

 

Figure 2.12. Comparison between experimental values of apparent viscosity of Xanthan gum aqueous 

solutions with 0.2 wt% and 0.5 wt% (0.2 XG and 0.5 XG) and the literature values reported in [91] for 

a liquid temperature of 23°C. 

Table 2.3. Range of shear rate tested with the viscometer. 

Fluid    range (s-1) 

0.2 XG  16-56 

0.2 XG+T  12-61 

0.3 XG+T  1.8-71 

0.4 XG+T  0.8-85 

0.5 XG  0.9-94 

0.5 XG+T  1-102 

 

The viscosity of solutions in which Tween 20 is added to Xanthan gum (XG+T) exhibits 
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an increase with respect to the same solutions without surfactant (XG) variable from + 30% at 

low shear rates ( 1s-1) to + 10% at large shear rates ( 100 s-1). This result confirms that the 

impact of the presence of a concentration equal to 2 wt% of Tween 20 on the viscosity is 

significant for both pure water (W+T) and Xanthan gum solutions (XG+T). 

 Surface and interfacial tension 

The surface (σs) and interfacial (σi) tension of the working fluids used in this paper is 

measured by means of a force tensiometer (KSV Sigma 700) able to measure static surface and 

interfacial tension of liquids as shown in Figure 2.13 by pushing and pulling a platinum Du 

Noüy ring or a Wilhelmy plate. Corrective calculations for rings are automatically made on the 

experimental values via software using the model proposed by Huh and Mason [93]. 

The measured values are reported in Table 2.4. The interfacial tension is measured at the 

interface between the selected fluid and silicone oil. Each value is the average value of a ten-

time repeated measurement. 

 

Figure 2.13. Tensiometer (KSV Sigma 700) used for the determination of surface and interfacial 

tensions. 

From the values in Table 2.4 it is clear the role played by Tween 20 in terms of reduction 

of the interfacial tension between water and Silicone oil; a concentration of 2 wt% of Tween 

20 in water is able to reduce the interfacial tension of around six times. On the contrary, the 
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presence of Xanthan gum in water is not able to modify significantly either the interfacial or 

surface tension of the solutions. 

Table 2.4. Surface tension (fluid/air) and Interfacial tension (fluid/silicone oil) of the working fluids. 

Fluid Surface tension 

fluid/air (mN/m) 

Interfacial tension 

fluid/silicone oil (mN/m) 

SO 19.30 ± 0.005 - 

W 59.81 ± 0.19 42.44 ± 0.06 

W+T 27.69 ± 0.38 7.697 ± 0.07 

0.2 XG 59.79 ± 0.44 37.63 ± 1.49 

0.2 XG+T 26.84 ± 0.29 8.767 ± 0.29 

0.3 XG+T 26.43 ± 0.31 7.425 ± 0.38 

0.4 XG+T 26.47 ± 0.71 7.391 ± 0.27 

0.5 XG 55.10 ± 1.96 35.52 ± 2.06 

0.5 XG+T 27.95 ± 0.12 6.452 ± 0.14 

 

2.5 The effect of surfactant 

In microfluidic systems, interfacial tension is found to have a dramatic effect on the 

multiphase flow phenomena due to dominance of the surface effects. Nonetheless, simply 

mixing oil and water in the absence of surfactant will not lead to the generation of stable 

emulsions and will revert to the two individual phases. Therefore introduction of emulsifiers 

such as surfactants, which reduces the interfacial tension and mixing energy, is a useful tool 

for generation of stable droplets; therefore the manipulation of interfacial tension is becoming 

a very interesting aspect in the trend of miniaturization [32]. The dynamic surfactant adsorption 

in the droplet formation influences the interfacial tension at the rupturing moment. In order to 

make the adsorption process shorter and weaker in a liquid-liquid system and to maintain the 

interfacial tension at minimum value, excessive amount of surfactant should be used. 

The molecular structure of the surfactants shown in Figure 2.14 constitutes a hydrophilic 

head and a hydrophobic (lipophilic) tail which makes the selection of the proper emulsifier so 

vital. Appropriate surfactant may be included into the fluids to modify liquid-liquid interfacial 
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properties. Hydrophilic-Lipophilic Balance (HLB) value could be used to determine if a 

surfactant is hydrophobic or hydrophilic by the balance of the size and strength of the 

hydrophilic and hydrophobic parts in a surfactant molecule, respective affinity of the surfactant 

molecules for the water and the oil phases. Emulsifiers with high HLB values (more 

hydrophilic) may be used for encapsulation of oil plugs in water; on the contrary, surfactants 

with low HLB values (more hydrophobic) give W/O emulsions [32]. 

 

Figure 2.14. Molecular structure of the surfactant from Shui et al. [32]. 

The manipulation of surface wettability is a critical factor for droplet manipulation in 

microfluidic devices. The previous works have confirmed that surface wettability of fluids is 

crucial for two immiscible fluid flow in microfluidic devices [94-96]. The materials commonly 

used to fabricate microfluidic devices are oxide-covered silica and glass, natively hydrophilic, 

or PDMS which is normally hydrophobic. Nevertheless, only a few works have been reported 

on the effect of surfactants on oil-in-water microfluidics [97, 98]. The primary role in droplet 

formation is played by solid-liquid interfacial tension (σsl) and the modification of the liquid-

liquid interfacial tension (σll) by the use of surfactants has a secondary effect. Unlike 

macroscopic systems, σsl plays a dominant role, determining the emulsion type generated in 

microchannels, i.e. hydrophobic walls foster the water-in-oil (W/O) droplets but oil-in-water 

emulsions (O/W) may be generated in hydrophilic treated microchannels. The modification of 

solid-liquid interfacial tension is made possible by the use of either hydrophilic microchannels 

or hydrophobization of the same microchannels by silane molecules but fluid-fluid interfacial 
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tension is controlled by using different surfactants [32]. 

 

Figure 2.15. The interfacial tension of silicone oil and water with different percentages of Tween 20. 

Tween 20 (miscible in water), as a hydrophilic surfactant (HLB = 16.7), is a non-ionic 

detergent widely used in biochemical applications. It has been used as an emulsifying agent for 

the preparation of stable (O/W) emulsions, so it has been solved in the carrier (water) fluid to 

make the generation of the oil plugs possible. 

In Figure 2.15 it can be seen that the interfacial tension does not show a significant 

variation for the concentration of Tween 20 over CMC value (0.0074 wt%) [99]. By using 

concentrations of surfactants larger than CMC the interfacial tension becomes independent on 

the surfactant concentration.  In the case of Tween 20 the interfacial tension between silicone 

oil and water can be considered equal to 8 mN/m (see Table 2.4) for concentrations larger than 

0.0074 wt% (CMC value). 

2.6 Processing of the images 

A typical sequence of snapshots obtained from the high-speed camera is shown in 

Figure 2.16; these snapshots have been obtained by imposing a water volumetric flow rate of 

0.8 ml/h and an oil volumetric flow rate equal to 1.6 ml/h. 

Figure 2.16 shows the squeezing of the water liquid phase, followed by the breakup and 
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the formation of a water droplet in silicone oil flow, in a 15 snapshots with interval of 3 images, 

recorded with a frame rate 1500 fps. Each image has a resolution of 672×504 pixels and the 

time interval of the images is 3/1500 s (= 2 ms). The snapshots are shown in a sequential order 

with the interval of three images; line by line from top to bottom, in each line from left to right. 

Figure 2.16 shows a high quality of the acquired images with droplet contours well defined and 

a level of illumination quite uniform in the whole field-of-view. The images allow recognizing 

with a good resolution the liquid/liquid interface as well as the solid walls of the cross-junction. 

The central area of the water droplet is characterized by light gray pixels but there is a dark 

zone around this region which puts in evidence the curved boundary of the droplet. 

     

 

     

 

     

 

Figure 2.16. Sequence of raw images showing the squeezing and the breakup of water in oil (W/O) 

droplets obtained by imposing water (0.8 ml/h) and silicone oil (1.6 ml/h) volumetric flow rates. 

 Analysis of the images 

The frames are analysed frame by frame by using an “in-house” MATLAB code for 

reconstruction of the main characteristics of the droplet interface. The weighted sum of raw 

image and the complement of the junction image without droplet is converted from RGB to a 

gray scale image. Then it is saturated to enhance the contrast between the pixels and 

transformed from gray to the binary format. All this process lets us employ Canny method to 

∆t = 0 ∆t = 2 ms ∆t = 4 ms 

∆t = 10 ms 

∆t = 20 ms ∆t = 28 ms 
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detect the edge of the droplet. The process is explained in more detail as follows: 

Figure 2.17a shows a raw image chosen for post-processing. The raw images are treated 

as numerical matrices having 672×504 elements in which each pixel is associated to a number 

in the range (0-256) which correspond to different gray levels of the pixel. 

(a) (b) 

  

Figure 2.17. (a) Raw image of a droplet in a cross-junction (Qc = 1.6 and Qd = 0.16 ml/h) and (b) 

complement of the image of the junction without droplet. 

In order to individuate the water-oil interface by avoiding any interference between the 

water-oil interface and the channel walls, the complement of an image of the junction 

(Figure 2.17b) is used with the aim to compute a characteristic threshold th for the image, 

which is a normalized intensity of the image, evaluated by means of the Otsu method [100]. 

By this method, the weighted sum of the variances of two classes of pixels in the image, the 

background and the foreground pixels, can be minimized. 

The result is a characteristic threshold of the image that can be used for converting an 

intensity image to a binary image (by using graythresh function in MATLAB) and a threshold 

th = 0.47 has been evaluated. Then, it is possible to transform the intensity values of the gray 

scale into new values, in order to filter the gray levels and enhance the contrast between 

background and foreground pixels (by using imadjust function in MATLAB). The effect 

obtained by following this pre-processing procedure on the image shown in Figure 2.17a, is 

shown in Figure 2.18a. It is evident that the background contribution has been neutralized and 

in the processed images only the presence of the liquid/liquid interface is emphasized. Finally, 
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the obtained gray level maps can be converted into binary images by means of a new threshold, 

which for the image shown is th = 0.7, by using im2bw function in MATLAB. The binary 

images corresponding to the raw image is shown in Figure 2.18b. 

(a) (b) 

  

Figure 2.18. (a) Gray levels image and (b) binary image of the droplet. 

 Edge detection 

It has been demonstrated that amongst different techniques available for detection of the 

edge of an image, Canny method [101] can offer some advantages in terms of compromise 

between accuracy and computational time. 

By this technique, one can find edges by looking for local maximal of the gradient of the 

binary image. To smooth the image, a Gaussian filter is first applied to convolve with the 

image. Then, the method uses two thresholds, to detect strong and weak gradients and includes 

the weak ones in the output only if they are connected to strong gradients. This method is 

therefore less likely than others to be fooled by noise, and more likely to detect true weak edges. 

The edges individuated by applying the Canny method to the binary image shown in 

Figure 2.18b are shown in Figure 2.19a. Then the domain occupied by the water phase can be 

reconstructed by filling the edges with the imfill function of MATLAB (Figure 2.19b). 
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(a) (b) 

  

Figure 2.19. (a) Edges extracted by Canny method and (b) reconstruction of the domain by filling it 

(dark zone). 

 Post-processing of the image 

Now, it becomes possible to obtain the whole data about the droplets. 

Starting from the oil/water contours, the area occupied by the aqueous phase, the 

perimeter of the water-oil interface and the coordinate of the center of mass of the droplet (by 

using the bwboundaries function of MATLAB). The center of mass (xc, yc) and also the velocity 

of the droplet can be calculated. 

(a) (b) (c) 

   

Figure 2.20. Determination of the droplet center for three consecutive snapshots. 

Figure 2.20 shows the position of the coordinate for the center of the droplet (red lines) 
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obtained for three consecutive snapshots. The yellow lines show the position of channel walls 

within the junction. Considering the first two snapshots, we can obtain the velocity of the 

droplet by considering the displacement of the center of mass along the y-axis and the time 

interval between two consecutive images (u = (yc (2)-yc (1))/dt); here dt = 1/1500 s. 

This evaluation can be repeated by considering different couple of images (i.e. in 

Figure 2.20, the evaluation of the droplet velocity can be obtained by considering the images 

1-2, or 2-3) in order to obtain an average value of velocity for the droplet. 

(a) (b) 

  

Figure 2.21. (a) Raw image and (b) edge of the droplet for the micro T-junction. 

The post-processing method by MATLAB code may also be applied for plugs generated 

in micro T-junction. The detected edge of the microdroplets generated in T-junction is depicted 

in Figure 2.21b. 

 Neck detection 

Despite some early work [17, 102, 103], the breakup mechanism has received little 

attention and flow-focusing devices have been vastly utilized to generate emulsions without 

scrutinizing the mechanism completed in rupturing moment of the water-oil interface. A 

MATLAB code has been developed to calculate the minimum width of the thread before the 

breakup. In Figure 2.22 the process of detecting the width has been illustrated very briefly. 

More detail are presented in the above Section ( 2.6.1) where droplet characteristics are 
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discussed. 

Figure 2.22a shows the border in red color around the region where the minimum width 

happens. The cropped and focused image is presented in Figure 2.22b while the saturated 

grayscale of the image (Figure 2.22c) has been converted to the binary format (Figure 2.22d) 

and the edge of the thread could be obtained by Canny method (Figure 2.22e). 

(a) (b) (c) 

 

  

(d) (e) 

  

Figure 2.22. The detection of minimum width when Cac = 0.0081, α = 0.5 and t = − 0.4; (a) raw image 

with window borders in red, (b) cropped image, (c) saturated image, (d) binary image and (e) the edge 

of the thread by Canny method. 

 Droplet size 

From the post-processing of the raw droplet images, the evolution of the liquid-liquid 

interface is detected. Once reconstructed the droplet contour, the average value of the non-

dimensional diameter of the droplets (D*) has been calculated, by considering the N droplets 

observed in a given experiment, as follows: 

, ,* *1 1N N
h i v i

i

i i

D D
D D

N N H
    (2-8) 

where Dh,i and Dv,i are the horizontal and vertical diameters of the i-th droplet extracted by the 
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images of the droplet interfaces and H is the height of the microchannel. In other words, the 

mean diameter of the droplet has been defined as the square root of the multiplication of 

horizontal and vertical diameter values and non-dimensionalized by the depth of the channnel. 

Unlike the cases in which the mean diameter is lower than the channel depth D* < 1, the droplet 

may not be assumed spherical anymore and the plug confined by the channel top and bottom 

walls take the form of either ellipse or a flattened disk when D* > 1. 

For the droplets generated in micro T-junction non-dimensional length of the plug (L̅) 

has been calculated in the form of: 

1 1
  

N N
i

i

i i

L
L L

N N H
 (2-9) 

where Li is the length of the i-th plug generated in micro T-junction. 

2.6.5.1 Polydispersity 

The standard deviation of the non-dimensional diameter associated to the N droplets is 

scaled on D* in order to obtain the droplet polydispersity: 

 
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* *

*

1

1


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D N

 
(2-10) 

The formulation of the polydispersity for the plugs in micro T-junction has the same 

format (Equation (2-10)) but the non-dimensional length L̅ should be replaced by D*. 

2.7 Uncertainty 

One of the most important aspects in any kind of research is to have an extensive 

knowledge of the possibilities as well as limitations. In experimental investigations, the 

uncertainty linked to the experimental test rig is based upon the quality and the precision of the 

device available at the lab. 

The uncertainty of the imposed volumetric flow rate exerted by the syringe pumps is 
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equal to ± 0.5% for the Cole-Parmer Version Hills and ± 0.35% for the Harvard Apparatus 

PHD 4400 Programmable based on declared accuracy of the manufacturer in the datasheet. 

The ability to generate the uniform cross-section along the microchannel and right-angle 

sidewalls is a substantial task. In order to have the microchannels with the maximum precision 

and minimum surface roughness, the commercial microchannels have been purchased to study 

in this thesis. The channels employed in the current study have been manufactured by laser 

beam machining with the high quality as compared to the milling machine (Roland MDX-40) 

available at the lab. The geometrical dimensions of the junctions have been checked by means 

of SEM; an uncertainty of ± 1% can be assumed. The surface roughness of the channels is less 

than one micron. 

To estimate the typical uncertainty of non-dimensional size of the droplet, a comparison 

over the duration of the experiment between the mass of the dispersed-phase liquid injected by 

the syringe pump and the mass contained in the produced droplets is made. The difference in 

terms of mass obtained by this comparison can be translated in a difference in terms of droplet 

dimensions by obtaining that the estimated uncertainty on the droplet diameter is of the order 

of ± 1-3 m.  

To measure the physical properties of the working fluids, the accurate devices have been 

used and based upon the calculations, the typical uncertainty on the values of the measured 

fluid properties (viscosity, density and interface tension) are indicated in Table 2.1, Table 2.2 

and Table 2.4.  

The uncertainty in the evaluation of the Capillary number can be estimated, following 

Moffat [104], starting from the uncertainty associated with the measurement of the single 

parameters involved in the definition of Ca. The uncertainty associated with the measurement 

of the interfacial tension between the fluid and the silicone oil has the largest weight in the total 

uncertainty. In the present tests the uncertainty on Cac is estimated to be around ± 5.3%. 
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3 Chapter 3 

Experimental Investigation of Droplet Formation at 

Micro Cross-Junctions 

In this chapter the experimental investigation of the droplet production by means of a 

micro cross-junction is described. In order to study the effect of the rheological properties of 

the dispersed phase, of the interface tension values between dispersed and continuous phase, 

of the junction geometry on the droplet formation regime, more than 400 experimental runs 

have been made by varying: 

 The immiscible liquids used as continuous and dispersed phase by introducing 

surfactants and considering both Newtonian and shear thinning non-Newtonian 

dispersed phases; 

 The geometry of the micro cross-junction.  

Different ranges of volumetric flow rates have been imposed at the inlets of the cross-section 

as a function of the immiscible liquids considered. In Table 3.1 the range of the dispersed flow 

rate and the continuous flow rate is reported as a function of the liquids considered as 

continuous and dispersed phases. By considering the definition of the volumetric flow rate ratio 

(α) given in Equation (1-3) and of Capillary number (see Equation (1-2)) the experimental tests 

were able to cover the ranges of α and Cac shown in Table 3.1. 
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Table 3.1. Range of volumetric flow rates α and Cac tested during the experimental runs. 

CP 

DP  

W W+T 0.3 XG+T 0.5 XG+T 

    

SO 

0.016 < Qd < 59.2 0.01 < Qd < 8 0.01 < Qd < 3 0.01 < Qd < 3 

0.8 < Qc < 49.9 0.3 < Qc < 15 0.3 < Qc < 20 0.3 < Qc < 15 

16E-4 < Cac < 1E-1 3E-3 < Cac < 16E-2 3E-3 < Cac < 23E-2 4E-3 < Cac < 2E-1 

0.01 < α < 39 0.01 < α < 25 0.01 < α < 3 0.01 < α < 1.9 

 

The commercial glass micro cross-junctions #1 described in Chapter 2 (see Figure 2.5) 

is initially considered for the experimental runs.  

A hydrophobic coating has been applied on the inner walls of the junction. The cross-

junction is characterized by a cross-section restriction at the junction in which the width of the 

channel varies along the junction (Figure 2.6). As detailed described in Chapter 2 

(Section 2.3.1) the width of the channel far from the junction (Ww) is equal to 390 µm; on the 

contrary, the width is gradually reduced at the junction (Wj) down to 195 µm with a restriction 

ratio R = Wj/Ww, equal to 0.5. The height (H) of the channels is uniform and equal to H = 190 

m. The aspect ratio of the microchannels (i.e. ratio between the channel height and width) A 

is equal to 0.97 at the junction and Aw = 0.49 far from the junction. 

In Table 3.2 the main geometrical characteristics of junction #1 are summarized. 

Table 3.2. Geometrical characteristics of the junction #1. 

Characteristics Junction #1 

Wj (μm) 195 

Ww (μm) 390 

H (μm) 190 

R = Wj/Ww 0.5 

Aj = H/Wj 0.97 

Aw = H/Ww 0.49 
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As continuous phase, silicone oil (Sigma Aldrich; υ = 20 cSt, ρ = 0.95 g/ml @ 25 °C) is 

considered. On the contrary, as indicated in Table 1, deionized pure water without (W) and 

with the addition of Tween 20 (W+T) as well as aqueous Xanthan gum solutions with a variable 

concentration in weight between 0.2% and 0.5% with the addition of Tween 20 (XG+T) are 

considered as dispersed phase. All the properties of these liquids have been accurately 

measured and a detailed discussion about their characterization is reported in Chapter 2 (see 

Section 2.4). 

3.1 Newtonian and non-Newtonian emulsions at low values of Cac 

In the first stage of this work the attention is focused on the performance of the cross-

junction as generator of monodispersed emulsions by operating at values of the Capillary 

number linked to the continuous phase lower than 0.02. This value of Cac is indicated by many 

authors as a natural boundary for the use of the droplet generator at low continuous flow rates 

[45, 46]. 

At Cac < 0.01 droplet formation can be obtained only by means of two mechanisms: 

squeezing and dripping. Typically, squeezing is obtained by using the droplet generator at low 

values of the volumetric flow ratio and dripping starts only when α is increased. In case of 

dripping, the droplet breakup generally occurs far from the center of the junction. For this 

reason, Liu and Zhang [39] proposed to distinguish the droplet mechanisms at low Cac on the 

basis of the position in correspondence of which the droplet breakup occurs with respect the 

center of the junction. Two regimes can be individuated as DJ (droplets formed at the Junction) 

and DC (droplet detached out of the junction). In addition to these two droplet regimes, for 

very large values of a parallel flow can occur; in this case no droplet formation is possible and 

the continuous and dispersed phases co-flow through the outlet microchannel. 

In Figure 3.1 the typical droplet regimes described before, obtained by changing the 

volumetric flow rate of the dispersed phase (0.5 XG+T) Qd from 0.01 to 3 ml/h for a fixed 

value of volumetric flow rate of the continuous phase (SO) Qc = 1.5 ml/h are shown. 

When low values of the volumetric flow rate of the continuous phase (silicone oil) are 

imposed at the entrance of the lateral arms of the cross-junction, the interfacial tension between 

the dispersed and the continuous phase is predominant on the viscous forces. As observed from 
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the numerical simulations of Liu and Zhang [39] at low values of flow rate ratio (α), droplets 

are usually formed at the center of the cross-junction (DJ regime) thanks to the squeezing 

mechanism. 

DJ DC PF 

   

Figure 3.1. Droplet formation mechanisms for 0.5 XG+T as dispersed phase and silicone oil as 

continuous phase by fixing Qc = 1.5 ml/h and by increasing Qd = 0.015, 0.2 and 1.5 ml/h, respectively. 

When α is increased, droplets are found to pinch-off downstream of the channel (DC 

regime) forming a thread that becomes unstable after a distance of laminar flow. This distance 

tends to increase with α and by moving from Newtonian to non-Newtonian dispersed flows. 

When α is larger than a critical value (αcr), a stable parallel flow is observed where the three 

incoming streams co-flow in parallel to the downstream without pinching (PF regime). At low 

values of Capillary number the droplet detachment point is located at the center of the junction 

(DJ regime). In this case, the interfacial stresses dominate the drag forces An increase of the 

dispersed volumetric flow rate (by fixing the continuous flow rate) causes a shift of the droplet 

detachment point to the downstream of the junction (DC regime) with the presence of an 

incoming thread which fills the full width of the central channel. If the volumetric flow rate of 

the dispersed phase is still increased above a critical value, the droplet formation is stopped 

and a stable co-flow appears downstream of the junction (PF regime). In order to better 

understand the role of the fluid properties of the dispersed phase on the interface evolution and 

on the droplet formation mechanisms, in Figure 3.2, the droplet regimes obtained by imposing 

a volumetric flow rate of silicone oil equal to 4 ml/h and 1 ml/h in combination with an 

incoming stream of pure water (W) or water with the addition of 0.5 wt% of Xanthan gum and 

2 wt% Tween 20 (0.5 XG+T) are shown. 
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 DJ DC PF 

W/SO 

λ = 0.049 

Qc = 4 ml/h 

(Cac = 0.008) 

   

Qd = 0.04 & α = 0.01 Qd = 10 & α = 2.5 Qd = 48 & α = 12  

(0.5 XG+T)/SO 

λref = 1.784 

Qc = 1 ml/h 

(Cac = 0.0133) 

   

Qd = 0.01 & α = 0.01 Qd = 0.1 & α = 0.1 Qd = 1 & α = 1 

Figure 3.2. Comparison between the droplet regimes obtained by using a Newtonian (W) and a non-

Newtonian (0.5 XG+T) dispersed phase in combination with silicone oil as continuous phase by 

increasing α at similar Capillary number Cac. 

By comparing the images of Figure 3.2, it is possible to observe that when pure water is 

used as the dispersed phase, the threads formed in DJ and DC regime are typically very short 

and thick if compared with the typical threads formed when a Xanthan gum aqueous solution 

is used. In the latter case, pure observation reveals that long and thin threads are generally 

formed before the detachment of the droplet. This thread is generated by the force balance 

between the viscous drag that the continuous fluid makes on the droplet and the interfacial 

forces which oppose the elongation of the neck. Long threads are generally obtained by 

increasing the viscous drag (i.e. by increasing the volumetric flow rate of the continuous phase) 

and/or reducing the interfacial forces (i.e. by reducing the interfacial tensions between the 

immiscible liquids). 

By comparing the values of Qc and Qd coupled to each image of Figure 3.2, it can be 

observed that an increase of the viscosity ratio λ determines a decrease of the value of the flow 

rate ratio (α) in correspondence of which the transition from a droplet regime to another one 
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occurs. More in detail, with Xanthan gum aqueous solution and silicone oil (high λ values, see 

Table 2.2), by imposing a value of α = 0.01 droplets are formed at the cross-junction (DJ 

regime); for α = 0.1 droplets are pinched-off downstream of the cross-junction (DC regime) 

and for α = 1 the critical value of α is exceeded and no droplets are formed at all (PF regime). 

On the contrary, if water (low λ = 0.049) is used as dispersed phase with silicone oil as 

continuous phase, αcr value increases up to 12 and the droplet breakup is moved far from the 

centre of the cross-junction (DC) when α is 2.5. 

As rule of thumbs, a decrease of the viscosity ratio of the immiscible liquids introduced 

in the junction increases the values of α in correspondence of which the transition between DJ, 

DC and PF is observed. 

In Figure 3.3 the droplet regimes as a function of the flow rate ratio α and of the Capillary 

number Cac are shown for silicone oil as the continuous phase and pure water (W) 

(Figure 3.3a), water with Tween 20 (W+T) (Figure 3.3b) and two Xanthan gum aqueous 

solutions (0.3 XG+T in Figure 3.3c and 0.5 XG+T in Figure 3.3d) as the dispersed phase. These 

results are obtained by varying the continuous volumetric flow rate of silicone oil from 0.5 to 

4.9 ml/h (0.0016 ≤ Cac ≤ 0.02) and the volumetric flow rate of the dispersed phase from 0.01 

to 49 ml/h.  

At fixed values of Cac, an increase of α leads to the transition from one regime to another 

one. The droplet maps shown in Figure 3.3 highlight the influence of α on the transition 

between the regimes. Increasing Cac, especially at low Capillary numbers, helps the transition 

to occur in correspondence of lower values of α due to the higher and stronger continuous flow 

rate Qc which makes the droplet to be generated earlier.  

The shear force plays a more important role with the increase of the flow rates and 

becomes the main force responsible of the droplet breakup when dripping starts.  

By observing Figure 3.3 it is evident that the critical value of α (αcr) in correspondence 

of which the droplets production is stopped is around αcr = 10 for W (Figure 3.3a) and W+T 

(Figure 3.3b) and αcr = 1 for 0.3 XG+T and 0.5 XG+T (see Figure 3.3c and d). 
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(a) (b) 

  

(c) (d) 

  

Figure 3.3. Droplet flow maps as a function of flow rate ratio α; (a) W, (b) W+T, (c) 0.3 XG+T and 

(d) 0.5 XG+T. 

No significant difference between the non-Newtonian flow maps may be seen although 

the concentrations of Xanthan gum solution varies from 0.3 to 0.5 wt%. It can be interesting to 

observe that the concentration of Xanthan gum changes in a significant way the viscosity of 

the solution (see the viscosity values reported in Table 2.2). The small difference between the 

droplet regimes observed by considering 0.3 XG+T and 0.5 XG+T seems to confirm that the 

viscosity of the dispersed phase is not able to play an important role on the droplet formation 

at low Capillary numbers.  
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By comparing Figure 3.3a and b, the role of the surfactant on the droplet regime at low 

Cac can be highlighted; Tween 20 reduces the interfacial tension between water and silicone 

oil without to change significantly the viscosity ratio λ. A slight decrease of the values of α 

linked to the transitions between DJ, DC and PF regimes can be observed because the reduction 

of the interfacial tension due to the presence of surfactant promotes the displacement of the 

droplet downstream of the junction by reducing the area linked to the DJ regime in Figure 3.3. 

When Xanthan gum aqueous solutions (XG+T) are used, the immiscible liquids are 

characterized by higher values of the viscosity ratio λ (see Table 2.2) with respect to W and 

W+T; on the contrary, Xanthan gum aqueous solutions are characterized by values of 

interfacial tensions similar to those of W+T (see Table 2.4). Figure 3.3c and d underline that 

in presence of non-Newtonian solutions the transition between the droplet regimes occurs at 

lower values of the flow rate ratio. In the case of shear thinning non-Newtonian fluids used as 

dispersed phase, the droplet formation tends to occur downstream of the junction with the 

creation of a long thread between the nozzle and the droplet even at low Cac values. For this 

reason the area in Figure 3.3 in which DJ regime is observed is strongly reduced.   

Moreover, by comparing Figure 3.3c and d it is possible to conclude that the droplet flow 

maps obtained for two concentrations of Xanthan gum, 0.3 XG+T and 0.5 XG+T, do not show 

a significant difference even if the dispersed phases are characterized by different values of the 

apparent viscosity. The small difference between these two non-Newtonian fluids in terms of 

droplet regimes confirm that the viscosity of the dispersed phase has a weak effect on the drag 

force. In addition, it is possible to observe that for the non-Newtonian solutions Cac influences 

the transition between the droplet regimes only for values of Cac lower than 0.01. 

 Effect of Cac and α 

In Figure 3.4 the non-dimensional diameter D* of the droplets, defined by Equation (2-8), 

generated by using the cross-junction has been plotted as a function of the imposed flow rate 

ratio α, for fixed values of Cac, by using pure water (W) or water with Tween 20 (W+T) 

(Figure 3.4a) or two Xanthan gum aqueous solutions (0.3 XG+T and 0.5 XG+T) as dispersed 

phase (Figure 3.4b).  

For both Newtonian and non-Newtonian dispersed phase the droplet dimensions tend to 

increase with α, in agreement with the observations made by Garstecki et al. [41]. It is also 
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evident that, moving from DJ to DC regime, the slope of D* as a function of α increases: this 

means that the dimensions of the droplets are more sensible to a variation of the flow rate ratio 

in DC regime than in DJ regime. The value of the dimensionless droplet diameter is around 1 

in DJ regime and larger than 1 in DC regime. By increasing Cac, the droplet dimensions are 

reduced due to the increase of the continuous flow rate which causes the drop to be pinched-

off earlier. This means that at low values of α (DJ regime) it is possible to obtain droplets with 

dimensions lower than the height of the junction (D* < 1) by increasing Cac. On the contrary, 

for a fixed value of Cac, the larger values of α, the larger droplets can be obtained (D* > 1). By 

comparing Figure 3.4a and b it is evident that when Xanthan gum solutions are used as 

dispersed phase, the droplet dimensions are usually smaller than those obtained with W and 

W+T. 

The change of the slope of the function D*(α) is linked to the transition between DJ and 

DC droplet regime and it occurs for W and W+T at values of α larger than 1, coherently with 

Figure 3.3a and b; on the contrary, for Xanthan gum solutions the transition occurs close to α 

= 0.1, in agreement with Figure 3.3c and d. 

(a) (b) 

  

Figure 3.4. Non-dimensional diameter D* of the droplets for; (a) W and W+T and (b) 0.3 XG+T and 

0.5 XG+T in a continuous flow of silicone oil as a function of the flow rate ratio. 

By comparing Figure 3.4a and b it is evident that the change of slope during the transition 

between the DJ and DC regime is abrupt for Newtonian dispersed phases and more gradual for 

non-Newtonian fluids. This fact is due to the capability of the shear thinning fluids to reduce 
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their viscosity when the shear rate increases; with these fluids, the action of the continuous 

phase on the dispersed phase changes during the droplet growing thanks to the reduction of the 

fluid viscosity and the variable viscous reaction of the dispersed phase is responsible of this 

smooth transition between droplet regimes. From Figure 3.4b it is possible to highlight that the 

concentration of Xanthan gum has a minor influence on the droplet dimensions. 

In presence of a non-Newtonian dispersed phase and high values of the viscous ratio λ 

the droplet pinch-off is always associated to the presence of a thin thread between the dispersed 

bulk flow and the growing droplet (see Figure 3.2). At low values of Cac, the drag force exerted 

by the continuous phase on the droplet is negligible and the dynamics of the droplet generation 

is governed by a balance between pressure and interfacial tension. Xanthan gum solutions with 

surfactant (XG+T) are characterized by reduced values of the interfacial tension with respect 

to pure water (W) and this boosts the droplet breakup. 

 Analysis of the drop diameter for low α 

In this subsection a spotlight on the dependence of D* as a function of Cac and α for low 

values of α (< 1) is done by considering pure water as dispersed phase in a silicone oil 

continuous flow. Under these conditions the droplet formation is essentially due to squeezing 

and the droplet formation occurs at the junction (DJ regime). 

 

Figure 3.5. Dimensionless droplet diameter as a function of flow rate ratio α. 
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As observed previously, in DJ regime the droplet formation is mainly affected by the 

flow rate ratio [41] and longer droplets can be obtained by using larger α. However, the 

variation of D* with α is limited when α is lower than 1, if compared with the variation which 

occurs for larger α (DC regime, dripping regime). 

Figure 3.5 demonstrates that D* depends also on Cac for a fixed value of α. It should be 

noted that in the cases of low values of Cac, the slope of the fitted curves on the experimental 

data in Figure 3.5 is higher, so the rate of the enhancement in terms of D* is amplified when α 

is increased. The higher Cac, the less influence of Qd may be seen; the droplet is pinched off 

earlier due to the high continuous flow rates. In this case the droplet formation time is reduces 

and the droplet is generated earlier; this result suggests that the effect of Qd on the droplet 

volume through the formation time cannot be ignored at low continuous flow rates. As 

explained above, both Qd and Qc play undeniable roles in the size of the final droplet 

(Figure 3.5) and the data of Figure 3.5 highlight that the droplet volume is influenced by the 

flow rates of both fluids and not only by α as indicated in literature for squeezing regime [39, 

42, 44]. Some numerical simulation seems to confirm this experimental observation.  

In is evident that the dimensionless diameter of the droplets increases with α. In 

Figure 3.5 a linear trend (D* = ε + ωα) of the experimental data can be observed; here, ε and ω 

are two fitting constants which depend on the channel geometry [44], as well on Cac. This fact 

is in disagreement with the simple squeezing model proposed by Garstecki et al. [41] which 

can be considered only an approximation of the real data in which the role of Cac is disregarded. 

Since it is clear that the non-dimensional diameter of the droplet D* is a function of both 

flow rates and not only of α, the dependence of D* on Cac has been examined in Figure 3.6. It 

is possible to observe that the experimental data can be approximated by considering an 

exponential law on Cac, like D* = q Cac
x. 

This power-law behavior is in agreement with both experimental and numerical 

investigations proposed by many authors in cross-junctions as well as T-channels [39, 42, 57, 

105, 106]. The power-law exponent which fit the present experimental data is equal to − 0.31 

and it is in good agreement with previous studies [39, 57]. The error bar in Figure 3.6 gives an 

indication of the variation of the droplet volume observed experimentally. At low flow rates 

error bar becomes very large, which means that the droplet dimensions becomes more variable.  
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Figure 3.6. Non-dimensional droplet diameter as a function of q Cac
x. 

In Figure 3.7 a modification of the power-law used in Figure 3.6 is proposed with the 

aim to introduce α in the correlation. 

 

Figure 3.7. Non-dimensional droplet diameter as a function of (ε + ωα) Cac
x. 

A new scaling law which combines the linear and power-law dependence on α and Cac, 

respectively, is shown in Figure 3.7; this correlation is able to predict the experimental results  

even at low flow rates (low Cac).  
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The experimental data seem to suggest a scaling law in the form D* = (ε + ωα) Cac
x where 

ε, ω and x are equal to 0.22, 0.11 and − 0.31 respectively.  

 Polydispersity 

The dimensions of the droplets generated in the cross-junction can be highly uniform 

(low Pl values) if the operative condition (Cac and α) are opportunely selected. In order to show 

that the level of uniformity of the droplets produced by using the cross-junction at low Cac 

values depends on both Capillary number and flow rate ratio, in Figure 3.8 the droplet 

polydispersity Pl, defined by Equation ( 2-10), is plotted as a function of Cac and α for W 

(Figure 3.8a), 0.3 XG+T (Figure 3.8b) and 0.5 XG+T (Figure 3.8c). 

For pure water (W), droplets are generated at low Cac (< 0.01) with a low polydispersity 

Pl (< 6%) when the volumetric flow rate ratio α ranges between 0.1 and 2. In this region the 

cross-junction is able to guarantee a uniform droplet generation in terms of dimensions. On the 

contrary, when the value of α is increased (α > 2), the droplet dimension D* increases and the 

possibility to have droplet coalescence becomes higher. The merging of two or even more 

sequential droplets changes the size of the droplets drastically. The onset of coalescence is 

responsible of the increase of polydispersity Pl (> 10%) observed for α > 2 and Cac < 0.008 

(see Figure 3.8a). This fact underlines that it is difficult to obtain a regular generation of 

homogeneous droplet in terms of dimensions by using pure water if large values of α are 

imposed. The addition of surfactant to water enhances the droplet generation at lower α values 

and it is able to guarantee a more stable and uniform droplet production. 

Figure 3.8b and c put in evidence that the tested cross-junction is able to guarantee a 

uniform production of droplets at low Capillary numbers (Cac < 0.02) for a large range of 

values of the flow rate ratio α (0.1 < α < 1) when Xanthan gum solutions are used as dispersed 

phase. Also by using  Xanthan gum aqueous solutions as dispersed phase, polydispersity values 

lower than 6% can be obtained for 0.1 < α < 1.2 when 0.006 < Cac < 0.02. This confirms that 

a micro cross-junction operating in DJ or DC regime is able to guarantee, within a large range 

of operative conditions, the production of uniform droplets both in presence of Newtonian and 

non-Newtonian dispersed phases. 
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(a) (b) 

  

(c) 

 

Figure 3.8. Polydispersity Pl of droplet as a function of Cac and flow rate ratio α for different 

dispersed phases: (a) W, (b) 0.3 XG+T and (c) 0.5 XG+T in silicone oil. 

In order to give more detailed information about the value of polydispersity associated 

to the droplets generated during the experimental runs, Table 3.3 and  for 0.3 XG+T and 0.5 

XG+T, respectively gives the values of polydispersity obtained by changing the values of 

volumetric flow rates imposed at the inlets of the cross-junction. 
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Table 3.3. Polydispersity of D* as a function of the imposed values of α and Qc for 0.3 XG+T droplets 

in silicone oil. 

 Qc (ml/h) 

α 0.5 1 1.5 2 

0.01 - 0.60 2.35 3.03 

0.05 3.39 0.89 1.40 1.91 

10.1 7.91 4.81 4.29 11.01 

0.3 4.79 2.68 2.50 6.84 

0.5 3.99 1.71 1.96 4.82 

0.8 3.32 3.40 3.99 6.37 

1.0 6.90 4.15 9.43 - 

1.5 5.55 0.60 - - 

 

It is evident that, for all the combinations of imposed flow rates at the inlets, 

polydispersity values lower than 15% are obtained. This result confirms that the cross-junction 

can be efficiently used as droplet generator also in presence of shear thinning non-Newtonian 

dispersed phases even if an increase of the variation of the droplet sizes is observed by 

increasing both Qc and α. 

Table 3.4. Polydispersity of D* as a function of the imposed values of α and Qc for 0.5 XG+T droplets 

in silicone oil. 

 Qc (ml/h) 

α 0.5 1 1.5 2 

0.01 - 1.31 1.09 1.40 

0.05 0.91 2.16 1.65 0.89 

0.1 1.08 5.41 2.24 2.78 

0.3 5.56 4.39 7.97 11.32 

0.5 2.44 4.73 12.33 12.80 

0.8 5.40 6.87 7.77 10.76 

1.0 3.94 9.97 - - 
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3.2 Newtonian and non-Newtonian emulsions at large Cac values 

The second step of this experimental investigation was to enlarge the analysis of the 

droplet regimes to large values of the imposed volumetric flow rate linked to the continuous 

phase, by considering Cac > 0.02. 

A wide range of volumetric flow rates has been tested in order to be able to detect 

different droplet patterns including squeezing (SR), dripping (DR) and jetting regime (JR). 

In these tests the continuous phase flow rate covers a thorough range (0.3 ≤ Qc ≤ 20 ml/h) 

and the dispersed phase flow rate varies between 0.01 to 3 ml/h for non-Newtonian solutions. 

It’s worth mentioning that the range of Qd for emulsion of water with Tween 20 has been 

extended to 8 ml/h while continuous and dispersed flow rates for the droplets of water without 

surfactant vary between 0.8 ≤ Qc ≤ 49.9 and 0.016 ≤ Qd ≤ 59.25 ml/h, respectively to repeat the 

experimental runs in the same range of Capillary number. These data are also reported in 

Table 3.1. 

By varying the inlet flow rate of both dispersed and continuous phase three different 

droplet regimes can be generally observed as reported in Figure 3.9. 

SR DR JR 

   

Figure 3.9. Droplet regimes obtained by fixing the volumetric flow rate of the Xanthan gum aqueous 

solution (0.2 XG+T) equal to Qd = 0.1 ml/h and Qc = (a) 0.3 ml/h (squeezing regime), (b) 3 ml/h 

(dripping regime) and (c) 10 ml/h (jetting regime). 

On the basis of the droplet breakup mechanism, it is possible to distinguish squeezing 

regime (SR), observed at low velocity of both continuous and dispersed phase (low Capillary 
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numbers and low flow rate ratios), from dripping regime (DR), which takes place at higher 

velocity of the continuous phase (moderate Capillary number) and jetting regime (JR), 

occurring when the Capillary number exceeds critical value. This last droplet regime was not 

activated at low values of Cac (see the previous Section 3.1). 

In Figure 3.9 typical droplet patterns linked to these three regimes are obtained by fixing 

the volumetric flow rate Qd of a Xanthan gum aqueous solution (0.2 XG+T) equal to 0.1 ml/h 

and by increasing the volumetric flow rate of the silicone oil (continuous phase, Qc) from 0.3 

ml/h (Figure 3.9a) to 3 ml/h (Figure 3.9b) up to 8 ml/h (Figure 3.9c). 

By observing Figure 3.9a it is evident that the thin layers close to the solid walls in which 

the continuous phase is forced to flow is responsible of the squeezing of the dispersed phase 

and the formation of a droplet having dimensions equal or larger than the width of the outlet 

microchannel. 

 By increasing the volumetric flow rate of the continuous phase (Figure 3.9b) the viscous 

drag due to the co-flow of the continuous and dispersed phases along the outlet microchannel 

is responsible of the formation of the filament originated between the nozzle and the droplet. 

In this case the breakup is located downstream of the junction by dripping and the dimensions 

of the droplets are generally lower than those of the outlet channel. The presence of the long 

filament is a characteristic of the shear thinning liquid used as dispersed phase and the presence 

of Tween 20 inside the aqueous solution tends to increase the length of the thread due to the 

reduction of the interfacial forces which oppose the viscous drag. 

When the velocity of the continuous phase is increased over a critical value, the external 

surface of the thread starts to show an unstable behavior (Figure 3.9c); in this case the droplet 

detachment point gradually moves downstream until a stable jet is formed (jetting regime). In 

this regime the droplet dimensions are only marginally decreased in correspondence of an 

increase of Qc. The length of the slender thread between the nozzle and the droplet detachment 

point can be very long, especially in presence of shear thinning liquids, and, after the breakup, 

the thread can originate small satellite droplets. 

 Squeezing regime 

In the squeezing regime, the interfacial tension and pressure drop force along the main 
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channel govern the dynamics of the droplet formation process and breakup mechanism. Due to 

the action of the transversal introduction of the continuous phase, the interface penetrates the 

main channel and grows until to block completely the channel (see Figure 3.10) which leads to 

an increase of the pressure drop, as observed by Kashid et al. [107] through a numerical 

simulation. 

∆t = 0 ms ∆t = 50 ms ∆t = 75 ms 

   

∆t = 90 ms ∆t = 100 ms ∆t = 120 ms 

   

∆t = 140 ms ∆t = 150 ms ∆t = 170 ms 

   

Figure 3.10. Squeezing regime when Qc = 0.8 ml/h and Qd = 0.08 ml/h for pure water (W) emulsions. 
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They showed that the back pressure is larger than that in the dispersed phase channel. 

The carrier fluid displaces the droplet downstream of the junction when the back pressure rises 

above the pressure in the dispersed phase channel. It stretches the droplet and squeezes the 

neck connecting the droplet to the source of the dispersed phase. In this regime the continuous 

phase is not able to deform the tip of the droplet. As a result, the continuous phase is confined 

in a thin layer close to the walls of the junction in which the flow is subjected to an increased 

viscous resistance which is responsible of the pressure build-up in the continuous phase 

upstream of the droplet tip. Since this pressure is larger than the pressure in the immiscible 

dispersed phase, the continuous phase squeezes the neck of the inner fluid determining the 

breakup and detachment of the droplet. In this droplet regime the interfacial stress is able to 

play an active role only during the very last stage before the droplet detachment; for this reason, 

the dependence of the droplet characteristics on the interfacial tension or on the viscosity ratio 

λ is usually weak. 

 Dripping regime 

In the dripping regime (DR), the dynamics of the droplet formation process is governed 

by a balance between the shear force and the interfacial tension. The dispersed phase as the 

propulsion exerted on the dispersed phase to pinch-off the droplet is countered by the interfacial 

tension which opposes the elongation of the neck of the droplet. The droplet size in dripping 

regime is smaller than that of squeezing regime as the shear force increases. By increasing the 

continuous phase flow rate Qc (Cac) the droplet is sheared off earlier. Therefore Cac is expected 

to play a more important role in the dripping regime and impact of the pressure drop force 

diminishes although in some cases the droplet partially blocks the channel. 

In other words, in the dripping regime the droplet breakup is due to the opposite action 

of the viscous drag exerted by the continuous fluid on the emerging droplet, which is 

responsible of the formation of a thread between the nozzle and the droplet, and the interfacial 

tension that opposes the elongation of the thread. In this regime the droplet diameter is inversely 

proportional to the capillary number associated to the continuous phase (Cac). Cramer et al. 

[19] observed experimentally that for Newtonian immiscible fluids in dripping regime the 

viscosity of the droplet does not influence the size of the droplet appreciably because the drag 

force depends only very weakly on this parameter. 

Figure 3.11 shows the evolution of the interface during the droplet generation of 0.3 



 90 
 

XG+T in silicone oil flow. It can be observed that, generally, by increasing Cac the size of the 

droplets is reduced; this means that in dripping regime the droplets are generally smaller than 

that obtained by squeezing. 

∆t = 0 ms ∆t = 4 ms ∆t = 8 ms 

   

∆t = 12 ms ∆t = 16 ms ∆t = 20 ms 

   

∆t = 24 ms ∆t = 28 ms ∆t = 32 ms 

   

Figure 3.11. Dripping regime when Qc = 4 ml/h and Qd = 0.2 ml/h for 0.3 XG+T emulsions. 
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 Jetting regime 

In jetting regime (JR), the shear force dominates over the interfacial tension and the 

droplets are generated by the instability of the flat interface of the parallel co-flow which can 

be triggered when the Capillary number is very high. 

∆t = 0 ms ∆t = 4 ms ∆t = 8 ms 

   

∆t = 12 ms ∆t = 16 ms ∆t = 18 ms 

   

∆t = 20 ms 

 

Figure 3.12. Jetting regime when Qc = 10 ml/h and Qd = 0.1 ml/h for 0.4 XG+T emulsions. 
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In this case, the droplets are characterized by a strongly variable diameter due to the 

random detachment of the droplets from the unstable thread focused in the centre of the outlet 

microchannel. The shear force becomes predominant and the droplets are produced by a shear-

driven mechanism. As the shear force is large in magnitude, dispersed phase properties are less 

important in controlling the droplet size. Figure 3.12 also shows that the breakup point moves 

downstream of the junction as the dispersed phase viscosity increases, as evidenced by Cramer 

et al. [19]. It is interesting to note that with non-Newtonian fluids like Xanthan gum solutions 

a very long and slender thread may be seen before the breakup due to the higher viscosity of 

the dispersed phase. The dispersed phase material contained in the thread follows the main 

droplet after the breakup by creating a series (one or more) satellite droplets. 

In Figure 3.13 zoomed views of the threads existing between the nozzle and the droplet 

are shown for pure water in presence of large α values (Figure 3.13a) and for 0.3 XG+T for 

large values of Cac (Figure 3.13b). It is possible to observe on the thread surface the formation 

and propagation of waves which are responsible of the jetting of droplets from the end of the 

filament. Figure 3.13 highlights the difference in terms of thickness of the thread when the 

instability of the surface is obtained by imposing large values of α (Figure 3.13a) or large values 

of Cac (Figure 3.13b). At large Cac values, thanks to the shear-thinning properties of the tested 

non-Newtonian solutions, it is possible to obtain very thin and long threads which are not 

observable when water is used as dispersed phase. 

  

Figure 3.13. Thread instability during jetting: (a) pure water W (Qc = 4 ml/h and Qd = 20 ml/h); (b) 

0.3 XG+T (Qc = 8 ml/h and Qd = 0.1 ml/h). 



Experimental Investigation of Droplet Formation at Micro Cross-Junctions 93 
 

 

 

 Effect of Cac 

The effect of continuous Capillary number on the droplet sizes has been studied in 

Figure 3.14 for different combinations of immiscible liquids. It is clear that with an increase of 

Capillary number the non-dimensional droplet diameter decreases. At low Capillary numbers 

Cac ≤ 0.01 squeezing regime is recognizable. In squeezing regime the shear force is negligible 

and the pressure drop force is the only force able to overcome the interfacial tension by making 

possible to generate the droplet. The channel is nearly blocked and, due to the surge in pressure 

drop and consequently high back-pressure as compared to the dispersed phase pressure, the 

interface of the fluid is displaced by the continuous phase. The filament gets stretched and the 

neck is squeezed at the rupturing moment [107]. In dripping regime the droplet does not fully 

block the channel, so the pressure drop force is not as important as it is in squeezing regime. 

In this case shear force as the positive force, a force which helps to generate the droplet by 

shearing the interface off, and interfacial tension as the negative force, which opposes the 

generation of the droplet, constitute the main physical governing forces. With more increase of 

Capillary number (dripping regime) variation in the diameter becomes less evident than before. 

In this regime the shear force overcomes the interfacial tension and a shear-driven mechanism 

governs.  

 

Figure 3.14. Effect of continuous Capillary number where 0.3 ≤ Qc ≤ 20 and Qd = 0.1 ml/h for W, 

W+T and three concentrations of Xanthan gum solution, 0.2 XG+T, 0.3 XG+T and 0.5 XG+T. 
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In the squeezing regime the droplet diameter is a function of both flow rates. Due to the 

high values of continuous flow rate and consequently high value of shear force, the influence 

of Cac on D* is significant in dripping regime. In dripping regime the shear force is already 

predominant and an increase of the volumetric flow rate ratio has a secondary impact on the 

droplet size and results in only a slight decrease. 

It is evident that droplet diameter decreases with increasing Cac through the investigated 

range (Figure 3.14). Two zones are present in Figure 3.14; the dependency of the non-

dimensional diameter D* on Cac varies for Cac > 0.01 as compared to the region of Cac < 0.01. 

By focusing the attention on the trend for large Capillary numbers (Cac > 0.01) the 

experimental results highlight that in dripping and jetting regime the droplet dimensions scale 

with (~ 1/Cac
0.4), in agreement with the numerical observations of De Menech et al. [46]. In 

dripping regime, D* depends weakly on the dispersed phase properties, as confirmed by 

Figure 3.15a and b. In fact, the trend of D* as a function of Cac tends to be independent of the 

liquid used as dispersed phase, especially for Newtonian liquids (pure water and water with 

Tween 20). This result confirms that in shear-driven breakup, typical of large Cac values, the 

viscosity of the dispersed phase does not influence the size of the droplets appreciably, as 

confirmed experimentally by Cramer et al. [19]. 

(a) (b) 

  

Figure 3.15. Droplet dimensionless diameter of the (a) Newtonian and (b) non-Newtonian emulsions 

as a function of the continuous Capillary number obtained when Cac ≥ 0.01 and Qd = 0.1 ml/h. 
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 Effect of Qd 

Figure 3.16 shows the influence of the imposed dispersed phase flow rate on the droplet 

size when the Capillary number (Cac) is kept constant while Qd varies. It shows non-

dimensional droplet diameter as a function of flow rate ratio for a wide range of flow rates. 

Regardless of the flow regime or flow rates, D* enhances with the flow rate ratio α. It is evident 

that an increase of Qd (larger α values) while the continuous flow rate is fixed makes larger 

droplets in presence of both Newtonian (Figure 3.16a) and non-Newtonian (Figure 3.16b) 

dispersed phases. In fact, an increase of Qd causes a larger injection of the dispersed phase into 

the junction and larger droplets are generated especially at low values of Qc (Cac). When the 

continuous phase flow rate is increased (larger Cac and lower α), the role of the shear forces 

becomes more important and the influence of Qd on the droplet size decreases. At high values 

of α (> 1 in Figure 3.16a, and > 0.1 in Figure 3.16b), the dimensionless diameter D* is a strong 

function of the flow rate ratio α. 

(a) (b) 

  

Figure 3.16. Non-dimensional diameter of the droplet as a function of the flow rate ratio α when Cac > 

0.01: (a) Newtonian dispersed phases (W and W+T) and (b) non-Newtonian dispersed phases (0.3 

XG+T and 0.5 XG+T). 

The droplet size is highly dependent on flow rate ratio in cases with low values of 

continuous flow rate and/or in squeezing regimes because of relatively high droplet formation 

time. The more increase of Qc, the less formation time is needed for the drop to be generated 

and the less dependence of the drop size on Qd is observed. In high values of α (> 1), the 
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dimensionless diameter of the droplet is a strong function of flow rate ratio in spite of the case 

of α < 1 in which D* is not changing with α drastically. 

 The droplet regime maps 

In Figure 3.17 the flow maps with the droplet regimes observed by varying the Capillary 

number linked to the continuous phase (Cac) and the flow rate ratio (α) are shown for different 

liquids used as the dispersed phase: W (Figure 3.17a); W+T (Figure 3.17b); 0.3 XG+T 

(Figure 3.17c) and 0.5 XG+T (Figure 3.17d). 

By comparing the maps of Figure 3.17 it is possible to observe that a series of common 

factors are present. As a rule of thumb, for low velocity of the continuous phase the transition 

among the regimes can be obtained by increasing α. This result has been deeply commented 

by many researcher by using not only experimental results [41, 44] but also theoretical models 

[46] and numerical simulations [39]. 

It is interesting to observe that, for very low values of Cac (< 0.01), the jetting regime 

(JR) can be activated by increasing α in presence of Newtonian dispersed liquids (see 

Figure 3.13a) but this is not possible when Xanthan gum solutions are used; and, after the 

dripping regime, parallel flow is obtained without production of droplets; in this last case, by 

increasing the flow rate of the dispersed phase only squeezing and dripping regimes can be 

observed at Cac < 0.03. In dripping regime (DR), further increase of the dispersed flow rate is 

not able to generate instability of the thread interface and a parallel flow (PF) without droplet 

formation is generally observed. On the contrary, for high velocity of the continuous phase 

(low α and high Cac) the transition between squeezing and dripping is obtained when Cac 

becomes larger than a critical value which depend on the geometry of the cross-junction and 

on the properties of the immiscible liquids used. At very high velocity of the continuous phase 

jetting is generally observed especially at low α values. 

More in detail, in Figure 3.17a it is possible to observe the domains in the α-Cac plane of 

squeezing, dripping and jetting regimes obtained by using pure water as dispersed phase and 

silicone oil as continuous phase (λ = 0.049). It is evident that the squeezing regime is the most 

important regime when the micro cross-junction is used at low Capillary numbers (Cac < 0.01). 

As underlined numerically by Liu and Zhang [39], for Cac < 0.01 the transition between 
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squeezing and dripping regime is influenced by both α and Cac. Dripping is activated only for 

large values of the flow rate ratio (α > 1); by increasing the velocity of the dispersed phase. On 

the contrary, at low values of α (< 1) dripping can be activated only by increasing the velocity 

of the continuous phase; by increasing Cac, the droplet regime goes from squeezing to dripping 

when Cac is larger than a critical value which increases when α decreases. The transition from 

dripping to jetting is possible only for α > 0.1. These findings are coherent with those obtained 

by other researchers for similar cross-flow configurations [50]. 

(a) (b) 

  

(c) (d) 

  

Figure 3.17. Droplet regimes as a function of the continuous Capillary number (Cac) and the flow rate 

ratio (α) by considering as dispersed phase: (a) W, (b) W+T, (c) 0.3 XG+T and (d) 0.5 XG+T. 
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In Figure 3.17b the effect of the addition of surfactant in the dispersed phase can be 

highlighted. A concentration of 2% in weight of Tween 20 in pure water is able to reduce of 

six times the interfacial tension (see Table 2.4). By observing Figure 3.17b it is possible to 

highlight that, at low values of Cac (< 0.01), the transition between squeezing and dripping 

occurs at the same values of α with respect to pure water. The same seems to occur if the 

velocity of the continuous phase is increased, for a fixed velocity of the dispersed phase; also 

in this case the transition from squeezing to dripping occurs at the same critical values of Cac 

(Cac  0.01-0.1) observed for pure water. Since a concentration of 2% in weight of Tween 20 

in pure water is able to reduce of six times the interfacial tension (see Table 2.4) this means 

that in presence of Tween 20 it is possible to obtain the transition between squeezing and 

dripping at low α values by using a continuous flow rate and velocity six times lower than the 

value needed if pure water is used as dispersed phase. 

Even when Xanthan gum aqueous solutions are used as dispersed phase (Figure 3.17c 

and d), the transition between squeezing and dripping regime is influenced not only by Cac but 

also by α. At low values of α (low dispersed volumetric flow rate) dripping occurs at larger 

Capillary numbers. At low values of α (< 0.2), jetting regime is generally reached only for very 

large velocity values of the continuous phase (Cac > 0.09). On the contrary, for large values of 

α jetting can be obtained also for lower values of Cac (down to 0.03). 

The effect of the Xanthan gum concentration on the droplet regimes can be deducted by 

comparing Figure 3.17c and d; it is evident that the differences in terms of droplet regimes are 

very limited if the Xanthan gum concentration is increased from 0.3 wt% to 0.5 wt%. 

On the contrary, by comparing Newtonian (Figure 3.17a and b) with non-Newtonian 

(Figure 3.17c and d) emulsions, it is possible to observe that when the viscosity ratio λ 

increases, the droplet breakup point moves downstream of the junction and dripping regime is 

enhanced. This result was confirmed numerically by De Menech et al. [46] for T-junctions 

observing that large values of λ dampen the pressure fluctuation upstream the junction. In 

addition, for large values of λ the thread between the nozzle and the droplet becomes longer 

and thicker because the dispersed phase is able to accept greater deformations. The non-

negligible effect of λ on the transition between the droplet regimes underlines that in presence 

of non-Newtonian liquids having an apparent viscosity influenced by the shear rate the 

description of the droplet breakup by using only the Capillary number linked to the continuous 
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phase can be not sufficient because the Capillary numbers for both phases have to be considered 

as governing parameters. 

It is also possible to individuate the flow patterns based upon the previously explained 

regimes, DJ, DC and PF (Figure 3.18). As a rule of thumb the range of Cac and α in which the 

droplet generation occurs is much wider in Newtonian fluids compared to non-Newtonian 

emulsions. 

(a) (b) 

  

(c) (d) 

  

Figure 3.18. Droplet regimes, DJ, DC and PF, of the emulsions by considering in silicone oil: (a) W, 

(b) W+T, (c) 0.3 XG+T and (d) 0.5 XG+T as dispersed phase. 
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With the increase of viscosity the interface of the dispersed phase is pinched-off far from 

the junction and a long filament takes form through the channel (DC regime). On the contrary 

in Newtonian droplets most of the flow map is dedicated to the droplets generated at the 

junction (DJ regime). In other words, for non-Newtonian solutions, DJ to DC happens at lower 

values of α due to the higher values of viscosity. The use of 0.3 or 0.5 wt% Xanthan gum 

solution makes an elongated filament to generate before the breakup and fills the channel. It is 

more likely to see DC in non-Newtonian solutions while for Newtonian ones in most cases the 

droplets are generated at the junction. 

 Prediction of droplet regimes 

Four different identification methods have been employed to predict the transition 

between the droplet regimes [22] in a micro junction: 

(i) By means of a detailed analysis of the controlling forces and droplet formation 

dynamics thanks to numerical simulations coupled to experimental tests (Fu et al. 

[108] and Kashid et al. [107]); this technique helps to understand the meaning of 

experimental data but it needs a calibration of the numerical results obtained by 

using experimental results. 

(ii) By means of the analysis of the droplet formation images; relatively large droplets 

stand for the squeezing regime, moderate-sized droplets in the microchannel are 

generated in dripping regime and the jetting regime is delineated by small droplets 

along with long filament [51, 64] as shown in Figure 3.9. This method provides 

only limited information on the mechanisms and dynamics involved. 

(iii) By means of a droplet regime map, like those presented in this thesis, [17, 40, 46, 

109, 110]; this method is very accurate because based on pure observations by it 

needs a tremendous amount of experimental data in order to scan all the possible 

combinations of operative conditions. 

(iv) By using the experimental link between the droplet size and Cac, as shown in 

Figure 3.14; in fact, the variation of the droplet diameter with Cac can be easily 

used in order to identify the droplet regimes as discussed in [41, 45, 51, 65].  

  As observed by Gu [22], a general and widely accepted criterion in order to individuate 

the boundary among the different droplet regimes was not individuated until now in the 

literature. A qualitative method proposed by Gu [22], able to individuate the transition between 
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a droplet regime and another one, can be obtained by considering the trend of the droplet 

diameter (D*) as a function of the Capillary number linked to the continuous phase (Cac), for 

all the values of the flow rate ratio like the trends reported in Figure 3.14. As an example, in 

Figure 3.19a. the trend of D* as a function of Cac for 0.3 XG+T is shown for values of α 

ranging from 0.0066 to 0.333. 

By observing Figure 3.19a it is evident that for 0.3 XG+T each transition between two 

droplet regimes can be linked to a variation of the slope of the function D*(Cac). Similar results 

can be evidenced with other Newtonian and non-Newtonian dispersed phases. If a fitting of the 

experimental data in which D* is plotted as a function of Cac is made, it becomes possible to 

calculate the derivative of D* with respect to Cac (χ = dD*/dCac) as a function of Cac. In 

Figure 3.19b the derivative of D* with respect to Cac (χ) is shown as a function of Cac for the 

dispersed phases considered in the tests, in the range of Capillary numbers from 0.002 up to 

0.2 and for all the values of α tested. It is possible to observe that all of the working fluids 

considered in this work evidence a similar trend: at low Cac values, χ tends to increase when 

Cac is increased until a maximum is reached. After the maximum, χ decreases when Cac 

increases. 

From the trend of χ as a function of Cac it becomes possible to individuate the critical 

values of Cac in correspondence of which the transition from one droplet regime to another one 

takes place. More in detail, the boundary between the squeezing and the dripping regime can 

be individuated by the position of the inflection point (point a in Figure 3.19) occurring before 

the maximum of χ is reached. In fact, in correspondence of the point of inflection (point a), the 

sensitivity of the droplet diameter on the Capillary number linked to the continuous phase 

changes. At the end of the dripping regime, χ changes slowly and reverses (point b) towards 

larger negative values which remarks the onset of the jetting regime. 

In Figure 3.19b the position of points a and b are evidenced for the dispersed phases 

considered in this work. For Xanthan gum aqueous solutions the transition between squeezing 

and dripping regime occurs at the same Capillary number for all the concentrations considered 

here. 

The critical values of the Capillary number linked to the transitions among the droplet 

regimes obtained by Figure 3.19b are independent from the value assumed by α and this aspect 



 102 
 

is a limitation of the method because, as evident by observing Figure 3.17, the boundaries of 

the droplet regimes are a combined function of Cac, α and λ. 

(a) 

 

(b) 

 

Figure 3.19. (a) Trend of the droplet diameter D* as a function of Cac; (b) derivative of D* with 

respect to Cac as a function of Cac. 

The critical Capillary number which corresponds to the position of the points a and b of 

Figure 3.19b are indicated in Figure 3.17 by means of a solid line (transition between dripping 

and jetting) and a dashed line (transition between squeezing and dripping). By observing the 

droplet maps of Figure 3.17 and the critical values of Cac obtained by the procedure proposed 

by Gu [22] it is evident that this method is only in qualitative agreement with the experimental 

a 

a 

b 
b 

b 

a 
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observations, especially in terms of prediction of the transition between dripping and jetting at 

large Cac and/or large values of α, both for Newtonian and non-Newtonian dispersed phases. 

 Polydispersity 

The level of uniformity of the droplet size is investigated by means of the values assumed 

by the polydispersity Pl defined by Equation (2-10). 

The higher values of Qc, relatively higher dispersed droplets are generated especially in 

fluids with surfactant; it can be observed that the typical values of polydispersity are very low. 

On the contrary, polydispersity decreases when higher concentrated non-Newtonian fluids are 

employed. Generally, by increasing Qc and/or decreasing wt%, the polydispersity increases. 

By varying the operative condition (Cac and α) different values of Pl can be observed. In 

order to show that the level of uniformity of the droplets produced by using the cross-junction 

at high Cac values (Cac > 0.01) depends on both Capillary number and flow rate ratio, in 

Figure 3.20 the droplet polydispersity Pl is plotted as a function of Cac and α for W 

(Figure 3.20a), W+T (Figure 3.20b), 0.3 XG+T (Figure 3.20c) and 0.5 XG+T (Figure 3.20d). 

For pure water (Figure 3.20a), droplets are generated at high Cac (> 0.01) with a low 

polydispersity (Pl < 8%) only if the flow rate ratio α is lower than 0.5. In this region the cross-

junction is able to guarantee the generation of droplets having very uniform sizes. On the 

contrary, when the value of α is increased (α > 0.5), the polydispersity increases as well. For 

Cac > 0.05 and α > 1 no droplets are obtained and a parallel co-flow downstream of the junction 

is observed (PF). 

By adding Tween 20 to water (Figure 3.20b) a significant extension of the region 

characterized by lower Pl values (< 8%) is obtained; in this case uniform droplets are generated 

if α< 1.5 for Cac > 0.01. This fact confirms that the reduction of the interfacial tension between 

the immiscible liquids is beneficial for the generation of monodispersed emulsions using cross-

junctions. In presence of non-Newtonian Xanthan gum solutions (Figure 3.20c and d) droplets 

with uniform sizes (Pl < 8%) can be obtained only for low flow rate ratio (α < 0.2) when Cac 

is larger than 0.05. This region is smaller when the Xanthan gum concentration is increased 

(Figure 3.20d); this result highlights that an increase of the viscosity of the dispersed phase 

tends to reduce the range of the operative conditions in correspondence of which 
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monodispersed droplets can be generated. 

(a) (b) 

  

(c) (d) 

  

Figure 3.20. Polydispersity Pl of droplet as a function of Cac and α for different dispersed phases in 

silicone oil; (a) W, (b) W+T, (c) 0.3 XG+T and (d) 0.5 XG+T. 

The polydispersity increases, for all the dispersed phases considered, if αand Cac are 

increased.  By comparing the plots of Figure 3.20 it is evident that in presence of non-

Newtonian dispersed phases characterized by larger values of apparent viscosity, larger values 

of Pl are generally obtained. 

The large values of the viscosity ratio λ associated to the combination of SO/(XG+T) (see 
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Table 2.2) are responsible of the presence of a long thread before the droplet breakup; on the 

contrary, the thread is usually very short when pure water (W) or water with Tween 20 (W+T) 

are used as dispersed phase. The thread becomes more and more evident when the Capillary 

number Cac increases. After the droplet breakup, part of the thread generates satellite droplets 

which follow the main droplet. In many cases, the satellite droplets and the main droplet 

coalesce downstream of the junction. 

 Cac 

 0.011 0.045 0.089 

α 

0.1 

   

 

 

1 

   

Figure 3.21. Droplets of water and Tween 20 (W+T) in silicone oil (SO) obtained by fixing the value 

of the flow rate ratio (α) and the Capillary number linked to the continuous phase (Cac). 

In Figure 3.21 the images of the droplets of water with Tween 20 (W+T) in silicone oil 

generated for two values of flow rate ratio (0.1 and 1) by increasing the Capillary number from 

0.011 to 0.089 are shown. By using water with Tween 20, for α = 0.1, it is possible to see the 

presence of a short tail after the main droplet only at large values of Cac; the tail is part of the 

thread broken during the droplet breakup. The liquid contained in the tail is merged to the main 

droplet downstream of the junction but this mass addition is not significant and the droplet size 

is not influenced by the incorporation of the tail. This is the reason for which at low values of 

α polydispersity assumes low values for water with Tween 20. No evident satellite droplets are 

originated after the droplet breakup even if α is increased. At α = 1 the droplet size increases 

with respect to α = 0.1 and if the flow rate of the continuous phase is increased, the droplets 

assume an elongated shape due to the lateral confinement of the channel walls. The coalescence 

between two consecutive droplets is promoted, especially when the Capillary number is large 
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and this coalescence is responsible of the large values of polydispersity of the generated 

droplets at large α. 

Large values of flow rate ratio combined with the absence of surfactant determine for 

pure water large values of Qd (for α = 3 and Cac = 0.03, Qc = 14.8 ml/h and Qd = 44.4 ml/h). 

These large dispersed flow rates increase the probability to have the coalescence among the 

consecutive droplets and higher values of polydispersity can be observed as evidenced by 

Figure 3.20a. With the addition of surfactant (W+T) the coalescence starts earlier and droplets 

can be observed at large flow rate ratio (α > 2) only for low values of Cac, as evidenced by 

Figure 3.20b. However in this region the polydispersity is larger than 15%. As a rule of thumb, 

polydispersity increases when the junction is operated close to the region of the parallel flow 

(PF). 

 Cac 

 0.012 0.046 0.093 

α 

0.1 

   

 

 

0.3 

   

Figure 3.22. Droplets of Xanthan gum aqueous solution (0.3 XG+T) in silicone oil obtained by fixing 

the value of the flow rate ratio (α) and the continuous Capillary number (Cac). 

Figure 3.22 shows the droplet of Xanthan gum aqueous solution (0.3 XG+T) in silicone 

oil obtained by fixing the value of the flow rate ratio αand the continuous Capillary number 

Cac. In this case, even at low values of α and Cac, the presence of satellite droplets is confirmed 

by the experimental observation. At Cac = 0.012 the main droplet is followed by multiple 

satellite droplets having small dimensions both for α = 0.1 and α = 0.3. When the Capillary 

number is increased, the dimensions of the satellite droplets increase as well; this is evident by 
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the images of Figure 3.22 obtained at α = 0.1. The presence of large satellite droplets at large 

Capillary numbers (Cac) and low α is responsible of the large polydispersity values indicated 

in Figure 3.20c; in fact, in these conditions the emulsion becomes a combination of droplets 

having different sizes due to the presence of the satellite droplets among the main droplets and 

due to the coalescence between satellites and main droplets. By increasing α, satellite droplets 

are still present but the elongation of the droplets along the flow direction enhances the 

coalescence between satellites and main droplets leading to increasing the polydispersity of the 

emulsion. 

In Figure 3.23 the images of three consecutive droplets obtained by imposing a flow rate 

ratio αequal to 0.1 and a Capillary number Cac = 0.106 in presence of a Xanthan gum aqueous 

solution (0.5 XG+T) as dispersed phase are shown. By comparing the dimensions of the 

satellite droplets with those shown in Figure 3.22, it is evident that the dimensions of the 

satellite droplets increase with the viscosity ratio of the immiscible liquids. 

   

Figure 3.23. Main droplet and satellite droplet observed for three consecutive droplets obtained for 

Cac = 0.160 and α = 0.1 using 0.5 XG+T as dispersed phase. 

The images of Figure 3.23 highlight that the size of the satellite droplets can be very 

different each time that the droplet detachment is completed. For this reason, the dimensions 

of the droplet after the coalescence with the satellite can be very different in size and this 

explains the increase of the droplet polydispersity evidenced by the observation of the droplets 

far from the junction. 

By comparing Figure 3.20a and b it is evident that the addition of surfactant is able to 

extend the region in which the junction is able to produce monodispersed emulsions at low 

values of Capillary numbers. On the contrary, the values of Pl shown in Figure 3.20 suggest 
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that in presence of a combination of immiscible liquids having a large viscosity ratio λ and a 

dispersed phase with a shear-thinning behaviour, the range of α and Cac in correspondence of 

which the cross-junction can be used in order to generate monodispersed emulsions is limited 

because the presence of significant satellite droplets tends to increase the polydispersity of the 

emulsion both at large values of α and low Cac  as well as at large Cac and low α. 

 Effect of Xanthan gum concentration 

A series of experimental runs are carried out to investigate the effect of Xanthan gum 

concentration on the size of the droplets (Figure 3.24). Low flow rates for both continuous and 

dispersed phase flows have been employed to avoid long microthreads due to the high viscosity 

of the solutions. Although the phases have different properties, the variation in droplet 

diameters is not remarkable. In most cases the larger droplets are produced in fluids with higher 

concentration of Xanthan gum solution. In other words, the higher viscosity, the larger droplet 

is produced which is different from findings of Newtonian solutions and it can be due to the 

non-Newtonian properties of the solutions. 

 

Figure 3.24. Effect of Xanthan gum concentration on droplet non-dimensional diameter for various 

flow rates while open symbols stand for 0.3 XG+T and close symbol represent 0.5 XG+T. 

In Newtonian fluids larger drops with less viscous solutions are generated due to the 

higher viscous pressure in the thread which results in longer filaments with less material being 

formed [111, 112]. On the other hand increase of dispersed phase viscosity will cause the shear 
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force to increase, due to the direct relationship of viscosity ratio λ (= μd/μc) and shear force, and 

resulting in smaller droplets [111]. An increasing drop formation frequency takes place with 

increasing μd and smaller droplets are produced 

In order to have a better understanding about the effects of Xanthan gum concentration 

on the droplet size, Figure 3.25 presents the variation of droplet diameter as a function of the 

Xanthan gum concentration in comparison with water with 2 wt% of Tween 20 (W+T). 

(a) (b) 

  

Figure 3.25. Effect of Xanthan gum concentration on droplet non-dimensional diameter as a function 

of Xanthan gum concentration (wt%) when Qc = (a) 1 and (b) 4 ml/h. 

Although the droplet size variation is not very large with the concentration of Xanthan 

gum used in the aqueous solutions, within each regime larger droplets are generally produced 

by using non-Newtonian solutions with higher concentrations of Xanthan gum. It seems that 

the viscosity is not responsible of the droplet variation. However, further work is needed in 

order to better understand the physics of the process. In fact, interactions between polymer 

molecules can play an important role in droplet formation mechanism, as observed by 

Southwick et al. [113]. 

 Effect of Cad 

The different working fluids used in these tests allow exploiting information about the 

role played by the viscosity ratio λ on the droplet formation. 
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In the literature most studies are dedicated to the role played by the continuous Capillary 

number Cac on the droplet characteristics. For Newtonian fluids, it is easy to demonstrate that 

the droplet regimes depends only on Cac, αand λ (see the data reduction section of this thesis). 

In fact, starting from the definition of Cad (Cad = ud μd/σ) it is easy to demonstrate that this 

parameter is univocally linked to the volumetric flow rate ratio and to the Capillary number 

linked to the continuous phase as follows: 

2d cCa Ca  (3-1) 

where λ is the viscosity ratio of the immiscible liquids (= μd/μc). Since for Newtonian fluids λ 

is constant, if the values of α and Cac are fixed the value of Cad is fixed too. 

For non-Newtonian liquids, during the droplet formation the shear rate varies and the 

viscosity of the dispersed phase varies too. It is not easy to take into account the variation of 

the rheological properties during the droplet formation. However, an order of magnitude of the 

values assumed by the viscosity ratio during the experimental runs can be obtained by 

calculating the viscosity of the continuous and of the dispersed phase at the inlet of the cross-

junction in correspondence with the maximum and minimum values of the imposed flow rates 

at the inlets. In Table 3.5 the typical values of λ, obtained by considering the values of the shear 

rate of the dispersed phase at the inlet of the cross-junction, are shown as a function of the 

droplet regime. 

Table 3.5. Characteristic values of viscosity ratio λ for the working fluids considered in this work. 

Dispersed/Continuous W/SO (W+T)/SO (XG+T)/SO 

λ @ 23°C 0.049 0.056 0.2 XG+T 1.1 < λ < 48.5 

0.3 XG+T 1.7 < λ < 109.2 

0.5 XG+T 5.6 < λ < 472.5 

 

The data quoted in Table 3.5 highlight that for the Xanthan gum aqueous solutions 

(XG+T), the viscosity ratio is strongly variable with the applied shear rate (  ). It is evident 

that a large variation of the viscosity ratio is expected going from low flow rate values at the 

inlet (low shear rates at the entrance) to large flow rate values. 
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In Table 3.6 the values assumed by the viscosity ratio (λ) in presence of Xanthan gum 

solutions as dispersed phase for each droplet regime are shown. These values have been 

obtained by considering the range of values of Qc and Qd obtained by Figure 3.17 for each 

droplet regime. The regimes obtained by imposing, at the inlet of the cross-junction, lower flow 

rate values (i.e. SR) are characterized by larger values of λ. Lower values of λ are coupled to 

the regimes which need larger flow rates at the inlets. 

It is important to highlight that, since the position of the liquid/liquid interface varies 

during the droplet formation, the local value of the viscosity of the non-Newtonian dispersed 

phase changes and the value assumed by λ varies locally. The local variation of λ during the 

droplet formation is not accounted for by the values reported in Table 3.6; in fact these values 

have been obtained by estimating the viscosity of the continuous and dispersed phase at the 

inlet of the cross-junction. 

Table 3.6. Typical viscosity ratio range for each observed droplet regime. 

 Droplet regime 
Dispersed/Continuous phase 

(0.3 XG+T)/SO (0.5 XG+T)/SO 

Squeezing (SR) 9.08 < λ < 109.2 48.8 < λ < 472.5 

Dripping (DR) 2.4 < λ < 29.4 8.5 < λ < 82.7 

Jetting (JR) 1.7 < λ < 7.36 5.6 < λ < 15.3 

 

The values of λ shown in Table 3.6 underline that Xanthan gum solutions coupled to 

silicone oil are characterized by very large values of the viscosity ratio if compared with the 

values of W/SO and W+T/SO.  For large values of λ the thread between the nozzle and the 

droplet becomes longer and thicker because the dispersed phase is able to accept greater 

deformations. The non-negligible effect of λ on the transition between the droplet regimes 

underlines that in presence of non-Newtonian liquids having an apparent viscosity influenced 

by the shear rate the description of the droplet breakup by using only the Capillary number 

linked to the continuous phase can be not sufficient because the Capillary numbers for both 

phases have to be considered as governing parameters. 

Figure 3.26 depicts the droplet formation process of different dispersed phase emulsions 
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including Newtonian (W+T) and non-Newtonian (0.3 XG+T and 0.5 XG+T) droplets. 

By observing Figure 3.26, an increase of the flow rate ratio α in each row is responsible 

of the increase of the dispersed phase flow rate Qd at the same continuous Capillary number 

Cac (Qc = Const.). The droplet regime observed varies with different values of Qd imposed at 

the entrance of the junction. The transition among the controlling regimes may be easier 

understood by considering the images for emulsions of 0.3 XG+T. It is evident that the droplets 

generated in microchannels are controlled by the properties of both phases. 

 Qc = 1 & Qd = 0.01 ml/h Qc = 1 & Qd = 0.5 ml/h Qc = 1 & Qd = 0.8 ml/h 

(W+T)/SO 

λref = 0.056 

(Cac = 0.0112) 

   

(0.3 XG+T) 

/SO 

λref = 0.909 

(Cac = 0.0116) 

   

(0.5 XG+T) 

/SO 

λref = 1.784 

(Cac = 0.0133) 

   

 Qc = 4 & Qd = 0.04 ml/h Qc = 4 & Qd = 0.1 ml/h Qc = 4 & Qd = 0.2 ml/h 

(W+T)/SO 

λref = 0.056 

(Cac = 0.0448) 
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(0.3 XG+T) 

/SO 

λref = 0.909 

(Cac = 0.0464) 

   

(0.5 XG+T) 

/SO 

λref = 1.784 

(Cac = 0.0534) 

   

 Qc = 8 & Qd = 0.08 ml/h Qc = 8 & Qd = 0.4 ml/h Qc = 8 & Qd = 0.8 ml/h 

(W+T)/SO 

λref = 0.056 

(Cac = 0.089) 

   

(0.3 XG+T) 

/SO 

λref = 0.909 

(Cac = 0.0929) 

   

(0.5 XG+T) 

/SO 

λref = 1.784 

(Cac = 0.0106) 

   

Figure 3.26. Images of the droplet formation process for different controlling regimes. 

Husny and Cooper-White [63] modified the Capillary number by applying a force 

balance between the shear force and interfacial tension on the droplet and included the effect 

of viscosity ratio as follows: 

3 2

1

c c
c

u
Ca
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where λ (= μd/μc) is the viscosity ratio and ((3+2λ)/(1+λ)) used also in shear force is obtained 

from the modified drag coefficient for creeping flow outside a fluid sphere as first defined by 

Hadamard [89] and Rybczinski [90]. 

8 3 2

Re 1
Def
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

 
  

 
 (3-3) 

However, the Capillary number presented in Equation ( 3-2) is only useful for the 

description of the droplet behavior in dripping and jetting regimes where shear force plays a 

more important role. 

The droplet flow regimes for Water (W), Water with Tween 20 (W+T) and 0.3 and 0.5 

wt% Xanthan gum solutions with Tween 20 (0.3 XG+T, 0.5 XG+T) are presented in 

Figure 3.27 at different Cac and Cad values. 

The distribution of the different droplet regimes in the plane (Cad, Cac) indicates that, for 

a fixed Cac, the droplet regime can be changed by increasing Cad. 

The value of Cad is obtained by using Equation (3-1); it is evident that the use of Cad 

enables to take into account, at the same time, the effect of the flow rate ratio (α) and of the 

viscosity ratio (λ) on the droplet regimes. It is possible to observe that the plot of the droplet 

regimes on the (Cad, Cac) plane enables to distinguish better the boundaries of each droplet 

regime. 

Figure 3.27 underlines that the transition from squeezing to dripping to jetting is 

generally obtained by increasing both Cac and Cad. An increase of λ produces an increase of 

Cad and hence is beneficial in order to obtain a transition from a droplet regime to another one 

for a fixed value of Cac and α. 

These results are qualitatively in agreement with a series of previous studies [29, 60, 66, 

114] and with the results shown by Nunes et al. [50]. 

It is evident that three regions can be evidenced; at low values of both Cad and Cac the 

squeezing regime is generally observed. On the contrary for large values of both Cad and Cac 

jetting is activated. Dripping regime is obtained as intermediate regime by modulating Cad and 
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Cac. However, the boundaries between the three regimes are not so clear, as indicated by the 

data reported between dripping and jetting regimes. 

(a) (b) 

  

(c) (d) 

  

Figure 3.27. Droplet regime map at different Cac and Cad; (a) W, (b) W+T, (c) 0.3 XG+T and (d) 0.5 

XG+T. 

3.3 Droplet formation dynamics 

Until now a characterization of the droplet generation in terms of droplet regimes has 

been described without to give specific indications about the evolution of the droplet interface 
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during the droplet formation. However, this kind of information is very useful for the 

calibration of the numerical models and in this section the analysis of the droplet formation, 

restricted to low values of the Capillary number Cac, will be given. 

 Droplet formation time 

The droplet formation time tf, as an important parameter that must be taken into account 

if a droplet generator must be characterized. This parameter is important because it is linked to 

the droplet size and to the frequency of the droplet at the exit of the generator. 

The droplet formation time is defined as the time interval between the breakups of two 

consecutive droplets; this time can be obtained as the sum of the duration of three stages: 

(i) Induction stage ti,  

(ii) Growth stage tg and 

(iii) Breakup stage tb 

The order of magnitude of these intervals depends on the imposed flow rates of the fluids 

at the inlets of the generator, as well as on the properties of the fluids. At low values of the 

dispersed volumetric flow rate the time interval linked to the induction stage is generally 

negligible.  By increasing the continuous phase flow rate Qc and keeping fixed the flow rate 

ratio α, the droplet generation becomes more difficult because the interface is not able to 

penetrate within the main channel and the time interval linked to the induction stage becomes 

very large. For instance, in water emulsions when the continuous phase flow rate Qc is equal 

to 39.5 ml/h and α is less than 0.1, the duration of the induction stage can be very long. 

3.3.1.1 Effect of Qc 

The influence of the continuous phase flow rate Qc on the droplet formation time tf has 

been studied both for Newtonian (W+T) as well as non-Newtonian (0.3 XG+T and 0.5 XG+T) 

emulsions by varying Qc from 0.3 to 12 ml/h for a fixed value of Qd = 0.1 ml/h. The results are 

shown in Figure 3.28 in a log-log plot. 
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Figure 3.28. Droplet formation time against Qc. 

The drop formation time shows an exponential decrease with the increase of Qc when Qd 

is fixed. This fact can be explained by considering that an increase of the continuous flow rate 

pinches-off the interface earlier and propels it downstream of the junction. On the other hand, 

at low values of Qc the droplet grow lasts more and tf increases. A similar same trend has been 

reported recently by Hunsny and Cooper-White [63]. 

In presence of a non-Newtonian dispersed liquid the droplet formation time is longer due 

to the formation, before the droplet breakup, of a long filament which delay the detachment of 

the droplet due to the higher dispersed phase viscosity μd of the non-Newtonian solution. In 

fact, the viscous pressure increases with viscosity and opposes the capillary pressure, 

dampening surface oscillations and, hence, increasing the lifetime (and length) of the primary 

thread [69, 115]. 

The droplet formation time of 0.2 XG+T by varying Qc is illustrated in Figure 3.29 by 

means of a series of images which put in evidence the typical evolution of the droplet interface 

during the droplet formation. 
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Figure 3.29. Droplet formation time tf (ms) as a function of Qc (ml/h) for 0.2 XG+T. 

When Qc is increased, the formation time linked both to growth and droplet stage is 

strongly reduced thanks to the enhancement of the shear force responsible of the droplet 

detachment. 

3.3.1.2 Effect of Qd 

The droplet formation time depends on dispersed phase flow rate as well. The role of Qd 

has been studied by fixing Qc = 4 ml/h and changing Qd from 0.04 to 4 ml/h. The droplet 

formation time decreases with increasing Qd with an approximately exponential trend 

regardless of variation in viscosity for both Newtonian and non-Newtonian properties as 

verified by Arratia et al. [72] as a function of flow rate ratio. Increase of Qd causes a decrease 

of all stages of the droplet formation time as shown in Figure 3.30. 
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(a) (b) 

  

Figure 3.30. Droplet formation time against Qd for (a) Newtonian and (b) non-Newtonian emulsions. 

The interface evolution during the droplet formation is shown for different combinations 

of Qc and Qd in Figure 3.31. 

∆t Qc = 2 & Qd = 0.02 ∆t Qc = 2 & Qd = 0.1 ∆t Qc = 2 & Qd = 0.2 
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Figure 3.31. Droplet formation time tf (ms) as a function of Qd (ml/h) for 0.3 XG+T. 

When the volumetric flow rate of the dispersed phase is increased, more material is 

injected into the junction and the droplet formation time diminishes. At low values of dispersed 

flow rate the duration of the induction stage becomes long because a long time is needed to the 

droplet to penetrate the main channel. As the detachment of the droplet depends in the 

conditions shown in Figure 3.31 on the continuous flow rate, the breakup stage is more or less 

constant. 

In Figure 3.32 the droplet generation frequency obtained by using pure water as dispersed 

phase, linked to the inverse of the droplet generation time, is shown as a function of the 

dispersed volumetric flow rate. Each point has an error bar which shows the variation of the 

droplet frequency observed experimentally. This variation is essentially due to the duration of 
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the induction time interval which can vary from a droplet to another one under the same 

operative conditions. It is well evident that the induction time becomes extremely variable 

when low values of Qd are introduced into the junction. 

 

Figure 3.32. Frequency of the droplet f for various values of Qc and Qd for pure water (W) emulsions. 

 

Figure 3.33. Frequency of the droplet f for various values of Qd when Qc = 1, 2 and 4 ml/h; closed 

symbols represent 0.3 XG+T while open symbols stand for 0.5 XG+T. 

Figure 3.33 shows the droplet frequency as a function of Qc and Qd. obtained for two 
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Xanthan gum solutions (0.3 XG+T and 0.5 XG+T). It is evident that the frequency becomes 

more stable at low values of Qd; on the contrary, the frequency becomes variable at large values 

of Qc and Qd. due to the random breakup of the long thread between the nozzle and the droplet. 

It is interesting to observe that the droplet frequency obtained with Xanthan gum solutions is 

one order of magnitude lower than that obtained for water. 

3.3.1.3 Effect of Xanthan gum concentration 

 

Figure 3.34. Frequency of the droplet f as a function of Qc for 0.2 XG+T and 0.5 XG+T when Qd = 

0.1 ml/h. 

Figure 3.34 shows the frequency f of the droplet generation observed for 0.2 XG+T and 

0.5 XG+T as a function of Qc. The data of Figure 3.34 highlight that the difference in terms of 

frequency obtained by varying the Xanthan gum concentration from 0.2 wt% to 0.5wt% is 

limited. 

In summary, an increase of Qd generates more droplets and decreases the droplet 

formation time. On the other hand, it is found that an increase of Qc increases shear force and 

causes an earlier detachment of the droplet. As consequence, an increase of Qd or Qc will 

enhance the number of droplets generated per second (f).  The effect of the use of surfactant on 

the droplet frequency has been studied by comparing the data obtained for pure water droplets 

with those obtained by adding Tween 20 to water. The introduction of surfactant in water 

increases the droplet generation. By increasing the concentration of Xanthan gum, which is 
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equivalent to increase the viscosity of the dispersed phase, the number of droplets generated 

tends to decrease. Higher viscosity values contribute to obtain larger pressure values inside the 

thread, which opposes the thread breakup and is responsible of longer droplet time formation 

with respect to water Figure 3.28). 

3.3.1.4 Length of microthread 

In Figure 3.35 the dimensionless length of the microthread (  microL L H ) is plotted as a 

function of the flow rate ratio α for different concentrations of Xanthan gum. The thread is 

defined as the liquid connecting the droplet to the source of the dispersed fluid at the entrance 

of the junction and its length is reduced by increasing α; longer threads are obtained by 

introducing a large flow rate of the continuous phase and/or a lower flow rate of the dispersed 

phase. The microthread is transformed in satellite droplets after the breakup in non-Newtonian 

emulsions. If the dispersed flow rate introduced into the junction is low, the size of the 

secondary droplets is small.  

The error bars shown in Figure 3.35 highlight the variability of the thread length 

observed. 

 

Figure 3.35. Non-dimensional microthread length L  for three different concentrations of Xanthan 

gum solution as a function of the flow rate ratio α when Qd = 0.1 ml/h. 

Both Qc and Qd increase the length of the microthread before the breakup. An increase 
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of the dispersed flow rate moves the detachment point downstream of the junction. On the other 

hand, an increase of the continuous flow rate pushes the interface into the junction. In Table 3.7 

the values of microthread length as a function Qc when α increases are shown. 

A slight increase of the length of the microthread with an increase of the concentration 

of Xanthan gum can be observed due to the increase of the viscosity of the dispersed phase. 

Table 3.7. Length of microthread Lmicro (μm) as a function of flow rates of 0.3 XG+T and 0.5 XG+T. 

α 

 Qc = 1 ml/h  Qc = 2 ml/h 

 0.3 XG+T 0.5 XG+T  0.3 XG+T 0.5 XG+T 

0.01  146.85 151.19  182.57 213.41 

0.05  149.66 154.33  185.82 221.56 

 

 Breakup mechanism 

In this section a detailed analysis of the breakup mechanism observed at low Capillary 

numbers (low Qc and low Qd values) is reported. In this subsection the experiments have been 

carried out for the range of Capillary number (0.0032 ≤ Cac ≤ 0.0081) and flow rate ratio (0.1 

≤ α ≤ 0.5) in which squeezing mechanism is dominant. The analysis of the droplet breakup has 

been limited to low Capillary numbers in order to obtain the complete droplet detachment 

within the field of view of the microscope.  

The analysis of the dynamic evolution of the droplet interface during the breakup is 

important in order to better understand the physical mechanisms of the detachment. Despite 

some early work [17, 102, 103], the experimental investigation of the droplet breakup 

mechanism in cross-junctions has received a little attention. On the contrary, detailed 

information about this aspect can be very useful for the calibration of the numerical methods 

proposed for the analysis of droplet generation in micro junctions. 

Figure 3.36 shows the evolution of the interface between the immiscible liquids as a 

function of time for water and Tween 20 (W+T) as dispersed phase in a flow of silicone oil 

(continuous phase). Time is here indicated by considering as initial time the breakup (t = 0 ms). 

Negative times mean that the droplet is in formation process. In Figure 3.36a (t = − 46.4 ms) 
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the generation of a new droplet after the breakup of the previous one is started; when t = − 26.4 

ms the water droplet starts to penetrate into the exit arm of the junction (Figure 3.36b). 

Figure 3.36c represents the situation when the necking of the interface starts (at t = − 17.2 ms 

before the breakup). From this moment the neck connecting the droplet to the source of the 

dispersed phase gets thinner (Figure 3.36d). 

(a) t =  − 46.4 ms (b) t =  − 26.4 ms (c) t =  − 17.2 ms 

   

(d) t =  − 4.4 ms (e) t =  − 0.2 ms (f) t =  0 ms 

   

Figure 3.36. The necking in different moments when Cac = 0.0032 and α = 0.3. 

The minimum width reached by the water flow during the necking process is wmin = 40.97 

µm, and it occurs when t = − 0.2 ms (Figure 3.36e). wmin indicates the minimum neck of the 

water flow into the junction before the breakup. Figure 3.36f shows the rupturing moment of 

the droplet; the generated droplet goes downstream of the junction and the process is repeated 

to form a new droplet. 
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(a) 

 

(b) (c) (d) 

   

(e) (f) (g) 

   

Figure 3.37. (a) Evolution of minimum width wmin and the radius of curvature κ of water-oil interface 

and (b) − (g) necking to rupturing of a water droplet in oil flow when Cac = 0.0032 and α = 0.5. 

f 

b 
c 

d 

e 
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Thanks to the MATLAB code described in Section 2.6.4, the minimum width of the 

thread before the breakup has been calculated. The breakup mechanism can be divided in 

different stages as indicated in Figure 3.37 where the dynamic evolution of the thread thickness 

(w) and of the radius of curvature of the interface (κ) during the squeezing is shown as a 

function of time  After the penetration of the interface inside the outlet channel (Figure 3.37b), 

a very slow movement of the dispersed phase with a little change in minimum width of the 

thread is observed (Figure 3.37b-c). In the second stage a visible neck develops and the thread 

width is reduces approximately with a constant rate (Figure 3.37c-d). Now, the aqueous thread 

is entered inside the channel, the trend of the necking faces a slow variation (Figure 3.37d-e). 

There is a critical moment (in this case on t = − 2 ms, Figure 3.37e), in which the penetration 

of the interface accelerates and the thread reaches its minimum width in a very short period of 

time (Figure 3.37f). After the breakup (Figure 3.37g), the whole process starts again. On the 

contrary, the radius of the curvature shows an increasing behavior with time (Figure 3.37a) 

with a strong acceleration close to breakup. 

 

Figure 3.38. The characteristics of the channel and water-oil interface. 

By introducing tcom as the theoretical time required to the continuous phase to reach the 

center of the junction under a constant velocity equal to the velocity of the continuous phase at 

the inlets (Figure 3.38), one can easily find a relationship between the continuous volumetric 

flow rate and the width of the channel as follows: 

/2cQ /2cQ 

minw 

jW 
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com

c c

W W S
t

u Q
   (3-4) 

where S represents the area of the cross-section of the lateral arms of the junction. 

 

Figure 3.39. The trend of the variation in minimum width wmin and radius of curvature κ versus t when 

α = 0.5; open symbols correspond to wmin while closed symbols denote κ. 

 

Figure 3.40. The trend of the variation in minimum width wmin and radius of curvature κ versus τ when 

α = 0.5; open symbols correspond to wmin while closed symbols denote κ. 
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Figure 3.39 presents the evolution of the width and of the radius of curvature when 

Capillary number varies from 0.0032 to 0.0081. As anticipated, when w and κ are plotted versus 

time, with an increase of Cac the breakup time decreases but, despite the reasonable trend 

observed in Figure 3.39, the data are dispersed. In order to obtain a more general trend, it is 

possible to scale the time by using as characteristic time for this system tcom defined previously 

thanks to Equation (3-4); by using the non-dimensional time τ (
com

t

t
  ) it is possible to obtain 

a reduction of the dispersion of the data (Figure 3.40). 

 Geometry effects 

In order to highlight the effect of the junction geometry on the droplet characteristics a 

comparative study of pure water droplet generation in silicone oil flow has been made by using 

two commercial micro cross-junctions having a different junction geometry. In Figure 3.41 the 

geometry of the two junctions are shown; junction #1 is characterized by a gradual reduction 

of the width of the channels at the junction. On the contrary, junction #2 presents a smaller 

central region with a constant reduced width of the crossed channels at the junction. 

 

Figure 3.41. Junction geometry and channel dimensions. 

Table 3.8 summarizes the main geometrical characteristics of these two micro cross-

junctions. 
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Table 3.8. Characteristic values of the cross-junctions. 

Characteristic Junction #1 Junction #2 

Wj (μm) 195 105 

Ww (μm) 390 300 

H (μm) 190 100 

R = Wj/Ww 0.5 0.35 

Aj = H/Wj 0.97 0.95 

Aw = H/Ww 0.49 0.33 

 

3.3.3.1 Flow maps 

A series of experimental runs has been made in order to obtain a droplet regime map by 

using the two junctions with silicone oil used as continuous phase and pure water as dispersed 

phase. The map has been obtained by varying the volumetric flow rates of water (Qd) in the 

range 0.04 ≤ Qd ≤ 49 ml/h and the silicone oil flow rate (Qc) in the range 0.8 ≤ Qc ≤ 4.9 ml/h. 

(a) (b) 

  

  

Figure 3.42. Droplet flow regimes as a function of α; (a) channel #1 and (b) channel #2. 

Unstable Region 
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Figure 3.42a puts in evidence that, by changing αand Cac, it is possible to obtain with 

junction #1 all the three droplet regimes (Droplet formed at the Cross-Junction (DJ)), Droplet 

formed Downstream of the Channel (DC) and Parallel Flow (PF)) observed at low values of 

Cac. On the contrary, by using junction #2 the droplet is generally formed at the cross-junction 

for low values of Qd and Qc but for α > 1 an unstable region is observed (Figure 3.42b) where 

the repeatability of the experimental tests is weak. In that region, characterized by large values 

of α; it becomes impossible to generate droplets in a repeatable manner. The low value of R 

(see Equation ( 1-11)), characteristic of junction #2, helps to stabilize the squeezing region 

(which coincides with the DJ regime) by reducing the possibility to obtain droplets thanks to 

dripping. Junction #2 seems to be very efficient only at low values of Qd and Qc. 

3.3.3.2 Droplet size at low flow rate ratio 

Figure 3.43 shows another evident difference between the two junctions; junction #2, 

characterized by low values of the restriction ratio R, is able to generate smaller droplets thanks 

to the reduced dimensions of the central region of junction #2. In junction #2 the distance 

between the droplets and the channel walls is large; in this case the confinement effect of the 

channel walls on the droplet is lower than that obtained by using junction #1. 

(a) (b) 

  

  

Figure 3.43. Typical droplets generated by using: (a) junction #1 and (b) junction #2. 

R = 0.5 R = 0.35 
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These results show that the restriction ratio R of the junction is a parameter that can be 

used to promote the generation of smaller droplets thanks to squeezing at low values of both 

Qd and Qc. 

This conclusion is confirmed by the experimental data shown in Figure 3.44 where the 

non-dimensional diameter D* of the droplet is plotted as a function of the flow rate ratio (α) for 

both junction #1 (Figure 3.44a) and junction #2 (Figure 3.44b). For junction #2 the 

experimental data are obtained only for low values of flow rate ratio since the droplet 

generation is not stable and repeatable for α > 1. In junction #1 D* can be reduced only by 

increasing the Capillary number (Cac). 

(a) (b) 

  

  

Figure 3.44. D* as a function of the flow rate ratio (α) for different values of the Capillary numbers 

Cac; (a) junction #1 and (b) junction #2. 

The minimum width of the thread which connects the droplet to the source of the fluid 

(wmin) has been calculated by post-processing the images of the evolution of the interface 

between the immiscible liquids during the droplet formation. The value of wmin is obtained by 

measuring the minimum width of the thread before the droplet breakup. This value has been 

scaled on the total width of the junction in the central region (Wj). 
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Figure 3.45. The dimensionless minimum width as a function of α; open symbols correspond to the 

data for channel #1 while closed symbols denote of channel #2. 

Figure 3.45 presents the minimum width as a function of flow rate ratio (α) and of the 

Capillary number (Cac). It is evident that for α < 0.5 the minimum width is independent by α; 

on the contrary, wmin increases with Cac. In addition, wmin is larger for junction #2. 

In Figure 3.46 the dimensionless droplet diameter D* at low Capillary numbers (Cac < 

0.01) is shown as a function of the volumetric flow rate ratio. Since Qd affects the droplet 

volume through the formation time, especially at low flow rates, it can be concluded that both 

Qd and Qc influence the droplet size. A linear correlation in the form of (ε + ωα), where ε and 

ω are two fitting constants, is able to fit the experimental data. Although a general correlation 

could not be observed for all the experiments, as suggested by Garstecki et al. [41], there is a 

good agreement between data and the correlation if ε and ω are considered as a function of Cac. 

The correlations presented for junction #1 (Figure 3.46a) fit in a good way the results of 

channel #2 when Cac ˃ 0.0035 (Figure 3.46b). It is clear that, by increasing the Capillary 

number, the agreement between the experimental data obtained by using junction #2 and the 

correlations enhances. Figure 3.46 highlights that, although the Capillary number is not the 

dominant parameter in squeezing regime, it still influences the final droplet volume especially 

at low α values. 
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(a) (b) 

  

  

Figure 3.46. D* as a function of α for different Cac values; (a) junction #1 and (b) junction #2. 

(a) (b) 

  

  

Figure 3.47. Comparison between the power-law correlation (q Cac
x) and experimental data obtained 

for (a) junction #1 and (b) junction #2. 
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In Figure 3.47 a power-law correlation in the form of q Cac
x, proposed for T-junctions 

by many authors [39, 42, 57, 105, 106], has been used in order to fit the experimental data 

obtained with the two junctions. In agreement with the results presented by [39, 57] the power-

law exponent x is here taken equal to − 0.31. 

It is evident that the correlation able to fit in a good way the experimental data obtained 

with junction #1 tends to overestimate D* for junction #2. This result confirms that a junction 

having a low restriction ratio R tends to produce smaller droplets. R must be inserted in the 

correlation in order to take into account the effect of the junction geometry. 

In order to improve the agreement with the experimental data a new correlation is 

proposed in which both linear dependence on α and power-law dependence on Cac have been 

considered in Figure 3.48. 

(a) (b) 

  

  

Figure 3.48. Comparison between the new correlation (ε + ωα) Cac
x and experimental data obtained 

for (a) junction #1 and (b) junction #2. 

The new form of the correlation is the following: 
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 *    x

cD Ca  (3-5) 

By tuning the correlation with the experimental data obtained by using junction #1 ε, ω 

and x can be calculated in order to minimize the difference between the correlation and the 

data. The coefficients ε, ω and x are taken equal to 0.22, 0.11 and − 0.31, respectively. 

The proposed correlation seems to be able to predict qualitatively the trend of the 

experimental data but the agreement with the experimental data is different for junction #1 and 

junction #2.  

In order to take into account the effect of the different geometry of the junctions, a new 

definition of the Capillary number can be introduced (modified Capillary number Cam). By 

calculating the shear rate as G = ∆u/∆z, the modified Capillary number is defined as: 




m

Ga
Ca  (3-6) 

(a) (b) 

 

 

Figure 3.49. ∆z and a for (a) the junction used in this thesis and (b) a planar flow-focusing device [28]. 

This definition has been introduced for planar flow focusing devices in [116]. Here ∆z is 

the distance between the end of the dispersed phase inlet channel and the exit channel (see 

Figure 3.49a); a denotes the half-width of the microchannel in which the dispersed phase is 

2a 

∆z 
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introduced into the junction (Wd = 2a). In order to create a parallel between the planar flow 

focusing device geometry and the geometry of the junctions used in this thesis, in Figure 3.49 

z and a are shown for both the geometries. 

The modified Capillary number has been introduced in the correlation described by 

Equation (3-6). The results obtained with the correlation are compared to the experimental 

results obtained by testing junction #1 and #2 in Figure 3.50. It is possible to appreciate that 

the agreement between the correlation and the experimental data is slightly improved. 

(a) (b) 

  

  

Figure 3.50. Comparison between the new correlation (ε + ωα) Cam
x and experimental data obtained 

for (a) junction #1 and (b) junction #2. 

Another possible improvement of the correlation could be obtained by introducing the 

restriction ratio R in the correlation. However, the available experimental results obtained for 

two geometries are not enough in order to test a correlation in which R is introduced. A larger 

number of junction geometries is needed in order to test a correlation in which R is introduced. 

 

 



 

4 Chapter 4 

Experimental Investigation of Droplet Formation at a 

Micro T-Junction 

In this section the experimental investigation of the oil-in-water (O/W) droplet 

production by means of a micro T-junction is described. The experimental data are presented 

in absence and presence of the Tween 20 to highlight the influence of the surfactant on the flow 

regimes by varying the flow rates of the continuous and dispersed phase flows in a very wide 

range. 

It has been selected the face-to-face configuration of the T-junction (see Figure 1.2c) 

because this configuration is less studied than the others for droplet generation. The range of 

the flow rates imposed at the inlets of the junction is reported in Table 4.1. In this chapter the 

silicone oil (SO) droplets are being investigated within water (W) and water with surfactant 

(W+T) along with 0.2 wt% Xanthan gum aqueous solution with (0.2 XG+T) and without 

surfactant (0.2 XG) as the carrier medium through a glass microchannel, produced by 

Translume Co. described in Chapter 2 (Figure 2.7). All the properties of the liquids have been 

accurately measured and a detailed discussion about their characterization is reported in 

Chapter 2 (see Section 2.4). 

The glass surfaces of the chip are pure fused silica glass. Nonetheless the surface 

wettability is a strong function of both the channel material and the manufacturing procedure. 

As described in Chapter 2 (Section 2.3.2) the width (W) and height of the channel (H) are equal 

to 300 µm; therefore, the aspect ratio A (= H/W) and the width ratio Λ (= Wd/Wc) are equal to 

1. 
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Table 4.1. Range of volumetric flow rates α and Cac tested in T-junction. 

DP 

CP 

W W+T 0.2 XG 0.2 XG+T 

 

SO 

0.05 < Qd < 100 0.1 < Qd < 13 0.01 < Qd < 16 0.01 < Qd < 8 

2 < Qc < 120 1 < Qc < 25 1 < Qc < 30 0.5 < Qc < 20 

3E-4 < Cac < 7E-3 4E-4 < Cac < 1E-2 9E-3 < Cac < 34E-3 37E-3 < Cac < 13E-2 

0.01 < α < 2 0.1 < α < 3.5 0.01 < α < 5 0.01 < α < 4 

   

The kind of coating is not the best one in order to obtain O/W droplets because it is 

problematic to obtain a stable layer of continuous phase (water) close to the microchannel 

walls. In addition, face-to-face configuration tends to enhance the formation of a parallel co-

flow at the outlet of the junction and not droplets as needed. These conditions highlight that we 

are testing a configuration which is not optimized for the production of O/W droplets. The aim 

of the investigation is to study in which way it is possible to force to obtain droplets this 

configuration. 

4.1 Water without surfactant 

When pure water is introduced into the junction as the continuous phase, it is possible to 

observe that the generation of the microdroplets is not possible. This is due to the combination 

of the T-junction configuration (face-to-face) and of the coating of the walls. A co-flow in 

which two parallel flows (PF regime) fill the microchannel is generally observed at the outlet 

of the junction for a large range of volumetric flow rates of the continuous and dispersed 

phases. 

Figure 4.1 shows the parallel flow (PF regime) for two values of the continuous 

volumetric flow rate equal to 3 and 126.2 ml/h. It’s worth mentioning that Qc = 126.2 ml/h is 

the maximum volumetric flow rate reachable by the Cole-Parmer Version Hills syringe pump. 

Therefore, it clearly illustrates the main flow regime of the T-junction in a very wide range of 

volumetric flow rates. 
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(a) (b) 

  

Figure 4.1. Parallel flow obtained by introducing pure water and silicone oil in the micro T-junction 

when (a) Qc = 3 ml/h and Qd = 0.9 ml/h and (b) Qc = 126.2 ml/h, Qd = 15 ml/h. 

It is possible to measure the height of the two co-flow phases during parallel flow regime. 

By means of the acquired images of the parallel flow obtained at the outlet of the junction when 

Qc and Qd are fixed, it is possible to individuate the thickness of the two immiscible liquids (hc, 

hd) and of the interface, as indicated by Figure 4.2. It is important to observe that the thickness 

of the interface is not negligible; this is due to the curvature of the interface which assumes a 

non-planar configuration. 

 

Figure 4.2. A sketch with the indication of the height of the continuous (hc) and dispersed (hd) phase 

in a parallel flow. The interface thickness is highlighted. 

dh 

ch 
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In the current experimental runs the typical thickness of the interface is of the order of 

24 pixel which corresponds to a value of about 33 m. In a channel having a height of 300 mm 

the thickness of the interface represents 10% of the total channel height. 

In the current dissertation the whole thickness of the interface is considered into the 

continuous height (hc). In order to obtain a theoretical prediction of the dependence of hc and 

hd by the main governing parameters of the system which are: 

 The volumetric flow rate ratio (α = Qd/Qc) 

 The viscosity ratio (λ = μd/μc) 

In this case the viscosity ratio λ-1 (= µc/µd) is fixed by the choice of the immiscible liquids 

and it is equal to 0.0467 and the depth ratio (β-1 = hc/hd) associated to the parallel flow is a 

function of α (= Qd/Qc) only. The theoretical relationship between λ, β and α can be calculated 

by solving the balance of momentum equation for a parallel-plate channel in which two 

immiscible liquids flow in parallel. Under the action of a pressure gradient, the velocity profile 

within the layers can be obtained by using the momentum balance equation written as follows 

[117]. 

d P

dx l

 
  (4-1) 

where x is the distance from the channel walls and τ is the tangential shear rate, ∆P/l is the 

pressure gradient which pushes the fluids 

By integrating Equation (4-1) considering ∆P/l as a constant, it is possible to obtain a 

linear relationship between τ and the wall distance x: 

1

du P
x C

dx l
 

 
    

 
 (4-2) 

The constant C1 can be obtained by applying the no-slip boundary condition at the 

channel walls; in this way the dependence of τ by x and by the height of the continuous and 

dispersed layers can be obtained: 
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 (4-3) 

By considering the Newton law which correlates τ with the local velocity gradient it 

becomes possible to obtain the velocity profile within the two layers by integrating once more 

Equation (4-3) and by imposing the continuity of the velocity at the interface: 
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If the dispersed and the continuous phases have the same viscosity, the slit is half filled 

by each liquid and the velocity profile assumes the classic parabolic trend. 

For two fluids having a different viscosity the velocity profile is the combination of two 

parabolic profiles which have an angular point in correspondence of the interface. It is now 

possible to calculate the average velocity of the immiscible fluids as follows 

0 01 1
,

 
  c c d c

h hc c
c c

u v dx u v dx
h h

 (4-6) 

From the average velocity it is possible to obtain the continuous and dispersed flow rate 

per unit of length of the parallel plate channel as: 

, c c c d d dQ u Wh Q u Wh  (4-7) 

By introducing Equation (4-4) and (4-5) in Equation (4-7) the volumetric flow rates can 

be expressed as follows: 
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In this way, the volumetric flow rates are univocally linked to the thickness of the 

dispersed and continuous phase as well as to the viscosity of the immiscible liquids. 

By dividing Equation (4-8) with Equation (4-9) and recalling the definition of volumetric 

flow rate (α and viscosity ratio (λ), as well as the depth ratio (β) the following relationship is 

obtained: 
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 (4-10) 

It is important to observe that Equation (4-10) is valid for parallel plate channels which 

can be considered as a limit case obtainable with rectangular channels having a very large 

aspect ratio (H/W). In this case, since the channel cross-section is squared, Equation (4-10) can 

be considered as an approximation of the real link existing between β, α and λ.  

However, Equation ( 4-10) is important in order to know which relationship is 

theoretically foreseen among the governing parameters (α, λ) and the depth ratio β. Equation 

(4-10) can be used in order to obtain, by fixing α and λ, the value assumed by β. 

Now it is possible to compare the experimental results in terms of depth ratio β-1 obtained 

by varying α-1 with the theoretical predictions of Equation (4-10). In Figure 4.3 the comparison 

between the theoretical predictions of Equation ( 4-10) (dashed line) and the experimental 

values of β observed by varying the flow rates from 5 < Qc < 120 ml/h (0.00032 < Cac < 0.0076) 

and 5 < Qd < 100 ml/h (0.0065 < Cad < 0.131) is shown. 
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Figure 4.3. Comparison between the prediction of Equation (4-10) and the experimental results in 

terms of depth ratio β-1 as a function of α-1. 

The deviation between experimental and theoretical results increases at higher values of 

α-1 but when α-1 ≤ 2 and/or Cad = 0.026, a good agreement between experimental results and 

theoretical predictions may be seen, especially if one consider the uncertainty on experimental 

evaluation of β. The same comparison has been made in Figure 4.4 in terms of hc and hd. 

(a) (b) 

  

Figure 4.4. (a) Depth of the continuous phase hc and (b) of the dispersed phase hd compared with the 

theoretical predictions of Equation (4-10). 
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In order to obtain for the T-junction the dependence of the activated flow patterns on the 

value of the volumetric flow rate (α) and of the Capillary number linked to the continuous 

phase (Cac), a series of experimental tests have been made by varying the values of the imposed 

volumetric flow rates of the continuous and of the dispersed phase introduced in the T-junction. 

For each combination (α, Cac) the droplet regime (if any) has been observed (DJ, DC or PF) 

and indicated in the flow pattern map shown in Figure 4.5. 

 

Figure 4.5. Droplet regimes as a function of flow rate ratio α and of Cac for silicone oil droplets in 

pure water. 

It is interesting to note that the generation of the droplets takes place for this T-junction 

configuration (face-to-face) only at very high values of the continuous flow rates (large Cac) 

and low flow rate ratio (α < 0.15). An increase of the continuous flow rate while the dispersed 

phase flow rate is fixed causes droplet formation at the junction (DJ regime). 

For low values of α (< 0.15) and large continuous flow rates a critical value of the water 

flow rate exists above which the droplet generation begins. With the increase of water flow 

rate, in some cases, the generation of the oil droplets could be observed due to the high 

difference between the flow rates. As depicted in Figure 4.5 droplet generation starts only when 

Qc > 80 ml/h (Cac > 0.0051) but for Qd = 10 ml/h (Cad = 0.0131), the droplet appears when Qc 

> 60 ml/h (Cac > 0.0038). With the increase of Qd, the transition between droplet-based flow 

and parallel flow cannot be observed due to the increase of oil flow which cannot be pinched-
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off by the continuous phase. 

In Figure 4.6 it is shown the droplet formation obtained by imposing a large values of 

the water flow rate at the inlet (Qc = 85 ml/h) for a low value of α (= 11). In these conditions 

the droplets are very fast and their observation becomes problematic also with a speed camera. 

Droplets are obtained thanks to the large continuous flow rate which squeezes the dispersed 

phase against the corner of the T-junction. 

 

Figure 4.6. The generation of a silicone oil droplet at large values of Qc obtained by squeezing by 

using pure water as continuous phase. 

It is possible to conclude that the face-to-face T-junction configuration, combined with a 

hydrophobic coating of the channel walls, can be recommended only if the goal is to obtain 

parallel co-flows at the exit of the junction and not droplets. As an example, a controlled 

parallel flow is desired in a series of applications like micro fuel cells in order to avoid the use 

of membranes between the two phases.       

In this case a controllable co-flow can be easily produced by changing the volumetric 

flow rate ratio (α) of the immiscible liquids introduced in the junction as well as their viscosity 

ratio (λ). The cross-section geometry of the channels plays a role on the depth ratio because the 

length of the wetted perimeter can change the thickness of the co-flow layers. 
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4.2 Water with surfactant 

In order to obtain droplet with the configuration of the T-junction used in these 

experimental tests, the value of the interfacial tension σi (= σll) between the immiscible liquids 

must be strongly reduced. This can be obtained by adding Tween 20 to water. 

 (a) (b) 

0 wt% Tween 20 

  

1 wt% Tween 20 

  

2 wt% Tween 20 

  

Figure 4.7. Effect of Tween 20 on the flow pattern (a) at the junction and (b) downstream of the 

junction in the absence as well as two different concentrations of Tween 20 

Figure 4.7 clarifies the effect of Tween 20 on the emulsion of silicone oil in water. The 

images of Figure 4.7 highlight that, by tuning σ, it is possible to change the flow pattern of the 

two-phase flow from parallel flow (PF) to droplet-based flow. In fact a reduction of the 

interfacial tension enhances the droplet formation by reducing the interfacial forces between 
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the immiscible liquids. In Figure 4.7 the flow pattern obtained in correspondence of two 

different positions along the outlet arm of the T-junction (close to the junction (Figure 4.7a) 

and far from the junction (Figure 4.7b)). The images have been obtained by imposing at the 

inlets a value of Qc = 25 ml/h and Qd = 5 ml/h. 

It is evident that, for the same value of the viscosity ratio (λ) and volumetric flow rate 

ratio (α) different flow patterns can be obtained at the outlet of the T-junction by introducing 

Tween 20 in the continuous phase (water). A concentration of 2% in weight of Tween 20 in 

water is able to reduce the interfacial tension between the continuous and the dispersed phase 

from 42.44 mN/m down to 8 mN/m (see Table 2.4 in Section 2.4.3). This strong reduction of 

the interfacial tension increases the value of the Capillary number associated to both continuous 

and dispersed phase and triggers the droplet-based flow. From the images of Figure 4.7 it is 

evident that the effect of a variation of the Tween 20 concentration from 1 wt% to 2 wt% on 

the droplet size can be considered negligible. 

This fact can be explained by observing that the Tween 20 concentrations used in these 

tests (> 1%) are larger than the critical micelle concentration (CMC) value of Tween 20 in 

water, which is equal to 0.0074 wt% [99]. When a surfactant concentration larger than the 

CMC value is used the interfacial tension reaches a stable minimum value which is no more 

influenced by the surfactant concentration. For this reason the droplet-based flow is 

independent on the surfactant concentration in water. 

 Flow map 

Droplet formation can be obtained, at low flow rates, in two distinct way: the droplet is 

obtained by squeezing the dispersed flow against the corner of the T-junction (DJ regime) or 

by inducting the droplet breakup far from the junction (DC regime). 

In Figure 4.8 these two modes are clearly illustrated by the sequence of images acquired 

by fixing the continuous flow rate (Qc = 3 ml/h) and by increasing the dispersed flow rate from 

0.3 ml/h up to 5.1 ml/h. 
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DJ (Qc = 3 & Qd = 0.3 ml/h) DC (Qc = 3 & Qd = 3 ml/h) PF (Qc = 3 & Qd = 5.1 ml/h) 

   

   

   

   

Figure 4.8. Images sequence obtained by fixing Qc = 3 ml/h and by varying Qd from 0.3 ml/h (a) to 3 

ml/h (b) to 5.1 ml/h (c). 

For low values of Qd (α = 0.1), the detachment of the droplet occurs at the junction (see 
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Figure 4.8a) thanks to the action of the continuous phase which squeezes the dispersed phase 

against the corner of the T-junction (DJ regime). The droplet formation and breakup 

mechanism is dictated by the pressure drop force and the interfacial tension between the 

immiscible liquids. Since the shear force is negligible, the interface enters the main channel 

and blocks the whole channel; when the increased upstream pressure overcomes the pressure 

of the dispersed phase, the continuous phase displaces the droplet downstream, stretches the 

interface and finally squeezes the neck which leads to the generation of the droplet. 

When the dispersed phase introduced in the junction increases (α = 1 in Figure 4.8b), the 

continuous phase is not able to squeeze the dispersed phase at the junction; the dispersed phase 

fills a large part of the junction and the continuous phase is forced to go through a restricted 

portion of the exit cross-section. This fact increases the pressure which is responsible of the 

droplet breakup which occurs far from the junction (DC regime). If the flow rate of the 

dispersed phase introduced in the junction is further increased (α = 17 in Figure 4.8c) the 

continuous flow is so low that it is no more able to create the droplet breakup. In these 

conditions a stratified parallel flow (PF regime) is observed at the outlet of the junction.    

The images of Figure 4.8 highlight that droplet formation regime is strongly influenced 

by the flow rate ratio α. 

In order to obtain for the T-junction the dependence of the activated flow patterns on the 

value of the volumetric flow rate (α) and of the Capillary number linked to the continuous 

phase (Cac) a series of experimental tests have been made by varying the values of the imposed 

volumetric flow rates of the continuous and of the dispersed phase introduced in the T-junction. 

For each combination (α, Cac) the droplet regime has been observed (DJ, DC or PF) and 

indicated in the flow pattern map shown in Figure 4.9. 

In this way it becomes possible to know which kind of droplet regime is activated for 

fixed operative conditions of the T-junction. 

By observing Figure 4.9 it is clear that squeezing mechanism, which causes the droplets 

breakup at the junction (DJ regime), is met only by using the T-junction at low values of α (< 

0.5). For a fixed Capillary number, by increasing α; the droplet is found to pinch-off 

downstream along the exit channel (DC regime) forming an unstable thread. The breakup point 

further moves downstream with a further increase of α. Droplet generation ceases when the 
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flow rate ratio overcomes a critical value (αcr) which depends on the Capillary number. 

 

Figure 4.9. Droplet regimes as a function of flow rate ratio α and of Cac for silicone oil droplets in 

water with the addition of Tween 20 (2 wt%). 

Larger values of Cac means lower values of αcr; this fact underlines that is more difficult 

to obtain a droplet-based flow at the exit of the junction if large values of Cac are considered. 

Also the transition from DJ to DC regime is influenced by Cac; larger Cac values 

anticipate the transition between DJ and DC regime. 

In addition, it’s worth mentioning that the distance between two neighboring droplets 

decreases with higher α values. 

In fact, when the continuous phase flow rate increases the continuous flow rate is strong 

enough to detach the droplets, due to the effect of the shear force. The results shown in 

Figure 4.9 are similar to those reported by Guillot and Colin [118]. Similar results have been 

obtained by Tan et al. [105] and Liu and Zhang [39] numerically. 

 Effect of Cac and Qd 

In this section, the non-dimensional lengths of the droplets, defined as the ratio of the 

droplet length to the height of the channel L̅ = L/H, for droplets generated under DJ or DC 
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regimes are presented. Figure 4.10 shows the trend of L̅ with α for fixed values of Cac. 

 

Figure 4.10. Non-dimensional length of the droplets as a function of flow rate ratio α for different 

continuous Capillary numbers Cac 

An increase of the flow rate ratio α while Qc is kept constant means a larger introduction 

of dispersed phase into the junction. In this case larger droplets are produced (Figure 4.10). 

The evolution of the interface between the immiscible liquids is shown by imposing a 

fixed value of the continuous flow rate at the inlet (Qc = 3 ml/h) and three different values of 

Qd equal to 0.3 ml/h (Figure 4.11a), 1.5 ml/h (Figure 4.11b) and 2.4 ml/h (Figure 4.11c). 

Higher values of Qd are responsible of longer filaments between the droplet and the 

source of dispersed material before the breakup (DC regime). It is possible to observe that 

distance from the junction in correspondence of which the droplet breakup occurs, moves 

downstream of the junction if Qd increases. The larger Qd, the longer filament may be observed 

and this trend continues till the critical value of α is reached for which no droplet-based flow 

is observed (PF regime). 

In addition, an increase of Qd is responsible of longer droplets because the droplet 

formation time becomes longer in DJ regime because of the blockage of the channel that occurs 

at low flow rates. For this reason, the droplet volume is strongly affected by Qd in the squeezing 

regime and low continuous flow rates. 
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Figure 4.11. Effect of Qd (ml/h) on the transition between DJ and DC regime. 

On the contrary, in DC regime with the increase of Qc the droplet formation time (filling 

stage) decreases significantly. Therefore, it is clear that an increase of Qc has a reduced 

influence on the droplet formation time and hence on the droplet volume.  

It is interesting to note that at high continuous flow rates, the increase of α (Qd) does not 

influence the droplet volume significantly and it confirms the idea that the dispersed flow rate 

affects the droplet volume through the formation time, so it is able to influence the droplet 

volume especially at low continuous flow rates.  

 

Figure 4.12. Non-dimensional droplet length as a function of α for both DJ and DC regimes. 
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The increase of the droplet volume in DC regime, for a fixed value of Qc, is mainly due 

to the increase of the length of the thread between the droplet and the source of the dispersed 

phase. With the increase of α, the increase of the droplet length is larger in DJ regime than in 

DC regime; this is confirmed by the experimental data shown in Figure 4.12. 

In Figure 4.13 a linear correlation between the droplet length and the volumetric flow 

rate ratio is used in order to fit the experimental data obtained for DJ regime  (L̅ = ε + ωα); this 

correlation is based on the squeezing model proposed by Gartseki et al. [39]. ε and ω are two 

fitting constants which depend on the channel geometry [44] and flow configuration.   

 

Figure 4.13. Dimensionless plug length as a function of α for DJ regime. 

In Figure 4.13 each experimental point is coupled to a Y-bar with shows the typical 

variability of the droplet lengths observed experimentally. Y-bar increases with the increase of 

the flow rate ratio. 

 In Figure 4.14 the non-dimensional length of the droplets is given as a function of the 

continuous Capillary number (Cac) for fixed values of α. These results confirm, as highlighted 

by other researchers for different flow configurations [39, 42, 44], that L̅ is also influenced by 

the Capillary number and for this reason a power-law dependence of the droplet length on Cac, 

can be useful in order to obtain a more precise characterization of the droplets generated. 
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Figure 4.14. Non-dimensional length of the droplets as a function of Cac for different values of α for 

DJ regime. 

With the aim to improve the correlation for the prediction of the dimensionless droplet 

length, the dependence of the dimensionless droplet length on the continuous Capillary number 

Cac is used in order to fit the experimental results. 

 

Figure 4.15. Comparison between the power-law correlation of Equation (4-11) and the experimental 

data obtained. 
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The proposed correlation adopts the same expression originally presented by Christopher 

et al. [57] in the form of: 

x

cL qCa  (4-11) 

The experimental results obtained in this work by using T-junction under opposed-flow 

configuration suggest to use 0.3,x    in agreement with Christopher et al. [57]. Figure 4.15 

confirms that this correlation is able to better predict the trend of droplet length as a function 

of Cac evidenced by the experimental data. 

 Breakup distance 

Thanks to the detailed images obtained during the droplet formation with the speed 

camera, especially for low values of the continuous and dispersed flow rates, an investigation 

about the dependence on the main operative parameters (α, Cac) of the length of the thread 

which connects the droplet to the source of the dispersed phase in DC regime has been 

conducted. This kind of information, very useful for the tuning of the numerical models 

devoted to the analysis of droplet-based flows in microdevices, has received until now a scarce 

attention in the open literature. 

 

Figure 4.16. Typical shape assumed by the interface in DC regime before the droplet breakup and 

definition of xbreakup. 

In Figure 4.16 the typical shape assumed by the interface before the droplet breakup in 

breaakupx 
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DC regime is show. By post-processing the images acquired with the speed camera, it is 

possible to obtain the distance (xbreakup) from the corner of the junction in correspondence of 

which the droplet breakup occurs with the crash of the filament which link the droplet to the 

source of dispersed phase. In Figure 4.16 the image of the interface before the droplet breakup 

is shown; xbreakup is extracted by the image by considering the distance between the corner of 

the junction and the position in which the thread assumes its minimum width (Figure 4.16). 

The position of the minimum width of the thread is obtained by MATLAB thanks to the 

reconstruction of the interface by using the procedure described in Section 2.6.4. 

In Figure 4.17 the values of xbreakup are shown as a function of the flow rate aspect ratio 

(α) for a fixed value of the Capillary number (Cac). It is evident that the breakup distance 

increases with αThis fact can be explained by considering that, for a fixed Cac, a larger value 

of α means more dispersed fluid introduced in the junction; if the dispersed phase flow rate 

increases, for the continuous phase becomes more difficult to induce the droplet breakup and 

the length of the filament produced before the droplet detachment increases. Of course, a longer 

filament means a longer droplet formation time. In addition, it seems that, for α > 1 the increase 

of the breakup distance when α is increased becomes more significant, especially at low Cac. 

 

Figure 4.17. Breakup distance xbreakup as a function of the flow rate ratio α for fixed values of the 

Capillary number Cac. 

From Figure 4.17 is also evident that an increase of the breakup distance can be obtained 
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by increasing the Capillary number linked to the continuous phase. This fact can be explained 

by considering that an increase of the continuous flow rate introduced in the junction is 

responsible of an increase of the shear force effects which contribute to elongate the filament 

before the droplet detachment. 

 Polydispersity 

With the aim to individuate in which operative conditions, in terms of α and Cac, for a 

fixed value of viscosity ratio (in this case, λ-1 (= µc/µd) equal to 0.047), the T-junction in 

opposed-flows configuration can be used in order to obtain at the outlet of the junction a 

monodispersed emulsion, the droplets have been analysed in order to obtain the value of 

polydispersity Pl which characterize the droplet set observed at the exit of the junction for each 

set of (α, Cac) values. The definition of polydispersity Pl is given by Equation (2-10). 

The results have been organized in a 2D plot in which the value of Pl is shown as a 

function of α and Cac. The results refer to an O/W emulsion in which silicone oil droplets are 

obtained in a carrier medium of water with the addition of a concentration of 2% in weight of 

Tween 20 (W+T). 

By observing the polydispersity values associated to the droplets generated with the T-

junction in opposite flow configuration it is evident that droplets can be generated at low Cac 

(≤ 0.01) with a low value of polydispersity Pl (< 4%) when the volumetric flow rate ratio α 

ranges between 0.1 and 0.5. This result highlights that in this region the T-junction is able to 

guarantee the generation of a monodispersed emulsion.  

On the contrary, for values of α larger than 0.5 (0.5 < α < 1.1), only for low values of Cac 

(Cac ≤ 0.004) the polydispersity can be maintained lower than 4 %. 

Another general observation which confirms the results already presented for a micro 

cross-junction (see Figure 3.8) is that polydispersity tends to increase significantly in 

correspondence of the transition region between droplet-based regime and parallel flow regime. 

This fact becomes clear by comparing Figure 4.18 with the flow map of Figure 4.9. It is evident 

that the droplet formation becomes unstable in correspondence of the region in which the 

droplet-based regime is changing in parallel flow; as consequence, the emulsion is formed by 

droplets with a variable length and with a non-uniform frequency since the droplet formation 
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time becomes unstable 

 

Figure 4.18. Polydispersity Pl of silicone oil droplets in water with 2 wt% of Tween 20 as a function 

of α and Cac. 

It is possible to conclude the analysis of the behavior of a T-junction in opposite-flow 

configuration by observing that: 

 This configuration allows to obtain a droplet-based flow at the exit of the junction 

only if the interfacial tension between the immiscible liquids is low; this is the 

reason for which this configuration is generally used for bubble formation. 

 For O/W emulsions, hydrophilic coatings have to be preferred in order to obtain 

more stable emulsions. 

 With the introduction of surfactants which reduce the value of the interfacial 

tension between the immiscible liquids introduced in the junction, the T-junction 

in opposite-flow configuration can generate a droplet-based flow by squeezing 

(DJ regime) and by dripping or jetting (DC regime). 

 The T-junction in opposite-flow configuration can be used in order to generate 

monodispersed emulsions but in this case it is better to work with low values of 

the Capillary number linked to the continuous phase (Cac < 0.01) and low flow 

rate ratio (α < 0.5). 
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4.3 Droplets in Newtonian and non-Newtonian carrier medium by a 

new microchannel 

In the rest of this chapter a new micro T-junction having the same geometrical 

characteristics of the T-junction tested in the previous sections, purchased from the same 

manufacturer (Translume Co.), has been used both with non-Newtonian and Newtonian 

dispersed phases. 

 Droplet-based flow regime 

The second T-junction has been tested by varying Qc and Qd at the inlets for four different 

continuous phases (pure water (W), water with Tween 20 (W+T), aqueous Xanthan gum 

solution without (0.2 XG) and with Tween 20 (0.2 XG+T)). The range of volumetric flow rate 

of the continuous phase tested is reported in Table 4.2 with the corresponding rage of the 

continuous Capillary number (Cac). In general, for a fixed value of the volumetric flow rate of 

the dispersed phase, by increasing the value of the continuous flow rate Qc a transition from 

DJ regime to DC regime occurs at lower values of α for non-Newtonian fluids with respect to 

Newtonian carrier medium. 

Table 4.2. Range of volumetric continuous flow rate Qc with the corresponding Cac. 

Continuous Phase 

W W+T 0.2 XG 0.2 XG+T 

2 < Qc < 30 ml/h 2 < Qc < 20 ml/h 1 < Qc < 30 ml/h 0.5 < Qc < 20 ml/h 

0.00012 < Cac < 0.0019 0.0008 < Cac < 0.008 0.009 < Cac < 0.034 0.037 < Cac < 0.129 

 

  In Figure 4.19 the observed droplet regimes are depicted as a function of flow rate ratio 

α and of the continuous Capillary number Cac. It is evident that an increase of the continuous 

Capillary number Cac reduces the critical value of the flow rate ratio αcr in correspondence of 

which the transition from DJ to DC regime occurs. For non-Newtonian continuous fluids, the 

continuous Capillary number increases significantly due to the higher values of the fluid 

viscosity.  
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(a) (b) 

  

(c) (d) 

  

Figure 4.19. Droplet flow maps for silicone oil (SO) droplets  as a function of flow rate ratio α and 

Capillary number Cac in hydrophilic T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 XG+T 

as the continuous phase. 

Unlike the first T-junction in which only a parallel flow regime was observed without 

the use of Tween 20 in the continuous phase (see Figure 4.5), by using the second micro T-

junction silicone oil droplets are generated in presence of both pure water (W) and 0.2 wt% 

aqueous Xanthan gum solution without surfactant (0.2 XG) as carrier medium. 

This result puts in evidence that the walls of the second T-junction justify a different 

value of the solid-liquid interfacial tension with respect to the first T-junction. In fact, as 
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highlighted by Shui et al. [32], unlike macroscopic systems, solid-liquid interfacial tension σsl 

plays a predominant role in droplet generation in microjunctions; on the contrary, liquid-liquid 

interfacial tension σll, which can be modified by addition of surfactant, plays a secondary role. 

The experimental observations about the droplet regimes obtained in these two micro T-

junctions can be explained by assuming that the walls of the first micro T-junction are 

hydrophobic while the walls of the second one are hydrophilic. 

In presence of surfactant, comparing Figure 4.9 with Figure 4.19b, one can observe that 

the same trend of the droplet regimes are observed for the two micro T-junctions tested with 

Water with 2 wt% Tween 20 (W+T). 

By recalling the definition of squeezing, dripping and jetting regimes, as explained in the 

previous sections, the droplet-based flows can be divided on the basis of the observation of the 

droplet breakup mechanism. 

 

Figure 4.20. Squeezing regime for silicone oil (SO) droplet in 0.2 wt% Xanthan gum solution with 2 

wt% Tween 20 (0.2 XG+T) when Qc = 0.5 and Qd = 0.05 ml/h. 

The breakup mechanism changes by varying the continuous (Qc) and/or the dispersed 

flow rate (Qd); at low flow rates the droplet almost blocks the whole channel in squeezing 

regime (see Figure 4.20) whilst with the increase of the continuous flow rate the size of the 

microdroplet is reduced (Figure 4.21a). On the other hand, an increase of the dispersed flow 

rate moves the droplet generation downstream the T-junction (Figure 4.21b). 

 



Experimental Investigation of Droplet Formation at a Micro T-Junction 165 
 

 

 

(a) (b) 

  

Figure 4.21. Dripping regime for silicone oil (SO) droplet in 0.2 wt% Xanthan gum solution with 2 

wt% Tween 20 (0.2 XG+T) when (a) Qc = 5 and Qd = 0.05 ml/h and (b) Qc = 2 and Qd = 2 ml/h. 

A further increase of the flow rates can generate the jetting regime (JR). In jetting regime 

a stable jet close to the junction is observed (Figure 4.22a) while the unstable region of the jet 

is placed downstream the T-junction (Figure 4.22b). 

(a) (b) 

  

Figure 4.22. Jetting regime for silicone oil (SO) droplet in water with 2 wt% Tween 20 (W+T) when 

Qc = 2 and Qd = 4 ml/h; (a) at the junction and (b) downstream of it. 

When the dispersed flow rate is very large jetting regime cannot be obtained and a stable 
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co-flow (parallel flow regime) is observed without droplet formation. 

(a) (b) 

  

(c) (d) 

  

Figure 4.23. Droplet breakup mechanism for silicone oil (SO) droplets  as a function of flow rate ratio 

α and Capillary number Cac in hydrophilic T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 

XG+T as the continuous phase. 

Figure 4.23 illustrates the dependence of the droplet breakup on the combination of 

volumetric flow rates. Keeping the continuous flow rate constant (Cac = Const.), one can see 

the transition of the flow regimes starting from squeezing (SR) to dripping (DR) and jetting 

(JR) by increasing the dispersed flow rate and hence α (= Qd/Qc). As described in the previous 

sections, transition from a droplet regime to another one can be also obtained by increasing the 
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continuous Capillary number for a fixed value of the flow rate ratio α. In presence of a non-

Newtonian carrier medium the transition from SR to DR is also observed at low values of α 

when Qc is increased (see Figure 4.23c and d). 

In order to take into account the effects of both continuous and dispersed phase Capillary 

number (Cac, Cad), the flow regimes for the silicone oil droplets within non-Newtonian carrier 

fluids (0.2 XG and 0.2 XG+T) have been re-plotted in a plane as a function of continuous (Cac) 

and dispersed Capillary number (Cad). 

(a) (b) 

  

Figure 4.24. Droplet breakup mechanism for silicone oil (SO) droplets as a function of dispersed Cad 

and continuous Capillary number Cac in hydrophilic T-junction with (a) 0.2 XG and (b) 0.2 XG+T as 

the continuous phase. 

Figure 4.24 shows that the variation of the flow regimes can be easily recognized by 

using a (Cad, Cac) plot. The results obtained with the T-junction are similar to those observed 

for a cross-junction (see Chapter 3) and reported in literature [50]. As expected, an increase of 

Cad or Cac causes the flow regime transition from SR to DR and JR. It’s worth mentioning that 

in presence of a Newtonian continuous phase, an increase of volumetric flow rate (Qc) is 

responsible of the increase of the Capillary number with a constant viscosity ratio λ. On the 

contrary, in presence of non-Newtonian continuous phase an increase of volumetric flow rate 

(Qc) is responsible of an increase of the continuous Capillary number as well as of the viscosity 

ratio λ due to the viscosity μ change. The use of a (Cad, Cac) plot is able to take into account 

the combined effects on the droplet regimes of the variation of Cac, α and λ. 
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4.3.1.1 Effect of α and Cac 

In Figure 4.25 the non-dimensional length L̅ of the silicone oil droplets within the micro 

T-junction filled with water without and with Tween 20 (W, W+T) as well as in presence of 

0.2 wt% aqueous Xanthan gum solution with and without Tween 20 (0.2 XG+T, 0.2 XG) is 

plotted as a function of flow rate ratio α. 

(a) (b) 

  

(c) (d) 

  

Figure 4.25. Non-dimensional length L̅ of the silicone oil (SO) droplets as a function of flow rate ratio 

α in hydrophilic T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 XG+T as continuous phase. 

Figure 4.25a shows that, in presence of pure water (W) as continuous phase, scattered 
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values of the non-dimensional length L̅ of the silicone oil droplets are obtained in comparison 

with the other results (Figure 4.25b, c and d). 

As one knows, longer droplets are produced by increasing α (= Qd/Qc). As evidenced by 

Garstecki et al. [41], although the droplet length tends to increase with α, the slope of the 

variation of the droplet length varies with α. In Figure 4.25 two linear correlations having the 

conventional expression suggested by Garstecki et al. [41] (L̅ = ε + ωα) for the droplet length 

L̅ and the flow rate ratio are used to correlate the experimental data for DJ and DC regimes. As 

explained in Section 4.2.2, ε and ω are two fitting constant. The increase of the droplet volume 

in DC regime is originated by the absorption of the longer thread before the droplet detachment. 

The dimensionless length of the droplet as a function of Cac is plotted in Figure 4.26. A 

power-law correlation in the form of x
cL qCa  has been used in order to fit the experimental 

data. Figure 4.26 confirms that this correlation is able to predict the droplet size as a function 

of Capillary number in the range of the values of α imposed during these tests with a good 

accuracy when 0.3x   for Newtonian carrier medium (in agreement with Figure 4.15) or 

0.5x   for non-Newtonian continuous phase. The data confirm that the non-Newtonian 

nature of the continuous phase affects the dependence of the droplet length on the continuous 

Capillary number Cac. 
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(a) (b) 

  

(c) (d) 

  

Figure 4.26. The power-law correlation fitted to the experimental data for different values of α as a 

function of Cac in hydrophilic T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 XG+T as the 

continuous phase. 

Figure 4.27 shows how the non-dimensional length of the silicone oil droplet varies with 

continuous Capillary number Cac and flow rate ratio α when water with 2 wt% Tween 20 

(W+T) is considered as continuous phase.  

At low values of the flow rate ratio α (< 0.5), almost identical values for dimensionless 

droplet length may be observed for the two T-junctions tested in this work. On the contrary, 

the data scattering increases in correspondence of larger values of α due to the coalescence of 
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the droplets when larger values of the dispersed flow rate are introduced into the junction. 

 

Figure 4.27. The non-dimensional length of the silicone oil microdroplets in water with Tween 20 

(W+T) as carrier medium; closed symbols represent the first T-junction (hydrophobic) while open 

symbols stand for the second T-junction (hydrophilic). 

4.3.1.2 Breakup distance 

As explained in previous section (see Figure 4.17) the breakup position of the immiscible 

thread (xbreakup) increases with the increase of the flow rate ratio (α) for a fixed value of the 

Capillary number (Cac). The same trend may be observed by increasing the values of 

continuous Capillary number. In fact, an increase of Cac causes an increase of the shear force 

which acts on the dispersed phase by elongating the thread between the droplet and the nozzle 

before the breakup. 

The breakup distance of the thread from the junction has been presented in Figure 4.28 

for the silicone oil (SO) droplets in pure water (W), water with 2 wt% Tween 20 (W+T) and 

0.2 wt% aqueous Xanthan gum solution in the absence and presence of 2 wt% Tween 20, 0.2 

XG and 0.2 XG+T, as the continuous phase.  

At low values of the continuous Capillary number Cac and/or low flow rate ratio α, the 

droplet pinch-off occurs close to the center of the T-junction while by increasing α or Cac the 

breakup position tends to move downstream of the junction. 
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(a) (b) 

  

(c) (d) 

  

Figure 4.28. The breakup distance from the junction for different values of α as a function of Cac in 

hydrophilic T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 XG+T as the continuous phase. 

4.3.1.3 Polydispersity 

The variation of the diameter of the silicone oil droplets generated in the T-junction have 

been analysed in order to obtain the value of polydispersity Pl. The definition of polydispersity 

Pl is given by Equation (2-10). 

The polydispersity values obtained for silicone oil emulsions generated in both 

Newtonian (W, W+T) and non-Newtonian (0.2 XG, 0.2 XG+T) carrier fluids have been shown 
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as a function of α and Cac in Figure 4.29. 

(a) (b) 

  

(c) (d) 

  

Figure 4.29. The polydispersity Pl values for different values of α as a function of Cac in hydrophilic 

T-junction with (a) W, (b) W+T, (c) 0.2 XG and (d) 0.2 XG+T as the continuous phase. 

It is evident that droplets generated in Newtonian continuous phase of pure water (W) 

and water with 2 wt% Tween 20 (W+T) are characterized by low values of polydispersity Pl 

(< 5%) when the continuous Capillary number Cac is lower than 0.008. This result highlights 

that in this region the T-junction can be used in order to generate monodispersed emulsion. On 

the contrary, for non-Newtonian fluids the values of polydispersity Pl show a larger scattering 

and the generation of monodispersed droplets can be obtained for larger values of either 
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Capillary number Cac or volumetric flow rate ratio α. 

Comparing Figure 4.18 and Figure 4.29b it is possible to conclude that in presence of 

hydrophilic walls the region in correspondence of which the generation of monodispersed 

droplets is obtained is enlarged with respect the same T-junction geometry with hydrophobic 

walls. Figure 4.29 confirms that in non-Newtonian carrier fluids the polydispersity Pl is within 

the range of (Pl < 2%) in correspondence of all the Capillary numbers tested in this work in 

presence of hydrophilic walls. At high values of the Capillary number, polydispersity tends to 

increase if α is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 Chapter 5 

Conclusions and Recommendations for Future Work 

In this dissertation an experimental analysis of the use of microjunctions for droplet 

generation is described. The analysis has been focused on two types of micro cross-junctions 

and a T-junction under opposite-flow configuration by using different liquids (Newtonian and 

non-Newtonian) as dispersed and continuous phase. The main goal of this thesis is the 

systematic analysis of the influence of the main control parameters (i.e. flow rates, viscosity 

ratio, geometry of the junction, continuous and dispersed Capillary numbers) on the 

characteristics of the droplet-based flow generated at the outlet of the microdevice. Since the 

topic has been extensively investigated in the past and many results are available in the open 

literature, the attention of this thesis has been focused on a series of aspects disregarded until 

now, like, among others, the following: 

 The role of the viscosity ratio on the droplet formation in presence of non-

Newtonian fluid; 

 The use of T-junctions in opposite-flow configuration for generation of 

monodispersed emulsions in presence of Newtonian and non-Newtonian 

continuous phases; 

  The detailed experimental analysis of the breakup mechanism in terms of 

breakup distance, velocity of the reduction of the thread width, droplet frequency 

and formation time.    

This kind of information is very important for the development of accurate numerical 

models able to predict the droplet-based flow generation in complex microfluidic devices and 

hence for an optimal design of droplet generators based on microjunctions. 
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5.1 Key findings of the thesis 

The results summarized in this thesis give a contribution to the understanding of the 

droplet-based flow generation, using both Newtonian and non-Newtonian solutions, in 

microdevices. The major outcomes of this study are here summarized. 

Large part of the thesis has been devoted to the analysis of the behavior of micro cross-

junctions for the production of a droplet-based flow (Chapter 3). Two micro cross-junctions 

having a different geometry have been employed during the experimental tests. Different 

combinations of dispersed and continuous phases have been used as working fluids by 

considering both Newtonian (i.e. Water, Water with the addition of Tween 20, Silicone oil) 

and non-Newtonian (i.e. Xanthan gum aqueous solutions) liquids. 

In all the experimental tests silicone oil has been used as the continuous phase in which 

droplets of water, water with Tween 20, Xanthan gum solutions are generated. 

A large amount of experimental runs have been made with the aim to characterize the 

capability of the micro cross-junctions to generate monodispersed emulsions in which 

Newtonian or non-Newtonian droplets are created in a Newtonian flow of silicone oil. 

With a speed camera connected to an inverse microscope, up to 1500 frames per second 

have been acquired with the aim to reconstruct the evolution of the interface shape between the 

immiscible liquids. For the post-processing of the acquired images a home-made numerical 

code based on the functions of MATLAB Image Toolbox for image treatment and analysis has 

been developed. In this way the main droplet regimes responsible of droplet formation have 

been individuated. Three droplet-based regimes have been identified: squeezing, dripping and 

jetting regimes. In squeezing regime large droplets that block the main channel are generally 

obtained; in dripping regime the size of the generated droplets is reduced and they partially fill 

the outlet channel. In jetting regime smaller droplets are sheared-off far from the junction 

thanks to an unstable core of dispersed liquid which is present along the exit channel. 

In order to check in which way the three regimes are affected by the properties of the 

dispersed phase four flow maps have been obtained in which the droplet regimes are correlated 

to the values assumed by the volumetric flow rate ratio (α) and by the Capillary number of the 

continuous (Cac) and dispersed phase (Cad).    
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A similar aspect of the flow maps obtained by using pure water, water with Tween 20 (2 

wt%) and aqueous Xanthan gum solutions as dispersed phases has been obtained. 

In Figure 5.1 the typical flow map observed for cross-flow junctions is represented. 

 

 

 

   

 

 

 

Figure 5.1. Typical droplet-based flow map obtained for a micro cross-junction. 

From Figure 5.1 can be observed that: 

 At low Capillary numbers droplets are generally obtained by squeezing, 

especially for low values of the flow rate ratio. By Figure 5.1 it is evident that 

this occurs if Cac < Cac,crA. The value of Cac,crA is the value of the Capillary 

number in correspondence of which at low values of α the transition from 

squeezing regime to dripping regime occurs. The experimental data obtained in 

this thesis demonstrate that Cac,crA is weakly influenced by the properties of the 

dispersed phase and by the viscosity ratio of the immiscible liquids. Cac,crA ranges 

from 0.01 to 0.03. This value is in agreement with the values observed by many 

other researchers for junctions having a different geometry (i.e. T-junctions). 

 At low Capillary numbers (Cac < Cac,crA), the transition between squeezing and 

dripping (blue line in Figure 5.1) is a function of both α and Cac even if α is more 

important than Cac. 
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 In the case of non-Newtonian droplets, the range of the flow rates in which 

squeezing regime is observed decreases and dripping regime becomes the 

dominant droplet breakup mechanism. 

 Jetting regime is observed at low Cac values only in the case of Newtonian 

droplets for large values of flow rate ratio before than the droplet generation is 

stopped and a parallel co-flow is obtained at the exit of the cross-junction. On the 

contrary, in presence of non-Newtonian emulsions jetting is activated only for 

large values of the continuous Capillary number (i.e. Cac > 0.03). 

 The addition of Tween 20 within the dispersed phase is not able to modify the 

boundary between squeezing and dripping regime; this means that the transition 

between these two regimes occurs at the same values of α and Cac with and 

without surfactant. However, since the interfacial tension is strongly reduced by 

the surfactant, for a fixed value of the dispersed flow rate the transition between 

squeezing and dripping is obtained in correspondence of lower values of the 

continuous flow rate. 

 At low Capillary numbers (Cac < Cac,crA), droplet-based flow can be obtained 

only for values of α less than a critical value (αcr). This critical value is strongly 

influenced by the properties of the dispersed phase as well as by the viscosity 

ratio. In the thesis it has been demonstrated that αcr depends on Cac (see the red 

line in Figure 5.1) and the values of αcr goes from values larger than 10 for pure 

water and water with Tween 20 down to 1 for aqueous Xanthan gum solutions. 

 At low flow rate ratio (α < αcrA), jetting can be obtained only for Capillary 

numbers larger than a critical value (Cac,crB). The flow rate ratio value is able to 

influence the transition from dripping to jetting for α larger than αcrA (see the 

green line in Figure 5.1). The values of the critical Capillary number Cac,crB are 

weakly dependent on the properties of the immiscible liquids. In this thesis values 

of Cac,crB of the order of 0.1 are observed for all the combinations of working 

liquids examined. 

In the thesis the experimental data about the droplet size (D*) as a function of the 

Capillary number has been used in order to obtain the values of Cac,crA and Cac,crB by following 

the method recently proposed by Gu [22]. The values of Cac,crA and Cac,crB obtained with this 

method are found to be in qualitative agreement with the experimental flow maps obtained for 

both Newtonian and non-Newtonian dispersed fluids. 
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About the characteristics of the droplets, it has been observed that: 

 Larger droplets are produced by decreasing the volumetric flow rate of the 

continuous phase (Qc) and the viscosity of the dispersed phase (μd) and/or 

increasing Qd. Generally, the effect of Qc (Cac) is more important in dripping 

regime and less important in squeezing and jetting regimes. On the contrary, Qd 

plays an important role in order to influence the droplet size in squeezing regime 

and it is less important in dripping and jetting regimes. 

 Xanthan gum concentration influences the viscosity of the solution; an increase 

of the concentration is able to produce a significant increase of the liquid 

viscosity. Larger droplets are produced by using Xanthan gum solutions as 

dispersed phase with higher Xanthan gum concentration in each droplet regime.  

 The combined effect on the droplet regimes due to the flow rate ratio α and the 

viscosity ratio λ can be taken into account by using a (Cad, Cac) plot. The 

transition from squeezing to dripping and jetting is generally obtained by 

increasing both Cac and Cad. An increase of λ produces an increase of Cad which 

can be responsible of a transition from a droplet regime to another one for a fixed 

value of Cac and α. 

 The droplet characteristics are influenced by the geometry characteristics of the 

junction; in particular it has been demonstrated that the restricted ratio R of the 

junction can play an important role on the droplet size when the junction operates 

in squeezing regime. 

In addition, a series of detailed information about the droplet formation dynamics 

obtained by varying in a wide range the main controlling parameters (α and Cac) including the 

measure of the droplet formation time, of the length of the microthread existing in dripping 

regime between droplet and the source of dispersed phase, of droplet frequency have been 

discussed. 

About the analysis of the use of T-junctions in opposite-flow configuration (Chapter 4) 

for the generation of droplet-based flows two micro T-junctions with the same characteristics 

have been tested. The behavior of these identical T-junctions from a geometrical point of view 

in terms of droplet formation was quite different due to a different status of the wall surfaces 

(hydrophilic and hydrophobic). The experimental data have shown that, in presence of 

hydrophobic walls: 
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 A T-junction in opposite-flow configuration allows to obtain a droplet-based flow 

at the exit of the junction only if either the interfacial tension between the 

immiscible liquids is low by the addition of surfactant or the continuous phase 

flow rate is very high in the absence of surfactant. 

 Without surfactant in the continuous phase (W) the droplet formation may be 

observed only at very high values of the continuous flow rate (large Cac) and low 

flow rate ratio (α ≤ 0.15). For α = 0.05 the droplet is generated when Qc ≥ 80 ml/h 

(Cac ≥ 0.0051) but with the increase of the flow rate ratio (α = 0.15) Qc needs to 

be higher than 60 ml/h (Cac ≥ 0.0038) in order to obtain droplets. 

 The use of Tween 20 in the continuous phase with concentrations larger than 

CMC value (= 0.0074 wt%) is able to modify the flow regime from parallel flow 

to droplet-based flow within a limited range of continuous Capillary numbers. 

In Figure 5.2 the typical flow map observed for the T-junctions in opposed-flow 

configuration with hydrophobic walls is depicted when a Newtonian continuous phase is 

introduced in the T-junction. 

 

 

 

 

   

 

 

 

Figure 5.2. Typical flow map obtained for the first micro T-junction in opposed flow configuration 

(hydrophobic walls). 
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 By reducing the interfacial tension between the immiscible liquids introduced in 

the junction (i.e. thanks to the introduction of a surfactant), the T-junction in 

opposite-flow configuration can generate a droplet-based flow by squeezing, 

dripping or jetting mechanism. 

 The T-junction in opposite-flow configuration can be used in order to generate 

monodispersed emulsions but in this case the junction must work with low values 

of the Capillary number linked to the continuous phase (Cac < 0.01) and low flow 

rate ratio (α < 0.5). 

 When a droplet-based flow is generated by squeezing (DJ regime) at the exit of 

the junction, the droplet length L̅ is influenced both by the volumetric flow rate 

ratio (α) and by the Capillary number (Cac). 

 The non-dimensional length of the microthread is found to be a power-law 

function of continuous Capillary number in the form of L̅ ~ Cac
- 0.3 in agreement 

with the literature. 

 For large values of the interfacial tension between the immiscible liquids the most 

common flow pattern obtained at the exit of the junction is the stratified parallel 

flow in which dispersed and continuous flows are separated by a curved interface. 

It has been demonstrated that by changing α and Cac a good control of the depth 

of the two parallel layers can be obtained. This flow pattern can be useful when 

it is important to guarantee the separation of the liquids by avoiding to insert a 

membrane in between (i.e. microreactors for micro fuel cells). 

 The breakup position of the droplets tends to move downstream if the continuous 

Capillary number Cac and/or the flow rate ratio α is increased. 

For the micro T-junction having hydrophilic walls it has been observed that 

 In presence of hydrophilic walls the T-junction allows to obtain a droplet-based 

flow even without the use of surfactant within the continuous phase for a large 

range of values of Cac and α. In this case the droplet regime map of Figure 5.2 

changes as indicated by Figure 5.3. 

 By increasing the continuous phase flow rate Qc, transition from a droplet regime 

to another one occurs at lower values of α for non-Newtonian fluids with respect 

to Newtonian carrier medium. Also the introduction of surfactant into the carrier 

medium anticipates the transitions among the droplet regimes. 
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 With a Newtonian carrier fluid (W), silicone oil droplets are generated in 

squeezing regime for low values of α (≤ 0.1). No dripping is observed at low α 

values. 

 On the contrary, for non-Newtonian fluids, even at very low values of α, a critical 

value of the Capillary number there exists beyond which the transition from 

squeezing to dripping can be observed. 

 At low values of the volumetric flow rate, squeezing is the predominant droplet 

regime while with an increase in either α or Cac the transition from squeezing to 

dripping generally is observed. 

 Jetting regime can be observed only for large values of α and/or Cac. 

 

 

 

 

   

 

 

 

Figure 5.3. Typical flow map obtained for the micro T-junction in opposed flow configuration with 

hydrophilic walls. 

The dimensionless length of the droplets can be expressed as a function of the continuous 

Capillary number thanks to a power law; for Newtonian continuous phase (W, W+T) L̅ depends 

on Cac
˗ 0.3 in agreement with the literature. On the contrary, L̅ varies with Cac

˗ 0.5 for a non-

Newtonian continuous phase. 

Finally, by observing the polydispersity values associated to the droplets generated with 

T-junctions in opposite flow configuration it has been evidenced in which conditions droplet-
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based flows can be generated with a low value of polydispersity Pl (< 6-8%). In this way it has 

been possible to individuate, for each tested microjunction, the range of values of α and Cac 

able to guarantee the generation of a monodispersed emulsion. 

The analysis of the variation of the diameter of the droplets observed at the exit of the T-

junction in presence of hydrophobic or hydrophilic walls highlights that mono-dispersed 

silicone oil droplets with Pl < 2% can be obtained easily in presence of hydrophilic channel 

walls. For non-Newtonian continuous phase the polydispersity increases with the flow rate 

ratio but at low values of α (< 0.5) highly monodispersed droplets (Pl < 2%) can be generated 

in presence of hydrophilic walls. 

5.2 Recommendations for future work 

Three years of Ph.D. is a long period but not enough to fill all the gaps that one can meet 

during its research path. A series of aspects, originally individuated as key aspects, remains not 

fully investigated. To obtain a further understanding of droplet formation in microjunctions by 

using Newtonian and non-Newtonian solutions, several aspects need to be addressed in future 

studies. 

A large amount of solutions used in biological and medical applications exhibit elastic 

and viscoelastic behavior. The analysis of non-Newtonian droplet generation, started with this 

thesis, needs to be completed by enlarging the number (and the kind) of non-Newtonian 

working fluids used as dispersed phase. As an example, shear thickening fluids are not studied 

in this thesis but they can be interesting working fluids for some specific application. The data 

presented in this dissertation for shear thinning fluids can be compared in the next future with 

the results obtained by using shear thickening non-Newtonian fluids. 

An experimental investigation of the local velocity distribution within the continuous and 

dispersed phases during the droplet formation could be very useful in order to clarify the role 

played by the main controlling forces on the liquid-liquid interface during the droplet 

formation. Further studies are needed in order to investigate the velocity distributions in the 

two phases into the junction by using in a combined way both numerical simulations and 

experimental measurements (i.e. micro-PIV measurements, pressure drop measurements). This 

combined analysis could greatly advance the understanding of the controlling mechanisms of 

the droplet breakup in microdevices, especially in presence of non-Newtonian liquids. 
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Finally, more complex geometries of the micro devices could be proposed and 

investigated both numerically and experimentally with the aim to stabilize the monodispersed 

droplet generation by increasing in the same time their droplet productivity (i.e. the rate of 

droplet generation). This could be very beneficial in order to improve the introduction of these 

microdevices in large-scale applications in biological and medical areas.  

Future is going; and future in this field is Microfluidics!
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