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ABSTRACT  

Gold is a unique metal for its peculiar properties and for its role in society, 

where it is used as a coinage metal, for jewellery, and in industrial 

application. The interest in the science, technology, and applications of gold 

has grown considerably over recent years, as evidenced by the huge increase 

in scientific publications.  Traditional industrial applications have been 

centered mainly on its metallic properties. The discovery, in recent years, of 

gold (0, I, III) catalytic and biological properties and the studies of its 

nanoproperties are leading to some new exciting applications. In the 

twentieth-century, gold(I) complexes were introduced for the treatment of 

rheumatoid arthritis, culminating in the introduction of the oral drug 

Auranofin in 1985. Among the new non-platinum anticancer drugs, 

especially gold species have gained more and more attention due to their 

generally strong tumor cell growth inhibiting effects.  Unfortunately, in 

modern organic chemistry gold was the victim of   several misconceptions, 

being considered rare, expensive and also chemically inert. All changed at 

the end of the 1980's with the discovery of its activity in two fundamental 

reactions - the oxidation of CO to CO2 (Haruta) and the hydrochlorination of 

ethylene (Hutchings), from that moment on heterogeneous gold catalysis 

underwent an exceptional development.   Nevertheless, a very interesting 

area of application of gold is the homogeneous catalysis and, in the last 15 

years, there was a real “gold rush” in the chemistry world. 

The work herein presented, embraces various aspects of gold chemistry:  

 the documentation of novel [alkynyl(triphenylphosphine)gold(I)] 

complexes carrying differently substituted propargylic amines and 

their pharmacological investigation on a series of cancer cell lines 

with particular emphasis on HT29, IGROV1, HL60 and I407 (Figure 

Ia);  
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 the investigation of  the dearomative cycloaddition reaction of indoles 

with electron-rich allenes catalysed by commercially available gold(I)  

complexes that show competence in performing the chemo-, regio- 

and diastereoselective formal [2+2]-cycloaddition between a wide 

range of substrates under mild conditions (Figure Ib). 

Since gold complexes are highly carbophilic Lewis acids that activate C–C 

multiple bonds towards nucleophilic attack, they have been applied as 

catalysts for a number of selective organic transformations including the 

intramolecular hydroamination of inactivated unsaturated C-C bonds. It 

should be pointed out that also soft quaternary ammonium salts are known 

to act as synthetic equivalents of late-transition metal species in activating 

unsaturated hydrocarbons towards nucleophilic attack. In this field, a work 

on the possibility to replace second and third row transition metals with 

catalytic amounts of readily accessible and cheaper ammonium salts to 

obtain synthetically useful highly functionalized indoles is presented. The 

metal-free approach exploits the combined efficiency of Bu4N
+ and F− ions 

in performing a cascade sequence involving intramolecular hydroamination 

of the C–C triple bond, cleavage of silyl-protecting groups and site-selective 

sigmatropic aza-Cope-type [3,3]-rearrangement (Figure Ic). 

Figure I 
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RIASSUNTO  

L’oro è un metallo unico per le sue proprietà chimico-fisiche e per il ruolo 

che ha svolto e che tuttora svolge nella società, infatti è usato come metallo 

da conio, in gioielleria e in varie applicazioni industriali. Negli ultimi anni 

l’interesse nella scienza, tecnologia e applicazioni dell’oro è cresciuto 

considerevolmente come dimostrato dall’aumento di pubblicazioni 

scientifiche in questa tematica.  Le applicazioni industriali dell’oro 

tradizionalmente erano incentrate sulle sue proprietà metalliche ma la 

scoperta delle proprietà catalitiche e biologiche dell’oro(0), (I) e (III) hanno 

portato allo sviluppo di nuove e interessanti applicazioni.  Nel ventesimo 

secolo, complessi di oro(I) sono stati testati come farmaci per il trattamento 

dell’artrite reumatoide  e, nel 1985,  l’Auranofin, un complesso di oro(I), è 

stato approvato come farmaco a somministrazione orale proprio per il 

trattamento di tale patologia.  Successivamente se ne studiarono i 

meccanismi d’azione e si comprese che i complessi di oro potevano essere 

una promettente classe di farmaci antitumorali grazie al loro effetto inibente 

della crescita delle cellule tumorali.  Nella moderna chimica 

organometallica, l’oro è sempre stato vittima di pregiudizi poichè era 

considerato raro, costoso e chimicamente inerte.  Alla fine degli anni 80 ci 

fu una rinascita della chimica dell’oro dovuta alla scoperta della sua attività 

in due reazioni: l’ossidazione del monossido di carbonio ad anidride 

carbonica (Haruta) e l’idroclorurazione dell’etilene (Hutchings). Da quel 

momento in poi lo sviluppo della catalisi eterogenea con oro ebbe un 

incredibile sviluppo e non da meno sono stati gli sviluppi della catalisi 

omogenea. 

Il lavoro qui presentato abbraccia vari aspetti della chimica dell’oro. Nella 

prima parte è documentata la sintesi e la caratterizzazione di  nuovi 

complessi alchinilici di oro(I) variamente sostituiti e  lo studio della loro 

attività biologica su una serie di linee cellulari tumorali quali HT29, 
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IGROV1, HL60 e I407 (Figura Ia). Nella seconda parte invece è descritto lo 

sviluppo di una reazione di cicloaddizione di indoli con alleni elettron-ricchi 

con conseguente dearomatizzazione, catalizzata da complessi commerciali 

di oro i quali sono efficaci nel catalizzare  una formale cicloaddizione [2+2] 

in modo chemo-, regio-, e diasteroselettivo su un ‘ampia gamma di  substrati 

in condizioni blande (Figura Ib). I  complessi di oro sono acidi di Lewis 

altamente carbofilici capaci di attivare i legami multipli C-C per attacchi 

nucleofili, infatti tali complessi sono stati utilizzati come catalizzatori per 

numerose trasformazioni organiche e in particolare per l’idroamminazione 

di legami insaturi C-C.  I sali di ammonio quaternari in molti casi possono 

essere considerati degli equivalenti sintetici dei metalli di transizione “late” 

nell’agire da attivatori dei legami insaturi C-C nel subire attacco nucleofilo. 

Nella terza parte è riportato uno studio che esplora la possibilità di  

rimpiazzare i metalli di transizione con quantità catalitiche di sali di 

ammonio per la sintesi di indoli altamente funzionalizzati, in particolare, è 

stata verificata l’efficienza degli ioni Bu4N
+ e F-  nel catalizzare  una 

sequenza di reazioni, nello specifico, una idroamminazione intramolecolare 

di un triplo legame C-C, la rimozione dei gruppi protettori  silicei e  un 

riarrangiamento sigmatropico del tipo aza-Cope [3,3] (Figura Ic). 

Figura I 
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1 GOLD CHEMISTRY: 
GENERAL INTRODUCTION 

1.1 Gold: “King of metals” 

1.1.1 History of gold 

Gold is a unique metal.  It was probably one of the first metals, along with 

copper, to be discovered by man.  The chemical symbol, Au, derives from 

the Latin word aurum, which is associated with the dawn goddess, Aurora 

and the English word “gold” comes from ancient English/Germanic word 

gulth, ghol that means “to shine, to gleam, to be yellow or green”. 

From the beginning of civilization, man attributed great value to this brilliant 

and rare metal by associating it with power, beauty and wealth.  In fact, it 

was used to make jewellery and the oldest finds were found in the tombs of 

Egyptian pharaohs.  The discovery of the tomb of Tutankhamun in 1920, one 

of the few not to be plundered over the centuries, brought to light his great 

treasure and his funeral mask in gold, a masterpiece of rare beauty.  There 

are sources that attest that the Egyptians in 3600 B.C. were able to separate 

gold from ores by melting. 
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Throughout human history, there have been religious references to gold: the 

Greek myth of King Midas, which transformed everything into gold, as well 

as the adoration of the golden calf reported in the book of the Exodus, or to 

the Magi gifts to Jesus (gold, incense and myrrh) and also in the Buddhist 

religion, gold is one of the seven treasures, the treasure of conviction.[1,2] 

The first gold coins were minted by King Croesus, sovereign of Lydia, in 

Western Asia Minor, from 560 B.C. to 546 B.C..  For a long time the 

monetary system was based on silver coins; in the thirteenth and fourteenth 

centuries the gold coins were reintroduced.  At the beginning of the 

nineteenth century the golden standard, a link between the national currency 

and a certain quantity of gold, which allowed to have fixed exchange rates 

between the nations, was introduced.  The gold system was finally 

abandoned in 1971, when the US abolished the convertibility of the dollar 

into gold, decreeing the birth of the floating system.  Gold is currently a safe 

haven for investments.  

As a consequence, gold has become one of the most influential commodities 

in human history and remains the subject of intense aspirations, in fact in all 

competitions the first prizes are gold medals. 

The proximity of atomic numbers led thinking the twentieth century 

scientists to obtain gold by bombarding mercury with neutrons via 

transmutation of chemical elements.  

The main purpose of the alchemists was to produce gold from other 

substances, such as iron or lead, by means of the philosopher's stone.  The 

alchemical symbol of gold was a circle with a dot in the centre, ʘ, which is 

also the Egyptian hieroglyphic symbol and the Chinese pictogram of the Sun.  

In more recent times, there were several attempts at transmutation, among 

them the attempt to transform the silver in gold by Stephan H. Emmens in 

1897.[3] 
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1.1.2 General physical and chemical properties 

Despite its discovery since the dawn of civilization, gold chemistry was 

overshadowed since it was used only in the metallic state, and all the 

knowledge was related exclusively to its physical properties and its recovery 

and purification.   

Gold is widespread on the earth's crust and is found in alluvial deposits as 

free metal for its chemical inertness, and in tellurides associated with pyrite 

and quartz.  It is estimated that the earth's crust contains about 0.03 ppm and 

up to today about 160000 tons have been extracted.  It can also be extracted 

from seawater in which the concentrations range is 0.1 - 2 mg ton-1.[4]  

Among its physical properties, we recall the high melting temperatures of 

1060 °C and the boiling point, 2860 °C.  Gold possesses a highly positive 

standard potential, it is not sensitive to corrosion or oxidation under mild 

conditions, in fact it only dissolves in aqua regia or in solution of cyanide 

salts.  It has high energies of first and second ionization (889.3 kJ mol-1 and 

1980.0 kJ mol-1, respectively), and an electronegativity value of 2.54, the 

highest among metals and similar to that of carbon (2.55).  It is extremely 

malleable and ductile:  one gram of gold can be reduced to a sheet of about 

1 m2 of surface with a thickness of only 230 atoms, or profiled to give a 165 

m long wire with a diameter of 20 µm.  The electrical and thermal 

conductivity are exceptional (respectively 317 W m-1 K-1 and 45.2 x 106 S 

m-1) as well.  All these properties can be directly related to the electronic 

configuration d10s1, as its air stability and inertia to the attack of other 

substances that make it particularly suitable for use in various fields such as 

jewellery, electronics and dentistry.[5] 

1.1.3 Applications 

Nowadays gold is mainly used in jewellery for about 60%, for investments 

(about 30%), the rest is used for industrial purposes.[6]  
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Traditional industrial applications have based mainly on its metallic 

properties: in fact, for its excellent conductivity and insensitivity to corrosion 

and oxidation, it is used in electronic applications to produce connectors, 

switches and relay contacts, bonding wires and connection strips.  

Another important application is its use as protective coating against 

radiation in the aeronautical and spatial industry due to its capability of 

reflect infrared radiation.  It has been used in medicine throughout the history 

of civilisation (see section 2.1.3).  Metallic gold is biocompatible and it is 

used in dentistry for fillings, bridges and orthodontic appliances, but gold in 

ionic form is toxic.  Although the major uses and applications of gold are 

restricted to its metallic state, new developments have emerged in the 

modern era.  

1.2 Theoretical consideration and relativistic 
effect 

Electronic configuration of [Au(0)] is [Xe] 4f145d106s1 in the ground state, 

while cation [Au(I)] and anion [Au(-I)] have respectively 5d106s0 and 5d106s2 

configurations.  These configurations explain the relative stability of the 

compounds [Au(I)] and [Au(-I)] both with full orbitals, the first with 10 

electrons in the 5d orbitals  and the second with 2 electrons filling the more 

external 6s orbital.  However, this does not justify the high chemical 

inertness of metallic gold. 

All the post-lanthanide elements contain a large number of protons in their 

nuclei, so the electrons are subject to a high field that leads them to move at 

speeds close to that of light.  The only classical treatment of electrons, by 

itself, does not guarantee a sufficient description of this phenomenon, but it 

is necessary a further treatment, the relativistic one.  The “relativistic effect” 

refers to any phenomenon resulting from the need to consider velocity as 

significant relative to the speed of light.  The relativistic effect become 
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apparent for the electrons in the s orbitals, which have wave functions to 

which corresponds an electronic density on the nucleus, but it is less 

important for the electrons in the orbitals p and d.  The relativistic treatment 

predicts the assignment of a relativistic mass that is greater than the mass of 

the electron at rest.  The result is the reduction of the Bohr radius, which is 

inversely proportional to the mass of the electron orbiting a nucleus.[7]  

Figure 1.1 shows the relation between the relativistic and non-relativistic 

radius of the 6s orbital according to the atomic number. 

 

Figure 1.1 Calculated relativistic contraction of the 6s orbital. The relativistic and non-

relativistic atomic radii were determined computationally.[8] Reproduced from ref [7]. 

It is possible to observe how this relationship differs strongly as the atomic 

number increases, and reaches a minimum value in the case of gold.[9]   

This involves different effects in the chemistry of gold. 

The most visible one is the colour of gold.  Since the s and p orbitals are 

contracted, the electrons in the 5d and 4f orbitals are better shielded by the 

attraction of the nucleus and therefore the d orbitals expand.  The 
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consequence is a substantial decrease of the 5d/6s band gap.  The golden 

colour is due to this band gap reduction (hν = 2.38 eV, 521 nm) which is the 

transition from the 5d band to the Fermi level (the vacant 6s band).  For this 

reason, gold absorbs in the blue-green region of the visible spectrum and 

reflects red and yellow.  For silver the s and p orbital contraction is less and 

the band gap is larger (hν = 3.7 eV, 335 nm) and it absorbs in the UV region 

leading to its peculiar metallic shine. 

The destabilization of the 5d orbitals makes it possible to explain the 

presence of +3 oxidation state, almost absent for silver, and the stabilization 

of the 6s orbital  explains the formation of [Au(-I)] compounds, unknown for 

silver. 

The higher energy gap between 6s and 6p orbitals justifies the preference for 

the formation of coordinate complexes with linear geometry for [Au(I)] and 

the reluctance of [Au(I)] to accept more than two ligands.  In fact, Molecular 

Orbital (MO) calculations suggest that the bonding involves mostly the 5dz
2 

and 6s orbitals.[10]  The reluctance of [Au(I)] to accept more than two ligands 

is indicative of the special situation of gold valence orbitals when compared 

to [Cu(I)] and [Ag(I)] behaviour.[11,12] 

Another peculiar property of gold is the so-called “aurophilicity” and this 

phenomenon is also governed by relativistic effect.  Atoms of gold tend to 

approach an equilibrium distance ranging between 2.7 and 3.6 Å (the Van 

Der Waals distance is 3.60 Å), with a bond strength of 20 - 50 kJ mol-1, that 

is similar to hydrogen bond energy.  Aurophilicity is the result of the orbital 

mixing of molecular orbitals between two gold centres in their respective 

complexes with the creation of a new set of bonding and antibonding 

molecular orbitals and this led to the formation of a new kind of interaction 

between the two gold atoms that stabilizes the complexes.[9,13,14] 

Theoretical calculations have made possible to understand the origin of these 

differences between gold and silver.  The introduction of relativistic effects 
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in the calculation leads to an increase of the aurophilicity effect between two 

atoms of gold with close-shell.  The aurophilic bond is considered as an 

effect based on the correlation of electrons between the closed-shell 

components, very similar to the attractive forces of Van der Waals but 

unusually stronger.  All these studies have consistently shown that 

calculations can reproduce the attractive forces between gold atoms only if 

the relativistic effect is included. 

The relativistic contraction of the valence s and p orbitals is also responsible 

of the high Lewis π-acidity of gold cations which is the basis for the use of 

gold in catalysis, in fact that contraction corresponds to a relative low-lying 

lowest unoccupied molecular orbital (LUMO), this makes gold(I) a better 

Lewis acid than that other Group 11 metals.[7]  Gold(I) and gold(III) activate 

the alkynes to undergo nucleophilic addition, in fact alkyne reacts as basic 

Lewis donors, donating electrons to the metal and behaving as a π-ligand.[15] 

The Dewar-Chatt-Duncanson model can explain this type of coordination.  

 

Figure 1.2 The schematic representation of a group 11 metal-ethylene bonding model. 

 As depicted in Figure 1.2, the interaction between the metal cation and the 

alkene takes place in two different ways.  On the left of the Figure 1.2 is 

shown the donation to the empty s orbital of the metal from the filled π-

orbital of ethylene and on the right the back donation  of the electron density 

from a metal filled d orbital to the vacant antibonding π*-orbital. 

In addition, the alkyne has a second occupied π-orbital perpendicular to the 

previous one that can form another M-L bond.  Based on this model it is 

possible to understand how the unsaturated C≡C bond is elongated so it is 
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weakened and the alkyne becomes more electrophilic and more prone to 

nucleophilic attack.  Due to the contraction of the orbital 6s, the orbital 5d is 

shielded and it is affected by a lower attraction of the nucleus.  The result is 

an expansion of the 5d orbital whose electrons are more likely to be 

delocalized, so gold(I) does not act only as a Lewis acid but also as an 

electron donor and can contribute to the stabilization of carbocation 

intermediates.[16,17] The chemistry of gold can be better understood in light 

of these important theoretical considerations.[18–21] 

1.3 Coordination chemistry of gold[22] 

The possible oxidation states of gold are - I, + I, + III and + IV. 

Actually, there are very rare cases of compounds in which the Au atom 

presents an oxidation state higher than +3, such as fluorine complexes of 

[Au(IV)].  Even the complexes that have gold in a +2 oxidation state are few.  

The difficulty in synthesising these complexes lies not so much in the high 

energy needed to reach the oxidation state +2 from atomic gold, but resides 

in the lack of stability of [Au(II)].  In fact, they show a high tendency to 

disproportion to generate [Au(I)] and [Au(III)] due to the unpaired electron 

in the orbital d9 that can be easily ionized.  Gold(III) gives stable complexes 

with C, N, P, S or even O-donor ligands, but its chemistry is less developed 

than that of gold(I).[22] 

1.3.1 Gold(I) coordination chemistry: an overview 

The [Au(I)] complexes are undoubtedly the most studied.  The external 

configuration of gold in these complexes is [Xe] 4f145d10, many of which are 

extremely stable but they easily undergo a ligand exchange reaction.  They 

can have variable coordination numbers between 1 and 4 even if the 

coordination number 2 is the most widespread. 
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The chemistry of [Au(I)] is dominated by complexes with linear geometry 

commonly represented in the form [AuXL].  In these complexes the neutral 

ligand is generally a phosphine, an isocyanate or an amine, while the anionic 

portions can be a halogen, aryl, or alkyne.  Generally, these species aggregate 

in the solid state thanks to the aforementioned aurophilicity.  In some 

complexes, however, it is possible to observe the formation of aggregates 

that exploit secondary bonds, in addition to aurophilicity, such as hydrogen 

bonds and / or gold-sulfur interactions.  [Au{SSi(Oi Pr)3}(PPh3)] is an 

example of thiolated compounds that aggregates into dimers via gold-sulfur 

interactions,[23] or complexes such as [Au(O2CCF3)(4-PPh2C6H4CO2H), 

which crystallize like a polymer chain.[24] 

Another important effect of aurophilicity in the [Au(I)] compounds is the 

luminescence observed under UV excitation in the solid state.  This is 

evident in complexes with a short Au…Au interaction: in the complex 

[AuCl(TPA)] (TPA = 1,3,5-triaza-7-phosphaadamantane) the ligand has a 

small cone angle that lets the compound to shorter intermolecular Au…Au 

distance and the protonated complex [AuCl(TPA.HCl)], which presents 

different emission spectra due to a change in the gold-gold interaction.[25]   

Among the polydentate ligands, the most important are the diphosphines, 

which allow the achievement of different structural models according to the 

presence or not of the Au-Au interaction.  The complexes derived from 1,4-

bis (diphenylphosphino)butane (n = 4) or hexane (n = 6) have a crystalline 

structure in which the molecules are completely independent.  In contrast, 

complexes derived from diphosphines with shorter or longer bridges tend to 

form intermolecular  or intramolecular Au-Au interactions with consequent 

formation of dimers or polymeric chains.[26–29]  Another important class of 

bidentate ligands is represented by sulfur ligands as dithiocarbamates, 

dithiolates, etc.  These complexes have the same structural characteristics 

and same aurophilic interactions already encountered in complexes with 
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diphosphine ligands.  What differentiates these bidentate ligands from the 

diphosphines is the possibility of establishing a further Au-S interaction in 

addition to Au-Au one.  The soft behaviour of [Au(I)] cation manifests itself 

in its marked carbophilicity (preference in forming Au-C bonds).  

Organometallic gold(I) complexes are a very important part of the chemistry 

of this element. 

A relevant class of [Au(I)] complexes consists of organometallic complexes 

of the [RAuL] type where R represents a variety of organic residues, such as 

aryls, vinyls, etc….  The neutral ligand L is often a tertiary phosphine, a 

carbene or an isocyanide.  The Au-C bond is covalent and its stability 

strongly depends on the type of ligand.  In fact, gold(I) complexes with 

carbonyls are among the most unstable and only a few examples are known; 

the order of stability, from the least stable, is the following: alkyls, aryls and 

allyl. 

Gold(I) complexes with N-heterocyclic carbenes, based on imidazoles or 

benzimidazoles, [AuCl(carbene)], have been intensively used in catalytic 

organic reactions.[30]  Carbenes are species with divalent carbon atoms with 

various substituents and a lone pair of electrons.  An important carbene 

complex is [AuF(carbene)], which represents the first example of an isolable 

gold(I) fluoride complex.[31]  An important property of some carbene 

complexes is their luminescence. Cationic bis(carbene) complexes such as 

[Au{C(NHMe)2}2]PF6 show structures in which the cations have aurophilic 

interactions and hydrogen bonds and are emissive.[32]  

The chemistry of the alkynyl complexes of [Au(I)] has been particularly 

developed in recent years. The preference of gold(I) for linear coordination, 

together with the linearity of the triple bond allowed the gold alkynyl 

complexes to become attractive building blocks for molecular wires and 

polymeric materials, which may have important properties in non-linear 

optics or luminescence.[33]  
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The luminescence of gold(I)-alkynyl complexes, firstly reported in 1993 by 

Che,[34] is one of the most studied properties of this class of complexes and 

many examples are present in literature with different kind of second ligands 

in particular isocyanide,[35,36] alkynyl,[37,38] phosphane[39] and carbene.[40,41]  

Due to the well-known ability of gold to interact with other metals, Wolf and 

coworkers synthetized a series of thiophene ligands derivatised with alkynyl 

group in order to prepare gold complexes featuring important electronic 

properties for applications in photoinduced electron transfer (PET) and 

electropolymerization processes.[42,43]  

Because of the linear shape of gold-alkynyl moiety and the absence of β-

hydrogen, the alkynyl compounds are precursors for thermally stable species 

with liquid-crystal behavior.[44,45]  Another important emerging application 

of gold-alkynyl complexes is their use as anticancer metallodrugs, this aspect 

is discussed in chapter 2. 

1.4 Homogeneous gold catalysis 

For a long time gold has been considered too expensive, an inert and inactive 

metal.  Today it is known that gold(0), (I) and (III) species are able to act as 

catalysts or pre-catalyst in homogeneous and heterogeneous catalysis.[46]  

From the economical point of view, gold is not so expensive and rare 

compared to rhodium, palladium and platinum.  In addition, gold  can be 

easily recycled and the price of the catalyst is often determined by the ligand 

rather than by the metal.[47,48]   

The industrial catalytic applications are dominated by heterogeneous 

catalysis.  The first example of heterogeneous catalysis dates back to 1973, 

when Bond and co-workers reported the hydrogenation of olefins catalysed 

by gold particles.[49]  Later, in the 80s, Haruta and co-workers reported a 

study on the oxidation of carbon monoxide at low temperature[50] and, almost 
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simultaneously, Hutchings obtained excellent results in the 

hydrochlorination reaction of acetylene to vinyl chloride.[51]   

The homogeneous catalysis based on gold was developed more recently.  A 

large and varied quantity of reactions can be catalysed both by simple salts, 

usually halides, and by various complexes of [Au(I)] and [Au(III)].   

The first important example was reported in 1986 by Ito, Sawamura and 

Hayashi which demonstrated that a gold(I) complex with a chiral ferrocenyl 

diphosphine ligand was an efficient catalytic system for the asymmetric 

addition of isocyanate onto aldehydes to produce oxazolines.[52]   

Among the many some important breakthroughs deserve mentioning:  

 the gold(III) catalysed nucleophilic addition of water, alcohols and 

amines;[53]  

 the intramolecular addition of oxygen-based nucleophiles to alkynes 

and the intermolecular addition of arenes onto allenes and alkenes 

catalysed by AuCl3;
[54]  

 the cyclization of α-hydroxyallenes into 2,5-dihydrofurans.[55]   

At the beginning of 2000, with the excitement for these important results, the 

field of homogeneous gold catalysis has grown exponentially leading to the 

so-called “gold rush”.[56] Gold catalysis is also entered in the field of 

polymerization.  In fact, in 2008, it was reported the first example of olefin 

polymerization catalysed by complexes of [Au(III)] in which the catalytic 

precursor has a carbene ligand.[57,58]  

The main advantages of homogeneous gold catalysis are: the use of milder 

reaction conditions, the compatibility of gold-based catalysts with a wide 

range of functional groups and, the wide portfolio of chemical reactivities 

accessible due to its unique properties. 

Many investigations on the catalytic reactivity of gold exploited the 

propensity of the [Au(III)] and [Au(I)] complexes to activate alkynes 
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towards nucleophilic addition.  The multiple C-C bond of alkynes, alkenes, 

allenes coordinates the gold complex, which effectively activates the 

multiple bond for the attack of a nucleophile, but also the activation of 

carbonyl functionalities is possible with gold(III) catalysts.[59]  

 

Figure 1.3 General reactivity of alkynes, alkenes and allenes towards the addition of a 

nucleophile. Reproduced from  ref. [48]. 

This kind of reactivity is based on the Lewis acid properties of gold species. 

The simplest example of nucleophilic addition to a π-system is shown in 

Figure 1.3. The first step involves the interaction of the gold species with the 

π-system making the nucleophilic attack to alkene/alkynes/allenes possible. 

After the nucleophilic attack, the simplest pathway is that the 1-3 

intermediates releases the addition product and regenerates the gold catalyst 

for simple protodemetallation. 

As just mentioned in section 1.2, gold can also act as an electron donor and 

stabilizing the carbocationic species.[16,60] 



Chapter 1: Gold chemistry: general introduction 

14  Assunta De Nisi - March 2018 

 

Figure 1.4 Schematic representation of Lewis acid/electron donor reactivity. Adapted 

from ref. [48]. 

In the schematic pathway, reported in Figure 1.4, is represented the 

activation of the alkyne moiety and the subsequent electron donor behavior 

that produces a gold-carbene species.[61,62]  The organogold species can act 

in both ways and the prevalence of the carbocationic or carbenoid character 

depends mainly on gold oxidation state and on the type of ligand as well as 

on the functional groups on the substrate. In a study by Toste and coworkers 

it was documented how the nature of the ligand strongly influences the 

reactivity of the organogold species. Π-acid ligands, such as phosphites, 

favor a carbocationic-type reactivity because they decrease the π-donation 

from the metal to the substrate; instead in the opposite way σ-donating 

ligands such as N-heterocyclic carbenes, favor a carbene-type reactivity 

because they let the σ-donation from the substrate to gold disfavored.[17]  

In the last twenty years an incredible number of publications in the field of 

gold catalysis has been published, this is also evidenced by the numerous 

reviews organized on sub-categories as a complete treatment of all the 

homogeneous gold catalysis would be a huge undertaking.[63–67] 

The homogeneous gold catalysis is today an important and consolidated 

instrument in organic synthesis thanks to its oxygen tolerance, mild reaction 
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conditions and its excellent chemoselectivity. In chapters 3 and 4 of this 

dissertation, some examples of applications of gold reactivity will be 

described. 

1.5 Aim of the project 

The work, presented here, embraces various aspects of gold chemistry. 

Chapter 2 is focused on the use of gold(I) compounds as antitumour drugs, 

where the documentation of novel [alkynyl(triphenylphosphine)gold(I)] 

complexes carrying variously substituted propargylic amines and their 

pharmacological investigation on a series of cancer cell lines is described. 

In chapter 3 the use of commercially available gold(I) complexes as catalyst 

for the dearomative [2+2]-cycloaddition of indoles with electron-rich allenes 

is documented. 

Because gold complexes are highly carbophilic Lewis acids that activate C–

C multiple bonds towards nucleophilic attack, they have been applied as 

catalyst for a number of selective organic transformations, including the 

intramolecular hydroamination of inactivated unsaturated C-C bonds, but 

soft quaternary ammonium salts are known to act as synthetic equivalents of 

late-transition metal species in activating unsaturated hydrocarbons towards 

nucleophilic attack. In this field, in chapter 4, a work on the possibility to 

replace second and third row transition metals with catalytic amounts of 

readily accessible and cheap ammonium salts for obtaining synthetically 

useful highly functionalized indoles is presented. The metal-free approach 

exploits the combined efficiency of Bu4N
+ and F− ions in performing a 

cascade sequence involving intramolecular hydroamination of the C–C triple 

bond, cleavage of silyl-protecting groups and site-selective sigmatropic aza-

Cope-type [3,3]-rearrangement. The last work is the result of an unexpected 

serendipitous discovery. 
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2 ALKYNYL-GOLD(I) 

COMPLEXES FEATURING 

ANTICANCER ACTIVITY 

The class of metallodrugs based on gold complexes continues to gain credit 

within the scientific community and in this chapter, the application of gold(I) 

complexes as anticancer agent is discussed.  

Assorted alkynyl-gold(I) complexes, carrying variously substituted 

propargylic amines, were synthesized, characterized and tested on a series of 

cancer cell lines in collaboration the group of Prof. Natalia Calonghi of the 

Department of Pharmacy and Biotechnology of the University of Bologna.  

For some of them, high levels of toxicity were found and these preliminary 

results represent an interesting possibility for future.  Part of this chapter has 

been published on Dalton Transaction[1] and reproduced from ref. [1] with 

permission from The Royal Society of Chemistry.  
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2.1 Introduction 

2.1.1 Metals in medicine: an overview 

The important role of metals in biological systems is well known.  Several 

biomolecules show, in their structure, the presence of different metal ions.  

For instance, iron is fundamental in the respiratory process as it is present in 

haemoglobin, a globular protein responsible for the oxygen transport from 

lungs (or gills in aquatic organisms) to the rest of the body; it is also present, 

in high quantity, in ferritin, a protein involved in the iron storage and in many 

other proteins and enzymes;[2] traces of cobalt are vital to life because it is 

the centre of vitamin B12 that is involved in the formation of red blood cells 

and has key roles in the proper functioning of brain and nervous system;[3] 

the correct function of many enzymes is based on the crucial role of copper 

and zinc ions as in the case of the superoxide dismutase (SOD) an important 

antioxidant defence in the living cells.[4–6]  These are few examples of the 

importance of metal ions in the maintenance of the dynamic equilibrium of 

the biological systems and their key role in the structure of the so-called 

metalloproteins.  In humans, fourteen metals (Na, K, Mg, Ca, V, Cr, Mn, Fe, 

Co, Ni, Cu, Zn, Mo and Cd) are required for crucial biological functions and 

insufficient amounts of these metals is the cause of many diseases as 

neurological disorders, in the case of scarcity of copper and cobalt.  On the 

other hand metal ions can be very toxic if present in excess in the precarious 

biological system or if the latter is exposed to nonessential metals as mercury 

and lead.[7]  

Understanding the modulability of physical and chemical properties of the 

metal ions is a key point in the development of new metal drugs and, to this 

end, the principle of coordination and organometallic chemistry are 

fundamental. 
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Although the use of metal-based drugs is known since very ancient time, it 

was only in 1965, with the serendipitous discovery of the property of 

cisplatin to inhibit cell division by Barnett Rosemberg and Loretta 

VanCamp[8], that the new era of medicinal inorganic chemistry started. 

Nowadays various metal-based drugs and diagnostic agents are in use in the 

therapy and in the diagnosis of human diseases (Figure 2.1).[9]  

 

 

Figure 2.1 Metal-based drugs and diagnostic agents currently in use. Reproduced from 

ref. [8]. 

In 1970 FDA (Food and Drug Administration) approved the use of lithium 

carbonate in the treatment of  mental disease, in particular bipolar disorder 

and manic depression;[10] more recently the bismuth subsalicylate was found 
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to be an antidiarrheal agent and, as a derivative of salicylic acid, it shows 

also anti-inflammatory and antibacterial properties.[11–13]  Many metal ions 

play also an important role as diagnostic agents: in fact 111In-DTPA, 67Ga-

citrate and 99mTc-cardiolite are important γ-emitting radiopharmaceuticals 

used for single-photon emission computed tomography[14] and Gd(III)-

BOPTA is a very used contrast medium in Magnetic Resonance Imaging 

(MRI).[15]  

The use of metals in medicine is well established as witnessed by the 

reported examples and nowadays the effort of scientific community is to find 

new and less toxic metal drugs and to predict their structure-activity 

relationships.[16] 

2.1.2 Metal complexes in cancer therapy 

Although cancer has been known since ancient times, with the oldest written 

evidence found in an Egyptians papyrus, dating back to 3000 B.C., in which 

a description of a breast cancer is reported[17], this pathology is still one of 

the principle cause of death worldwide. It was estimated that 1 out of 6 deaths 

is due to cancer and this number is expected to rise in the next twenty 

years.[18]  Tremendous efforts in the research of new drugs and therapy have 

been made to reduce mortality and increase the survival rate of patients. 

The development of chemotherapy, i.e. active molecules capable of reaching 

neoplastic cells and destroy them, can be traced back to 1865 with the use of 

Fowler's solution, containing 1% of potassium arsenide (KAsO2), in the 

treatment of leukaemia.[19]  It was after the World War I that new important 

advances were made.  Studies on the effects of mustard gas on the population 

showed a reduction in the proliferation of tumour cells and, after several 

studies of the effects of mustard gas and analogues on animal models, in 

1942, the first clinical trial of nitrogen mustard, shown in Figure 2.2, on a 

man with lymphosarcoma at terminal stage, occurred.  Goodman, Gilman 
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and Lindskog made this first important step in the development of new 

anticancer drugs,[20] but in the end they found that the malignant tumour 

regressions were temporary.[21] In the same period, during his studies on 

leukemia, Sidney Farber discovered that folic acid stimulated the 

hematopoietic stem cells of red bone marrow and he hypothesized that some 

folic acid antagonist, such as aminopterin and amethopterin, could inhibit 

tumour cells growth.[22]  Amethopterin, shown in Figure 2.2, is still used for 

chemotherapy in the treatment of different tumours.  

 

Figure 2.2 Chemical structures of Mustine and Amethopterine. 

The real breakthrough in the anticancer therapy was the serendipitous 

discovery of tumour-inhibiting quality of cis-diamminedichloroplatinum(II), 

cisplatin, in 1965, that has opened up the door of the metal-based drugs new 

era. 

In 1961, Rosenberg decided to study the effect of electric current on the 

replication process of the Escherichia Coli bacterium.  The experimental 

setup required the use of platinum electrodes immersed in an ammonium 

chloride solution.  The first experiments showed an extension of the 

bacterium without any cell division.  After several tests, it was understood 

that this effect was not due to the electrical current but to the cisplatin that 

was formed in situ.  These results opened up the hypothesis that these 

compounds could be able to inhibit the tumour growth.[8]  After the synthesis 

of different platinum complexes, showed in Figure 2.3 and the study of their 

effect on sarcoma 180 and on L 1210 leukemia in mice, in 1969, Rosenberg 
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and his co-workers published the first paper on the tumour-inhibiting effect 

of platinum compounds.[23] 

 

Figure 2.3 The most efficacious compound tested by Rosenberg. 

 Although with some doubts around the use of heavy metals in medicine, 

clinical studies showed excellent results of cisplatin on various advanced 

stage tumors and, in 1979, the use of cisplatin was approved by the FDA for 

treating testicular and ovarian cancers. Nowadays cisplatin is still in use, in 

combination with other antitumor agents as therapy for lung, bladder, brain, 

cervical and esophageal cancers.[24] 

The efficacy of cisplatin is related to its ability to interact with the DNA 

contained in the nucleus cells by inducing apoptosis, i.e. the programmed 

cell death. Apoptosis occurs when the cell reaches the natural end of its life 

cycle or when it is irreversibly damaged. When the cisplatin is inside the cell, 

the two cis-chloride ligands are replaced by two water molecules because of 

the lower chloride concentration in the intracellular medium (3-20 mM) 

compared to the extracellular fluid (⁓100 mM).[25]  The aqua complex is the 

activated form and is able to enter the nucleus and interact with the DNA, as 
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shown in Figure 2.4, binding the nucleophilic centers of the purine bases of 

DNA, especially the N7 atom of guanosine residue.  

 

Figure 2.4 Cisplatin interaction with DNA. Adapted from ref. 25. 

Various types of adducts can be formed and they generally involve a second 

donor atom.  Depending on the origin of the second donor atom, it is possible 

to have: 

 a link with a protein or an interstrand crosslink (i.e. between two 

filaments) with another guanine;  

 an intrastrand crosslink (i.e. within the same filament) between two 

adjacent guanine;  

 an intrastrand crosslink by two guanine divided from a third 

nucleotide; 

 an intrastrand crosslink between a guanine and an adenine.[26]  

These crosslinks cause significant distortions in the DNA geometry, bending 

the double helix and hindering replication and transcription processes 
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inducing apoptotic cell death.  Despite its enormous benefits, cisplatin also 

has considerable nephrotoxic effects and side effects for the nervous system 

and, moreover, many types of cancers develop mechanisms of resistance to 

it: this is a huge limitation of cisplatin-based chemotherapy.[27,28] 

Although cisplatin treatment has had an ultimate impact on modern 

chemotherapy and is still the basis for the treatment of many solid tumours, 

scientific research scope is to find new active molecules that have null or 

minor side effects and that do not give rise to resistance problems.  

In these 50 years, thousands of platinum complexes have been synthesized 

and tested as antitumor, and few of these, such as carboplatin,[29] 

oxaliplatin[30] and nedaplatin[31]  are commercially available (Figure 2.5). 

Many of them were discontinued from clinical trials because of their lack of 

advantage over cisplatin.[32]  

 

Figure 2.5 Examples of platinum(II) and (IV) complexes commercially available or 

employed in clinical trials. 
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Research in the field of anticancer metal drugs is growing and is not only 

focused on platinum complexes. Many other complexes based on “d” block 

metals have been screened as anti-cancer.  The transition metal complexes 

possess peculiar properties, mainly due to the metal core.  They usually have 

more stable oxidation states; can give various ligand exchange reactions that 

allow the metal to interact with biological molecules and can also adopt 

various coordination geometries that give different shapes to the complexes. 

This modulability and the excellent performances of platinum complexes 

have led to the development of new metal drugs, many of which based on 

ruthenium.  In fact, actually there are two compounds in clinical trials: 

NAMI-A[33] in phase I and KP1019[34] in phase II. 

A large number of new metal complexes with good cytotoxic properties and 

very promising as anticancer agents were discovered and many of them are 

showing various modes of action.[35–38]  Among the new non-platinum drugs 

especially gold compounds have received increased attention in recent years.  

2.1.3 Gold complexes as anticancer drugs 

2.1.3.1 History of gold in medicine 

The history of medical use of gold is not recent.  Its pharmacological 

properties have been known since ancient times and the first uses in medical 

applications seem to date back to 2500 BC in China.  In the Middle Ages, a 

colloidal gold solution, known aurum potabile, was considered a panacea 

and alchemists assured that its intake prevented aging.[39]  It is striking how 

today, expensive anti-age creams, containing gold particles, are being sold, 

whose effectiveness is very controversial.[40,41]  In 17th century, Nicholas 

Culpepper proposed the use of gold as an antidepressant and as a treatment 

for mental illness and, about two hundred years later, a mixture of gold 

chloride and sodium chloride, Na[AuCl4], was used in the treatment of 

syphilis.  
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The modern era of medical uses of gold started in 1890 with the discovery 

of the German scientist, Robert Koch, that potassium dicyanoaurate(I) was 

bacteriostatic to tuberculosis bacillus.  As it was assumed that this bacillus 

was responsible for rheumatoid arthritis, in the 1960s it was thought to use 

gold therapy against various rheumatic diseases, such as psoriatic and 

juvenile arthritis, and also inflammatory skin diseases as urticarial and 

psoriasis.[39,42]  It was soon discovered that gold therapy was ineffective 

against tuberculosis, but excellent results were obtained against rheumatoid 

arthritis and this gave birth to Chrysotherapy (from Greek chrysos = gold) in 

modern medicine.  In 1972 there was a great discovery made by Sutton and 

Waltz who experimented the use of gold(I) phosphine complexes, orally  

bioavailable, for the treatment of rheumatoid arthritis.[43] The drug Auranofin 

was approved in 1985 by the Food and Drug Administration and is still used 

in the treatment of the most severe cases of rheumatoid arthritis, along with 

a series of similar derivatives shown in Figure 2.6, given by injection but 

with high nephrotoxicity and various side effects (Allocrysin, Myocrysin, 

Sanocrysin, Solganol).[44] 

 

Figure 2.6 Gold complexes used in rheumatoid arthritis therapy. 
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Studies on the mechanism of action of Auranofin have shown that the 

thiolate ligand is more labile than the phosphine ligand.  The leading 

hypothesis is that the metabolism of the drug provides exchange reactions of 

thiolate ligand with carrier proteins that only carry the fragment Au-PR3.
[45]  

Over the years, in patients treated with Auranofin therapy, it was possible to 

observe other drug properties, such as antihistamines.  This discovery opened 

the way to new applications for this drug.  Currently, Auranofin is no longer 

the drug of choice for rheumatoid arthritis because of its long-term side 

effects but tests are ongoing for its potential use in the treatment of HIV,[46,47] 

parasitic infections,[48,49] bacterial infections,[50,51] neurodegenerative 

disorders such as Parkinson’s disease and Alzheimer’s[52,53] and some 

cancers.[54–56] 

With the discovery of Auranofin, and its many potential uses, the golden era 

in medicinal chemistry began. 

2.1.3.2 Biological targets of Auranofin and related gold complexes 

Unlike platinum complexes, which interact primarily with DNA, gold 

complexes, due to the affinity of gold with thiols, seem to target some 

enzymes especially those rich in cysteine.  Many thiol-rich proteins, such as 

Thioredoxin reductases (TrxR), glutathione reductase (GR) and cysteine 

proteases, are overexpressed in tumour cells and this may be the reason for 

the efficacy of such complexes.[49,57] 

TrxR and GR, which are responsible for the reduction of thioredoxin (Trx) 

and glutathione disulfide respectively, are enzymes belonging to the family 

of flavoproteins.  The TrxR are homodimers, each monomer contains a flavin 

adenine dinucleotide (FAD), that is a redox cofactor, a NADPH (the reduced 

form of  nicotinamide adenine dinucleotide phosphate)  binding domain, and 

an active site containing a redox-active disulfide bond.[58] The main isoforms 

of these proteins in human cells are TrxR1 present in cytosol and TrxR2 in 

mitochondria and all the thioredoxin system, that consists of thioredoxin, 
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NADPH and TrxR, plays a key role in the redox regulation of DNA 

synthesis, transcription, cell growth, etc...[59]  Thioredoxin acts as an electron 

donor species for a large number of enzymes, including ribonucleotide 

reductase, which plays an important role in DNA synthesis.  Many 

transcription factors have been identified, whose activity requires 

thioredoxin to be reduced, so that they can bind DNA effectively.  A high 

expression of thioredoxin is associated with the aggressive growth of tumour 

cells, the inhibition of apoptosis, and the decrease in the probability of 

survival of cancer patients.  In addition, high concentrations of thioredoxin 

reductase can increase cisplatin resistance by tumour cells.[60,61]  TrxR 

inhibition significantly increases the concentration of ROS (reactive 

oxygenated species) within mitochondria, resulting in cell death, which can 

explain, at least partially, the cytotoxic action of some gold complexes.[62]  

TrxR is a selenoenzyme because a selenocysteine is present in the active site 

Gly-Cys-Sec-Gly responsible for the redox mode of action of the enzyme.  It 

is well known that gold, in particular gold(I), is a “soft” Lewis acid and it 

has an affinity for “soft” donors such as the senolate groups.  The formation 

of a covalent bond between the electrophilic gold centre and the nucleophilic 

cysteine or selenocysteine residue of the active site of the enzyme lead to its 

inhibition.  Certain crystal structures of gold-enzyme adducts support this 

thesis.  In particular, Becker and co-workers reported the crystal structure of 

an Au(I)-hGR adduct where the gold source is a gold phosphole, in particular 

GoPI ([1-phenyl-2,5-di(2-pyridyl)phosphole]AuCl) and human disulfide 

reductase (hGR), an enzyme containing cysteines in its active site.  The 

crystalline structure shows a gold ion coordinated in a linear way to Cys58 

and Cys63 and the Cys284 acting as a GoPi ligand instead of chloride (Figure 

2.7a).[57]  From the crystals obtained after the reaction of the Auranofin with 

thioredoxin-glutathione reductase (TGR), a parasite enzyme similar to TrxR, 

triethylphosphine and thioglucose ligands were not found but it was possible 

to observe two Au+ ions linearly coordinated to two cysteines, in particular 
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their position are between Cys154 and Cys159 and Cys520 and Cys574 

(Figure 2.7b).[63]  Instead, in the adduct Auranofin-TR (trypanothione 

reductase, an enzyme belonging to the family of disulphide oxidoreductase) 

the Au+ ion coordinate two cysteines and a chloride.[49] These crystal 

structures confirm that gold manages to coordinate the cysteines of the active 

sites of such enzymes inhibiting their activity.[64] 

 

Figure 2.7 Gold(I)-protein adducts: a) Interactions between GoPI, molecular structure on 

the right, and glutathione reductase active site; b) Au(I)-TGR adduct; c)Au(I)-TR adduct. 

Adapted from ref. [64]. 

The inhibition of mitochondrial TrxR prevents Trx reduction and hydrogen 

peroxidase, formed during the respiration chain, accumulates in 

mitochondria. Oxidized Trx and H2O2 act on many factors within the 

mitochondria and, in particular, increase the permeability of the membrane, 

this causes the release of apoptotic factors that leads to cell death.[65] 

The interaction of gold with TrxR, and its analogues, does not seem to be the 

only mechanism of action. It is reported in literature that Auranofin can 
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inhibit the activity of cathepsin K and S, which are cysteine proteases, always 

by coordinating the sulfur of a cysteine in the active site.[66] It can be thought 

that, given the high affinity of gold for sulfur and selenium, it can interact 

with other proteins rich in thiols and selenols, in fact it has been reported that 

gold(I) complexes inhibit the action of glutathione peroxidase (GPx)[67] and 

iodothyronine deiodinase (ID).[68] 

In some cases adducts in which gold does not bind cysteines have been 

observed but the gold(I) ion is coordinated by the histidine nitrogen as in the 

structure, reported by Sadler, Au(I)-Cyp3 (Cyclophilin 3, a protein having 

four cysteine residues). In this structure gold is not bound to any of the four 

cysteines, but there is an NHis-Au-PEt bond and this, however, leads to the 

inhibition of the enzyme.[69] At present, it has not been possible to isolate any 

adduct between gold in oxidation state +3 and proteins already mentioned 

above, probably because Au(III) is unstable in the reaction environment and 

is reduced to Au(I).[70,71] In any case, the cytotoxicity of the gold(III) 

complexes is known and, recently,  some targets have been identified: 

Aquaporin3,[72] a membrane protein, and a deubiquitase,[73] being the 

interaction always due to the binding of the metal ion with the cysteinyl 

thiols. 

A unique mode of action for gold complexes is not plausible, it can change 

depending on the complex properties (redox properties, ligands, geometry, 

lipophilicity, etc ...).   

In general, from the results obtained, the following structure/toxicity 

correlations can be drawn: oxidation state, nature of ligands, and 

coordination geometry are of primary importance in determining the 

tendency to participate in the ligand exchange reactions with biological 

substrates and in solubility, stability and toxicity.  The activities and toxicity 

of complexes depend strongly on their hydrophilic/lipophilic character that 

can be adequately balanced, so as to have sufficient solubility in a 
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physiological environment and lipophilicity such as to allow the molecule to 

enter the inside cells (up-take).[74] 

The “fine-tuning” of the properties, just mentioned, is extremely important 

in order to improve biological activity and reduce side effects. 

2.1.3.3 Gold(I) and gold(III) as anticancer drugs: state of the art 

At present, the antitumour properties of gold complexes continue to rise great 

interest, since the first studies on their properties dating back to the '80s.  

Initially, tests were carried out on Auranofin and its analogues that showed 

a potent in vitro activity with the half maximal inhibitory concentration 

(IC50) values in the range of 1-10µM, but the low in vivo activity precluded 

development as antineoplastic agents.  

The IC50 is a measure of the inhibition power of a substance on a specific 

biological or biochemical function.  According to the FDA, it represents the 

concentration of a drug that is required for 50% inhibition in vitro. The 

values are typically expressed as molar concentration. 

The high toxicity that some gold(I) and gold(III) complexes have shown 

against several tumour cell lines inspired the development of a number of 

structurally different organometallic species with chemical permutations 

both at the metal oxidation state and at the organic counterpart.  

Having a coordination geometry similar to that of platinum(II), gold(III) 

complexes aroused much interest as possible antitumour, but because of their 

oxidizing potential and their high hydrolysis speed, usually they are more 

toxic and less stable under physiological conditions than gold(I) complexes. 

This is why their potential pharmacological activity was initially neglected 

until the second half of the 1990s. Gold(III) is coordinated preferentially by 

ligands with nitrogen donors. Using appropriate ligands such as nitrogen 

chelating species including  N˄N, N˄N˄N, C˄N, C˄N˄N, C˄N˄C, porphyrin 

and dithiocarbamate, it is possible to decrease the reduction potential and 
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stabilize the metal center, thus avoiding its reduction to [Au(I)] or [Au(0)] 

before reaching the desired site and express all its toxicity. 

The antitumor properties of some of these complexes, of which 

representative examples are shown in Figure 2.8, are very encouraging in 

fact a gold(III) porphyrin complex (gold-1a in Figure 2.8) has shown to be 

very stable in the reducing environment and to have in vitro cytotoxicity at 

micromolar or nanomolar level in some cell lines. The tetrarylporphyrin 

complex is effective also in cisplatin-resistant cancer cell lines this means 

that the mechanism of action is different from that of the cisplatin.[75] 

Figure 2.8 Representative examples of gold(III)-complexes as anticancer agents. 

Aubipyc ([Au(bipydmb-H)(OH)PF6]) is also a promising anticancer drug, in 

fact it is stable in the physiological condition and the hydroxyl group is the 

preferred site for the ligand exchange reaction and for protein binding. 

Aubipyc was found to be cytotoxic towards the human ovarian cancer cell 

line A2780 and proteomic  study demonstrates that it can disrupt 

mitochondrial function having, among its targets, several glycolytic 

enzymes.[76]  

Various dithiocarbamate gold(III) complexes were developed because the 

Au-S bonds can stabilize the Au3+ ion; particularly, Au(III)(DMDT)Br2 and 
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its analogues are able to trigger cell death, to induce ROS generation and to 

irreversibly inhibit TrxR activity.[77]  

Due to the development of chrysotherapy, mainly based on gold(I), and also 

to their thermodynamic stability, the research on gold complexes as 

anticancer drugs has focused largely on complexes with gold(I).  

In particular, the organic frameworks constituting the prodrug system proved 

to be actively involved in determining the overall activity of the species also 

because by modulating the substituents it is possible to confer greater 

hydrophilicity or lipophilicity on the whole, thereby improving the 

potentialities as a carrier for the metallic center.[78] Ligand exchange is the 

most important reaction for gold(I) complexes in a biological environment, 

for which such drugs are better defined as pro-drugs: the active species is 

formed in situ and the originally coordinated ligand has the only function to 

enhance reactivity and selectivity in drug action. In this direction, soft 

ligands such as phosphine, thiols, or σ-donating nitrogen heterocyclic 

carbenes (NHCs) have been employed in the synthesis of new gold 

complexes with the aim of enhance their cytotoxicity. In Figure 2.9 some 

leading examples of this class of compounds are shown. 

Figure 2.9 Representative examples of gold(I)-complexes as anticancer agents. 
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As mentioned above Auranofin is the precursor of this family of compounds 

and it has long been known to interact with TrxR leading to cancer cell death 

as well as GoPI that is a potent inhibitors of TrxR and glutathione reductase 

(Figure 2.7). GoPI is a phosphole complex and its strong TrxR inhibitory 

potential is proven by IC50 values in the micromolar range in glioblastoma, 

an aggressive cancer.[79]  Because the carbohydrate moiety of Auranofin was 

supposedly more relevant for the biodistribution of the compound than for 

its cytotoxic properties, Ott et al. replaced the thiocarbohydrate with a 

thionaphtalimide ligand which was proved to be bioactive, in fact it 

displayed significant cell growth inhibiting properties.[80] The studies on the 

complex Au-Naphth-1 showed a strong antiproliferative effects in MCF-7 

breast cancer cells and in HT-29 colon carcinoma cells.  The experiments 

confirmed an elevate uptake in the nuclei compared to non-naphthalimide 

Et3PAuCl and the presence of multiple biological targets, the most relevant 

are nuclear (DNA) and mitochondrial (TrxR) macromolecules. Then Ott’s 

group synthetized a series of complexes replacing the triethylphosphine 

moiety with other aliphatic and aromatic phosphine and also with carbene 

with the aim of enhancing the pharmacological properties of this class of 

complexes.[81,82]  

Au(I) complexes with N-heterocyclic carbenes (NHCs) ligands are often 

used in catalytic application because of the strong electron-donating 

properties of the ligand, but, recently, their biological functions have been 

extensively investigated.[83] NHCs ligands are similar to the phosphine ones 

and their lipophilicity is easily tunable modifying the functional groups.   

Berners-Price and coworkers reported the synthesis and the biological 

activity of a family of homoleptic cationic bis-NHC gold(I) complexes (one 

member is depicted in Figure 2.9) that showed promising cytotoxic 

properties accompanied by interesting mitochondrial membrane 

permeabilization depending on the lipophylicity of the complex.[84,85]  
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Biological studies have shown that the cationic derivative inhibits the growth 

of tumour cells but not of healthy ones. It has also been observed that they 

are inhibitors of thioredoxin reductase and tyrosine phosphatase giving 

ligand exchange reactions with thiol and selenol groups.[86]   

Together with carbenes, gold(I)-phosphine complexes are one of most 

studied classes of complex not only for their catalytic properties but also for 

the biological one. They can be divided into two classes: neutral linear two-

coordinated complexes, such as PPh3AuCl, and cationic tetra-coordinated 

bis-chelated diphosphine derivatives of [Au(I)] as [Au(dppe)2]Cl 

(dppe=bis(diphenylphosphinoethane), shown in Figure 2.9.  

Although studies suggest that the mechanism of anti-tumour activity of the 

two classes is different, both cause a mitochondrial disfunction leading to 

cell death.[87] The tetrahedric [Au(dppe)2]Cl complex was first tested by 

Mirabelli and coworkers in the 1980s and found to be more stable and less 

reactive than the two-coordinated phosphinic gold(I) complexes. In vitro 

observed cytotoxicity has been confirmed by good results obtained in vivo, 

especially against a range of solid tumours and leukemia in mice.  However, 

preclinical toxicological studies have shown severe cardiotoxic effects  and 

toxicity to liver and lung in rabbits and dogs.[88] 

This increased activity is probably due to the greater lipophilicity conferred 

by the ligand. Studies on [Au(dppe)2]Cl and some analogues revealed that 

the counter anion effect is not relevant[89] but there is a strong relationship 

between lipophilicity, cellular uptake and toxicity. The lipophilic cation can 

pass through the cellular membrane, accumulate into the mitochondria  and 

causing to mitochondrial dysfunction,[90] but these complexes can also 

induce DNA protein cross-links and DNA strand breaks in cells.[91]  To 

reduce the toxicity, a less lipophilic 2-pyridyl analogues [Au(d2pype)2]Cl 

(d2pype= 1,2bis(di-2-pyrydilphosphino)ethane) was developed and was 

found to be active in colon tumours in mice.[88]  An analogue complex with 
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a propyl-bridged phosphine, [Au(d2pypp)2]Cl (d2pypp=1,2bis(di-2-

pyrydilphosphino) propane), revealed a strong TrxR inhibition and a high 

selective cytotoxicity towards breast cancer cell but not to normal cells.[92]  

Tuning the lipophilicity and the length of the alkane bridge is a crucial point 

in the design of new anticancer metal drugs. 

The research on biological properties of gold(I)-alkynyl complexes is quite 

scarce but in the last years some progress has been made. Mohr and 

collaborators presented a series of complexes containing derivatives already 

known to be antimalarial drugs. These complexes showed encouraging 

antitumor activity on various cell lines. In particular the complex, depicted 

in Figure 2.10,  showed IC50 values of magnitude similar to those of cisplatin 

in the broadly chemosensitive ovarian cancer cell line CH1 and in the colon 

cancer cell line SW480.[93] 

Figure 2.10 Representative examples of alkynyl gold(I)-complexes as anticancer agents. 

Another interesting work, published by Dyson, has shown that a series of 

gold(I) alkynyl complexes containing water-soluble phosphane ligands, one 

example is depicted in Figure 2.10, have an antiproliferative activity against 
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a cisplatin sensitive and a cisplatin-resistant ovarian cancer cells.  These data 

suggest a different mechanism of action of this class of complexes respect to 

cisplatin.[94]  Encouraging results were also reported with diethynylfluorene 

derivatives of gold(I), (Figure 2.10) by Leung and Wong. The species 

containing a fluorenone group was shown to have a good biological activity 

in vitro and in vivo. The generation of ROS from the carbonyl group of the 

central ligand spacer is believed to be essential for its cytotoxicity in fact the 

change of this carbonyl group with a CH2  unit is very negative for its toxicity.  

Very recently, Ott and coworkers documented on the synthesis, 

characterization and pharmacological investigation of a new family of 

mononuclear [alkynyl(triphenylphosphine)gold(I)] complexes of general 

structure PPh3Au-C≡CCH2XR (X: O, N) with important antiproliferative 

activity (micromolar range) in breast adenocarcinoma and colon carcinoma 

cells, one example is shown in Figure 2.10.[95]  Shortly after, the same team 

described the remarkable biological properties of binuclear gold(I) alkynyl 

analogs featuring bidentate phosphines as tethering units.[96] These studies 

emphasized also thioredoxin reductase (TrxR) as a plausible biological target 

of the pharmacologically active gold(I) species.[62,97] 

The propargylic sidearm proved to contribute substantially to the overall 

pharmacological activity of the title species, therefore, careful modulation of 

this unit could lead to interesting perspectives in developing more selective 

and potent candidates for anticancer drugs. 

In this regard, recent investigation dealing with the documentation of novel 

[alkynyl(triphenylphosphine)-gold(I)] complexes comprising relatively 

unexplored propargylic amine derivatives as organic ligands are presented. 

The possibility to create chemical diversity by means of readily accessible 

propargylic amine derivatives enabled a survey of several structural aspects 

such as nitrogen basicity and electronic/steric factors. 
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2.2 Results and discussion 

2.2.1 Synthesis and characterization 

In order to assess the effective role of the alkynyl sidearm on the biological 

spectrum of the gold species, a range of propargylic mono- and diamine 

derivatives 2a-f and mono/binuclear phosphinogold(I) complexes (i.e. 

PPh3AuCl 1a and [PPh2(CH2)2PPh2](AuCl)2 1b), were elected as key 

building blocks (Figure 2.11).[98]  

 

Figure 2.11 Metal and organic fragments employed in the present investigation. In 

brackets the isolated yield. 

In particular, by reacting an equimolar amount of gold(I)chloride complexes 

1a,b and the desired terminal alkyne under basic conditions (KOH, 

MeOH/EtOH), the corresponding alkynyl-gold complexes 3 were isolated in 

moderate to good yields (60-92%).  Further purification was mostly carried 

out either by recrystallization or through flash chromatography on silica gel 

(Figure 2.12). 
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Figure 2.12 Library of [gold(I)-alkynyl] complexes synthetized and tested in the present 

work. In brackets the isolated yield. 

A ligand exchange mechanism takes place: phosphine-gold(I) chloride loses 

the Cl- and acquires the alkynic ligand, maintaining a linear geometry.  The 

interaction of the gold centre with the π electrons of the C≡C bond is 

exploited to favour the deprotonation of the acetylenic proton by the base.  

The acetylide that is formed can then donate electrons to the metal center, 

building a C-Au covalent bond as shown in Figure 2.13. 
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Figure 2.13 Mechanism of formation of [gold(I)-alkynyl] complexes. 

Complexes 3 were obtained as white (pale brown in the case of 3ad) air 

stable solids featuring a remarkable solubility in common organic solvents.  

They were fully characterized both in solution   (NMR, IR, LC-MS) and solid 

state (3ab and 3ac).  

In particular, NMR spectroscopy (CDCl3, rt) resulted particularly diagnostic 

in monitoring the reaction course. As a matter of fact, the formation of 

adducts 3 caused the disappearance of the acetylenic C-H of the alkyne 

congeners (1H-NMR  = 2.0-2.2 ppm), with the concomitant deshielding (≈ 

0.15 ppm) of the propargylic methylene. Additionally, a marked 

downshielding of the 31P-NMR signals in the final compounds 3a-f (39-42 

ppm) occurred with respect to the congener 1a (32.9 ppm). On the contrary, 

the 31P-NMR spectrum of the binuclear adduct 3bb displayed a shielded 

singlet ( = 21.8 ppm) if compared with 1b ( = 31.5 ppm). The presence of 

a single peak accounted for the formation of the C2-symmetric adduct 

depicted in Figure 2.12. 

2.2.2 Single crystal X-ray diffraction of complexes 3ab and 3ac 

Solid state structure investigation on complexes 3ab and 3ac was also carried 

out. Crystals suitable for X-ray diffraction were formed through slow 
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evaporation of AcOEt solutions of the corresponding species,  The resulting 

molecular structures of 3ab and 3ac are reported in Figure 2.14. 

 

Figure 2.14 Molecular structure of 3ab (sx) and 3ac (dx). 

 As expected for gold(I) complexes, Au adopts an almost linear coordination 

and the P-Au-C bond angles are very close to the ideal value of 180° 

[176.5(2) and 178.9(2)° for 3ab and 3ac, respectively]. The C≡C bond 

lengths of 1.183(7) and 1.194(7) Å are typical of terminal alkynyl gold(I) 

complexes.  

The crystal packing of 3ab is dominated by weak non classical 

intermolecular C-H…O hydrogen bonds (Figure 2.15) between the oxygen 

atoms of sulfonamide and the hydrogen atoms of phenyl rings of phosphine, 

whereas in 3ac two phosphine phenyl rings in each molecule establish 

intermolecular π-π interactions with their symmetry equivalent adjacent 

phenyl ligands generating infinite zig-zag chains along the c axis as shown 

in Figure 2.16. 
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Figure 2.15 View along the c axis of the crystal packing of 3ab (pale blue dotted lines 

show non classical intermolecular C-H…O hydrogen bonds). 

 

Figure 2.16 View down the b axis of the crystal packing of 3ac.  Violet dotted lines show 

- interactions involving two symmetry equivalent phosphine phenyl rings.  
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2.2.3  Biology 

In collaboration with the group of Professor Natalia Calonghi from the 

Department of Pharmacy and Biotechnology of Alma Mater Studiorum – 

University of Bologna, the biological activity of the alkynyl-gold(I) 

complexes has been studied.  The following experiments were performed by 

Dr Christian Bergamini. 

Cell lines included in the evaluation of toxicity profiles were malignant 

HT29, IGROV1, and HL60, and a non-malignant human epithelial intestinal 

cell line I407.  HT-29 is a human colorectal adenocarcinoma cell line, 

colorectal cancer is a cancer originating from the epithelial cells lining the 

colon or rectum of the gastrointestinal tract.[99,100]  IGROV1 cell line is 

another adenocarcinoma, a neoplasia of epithelial tissue, of the human 

ovary,[101] instead the HL-60 are human promyelocytic leukemia cells, 

promyelocytic leukemia is a cancer of the white blood cells.[102] 

The determination of the IC50 was performed with the MTT assay. The MTT 

assay is a colorimetric assay for measuring the activity of enzymes in 

reducing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) to formazan ((Z,E)-5-(4,5-dimethylthiazol-2-yl)-1,3-

diphenylformazan).  The reaction scheme is depicted in Figure 2.17.  

 

Figure 2.17 Reaction scheme of MTT reduction. 

The test uses water soluble yellow tetrazolium salt MTT which is reduced to 

formazan, insoluble and blue-violet in color. The reduction process is due to 



Chapter 2: Alkynyl-gold(I) complexes featuring anticancer activity 

48  Assunta De Nisi - March 2018 

the mitochondrial succinate dehydrogenase enzyme. This process can only 

take place if the cells have a metabolic activity. On the contrary, if the cells 

are dead, they do not show any metabolic activity and consequently the salts 

are not reduced and the species remains yellow.[103] 

IC50 values of the drugs were calculated using Prisma, fitted by means of 

sigmoidal fit and listed in Table 2.1. 

Table 2.1 IC50 of gold compounds in different cell lines after 24 hours of treatment (µM)a 

Compound HT29 IGROV1 HL60 I407 

Auranofin 
3.3 

(1.8-6) 
2.5 (0.4-15) 0.7 (0.3-1.6) 

1.6 

(0.9-2.8) 

(+/-)-3aa >100 
20 

(10.06-39.20) 

19.0 

(7.43-50.69) 

15.0 

(9.14-24.65) 

3ab 
7.9 

(5.39-11.59) 

5.3 

(3.87-7.43) 

3.3 

(1.62-6.88) 

1.7 

(0.61-4.99) 

3ac >100 
5.5 

(4.69-6.69) 

2.7 

(1.19-6.18) 

9.6 

(7.26-12.63) 

3ad 
11.0 

(8.97-15.01) 

6.5 

(4.12-10.31) 

6.3 

(5.05-7.94) 

8.0 

(6.73-9.66) 

3ae >100 
10.0 

(6.40-17.84) 

9.0 

(6.55-12.83) 
>100 

3af >100 
7.7 

(6.26-9.48) 
>100 >100 

3bb >100 >100 
0.8 

(0.28-2.40) 
>100 

a 95% confidence intervals are reported in the brackets 

From the data collected in Table 2.1 some preliminary conclusions can be 

drawn.  Within the portfolio of gold complexes in hand, 3ab was the more 

effective in inhibiting cell growth in all panel cell lines, in a similar way to 

Auranofin.  Additionally, compound 3ad showed some levels of cytotoxicity 

towards all the cell lines but the corresponding IC50 values were constantly 

higher than that 3ab.  On the contrary, (+/-)-3aa, 3ac, 3bb, 3ae and 3af 

proved competent only on a few of the screened cell lines.  In this scenario, 
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some peculiarities were also highlighted.  In particular, complexes 3af and 

3bb showed significant toxicity for IGROV1 and HL60 cells, respectively.  

Moreover, it is important to stress the lack of toxicity toward non-cancer cell 

lines showed by the compounds 3bb, 3ae and 3af.  PPh3 and 2b were tested 

in the cell lines IGROV1 and HT-29.  The results proved that the alkyne is 

inactive in both cases and the PPh3 furnished the values of 47 µM in IGROV 

1 cell lines and 39 µM on HT-29.  These values are higher than the IC50 

values of the complexes, except for 3af that is inactive on HL60. 

These bio-divergences clearly emphasised the role played by the nitrogen 

substitutions in modulating the overall pharmacological properties of the 

gold complexes. 

As mentioned above, inhibition of the TrxR is considered to be an important 

mechanism of bioactivity of gold(I) species.  In particular Auranofin shows 

an high inhibitory effect both on cytosolic (Trx1) and mitochondrial (TrxR2) 

isoforms of the enzyme.[104] Therefore, the potential of gold complexes to 

inhibit TrxR was studied on commercially available TrxR using the 2,6-

dichloroindophenol (DCIP) reduction assay.[105]  DCIP is a redox dye in fact 

when oxidized, it is blue with a maximal absorption at 600 nm; when reduced 

it is colorless, Figure 2. 18. 

 

Figure 2. 18 Reduction reaction of DCIP. 

The data are reported in Table 2.2. 
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Table 2.2 Inhibition power of gold(I) complexes on TrxR in comparison with Auranofin.a 

Compound 
% of Auranofin  

inhibition 
IC50 (µM) 

Auranofin 100 0.018 

3bb 73 0.354 

3af 73 0.308 

3ae 52 1.555 

3ad 55 3.754 

(+/-)-3aa 33 0.818 

3ab - - 
a  First column: the inhibitory effect of different gold(I) complexes on TrxR is expressed as % of inhibition 

taking as reference the Auranofin maximal inhibition. Second column: IC50 values of the different gold(I) 

complexes and Auranofin on TrxR activity. 

 

According to the results given in Table 2.2, complexes 3bb and 3af turned 

out to be effective inhibitors of TrxR inducing a maximal inhibition close to 

that induced by Auranofin with IC50 values in the sub-micromolar range. 

With the exception of 3ab, the other complexes showed IC50 values at least 

two order of magnitude higher than the Auranofin, whereas 3ab cannot be 

considered an inhibitor of this class of enzymes. 

It can be pointed out that only binuclear compounds are able to inhibit TrxR 

at sub-micromolar concentration suggesting the presence of strong 

interaction with the enzyme. To highlight the interaction between 

compounds and TrxR we have evaluated the LC-MS spectra of the enzyme 

both in the presence of a binuclear compound (3bb) and in the presence of 

the mononuclear compound 3ab that does not inhibit the enzyme activity.  

The mass spectrometric analysis of protein allows the identification of the 

covalent modification affecting its structure and hence its molecular 

weight.[106] In order to evaluate the possible covalent interaction between 

TrxR and 3ab and 3bb, the LC-MS analyses were performed (Figure 2.19).  
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Figure 2.19 LC-ESI-MS analysis of TrxR alone (a) and in combination with 3ab (b) and 

3bb (c). 

TrxR was previously analysed independently and its multicharged mass 

spectrum was acquired on its chromatographic peak (5 min retention time). 

From this spectrum the deconvoluted-ESI mass spectrum was obtained; it 

reports the molecular weight of the enzyme (Figure 2.20a). Being TrxR a 

mixture of isoforms three different principal molecular weights were 

obtained (54342, 58856 and 60885 Da). Analysing the mixtures of the 

enzyme with 3ab and 3bb a second peak appeared in the chromatogram 

(Figure 2.19b and c) indicating that these moieties have a different 

chromatographic behavior compared to that of the enzyme. This peak could 

derive from the molar excess of 3ab and 3bb. Concerning the mass 

spectrometric analysis however no significant changes were detected 

analysing the enzyme peak. In the presence of a covalent bond the signal 

corresponding to adduct would have appeared but no new signal was 

detected thus we can conclude that no covalent bond exists between TrxR 

and 3ab or 3bb (Figure 2.20b and c). 
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Figure 2.20 Deconvoluted mass spectra of TrxR alone (a) or after the combination with 

3ab (b) and 3bb (c). 

To gain some insights into the biological effects of these new derivatives, 

the most active compound towards all cells lines, 3ab was submitted to 

additional studies. In order to assess whether the antiproliferative effect of 

3ab was associated with interference with cell cycle progression, DNA 

profiles of cultured cells were examined by flow cytometry and cell cycle 

analysis was performed by using the Multicycle Cycle Phoenix Flow system, 

and Modfit 5.0 software.[107] 

The cell cycle is a genetically controlled process and a scheme is reproduced 

in Figure 2. 21.  It is characterized by two main phases: interphase and mitosis 

(phase M). In order to correctly transmit the genetic information from the 
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mother cell to the daughter cells, the genome must first be duplicated during 

the interphase and then the chromosomes must be segregated into the two 

new cells during the phase M. The interphase is divided into three phases: 

first gap phase G1, that is the growing phase during which the cell grows 

physically larger, and the biosynthetic activity of the cell has a high rate and 

the molecular building blocks, that the cell need in later steps, are made; the 

S phase, the cell synthesizes a complete copy of the DNA in its nucleus and 

the amount of DNA in the cell has effectively doubled; the second gap phase, 

or G2 occurs after DNA replication and is a period in which the cell grows 

more to prepare the cell for mitosis. Phase M is composed of two closely 

related processes: mitosis, during which the chromosomes of the cell are 

divided between the two daughter cells and the cytokinesis, which involves 

the physical division of the cytoplasm of the cell.[108]  

 

Figure 2. 21  Schematic image of the cell cycle. Image was reproduced from "The cell 

cycle: Figure 1" by OpenStax College, Biology (CC BY 3.0). 

The analysis of the cell cycle is carried out by measuring the DNA content. 

The cell is permeabilized so as to introduce a fluorescent dye, in particular 

the propidium iodide (PI), which colors the DNA quantitatively. The 

fluorescence intensity of the stained cells correlates with the amount of DNA 
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they contain in this way the cells that are in S phase will have more DNA 

than cells in G1.
[109] 

The following Table 2.3 shows that the treatment with 3ab caused a marked 

accumulation of HT-29, IGROV1 and I407 cells in the S phase, respect to 

untreated cells. 

Table 2.3 Cell cycle distribution of cell lines treated with 3ab. 

 G0/G1 % S % G2/M % 

HT29 49.05 39.58 11.37 

HT29 + 3ab (7.9µM) 45.72 45.25 9.03 

IGROV1 55.32 29.57 15.11 

IGROV1 + 3ab (5.3 µM) 50.71 37.16 12.13 

I407 70.38 23.62 6 

I407 + 3ab (1.7 µM) 62.64 28.52 8.84 

 

Contrarily, in HL60 treated cells, the growth arrest was in the G0/G1 phase 

of the cell cycle and was associated with a well distinguishable pre-G1 peak 

in DNA, suggestive of DNA fragmentation, characteristic of apoptosis 

(Figure 2.22).  
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Figure 2.22 Effect of compound 3ab on the HL60 cell cycle. Cells were incubated for 24 

h, (sx) with the vehicle (Ctrl), or (dx) with compound 3ab (3,3 μM), afterward cell cycle 

distribution was determined by flow cytometry. Following treatment with 3ab, cells are 

in the G0/G1 phase and a well detectable fraction of DNA is present as a sub-G1 peak 

(light blue peak, dx). 

Interestingly, the treatment with the binuclear compounds did not induce any 

effect on the cell cycle, as reported in Table 2.4, where the cell cycle 

distribution of IGROV1 and HL60 in the presence of 3af and 3bb, 

respectively is shown. 

Table 2.4 Cell cycle distribution of cell lines treated with 3af and 3bb. 

 G0/G1 % S % G2/M % 

IGROV1 60 25 15 

IGROV1 + 3af (7.7 µM) 64 23 13 

HL60 48 14 38 

HL60 + 3bb (0.8 µM) 50 17 33 

 

2.2.4 UV-Vis absorption titration analysis 

Interactions between small molecules and DNA rank among the primary 

action mechanisms of cytotoxic activity.  In order to compare the binding 

properties of the gold complexes with DNA, dissociation constants (Kd) were 



Chapter 2: Alkynyl-gold(I) complexes featuring anticancer activity 

56  Assunta De Nisi - March 2018 

determined through inverse titration experiments.  Two types of interactions 

can be devised by these experiments as we can argue by the increase of ΔA 

or a decrease of ΔA measured at 260 nm. 

The increase of differential absorption of DNA in the presence of 3af, 3ab, 

3ac, 3bb, and 3ac could be ascribed to a lower base stacking while the 

decreased differential absorbance observed for (+/-)-3aa suggests a higher 

compactness of DNA. No appreciable effect was observed for 3ad. In this 

regard, the differential spectra of 3af (A), (+/-)-3aa (B) and 3ad (C) are 

depicted in Figure 2.23.  

 

Figure 2.23 Differential absorption spectra of 3af (A), (+/-)-3aa (B) and 3ad titrated with 

DNA. 
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Then the differential absorbance at 260 nm for each molecule versus DNA 

concentration was plotted, as reported in Figure 2.24. 

[DNA] M

0 10 20 30 40 50
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6
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Figure 2.24 Differential absorbance at 260 nm of DNA – molecules complexes at 

increasing DNA concentration. Molecule concentration was 10 µM. 

 

Fitting of these data, the use of a one-site saturation equation, enabled the 

estimation of the dissociation constant (Kd) for the complex formation as 

well as the limiting value for the ΔA260 (Table 2.5). 
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Table 2.5 Dissociation constant for the complex formation and the limiting value for the 

ΔA260 obtained by fitting data in figure 2.19. 

 Kd ± SE (µM) Bmax ± SE r2 

(+/-)-3aa 2.78 ± 1.36 -0.0366 ± 0.0055 0.8564 

3ab 0.84 ± 0.17 0.0568 ± 0.0019 0.9826 

3ac 24.89 ± 7.12 0.0784 ± 0.0108 0.9757 

3bb 195.53 ±111.89 0.1310 ± 0.0619 0.9923 

3ad - - - 

3ac - - - 

3af 1.54 ± 0.58 0.0786 ± 0.0064 0.9245 

 

The Kd analysis confirms that 3ab interacts with DNA quite strongly (Kd = 

0.84 ± 0.17) suggesting a partial explanation for its cellular toxicity.  Among 

the other compounds, only 3af shows a strong interaction with DNA having 

a similar value of Kd (1.54 ± 0.58).  On the other hand, a decrease for the 

differential absorption spectra is observed for (+/-)-3aa.  While the increase 

in the absorbance at 260 nm can be ascribed to a partial denaturation of the 

DNA, the decrease observed in the presence of the compound 3aa, could be 

indicative of DNA supercoiling.  

A fluorimetric test was performed to evaluate if the 3ad complex is 

intercalated in the DNA.  The test was carried out using the ETBr (Figure 

2.25), which thanks to its unique structure, can easily intercalate in the DNA 

strand and is used as a fluorescent tag of nucleic acids. 

 

Figure 2.25 Ethidium bromide structure. 
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When exposed to ultraviolet light, it gives fluorescence with an orange 

colour, intensifying almost 20 times after DNA binding.  The reason for the 

intense fluorescence of Ethidium Bromide binding with the DNA is the 

hydrophobic environment found between the base pairs.  The ETBr cation 

without water molecules, which quench the fluorescence, will emit with 

greater intensity.[110] 

Fluorescence titration of 15 µM ETBr bound to DNA with 3ab, up to 200 

µM, does not show any appreciable change of the emission spectra of ETBr, 

suggesting that no intercalation of 3ab with DNA takes place (Figure 2.26). 

 

Figure 2.26 Fluorescence emission spectra of 15 µM ETBr bound to DNA in the presence 

of increasing concentration of 3ab. Control: solid line; [3ab] 10µM: long dashed line; 

[3ab] 100µM: dashed dotted line; [3ab] 200µM: dotted line.  

2.3 Conclusions 

In conclusion, a new class of neutral [Au(I)]-alkynyl complexes based on 

monodentate or bidentate phosphine ligands has been developed and fully 

characterized both in the liquid and solid state.  The gold(I)–Csp linkage was 
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efficiently realized in high yields (60–92%) by condensing the gold-chloride 

congener with pre-functionalized terminal alkynes under convenient mild 

conditions (KOH, MeOH/EtOH).   

Additionally, the biological activity of these organometallic species was 

comprehensively investigated and the data reported suggest that their cellular 

toxicity could be related to different mechanisms acting on different 

biological targets.   

Compound 3ab showed a marked cytotoxicity on all cell lines tested, with 

IC50 values ranging from 1.7 μM for I407 to 7.9 μM for HT29 and caused 

cell cycle arrest in the S phase.  Only in the HL60 cell line the growth arrest 

was in the G0/G1 phase of the cell cycle and it was associated with a well 

distinguishable pre-G1 peak that indicates DNA fragmentation that is 

characteristic of apoptosis.  These effects on the cell cycle can be associated 

with an interaction of the molecule with DNA and this hypothesis is 

supported by the results of DNA titration where the dissociation constant of 

3ab with salmon sperm DNA is in the sub-micromolar range.  The real 

mechanism of 3ab–DNA interaction has not yet been fully elucidated.  

However, it cannot be attributed to an intercalation of the molecule into the 

DNA helix.  Additionally, it should be mentioned that 3ab does not show 

any inhibitory effect on the thioredoxin reductase enzymatic activity.   

On the other hand, the binuclear compounds (3bb and 3af) showed a 

cytotoxic effect only in HL60 (3bb: IC50 = 0.8 μM) and in IGROV1 (3af: 

IC50 = 7.7 μM) and they do not show any effect on the cell cycle (Table 2.4).  

This evidence suggests that the biological target of binuclear gold-species is 

not the DNA and they appear to act through the inhibition of thioredoxin 

reductase at sub-micromolar concentration (Table 2.2).  However the 

mechanism of interaction of our alkynyl-gold(I) complexes with thioredoxin 

reductase is different as compared to Auranofin and other gold compounds.  

In fact, while Auranofin induces a mass shift in the mass spectra of this 
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enzyme suggestive of protein binding of the gold-containing molecule, in 

our study no covalent adducts with the enzyme have been detected using 

LC/ESI-MS.  Moreover, inhibition of thioredoxin reductase is responsible 

for a decrease of the oxidative stress resistance and for alterations in redox 

signalling that are key factors for cell survival.  Cancer cells are more 

resistant towards oxidative stress, for this reason compounds that are able to 

interfere with this phenomena, have a good chance to be anticancer drug 

candidates.  Studies addressing the clarification and/or identification of 

additional biological targets as well as the development of structure–activity 

relationships are currently ongoing in our laboratories. 

2.4 Experimental part 

2.4.1 General methods 
1H-NMR spectra were recorded on Varian 200 (200 MHz) or Varian 400 

(400 MHz) spectrometers. Chemical shifts are reported in ppm from TMS 

with the solvent resonance as the internal standard (deuterochloroform: 7.27 

ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, 

d = duplet, t = triplet, q = quartet, sext = sextet, sept = septet, p = pseudo, b 

= broad, m = multiplet), coupling constants (Hz). 13C-NMR spectra were 

recorded on a Varian 200 (50 MHz), Varian 400 (100 MHz) spectrometers 

with complete proton decoupling. Chemical shifts are reported in ppm from 

TMS with the solvent as the internal standard (deuterochloroform: 77.0 

ppm). 31P-NMR spectra were recorded on a Varian 400 (162 MHz), 

spectrometer with complete proton decoupling. Chemical shifts are reported 

in ppm using H3PO4 (85% H2O solution, δ = 0 ppm) as an external standard. 

GC-MS spectra were taken by EI ionization at 70 eV on a Hewlett-Packard 

5971 with GC injection. They are reported as: m/z (rel. intense). LC-

electrospray ionization mass spectra were obtained with Agilent 

Technologies MSD1100 single-quadrupole mass spectrometer. ESI Q-TOF 
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mass spectrometry was performed on a Xevo™ QTof (Waters MS 

Technologies, Manchester, UK), a quadrupole and orthogonal acceleration 

time-of-flight tandem mass spectrometer. IR spectra were performed as 

Nujol mull or neat on a Bruker Alpha FT-IR Spectrometer. Chromatographic 

purification was done with 240-400 mesh silica gel. Anhydrous THF and 

DCM were distilled respectively from sodium-benzophenone and P2O5 prior 

to use. Elemental analyses were carried out by using an EACE 1110 CHNOS 

analyzer. Other anhydrous solvents were supplied by Fluka or Sigma Aldrich 

in Sureseal® bottles and used without any further purification. 

Commercially available chemicals were purchased from Sigma Aldrich, 

Stream and TCI and used without any further purification. Melting points 

were measured using open glass capillaries in a Bibby Stuart Scientific 

Melting Point Apparatus SMP 3 and are calibrated by comparison with 

literature values (Aldrich). 

2.4.2 Synthesis of the propargyl amino derivative 2a-2e 

 

A solution of desired amine/sulfonylamide (2.5 mmol) in reagent grade 

acetone (8 mL) was treated with K2CO3 (2 eq) and propargyl bromide (80% 

in toluene, 2.2 eq).  The mixture heated under reflux for 8 h.  The mixture 

was quenched with water, the aqueous phase was extracted three times with 

EtOAc, dried over Na2SO4 and the volatiles removed under reduce pressure. 

 (+/-)-2a: cHex:AcOEt = 98:2, white solid, yield = 55% (not 

optimized), mp = 63-65 °C, 1H-NMR (400 MHz, CDCl3):  

1.43 (d, J(H,H) = 6.4 Hz, 3H), 2.23 (d, J(H,H) = 2.4 Hz, 1H), 

3.17-3.22 (d, J(H,H) = 20.0 Hz, 1H), 3.42 (d, J(H,H) = 17.2 Hz, 1H), 3.52 

(q, J(H,H) = 13.6 Hz, 2H), 3.82 (d, J(H,H) = 6.4 Hz, 1H), 7.20-7.36 (m, 8H), 
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7.46 (d, J(H,H) = 7.2 Hz, 2H); 13C-NMR (100 MHz, CDCl3):  21.2, 38.4, 

54.5, 60.9, 73.0, 78.9, 126.9, 127.0, 127.5(2C), 128.3(2C), 128.5(2C), 

128.9(2C), 139.5, 145.4; LC/MS-ESI (m/z): 250 (M+H+); IR (cm-1, Nujol 

mull ): 2100 cm-1 (CC ). 

2b: cHex:AcOEt = 7:3, white solid, yield = 75%, mp = 95-

97 °C, 1H-NMR (400 MHz, CDCl3):  2.09 (t, J(H,H) = 2 Hz, 

1H), 2.44 (s, 3H), 2.83 (s, 3H), 4.02 (d, J(H,H) = 2.4 Hz, 2H), 

7.31-7.33 (d, J(H,H) = 8.0 Hz, 2H), 7.72-7.70 (d, J(H,H) = 8.4 

Hz, 2H); 13C-NMR (100 MHz, CDCl3):  21.5, 34.3, 39.7, 74.0, 76.3, 127.9, 

129.5, 134.1, 143.7; GC/MS(m/z): 223 (M+); IR (cm-1, Nujol mull ): 2120 

cm-1 (CC ). 

2c: cHex:AcOEt = 8:2, white solid, yield = 85%, mp = 88-

90 °C; 1H-NMR (400 MHz, CDCl3):  2.17 (s, 1H), 2.42 (s, 

3H), 4.45 (s, 2H), 7.24-7.32 (m, 7H), 7.54-7.56 (d, J(H,H) = 

6.4 Hz, 2H); 13C-NMR (100 MHz, CDCl3):  21.5, 41.0, 73.8, 

78.0, 128.0, 128.1, 128.4, 129.0, 129.2, 135.5, 139.3, 143.6; GC/MS(m/z): 

285 (M+); IR (cm-1, Nujol mull ): 2129 cm-1 (CC ). 

2d: cHex:AcOEt = 7:3, dark yellow solid, yield = 60%, mp 

= 129-132 °C, 1H-NMR (400 MHz, CDCl3):  2.07 (s, 1H), 

2.91 (s, 3H), 4.14 (s, 2H), 8.02-8.05 (d, J(H,H) = 8.4 Hz, 

2H), 8.36-8.38 (d, J(H,H) = 8.0 Hz, 2H); 13C-NMR (100 

MHz, CDCl3):  34.3, 39.8, 74.7, 75.4, 124.1, 129.1, 143.4, 150.4; GC/MS 

(m/z): 254 (M+); IR (cm-1, Nujol mull ): 2118 cm-1 (CC ). 

2e:  cHex:AcOEt = 7:3, light yellow solid, yield = 70%, mp = 

55-57 °C, 1H-NMR (400 MHz, CDCl3):  2.06 (t, J(H,H) = 2 

Hz, 1H), 2.85 (s, 3H), 4.04-4.05 (d, J(H,H) = 2.8 Hz, 1H),  

7.51-7.55 (m, 2H), 7.59-7.63 (m, 1H), 7.83-7.85 (m, 2H); 13C-NMR (100 
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MHz, CDCl3):  34.3, 39.7, 74.0, 76.1, 127.8, 128.9, 132.9, 137.3; LC/MS-

ESI (m/z): 209(M+); IR (cm-1, Nujol mull): 2120 cm-1 (CC). 

2.4.3 Synthesis of 2f 

 

A solution of N,N'-(propane-1,3-diyl)bis(4-methylbenzenesulfonamide) 

(1.12 mmol) in reagent grade acetone (7.5 mL) was treated with K2CO3 (2 

eq) and propargyl bromide (80% in toluene, 4 eq). The mixture was refluxed 

for 8 h, when monitoring by TLC proved the complete consumption of the 

starting material. The mixture was quenched with water, the aqueous phase 

extracted three times with DCM, dried over Na2SO4 and the volatiles 

removed under reduce pressure. 

2f: cHex:AcOEt = 8:2, white solid, yield = 76%, mp = 110-112 °C, 1H-NMR 

(400 MHz, CDCl3):  1.92 (qui, J(H,H)= 7.2 Hz, 2H), 2.02 (t, J(H,H)= 2.4, 

2H), 2.41 (s, 6H), 3.24 (t, J(H,H)= 7.2 Hz, 4H), 4.12 (d, J(H,H)= 2.4 Hz, 

4H), 7.28 (d, J(H,H)= 8.0 Hz, 4H), 7.69 (d, J(H,H)= 8.4 Hz, 4H); 13C-NMR 

(100 MHz, CDCl3): 143.6, 135.4, 129.5, 127.7, 74.0, 44.1, 36.7, 26.1, 21.5; 

LC/MS-ESI (m/z): 459 (M+H+), 939 (2M+Na+); IR (cm-1, Nujol mull ): 2114 

cm-1 (CC). 

2.4.4 Synthesis of the [alkynylAu(I)] complexes 3 

 

A solution of desired alkyne (1.2 or 2.4 eq.) in reagent grade MeOH/EtOH 

(1:1 ratio, 0.05 M) was treated with the desired gold(I)chloride precursor 

(1a,b, 1 eq.) and a solution of KOH (4 eq., 2 M in MeOH).  The mixture was 
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stirred under dark until complete consumption of the alkyne.  The resulting 

solid was collected by filtration and washed with cooled MeOH. Pure 

material can be obtained via re-crystallization from a DCM:pentane solution, 

or flash chromatography. 

 

 (+/-)-3aa: white solid, purification via flash 

chromatography (cHex:AcOEt = 9:1–7:3); yield 

= 60%; °C; IR = 2159 cm-1 (CC); 1H-NMR [400 MHz, CDCl3, δ(ppm)]: 

1.44 (d, J(H,H) = 6.4 Hz, 3H); 3.40 (d, J(H,H) = 17.6 Hz, 1H); 3.61 (d, 

J(H,H) = 2.0 Hz, 2H); 3.68 (d, J(H,H) = 17.6 Hz, 1H); 4.00 (q, J(H,H) = 6.4 

Hz, 1H); 7.24-7.52 (m, 25H); 13C-NMR [100 MHz, CDCl3, δ(ppm)]: 21.4, 

39.5, 54.3, 60.5, 98.0, 98.2, 124.3, 126.5, 126.6, 126.9, 127.6, 128.0, 128.2, 

128.4, 128.9, 129.0, 129.1, 129.7, 130.2, 131.5, 132.5, 134.3, 134.4, 140.2, 

146.2; 31P-NMR [162 MHz, CDCl3, δ(ppm)]: 42.0 (br s); ESI Q-TOF for 

(C36H33AuNP: 707.2016), (m/z): 708.2090 (M+H+). 

 

3ab: white solid; yield = 76%; Mp = 175-177 °C; 

IR = 2137 cm-1 (CC); 1H-NMR [400 MHz, 

CDCl3, δ(ppm)]: 2.29 (s, 3H); 2.86 (s, 3H); 4.08 

(s, 2H); 7.25 (d, J(H,H) = 7.2 Hz, 2H); 7.44 (m, 

15H); 7.73 (d, J(H,H) = 7.2 Hz, 2H); 13C-NMR [100 MHz, CDCl3, δ(ppm), 

diagnostic signals]: 21.4, 34.2, 41.0, 95.4, 95.6, 128.1, 129.1, 129.2, 129.4, 

129.9, 131.6, 134.2, 134.3, 143.1; 31P-NMR [162 MHz, CDCl3, δ(ppm)]: 

41.9 (br s) ppm; LC/MS-ESI (m/z): ESI Q-TOF for (C29H27AuNO2PS: 

681.1196), (m/z): 682.1244 (M+H+). 
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3ac: white solid; yield = 88%; Mp = 139-141 °C; 

IR = 2134 cm-1 (CC); 1H-NMR [400 MHz, 

CDCl3, δ(ppm)]: 2.32 (br s, 3H); 4.61 (s, 2H); 

7.17 (d, J(H,H) = 8.4 Hz, 2H); 7.26-7.35 (m, 2H); 

7.37-7.38 (m, 2H), 7.44-7.54 (m, 16H), 7.64 (d, J(H,H) = 8.4 Hz, 2H); 13C-

NMR [100 MHz, CDCl3, δ(ppm), diagnostic signals]: 21.5, 42.2, 127.4, 

128.2, 128.3, 128.8, 129.0, 129.1, 129.2, 130.0, 131.6, 134.2, 134.3, 136.0, 

140.0, 142.9; 31P-NMR [162 MHz, CDCl3, δ(ppm)]: 42.4 (s) ppm; ESI Q-

TOF for (C34H29AuNO2PS: 743.1322), (m/z): 766.1220 (M+Na+). 

3ad: pale yellow solid; yield = 81%; Mp = 

208-210 °C; IR = 2137 cm-1 (CC); 1H-NMR 

[400 MHz, CDCl3, δ(ppm)]: 2.95 (s, 3H); 4.27 

(d, J(H,H) = 1.6 Hz, 2H); 7.43-7.53 (m, 15H); 

8.13 (d, J(H,H) = 8.8 Hz, 2H); 8.34 (d, J(H,H) = 8.8 Hz, 2H); 13C-NMR [100 

MHz, CDCl3, δ(ppm)]: 34.4, 41.2, 93.7, 94.0, 123.9, 129.2, 129.6, 131.6, 

134.0, 134.2, 143.8, 149.9; 31P-NMR [162 MHz, CDCl3, δ(ppm)]: = 39.4 (s) 

ppm; ESI Q-TOF for (C28H24AuN2O2PS: 712.0860), (m/z): 713.0940 

(M+H+). 

 

3ae: white solid; yield = 62%; Mp = 210-212 °C; 

IR = 2136 cm-1 (CC); 1H-NMR [400 MHz, 

CDCl3, δ(ppm)]: 2.91 (s, 3H); 4.14 (s, 2H); 7.44-

7.48 (m, 18H); 7.88 (d, J(H,H) = 6.8 Hz, 2H); 13C-NMR [100 MHz, CDCl3, 

δ(ppm)]: 34.3, 41.0, 95.3, 99.0, 127.8, 128.1, 128.7, 129.0, 129.1, 129.2, 

129.4, 129.9, 131.6, 131.7, 132.4, 134.1, 134.3, 137.5; 31P-NMR [162 MHz, 

CDCl3, δ(ppm)]: 39.2 (s) ppm; ESI Q-TOF for (C28H25AuNO2PS: 667.1009), 

(m/z): 668.1088 (M+H+). 
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3af: pale yellow solid; yield = 

92%; Mp = decomposition; IR = 

2132 cm-1 (C=C); 1H-NMR [400 

MHz, CDCl3, δ(ppm)]: 1.97-1.98 (m, 2H), 2.24 (s, 6H), 3.37 (t, J(H,H) = 6.8 

Hz,  4H), 4.29 (s, 4H), 7.22-7.29 (d, J(H,H) =8.4 Hz, 4H), 7.45-7.56 (m, 

30H), 7.81 (d, J(H,H) = 8.4 Hz, 4H); 13C-NMR [100 MHz, CDCl3, δ(ppm)]: 

21.4, 25.8, 37.6, 43.7, 95.1, 127.7, 127.8, 127.9, 129.0, 129.1, 129.2, 129.4, 

130.0, 131.4, 131.5, 134.1, 134.2, 136.1, 142.7; 31P-NMR [162 MHz, CDCl3, 

δ(ppm)]: 40.9; LC/MS-ESI (m/z): 1375 (M+H+). 

 

3bb: white solid; yield = 75%; IR = 2123 cm-

1 (CC); 1H-NMR [400 MHz, CDCl3, 

δ(ppm)]: 1.70 (s, 1H), 2.31 (s, 6H); 2.86 (s, 

6H); 4.05 (s, 4H); 7.26-7.72 (m, 30H); 13C-

NMR [100 MHz, CDCl3, δ(ppm)]: 20.6, 33.5, 33.9, 40.9, 41.4, 77.6, 92.4, 

127.8, 127.9, 128.9, 129.4, 129.5, 129.6, 130.4, 131.9, 132.2, 133.3, 133.4, 

143.6; 31P-NMR [162 MHz, CDCl3, δ(ppm)]: 21.8 ppm. 

2.4.5 Cell culture and cytotoxicity 

Cell lines (HT29, IGROV1, HL60 and I407) were routinely cultured in 

RPMI 1640 medium supplemented with penicillin (100 U/mL), streptomycin 

(100 μg/mL), and 10% fetal bovine serum in an environment of 5% CO2, 

37 °C and sub-cultured using a trypsin 0.25%-EDTA 0.02% solution.  The 

cytotoxicity was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) dye reduction assay.[91]  Cells were plated 

in 96-well flat-bottomed microplates at a density of 1×105 cells/mL (100 

μL/well), and 24 h later the test compounds were added, appropriately 

diluted with DMSO.  Cells were exposed to various concentrations of the 

compounds (in a range 1nM to 100 μM) for 24 h. The cytotoxicity was 

determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
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diphenyltetrazolium bromide) dye reduction assay with minor modifications. 

Briefly, after incubation with the test compounds, MTT solution (0,2 mg/mL 

in PBS) was added (100 μL/well). Plates were further incubated for 2 h at 

37 °C, and the formazan crystals formed were dissolved by adding 100 

μL/well of propanol. Optical densitometry was determined with a Wallac 

1420 Victor2 Microplate Reader (Perkin Elmer) at 570 nm. One hundred 

microliters of culture medium supplemented with the same amount of MTT 

solution and solvent was used as blank solution. The IC50 value was 

calculated according to the GraphPad Prism 5 software. All data are 

expressed as mean ± SD. 

2.4.6 Cell cycle analysis 

Cells were plated at initial density of 10000-20000 cell/cm2 in dish or flask, 

depended on the cell line. After 72 h of adhesion, cells were treated with 

drugs at the concentration correspond to the calculated IC50, and after 24 h 

of treatment the effect was evaluated. Untreated and 24 h treated cells were 

detached, washed in PBS and the pellet was finally re-suspended in 0.01% 

Nonidet P-40 (Sigma-Aldrich), 10 μg/mL RNase (Sigma-Aldrich), 0.1% 

sodium citrate (Sigma-Aldrich), 50 μg/mL propidium iodide (PI) (Sigma-

Aldrich), for 30 min at room temperature in the dark. Propidium iodide (PI) 

fluorescence was analyzed using a Beckman Coulter Epics XL-MCL flow 

cytometer and cell analysis was performed using the M cycle (Verity) and 

MODFIT 5.0 softwares. 

2.4.7 TrxR inhibition assay 

For this purpose, commercially available rat liver TrxR (Sigma–Aldrich) and 

baker yeast GR (Sigma–Aldrich) were used and diluted with distilled water 

to achieve a concentration of 0.05 U mL-1. The gold(I) complexes were 

freshly dissolved as stock solutions in DMSO. The reduction of the DCIP 

(2,6-dichloroindophenol) was followed spectrophotometrically at 600nm 
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using ε = 19,1mM cm-1 using a Jasco V-550 spectrophotometer equipped 

with stirring device and thermostatic control.  To each cuvette was added: 

100µL of enzyme solution, different concentrations of the compounds 

(ranging from 1 to100 µM) or vehicle, 100 µM DCIP, 8 mM EDTA, 0,001% 

BSA in 20mM potassium phosphate buffer pH 7, 1 ml final volume. The 

reaction was started by the addition of 2 mM NADPH. The IC50 values were 

calculated as the concentration of compound required to decrease enzyme 

activity of the untreated control by 50%, and are given as the means ± SD of 

3–6 independent experiments. 

2.4.8 DNA-compound interaction assay 

Absorption titration experiments were carried out by keeping constant the 

concentration of compounds (10 µM) while raising the DNA concentration 

from 1 µM ([DNA]/[compounds] ratio from 0.1 to 5) in buffer solution (BS; 

50 mM NaCl, 5 mM TRIS buffer, pH 7.2) and 4% DMSO. The UV-vis 

spectra were obtained using a Jasco V-550 spectrophotometer. The 

absorbance spectra were obtained scanning the solution in 1 cm quartz 

cuvettes from 230 nm to 400 nm using a 2nm band width. The solubility of 

different compounds was checked evaluating the lack of scattering. Then 

additions standard DNA was performed. After each addition of DNA the 

absorbance spectrum was recorded. The DNA stock solution was prepared 

with low molecular weight from salmon sperm, Sigma Aldrich in BS. The 

DNA stock solution concentration was determined spectrophotometrically 

(λ: 260nm), using an extinction coefficient of 6600 M-1 cm-1. 

The blank were prepared with standard DNA titration from 1 µM to 50 µM 

in BS and 4% of DMSO. 

The UV-Vis spectra of DNA in the presence of the different compounds were 

obtained using a Jasco v-550 spectrophotometer.  The data analysis was 

carried out on the subtracted spectrum (ΔAλ): the spectra of titration 
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experiments were subtracted by standard DNA titration and compound 

lacking DNA. 

ΔAλ=(ΔADNA-compound)λ-(ΔADNA)λ-(ΔAcompound)λ 

The compounds absorbance variations at 260 nm (ΔA260) were plotted versus 

DNA concentration.  The calculation of binding parameters was carried out 

fitting ΔA260 using following equation: 

∆𝐴260 =
Bmax[DNA]

Kd + [DNA]
 

Where Kd represents the dissociated constant of DNA complex for every 

compound and Bmax represents the limiting value of ΔA260. 

2.4.9 Competitive binding fluorescence studies 

Aliquots of stock solution of the gold complex 3ab dissolved in DMSO were 

added to solutions containing 15 µM ethidium bromide (ETBr) in 15% 

DMSO 25 mM Tris-HCl buffer (pH 7.0) at 25°C to give the final complex 

concentration ranging from 0 to 200 µM, according to the literature.[104,111] 

2.4.10 Liquid chromatography and mass spectra analysis 

TrxR alone or in combination with 3ab or 3bb was analysed by liquid 

chromatography tandem mass spectrometry (LC-MS) in order to evaluate 

the possible covalent interaction between the enzyme and the two moieties.  

In details, the analyses were performed using a Jasco PU-1585 liquid 

chromatograph (Jasco Corporation, Tokyo, Japan) equipped with a Reodyne 

7281 injection valve (20 μL sample loop).  The chromatographic separation 

was achieved using a monolithic column CIMac C4 Analytical (5.3 mm I.D. 

X 5 mm), a not commercial prototype provided by BIA Separations 

(Ljubljana, Slovenia).  Mobile phases A [water:acetonitrile:formic acid 

(99/1/0.1) (v/v/v),] and B [acetonitrile:water:formic acid (98/2/0.1) (v/v/v)] 

were used to develop a gradient.  The optimized mobile phase B gradient 

program was 0–80 % in 5 min and 80 % of B for 5 min.  The column was 
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equilibrated with the mobile phase composition of the starting conditions for 

3 min before the next injection.  The flow rate was set at 0.5 mL/min. The 

injection volume was 20 μL.  Mass spectrometry analysis was carried out on 

a Quadrupole-Time of Flight hybrid analyser (QToF Micro, Micromass, 

Manchester, UK) with Z-spray electrospray ion source (ESI).  The ESI-

QToF source temperature was set at 120°C, the capillary voltage at 3.2 kV 

and the cone voltage at 30 V.  The scan time was set at 2.0 s and the inter 

scan time at 0.1 s.  The cone gas flow was set at 120 L/h and the desolvatation 

gas at 500 L/h. The mass chromatograms were recorded in total ion current 

(TIC), within 500 m/z and 2000 m/z.  The HSA baseline-subtracted spectrum 

(m/z 1000–1600) was deconvoluted onto a true mass scale using the 

maximum entropy (MaxEnt1)-based software supplied with MassLynx 4.1 

software.  Output parameters were as follows: mass range 20000–70000 Da 

and resolution 5 Da/channel.  The uniform Gaussian model was used, with 

0.5 Da width at half height. 

2.4.11 Crystallographic Data Collection and Structure 
Determination for 3ab and 3ac 

The X-ray intensity data were measured on a Bruker SMART Apex II CCD 

area detector diffractometer.  Cell dimensions and the orientation matrix 

were initially determined from a least-squares refinement on reflections 

measured in three sets of 20 exposures, collected in three different  regions, 

and eventually refined against all data.  A full sphere of reciprocal space was 

scanned by 0.3  steps.  The software SMART (SMART & SAINT 

Software Reference Manuals, version 5.051 (Windows NT Version), Bruker 

Analytical X-ray Instruments Inc.: Madison, WI, 1998) was used for 

collecting frames of data, indexing reflections, and determination of lattice 

parameters.  The collected frames were then processed for integration by the 

SAINT program and an empirical absorption correction was applied using 

SADABS.[112]  The structures were solved by direct methods (SIR 2004)[113] 
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and subsequent Fourier syntheses and refined by full-matrix least-squares on 

F2 (SHELXTL, G. M. Sheldrick, SHELXTLplus (Windows NT Version) 

Structure Determination Package, Version 5.1.  Bruker Analytical X-ray 

Instruments Inc.: Madison, WI, USA, 1998), using anisotropic thermal 

parameters for all non-hydrogen atoms.  All hydrogen atoms were added in 

calculated positions, included in the final stage of refinement with isotropic 

thermal parameters, U(H) = 1.2 Ueq(C) [U(H) = 1.5 Ueq(C-Me)], and allowed 

to ride on their carrier carbons.  Crystal data and details of the data collection 

for 3ab and 3ac are reported in Table 2. 6.  

Table 2. 6 Crystal data and structure refinement for 3ab and 3ac. 

 3ab 3ac 

Formula C29H27AuNO2PS C34H29AuNO2PS 

Fw 681.51 743.58 

T, K 296 (2) 296 (2) 

Crystal symmetry monoclinic triclinic 

Space group P 21/c P -1 

a, Å 12.285(5) 8.943(5) 

b, Å 11.956(5) 12.762(7) 

c, Å 18.281(8) 13.472(7) 

, ° 90 90.434(5) 

, ° 91.473 103.985(5) 

, ° 90 90.154(5) 

Cell volume, Å3 2684(2) 1491.9(14) 

Z 4 2 

Dc, Mg m-3 1.686 1.655 

(Mo-K), mm-1 5.644 5.086 

F(000) 1336 732 

Crystal size mm 0.15 × 0.20 × 0.25 0.20 x 0.20 x 0.25 
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 limits, ° 1.66-26.00 1.56-27.03 

Refl. collected, unique (Rint) 23071, 5253 (0.0715) 14559, 6424 (0.0500) 

Goodness-of-fit-on F2 0.984 0.973 

R1(F)a, wR2 
(F2) [I > 2(I)]b 

0.0395, 0.0533 0.0376, 0.0653 

Largest diff. peak and hole, e. Å-3 0.545, -0.557 0.838, -1.252 

a R1 = Fo-Fc/Fo.b wR2 = [w(Fo
2-Fc

2)2/w(Fo
2)2]1/2

 where w = 1/[2(Fo
2) + (aP)2+ bP]  where P = (Fo

2 

+ Fc
2)/3. 
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3 GOLD(I)-CATALYSED 

DEAROMATIVE [2+2]-
CYCLOADDITION OF 

INDOLES WITH 

ACTIVATED ALLENES 

In this chapter, an investigation on the dearomative formal [2+2]-

cycloaddition reaction between 2,3-disubtituted indoles and allenamides, to 

give densely functionalized 2,3-cyclobutyl-indolines is presented.  In 

particular, the gold-catalysed racemic and enantioselective condensations of 

allenamide/aryloxyallenes with a range of N-substituted indoles is discussed.  

Moreover, in collaboration with Professor Gian Piero Miscione’s group, a 

detailed computational investigation at the density functional theory (DFT) 

level is carried out to obtain a mechanistic insight.  This chapter is published 

on Chemistry, a European Journal[1] and is reproduced from ref [1] with 

John Wiley and Sons license number 4193560285611. 
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3.1 Introduction  

Achieving chemical complexity in indolyl-based alkaloid chemistry is a 

current hot topic within the synthetic organic chemistry scenario.[2,3]  In 

particular, the intrinsic molecular diversity of synthetic and natural occurring 

compounds belonging to this family continues to inspire further 

developments in organic synthesis.  To this aim, catalysis is the ultimate 

forefront in the area with a large portfolio of reliable metal- and metal-free 

methodologies nowadays available.[4,5] 

Partially dearomatized C(2),C(3)-polycyclic fused indoline and indolenine 

motifs are widely diffused molecular architectures in indole alkaloids, 

featuring stereochemically defined all carbon quaternary stereocenters at the 

C(3)-position.[6–10]  A collection of titled compounds is reported in Figure 

3.1. 

 

Figure 3.1 Collection of natural products featuring polycyclic C(2),(3)-fused indoline 

and indolenine scaffolds. 

Among the numerous catalytic methodologies available, the enantioselective 

C(2),C(3)-annulation of indoles via cycloaddition reactions is gaining 

growing credit in terms of chemical efficiency.  Based on these 

methodologies, densely functionalized C(2),C(3)-fused cyclopropa-
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([2+1]),[11] cyclopenta- ([3+2])[12–15] and cyclohexa-indoline cores ([3+3])[16] 

have been prepared in stereochemically defined manners.  

Intriguingly, C(2),C(3)-indolincyclobutanes[17,18] have found less attention in 

literature.  More precisely, besides the elegant intramolecular approach 

reported by Zhang,[19] the cyclobutyl-fused indole species was isolated only 

in low yields via condensation of allenamides with indoles by Lopéz, and 

Mascareñas.[20]  Additionally, Xie and co-workers documented the 

dearomative [2+2]-cycloaddition between o-carboryne and N-silylated 

indoles under thermal conditions.[21] 

In this context, as explained in chapter 1, gold catalysis offers unique 

opportunities due to the peculiar attitude of this coinage metal in promoting 

cycloaddition transformations via electrophilic activation of π-systems.[22–24]  

Recently, Bandini and co-workers exploited the potentiality of gold-based 

catalysis and documented the first enantioselective gold catalysed synthesis 

of C(2),C(3)-indolincyclobutanes via formal [2+2]-cycloaddition reactions 

between N-protected indoles and allenamides (see Figure 3.2).[25] 

 

Figure 3.2 Preliminary results on the gold-catalysed asymmetric condensation of indoles 

and allenamides. 

With the aim of expanding the scope of the previous work, a comprehensive 

investigation on the dearomative formal [2+2]-cycloaddition reaction 

between 2,3-disubtituted indoles and allenamides, to give densely 

functionalized 2,3-cyclobutyl-indolines is presented.  In particular, the gold 

catalysed racemic and enantioselective condensations of 

allenamide/aryloxyallenes with a range of N-substituted indoles 1 will be 

discussed.  Moreover, a detailed computational investigation at the Density 
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Functional Theory (DFT) level is carried out in order to obtain a mechanistic 

insight on the high regioselectivity experimentally observed. 

The complete range of indoles (1) and allenyl-derivatives (2 and 3) herein 

employed has been collected in Figure 3.3. 

 

Figure 3.3 List of all indoles 1, allemande 2 and aryloxy allene 3 employed in this work. 

3.2 Results and discussion 

3.2.1 Gold catalysed dearomatization reaction: the racemic 
version (allenamides) 

To optimize the synthesis of indolyl-2,3-cyclobutyl derivatives via 

cycloaddition reaction between electron-rich allenes and indoles, a range of 

cationic [Au(I)] complexes in the model reaction involving the nitrogen free 

2,3(Me)2-indole 1a and the allenamide 2 were initially examined.  At the 

same time, a survey of reaction conditions elected DCM as the best reaction 
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medium, since other solvents furnished lower isolated yields of 4a 

(CH3CN=21 %, THF=17 %, toluene=15 %, DCE (80 °C)=22 %).  Initial 

attempts afforded the partially dearomatized indolenine 5a and the nitrogen-

allylated indole 6a as main by-products of the process as shown in Figure 

3.4.  

 

Figure 3.4 Scheme of reaction of the formal [2+2]-cycloaddition between indole 1 and 

allenamide 2. 

 

From the collection of results summarized on Table 3.1, clearly emerged the 

attitude of [JohnPhosAu(NCMe)]SbF6
[26,27] in promoting the cycloaddition, 

providing the [2+2]-adduct 4a as the major product (entry 6, yield = 49%) 

under mild reaction conditions (CH2Cl2, rt, 16 h). 
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Table 3.1 Optimization of the reaction conditions for the racemic variant of the formal 

[2+2]-cycloaddition reaction.a 

Run [Au] (5 mol%) Yield (%)b 4 Yield (%)b 5a/6a 

1 JackiePhosAuNTf2 < 5 (4a) 22 / 33 

2 Ph3PAuNTf2 6 (4a) 18 / 75 

3 XPhosAuNTf2 19 (4a) -- / -- 

4 JohnPhosAuTFA < 5 (4a) 77 / < 5 

5 XPhosAuTFA 8 (4a) 70 / < 5 

6 [JohnPhosAu(NCMe)]SbF6 49 (4a) 5 / -- 

7 [JohnPhosAu(NCMe)]SbF6 40 (4a) -- / -- 

8 [JohnPhosAu(NCMe)]SbF6 60 (4b) -- / -- 

9c [JohnPhosAu(NCMe)]SbF6 73 (4b) -- /-- 

10d [JohnPhosAu(NCMe)]SbF6 89 (4b) -- / -- 

a All the reactions were carried out under nitrogen atmosphere (1:2:[Au] = 1.2:1:0.05). b Isolated 

yields after flash chromatography. c T = - 20 °C, t = 5 h. d T = - 40 °C, t = 16 h. 

 

Based on these promising results, it was supposed that the introduction of an 

electron-withdrawing group at the N(1)-position of the indole could have 

significant effects on the reaction mechanism and its energetics by 

preventing the undesired N-alkylation (6a) and by increasing the 

electrophilic character of the intermediate immonium derivative (vide infra 

for further mechanistic details).[28,29]  It was proved that, N(Boc)-2,3-(Me)2-

indole 1b is a competent reaction partner providing the desired 

diastereomerically pure cyclobutyl derivative 4b in 60%, 73% and 89% yield 

at room temperature, - 20 °C and - 40 °C, respectively (entries 8-10 of Table 

3.1).  The increase of isolated yields at lower temperatures can be 

rationalized in terms of minimization of gold-promoted self-condensation of 

2 (dimerization or polymerization).[30]  

Concerning the stereochemical aspects, optimal conditions provided the cis-

C(2),C(3)-fused tricyclic compounds in high diasteoreomeric ratio (d.r. = 
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20:1).  Furthermore, the exo-C=C double bond was exclusively obtained in 

the Z configuration. 

The scope of the reaction was then examined by reacting a range of N-

protected-2,3-disubstitued indoles (1c-u) under the conditions of election 

(Figure 3.5). 

 

Figure 3.5 Scheme of reaction for the indole scope of the dearomative [2+2]-

cycloaddition. 

The obtained results are collected in Table 3.2.   

 

Table 3.2 Indole scope of the dearomative [2+2]-cycloaddition.a 

Run 1 Product (3) Yield 

(%)b 

1 1c 

 

95 

2 1d 

 

NR 

3 1e 

 

76 

N
Cbz

N

O

O

4c

N
Boc

N

O

O

4d

O2N

N
Boc

N

O

O

4e
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4 1f 

 

85 

5 1j 

 

64 

6 1k 

 

62 

7 1l 

 

78 

8 1m 

 

75 

9 1n 

 

80 

10 1o 

 

60 

N
Boc

N

O

O

4f

MeO

N
Boc

N

O

O

4j

N
Boc

N

O

O

4k

N
Boc

N

O

O

4l

N
Boc

N

O

O

4m

N
Boc

N

O

O

4n

MeO

N
Boc

N

O

O

4o

Br
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11 1q 

 

81 

12 1r 

 

70 

13 1s 

 

70 

14 1t 

 

41 

15 1u 

 

95 

a All the reactions were carried out under nitrogen atmosphere [Au]: 

[JohnPhosAu(NCMe)]SbF6 (5 mol%). b Isolated yields after flash chromatography. Each 

compound was isolated as a single diastereoisomer. NR = no reaction. 

 

Interestingly, the presence of C5- and C7-membered cycles fused at the 

C(2),C(3)-positions of the pyrrolyl ring (1l-u) were adequately tolerated 

providing the corresponding tetra- and pentacyclic compounds 4l-u from 

moderate to excellent yields (41-95%).  Similarly, the cycloadducts 4c-k 

were obtained in high yield from indoles carrying acyclic C(2),C(3) 

substituents (1c-k).  This screening significantly addressed also the tolerance 

towards substituents on the benzene ring.  In particular, electron-donating 

N
Boc

N

O

O

4q

N
Boc

N

O

O

4r

N
Boc

N

O

O

4s

MeO

N
Boc

N

O

O

4t

Br

N
Boc

N

O

O
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(i.e. Me, OMe) and moderately electron-withdrawing groups (i.e. Br) were 

found to be effective in the process.  On the contrary, strong electron-

withdrawing NO2 group (C(5), 1d) completely suppressed the kinetics of the 

transformation (entry 2 in Table 3.2).  Finally, the Boc-protecting group was 

also successfully replaced by Cbz (1c) with an untouched isolated yield 

(95%). 

Also, it is worth mentioning that, the 2,3-disubstitution pattern at the indole 

core was mandatory for the reaction course.  More precisely, while with N-

Boc-indole and N-Boc-3-Me-indole the dimerization products of 2 were the 

main outcomes, N-Boc-2-Me-indole furnished the desired [2+2]-

cycloadduct only in 18% yield. 

3.2.2 Gold catalysed dearomatization reaction: the racemic 
version (aryloxyallene) 

Aryloxyallenes are an important class of electron-rich π-systems that found 

extensive applications in organic chemistry, with particular concern to 

cycloadditon reactions and site-selective condensation with nucleophilic 

agents.[31]  Analogously to the afore-described allenamides, the nucleophilic 

addition to the γ-carbon would lead to a formal allylation reaction with the 

simultaneous insertion of a synthetically versatile enol ether moiety. 

Despite their undoubted synthetic interest, to the best of our knowledge, this 

family of unsaturated compounds has never been employed in dearomative 

processes up to now. 

To assess the possibility of extending this synthetic methodology to 

aryloxyallenes, a range of allenyl derivatives (3a-f) was synthesized via a 

conventional two-step procedure (i.e. propargylation of the corresponding 

phenol followed by base-assisted isomerization) and subjected to the 

dearomative cyclization in the presence of 1b and 

[JohnPhosAu(NCMe)]SbF6 (1-5 mol%).  
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Figure 3.6 Scheme of reaction between 1b and aryloxyallenes 3. 

 

Electron-“neutral” and electron-poor arenes were employed in order to 

guarantee synthetically acceptable stability of the corresponding allenes.  

Aryloxyallenes featuring electron-rich arenes proved to self-polymerize 

rapidly even at low temperatures and turned out to be unsuitable for the 

present protocol. 
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Table 3.3 Gold catalysed dearomative [2+2]-cycloaddition between 1b and 

aryloxyallenes 3.a 

Run [Au] 

(x mol%) 

3 (Ar) Yield 7 

(%)b 

1 5 3a (Ph) 75 (7ba) 

2 1 3b (-naphth) 83 (7bb) 

3 5 3c (pBrC6H5) 96 (7bc) 

4 5 3d (pNO2C6H5) 81 (7bd) 

5 5 3e (pF,oBrC6H4) 83 (7be) 

6 5 3f (p,oCl2C6H4) 95 (7bf) 

a All the reactions were carried out under nitrogen atmosphere (1b:3 = 1.2:1). b Isolated yields 

after flash chromatography. d.r.  20 :1. 

 

The synthetic procedure turned out to be extraordinarily adaptable to a 

variety of aryloxyallenes.  Accordingly, a range of racemic methylene 

cyclobutanes 7 (Table 3.3) was isolated as a single stereoisomer in good to 

excellent yields (75-96%) under mild reaction conditions ([Au]: 1-5 mol%, 

DCM, 0 °C, 4 h). 

Subsequently, the substrate scope was further investigated by condensing 

differently substituted N-Boc-indoles and allenes 3b and 3d.  The results 

reported in the Figure 3.7 emphasize the efficiency of the above-described 

gold-catalysed methodology in providing densely functionalized tricyclic 

fused indolenyl scaffolds 7. 
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Figure 3.7 Formal [2+2]-cycloaddition between N-Boc-indoles and aryloxyallenes 

(1:3:([JohnPhosAu(NCMe)]SbF6 = 1:2:0.05, DCM, 0 °C, 16 h). * 1 mol% of catalyst was 

used. 7xb: Ar = 2-naphth; 7xd: Ar = pNO2C6H4. 

 

In particular, we found that the reaction course proved to be not significantly 

affected by the presence of substituents (including either carbon- or 

heteroatom-based groups) at the indole N(1), C(2), C(3) and C(5) positions.  

The isolated yields ranged between 50% and 94% and the decrease of the 

catalyst loading to 1 mol% did not affect at all the chemical outcome.  Both 

molecular skeleton and stereochemical aspects were finally elucidated by 

obtaining the X-Ray structure of (+/-)-7hd from a crystal grown via slow 

evaporation of a solution of AcOEt. 
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3.2.3 Gold catalysed dearomatization reaction: mechanistic 
study 

Interesting and unexpected experimental evidences were obtained on the 

classic cycloaddition reaction among allenamide 2 and N-Boc-indole 1b.  In 

particular, we observed that, when the condensation was carried out at 

temperatures higher than 0 °C (i.e. room temperature or 40 °C), a second 

product that became predominant in the latter case (yield = 35%) was 

present.  Crystallographic analysis showed that this product has the structure 

of the regioisomeric indoline-cyclobutyl ring 4b’, corresponding to a reverse 

approaching orientation (with respect to 4b) of the two reaction partners 

(Figure 3.8).  Furthermore, when 4b was treated in the presence of the gold 

complex in hot DCM (40 °C), 4b’ was again isolated along with some 

decomposition products.  This experimental finding suggests the existence 

of a kinetic (4b) and thermodynamic (4b’) product that can interconvert.  

 

Figure 3.8 Regiodivergent outcome of the [2+2]-cycloaddition when performed in 

refluxing DCM. Proving the interconversion of 4b into 4b’ in hot DCM. 

 

These intriguing experimental results stressed the importance of elucidating 

the reaction mechanism to answer important and unsolved questions, such 
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as: 1) What is the coordination/activation mode of the gold catalyst with the 

allenamides?  2) Is the mechanism concerted or step-wise?  3) What is the 

rational for the recorded regio- and stereo-chemistry?  In particular, why the 

ring closing occurs without affecting the stereochemistry of the exocyclic 

double bond (Figure 3.9)?  4) Are the "kinetic" and "thermodynamic" 

adducts the results of two separate reaction channels coexisting on the 

reaction surface? 

  

Figure 3.9 Hypothetical mechanisms for the ring-closing step. 

To answer these questions, the group of Professor Gian Piero Miscione from 

the Department of Chemistry of the Universidad de los Andes Carrera, 

Bogotà, carried out a computational investigation of the reaction surface.  A 

DFT approach and a model-system formed by 1b and 2 activated by the 

[Au(I)] cation bonded to the JohnPhos ligand ([JohnPhosAu+]) were used. 

First how the cationic gold complex governs the electrophilic activation of 

allenamide 2 was examined.[32]  The result was that the interaction of the 

metal with the cumulated diene involves an equilibrium between three 

different complexes M1 M2 M3 showing 21 and 

coordination with [Au(I)], respectively.  Both 2complexes (M1 and 

M3)) are more stable than M2 (2.9 and 3.4 kcal mol-1, respectively).  A 

3D representation of the three complexes is given in Figure 3.10
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Figure 3.10 A schematic 3D representation of the allenamide-[Au(I)] complexes. 

Energy values (kcal mol-1) are relative to M3(π).  Bond lengths are given in Å. 

 

The perturbation of the system caused by the interaction with the gold 

complex is evidenced by a slight increase of the C-C bond lengths in M1 

and M3 and the increase of the corresponding positive charge density on 

andcarbons. 

The reaction surface for the cycloaddition involving indole 1b and 

allenamide 2 complexed with [Au(I)] (reactants) is reported in Figure 3.11 

where two reaction channels are evidenced.   
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Figure 3.11 The two computed reaction profiles Path(K) and Path(T). Energies are given 

in kcal mol-1. 

 

In Figure 3.11 a schematic representation of the corresponding reaction 

patterns is also given.  Additionally, two-dimensional pictures of the 

structure of the various critical points located along the two pathways are 

given in Figure 3.12.  More detailed 3D representations, for each point, are 

reported in section 3.4.6 of the Experimental part. 
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Figure 3.12 A schematic representation of the structures of the critical points located 

along Path(K) and Path(T). Energies (kcal mol-1) are relative to reactants (Bond lengths 

are given in Å). 

 

The approach of the two reacting species initially leads to the formation of 

an encounter complex M0 (13.8 kcal mol-1 more stable than reactants), where 

the indole ring plane and the plane of the metal allyl cation are facing each 
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other, the C(3)-C and C(2)-C distances being 2.87 and 3.00 Å, 

respectively.  Interestingly, in the encounter complex the preferred 

coordination of the gold cation is 1 and not 2 as found in the isolated 

allenamide-[JhonPhosAu+] species.  The higher stability of the  type 

complex (1) can be reasonably ascribed to the stabilizing interaction 

between the electron rich indole -system and the positive charge localized 

on the  allenamide carbon (0.3 is the net computed charge on C). 

Two reaction paths (both consisting of two steps) originate from M0 and lead 

to different regioisomers corresponding to opposite approaching orientations 

of the reacting species.  These regioisomers should correspond to the 

hypothesized thermodynamic and kinetic products 4b’ and 4b (the former 

being 2.5 kcal mol-1 more stable than the latter).  The two paths, leading to 

4b’ and 4b, are denoted as Path(T) and Path(K), respectively.  

Along Path(K) (kinetic pathway) the transition state TS1(K) (5.6 kcal mol-1 

above M0) corresponds to the rate determining step of the process and 

describes the attack of C(3) on C and leads to the formation of the 

indoleninic intermediate M1(K), 15.8 kcal mol-1 more stable than reactants.  

The newly forming bond is 2.17 Å in TS1(K) and becomes 1.57 Å in M1(K) 

where the bond is completed.  Here the distance C(2)-C (that identifies the 

second bond required to obtain the final product) is 2.73 Å.  The 

coordination of the gold atom as found in M0 is conserved in TS1(K) and 

M1(K).  The variation of the N-C(2) bond length along the transformation  

M0  TS1(K)  M1(K) (1.41, 1.37, 1.32 Å, respectively) indicates that  

the formation of the new C(3)-C bond is brought about by the indole 

nitrogen lone pair via an enaminic-type electronic shift (see M1(K) structure 

in Figure 3.12). 

A rather low activation barrier (3.2 kcal mol-1) must be overcome (transition 

state TS2(K)) to close the ring.  The structure of TS2(K) is similar to that of 
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the previous intermediate M1(K): the most important difference is the 

decrease of the C(2)-C distance (the incipient C-C bond), which becomes 

2.26 Å. 

Importantly, the C-C bond length remains approximately constant on 

passing from M1(K) to TS2(K) (1.34 and 1.36 Å, respectively).  This 

suggests that the formation of the C(2)-C bond involves the [Au]-C 

heterolytic bond breakage (path B in Figure 3.12) rather than the enammidic 

fragment (N-CCelectrons (path A in Figure 3.12).  Thus, the ring 

closing process does not affect the nature of the CCexocyclic double 

bond, which maintains its Z-configuration generated from the initial outer-

sphere nucleophilic attack of the indole on the gold-activated allenamide. 

The final M2(K) product complex (the 4b regioisomer) is 33.8 kcal mol-1 

more stable than reactants.  In this complex the gold atom gets away from 

Cβ (Cβ-Au distance = 2.44 Å) and becomes much closer to Cα (2.37 Å), thus 

reactivating a η2 coordination with the exocyclic double bond.  Notably, the 

N-C2 distance (indole moiety) increases from 1.32 Å to 1.47 Å along the 

transformation M1(K)  M2(K).  This points out the disappearing of the 

formal charge on the immonium ion (characterizing the indoleninic 

intermediate M1(K)) and the repositioning of the lone-pair on the nitrogen 

atom in M2(K).  In addition, it demonstrates the importance of the protecting 

group Boc that assists the cycloaddition process by displacing electron 

density from the N-C(2). 

Along Path(T) (thermodynamic pathway) the first transition state TS1(T) 

describes the nucleophilic attack of C2 on C (the new incipient C2-C bond 

is 2.14 Å) and corresponds again to the rate determining step of the process.  

TS1(T) is 7.6 kcal mol-1 higher than M0 (2.0 kcal mol-1 above TS1(K)) and 

leads to M1(T), the indoleninic dearomatizated intermediate, where the new 

C2-C bond is completed (1.57 Å).  The dearomatization process occurring 
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in the passage M0  M1(T) and involving the delocalization of the benzene 

 electrons on indole is evidenced by the gradual increase in the indole 

moiety of the C2-C3 (from 1.37 to 1.48 Å) and C4-C5 (from 1.41 to 1.44 Å) 

distances and a simultaneous shortening of C3-C4 bond (from 1.44 to 1.38 

Å). 

The transition state for the subsequent ring-closing step (transition state 

TS2(T), 4.2 kcal mol-1 above TS2(K)) has an intrinsic activation energy of 

6.7 kcal mol-1.  The values of the computed bond lengths again indicates that 

the ring closing process involves the C-[Au] electrons.  The stability of the 

resulting product M2(T) (36.3 kcal mol-1 below reactants) can be reasonably 

ascribed to the restoring of the aromaticity of the indolinic ring.  As observed 

for M2(K) the coordination mode of the gold cation [Au(I)] becomes again 

2.  It is reasonable to believe that the energetic gap among these two adducts 

is due to the steric hindrance between the Boc and the oxazolinonic groups 

highlighted in Figure 3.13. 

In M2(K) these two groups are rather close, but this steric hindrance is 

partially cancelled in the thermodynamic adduct M2(T). 

 

Figure 3.13 Comparison of the two organogold complexes M2(K) on the left and M2(T) 

on the right.  The red circle highlights the steric hindrance between BOC and oxazolinonic 

group. 

Comparison of the two reaction profiles clearly indicates that the two 

transition states for indole dearomatization (rate-determining step in both 
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cases) are close enough (the two activation barriers differ by 2.0 kcal mol-1) 

to explain why, when the reaction is performed at 0 °C, small amounts of the 

thermodynamic product are observed and only through a rigid kinetic control 

(-40° C) it is possible to avoid the formation of the regioisomer 4b’. 

The energy difference between TS1(K) and TS1(T) can be plausibly 

ascribed to the different indole dearomatization ability associated with the 

attack of C(3) and C(2) on the allenamidic carbon C.  The energy cost is 

higher in the latter case where a loss of aromaticity of the entire system (also 

involving the benzene ring) occurs.  Otherwise, when the attack proceeds 

from C(3) the loss of aromaticity is confined to the heterocyclic portion. 

3.2.4 Enantioselective gold catalysed [2+2]-cycloaddition 
between indoles and electron-rich allenes 

The enantioselective cycloaddition reactions[33] involving indoles, represents 

a powerful tool for a direct access to stereochemically defined dearomatized 

indolyl-based scaffolds.[34–42]  As a matter of fact, several metal- and metal-

free stereoselective methodologies have been developed with the site-

selective functionalization of the C(2)- and C(3)-positions of the indole 

core.[7,8,6] 

Interestingly, despite the enormous interest towards the development of 

efficient catalytic methodologies to polycyclic fused indolines, 

enantioselective protocols to access C(2)/(3)-cyclobutylindoline compounds 

were still unreported in literature with the exception of contribution on the 

stereoselective gold catalyzed formal [2+2]-cycloaddition reaction published 

by the group of Professor Bandini.[25]  

In that previous comunication, the use of in situ formed (R)-DTBM-

segphos(AuOTf)2 (2.5-5.0 mol%) enabled the enantioselective preparation 

of tricyclic indoline scaffolds in straightforward manner by condensing a 
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range of N-Boc-indoles and the allenamide 2 (DCM, -60 °C) as reported in 

Figure 3.14. 

 

Figure 3.14 Scheme of reaction of the enantioselctive dearomative cycloaddition 

between indoles and allenamide 2. 

Attempts to synthesize the thermodynamic analogous (4 b′) in 

stereochemical defined manner were carried out in refluxing conditions but 

substantial decomposition of the starting allenamide was observed. 

A collection of results is depicted in the Figure 3.15.  
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Figure 3.15 Scope of the reaction for the enantioselective [2+2]-cycloaddition of indoles 1 

with allenamide 2.  Adapted from ref [25]. 

It is possible to notice the excellent levels of regio-, diastereo- (dr › 20:1) and 

enantioselection (ee up to 98%) obtained for differently substituted indoles.  

In particular, 2,3-annulated indoles carrying C5 and C7-membered rings 

worked particularly well providing methylenecyclobuta-indolines 4l-t in 

enantiomeric excesses up to 99%.  Also, it appears that alkyl substituents 

were also tolerated at the C(2)/C(3)-sites (4b-4j), as well as EDGs and 

EWGs in the benzene ring C(5)-position.  It is worth mentioning, that the 

removal of the EWG group from the nitrogen causes a marked drop in the 

isolated yield (4a, Y=8%) but with similar enantiocontrol (91%) as shown in 

Figure 3.15. 
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On the basis of these former experimental evidences, the efficiency of the 

stereoselective gold catalysed intermolecular [2+2]-cycloaddition between 

aryloxyallenes and N-Boc indoles was investigated (Figure 3.16).   

 

Figure 3.16 Scheme of reaction and the chiral ligand examined. 

Among the screened chiral ligands, (R)-DTBM-segphos furnished the 

highest levels of chemical (61%) and optical (84%) yields (CH2Cl2, 0 °C, cat 

loading = 2.5 mol%) in the model reaction (3a+1b) in combination with 

AgNTf2 as the gold-activator.[43–45]  On the contrary, lower performances 

were recorded with different C1- and C2-symmetric chiral units as shown in 

Table 3.4. 
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Table 3.4 Screening of reaction conditions for the enantioselective dearomative 

cycloaddition of 1b with 3a.[a] 

Entry L AgX T (°C) Time (h) Y %[b] ee %[c] 

1 (R)-L1 AgOTf 0 5 11 11 

2 (R)-L2 AgOTf 0 5 26 50 

3 (R)-L3 AgOTf 0 5 19 52 

4 (R)-L4 AgOTf 0 5 ND / 

5 (R,R)-L5 AgOTf 0 5 ND / 

6 (R)-L6 AgOTf 0 5 ND / 

7 (R)-L7 AgOTf 0 5 60 82 

8 (R,Sp)-L8 AgOTf 0 5 30 24 

9 (R)-L7 AgOTf -20 16 72 85 

10 (R)-L7 AgN(Tf)2 0 5 61 84 

11 (R)-L7 AgN(Tf)2 -20 16 35 93 

12 (R)-L1 AgN(Tf)2 0 5 51 11 

13 (R)-L2 AgN(Tf)2 0 5 26 50 

14 (R)-L3 AgN(Tf)2 0 5 19 52 

15 (R)-L4 AgN(Tf)2 0 5 4 / 

16 (R,R)-L5 AgN(Tf)2 0 5 / / 

17 (R)-L6 AgN(Tf)2 0 5 / / 

18 (R,Sp)-L8 AgN(Tf)2 0 5 30 24 

a All reactions were carried out under nitrogen atmosphere in anhydrous solvents 

(1a:3a:cat = 1:2:0.05). b After flash chromatography (cHex:DCM: 8:2). c Determined by 

HPLC with chiral column. ND = not determined. 

Finally, the performances of the catalytic system in the case of 

aryloxyallenes were assessed by condensing several indoles with 3 under 

optimal conditions. 
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Table 3.5 Gold catalysed enantioselective cycloaddition between indoles and 3.a 

 

Run R/R1/R2 (1) 3 T (°C)/t (h) Yield 7 (%)b ee 7 (%)c 

1 Me/Me/H (1b) 3a 0/4 61 85 

2 Me/Me/H (1a) 3a -20/6 32 95 

3 Me/Me/Me (1e) 3a -20/6 56 94 

4 -(CH2)3-/H (1l) 3a 0/4 75 95 

5 -(CH2)5-/H (1q) 3a 0/4 73 84 

6 Me/Me/H (1a) 3f 0/16 74 64 

a All the reactions were carried out under nitrogen atmosphere. b Isolated yields after flash 

chromatography. c Determined via HPLC analysis with chiral column. 

 

Aryloxyallenes 3 were generally found less reactive than that allenamide 2 

in the enantioselective variant and higher reaction temperatures (i.e. 0 °C/ -

20 °C) were required in order to access synthetically acceptable reaction 

kinetics.  

The enantioselectivity ranges from high (64%) to excellent (95%) with 

moderate to good yield.  Indoles featuring cyclic substituents at the C2/C3 

carbon atoms (1l,q) and trimethyl-substituted indole 1e (entry 5) were 

proved to be particularly competent. 

 

3.3 Conclusions 

A comprehensive investigation on the gold catalysed dearomative 

cycloaddition reaction of indoles with electron-rich allenes was documented 

by means of experimental and computational tools. 
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Commercially available ([JohnPhosAu(NCMe)]SbF6 showed competence in 

performing the chemo- regio- and diastereoselective formal [2+2]-

cycloaddition between a wide range of substrates under mild conditions.  A 

portfolio of densely functionalized C(2),C(3)-fused cyclobutylindolines 

(4/7) was accessible in straightforward manner.  Additionally, the use of 

chiral C(2)-symmetric DTBM-segphos enabled the control of the 

stereochemical profile of the dearomatization reaction in a convenient 

manner (ee up to 95% with aryloxyallenes 3). 

The DFT computations have clearly demonstrated that the mechanism for 

the formal gold-catalyzed cycloaddition among allenamide 2 and NBoc-

indole 1b proceeds through a polar non-concerted mechanism involving two 

kinetic steps.  Two different reaction pathways, Path(K) and Path(T), both 

consisting of two steps, originate from an initial encounter complex and 

provide the two regioisomers experimentally observed i.e. 4b obtained under 

kinetic conditions and 4b’ obtained under thermodynamic conditions.  In 

both cases the first step is rate-determining and corresponds to a 

dearomatization process.  The ring closure occurring in the second step 

involves the heterolytic rupture of the  [Au]-C bond and not the electrons 

of the exocyclic CC double bond, which maintains its original Z-

configuration in agreement with the experiments. 

The energy cost for the dearomatization process is higher along the 

thermodynamic pathway (attack from the C(2)-indole position) where the 

loss of aromaticity involves the entire system (indole and benzene ring).  

This cost decreases when the attack proceeds from C(3)- and the 

dearomatization is confined to the indole moiety. 

The energy difference between the two dearomatization transition states is 

not very large (about 2.0 kcal mol-1).  This explains why at 0 °C small 

amounts of the thermodynamic product 4b’ are observed and only under 
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severe kinetic conditions (-40° C) it is possible to avoid the formation of this 

regioisomer. 

3.4 Experimental part 

3.4.1 General methods 
1H-NMR spectra were recorded on Varian 200 (200 MHz) or Varian 400 

(400 MHz) spectrometers.  Chemical shifts are reported in ppm from TMS 

with the solvent resonance as the internal standard (deuterochloroform: 7.27 

ppm).  Data are reported as follows: chemical shift, multiplicity (s = singlet, 

d = duplet, t = triplet, q = quartet, sext = sextet, sept = septet, p = pseudo, b 

= broad, m = multiplet), coupling constants (Hz).  13C-NMR spectra were 

recorded on a Varian 200 (50 MHz), Varian 400 (100 MHz) spectrometers 

with complete proton decoupling.  Chemical shifts are reported in ppm from 

TMS with the solvent as the internal standard (deuterochloroform: 77.0 

ppm).  GC-MS spectra were taken by EI ionization at 70 eV on a Hewlett-

Packard 5971 with GC injection.  They are reported as: m/z (rel. intense).  

LC-electrospray ionization mass spectra were obtained with Agilent 

Technologies MSD1100 single-quadrupole mass spectrometer.  Elemental 

analyses were carried out by using an EACE 1110 CHNOS analyser.  Optical 

rotations were measured using a Schmidt+Haensch Unipol L1000 

polarimeter.  Chromatographic purification was done with 240-400 mesh 

silica gel.  Anhydrous THF and DCM were distilled respectively from 

sodium-benzophenone and P2O5 prior to use.  Other anhydrous solvents were 

supplied by Fluka or Sigma Aldrich in Sureseal® bottles and used without 

any further purification.  Commercially available chemicals were purchased 

from Sigma Aldrich, Stream and TCI and used without any further 

purification.  Melting points were measured using open glass capillaries in a 

Bibby Stuart Scientific Melting Point Apparatus SMP 3 and were calibrated 

by comparison with literature values (Aldrich).  The indoles unavailable in 
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commercial were synthesized according to the general procedure for Fisher 

indole synthesis.[46] 

3.4.2 General Procedure for the synthesis of Propargyl-Phenol 
Ethers 3’ 

 

To a stirred solution of phenols (10 mmol) in acetone was added K2CO3 (21 

mmol) at room temperature.  After 15 min propargyl bromide (15 mmol, 1.33 

ml) was added drop wise and the mixture was heated under reflux for 3h. It 

was then quenched with H2O and evaporated under reduced pressure.  The 

resulting aqueous layer was extracted twice with EtOAc and the organic 

phase was washed with brine, dried over anhydrous Na2SO4, and evaporated 

in vacuum. The residue was purified via column chromatography 

(cHex:AcOEt = 2:1) to gain the desired products as yellow solids. 

3a’: Y = 95%; 1H-NMR (400 MHz, CDCl3) δ
 7.35-7.30 (m, 

2H), 7.04-7.00 (m, 3H), 4.70 (d, J = 2.0 Hz, 2H), 2.53 (t, J = 

2.4Hz, 1H). MS: 131(M), 103, 65. 

3b’: Y = 84%;  1H-NMR (400 MHz, CDCl3) δ
 7.81-7.76 (m, 

3H), 7.47 (t, J= 8.0 1H), 7.38 (t, J= 7.6 1H), 4.83 (d, J = 2.4 

Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H). MS: 181(M),153, 115. 

3c’: Y = 91%; 1H-NMR (400 MHz, CDCl3) δ 7.38 (d, J = 

6.4 Hz, 2H), 6.87 (d, J = 6.4 Hz, 2H), 4.65 (d, J = 2.4 Hz, 

2H), 2.50 (t, J = 2.4 Hz, 1H). MS: 212, 210, 131. 

3d’: Y = 98%; 1H-NMR (400 MHz, CDCl3) δ 8.20 (d, J = 

9.2 Hz, 2H), 7.03 (d, J = 9.1 Hz, 2H), 4.78 (d, J = 2.0 Hz, 

2H), 2.57 (t, J = 2.0 Hz, 1H). MS: 177 (M), 160, 131, 103, 63. 
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3e’: Y = 95%; 1H-NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 

7.6, 2.4 Hz 1H), 7.07-7.00 (m, 2H), 4.75 (d, J = 2.4 Hz, 2H), 

2.55 (t, J = 2.4, 1H). MS: 230 (M), 191, 149, 121, 81. 

3f’: Y = 97%; 1H-NMR (400 MHz, CDCl3) δ 7.40 (d, J = 

2.4 Hz, 1H), 7.21 (dd, J = 9.2, 2.8 Hz, 1H), 7.03 (d, J = 8.8 

Hz, 1H), 4.77 (d, J = 2.8 Hz, 1H), 2.56 (t, J = 2.4 Hz, 1H). MS: 200 (M), 165, 

133, 97. 

3.4.3 General Procedure for the synthesis of Alkoxyallenes 3 

 

Under a nitrogen atmosphere, NaH (4.2 mmol) was dissolved into an 

anhydrous THF solution, followed by addition of propargyl-phenol ethers 

3’a-f (2.5 mmol) with stirring. After 15 min anhydrous t-BuOK (0.75 mmol) 

was added and the mixture was allowed to stir at rt for 5 h. The reaction was 

quenched by addition of H2O and evaporated under reduced pressure. The 

aqueous layer was extracted twice with EtOAc and the resulting organic 

phase was washed with brine, dried over anhydrous Na2SO4, filtered and 

evaporated in vacuum. Purification by column chromatography 

(cHex:AcOEt = 8:2) afforded the desired products 3a-f as yellow oils. 

 

3a: Y = 85%; 1H-NMR (400 MHz, CDCl3) δ 7.34-7.30 (m, 

2H), 7.06-7.04 (m, 3H), 6.85 (t, J = 5.9 Hz, 1H), 5.45 (d, J = 

5.9 Hz, 2H). MS: 131 (M), 103, 77. 

3b: Y = 86%; 1H-NMR (400 MHz, CDCl3) δ 7.79-7.74 (m, 

3H), 7.45 (t, J =8.0 Hz, 1H), 7.39-7.35 (m, 2H), 7.26 (dd, , 
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J =2.8, 9.2 Hz, 1H), 6.96 (t, J =6.0 Hz, 1H ), 5.47 (d, J =8.0 Hz, 2H) MS: 181 

(M). 

3c: Y = 90%; 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.4 

Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.80 (t, J = 5.9 Hz, 1H), 

5.46 (d, J = 5.9 Hz, 2H). MS: 212 (M), 183. 

3d: Y = 78%; 1H-NMR (400 MHz, CDCl3) δ 8.23 (d, J = 

9.1 Hz, 2H), 7.15 (d, J = 9.1 Hz, 2H), 6.86 (t, J = 5.9 Hz, 

1H), 5.54 (d, J = 5.9 Hz, 2H). MS: 176 (M), 160, 131. 

3e: Y = 73%; 1H-NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 

7.8, 3.0 Hz, 1H), 7.09 (dd, J = 9.0, 5.0 Hz, 1H), 6.99 (ddd, J 

= 9.0, 7.8, 3.0 Hz, 1H), 6.83 (t, J = 5.9 Hz, 1H), 5.43 (d, J = 5.9 Hz, 1H). MS: 

228 (M), 200, 149. 

3f: Y = 85%; 1H-NMR (400 MHz, CDCl3) δ 7.39 (d, J = 2.4 

Hz, 1H), 7.19 (dd, J =2.4, 8.7 Hz, 1H), 7.08 (d, J = 8.7 Hz, 

1H), 6.82 (t, J = 5.9 Hz, 1H), 5.46 (d, J = 5.9 Hz, 2H). MS: 200 (M), 165, 

133. 

3.4.4 General procedure for the [2+2] cycloaddition reaction 
between indoles and allenamide/ aryloxyallenes (2/3): racemic 
variant 

To a stirred solution of anhydrous DCM (1 ml) at 0 °C was added 

[JohnPhosAu(ACN)]SbF6 (5% mol, 2 mg).  Then, the desired indole (0.05 

mmol) and allenamide 2 or aryloxyallenes 3 (0.1 mmol) were added in 

sequence and the mixture was allowed to stir for 5 hs.  Removal of the 

solvent under reduced pressure and purification by column chromatography 

afforded the desired products. 

7ba. White solid. Yield = 75%, (cHex:DCM = 8:2). Mp: 

76-78 °C. 1H-NMR (400 MHz, CDCl3) δ 7.93 (bs, 1H), 

7.32 (t, J = 7.6 Hz, 2H) 7.19 (t, J = 7.6 Hz, 1H) 7.11-6.96 (m, 5H), 6.23 (t, J 

N
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= 1.8 Hz, 1H), 2.80 (dd, J = 13.9, 2.2 Hz, 1H), 2.53 (dd, J = 13.9, 1.5 Hz, 

1H), 1.69 (s, 3H), 1.52 (s, 9H), 1.45 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 

157.9, 144.0, 137.4, 137.0, 129.5, 127.8, 122.5, 122.3, 122.0, 116.6, 115.9, 

80.9, 74.9, 48.1, 40.3, 28.6, 17.7, 17.4. LC-MS: 400 (M+Na), 777 (2M +Na). 

Anal. calcd for (C24H27NO3: 377.48): C, 76.36; H, 7.21, N, 3.71; Found: C, 

76.21, H, 7.10, N, 3.60. 

7bb. Pale yellow liquid. Yield = 83%; (cHex:DCM = 

98:2). 1H-NMR (400 MHz, CDCl3) δ 7.91 (bs, 1H), 

7.82-7.79 (m, 2H), 7.75 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.40 (t, 

J = 8.0 Hz, 1H), 7.29- 7.21 (m, 3H), 7.13 (d, J = 7.2 Hz, 1H), 6.99 (t, J = 7.2 

Hz, 1H),  6.37 (t, J = 2 Hz, 1H), 2.84 (dd, J =14, 2 Hz, 1H), 2.60 (dd, J = 

13.6, 1.6Hz, 1H), 1.72 (s, 3H), 1.50 (s, 9H), 1.47 (s, 3H);. 13C-NMR (100 

MHz, CDCl3) δ 155.5, 144.0, 137.3, 136.9, 134.3, 129.8, 129.6, 127.8, 127.7, 

126.9, 126.5, 124.3, 122.4, 122.0, 118.8, 116.0, 110.8, 80.9, 74.9, 48.2, 40.3, 

28.6, 17.7, 17.4; LC-MS: 450(M+Na), 877 (2M +Na). Anal. calcd for 

(C28H29BrNO3: 427.54): C, 78.66; H, 6.84, N, 3.28; Found: C, 78.41, H, 6.71, 

N, 3.15. 

7bc. Light yellow oil. Yield = 96%; (cHex:DCM = 

95:5). 1H-NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 

7.40-7.38 (m, 2H), 7.17 (t, J = 8.8 Hz, 1H), 7.08 (d, J = 7.4 Hz, 1H), 6.94 (t, 

J = 7.5 Hz, 1H), 6.87-6.83 (m, 2H), 6.13 (t, J=1.6 Hz, 1H), 2.77 (dd, J = 2.0, 

14.1 Hz, 1H), 2.52 (dd, J = 1.6, 14.1 Hz, 1H), 1.65 (s, 3H), 1.58 (s, 1H), 1.48 

(s, 9H), 1.41 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 156.7, 143.90, 137.2, 

136.4, 132.5, 132.4, 132.3, 132.3, 127.8, 122.4, 122.1, 118.3, 116.7, 115.96, 

114.9, 810, 74.7, 56.0, 48.1, 40.1, 28.6, 17.8, 17.5; LC-MS: 478 (M+Na), 935 

(2M +Na). Anal. calcd for (C24H26BrNO3: 456.38): C, 63.16; H, 5.74, N, 

3.07; Found: C, 63.01, H, 5.61, N, 3.00. 

7bd. White solid. Yield = 86%; (cHex:DCM = 8:2). 

Mp: 154-157 °C. 1H-NMR (400 MHz, CDCl3) δ 8.20 
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(d, J = 9.0 Hz, 2H), 7.77 (s, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.12 (d, J = 7.4 Hz, 

1H), 7.07 (d, J = 9.1 Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H), 6.24 (t, J=1.6 Hz, 1H), 

2.82 (d, J = 14.8 Hz, 1H), 2.58 (d, J = 14.2 Hz, 1H), 1.66 (s, 3H), 1.46 (s, 

9H), 1.41 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.3, 142.8, 137.0, 134.8, 

127.9, 125.8, 122.6, 122.2, 116.2, 115.9, 81.1, 74.6, 39.9, 28.5, 17.8, 17.1. 

LC-MS: 445 (M+Na), 867 (2M+Na). Anal. calcd for (C24H26N2O5: 422.48): 

C, 68.23; H, 6.20, N, 6.63; Found: C, 68.06, H, 6.12, N, 6.63. 

7be. White solid. Yield = 83%. Mp =118-120 °C. 1H-

NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.29 (dd, J = 

7.6, 2.8 Hz, 1H), 7.19-7.14 (m, 1H), 7.07 (dd, J = 7.2, 1.0 Hz, 1H), 6.98-6.89 

(m, 3H), 6.07 (t, J = 1.6 Hz, 1H), 2.75 (dd, J = 14.0, 2.0 Hz, 1H), 2.51 (dd, J 

= 14.0, 1.6 Hz, 1H), 1.75 (s, 3H), 1.43 (s, 3H), 1.41 (s, 9H). 13C-NMR (100 

MHz, CDCl3) 159.1, 156.7, 151.0, 143.9, 137.4, 137.2, 127.8, 122.4, 122.0, 

120.5, 120.3, 118.3, 118.2, 115.9, 115.1, 114.9, 113.3, 113.1, 80.9, 74.8, 

48.1, 40.0, 28.4, 17.7, 17.6;. LC-MS: 497 (M+Na), 519 (M+K). Anal. calcd 

for (C24H25BrFNO3: 474.37): C, 60.77; H, 5.31, N, 2.95; Found: C, 60.61, H, 

5.13, N, 2.87. 

7bf. Light yellow oil. Yield = 95% (cHex:DCM = 

8:2). 1H-NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.38 

(d, J = 2.8 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.10 (d, J = 7.4, 1H), 6.95 (td, J = 

8.0, 1.6 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.10 (t, J = 1.6, 1H), 2.80 (dd, J = 

14.1, 2.1 Hz, 1H), 2.54 (dd, J = 14.1, 1.5 Hz, 1H), 1.72 (s, 3H), 1.42 (s, 3H), 

1.40 (s, 9H). 13C-NMR (100 MHz, CDCl3) 152.2, 143.9, 143.6, 140.9, 136.6, 

130.1, 127.8, 127.7, 124.6, 122.4, 122.0, 118.1, 115.9, 81.0, 77.3, 77.0, 76.6, 

74.8, 40.0, 29.7, 28.4, 17.7, 17.4; LC-MS: 470 (M+Na), 445 (M+K). Anal. 

calcd for (C24H25Cl2NO3: 446.37): C, 64.58; H, 5.65, N, 3.14; Found: C, 

64.41, H, 5.51, N, 3.00. 

7ea. White solid. Yield = 76%; (cHex:DCM = 8:2). 

Mp: 102-104 °C. 1H-NMR (400 MHz, CDCl3) δ 7.77 
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(s, 1H), 7.32-6.90 (m, 7H), 6.21 (t, J = 1.8 Hz, 1H), 2.77 (dd, J = 13.6, 2.0 

Hz, 1H), 2.51 (dd, J = 13.8, 1.6 Hz, 1H), 2.29 (s, 3H), 1.65 (s, 3H), 1.48 (s, 

9H), 1.40 (d, 3H). 13C-NMR (100 MHz, CDCl3) 157.7, 136.8, 131.7, 129.5, 

128.2, 122.6, 122.4, 116.6, 115.7, 80.7, 74.9, 40.2, 31.4, 30.2, 29.6, 28.5, 

20.8, 17.7, 17.3. LC-MS 392 (M+H), 414 (M+Na), 430 (M+K), 805 

(2M+Na). Anal. calcd for (C25H29NO3: 391.51): C, 76.70; H, 7.47, N, 3.58; 

Found: C, 76.55, H, 7.31, N, 3.60. 

7eb. White solid. Yield = 94%; (cHex:EtOAc = 

98:2). Mp: 112-115 °C. 1H-NMR (400 MHz, 

CDCl3) δ 7.77-7.71 (m, 4H), 7.45 (t, J = 8.4 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 

7.26-7.20 (m, 2H), 6.99 (d, J = 8.4 Hz, 1H), 6.91 (s, 1H), 6.34 (t, J=2.0Hz, 

1H), 2.81 (dd, J = 2.0, 14.0 Hz, 1H), 2.56 (dd, J = 1.6, 14.0 Hz, 1H), 2.31 (s, 

3H), 1.69 (s, 3H), 1.47 (s, 9H), 1.43 (s, 1H). 13C-NMR (100MHz, CDCl3):δ 

155.6, 136.8, 134.3, 131.8, 129.8, 129.6, 128.3, 127.7, 126.9, 126.5, 124.3, 

122.7, 118.8, 115.7, 110.7, 80.8, 75.0, 28.6, 20.9, 17.7, 17.4. LC-MS: 442 

(M+H), 464 (M+Na), 905 (2M+Na. Anal. calcd for (C29H31NO3: 441.57): C, 

78.88; H, 7.08, N, 3.17; Found: C, 78.62, H, 6.95, N, 3.11. 

7ed. White solid. Yield = 50%. Mp = 196-198 °C; 

1H-NMR (400 MHz, CDCl3): δ 8.22 (d, J = 9.2 Hz, 

2H), 7.67 (bs, 1H), 7.05 (d, J = 9.2 Hz, 2H), 7.00 (d, J = 8.4 Hz, 1H), 6.93 

(s, 1H), 6.25 (t, J = 1.6 Hz, 1H), 2.83 (dd, J = 2.0, 14.4 Hz, 1H), 2.59 (d, J = 

15.6 Hz, 1H), 2.32 (s, 3H), 1.67 (s, 3H), 1.47 (s, 9H), 1.43 (s, 1H); 13C-NMR 

(100 MHz, CDCl3): 162.4, 142.6, 141.3, 134.7, 132.1, 128.4, 127.9, 125.8, 

122.9, 117.5, 116.2, 115.8, 107.4, 80.9, 74.7, 71.5, 68.8, 39.9, 29.7, 28.6, 

20.9, 19.5, 17.8, 17.1, 7.6. LC-MS: 459 (M+Na), 895 (2M+Na). Anal. calcd 

for (C25H28N2O5: 436.51): C, 68.79; H, 6.47, N, 6.42; Found: C, 68.65, H, 

6.29, N, 6.25. 

7hd. White solid. Yield = 85%. Mp = 191-193 °C; 

1H-NMR (400 MHz, CDCl3): δ 8.24 (d, J = 9.2 Hz, 
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2H), 7.69 (bs, 1H), 7.29 (dd, J = 2.0, 8.8 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 

7.06 (d, J = 8.0 Hz, 2H), 6.28 (s, 1H), 2.85 (dd, J = 2.0, 14.4 Hz, 1H), 2.60 

(dd, J = 1.6, 14.4 Hz, 1H), 1.67 (s, 3H), 1.45 (s, 9H), 1.43 (s, 3H). 13C-NMR 

(100 MHz, CDCl3): 162.2, 142.7, 139.3, 135.1, 130.7, 125.9, 125.8, 125.4, 

117.5, 116.3, 116.2, 114.7, 90.3, 81.5, 75.1, 39.9, 28.5, 17.6, 17.1. LC-

MS:525 (M+Na). Anal. calcd for (C24H25BrN2O5: 501.38): C, 57.49; H, 5.03, 

N, 5.59; Found: C, 57.31, H, 5.15, N, 5.31. 

7id. White oil. Yield = 94%. 1H-NMR (400 MHz, 

CDCl3): δ 8.16 (d, J = 9.2 Hz, 2H), 7.78 (bs, 1H), 7.21 

(t, J = 7.2 Hz, 1H), 7.09 (d, J = 6.4 Hz, 1H), 7.01-6.95 

(m, 3H), 6.13 (bs, 1H), 2.75 (dd, J = 1.6, 14.4 Hz, 1H), 2.68 (dd, J = 2.0, 14.8 

Hz, 1H), 2.43-2.33 (m, 1H), 2.25-2.13 (m, 3H), 2.04 (s, 3H), 1.83 (s, 3H), 

1.44 (s, 9H). 13C-NMR (100 MHz, CDCl3): 208.7, 162.1, 162.1, 144.1, 142.7, 

134.9, 134.5, 128.3, 126.1, 125.8, 123.3, 123.0, 116.3, 115.6, 81.5, 73.3, 

39.46, 38.3, 30.1, 28.4, 26.9, 17.8.  Anal. calcd for (C26H28N2O5: 448.52): C, 

69.63; H, 6.29, N, 6.25; Found: C, 69.51, H, 6.12, N, 6.05 

7la: White oil. Yield 54%, (cHex:DCM = 8:2). 1H-NMR 

(400 MHz, CDCl3) δ 7.93 (s, 1H), 7.28 (t, J = 7.6 Hz, 

2H), 7.19 (t, J = 7.9 Hz, 2H), 7.14 (d, J = 6.4 Hz, 1H), 7.03 (t, J = 7.6 Hz, 

1H), 6.98-6.94 (m, 2H), 6.09 (bs, 1H), 2.77(dd, J = 2.0, 15.2 Hz, 1H) 2.66 

(dd, J = 2.4, 15.6 Hz, 1H) 2.18 – 2.01 (m, 3H), 1.92-1.89 (m, 3H), 1.72-1.63 

(m, 1H), 1.57-1.54 (m, 1H), 1.44 (s, 9H); 13C-NMR 157.7, 129.5, 127.9, 

123.6, 122.6, 117.4, 115.7, 80.4, 78.8, 38.1, 36.6, 36.6, 28.2, 28.0; LC-MS: 

412 (M+Na), 801 (2M+Na); Anal. calcd for (C25H27NO3: 389.50): C, 77.09; 

H, 6.99, N, 3.60; Found: C, 77.15, H, 7.10, N, 3.55. 

7lb. Pale yellow liquid. Yield = 88%; (cHex:EtOAc 

= 95:5). 1H-NMR (400 MHz, CDCl3) δ 8.00 (bs, 1H), 

7.81-7.79 (m, 2H), 7.75 (d, J = 8 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.40 (t, J 

= 7.2 Hz, 1H), 7.29-7.22 (m, 3H), 7.18 (d, J = 6.4 Hz, 1H), 7.01 (t, J = 6.4 
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Hz, 1H), 6.25 (bs, 1H), 2.88-2.73 (m, 2H), 2.24-2.20 (m, 2H), 2.13-2.06 (m, 

1H), 1.99-1.94 (m, 1H), 1.76-1.70 (m, 1H), 1.59 (d, J = 14.7 Hz, 1H), 1.45 

(s, 9H). 13C-NMR (100 MHz, CDCl3) δ 155.5, 136.1, 134.3, 130.0, 129.6, 

128.0, 127.7, 127.0, 126.5, 124.5, 122.7, 119.2, 115.8, 80.5, 78.9, 38.2, 36.7, 

36.6, 28.3, 28.1. LC-MS: 462 (M+Na), 901 (2M+Na); Anal. calcd for 

(C29H29NO3: 439.56): C, 79.24; H, 6.65, N, 3.19; Found: C, 79.03, H, 6.51, 

N, 3.11. 

7ld. White solid. Yield = 80%; (cHex:DCM = 

95:5). Mp = 185-187 °C; 1H-NMR (400 MHz, 

CDCl3): δ 8.19 (d, J = 8.8 Hz, 2H), 7.91 (bs, 1H) 

7.20 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 1.8 Hz, 1H), 7.06 (d, J = 9.2 Hz, 2H), 

6.98 (t, J = 7.6 Hz, 1H), 6.16 (bs, 1H), 2.81 (d, J = 16.0 Hz, 1H), 2.72 (d, J = 

15.6 Hz, 1H), 2.21-2.50 (m, 3H), 1.98-1.87 (m, 1H), 1.74-1.65 (m, 1H), 1.57-

1.52 (m, 4H), 1.42 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ 206.8, 162.3, 

142.8, 136.2, 136.1, 135.9, 135.7, 128.1, 125.8, 123.8, 122.9, 116.8, 115.8, 

80.6, 78.7, 36.6, 36.4, 30.9, 28.2, 28.1; LC-MS: 457 (M+Na). Anal. calcd for 

(C25H26N2O5: 434.49): C, 69.11; H, 6.03, N, 6.45; Found: C, 69.01, H, 6.66, 

N, 6.63. 

7ma: White oil. Yield = 72% (cHex:DCM = 8:2). 1H-

NMR (400 MHz, CDCl3) δ 7.83 (bs, 1H), 7.28 (t, J = 

8.0 Hz, 2H), 7.04-6.93 (m, 5H), 6.08 (bs, 1H), 2.76 (dd, J=2.4, 15.6 Hz, 1H), 

2.65 (dd, J=1.6, 15.2 Hz, 1H),  2.29 (s, 3H), 2.22-1.88 (m, 4H), 1.71-1.51 

(m, 2H), 1.43 (s, 9H). 13C-NMR (100 MHz, CDCl3) 157.7, 138.4, 136.1, 

132.1, 129.5, 128.4, 124.2, 122.8, 117.4, 115.5, 80.2, 78.9, 65.8, 38.1, 36.6, 

36.5, 28.2, 28.1, 20.8, 15.2; LC-MS: 426 (M+Na), 442 (M+K), 829 (2M 

+Na). Anal. calcd for (C26H29NO3: 403.52): C, 77.39; H, 7.24, N, 3.47; 

Found: C, 77.50, H, 7.11, N, 3.40. 

7nd. White oil. Yield = 77%. (cHex:DCM = 

95:5); 1H-NMR (400 MHz, CDCl3): δ 8.19 (d, J 
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= 8.8 Hz, 2H), 7.84 (bs, 1H), 7.04 (d, J = 8.8 Hz, 2H), 6.75-6.70 (m, 2H), 

6.12 (bs, 1H), 3.77 (s, 3H), 2.82 (d, J = 16.0 Hz, 1H), 2.70 (d, J = 16.8 Hz, 

1H), 2.19-2.03 (m, 3H), 1.93 (bs, 1H), 1.74-1.67 (m, 1H), 1.55 (s, 1H), 1.38 

(s, 9H). 13C-NMR (100 MHz, CDCl3) δ 162.3, 155.9, 136.9, 136.3, 125.8, 

117.0, 116.3, 112.6, 109.9, 78.9, 55.7, 36.4, 36.2, 31.9, 31.5, 30.2, 29.7, 28.3, 

28.1, 26.9, 22.7. LC-MS: 487 (M+Na). Anal. calcd for (C26H28N2O6: 464.52): 

C, 67.23; H, 6.08, N, 6.03; Found: C, 67.02, H, 6.00, N, 6.21. 

7pd. White solid. Yield = 77%. Mp = 171-174 °C; 

1H-NMR (400 MHz, CDCl3): δ 8.22 (d, J=9.2 Hz, 

2H), 7.84 (bs, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 8.8 Hz, 3H), 6.96 (t, 

J = 7.2 Hz, 1H), 6.37 (s, 1H), 2.86-2.78 (m, 2H), 2.50 (d, J = 13.2 Hz, 1H), 

2.38 (d, J = 13.2 Hz, 1H), 1.75-1.53 (m, 5H), 1.46 (s, 9H), 1.24-1.35 (m, 1H), 

1.05 (t, J = 12.8 Hz, 1H), 0.87-0.84 (m, 1H). 13C-NMR (100 MHz, CDCl3) 

142.5, 134.6, 128.0, 125.9, 122.4, 116.3, 115.8, 81.0, 30.0, 29.7, 29.3, 28.6, 

20.9, 20.7. LC-MS: 471 (M+Na). Anal. calcd for (C26H28N2O5: 448.52): C, 

69.63; H, 6.29, N, 6.25; Found: C, 69.51, H, 6.12, N, 6.05. 

7qa. White oil. Yield = 71% (cHex:DCM = 8:2). 1H-

NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.6 Hz, 1H), 7.30 

(t, J = 7.2 Hz, 2H), 7.19 (t, J = 8.4 Hz, 1H), 7.07-6.92 (m, 

5H), 6.08 (t, , J= 2.0, 1H), 3.16 (m, 1H), 2.69 (dd, J = 2.0, 14.8, 1H), 2.61 

(dd, J = 2.0, 14.8, 1H), 2.21-2.16 (m, 1H), 1.93 (t, J= 12.8 Hz, 2H), 1.71-

1.51 (m, 4H), 1.42 (s, 9H), 1.35-1.24 (m, 2H), 0.98-0.84 (m, 1H). 13C-NMR 

(100 MHz, CDCl3): 157.7, 145.3, 137.3, 136.5, 129.4, 127.7, 122.6, 122.5, 

122.4, 117.1, 116.0, 80.7, 39.1, 36.3, 32.4, 31.5, 29.6, 28.3, 25.6, 24.5; LC-

MS: 440 (M+Na), 857 (2M+Na); Anal. calcd for (C27H31NO3: 417.55): C, 

77.67; H, 7.48, N, 3.35; Found: C, 77.86, H, 7.22, N, 3.41. 

7qd. White solid. Yield = 87%. (cHex:DCM = 95:5) 

Mp = 73-75 °C; 1H-NMR (400 MHz, CDCl3): δ 8.16 

(d, J = 9.2 Hz, 2H), 7.81(1H, bs), 7.18 (t, J = 7.2 Hz, 

N
Boc

O

N
Boc

O

NO2

N
Boc
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NO2
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1H), 7.08 (d, J = 7.2 Hz, 1H), 7.00 (d, J = 8.8 Hz, 3H), 6.10 (bs, 1H), 3.12-

3.07 (m, 1H), 2.70 (dd, J = 14.0, 15.2 Hz, 1H), 2.23-2.18 (m, 1H), 1.95-1.89 

(m, 2H), 1.68-1.59 (m, 3H), 1.40 (s, 9H), 1.31-1.16 (m, 3H), 0.97-0.89 (m, 

1H). 13C-NMR (100 MHz, CDCl3) δ 162.4, 144.8, 142.6, 136.12, 134.91, 

127.9, 126.7, 125.7, 122.7, 122.7, 116.4, 116.1, 80.9, 53.5, 52.8, 38.9, 36.4, 

32.0, 31.5, 30.9, 28.3, 26.9, 25.5, 24.5; LC-MS: 485 (M+Na), 947 (2M+Na). 

Anal. calcd for (C27H30N2O5: 462.55): C, 70.11; H, 6.54, N, 6.06; Found: C, 

70.31, H, 6.76, N, 6.20. 

7ub. Pale yellow solid. Yield = 74%; (cHex:EtOAc = 

95:5). Mp = 84-86 °C 1H-NMR (400 MHz, CDCl3) δ 

8.27 (bs, 1H), 7.75 (t, J = 9.2 Hz, 3H), 7.66 (d, J = 8.4 Hz, 1H), 7.44-7.33 

(m, 3H), 7.23-7.16 (m, 4H), 7.01 (t, J = 7.2 Hz, 1H), 6.30 (t, J=2.0 Hz, 1H), 

3.41 (s, 2H), 3.11 (dd, J = 2.0, 14.8 Hz, 1H), 2.90 (dd, J = 1.6, 14.4 Hz, 1H), 

1.50 (s, 9H). 13C-NMR (100MHz, CDCl3): 155.4, 145.7, 141.19, 136.0, 

134.2, 129.9, 129.4, 128.6, 128.1, 127.6, 127.0, 126.7, 126.4, 125.14, 124.3, 

122.9, 119.1, 116.6, 81.6, 43.4, 38.4, 28.6. LC-MS: 510 (M+Na), 997 

(2M+Na). Anal. calcd for (C33H29NO3: 487.60): C, 81.29; H, 6.00, N, 2.87; 

Found: C, 81.13, H, 6.21, N, 2.71. 

7ud. White oil. Yield = 50%.  1H-NMR (400 MHz, 

CDCl3): δ 8.09 (d, J = 9.2 Hz, 3H), 7.58(bs, 1H), 

7.18-7.09 (m, 5H), 6.96-6.89 (m, 3H), 6.14 (t, J= 2.0 Hz, 1H), 3.34 (s, 2H), 

3.05 (dd, J = 2.0, 15.2 Hz, 1H), 2.85 (dd, J = 2.0, 15.2 Hz, 1H), 1.50 (s, 9H). 

13C-NMR (100 MHz, CDCl3): 162.3, 145.6, 140.6, 135.7, 135.1, 128.8, 

128.2, 126.9, 125.7, 125.2, 123.9, 123.0, 116.4, 116.2, 81.6, 43.4, 38.3, 29.7, 

28.5, 14.2. LC-MS: 505 (M+Na), 987 (2M+Na). Anal. calcd for 

(C29H26N2O5: 482.54): C, 72.19; H, 5.43, N, 5.81; Found: C, 72.01, H, 5.26, 

N, 5.61. 
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3.4.5 General procedure for the enantioselective [2+2] 
cycloaddition reaction 

Under nitrogen atmosphere, AuCl.DMS (1.5 mg, 5 mol%) and (R)-DTBM-

Segphos (3.0 mg, 2.5 mol%) were dissolved in CH2Cl2 (0.5 mL), the solution 

was stirred at room temperature for 20 min. Then the CH2Cl2 was evaporated 

under reduced pressure, and leave the complex under high vacuum for 20 

min.  Then, CH2Cl2 (1.0 mL) was added and the solution was protected from 

light by aluminium foil. AgNTf2 (1.9 mg, 5 mol%) was added and the 

solution was stirred at room temperature for 20 min. Then the mixture was 

cooled to -20 °C, then substrate 1 (0.1 mmol), and 3 (0.2 mmol) were added 

in sequence and the mixture stirred at the same temperature for 16 h. 

Removed the solvent under reduced pressure and the crude was purified by 

flash column chromatography to give the desired product. 

7ba: Yield = 35%, Ee = 93%, [α]D=+107 °, (c = 2.1, CHCl3). HPLC: AMY-

2 98:2 Hex:iPrOH 0.5 mL/min, 40 °C: 9.40 min, 10.31 min. 

7bf: Yield = 65%, Ee = 81%, [α]D=+100 °, (c = 1.4, CHCl3 ). HPLC: AD, 

97.5:2.5 Hex:iPrOH 0.5 mL/min, rt: 7.99 min, 9.27 min. 

7ea: Yield = 56%, Ee = 92%, [α]D=+141°, (c = 1.8, CHCl3).  HPLC: AD, 

97:3 Hex:iPrOH 0.5 mL/min 40 °C: 8.25 min, 12.21 min. 

7la: Yield = 57%, Ee = 87%, [α]D=+107 °, (c = 1.1, CHCl3). HPLC: Amy-

2, 95:5 Hex:iPrOH 0.5 mL/min, 40 °C:  9.61 min, 10.79 min. 

7qa: Yield = 73%, Ee = 84%, [α]D=+110 °, (c = 2.9, CHCl3).  HPLC: AD, 

90:10 Hex:iPrOH 0.5 mL/min, 40 °C: 6.89 min, 7.62 min. 
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3.4.6 Computational details 

 

Figure 3.17 A 3D representation of the encounter complex M0. Bond lengths are given 

in Å. 

 

Figure 3.18 A 3D representation of transition state TS1(K). Bond lengths are given in Å. 
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Figure3.19 A 3D representation of the intermediate M1(K). Bond lengths are given in 

Å. 

 

Figure 3.20 A 3D representation of transition state TS2(K). Bond lengths are given in Å. 
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Figure3.21 A 3D representation of the final adduct M2(K). Bond lengths are given in Å. 

 

Figure 3.22 A 3D representation of transition state TS1(T). Bond lengths are given in Å. 
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Figure3.23 A 3D representation of the intermediate M1(T). Bond lengths are given in Å. 

 

Figure 3.24 A 3D representation of transition state TS2(T). Bond lengths are given in Å. 
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Figure 3.25 A 3D representation of the final adduct M2(T). Bond lengths are given in Å. 

3.4.7 Crystallographic Data Collection and Structure 
Determination for 4b’, 4r and 7hd 

 

The X-ray intensity data of 4b’ and 7hd were measured on a Bruker SMART 

Apex II CCD area detector diffractometer whereas the intensity data for 

compound 4r were recorded on a four-circle Bruker X8APEX diffractometer 

(Mo-Kα generator, λ = 0.71073 Å) equipped with an area detector and 

controlled by the Bruker-Nonius X8APEX software, that was used also for 

data reduction.  Cell dimensions and the orientation matrix were initially 

determined from a least-squares refinement on reflections measured in three 

sets of 20 exposures, collected in three different  regions, and eventually 

refined against all data.  A full sphere of reciprocal space was scanned by 

0.3  steps.  The software SMART (SMART & SAINT Software Reference 

Manuals, version 5.051 (Windows NT Version) Bruker Analytical X-ray 
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Instruments Inc.: Madison, WI, 1998),  was used for collecting frames of 

data, indexing reflections, and determination of lattice parameters.  The 

collected frames were then processed for integration by the SAINT program 

and an empirical absorption correction was applied using SADABS.  The 

structures were solved by direct methods (SIR 2004)[47] and subsequent 

Fourier syntheses and refined by full-matrix least-squares on F2 (SHELXTL, 

G. M. Sheldrick, SHELXTLplus (Windows NT Version) Structure 

Determination Package, Version 5.1.  Bruker Analytical X-ray Instruments 

Inc.: Madison, WI, USA, 1998), using anisotropic thermal parameters for all 

non-hydrogen atoms.  All hydrogen atoms were added in calculated 

positions, included in the final stage of refinement with isotropic thermal 

parameters, U(H) = 1.2 Ueq(C) [U(H) = 1.5 Ueq(C-Me)], and allowed to ride 

on their carrier carbons.  Crystal data and details of the data collection for 

4b’, 4r and 7hd are reported in Table 3.6 Crystal data and structure 

refinement for 3b’ and 4r and 7hd..  CCDC 1416318 (4b’), 1416343 (4r) 

and 1416344 (7hd) contain the supplementary crystallographic data for this 

paper.  These data can be obtained free of charge from the Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

http://www.ccdc.cam.ac.uk/data_request/cif
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3.4.7.1 X-ray crystal structure of 4b’, 4r and 7hd 

 

Figure 3.26 Molecular structure of 4b’. 

 

Figure3.27 Molecular structure of 4r. 
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Figure3.28 Molecular structure of 7hd. 

 

Table 3.6 Crystal data and structure refinement for 3b’ and 4r and 7hd. 

 4b’ 4r 7hd 

Formula 
C21H26N2O4 C25H32N2O5 C24H25 BrN2O5 

 

Fw 370.44 440.53 
501.36 

T, K 296 (2) 293(2) 296 (2) 

Crystal symmetry orthorhombic triclinic monoclinic 

Space group P ca21 P -1 P 21/n 

a, Å 9.887(1) 9.9946(9) 10.315(3)  

b, Å 22.511(3) 11.648(1) 16.082(5) 

c, Å 8.827(1) 20.470(2) 14.351(5) 

, ° 90 87.347(4) 90 

, ° 90 81.681(4) 102.518(4) 

, ° 90 89.034(4) 90 

Cell volume, Å3 1965(5) 2355.3(4) 2324(13) 
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Z 4 4 4 

Dc, Mg m-3 1.252 1.242 1.433 

(Mo-K), mm-1 0.087 0.086 1.806 

F(000) 792 944 
1032 

Crystal size mm 0.35x0.20x0.10 0.35x0.15x0.10 0.30x0.15x0.10 

 limits, ° 1.81 - 28.73 1.75 - 27.98 1.93  -  24.74 

Refl. collected, 
unique (Rint) 

12932, 4363 
(0.0194) 

46979, 11227 
(0.0369) 

19491, 3861 
(0.0568) 

Goodness-of-fit-on 
F2 

1.242 1.020 
1.064 

R1(F)a, wR2 

(F2) [I > 2(I)]b 

0.0507, 0.0940 0.0634, 0.2105 0.0862, 0.2368 

Largest diff. peak 
and hole, e. Å-3 

0.134 and -0.157 0.303 and -0.389 1.529 and -0.446 

a R1 = Fo-Fc/Fo.
b wR2 = [w(Fo

2-Fc
2)2/w(Fo

2)2]1/2
 where w = 1/[2(Fo

2) 

+ (aP)2+ bP]  where P = (Fo
2 + Fc

2)/3. 
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4 I THOUGHT IT WAS GOLD 

INSTEAD…TBAF 

CATALYSED ONE-POT 

SYNTHESIS OF ALLENYL-
INDOLES 

The present work is the result of a serendipitous discovery.[1]  I was working 

on the synthesis of a new substrate for a gold-catalysed reaction.  The last 

step of the synthesis was supposed to be the cleavage of the two silyl-

protecting group, performed by tetrabutylammonium fluoride (TBAF) but 

the result was unexpected.  I found that Bu4N
+ and F- ions were effective in 

performing a cascade sequence involving intramolecular hydroamination of 

the C-C triple bond, cleavage of silyl-protecting groups and site-selective 

sigmatropic aza-Cope-type [3,3]-rearrangement.  Part of this chapter has 

been published on Organic Chemistry Frontiers [2] and reproduced from ref. 

[2] with permission from The Royal Society of Chemistry. 
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4.1 Introduction 

4.1.1 Intramolecular hydroamination reaction 

Intramolecular hydroamination is among the most powerful and employed 

synthetic approaches to the synthesis of benzofused aza-heterocycles.[3–5]  

The process cannot be spontaneously performed due to lack of reactivity 

complementarity in the acyclic precursors, therefore an electrophilic 

activation becomes mandatory.  In this regard, soft metal catalysis has gained 

important credits over the past few years, triggering the efficient activation 

of the C-C triple bond towards the regioselective inter- as well as intra-

molecular condensation with heteroatom-based nucleophiles.  Among the 

others, electrophilic metal species based on Pd, In, Au, Pt, Ag… have found 

efficient applications in catalytic variants showing good chemical 

performances and substrate scope.[6–13]  However, the use of noble metals 

leads to important issues in terms of methodology susteinability and the 

replacement of coinage metals with cheaper metal-free catalytic agents is 

still highly desirable. 

In this direction, the employment of strong Brønsted acids as well as bases 

such as pTsOH, TfOH, KOH and Cs2CO3 was found very efficient in the 

functionalization of alkynes with hetero-nucleophiles even if the protocols 

suffered by the requirements of harsh reaction conditions and large and even 

superstoichiometric amounts of additives.[14–19]  Alternatively, soft 

quaternary ammonium salts are known to act as synthetic equivalents of late-

transition metal species in activating unsaturated hydrocarbons towards 

nucleophilic attack and the spontaneous replacement of the ammonium 

fragment by the isoelectronic proton, make catalytic variants potentially 

amenable.  In this direction, Jacobi and coworkers in the 90’s demonstrated 

the efficiency of large amounts of tetrabutylammonium fluoride (TBAF) in 

promoting the intramolecular hydroamination of acetylenic amides to give 

cyclic enamides (Figure 4.1a).[20,21]   



Chapter 4: I thought it was gold instead…TBAF catalysed one-pot synthesis of allenyl-indoles 

138  Assunta De Nisi - March 2018 

 

Figure 4.1 Seminal works on the electrophilic activation of isolated alkynes by means of 

TBAF: a) Synthesis of cyclic enamides reported by Jacobi;[20] b) cyclization of propargyl 

urea reported by Huguenot.[22] 

After these seminal works, the methodology found numerous applications in 

the synthesis of heterocycles through X-H addition to unsaturated 

hydrocarbons, one example reported by Huguenot is shown in Figure 

4.1.[23,24,22,25,26]  

However the use of ammonium salts in catalytic transformations was 

sporadically documented and never fully and systematically investigated in 

organic processes.[27] 

 

Figure 4.2 Plan vs cascade sequence discovered. 
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TBAF is one of the most used reagents for silyl ether deprotection, in fact it 

is a source of fluorine that can be used in organic solvents since the 

ammonium cation is lipophilic and this makes it preferable to inorganic 

bases. Having to deprotect both a terminal alkyne and a silyl ether, the choice 

fell on the TBAF itself.  Serendipitously we obtained not only the two 

cleavages but also the hydroamination, despite having a tosylated nitrogen, 

and an aza-Cope-type [3,3] rearrangement (Figure 4.2). 

We decided to deepen this discovery trying to optimize the reaction 

conditions. After having verified that the process is catalytic, we also tried 

to understand the mechanism and test the synthetic usefulness of 3-allenyl- 

indoles using it as a substrate for gold catalysis to obtain a 

tetrahydrocarbazole.  

4.2 Results and discussion 

4.2.1 Synthesis of ortho-alkynyl aniline 

 At the outset of the investigation, ortho-alkynyl aniline 1a was elected as 

the model acyclic precursor and the choice for 1a was dictated by its ready 

availability and high chemical functionality. 

 

Figure 4.3 Schematic synthetic route for the obtainment of 1a. 
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The synthesis of 1a started with the tosylation of 2-iodoaniline, than the 2 

iodo tosylaniline was alkylated with a functionalized propargyl bromide. The 

last step was the Sonogashira coupling with the trimethylsilylacetilene. All 

the synthetic procedures are reported in the Experimental part. 

4.2.2 Study of the catalytic system 

 

We envisioned that the use of fluoride-based catalysts could enable also the 

concomitant cleavage of the silyl protecting group of 1 during the catalysis, 

with a positive impact on the overall step economy of process. A survey of 

reaction conditions involving ammonium salts as catalysts was performed 

and a collection of results is reported in the Table 4.1. 
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Table 4.1 Optimization of the catalytic system.a 

Run cat. (%) T / t (h) yield (%)b 

2a/1a’/1a’’ 

1c TBAF·3H2O (200) 0 °C/1 67/-/33 

2 TBAF·3H2O (100) rt/16 97/-/- 

3 TBAF·3H2O (50) rt/16 97/-/- 

4 TBAF·3H2O (10) rt/16 78/10/5 

5d TBAF·3H2O (10) rt/2 70/-/- 

6e TBAF·3H2O (10) rt/16 55/-/- 

7 TBACl/KF·2H2O (300) rt/16 -/42/- 

8 TBAOH·30H2O (300) rt/16 NR 

9 CsF (100) rt/16 -/88/- 

a All the reactions were carried out in reagent grade THF without moisture prevention, unless 

otherwise specified (0.045 M). b Isolated yield. c Conversion by NMR. d Concentration = 0.1 M. e Dry 

THF was employed. Compound 2a’ (vide infra) was also observed in the reaction crude. TBAF: 

tetrabutylammonium fluoride. TBACl: tetrabutylammonium chloride. TBAOH: tetrabutylammonium 

hydroxide. TMS: trimethylsilyl. TBDMS: tertbutyldimethylsilyl. NR = no reaction.  

 

Initial attempts were carried out in the presence of hydrate tetra-

n(butyl)ammoniun fluoride (TBAF) as the promoter in reagent grade THF 

and open-air vial. Interestingly, beside the incomplete reaction at 0 °C with 

200 mol% of TBAF·3H2O (1 h), the desired product 2a was generally 

isolated in very high yields (67-97%).12 Gratifyingly, catalytic amount of 

ammonium salt (10 mol%, entry 4 in Table 4.1) proved also competence in 

providing 2a in satisfactory 78% yield, accompanied by the presence of 

minor components such as the mono- or bis-desilylated acyclic compounds 

1a’ and 1a’’.  It is worth noting that tetrabutylammonium fluoride exerts a 

multiple role during the reaction course. As a matter of fact, besides the 

assistance in the hydroaminative event (vide infra for mechanistic 

interpretation), the double cleavage of silyl-units was also operated. 
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In terms of reaction machinery, some experimental evidences enabled 

preliminary conclusions to be drawn.  First: inertness or partial/complete 

desilylation of 1a occurred with different fluorinating agents or bases (e.g. 

TBACl/KF, CsF and TBAOH, entries 7-9); second, the use of wet THF13 

proved mandatory for a complete consumption of 1a the success of the 

cascade methodology.  As a matter of fact, dry THF performed less 

efficiently (yield 2a = 55%), providing also 2a’ as the major by-product 

(entry 6).  All at once, only the synergistic action of both ions nBu4N
+ and F- 

in TBAF seemed guaranteeing the correct chemical environment to provide 

2a in synthetically acceptable extents (vide infra).  

Having established the optimal reaction conditions, the scope of the method 

was ascertained by subjecting a series of differently substituted ortho-

alkynyl anilines (1b-k) to TBAF·3H2O catalysis and the results are reported 

in Figure 4.4. 
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Figure 4.4 Scope and limitations of the catalytic protocol (NR = no reaction). 

From the results collected in Figure 4.4, it emerged that anilines carrying 

both electron-withdrawing (F, Cl, CF3) as well as electron-donating group 

(e.g. Me) at different positions were suitable candidates for the present 

transformation, delivering the corresponding cyclized and deprotected 

allenyl-indoles 2 in high yields (up to 93%). Interestingly, the methodology 

was not restricted to silyloxyl-ether precursors but also -OBn and NHBn 

derivatives (1i-j) performed in moderate to good extents. We also showed 

that the easily removable N-methyl formate group is tolerated in the process, 

delivering the N-CO2Me 2h adduct in 45% yield.  However, the replacement 

of TMS group in 1 with an alkyl chain (i.e. nC4H9, 1l) led to the formation of 

a complex mixture of unknown compounds. 
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Despite the undoubted synthetic utility of the protocol, several interrogatives 

concerning mechanistic aspects were still open. 

In this direction, experimental as well as spectroscopic experiments have 

been performed. With the purpose of ascertaining the order of chemical 

events in the cascade process and the role of the trialkylsilyl functions on the 

overall reaction machinery, compounds 1a’ and 1m were subjected to best 

catalytic conditions (Figure 4.5). Interestingly, while 1l reacted smoothly 

giving 2a in 82% yield, the employment of the terminal alkyne 1a’ caused 

the failure of the process in fact unreacted 1a’ was fully recovered at the end 

of the process.  The latter evidence suggests that the initial hydroaminative 

step, triggered by the synergistic action of the ammonium cation and the 

fluoride anion, is crucial for the overall reaction profile. Differently, the 

positive result obtained with 1l suggests that the TBDMS group is not 

directly involved in the crucial bond forming steps of the process, as also 

testified by the promising results obtained with compounds 1i-j of Figure 

4.4.  

 

Figure 4.5 Proving the role of the silyl groups in the cascade process (NR: no reaction). 

 

Additionally, the 1H-NMR spectroscopic investigation (THF-d8 dry, rt) of 

the reaction showed a very fast reaction profile.  
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Figure 4.6 Reaction scheme with the intermediate 2a’. 

Recording the 1H-NMR of 1a (Figure 4.7) in the presence of 30% mol of 

TBAF·3H2O, after 2 min reaction time, 2a was formed in 49.5% conversion 

along with two new compounds, the magnification of the region between 4 

and 5.6 ppm of the 1H-NMR recorded is shown in Figure 4.8.  Although we 

failed in assigning one of them, the still O-silylated indole 2a’ was identified 

as a reaction intermediate (Figure 4.6). Full conversion into 2a was reached 

in 3 hours (Figure 4.9), all the 1H-NMR recorded are collected in section 

4.4.13 of Experimental part. 

 

Figure 4.7 1H-NMR of 1a in THF-d8. 
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Figure 4.8 1H-NMR of reaction in THF-d8 2 minutes after the addition of TBAF solution. 

 

Figure 4.9 1H-NMR of reaction in THF-d8 3 hours after the addition of TBAF solution. 
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Although a univocal mechanistic picture is not available at the present, the 

following reaction profile can be proposed (Figure 4.10).  

 

Figure 4.10 Hypothesis of reaction mechanism. 

Initially, TBAF is invoked in triggering the hydroamination with 

simultaneous cleavage of the TMS group (Bu4N
+ can stabilize the incipient 

acetylenic carbanion), leading, upon C(3)-protonation to the partially 

indolynium species B. The latter intermediate can undergo intramolecular 

[3,3]-aza-Cope sigmatropic rearrangement resulting into the partially 

dearomatized adduct C. Fast rearomatization would lead to the detected O-

silylated species 2a’ that can finally deliver the indolyl-alcohol 2a via 

cleavage of the OTBDMS group. A certain content of water is therefore 

requested for both the protonation of the intermediate A and transformation 

of 2a’ into 2a. The incomplete consumption of 1a with dry THF (Table 4.1, 

entry 6) can be consequently addressed. The content of water present in the 
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commercially available hydrate-TBAF can account for the 55% isolated 

yield in 2a via dry THF.  

Additionally, a scrambled control experiment with 2-methyl-N-tosyl indole 

(1.5:1 ratio with respect to 1a) was carried out in order to assess the possible 

cleavage of the propargylic chain with consequent intermolecular 

condensation with concomitantly delivered indole core (Figure 4.11). 

Figure 4.11 Scrambled-control experiment. 

Here, the isolation of a 2a:2a’ mixture (2:1) without any significant 

incorporation of 2Me-indole in the final product, ruled out this possibility.  

4.2.3 Proving the synthetic flexibility of allenyl-indoles 

Finally, the synthetic utility of the 3-allenyl-indoles 2 was demonstrated by 

subjecting allenol 2a to gold catalyzed ring-closing protocol (Figure 4.12).  

 

Figure 4.12 Ring closing reaction catalyzed by gold 

Upon a screening of [Au(I)] species the carbonic complex iPrAuCl (5 mol%), 

cationized with AgSbF6 was elected as the catalyst of choice delivering the 

corresponding dihydrofuran 4a in 91% yield and mild reaction conditions (1 

h, toluene, rt,) as shown in Table 4.2.[28,29] 
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Table 4.2  Optimization of the reaction conditions.a 

 

Entry Catalyst (5 mol %) Yieldb 4a (%) 

1 JohnPhosAu(CH3CN)SbF6 80% 

2 IPrAuCl / AgNTf2 59% 

3 IPrAuCl / AgOTf 83% 

4 IPrAuCl / AgSbF6 91% 

5 AgSbF6 20% 

6 AuCl·DMS 28% 

7 PPh3AuCl/AgSbF6 63% 

8 JackiePhosAuNTf2 40% 

9 Me-4-tBuXphosAu(CH3CN)SbF6 75% 

10 MeDalPhosAuCl/AgSbF6 53% 

11 (2-Pyridinecarboxylato)AuCl2/2AgSbF6 70% 

aAll the reaction were carried out under nitrogen atmosphere  bIsolated yield after flash 

chromatography. 
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The compound was fully characterized also by single crystal X-ray 

diffraction and the molecular structure is depicted in Figure 4.13. 

 

Figure 4.13 Molecular structure of compound 4a. 

Interestingly, as reported in some paper of Rossi and coworkers for similar 

substrates, compound 4a proved to be a reliable dienophile in a formal [4+2]-

cycloaddition type reaction when condensed with allenamide 5a (-20 °C, 4 

h) as shown in Figure 4.14.[30–32]  

 

Figure 4.14 Synthesis of tetrahydrocarbazole 6aa 

In this case, the electrophilic activation of the latter π-system promoted by 

gold, as depicted in Figure 4.15, was crucial in order to isolate the 

tetrahydrocarbazole 6aa in 55% yield and high regioselectivity manner. 
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Figure 4.15 Electrophilic activation of the allenamide π-system promoted by gold. 

4.3 Conclusions 

In conclusion, a new efficient and environmentally acceptable metal free-

catalytic protocol for the one-pot synthesis of densely functionalized C(3)-

allenyl-indoles is documented. The use of economically acceptable 

TBAF·3H2O as catalyst (20 mol%), in reagent-grade solvent and open-air 

flask, make the present methodology a desirable synthetic alternative to 

classic noble-metal based synthesis of heterocyclic scaffolds. The synthetic 

flexibility of the obtained allenyl-indoles was finally proved in the synthesis 

of densely functionalized polycyclic fused tetrahydrocarbazoles. 

 

4.4 Experimental part 

4.4.1 General methods 
1H-NMR spectra were recorded on Varian 400 (400 MHz) spectrometer.  

Chemical shifts are reported in ppm from TMS with the solvent resonance 

as the internal standard (deuterochloroform: 7.27 ppm).  Data are reported as 

follows: chemical shift, multiplicity (s = singlet, d = duplet, t = triplet, q = 

quartet, sext = sextet, sept = septet, p = pseudo, b = broad, m = multiplet), 

coupling constants (Hz).  13C-NMR spectra were recorded on a Varian 400 

(100 MHz) spectrometer with complete proton decoupling.  Chemical shifts 

are reported in ppm from TMS with the solvent as the internal standard 

(deuterochloroform: 77.0 ppm).  GC-MS spectra were taken by EI ionization 
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at 70 eV on a Hewlett-Packard 5971 with GC injection.  They are reported 

as: m/z (rel. intense).  LC-electrospray ionization mass spectra were obtained 

with Agilent Technologies MSD1100 single-quadrupole mass spectrometer.  

Chromatographic purification was done with 240-400 mesh silica gel.  

Elemental analyses were carried out by using an EACE 1110 CHNOS 

analyzer.  All anhydrous solvents were supplied by Sigma Aldrich in 

Sureseal® bottles and used without any further purification.  Commercially 

available chemicals were purchased from Sigma Aldrich, Stream and TCI 

and used without any further purification.  Melting points were measured 

using open glass capillaries in a Bibby Stuart Scientific Melting Point 

Apparatus SMP 3 and are calibrated by comparison with literature values 

(Aldrich).  

4.4.2 General procedure for the synthesis of 7 

 

Substituted N-tosyl-2-iodoaniline and [(4-bromo-2-butyn-1-yl)oxy](tert-

butyl)dimethylsilane (A) were prepared following reported procedures.[33,34]  

Method a) for compounds 7a,e-g. To a solution of substituted N-tosyl-2-

iodoaniline (1 mmol) in dry acetonitrile (5 mL) under nitrogen atmosphere, 

K2CO3 (2 eq) followed by the propargyl bromide A (1.2 eq) was added. The 

mixture was stirred at room temperature until TLC analysis indicates 

complete consumption of starting material. Subsequently, water (10 mL) was 

added and the aqueous layer was extracted with AcOEt (3 x 10 mL). The 

combined organic layers were dried with Na2SO4, filtered and concentrated 
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under reduced pressure. The crude product was purified by column 

chromatography on silica gel to give the desired product. 

Method b) for compounds 7b and 7c. To a solution of substituted N-tosyl-

2-iodoaniline (1 mmol) in dry DMF (5 mL) under nitrogen atmosphere, NaH 

(2.0 eq) and the solution was stirred at rt for 15. Then propargyl bromide A 

(1.2 eq) was added and the mixture stirred at room temperature until the TLC 

analysis indicates complete consumption of starting material. Subsequently, 

water (10 mL) was added and the aqueous layer was extracted with AcOEt 

(1 x 10 mL). The organic phase was washed with water (3 x 5 mL) in order 

to remove traces of DMF and subsequently dried over Na2SO4. The crude 

product was purified by column chromatography on silica gel to give the 

desired product. 

7a. Yellow oil. Yield = 62%, (cHex:EtOAc = 9:1). 

1H-NMR (400 MHz, CDCl3) δ 7.92 (d, J = 6.6 Hz, 

1H), 7.72 (d, J = 8.3 Hz, 2H), 7.31 – 7.25 (m, 3H), 

7.11 (d, J = 7.9 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 4.76 (d, J = 16.7 Hz, 1H), 

4.18 (d+s, J = 16.6 Hz, 3H), 2.45 (s, 3H), 0.86 (s, 9H), 0.02 (d, J = 4.2 Hz, 

6H). 13C-NMR (100 MHz, CDCl3) 143.72, 140.74, 140.12, 136.62, 130.96, 

130.26, 129.30, 128.61, 128.21, 102.68, 84.40, 78.32, 51.43, 41.02, 25.67, 

21.53, 18.12, -5.36. GC-MS: 498 (M-tBu). 

7b. Colorless oil. Yield = 76%, (cHex:EtOAc = 

95:5). 1H-NMR (400 MHz, CDCl3) δ 7.70 (d, J = 

8.3 Hz, 2H), 7.61 (dd, J = 7.8, 2.8 Hz, 1H), 7.30 

(d, J = 8.5 Hz, 2H), 7.06 (dd, J = 8.8, 5.5 Hz, 1H), 7.01 – 6.95 (m, 1H), 4.75 

(d, J = 18.4 Hz, 1H), 4.14 (d+s, J = 13.2 Hz, 3H), 2.45 (s, 3H), 0.86 (d, J = 

2.8 Hz, 9H), 0.03 (d, J = 4.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3) δ 162.91, 

160.39, 143.95, 137.10, 137.07, 136.40, 131.70, 131.61, 129.44, 128.25, 

127.17, 126.92, 115.74, 115.52, 102.97, 102.89, 84.70, 78.18, 51.46, 41.09, 

25.69, 21.59, 18.18, -5.33. LC-MS: 574.2 (M+), 591.2 (M+H2O). 
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7c. Pale yellow oil. Yield = 89%, (cHex:EtOAc 

= 9:1). 1H-NMR (400 MHz, CDCl3) 7.81 (d, J = 

9.1 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.32 (d, J 

= 8.1 Hz, 2H), 7.08-7.05 (m, 2H), 4.70 (d, J = 18.3 Hz, 1H), 4.23 – 4.12 (m, 

3H), 2.45 (s, 3H), 0.85 (s, 9H), -0.02 (s, 6H). 13C-NMR (100 MHz, CDCl3) 

δ144.16, 141.97, 140.64, 134.36, 131.27, 130.55, 129.49, 128.26, 100.12, 

84.97, 77.83, 51.43, 40.99, 30.87, 25.72, 21.60, 18.19, -5.31. LC-MS: 607.2 

(M+H2O), 612.2 (M+Na+), 628.2 (M+K+). 

7d. Yellow oil. Yield = 52% (not optimized), 

(cHex:EtOAc = 9:1).  1H-NMR (400 MHz, 

CDCl3) δ 8.16 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 

7.54 (d, J = 8.3, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.2 Hz, 1H), 4.74 

(d, J = 18.0 Hz, 1H), 4.21 (d, J = 18.0 Hz, 1H), 4.15 (s, 2H), 2.46 (s, 3H), 

0.85 (s, 9H), 0.01 (s, 6H). 13C-NMR (100 MHz, CDCl3) δ 144.24, 137.16, 

137.12, 136.22, 131.23, 129.58, 128.24, 125.73, 125.69, 102.88, 85.02, 

77.78, 51.43, 40.92, 26.88, 25.66, 21.61, 18.16, -5.37. LC-MS: 646 (M+Na+). 

7e. Yellow oil. Yield = 62% (not optimized), 

(cHex:EtOAc = 95:5). 1H-NMR (400 MHz, 

CDCl3) δ 7.73 – 7.69 (m, 3H), 7.29 – 7.26 (m, 

2H), 7.04 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 4.74 (d, J = 18.3 Hz, 

1H), 4.17- 4.13 (m, 3H), 2.44 (s, 3H), 2.30 (s, 3H), 0.85 (s, 9H), 0.02 (d, J = 

4.4 Hz, 6H). 13C-NMR (100 MHz, CDCl3) δ 143.65, 140.71, 140.60, 138.09, 

136.79, 130.42, 129.45, 129.32, 128.27, 102.46, 84.31, 78.51, 65.81, 51.51, 

41.11, 25.72, 21.58, 20.57, 18.19, 15.25, -5.31. LC-MS: 570.0 (M+H+) 587 

(M++H2O). 

7f. Yellow oil. Yield = 55% (not optimized), 

(cHex:EtOAc = 95:5). 1H-NMR (400 MHz, CDCl3) 

δ 7.71 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 

7.19 (d, J = 6.6 Hz, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.81 (d, J = 6.7 Hz, 1H), 
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4.76 (dt, J = 17.9, 1.7 Hz, 1H), 4.19 – 4.07 (m, 3H), 2.48 (s, 3H), 2.42 (s, 

3H), 0.83 (s, 9H), -0.01 (d, J = 4.6 Hz, 6H). 13C-NMR (100 MHz, CDCl3) δ 

144.32, 143.65, 141.12, 136.85, 129.98, 129.29, 128.33, 127.92, 127.79, 

110.05, 84.37, 78.47, 51.48, 41.09, 25.72, 21.59, 18.18, -5.31, -5.33. LC-MS: 

570.2 (M+H+) 609.2 (M+K+). 

7g. Yellow oil. Yield = 51% (not optimized), 

(cHex:EtOAc = 95:5). 1H-NMR (400 MHz, 

CDCl3) δ 7.75 (d, J = 8.2 Hz, 2H), 7.51 (s, 1H), 

7.29 (d, J = 8.2 Hz, 2H), 7.03 (s, 1H), 4.69 (dt, J = 17.7, 1.8 Hz, 1H), 4.36 

(dt, J = 17.7, 1.8 Hz, 1H), 4.21 (t, J = 1.9 Hz, 2H), 2.43 (s, 3H), 2.36 (s, 3H), 

2.25 (s, 3H), 0.86 (s, 9H), 0.03 (s, 6H). 13C-NMR (100 MHz, CDCl3) δ 

143.51, 142.40, 140.23, 138.64, 138.43, 137.58, 132.29, 129.45, 128.03, 

100.90, 83.99, 78.91, 51.61, 40.68, 25.74, 21.56, 20.65, 20.38, 18.21, -5.34. 

LC-MS: 601.4 (M+ H2O). 

4.4.3 Procedure for the synthesis of 7h 

 

N-methyl 2-iodophenylcarbamate was prepared following reported 

procedures.[35]  The product 7h was synthetized following the procedure 

utilized for the synthesis of products 7a-g. 

7h. Yellow oil. Yield = 56% (not optimized), 

(cHex:EtOAc = 95:5). 1H-NMR (400 MHz, CDCl3) 

δ 7.88 (d, J = 7.8 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.07 

– 7.00 (m, 1H), 4.84 (d, J = 17.5 Hz, 1H), 4.29 (s, 2H), 4.00 (d, J = 17.6 Hz, 

1H), 3.66 (s, 3H), 0.89 (s, 9H), 0.07 (d, J = 2.1 Hz, 6H). 13C-NMR (100 MHz, 

CDCl3) δ 155.06, 142.75, 139.47, 130.05, 129.48, 129.02, 100.03, 83.21, 

79.61, 53.35, 51.70, 39.38, 25.77, 18.24, -5.21. GC-MS: 402 (M-tBu). 
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4.4.4 Procedure for the synthesis of 7i 

 

1-(Benzyloxy)-4-bromo-but-2-yne C was prepared following reported 

procedures.[36,37] The product 7i was synthetized following the procedure 

utilized for the synthesis of products 7a-g.  

7i. Yellow oil. Yield = 94%, (cHex:EtOAc = 9:1). 1H-

NMR (400 MHz, CDCl3) δ 7.90 (dd, J = 7.9, 1.4 Hz, 

1H), 7.70 (d, J = 8.3 Hz, 2H), 7.37 – 7.17 (m, 7H), 

7.10 (dd, J = 7.9, 1.6 Hz, 1H), 7.07 – 6.98 (m, 1H), 4.76 (d, J = 18.1 Hz, 1H), 

4.38 (s, 2H), 4.21 (d, J = 18.1 Hz, 1H), 4.02 (t, J = 1.9 Hz, 2H), 2.38 (s, 3H). 

13C-NMR (100 MHz, CDCl3) δ 143.88, 140.82, 140.25, 137.24, 136.59, 

130.92, 130.35, 129.39, 128.67, 128.37, 128.27, 127.90, 127.83, 102.75, 

81.87, 80.33, 71.29, 57.11, 41.05, 21.53. LC-MS: 531.8 (M) 549 (M+H2O). 

4.4.5 General procedure for the synthesis of 7j: 

 

To a solution of 7n (0.5 mmol) in dry acetonitrile (3 mL) under nitrogen 

atmosphere, K2CO3 (1.5 eq) was added, then the benzyl amine (1.2 eq) was 

added and the mixture was stirred at room temperature until TLC analysis 

indicates complete consumption of starting material. Subsequently, water 

(10 mL) was added and the aqueous layer was extracted with AcOEt (3 x 10 

mL). The combined organic layers were dried with Na2SO4, filtered and 

concentrated under reduced pressure. The crude product was purified by 

column chromatography on silica gel to give the desired product. 
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7j. Yellow oil. Yield = 73% (not optimized), 

(cHex:EtOAc = 8:2). 1H-NMR (400 MHz, CDCl3) 

δ 7.90 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 

7.38-7.17 (m, 8H), 7.12 (d, J = 7.9 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 4.71 (d, 

J = 17.9 Hz, 1H), 4.19 (d, J = 17.9 Hz, 1H), 3.65 (s, 2H), 3.26 (s, 2H), 2.37 

(s, 3H). 13C-NMR (100 MHz, CDCl3) δ 143.84, 140.96, 139.24, 136.66, 

130.83, 130.29, 129.34, 128.61, 128.37, 128.31, 128.23, 127.12, 102.87, 

84.12, 77.10, 52.15, 41.16, 37.40, 21.51. LC-MS: 531.2 (M). 

4.4.6 Procedure for the synthesis of 7m 

 

To a solution of compound 7a (0.5 mmol, 278 mg) in THF (5 mL) at 0 °C, 

TBAF·3H2O (1eq, 0.5 mmol, 158 mg) was added then the mixture was 

stirred until TLC analysis indicates complete consumption of starting 

material. Subsequently, water (10 mL) was added and the aqueous layer was 

extracted with AcOEt (3 x 10 mL). The combined organic layers were dried 

with Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by column chromatography on silica gel to give the 

desired product. 

7m. Yellow oil. Yield = 67% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) δ 

7.92 (dd, J = 7.9, 1.5 Hz, 1H), 7.73 (d, J = 8.3 Hz, 2H), 

7.31 (m, 3H), 7.15 (dd, J = 7.9, 1.6 Hz, 1H), 7.07 (m, 1H), 4.74 (d, J = 18.0 

Hz, 1H), 4.17 (d, J = 17.9 Hz, 1H), 4.12 (s, 2H), 2.46 (s, 3H). 13C-NMR (100 

MHz, CDCl3) δ 143.99, 140.81, 140.21, 136.49, 130.97, 130.39, 129.36, 
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128.77, 128.34, 102.60, 84.08, 79.62, 50.82, 41.06, 21.57. LC-MS: 441.8 

(M+H+), 459.0 (M+H2O) 463.8 (M+Na+).  

4.4.7 Procedure for the synthesis of 7n 

 

1,4-Dibromo-2-butyne was prepared following reported procedure.[38] The 

product 7n was synthetized following a reported procedure for a similar 

product.[39] 

7n. Yellow oil. Yield = 75% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) δ 

7.92 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.32-

7.30 (m, 3H), 7.17 – 7.02 (m, 2H), 4.82 (d, J = 18.3 Hz, 1H), 4.14 (d, J = 

18.3 Hz, 1H), 3.74 (t, J = 2.1 Hz, 2H), 2.46 (s, 3H). 13C-NMR (100 MHz, 

CDCl3) δ 143.99, 140.74, 140.24, 136.58, 131.00, 130.46, 129.48, 128.79, 

128.27, 102.71, 80.88, 80.62, 41.05, 21.63, 13.88. LC-MS: 505 (M+H+) 

543.8 (M+K+). 

4.4.8 General procedure for the synthesis of 1 

To a solution of 7 (0.5 mmol) in anhydrous THF (2 mL), freshly distilled 

TEA (2 mL), trimethylsilylacetylene (1.5 eq), (PPh3)2PdCl2 (8 mol%) and 

CuI (8 mol%) were added.  The mixture was stirring at room temperature 

and the reaction progress was monitored using TLC. After the consumption 

of starting material, the reaction mixture was extracted with ethyl acetate and 
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water.  The organic layers were combined and dried with Na2SO4. After 

filtration, the solvent was removed under reduced pressure. The residue was 

purified by flash chromatography on silica gel. 

1a. Pale yellow solid. Yield = 65% (cHex:EtOAc = 

95:5). Mp = 117-119 °C. 1H-NMR (400 MHz, 

CDCl3) δ 8.40 (d, J = 7.3 Hz, 1H), 7.79 (d, J = 8.2 

Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.32 (t, J = 7.2 

Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 7.2 Hz, 1H), 4.67 (s, 2H), 4.23 

(s, 2H), 2.37 (s, 3H), 0.94 (s, 9H), 0.26 (s, 9H), 0.12 (s, 6H). 13C-NMR (100 

MHz, CDCl3) δ 145.26, 144.38, 139.60, 133.70, 130.68, 129.76, 129.00, 

127.10, 124.70, 123.20, 114.25, 111.84, 103.19, 64.51, 53.99, 25.89, 21.48, 

18.33, -0.22, -5.28. LC-MS: 548.0 (M+Na+), 564.0 (M+K+). 

1b. Pale yellow solid. Yield = 43% (not 

optimized), (cHex:EtOAc = 95:5). Mp = 94-96 

°C. 1H-NMR (400 MHz, CDCl3) δ 8.11 (dd, J = 

9.5, 2.7 Hz, 1H), 7.73 (dd, J = 8.9, 4.6 Hz, 1H), 

7.64 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 7.02 (t, J = 8.6, 1H), 4.67 

(s, 2H), 4.21 (s, 2H), 2.38 (s, 3H), 0.93 (d, J = 2.9 Hz, 9H), 0.31 – 0.21 (m, 

9H), 0.15 – 0.08 (m, 6H). 13C-NMR (100 MHz, CDCl3) δ 160.31, 157.92, 

144.54, 141.30, 138.49, 138.46, 133.32, 130.80, 130.71, 129.81, 129.43, 

127.85, 127.13, 117.42, 117.18, 115.29, 115.21, 113.36, 111.44, 111.18, 

104.47, 103.31, 64.35, 54.46, 25.86, 25.71, 21.49, 18.32, -0.35, -5.32. LC-

MS: 545 (M+H+), 562 (M+H2O). 

1c. White solid. Yield = 58% (not optimized), 

(cHex:EtOAc = 98:2). Mp = 135-136 °C. 1H-

NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.5 Hz, 

2H), 7.76 (d, J = 1.9 Hz, 1H), 7.66 (d, J = 8.4 

Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.97 (dd, J = 8.5, 1.9 Hz, 1H), 4.65 (s, 

2H), 4.18 (s, 2H), 2.36 (s, 3H), 0.90 (s, 9H), 0.21 (s, 9H), 0.08 (s, 6H). 13C-
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NMR (100 MHz, CDCl3) δ 146.10, 144.73, 138.24, 136.37, 133.53, 129.93, 

127.61, 127.07, 125.28, 123.40, 114.31, 112.37, 103.90, 103.69, 64.47, 

54.33, 25.86, 21.52, 18.32, -0.27, -5.32. LC-MS: 559.0 (M), 597.4 (M+K+). 

1d. Yellow wax. Yield = 44% (not optimized), 

(cHex:EtOAc = 95:5). 1H-NMR (400 MHz, 

CDCl3) δ 8.70 (s, 1H), 7.83 (d, J = 8.6 Hz, 1H), 

7.70 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.6 Hz, 

1H), 7.26 (d, J = 7.6 Hz, 3H), 4.75 (s, 2H), 4.24 (s, 2H), 2.39 (s, 3H), 0.94 

(s, 9H), 0.25 (s, 9H), 0.12 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 144.92, 

137.51, 133.62, 130.08, 130.01, 129.41, 127.61, 127.12, 127.05, 125.50, 

121.95, 113.96, 113.67, 105.09, 102.88, 64.60, 54.40, 25.89, 21.55, 18.34, -

0.40, -5.30. LC-MS: 593.2 (M). 

1e. Pale yellow solid. Yield = 40% (not 

optimized), (cHex:EtOAc = 98:2). Mp = 118-120 

°C.  1H-NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 

7.67 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 7.13 (d, J 

= 7.1 Hz, 1H), 4.64 (s, 2H), 4.21 (s, 2H), 2.36 (s, 3H), 2.31 (s, 3H), 0.92 (s, 

9H), 0.26 (s, 9H), 0.11 (s, 6H). 13C-NMR (100 MHz, CDCl3) δ 144.25, 

143.19, 139.80, 133.57, 132.95, 131.53, 129.71, 129.07, 127.13, 124.96, 

114.12, 111.47, 104.08, 102.96, 64.44, 54.15, 31.36, 25.88, 21.46, 20.99, 

18.32, 0.98, -0.15, -5.28. LC-MS: 539.0 (M+), 557.0 (M+H2O), 579.0 (M+K). 

1f. Pale yellow wax. Yield = 58% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) 

7.68 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.1 Hz, 1H), 

7.23- 7.19 (m, 3H), 6.85 (d, J = 7.6 Hz, 1H), 4.58 

(s, 2H), 4.30 (s, 2H), 2.49 (s, 3H), 2.37 (s, 3H), 0.93 (s, 9H), 0.18 (s, 9H), 

0.12 (s, 6H). 13C-NMR (100 MHz, CDCl3) 144.92, 144.01, 141.00, 135.84, 

133.21, 130.04, 129.43, 127.96, 127.21, 126.45, 115.83, 111.28, 105.58, 
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102.49, 66.24, 55.09, 25.69, 23.98, 21.31, 18.07, -0.33, -5.45. LC-MS: 539.4 

(M+), 578.4 (M+K). 

1g. Pale yellow solid. Yield = 44% (not 

optimized), (cHex:EtOAc = 9:1). Mp = 132-134 

°C. 1H-NMR (400 MHz, CDCl3) 7.84 (s, 1H), 

7.22 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 

7.04 (s, 1H), 4.50 (s, 2H), 3.99 (s, 2H), 2.57 (s, 3H), 2.35 (s, 3H), 2.32 (s, 

3H), 0.92 (s, 9H), 0.24 (s, 9H), 0.09 (s, 6H). 13C-NMR (100 MHz, CDCl3) 

144.03, 142.57, 141.40, 136.17, 134.80, 133.48, 131.87, 129.06, 128.03, 

122.20, 112.71, 103.23, 101.53, 64.33, 56.58, 25.89, 21.45, 21.23, 19.55, 

18.35, -0.09, -5.30. LC-MS: 575.4 (M+Na+), 625.8 (M+CH3OH+CH3CN). 

1h. Yellow oil. Yield = 46% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3)
 δ 

8.48 (d, J = 7.5 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 

7.36 – 7.28 (m, 1H), 7.03 (t, J = 7.6 Hz, 1H), 4.72 

(s, 2H), 4.29 (s, 2H), 3.85 (s, 3H), 0.94 (s, 9H), 0.28 (s, 9H), 0.14 (s, 6H). 

13C-NMR (100 MHz, CDCl3) δ 210.46, 130.63, 124.52, 124.28, 122.59, 

122.37, 120.62, 114.96, 114.70, 104.42, 102.84, 93.21, 86.99, 64.82, 64.46, 

53.62, 52.66, 52.37, 25.90, -0.14, -5.22. LC-MS: 462.2 (M + MeOH + H+). 

1i. Yellow wax. Yield = 48% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) 

δ 8.42 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 

7.64 (d, J = 8.3 Hz, 2H), 7.44 – 7.30 (m, 6H), 7.17 

(d, J = 8.1 Hz, 2H), 7.06 (t, J = 7.7 Hz, 1H), 4.66 (s, 2H), 4.54 (s, 2H), 4.14 

(s, 2H), 2.35 (s, 3H), 0.28 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ 145.52, 

144.40, 141.73, 137.74, 133.56, 131.01, 129.76, 128.75, 128.40, 127.85, 

127.79, 127.09, 124.83, 123.27, 114.38, 109.03, 104.27, 103.06, 72.03, 

70.77, 54.08, 21.49, -0.18. LC-MS: 524.4 (M+Na+). 
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1j. Yellow oil. Yield = 59% (not optimized), 

(cHex:EtOAc = 8:2). 1H-NMR (400 MHz, CDCl3) 

δ 8.34 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 

7.64 (d, J = 8.3 Hz, 2H), 7.36 – 7.26 (m, 5H), 7.19 

(d, J = 8.1 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 4.53 (s, 2H), 3.74 (s, 2H), 3.29 

(s, 2H), 2.33 (s, 3H), 0.25 (s, 9H).13C-NMR (100 MHz, CDCl3) δ 145.42, 

144.48, 133.65, 130.68, 129.80, 128.70, 128.46, 128.23, 127.21, 127.10, 

124.51, 123.28, 114.36, 103.61, 54.03, 21.51, -0.12. LC-MS: 501.4 (M). 

1m. White solid. Yield = 50% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) δ 

8.35 (d, J = 7.3 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.69 

(d, J = 8.4 Hz, 2H), 7.39 – 7.30 (m, 1H), 7.23 (d, J = 

8.0 Hz, 2H), 7.11 – 6.98 (m, 1H), 4.64 (s, 2H), 4.17 (s, 2H), 2.37 (s, 3H), 

0.27 (s, 8H). 13C-NMR (100 MHz, CDCl3)
 δ 145.57, 144.54, 139.61, 133.71, 

131.03, 129.85, 128.52, 127.12, 124.61, 123.30, 114.33, 111.37, 104.37, 

63.09, 53.70, 21.51, -0.19. LC-MS: 412.0 (M+), 434.0 (M+Na+). 

4.4.9 General procedure for the synthesis of 1k 

 

To a solution of 7m (0.3 mmol) in anhydrous THF (2 mL) under nitrogen 

anhydrous TEA (2 mL), 1-hexyne (1.5 eq), (PPh3)2PdCl2 (0.08 eq) and CuI 

(0.08 eq) were added.  The mixture was stirring at room temperature and the 

reaction progress was monitored using TLC. After the consumption of 

starting material, the reaction mixture was extracted with ethyl acetate and 

water.  The organic layers were combined and dried with Na2SO4. After 
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filtration, the solvent was removed under reduced pressure. The residue was 

purified by flash chromatography on silica gel. 

1k. Yellow oil. Yield = 44% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3) δ 

8.27 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.69 

(d, J = 8.3 Hz, 2H), 7.35 – 7.27 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 7.03 (t, J 

= 7.7, 1H), 4.61 (s, 2H), 4.13 (s, 2H), 2.51 (t, J = 7.1 Hz, 2H), 2.37 (s, 3H), 

1.66 – 1.57 (m, 2H), 1.53 – 1.44 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). 13C-NMR 

(100 MHz, CDCl3) δ 145.09, 144.38, 136.42, 133.71, 130.40, 129.76, 

128.82, 127.06, 123.96, 123.26, 114.16, 112.19, 100.07, 78.15, 63.32, 53.52, 

30.61, 26.73, 22.01, 21.45, 19.53, 13.49. LC-MS: 396.2 (M+ H+). Anal. Calc. 

for (C23H25NO3S: 395.16): C, 69.85; H, 6.37; N, 3,54; found: C, 69.71, H, 

6.49; N, 3.65. 

4.4.10 General procedure for the synthesis of 1a’ 

 

To a solution of compound 1a (0.1 mmol, 53 mg) in ACN (3 mL) at room 

temperature, CsF (1 eq, 0.1 mmol, 15 mg) was added then the mixture was 

stirred until TLC analysis indicates complete consumption of starting 

material. Subsequently, water (10 mL) was added and the aqueous layer was 

extracted with AcOEt (3 x 10 mL). The combined organic layers were dried 

with Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by column chromatography on silica gel to give the 

desired product. 
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1a’. Brown oil. Yield = 85% (not optimized), 

(cHex:EtOAc = 9:1). 1H-NMR (400 MHz, CDCl3)
 δ 

8.36 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 

7.69 (d, J = 8.2 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 

7.22 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 7.7 Hz, 1H), 4.69 (s, 2H), 4.26 (s, 2H), 

3.50 (s, 1H), 2.37 (s, 3H), 0.93 (s, 9H), 0.11 (s, 6H). 13C-NMR (100 MHz, 

CDCl3) δ 145.28, 144.42, 140.35, 133.81, 130.87, 129.80, 128.77, 127.15, 

124.67, 123.40, 114.32, 110.70, 85.34, 82.62, 64.73, 54.02, 25.90, 21.51, 

18.34, -5.30. LC-MS: 454.4 (M+H+), 476.4 (M+Na+). 

4.4.11 General procedure for the synthesis of 1a’’ 

 

To a solution of compound 1m (0.1 mmol, 41 mg) in ACN (3 mL) at room 

temperature, CsF (1eq, 0.1 mmol, 15 mg) was added then the mixture was 

stirred until TLC analysis indicates complete consumption of starting 

material. Subsequently, water (10 mL) was added and the aqueous layer was 

extracted with AcOEt (3 x 10 mL). The combined organic layers were dried 

with Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by column chromatography on silica gel to give the 

desired product. 

1a’’. Brown waxy solid. Yield = 71%, (cHex:EtOAc 

= 9:1). 1H-NMR (400 MHz, CDCl3)
 δ 8.34 (d, J = 7.4 

Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.70 (d, J = 8.3 Hz, 

2H), 7.39 – 7.31 (m, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.10 – 7.02 (m, 1H), 4.65 

(s, 2H), 4.20 (s, 2H), 3.56 (s, 1H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3) 
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δ 145.46, 144.52, 140.25, 133.64, 131.16, 129.82, 128.14, 127.07, 124.58, 

123.43, 114.29, 110.08, 85.98, 81.51, 63.26, 53.61, 21.47. LC-MS: 340.2 

(M+H+), 362.2 (M+Na+). Anal. Calc. for (C19H17NO3S: 339.09): C, 67.24; 

H, 5.05; N, 4,13; found: C, 67.16, H, 5.11; N, 4.09. 

4.4.12 General procedure for the one-pot synthesis of allenyl-

indoles 2 

 

To a solution of 1 (0.05 mmol) in THF (800 µL), a solution of TBAF·3H2O 

in THF (0.05 M, 0.2 eq) was added. The mixture was stirred at room 

temperature and the reaction progress was monitored using TLC. After the 

consumption of starting material, the reaction mixture was extracted with 

ethyl acetate and NH4Cl (sat.).  The organic layers were combined and dried 

with Na2SO4. After filtration, the solvent was removed under reduced 

pressure. The residue was purified by flash chromatography on silica gel. 

2a. Yellow waxy solid. (cHex:EtOAc = 8:2). 1H-NMR (400 

MHz, CDCl3)
 δ 7.99 (t, J = 7.3 Hz, 2H), 7.77 (d, J = 8.4 Hz, 

2H), 7.65 (s, 1H), 7.37 – 7.31 (m, 1H), 7.26 – 7.17 (m, 3H), 

5.35 (td, J = 2.5, 0.9 Hz, 2H), 4.53 (t, J = 2.5 Hz, 2H), 2.33 

(s, 3H), 1.81 (s, 1H). 13C-NMR (100 MHz, CDCl3) δ 208.41, 144.99, 135.34, 

135.17, 130.01, 129.89, 127.81, 126.85, 125.02, 123.29, 122.69, 120.89, 

113.59, 99.32, 80.59, 63.03, 21.54. LC-MS: 340.0 (M+H+), 357.0 (M + H2O), 

362.0 (M+Na+). Anal. Calc. for (C19H17NO3S: 339.09): C, 67.24; H, 5.05; N, 

4,13; found: C, 67.01, H, 5.00; N, 4.01. 
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2b. Pale yellow solid. Yield = 84%, (cHex:EtOAc = 8:2). 

Mp = 132-134 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.93 

(dd, J = 9.0, 4.5 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.69 

(s, 1H), 7.64 (dd, J = 9.4, 2.4 Hz, 1H), 7.23 (d, J = 8.0 Hz, 

2H), 7.06 (td, J = 9.0, 2.6 Hz, 1H), 5.36 (s, 2H), 4.52 (s, 2H), 2.35 (s, 3H). 

13C-NMR (100 MHz, CDCl3) δ 208.19, 160.67, 158.29, 145.24, 145.19, 

134.80, 129.97, 129.93, 126.79, 126.77, 124.27, 114.60, 114.50, 113.14, 

113.07, 112.88, 112.82, 106.81, 106.56, 99.00, 80.84, 63.06, 21.54.LC-MS: 

358.0 (M + H+), 375.0 (M + H2O), 380.0 (M + K+). Anal. Calc. for 

(C19H16FNO3S: 357.09): C, 63.85; H, 4.51; N, 3,92; found: C, 63.75, H, 4.66; 

N, 3.86. 

2c. White solid. Yield = 93%, (cHex:EtOAc = 8:2). Mp 

= 108-110 ºC. 1H-NMR (400 MHz, CDCl3)
 δ 7.98 (t, J = 

2.4 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.75 (dd, J = 8.4, 

3.6 Hz, 2H), 7.61 (s, 1H), 7.23 (d, J = 7.9 Hz, 3H), 7.20 

– 7.14 (m, 1H), 5.32 (t, J = 2.4 Hz, 2H), 4.49 (t, J = 2.4 Hz, 2H), 2.34 (s, 

3H). 13C-NMR (100 MHz, CDCl3) δ 208.40, 145.35, 135.74, 134.85, 131.10, 

130.07, 127.60, 126.86, 123.95, 123.13, 121.72, 115.04, 113.71, 99.00, 

80.70, 63.09, 21.60. LC-MS: 374.2 (M + H+), 391.2 (M + H2O), 412.2 (M + 

K+). Anal. Calc. for (C19H16ClNO3S: 373.05): C, 61.04; H, 4.31; N, 3,75; 

found: C, 61.20, H, 4.38; N, 3.66. 

2d. Yellow solid. Yield = 38%, (cHex:EtOAc = 8:2). 

Mp = 137-139 ºC 1H-NMR (400 MHz, CDCl3) δ 8.38 – 

8.20 (m, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.6 

Hz, 3H), 7.57 (d, J = 8.8 Hz, 1H), 7.27 – 7.24 (m, 2H), 

5.40 (td, J = 2.4, 1.0 Hz, 2H), 4.54 (t, J = 2.3 Hz, 2H), 2.36 (s, 3H). 13C-NMR 

(100 MHz, CDCl3) δ 208.49, 145.53, 136.67, 134.73, 130.08, 128.87, 

126.86, 124.21, 123.12, 121.72, 118.51, 118.47, 115.32, 113.81, 98.71, 

80.79, 63.22, 21.57.  LC-MS: 408.0 (M + H+), 425.0 (M + H2O). Anal. Calc. 
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for (C20H16F3NO3S: 407.08): C, 58.96; H, 3.96; N, 3.44; found: C, 58.81, H, 

3.85; N, 3.29. 

2e. Yellow solid. Yield = 86%, (cHex:EtOAc = 85:15). 

Mp = 95-97 ºC.  1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J 

= 8.5 Hz, 1H), 7.75 (d, J = 8.2 Hz, 3H), 7.59 (s, 1H), 7.21 

(d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.5 Hz, 1H), 5.36 (t, J = 

2.3 Hz, 2H), 4.52 (t, J = 2.3 Hz, 2H), 2.41 (s, 3H), 2.34 (s, 3H). 13CNMR 

(100 MHz, CDCl3) δ 208.24, 144.88, 135.09, 133.55, 132.99, 129.84, 

126.80, 126.40, 124.68, 122.77, 120.69, 119.39, 113.27, 99.36, 80.69, 62.97, 

21.54, 21.50. LC-MS: 371.4 (M + H2O). Anal. Calc. for (C20H19NO3S: 

353.11): C, 67.97; H, 5.42; N, 3.96; found: C, 67.81, H, 5.31; N, 3.80. 

2f. Pale yellow solid. Yield = 68%. (cHex:EtOAc = 85:15). 

Mp = 99-101 °C. 1H-NMR (400 MHz, CDCl3) δ 7.86 – 7.81 

(m, 1H), 7.78 (t, J = 8.5 Hz, 2H), 7.54 (s, 1H), 7.26 – 7.16 

(m, 3H), 7.02 – 6.96 (m, 1H), 5.05 (t, J = 3.1 Hz, 2H), 4.33 

(t, J = 3.1 Hz, 2H), 2.58 (s, 2H), 2.35 (s, 3H). 13C-NMR (100 MHz, CDCl3) 

δ 207.00, 144.96, 135.12, 131.63, 129.90, 129.87, 126.93, 126.86, 125.54, 

125.27, 124.77, 124.44, 111.62, 111.23, 78.17, 64.41, 21.56, 20.09. LC-MS: 

371.2 (M + H2O). Anal. Calc. for (C20H19NO3S: 353.11): C, 67.97; H, 5.42; 

N, 3.96; found: C, 67.90, H, 5.32; N, 3.66. 

2g. Brown solid. Yield = 85%. (cHex:EtOAc = 85:15). Mp 

= 98-100 ºC 1H-NMR (400 MHz, CDCl3) δ. 7.78 (s, 1H), 

7.64 (s, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.24 – 7.16 (m, 2H), 

6.88 (s, 1H), 5.38 (t, J = 2.4 Hz, 2H), 4.54 (t, J = 2.4 Hz, 

2H), 2.51 (s, 3H), 2.37 (s, 3H), 2.35 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 

208.10, 144.53, 136.63, 133.38, 130.13, 129.82, 128.37, 126.54, 126.43, 

124.65, 118.40, 116.97, 114.43, 99.18, 80.77, 62.91, 21.66, 21.56, 21.12. 

LC-MS: 385.2 (M + H2O). Anal. Calc. for (C21H21NO3S: 367.12): C, 68.64; 

H, 5.76; N, 3.81; found: C, 68.51, H, 5.64; N, 3.64. 
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2h. Brown waxy solid. Yield = 45% (51% deprotected 

product 2h’’), (cHex:EtOAc = 85:15). 1H-NMR (400 MHz, 

CDCl3) δ 8.21 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 

7.68 (s, 1H), 7.41 – 7.33 (m, 1H), 7.29 – 7.24 (m, 1H), 5.38 

(td, J = 2.5, 1.0 Hz, 2H), 4.55 (s, 2H), 4.05 (s, 3H). 13C-NMR 

(100 MHz, CDCl3) δ 208.46, 128.71, 125.03, 123.04, 121.92, 120.49, 

115.05, 114.10, 99.48, 80.54, 63.05, 53.82. LC-MS: 244.2 (M + H+), 261.2 

(M + H2O). Anal. Calc. for (C14H13NO3: 243.09): C, 69.12; H, 5.39; N, 5.76; 

found: C, 69.30, H, 5.41; N, 5.85. 

2i. Yellow oil. Yield = 70%. (cHex:EtOAc = 9:1). 1H-

NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.4 Hz, 2H), 7.78 

(s, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.46 – 7.28 (m, 6H), 

7.22 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 8.3 Hz, 2H), 5.27 

(s, 2H), 4.59 (s, 2H), 4.49 (s, 2H), 2.31 (s, 3H). 13C-NMR (100 MHz, CDCl3) 

δ 210.29, 144.79, 137.98, 135.27, 135.08, 129.78, 129.25, 128.42, 127.86, 

127.68, 126.80, 124.82, 123.65, 123.20, 120.87, 115.47, 113.59, 95.70, 

78.51, 77.20, 71.43, 29.67, 21.52. LC-MS: 447.4 (M+ + H2O). Anal. Calc. for 

(C26H23NO3S: 429.14): C, 72.70; H, 5.40; N, 3.26; found: C, 72.65, H, 5.28; 

N, 3.15. 

2j. Yellow oil. Yield = 45%, (cHex:EtOAc = 8:2). 1H-

NMR (400 MHz, CDCl3) δ 8.04 – 7.93 (t, 1H), 7.74 (d, 

J = 8.3 Hz, 2H), 7.60 (s, 1H), 7.40 – 7.28 (m, 6H), 7.25 

– 7.16 (m, 3H), 5.31 (s, 2H), 3.90 (s, 2H), 3.69 (s, 2H), 

2.33 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 208.91, 144.91, 135.37, 135.08, 

129.84, 128.43, 128.27, 128.00, 127.05, 126.80, 124.93, 123.23, 122.56, 

121.00, 119.72, 116.51, 113.57, 97.33, 79.87, 71.57, 53.07, 49.93, 21.54. 

LC-MS: 429.4 (M + H+). Anal. Calc. for (C26H24N2O2S: 428.16): C, 72.87; 

H, 5.65; N, 6.54; found: C, 72.75, H, 5.51; N, 6.38. 
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4.4.13 1H-NMR experiment 

 

To a solution of 1a (0.05 mmol, 26 mg) in THF-d8 (500 µL), a solution of 

TBAF·3H2O (30 mol%, 4.7 mg, 0.3 eq) in THF-d8 (200 µL) was added. The 

reaction was monitored by 1H-NMR. 

Table 4.3 Calculation of the relative conversions of product 2a, intermediate 2a’ and 

unknown  compound and starting material 1a, at different reaction times by 1H-NMR 

spectroscopy. 

Reaction time 

(min) 
Conversion (%) 

 2a 2a’ Unknown 1a 

2 49.5 17.3 18.8 14.3 

4 54.5 17.4 19.3 8.7 

6 60.0 15.6 16.5 7.8 

8 64.9 17.2 17.8 n.d. 

10 67.1 16.1 16.8 n.d. 

20 73.8 12.1 14.0 n.d. 

30 78.4 11.0 10.6 n.d. 

     

     

3 hours >98% n.d. n.d. n.d. 

n.d. = not determined  
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Figure 4.16 1H-NMR of compound 1a. 

 

Figure 4.17 1H-NMR 2 minutes after the addition of TBAF solution. 
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Figure 4.18 1H-NMR 4 minutes after the addition of TBAF solution.  

 

Figure 4.19 1H-NMR 6 minutes after the addition of TBAF solution. 
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Figure 4.20 1H-NMR 8 minutes after the addition of TBAF solution. 

 

Figure 4.21 1H-NMR 10 minutes after the addition of TBAF solution. 
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Figure 4.22 1H-NMR 20 minutes after the addition of TBAF solution. 

 

Figure 4.23 1H-NMR 30 minutes after the addition of TBAF solution. 
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Figure 4.24 1H-NMR 3 hours after the addition of TBAF solution. 

 

4.4.14 Procedure for the scrambling reaction 

 

2-Methyl-N-tosylindole was prepared following reported procedures.[40] 

A screw vial was charged with 800 µL of reagent grade THF, 1a (34 mg, 

0.065 mmol), indole 3 (28 mg, 0.098 mmol) and a solution of TBAF in THF 

(10 mg/mL, 330 µL, 20 mol%). The mixture was stirred at room temperature 

and the reaction progress was monitored using TLC. After the consumption 

of starting material, the reaction mixture was extracted with ethyl acetate and 

NH4Cl (sat.). The organic layers were combined and dried with Na2SO4.  
1H-
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NMR of the reaction crude (see below) revealed a complete conversion of 

1a forming a mixture of 2a and 2a’ in 2:1 ratio. Flash chromatographic 

purification allowed the quantitative recovering of unreacted 3. 

 

Figure 4.25 1H-NMR of the scrambling reaction crude. 

4.4.15 Optimization of the catalytic cyclization of 2a to 
dihydrofuran 4a 

 

To a solution of LAuCl (5 mol%) in anhydrous toluene (1 mL), 5 mol% of 

AgX (X = OTf, SbF6, NTf2) was added and the reaction mixture stirred for 

15 min in the dark. Then 2a (0.075 mmol, 25 mg) was added. The reaction 

was allowed to stir for 1 h, then directly charged into a column for the flash 

chromatography purification (cHex:EtOAc = 9:1). 

4a. White waxy solid. 1H-NMR (400 MHz, CDCl3)
 δ 8.03 – 7.99 

(m, 1H), 7.79 – 7.75 (m, 3H), 7.44 (s, 1H), 7.41 – 7.35 (m, 1H), 

7.34 – 7.29 (m, 1H), 7.24 (d, J = 8.0 Hz, 2H), 6.35 (s, 1H), 5.00 

(td, J = 4.6, 2.0 Hz, 2H), 4.89 (td, J = 4.8, 1.7 Hz, 2H), 2.35 (s, 
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3H). 13C-NMR (100 MHz, CDCl3) δ 145.16, 135.33, 134.98, 130.80, 129.93, 

128.66, 126.81, 125.13, 123.71, 123.44, 121.23, 120.75, 115.18, 113.78, 

76.86, 75.84, 21.52. LC-MS: 340.2 (M + H+), 362.0 (M + Na+), 378.2 (M + 

K+). Anal. Calc. for (C19H17NO3S: 339.09): C, 67.24; H, 5.05; N, 4.13; 

found: C, 67.21, H, 5.00; N, 4.25. 

4.4.16 Gold-catalyzed synthesis of the tetrahydrocarbazole 6aa 
through intermolecular cycloaddition of allenyl  indoles and N-
allenyl amides. 

 

To a solution of 4a (0.12 mmol, 40 mg) and allenamide 5a (0.11 mmol, 13 

mg) in dry DCM (1.5 mL) at -20 ºC, [JhonPhosAu(CH3CN)SbF6] (5 mol%) 

was added. The resulting mixture was stirred at this temperature until 

disappearance of the starting reagents was confirmed by TLC analysis. The 

solvent was removed under reduced pressure and the resulting residue 

purified by column chromatography (cHex:EtOAc = 6:4). 

6aa. White waxy solid. Yield = 55%. 1H-NMR (400 

MHz, CDCl3)
 δ 7.79 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 

8.3 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 7.11 (dd, J = 

16.0, 7.9 Hz, 3H), 6.97 (d, J = 7.4 Hz, 1H), 6.26 (s, 

1H), 5.14 (d, J = 2.3 Hz, 1H), 4.60 (ddd, J = 14.1, 3.6, 1.8 Hz, 1H), 4.49 (dd, 

J = 17.0, 8.3 Hz, 1H), 4.44 – 4.32 (m, 2H), 4.26 (td, J = 8.6, 5.2 Hz, 1H), 

4.18 (t, J = 8.0 Hz, 1H), 3.79 (dd, J = 16.9, 8.3 Hz, 1H), 3.46 (q, J = 7.0 Hz, 

1H), 3.01 (dd, J = 10.1, 8.2 Hz, 1H), 2.83 (s, 1H), 2.50 (dd, J = 14.4, 7.6 Hz, 

1H), 2.31 (s, 3H), 1.40 – 1.29 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 

157.19, 144.15, 144.02, 135.31, 134.86, 129.52, 129.18, 128.83, 127.34, 
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126.32, 124.89, 122.78, 122.16, 117.32, 72.63, 68.46, 63.55, 62.45, 46.07, 

41.42, 31.04, 29.65, 21.45, 17.85. LC-MS: 465.2 (M+H+), 503.2 (M+K+). 

4.4.17 Single Crystal X-ray crystallography  

A suitable crystal of 4a was mounted on a goniometer head and cooled to 

100 K in a stream of cold N2 using Bruker Kryoflex low temperature device 

whereas the 2d was mounted on a goniometer head and kept at room 

temperature. The X-ray intensity data for both structures were measured on 

a Bruker SMART Apex II CCD area detector diffractometer.  Cell 

dimensions and the orientation matrix were initially determined from a least-

squares refinement on reflections measured in three sets of 20 exposures, 

collected in three different  regions, and eventually refined against all data. 

A full sphere of reciprocal space was scanned by 0.3  steps.  The software 

SMART was used for collecting frames of data, indexing reflections, and 

determination of lattice parameters.  The collected frames were then 

processed for integration by the SAINT program  and an empirical 

absorption correction was applied using SADABS. The structures were 

solved by direct methods (SIR 2004) and subsequent Fourier syntheses and 

refined by full-matrix least-squares on F2 (SHELXTL), using anisotropic 

thermal parameters for all non-hydrogen atoms. All hydrogen atoms were 

added in calculated positions, included in the final stage of refinement with 

isotropic thermal parameters, U(H) = 1.2 Ueq(C) [U(H) = 1.5 Ueq(C-Me)], 

and allowed to ride on their carrier carbons.  

Crystal data and details of the data collection for 2d and 4a are reported in 

Table 4.4.  
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Table 4.4 Crystal data and structure refinement for 2d and 4a. 

 2d 4a 

Empirical formula C20H16F3NO3S C19H17NO3S 

Formula weight 407.40 339.39 

Temperature/K 293(2) 100(2) 

Crystal system Triclinic Monoclinic   

Space group P1 P 21/n 

a, Å 8.5679(12) 7.8333(1) 

b, Å 12.3701(14) 8.7742(2) 

c, Å 18.181(3) 23.1441(4) 

, ° 83.843(7) 90 

, ° 89.595(12) 95.475(1) 

, ° 80.871(9) 90 

Cell volume, Å3 1891.4(5) 1583.46(5) 

Z 4 4 

ρc, Mg m-3 1.431 1.424 

(Mo-K), mm-1 0.221 0.222 

F(000) 840 712 

Crystal size, mm 0.20 x 0.10 x 0.05 0.30 x 0.20 x 0.10 

 limits, ° 1.677 to 28.604 1.768 to 23.351 

Refl. collected, unique  31491 / 17775 [R(int) = 

0.1039] 

19332 / 2296 [R(int) 

=0.0528] 

Goodness-of-fit-on F2 0.892 1.235 

R1(F)a, wR2(F2) [I > 2(I)]b 0.0738, 0.1707 0.0328, 0.0849 

Largest diff. peak and hole, e. 

Å-3 

0.489, -0.278 0.185, -0.307 
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CCDC deposition number 1531577 1531578 

a R1 = Fo-Fc/Fo.b wR2 = [w(Fo
2-Fc

2)2/w(Fo
2)2]1/2

 where w = 1/[2(Fo
2) + (aP)2+ bP]  where P = (Fo

2 

+ Fc
2)/3. 

 

Figure4.26 ORTEP drawing of one of the conformers of 2d (thermal ellipsoids at the 

30% of the probability level). The alcoholic H atom was not located. 
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Figure 4.27 ORTEP drawing of 4a (thermal ellipsoids are at 50% of the probability 

level).  
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