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Nowadays, the operation of global navigation satellite systems (GNSS) is im-
perative across a multitude of applications worldwide. The increasing reliance on
accurate positioning and timing information has made more serious than ever the
consequences of possible service outages in the satellite navigation systems. Among
others, interference is regarded as the primary threat to their operation. Due the re-
cent proliferation of portable interferers, notably jammers, it has now become com-
mon for GNSS receivers to endure simultaneous attacks from multiple sources of
interference, which are likely spatially distributed and transmit different modula-
tions.
To the best knowledge of the author, the present dissertation is the first publication
to investigate the use of the S-transform (ST) to devise countermeasures to interfer-
ence. The original contributions in this context are mainly:

• the formulation of a complexity-scalable ST implementable in real time as a
bank of filters;

• a method for characterizing and localizing multiple in-car jammers through
interference snapshots that are collected by separate receivers and analysed
with a clever use of the ST;

• a preliminary assessment of novel methods for mitigating generic interference
at the receiver end by means the ST and more computationally efficient vari-
ants of the transform.

These three topics are addressed in Chapters 2, 3, 4, respectively. The content of
Chapter 2 is useful for any sort of application that requires the ST to process non-
stationary signals of unknown characteristics. Besides GNSSs, the countermeasures
to interference proposed are equivalently applicable to protect any direct-sequence
spread spectrum (DS-SS) communication.
The research work described in this doctoral thesis or pursued on related topics
during the three years of doctorate is either published or in preparation in [1–7].
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Chapter 1

Introduction

Global navigation satellite systems (GNSS) deliver precise position and time infor-
mation with global coverage. An ever-growing number of infrastructures and users,
both civilian and military, relies on the operation of these systems. Applications
relying on GNSSs include critical systems that span from the public to the private
domains. Among the other, the accurate and worldwide positioning is an enabler
of autonomous vehicles, which is a ground-breaking and safety-critical technology.
More in general, driven by growing revenues, today and future market of navigation
systems is globally expanding in several segments: location-based services, road,
aviation, rail, maritime, agriculture, surveying, and synchronization. Besides posi-
tioning, timing is gaining more relevance, because modern networks in the telecom-
munications, energy, and finance sub-segments need a precise time reference. The
increasing pervasiveness of GNSSs poses a significant concern about the vulnera-
bilities of these systems. Among them, the susceptibility to interference is arguably
the major threat to their reliability. Awareness on this issue has grown since the
publication of the VOLPE report in [8]. Existing regulations of the International
Telecommunication Unions (ITU) prohibit the intentional broadcast of any unau-
thorized signal over the bands dedicated to aeronautical radio navigation services
(ARNS) and radio navigation satellite services (RNSS). Therein lie the frequencies
allocated to many navigation systems, such as the GPS, GLONASS, and Galielo, in
chronological order. Despite the restricted access to these bandwidths, unautho-
rized transmissions are however occasionally observed by monitoring stations and
proven by temporary and local outages. The daily occurrences of these interference
events around infrastructures have steadily intensified in parallel with the number
of GNSS users, arguably because of the growing privacy concern of the public to-
ward the positioning service. To prevent these behaviours from causing damages
to GNSS-enabled applications, countermeasures against interference have been ex-
tensively studied and documented over the last decades. Their sources may be split
into two categories according to the purposes behind them. The first category en-
compasses unintentional and natural interference, which are caused by transmis-
sions appearing at or near GNSS frequencies. Solar activity often causes powerful
radiation bursts that can disturb large regions of the globe. Solar flares and other
kinds of large-scale disturbances due to space weather increase the density of high-
energy particle in the Earth’s atmosphere, thence producing a sudden increment of
background noise. When uninformed interference is man-made instead, it typically
arises due to malfunctions of equipment designed to transmit in adjacent channels.
Examples are the out-of-band harmonics seldom produced by AM/FM and amateur
radios and TV repeaters. In this category falls also the intrinsic co-channel interfer-
ence caused by the co-existence of other GNSSs as well as radar and augmentation
systems. For instance, the impacts of the Distance Measuring Equipment (DME)
and the Tactical Air Navigation (TACAN) aviation are studied in [9] for the L5/E5A
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bands. Another example discussed in [10] is the development of pseudo-satellites
also known as pseudolites. The second category is that of sources of intentional in-
terference, which is deliberately transmitted to disrupt or mislead the operation of
GNSS receivers or, more rarely, satellites. Therein, spoofing and meaconing repre-
sent the more sophisticated and less common kinds of attack. Spoofers attempt to
deceive a receiver by transmitting counterfeit GNSS signals slightly more power-
ful than the authentic ones. They forge a whole constellation of satellites with the
aim of misleading the computation of the receiver position, velocity, and time (PVT)
with consistency over time. The higher power causes the receiver to lock onto the
false source rather than the true satellite. This kind of attack is effective against the
open service (OS), because pseudo-random noise (PRN) codes are known and the
navigation message is not encrypted. The use of encryption and classified codes
of weekly length still prevents spoofers from threatening the public-regulated ser-
vice (PRS), which is instead not inherently protected from meaconing. Meaconers
carry out delay and re-transmit attacks with the aim of impairing the accuracy at
the receiver end. They are transceivers that re-modulate the GNSS signals received
to temper the inner delays and Doppler frequency shift. Similarly to spoofing, the
counterfeit signals are then radiated to slightly overpower the authentic ones. Gen-
erally, the capability of elaborating fake navigation data and signals in real time is
not trivial and can target one victim at the time. Hence, although the availability of
entry-level software-defined radios (SDR) is changing the game as proven in [11],
devices equipped with spoofing or meaconing functionality are not yet within the
reach of the public. On the contrary, jamming attempts simply consist in brute-force
broadcast of powerful interference, which can be generated with basic hardware and
no specific software. Their goal is to cause the denial of both OS and PRS over a cer-
tain area, which can be accomplished regardless of the number of receivers present.
Interfering with a satellite in space requires the radiation of significant amount of
power through large-size and highly-directive antennas, which are easy to spot and
hard to get. Therefore, the most prevalent and thus dangerous attacks target ter-
restrial receivers. Indeed, since GNSS signals have extremely low power levels (i.e.,
about -160 dBW) once they arrive on the Earth’s surface, they are likely overpowered
by any source of interference in the surroundings. Particularly, the deliberate trans-
mission of signals at or near GNSS frequencies without the desire to cause harm
to the system itself or to manifold receivers is usually referred to as uninformed.
An interesting example of this king are so-called Personal Privacy Devices (PPD) in
[12]. Although their usage is illegal, they are gaining popularity among the public
due to the privacy concerns related to the localization services and their advertised
range of effectiveness is often underestimated: tens of meters instead of hundreds.
This misunderstanding is likely to happen because most of the jammers on the mar-
ket are designed to interfere also with wireless communications (i.e., GSM, UMTS,
LTE, WiFi, etc.) and other tracking systems (e.g., LoJack). These functionalities go
far beyond the protection of user’s own privacy. In order to harm all these sys-
tems at the same time, the devices commercialized are actually arrays of jammers,
each one provided with a separate antenna suitable to jam a certain band. A sam-
ple of these devices are shown in Fig. 1.1. General-purpose jammers as such are
illegal, but they may be purchased online and shipped from countries with loose
regulations. They are typically able of radiating 1 W per channel, the sub-band of
which is tens of megahertz wide and is spanned in a matter of few microseconds. In
the last decade, low-cost and hand-held versions of these devices became more and
more widespread on board of civilian vehicles. This trend has been demonstrated
by fieldworks and accidents. On the one side, stations used for field investigations
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and for augmentation systems have been increasingly observing jamming attempts
across the road network, as documented in [13, 14]. On the other side, outages of
the GNSS operation have also being experienced on a daily basis by critical infras-
tructures located near heavy-traffic highways, such as airports and harbors. In the
following sections, some relevant reports are summarized.

FIGURE 1.1: Sample of jammers for sale online in ascending order of
complexity, power and price (jammers.it).

1.0.1 Relevant Interference Events of Public Record

• In late 2009, the ground-base augmentation system (GBAS) of the Newark Lib-
erty International Airport, United States, was suffering from brief daily breaks
due the uninformed usage of single in-car jammer. This system enhances the
integrity and accuracy of the positions estimated by the GPS constellation in
order to support the approach, landing, and departure of aircrafts and to avoid
congestions in the air traffic. The illegal transmission was originated on a truck
often passing onto the highway nearby, as told in [15]. The driver intended to
block the on-board GPS-based tracking device in order to prevent it from com-
municating to the fleet manager his position and speed. However, this trick
turned out to accidentally harm also other GPS signals in the area, including
those used by air navigation systems. At that time, the device was regularly
sold as a cheap PPD at the cost of about 30 USD. In the GBAS, indeed, all refer-
ence stations have antennas typically located within 100-200 meters from each
other. Therefore, after this episode, a measure for mitigating but not eliminat-
ing the damage due to the daily jamming attempts was to modify the sites and
radiation pattern of the antennas. Also satellite-based augmentation systems
(SBAS) have been experiencing the same issue, like the wide area augmenta-
tion system (WAAS) and the European geostationary navigation overlay sys-
tem (EGNOS). Nevertheless they are more robust to the harming effects of
interference, simply because they can afford the temporary loss of individual
reference stations that are many and widely spread geographically.

• In January 2007, GPS services were disrupted throughout San Diego, Califor-
nia, United States. The naval medical center emergency pagers stopped work-
ing, the harbor trace-management system used for guiding boats failed, the
airport control had to resort to non-GPS backup systems, mobile-phones users

htps://www.jammers.it/
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found themselves out of coverage, and bank customers were refused while
trying to withdraw money. The origin of this inconvenience was attributed to
two military navy ships that were conducting a training exercise in the bay and
jammed radio signals by accident.

• In April 2012, in Kent, England, the police arrested members of a criminal gang
responsible for the theft of some 150 high-value vehicles, using jammers to dis-
able the in-car tracking systems cars.

• In April 2013, North Korea is believed to have broadcast jamming signals that
neutralized GPS navigators on at least 250 flights in South Korea. The transmit
power radiated was estimated to be about 50 W. The interference was enough
powerful to cause outages in the mobile network of Seoul, which is tens of
kilometers away from the border.

• In November 2013, in Australia, a Melbourne newspaper reported that more
than 100 cabs in the city were suspected of using GPS jammers in order to fool
the fleet management into giving them jobs, even though they were not in the
area. The devices were discovered as they were also obscuring the location of
nearby GPS-equipped emergency vehicles, like police cars, ambulances, and
fire trucks.

(From magazine articles in Inside GNSS and GPS World)

1.0.2 Efforts against GNSS Interference in Europe

Completed in March 2012 and run until October 2013, the DETECTOR project was
supported by European Commission funding through the European GNSS Agency
(GSA) and motivated by the need to “fingerprint” interference threats to GNSS-
based road applications, with focus on jamming. More information are provided
within the deliverable in [16] or may be found at gnss-detector.eu. The consortium
carrying out the project included the University of Bologna for research of interfer-
ence countermeasures, and NSL as technology developer. An initial investigation
of interference attempts was carried out using datasets recorded from a network of
over 100 roadside monitoring stations in the United Kingdom and Ireland. In these
sites, many potential interference events in terms of temporary and unexpected large
observations errors were detected by comparing the estimated position against the
known reference coordinates as well as by recognizing drops in the power levels
received from multiple satellite at the same time. For instance, the preliminary anal-
ysis of data collected over two days at the site close to the London identified more
than 20 separate attacks with a variety of stationary and non-stationary signatures,
hence providing preliminary evidence of the spread use of jammers in the road net-
work. The ultimate task of these probes is to continuously monitor the spectrum
and build a database of all interference events on a back-end server. The adop-
tion of software receivers has made possible to autonomously characterize jamming
waveforms at the digital sample level in order differentiate among unintentional and
different kinds of intentional interference sources directly at the target sites. An evo-
lution of the working prototype of the probe is currently commercialized by Spirent
and NSL: the GSS200D depicted in Fig. 1.2. This device is meant to report and ana-
lyze the interference activity at site of interest over multiple GNSS bands.

http://www.insidegnss.com/
http://gpsworld.com/
http://www.gnss-detector.eu/
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FIGURE 1.2: GSS200D interference detector by Spirent
(spirent.com/Products/GSS200D-Detector).

Running between 2008 and 2014, the GAARDIAN earlier and the SENTINEL later
were research programs part-funded by the United Kingdom government within a
collaboration of universities and institutions led by Chronos Technology. The ob-
jective was investigating the vulnerability to interference of a number of mission-
critical and safety-critical services relying on GNSS, examining the growing use of
low-cost jammers, and creating a nationwide system to provide intelligence for law
enforcement actions against their usage. In other words, the aim was prove the tech-
nology is ready to tackle jamming attempts but also to prove the threat, thereby
validating the market as well as the technical countermeasures. For this reason, a
mesh network of probes known as Signal Sentry 1000 was deployed to detect, mea-
sure, and geolocate any interference onto the GNSS bands, discriminating between
space weather effects and intentional attacks. The reports produced by this network
demonstrated the worsening of the jamming phenomenon: some probes detected
5 to 10 events per day with increasing trend, while more and more powerful de-
vices were recorded as their average ranges considerably grew over the measure-
ment campaign. Moreover, the project undertook a survey to determine the extent
of the market of GPS jammers on sale over the Internet. Over 50 websites were
found actively selling these illegal devices, which were then purchased to assess
their specifications and to test GPS receivers. The preliminary conclusions disclosed
in [17] highlight that any low-cost jammer (i.e. on average 50 USD) within 200 meters
could compromise any GNSS-based application in absence of countermeasures. In-
deed, whereas GPS was the only system under threat at the time of the Volpe report
in [8], by 2014 all frequencies allocated to GNSSs became under attack. Since 2013,
the same partnership between industry and academia worked on a third project for
automatic jamming recognition. The latest news in May 2015 regard the demonstra-
tion of a proof-of-concept unit, which triggers a camera whenever an in-car jammer
is detected for the vehicle passing in front of the lens, and transfers a photo to the
central server accessible to police officers.
Funded under Horizon 2020 by the European GSA, STRIKE3 is an ongoing project
for the development of international standards in the area of GNSS threat monitor-
ing and reporting, and receiver testing. One the one hand, standardized formats
are necessary for the operation of a worldwide GNSS interference monitoring net-
work, which captures and stores all the events recorded by using different equip-
ment and sensors within a common shared database. After capturing, the data of
interference events appearing all over the world can be used to test GNSS receivers
and enhance their robustness. The ultimate goal is to provide the common technical
ground for police forces, highways authorities, toll operators, ports authorities and
governmental organizations to create an international task-force in order to discour-
age the criminal use of jammers and contain the damages. More information are

https://www.spirent.com/Products/GSS200D-Detector
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available at aic-aachen.org/strike3.

1.0.3 Focus of the Present Dissertation

Jamming differs from meaconing and spoofing because of the simplicity and the ef-
fectiveness in conducting these kinds of attacks. This fact makes jammers arguably
the main threat to systems vulnerable to interference, such as GNSSs, and it also ex-
plains their massive availability on the black market at low retail prices. Nowadays,
the extent of the proliferation of portable and so movable jammers has increased the
danger of undergoing attacks from many sources of interference at the same time.
Since the powerful interference generated by jamming is by nature exposed to the
victim receivers, a plethora of detection mechanisms have been investigated in the
literature and implemented into several commercial receivers for various technolo-
gies, from cellular to satellite communications. In other words, flagging a jamming
attempt is a functionality well-consolidated from the theoretical and practical stand-
points in both academia and industry. Instead, taking active measures to neutralize
the detected attackers remains an open issue. Therefore, in the context of coun-
termeasures to interference, active research efforts have now incremented towards
the provision of cooperative monitoring systems capable of localizing multiple jam-
mers as well as add-ons to receivers for mitigating simultaneous jamming wave-
forms. Both these problems are the subject of the present doctoral thesis, which
explores signal processing solutions that could be implemented without expensive
and bulky antenna systems. As far as GNSSs are concerned, it is worth mentioning
that research lines parallel to the topics of this dissertation focus on backup systems
inherently robust to interference and outages. Alternative positioning, navigation,
and timing (APNT) systems and multi-sensor fusion are two prominent examples in
this area.
Each chapter is introduced with the relative state of the art, stressing the limitations
of the existing methods. Chapter 2 introduces the reader to consolidated and in-
novative mathematical notions necessary to understand the countermeasures to in-
terference presented afterwards. Chapters 3 and 4 deal with the localization and the
mitigation of multiple jammer, respectively. The intent is to demonstrate the promise
of time-frequency (TF) analysis in neutralizing the presence of many civil jammers,
which threat the operation of direct-sequence spread spectrum (DS-SS) and GNSS
receivers.

http://www.aic-aachen.org/strike3/index.php
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Chapter 2

Time-Frequency Analysis

The scientific literature includes a large variety of mathematical tools dedicated to
the analysis of signals in a transformed time-frequency (TF) domain. The ST pro-
vides a linear TF representation that identifies both the amplitude and the phase of
the components that are otherwise blended in the Fourier spectrum. As opposed
to those provided with other transform, the representations at the output of the ST
can have consistent TF resolution regardless of the inputs, thanks to the use of mul-
tiple analysis windows. Such a capability, however, comes at an excessive price in
terms of complexity, which has limited the potential utility of the ST to a few applica-
tions mainly in physics and biomedicine. Generally speaking, the ST can be used for
post-processing relatively short amount of data offline. As the dataset size increases,
though, the amount of processing power necessary to maintain the same compu-
tational time becomes rapidly prohibitive. For this reason, scientists and engineers
are usually forced to abandon the ST in favour of the short-time Fourier transform
(STFT), which relaxes the computational requirements but is intrinsically limited in
terms of TF resolution due to the adoption of a single window. In particular, the
STFT is the standard tool for real-time applications, including methods for interfer-
ence mitigation and localization.
In order to extend the utility of the ST, the author of the dissertation contributed to
the development of a novel mathematical framework for the forward and inverse
computations of a ST that is scalable in terms of complexity and, consequently, po-
tentially suitable to real-time execution. To this regard, we have formulated a new
and generalized TF sampling scheme with scalable redundancy both in time and
frequency. Contrary to precedent non-redundant (i.e., one-to-one) “fast” sampling
schemes for the ST, ours provides an arbitrary degree of flexibility to trade compu-
tational efficiency for accuracy, or vice versa. As we prove with a case study, this
freedom is fundamental when the TF representation is filtered to modify the sig-
nal spectral content over time. In the following sections, a formulation of the ST
as a bank of filters is firstly presented by analogy with the STFT. Secondly, a gener-
alized sampling for re-scaling the amount of redundancy embedded into the ST is
devised within the novel framework in order to reduce the complexity of the filter-
bank architecture as needed. The ultimate goal is to design a practical and flexible
tool, which is able of analyzing, filtering, and synthesizing non-stationary signal and
suitable to real-time processing.
In anticipation of the next sections, the following list is an overview of the original
contributions that may be found in more detail throughout the chapter:

• a comprehensive analogy between ST and STFT, which made possible the mi-
gration of some concepts from one transform to the other;

• the convenient interpretation of the discrete ST as a bank of parallel digital pro-
cessing chains, each of which has a down-converter and a lowpass Gaussian
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filter having bandwidth progressive with respect to the modulation frequency;

• a discussion about the potential to undersample the redundant TF representa-
tion of the ST;

• a discussion about the impact of the side effects of the progressive size of the
windows of the ST;

• the explicit formulation of the constraints that implicitly underlie the inver-
sions of the ST, which are then useful to scale down the complexity of the
transform without losing information in the process;

• the addition of a simple correction in the discrete ST definition in order to grant
the previously missing “neutrality” of the transform with respect to the time
and frequency versions of the forward computation;

• direct and indirect procedures for reconstructing a generic waveform through
the instantaneous frequency estimation based on the ST, as an alternative to
the inversion for mono-component signals;

• the formulation of the complexity-scalable architecture of the ST based on a
generalized TF sampling scheme, which improves on the existing non-redundant
schemes in terms of flexibility and which was the insight driving of the entire
work done on the topic;

• the formulation of an “octave reverse” that specifically inverts the minimally-
sampled ST accounting for a phase correction, which was missing in precedent
papers;

• the study of a case of an exemplary TF filter, where the flexibility of our scheme
turns out to be crucial in achieving a desired compromise between the compu-
tational efficiency of the input analysis and the accuracy of the output synthe-
sized from the filtered TF representation.

All in all, the concepts explored in this chapter are important to understand the nov-
elty and the effectiveness of methods for interference mitigation and localization
proposed in Chapter 3 and 4, where the use of the ST is made for the first time to
overcome the issues of the other approaches in the state-of-the-art (e.g., based on
the STFT). Most of all, any practical hardware or software implementation of these
methods inside GNSS receivers or (cloud-computing) servers could lie on the foun-
dations of the complexity-scalable architecture formulated here, by trading some
accuracy to execute any ST-enabled algorithm in a timely manner. Nearly real-time
processing through the ST is now more easily within the reach, depending on the
computational resources at disposal and the dimensions of the filter-bank architec-
ture. Within the mathematical framework described, the scalability of the ST could
be used to the benefit of a number of scientific applications of any field, which were
previously obliged to adopt the STFT for analysing, filtering, or synthesizing non-
stationary signals in a reasonable time.

2.1 State of the Art

The spectral analysis of signals is a crucial task in countless scientific applications.
The conventional Fourier transform (FT) decomposes a stationary signal into its in-
dividual frequency components, but it is unsuitable to represent dynamic spectral



2.1. State of the Art 9

contents. The need for properly analyzing non-stationary signals has motivated the
development of transforms over two-dimensional domains. Defined as such, they
can catch both the temporal and spectral variations of the signal components. This
field is referred to as TF analysis. Given the extension of the topic, hereinafter we
briefly recall only on the most conventional alternatives to the ST. For a comprehen-
sive review of the literature, the reader may refer to [18, 19] and the references cited
therein. Among the manifold representations studied throughout the last decades,
the STFT is certainly one of the most popular ones, both in theory and practice.
Together with the ST and others variants of the FT, it may be related to the gen-
eral Fourier-family transform (GFT) defined in [20]. This family encompasses trans-
forms that are linear and constructed by using the products of windows and sinu-
soidal kernels as basis functions. The simplest member is obviously the FT, where
the window is just a unitary coefficient. On top of this transform, various strate-
gies of windowing allow us to determine the timings behind the amplitudes and the
phases of dynamic spectra, but they also impose a trade-off between temporal and
spectral resolutions in the TF representation. As explained in [21], such a trade-off is
an inevitable consequence of the uncertainty principle of Heisenberg, which states
the physical impossibility of simultaneously observing quantities that are comple-
mentary by nature, like time and frequency, with the same degree of precision. For
instance, the STFT analyzes a signal by sliding a window to capture local changes
in the spectrum with short terms of fixed resolution, as explained in more detail in
[22]. Therefore, the resultant representation is conditioned by the choice of the single
analysis window, which sets a constant trade-off between the temporal resolution at
the slow frequencies (near the origin) and the spectral resolution at the fast frequen-
cies (closer to the filter cut-off frequency). The ST may be regarded as the extension
of the STFT to multi-resolution analysis, because it employs frequency-dependent
windows. In the original formulation of [23], these windows are Gaussian functions
with standard deviation directly proportional to the frequency. Thanks to them,
the ST improves on the STFT by achieving a progressive trade-off in the TF resolu-
tion. Although the Gaussianity has the convenient property of minimizing the time-
bandwidth product, which is lower bounded by the uncertainty principle, there are
actually many functions that may be adopted for windowing. Their various impacts
on the identification of harmonics is studied in [24]. Alternatively to the GFT, other
popular TF representations are based on the wavelet transform (WT) of [25] and the
Cohen’s class of bilinear TF distributions, of which the Wigner distribution in [26]
is a well-known member. In principle, the WT decomposes a signal into a set of
self-similar series of dilations and translations of a mother wavelet. Similarly to the
ST, it can locate the amplitude of the global spectrum with progressive resolution.
However, it cannot provide the globally-referenced phase (i.e., referred to the time in-
stant zero) that is instead retained by the GFT. In this context, a comparison between
the ST and the WT is made in [23]. As far as the extensive Cohen’s class of TF dis-
tributions reviewed in [27] is concerned, the instantaneous auto-correlation function
(ACF) of the signal is used to analyze the respective time-varying power spectra in
the TF plane. Because of the quadratic nature of these distributions, the dynamic
spectra are represented with superior resolution that is not subject to the aforemen-
tioned trade-off. Nevertheless, the representations suffer from the presence of cross
terms, which are nothing but artifacts produced by the interactions between the TF
components of the signal that enter twice the ACF. The presence of these terms could
obscure or mislead the interpretation of the signal characteristics. For this reason,
bilinear distributions are not good candidates for the analysis of multi-component
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signals, if no a-priori knowledge is available about the individual incoming wave-
forms. A comparison between TF representations is provided in Fig. 2.1, where the
ST clearly benefits from the progressive trade-off with good average resolution and
no cross terms.

(A) Amplitude of the STFT. (B) Wigner-Ville distribution (WVD).

(C) Amplitude of the ST.

FIGURE 2.1: Example in [23] for the TF representation of the superim-
position of two crossing linear chirps and two high-frequency bursts.

Among the mathematical tools in the realm of TF analysis, the ST uniquely com-
bines linearity and multi-resolution properties to locate both the amplitude and the
globally-referenced phase of the signal in the TF domain. Although these appealing
features have shown promise in various fields, such as in [3, 28–31], just to name a
few, some issues related to the ST are still open for research. The main issue is the
demanding requirements in terms of processing power and storage space, which
hinder the feasibility of the timely computation of this TF representation with little
computational resources. This aspect is especially critical when latency constraints
should be fulfilled. Consequently, the complexity has restrained the field of applica-
tion of the the original transform to the post-processing of relatively short datasets,
while real-time applications usually resort to standard versions of the STFT or to the
WT. Motivated by the potential utility of the ST in emerging applications, several
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attempts have been proposed to alleviate its computational and storage burdens. In
this context, a discrete orthonormal ST (DOST) and the analogous fast ST (FST) are
proposed in [32] and [20], respectively, to address the issue of complexity. In par-
ticular, the FST makes use of Gaussian windows that are separate and contiguous
in frequency according to a dyadic scale and truncated in time with durations sized
accordingly. The intent of such a minimal sampling scheme is to design a one-to-
one representation free from redundant information. Both the DOST and the FST
accomplish this task and thus minimize the complexity of this transform. Although
they are both coherent with the progressive TF resolution underlying the intrinsic
TF trade-off, they might also hide meaningful characteristics of the signal analyzed
that could be exposed with little more redundancy. Another limitation is that one-
to-one TF representations are not suitable to be filtered with accuracy and without
introducing excessive distortion. In other words, the TF filters result poorly selec-
tive and the time-domain signals synthesized out of them are extremely distorted.
This downside of the DOST/FST was likewise anticipated for the non-redundant
STFT in [33] and we will later evaluate its effect with an example application. Be-
cause of this downside, other signal-specific strategies may be preferable when the
complexity has to be reduced. For example in order to characterize the disturbances
affecting power lines, a simple one-dimensional sampling scheme is used in [34] to
compute the ST only for the fundamental frequency and its harmonics. Equivalently,
a novel method for interference rejection is described in [3] and Chapter 4: the anal-
ysis based on the ST is restricted to the sole signal components that concentrate most
of the incoming energy spectral density. Both these works aim at speeding up the
computation of the transform by selectively processing the portions of the TF rep-
resentation with noticeable energy. However, by doing so, they save computations
by an extent that depends on the signal itself and cannot be bounded a priori. In
other words, the complexity reduction is not guaranteed. Besides, a second issue
lies in the invertibility of the discrete ST. In more detail, two approaches have been
proposed in the literature to invert the continuous ST; one is referred to as the fre-
quency inverse (FI) in [23] and is exact, whereas the other one is known as the time
inverse (TI) in [35] and provides an approximation, which is proven in [36]. Once
applied to finite-duration and discrete-time samples, the previous inverses are not
neutral. In fact, they produce artifacts and their efficiency change, depending on
how the forward transform is implemented in the first place. This troublesome as-
pect is discussed also in [37] as well as in the next sections.
To the best knowledge of the authors of [6], the derivation of a flexible architecture of
the ST in terms of complexity is an original contribution to the state of the art and it
is particularly useful for real-time applications. The conclusions of this work led to
the draft of a journal paper that is currently submitted for publication. Therein, our
goal is to retain the unique and advantageous features of this transform with con-
trollable computational efficiency. First of all, we devise the ST as a bank of filters by
porting the knowledge about the STFT to this more general context. The extension
is straightforward and turns out to be a necessary step in deepen the understanding
about other relevant notions of the ST, such as the neutrality with respect to the for-
ward computation. This perspective also allows us to define the necessary and suffi-
cient conditions for the exact signal recovery, either through the FI or the TI. Further-
more, it lays down the foundations for real-time implementation of the transform.
The primary question in this respect is how to efficiently sample the TF plane un-
derlying the original and fully-redundant ST. The answer is a complexity-scalable
transform that produces the one-to-one dyadic scheme as a special variants. The
amount of redundancy embedded into the TF representation is re-sizable, so that
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the analysis is performed with an arbitrary trade-off between complexity and accu-
racy. The secondary question is how to retrieve back the signal from the sampled
representation without losses of information and as accurately as possible. Recon-
structing a sequence of samples is possible either by inverting the transform or by in-
ferring the signal amplitude and phase from its instantaneous frequency (IF), which
is estimated from the magnitude peaks in the ST. Finally, the combination of the
scalable filter-bank architecture with a reconstruction based on inversion/estimation
provides a complete process to analyze, modify, and synthesize non-stationary sig-
nals. In particular, the flexible sampling scheme is validated in case study, which
evaluates the effectiveness of TF filtering against the corresponding computational
complexity.

2.2 The S-Transform as a Bank of Filters

For the sake of practicality, we shall restrict ourselves to discrete time series. In this
context, a filter-bank interpretation of the discrete ST is derived from that of the
STFT, which is briefly recalled from [38]. The presented architecture of the ST has
the potential to target tight delay constraints, while overcoming the limitations of
the STFT.

2.2.1 Short-Time Fourier Transform

Let us denote as x[n] a complex-valued time series sampled at a rate fx and assume
an even number N of samples. The discrete STFT of x[n] is defined by

STFTx

( n
fx

,
p
Fx

)
= STFTx[n, p] =

N−1

∑
m=0

x[m]w[n−m]e−j 2π
N pm (2.1)

for n = 0, 1, ..., N − 1 and p = −N/2, 1, ..., N/2− 1, where n and p denote the time
and the frequency indices, respectively, fx and Fx are the respective sampling rates
in the time and frequency domains, and w[n] is the analysis window. Eq. 2.1 defines
a square matrix of order N, the elements of which are TF components sampled every
time period ∆t = 1/ fx and frequency step ∆ f = 1/Fx = fx/N. The window is a
discrete and non-zero function of length Nw, and assumed to be real and symmetric.
A short-time section of x[n] at the time index n0 is defined as

xn0 [n] = x[n]w[n0 − n] (2.2)

that is the product of x[n] and the window time-reversed, and time-shifted by n0
samples. By fixing the time index to n0, the summation in Eq. 2.1 may be expressed
as the discrete FT (DFT) of xn0 [n]:

STFTx[n0, p] = DFTn{xn0 [n]} =
N−1

∑
m=0

xn0 [m]e−j 2π
N pm. (2.3)

Therefore, the transform is computed by performing the DFT for a set of N over-
lapping short-time sections, which are obtained by sliding the window sample-by-
sample over the signal analyzed. Equivalently, by fixing the frequency index to p0,
the summation in Eq. 2.1 may be expressed as the circular convolution of w[n] and
the signal that is heterodyned by frequency-shifting x[n] from the digital frequency
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p0/N to zero:
STFTx[n, p0] =

(
x[n]e−j 2π

N p0n)~ w[n]. (2.4)

The complex exponential modulator performs a frequency down-conversion, whereas
the window acts as the impulse response of a prototype lowpass filter. The combi-
nation of these two operations is the same as bandpass filtering the input signal.
Hence, the whole STFT is carried out through a bank of N parallel channels splitting
the Fourier analysis into overlapping sub-bands, which are equally spaced about the
unit circle.
Although the DFT and the filtering formulations of the STFT are theoretically equiv-
alent, they practically differ in their implementations. For instance, a fast FT (FFT)
block in Eq. 2.3 might replace the need for a convolver, which would be instead re-
alized as a finite impulse response (FIR) filter in Eq. 2.4. These two implementations
correspond to two different choices in terms of latency and complexity. On the one
hand, the FFT block has to buffer the incoming samples, before efficiently process-
ing them. The additional latency between these block-by-block computations might
prevent real-time applications from being feasible for large blocks of samples. On
the other hand, the FIR filter outputs one sample per unit time, as soon as the in-
put signal propagates through the tapped delay line, hence after a certain transient
response. However, if a large number of taps is required, the poor computational
efficiency of a direct-form FIR filter might be prohibitive. Hybrid strategies trade
computation time for lower requirements, such as that in [39]. On the contrary, the
architecture proposed in what follows does not compromise on latency: we analyze
the signal with high-speed parallelism through a bank of digital filters, the feasibility
of which is so a matter of complexity.

2.2.2 S-Transform

Following the formalism in [20], the discrete GFT of x[n] may be written as

GFTx[n, p] =
N−1

∑
m=0

x[m]w[n−m, v]e−j 2π
N pm (2.5)

where w[n, v] consists in a set of N windows, which are functions with respect to the
time index n and the generic variable v. If the windows are frequency-dependent
(i.e., v = p), Eq. 2.5 coincides with that of the generalized ST in [40], whih includes
the FT and the STFT. Let us consider the ST as originally presented in [23]. This
transform employs Gaussian windows given by

w[n, p] =
|p|

N
√

2π
e−

1
2 (

np
N )

2

, p 6= 0 (2.6)

that have the same size as the input time series (i.e., Nw = N) and standard deviation
inversely proportional to the frequency (i.e, σp = N/|p|). Their similarity with the
wavelets come from the dilations/contractions of a Gaussian function. In Eq. 2.6 a
special definition is evidently necessary for the zero-frequency window:

w[n, 0] =
1
N

(2.7)

which acts on x[n] as a moving average filter. In comparison to any window used
in the STFT, the set of windows defined by Eqs. 2.6 and 2.7 enhances the spectral
resolution at low frequencies, by covering more oscillation periods the sinusoidal
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FIGURE 2.2: Forward ST computed through a bank of down-
converters and lowpass Gaussian filters.

basis functions with wider lobes, as well as the temporal resolution at high frequen-
cies, by limiting the time spread into shorter lobes. Consequently, like the WT, the
ST achieves a progressive TF resolution trade-off, from which the resultant TF rep-
resentation benefits in terms of consistency: multiple and simultaneous waveforms
with different TF characteristics are visible thanks to the progressive resolution. On
the contrary, the STFT performs a fixed-resolution analysis with a single window
that is suitable only to signals of specific characteristics. More specifically, in [41],
it is demonstrated that the window can be optimized to represent the linear chirps
of a certain rate. More generally, the accuracy of the STFT is highly sensitive to the
compatibility of the window with the signal under analysis, as argued in [42]. The
multi-resolution extension of this transform is obtained by elaborating on Eqs. 2.3)
and 2.4. The ST of x[t] with constant time index n0 is the summation of the signal
multiplied with the time-shifted window and the basis functions:

STx[n0, p] =
N−1

∑
m=0

x[m]w[n0 −m, p]e−j 2π
N pm (2.8)

which cannot be expressed through the DFT, due to the dependence of w[n, p] on
frequency, as opposed to Eq. 2.3. The ST of x[n] at a specific frequency p0 is known
as a voice that is the convolution of w[n, p0] and the signal down-converted by the
digital frequency p0/N:

STx[n, p0] =
(
x[n]e−j 2π

N p0n)~ w[n, p0] (2.9)

similarly to Eq. 2.4. Therefore, the discrete ST may be formulated as a bank of digital
filters, in which each of the N uniformly-spaced channels computes a voice that
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isolates one frequency component of x[n]. The fact that the lowpass filters are not
identical and have bandwidths increasing with |p| distinguishes this interpretation
from that of the STFT. Accordingly, the voice in Eq. 2.9 is one of the outputs of the
aforementioned filter-bank, which is represented in Fig. 2.2. The direct calculation of
all voices entails an overall complexity on the order of O(N3) operations and O(N2)
memory elements according to [20]. Such a load can be handled by N FIR filters of
length N each. Otherwise, a formulation equivalent to Eq. 2.9 may take advantage
of the circular convolution theorem as follows

STx[n, p0] =
N/2−1

∑
q=−N/2

X[q + p0]W[q, p0]ej 2π
N nq = N ·DFT−1

q

{
X[q + p0]W[q, p0]

}
(2.10)

where X[q] and W[q, p0] are the DFTs of x[n] and w[n, p0], respectively, and DFT−1{.}
is the inverse DFT (IDFT). The outcome of this alternative equation can be calculated
for all frequencies by N FFT blocks of size N each. These blocks perform on the order
of O(N2log2N) operations, while using the same memory space as the implementa-
tion defined by Eq. 2.9. Thus, the more are the samples, the more efficient is the
processing based on the FFT in comparison with the direct convolution. Neverthe-
less, the computational reduction comes at the cost of additional latency, as men-
tioned before for the STFT. This price might be excessive for real-time applications,
especially if long time series are analyzed.

2.3 Undersampling the S-Transform

In general, TF representations count N2 points out of an N-point signal. Such a re-
dundancy is present in the ST as well, the complexity of which has a cubinc growth
with the amount of points. Redundancy can be reduced by minimizing the densities
of samples necessary to represent the signal with little or no aliasing in the TF plane.
Following the considerations made in [33] regarding the STFT, we might likewise
apply the Nyquist theorem on the set of windows in Eqs. 2.6 and 2.7 for the ST. By
doing so, we may notice that the minimum sampling rate in the time domain for each
voice varies with the voice itself: it is determined by the effective bandwidth, over
which the frequency response of the respective window exceeds a certain threshold.
Since the DFTs of the windows in Eq. 2.6 are also Gaussian, their poor selectivity in
the frequency domain inevitably implies a certain amount of aliasing. The relevance
of this effect depends on the threshold adopted to set the time sampling rate. Here-
inafter, we approximate the Gaussian functions as their relative values within the
frequency range defined by the full width at tenth maximum (FWTM) of the peak
amplitude. This choice is motivated by the aim of limiting the amount of energy re-
lated to components aliased in frequency to the 10% of the total, at most. Therefore,
given any non-zero frequency bin, the sampling rate for the respective voice, namely
at the input of the Gaussian filter associated to it, may be bounded as

fsp ≥ fx

√
2 ln(10)
πσp

= fx
|p|
√

2 ln(10)
πN

, p 6= 0. (2.11)

Here, the passband bandwidth is the FWTM of |W[q, p]| that is twice the cut-off
frequency at which the log-magnitude of X[q]W[q, p] is at least 10 dB below the peak.
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As for the zero-frequency voice, it holds that

fs0 ≥
fx

N
. (2.12)

Since the tightest constraint on fs is the following

fx

√
2 ln(10)

2π
≈ 0.34 fx (2.13)

for p = −N/2, it is plain to see that setting fsp = fx means heavily oversampling
all the voices. Nevertheless, for some voices, the input signal should be sampled at
a rate higher than the Nyquist sampling rate in order to neglect the so-called self-
aliasing. This undesirable effect occurs if the effective bandwidth of a voice encom-
passes folded portions of the periodic spectrum of x[n]. Assuming that fx is actually
coinciding with the Nyquist rate, we define the voices that suffer from self-aliasing
adopting the same approximation used in Eq. 2.11 to be the ones that satisfy the
following inequality

fx
|p|
N

(
1 +

√
2 ln(10)

2π

)
≈ 1.34 fx

|p|
N
≥ fx

2
(2.14)

which can be approximated as
|p|
N
≥ 0.37. (2.15)

Consequently, either the input rates for these voices are sufficiently increased above
the Nyquist rate, or alternatively, these voices are discarded from the analysis by
lowpass pre-filtering the input signal, so by removing the frequency components
most self-aliased (i.e., with |p| ≥ 0.37N). The factor in Eq. 2.14 is roughly equal
to that mentioned in [23], which implicitly takes into account a 7.39-dB cut-off fre-
quency. Self-aliasing affects only complex-valued signals, namely if the spectral en-
ergy is distributed over both the positive and negative sides of the TF representation,
as shown for example in Fig. 2.3. In fact, it can be avoided for real-valued time series
by resorting to the analytic form of the input signal, without the need for oversam-
pling. As far as the minimum sampling rate in the frequency domain is concerned,
it is supposed to be at least equal to the effective duration of the impulse response
of the set of windows at every time instant. The sampling theorem cannot be strictly
applied to the functions in Eq. 2.6, because they are frequency-dependent. Never-
theless, we might still infer a constraint by considering each of them separately, as
if they were used in several STFTs. With such an expedient, the frequency-domain
sampling rate can be bounded by

Fsp ≥
2
√

2 ln(10) σp

fx
=

2N
√

2 ln(10)
fx |p|

, p 6= 0 (2.16)

where the duration in samples is approximated as the FWHM of w[n, p], according to
the same criterion behind Eq. 2.11. In comparison to the initial sampling rate in fre-
quency (i.e., N/ fx), we notice here that the voices associated to |p| < 2

√
2 ln(10) do

not satisfy Eq. 2.16, because their windows have significant values over time inter-
vals longer than the duration of N samples. Yet, in practice, frequency sampling the
ST at p = −N/2, 1, ..., N/2− 1 is enough to avoid aliasing in time, because the width
of any window is actually limited by the extension of x[n]. However, the Gaussian



2.3. Undersampling the S-Transform 17

FIGURE 2.3: Amplitude of the ST for a complex chirp scanning the
digital bandwidth (i.e., [−N/2, N/2− 1]).

curves of the windows that do not comply with Eq. 2.16 are nearly flat within an
interval of N samples, as we may appreciate in [36, Fig. 2]. This fact involves a detri-
mental effect: the components within a frequency range of |p| < 2

√
2 ln(10) ≈ 4.29

are smoothed to an extent that their localization in time is severely undermined. The
loss in the time resolution is actually complete at the zero frequency, where the rect-
angular window averages the samples over time. This time misrepresentation of the
spectral components at the slow frequencies (i.e., around p = 0) creates ambiguity
about the signal IF within a certain range around the frequency zero and is clear
for example in Fig. 2.3. The symmetric boundaries for the relevance of the effects
of self-aliasing and time misrepresentation according to Eqs. 2.15 and 2.16 are in-
dicated in the figure, respectively. The bandwidth most affected can be shrunk in
terms of hertz by either reducing fs or increasing N, but cannot be eliminated. It is
worth noting that this degradation does not occur in the frequency domain, because
it would require the effective bandwidth of the window to exceed the maximum
value imposed by N (i.e, |p| > πN2

√
2 ln(10) > N/2).

Aliasing, self-aliasing, and time misrepresentation are side effects related to the con-
struction of the ST according to the uncertainty principle. In the first place, under-
sampling always causes residual amount of aliasing, because the Gaussian windows
are compactly-supported neither in time nor frequency. Secondly, self-aliasing and



18 Chapter 2. Time-Frequency Analysis

time misrepresentation exist because the temporal and spectral lengths of the win-
dows are tied to the progressive TF resolution trade-off. It is important to under-
stand that these intrinsic features of the ST are not flaws, because they do not pre-
vent the transform from being invertible, as long as no modification is performed.
However, their effects are harmful when the transform is to be used for synthesizing
a modified TF representation or for estimating the signal IF, as we will see later on.

2.4 Signal Reconstruction

In many applications, TF analysis tools are used to provide an intermediate rep-
resentation that is to be modified in order to change the characteristics of a non-
stationarity signal. Of particular interest in this regard are TF excision techniques
for jammer mitigation, such as those in [3] and [43] that are the subject of Chapter
4. After being applied, the modifications are made effective as soon as the a signal
is reconstructed from the respective TF representation. In what follows, we describe
how to efficiently retrieve the input time series from the output of the aforemen-
tioned digital filter bank. The synthesis has potentially a latency suitable to real-
time applications. Furthermore, by resuming the initial comparison with the STFT,
we may give interesting insights about the ST invertibility.

2.4.1 S-Transform Inversion

The original and discrete ST is always invertible. More specifically, in the absence of
intermediate modifications, STx[n, p] is the unique TF representation of x[n], which
is then exactly recoverable from the respective transform. We emphasize here that
invertibility follows from employing analysis windows that fulfill two generic and
necessary conditions:

1. their sliding time responses span the whole time interval of N samples, during
which the input signal is observed;

2. the composite frequency response of their modulated bandwidths cover the
entire spectrum of the input signal with non-zero values.

These requirements basically state that the transform should preserve the informa-
tion of the signal analyzed. The sufficient conditions instead are specific to the pro-
cedure used to invert the transform. As we anticipated, there are two main synthe-
sis methods to map STx[n, p] back to x[n] and they are both discussed in [36]. On
the one hand, the FI exploits the linear relation between the ST and the FT: every
frequency component of the Fourier spectrum results from summing over time the
corresponding local components of the ST, according to

1
N

N/2−1

∑
q=−N/2

( N−1

∑
m=0

STx[m, q]
)

ej 2π
N nq =

1
N

N/2−1

∑
q=−N/2

X[q]ej 2π
N nq = DFT−1

q {X[q]} = x[n].

(2.17)
The ST is so inverted by performing the inverse DFT of the one-dimensional function
that is obtained by time-averaging the forward transform. On the other hand, the TI
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FIGURE 2.4: Amplitude of the composite transfer function of the bank
of filters implementing the discrete ST.

approximates x[n] as

x̃[n] =
N/2−1

∑
q=−N/2,

q 6=0

√
2π

|q| STx[n, q]ej 2π
N nq + STx[n, 0]

=
N−1

∑
m=0

x[m]

(
1
N

N/2−1

∑
q=−N/2

e−
1
2

(
(n−m)q

N

)2

ej 2π
N (n−m)q

)
= x[n]~ i[n]

(2.18)

where i[n] denotes a smoothing function defined as the summation of all the win-
dows normalized and frequency-shifted:

i[n] =
N/2−1

∑
q=−N/2,

q 6=0

√
2π

|q| w[n, q]ej 2π
N nq + w[n, 0] =

1
N

N/2−1

∑
q=−N/2

e−
1
2 (

nq
N )

2

ej 2π
N nq. (2.19)

the frequency response of which is denoted by I[p] and depicted in Fig. 2.4. This
function is real because it coincides the DFT of Eq. 2.19 that is symmetric. The
exact input signal is therefore obtained by deconvolving i[n] from the approximation
x̂[n]. Eqs. 2.17 and 2.18 interchange the roles of time and frequency under different
sufficient conditions and computational requirements. We may assess these aspects
of the ST by analogy with the STFT in [33]. Indeed, the complementarity between the
TI and the FI reflects the duality of the filter-bank summation (FBS) and the overlap-
add (OLA) methods used to invert the STFT, which both are reviewed in [38]. These
two methods are motivated from the DFT and filter-bank interpretations of the STFT,
respectively. In more detail, the OLA recovers x[n] through IDFT the cross sections
of STFTx[n, p] taken for each n at which the analysis is performed, then summing the
results over n. As such, the complexity of this procedure is dominated by that of the
DFT, which is on the order of O(Nwlog2Nw) operations per sample if FFT blocks are
used. Since the FI performs the same procedure but in the opposite order, it likewise
performs on the order of O(Nlog2N) operations per sample. The OLA ensures the
STFT invertibility if the analysis window shifted by the samples at which the STFT
is evaluated sums to the area under the window, or equivalently, if the sampling rate
in time of the STFT is dense enough: at least twice the the cut-off frequency of the
prototype lowpass filter used to perform the analysis. A generalized formulation
of this constraint may be applied to frequency-dependent windows for the ST as
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follows
∑
n

w[n−m, p] = W[0, p]. (2.20)

The summation above runs over the samples at which the ST analysis is performed.
Satisfying the condition above is straightforward, and so the FI is exact, for the N2-
point ST. The FBS method synthesizes x[n] by summing over frequency the products
of STFTx[n, p] and linear phase factors, which act as demodulators, with a complex-
ity on the order of O(Nw) per sample. The time series is exactly recovered from the
STFT if the frequency responses of the passband filters used in the analysis add up
to a constant. Equivalently, this implies choosing a window, which is either shorter
than the frequency sampling factor (i.e., Nw < N) or larger and zero-valued at mul-
tiples of this factor, (i.e., w[kN] = 0 with k ∈ Z). The constraint may be generalized
for picking frequency-dependent windows according to

1
N ∑

q

w[n, q]
w[0, q]

ej 2π
N nq = δ[n] (2.21)

where δ[n] is the Kronecker delta function, and the summation runs over all the
analyzed voices. Any fixed-resolution window for short-time analysis satisfies the
above constraint if the number of frequency bins is at least equal to the window
duration Nw, or equivalently, if the STFT is sampled in the frequency domain in ac-
cordance with the Nyquist theorem. This fact is exploited in [44] to build a vocoder,
which is an analysis-synthesis system with limited data rate for speech signal pro-
cessing. On the contrary, a set of windows for multi-resolution analysis can hardly
comply with Eq. 2.21 without compromising the underlying TF resolution trade-off,
unless it is specifically designed to do so. The Gaussian windows used in the original
ST are the optimal choice for TF analysis, but they do not satisfy this constraint even
when N voices are analyzed. Indeed, their modulated frequency responses make up
a set of parallel bandpass filters, the composite transfer function of which preserves
the energy but produces distortion. The distorted overall frequency response is plot-
ted in [37, Fig. 2] and, after a proper energy normalization, in Fig. 2.4. The impulse
response of this distortion is deduced from the first member of Eq. 2.21, which coin-
cides with Eq. 2.19 when Eqs. 2.6 and 2.7 are adopted. It is now clear why, unlike the
FBS method, the TI has to compensate for a smoothing function through the decon-
volution in Eq. 2.18, at the cost of extra computations with respect to the nominal
O(N) operations per sample. In principle, the same issue would affect the FI, if the
OLA method is applied to invert a version of Eq. 2.5 that employs time-dependent
windows (e.g., with v = m) to achieve a time-varying TF resolution.
As opposed to [23], we define the discrete ST using the DFT of the Gaussian win-
dows rather than discretizing the respective continuous FT. Moreover, we normalize
the Gaussian windows given by Eqs. 2.6 and 2.7 to their actual discrete summations
instead of |p|/(

√
2πN), when constructing i[n]. These simple corrections are related

to Eqs. 2.20 and 2.21. They preserve the energy and overcome the loss of information
demonstrated in [36] at the slow frequencies. As a result, we can combine both the
DFT and the filtering formulations of the ST with the TI or the FI, indiscriminately,
without producing artifacts. We accomplish this achievement for instance in Fig. 2.5,
by recovering the signal represented in Fig. 2.3. The plots of the samples returned
by the TI and the FI coincide with the input time series to machine precision. As
such, the ST exhibits the neutrality with respect of the forward transforms, if no in-
termediate modifications are performed. Interestingly, the side effects of filtering the
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FIGURE 2.5: Real values of the time series denoted as y[n] which ex-
actly recovers the complex chirp x[n] from the ST in Fig. 2.3.

FIGURE 2.6: Reconstruction of a time series by means of the TI.

ST described in [36] resemble those for the STFT in [33]. On the one hand, the syn-
thesis of the TI is smoothed by the convolution between the input and the IDFT of
the window-weighted version of any spectral modification. On the other hand, the
output synthesized through the FI is smeared due to an extra undesired window-
ing operation. Consequently, the choice between the TI and the FI maintains either
the time or the frequency localization of the implemented TF filter, respectively. If
the aim is reconstructing one sample per unit time, as a data stream, the TI is the
natural for recovering the input signal. Therefore, the samples at the output of each
channel in Eq. 2.9 are first multiplied by a frequency-dependent factor, then accu-
mulated, and finally deconvolved through Eq. 2.19. This latter operation may be
interpreted as that of an equalization filter, which reverses the distortion mentioned
before. In the light of the formulation of the analysis and inversion with the ST, the
whole real-time implementation consists of a bank of digital filters followed by the
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block diagram in Fig. 2.6. In the absence of modifications, it is a linear and time-
invariant all-pass system with unitary gain. Furthermore, the TI offers a couple of
advantages over the FI. First of all, synthesis is possible even if the ST is processed
through a subset of channels. This possibility is useful to restrict the analysis to the
voices of interest, as we do in [3]. While it is not possible with the FI, since it re-
quires evaluating the ST for as many frequency voices as the signal data samples.
This requirement is a very demanding obligation for some applications, as noted in
[36]. Secondly, any modification changes instantaneously the signal synthesized, be-
cause the time localization of the TF filter is maintained. This fact prevents aliasing
in time, which instead could emerge with the FI, due to the enlarged duration of the
filter impulse response.

2.4.2 Instantaneous-Frequency Estimation

Instead of inverting the ST, a mono-component signal can be reconstructed, with lim-
ited reconstruction error, by estimating the respective IF. The publication in [45] re-
views the interpretation and the estimation of the IF for discrete and non-stationary
signal. On this regard, one simple and widely used approach for IF estimation ex-
trapolates the energy peak from a neat TF representation. This method capitalizes on
the fact that the energy distribution in the TF domain should be concentrated around
IF trajectory. Accordingly, we assign the following frequency as an IF estimate:

f̂ [n] = arg max
p
|STx [n, p]|2. (2.22)

The same approach but using other TF representations was adopted in [46–48] to
evaluate the respective estimation performance, which is beyond the scope of the
chapter. As emphasized before, the ST has a direct relation with the FT. Namely, if
the following sinusoid

x[n] = A ej(2π f0n+φ0) (2.23)

is analyzed through the ST, as argued in [32], we have that

STx[n, f0] = A ejφ0 (2.24)

where A is the amplitude, f0 is the sinusoid frequency, and φ0 is a constant phase
shift. Let us consider a non-stationary signal with constant or slowly varying ampli-
tude

x[n] = A ejφ[n] (2.25)

where φ[n] represents the discrete-time instantaneous phase. The corresponding
discrete-time IF is given by

f [n] =
1

2π

∂

∂n
φ[n]. (2.26)

Therefore, φ[n] can be written according to

φ[n] = 2π f [n] n + θ[n] (2.27)

where θ[n] is a time-dependent factor. Now, by generalizing Eq. 2.24, we see that
the ST at a specific time instant and at the corresponding IF returns

STx[n, f [n]] = A ejθ[n]. (2.28)
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Consequently, a non-stationary signal can be reconstructed by first estimating the IF
following Eq. 2.22, then extracting approximations to the amplitude and instanta-
neous phase using Eqs. 2.27 and 2.28. The signal is finally recovered as

x̂[n] = Â[n] ej(2π f̂ [n] n+θ̂[n]) (2.29)

where
STx[n, f̂ [n]] = Â[n] ejθ̂[n]. (2.30)

The one described above is a novel procedure to a reconstruct non-stationary signal
from the ST. Now, we can employ this method for inferring a time series both directly
and indirectly. Under our assumption of constant-amplitude waveform, x[n] can
be directly estimated by means of Eqs. 2.29 and 2.30. However, to account for IF
ambiguity around the frequency zero and to enable the signal reconstruction when
fewer voices than the total N are analyzed, we choose to average the amplitude
estimates over the observation time, according to

Â =
1
N

N−1

∑
m=0

Â[m]. (2.31)

Alternatively, the IF can be estimated as the polynomial curve that interpolates the
peaks of |STx [n, p]|2. This second procedure, however, requires an a-priori model
for the IF trajectory. This model is compatible neither with the effect of the IF ambi-
guity nor with the imposition of a restricted number of voices. Thence, it eventually
introduces significant errors in the estimation under common circumstances. Both
the two reconstructions assume a single frequency-modulated waveform, hence a
mono-component signal, so that there is only one energy peak per time unit. This
assumption is a actually simplification. It can be relaxed if this procedure is ex-
panded to address a multi-component signal made by the superposition of multiple
waveforms, which might be either well separated or crossing each other in TF plane.
Such an upgrade is not of interest, because it is generally addressed by adding track-
ing capabilities to the IF estimator, which is beyond the scope of the work described.
In any case, the waveforms are discriminated from the white background noise by
revealing the TF components that exceed a frequency-dependent energy threshold.
In the following as well as Chapters 3 and 4, the detection is performed at constant
false-alarm rate by leveraging of the additive and Gaussian nature of the noise.

2.5 Complexity-Scalable S-Transform

Containing the ST complexity is the key to expand its utility to a broader field
of application. For instance, the computational burden is particularly challenging
when this transform is implemented as a bank of filters able to work in near real
time, hence introducing a latency that is only related to the filers themselves. The
complexity-scalable sampling scheme illustrated below computes the forward ST
with controllable efficiency, generalizing the schemes proposed in [20] and [32]. This
flexibility is achievable as a combination between temporal decimation and spectral
compression.
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2.5.1 Decimating the S-Transform in Time

The original ST produces a TF representation of N2 points out of an N-point signal.
The size is the same as for the fully-redundant STFT given by Eq. 2.1, which can be
effectively decimated in the time and frequency domains, as described in [33]. Like-
wise, the ST can be undersampled, according to the sampling theorem, only in the
time domain, due to the intrinsic dependency of the windows on frequency. To gen-
eralize the criterion underlying Eq. 2.11, we introduce a dimensionless and positive
parameter denoted by α to tune the effective width of the DFT of the window in Eqs.
2.6 and 2.7 that is approximated as the relative values within a bandwidth limited
by a cut-off frequency of arbitrary attenuation of 10 log10(α) in dB, as shown in Fig.
2.8. First, we define the following discrete and piecewise function with respect to α:

Lk(α) =



N, |k| ≥ d πN√
2 ln α
e

2 b |k|
√

2 ln(α)
2π c, d 2π√

2 ln α
e ≤ |k| < b πN√

2 ln α
c

1, |k| < b 2π√
2 ln α
c

(2.32)

with k ∈ Z and α > 1. Then, we can provide a generalized formulation of the
effective bandwidth of each voice in terms of samples by restricting the countable
and infinite domain of Lk(α) to the finite range of frequencies under analysis (i.e. k =
p ∈ {−N/2, ..., N/2− 1}). The formulation in Eq. 2.32 describes curves depicted in
Fig. 2.7, and implies that

Lp(α) = 1, ∀p⇔ 1 < α < exp
(8π2

N2

)
(2.33)

which corresponds to the maximum temporal decimation that converts the ST into
the FT. On the contrary, the decimation is practically ineffective if

Lp(α) = N, ∀p 6= 0⇔ α ≥ exp
(π2N2

2

)
. (2.34)

Between these two intervals, the greater is α, the larger is Lp(α), thus the better is the
approximation of the windows, particularly for high-rate voices.

W̃[q, p] ≈W[qp, p], |p| ≥ d 2π√
2 ln α

e (2.35)

for qp = −Lp(α)/2, 1, ..., Lp(α)/2− 1. Since the windows at lower |p| are nearly flat,
their respective DFTs are well approximated by a single sample as

W̃[q, p] ≈W[0, p], |p| < b 2π√
2 ln α

c (2.36)

with Lp = 1. This latter approximation is valid for the the window in Eq. 2.7, regard-
less of α, which means that the zero-frequency voice can be always undersampled.
Along the same lines, we can define the following frequency-dependent temporal
decimation factor

Dp(α) =
N

Lp(α)
(2.37)



2.5. Complexity-Scalable S-Transform 25

FIGURE 2.7: Progression of the effective bandwidth of the ST
frequency-dependent window (the markers are there just to distin-

guish the curves for different values of α).

that is determined by α for the windows associated to |p| ≥ d2π/
√

2 ln αe, and
reduces to N for those associated to |p| < b2π/

√
2 ln αc. Consequently, the Nyquist

sampling theorem can be applied now to formulate the time-decimated ST defined
by

STx[lp(α), p] =
Lp(α)−1

∑
m=0

x[m] w̃[lp (α)−m, p] e−j 2π
N pm (2.38)

where lp(α) = bnp Dp(α)c, np = 0, 1, ..., Lp(α)− 1, and w̃[m, p] denotes the truncated
window given by the IDFT of the following frequency response

W̃[q, p] =

{
W[q, p], b−Lp(α)

2 c ≤ q ≤ d Lp(α)
2 e − 1

0, otherwise.
(2.39)

Accordingly, we see that the sampling rate in the time domain depends on the ana-
lyzed voice, as it changes with the frequency index p according to fx/Dp(α). For a
generic voice with index p0, it holds that

STx[lp0 , p0] = Lp0(α) ·DFT−1
q {X[q]W̃[q, p0]}. (2.40)

Any decimation factor corresponding to α ≥ 10 complies with the bound on the time
sampling rate set in Eq. 2.11. Instead, choosing α � 10 boosts the temporal deci-
mation, but it changes severely the widows so that they are Gaussian neither in the
frequency domain nor in time domain, and no longer of minimum time-bandwidth
product. This choice is particularly detrimental for fast-rate voices, considering that
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FIGURE 2.8: Amplitude of the transfer function of the least selective
Gaussian filter (i.e., for p = −N/2).

when α is much smaller than 10, the spectral responses of their localizing windows
confined within the effective bandwidth are nearly flat, which results in ringing ef-
fect in the time domain. However, regardless of the value selected for α, the input
signal is exactly recovered through the FI of the transform in Eq. 2.38. Indeed, the
constraint given by Eq. 2.20 reformulated with respect to Dp(α) is the following

Lp(α)−1

∑
np=0

w̃[bnp Dp(α)c −m, p] = W̃[0, p] ∀α. (2.41)

The identity above is verified for any value of α besides a discretization error, which
arises for the voices down-sampled by a non-integer Dp(α). As far as the TI is
concerned, sampling the ST in the time domain according to Eq. 2.38, extends the
synthesis procedure to include interpolation by (Dp(α))−1 for every undersampled
voice in order to restore the decimation factor to unity before the inversion. This
addition comes at the cost of an increase of complexity in terms of operations, which
compensates what is saved in terms of memory elements. Moreover, the interpola-
tion inevitably introduces errors, which reduce with increasing α. On the contrary,
the efficiency of the FI benefits from the time decimation, because it can process the
result of Eq. 2.38 directly.
Once applied to the ST filter-bank architecture, temporal decimation implies down-
sampling by Dp0(α) the time series at the inputs of the channels in Fig. 2.2. Therefore,
the transform in 2.38 is implemented by a bank of N filters with N/2 + 1 different
input rates, at most. In order to enable the TI, N interpolators are added at the input
of the filter-bank summation and equalization depicted in Fig. 2.6. Real-time TF
analysis and synthesis based on the time-decimated ST is then carried out through a
multi-rate design.

2.5.2 Compressing the S-Transform in Frequency

We have argued that original ST is uniformly sampled in frequency and cannot be
strictly decimated in this dimension. Nevertheless, the constant spacing between
the voices entails unnecessary amount of spectral redundancy, because it is not con-
sistent with the progressive scaling of the ST frequency-dependent windows. To
compress the TF plane over the frequency domain, we may device a non-uniform
sampling rate, which mirrors the uncertainty principle. The idea is to sample finely
the slow frequencies, which are better localized in this domain, and more coarsely
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the fast frequencies, where the spectral resolution is poorer. Going into detail, we
firstly define the following continuous function:

γ(β) = 1 +
1
β

(2.42)

with respect to a dimensionless and positive parameter denoted by β such that 1 ≤
β ≤ N/2, which results in 1 + 2/N ≤ γ(β) ≤ 2. Let us then consider, for the
sake of argument, the positive semi-axis of a generic and continuous variable, i.e.,
ν ∈]0,+∞[. Now, we may use Eq. 2.42 to indefinitely segment this domain into
contiguous partitions of increasing sizes along ν, which are delimited by (γ(β))k.
The increment at every step k is determined by β and at most doubles the size of the
previous partition. The midpoint of every partition may be described through the
following discrete-defined exponential function

εk(β) =
γ(β)k−1(1 + γ(β))

2
> 0 ∀k ∈ Z. (2.43)

We restrict this countable and infinite domain into a finite set such that k ∈ {k1(β), ..., k2(β)},
by assuming a pair of conditions. In the first place, the distance between consecutive
midpoints should be at least unitary:

εk+1(β)− εk(β) ≥ 1⇔ k1(β) =

⌈ log( 2
γ(β)2−1 )

log(γ(β))

⌉
+ 1 (2.44)

where it is straightforward to prove that

εk1(β) > β. (2.45)

Secondly, we bind the maximum value to

εk(β) <
N
2
⇔ k2(β) =

⌊ log( N
1+γ(β)

)

log(γ(β))

⌋
+ 1. (2.46)

Finally, we can formulate a discrete and piecewise function based on Eqs. 2.43-2.46
in order to identify M frequency indices out of the N total, as follows

pk(β) =



−bε|k|+1−β+k1(β)(β)c − 1, k = −M/2, ...,−bβc − 1

k, k = −bβc, ..., bβc − 1

bεk−β+k1(β)(β)c, k = bβc, ..., M/2− 1

(2.47)

where M = 2(bβc − k1(β) + k2(β) + 1) is always even. By sampling the frequency
domain through Eq. 2.47, we obtain a non-uniform density of spectral components
spread across the bandwidth according to a two-step behavior, which reflects the
uncertainty principle: the sampling step is constant at low frequencies and grows
nonlinearly as the frequency increases above a certain value. The progression of the
sampling step in this domain is controlled by β, as shown in Fig. 2.9. Even though
we refer to sampling rates, the function in Eq. 2.47 does not rigorously describe
a spectral decimation. Therefore, we find more appropriate referring to this sam-
pling scheme as compression, which reduces the order of operations and memory
elements required for both analysis and synthesis by the ratio N/M(β). Frequency
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FIGURE 2.9: Progression of the frequency-domain sampling step after
spectral compression, where the curve for β = N/2 corresponds to
the uniform and minimum frequency spacing (the makers pinpoint

the indices of the frequency bins sampled and denoted by pk(β)).

compression enables downsizing the bank of filters computing the ST from the ini-
tial N channels to M(β). The higher the compression ratio is the more distorted is
the composite transfer function of this implementation. While the FI by definition
cannot be employed with less than N voices, the additional distortion due to the
reduction in the number of voices does not hinder the adoption or the performance
of the TI, which in fact employs an equalization. In other words, as done for the
N2-point ST, the times series can be exactly recovered by equalizing the output of
the filter-bank summation in Fig. 2.6 through the DFT of

i[n] =
1
N

M(β)/2−1

∑
q=−M(β)/2

w[n, q]
w[0, q]

ej 2π
N nq. (2.48)

The sole constraint on the choice of β is specified by the necessary conditions for
invertibility mentioned in the previous section. Namely, the composite frequency
response of the filter bank depicted in Fig. 2.2 for the voices pk(β) must cover the
spectrum under analysis with nonzero values. Furthermore, since pk(β) is the cen-
tral frequency of the pth Gaussian window given by Eq. 2.6, it also determines the
window effective bandwidth, as defined using Eq. 2.32, when the ST is undersam-
pled in time according to a specific α. Consequently, fulfilling the aforementioned
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condition constrains both the temporal decimation and the spectral compression ac-
cording to 

Lpk−1 (α)

2 +
Lpk (α)

2 ≥ |pk(β)− pk−1(β)|
LpM/2−1 (α)

2 ≥ N
2 − 1− pM/2−1(β)

Lp−M/2 (α)

2 ≥ N
2 − |p−M/2(β)|

(2.49)

with k = −M/2, ...,−bβc − 1, bβc, ..., M/2− 1. Elaborating on the first inequality of
Eq. 2.49, the following relationship between α and β can be obtained:

α > exp
(( √2π

1 + 2β

)2
)

. (2.50)

Without spectral compression, i.e., for β = N/2, the above inequality implies that
α > exp (2π2/(1 + N)2), consistently with (2.33). Instead, the maximum compres-
sion, i.e. for β = 1, requires, according to Eq. 2.50, that α > 8.96. If this constraint is
not fulfilled, information is not preserved and the TI cannot work.

2.5.3 Time-frequency Sampling Scheme

In the following, we refer to the combination of decimation in time and compres-
sion in frequency as a generic TF sampling scheme. Any scheme builds a ST matrix
composed of the following number of elements

L(α, β) =
M(β)/2−1

∑
pk=−M(β)/2

Lpk(α) ≤ N(N − 1) + 1 ∀α, β. (2.51)

This number is quantified by α and β, to which are proportional the necessary mem-
ory space and computational power. Note that because the zero-frequency voice can
be always undersampled, L(α, β) is always less than N2. As a result, the complexity
of the time-decimated and frequency-compressed ST is ultimately scalable through
α and β. The numbers of points obtained with different combinations of these pa-
rameters are depicted for N = 512 in Fig. 2.10. The curves are normalized, so that
their trend is valid regardless of N. Besides illustrating the computational saving
in the forward ST, this figure also highlights another important implication of the
suggested TF sampling scheme, namely which synthesis method can be paired with
it. Without compression, the FI can be performed with any decimation factor, up
to averaging the representation over time into the one-dimensional N-point Fourier
spectrum, i.e., L(α, β) = N with β = N/2. Likewise, the TI works perfectly with
any spectral compression ratio; it can be used also with any time decimation, but
only by interpolating the voices undersampled, as earlier mentioned. As far as the
no inversion area plotted in Fig. 2.10 is concerned, it roughly indicates the combina-
tions of α and β that do not satisfy Eq. 2.50. The foundations of the proposed TF
sampling scheme are laid by the principles underlying the FST and the earlier DOST.
Both these representations make use of an orthonormal basis functions constructed
with a reduced set of frequency-dependent windows, which are local in time, and
have compact and contiguous bandpass bandwidths; the resultant one-to-one rep-
resentation coincides with that obtained by minimally sampling the TF plane with
α = 9 and β = 1, which are derived from Eq. 2.50. According to this combination,
the voices are undersampled and selected such that they have adjacent and non-
overlapping sub-bands covering completely the signal spectrum. Therefore, the FST
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FIGURE 2.10: Progression of L(α, β) normalized on N (the dashed
and the dotted curves correspond to no and maximum decimation in

time, respectively).

FIGURE 2.11: Superposition of two sets of windows for TF sampling
schemes entailing different amounts of redundancy.

and the DOTS are covered by the more general and flexible framework of the pro-
posed complexity-scalable ST, which offers different trade-offs between efficiency
and accuracy. For the sake of clarity, the set of windows of the octave sampling
scheme is shown together with that for α = 104 and β = 2 in Fig. 2.11.
Eventually, it is worth briefly reviewing the algorithm for the FST presented in [20].
This forward transform is computed by shifting the DFT of the localizing window,
rather than the DFT of the signal, such as in Eq. 2.10. As a consequence, this for-
mulation is not mathematically equivalent to the original definition of the ST in Eq.
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2.8, because it does not account for a phase factor, as becomes clear by elaborating
on Eq. 2.9:

STx[n, p0] =
(

x[n]e−j 2π
N p0n)~ w[n, p0]

=
(

x[n]~ w[n, p0]ej 2π
N p0n) e−j 2π

N p0n

= N ·DFT−1
q {X[q]W[q, p0]} · e−j 2π

N p0n

(2.52)

where the inverse DFT of the product between X[q] and W[q− p0, p0] undergoes a
phase shift. Likewise, the same factor is missing in the inverse FST, which simply
reverses the steps of the forward algorithm. Therefore, we can invert the octave
scheme underlying the FST by reversing the steps in Eq. 2.52, thus also including
the phase correction. This particular reconstruction procedure is referred to as octave
reverse hereinafter.

2.6 Case Study: Time-Frequency Filter

In the present section, we examine a case study demonstrating TF filtering through
the complexity-scalable ST. Our ultimate aim is evaluating the improvement in terms
of reconstruction accuracies that is achievable by allowing for increasing degrees
of redundancy in the TF representation. The synthesis is performed through the
two reconstruction procedures based on either inverting the ST or IF estimation,
in addition to the octave reverse specific for the minimal sampling scheme. In the
scenario under study, the following frequency-modulated waveform is considered

s[n] = exp
(

j(2π( f0 + g n) n + φ0)
)

(2.53)

the frequency rate of which is given by

g =
0.37− 20/N

2(N − 1)
(2.54)

and it is shifted in phase by φ0 = π/4, with initial frequency f0 = 20/N. Eq. 2.53
describes a complex-valued linear chirp sampled with a unitary sampling step, and
is designed to scan the positive frequencies in the range p ∈ [20/N, 0.37], hence
conveniently avoiding the bandwidths heavily affected by IF ambiguity and self-
aliasing, both explained before. The signal analyzed is expressed as

x[n] = s[n] + d[n] (2.55)

with N = 512; it is the superposition of the waveform given by Eq. 2.53 and the
following pair of bursts

d[n] =


ej2π 96n

N , n = 64, ..., 159
ej2π 64n

N , n = 224, ..., 319
0, otherwise.

(2.56)

The task is erasing the bursts smearing the chirp, before retrieving the filtered signal.
For this purpose, a TF filter is put in place in the form of binary mask, which is multi-
plied point by point with the matrix computed through the forward ST. For the sake
of simplicity, the employed mask blanks ideally the TF components containing more
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FIGURE 2.12: Amplitude the original ST of the signal given by Eq.
2.55. This TF representation coincides with that of the maximal sam-
pling scheme for α = exp

(
π2N2/2

)
and β = N/2, except for the

zero-frequency voice, which is undersampled for any combination of
α and β.

FIGURE 2.13: Amplitude the FST of Eq. 2.55, which coincides with
the TF representation sampled for α = 9 and β = 1.

energy from d[n] than from s[n]. This simplification is meant to provide a common
framework for the energy detection and is not a strong one, since is the comparison
between the performance evaluated for STs of different redundancy that matters.
The amplitude of the ST together with the respective filter mask is shown in Figs.
2.12-2.14 for the fully redundant ST, and the one-to-one FST. The performance for
this case study is evaluated in terms of complexity reduction versus reconstruction
accuracy. The accuracy is expressed in terms of the normalized root-mean-square
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FIGURE 2.14: Amplitude of the nearest-neighbor interpolation of the
TF representation in Fig. 2.13 as a comparison with that in Fig. 2.12.

FIGURE 2.15: Reconstruction accuracy in NRMSE of the filtered sig-
nal synthesized through the TI for different pairs of α and β, in com-
parison with that obtained by means of the octave reverse, and with

the reference error in dotted line.

error (NRMSE) defined by

NRMSE =

(
∑N−1

n=0 |ε[n]|2

∑N−1
n=0 |y[n]|2

) 1
2

(2.57)
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FIGURE 2.16: Reconstruction accuracy in NRMSE of the filtered sig-
nal directly synthesized through IF estimation using different pairs of
α and β, in comparison with that of the indirect estimation from the

peak-interpolation of the N2-point ST.

where y[n] is the signal synthesized from the filtered ST, and ε[n] is the error defined
as x[n]− y[n]. Fig. 2.15 depicts the reconstruction accuracies achieved with the oc-
tave reverse, and the TI, implemented using different combinations of α and β. The
reference is the NRMSE calculated between x[n] and s[n] as in Eq. 2.57. We observe
that the NRMSEs of the TI are not strictly monotonic functions with respect to β,
since there are a few inflections points barely noticeable (i.e., by fractions of deci-
bel). Their presence is not meaningful because it is justified by two reasons. First,
not every sampling scheme contains the TF components sampled by lower-density
schemes, since the frequency domain is sampled nonlinearly. For instance, given
constant α and increasing β, the new and larger set of frequency indices does not
necessarily include the old and smaller set that was sampled with a higher spectral
compression ratio. This fact follows from the nonlinear growth defined in (??) and
is evident from Fig. 2.9. The second reason is simply due to the error introduced by
interpolation. As for the FI, the resultant NRMSEs in Fig. 2.15 are not visible because
they are higher than the reference error for any α, except when α = exp

(
π2N2/2

)
,

which returns -10.94 dB. These results confirm that the FI is only suitable to retrieve
the filtered signal from the fully redundant ST, and is not capable to cope neither
with time decimation nor spectral compression. Alternatively, the synthesis can be
carried out through IF estimation. The results in Fig. 2.16 are obtained using Eq.
2.29 to directly estimate the amplitude and the phase of the filtered signal. Instead,
the indirect reconstruction based on IF peak-interpolation estimation was found to
perform well only without compression; therefore, for the sake of comparison, the
respective NRMSE is calculated only for the original N2-point ST. An important ob-
servation can be made from Fig. 2.16 that is increasing β above a certain value does
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not bring significant improvement to the signal synthesized through IF estimation.
Overall, the results suggest that the applications that employ the ST to modify the
analyzed signal TF characteristics can benefit in terms of accuracy from a flexible TF
sampling scheme. In fact, a level of redundancy aids the discrimination of the TF
components to be filtered, and it also lessens the artifacts inevitably distorting the
information due the filter mask itself. For example, Fig. 2.15 shows that the NRMSE
falls by more than 3 dB with respect to that obtained using the FST when β is in-
creased from 1 to 2, while the size of the corresponding ST is still less than 2N, as
clear from Fig. 2.10. Finally, the pair of parameters α and β can be tuned to rescale
the TF representation according to a controllable trade-off between complexity and
reconstruction accuracy.

2.7 Conclusions

After addressing in depth several aspects of the discrete ST, a complexity-scalable
version of this transform is built upon a generalized time-frequency sampling scheme.
The scheme is specifically devised to grant more flexibility for fast implementations.
Our scheme can arbitrarily sample the two-dimensional representation in the TF do-
main in order to compromise between practical computational burden for analysis
and decent reconstruction accuracy after synthesis. A controllable amount of re-
dundancy allows for extensive modifications of the TF components, which instead
implies significant errors if the existing and non-redundant schemes of the FST and
the DOST. In this framework, we have assembled the forward and the inverse trans-
forms into a digital system that can analyze any input non-stationary signal through
a multi-rate bank of lowpass Gaussian filters, and synthesize an output through an
equalized filter-bank summation. The rates and the sub-bands of the channels are
designed according to the chosen sampling scheme and their parallelism is suitable
to fulfill real-time constraints. The complexity-scalable architecture proposed ulti-
mately enables advanced processing techniques for filtering a signal through the
complexity-scalable ST, which can be useful in diverse and novel applications. A
practical example is the rejection of in-band and pulsed disturbances in a specific
case study. The formulation provided may be also extended to data structures of
more than one dimension.
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Chapter 3

Interference Source Localization

Critical infrastructures relying on communication and navigation systems (e.g., pub-
lic health and transportation, telecommunications, and security) have been recently
experiencing disruptions due to outages caused by interference events with increas-
ing frequency. When intentional, these attacks are carried out by mean of devices
named jammers, which deliberately broadcast interference. In order to quickly re-
store the full operation of these services, finding the sources of interference is a nec-
essary task for taking actions against their threat, especially when the origin is mali-
cious. This demand has motivated the research of methods and the development of
systems for identifying and localizing terrestrial transmitters of unknown features
in diverse fields of electronics engineering. What follows is a comprehensive review
of the state of the art regarding interference localization and similar general-purpose
applications. When it comes to the GNSSs, the aim of this extensive review made is
to highlight two aspects of the problem of interest.

1. Most of the techniques in the literature tackle the presence of only one emitter
at a time. However, the proliferation of (in-car) jammers among civilian users
has recently made more and more realistic the possibility for a receiver of un-
dergoing jamming attempts from multiple sources at different locations. This
unfortunate but likely situation is an issue of growing concern in the GNSS
community and is still open, despite the plenty of solutions theorized and im-
plemented in the last decades.

2. The vast majority of jammers on the market nowadays transmit highly non-
stationary signals in the form of sawtooth waveforms, which may be regarded
as signatures of their spectral characteristics over time. Novel localization sys-
tems should take advantage of this fact, when retrieving the observables nec-
essary to infer the locations of the devices responsible of interference. This
aspect opens up to the utility of TF analysis for jammer localization.

In this context, the present dissertation has the merit of applying the desirable prop-
erties of the ST to the localization of simultaneous jammers, for the first time to the
best knowledge of the author. The original contributions may be summarized by the
following list according to the order of appearance in this chapter:

• the in-depth evaluation of the tracking performance for the position and ve-
locity of a single jammer with time and frequency measurements, focusing the
investigation on the impact of the signal snapshots, which has been usually
overlooked in similar works;

• the innovative use of the ST for identifying the number and the characteris-
tics of multiple jammers by exploiting their inner periodicities, hence over-
coming the limitations of the state-of-the-art and STFT-based characterization
techniques for single jamming waveforms;
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• the combination of the ST-enabled jamming characterization together with the
cooperation of manifold receivers for tracking simultaneous jammers of differ-
ent characteristics and power levels.

Therefore, the main contribution is a novel and promising algorithm for recognizing
and separately localizing simultaneous jamming waveforms. The adoption of the
ST in this application enables a step forward in terms of capabilities, by shifting the
resolution of the estimation ambiguities and the data associations from the conven-
tional delay-Doppler domain to the more convenient TF domain. The complexity
issue addressed in Chapter 2 does not threaten the feasibility of the approach pro-
posed, because the algorithm is supposed to run on a back-end server, rather than
being distributed on the individual receivers. A proof-of-concept case study was
simulated to show the numeric accuracy achievable in ideal conditions of line of
sight. The downside of this approach is that jammers are distinguishable only when
they feature different TF characteristics in terms of periodicity. Nonetheless, as ex-
plained in the last section, such a shortcoming could be overcome by exploiting also
the difference in received powers and possibly in the angles of arrival.

3.1 State of the Art

Given the extension of the scientific literature on this topic, we may narrow down the
state of the art to the cooperative and passive localization of terrestrial and mobile
transmitters with little or no knowledge about their signals. The rationale behind
this choice comes from two facts. The sources of interference have usually unknown
number and characteristics and, for practical reasons, their locations can be inferred
only by means of indirect and repetitive observations. In other words, we focus on lo-
calization methods that cope well with interfering transmissions by collecting mea-
surements related to their origin through a physical or synthetic set of arbitrarily and
spatially distributed sensors. Hence, they need neither any active and direct interac-
tion with the interferers (e.g., round-trip time estimation with radar pulses or data
frames) nor any knowledge about the waveform transmitted or the propagation en-
vironment (e.g., for multipath exploitation). Despite the specificity of this context,
such an application is shared by countless research papers in different branches of
electronics engineering. Particularly, we may distinguish among methods for local-
izing generic radio-frequency (RF) emitters, signal and interference sources within
wireless sensor networks (WSN), and jammers for GNSS receivers. These three fields
of application are one by one summarized in the following subsections.

3.1.1 Generic RF Emitters

Most of the state-of-the-art systems aim at localizing a ground source from the re-
spective RF emission in a general framework, which is suitable to a plethora of ap-
plications, including radar, sonar, acoustics, wireless communications, positioning,
and navigation. To categorize the methods complying with the application of in-
terest, first of all, we may discriminate between the methods for a single emitter
localization based on trilateration (or multilateration) and triangulation, with a final
paragraph on the systems capable of tracking multiple targets at the same time.
The localization methods reviewed in this section are implicitly based on a central-
ized and two-step approach that is also adopted hereinafter: from the signals received
at different sites a central processor retrieves the observables, which are then used
used for computing the location estimate. These methods are, however, inherently
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suboptimal, because the measurements are processed independently, although they
are tied to the same emitter. The resultant estimation is so not guaranteed to yield
the optimal solution. Nevertheless, it still approaches the Cramér-Rao lower bound
(CRB) when the observables are asymptotically and mutually uncorrelated under mild
conditions, which include moderate signal-to-noise ratios (SNR) and a large number
of observations. In this case, the two-step approach is equivalent to a single one,
whereas an optimal direct estimation process is useful only for low SNR and/or
short signal samples, as demonstrated in [49].

Trilateration

Under this category fall the methods that infer the relative and apparent point-to-
point distances, namely the pseudoranges, of sensors from an emitter, with received
signal strengths and time differences of arrival.
The observation of the absolute time of arrival (TOA) of the signals coming from
several satellites underlies the self-localization capability of GNSS receivers. By
comparison, the application of interest may be regarded as an inverse operation,
which is further complicated by the lack of knowledge of the emission time. This
unknown can be eliminated by observing the relative delay of the signal received by
two synchronous sensors at known locations, at the expense of a strengthened noise
intensity and correlation in the measurements. Generally, differential timing infor-
mation may be obtained through baseline interferometry, time difference of arrival
(TDOA) estimation, spatial spectra, phase antenna, etc. The advantage of TDOAs is
that they can be observed by digitally processing the time-aligned signals that are
captured by different front ends, without requiring an antenna array or any other
analog component. A sensor-side synchronization mechanism relies on the GNSS
time reference in the most straightforward implementation. One of these observ-
ables restricts the possible locations of the emitter to a hyperboloid having the two
sensors as foci. Thence, in a two-dimensional scenario, hyperbolic location estima-
tion pinpoints the signal source at the intersection of the two or more hyperboloids
that correspond to the TDOAs from three or more sensors. Ideally, when there are no
errors on the measurements and the sensor locations, the emitter would be exactly
localized. However, the intersection of hyperbolic curves does not determine a point
but an uncertainty region in space, due to the inevitable noise and imprecisions.
Since the hyperbolic equations relating the TDOAs to the respective differences of
pseudorange, the estimation of the unknown emitter location is a highly nonlinear
optimization problem and, more specifically, one with a non-convex function. If
a fully efficient (i.e., minimum variance and unbiased) estimator exists, that is the
maximum likelihood (ML) one. The ML estimator asymptotically produces an opti-
mal solution to this problem, attaining the CRB. This is true as long as there is a large
number of mutually independent observations to increase the immunity to additive
and non-systematic measurement errors. Another important property is that this so-
lution is statistically equivalent to the one of a nonlinear least squares (LS) estimator,
if the zero-mean and white measurement noise has a Gaussian probability density
function (PDF). This second estimate is deterministic rather than statistical, as it is
obtained by minimizing the sum of the square residuals, without so any probabilistic
assumption on the observation likelihood. To avoid the hassle of an exhaustive nu-
merical search in the solution space, the computational expense of the resolution is
usually reduced with approximations of the ML estimator, which are nearly optimal
when specific simplifying conditions are met. On the one hand, a closed-form fix can
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be formulated by rearranging the nonlinear equations into a set of linear ones with
the introduction of extra variables. On the other hand, these nonlinear equations
can be linearized via Taylor-series expansions. Both these strategies are ultimately
employ LS estimators and may be found in [50, 51] and in the references therein.
Particularly, Taylor’s theorem is adopted by the Gauss-Newton algorithm to give a
local linear LS solution around an a-priori estimate to a set of nonlinear equations.
These equations generally suit any localization problem, regardless of the measure-
ment nature, as firstly emphasized in [52]. This is a classic method for iteratively
improving the estimation accuracy, starting from an initial guess. The global con-
vergence is not assured and depends on the a-priori estimate, which should be close
enough to the actual solution to avoid the local minima of the function. In the follow-
ing sections, we resort to the same linearization albeit in a recursive fashion instead of
iterative, because it leads to estimators mathematically simple, commonly used, and
compatible with any number of sensors.
The relative motion between the emitter and the sensors cause the signals to be re-
ceived with Doppler frequency shifts. The observation of this phenomenon can be
exploited for localizing a source, given that all the clocks used for sensing are consis-
tent in both time and frequency. Indeed, one frequency difference of arrival (FDOA)
defines a surface of possible emitter locations, the shape of which does not depend
on the carrier frequency, but on the sensor geometry and relative velocity. This prin-
ciple is used for localizing both a stationary emitter with sensors maneuvering along
known trajectories and a movable emitter with sensors fixed at known locations, such
as in [53] and [54], respectively. The combination of TDOA and FDOA measure-
ments enables the extension of these methods to a generic scenario with moving
transmitters and receivers. The incorporation of Doppler frequency shifts is also
useful for reducing the number of sensors required, enhancing the location accuracy,
and estimating the emitter velocity. As a consequence, the extension of the resolu-
tion strategies aforementioned to the now two-dimensional estimation problem has
been widely investigated in [49, 55–59]. Innovative ways to find the global solu-
tion of the non-convex optimization function make use of a Monte Carlo importance
sampling method throughout the scientific literature in [60], apply semidefinite con-
vex relaxation in [61], and multidimensional scaling analysis in [62]. They perform
better than conventional strategies based on LS estimation even with large measure-
ment noise, but are costly in terms of complexity.
Despite the fact that measuring frequency differences between received signals re-
quires sufficiently accurate and stable local oscillators mounted on the various sen-
sors, a recent research trend has investigated the use of this combination for location
estimation with basic sensing platforms, like unmanned aerial vehicles (UAV). For
practical reasons, much effort was devoted in [63, 64] to use only two sensors that
outmaneuvers the emitter to be localized. Initially relying on solely TDOA observ-
ables and lately switched to TDOA and FDOA measurements, the methods pro-
posed make use of the observation time history to avoid the need for more physical
sensors. In this regard, the aforementioned LS estimation can be employed to pro-
cess the sequence of observables in batches, given a deterministic model of the emitter
trajectory. However, this iterative process is computationally intensive, because it is
repeated whenever a sufficient number of new data are available. In addition, the
previous datasets are stored to be at disposal. Since two sensors can only provide
one TDOA or one TDOA/FDOA pair at time, besides the processing time, the wait
between two consecutive estimates might be excessive, especially in dynamic sce-
narios. For a matter of execution time and efficiency, modern localization systems
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then prefer recursive estimators, which avoid to reprocess all the observations with-
out compromising on the final accuracy. More specifically, the state of the art mostly
refers to a variety of Kalman filters (KF), which sequentially update the current esti-
mate upon the arrival of new measurements and which rely on a statistical model of
the emitter motion. As opposed to the simpler LS, this choice entails the adoption of
a Bayesian philosophy, in which the goal is the minimization of the MSE. An histor-
ical perspective on this topic is given in [65]
The TDOAs can be derived from the one-dimensional cross-correlation function of
the raw signal samples received from each pair of sensors. The joint estimation of
TDOA/FDOA pairs is based on a cross-ambiguity function (CAF) that essentially ex-
tends the cross-correlation to account for the differential frequency shift, other than
the delay. This two-dimensional function is so defined over a grid in delay-Doppler
domain. A search for cross-correlation peaks through a ML estimator retrieves re-
liable observables, as long as there exists only one transmitter that has access to
direct propagation paths to both the receivers. This approach is not effective in the
presence of multiple emitters, the signals of which interact with one another, creat-
ing ambiguity in the cross-correlation function. Different strategies can resolve this
uncertainty, as we will have the opportunity to see in more detail later in this chap-
ter. Under non-line-of-sight and severe multipath conditions, instead, more complex
techniques are necessary. This issue is beyond the scope of the present dissertation
and has been widely addressed in the last decades by plenty of research papers, such
as [66–68], just to name a few.
A simpler albeit less accurate alternative to TDOAs for powerful emitters and non-
line-of-sight environments consists in extracting raging measurements from the re-
ceived signal strengths (RSS). They are obtained without any synchronization mech-
anism and are usually readily available in low-complexity devices. From the knowl-
edge of the exact channel path-loss model relating the power levels to the respective
distances from the source, the two-dimensional location of this latter can be esti-
mated with three or more sensors. This scheme, however, entails the access to trust-
worthy information about the antenna radiation patterns, the height of the trans-
mitter/receiver pair, and the electromagnetic phenomena affecting the channel. For
instance, the effects of shadowing and multipath-induced fading caused by obstruc-
tions, ground reflections, etc. of the surrounding environment should be evaluated.
The difficulties in relying on RSS indicators of WiFi devices are experimentally con-
firmed in [69] with a two-ray path-loss model. Even when the assumption of om-
nidirectional antennas and the propagation model adopted match the reality, one
should know either the transmission power spectrum or the power spectra received
at reference locations within a region surveyed beforehand. Similarly to TOAs and
TDOAs, the need for estimating the emission carrier frequency and power can be
relaxed by resorting to differential RSS (DRSS) measurements. One of these observ-
ables defines a sphere of possible signal source locations in between the two sen-
sors. This workaround, though, does not exclude the need for a path-loss survey.
Nonetheless, despite the coarse accuracy they tend to provide compared to TDOAs,
the signal strengths could be the only viable metric for location estimation with an
infrastructure made by low-cost platforms. For this reason, they are popularly used
in WSNs, which we address in the next subsection. A comparative evaluation of the
performance of different LS estimators with DRSSs is reported in [70].
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Triangulation

This category encompasses the direction-finding systems for estimating the location
of an emitting source as the intersection of bearing lines, which originate either at
multiple points along the known trajectory of a moving sensor or at multiple fixed
locations of various sensors. In three dimensions, these lines do not necessarily in-
tersect and LS estimators are usually put in place to resolve the spatial uncertainty,
such as for TDOA hyperboloids. Discussions about manifold aspects and statistical
solutions of this problem for a stationary emitter date back to the late sixties up to
the nineties. They mainly come from aerospace engineering and may be found in
[71–73].
The directions of bearing lines are obtained from angles of arrivals (AOA), which are
measured by observing the beam pattern of an antenna array resulting from a beam-
forming process. This equipment is used either to electronically steer the beam of
the radiation pattern towards the direction of highest signal strength or to measure
the phase shifts at the individual antenna elements. Methods for location estimation
based on AOAs only need two or more observations taken at different sites in a two-
dimensional scenario and, more importantly, they do not require the time synchro-
nization of sensors such as for measuring TDOAs and FDOAs. Another interesting
advantage over the time observables comes from the fact that several angles can be
measured from an individual device, which maneuvers to provide the spatial diver-
sity of a synthetic array of sensors. Consequently, there is no need for data links to
transfer raw signal samples between the sensors and the processing unit in charge
of the two-step estimation process. The processor can be hosted on the sensing plat-
form. Therefore, systems based on AOA are usually simple and able to operate
autonomously as well as covertly. Compared to time measurements, angle are how-
ever more sensitive to errors as the range between transmitter and receiver increases
and similarly susceptible to multipath propagation, which heavily degrades their
accuracy indoors and in urban settings. Furthermore, the size and the calibration
of antenna arrays might be unsuitable to inexpensive devices of opportunity (DoO)
and light vehicles (e.g., UAVs).
For a single and movable platform, Doppler frequency shifts represent a natural
add-on to bearing measurements, as firstly studied in [73]. A publication of the same
author in [74] cites more recent methods for location estimation and also provides
references to studies on the target observability with respect to the sensor manoeu-
vre. Conversely, when it comes to multi-platform sensors, the works published in
[75, 76] propose to combine TDOAs with AOAs, by taking advantage of the com-
plementary availability of these two observables. With the same measurements, the
decentralized location estimation capable of working without line of sight is intro-
duced in [68] through the expectation-maximization algorithm, where the computa-
tion of the statistics is distributed over the sensors communicating with each ohter.
A special mention finally goes to the single-sensor method presented in [77], which
is fully hybrid: it initializes an iterative LS estimation with a coarse search over the
three-dimensional space of angle, heading, and frequency measurements for differ-
ent possible emitter altitudes. These observables are jointly estimated with parallel
CAFs, which are computed between the direct-path signal and the replicas reflected
by the terrain at different angles. Thus, the spatial diversity necessary to resolve the
nonlinear equations is obtained through the scattering environment, without any
prior knowledge about the locations of the virtual sensors. This remarkable lack
of assumptions distinguishes this system from most of the later methods exploit-
ing multipath for localization, which assume known scatterers (i.e., a database of
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ray-tracing data) and, therefore, do not comply with the application of interest.An
overview on this topic is available in [78].

Tracking of Multiple Targets

Without making simplifying assumptions, the passive localization of an unknown
number of emitters is clearly a more complicated task compared to the same ap-
plication for a single emitter. This challenge has been historically tackled by using
the signal received at the elements of one antenna array. The well-known paper
in [79] is arguably the first one to introduce the use of subspace algorithms for lo-
calizing narrowband sources. It estimates the AOAs of the emitters by analyzing
the eigenvectors of a cross-power spectral density covariance matrix with the multi-
ple signal classification (MUSIC), which enables the distinction of frequency compo-
nents due to different emitters. Alternatively, the estimation of signal parameters via
rotational invariance technique (ESPRIT) relaxes the requirements in terms of com-
putational power and precision of the array calibration at the cost of more antenna
elements. Following the emergence of multiple-input multiple-output (MIMO) sys-
tems, these algorithms have become of renewed interest for wireless communica-
tions and bistatic radars, for instance in [80, 81], with efforts to reduce their often
prohibitive complexity. With MUSIC and ESPRIT, a N-element antenna array can
resolve up to N-1 sources, whereas other techniques are necessary to increase the
degrees of freedom (e.g., [82]). Instead, when a two-dimensional scenario is a rea-
sonable approximation of the reality, the simplest possible way of localizing multiple
emitters based on AOAs is clustering the intersections of redundant bearing lines,
which depart from a movable platform or more than one. When the use of possi-
bly cumbersome antenna arrays is not practical, another option is to resort to the
TDOAs that can be simply obtained by digitally processing the signals from sen-
sors synchronized in time. In such a multi-platform arrangement, the challenge is
moved toward the data association problem: the set of correlated measurements col-
lected by the sensors should be grouped into subsets, each of which is originated
from the same target for a number of emitters not known a priori. A solution based
on the assignment formulation is proposed in [83], which adapts the multiple KFs
tracking the signal sources and recursively exploits their prediction estimates to save
computations. By extension, the same problem affects TDOA/FDOA pairs. A simi-
lar spatial uncertainty is also present in bearings-only systems, when the AOAs are
measured by asynchronous sensors deployed at distance from each other. In this
situation, the algorithms described in [84] recursively estimate the target existence
probability, by also taking into account clutter measurements that randomly arrive
at the antenna arrays. It is worth mentioning that this problem has been extensively
addressed since a while for localizing sources of acoustic emissions with TDOAs, by
means of more advanced techniques (e.g., expectation maximization), such as those
cited in [85].
Other methods for multiple emitter locations in [86] circumvent the data associa-
tion problem by considering disjoint emitters. The disjointness property states that
the signal sources do not interference with one another either in time of frequency.
In other words, they are confined over separate time interval or frequency bands,
which make their respective sets of TDOAs and FDOAs distinguishable. This is a
very convenient property that does not realistically apply to the subject of this thesis.
Particle filters (PF) and, more generally, sequential Monte Carlo methods provide a
powerful and flexible heuristic-like tool for recursive estimation. Over the last twenty
years, their ability to simultaneously track posterior probability distributions have
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progressively being applied in various ways to solve both the two distinct problems
of data association and multiple target localization at once, as examined in [87] and
later works. This happened as well for many other applications, such as positioning
(e.g., [88]). A premise is necessary to understand the potential of PFs. The KF is a
well-established minimum MSE estimator that is optimal, and so equivalent to the
fully-efficient ML estimator, if the joint PDF of the state (i.e., the unknowns) and the
measurements is Gaussian. Necessary but not sufficient conditions for this property
to hold are the linearity of the stochastic models for both the state prediction (e.g.,
the emitter motion) and the observation, and the Gaussian nature of their respective
noise distributions. This is clearly not the case for the highly-nonlinear class of es-
timation problems, of which localization belongs to, especially under non-Gaussian
noise. Besides suboptimal versions of KFs, another solution is, therefore, resorting to
PFs, which are not subject to the restrictions imposed by the linearity and Gaussian-
ity hypotheses. The basic idea behind them is the exploration of the state space with
a grid of random probability masses, also known as particles. In brief, a weighted
set of particles approximates the PDF of the state conditioned to the observations
through importance sampling. At every recursion, this set is propagated through
the prediction, which is performed for every particle separately, and their weights
are updated according to the likelihood of the new measurement combined with the
former weights. In between these two steps, a resampling operation is in charge of
dismissing the particles with lower weights in order to concentrate them where the
likelihood is supposedly higher. It is relevant to the discussion to underline that
several issues affect the behavior of these filters, namely the poor accuracy in high-
dimensional state spaces, the risk of particle depletion, the difficulty of evaluating
the necessary amount of computations in advance, and the significant complexity
compared to an equivalent array of KFs, just to name the main ones. These aspects
are indeed subjects of an active area of research that is out of the scope of this state-
of-the-art review. An overview on Bayesian filtering is given in [89]. An example
of PF developed for multiple target localization is in [90]. Plenty of others may be
found in the literature, especially for acoustic sources and WSNs. Mixed implemen-
tations of KFs and PFs also exist. The method described at the end of the present
chapter for a similar application scales an array of multiple single-emitter trackers
(e.g., KFs), rather than making use of one multi-emitter tracker with a PF.

3.1.2 WSN Non-Cooperative Sources and Jammers

The general framework concerning the passive location estimation of non-cooperative
signal sources has been ported to the WSNs of anchor nodes, in the direction of
higher efficiency in terms of energy and communication bandwidth. In this con-
text, examples of systems enabled by TDOA and/or AOA measurements are in [75,
91]. Instead, the supposed defect of collaboration excludes all the methods based on
absolute TOAs, because they presume the establishment of a source-node message
protocol for synchronization. The observation of TDOAs is achievable by equipping
the sensors with GNSS receivers or low-drift clocks accurate at the nanosecond level
(e.g., atomic clocks). Since these implementations are hardly viable for WSN, the
publication in [92] presents an ML estimator for passively estimating both the loca-
tion of multiple emitters and their internal clock offsets with asynchronous nodes.
For the same reason, networks of low-power and low-cost devices oriented to the In-
ternet of things (IoT) prefer less sophisticated techniques, either distributed or cen-
tralized, which utilize RSS measurements. This choice is made in manifold scientific
papers related to this field, for instance in [93, 94] and those cited in there. However,
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they usually assume the a-priori knowledge of the source transmit power. Locations
and powers of multiple sources are instead jointly estimated through a sequential
Monte Carlo method in [95]. Theoretical and experimental comparisons between
the location accuracies achieved with TOAs and RSSs are provided in [96] and [97],
respectively.
A whole branch of communications engineering research is dedicated to the denial-
of-service attacks carried out by wireless network jamming. There is indeed a broad
variety of interference attempts from the physical to the network layer, and, conse-
quently, of countermeasures, which are surveyed in [98, 99]. Jammer localization
methods mostly leverage the effects of interference on either the network topology
or the power levels received at the various nodes. The first approach relies on range-
free metrics, such as packet delivery ratios in [100], lists of neighbor nodes and hear-
ing ranges [101], and changes and geometries in the connectivity matrix of nodes
[102–105]. These metrics are sensitive to the node density and distribution in space
as well as variations and irregularities in the propagation environment. Even under
favorable conditions, they suffer from poor resolution and reliability. As a conse-
quence, they are effective in localizing from one jammer to a known number of jam-
mers, though only when the interferes are either far from each other or sequentially
turned on. The second approach offers potentially higher accuracies by inferring
the multiple jammer locations through the respective signal strengths. Their trans-
mit powers are in turn estimated from the packets collected by the jammed nodes.
However, the estimation of the jamming signal strengths is a challenging task, be-
cause interference is embedded into the regular network traffic. This challenge is
overcome in [106] for the simple case of jammers that constantly transmit regardless
of whether the channel link is busy or idle.
The difficulties in retrieving AOAs, TOAs, and TDOAs in persistent non-line-of-
sight conditions has motivated research on techniques that create a database of unique
fingerprints, namely received signal features, with respect to the possible source lo-
cations. Conventional fingerprinting relies on pre-trained and predicted maps of
received power levels or certain information about multipath-rich channels. The
measurements collected are then matched with these maps both for positioning and
localization in WSNs (e.g., WiFi and WiMAX), which are deployed either indoors
or in dense urban settings. Works based on RSSs in this field may be found in
[107, 108] and the citations therein. However, the matching algorithms are effective
only within the well-surveyed regions of the propagation environment. Moreover,
both the complexity and the lack of knowledge of the source signal center frequency,
structure, and time-varying transmit power complicate the feasibility of fingerprints
based on RSS and channel impulse response. All these aspects are highlighted by
a recent publication in [109] that proposes the use of AOAs of the scattered signals
as fingerprints, which are extracted from the phase difference between the elements
of an antenna array, weighted according to a cross-correlation coefficient between
antennas, and interpolated in the spectral and spatial domains.

3.1.3 GNSS Receiver Jammers

The intent behind the previous subsections is to widen the discussion on passive
localization systems of interferers “beyond GNSS”. Indeed, it is the opinion of the
author that the field of existing jammer localization methods in the context of GNSS
receivers is still not as mature as adjacent research areas, which deal with the local-
ization of generic emitters, especially when it comes to multiple targets.
An up-to-date review of this topic in the field of countermeasures to interference
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for GNSSs is available in [110], which we retrace to complement the references of
this subsection, lingering on the most relevant papers cited by it. Particularly, we
focus on cost-effective software techniques based on trilateration, which is indeed
suitable to the use of inexpensive and portable DoOs. Such a restriction excludes tri-
angulation, because the direction-finding capability is enabled by additional bulky
hardware at the receiver front end. Interference localization methods based on AOAs
have been investigated since the early works concerning GPS, for instance in [111,
112]. Predictably, they proved to achieve average accuracies highly dependent on
the jammer-sensor distances and the measurement errors, up to hundreds of meters.
Nowadays, newer systems tend to partially or totally abandon direction-finding
techniques, because bearing measurements are not suitable to dense urban scenar-
ios, which is where the highest concentration of jammers is likely to occur.
Once they arrive to the receiver, GNSS signals reside below the noise floor and are so
easily overpowered by any interference transmitted nearby. Nevertheless, this vul-
nerability has a bright side: any anomaly in the RSS could reveal jamming attempts
and indirectly localize the respective origin. Standard GNSS receivers are equipped
with an automatic gain control (AGC) that is responsible for minimizing the quan-
tization loss by adjusting the gain at the output of the low-noise amplifier (LNA)
in order to spread out the input signal over the full dynamic range of the following
analog-to-digital converter (ADC). The larger is the finite set of bits, the less sensitive
is the SNR degradation to the variable gain of this second amplification stage. The
AGC/ADC loop is tuned by a feedback voltage, which can be exploited for measur-
ing the power received from strong signals. This in-built utility avoids the need for
special-purpose implementations and is the reason why jammer localization systems
have been developed based on RSS observables acquired from the AGC, such as in
[113]. In reality, though, the domain of the nonlinear voltage function with respect
to the emitter power and distance is actually restricted within a two-dimensional re-
gion due to the front-end limitations. The higher bound is caused by the AGC/ADC
saturation, which likely occurs if the receiver is in proximity to the jammer, unless a
switchable attenuator is included. The higher bound is because the voltage resolu-
tion may be insufficient for low-power or distant emissions. Such limitations imply
that the useful measurements can be collected only from the receivers not too close
to or far from the jammer. The use of the AGC is also suggested in a paper in [114],
which outlines the main challenges in creating a national infrastructure to detect and
localize jammers for both GNSS receivers and cellulars. This system is built around
the crowdsourcing of AGC voltages from a multitude of DoOs, which are usually mo-
bile phones. Every phone at a suitable distance from the jammer could report to a
central server its own position and orientation (i.e., the antenna gain) together with
a jammer-to-noise power ratio (JNR) estimate. This measurement is obtained by
a meter that observes the RSS from the non-saturated AGC. The poor accuracy of
the individual observations is compensated on the server side by aggregating the
measurements from a huge crowd of devices. And even so, measurement noise,
the propagation effects and the uncertainty on locations of the jammed devices may
lead to significant biases, depending on the scenario. For instance, according to the
best-case scenario described in [114], less than 30 meters of accuracy is achievable by
processing the LS best fit over a grid of hypothetical locations for the JNRs reported
by a thousand phones, which uniformly cover a 1-km square area. The exchange
of AGC levels through the infrastructure of vehicular ad-hoc networks is also being
mentioned in [115] as a countermeasure to in-car jammers, which could compromise
the safety of future intelligent transportation systems. Likewise the AGC voltage, a
metric readily available from the components off-the-shelf inside GNSS receivers
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is the post-despreading C/N0 estimate for every tracking loop. Hence, drops in the
satellite signal strengths represent a basic tool for detecting and localizing jammers.
Recently, the paper in [116] explored the accuracy of a stationary jammer location
estimation with field observations of C/N0 levels, that are collected around the in-
terferer both from a two-row grid of 15 mobile phones and a sensor synthetic array
made by one moving device. The experiments carried out outdoors show errors
lower than 10 m, which nonetheless result from a crowd area or a sensor trajectory
that lie within few tens of meters. Moreover, these tests neglect the realistic and ad-
verse conditions that put in question the feasibility of any localization method solely
relying on C/N0s for real-world applications. The most important shortcomings in-
clude the lack of information about the in-built C/N0 estimation of GNSS chipsets
(e.g., examines manifold choices), the possible poor sensor geometry, large distances,
and environmental small- and large-scale variations. The same crowdsourcing ap-
proach is also studied in [117], where an a-posteriori probability map of a single
jammer location is built through a PF. The interferer is localized at the intersections
of probabilistic coverage circles, which are simply modeled with free-space attenu-
ation. Again, both in [116] and [117], the tacit supposition is to have a huge redun-
dancy of measurements that compensates for the discrepancies between the model
and the reality. As an alternative for large outdoor environments, where adopting a
path-loss model that mirrors the actual behavior of the propagation channel is pos-
sible without surveying, a generic localization method is studied in [118]. Here, a
GNSS interference scenario is replicated with WiFi devices that collect DRSS mea-
surements. The range of radial accuracies obtained is on the order of tens of meters
with four or five sensors within an area less than 100 meters wide. The same scheme
is adopted in [119], which performs a simulation campaign to assess the impact of
several factors on the performance of a KF. Different numbers of randomly-placed
sensors, log-normal shadowing variances, and quantization bits lead to location bi-
ases lower than 20 meters over a flat surface of 500-m side, when considering more
than 100 sensors.
The reliability of power measurements tends to degrade for long distance and sparse
sensor arrangements. The superior accuracy granted by TDOAs over RSS and DRSS
observables is the reason why there exists a rich literature about jammer localization
based on differential delays, which are measured between permanent or deploy-
able and time-synchronized sensors. These latter ones may be distant from each
other and need to be connected to a central unit that processes raw pre-despreading
samples to retrieve the TDOAs, usually through cross-correlation. First efforts in
this direction are the hyperbolic localization methods described in [111, 113]. An-
other example is the GNSS Environmental Monitoring System (GEMS), which was
followed by various publications. The paper in [120] compares with numerical sim-
ulations the performance of several cross-correlation methods for TDOA estimation,
which overall can achieve sub-meter errors in localizing a jammer even for nega-
tive JNRs. The scenario simulated assumes a free-space propagation between three
equally-spaced sensors delimiting a 4km-square area and the interference source lo-
cated in the line of sight at the center. The incorporation into the sensors of GEMS
of direction-finding capabilities is demonstrated in [121] to bring several benefits to
the TDOA accuracy, by controlling the receiver radiation pattern in a twofold way.
At first, the antenna array can steer a null at the jammer and a beam at one of the
visible satellites in order to enable precise synchronization in time between sensors
in spite of the in-band interference. Then, once the AOA of the jamming source is
established, steering a beam toward this direction improves the JNR and so the pre-
cision of the TDOA observation. The system sensitivity is thus potentially extended
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to intercept weak jammers and, equivalently, to cover distant ones. The analysis of
aspects of TDOA estimation and the AOA addition is finally merged in [122]. The
evaluation of stand-alone TDOA as well as hybrid TDOA/AOA localization perfor-
mance of UAVs is inspected in [123] and [124], respectively. In the latter paper, the
direction-finding capability is also used to aid the initialization and convergence of a
KF. Although the great potential in terms granted by adding bearing measurements,
a well-known issue in finding the sight lines of very weak jammers (i.e., -20 dB of
JNR) is that GNSS signals are usually stronger than interference and thus they impair
the AOA estimation. This is akin to the classical near-far problem, where a strong
signal masks a much weaker one. For instance, this effect cause self-interference
among satellites visible with far different C/N0 levels. Existing solutions for pre-
venting this issue inside GNSS receivers are summarized in [125]. Among them, a
subspace projection technique is ported in [126] to the realm of jammer localization
with antenna arrays. Similarly, the same technique is applied in [127] to reject GNSS
signals, which create cross-correlation peaks that can be mistaken for weak terres-
trial sources, thus limiting the sensitivity and so the coverage of many interference
localization systems based on trilateration. Besides, these peaks could also interact
with those produced by interference, thus causing a bias in the resultant TDOA es-
timates. A simple non-coherent cancellation technique is presented in [128], which
essentially proses to subtract the mean absolute value of the non-interfered cross-
correlated function from the interfered one. The publication in [129] gives an insight
into the detrimental impact of the cross-correlation products of GNSS signals along
with jamming ones on the detection and localization performance of the GEMS, de-
pending on the distances among sensors. Briefly, if a satellite signal is received at
two close locations, at exactly the same time and with the same sampling frequency,
then a sharper cross-correlation peaks arises around zero as a result of the alignment
in time. Since the same likely happens for the other visible satellites, their peaks sum
up into one with significant amplitude, which can exceed that of the product of inter-
ference. As a consequence, this scenario is more prone to the aforementioned near-
far issue. On the contrary, when the distance between sensors increase, the satellite
signals are received at slightly different time instants, thus separating and smooth-
ing their respective peaks, and the interference is easier to be discriminated. Another
aspect of the GEMS, as well as any other system relying on TDOAs, is to ensure the
synchronization of spatially-distributed sensors under jamming attacks. Indeed, any
time misalignment between the signals received degrade the final location estimate.
An experimental evaluation of the drifts experienced by low-cost and short-stability
temperature-compensated crystal oscillators (TXCO) typically used in GPS receivers
is carried out in [130]. These on-board clocks drive the down-converter to intermedi-
ate frequency or baseband and the ADC. As a consequence, frequency offsets cause
both a spectral dilation and a shift of the signal in the sample record, which pro-
gressively contribute to the drift due to time offsets. Throughout the experiments,
diverse jamming waveforms and transmit power levels are used to cause immediate
loss of lock in all the channels of a receiver, which then goes into a holdover mode,
namely using the local oscillator for open-loop synchronization. During the GPS
outage, without being disciplined by the satellite clock, the responses of the timing
and the frequency offsets do not show any noticeable drift at least before a certain
number of seconds have elapsed after the interference is turned on. This interval
of time is long enough to switch to a backup timing source or to perform a number
of TDOA measurements. A longer holdover is possible with higher-quality oven-
controlled crystal oscillators (OCXO) and atomic clocks, which are expensive and
power-hungry though. Other options are the recovery of rough timing information
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from opportunistic signals, such as those of the base station of cellular networks
and WiFi access points, and the exploitation of the multi-frequency (e.g., upper and
lower L bands) and multi-constellation (e.g., GPS, Galileo, GLONASS) diversity.
However, besides the cost that comes with it, such a redundancy is possibly use-
less against jammers that scan all the bandwidths allocated to these communication
and navigation systems. This is actually the case of most civilian devices that are
already commercialized online, according to [131]. For this reason, alternatively to
the often impractical implementation of antenna arrays proposed in [121] at the sen-
sor front ends, the work in [130] explores centralized post-processing techniques,
which re-align the received signals in time and correct the TDOA estimates. The
time and frequency offsets between the clocks of two sensors is determined offline,
by demodulating the navigation data from a common-view satellite, namely visi-
ble at the same time at both sensors. The time-varying drift is modeled according
to the intervals between correlation peaks of the same time-of-week message. The
latency and the inability to acquire and track any of the GPS signals buried under
the interference are the main concerns of using the post-processing techniques. Sim-
ilar and yet simpler systems than the GEMS have been tested in [113, 132–134] by
setting up a network of monitoring stations, which are equipped with low-cost USB
front ends and connected to a server via TCP/IP. The server computer synchronizes
the incoming data streams with the last time reference made available by a software
GNSS receiver after the jammer is triggered. In this initial period, it is still possible
to compute the exact time instants each sample was recorded together with the exact
clock frequencies of the various front ends. Afterwards, the datasets are aligned in
time and frequency by solely leveraging the TXCOs on board of the sensors. More
specifically, a first-order model of the drift is used offline to correct the offsets by re-
aligning and resampling the signals from different sensors before cross-correlation.
The claimed response time to the jamming attack is on the order of few minutes,
dependent on the data transfer speed and the computational power. The sensors are
separated by large distances in order to avoid undesirable near-far effects and en-
hance both the coverage and the geometry. Precursor of the GEMS, the generalized
interference detection and localization (GIDL) prototype described in [135] measure
TDOAs by exclusively using closely-spaced and fixed baselines of antenna arrays,
which are kept synchronous by sharing the clock from the a centralized processor via
coaxial cables. This system is conceived as an upgrade to the Local Area Augmen-
tation System (LAAS) for aircraft precision approach and landing. The extension
of the interference localization capability to simultaneous jammers is investigated
by the testbed developed in [136], which runs subspace (i.e., MUSIC) and LS fitting
algorithms. For the sake of simplicity, perfect knowledge of the number of targets
is assumed to be available from the analysis of the eigenvalues of the cross-power
spectral density covariance matrix. This localization method draws from precedent
seminal works about super-resolution techniques in [79, 137] for radar applications.
The aforementioned issues of synchronization, near-field effect, and data associa-
tion are addressed as summarized in the following. Sensors are equipped with the
tightly-coupled architecture introduced in [138], so that they can lock at the nanosec-
ond level to a common reference signal, which is coherently sampled together with
the sample stream embedding the interference. The reference may be provided by
signals of opportunity that, yet, may be themselves affected by the interference. As
suggested by the authors, a simple and effective workaround is to pick up the signal
of a GNSS satellite by pointing a directional antenna to the sky, which then would
filter out any source at low elevation angles, including the jammers on ground. In
such a case, because the reference lies within the same band of the interference, it is
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canceled before the parametric search for the TDOAs of multiple jammers with MU-
SIC and an iterative LS refinement. This subspace algorithm works properly under
the assumption of interference flat power spectral densities, which holds whenever
the jammed spectra are larger than the receiver bandwidth. Moreover, it is proven to
have limited resolution for closely-spaced jammers, especially if their JNRs are rela-
tively low and the integration time short. Once estimated, the TDOA measurements
have to be associated to their respective jammers. The solution proposes a simple
so-called phase closure statistic, which is computed by combining a triad of observ-
ables measured by distinct sensors and compared to a pre-fixed threshold to decide
whether they come from the same origin. This principle is simple but can hardly be
used to distinguish between the direct path and possible multipath replica. The field
tests reported in the paper achieve a 20-m accuracy in an area less than 1 kilometer
wide. Last but not least, the publication in [131] is meaningful for the purpose of the
following discussion. Indeed, it proposes to exploit the typical sawtooth feature of
GPS jamming waveforms in order to calculate the TDOAs in lieu of the usual cross-
correlation. The aim is to reduce the communication bandwidth by shifting most of
the computational load for the TDOA estimation from the central processor to the
individual sensors. Every sensor transfers the estimate of its own time of arrival,
which is equal to the interval between two consecutive crossings of the IF through
a certain frequency. The IF is found at the peak of the power spectrum, which is
computed with the FFT of sequential batches of samples. De facto, this procedure is
equivalent to the IF estimation based on the STFT with non-overlapping windows.
The significance threshold is set deterministically to some fixed fraction of the peak
power in the current batch. Implicitly, the window size should be adapted according
to the incoming waveform. Similar concepts have inspired the use of TF analysis for
interference localization that is illustrated at the end of this chapter.
For the sake of comparison, the work in [139] analyzes the theoretical performance of
any passive localization system, in terms of CRB and dilution of precision (GDOP),
which are independently achievable by asymptotically-efficient ML estimators with
TDOAs, AOAs, or DRSSs. The behavior of these systems change depending on the
arrangement of the sensor array with respect to the jammer. Some of the considera-
tion made are reflected by the results illustrated in the next sections.
Of particular interest are the developments made in [140, 141], the authors of which
contributed to the research work described in the following. The former paper
deals with the localization of closely-spaced jammers by taking advantage of the
IoT paradigm and the potential of cloud computing. The application scenario out-
lined is that of a densely-populated areas covered by a variety of RoOs that syn-
chronously gather snapshots of multiple jamming signals in a crowdsourcing fash-
ion. The datasets collected are uploaded on the Internet to be processed by a cloud
platform, which is supposed to have enough computational power at disposal to
estimate and then cluster TDOA/FDOA pairs in nearly real time. The differential
delay and Doppler frequency shifts are jointly estimated from the CAF. The ability
to resolve the ambiguity in delay-Doppler domain due to the mutual interactions of
more jammers is granted by leveraging the sawtooth pattern of jamming waveforms:
the expected CAF is modeled as the output of a combination of input linear chirps
scanning the whole receiver bandwidth. This model is then exploited to extract the
TDOA/FDOA pairs as the iterative solutions of a minimization problem. After-
wards, a clustering operation sorts these observables in the position domain, instead
of the delay-Doppler one: the measurement pairs are separated by comparing the
respective time components to the differential delays that correspond to the points
of a grid of possible positions. The clusters are formed wherever enough consensus
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(A) HackRF One
(greatscottgadgets.com/hackrf/).

(B) bladeRF (nuand.com).

FIGURE 3.1: Examples of front ends for DoOs.

is reached between the receivers, namely when enough observables (e.g., three) are
close to the same point. This passage is essential to identify the number of jammers
and overcome the issue of data association. Moreover, it allows for discarding the
outliers due to false detections, measurement clutters, and model mismatches. For
every cluster, the TDOA/FDOA pairs associated to it are fed to a weighted LS esti-
mator that produces the source location. Given N-1 jammers, at least data from N
devices are necessary to resolve the equations. A consistency check is made between
the final solution and the initial position point. With four DoOs capturing 10-ms
snapshots, the simulation results show accuracies on the order of few meters for two
jammers lying at 40 meters of distance, inside the 100-m squared area between the
receivers. The clustering approach seems a promising approach for tackling mul-
tiple jammers, despite their physical proximity and the effects of the surrounding
urban or indoor environment. Alternative methods for multi-target tracking use
super-resolution techniques with the same signal model of [140], since they likewise
assume a flat spectrum over the visible frequency band. The paper in [141] exam-
ines an experimental setup for the synchronization of SDRs. These boards can record
GNSS or LTE signals. The recording is triggered through a 1-Hz square pulse that
is generated by either the internal clock or an external consumer-grade GNSS re-
ceiver. The mechanism described represents an enabling technology for the use of
IoT sensors as DoOs in manifold applications, such as jammer localization and coop-
erative/opportunistic positioning. The experiments with the signal received from a
single LTE base station confirmed that time offsets is practically bounded within one
sampling period. The use of the on-board clock as trigger introduces a further fre-
quency drift. Naturally, the same performance is achievable also with GNSS signals,
whenever the number, the geometry, and the C/N0 levels of the visible satellites
are appropriate. The remarkable result is that SDRs operating at 20 Msps can be
synchronized with offsets lower than 50 nanoseconds, when using GNSS time ref-
erence. This sampling rate is well within the reach of the specifications of popular
and inexpensive boards like the HackRF One and the bladeRF, which are depicted
in Fig. 3.1. Hereinafter, we will refer to similar front ends as the radios for low-cost
and low-power DoOs.

https://greatscottgadgets.com/hackrf/
https://www.nuand.com/
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3.2 Snapshot Tracking of a Single Jammer

In this section, we resume the application described in [140, 142] within a simplified
scenario: a passive system for tracking the position and velocity components of a sin-
gle and movable jammer is built around a cost-effective trilateration method, which
is enabled by the cooperation of DoOs. Without loss of generality, the scenario is con-
sidered as two-dimensional. Therefore, we might define the state of the jammer as
the column vector xk = [xk yk vxk vyk ]

T, where (xk, yk) and (vxk , vyk) are the scalar
components of the position and velocity, respectively, at the time epoch of integer
index k ∈ Z. Since four are the unknowns in this vector, then four is the mini-
mum number of DoOs necessary to collect simultaneous and independent observables
that are related to xk. These devices are identical transceivers equipped with basic
front ends that periodically capture snapshots of raw samples, which are all seamlessly
affected by the jamming attack. After reception, the sample records are sent to a cen-
tral processor possibly hosted on the cloud. Here a digital and real-time estimation
process takes place in two steps. At first, the snapshots coming from every pair of
DoOs are cross-correlated to retrieve TDOA/FDOA pairs. Secondly, these measure-
ments used to update the knowledge of a recursive and suboptimal nonlinear estima-
tor, which tracks xk based on a linear approximation of the observation equations. The
same two-step approach is followed in [64], with the difference that here we take
advantage of several snapshots over time by means of one conventional KF, instead
of a more sophisticated bank of KFs. The recursion is also one of two major as-
pects that distinguishes this work from that of [140], where a weighted LS estimator
is repeated independently for each sets of observables gathered at the current time
epoch. The other difference is our restriction to a single jammer, which nonetheless
we will drop later in this chapter. An overview of the application scenario described
above is shown in Fig. 3.2.
The present subsection summarizes the findings published in [4]. The intent of this
study is to get an insight into the impact of the snapshot rate on the final position
and velocity accuracies. To focus the analysis on the effects of the snapshot density
in time, some simplifying assumptions have been made to neglect other sources of
error.

• The DoOs are stationary at known locations. – In reality, these devices might
be moving and the inevitable inaccuracies on their locations increase the MSE
according to the CRB derived in [55].

• The front ends are perfectly synchronous in both time and frequency. – This
assumption is a usual simplification in the research literarute on jammer lo-
calization methods based on TOA, TDOA, and FDOA observables. It is here
adopted to evaluate only the error due to the snapshot rate, without taking
into account the error accumulating over time when the snapshots of differ-
ent receivers cannot be aligned in frequency and, more importantly, in time.
However, if we consider the DoOs initially synchronized to the nanosecond,
for instance by using as time stamps the pulse per second provided by an on-
board GNSS chipset [141], the impact of the synchronization error rising as
soon as the GNSS signals are lost is actually negligible during an initial tran-
sient. Two facts help supporting this claim. First of all, since receivers fall back
to the on-board clock in the absence of the GNSS time reference, a certain time
alignment among them last for tens of seconds before the instability of com-
mon TCXO clocks (i.e., drifting up to 100 µs per day) could cause a meaningful
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degradation (e.g., beyond 50 ns) of the localization performance, as experimen-
tally measured in [130, Fig. 5]. By that time, if the jammers causing the outage
could be localized nearly in real time, their location are already known with
high accuracy. Secondly, as argued in [136], a simple directional (e.g., helical)
antenna pointing at the sky might enable the receivers to lock with one satellite,
even under jamming attack. This is possible because the jammers are usually
terrestrial sources at elevation angles comparable to the ground. Last but not
least, any offset could be taken into account by simply increasing the noise af-
fecting the measured TOAs or TDOAs, according to [141], without necessarily
relaxing the assumption of ideally synchronous receivers.

• The jammer is continuously transmitting. – Procedures to reveal the undergo-
ing attack and to handle the tracking accordingly are not necessary. Jamming
detection is out of the scope of our analysis.

• The jammer is a non-maneuvering target moving at constant speed along a straight
and stationary trajectory. – We may legitimize this model by supposing that
the interval between two consecutive observations is short enough to average
any slow acceleration in between with a local and constant velocity. A more
general approach to track time-varying maneuvers is to ingrate the KF with an
interactive multiple model (IMM) estimator, such as in [83].

• Both transmitting and receiving antennas are isotropic and the environment
between them is fully characterized by a free-space path loss model equal in
all directions. – This choice is a another common practice in the research liter-
ature of jammer localization methods relying on TOAs or TDOAs observables.
For instance, it is made in [131] and many other papers cited throughout the
manuscript, even though it contrasts with the reality of most of the application
scenarios. Indeed, since the signal source to localize is terrestrial, the main ob-
stacles in measuring the time of flight of the direct propagation path between
transmitter and receiver are the lack of line of sight and the presence of mul-
tipath fading. The estimation of arrival times in a propagation environment
affected by shadowing and scattering is by itself an open issue under research
for many applications (e.g., positioning with signals of opportunity), which,
however, is arguably beyond the scope of the topics in this thesis. Therefore,
the choice made here is to overlook the generic and unfavourable propagation
phenomena affecting the channel in favour of other and more specific aspects
related to the signal processing. Of course, a final real-world implementation
of the system shall take into account all these effects. Alternatively, the sim-
plest workaround to avoid much hustle is optimizing both the arrangement
and the radiation patterns of the receivers in order to avoid blockages and
reflections by the surrounding environment, while still covering the area of in-
terest. This is what usually done to install monitoring stations in outdoor en-
vironments, as for example around the airport in [143]. In the case of moving
DoOs, however, the careful design of the receiver deployment is not feasible.
Thence, besides sophisticated techniques (e.g., super-resolution resolution of
multipath), a system of DoOs is supposed to count on a very large number
of receivers and a massive availability of redundant observables, so that the
measurements excessively corrupted (e.g., related to a delayed replica of the
direct-path signal) can be discarded without interrupting the localization of
the source. The principle of redundancy is exploited by crowd-sourcing signal
records in [116].
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• The interference power received by every DoO is always below the saturation
threshold – The jamming attack has to come from a transmitter far enough
from the receivers not to saturate the front ends. In the close proximity, in
fact, the LNA is forced to work at an operating point in the nonlinear region
of the characteristics with consequent distortion. Next, the AGC decreases the
variable gain to the lower end of the available range. If the resultant degrada-
tion of the voltage resolution at the quantizer is not sufficient to compensate
for the excessive signal strength, the ADC is saturated and no information is
recoverable about the jamming waveform. Hereinafter, we overlook the quan-
tization losses and limitations due to the AGC/ADC loop, which implies that
our DoOs are necessarily devices equipped with sufficient bit resolution (e.g.,
between 8 and 14 bits) to take accurate TDOA measurements. In the follow-
ing, the incoming signal is so ideally digitized into in-phase and quadrature
(I/Q) raw samples, which are encoded with 64 bits each according to a double-
precision floating point format. Instead, no assumption is made on the power
level with respect to the sensitivity threshold of the receivers. Therefore, the
interference might be received with a power spectral density buried under the
front-end noise floor, hence with JNR lower than one. In our scenario, this sit-
uation may occur when the jammer is too weak or too far to be visible from all
the DoOs.
The implicit assumption of a sufficient bit resolution at the receivers is usu-
ally made in many papers dealing with jamming countermeasures (e.g., [116]),
despite the major importance of the ADC quantization in reality. Since the
methods proposed in this thesis are based on digitally processing the received
signals, it is worth to clarify the requirements imposed to the specifications of
DoOs. In fact, most of consumer-grade GNSS receivers feature 1/2-bit ADCs,
which make them very likely to be saturated by the interference power re-
ceived from jammers either too close or too powerful. But even when satu-
ration does not occur, the incoming jamming waveforms are distorted by the
digitization loop, thus frustrating any attempt of recovering the arrival times
necessary to localize the jammers by trilateration. To avoid such an issue, the
definition behind the DoOs mentioned throughout this chapter shall be re-
stricted to exclude the entry-level receivers having low bit resolutions, which,
however, are the majority of the devices on the consumer market. Examples of
suitable and relatively inexpensive DoOs may be built with the SDR boards in
Fig. 3.1, which are equipped with 8-bit ADCs. They could capture even power-
ful interference signals that are passed through an attenuator in the absence of
the AGC. Likewise, other DoOs might mount robust GNSS receivers for safety
critical applications, which have from 6 up to 14 quantization bits (e.g., that in
[144, 145]). Therefore, when crowd-sourcing records of received interference
samples from DoOs as proposed in [116], it is necessary a server-side selection
of the snapshots that come from quantizers that are not saturated and have
enough resolution. For an insight into the effect of poor resolutions (i.e., 2/3/4
bits) on the jammer localization performance with DRSS measurements, the
reader may refer to [119].

• The GNSS signals are absent. – This assumption allows us to neglect the near-
far problem that would arise when the JNR is negative and comparable to the
power received from the satellites. A simple solution is presented in [128].
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FIGURE 3.2: Application scenario where a jammer is tracked through
simultaneous interference snapshots.

3.2.1 Maximum-Likelihood Estimation of TDOA/FDOA Pairs

Before being filtered and digitized and after being down-converted to baseband, the
complex envelope of the analog jamming waveform d(t) with respect to the time
variable t might be formulated as a train of linear chirps:

d(t) =
√

Pd(t)
∞

∑
r=−∞

ψ
(
t− (r− 1)T0

)
(3.1)

where Pd(t) is the interference power at the antenna input and T0 is the repetition
period in the sawtooth function ψ(t), which is defined as

ψ(t) = ψ(t + T0) =

{
exp

(
jπ(−BRFt + BRF

T0
t2)
)
, 0 ≤ t < T0

0, otherwise
(3.2)

with BRF denoting the chirp passband (i.e., dual-sided) bandwidth centered around
the carrier frequency fc at RF, which usually coincide with that of the GNSS sig-
nal. This formulation is fairly accurate, because realistic nonlinearities due to the
clock drift and the power amplifier do not actually compromise the linear rate of the
chirps. One may verify this fact from the spectrograms experimentally measured
at the output of the commercial jammers in [146]. Next, we may include into the
model the presence of complex noise by adding a white Gaussian stochastic process
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v(t) with zero mean, as usual. Thence, the noisy signal at the input of the ADC is

s(t) = (d(t) + v(t)) ∗ hLB(t) (3.3)

where hLB(t) is the impulse response of the front-end lowpass filter, which limits the
visible spectrum of d(t). Within every repetition period, the JNR is equal to

ρ =
1
T0

∫ T0
0 |d(t) ∗ hLB(t)|2dt
N0
2

∫ ∞
−∞ h2

LB(t)dt
=

2
T0N0Beq

∫ T0

0
Pd(t)dt =

2〈Pd(t)〉T0

N0Beq
(3.4)

where Beq is the equivalent noise passband bandwidth of the front-end filter, and N0
is the single-sided noise power spectral density.
Owing to the need for a timely localization, we can determine the relative delay and
Doppler frequency shift corresponding to a single jammer by examining the CAF.
Let us first suppose that two noisy complex envelopes s0(t) and s1(t) are simultane-
ously received at two separate locations and only contain a common jamming wave-
form d(t), which has traveled along the direct propagation path in the line of sight.
We might then reformulate the jammed signals in the form of Eq. 3.3 to include dis-
tinct complex attenuation factors A(t), delays τ(t) and frequency shifts ν(t), which
depend on the distance and the velocity of the jammer with respect to the two fixed
receivers, as follows

s0(t) = A0(t)d(t− τ0(t)) exp(j2πν0t) + n0(t) (3.5)

s1(t) = A1(t)d(t− τ1(t)) exp(j2πν1t) + n1(t) (3.6)

where
yτ(t) = τ1(t)− τ0(t) (3.7)

yν(t) = ν1(t)− ν0(t) (3.8)

are the TDOA and the FDOA, respectively. The equations above entail the narrow-
band approximation: the Doppler shift is assumed as constant over the whole sig-
nal frequency range. This assumption is usually close to reality when the band-
width is narrow compared to the carrier frequency, which is the case of interference
on the GNSS bands. Therefore, if the complex envelopes in Eqs. 3.5 and 3.6 are
down-converted by receivers perfectly synchronized in time and frequency, their
continuous-time CAF is defined by

CAF(∆τ, ∆ν) =
∫ t+Tobs

t
s0(t′)s∗1(t

′ + ∆τ) exp(j2π∆νt′)dt′ (3.9)

where Tobs is the integration interval of the cross-correlation and here referred to
as observation time. For legitimately invoking the narrowband approximation, the
realistic delay spread caused by the jammer motion and the clock drift rate should
have a negligible effect on the correlation functions over the observation. As previ-
ously anticipated, the CAF is the baseline for the joint estimation of the TDOAs and
FDOAs produced by the jammer trajectory, which here play the role of the observ-
ables. Elaborating on the ML estimator in [147], we might extract the time averages
of the TDOA and FDOA as the the peak arguments of the CAF magnitude:

{ŷτ, ŷν} ≈ {〈yτ(t)〉Tobs , 〈yν(t)〉Tobs} ≈ arg max
∆τ,∆ν

|CAF(∆τ, ∆ν)| (3.10)
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where the approximation is due to the possible variations in time of the delays and
Doppler frequency shifts, when the jammer is moving. When only one jammer is
present, as we assumed, the CAF features a unique main lobe that corresponds to the
region where most of the waveform energy is actually concentrated. If this jammer
is also stationary, then the arguments of the peak are constant and so the equality
in Eq. 3.10 becomes exact. Under these favorable circumstances, the ML estimator
is efficient if the signal strength after cross-correlation greatly exceeds the additive
Gaussian noise. In more detail, given identical front ends, the SNR at the output of
the CAF is equal to

γ = ρeffTobsBeq (3.11)

where TobsBeq is the time-bandwidth product, also known as coherent processing
gain, and

1
ρeff

=
1
2
( 1

ρ1
+

1
ρ2

+
1

ρ1ρ2

)
(3.12)

defines the effective JNR that combines the levels at the inputs of the two receivers.
Therefore, the joint estimation in 3.10 is optimal if γ � 1 (e.g., higher than 10 dB).
Since the receiver bandwidths is practically fixed, the integration time should be
sufficiently long and the JNRs high enough, so that the observables tend to be mutu-
ally uncorrelated and independent of the observation location, even though they are
related to the same jammer. When the scenario complies with these conditions, the
unbiased ML estimator asymptotically achieves the CRB. As far as the the derivation
of this bound is concerned, we may consider a couple of reasonable simplifications:
the jammer energy spectral density is constant within Tobs (Pd(t) = 〈Pd(t)〉Tobs) and
flat over the receiver bandwidth Beq (BRF ≥ Beq). According to [147], the CRB is then
defined by the following diagonal matrix

CRB =

[
σ2

τ 0
0 σ2

ν

]
(3.13)

in which

στ =

√
3

πBeq
√

γ
(3.14)

and

σν =

√
3

πTobs
√

γ
. (3.15)

From Eq. 3.14 shows that TDOA measurements are especially precise when localiz-
ing a source of wideband signals, such as a jammer. Although commonly used in the
research literature, the ideal diagonality of this definition of CRB might omit some
strong correlations induced by specific non-stationary signals. This fact is plain to
see with the example of a linear chirp: a delayed version of such a waveform looks
the same as the one shifted by an equivalent negative Doppler frequency. Therefore,
intuitively, off-diagonal correlation terms do exist among the estimates of TDOAs
and FDOAs. A new derivation of the CRB for arbitrary deterministic signals is pre-
sented in [148] to account for these correlations. As for the sawtooth pattern that
modulates the jamming waveforms in Eq. 3.1, the consequent correlation is instead
neglected in the the classical CRB of Eqs. 3.13-3.15. Furthermore, this bound inher-
its another simplification from the model adopted for the measurement noise. The
model in Eq. 3.3 is valid when measurements are perturbed by non-systematic errors
due to thermal noise only. In reality, the accuracy of the observables depends also on
the stability of all the stages in the front-end processing chain. For instance, contrary
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to TDOAs, the FDOAs are measured with more precision for narrowband signals.
Indeed, any modulation in frequency disrupts the periodicity of inner waveforms.
These aspects are beyond the scope of our analysis.
The previous discussion considers analog signals. For the sake of simplicity, we
can approximate the digital signal s[n] as a sequence of complex values uniformly-
sampled from s(t) at time instants with indices n. By doing so, we do not take into
account the quantization losses and the variable gain of the AGC/ADC loop. This
approximation is legitimated by the negligible machine roundoff error of the 64-bit
floating-point precision, which is among the assumptions made. This means that
the raw I/Q samples can be expressed as the output of an ideal ADC by

s[l] ≈ s(lTs) (3.16)

with sampling period Ts at the time instant numbered by the integer index l. As
usual, the stream rate is supposed to fulfill the Nyquist criterion to avoid aliasing
effects:

fs =
1
Ts
≥ Beq. (3.17)

In order to have a discrete-time formulation suitable to signals digitized according
to Eq. 3.16, we may discretize Eq. 3.9 as follows

CAFl [n, p] =
l+N−1

∑
m=l

s0[m]s∗1 [m + n] exp(j2π
p
N

m) (3.18)

for fractional delays and normalized digital frequency shifts identified by the in-
dices n = 0, 1, ..., N − 1 and p = −N/2, ..., N/2− 1, respectively, with N = fsTobs.
This complex-valued function quantizes the delay-Doppler domain with a grid of
equally-spaced points

Q =
{

0, ..., Tobs −
1
fs

}
×
{
− fs

2
, ...,

fs

2
− fs

N

}
(3.19)

the values of which are computed by cross-correlating the samples recorded by two
synchronous and separate receivers. The TF resolution of the grid is tied to the sup-
port of the CAF, which is proportional to fs and the Tobs. Unless the TDOA/FDOA
pair happens to lie exactly on one of the points of Q, the energy associated to the
actual peak leaks to the neighbor points underlying the CAF. This leakage of energy
introduces a bias in the ML estimation that is more significant on the frequency axis
than the time one if Tobs � 1 s. Infinitesimally-fine resolution with finite sample
sizes is possible by means of the super-resolution radar proposed in [137], which
enables the distinction of multiple and closely-spaced signal sources in the delay-
Doppler domain. Nevertheless, this technique employs a polynomial time in the
number of targets and is conceived for noiseless (i.e., with very high SNR, or equiv-
alently JNR) and clutter-free conditions. Similar approaches in [79, 136] further
depend on the flatness of the incoming signal spectra. For the reasons previously
explained, the CAF represents a much more robust and preferable choice for the
application under study. More specifically, since our goal is a low-complexity and
real-time estimation of TDOA/FDOA pairs, we can resort to the simplest and fastest
implementation of the discrete CAF:

CAFl [n, p] = FFTm→p
{

s0[m]s∗1 [m + n]
}

(3.20)
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which is straightforward thanks to the circular convolution theorem for the DFT.
Further computational savings are obtained by restricting the indices n and p over a
rectangular subset of points

Q′ =
{

0, ..., yτmax

}
×
{
− yνmax , ..., yνmax

}
(3.21)

where yτmax and yνmax are set according to geometric considerations about the receiver
coverage and the maximum possible jammer speed. Likewise the ML estimator in
Eq. 3.10, identifying the indices corresponding to the peak enables a rough estimate
of the TDOA/FDOA pair. Beyond the limited TF resolution, a finer-grained estima-
tion is achieved by interpolating the magnitude of the CAF among the nine points
of the grid around the peak. Despite the interpolation, though, the aforementioned
energy leakage due to quantization prevents the ML estimator from being optimal
in Q. Near optimality is still achievable with one moving jammer, as long as none
of the time-varying observables yτ(t) and yν(t) change by more than one point in
the grid during the integration time. We may formulate this constraint through the
following inequalities:

|yτ(t + Tobs)− yτ(t)| < 1/ f s (3.22)

|yν(t + Tobs)− yν(t)| < f s/N (3.23)

which impose the observation to be short enough compared to the swiftest variation
possible of the TDOA/FDOA pair caused by the speedy motion of the jammer. Oth-
erwise, the energy of the correlation in the delay-Doppler domain is smeared as a
side effect of the dynamics, making any search for the peak prone to biases. While
this constraint imposes a higher bound on Tobs, a lower bound is represented by the
CRB. In fact, the integration time should be long enough to comply with the preci-
sion desired for the observables. In this regard, despite the presence of biases due
to the effects of energy leakage and jammer motion in Q, we may still refer to the
CRB for the “overoptimistic” performance of the theoretically unbiased ML estima-
tor. The calculation of this bound from Eqs. 3.13-3.15 actually requires an a-priori
knowledge of the JNR in Eq. 3.4, which otherwise shall be estimated. This estimation
is possible through a simple signal-to-noise variance estimator, once the noise power
is known and a jammer is detected. Often when initialized, the receiver is supposed
to be free from interference to perform a calibration phase, in which the noise level
of the environment could be estimated from the incoming stream of I/Q samples,
and possibly used to later detect jammers. As far as the maximum of the CAF, other
than interpolating the values of the FFT in Eq. 3.20, more advanced algorithms are
presented in [147] for the two-step and computationally-efficient computation of the
CAF. They are useful to process long sequences of samples with greater TF resolu-
tion and to compensate for the effects of dynamic observables.
Generally, the ML estimator described copes well with the presence of one jammer
only, because the CAF features a unique main lobe in the quantized delay-Doppler
domain. The widths of this correlation lobe are about 1/BRF in time and 1/Tobs in
frequency, if the jammer is continuously transmitting during the observation. Par-
ticularly, the spectral profile has a sharp peak of width 1/Beq, when the wideband
sawtooth of the jamming waveform spans over the whole frequency range of the
front-end filter (i.e. BRF ≥ Beq). Otherwise, any bandwidth narrower than this range
or any pulsed modulation in time smooth the main lobe, thus degrading the preci-
sion of the ML estimator. This undesirable effect is also predicted by the CRB. We
may model this behavior by approximating the actual shape of the normalized CAF
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with a two-dimensional sinc-like surface:

CAF(∆τ, ∆ν) ≈ sinc((∆ν− yν)Tobs) sinc((∆τ − yτ)Beq)e−jπ(∆ν−yν)Tobs (3.24)

for BRF ≥ Beq, as argued in [140] and apparent in Fig. 3.3. As long the input JNRs
and the processing gain are sufficient to discriminate the peak of energy associated
to the TDOA/FDOA pair from the side lobes and the noise floor, the observables
are always well identified with the arguments of the maximum magnitude of the
CAF, regardless of the jamming waveform. This advantageous property is crucial,
because no a-priori information about the signal structure is necessary to perform a re-
liable estimation. On the contrary, generally speaking, the same does not hold when
two or more co-channel sources are simultaneously present or, equivalently, when
replicas of the signal are received from the surrounding scatterers. With the recep-
tion of multiple jamming waveforms, indeed, the respective CAFs mutually interact
in both constructive and destructive manners, depending on the relative distances and
velocities of the jammers with respect to the receiver. Hence, the summation of their
CAFs in the delay-Doppler domain might cause missed detections of the interfer-
ence energy, due to the cancellation or superposition of main lobes, as well as false
alarms, if significant peaks are produced by spurious energy. Such a mutual inter-
action is especially harmful when the jammers are visible with very different JNR
levels and/or located close to each other. Consequently, the ML estimator is likely
to be mislead and so potentially biased. As a matter of example, the issue of relying
on the correlation peaks for localizing two closely-spaced jammers is exemplified in
the CAFs depicted in Figs. 3.4a and 3.4b. This challenge is tackled in [140], where the
TDOAs and FDOAs of multiple jammers are initially obtained as the solutions of an
optimization problem, which adopts the model in Eq. 3.24. A successive clustering
process combines these estimates over a grid that quantizes the possible locations in
the area in order to find data associations and to mitigate false alarms and missed de-
tections. While this algorithm works in the position domain, a completely different
strategy could shift the problem of estimating and discriminating the TDOA/FDOA
pairs from the delay-Doppler domain to the TF one, the analysis of which is intro-
duced in Chapter 2. This innovative solution is demonstrated later in this chapter to
be able of bypassing at once both the uncertainties affecting the ML estimator and
the data association.
An interesting aside from the current topic regards the CAF. The continuous-time
formulation in Eq. 3.9 is a generalization of the ambiguity function (AF) originally
defined by

AF(∆τ, ∆ν) =
∫ t+Tobs

t
s
(

t′ +
∆τ

2

)
s∗
(

t′ − ∆τ

2

)
exp(j2π∆νt′)dt′ (3.25)

where the s(t) denotes either the complex envelope of the lowpass signal or the
analytic form of the passband one. The AF and the Wigner-Ville distribution (WVD)
mentioned in Chapter 2 are related to each other through the instantaneous ACF of
the signal: the former one is defined as the FT with respect to delay variable, while
the latter one is the FT with respect to time variable. Therefore, the AF evaluates the
correlation over the delay-Doppler domain, whereas the WVD is a TF representation
of the signal energy. Both of them suffer from the presence of artifacts, which result
from their quadratic nature.
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FIGURE 3.3: Sinc-like shape of the CAF computed from Eq. 3.20 for
fs = 20 MHz, Beq = 1 MHz and Tobs = 1 ms in the presence of one

jammer with BRF = 2 MHz.

3.2.2 Nonlinear Estimation of the Jammer State

In the application scenario summarized by Fig. 3.2, we can count on a number M
of DoOs that concurrently record sequences of I/Q raw samples. These recordings
are snapshots containing a common jamming waveform d(t) in the form of Eqs. 3.5
and 3.6. They are collected over a time span of one observation (i.e., Tobs) and sent
to the cloud. Here, a central processor computes M− 1 discrete CAFs by separately
cross-correlating the samples s0[n] received by one DoO chosen as reference with each
of the snapshots si[n] captured by the other M− 1 devices, which are indexed with
i = 1, ..., M− 1. Given any of the couples of snapshots {(0, i) | i = 1, ..., M− 1}, the
FFT in Eq. 3.20 is performed for every frequency index p in the subset of points Q′

that quantize the ambiguity region of interest in the delay-Doppler domain. From
the resultant CAF, the TDOA/FDOA pair {yτi , yνi} of the jamming waveform is
identified as the arguments of the maximum magnitude found by interpolation, ac-
cording to the ML estimator in Eq. 3.10. These estimates are independent of the
choice of the reference DoO, as proven in [55]. Overall, the estimation returns a
column vector of 2(M− 1) observables:

y = [yτ yν]
T (3.26)

where yτ = [yτ1 ... yτM−1 ] and yν = [yν1 ... yνM−1 ] are retrieved for every time epoch
in which a dataset of snapshots is made available to the cloud by the DoOs. A time
epoch coincides with interval of duration Tobs. The sequence of epochs is numbered
by an integer index k, such that each of these intervals consist of N samples with
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(A) The two jammers are separated by about 110 m.

(B) The two jammers are separated by about 28 m.

FIGURE 3.4: Examples of CAF magnitudes computed from Eq. 3.20
for fs = 20 MHz, Beq = 5 MHz and Tobs = 0.1 ms in the presence of

two jammers with BRF = {10 MHz, 20MHz}.

indices l = (k − 1)N + 1, ..., kN. For a matter of power and bandwidth consump-
tions, the devices used as receivers cannot transfer data continuously to the central
processing unit, but in actuality they rather transmit intermittently. Without loss of
generality, let us assume that this intermittence is periodic with snapshots aligned
and equally-distributed in time. For the reasons mentioned above, the period be-
tween consecutive datasets is supposed to be longer than just a single observation
and, more specifically, defined by TobsR−1

s , where Rs ≤ 1 is the snapshot rate normal-
ized on the integration time. The break interval between successive transmissions,
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FIGURE 3.5: Normalized snapshot rates with periods scaled by inte-
ger factors.

over which the DoOs stay idle, is as long as Tobs(R−1
s − 1). A unitary rate then cor-

responds to a continuous tracking, seamlessly epoch after epoch, without breaks.
Hereinafter, for the sake of simplicity, we vary the density of snapshots over time by
scaling the period R−1

s by integer factors, as shown in Fig. 3.5. By doing so, we can
number the sequence of datasets through the same index k used to count the epochs.
Consequently, this enumeration applies as well to the vectors yk in the form of Eq.
3.26 that collect the TDOA/FDOA pairs estimated from the snapshots. In detail,
given a fixed Rs, the sequence of observables may be expressed as

(
y1, ..., yk, ..., yK |

mod (k− 1, R−1
s ) = 0

)
for a number of epochs K ≥ 1, from which follows that the

entire sample stream is made of L = KN samples with l = 1, ..., L. The pace of
these observations should be high enough to track a jammer rapidly maneuvering.
Thereupon, in the following, the origin of the jamming attempt is supposed to move
without accelerating along a straight trajectory, which does not rotate. This simpli-
fication is not necessarily surreal, because the track of any maneuver is theoretically
decomposable into constant-speed segments, if the observables are dense enough in
time.
Now, let us consider the unknown position and velocity of the jammer at the time
epoch k in xk as the hidden state of a stochastic process possessing Markov prop-
erty onto an infinite and uncountable space. This state can be recursively inferred
by combining the previous estimates x̂k−1 and the current observables yk. Within
this recursion, the TDOA/FDOA pairs represents measurements that are indirectly
related to xk by

yk = h(xk) + vk (3.27)

where vk is the additive measurement noise. If the equipment is properly calibrated
and does not induce further errors, then vk is a multivariate Gaussian random vari-
able with zero mean and known and positive-definite covariance matrix Rk, which
shall be coherent with considerations made about the hypothetical accuracy of the
ML estimator. The formulation of h depends on whether the observable is in time or
frequency. For reasons of clarity, we omit the subscript k in the following equations.
The function hτi relates the exact (i.e., noiseless) TDOA scalar yτi to the positions of
the jammer and two DoOs according to

yτi = hτi(x) = (d0 − di)/c =(√
(x− x0)2 + (y− y0)2 −

√
(x− xi)2 + (y− yi)2

)
c

(3.28)

where c is the speed of light, (x0, y0) is the location of the device chosen as reference,
(xi, yi) is the location of any other receiver, and d0 and dn are the respective distances
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from the jammer of these two. Similarly, the function hνi relating the exact FDOA
scalar yνi to x is

yνi = hνi(x) = fc(vr0 − vri)/c =

fc

c

(vx(x− x0) + vy(y− y0)

d0
−

vx(x− xi) + vy(y− yi)

di

) (3.29)

where vr0 and vri are the radial velocity components of the jammer with respect to the
reference DoO and any of the others. To ensure the numerical stability, we combine
Eqs. 3.28 and 3.29 into a nonlinear vector function defined by

h = [c hτ hν]
T (3.30)

with hτ = [hτ1 ... hτM−1 ] and hν = [hν1 ... hνM−1 ]. The measurement error covariance
becomes then a well-conditioned diagonal matrix of order 2(M− 1)

R = diag (c σ2
τ1

, ..., c σ2
τM−1

, σ2
ν1

, ..., σ2
νM−1

) (3.31)

the elements of which are the precisions at the CRB defined by Eqs. 3.14 and 3.15
for every i-th couple of receivers as a function with respect to the time-varying JNR
estimate. Accordingly, we redefine Eq. 3.26 as

y = [c yτ yν]
T. (3.32)

Once the index k is restored into the notation, we might notice that the matrix Rk
changes from epoch to epoch, as the output SNR levels denoted by γik varies over
time with the evolving location of the jammer.
Retrieving xk from yk is a nonlinear estimation problem, which shall be preferably
solved before the next observables (i.e., at k + R−1

s ) are made available. In order to
keep up with the jammer motion in real time, fast resolution methods of the TDOA
and FDOA equations generally resort to a Taylor-series expansion of h. The first-
order approximation retains the first two terms of this series and is so the most
computationally efficient, but the least accurate. In other words, it linearizes the
highly nonlinear measurements curves (i.e., hyperbolic for the TDOAs) about the
an a-priori rough estimate x̂0k , as follows

yk ≈ h(x̂0k) + Hk(xk − x̂0k) + vk (3.33)

where Hk is the Jacobian matrix of h at the current time epoch:

Hk =

[
c∇hτ(xk)
∇hν(xk)

]
=



c
∂hτ1 (xk)

∂x c
∂hτ1 (xk)

∂y c
∂hτ1 (xk)

∂vx
c

∂hτ1 (xk)

∂vy
...

...
...

...

c
∂hτ1 (xk)

∂x c
∂hτM−1 (xk)

∂y c
∂hτM−1 (xk)

∂vx
c

∂hτM−1 (xk)

∂vy
∂hν1 (xk)

∂x
∂hν1 (xk)

∂y
∂hν1 (xk)

∂vx

∂hν1 (xk)

∂vy
...

...
...

...
∂hνM−1 (xk)

∂x
∂hνM−1 (xk)

∂y
∂hνM−1 (xk)

∂vx

∂hνM−1 (xk)

∂vy


(3.34)
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where the elements in the 2(M− 1) rows and 4 columns are expressed as

∂hτi(xk)

∂x
=

xk − x0

c d0k

− xk − xi

c dik

(3.35)

∂hτi(xk)

∂vx
=

∂hτi(xk)

∂vy
= 0 (3.36)

∂hνi(xk)

∂x
=

fc

c

(vxk d2
0k
− rv0k

d0k(xk − x0)

d3
0k

−
vxk d2

ik
− rvik

dik(xk − xi)

d3
ik

)
(3.37)

∂hνi(xk)

∂x
=

fc

c

( xk − x0

d0
− xk − xi

di

)
. (3.38)

Any error minimization based on this approximation is sub-optimal and does not
guarantee the convergence to the global minimum. Indeed, under some circum-
stances where the transmitter-receivers geometry is poor, the significant errors with
respect to the true values of the nonlinear function can lead the estimator to a local
minimum or make it diverge. The proximity of the initial estimate x̂0k to xk is im-
portant to ensure the convergent behavior of the estimator. A good estimate may
be guessed from prior information about the scenario or, in turn, initialized with a
sub-optimal procedure. By looking at the partial derivatives of Hk, some consider-
ation can be made. Since the range terms at the numerator and denominator in Eq.
3.35 are of the same order of magnitude, the TDOAs are less sensitive to the distance
between transmitter and receiver than AOA and DRSS measurements. Therefore,
as far as the observation of differential delays is concerned, the DoOs could have
sparse locations spread over large areas, without adverse consequences. A critical
situation occurs when the TDOA is observed by a device too close to the jammer
(i.e., dik ≈ 0), as the precision tends to drop. Both these aspects are evident also for
the FDOAs in Eq. 3.38. The effect of differential Doppler frequency shifts on the po-
sition estimation is evaluated by 3.37. For this impact to be meaningful, the relative
velocity at play should be large enough to outweigh the quantization losses in the
discrete CAF after interpolation. For instance, if TF resolution of the delay-Doppler
domain is insufficient to measure the average speed of the jammer, the addition of
FDOA is likely to impair the overall localization performance, rather than enhancing
it. In this case, the employment of solely TDOA measurements is more advisable.
Besides, the errors realistically induced by the equipment could further worsen this
detrimental impact. Last but not least, Eq. 3.36 means that the present formulation
neglects the delay-Doppler coupling effect typical for chirp-like waveforms in the
presence of high relative velocities. Simply put, the top speed of the jammer does
not affect the TDOA observables.
The simplest approach based on Eq. 3.33 makes use the LS estimator in [50]:

x̂k =

{
x̂0k + (HT

k R−1
k Hk)

−1HT
k R−1

k

(
yk − h(x̂0k)

)
, mod (k− 1, R−1

s ) = 0
x̂0k otherwise

(3.39)

that can be made recursive by linearizing about the previous estimate with

x̂0k = x̂k−1. (3.40)

This estimation method may be regarded as optimal from the perspective of the
linearized h, but it does inherit a bias from the first-order approximation of the ac-
tual TDOA/FDOA curves. The downside is that a new x̂k is processed only when
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up-to-date datasets are transfered by the DoOs. While these devices are idle, no ad-
justment is made on the state estimate, which then becomes outdated in the absence
of measurements. As a consequence, the error tends to increase proportionally to the
time elapsed since the last snapshots and the jammer speed. To keep tracking x̂k de-
spite the momentary lack of observables, we may resort to a model of the differential
equation of the target motion to predict the evolution of the state. This model is used
either as aid or backup, depending whether yk is available or not. This alternative
approach is enabled by many Bayesian methods, such as the well-known KF. This
information filter propagates the knowledge about xk through a recursion consist-
ing of two steps: state prediction and measurement update. At every time epoch, the
recursive posterior estimate x̂k is a statistically weighted average between the prior
state x̂−k predicted and, whenever possible, the innovation residual (e.g., yk −Hkx̂−k ).
The weighted is the so-called Kalman gain. As for the former step, the uncertainty
on xk undergoes a dynamics model that we may formulate as follows

x−k = Axk−1 + wk (3.41)

where A is the time-invariant transition matrix associated to a stationary and constant-
velocity trajectory:

A =


1 0 Tobs 0
0 1 0 Tobs
0 0 1 0
0 0 0 1

 . (3.42)

which should well approximate any maneuver of the jammer throughout a period
as long as TobsR−1

s . The column vector wk is additive state noise, which we represent
as a multivariate Gaussian random variable with zero mean and covariance matrix
Q. This noise essentially scales the extent of a fading memory effect. Suitable el-
ements of Q shall be set to mirror the degree of confidence into the model. This
matrix should always have a non-zero determinant to compensate for roundoff er-
rors, even though Eq. 3.41 might match the reality. On the contrary, if the model is
unreliable, a high state noise should lessen the influence of x̂−k on x̂k in order to force
the KF to rely solely on yk, similarly to the LS estimator. Although modeling the
dynamics generally provides an advantage over the LS, the choice of wrong values
for the elements of Q could end up harming the stability of the KF, thus resulting in
a degradation of the tracking performance, instead of an enhancement. In practice,
we could adapt this matrix epoch-by-epoch to the time-varying uncertainty on the
model as well as the time pasted without snapshots to process, for the achievement
of quasi-optimal performance. For the application being studied, the description of
the dynamics in Eq. 3.41 is trustworthy and used to predict x̂−k from the previous
a-posteriori estimate x̂k−1. In the absence of new pairs of TDOA/FDOA measure-
ments, the current posterior estimate is simply obtained by forwarding the prior one
as

x̂k = x̂−k , mod (k− 1, R−1
s ) 6= 0 (3.43)

that is output of the linear model in Eq. 3.41. The same happens for the estimation
of the error covariance:

P̂k = P̂−k = AP̂k−1AT + Q, mod (k− 1, R−1
s ) 6= 0 (3.44)

where P̂k and P̂−k denote the posterior and the prior matrices, respectively. Other-
wise, whenever datasets are finally made available to the processor, x̂−k is employed
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as input into a second step that updates x̂k, according to the chosen approximation
of the nonlinear model in Eq. 3.27. In this regard, there exist several variants of the
KF, which feature different equations to deal with nonlinearities in either the dy-
namics or the observations or both. Among the conventional ones, we focus on the
first-order extended KF (EKF1), the second-order EKF (EKF2), and the unscented
KF (UKF). At every epoch, the EKF1 first approximates the PDF of the state with
the respective prior mean and covariance and propagates them through the linear
dynamic model. Secondly, only at those epochs where observables are present, this
knowledge goes through the linearized observation in Eq. 3.33. At end of these
two steps, the resultant a-posteriori estimate of the mean and covariance of the state
distribution are not guaranteed to be close to the actual ones. Nonetheless, if the lin-
earization, the dynamic model, and the Gaussian measurement and state noises pro-
vide a truthful representation of the actuality, this filter converges to the estimate that
minimizes the MSE. Conversely, if a significant bias exists due to the poor approxi-
mation of the TDOA and FDOA curves, the EKF2 extends the EKF1 by retaining one
more term of the Taylor-series expansion of h. This modification potentially makes
this second filter more unstable and requires additional complexity for the calcula-
tion of the Hessian matrix Gk, which contains the second-order partial derivatives
over 2(M− 1) rows and 10 columns. The derivation of Gk from Hk is straightforward
and here omitted for the sake of brevity. The UKF belongs to the family of sigma-
point KFs, which is built around the idea that it is easier to approximate a probability
distribution than a nonlinear function. In fact, it improves on the EKF1 and EKF2 by
propagating the PDF of the state through a minimal set of deterministically-chosen
and so-called sigma points, rather than just the mean and the covariance estimates.
These points are weighted and scaled, such that they match the first- and second-
order moments of the prior state distribution. They are generated through the scaled
unscented transform, which allows for accurately tracking the statistics of a random
variable that undergoes a nonlinear transformation, such as that of h. Once passed
through the nonlinearity, the sigma points capture the posterior mean and covari-
ance of the state to at least the second order of accuracy (i.e., the same of the EKF2)
for any nonlinearity. Another desirable property of the UKF lies in the computa-
tional expense, which is on the same order of the EKF1 and also lacks of any explicit
calculation of the gradients of h (i.e., Hk and Gk).
An historical perspective from the LS method to the original KF is given [65]. The sci-
entific literature offers tens of papers reviewing or applying the KF in diverse fields.
Among them, the motivations and the developments behind the UKF are illustrated
in [149]. A variety of sigma-point schemes can be combined with the unscented
transform to address the deficiencies of the linearization. For instance, in [150], this
transform is also used to derive a derivative-free version of the EKF2. The relations
between the EKF1/EKF2 and the UKF are extensively investigated in [151]. Depend-
ing on the nonlinear functions that underlie the estimation problem, these two latter
papers demonstrate how the EKF2 could outperform the UKF, which is otherwise
the standard solution. Aside from the nonlinearity, the limits of a single KF versus
a more versatile IMM estimator are quantified as a function of the target maneuver-
ability in [152]. The implementation of multiple models is certainly a necessary and
future development for the application of interest in order to relax the demand for
high snapshot rate when the jammer can accelerate and turn.
The amount of knowledge accumulated or, equivalently, uncertainty left about the
xk is fully characterized by the Fisher information matrix (FIM) that is evaluated
over the joint unconditional PDF p

(
[x0 ... xk], [y1 ... yk]

)
for the whole collections of

state and measurement vectors up to the time epoch k. According to the recursive



68 Chapter 3. Interference Source Localization

formulation of this matrix in [153], we may describe the information extrapolated by
the EKF1 with

Jk = Q−1 + HT
k R−1

k Hk − (−ATQ−1)T(Jk−1 −ATQ−1A)(−ATQ−1). (3.45)

This equation provides an amount of information larger than that of the dynamics-
less LS estimator and smaller than that granted by higher-order approximations,
namely the EKF2 and the UKF. As such, it turns out to be useful for benchmark-
ing the variants of the KF. In wider terms, the FIM is essential for assessing the
sub-optimal performance of the nonlinear estimation by comparison with the theo-
retically best-case accuracy of the jammer state estimated. In this regard, one may
refer to the inequality of the joint unconditional posterior (or Bayesian) CRB (PCRB)
for biased estimators:

Pk = E
p
(

xk ,[y1 ... yk ]
)[(xk − x̂k)(xk − x̂k)

T] ≥ PCRBk = J−1
k (3.46)

where Pk denotes the error covariance up to the k-th epoch, which is not to be con-
fused with the k-th a-posteriori covariance matrix P̂k estimated by any KF. Other
versions of the PCRB are reviewed in [154]. The recursion in Eq. 3.45 may be initial-
ized with the initial error covariance matrix:

J0 = P̂−1
0 (3.47)

which we set consistently with the geometry of the DoOs deployment and the area
monitored. If the FIM is known, one may convert Eq. 3.46 into a lower bound on the
estimation RMSE as follows

RMSEk =
√

trace(Pk) ≥
√

trace(PCRBk). (3.48)

This inequality may be decomposed to discriminate between position and velocity
components of the jammer state:

RMSEk(x,y)
≥
√

PCRB11k + PCRB22k (3.49)

RMSEk(vx ,vy)
≥
√

PCRB33k + PCRB44k .. (3.50)

At each time epoch, the error (i.e., xk − x̂k) is not actually a constant vector, because
xk changes while being observed as the jammer is moving within Tobs. Therefore, we
shall redefine the error sample-by-sample as

el = xk[l]− x̂k, l ∈ {(k− 1)N + 1, ..., Nk} (3.51)

so that we have a matrix

xk − x̂k = [e(k−1)N+1 . . . ekN ]. (3.52)

We calculate the second-order statistics of the error as the arithmetic average over a
number of Monte Carlo realizations for every column vector el in all the K epochs.
The resultant mean RMSE thus varies with the sampling index l as well as the index
k. In order to obtain a scalar performance metric, we may average these errors over
a certain time span. Recursive nonlinear estimators require a few sets of measure-
ments, before converging to their stationary tracking performance. Therefore, we
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start averaging the values of the mean RMSE after an initial transient lasting two
snapshot periods:

RMSE =
∑L

l=2N+1 RMSEl

L− 2N
(3.53)

where
RMSEl =

√
E

p
(

xk ,[y1 ... yk ]
)[eleT

l ], l ∈ {(k− 1)N + 1, ..., Nk} (3.54)

In other words, the errors preceding the third observation are discarded to provide
a metric less affected by the convergence time. If the time- and statistically-averaged
RMSE attains the PCRB, the estimator employed is optimal: no better solution ex-
ists to minimize the MSE. This is the case of the standard KF for linear estimations
problems.

3.2.3 Tracking Performance

The goal of the following simulation campaign is to investigate the impact of the rate
of the snapshots carrying the TDOA/FDOA observables on the RMSE of the jammer
position and velocity estimation. For this task, we test a recursive LS estimator and
various KFs. These filters, namely the EKF1, the EKF2, and the UKF, differ in the
order of approximation for propagating the information through the nonlinearities.
The questions we are going to answer are: what should be the requirement on the
snapshot period for a suitable tracking performance? What is the accuracy both
outside and inside the area delimited by the receivers in this respect? Is it more
convenient to rely on either long and sporadic measurements or short and frequent
ones?

Simulation Scenario

The sensitivity of the estimation to the measurement precisions is magnified by the
geometry of the arrangement of the DoOs with respect to the jammer. The GDOP
is the ratio between the deviation of the position and velocity at the output of the
estimator and the deviation of the input TDOA and FDOA observables. The higher
it is, the worse is the quality of the transmitter-receiver geometry. By assuming that
the measurements are uncorrelated and their noise covariance matrix is known, for
example from Eq. 3.31, we may define a dilution of precision at the epoch k as a
matrix

DOPk =

√
PCRBk

Rk
(3.55)

according to [139]. This generic metric is neither scalar nor purely geometric, be-
cause it depends on the time (i.e., k) and also incorporates the memory effect of the
dynamic model (i.e., A and Q) through FIM in Eq. 3.45. Therefore, let us consider
only the information related to the observation (i.e., Hk and Rk) at the first time epoch
(i.e., k = 1), hence when no recursion has been performed yet. In principle, this is the
same as restricting ourselves to the first iteration of the original LS estimator. In this
perspective, we may re-calculate the PCRB in Eq. 3.55 by initializing the estimation
at any arbitrary guess x̂0. The GDOP finally results from the sum of the diagonal
elements as follows

GDOPk =

√
trace

( (HT
k R−1

k Hk)−1

Rk

)
=
√

trace
(
(HT

k Hk)−1
)
, k = 1 (3.56)
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which we refer to from this moment on by omitting the index k. The precision of
the measurements does not appear in the definition, so that the resultant metric is
actually scalar, geometric, and independent of the time.
Since four are the components in xk, four are the minimum number of simultaneous
observables yk, which are necessary to solve the equations that relate the position
and velocity of the jammer to the TDOA/FDOA pairs. In the following, we rely so
on solely four DoOs, which provide the minimum necessary number of measure-
ments to resolve the four unknowns. These receivers are placed at the corners of a
square with 100-m side. Changing their arrangement would only affect the GDOP,
which for TDOAs has been already been widely investigated in the literature, also in
the context of jammer localization (such as in [139]). The two-dimensional locations
of the DoO in the scenario under study are marked in the geometry map of Fig. 3.6,
which reports the GDOP for any hypothetical initial location x̂0 of the transmitter in
the area surrounding the receivers. The GDOP is unitary and thus ideal inside the
square convex hull that is delimited by the DoOs, while it grows with the distance
outside. It apparently tends to infinity at the locations that coincide with any of the
receivers, as we have already noticed by looking at the elements in the Hk matrix.
Such a proximity would also realistically cause the saturation of the front end, which
is a possibility we do not take into account. With the aim of testing the performance
for low and high GDOPs separately, we let the jamming attack originate at two pos-
sible locations: one inside and one outside the area surrounded by the DoOs. Since
the only propagation effect on the signal is due to the isotropic free-space path loss
and the devices are arranged in a square, the GDOP is symmetric in all the directions.
This means that we do not need to evaluate the performance in tracking a jammer
that moves across the whole scenario. We rather exploit this spatial symmetry of
the attenuation to restrict the tests to smaller regions. The two regions chosen inside
and outside the area are shown in Fig. 3.7, enclosed within the circles inscribed into
triangular cuts of the scenario. The jammer starts moving from the incenters of these
circles, which are located in (35.36 m, 14.64 m) and (-49.65 m, -49.85 m). It is headed
in a straight and random direction at 100 km/h. The simulation time set is too short
for the jammer to travel distance longer than the radius (i.e., about 14.64 m), so that
it can never cross the borders of these regions.
The main simulation parameters are listed in Tab. 3.1. The sampling frequency fs

is set according to the specifications of common SDRs, while the observation time
and the visible spectrum are wide enough to increase the input JNR (i.e., ρ) by a pro-
cessing gain equal to 40 dB. Notably, the integration time is short enough to keep up
with high-speed jammers far faster than the one tested. In fact, for any DoO in the
scenario under test in Fig. 3.7, within this interval the maximum possible variations
of delay and Doppler frequency shift may be roughly and respectively determined
as

|yτ(t + Tobs)− yτ(t)| < 100 km/h
Tobs

c
= 0.09 ns <

1
fs

= 50 ns (3.57)

|yν(t + Tobs)− yν(t)| <
fc

c
100 km/h = 146.97 Hz <

fs

N
= 1 kHz (3.58)

which mean that the constraints in Eqs. 3.22 and 3.23 are fulfilled.
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FIGURE 3.6: Map of the GDOP for the simulation scenario.

FIGURE 3.7: Inside and outside regions of the area between the DoOs
that are tested for the jammer state in the simulation campaign.

Numerical Results

The first collection of simulation results characterizes the accuracy achieved by the
ML estimator in retrieving the TDOA/FDOA pairs from the jamming signal. The
interference is generated from (35.36 m, 14.64 m), namely the center of the circular
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TABLE 3.1: Simulation parameters in tracking a single jammer.

Description Symbol Value
Carrier frequency fc 1575.42 MHz
Sampling frequency fs 20 MHz
Single-sided noise power spectral density N0 -194 dBW/Hz
Front-end equivalent noise passband bandwidth Beq 10 MHz
Jammer passband bandwidth BRF 10 MHz
Jammer repetition period T0 10 µs
Jammer transmit power Pt {-50, -40, -30, -20, -10, 0} dBW
Observation time Tobs 1 ms
Normalized snapshot rate Rs {1, 1/5, 1/25, 1/125}
Snapshot period {0.001, 0.005, 0.025, 0.125} s
Simulation time T 0.5 s+Tobs

Number of observations K 501
Number of snapshots {501, 101, 21, 5}

region inside the area delimited by the DoOs. This test is meant to evaluate the ob-
servables that represent the outputs at the first step of the estimation process and
the measurements at the input of the second step, which recursively estimates the
jammer state. Such a characterization is carried out by averaging the RMSE sepa-
rately for the TDOA and the FDOA over the initial observation (i.e., k = 1). In the
following figures, the dashed lines always indicate the 95% confidence interval for
the random errors returned by the simulations, under the assumption of a normal
distribution. The outcomes are compared to the CRB in Eqs. 3.13-3.15, which are
also later used to populate the matrix Rk in Eq. 3.31. The TDOA does not attain
the lower bound because of the small bias that is introduced by the quantization
of the delay-Doppler domain. The zero-padding interpolation of the FFT points in
3.20 refines the grid by shrinking the time spacing from 50 ns to 5 ns, which cor-
responds to 0.3 m. Evidently, the addition of points only partially compensates for
the inevitable energy leakage in the discrete CAF. As a result, the delay accuracy in
Fig. 3.8a saturates with the transmit power. The finer granularity is more effective
in frequency, where the spacing between FDOAs is of 10 Hz, instead of 1 kHz, and
the performance get relatively closer to the CRB in Fig. 3.8b. A small offset is still
present at the high power levels, where the noise is negligible, again because of the
quantized domain. Adding more zeros to the FFT could further enhance the preci-
sion TDOA/FDOA observations, until the error due to quantization losses is more
significant than the resolution after interpolation. Anyway, we consider the results
in Fig. 3.8 to be satisfactory, because higher gains in terms of accuracy might not be
worth extra computations of longer FFTs. The CRB curves in these figures are valid,
because the SNR at the output of the CAF far exceeds the 10 dB imposed by the con-
ditions underlying Eqs. 3.14 and 3.15. This fact is evident from the input JNRs in
Fig. 3.8c.
Now, we analyze the final performance of the two-step estimation process by evalu-
ating the RMSEs for the position and the velocity. The jammer starts from the same
location within the area monitored by the devices and the simulation terminates af-
ter about 0.5 s, when it has traveled by 13.89 m in any random direction. In the
meanwhile, a time span equivalent to 501 observations has pasted and a variable
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(A) Estimated TDOA error vs. jammer
transmit power.

(B) Estimated FDOA error vs. jammer
transmit power.

(C) Maximum and minimum JNRs at the
four DoOs vs. jammer transmit power.

FIGURE 3.8: Performance of the joint TDOA/FDOA estimation at the
first time epoch with the jammer moving from (35.36 m, 14.64 m).

number of snapshots has been taken. At the beginning, in (35.36 m, 14.64 m), all the
recursive estimators are initialized with

x̂0 = [50 m 50 m 0 0] (3.59)

and, as far as the KFs are concerned, also

P̂0 = diag
(
(50 m)2 (50 m)2 (200 km/h)2 (200 km/h)2). (3.60)

where the values are chosen in view of the scenario, namely the size of the area (i.e.,
square with side 100 m) between the DoOs and the range of speeds expected for
the jammer (i.e., at most 200 km/h). As for the model in Eq. 3.41, the state noise
covariance is well described by the matrix

Qlow = diag
(
(0.1 m)2 (0.1 m)2 (1 km/h)2 (1 km/h)2) (3.61)

the elements of which are set coherently with the previous characterization of the
joint TDOA/FDOA estimation. The observation time is fixed to 1 ms, such that the
simulation results in Fig. 3.9 are returned at equal processing gain, thus with the
same measurement precision. They demonstrate how the KFs improve on the LS
estimator, the location estimate of which degrades exponentially with respect to the
snapshot rate. In fact, the accuracies of these filters do not deviate from a sub-meter
position error, regardless of the snapshot period. This enhancement is possible be-
cause the constant-speed dynamic model is consistent with the scenario tested and,
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consequently, the velocity estimation performs fairly well inside the area, where the
GDOP is practically unitary. Therefore, the recursive prediction of the next state suc-
ceeds in correctly propagating the knowledge of the jammer state, despite the lack
of observables. More in detail, even though it inherits the errors from both the joint
TDOA/FDOA estimation and the approximation of the TDOA and FDOA nonlin-
ear equations, the final bias achieved is about 0.4-0.5 m for the jammer position, and
between 5 km/h and 10 km/h for the velocity, which is obviously the same for all
the estimators used. As for the location estimation performance, the behavior of the
UKF represents the exception, though, because it experiences an apparent degra-
dation at low rates and high power. The position accuracy actually drops due to a
slower convergence time. As one may notice from the example in Fig. 3.10, the ini-
tial transient indeed exceeds the first two snapshot periods that we have discarded
in Eq. 3.53 to average the RMSE over time. In other words, three measurement up-
dates are not sufficient for the UKF to converge, which requires a fourth snapshot
before outperforming the LS estimator like the other KFs. Moreover, a well-known
improvement for this filter is achievable by adding extra sigma points, which are
used to propagate both the state and the measurement noise distributions (i.e., wk
and vk, respectively) through the nonlinearities. This upgrade is carried out by aug-
menting the vector and the covariance matrix of the state, both in prediction and
update equations. Although this addition is straightforward, our filter includes only
wk and not vk into the augmented state covariance, because this latter one produces
an ill-conditioned matrix. Some attempts were made to overcome this issue by re-
sorting to a more numerically robust implementation based on the square-root UKF
in [155], but without success. This fact is arguably the reason why the performance
of our filter does not differ from those of the extended KFs, since the augmentation is
only applied to the linear dynamics model only and not the nonlinear observation.
Fig. 3.11 plots the results obtained at constant snapshot rate by increasing the dura-
tion of the observations and so the processing gain. This configuration increases the
precision of the measurements to the detriment of availability of new observables,
which are extracted from snapshots spread in time. Given the measurement pre-
cision already achievable with 1 ms of integration time, the LS estimator performs
better when opting for frequent but short snapshots, rather than sporadic and long
ones. On the contrary, and similarly to the previous results, the KFs exhibit marginal
dependence on the observation time. While low state noise (e.g., in 3.61) is suitable
to characterize the dynamics in case the jammer is moving inside the area between
the receiving devices, high noise is necessary to reflect the higher uncertainty out-
side the area due progressive growth of the GDOP with distance. In the scenario
under test, we model this latter case with

Qhigh = diag
(
(1 m)2 (1 m)2 (10 km/h)2 (10 km/h)2) (3.62)

that we adopt to obtain the results shown in the Fig. 3.12. Although the observables
are still precise, the poor GDOP poses the stability of KFs at risk: it can mislead the
predictions based on the dynamics model, of which these filters take advantage in
the absence of new measurements. The higher state noise in Eq. 3.62 is meant to pre-
serve the convergence of the filters, but it also slows it down. For instance, the EKF2
has an unstable behavior. The EKF1 and UKF converge, but their improvement with
respect to the LS estimator is reduced by the noisy dynamics model. The final biases
are so generally on the orders of few meters for the position and tens of kilometers
per hour for the velocity. The UKF exhibits the least residual dependence on the
snapshot rate. From the results in the two regions of the scenario, both inside and
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FIGURE 3.9: Average tracking performance vs. jammer transmit
power at different snapshot rates inside the area between the DoOs.

outside the square area delimited by the DoOs, it is not possible to infer the impact
of the snapshots on the speed estimation. For any filter, in fact, the percentile curves
are too loose to make any relevant consideration about the average RMSEs.
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(A) Single-realization RMSE for the position
with Rs = 1/5 and Pt = 0 dBW (the index l
is defined in Eq. 3.51).

(B) Enlargement of the accuracy plotted in
Fig. 3.10a right after the third snapshot.

(C) Single-realization RMSE for the position
over time with Rs = 1/125 and Pt = 0 dBW.

FIGURE 3.10: Temporal evolution of the performance in tracking a
jammer inside the area between the DoOs for a set of Rs.

3.2.4 Conclusions

Despite the intermittent availability of measurements, the jammer is localized with
sub-meter accuracies where the GDOP is good, namely in the convex hull surrounded
by receiving devices. In this area, a sufficiently fast pace of snapshots is supposed to
enable the continuous and accurate tracking in time of both position and velocity, by
means of well-known variants of the KF. Such a filter works with a simple dynamics
model that assumes a stationary trajectory at constant speed. Whenever the model
well approximates the jammer motion between two consecutive snapshots, the pre-
diction functionality of the KF overcomes the temporary absence of TDOA/FDOA
pairs. This capability facilitates the usage of sensing devices equipped with basic
front ends for capturing snapshots of the jamming signal, because it allows for relax-
ing the constraints on their computational and energy resources. These sensors are
used just to record samples of interference, because the processing load is dumped
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FIGURE 3.11: Average tracking performance vs. jammer transmit
power for a set of Tobs inside the area between the DoOs.

to a central processor, which recursively estimates the current jammer location and
speed in a timely manner. Whenever snapshots are made available by the receivers,
the additional computation of the CAF is carried out through the low-complexity
FFT, for the fast extraction of the observables. While the simulation campaign only
considers a worst case with the minimum of four sensors, realistic application sce-
narios benefit from the deployment of many more receivers, which likely boost the



78 Chapter 3. Interference Source Localization

FIGURE 3.12: Average tracking performance vs. jammer transmit
power for a set of Rs outside the area between the DoOs.

geometry and the redundancy of the observables. Moreover, the region that is mon-
itored with the desired accuracy can be enlarged by distancing the devices, as long
as these latter ones are evenly distributed in the area. Under this circumstance, in-
deed, a good GDOP is ensured without compromising on the precision of the mea-
surements, which are weakly sensitive to the range between the transmitter and the
receivers. All these aspects are discussed through the previous subsections and give
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important insights about the feasibility and the potential behind the crowdsourcing
of TDOA and FDOA observables for jamming localization. In this perspective, we
may conceive a system to aid law enforcements against sources of interference that
exploits low-cost and low-power DoOs on a large scale and the processing power
nowadays offered by the cloud. This application is ultimately one that could emerge
under the forthcoming paradigm of the IoT, in which the information accessed by
spatially-distributed sensors is merged for various purposes.
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3.3 Characterization of Multiple In-Car Jammers

In the previous section, we have seen the two challenges in retrieving through cross-
correlations the TDOA/FDOA pairs, when more than one jamming waveform are
received. The first issue is that the ML estimator is not reliable, because the under-
lying model is not valid anymore: the overall CAF results from the combination of
functions that are generated by the different waveforms and not one. Thence, if the
jammer are closely-spaced and/or moving in the same direction, their main lobes
might overlap in the delay-Doppler domain. When this chance occurs, a construc-
tive interaction among the CAFs produces one single peak of magnitude, which
causes the missed detection of one or more sources of interference. This situation is
exemplified in Fig. 3.4. Likewise, the lobes may partially or totally cancel each other
if the interaction is destructive, thus increasing the probabilities of missed detections
as well as false alarm. For instance, the coherent summation of spurious correlations
in the CAFs can give rise to significant peaks, which are nothing but artifacts that
likely lead to false alarms. Usually, jamming waveforms comply with the model un-
derlying Eq. 3.24: their magnitudes have a sinc-like shape featuring side lobes, as
shown in Fig. 3.3. All in all, finding the peaks of energy in the delay-Doppler do-
main is not a suitable way of resolving the superposition of the waveforms received.
Even assuming that the joint estimation TDOA and FDOA is correctly accomplished,
the second issue is then identifying which of the observables extracted from every
couple of synchronous receivers belong to a certain jammer, given that the number
of sources is unknown. This challenge is referred to as the data association prob-
lem and is generally solved through complicated iterative algorithms iteratively. In
[140], the estimation process for localizing multiple jammers solves the first issue
as an optimization problem that is built around the model in 3.24. The associations
are then overcome by clustering the resultant TDOA/FDOA pairs in the position
domain. Alternatively to this approach, the strategy we propose in the following
is meant to bypass the two aforementioned challenges through TF analysis. Partic-
ularly, we leverage on the knowledge about the commercial jammers that are typi-
cally on board of civilian vehicle in order to recognize and separate the signatures
of the jamming waveforms embedded into the incoming signal. Thanks to field in-
vestigations and experimental surveys, such as [146], we known that most of in-car
PPDs transmit linear chirps that are modulated in frequency according to a saw-
tooth pattern. We may take advantage of these notions to distinguish the concurrent
jamming attacks based on the differences between the respective TF characteristics.
In the present subsection, we review an algorithm that is conceived to address this
task. More specifically, this algorithm provides “one-shot” estimates of the repe-
tition periods and the rates of the sawtooths that overlap in time and frequency.
Clustering these estimates in a sort of TF domain refines the characterization and
counts the number of simultaneous jammers. The extension to a tracking operation
similar to that in [131] for one jammer is possible but not yet explored. The capabil-
ity enabled by this algorithm may turn out to be useful in countermeasures against
interference. Later in this chapter, it is indeed used to inject additional information
into the two-step estimation process that can track the positions and velocities of the
two jammers.
A single receiver is being employed to infer the TF characteristics of an unknown
number of multiple jamming waveforms, which are superimposed with arbitrary
phases and time-varying amplitudes. They are periodic, highly non-stationary (i.e.,
their spectra change rapidly), and generated by jammers with various transmit pow-
ers and/or at diverse distances. As before, the possible reception of multipath replica
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is not taken into account for the sake of simplicity. The useful signals victim of in-
terference are assumed to have a power level well below the noise floor (e.g., DS-SS
communications and GNSSs), so that they do not affect the characterization of the
jammers. On the contrary, the power spectra related to the jamming attempts are
supposed to exceed the noise power density within the visible spectrum. Further-
more, the receiver should be continuously jammed over the time of observation. This
last hypothesis excludes the possibility of pulsed behaviors during the reception and
simplifies the algorithm. Nevertheless, in practice, repetitive observations could be
combined to relax this assumption. The goal of the application under study is deter-
mining the number and the respective inner periodicities of the simultaneous wave-
forms observed at the receiver end. Thereupon, the incoming mixture of energy
components is analyzed onto a two-dimensional TF domain, rather than one spec-
tral dimension in order to discriminate among their frequency modulations. The TF
analysis is performed by digitally processing the signal received, without the need
of additional analog components at the front end. The ST is an effective tool to tackle
the uncertainty about the overlapping modulations, because of its desirable proper-
ties introduced in Chapter 2. This transform is linear and capitalizes on the insertion
of Gaussian windows with deviations progressive in frequency into the exponential
basis functions that underlie the conventional Fourier analysis. By doing so, it can
provide consistent multi-resolution TF representations that are free from fictitious
cross terms and that identify the local timings of both amplitude and phase com-
ponents, which are otherwise averaged over time into the global FT. Therefore, the
algorithm explained in next subsection searches for jamming waveforms by com-
puting the discrete and complex-valued ST for snapshots of received I/Q samples in
a batch fashion. Despite the high complexity of the ST, a fast computation is still fea-
sible if the TF resolution is down-scaled by limiting the snapshot to short time spans
(i.e., short observation times) and/or the sampling rate. Since the snapshot are long
enough to provide sufficiently high time-bandwidth product and so processing gain,
while being short enough to be processed fast through the fully-redundant ST, the
implementation of the temporal decimation and spectral compression described in
Chapter 2 are not investigated for this application; reducing the redundancy to limit
the complexity is unnecessary and inevitably introduce some errors. In any case, the
receiver can be simply used as a basic front end, while the snapshots are analyzed
on the cloud, which is endowed with enough processing power to perform jamming
characterization online, without compromising on the resolution. Consecutive snap-
shots are hereinafter treated as independent realizations of the signal, because the
number of sources in the scenario might change in the meanwhile and no track-
ing operation is considered. Some additional capabilities provided by the algorithm
presented, and yet not evaluated in the following, are interference detection and the
characterization of stationary in-band disturbances (e.g., continuous waves). The
search for jamming waveforms is supposedly triggered only if a relevant amount of
energy exceeds the noise floor in the ST for the current snapshot. This mechanism
not only avoids to waste computational resources for extracting periodicities from
empty batches, but also flags the presence of strong interference. The identification
of any waveform not modulated in frequency, which is possibly generated by mal-
functioning equipments or powerful co-existing systems (e.g., radars), is straight-
forward in the ST. The algorithms for the characterization of jamming waveforms is
robust to the reception of these additional disturbances.
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FIGURE 3.13: Sawtooth pattern modulating in frequency a single jam-
ming waveform generated by in-car jammers.

TABLE 3.2: Typical characteristics for the waveforms of the transmit-
ters jamming GPS bands.

Symbol Range Average
BRF 10-60 MHz 15 MHz
T0 1-30 µs 10 µs

3.3.1 Optimization of the ST for Jamming Sawtooth Waveforms

Let us resume the notation in Eq. 3.1. After the down-conversion to baseband, the
complex envelope of the analog signal consists of a number Nψ of jamming wave-
forms superimposed in time and frequency and defined as

d(t) =
Nψ

∑
i=1

(√
Pdi(t)

∞

∑
r=−∞

ψi
(
t− (r− 1)T0i

)
ejφi(t)

)
(3.63)

where ψi(t) is the sawtooth function that modulates the i-th train of linear chirps
according to Eq. 3.2, and φi(t) is an arbitrary phase shift due to a certain delay and
Doppler frequency shift. The periodic repetition of chirps describes a pattern de-
picted in Fig. 3.13 and acts as the TF signature for the emission of the respective
source of interference. According to the scientific literature, the vast majority of in-
car jammers on the market are banks of transmitters that radiate interference onto
distinct sub-bands through monopole antennas of suitable sizes. Every transmit-
ter generates one sawtooth waveform that rapidly scans back and forth the dedi-
cated sub-band with a narrowband and powerful tone. This frequency modulation
is roughly linear and provides a twofold advantage from the point of view of the
malicious user. It concentrates the energy in time, while covering large bands in
short intervals. As a matter of fact, the interference captured at the receiver end is
wideband, even though the emission at the origin is delivered with limited power
consumption. This smart design reduces the bulk and lengthens the battery life
of in-car jammers, which may be then commercialized as inexpensive and portable
devices. We refer as characteristics of the jamming waveform to those of the one
transmitter that radiates in the sub-band of interest. In this context, common values
of repetition period and bandwidths for the interference within GPS bands are sur-
veyed with commercial devices in [146] and reported here in Tab. 3.2.
After the front-end filter and the quantizer, the jamming waveform is embedded into
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the noisy and complex-valued digital signal s[l] that is already defined in Eqs. 3.3
and 3.16. We analyze the time-varying spectral content of a snapshot made of N of
these I/Q samples by means the discrete ST. The analysis, however, is not always
fruitful. Despite the convenient properties, the ST cannot provide the same perfor-
mance in terms of energy concentration regardless of the input set of sawtooths.
Indeed, even inside the bandwidth free from side-effects (i.e., self-aliasing and time
misrepresentation), the energy distribution of a frequency-modulated waveform is
gradually spread the further the spectral components of the signal are away from
the central frequency. This outcome could harm the correct interpretation of the re-
sultant TF representation, to the point that the output of the ST is practically useless.
The consequence is notably evident for fast modulations, in which several repeti-
tions fall into the snapshot under analysis. This shortcoming comes from the pro-
gressive trade-off of TF resolution as originally formulated by [23]. In here, the de-
viation of the Gaussian function that windows the signals is linearly scaled so that
it is equal to the reciprocal of the magnitude of the corresponding normalized fre-
quency. This formulation lacks of flexibility: no matter what signal is analyzed, the
windows become flatter as the frequency modulus is higher. The simple introduc-
tion of a variable coefficient of proportionality k in the Gaussian function provides
an additional degree of freedom to control the resolution trade-off. This addition is
suggested in [156] to improve the performance of the ST, which is constructed with
the following windows

w(k)[n, p] =
|p|

kN
√

2π
exp

(
− 1

2

( n
kσ

)2
)

, σ =
N
|p| (3.64)

for digital frequency bins identified by the index p = −N/2, ..., N/2− 1 with N =
fsTobs. Ergo, the ST defined in Chapter 2 is modified into the following matrix

STs(k)[n, p] =
l+N−1

∑
m=l

s[m]w(k)[m− n]e−j2π
p
N m (3.65)

and the condition on the sampling rate for minimizing the self-aliasing effect changes
accordingly:

fs ≥
Beq(kπ + 1)

kπ
. (3.66)

The bound imposed by Eq. 3.66 is evidently much stricter than that of the Nyquist
sampling criterion. Therefore, from this moment on, we sample the signal with a
rate double with respect to the front-end passband bandwidth (i.e., fs = 2Beq) in
order to grant the freedom to sweep k up to a maximum value equal to π−1 whether
necessary. The number of oscillations that can be contained within one standard
deviation of a window grows with the product kσ. While the temporal resolution
benefits from a small coefficient, the spectral resolution is compromised, especially
for low frequency magnitudes |p|. Conversely, if k is large, more cycles of the sinu-
soids are retained within one window and thus the frequency resolution is enhanced
to the detriment of that in time, especially when |p| is high. The complete control
of the TF trade-off is gained with the adoption of a scaling factor that is a function
with respect to the frequency (i.e., k[p]). One can strain or stretch the progression
that regulates the effective duration of the Gaussian windows, by tuning this factor
as needed. Ideally, the scaling function is tailored to the energy spectral density of
the signal analyzed. For instance, a constant scale step is suitable to represent lin-
ear chirps, whereas a frequency-varying step is better for nonlinear waveforms. The



84 Chapter 3. Interference Source Localization

adaptation of k[p] requires the knowledge of the incoming signal. In [157] and the
articles cited therein, the standard deviation is optimized a posteriori to maximize
a measure of the energy concentration for every spectral component. These meth-
ods are computationally consuming and, most of all, are possibly inconvenient for
our application, because the TF characteristics of the multiple jamming waveforms
are diverse and unknown. For the sake of practicability, the a-priori optimization
of this factor within the receiver bandwidth is feasible by making reasonable as-
sumptions about the class of waveforms of interest. The class we consider is the one
described as the summation of linear frequency-modulated waveforms in Eq. 3.63.
Interestingly, as far as linear chirps are concerned, a closed-form approximation of
the optimized standard deviation for fixed Gaussian window of the STFT is found
in [41] based on one specific chirp rate. We may apply the same principle to the
frequency-dependent windows of the ST and derive the formula:

kopt = 2

√
πBRF

2T0 f 2
s

(3.67)

the demonstration of which is straightforward. Equivalently, this equation may be
expressed with respect to the chirp angle θ as follows

kopt = 2

√
π tan(π − θ)

2N
(3.68)

over the grid of N × N points that identify the TF components in the ST matrix, as
shown in Fig. 3.14. Obviously, neither the rate nor the angle of the chirp are known.
Moreover, Eq. 3.68 optimizes the TF representation for a single sawtooth waveform
only, while we are dealing with many overlapping ones. Sophisticated solutions to
this problem resort to iterative a-posteriori adaptations that make kopt(n, p) vary in
time and/or frequency. They entail a significant computational burden and are be-
yond the scope of the application subject of this chapter. Therefore, it is preferable
a workaround able to work a priori, without further pre-processing. A simple effec-
tive solution in this sense is fixing the scaling function to one value denoted by kopt,
which is optimized to the average slope in the range of possible chirp rates. We may
circumscribe this range by making a pair of considerations, also illustrated in Fig.
3.15.

• The ST should accurately represent any sawtooth waveform that has two or
more repetitions lying within the observation time, regardless of the band-
width of the front-end filer. This condition ties the chirp angle to the maximum
periodicity that should be visible in the representation, namely

T0max =
Tobs

2
. (3.69)

From the geometry of the TF domain, it is plain to obtain a higher bound in the
form of θ ≤ 135°.

• If the slope of the sawtooth is slow over time, the sampling rate is sufficient
to follow the evolution of the waveform without energy leakages. If the mod-
ulation is fast and thus the slope is high, the spectral energy of the waveform
could leak among the points that underlie the quantized TF domain of the dis-
crete ST, similarly to what happens in the CAF. As a consequence, the energy
of these components is spread among the neighbors and possibly invisible in
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FIGURE 3.14: Definition of the chirp angle of a sawtooth waveform
in the quantized TF domain under the discrete ST.

the resultant representation. To avoid this possibility, we set lower bound to
the chirp angle with θ ≥ 95°, which also corresponds to a minimum repetition
period:

T0min =
BeqN

tan (85°) f 2
s

(3.70)

that depends on the receiver bandwidth. The threshold used to express the
condition is not derived in a rigorous manner, but it is actually found by trial
and error. The arbitrariness behind this setting is anyhow trivial, because the
limitation it imposes can be overcome by adjusting observation time, as we
will see in the results.

In the light of these considerations, the ST can be optimized with

k[p] = kopt, ∀p (3.71)

according to

kopt = 2

√
tan(π − θ)

2N
(3.72)

where the arithmetic average of the chirp angles is θ = 115° within the range defined
by θ ∈ [95°, 135°]. This formula does not require any insight about the specific TF
characteristics of the sawtooth waveform under analysis. The effectiveness of such
a solution is demonstrated for example in Fig. 3.16.



86 Chapter 3. Interference Source Localization

FIGURE 3.15: Chirp angle of the sawtooth waveform.

(A) Amplitude of the ST with k[p] = 1. (B) Amplitude of the ST with k[p] = kopt.

FIGURE 3.16: Discrete TF representations over Tobs = 100 µs of two
jamming sawtooth waveforms equally-powerful that are character-
ized by chirp angles θ = {95.14°, 135°} and have repetition periods

T0 = {10 µs, 50 µs}.

3.3.2 Energy Detection based on the S-Transform

Once being computed according to Eq. 3.72, the ST is optimized to analyze the saw-
tooth waveforms that jam the snapshots received. Although the resultant TF repre-
sentation of the interference components is neat, the amplitudes and phases are of
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little use because they result from the untraceable constructive/destructive interac-
tions among the waveforms. Therefore, the information they carry is not meaningful
if the task is to separate and characterize the signatures of multiple jammers that are
mixed into the TF domain. The idea is then distinguishing the sawtooth waveform
by taking advantage of their inner periodicities. In other words, what matters is
the recognition of the periodic evolutions in time of the energy distribution, rather
than reading the corresponding values of amplitude and phase. To extract this in-
formation, the significant energy density of the interference should be first revealed.
Any other intentional or unintentional emission within the receiver bandwidth is
supposed to be weak enough to be buried under the noise floor. Thence, discrimi-
nating the interference from the noise is just a matter of detecting the TF components
standing out in terms of energy. In this regard, within the spectrogram built on the
STFT, a simple binary decision test is used in [43]. The detection statistics relies on
the assumption of additive white Gaussian noise, the energy of which is proven to
have a chi-squared PDF. Since the nature of this distribution does not depend on the
analysis window, the same assertion holds in the framework of the ST. Under the
hypothesis of the absence of signals, the probability for any TF component to exceed
a certain energy threshold is

Pfa[p] = prob
(
|ST[n, p]|2 > λ[p]

)
= exp

(
− λ[p]

2σ2
nEw[p]

)
(3.73)

that is referred to as false-alarm probability, in which is the energy Ew of the frequency-
dependent windows is known by the construction of the transform, whereas the
knowledge of the noise power σ2

n is acquired during an initialization phase far from
sources of interference. The threshold denoted by λ[p] is a function with respect to
the frequency because of the set of windows of the ST, while it has unique value for
the STFT. Usually, the false-alarm probability is fixed by the following rule of thumb

Pfa[p] = Pfa <
1

N2 , ∀p. (3.74)

Therefore, the threshold can be pre-determined frequency by frequency as

λ[p] = −2σ2
nEw[p] ln (Pfa). (3.75)

Any component carrying an energy level above this threshold is flagged as jamming
power. This statistics detects and locates the presence of interference in the TF do-
main. The outcome is a binary and two-dimensional mask, which is set to one in the
correspondence to correct detections and false alarms, while it is null for the negli-
gible TF components. The mathematical formulation of this concept is the matrix

Λ = Λ[n, p] =

∣∣∣∣∣1N − u

(λ[−N/2] . . . λ[N/2− 1]
...

. . .
...

λ[−N/2] . . . λ[N/2− 1]

− ST[n,p]

)∣∣∣∣∣ (3.76)

where 1N is the all-ones square matrix of order N and u is the element-wise unit step
function defined by

u(x) =

{
1, x ≥ 0
0, x < 0.

(3.77)
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FIGURE 3.17: Binary mask computed from the ST in Fig. 3.15.

For example, the one based on the signal in the precedent figures is plotted in Fig.
3.17. We may notice that the energy of the fast modulation features thinner traces
in the TF plane, while, on the contrary, the one with a slow rate exhibits a signature
more spread in frequency, even though their power level are identical. Multiply-
ing this mask to the matrix of the discrete ST means blanking all the information
associated to the noise.

3.3.3 Estimation and Aggregation of the Sawtooth Periodicities

Since the interference generated by in-car jammer typically features a sawtooth pat-
tern, we may regard periodicity as a further dimension to combine time and fre-
quency information. And we can exploit this observable to distinguish the wave-
forms and to guess the respective TF characteristics, which are the chirp slope and
the repetition time. In other words, we leverage on the little knowledge we have
about the generic properties of the class of interference that we target in order to
characterize the specific ones present in the scenario. Sophisticated techniques in
the realm of advanced image processing and machine learning are believed to be
promising when it comes to the best accomplishment of such a task. However, they
are also too complex for the ultimate goal of this application, which is the tracking
of simultaneous jammers discussed in the next subsection. It is then important to
contain the execution time, so that the jamming characterization can run in nearly
real time. For this purpose, the algorithm described below is devised to be as light
as possible in terms of computations. The complexity could be handled by the com-
putational resources at disposal on the cloud.
The binary mask defined by Eq. 3.76 discriminates the TF components of pure noise
from those apparently affected by in-band interference. The distinction entails an
implicit and reasonable choice: the search is restricted only to the waveforms that
are received with enough power to exceed the background noise. Therefore, the re-
ceiver should be within the coverage of the jammers that have to be characterized,
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as we consider hereinafter. The mask exposes the energy contained in the snap-
shot, regardless of the amplitude and phase at the reception. This information is
then used as input into the algorithm that recognizes the signatures of the various
jamming waveforms. The algorithm within a loop of two stages, which detect and
estimate the periodicities in the mask, respectively. At the end of the loop, a third
stage of clustering is in charge of aggregating the estimates to establish the number
of jammers and retrieve both the respective chirp angles and repetition periods. The
flowchart in Fig. 3.23 provides an overview of the whole operation. The three stages
are summarized in the following.

Chirp recognition - Inside a loop, the coordinate system of the binary mask is ro-
tated by an incremental angle, which is swept along a set drawn from the range
of all possible chirp slopes defined in Fig. 3.15, namely from θ ∈ [95°, 135°]. For
the moment, let us consider only the set integer angles of θr = {95°, ..., 135°},
so that the rotated matrix is denoted by Λr (or Λr[n′, p′]) for r = 1, ..., R with
R = 41 and a resolution of one degree. At every instance of the loop, the
rotation is performed by multiplying the mask with a proper matrix that can
be stored. The product is then inspected to reveal possible sawtooths charac-
terized by the corresponding chirp slope. The set could be limited to a few
specific angles, if one has already clues about the jammers present. After the
rotation, the first stage of the search for jamming waveforms is based on the
Hough transform (HT), which is a well-known tool to identify segments in
images. This transform is introduced in [158] as a special case of the Radon
transform that has a simple closed form. We use it to recognize line segments
due to linear chirps into the binary mask. Processing the HT fixed at -90° for
the matrix Λr returns a one-dimensional function. The task is to identify the
horizontal and continuous sequences of TF components with significant energy
(i.e., ones in Λr) that exceed a certain length. The recognition finds at most
a number NH of bins of index p′ where this function is higher than BH(θr)
(see Fig. 3.19). Next, these bins are examined in order to extract sequences of
contiguous ones, which should be at least longer than BH(θr) with the excep-
tions of gaps shorter or equal to MH. This last parameter provides robustness
against negligible discontinuities. The ultimate task is to reveal the directions
along which the energy is distributed with continuity, thence the slope of the
repeated chirps. An example is shown in Fig. 3.18. Once rotated, the axes of
time and frequency coordinates have indices respectively equal to

n′ =
(
n− N

2
)

cos (θr)− p sin (θr) +
N
2

(3.78)

and
p′ =

(
n− N

2
)

sin (θr) + p cos (θr). (3.79)

The parameters NH and MH are arbitrary and have an important impact on
the performance and the computational burden. If we restrict the algorithms
to extract only the sawtooth that span the whole visible spectrum, we may tie
the minimum length of the sequences extracted to the receiver bandwidth as
follows

BH(θr) = b
0.9Beq

sin(π − θr)

N
fs
c (3.80)

for obvious geometrical reasons.
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(A) Sequences extracted from Λ135°. (B) Sequences extracted from Λ95°.

FIGURE 3.18: Continuous energy recognized in the mask of Fig. 3.17
for the two rotation angles θr = {95°,135 °} that roughly coincide

with slopes of the two jammer slopes.

Periodicity estimation - After being identified with the HT, the relevant concentra-
tion of energy in the matrix Λr is summed up horizontally, row by row, thus
over the rotated time axis with index n′. We may consider the result of this sort
of coherent summation as a selective spectrum of the power that is continuously
distributed along the direction of θr. The denomination proposed is meant to
recall one property of the ST: time averaging the local components collapses
the TF representation into the global Fourier spectrum. The periodicity of the
spectral components in Sθr [p

′] is the baseline to measure the repetition period
T0 of a sawtooth waveform made by chirps modulated with rate

Beq

T0
= tan(π − θr)

f 2
s

N
. (3.81)

The basic estimation of the periodicity consists of finding the amplitude peaks
in the DFT. The spectrum can be paired with a detection threshold at constant
false-alarm rate according to [159]. However, the temporal spacing between
consecutive frequency bins exponentially grows with the period as a power of
2. Hence, the longer periodicities suffer from a coarse estimation resolution,
while the shorter periods are precisely estimated, up to the higher bound de-
fined by the Nyquist frequency. Another issue is the spectral leakage, namely
the dispersion of the frequencies that are not integer multiples of any of the
bins. As opposed to the DFT, the ACF can equally refine the estimation accu-
racy for both short and long periodicities, because it has constant temporal res-
olution. Nevertheless, this second function suffers from an excessive harmonic
ambiguity: there exist peaks at the harmonics and the inter-modulation prod-
ucts of the actual periodicities. These spurious correlations likely complicate
the choice of a significance threshold for detection, thus leading to many false
alarms. More details about these methods are explained in [160], [161], and
the references therein, for a variety of applications. Although DFT and ACF
cannot separately provide reliable estimates of the periods, there are some ap-
proaches to combine them in a more consistent time representation in order to
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FIGURE 3.19: Outcomes of the chirp recognition and periodicity es-
timation applied to the energy mask in Fig. 3.18 for the two rotation
angles θr = {95°,135 °} that roughly coincide with slopes of the two

jammer slopes.

enhance both the periodicity accuracy and the robustness to both false alarms
and missed detections. Recently, a candidate with these potential capabilities
has been proposed in [162] for the classification of audio items based on the
rhythm. Here, a fine-grained periodicity estimation is obtained as the maxi-
mum of a normalized and real-valued function, which merges the amplitude
of the DFT and the ACF by interpolating and concatenating their time and fre-
quency bins over a hybrid lag-frequency axis with index ∆p′. The outcome of the
interpolation is a periodicity function denoted by P[∆p′]. For instance, apply-
ing this method to retrieve repetition periods highlighted in the rotated binary
masks of Fig. 3.18 returns the estimates in Fig. 3.19. Besides the index corre-
sponding to the maximum indicated in the pictures, all the bins with values
above a certain significance threshold ξ are forwarded to the next stage of the
algorithm. Since the periodicity function is normalized, the threshold can be
easily designed.

Periodicity aggregation By repeating the previous two stages throughout the loop
for all the angles of interest θr = {95°, ..., 135°}, a two-dimensional periodicity
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FIGURE 3.20: Periodicity map of the mask in Fig. 3.18 where the two
jammers are characterized by (θ, T0)1 = (95°, 10 µs) and (θ, T0)2 =

(135°, 50 µs).

FIGURE 3.21: Clusters identified by the DBSCAN from Fig. 3.20.

map is obtained and denoted with P[∆p′, θr], such as that in Fig. 3.20. As antic-
ipated, the values in this map are normalized, thus setting a suitable threshold
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FIGURE 3.22: Pairs of jammer characteristics (θ̂, T̂0)1 = (95.39°, 9.02
µs) and (θ̂, T̂0)2 = (134.42°, 49.11 µs) estimated as the centroids of the

clusters and projected onto the periodicity map of Fig. 3.20.

ξ is a matter of design. Generally, the more numerous are the waveforms con-
tained in the snapshot and the closer are their characteristics, then the lower
is the overall significance of the periodicities. Therefore, under a pessimistic
circumstance, setting a loose threshold is preferable in order to avoid unrecov-
erable missed detections. For example, in Fig. 3.19 we set ξ = 0.3. Obliviously,
this choice means that false alarms are more likely to occur, but they can be
rejected by aggregating the periodicities estimated, as we do in the present
third and last stage of the algorithm. The domain where we run the aggrega-
tion of the estimates is defined by normalizing the axes of the periodicity map.
The significant periodicities are converted into the equivalent intervals of time
between consecutive chirp repetitions through an angular factor (i.e., sin(θ))
and divided by the maximum period visible, namely T0max . The chirp angles
are normalized on 180°. In this new reference system, we process the map
through a well-known routine that was named density-based spatial cluster-
ing of applications with noise (DBSCAN) in [163]. This tool efficiently aggre-
gates density-connected estimates that are likely to be associated to the same
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jammer, while discarding the isolated ones that are probably false alarms. It
requires two inputs: the maximum radius εD of two neighboring points to es-
tablish their direct connection and the minimum number of points ND to form
a cluster of sufficient density. Fig. 3.21 shows an example of clustering. The
output is an estimate N̂ψ of the number Nψ of simultaneous jammers. Further-
more, the centroids of the clusters can be used to jointly estimate pairs (θ̂, T̂0)i
of chirp rate and repetition period with i = 1, ..., N̂ψ. For the sake of clarity,
Fig. 3.22 updates the map in Fig. 3.20 with the projection of the jammer char-
acteristics extrapolated from Fig. 3.21. Given these estimates and thanks to the
sawtooth nature of the jamming waveforms, one can also get an insight into
the respective bandwidths:

B̂RFi = T̂0i tan(π − θ̂i)
f 2
s

N
(3.82)

even though the interference power spectrum might be well beyond the cutoff
frequency of the front-end filter.

The three stages of the algorithm are summarized by the block diagram in Fig. 3.23,
together with their inputs and outputs. The idea of resorting to TF analysis with the
ST is promising, but this strategy also inherits a limitation: the characteristics of dif-
ferent jammers are supposed to be separated in terms of chirp slope. Two sawtooth
waveforms with the same rate may be mistaken for one with a repetition period re-
sulting from the combination of the two. The extent of the sufficient separation is
inversely proportional to the TF resolution granted by the sampling rate and the ob-
servation time as well as proportional to the chirp slopes. Indeed, since the energy
of the slower jammer is more spread in the TF domain, so are the periods associated
to it in the periodicity map. This fact is noticeable in Figs. 3.19-3.22. Anyway, even
with ideally infinite resolution, there must be one and only one jammer per possible
chirp angle. This assumption is necessary to correctly estimate the periodicities on
the map and to prevent DBSCAN from erroneously merging the periods estimated
into a unique cluster. The impact of this limitation and possible countermeasures to
it are discussed in the next subsection.

3.3.4 Numerical Results

From Fig. 3.15 we have derived the lower and higher bounds on the chirp angles
that can be accurately estimated by analyzing the TF representation. Let us consider
now a receiver observing a snapshot of 100 µs over a bandwidth of 20 MHz, which
is that available in popular SDRs. In here, the range of values of θ covers just a
portion of the characteristics featured by commercial in-car jammers and listed in
Tab. 3.2. Particularly, it catches the average repetition periods and bandwidth (i.e.,
T0 = 10 µs and BRF = 15 MHz), but faster modulations lie under the lower bound
of θ = 95 and are thus poorly represented by the average-optimized ST. Likewise,
the periodicity of any sawtooth waveform exceeding the higher bound of θ = 135
is not visible. These shortcomings have opposite relevance. On the one side, accord-
ing to the scientific literature, jammers slower than 50 µs barely exist on the market,
because their quasi-stationary spectra are narrowband over long intervals of time.
Hence, their interference is less effective and easier to filter at the receiver. On the
other side, fast jammers should be addressed by shrinking the observation time,
so that their chirp angles are steered until they enter the range of accepted values,
namely θ ∈ [95°, 135°]. Theoretically, the same can be accomplished by increasing
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FIGURE 3.23: Block diagram of the algorithm for characterizing mul-
tiple in-car jammers by analyzing trains of linear chirps with the ST.

the sampling frequency, which is, however, fixed and unique for most of the imple-
mentations in practice. For instance, we depict in Fig. 3.24 a map of the “zones” that
circumscribe the possible combinations of jamming characteristics, which we can
estimate with a given equipment and consequent TF resolution. Each zone varies
both fs and Tobs, and so the complexity of the ST for analysis. The extension of the
subspaces of sawtooth waveforms that can be searched by the algorithm changes ac-
cordingly. The aim in Fig. 3.24 is to cover the whole space with negligible overlaps
between adjacent zones. More importantly, this example suggests that the algorithm
is potentially able to tackle any incoming modulation, if we can sweep the rate of the
ADC and/or the snapshot duration adopted by the receiver.
The analytic study of the estimation accuracy for the chirp angle and the repetition
period is not viable, due to the large number of variables. The validation of the char-
acterization algorithm is made by evaluating the performance in a few key situations
with an extensive simulation campaign. The results in the presence of a single jam-
mer are categorized into three zones that differ in the receiver configuration and that
are numbered by (1), (2), and (3), as shown in Fig. 3.24. The arrays of simulations
probe samples of waveforms that are indicated by the markers in the figure above
and share the parameters listed in Tab. 3.3. Eventually, the estimation accuracy is
tested with two jammers for the receiver configuration (1) only. The corresponding
zone indeed occupies most of the search space of the jamming characteristics. More-
over, in parallel to the characterization, the long observation interval turns out ot be
useful to estimate the attacker locations from precise TDOA measurements, as we
illustrate in the last section of the chapter. These results give a deep insight into both
the capabilities and the limitations of the algorithm presented.
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FIGURE 3.24: Combinations of repetition periods and bandwidths of
the sawtooth that can be examined depending on the sampling rate

and the observation time underlying the ST.

(1) Long Observation Time

We may obtain the accuracy of the estimation by assessing the estimation bias over a
number of Monte Carlo realizations. The dashed lines around the error curves spec-
ify the 95th percentile of the results. The number of jammers estimated is steadily
within the 10% of error if the JNR is greater than or equal to 9 dB, as shown in 3.25.
The bias is contained also with lower power levels (e.g., 6 dB), when the jammer
is not too fast (i.e., θ ≥ 100 °). The performance of the estimates for the repetition
period and chirp angles are remarkable, with average errors on the order of few
tens of nanoseconds and one degree, respectively. In both, a sudden degradation is
clear near the highest acceptable chirp angle, because the energy of the slower mod-
ulations is spread in the TF domain, notably with high JNR. Fig. 3.26 confirms the
validity of the criteria behind the bounds on the chirp slopes: as expected, the algo-
rithm does not work properly for jamming waveforms outside the zone of operation
of the receiver used.
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TABLE 3.3: Common parameters among the simulations of multiple
jammer characterization.

Description Symbol Value
Single-sided noise power spectral density N0 -194 dBW/Hz
Front-end equivalent noise passband bandwidth Beq 0.5 fs

In-band JNR level ρ {3, 6, 9, 12, 18, 24, 30} dB
Energy detection false-alarm probability Pfa N−2

Maximum number of segments NH N/10
Periodicity normalized significance threshold ξ 0.3
Minimum cluster size ND 5
Maximum intra-cluster connection radius εD 0.02

(A) Mean bias in the number of jammers.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.25: Estimation accuracy inside the zone for the receiver
with fs = 20 MHz and T0 = 100 µs.

(2) Short Observation Time

The performance remain still satisfactory, exhibiting just faint signs of deterioration
due to the lower TF resolution. The behavior with respect to the chirp angle is the
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FIGURE 3.26: Mean bias in the number of jammers outside the zone
appropriate for the received, but inside the adjacent one that would

work with fs = 40 MHz and Tobs = 20 µs.

same previously commented with the longer observation time. Fig. 3.27 explores the
space with an interference bandwidth constantly equal to 20 MHz. We may compare
the outcome to the same evaluation carried out with the wrong receiver configura-
tion in 3.26. Contrary to this first array of simulations, a second one is executed by
varying both the time and frequency characteristics of the jammer. The results in
Fig. 3.28 are in line with the others and with the expectations. The estimates of the
repetition period become more accurate, while the ones of the chirp angle are less.
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(A) Mean bias in the number of jammers.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.27: Performance for the first array of simulations run inside
the zone for the receiver with fs = 40 MHz and Tobs = 20 µs.
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(A) Mean bias in the number of jammers.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.28: Performance for the second array of simulations run
inside the zone for the receiver with fs = 40 MHz and Tobs = 20 µs.

(3) Wideband Receiver

The last simulation with a single jammer tests the worst-case scenario where the
sawtooth waveform is transmitted with BRF = 60 MHz and T0 = 1 µs, thus with
the fasted modulation known. Although the TF resolution is way lower than be-
fore, the accuracy is still consistent with precedent results. As far as the angle of
the chirp slope is concerned, the strong dependency on the JNR is due to the coarse
granularity given by the sampling frequency and the observation time. When the
interference power is weak, the performance are very sensitive to the few TF com-
ponents detected. Conversely, if the jammer waveform is powerful at the receiver
end, the detection of many components easily saturate the mask due to the poor
resolution.
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(A) Mean bias in the number of jammers.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.29: Characterization of the fastest jammer inside the zone
for the receiver with fs = 60 MHz and Tobs = 4 µs.

(1) Two Jammers

Since the performance for a single jammer is well surveyed, we may move on to a
more interesting and realistic scenario: the reception of two jamming waveforms.
The jammer characteristics are swept in the range of 10-20 MHz in frequency and
between 10 µs and 50 µs in time, along the array of simulations marked in Fig. 3.24
for the receiver configuration (1). In view of the precedent results, we can restraint
the simulation campaign to JNRs greater or equal to 9 dB in order to guarantee an
accurate characterization of the individual sawtooth waveforms. The goal is to in-
vestigate how the algorithm is affected by the separation between the characteristics
of the two sawtooth waveforms, depending on the respective received power levels.
For this purpose, it is sufficient to test three combinations of JNR levels:

• ρ1 = ρ2 = 9 dB;

• ρ1 = 9 dB, ρ2 = 30 dB;
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• ρ1 = ρ2 = 30 dB.

In the first scenario, both the jammers are sufficiently powerful to allow for a TF
representation that is robust against noise, but not enough to cause the saturation of
the mask computed on the energy in the ST. This is then a best-case scenario. The re-
sults in Fig. 3.30 highlight both the achievements and the setbacks of the algorithm.
If the number of jammers is correctly guessed by the DBSCAN, the periodicity and
the slope are precisely characterized. The performance in terms of RMSE for T̂0 and
θ̂ are shown in Figs. 3.30b and 3.30c only where the mean error in N̂ψ is lower than
10%. Remarkably, the accuracies are below the microsecond and one degree, on av-
erage. However, they depend on the correct separation of the two jammers, which is
challenging when the chirps they transmit are modulated by a similar slope. Indeed,
the bias in N̂ψ statistically grows far beyond the 10%, if the sawtooth waveforms fea-
ture a differential chirp angle up to ±5°. Such a limitation is more evident for the
other two cases in Figs. 3.31 and 3.32. Here, the situation is worse due to the higher
strength of the jammers. In fact, since more energy is captured, then more com-
ponents are detected and the mask is prone to saturation. As a consequence, the
resolution of the TF representation searched for periodicities may be insufficient for
the algorithm to distinguish among mixed jamming waveforms.
In order to enhance the effectiveness of the algorithm, it is necessary to introduce
some form of power adaptation into the receiver, akin to the AGC loop. As a matter of
example, let us consider the performance in Fig. 3.32. Intuitively, we can force the
algorithm to achieve accuracies near those in Fig. 3.32 with a simple workaround:
we lift the noise floor for the energy detection in the ST. More specifically, we may
add about 21 dB to the noise power σ2

n , which goes from 30 dB to 9 dB below the in-
terference, so that the resultant binary mask solely includes the most significant TF
components. Generally speaking, we may think of σ2

n as a “knob” for adjusting the
sensitivity of the detection stage. By tuning this quantity, we can raise the threshold
in Eq. 3.75 for all the frequencies at once in order to prevent saturation and aid the
separation of the slopes if needed. This adaptation is not effective when there is a
substantial gap in terms of received power between the two jamming waveforms.
This is the case of Fig. 3.31. Nevertheless, we can turn this issue into an advantage
by adapting the detection threshold to characterize the strongest jammer first, while
the weaker one is hidden. Afterwards, the components of the train of chirps are
canceled out and the threshold is restored to a lower value. Now, we can re-run the
search routine to focus on the characterization of the weakest jammer. This strategy
of successive cancellations is exploited in the next section to extrapolate the waveforms
and compute separate CAFs.

3.3.5 Conclusions

The goal behind the previous numerical evaluation is to demonstrate the promise
of using the typical periodicities of the sawtooth pattern that characterizes the fre-
quency modulation of jamming waveforms in order to count and identify the respec-
tive sources. Particularly, we initially argue that the ST is the proper tool to carry out
the TF analysis of unknown signals, since the receivers under attack do not know
beforehand the characteristics of the jamming waveforms, and more specifically the
bandwidths and the repetition periods. Therefore, through the ST, the algorithm
proposed shifts the analysis from the delay-Doppler domain (i.e., the CAF) to a new
domain in the TF plane, where separating the waveforms becomes possible. This
accomplishment is obtained by discriminating the periodicities of sawtooths. What
is crucial in here to understand is that different jammers are assumed to generate
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chirps with different slopes; this assumption is necessary unless other conditions on
their received power levels take place. In Fig. 3.14, the chirp slope is defined as an
angle that depends on the bandwidth and the repetition period used to modulate
the sawtooth, and also on the TF resolution tied to the sampling rate of the receiver.
Therefore, by properly tuning the sampling frequency and/or the observation time,
the algorithm is able to distinguish jammers that transmit chirps with any realistic
slope, as long as the TF resolution is sufficient. This fact is illustrated in Figs. 3.15
and 3.24. On the contrary, when the aforementioned assumption is relaxed, even in
the new domain a pair of jammers might be hardly recognizable and mistaken for
the same interference source, if their sawtooths have two angles separated by a few
degrees (e.g., ±5°). The importance of such a limitation is assessed with a plethora
of cases that consider two jammers and a reasonable TF resolution (i.e., that of a
front end with 20 MSPS and 10-MHz bandwidth) that is within the reach of DoOs.
The outcome of the simulations offers an insight into the performance achievable
with any number of pairs of simultaneous jammers, which can be so characterized
unless the TF resolution is too coarse or their respective chirp slopes are indistin-
guishable. Interestingly, as anticipated, a diversity in the energy captured from the
two jammers might come helpful to overcome the lack of resolution necessary to
distinguish them based on their inner periodicities. In brief, this possibility requires
adjusting the sensitivity of energy detection in the ST, while successively analyzing
and canceling sawtooth waveforms of decreasing power.
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(A) Mean number of jammers estimated.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.30: Characterization of two jamming sawtooth waveforms
having both JNR equal to 9 dB.
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(A) Mean number of jammers estimated.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.31: Characterization of two jamming sawtooth waveforms
with JNRs equal to 9 dB and 30 dB.
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(A) Mean number of jammers estimated.

(B) Mean bias in the repetition period. (C) Mean bias in the chirp angle.

FIGURE 3.32: Characterization of two jamming sawtooth waveforms
having both JNR equal to 30 dB.
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3.4 Snapshot Tracking of Multiple In-Car Jammers

The present section wraps up the methods previously presented in this chapter in
order to finally track multiple jamming attacks at the same time. The goal is to
enforce prompt actions against fast-moving in-car jammers, by passively tracking
the positions and velocities of their respective origins within the area monitored by
DoOs. The enabling idea at the base of such an application is to distinguish the jam-
ming waveforms in the TF domain by means of their characteristic signatures. For
this purpose, the characterization algorithm described in the previous section can
do the job. As already explained, it leverages on the typical sawtooth pattern used
to modulate interference: the incoming waveforms are expected to be a mixture of
trains of linear chirps. This supposition is reasonable, because it is coherent with
the signals generated by the vast majority of devices surveyed in [13, 14, 146]. The
range of characteristic bandwidths and repetition periods are summarized in Tab.
3.2. The main assumption for this approach is the same necessary for characterizing
the jammers: the chirp slopes should uniquely identify their respective sources, at
least whenever their JNR levels are comparable. Under this circumstance, the dis-
crimination of superimposed jamming waveforms based on their TF characteristics
enables the extension of the method for the snapshot localization of a single source
of interference to scenarios with a unknown number of jammers. In other words, the
two-step estimation process in Fig 3.2 can separately operate on multiple jammers,
by splitting the CAF into the waveforms separately characterized at the receiver end.
This operation works in a divide-and-conquer fashion. The great advantage is that we
can bypass the two main challenges behind this application: the joint estimation of
concurrent TDOA/FDOA pairs and the association of the pairs estimated for sepa-
rate receivers to the corresponding jammers. For the sake of clarity, these challenges
are exemplified in Fig. 3.4.
The content of this section represents an original contribution to the state of the art
and is being submitted for publication in [164].

3.4.1 Divide and Conquer

The approach proposed in the following allows us to address the presence of an
unknown number Nψ of jammers by splitting the problem into Nψ sub-problems,
the solution of which is more practical.

Disambiguation of Multiple Cross-Ambiguity Functions

When two or more jammers are simultaneously present in the area monitored, their
CAFs interact constructively and destructively, depending on the relative distances
between them and each pair of DoOs. In fact, as the jammers move, their peaks in
the overall CAF can affect each other, thus causing false alarms as well as missed de-
tections. The first problem here is reliably estimating the TDOA/FDOA pairs, given
the fact that a ML is not a suitable solution. Secondly, a data association problem
arises: the observables should be fed to the correct estimator, namely to that track-
ing the corresponding jammer state. To overcome both these challenges, we should
gain insight into the jamming waveforms contained in every set of snapshots that is
captured by a number M of separate DoOs. For this purpose, we may inspect the
current snapshots through the ST optimized with Eq. 3.72 and then execute the char-
acterization algorithm described in Fig. 3.23. Afterwards, at the time epoch k, the
resultant set of periodicity maps P[∆p′, θr]ik with i = 1, ..., M can be averaged into
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FIGURE 3.33: Separation the jamming sawtooth waveforms in Figs.
3.16b and 3.17 according to the estimated characteristics.

one (i.e., P[∆p′, θr]k), which is robust to missed detections and false alarms thanks
to the spatial diversity of the receivers. By clustering the significant periodicities in
P[∆p′, θr]k, we finally obtain a triad of estimates (θ̂j, T̂0j , B̂RFj)k for the j-th jammer,
with j = 1, ..., N̂ψk . The quality of these characteristics is crucial to disambiguate the
individual CAFs.

Separate Reconstruction of Sawtooth Waveforms

The two-dimensional function P[∆p′, θr]k mirrors the distinct periodicities recogniz-
able in the TF domain. The combination of the periodicity maps overcomes the in-
ner ambiguity of the delay-Doppler domain underlying multiple CAFs, when many
jamming waveforms are received. We can exploit the knowledge gained from char-
acterizing the jammers to extrapolate the individual jamming waveforms into the
current snapshots, based on their TF characteristics. More specifically, we derive and
apply a number N̂ψk of binary masks Λjk that act as TF filters, each of which lets only
the components with significant energy aligned to the slope of θ̂j through periodic
slots of length and width denoted by BH(θ̂jk) and σIF, respectively. The coordinates
for centering the slots are inferred from the HT computed by the characterization
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FIGURE 3.34: Jamming sawtooth waveforms reconstructed from the
separation of the replicas, such as that in Fig. 3.33, which are con-

tained in the snapshots received by two DoOs at the same time.

algorithm, as shown in Fig. 3.18. Their width should be proportional to the energy
dispersion around the IF. As such, whilst arbitrary in practice, σIF would be theoret-
ically adapted to every jammer as a function with respect to the estimates of chirp
slope and JNR. The masks are used to separate the jamming waveforms by adopting
a strategy of successive cancellations in descending order according to the received
power. This procedure is necessary to filter out the mutual interactions among the
received waveforms: the amplitude and the phase of certain frequency components
can hide the concurrent contributions of multiple jammers. The cancellation is per-
formed iteratively with N̂ψk iterations. At first, the components associated to the
highest JNR are simply extracted by multiplying the mask and the ST. From the sec-
ond iteration on, the summation of the masks at precedent iterations for higher JNRs
are canceled from the latest mask in order to remove the components evidently af-
fected by the more powerful received interference that comes from other sources.
After each cancellation, the mask results from binary additions and multiplications
in the form of Λj′k

⊗ (1−Λ1k ⊕ ...⊕Λj′−1k
), given that the index j′ sorts the jammers

in order of increasing JNR (i.e., ρj′k
≤ ρj′k−1) with j′ = 1, ..., N̂ψk . The procedure de-

scribed is clear from Fig. 3.33, where the TF components of two jammers received
with comparable power levels are extracted through two iterations.
Once the sawtooths visible in the current set of snapshots are properly separated,
the jamming waveforms captured by various DoOs can be reconstructed by invert-
ing the STs filtered through successive cancellations. For the reasons discussed in
detail in Chapter 2, the reconstruction is carried out with the TI shown in Fig. 2.6.
Let us consider two distant and synchronous receivers, then the TF components ex-
trapolated from their snapshots, such as the one in Fig. 3.33, are replicas of the same
sawtooth waveform with different delays and Doppler shifts. They are plotted in
Fig. 3.34 for instance. Obviously, after the extraction, the trains of linear chirps
are irremediably distorted by both the TF filter and the unfiltered components re-
lated to the interactions with other waveforms at the reception. Nevertheless, their
erroneous approximation is not important, because we are more interested in isolat-
ing the delays and the Doppler frequency shifts among the replicas reconstructed,
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TABLE 3.4: Parameters for the case study of multiple in-car jammers.

Description Symbol Value
Carrier frequency fc 1575.42 MHz
Sampling frequency fs 20 MHz
Single-sided noise power spectral density N0 -194 dBW/Hz
Front-end equivalent noise passband bandwidth Beq 10 MHz
Jammer passband bandwidths BRF {20, 15}MHz
Jammer repetition periods T0 {9, 13} µs
Jammer chirp angles θ {95.1, 99.8} °
Jammer transmit powers Pt {0, -20} dBW
Observation time Tobs 0.1 ms
Normalized snapshot rate Rs 1/5000
Snapshot period 0.5 s
Simulation time T 4 s+Tobs

Number of observations K 40001
Number of snapshots 9

rather than re-generating an exact copy of the jamming waveforms. Indeed, the ul-
timate goal is cross-correlating the replicas of the same sawtooth from two different
DoOs in order to provide a CAF with a sufficiently clean main lobe. The replicas
are associated to each other coherently with the characteristics estimated, namely
by pairing the estimates (θ̂j, T̂0j)ik for i = 1, ..., M. Once their association is done,
they can be used to compute separate CAFs, which are ideally independent, as if they
were referred to single sources in different scenarios instead of multiple jammers in
the same scenario. That is the basic concept behind the divide-and-conquer strategy.
Given 4 DoOs and 2 jammers, this procedure leads to the parallel computation of a
total of 6 CAFs per snapshot. Now, the ML criterion is supposed to provide a reli-
able estimation of the TDOA/FDOA pairs: the maximum of the main lobes of every
CAF provides observables robust to the presence of multiple in-car jammers of di-
verse characteristics. Since the data association problem is solved, these estimates
can be directly used as measurement into the EKF1 that tracks the corresponding
origin. Therefore, given Nψ jammers, there are an equal number of parallel track-
ers. In reality, an array of recursive estimators could be dynamically adapted to the
jammers detected and characterized in the last sets of snapshots. In the following,
the detection is given for granted and always asserted, because the interference is
assumed to be transmitted with continuity.

3.4.2 Numerical Results

While an extensive campaign would be more convincing but less practical, we de-
cide to evaluate the effectiveness of the divide-and-conquer strategy together with
the jammer characterization algorithm for just one challenging case study. The ratio-
nale behind this choice is that the characterization capabilities of one single receiver
have already been extensively studied in the precedent section, and the estimation
of the locations of two jammers is straightforward when they are correctly charac-
terized. In any case in order to get meaningful results through Monte Carlo simu-
lations, the testing scenario is designed to stress both the localization accuracy and
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FIGURE 3.35: Scenario with two in-car jammers (the colored markers
indicate the positions estimated in parallel by each EKF1).

the correct separation of the sawtooth waveforms: two jammers move at fast speeds
along closely-spaced trajectories and their waveforms are modulated with compa-
rable slopes. Tab. 3.4 complements the simulation parameters listed in Tab. 3.3.
The scenario is illustrated in Fig. 3.35, where the jammers move at 100 km/h in
opposite directions and pass each other at about 1 m of distance. The proximity of
their locations with respect to the distances from the receivers is not a coincidence,
because it is meant to stress the diversity in the power levels received by the four
DoOs. More specifically, the evolution of the JNRs during this motion is plotted in
Fig. 3.36: the received power levels allow us to distinguish between a “strong” jam-
mer (i.e., 24 dB < ρ1 < 33 dB) and a “weak” one (i.e., 5 dB < ρ2 < 14 dB). The area
between the DoOs is a square of side 1-km wide. The test results in Fig. 3.37 exhibit
high accuracy for the strong jammer, which is tracked with errors under 1 m on the
position and 10 km/h on the velocity. Likewise, the weak jammer is also located
with sub-meter errors, whereas its velocity estimation is impaired by the stronger
waveform and increase up to 20-30 km/h. The estimated locations are pinpointed
in Fig. 3.35.
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(A) Strong jammer with Pt = 0 dBW. (B) Weak jammer with Pt = −20 dBW.

FIGURE 3.36: JNR levels received by the four DoOs.

3.4.3 Conclusions

recognizing the signatures of superimposed trains of linear chirps onto the TF do-
main Such sawtooth patterns typify the jamming waveforms generated by widespread
commercial devices.

The cooperative and two-step estimation of position and velocity of a source of
interference is extended to the case of multiple in-car jammers. By taking advantage
of characteristic periodicities of jamming waveforms, a divide-and-conquer strategy
is devised to tackle the sources of the attack: the waveforms are recognized in the TF
representation and reconstructed through successive cancellations to produce sepa-
rate CAFs, which are then used to separately estimate the TDOA/FDOA observables
for every jammer. Since this operation depends on the success of the characteriza-
tion algorithm introduced in the precedent section, the case study that evaluates the
tracking performance is designed as a proof of concept under conditions that ensure
the correct distinction of the jamming waveforms. When the jammers are success-
fully characterized, indeed, an array of KFs may be assigned to track their positions
and velocities in parallel and is fed with the TDOA/FDOA measurements accord-
ingly. The assignment works by associating one tracker to every peak of periodicity
that is identified in the new domain constructed with the ST. Notably, the availabil-
ity of more DoOs is exploited to cross-check the relevant periodicities extracted from
the snapshots received at the same time. Since the overall periodicity map is more
robust to missed detections and false alarms, this boosts both both the characteriza-
tion and the tracking performance. For instance, the final localization accuracy in the
scenario studied is below the meter over a 1-km square area even with a gap of 20
dB in the JNRs. Therefore, the presented method has the potential to track position
and velocities of closely-spaced jammers with diverse transmit powers.
Whenever the overlapping sawtooths contained in the snapshots are many and simi-
lar, some failures could arise in the characterization algorithm and so affect the track-
ers. If one periodicity peak is mistaken for a jammer, a tracker will be erroneously
assigned to a source that does not exist. Conversely, if one jammer is undetected be-
cause visible from one receiver only, then it goes missing. Over time, it is expected
that these issues could be handled by scaling the array of KFs according to the con-
sistency of their estimates. Anyhow, the robustness of the method proposed might
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benefit from a further layer of observation. More specifically, significant differences
in terms of JNRs could be exploited to discriminate in terms of strength the interfer-
ence received from different sources. Thereupon, a few comments are made in the
previous section about the possible addition of a power adaptation at the stage of TF
analysis with the ST. Despite the additional resilience granted by the power control,
under the unlucky circumstance of two identical jammers placed closely and radiat-
ing the same amount of power, only one source of interference out of the two would
be likely recognized and tracked. Nevertheless, in reality, even tracking just one jam-
mer at a time would still enable to find and neutralize each threat sequentially, when
a prompt action is taken. The same is hardly possible when applying state-of-the-art
techniques for interference localization, since reliable time measurements cannot be
normally taken under multiple jamming attacks.
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(A) Position error for the strong jammer. (B) Velocity error for the strong jammer.

(C) Position error for the weak jammer. (D) Velocity error for the weak jammer.

FIGURE 3.37: Performance in terms of RMSE of the estimation per-
formed by each of the EKF1 in tracking both the position and velocity
of the strong and weak jammers (the dashed lines trace the 95th per-

centile of the simulation precision).
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Chapter 4

Received Interference Mitigation

The integrity and availability of GNSSs have gained great interest in the recent years,
because of the ever-growing number of applications relying on an accurate PVT so-
lution. All these systems essentially adopt a the DS-SS scheme: the navigation bits
are modulated by a faster PRN code that spreads the spectrum in transmission over
a bandwidth much larger than the minimum one imposed by the Nyquist criterion.
This expedient benefits from an intrinsic immunity to in-band interference, because
drops of the input SNR in reception can be compensated by the processing gain pro-
vided by despreading. Despite the degree of resilience of the DS-SS modulation,
GNSS receivers are notably vulnerable to interference, because the signals transmit-
ted by satellites are very weak on ground, namely 20-30 dB below the thermal noise
floor. At the output of correlation with the PRN code, the interference spectrum has
then the form of “extra noise”, which deteriorates the carrier-to-noise-density power
ratio (C/N0), as shown in [165]. The consequences then range from the degradation
of the accuracy and the integrity of GNSS navigation message to the disruption of
the availability and continuity of the PVT solution, when the processing gain is not
sufficient to recover the data. When the outage lasts for seconds, it results in a de-
nial of service. Depending on the interference power spectral density within the
bandwidth after despreading, a receiver may encounter conditions of increasing se-
riousness.

1. Low noise compromises the accuracy of the pseudoranges and causes spo-
radic losses of lock into the carrier and frequency tracking loops as well as the
missed acquisitions of the weakly visible satellites. In other words, the chan-
nels with low C/N0s are the first to go off or unstable.

2. Moderate noise worsens the previous effects on more channels. When few
satellites can be acquired and track, the poorer geometry of the serving con-
stellation has an important impact on the final positioning and timing accu-
racy. The integrity of the message decoded is compromised as well, because
more errors are introduced, stressing the consistency checks.

3. High noise due to the strong interference provokes a near-far problem, so that
the weak satellite signal is compressed by the AGC stage to a fraction of the
dynamic range in order avoid the saturation of the ADC. Given the limited
resolution in bits of the quantizer inside consumer-grade receivers (e.g., 1/2
bits), few tens of decibels in terms of JNR are enough to totally obscure the
reception of the useful signal. When fewer than four satellites can be acquired
and tracked, no PVT solution is possible and the denial of service is irrepara-
ble. Less precise and more robust fall-back systems (e.g., based on the cellular
modem) should be then up and running.
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The reader may find some studies dedicated to the impact of jamming attempts onto
GNSS receivers in [165, 166] and others.
For safety-critical, mission-critical, and business-critical applications dependent on
the GNSSs, the effects listed above easily prevent them from being trustworthy or
stable as required by specifications. Furthermore, these consequences could resem-
ble that of attenuation and multipath in dense urban areas. Therefore, the detection
of the jamming attempts is the first necessary step to allow for countermeasures.
Hereinafter, the presence of jammers is assumed to be known and the focus is on the
receiver-side mitigation of interference.

4.1 State of the Art

Interference detection and mitigation are mechanisms aimed at ensuring the qual-
ity of service that is provided by the GNSS receiver and requested by positioning
and timing applications. The detrimental effects of jammers provide also plenty of
tangible clues to reveal their presence based on pre-correlation or post-correlation
observables, like the AGC gain or the channel C/N0, respectively. In this regard,
relevant examples of methods for jamming detection are published in [167–176] and
other papers. Besides the very powerful sources of interference built for criminal,
terrorist, and military purposes, a variety of portable and inexpensive civilian jam-
mers are available on the market that is accessible to the public. Their in-car versions
are particularly popular. As mentioned in Chapter 3 and assessed in [146], the vast
majority of these devices rapidly modulate in frequency of tone to obtain a wide-
band chirp-like waveform, which is repeated with a sawtooth pattern. By doing so,
they can maximize the ratio between the average transmitted energy and the peak
power. They typically feature power up to 1 W, average bandwidths of 15 MHz
or more per channel, and repetition periods of about 10 µs. The Finnish Geodetic
Institute analyzed the effects of these jammers on various consumer-grade GPS re-
ceivers working both in single-band and dual-band mode (i.e., u-blox, Nokia, and
NovAtel) and published the results in [177]. A GPS L1 jammer of 13-dBm nominal
power and 14-USD list price and a GPS L2/L5 33-dBm jammer worth 130 USD were
employed. The experiments showed that the horizontal positioning errors dramati-
cally increase both in their mean and variance and that the PVT solution availability
drops from the 100% to just 8-26% in presence of interference, depending on the
receiver as well as the on the jamming-to-signal power ratio. In addition, the ex-
perimental outcomes of [146] demonstrated that jammers as such can impair both
acquisition and tracking performance of consumer-grade receivers in a range up to
9 km, approximately. This range far exceeds that advertised by the retailers, which
rather erroneously indicate the maximum distance for effectively interfering strong
wireless communications. Therefore, equipping GNSS receivers with anti-jamming
modules is a crucial upgrade to guarantee the reliability of the PVT solution. A com-
prehensive review of the state of the art has been recently published in [178]. The
demand for cost-effective implementations has motivated research on digital signal
processing techniques for the excision of received jamming waveforms, which avoid
the addition of expensive antenna arrays or inertial measurement units. In other
words, under the assumption of constrained hardware, we consider here only soft-
ware techniques: they process the raw I/Q samples at the output of the ADC/AGC
loop in a domain where the powerful chirp-like interference exhibits distinguishable
characteristics with respect to the weak GNSS signals, which in turn are dominated
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by noise. These mitigation methods may be classified based on the processing do-
main according to [179].

• Time-domain techniques need no transformed domain information. In this
context, adaptive notch filtering that makes use of FIR or infinite impulse re-
sponse (IIR) filters is proposed in [179–184]. The self-correlation among the
filtered samples is negligible, as it does not hinders the relatively longer PRN
code sequence. This approach is effective for interference mitigation as long
as the jamming waveform is modulated with either constant or slowly time-
varying IF, so that the set up and adaptation of the notches can keep up with
them. In fact, they do not cope well with the fast sawtooth modulations of an
unknown number of in-car jammers. In this context, an aid may come from
the use of a KF to track quick frequency variations, as done in [131]. Besides
being practically limited to mono-component interference, this addition, how-
ever, is sensitive to any possible mismatch between the received waveform and
the model underlying the estimation. Within this category also falls another
method named pulse blanking (PB), which was recently suggested in [185] for
excising fast-modulated chirps into narrowband GNSS receivers; for instance,
using a TV tuner with 1 MHz at baseband as front end. This low-complexity
cancellation capitalizes on the fact that when only a fraction of the jammed
spectrum is captured by the receiver bandwidth, it will actually resemble a
periodic sequence of wideband pulses.

• Frequency-domain techniques search for interference by analyzing the FFT of
the received samples as in [186]. They are effective only when a relatively small
number of spectral components are contaminated by interference, which hap-
pens if the waveform has a sparse energy spectral density. Being only instantly
narrowband, the frequency-swept tones radiated by in-car jammers, nonethe-
less, easily occupy the whole receiver bandwidth, thus saturating the spectrum
under analysis.

• Representations in the TF domain map nonstationary signals that are dynamic
both in time and frequency, as we discussed in Chapter 2. By doing so, they
have the potential to overcome the shortcomings of the previous rejection ap-
proaches, while sparing more energy for the useful satellite signals. Indeed,
they can reveal and extract the time-varying spectral content that character-
izes the sawtooth waveforms commonly transmitted by in-car jammers. For
anti-jamming countermeasures, this capability is exploited to estimate the IF of
mono-component interference, such as the conventional train of linear chirps,
and then suppress the interference according to the estimation. The cancella-
tion is performed either by adapting the time-varying notch filter of [43] or by
constructing the subspace orthogonal to the one of the jammer and then pro-
jecting the incoming samples onto it, such as in [93, 187, 188]. Alternatively,
in [189], a similar outcome is obtained by subtracting from the jammed signal
the jamming waveform re-generated based on the amplitude and phase that
are estimated in the respective TF representation. A forth and last variant fi-
nally consists in applying a binary excision matrix, which is just multiplied to
the matrix of the TF representation. This approach was originally presented in
[190]. All these techniques are based on either the short-time Fourier transform
(STFT) or the Wigner-Ville distribution (WVD).

The TF analysis includes many mathematical tools to deal with highly nonstation-
ary waveforms, such as the sawtooths of interest. The STFT is a simple and linear
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representation with flexible complexity. However, it is subject to a constant trade-off
between temporal and spectral resolution, which is determined by the choice of the
analysis window. The window can be ideally optimized to represent linear chirps
of a certain rate following [41] or adapted over time according to a concentration
measure defined in [190]. Anyway, there is no window that can perform well with
simultaneous waveforms of different characteristics. When it comes to the rejection
of multiple jamming attacks, this limitation is certainly a problem. A second well-
established tool in the literature is the WVD. As anticipated in Chapter 2, this TF
representation is not tied to the same resolution trade-off of the STFT because it lo-
cates the components through a cross-correlation operation instead of windowing.
However, due to the bilinearity, significant cross terms smear the representation and
become numerous for frequency-modulated and/or multi-component signals. In or-
der to reduce the amplitudes of the cross terms, the WVD can be smoothed by a time
window. The smoothing window suppresses the cross-correlation between the sig-
nal components that are sufficiently separated in time, but it also reduce the spectral
resolution, thus indirectly reintroducing a trade-off. Another approach to improve
the basic WVD assumes that the parametric form of the signal is known a priori.
For instance, a Wigner-Hough transform is exploited in [180] to retrieve the IF of
a linearly-modulated chirp compatible with the interference generated by jammers.
The distribution is then integrated over parametric curves that have the same form
as the waveform IF, then searching for peaks in the new TF domain. This approach
is generalized in [191] for jamming waveforms of arbitrary and known forms. The
down-side of this and any model-based technique, however, is that they provide
reliable performance, as long as the model matches the reality. This is obviously
impossible whenever various and diverse waveforms are overlapped. Otherwise,
the Hadamard product between WVD-based distributions was employed in [176]
to reduce the cross terms to a large extent, while preserving a decent TF resolution.
Generally, the critical aspect shared by all anti-jamming modules based on TF anal-
ysis is the complexity, because interference mitigation is supposed to run in nearly
real time, so that the incoming signal is cleaned little after the reception. As opposed
to the WVD, the STFT can be built as a bank of parallel filters. This implementation is
convenient as the filter delays are short and usually within the tolerations of latency
constraints. A similar implementation is possible for the multi-resolution extension
of this transform, the ST, and is formulated in [6] and Chapter 2. In the same paper
cited, it also devised a TF sampling scheme for scaling the amount computations
at the expense of the accuracy of the representation and any modified signal recon-
structed from it. Indeed, the complexity of the original ST in [23] imply prohibitive
computational and storage requirements. Formally, it is on the order of O(N2log2N)
operations and O(N2) storage units, which are necessary to process FFT of Eq. 2.10
for all frequency bins, namely for all the voices. The complexity is addressed through
the following discussion in various and novel ways.
In the present chapter, the goal is to take advantage of the desirable properties of
the ST for interference rejection. A few implementations of the forward transform
are explored to accommodate concerns about feasibility. The ultimate purpose is, in
fact, to achieve an anti-jamming module that is a practical add-on for GNSS receivers.
The convenient feature that motivates the adoption of the ST is the capability of pro-
viding consistent TF representations, with little or no assumptions about the number
and the type of waveforms received. Indeed, the progressive resolution trade-off un-
derlying this transform is suitable to potentially concentrate at the output the energy
of the dynamic spectral content under analysis, regardless of the input evolution in
time and frequency. The sole assumption regards the relative power of the incoming
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signals. Any useful signal should be below the noise floor and undetectable in terms
of energy (e.g., DS-SS communications and GNSSs), whereas the waveforms un-
der analysis should be easily distinguishable from the background noise. In other
words, for the target application, the jammed transmissions once at the receiver an-
tenna should be dominated by noise with negative and low SNRs, while the overall
JNR should be positive and sufficiently high to make the impact of jammers stand
out against the noise. The same considerations are mentioned for the methods of
jamming characterization and localization in Chapter 3. The work behind the next
sections is collected by two publications in [3] and [7]. The rejection methods pre-
sented are non-parametric, in the sense that they do not rely on any a-priori model
or knowledge of the signal. As such, they are actually applicable to any kind of
modulation, as long as it is powerful enough. The effectiveness of the interference
mitigation are evaluated by emulating a GNSS receiver under jamming attack.
It is useful to make one remark about the technology constraints imposed by the ad-
dition of any anti-jamming unit: a GNSS receiver might benefit from the enhanced
robustness to jammers only if it is also provided with a quantizer of sufficient res-
olution. As already mentioned, low-end mass-market receivers are equipped with
1/2-bit ADCs. Besides being prone to saturation, their short dynamic range clearly
frustrate the effectiveness of any interference mitigation technique based on digital
signal processing. Therefore, hereinafter, we implicitly consider devices that have
the good enough specifications to make TF analysis worthy. For instance, a generic
setup might include an SDR board like those shown in Fig. 3.1 with 8-bit quantiza-
tion or higher and have an attenuator to take care of the absence of AGC. Example
of testbeds may be found in [182] and [192]. Furthermore, devices used for critical
applications can have between 6 and 14 bits (e.g., in [144, 145]).

4.1.1 GNSS Receiver Operation in Brief

The following summary recaps the basic operation of a GNSS receiver and intro-
duces the reader to the terminology used in the rest of the chapter. More in-depth
details about receiver technology may be found in [193].
The conventional architecture of a receiver is made of two steps that leverage on
the structure of GNSS signals. After being down-converted to baseband or to an
intermediate frequency at the front end, the received signal is still modulated by a
ranging code and a much slower stream navigation bits. Ranging codes are quasi-
orthogonal PRN sequences used to multiplex several satellite signals onto the same
frequency band, according to the direct-sequence code division multiple access (CDMA).
Being modulated with the code, the information spectrum is spread over a band-
width much larger than the one actually necessary. This transmission technique is
known as DS-SS and provides a degree of resistance to narrowband interference
and interceptions. At the acquisition circuit, the procedure is reversed: the receiver
searches for visible satellites by repeatedly cross-correlating the received signal with
local replicas that embed all possible PRN sequences known a priori. Every replica
is generated at the carrier frequency for a grid of code delays and Doppler frequency
shifts. If the satellite associated to the searched sequence is visible, then the resul-
tant AF exhibits one sharp correlation peak of magnitude, as shown in Fig. 4.1.
The coordinates of this peak provide coarse estimates of the code phase and carrier
frequency pair that are then used to initialize parallel tracking loops, which continu-
ously refine them. Therein, the signals acquired are tracked in parallel by dedicated
channels. As an alternative to the Doppler shift, the carrier phase is a more precise
but ambiguous measurement, because of the higher temporal resolution provided
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FIGURE 4.1: Conventional architecture of a GNSS receiver.

by the short wavelength. Within each enabled channel, as the local replica gets syn-
chronized with the incoming signal, the carrier wave and the ranging code are de-
modulated. Next, the navigation message is decoded. The data so extracted and
corrected contain the ephemerides to calculate the current position and velocity of
satellites along their orbits, the bias parameters to account for the slow drift of the
atomic clocks in space, an almanac collecting a history of recent ephemerides, and
other complementary information. The navigation data are needed by the receiver
to achieve final accuracies on the order of meters, to check the health of satellites,
and to speed up the time to fix (i.e., warm/hot start). Together with the code and
carrier measurements, they enable the precise estimation of the time of arrival and,
so, of the pseudorange. If four or more satellites are acquired and tracked, the timely
resolution of the trilateration equations returns the current PVT of the receiver.

4.2 Frequency-Adaptive S-Transform

Chronologically, the frequency-adaptive ST (FAST) was investigated before the complexity-
scalable ST in Chapter 2. The idea here is to reduce the computational burden of the
ST by computing the transform only for certain frequencies. According to our ap-
proach, these frequencies are the ones concentrating most of the energy of the signal
under analysis. In order to identify them, a detection is performed onto the power
spectrum by computing the FFT before the FAST. The reduction of complexity de-
pends on the input power spectral density: if it exceeds the threshold over all the
bandwidth, then the output of the FAST coincides with the fully-redundant ST. As
opposed to the complexity scalable ST, therefore, the computational efficiency of the
FAST is signal-dependant.
To introduce the FAST, it is useful to recall the discussion in Chapter 2. The ST
is a TF analysis tool that improves on the STFT by adopting frequency-dependent
Gaussian windows in order to provide progressive TF resolution. Windows of wide
deviation represent the slowly-modulated components with high spectral resolu-
tion, while fast-modulated components are located with higher temporal resolution
through windows of short deviation. The discrete-time ST of a sequence of N digital
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samples x[n] is a complex-valued square matrix of order N defined by

STx[n, p] =
N−1

∑
m=0

x[m]w[n−m, p]e−j 2π
N pm (4.1)

for n = 0, ..., N − 1 and p = −N/2, ...N/2− 1, where the Gaussian windows w[n, p]
are defined in Eqs. 2.6 and 2.7 with standard deviations inversely proportional to the
frequency index p. This matrix can be implemented as N DFTs (i.e., FFTs) accord-
ing to Eq. 2.10. This formulation of the forward computation points out the direct
relation between the ST and the FT: the amplitude and phase of local components
in the two-dimensional TF domain are globally collected into the one-dimensional
Fourier spectrum. In the absence of intermediate modifications, the DFT of the input
x[n] denoted by X[p] can be exactly retrieved through the aforementioned frequency
inverse (FI) as the output of the time-averaged representation:

X [p] =
N−1

∑
m=0

STx [m, p] (4.2)

so that we have

x [n] = DFT−1
q {X[q]} = 1

N

N/2−1

∑
q=−N/2

X [q] · ej2π
q
N m (4.3)

with one inverse FFT (IFFT) block. The idea of the FAST proposed in [3] comes
from the implications of Eq. 4.3. In brief, if one is interested in analyzing the TF
representation only at the frequency bins that concentrate most of incoming energy,
the forward computation of the ST could be adjusted accordingly. Thence, the ST is
processed only for the voices where the power spectral density rises above the noise
power level. In other words, the TF analysis is restricted to the spectral components
that contain meaningful energy. The resultant computational efficiency depends on
the signal power spectrum. The FAST is a suitable tool for mitigating the received
interference in a few steps.

1. First, a preliminary detection stage identifies the frequency bins where the in-
put power spectral density exceeds the noise level, because they contain TF
components compromised by the interference. The bins apparently unaffected
are forwarded to the last step.

2. The computation of the ST is restricted to the voices that correspond to fre-
quency bins identified. The computational burden of the TF representation in
then tailored to the visible interference power spectrum.

3. A TF detection stage determines the timings of the TF components affected by
interference in the ST. They are detected at the time instants where the energy
rises above the noise floor.

4. Once detected in time and frequency, the interference components are blanked
by directly multiplying the ST with the negative of the decision binary mask.
This process essentially filters out solely the significant energy in the TF do-
main. The principle behind masking the components most interfered though
the ST is clear from Fig 4.2 and differs from conventional techniques, which
remove the interference either by blanking the whole spectrum in certain time
instants or by filtering certain frequency bands over the whole time.
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FIGURE 4.2: Energy of a jamming sawtooth waveform represented
by the ST before and after the TF components containing signif-
icant interference power are detected and blanked (eventually an
interference-free signal is supposed to be recoverable by inverting the

transform with the FI).

5. After the blanking, the TF components in the masked ST are time-averaged to
recover the corresponding bins of the clean Fourier spectrum without interfer-
ence power. These bins are combined with those forwarded from the first step
and processed all together by a final IFFT block. The time signal at the output
of the FI is supposedly interference-free.

This approach is not model-driven, works with batches of samples and has a for-
ward complexity equal to that of the FFT times the number of voices identified at
the preliminary detection stage. The FI is then very efficient. Moreover, filtering the
interference by simply blanking the respective TF representation replaces the need
for an array of adaptive notch filters. The steps for rejecting the interference through
the FAST are summarized in Fig. 4.3.
It is important to stress on the fact that the multi-resolution ST is more advantageous
than the fixed-resolution STFT when the signal analysed is unknown; in the appli-
cation or interest, no assumption is necessary about the number and the TF features
of the interference to mitigate. With the procedure described above, any kind of
frequency-modulated jamming waveform can be automatically removed by blank-
ing the respective energy in the TF representation: continuous waves, sawtooths,
pulses, frequency-hopping, etc. Obviously, if the interference power spectral den-
sity covers extensively the TF plane in reception, such as in the case of wideband
noise-like interference, masking the unwanted energy at the input would not pro-
vide any benefit, because the useful signal is entirely wiped out as well. In reality,
a jamming attack as such is hardly feasible from distance, since it requires a huge
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FIGURE 4.3: Block diagram of the interference rejection stages based
on the FAST.

amount of power. Anyway, this unlucky case is considered as irredeemable with
digital signal processing techniques, like the saturation of the front end.

4.2.1 Preliminary Detection Stage

The GNSS signals have noise-like characteristics, because they are typically buried
under the flat noise spectral density. On the contrary, the power spectral densities of
common jamming sawtooth waveforms have usually peaks, the intensity of which
depends on the product between the bandwidth and the repetition period of the
jammer. An example is shown in Fig. 4.4. Since the denial-of-service attempt tries
to overpower the useful signals in reception, it is also intentionally powerful with
respect to the noise. To exploit this fact, the first step is to identify the portion of
the incoming spectrum that concentrate most of the jamming power. This task is
solved as a binary decision problem by hypothesis testing: if the power level of
a certain frequency bin exceeds a certain threshold, it is associated to interference
and flagged for further processing through the next steps. Let us consider additive
white Gaussian noise from this moment on. The threshold denoted by λFT can be
simply pre-determined with a fixed false-alarm rate PFT

fa under the hypothesis H0 of
interference absence according to

λFT = −2σ2
n N ln (PFT

fa ) (4.4)

with
PFT

fa = prob
(
|X [p]|2 > λFT

∣∣∣H0

)
. (4.5)

Whenever the received interference power is comparable to the noise level, the de-
cision test is prone to missed detections. However, under this circumstance, the
receiver-side processing gain after despreading is expected to be sufficient to decode
the navigation message without difficulties.
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FIGURE 4.4: Baseband GNSS signal overpowered by a 10-MHz saw-
tooth waveform (the complexity of the FAST is reduced by a factor

N/L = 13.82 compared to the original ST).

4.2.2 Time-Frequency Detection Stage

The preliminary detection stage identifies the jammed portions of the Fourier spec-
trum. However, the time instants at which the frequency bins are actually exposed to
the received interference are still unknown. Given the instantly narrowband nature
of the sawtooth patterns used to modulate jamming waveforms, at each frequency
only a few samples are periodically contaminated by interference. Consequently, re-
moving the whole power identified at the preliminary stage would result in an un-
necessary loss of the energy carried by the GNSS signal hidden in noise. Such a lim-
itation is overcome by resorting to a second detection stage, which is performed in
the TF domain. The ST is then computed only for a number L of voices at the indices
pl with l = 1, ..., L, which are flagged at the first stage, thus sparing computational
power and memory resources. As a result, the complexity is reduced by the factor
N/L ≥ 1 compared to the complete ST. Over the voices selectively computed, the
second decision test compares the energy of every TF component with a frequency-
dependent threshold λST[pl ] pre-determined at constant false-alarm rate. Under the
hypothesis H0 of interference absence, the probability of false alarm PST

fa [pl ] for a
specific voice of the ST is obtained by generalizing the formulation given in [43] for
the spectrogram. It is so defined as

PST
fa [pl ] = prob

(
|ST[n, pl ]|2 > λST[pl ]

)
= exp

(
− λST[pl ]

2σ2
nEw[pl ]

)
(4.6)

that is equivalent to Eq. 3.73, where Ew[pl ] is the energy of the Gaussian window
w[n, pl ]. As anticipated, the false-alarm rate may be fixed to PST

fa following the rule
of thumb in Eq. 3.74. The resultant threshold is

λST[pl ] = −2σ2
nEw[pl ] ln PST

fa . (4.7)
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4.2.3 Interference Masking

After identifying the jammed components in both time and frequency, the binary
mask Λ returned by the binary decision test is used to blank the components de-
tected. The elements in the matrix ST are ones where the energy exceeds λST[pl ].
Therefore, the interference is simply filtered out through the following Hadamard
product

ŜT[n, pl ] = ST[n, pl ]⊗ (1−Λ[n, pl ]). (4.8)

that is just an element-wise product among matrices. The masked representation in
ŜT[n, pl ] is time-averaged into the spectrum X̂[pl ], which is combined with the values
at the frequency bins that went undetected through the preliminary stage. The final
time signal x̂[n] is supposed to carry a negligible amount of residual interference
power.

4.2.4 Case Study: Galileo Signal Acquisition

The method proposed is tested to enhance the performance in terms of code acquisi-
tion of a Galileo receiver that undergoes a jamming attempt. The acquisition circuit
adopts the non-coherent channel combining scheme in [194] together with a maxi-
mum searching strategy. This combination is arguably the simplest implementation,
since it does not take advantage of the signal structure. The samples captured by
the front end are first demodulated into I/Q branches. Second, the I and Q streams
are separately correlated with the local replicas of the data and pilot channels. The
two outputs of the two correlators are non-coherently integrated into the AF. An a-
posteriori decision is taken on the maximum peak of magnitude in this function: the
received Galileo signal is considered as successfully acquired if the peak exceeds a
certain threshold with a code delay error less than half of the chip time. The thresh-
old η is obtained by fixing and inverting the following false-alarm probability

PACQ
fa = exp

(
−ηN

σ2
n

)(
1 +

ηN
σ2

n

)
. (4.9)

Without loss of generality, we may neglect the quantization losses and consider a sin-
gle channel, where only the right satellite is visible thanks to the code orthogonality.
The noisy samples received incorporate both the useful Galileo E1 OS signal and
one jamming sawtooth waveform, which is modeled as described in detail in Chap-
ter 3. The performance of the acquisition circuit adopted are evaluated in terms of
the rate of code detection denoted by Pacq for different C/N0 levels. For this purpose,
Monte Carlo simulations are run with the parameters listed in Tab. 4.1 over 300 it-
erations. The performance without anti-jamming mechanisms is shown in Fig. 4.5.
Fig. 4.6 highlights the improvements achieved by excising the interference through
the FAST. From the results clearly emerges the higher robustness of the acquisition,
even when the C/N0 is low. The high dependency of the acquisition rate on the jam-
mer TF characteristics is reasonable, because with the repetition periods changes the
power spectrum and so the resolution of the FAST. For the sake of comparison, we
evaluate the performance for the same method in Fig. 4.3, but masking the jamming
energy analysed through a fixed-resolution STFT instead of the multi-resolution ST.
The TF representation is so computed with a sliding Hamming window, which has
one chosen size. The resultant rate of code acquisition versus the window size de-
noted by Mw is depicted in Fig. 4.7. In this test, the C/N0 tested is set to 45 dBHz, at
which in Fig. 4.5 the ST performs well for the three jammers tested. The results of the
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TABLE 4.1: Parameters for the case study of the acquisition of a
jammed Galileo E1 OS signal.

Description Symbol Value
Carrier frequency fc 1575.42 MHz
Code duration 4 ms
Sampling frequency fs 30 · 1.023 MHz
Intermediate frequency 5 · 1.023 MHz
C/N0 level {30, 34, 38, 42, 45} dBHz
Front-end equivalent noise passband bandwidth Beq 10 MHz
Jammer passband bandwidth BRF 10 MHz
Jammer repetition period T0 {1, 10, 100} µs
In-band JNR level ρ 10 dB
Preliminary detection false-alarm probability PFT

fa 10 -6

TF detection false-alarm probability PST
fa 10 -6

Acquisition false-alarm probability PACQ
fa 10 -3

FIGURE 4.5: Code acquisition rate with and without interference (the
black line is the nominal performance).

STFT instead confirm the expected dependency on the analysis window: none of the
sizes is suitable to all the repetition periods. And if the representation is poor, any
modification might do more harm than good, distorting and erroneously blanking
useful energy. Ideally, the window shall rather be adapted to the specific TF char-
acteristics of the waveform. However, in reality, the incoming interference could be
made of many and unknown waveforms. Under this circumstance, the progressive
resolution trade-off of the ST alleviate the critical role of the windows for the rejec-
tion effectiveness. As a result, multiple and diverse jamming attacks can be tackled,
as demonstrated at the end of the chapter.

4.3 Time-Selective S-Transform

Along the FAST, we may likewise restrict the computation of the ST only for the time
instants in which significant in-band energy is captured. This principle produces
another variant of the transform, named time-selective ST (TSST), which is similar
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FIGURE 4.6: Code acquisition rate versus C/N0 with interference re-
jection based on FAST.

FIGURE 4.7: Code-acquisition rate versus the window size with in-
terference rejection based on STFT and 45-dBHz C/N0.

to the FAST. This one is particularly useful for the excision of jamming waveform
in narrowband receivers. In fact, since jammers usually sweep a tone over a large
bandwidth, the amount of interference power actually visible is likely affecting only
short and periodic intervals of time in reception. The same principle has motivated
the use of pulse blankers for anti-jamming modules: when the jammer bandwidth
is much wider than the one of the front-end filter of to the GNSS receiver, then the
incoming sawtooth is seen as a periodic sequence of pulses in reception. This fact
is shown by the spectrogram in [185, Fig. 1]. Consequently, whenever the instan-
taneous power is suspiciously higher than noise, the corresponding sample can be
simply blanked to remove the dominant interference components. This simple tech-
nique provides an immediate and effective layer of protection against interference
with an extremely low-complexity implementation. The simplicity is the reason why
it is a popular add-on for commercial receivers. The impact of blanking is equivalent
to a shorter integration time at the acquisition circuit, while long cancellations can
impair the stability of the tracking loops as well as introduce uncorrectable errors
in the navigation message. For this reason, we overcome the shortcomings of pulse
blanking in the framework of TF analysis. Alternatively to the approach offered by
the FAST, the matrix of the ST can be computed only at the instants of index nl where
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the magnitude of the digital signal x[n] is above a certain threshold:

|x[n]| > λPB. (4.10)

As usual, the threshold is set as

λPB =
√
−2σ2

n ln (PPB
fa ) (4.11)

at a constant false-alarm rate equal to

PPB
fa = prob (|x[n]| > λPB

∣∣∣H0) = exp
(
− (λPB)2

2σ2
n

)
(4.12)

in which the signal is hypothesized to be white Gaussian noise in the absence of
jamming attempts. When it comes to highly quantized signals, the threshold can be
set coherently with the histogram of the samples that are assumed free from interfer-
ence. While the others are forwarded, the samples that satisfy Eq. 4.10 are searched
for interference with the so-called TSST. Once the transform is computed for these
time instants, the components apparently interfered are also identified in frequency
as the ones that exceed the energy threshold of Eq. 4.7. They are finally filtered
out from the TF representation by using the binary detection mask similarly to what
done in Eq. 4.8. As opposed to the FAST, after interference blanking, the samples
filtered through the TSST are recovered through the time inverse (TI), instead of the
FI. They are finally recomposed with those initially forwarded and unfiltered to re-
trieve a time signal, which is supposed to be free from interference.
In conclusion, while the FAST performs a joint spectral and TF detection of the re-
ceived interference, the TSST applies the same concept for a joint temporal and TF
detection that essentially generalizes the PB. Both these transforms reduce the orig-
inal amount of computations to obtain a TF representation with progressive resolu-
tion, but they differ by the consequent impact on the successive mitigation. Contrary
to the complexity-scalable ST of Chapter 2, the efficiency is not arbitrarily chosen,
since it is adjusted to the incoming energy spectral or temporal density.

4.4 Performance Assessment of Anti-Jamming Units

Given its advantageous properties of linearity and multi-resolution, the ST clearly
emerges as a potential enabler for anti-jamming units, since it alleviates the need for
a-priori knowledge about neither the number nor the characteristics of the jammers.
This capability is especially useful when dealing with multiple overlapping wave-
forms, which cannot be analysed through the well-established STFT or WVD. In the
following, we go through the preparatory results to be published in [7]. The focus
is on the performance of a GNSS receiver equipped with a module for interference
detection and mitigation based on differently-chosen portions of the same TF repre-
sentation: the original and fully-redundant ST of [23], the FAST proposed in [3], and
the novel TSST introduced in the precedent section. Their effectiveness is compared
to that of the PB evaluated for one jammer in [185], which is here chosen as a refer-
ence. The PB is an appealing technique from the perspective of the implementation,
because of its extremely low complexity.
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TABLE 4.2: Parameters for the case study of multiple in-car jammers.

Description Symbol Value
Carrier frequency fc 1575.42 MHz
Code duration 1 ms
Sample record duration 36 s
Sampling frequency fs 2.5 · 2.048 MHz
Front-end equivalent noise passband bandwidth Beq 2.048 MHz
Estimated noise power σ̂n 20.54 dBW
Jammer passband bandwidths BRF {5, 20}MHz
Jammer repetition periods T0 {30, 10} µs
In-band JNR level ρ { 10, 20 } dB
Sample batch B 2048
Spectral pre-detection false-alarm probability PFT

fa 0.11
Temporal pre-detection false-alarm probability PPB

fa 0.11
TF detection false-alarm probability PST

fa B−2

4.4.1 Receiver Setup

Our case study considers the reception of GPS L1 C/A signals. The 8-bit I/Q sam-
ples are re-generated with a GPS signal simulator (github.com/osqzss/gps-sdr-sim).
The data used for the simulation have been collected in the receiver-independent ex-
change format (RINEX) by a LEICA SR9500, which is located at the GNSS reference
station of the University of Bologna in Fig. 4.8. We post-process the signal through
the steps listed below.

1. We emulate realistic jamming attacks coherently with the literature, such as
[146], generating linear chirps modulated with the sawtooth patterns charac-
terized in Tab. 4.2. A JNR level of 30 dB is already enough to nearly saturate
the 8-bit receiver ADC in the absence of AGC.

2. We test different anti-jamming units that blank the incoming interference either
in time or TF domains. They make use of PB, ST, FAST, or TSST. All of them
rely on different detection statistics, which are nonetheless set with the equal
false-alarm rate.

3. We assess the impact of the interference rejection through the whole processing
chain of a GPS software receiver: acquisition, tracking, and PVT solution.

What is crucial but often neglected in the scientific literature is the evaluation of the
effectiveness of the anti-jamming units across all the whole processing chain of a
GNSS receiver. To pursue this task, we have customized the single-frequency GPS
software receiver explained in detail in [193]. The receiver post-processes a record of
I/Q samples, performing an initial acquisition and then tracking the visible satellites
in a serial fashion. No adaptation of the quantizer and the gain is implemented. At
least a full frame of 30 s is necessary in warm-start mode to obtain the ephemeris
data, while a few more seconds shall be added to allow for the initial sub-frame
synchronization. Despite its simplicity, other and similar software receivers are of-
ten used as a testbed in many publications in the field of GNSSs (e.g., in [185]). As
far as our investigation is concerned, our customization of a GPS software receiver

https://github.com/osqzss/gps-sdr-sim
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FIGURE 4.8: Pictures of the GNSS reference station of BOLG00ITA
(epncb.oma.be) and respective geographical location in Google Earth.

FIGURE 4.9: State machine implemented for every channel of the soft-
ware receiver in [185].

provides a useful benchmark for the application under study. In fact, we are in-
terested in assessing the performance variations, to which the reception is subject,
depending on the methods implemented for interference mitigation. Achieving the

http://www.epncb.oma.be/
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best-possible robustness under jamming attacks is beyond of the scope of our study,
as we focus on the enablers of effective interference rejection and not the architecture
of the receiver. The incoming interference power is blanked by batch pre-processing
the I/Q samples. This procedure emulates the process of an anti-jamming unit in-
stalled after the digitization and before the acquisition and tracking blocks, which
operate separately. In this regard, it is worth mentioning that one major upgrade to
the software receiver architecture was to enable the parallel execution of channels,
which now can search for distinct PRN sequences independently. Furthermore, each
channel was implemented as the finite state machine in Fig. 4.9 and [185, Fig. 4] with
the aim of improving the resilience of their operation to the disruptions of the GNSS
signals. The transitions to re-acquisition and frequency-aiding respond to possible
losses of the code or carrier locks, respectively. The lock indicators monitoring the
trackers are calculated as described in [195], based on estimates of the C/N0 and the
carrier-phase oscillation. The following performance metrics are extracted from the
acquisition circuit, the tracking loops for the satellite with the highest acquisition
metric, and the PVT calculation.

• The acquisition metric is computed as the ratio between the magnitudes of
the maximum peak and the second-highest peak in the AF. If this metric is
above the chosen threshold (i.e., 2.5), the satellite identified by the correspond-
ing ranging code is assumed as acquired. The time elapsed before the first
acquisition is also measured.

• The C/N0 is estimated from the power levels of the I and Q samples at the
outputs of the respective prompt correlators, after the code demodulation. In
the following, this metric is shown only for the satellite that normally has the
highest acquisition metric. During the time window in which the data were
collected from BOLG00ITA, the satellite was clearly the one with PRN number
(#) equal to 12, as proven in Fig. 4.10.

• Since the centimetre-level position of the receiver is known, the horizontal and
overall (three-dimensional) error on the position solution can be calculated
when there the navigation data are successfully recovered from at least four
satellites. In normal conditions, the performance of the software receiver with
the dataset tested achieves the accuracy in Fig. 4.11. Whenever the preamble is
not found in the demodulated bits, the corresponding satellite is not used for
the calculation of the PVT.

4.4.2 Preliminary Results

The numerical results of the tests performed with the setup receiver have two goals.
On the one side, they demonstrate the susceptibility of PB to jamming waveforms
with “slow” modulations as well as, by extension, to multiple and overlapping
waveforms. The reason behind this weakness is intuitive: this technique tends to
erase the most of the signal if the received interference power exceeds the amplitude
threshold over large time spans. On the other side, they want to prove that the ST
and its variants, namely the FAST and the TSST, can overcome the drawback of the
PB and provide more stable performance to the receiver. Particularly, when the JNR
is low and interference energy is persistently captured within the bandwidth of the
front-end filter, the impact of the PB might do more harm than good: it could pre-
vent the receiver from obtaining a fix that otherwise would be possible even without
mitigating. Under the same circumstances, instead, the interference rejection based
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FIGURE 4.10: Normal acquisition and tracking performance for the
reception of the GPS L1 C/A signal in the absence of interference.

on ST is not expected to degrade the performance, but possibly to improve them.
The first test is carried out with a single jammer transmitting a slowly-modulated
sawtooth waveform, which spans a 5-MHz bandwidth with periodicity of 30 µs.
When the JNR is equal to 10 dB, the results in Fig. 4.12 demonstrate how the PB
might be detrimental compared to the absence of interference mitigation. Indeed,
despite the narrow band (i.e., 2 MHz) visible at the receiver end, such a waveform
is not seen a sequence of pulses, because its energy lies within the front-end band-
width for most of the time. Consequently, long portions of the signals are de facto
removed by the PB with catastrophic consequences throughout the processing chain
of the receiver. The weakness of this method presumably tends to be more severe if
the avaialble bandwidth is larger than the one under test. On the contrary, the perfor-
mance metrics obtained by using any of the STs exhibit some cautious enhancements
in acquisition and tracking, without a meaningful effect on the final geolocation ac-
curacy. The same test is also run with 20-dB JNR. The results in 4.13 verifies again
the same detrimental repercussions of the PB, as opposed to the slightly beneficial
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FIGURE 4.11: Geolocation accuracy of the GPS software receiver in
the absence of interference with respect to the universal transverse
mercator (UTM) coordinate system (the black markers are the posi-
tions estimated with partial data and indicate the precision around

the final estimate).

impact especially of the ST. The apparent improvements in the acquisition and track-
ing performance are noticeable. Nevertheless, with our setup receiver, none of the
methods lead to the calculation a useful navigation solution. In other words, too
few channels are tracked for a fix, and the navigation data recovered is anyhow too
corrupted. A second test overlaps the previous jamming waveform with a second
sawtooth, which has a faster modulation of 20 MHz in 10 µs. The results for an over-
all JNR of 10 dB for the two jammers combined are shown in Fig. 4.14, where hold
the same considerations made for Fig. 4.12.

4.5 Conclusions

Given the non-stationary nature of the waveforms typically transmitted by in-car
jammers, there is an emerging research trend towards the application of TF analysis
to anti-jamming modules. A higher degree of resilience is crucial in critical appli-
cations relying on the GNSS service on ground. In this context, the potential em-
ployment of the ST for interference detection and mitigation has been investigated.
The latency and computational power necessary to process such a multi-resolution
TF representation can be properly reduced by exploiting the specific temporal or
spectral characteristics of the received interference. The adaptation is automatic
and non-parametric, and it is provided with the novel versions of this transform,
namely the FAST and the TSST. Besides, the complexity of the original ST might
still be practically affordable when processing the incoming signal in short batches.
The efficiency cost is anyhow motivated by the remarkable enhancement in terms
of robustness that is granted by the adoption of the ST. Indeed, in comparison to
the commonly-used PB, the jamming rejection methods built around this transform
and its variations minimize the receiver susceptibility to interference, without any
knowledge of the number and characteristics of the sources. Generally, thanks to
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progressive resolution trade-off, the unwanted energy is well identified in time and
frequency and blanked therein. The tests made with a GPS software receiver probe
the potential behind the use of the ST, the FAST, or the TSST as moderate-complexity
add-ons to GNSS receivers. Depending on the resolution that can be achieved by
the receiver specifications, they could reject interference attempts from many and
diverse jammers. The same methods are also directly applicable to protect DS-SS
communications, as long as the useful signal has a flat power spectral density or is
buried in noise.
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FIGURE 4.12: Acquisition, tracking, and positioning performance in
the presence of one jammer with 10dB of JNR.
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FIGURE 4.13: Acquisition and tracking performance in the presence
of one jammer with 20dB of JNR.
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FIGURE 4.14: Acquisition, tracking, and positioning performance in
the presence of two jammer with 10dB of JNR overall.
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