Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (11MB)
| Anteprima
|
Abstract
Nowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations.
To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly:
• the formulation of a complexity-scalable ST implementable in real time as a
bank of filters;
• a method for characterizing and localizing multiple in-car jammers through
interference snapshots that are collected by separate receivers and analysed
with a clever use of the ST;
• a preliminary assessment of novel methods for mitigating generic interference
at the receiver end by means the ST and more computationally efficient variants of the transform.
Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence
spread spectrum (DS-SS) communication.
Abstract
Nowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations.
To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly:
• the formulation of a complexity-scalable ST implementable in real time as a
bank of filters;
• a method for characterizing and localizing multiple in-car jammers through
interference snapshots that are collected by separate receivers and analysed
with a clever use of the ST;
• a preliminary assessment of novel methods for mitigating generic interference
at the receiver end by means the ST and more computationally efficient variants of the transform.
Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence
spread spectrum (DS-SS) communication.
Tipologia del documento
Tesi di dottorato
Autore
Pojani, Giacomo
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
GNSS Interference Jammer Mitigation Localization Time-Frequency Spread-Spectrum S-Transform
URN:NBN
DOI
10.6092/unibo/amsdottorato/8595
Data di discussione
9 Maggio 2018
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Pojani, Giacomo
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
GNSS Interference Jammer Mitigation Localization Time-Frequency Spread-Spectrum S-Transform
URN:NBN
DOI
10.6092/unibo/amsdottorato/8595
Data di discussione
9 Maggio 2018
URI
Statistica sui download
Gestione del documento: