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ABSTRACT 

 

AGC1 deficiency is a rare genetic neurodegenerative disease caused by defects in the 

SLC25A12 gene encoding for Aralar/AGC1, a mitochondrial aspartate-glutamate carrier that 

plays an important role in the metabolism of brain amino acids and myelin synthesis. In 

patients, AGC1 mutations lead to drastic reduction of carrier activity, which results in severe 

hypotonia, developmental delay, intractable epilepsy and cortical atrophy with altered myelin 

formation in the CNS, most likely due to a dramatic reduction of N-acetyl aspartate (NAA) 

levels in the brain1,2. AGC1 deficiency mechanisms are not yet clear and currently there is no 

therapeutic treatment. The aim of this PhD thesis was to study the molecular mechanisms 

underlying AGC1 deficiency in appropriate in vitro and in vivo disease models, in particular 

by focusing on oligodendrocyte precursor alterations to better define pathogenetic 

mechanisms that could potentially lead to identify new potentially interesting therapeutic 

targets.  

Studies were performed on immortalized mouse oligodendrocyte precursor cells, Oli-Neu 

cells (kind gift from Dr. Trotter), where we partially silenced AGC1 expression in order to 

obtain a reduction of AGC1 carrier activity down to about 30-40% compared to control cells, 

as observed in mitochondria from human patients. Then, the obtained results were validated in 

an AGC1 deficiency in vivo model represented by SLC25A12 heterozygous knockout mice 

(AGC1+/- C57BL6/N background), a good model for the study of AGC1 deficiency, since 

patients with this disease are characterized by reduced carrier activity rather than total loss of 

carrier activity.  

Furthermore, our study focused on the evaluation of Neural Stem Cells (NSCs) proliferation 

and differentiation in neuronal and glia cells, both astrocytes and oligodendrocytes, in 

AGC1+/+ and AGC1+/- neurospheres derived from the subventricular zone (SVZ) of our mouse 

model. Lastly, preliminary experiments have been performed on NSCs derived from induced 

Pluripotent Stem (iPS) cells from AGC1 deficiency patients and healthy controls, in order to 

further validate our data in human cells  

All our results showed a proliferation deficit of oligodendrocyte precursor cells that was not 

due to mitochondrial biochemical alterations, but rather associated with an alteration of 

trophic factors essential for maintaining the balance between oligodendrocyte proliferation 

and differentiation3, mainly PDGFα and TGFβ. These results supported that alterations 
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induced by AGC1 reduced activity could impair the physiological cross-talk mediated by 

growth factors between neurons and OPCs necessary for OPCs proliferation and neuronal 

survival. The importance of this study lies also on the fact that mitochondrial dysfunction is at 

the basis not only of AGC1 deficiency, but also of other neurodegenerative and demyelinating 

diseases, some of which are rare, while others are widely spread, such as multiple sclerosis4-6. 

Thus, the obtained results could be useful to understand disease mechanisms and give hope 

for the treatment of many human demyelinating diseases. 
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1. INTRODUCTION 

1.1. AGC1 deficiency 

AGC1 deficiency is a recessive autosomal genetic disease caused by SLC25A12 gene 

mutations, which codes for the mitochondrial Aspartate Glutamate Carrier 1 

(AGC1)/Aralar1,2, characterized by neuronal degeneration and global white matter 

hypomyelination due to reduced activity of the mitochondrial transporter in the central 

nervous system (CNS). The first human case of AGC1 deficiency was reported in 2009 in a 

three-year old Swedish girl, who five months after birth showed delayed psychomotor 

development, severe muscular hypotonia, poor control of head support, and epilepsy. 

Following SLC25A12 gene sequencing, the first AGC1 mutation represented by a c.1769A → 

G transition in exon 17 was identified, causing a missense Q590R mutation, which leads to a 

leak of carrier activity (Fig. 1.1). 

 

Figure 1.1: Wild-type AGC1 and Q590R-mutant AGC1 crystallographic structures. Aspartate binding (shown in yellow) in 

the wild-type AGC1 (panel C) and Q590R-mutant AGC1 (panel D) is shown laterally. Sticks represent some residues found 

within 4 Å of the substrate. Parts of helices I and II and portions of the salt-bridge network (only in panel C) are rendered 

transparent to facilitate the viewing of the substrate and lateral chains of some amino acids. Purple surfaces show salt-

bridges between residues D348 and K451, E448 and K5432.  
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In fact, residue Q590, highly preserved in the aspartate-glutamate mitochondrial carrier 

family, is located above the substrate-binding site and, as a result from this mutation, the 

arginine residue at position 590 appears to move away from the binding site, which is 

required to maintain the substrate-protein interaction.  

Recently, a second mutation in the SLC25A12 gene was identified in a pair of Indian-origin 

twins1 which consists in a c.1058G → A transition causing the R353Q mutation in exon 11. 

Just as for the c.1769A → G transition, this mutation results in a reduction of the 

mitochondrial carrier activity. However, studies in Escherichia coli CO214 (DE3) on 

reconstituted liposomes containing mutant (Q590R) and wild-type recombinant AGC1 

proteins showed that mutant AGC1 proteins are still able to integrate at the internal 

mitochondrial membrane as wild-type AGC1.  

Initially identified by Wibom as mainly a demyelinating disease due to oligodendrocyte 

dysfunction2, Magnetic Resonance Imaging analysis (MRI) on patient brain (Fig. 1.2) showed 

a progressive reduction in brain volume with the formation of prominent cortical loci, 

ventricle enlargement, and global myelination loss which led to the hypothesis that AGC1 

deficiency may be a neurodegenerative disease due to primary dysfunction of neuronal 

metabolism and consequent impairment of the myelination process and white matter. 

However, the cellular and molecular mechanisms of neurodegeneration and demyelination in 

AGC1 deficiency still remain to be clarified. 

                            

Figure 1.2: MRI of an AGC1 deficiency patient. Panel A shows the 8-month and 16-month MRI brain images of the patient. 

In both images, a progressive reduction in brain volume is shown with the formation of prominent cortical grooves and 

ventricle enlargement; development loss of a low age-correlated signal in the cerebral hemisphere white matter was also 

measured (as opposed to what expected in the myelination process during development). Panel B, shows the patient MRI 

image at 2 years and 9 months of age with a persistent high signal in the white matter, consistent with ongoing 

hypomyelination. The analysis shows that hypomyelination persists in the periphery of the frontal, occipital and temporal 

lobes; however, normal myelination was observed in the cerebellum and brainstem whereas the pale globe and putamen 

show a slight decrease in volume2.  
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1.2. AGC1 is a member of Calcium-binding mitochondrial 

carriers (CaMCs) 

Calcium-binding Mitochondrial Carriers (CaMCs) are a family of carriers containing six 

transmembrane helices localized at the internal mitochondrial membrane. Their secondary 

structure is characterized by a C-terminal domain that corresponds to the MC homologous 

region of 300 amino acids, and an N-terminal domain containing four calcium-binding EF-

hand motifs, localized at the intermembrane space7 (Fig. 1.3). 

 

 

Figure 1.3: Ca2+- dependent mitochondrial carrier (CaMC) secondary structure. The C -terminal domain 

corresponds to the MC homology region consisting of 6 transmemb rane helices (TM1-6), while the N-terminal 

domain contains the Ca2+-binding EF-hand motifs. 3 small propellers in the loops between TM 1 -2, TM 3-4 

and TM 5-6 protrude into the mitochondrial matrix and are parallel to the membrane surface. The MC region 

forms a basket that opens into the intermembrane space, with a funnel cavity ending near the surface of the 

matrix7.  

 

Two types of CaMCs, aspartate-glutamate carriers (AGCs) and ATP-Mg/Pi carriers, have 

been distinguished. Concerning AGCs, two isoforms have been identified: Aralar/AGC18, 

expressed in the central nervous system and skeletal muscle, and Citrin/AGC29,10 expressed 

mainly in liver, kidney and heart, with a sequence homology of 77.8% and encoded 

respectively by genes on chromosomes 2q3111 and 7q2112. Another AGC homolog, Agc1p, 

has also been identified at the mitochondrial level in yeast, but it differs from the previous 

isoforms because it does not contain any calcium binding domains13. 

SLC25A12 mutations cause AGC1 deficiency whereas mutations in the SLC25A13 gene, 

encoding for AGC2, cause the adult-onset type 2 citrullinemia (CTLN2) and neonatal 

intrahepatic cholestasis (NiCCD)14. While NiCCD leads to citrullinemia, bilirubinemia, poor 

growth, intrahepatic cholestasis and cirrhosis and most of the affected newborns have a 

spontaneous resolution of symptoms within one year, adult-onset CTLN2 is characterized by 

hypoproteinemia, hyperammonemia, citrullinemia, neuropsychiatric symptoms, coma, brain 
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edema, pancreatitis and hepatic steatosis. In CTLN2 patients, the lack of cytosolic aspartate 

and inhibition of the malate-aspartate NADH shuttle (MAS; as a consequence of the 

inhibition of cytosolic NADH oxidation) causes hyperlipidemia and fatty liver disease, 

carbohydrate aversion, preference for high-protein diets, inhibition of alcohol metabolism and 

inhibition of the argininosuccinate synthetase (ASS) reaction due to the lack of cytosolic 

aspartate provided by mitochondria14. 

1.3. AGC1 physiopathological role in the Central Nervous 

System (CNS) 

The AGC1 carrier is encoded by the SLC25A12 gene and is the largest AGC isoform 

expressed in the CNS, mainly in the gray matter. In situ hybridization studies15 have shown 

that the expression of the Aralar/AGC1 carrier in adult mouse brain is restricted to areas rich 

in neurons and undetectable in white matter (Fig. 1.4). In addition, AGC1 mitochondrial 

levels were significantly higher in neuronal cultures than in glial cultures and also increased 

with maturation of neurons in culture, providing further confirmation for its predominantly 

neuronal localization15. 

 

               

Figure 1.4: Distribution of Aralar/AGC1 transcript in adult mouse brain. For identification, sections were 

hybridized with a probe labeled with digoxigenin specific for the SLC25A12 gene. The images show a high 

expression of AGC1 in brain regions particularly rich in neurons: cortex (D), hippocampus (G), cerebellum 

(I)15. 

 

The first report concerning the activity of AGCs dates back to 1979 following studies on 

metabolite transport at the mitochondrial membrane16. AGC1 play a crucial role in myelin 

synthesis by oligodendrocytes since they catalyze a unidirectional transport reaction by 

exchanging aspartate from the mitochondrial matrix to the intermolecular space in exchange 

for glutamate and a proton. This transport is regulated by the membrane proton gradient and is 

stimulated by calcium, acting at the intermembrane space where 4 EF-hands are located17. 

Aspartate in the intermembrane space is then transported into the cytoplasm, where it 
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undergoes the action of N-acetyl transferase (Asp-NAT), which transfers an Acetyl-CoA 

molecule to form NAA (N-acetylaspartate), precursor of the myelin lipid synthesis18-21. NAA 

is then introduced through the transposon into the oligodendrocyte cytoplasm by NaDC322, 

where it becomes a substrate for aspartocylase (ASPA), which converts NAA into fatty acids 

and steroids needed for myelin synthesis. After myelination, during the postnatal development 

of the CNS, NAA is involved in myelin lipid turnover, and has also a role in neuronal 

mitochondria23. 

The two AGCs are also members of the malate-aspartate NADH shuttle (Fig. 1.5). The MAS 

is the main way to transfer NADH produced by glycolysis from the cytosol within the 

mitochondrial matrix during the oxidative phosphorylation process, thus favoring ATP 

synthesis by avoiding a blockage of the glycolytic process at the level of glyceraldehyde-3-

phosphate24. Consequently, genetic variations that alter Aralar/AGC1 expression or its 

insertion into the internal mitochondrial membrane can lead to alterations in MAS function, 

aspartate synthesis by neuronal mitochondria or N-acetylaspartate production, leading to the 

involvement in the onset of diseases affecting the central nervous system. 

 

 

Figure 1.5: Role of AGC1 in the synthesis of N-acetylaspartate (NAA) and malate-aspartate NADH shuttle (MAS)14. 

 

In addition to its role in metabolism and myelin synthesis in the CNS, AGC1 is also involved 

in psychiatric disorders such as autism spectrum disorder (ASD) and schizophrenia. Autism, 

originally called Kanner Syndrome, is considered a neuropsychiatric disorder that affects 
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brain function. Given the variety of symptoms and complexity to provide a coherent and 

unified clinical definition, the use of Autistic Spectrum Disorder, more properly, has recently 

been adopted and includes a variety of pathologies or common-feature syndromes. 

Polymorphisms identified in the SLC25A12 gene seem to be associated with autism despite 

not achieving a significant genomic incidence, however this has led to hypothesize the 

involvement of AGC1 in susceptibility to autism25-28, although some studies suggest the 

opposite29,30. In post-mortem brain, AGC1 is overexpressed in the lateral frontal cortex of 

autistic patients28.This means that expression changes may be considered as a consequence of 

the disorder, and not that AGC1 activity is associated with autism. A valid hypothesis might 

be that gene defects are compensated by up-regulation or functional redundancy in certain 

tissues, whereas in the brain the lack of compensatory mechanisms could cause increased 

sensitivity to respiratory deficiency. AGC1 also seems to be associated with schizophrenia, as 

shown by studies on schizophrenic patients through magnetic resonance revealing a reduction 

of NAA levels in large regions of the brain31. Moreover, NAA levels decreased in 

schizophrenic patients in the absence of hippocampal volume differences, which could mean 

that neuronal loss alone is not enough to explain the reduction in NAA levels but rather could 

be due to cellular dysfunction interfering with NAA metabolism32. In fact, NAA metabolism 

seems to be compromised by AGC1 in vivo as shown by MRI and post-mortem samples 

where reduced myelination was detected33. Nevertheless, no correlation has been 

demonstrated between SLC25A12 and schizophrenia, although NAA levels may play a role in 

the disease as observed in schizophrenic brains at the prefrontal, temporal cortex, and 

hippocampal level34. 

1.4. AGC1 deficiency in vivo model  

The use of functional Knockout AGC1 mice as AGC1 deficiency in vivo models has been 

reported in the literature. One of the first reports dates back to 2005; Jalil and colleagues 

developed homozygous mutant mice through gene trapping by inserting a targeting vector 

containing a premature stop codon at exons 13-14 in ES SVJ129 cells. Chimeric mice were 

generated by implanting SLC25A12 mutant cells into C57BL murine blastocysts. 

SLC25A12/Aralar+/- hybrids were crossed to produce homozygous SLC25A12/Aralar-/- mice 

expressing a truncated AGC1 protein35. According to protein sequence analysis 

(www.uniprot.org) the truncated protein contained one catalytic site for aspartate, called 

Solcar-1, therefore a mutant protein with residual activity was produced.  
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Another SLC25A12 KO mouse model24 was created by inserting a construct containing a 

premature stop codon at 1 exon in ES C57BL/6 embryonic stem cells. This AGC1 protein 

product was a fully inactive truncated protein containing no AGC1 catalytic sites. Clones 

containing the targeting vector were identified and used to develop chimeric mice and then 

crossed with C57BL/6Tac females. The first generation was then screened to identify 

SLC25A12 heterozygous mice (AGC1+/-) crossed with an AGC1+/- or AGC1+/+ parent mice to 

obtain homozygous SLC25A12 KO line (AGC1-/-). Phenotypically, AGC1 KO mice showed 

delayed growth, were smaller than AGC1+/+ and AGC1+/- mice and displayed a much lower 

lifespan of 22-23 days35. Moreover, at postnatal day 15, AGC1 KO mice manifested tremors 

and motor coordination problems. In addition, while KO mice were initially indistinguishable 

from wild-type and heterozygous mice, after some days they were recognized due to their 

smaller size and growth retardation. Moreover, no AGC1 KO mice survived longer than four 

weeks after birth. By examining SLC25A12 KO mouse brains, a decrease in brain size and 

myelination, myelin galactose-cerebroside lipid and N-acetylaspartate (NAA) and aspartate 

levels were observed, suggesting a role for AGC1 in myelin synthesis. Specifically, 

immunohistochemical studies found that the major differences between KO mice compared to 

wild-type mice at postnatal days 13 and 14 (P13 and P14) were a size reduction of the 

hypothalamus, thalamus and striatum as well as a delay in brain development24 (Fig. 1.6).  

Furthermore, Myelin basic protein (MBP) positive fibers were reduced in KO mice. 

Myelination alterations were also observed through lipid associated protein labeling; MBP 

was significantly reduced in KO P10 mice compared to wild-type mice (approximately 75%), 

while acid fibrillation protein, synapsin and neurofilaments did not show any expression 

differences. 
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Figure 1.6: SLC25A12 knockout pups have a smaller brain. P13 brain tissue section from a wild-type AGC1+/+ (A, C) or 

knockout mouse, AGC1-/- (B, D). Brain regions are overall smaller in the knockout mouse brain. Corpus callosum (CC), 

caudate putamen (CP) and thalamus (TH). 

 

Alterations in Purkinje cells have been observed in AGC1 KO mouse cerebellum, confirming 

developmental delay. Purkinje cells were frequently misaligned and showed smaller dendritic 

spine extension, leading to thinning of the molecular layer. Immunohistochemical analysis 

performed on cortical sections of KO mice, by using an anti-SMI-31 antibody that recognizes 

the phosphorylated form of NF-M and NF-H neurofilament proteins (physiologically located 

in axons) showed an altered distribution of neurofilaments in the neocortex (Fig. 1.7). AGC1 

KO mice showed neurofilament accumulation in the deeper layers of the cortex, while wild-

type mice had more neural processes at layers IV and VI24. Moreover, a decrease in MAG 

expression (which encodes for a glycoprotein associated with myelin) was observed in the 

brain of adult heterozygous male mice, compared to WT mice. 
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Figure 1.7: Neurofilament alterations in SLC25A12 KO mice. Sagittal section of WT (A, C, E) and KO (B, D, F) 13-month 

old mouse cortex labeled with an anti-SMI-31 antibody, which recognizes phosphorylated NF-M and NF-H. Arrows in A, C, 

and E indicate some axonal processes in wild-type mice which are absent in KO mice. Arrows in D indicate neurofilament 

accumulation present in KO mice24.  

 

Lastly, experiments conducted on coronal brain sections of SLC25A12 KO mice showed 

remarkable myelination defects compared to WT mice in the corpus callosum, anterior 

commissure, internal capsule, and the habenulo-interpeduncular tract24 (Fig. 1.8). All these 

alterations highlight how the mouse model shows features very similar to AGC1 deficiency 

patients2. 
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Figure 1.8: Slc25a12-knockout mice show myelination defects. (A) crown coronal sections of WT and KO mice frontal cortex 

14 days after birth. Sections were labeled with a primary anti-MBP antibody, an anti-HRP secondary antibody and stained 

with DAB. In KO mice there was a decrease in the number of axon fibers in the corpus callosum, anterior commissure, 

internal capsule and the habenulo-interpenducular tract. (B) Staining for Proteolipid Proteins (PLPs) on sagittal sections of 

WT and KO mice euthanized 13 days after birth. Scale bars, 200 μm. AC, front forward; CC, corpus callosum; DAB, 3,3'-

Diaminobenzidine; HIPT, habenulo-interpenduclar tract; HRP, horseradish peroxidase; IC, internal capsule; LV, lateral 

ventricles; MBP, myelin basic protein; PLP, proteolipid protein; SA, septal area. 

 

Neuron-free oligodendrocyte cultures derived from Aralar-/- mice supplemented with fatty 

acids and metabolites were able to mature in a similar way to WT mice-derived cultures, 

supporting the idea that the defect found in AGC1-/- cells is due to the lack of NAA and 

neuronal lipids rather than being an oligodendrocyte-specific defect36. Therefore, the 

pathogenic mechanism at the base of AGC1 deficiency is considered to be represented by the 

inability of neurons to provide the lipid NAA precursor to oligodendrocytes, resulting in a 

reduced synthesis of galactocerebroside, the major component of myelin, leading to 

subsequent hypomyelination35,37. However, in none of these studies the effect of AGC1 

A                                                             B 
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deficiency in oligodendrocyte precursor cells and in neural stem cells has been addressed to 

clarify whether the lack of AGC1 activity could affect myelination and neuronal survival 

through an effect on precursor cell proliferation and differentiation. 

1.5. Neural Stem Cells: proliferation and differentiation into 

neurons and glial cells during development and adulthood 

Neurogenesis is the process by which new cells are formed from neural stem cells (NSCs), 

these are multipotent cells able to differentiate into different brain cell types (neurons or glia), 

or form progenitor cells (Fig. 1.9). It consists essentially of four main steps: cellular 

proliferation by asymmetric division, cellular fate specification, cell migration, and lastly 

differentiation, migration and integration into neuronal circuits38. Neurogenesis occurs mainly 

during prenatal development, allowing the expansion of neuronal cell number during 

embryonic life, and then remains active after birth only in specific brain areas. 

   

 

Figure 1.9: Neuronal Lineage and Identification Markers39. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4868344_nihms780811f1.jpg
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1.5.1. Embryonic neurogenesis 

During the early stages of mammalian embryonic development, the newly formed neural tube 

is composed by a pseudostratified neuroepithelium of ectodermal origin that leads to the 

formation of all CNS cell types, producing firstly neurons and subsequently glial cells. Since 

neuroepithelial cells are formed through the inhibition of different signals inducing a non-

neuronal fate, including BMPs (bone morphogenetic proteins) responsible for differentiation 

into epidermal cells at the beginning of the gastrication process40, it is hypothesized that 

ectoderm cells tend to spontaneously differentiate into neuroeuroectoderm for the 

development of the central and peripheral nervous system in the absence of external stimuli. 

Prior and immediately after the neural tube closure, neuroepithelial cells are symmetrically 

divided to expand the cell population; with the onset of cortical neurogenesis (E9-10 in mice) 

they undergo morphological and structural changes accompanied by the acquisition of glial 

cell typical characteristics and form a homogeneous cell population called Radial Glia (RG 

cells). Radial glia cells are the precursors responsible for the formation of nearly all types of 

brain cells during CNS embryonic development except for microglia: neurons, 

oligodendrocytes, astrocytes, and ependymal cells. RG cells are anchored to each other by 

complexes of adherent junctions which are fundamental to maintain the integrity of the 

ventricular zone and cell specification41; they have an apical-basal polarity with a direct 

extension towards the surface of the ventricle and a radial process extending externally 

towards the pia mater. Staining studies with thymidine analogues have shown, however, that 

during the cell cycle, RG cells lose temporarily this bipolarity and the nucleus undergoes 

intracellular nuclear migration (INM), localizing in the apical part of the ventricular zone 

during the S phase and then migrating near the lumen of the neural tube during phase M (Fig. 

1.10)42,43. 
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Figure 1.10: Proposed model of INM.  Nuclei migrate for short distances by contraction of actin microfilaments and along 

microtubules for greater distance movements through the involvement of dynein44. 

1.5.2. Neuronal and glial differentiation 

In the early stages of neurogenesis, BMPs at the dorsal pole and sonic hedgehog (SHH) at the 

ventral neural tube stimulate the expression of different bHLH (basic helix-loop- helix) genes, 

each associated with the production of specific types of neurons for the formation of the 

central nervous system45. In vertebrates, bHLH-proneural genes are classified in two families, 

Mash1 and NeuroD-like, based on homology with the bHLH genes necessary for neuronal 

differentiation in Drosophila46, and act by inducing cell cycle arrest, epithelial delamination 

and the activation of gene expression necessary for general neuronal differentiation. 

Neuroepithelial and RG cells therefore, based on their localization along the neural tube, 

interpret these morphogenetic gradients and respond by activating certain gene expression 

programs able to produce the wide diversity of neuronal or glial cell types present in the CNS 

(Fig. 1.11). In addition to localization, regarding cell differentiation there is also a time 

control that determines which neurons or glial cells may derive from RG. For example, during 

cortical development, the first blasts that differentiate and migrate into the deeper layers of the 

cortex show the ability to give rise to all six-layer cells, and as development progresses, 

subsequent blasts and more external layers give rise to less cell types.  

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3935435_nihms398809f6.jpg
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Figure 1.11: Example of Radial Glia regional specification. Rostral section of the neurogenic embryonic telencephalus with 

different radial glia populations in the ventricular region. Based on the combination of transcription factor expression along 

the neural tube, Radial Glia generates different progeny along the dorsoventral axis of the telencephalus41. 

 

At the time of cortical neurogenesis (E9-11), RG cells initiate a series of asymmetric cell 

divisions for neuronal differentiation in order to self-renew and at the same time generate a 

daughter, neuron or intermediate progenitor cell (nIPC or blast), which will be placed in the 6 

layers of the cortex according to an inside-out mechanism. Therefore, for the formation of the 

cerebral cortex, as well as for the whole CNS, Radial Glia cells can produce neurons directly 

through the action of Neurogenin 1 and 2, or indirectly through the generation of nIPCs and 

subsequent division/amplification cycles through the action of FGF and Notch. In addition, 

immunostaining and electrophysiology analyses have shown that, in some cases, RG can 

reduce radial processes and move towards the cortical surface after division; these cells 

however, seem to mainly differentiate into astrocytes47,48 (Figure 1.12). 
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Figure 1.12: Neurogenesis models during cortical development. Radial Glia cells can generate neurons in three ways: 

directly through asymmetric divisions; indirectly by generating nIPCs and an amplification cycle; indirectly with the 

formation of nIPCs but with two division cycles and future amplification, which is crucial for increasing the size of the cortex 

during development49. 

 

At the end of neuronal differentiation there is the activation of a cascade leading to the 

expression of Nfia/GFAP and other factors that induce the transcription of astroglyogenic 

genes in proliferating RG cells. Cells lose contact with the neural tube ventricle, migrate 

through the cortical surface by somatic translocation and differentiate into astrocytes 

throughout the central nervous system. For oligodendrocyte differentiation, oligodendrocyte 

precursor cells (OPCs) originate in different brain regions after the expression of Olig1/2 and 

NKX2.2 factors, then localize in the white and gray matter where they may remain quiescent 

and proliferate symmetrically in response to local signals. The first precursors migrate into the 

dorsal cortex and hippocampus around E16 in the mouse brain, and derive from the medial 

ganglionic eminence (MGE) in the ventral part of the telencephalus50-52. The second wave of 

OPCs is generated more dorsally in the lateral and/or caudal (LGE/CGE) ganglionic 

eminence53, while the last wave after E18 in the mouse brain, presumably from the dorsal 

cortex itself53,54. However, since many of the oligodendrocytes generated in the earliest stages 

disappear after birth, most oligodendrocytes present in the adult cortex derive from the last 

wave of oligodendrogenesis53. 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3086722_nihms163244f3.jpg
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1.6. Adult Neurogenesis 

For many years, mammalian neurogenesis was considered an exclusively embryonic process 

and of the very early stages of postnatal life. In the 60's, thanks to the use of 3H-thymidine 

incorporation into DNA during cell division, Altman reported the generation of new neurons 

in adult rat brain55. Although many postnatal CNS regions lose their ability to produce new 

brain cells, an NSC population persists in the adult able to generate neurons, astrocytes and 

oligodendrocytes in two brain regions: the subgranular zone (SGZ) of the dentate gyrus (DG), 

located at the interface between the granular cell layer and the elliptical junction, and the 

lateral ventricular subependymal area (V-SVZ). These regions, defined as neurogenic niches, 

are composed of different cell types, specific cell-cell contacts and particular extracellular 

environments56. 

1.6.1. Subventricolar zone (SVZ) 

From an evolutionary point of view, the subventricular area is considered the continuation of 

the embryonic telencephalus ventricular area57. At the end of embryonic development, many 

Radial Glia cells differentiate into astrocytes and ependymal cells or may continue to function 

as NSCs in the newborn, while a small population known as type B cells, slows down 

proliferation. Type B cells show an astrocyte-like morphology, express several markers such 

as GFAP, Nestin, GLAST (glutamate aspartate transporter) and BLBP (brain lipid-binding 

protein) and, similarly to glial cells, exhibit an apical-basal polarity with a long process that 

contacts blood vessels and an apical region containing a process that contacts the ventricle58 

(Fig. 1.13). 
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Figure 1.13: V-SVZ architecture graphic representation. Type B cells with an apical process contact the ventricle and 

interact with multiciliated ependymal cells and blood vessels. Type B cells generate C-cells with high proliferative potency, 

which give rise to differentiated neuroblasts or type A cells59. 

 

At the time of neurogenesis, type B cells increase their proliferation rate and become type C 

cells, important progenitors for amplification, which form small clusters within the SVZ 

before differentiating into neuroblasts. Neuroblasts, called Type A cells, continue 

proliferating, forming cell islands surrounded by type B cells and close to C cell clusters (Fig. 

1.14) and then migrate from the front of the SVZ to the olfactory bulb where they 

differentiate in different types of interneurons depending on the origin area60 (dorsal, medial 

or ventral SVZ). 

 

Figure 1.14: Transversal section of adult rat brain (top left) and schematic illustration of SVZ composition and architecture 

(right). At the time of amplification, C cells give rise to neuroblasts (A cells) that proliferate to form clusters surrounded by B 

cells and close to C cell islands. On the bottom left the lineage of the olfactory bulb neurons is shown61. 
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1.6.2.  Hippocampal dentate gyrus 

The other major neurogenic niche that produces new neurons in the adult mammalian brain is 

the hippocampus62, and alterations in the neurogenic process in this brain region are 

correlated with depression, neuroinflammation and epilepsy. During embryonic development, 

Radial Glia cells reach the hippocampus and differentiate into radial astrocytes at the 

subgranular zone, representing the first neuronal precursors of the DG (type I or B 

progenitors) characterized by a long process that crosses the granular cell layer and shorter 

processes horizontally aligned along the SGZ63,64 (Fig. 1.15). Unlike astrocytes present in the 

DG that are GFAP positive, radial astrocytes express both GFAP and Nestin64,65. Similarly to 

what observed for the subventricular zone, these cells are localized near vascularized areas66 

suggesting that bloodstream factors may affect the behavior of NSCs in this area. Radial 

astrocytes do not give rise to neurons directly, but generate nIPCs called immature or 

progenitor type II cells64,67,68 which, following cell division, mature in D2-D4 cells acquiring 

typical characteristics of neurons in different maturation states and then contributing to form 

the granular cell layer.  

 

Figure 1.15: Transversal section of adult mouse brain and hippocampus (top left) and schematic illustration of the 

subgranular layer composition and architecture (right). Astrocytes (B) have a long radial process that penetrates into the 

granular layer and short tangential processes parallel to the layer. The lineage of neurogenesis in the hippocampus is shown 

at the bottom left. Progenitors (B) give rise to immature cells (D) that divide into mature neurons (G)61. 

 

Several Studies have shown that neurogenesis in the dentate gyrus, rather than in the SVZ, is 

influenced by multiple physiological and environmental signals including adrenal steroids69,70, 

enrichment conditions71 and antidepressants72, which can directly and/or indirectly affect the 

behavior of radial astrocytes at the level of neuronal activity, subsequently causing changes in 

the proliferative rate of these cells and their progeny. 
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1.7. CNS myelination 

1.7.1.  Oligodendrogenesis regulation 

Myelin is a lipidic and highly specialized laminar structure generated by glial cells that extend 

overlapping and compact membrane spirals around the axons of many neurons; in the central 

nervous system (CNS) it is formed by oligodendrocytes, while in the peripheral nervous 

system (PNS) the cells involved in myelin formation are Schwann cells. Histologically, 

myelin may be defined as a protein-like substance, very common in white matter, composed 

by 30% proteins and 70% lipids. Its importance lies in its high ability to increase the speed of 

nerve conduction and improve the passive flow of electric current reducing its ability to 

escape from the axon and thus prevent the dispersion of electric fields. Human diseases, such 

as multiple sclerosis, clearly demonstrate the importance of myelin in CNS functionality; in 

fact, in these diseases there is a loss of myelin sheath integrity around axons, making 

communication between the brain and spinal cord difficult, causing neurological symptoms to 

progress and leading to physical and cognitive disability. These observations were further 

supported by a study on mutant mice in which the myelination process was halted, showing a 

highly altered CNS phenotype23,73. Myelination can be defined as the nerve fiber maturation 

process in axons, essential for the good functionality of neural cells both in the CNS and PNS. 

Myelination is a very complex and dynamic mechanism that at birth has not reached 

completion in all brain areas (frontal lobe associated areas, for example, complete myelination 

only at the end of adolescence), showing substantial plasticity even during adult life. In non-

pathological conditions, myelin is formed during the late fetal period, and develops for at least 

another 20 years (Fig. 1.16); during development, myelin axons which project to nerve 

structures away from cellular bodies and for which high conduction speed is essential, are 

substantially myelinated while axons from local circuit neurons are poor in myelin.  
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Figure 1.16: Human myelination is mostly a postnatal process that peaks during childhood and can continue until early 

adulthood74. 

 

From an evolutionary view, oligodendrogenesis in the brain and spinal cord is led by 

progenitor cells of the ventricular area, that is, the innermost cell layer surrounding the lumen 

of the neural tube constituting a region with an intense proliferative activity during gestation. 

It has been estimated that at the peak of cell proliferation in humans, 250,000 new neurons are 

generated every minute, and an even much higher number of glial cells. Progenitor cells of 

the ventricular zone, during the advancement of the mitotic cycle, give rise to oligodendrocyte 

progenitor cells (OPCs) which in turn divide and migrate throughout the CNS. OPCs are 

produced in successive waves; during the early stages of development, they predominantly 

derive from the ventral regions of the neural tube while during subsequent development 

phases they are largely replaced by OPCs from the more dorsal regions. Lastly, OPCs can 

differentiate into post-mitotic, pre-myelinating oligodendrocytes which, in the presence of 

appropriate environmental stimuli, may further mature and myelinate adjacent axons. OPCs 

migration from the source areas is a key process for the proper functionality of the CNS, 

however the molecular mechanisms that regulate this development phase are not clear yet, 

even though several molecules have been identified. Among these molecules, the family of 

calcium-dependent adhesion molecules, represented by cadherins, plays an important role. 

Cadherins have a modular structure that allows their interaction with other signal proteins, 

responsible for the correct sorting of OPCs75-77. During the OPCs migration process, the 

involvement of Platelet-Derived Growth Factors (PDGF) was also described. PDGFs consist 

of a homodimer or heterodimer of two A and B chains encoded by two different genes. In the 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4727993_nihms-721562-f0003.jpg
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CNS, PDGF-A is released by neurons and astrocytes, while PDGF-B is derived from capillary 

endothelial cells. PDGFs bind and activate two membrane receptors PDGFRα and PDGFRβ; 

binding with these receptors mediates OPCs proliferation78. Moreover, PDGF-A exerts a 

mitogenic action on OPCs and plays a crucial role in embryogenesis. Recent studies have 

demonstrated that PDGF-A receptor activation in OPCs (PDGFRα) leads to the activation of 

numerous signaling pathways, including the ERK pathway, resulting in OPC migration79,80.  

1.7.2.  Regulation of oligodendrocyte differentiation and 

myelination 

Given the importance of myelination in CNS proper functionality, it is not surprising that 

oligodendrocyte development and axon myelination are processes highly regulated by 

extrinsic and intrinsic signaling mechanisms, and that this control involves the coordination of 

multiple intracellular pathways73. An example of extrinsic regulation is the involvement of 

some axonal ligands in the myelination process. Jagged, Lingo1 and PSA-NCAM inhibit 

oligodendrocyte differentiation and/or myelination81-83. Moreover, unlike the PNS where 

neuregulin axonal expression is the main permissive signal for myelination by Schwann cells, 

in CNS oligodendrocytes this signaling is largely superfluous, although it has been 

demonstrated that overexpression of neuregulin in the CNS induces hypermyelination84. On 

the other hand, the Wnt/β-catenin pathway also regulates oligodendrocyte development. Wnt 

is transiently activated in OPCs at the beginning of differentiation, while both the activity of 

β-catenin and expression of Tcf4/Tcf712 are down-regulated in mature oligodendrocytes85,86. 

Nevertheless, it is thought that Wnt signaling down-regulation may also be needed for 

differentiation; in this regard, it has been shown that in mutant mice displaying high Wnt/β-

catenin signaling, oligodendrocyte differentiation is repressed and hypomyelination is 

present85. In addition to extracellular ligands, myelination is also partly driven by the 

electrical activity of axons themselves. In fact, neuronal activity may modulate the expression 

of ligands or cytokines and their localization on the axonal membrane87; may mediate the 

release of adenosine from active axons which can activate purinergic receptors on OPCs, 

promoting their differentiation and myelination; may mediate the release of axonal ATP 

thereby stimulating adjacent astrocytes to release the pro-myelinating factor LIF88 (leukemia 

inhibitory factor) and lastly, the OPC surface can be well equipped to receive synaptic input 

directly from neurons and respond appropriately. A direct stimulation of OPCs by the release 

of glutamate from synaptic terminals was first documented in the hippocampus89, as 
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documented for GABA in gray matter and white matter90,91. OPCs expressing glutamate 

ionotropic receptors and voltage-dependent ion channels, may respond to this direct 

stimulation with a depolarization event that is not different from a neuronal action 

potential90,92,93. Studies on knockout mice and chick embryo electroporation have led to the 

identification of a number of transcription factors necessary for oligodendrocyte specification 

or differentiation73 (Fig 1.17). 

 

 

Figure 1.17: Intrinsic and extrinsic factor mechanism of action on the differentiation and myelination of individual axons. 

Oligodendrocyte differentiation requires the integration of multiple extracellular signals through the coordination of multiple 

intrinsic pathways. Myelination is regulated both at the level of oligodendrocyte differentiation and more specifically of 

individual axons73. 

 

Olig1, Ascl1, Nkx2.2, Sox10, YY1, and Tcf4 are required for the development of mature 

post-mitotic oligodendrocytes94 and are all present in both OPCs and post-mitotic 

oligodendrocytes, with the exception of Tcf4 which is expressed only transiently during 

differentiation85,95. In addition, chromatin structure and protein factors that determine 

chromatin remodeling can also act as intrinsic control mechanisms; in fact, histone 

deacetylases (HDACs) may intervene in oligodendrocyte differentiation by suppressing the 

transcription of genes that normally block differentiation96. Lastly, molecules such as 

microRNAs that control post-transcriptional gene expression, can play a very important role 

in the regulation of CNS myelination.  MicroRNA profiling studies led to the identification of 

miR219 and miR338, and revealed that the function of these miRNAs is activated during 

oligodendrocyte differentiation97,98. PDGFα, Sox6 and Hes5 are target genes of these 

miRNAs, which usually act by maintaining OPCs in an undifferentiated state, therefore 

miR219 and miR338, through a positive feedback loop, inhibit the genes that promote cell 

proliferation and promote differentiation97,98.  Lastly, the microRNA cluster miR17-92, 

regulates OPC proliferation by PTEN regulation, and thus phosphorylation of Akt99. These 
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results clearly show an important role for microRNAs in CNS myelination control in different 

phases (Fig. 1.15). One of the best known and involved pathways in OPC maturation and 

CNS myelination is the transforming growth factor β pathway. TGFβ signaling is crucial to 

induce OPC cell cycle arrest during oligodendrogenesis, and postnatal CNS myelination. 

Increased oligodendrogenesis and subcortical white matter myelination (SCWM) is detected 

after inducing a TGFβ gain of function mutation, whereas TGFβ II receptor deletion in OPCs 

prevents their development into mature myelinating oligodendrocytes leading to 

hypomyelination of the SCWM in mice100. TGFβ1 binding to the TGFβ-RII membrane 

receptor on OPCs allows TGFβ-RII to phosphorylate the TGFβ-RI receptor leading to the 

activation of the signal transduction cascade resulting in the activation of the SMAD2/3 

complex that interacts with SMAD4 and the transcription factors Sp1 and Fox01 which, 

following nuclear translocation, stimulate the expression of cycline-dependent kinase 

inhibitors, such as p15, p21 and p27. These inhibit c-myc pro-mitotic gene transcription and 

promote its cytoplasmic and non-nuclear localization101 (Fig. 1.18). 

 

.  

Figure 1.18: Model scheme for the TGFβ pathway100. 

 

This process leads to OPC cell cycle arrest and differentiation into mature oligodendrocytes 

able to synthesize myelin, as evidenced by reduced PDGFRα and Cdk2 protein levels and the 

resulting increase in Mbp, Cnp and Mog mRNAs, which occurs in the presence of TGFβ1100. 
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1.8.  In vitro cell models to study neurogenesis and OPCs: 

neurospheres and brain-cells derived from induced 

Pluripotent Stem (iPS) cells 

1.8.1.  Neurospheres 

The neurosphere model102 and the NSC monolayer culture systems are valid tools to 

determine the potential (proliferation and differentiation) of adult neural stem cells in vitro. 

These models can be used to compare the potential of neural precursors from genetically 

different or differently treated animals to determine the effects of exogenous factors or 

diseases on NSC proliferation and differentiation, or to generate cell lines that can be 

analyzed during successive steps. The "neurosphere assay" is mainly used for the 

identification of neural stem cells isolated from primary tissues and has the advantage to 

provide a rapid estimate of precursor number in brain tissue from animals with different 

genetic characteristics. On the other hand, NSC adherent monolayer cultures are not 

traditionally used to compare proliferation levels but they can be useful to monitor the 

differentiation processes of individual cells in culture, since they consist of a homogeneous 

precursor population. 

In an attempt to isolate and expand adult rat neural stem cells for the first time, Reynolds and 

Weiss used a serum-free culture system then defined the "neurosphere assay" (NSA) in 

1992102.  With this system, they were able to demonstrate that single adult neural stem cells 

could proliferate to form a sphere of undifferentiated cellular composition called neurosphere, 

and how these neurospheres could subsequently be dissociated to generate numerous 

secondary neurospheres or induced to differentiate into the three major cell lineages of the 

CNS. Generally, neurospheres are floating cultures of NSCs and neural progenitors isolated 

from the adult or fetal central nervous system103 and represent a nearly perfect system to 

provide a consistent and self-renewable source of CNS undifferentiated precursors for cell 

replacement therapies and in vitro studies for neural stem cell analysis/characterization. 

Defined as an "environmental adaptation", NSCs could be clustered to survive the non-

physiological conditions of in vitro culture by optimizing their interactions and acquiring a 

thermodynamically favorable sphere shape104. Confocal and electron microscopy analysis 

conducted by Bez and colleagues in 2003 showed that neurospheres and neurosphere-derived 

cells present significant morphological and structural differences, despite being derived from 

NSCs plated at the same time and under the same culture conditions. During growth, 
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neurospheres may show a well-defined spherical shape or cluster of irregular cells, as well as 

occasionally present cytoplasmic processes that recall cilia or pseudopods (Fig. 1.19 A, B, C) 

occasionally. In addition, neurospheres able to proliferate more rapidly and of greater 

diameter are generally characterized by a darker central core corresponding to sites of necrotic 

cells due likely to reduced nutrient and oxygen availability in the central part, while smaller 

spheres appear more translucent and healthy, with no signs of suffering. 

 

              

Figure 1.19: Neurosphere phase contrast images (A-C). (A) Neurosphere with irregular edge and cilia-like cytoplasmic 

processes on the surface (a). (B) Neurosphere with regular edges and spherical shape well defined. (C) Neurosphere in low-

adhesion dish with obvious cytoplasmic processes similar to pseudopods104. 

 

In the case neurospheres are plated on matrices that allow plate adhesion for subsequent 

proliferation or differentiation analysis, they begin to flatten and spread becoming an adherent 

cell monolayer where cells from outer layers extend to form mitotically active cytoplasmic 

processes, similar to pseudopods. Bez and colleagues also documented the presence of 

apoptosis and apoptotic body phagocytosis, typically in the innermost regions, between the 

second and the third layers and the nucleus of the neurosphere, while BrdU incorporation 

experiments, showed intense transcriptional activity in the most peripheral cells, suggesting 

that the distribution of biological phenomena such as mitosis, transcription, or apoptosis is 

directly influenced by the position that the cells occupy in the neurosphere structure. 

Neurosphere vitality and the activity of the live cells present inside can therefore depend on 

the access of oxygen and nutrients present in the culture medium, and on the ability to quickly 

eliminate catabolites in the brain external environment104. This interpretation could justify the 

high transcriptional activity observed at the more peripheral cells where the exchange of 

nutrients, oxygen and catabolites is facilitated, while apoptosis, phagocytosis and necrosis are 

typical of the most internal layers where these exchanges are more difficult. Flow cytometry 

analysis has also shown that this morphological and functional heterogeneity characterizes not 

only neurospheres but also NSCs that derive from them. These cells have different size, 

metabolism and cytoplasmic content, and are as well in different phases of the cell cycle, 
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showing different morphological characteristics depending on the neurosphere layer they 

derived from104. 

The neurosphere assay (NSA) was the first in vitro cellular system to demonstrate 

unequivocally the presence of cells in the adult brain with true neural stem cell 

characteristics102,105. It remains currently an extremely useful tool to analyze proliferation, 

auto-regenerative capacity and multipotency of neural stem cells and cell progenitors. 

Analysis using serial clonal passages to determine the ability to form neurospheres (Figure 

1.20 A) followed by in vitro differentiation to show the multipotency of individual spheres 

(Fig. 1.20 B, C) are very widespread and still represent the best functional assay to study 

NSCs106-109. 

                        

Figure 1.20: Tests to determine the ability to form neurospheres followed by in vitro differentiation to analyze multipotency 

(A). During differentiation cells migrate from the core of the neurosphere (B) and express proteins such as GFAP (green) 

and BIII-tubulin (red), respectively typical astrocytic and neuronal markers110. 

 

The major advantages of this method are its simplicity, reproducibility and ability to generate 

an indefinite number of cells, a small tissue section or a small group of cells in a chemically 

defined serum-free culture medium. However, to evaluate the results one should not consider 

the number of in vitro neurospheres as corresponding to the number of NSCs since these 

structures are extremely heterogeneous and characterized not only by a stem cell mix but also 

by progenitors and differentiated cells102,111. In this assay, the primary tissue is microdissected 

from a particular cerebral region (SVZ and/or hippocampus) and dissociated into single cells. 

During the first step, most differentiated cells die after 2-3 days while a small population of 

cells respond to proliferation-inducing growth factors, generating after 6-8 days 
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undifferentiated colonies ready to be sub-reactivated to expand the NSC pool or induce 

differentiation into the three major cell lines of the CNS: neurons, astrocytes and 

oligodendrocytes112. 

Although the two main neurogenic regions of the adult mouse brain contain both neural 

precursors, it has been shown that SVZ-derived cells proliferate more rapidly forming larger 

neurospheres than those derived from the dentate gyrus. 

Neurospheres are also a valid in vitro model for neurogenesis and neural development, 

enabling the study of precursor-specific intrinsic processes during the different phases of 

development, or the potential of these cells once removed from their physiological growth 

conditions110. In general, neurospheres are a very effective study system because they can be 

maintained in culture under well-defined serum free conditions, and their expansion or 

differentiation phase can be manipulated by simply adding factors of interest in the growth 

medium113,114. In addition, comparative studies of fetal murine brains and neurosphere 

cultures have shown how cells derived from neurospheres have a temporally and spatially 

similar behavior to their in vivo counterparts while retaining the ability to differentiate into the 

neuronal type characteristic of the brain origin region107,115. 

1.8.2. Brain-cells derived from human iPS cells 

Embryonic Stem Cells (ESCs) are cells derived from the inner cell mass of the mammal 

blastocyst and have the ability to grow indefinitely to maintain pluripotency and the ability to 

differentiate into cells of the three germinal layers116,117. Human ESCs can be used to treat 

diseases such as Parkinson's disease, spinal cord injuries or diabetes, though there are a 

number of ethical issues regarding the use of human embryos as a cell source, as well as the 

possibility of rejection following transplantation. Over the years, a possible solution has been 

the generation of pluripotent cells directly from differentiated patient cells then identified by 

the name of iPS cells (induced pluripotent stem cells). Takahashi and Yamanaka in 2006 were 

able to obtain iPS from adult and embryonic mouse fibroblasts by ectopic co-expression of 4 

genes, Oct3/4, Sox2, c-Myc and Kfl4 under cultured conditions typical of embryonic stem 

cells. Specifically, Oct3/4 and Sox2 act to maintain pluripotency both in ESCs and in early 

embryos, while c-myc and Kfl4 contribute to the long-term maintenance of the embryonic 

stem cell phenotype and rapid proliferation in culture. The iPS cells obtained by Takahashi 

and Yamanaka, showed the same morphology, proliferation properties, and typical ES cell 

markers. In addition, subcutaneous transplantation of iPS into mice resulted in the 
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development of tumors formed from tissues derived by all three germinal layers whereas 

through blastocyst injection contributed to the development of mouse embryos which 

demonstrates their potency118. However, mouse and human iPS cells show different 

morphological characteristics that resemble those of embryonic stem cells in different stages 

of development. Mouse iPS cell colonies appear dome-shaped, are refractory, exist in a pre-

inactivation state of the X chromosome and are phenotypically similar to inner mass cells at 

E5.5-7.5 of mouse embryonic development. Human iPS colonies are smoother, tend to 

inactivate one of the two X chromosomes and are similar to stem cells observed in the 

epiblast phase (Fig. 1.21).  

                       

Figure 1.21: Pluripotent Stem Cell morphology. Mouse ESCs (A) and iPS cells (B) form dome-shaped refractile colonies. 

Human ESCs (D) and iPS cells (E) exhibit a more crushed morphology, recalling mouse stem cells derived from the 

epiblast119. 

 

Irrespective of their derivation, iPS cells maintain the main characteristics of embryonic stem 

cells, including the ability to propagate indefinitely in culture and the ability to generate cells 

from each of the three germinal layers, commonly seen as compact colonies with well-defined 

edges, composed of cells with a large nucleus, large nucleoli and little cytoplasm. To 

distinguish accurately iPS cells completely reprogrammed from those where reprogramming 

has been only partially performed, markers such as Oct4, Sox2, and Nanog which should be 

expressed at levels comparable to ESCs are used; methylation status of gene promoters 

responsible of the maintenance of pluripotency or differentiation beyond the reactivation of 

the silenced chromosome X can also be evaluated. If iPS cells acquire all these features, they 

are expected to be reprogrammed successfully. For functional ability characterization, cells 

may be induced to differentiate into embryoid bodies (spheres of undifferentiated cells that, 

morphologically, resemble a gastrula), or plated on Petri dishes and then tested with specific 

markers for each germinal layer. To evaluate hiPS cell potential, the most widely used test 
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involves the formation of a teratoma following subcutaneous or intramuscular injection into 

immunodeficient mice. If the cells are really pluripotent, they will be able to form tumors 

containing elements from each layer: ectoderm, mesoderm or endoderm. Given the high 

ability to differentiate into any cellular line (neuronal, muscular, epithelial, cardiac, etc.), the 

generation of patient-specific stem cells is a valuable tool for the study and treatment of 

diseases. In fact, iPS cells can be used to understand disease mechanisms, perform 

pharmacological tests and evaluate their therapeutic potential, as well as study the efficacy of 

the genetic remedy associated with cellular replacement therapy. In a study conducted by 

Wernig and colleagues in 2008, iPS-derived dopaminergic neurons obtained from 

reprogrammed fibroblasts, when implanted in the brain showed to be functionally integrated 

into neuronal circuits improving the symptoms of a Parkinson's disease rat model120. 

Implantation and functional recovery in this in vivo model is representative of the therapeutic 

value of iPS cells in cell replacement therapy in the central nervous system. After appropriate 

stimulation these stem cells can generate all major brain cells. For these purposes, somatic 

cell types have been derived from pluripotent stem cells, embryonic stem cell (ESC) - or 

induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs)121. Neural stem cells 

(NSCs) are self-renewing multipotent stem cells that can differentiate into neurons, astrocytes 

and oligodendrocytes. Oligodendrocyte Precursor cells (OPCs) can be obtained from NSCs 

(Fig. 1.22) as a useful therapeutic approach for the treatment of demyelinating diseases. 

Remyelination restores the physiological interaction between oligodendrocyte and axons and 

the structural support needed for axonal maintenance and efficient pulse conduction122. 

 

Figure 1.22: Representation of oligodendrocytes lineage development123. 

 

Therefore, NSCs can potentially assist in the study of neural development/differentiation and 

various neurodegenerative disorders and developing appropriate protocols to differentiate 

pluripotent stem cells into specific cell types is a key step in the study of developmental 

biology and for the advancement in the clinical phase. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=2630251_nihms76317f2.jpg
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1.9. Role of mitochondrial dysfunction in demyelinating 

diseases 

AGC1 deficiency belongs to the group of rare diseases that affect 6-8% of the world 

population, for which 70% of cases are pediatric pathologies. Among these rare diseases, 

including "orphan" diseases, whose cause has not yet been identified, many are demyelinating 

and extremely disabling. A common feature of these pathologies is mitochondrial 

dysfunction, present not only in AGC1 deficiency, but also in other neurodegenerative and 

demyelinating diseases, of which some are rare while others are very widespread, such as 

multiple sclerosis4-6. Moreover, all these pathologies are characterized by alteration of the 

myelin sheath development, neurodegeneration and neuroinflammation, permanent and 

diffuse neurological deficits not only at the motor level, but also at the cognitive level. In 

proliferating neurons, AGC1 activity supports mitochondrial pyruvate oxidation with acetyl-

CoA production that enters the TCA cycle but is also required for biosynthetic purposes, such 

as lipid and NAA synthesis. AGC1 is also a source of essential cytosolic aspartate for protein, 

nucleotide and NAA synthesis. In a neuronal cell model of AGC1 deficiency124, higher 

glutaminolysis can counteract reduced mitochondrial aspartate output due to AGC1 

deficiency and allow normal cell proliferation. However, glutamine oxidation cannot restore 

NAA synthesis, potentially being still compromised by acetylCoA reduction caused by MAS 

inhibition after AGC1 deficiency. A recent article reported that treatment of AGC1 deficiency 

patient with a ketogenic diet has led to psychomotor improvement restoring myelination125. A 

ketogenic diet is often used in the treatment of epilepsy with positive effects also against 

neurodegeneration probably because it provides ketone bodies and fatty acids. However, the 

biochemical, molecular, and cellular mechanisms underlying this nutritional approach have 

not been clarified126. In AGC1 deficiency patients, a ketogenic diet could provide sufficient 

levels of ketone bodies as an alternative source of mitochondrial acetyl groups, overcoming 

NAA deficit in undifferentiated neurons and favoring myelination in patients. The 

contribution of oligodendrocyte loss in other demyelinating and neurodegenerative diseases, 

such as multiple sclerosis, is relatively easy to predict; immuno-mediated damage to the 

myelin sheath and mature oligodendrocytes results in localized demyelination exhibiting 

myelinated axons in a toxic environment and consequently neuronal death. In other 

neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis) and AD (Alzheimer's 

disease), the contribution of the oligodendrocyte lineage is less defined. Several studies 

support that myelin sheaths provide physical protection to axons; the oligodendrocyte lineage 
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provides metabolic support for adjacent axons127 and, in ALS animal models, recent 

molecular studies implicate changes in lactate carrier expression in oligodendrocytes (MCT1) 

as a contributor to neuronal loss. A more widespread mechanism of oligodendrocyte/OPC 

influence on neurodegenerative diseases may be associated with maintaining iron levels in the 

central nervous system. In fact, oligodendrocytes are the main source of iron in the CNS and 

express high levels of ferritin128,129. Damaged oligodendrocytes can release iron into the 

surrounding environment that can be absorbed by macrophages stimulating their cytotoxicity. 

Alternatively, high levels of iron have been implicated in elevating oxygen-reactive species 

and intracellular iron is capable of triggering a new type of cell death called ferroptosis130,131 

distinct from apoptosis or necrosis. Specifically in AD, iron released by oligodendrocytes may 

promote Aβ oligomer formation enhancing Aβ peptide toxicity132,133. Aβ oligomers cause 

damage to the white substance including oligodendrocyte death and reduction in myelin 

proteins leaving axons and neurons vulnerable. Amyotrophic lateral sclerosis (ALS) is 

characterized by metabolic decoupling and transport of lactate interrupted between 

oligodendrocytes and neurons in the CNS, resulting in oligodendrocyte loss and neuronal 

death. Demyelination in multiple sclerosis (MS) is caused by acute inflammation in which 

oligodendrocytes and myelinated sheaths are damaged generating myelin debris that inhibits 

OPC differentiation. The absence of an appropriate signaling environment further prevents 

OPC differentiation into mature oligodendrocytes with consequent failure of remyelination. 

These advances have generated new potential therapeutic targets for myelin repair in the 

CNS134,135. Two general approaches are the use of direct pharmacological intervention to 

stimulate the development or function of existing oligodendrocyte lineage cells to promote 

recovery or the generation of oligodendrocytes selectively designed for transplantation to 

replace defective host cells136. Moreover, since there are no pharmacological therapies 

available to cure these devastating demyelinating and neurodegenerative diseases, it is 

particularly important to find new approaches to counteract these pathological conditions. In 

order to find new therapeutic approaches, it is crucial to clarify biochemical and molecular 

mechanisms that are the basis of these pathologies in order to identify new potential 

therapeutic target to try to counteract deficits derived from demyelination. Each result can be 

useful and potentially translate to humans to understand disease mechanisms, as well as give 

hope for the treatment of many demyelinating pathologies. 
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2. AIM OF THE THESIS 

 

AGC1 deficiency is a rare genetic neurodegenerative disease caused by defects in the 

SLC25A12 gene encoding for Aralar/AGC1, a mitochondrial aspartate-glutamate carrier, 

important in the metabolism of brain amino acids and myelin synthesis. In patients, AGC1 

mutations lead to drastic reduction of carrier activity, which results in severe hypotonia, 

developmental delay, intractable epilepsy and cortical atrophy with altered myelin formation 

in the CNS, most likely due to a dramatic reduction of N-acetyl aspartate (NAA) levels in the 

brain1,2. AGC1 deficiency mechanisms are not yet clear and currently there is no therapeutic 

treatment. It was recently demonstrated that reduced AGC1 expression and activity alter 

proliferation and differentiation of neuronal precursors through a biochemical effect at the 

mitochondrial level124. In fact, AGC1 is a key component of the malate-aspartate shuttle 

(MAS) that transfers the reducing equivalents of NADH+ from the cytosol to mitochondria, 

representing a crucial pathway to support mitochondrial oxidative phosphorylation137. 

However, although the role of AGC1 in this biochemical pathway is well known, it is not 

clear how this carrier could play a direct role in NAA synthesis and myelin formation in the 

CNS. Above all, it is still unknown how this carrier could affect cerebral precursor 

proliferation, especially oligodendrocytes, whose role in myelin synthesis is crucial.   

Therefore, the aim of this PhD thesis was to study the molecular mechanisms underlying 

AGC1 deficiency in appropriate in vitro and in vivo disease models, in particular by focusing 

on oligodendrocyte precursor alterations to better define pathogenetic mechanisms that could 

potentially lead to identify new therapeutic targets, potentially interesting for nutritional 

and/or pharmacological strategies useful in AGC1 deficiency patients.  

To this aim, the first studies were conducted on immortalized mouse oligodendrocyte 

precursor cells, Oli-Neu cells (kind gift from Dr. Trotter), where we partially silenced AGC1 

expression in order to obtain a reduction of carrier activity down to about 30-40% compared 

to control cells, as observed in mitochondria from human patients. Then, the obtained results 

were validated in an AGC1 deficiency in vivo model represented by SLC25A12 heterozygous 

knockout mice (AGC1+/- C57BL6/N background). AGC1+/- mice represent a good model for 

the study of AGC1 deficiency, since patients with this disease are characterized by reduced 

carrier activity rather than total loss of carrier activity.  

In both in vitro and in vivo models, expression of AGC1 and its homolog, AGC2, was 

analyzed as well as cell proliferation, expression of growth factors and receptors known to be 
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involved in OPC proliferation/differentiation, such as the PDGFα and TGFβ pathways. In 

collaboration with Dr. Massimo Lasorsa (Institute of Biomembranes, Bioenergetics and 

Molecular Biotechnologies, IBIOM, CNR, Bari, Italy) and Prof. Paolo Pinton (University of 

Ferrara, Italy), biochemical analyses were conducted to understand the effect of AGC1 

silencing on Oli-Neu cells at the mitochondrial bioenergetics level. This part of research was 

supported by the grant GGP11139 from the Comitato Telethon Fondazione Onlus to the 

project “Mitochondrial Aspartate/Glutamate Carrier 1 Deficiency: Pathogenetic Mechanisms 

and Mutational Analysis” (2011-2014; national scientific coordinator, Prof. Ferdinando 

Palmieri, University of Bari). 

Furthermore, our study focused first on the evaluation of NSC proliferation and 

differentiation in AGC1+/+ and AGC1+/- neurospheres derived from the subventricular zone 

(SVZ) of our mouse AGC1 deficiency model. Our study also focused on parallel, but 

preliminary studies on NSCs derived from AGC1 deficiency iPS cells, in order to further 

validate our data in human cells and to reduce the number of animals to be used for 

experimental purposes in the future. Studies on brain cells derived from human iPS cells are 

in the framework of the research project “Biochemical changes in the rare genetic 

demyelinating and neurodegenerative disease AGC1 deficiency: a study on the different brain 

cells derived from human iPS” from the Italian Ministry for Foreign Affairs and International 

Cooperation (MAECI) Italy-USA 2016-2018 in collaboration with Prof. SA Anderson 

(Children's Hospital of Philadelphia - Department of Psychiatry at Upenn, USA). 

The importance of this study lies also on the fact that mitochondrial dysfunction is at the basis 

not only of AGC1 deficiency, but also of other neurodegenerative and demyelinating diseases, 

some of which are rare while others are widely spread such as multiple sclerosis4-6. Thus, the 

obtained results could be useful to understand disease mechanisms and give hope for the 

treatment of many human demyelinating diseases. 
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3. MATERIALS AND METHODS 

3.1. Cell cultures 

Immortalized mouse oligodendrocyte precursor cells (Oli-Neu, kind gift from Dr. Jacqueline 

Trotter, University of Mainz, Germany) were used for this study. These cell lines were grown 

on poly-L-lysine (Sigma-Aldrich, St Louis, MO, USA) coated Petri dishes at 37oC in a 

humidified atmosphere with 5% CO2 in SATO medium (DMEM medium, 2 mM glutamine, 

10 ug/ml insulin, 5.5 ug/ml transferrin, 38.72 nM sodium selenite, 100 uM putrescine, 520 

nM, L-thyroxine, 500 nM triiodo-L-thyronine (T3), 200 nM progesterone, 25 ug/ml  

gentamycin) supplemented with 1% heat-inactivated Horse Serum (HS) and 1 µg/ml 

puromycin (Trotter J., et al., 1989). Cell culture media and all chemicals were from Sigma-

Aldrich, except for insulin-transferrin-sodium selenite 100X supplement (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA). When cells reached confluence, they were washed 

once with PBS and detached with 0.01% trypsin - 0.02% EDTA-HBSS (Sigma-Aldrich) for 5 

minutes at 37oC and the same volume of medium with serum was added to block the reaction; 

lastly cells were centrifugated at 300g for 5 minutes and resuspended in fresh medium. 

Growing density for Oli-Neu cells was 1x106 cells/100mm diameter Petri dish, 3x105 

cells/60-mm diameter Petri dish, 105/35 mm diameter Petri dish and 104 cells/well in 96 

multiwell plates (Corning). We generated stable cellular models by partially silencing the 

SLC25A12 gene with RNAi in Oli-Neu cells (A36 for control cells and siAGC1 for silenced 

cells). To obtain Oli-Neu stable cell clones 3x105 cells were plated on 60-mm diameter poly-

L-lysine coated Petri dishes. After 24h of incubation, cells were transfected using 

Lipofectamine 2000 reagent (Thermo Fisher). Following the manufacturer’s instructions, 10 

µl of Lipofectamine 2000 reagent and 5 µg of pLKO1-pure DNA plasmid (Sigma-Aldrich) 

containing a scrambled control sequence or an AGC1 targeting sequence were diluted in 250 

µl of Opti-MEM medium (Thermo Fisher). Silencing and scrambled sequences were digested 

with AgeI/EcoRI and cloned into the pLKO.1 vector, as previously published138. The 

sequences were respectively:  

scrambled control sequence: 

5'-CCGGTACAACCAACGCACGCTAATCTCGAGATTAGCGTGCGTTGGTTGTTTTTTG-3'  

AGC1 targeting sequence: 

5'-CCGGTGCTTGCAGACCTATATAATGCctcgagGCATTATATAGGTCTGCAAGCTTTTT-3' 
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Both solutions were then gently mixed together. After 5 minutes of incubation, the plasmid 

DNA-lipofectamine solution was added directly into each Petri dish. 24 hours after 

transfection, the cell medium was replaced with fresh medium containing 1 µg/ml puromycin 

(Sigma-Aldrich) to select stably transfected cells. The cell medium was replaced every day. 

When puromycin resistant cells reached confluence, they were passaged. For each plasmid 

transfection, 500 cells were plated on a 60-mm diameter poly-L-lysine coated Petri dish and 

allowed to grow until visible colonies appeared. Then, isolated colonies were gently aspirated 

with a micropipette by using a microscope under sterile conditions and transferred into 48-

well tissue culture plates. Isolated colonies were allowed to grow.  AGC1 expression was 

tested by western blotting in at least ten different clones per plasmid transfection.  

3.2. In vitro cell count  

106 Oli-Neu cells/well were plated in 6-well plates. After 24 hours, cells were detached with a 

solution containing 0.01% trypsin - 0.02% EDTA-HBSS (Sigma-Aldrich). Cells were then 

diluted with an equal amount of DMEM - 10% HS and centrifuged for 5 minutes at 400g. The 

cell pellet was resuspended in 1ml of SATO-1% HS medium and cell number was determined 

by using a Neubauer chamber. Three experiments were conducted in duplicate on control and 

silenced Oli-Neu cells. 

3.3. Measurement of cell process length 

Cell morphology characterization was performed by microscopy analysis which highlights the 

number and length of cell processes from photographs obtained with an Eclipse TS100 

(Nikon) optical microscope. 106 control and silenced Oli-Neu cells were plated per 35-mm 

diameter Petri dish. After 24 hours, images from five randomly selected fields for each Petri 

dish were acquired. Process length was measured by using Fiji (ImageJ2, developed by the 

National Institutes of Health, NIH, USA) software using the reference scale bar and using first 

the SET SCALE function (Analyze menu) by setting the scale bar distance in pixels and the 

actual distance in micrometers and then the MEASURE function (Analyze menu) after tracing 

each cell process with the segmented line function. 
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3.4. Evaluation of cell proliferation by BrdU incorporation  

BrdU (5'-bromo-2'-deoxy-uridine) is a thymidine analog. Following incubation with BrdU, 

cells that undergo DNA replication (phase S of the cell cycle) incorporate BrdU instead of 

thymidine in their DNA. These cells can be identified by using an anti-BrdU antibody, which 

specifically recognizes BrdU, but not thymidine. To estimate cell proliferation by BrdU 

incorporation in control and silenced Oli-Neu cells, a colorimetric ELISA kit (Roche S.P.A., 

Milan, Italy) was used. 104 control and silenced Oli-Neu cells were plated in 96-well plates. 

After 4 hours, in order to allow cell adhesion, BrdU was added at a final concentration of 10 

µM to each well and cells were incubated for 24 h at 37°C. Subsequently, the medium was 

removed and cells left to air dry. To quantify the BrdU incorporation, cells were fixed 

according to the manufacturer’s instructions and after 30 minutes cells were incubated for 90 

minutes with an anti-BrdU antibody conjugated with horseradish peroxidase (POD; 1: 100). 

After three washes with PBS, the substrate was added and absorbance was detected with a 

plate reader (Microplate Reader, Benchmark BIO-RAD); parameters were set at 405 nm for 

reading and 492 nm as reference wavelength.  

3.5. Cell cycle analysis by flow cytometry  

Flow cytometry allows a fast and quantitative analysis of suspended cell populations, 

measuring their physical and biochemical characteristics (volume, granularity, fluorescence). 

With this tool, multiple parameters for each cell can be stored at the same time without the 

photobleanching phenomenon. A disadvantage of flow cytometry is the inability to describe 

cell shape and structure. In flow cytofluotimetry, the suspended cell population is pushed 

through a flow chamber where single cells are set in a row and, after being struck by a light 

beam, they reflect light and emit fluorescence. Thus, the generated signals are collected and 

transformed into digital signals and sent to a computer. The first application of flow 

cytometry is cell cycle analysis, and therefore the cell distribution in the various phases, 

through the quantification of DNA. DNA is labeled with propidium iodide which has an 

absorption wavelength at 488 nm and an emission wavelength at 625 nm.  Propidium iodide 

cannot pass through the cell membrane of healthy cells and therefore enters only into dead or 

permeable cells. Flow cytometry analysis was performed by using an Epics-XL Beckman 

Coulter flow cytometer equipped with a 15 mW Argon ion laser source and analyzed with 
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ModFit (Verity Software House, USA) software in collaboration with Dr. Capri Miriam and 

Dr. Rita Ostan (University of Bologna, Bologna, Italy). 

3.5.1. Sample preparation for the flow cytometry 

Cell cycle analysis was performed according to Nüsse139.106 Oli-Neu cells were collected in a 

tube and centrifuged at 400g for 10 minutes. 1 ml of buffer, composed by 1 g/l of sodium 

citrate (to preserve the integrity of isolated nuclei), 10 mg/ l of RNase (to degrade RNA that 

may interfere) and 1 ml/l of Triton X-100 (a detergent that solubilizes cell membranes), was 

added to the obtained pellet. Propidium iodide (50mg/l) was added to the cell suspension (all 

reagents were from Sigma-Aldrich) and cells were incubated for at least 30 minutes at 37 ° C, 

or left overnight at 4 °C to allow RNAase to degrade remaining RNA. Cells could also be 

prepared in advance by fixing them in 90% ethanol and maintained at -20 ° C until used. In 

this case, 2 x 106 cells were collected and centrifuged at 400g for 10 minutes. After two 

washes with 5 ml of PBS, 1 ml of cold ethanol was added dropwise to the pellet while 

vortexing. Cells were stored at -20 °C. When needed, fixed cells washed twice with PBS and 

resuspended in the propidium iodide staining solution. 

3.6. Subcellular fractionation 

Cell fractionation consists in the isolation of subcellular structures in order to study their 

morphology, composition, and subcellular localization. In order to extract separately nucleic, 

mitochondrial and cytosolic proteins from Oli-Neu cells, modified protocol from Grove BD 

and Bruckey was used140; cells were scraped, resuspended in 300 µl of isotonic buffer (10 

mM Hepes, 200 mM mannitol, 70 mM sucrose, 1 mM EDTA pH 7.6, 10µl/ml protease and 

phosphatase inhibitor cocktails) per 10 cm diameter  Petri dish and left on ice for 30 minutes 

(all reagents were from Sigma-Aldrich). Cells were then lysed with a Potter homogenizer 

(B.Braun, Melsungen AG) at 1000rpm/30 strokes. Nuclei were pelleted by centrifugation at 

800g for 10 min at 4°C. The cytoplasmic supernatant fraction (CF) was transferred into 

another Eppendorf tube. Nuclei were washed with 300 µl of isotonic buffer (10 mM Hepes, 

200 mM mannitol, 70 mM sucrose, 1 mM EDTA pH 7.6, 10 µl/ml protease and phosphatase 

inhibitor cocktails) and centrifuged at 800g for 10 min at 4°C. The supernatant was discarded 

and the nuclei pellet was resuspended in 300 µl of buffer A (20 mM Hepes, pH 7.9, 10 mM 

NaCl, 3 m M MgCl2, 0.1% NP40, 10% glycerol, 0.2 mM EDTA, 1 mM DTT, 10 µl/ml 
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protease and phosphatase inhibitor cocktails), left on ice for 10 min and centrifuged at 800g 

for 10 min at 4°C. Pelleted nuclei were then washed with  buffer B to remove NP-40 (20 mM 

Hepes, pH 7.9, 0.2 mM EDTA, 200 mM glycerol, 1 mM DTT, 10 µl/ml protease and 

phosphatase inhibitor cocktails) and centrifuged at 800g for 10 minutes at 4°C. Nuclei were 

then resuspended in 60 µl of extraction buffer with salt (20 mM Hepes, pH 7.9, 400 mM 

NaCl, 2% SDS, 0.2 mM EDTA, 200 mM glycerol, 1 mM DTT, 10 µl/ml protease and 

phosphatase inhibitor cocktails) and left on ice for 45 minutes. The cytoplasmic supernatant 

fraction (CF) was centrifuged at 800x for 10 min at 4°C; then the supernatant was transferred 

into another eppendorf tube and centrifuged at 14,000g for 20 min. While the cytoplasmic 

supernatant fraction was transferred to another eppendorf tube, the mitochondrial pellet was 

resuspended in 500 µl of isotonic buffer (10 mM Hepes, 200 mM mannitol, 70 mM sucrose, 1 

mM EDTA pH 7.6, 10 µl/ml protease and phosphatase inhibitor cocktails) and centrifuged at 

14,000g for 20min. The mitochondrial pellet was resuspended in 100µl of mitochondrial lysis 

buffer (50 mM Tris, 1% SDS, 1 mM EDTA, pH 7.4) and left on ice for 30 min. All samples 

were sonicated with with a Branson 250 digital sonifier for 3 pulses of 2 seconds each 

(waiting for 5 seconds between each pulse) at 10% power output and stored at -80°C until 

used. Total protein sample content was determined by using the Lowry quantification method 

(Lowry et al., 1951). 

3.7. Lactate measurement in extracellular medium 

Lactic acid was quantified in the laboratory of Dr. Massimo Lasorsa (IBIOM, CNR, Bari, 

Italy) in conditioned complete DMEM medium in the presence of high glucose concentration, 

(4,5 g/l), harvested from Oli-Neu cell cultures after 24 h and 48 h respectively138. This assay 

was performed on both control and AGC1 silenced cells, untreated or treated with db-cAMP. 

The medium was collected and centrifuged at 700g for 5 min to remove cell debris. Lactate in 

the supernatant was assayed as per Gutmann and Wahlefeld, using the following reaction: 

 

L(+)Lactate + ß-NAD + Hydrazine LDH
> Pyruvate Hydrazone + ß-NADH 

 

ß-NAD = ß-Nicotinamide Adenine Dinucleotide, Oxidized Form;  

ß-NADH = ß-Nicotinamide Adenine Dinucleotide, Reduced Form;  

LDH = L-Lactic Dehydrogenase. 
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The reagents were pipetted into suitable cuvettes as in the following table: 

 Sample Blank 

Deionized water 0.35 ml 1.35 ml 

600 mM Hydrazine buffer (Sigma), 1 M glycine, 5.6 mM EDTA, pH 9.5 1.4 ml 1.4ml 

Dilutions of extracellular medium 1 ml --- 

50 mM ß-NAD (Sigma) 0.15 ml 0.15 ml 

 

The reaction solution was mixed well by inversion and equilibrated to 25°C. The absorbance 

at 340 nm (A340nm) was monitored until it became constant, using a suitably thermostated 

spectrophotometer. The initial absorbance of the sample and blank were recorded. Then 0.1 

ml of L-Lactic Dehydrogenase (5000 units/ml, Fluka) were added to the sample and blank 

and the two cuvettes were immediately mixed by inversion. The increase in absorbance at 

A340nm was recorded until the reaction was complete (approximately 30 minutes). The final 

absorbances were recorded. To determine the concentration of L(+)Lactic acid in our samples, 

the following formula was applied: 

 

Micromoles Lactic Acid/weighed sample =  

ΔA = Af – Ai; 

Ai = Initial Absorbance; 

Af = Final Absorbance; 

df = Dilution factor of sample solution; 

3 = Final volume (in milliliters) of assay; 

6.22 = Millimolar extinction coefficient of ß-NADH at 340 nm. 

3.8. Aequorin and luciferase luminescence measurements 

Oli-Neu cells were transiently transfected with plasmids carrying the coding sequence of 

recombinant aequorins selectively targeted to the cytosol (cytAEQ) or mitochondria 

(mtAEQmut), and recombinant luciferase targeted to mitochondria (mtLuc)141. Transfected 

cells were incubated for 1h at 37°C with Krebs–Ringer modified buffer (KRB; 125 mM NaCl, 

5 mM KCl, 1 mM Na3PO4, 1 mM MgSO4, 5.5 mM glucose, and 20 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid [HEPES], pH 7.4, at 37° C) supplemented with 1 mM CaCl2 

and 1 g/l glucose (+ 5 µM coelenterazine for aequorin reconstitution). Cells were 

subsequently perfused in the same buffer (+ 20 mM luciferin for luciferase assay) in a 
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purpose-built luminometer where they were stimulated with 500 μM Carbachol (Cch). 

Aequorin experiments were terminated by lysing the cells in a hypotonic solution with 0.1 

mM digitonin and 10 mM CaCl2, and light output was collected and calibrated in [Ca2+]. In 

luciferase assays, data were expressed as mtLuc light output of cells. These experiments were 

performed in the laboratory of Dr. Massimo Lasorsa (IBIOM, CNR, Bari, Italy).  

3.9. Cell fluorescence analysis 

Measurements of intracellular reactive oxygen species were performed in the laboratory of 

Prof. Paolo Pinton (University of Ferrara, Ferrara, Italy) by loading cells with 5 µM 5-(and-

6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA; 

Life Technologies, C-6827) for 20 min at 37°C, and green fluorescence of cells was analyzed 

with a Tali® Image-Based Cytometer. Mitochondrial hydrogen peroxide levels were 

measured in Oli-Neu cells cultured on 24x24 mm glass coverslips and transfected with the 

ratiometric fluorescent probe with mitochondrial localization pHyPer-dMito (mt-HyPer). 

After 24 h of expression, cells were maintained in KRB supplemented with 1 mM CaCl2 and 

carbon sources (1 g/l glucose, 1 mM pyruvate and 2 mM glutamine), and placed in an open 

Leyden chamber on a 37°C thermostated stage. 494/406 nm excitation filters and a 500-nm 

long-pass beam splitter were used, and an image pair was obtained every 200 ms with a 40x 

objective. For a ratiometric measurement, at the end of each measurement, probe efficiency 

was ascertained by adding H2O2 as reference. Fluorescence data were expressed as emission 

ratios. The experiments were performed on a Cell^R Olympus multiple wavelength high-

resolution epi-fluorescence microscope. Mitochondrial inner membrane potential (Ψm) and 

mitochondrial morphology were measured by loading the cells with 20 nM tetramethyl 

rhodamine methyl ester (TMRM; Life Technologies, T-668) for 30 min at 37°C. Images were 

taken on an inverted Nikon LiveScan Swept Field Confocal Microscope (SFC) Eclipse Ti 

equipped with NIS-Elements microscope imaging software (Nikon Instruments). TMRM 

fluorescence intensities (exc. 560 nm; emis. 590-650 nm) were imaged every 5 s with a fixed 

20 ms exposure time. At the end of the experiments, 10 μM FCCP was added after 240 

acquisitions to completely collapse the Ψm and subtract the non-mitochondrial TMRM 

fluorescence, as previously described. For mitochondrial morphology experiments, 51-plane 

z-stacks where acquired with a voxel dimension of 133 × 133 × 200 nm (X × Y × Z). The 

mitochondrial network, described in number and volume, and 3D renders were obtained with 

Imaris 4.0 (Bitplane). 
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3.10.  In vivo model  

For in vivo AGC1-deficiency studies, a mouse model represented by C57BL/6N heterozygous 

SLC25A12 mice (Mus musculus) was obtained by using the gene trapping technique by the 

Texas A & M Institute for Genomic Medicine (Houston, Texas, USA). A 6.5 kb VICTR 76 

construct designed to be inserted into the intronic region between exons 2 and 3 of the 

SLC25A12 gene was used. Through homologous recombination, the vector determined an 

insertion of a premature stop codon between exon 2 and 3 of AGC1 mRNA, which resulted in 

a truncated protein with no catalytic sites able to bind the carrier substrates and therefore 

inactive. The targeting vector was linearized and electroporated into C57BL/6N mouse 

totipotent stem cells and labeled cell clones were identified and blastocysts were implanted in 

pseudopregnant female C57BL/6N to obtain a mouse F1 generation; Fi mice were the paired 

with females of the same C57BL/6N background. Crossing was made either between an 

AGC1+/- parent and an AGC1+/+ wild type, or both heterozygous parents and the colony 

obtained was used for experiments. Animals were bred with ad libitum access to food and 

water, maintained in a 12/12 hour light-dark cycle at 20 °C ± 2 °C and controlled humidity. In 

order to guarantee their well-being, appropriate environmental enrichment was introduced to 

stimulate spontaneous motor activity, curiosity and play. The health and physical state of 

mice was periodically controlled by veterinarians at the University of Bologna and 

experiments were conducted in accordance with European Community laws and Italian 

legislation and were also approved by an Ethical committee for Animal Experimentation at 

the University of Bologna (Protocol No 17-72-1212). 
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3.11.  Mice genotyping  

Genotyping was performed at 14 days after birth by extracting DNA from mouse tail tips by 

using the Extract-N-Amp tissue extraction kit (Sigma-Aldrich) and performing a PCR assay. 

The following set of PCR primers (Sigma-Genosys, Texas, USA) were used to identify wild-

type (WT), heterozygous (HET) and KO mice: 

 

IST11936G6-Forward. 5 'GGAGACTGACAGTCAACAAG 3' (all animals). Tm = 52.76 °C 

IST11936G6-Reverse. 5 'GGCATTTGCACACCGTGGA 3' (WT, HET animals). Tm = 58.26 °C 

Downstream Reverse. 5 'CCAATAAACCCTCTTGCAGTTGC 3' (HET, KO animals). Tm = 58.30 

°C. 

 

Two separate PCR reactions were performed for each animal according to Table 1 and 2 and 

amplification reactions were resolved in a 2% agarose/TBE gel.  

 

Reaction Components Volume (µL) 

LongAmpTaq 2x Master Mix (Biolabs) 10.00 

Reverse Primer 10µM 1.00 

Forward Primer 10µM 1.00 

MilliQ H2O 4.00 

Tail lysate 1:20 dilution; boil 5 min 4.00 

Total reaction volume 20.00 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: reaction components and corresponding volumes to assemble the PCR reactions. 
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Reactions were carried out using the IST1193G6-F and IST1193G6-R primers which allow to 

detect wild-type or heterozygous animals and primers IST1193G6-F and Downstream Rev, 

which, on the contrary, show heterozygous or knock-out mice. Expected PCR product lengths 

were for WT animals one 369bp band, for heterozygous animals both a 369 and a 342 bp 

band, whereas for KO animals only one 342bp band was expected.  

3.12. Measurement of AGC1 aspartate/glutamate and 

glutamate/glutamate exchange activity in brain 

mitochondria 

Brain mitochondria were isolated by using a kit (Pierce Biotechnology, Rockford, USA) with 

the Halt Protease Inhibitor Mixture (Pierce Biotechnology, Rockford, USA) according to the 

manufacturer’s instructions. In the laboratory of Dr. Massimo Lasorsa (IBIOM, CNR, Bari, 

Italy), mitochondria were then solubilized (0.6 mg protein/ml) in solubilization buffer (3% 

Triton X-114, 10 mM Pipes pH 7.0, 1 mM EDTA, 4mg/ml DPG). After 1 h of incubation on 

ice, extracts were centrifuged (12500 × g, 10 min at 4°C) to remove membranes and other 

unsolubilized impurities. An aliquot of the supernatant was reconstituted into liposomes. 30 

µg of solubilized mitochondria were added to a mixture consisting of 70 μL 10% Triton X-

114, 100 µL preformed liposomes previously sonicated [10% (WT/vol) from egg yolk 

Table 2: amplification cycle. 

Step Temp Time Note 

1 95° C 30''  

2 95° C 10''  

3 60-65°C 30''  

4 65°C 1' Go to 2, for 35 cycles 

5 65°C 5'  

6 4°C ∞  
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phospholipids in 2 mM Pipes-NaOH, pH 7.0] + 20 mg/ml DPG, 70 μL 200 mM Pipes pH 7.0, 

70 μL 200 mM substrate (Aspartate, Glutamate, or ATP) pH 7,0 and water to a final volume 

of 700 μL. This mixture was recycled 13 times through an Amberlite column XAD-2 (Bio-

Rad Laboratories, Srl, Segrate (MI), Italy) (4.0 × 0.5 cm). All operations were carried out at 

4°C, except for the passage through the Amberlite column conducted at room temperature. 

Subsequently, the external substrate was removed from proteoliposomes by gel filtration 

chromatography on Sephadex G-75 columns (15 x 0.7 cm) pre-equilibrated with a buffer 

containing 10 mM PIPES pH 7, 50 mM NaCl and 1 mM EDTA. Proteoliposomes eluted from 

the chromatography column, about 650 μl, were aliquoted into reaction tubes and used to 

perform transport measurements. Each test was performed in duplicate. Transport activity was 

determined at 25°C by measuring the incoming flow of radiolabeled substrate. Transport was 

started by adding L-[14C] aspartate, [14C] ATP, L-[14C] glutamate and terminated by addition 

of 8 mM Pyridoxal5’-phosphate and 6 mM bathophenanthroline according to the “inhibitor-

stop” method17. In control samples, inhibitors were added from the beginning together with 

the labeled substrate. Lastly, the external substrate was removed by passing samples through a 

Sephadex G-75 column (8 x 0.6 cm) and the eluted proteoliposomes were collected into 

appropriate vials to which 4 ml of Ultima-Flo M (Packard BioScience Company, Meriden, 

USA) scintillating mixture were added, vials were then shaken and placed in a liquid phase 

scintillator (Beckman LS 6000 IC) to measure radioactivity counts per minute (cpm). 

Experimental values were corrected by subtracting control values. The initial transport rate 

was calculated from the radioactivity taken up by proteoliposomes after 1 min (during the 

initial linear range of substrate uptake). 

3.13.   CNPase activity measurement  

CNPase (2 ', 3' cyclic nucleotide, 3 'phosphohydrolase) hydrolyses 2', 3' nucleotides opening 

their phosphatidic ring and transforming them into the corresponding 2'-phosphate 

nucleotides. This enzyme accounts for about 4% of total myelin proteins in the central 

nervous system and immunocytochemical studies showed that it is predominantly localized in 

the myelin-axon interface142. CNPase specific physiological functions are not yet clear, 

jowever its distribution seems to be exactly the same as that of myelin, the main 

oligodendroglial product. In this regard, it has been observed that the corpus callosum, a 

structure containing axons originating from neurons in both cerebral hemispheres that contact 

the nerve cells of the opposite hemisphere, contains CNPase levels ten times greater than in 
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the cortex. This enzyme is evaluated as a marker for oligodendrocytes and myelination. This 

assay143 is based on a colorimetric reaction resulting the formation of a ferrous salt reduced 

complex between molybdate and inorganic phosphate. Initially, samples were prepared by 

adding 5 µl of AGC1 +/+ and AGC1 +/- mouse brain homogenate and 195 µl of substrate (2 '3' 

cyclic-AMP, 7.7 mM Tris/50 mM Maleate pH 6,2); and then samples were shortly vortexed. 

Samples were then incubated at 30°C for 20 min, and then the CNPase enzyme reaction was 

blocked by transferring the tubes at 100°C for 1 minute; the temperature was afterwards 

brought back to 30°C and 100 µl of Tris HCl MgCl2 solution (Tris HCl 300mM - MgCl2 2 1 

mM, pH 9.0) were added, in which alkaline phosphatase (0.7 mg/ml) was dissolved, allowing 

adenosine monophosphate hydrolysis. The reaction was then blocked after 45 min by adding 

900 µl of 10% acetic trichloroacetic acid (TCA) to each sample and then samples were shortly 

vortexed. Samples were centrifuged at 3500 rpm for 10 minutes to precipitate the proteins. 

Subsequently, 700 µl of supernatant were transferred into an eppendorf in which 500 µl of 

reagent [FeSO4 * 7 H2O + molybdate reagent (Ammonium heptamolybdate in H2SO4 10 N) + 

H2O] were added and then samples were shortly vortexed. The colorimetric reaction was 

expected to develop after 2/3 minutes at 30°C.  At the same time, the standard calibration 

curve was set up with a 1mM Na2HPO4 solution. Each measurement of the calibration curve 

and samples was performed in duplicate and the reaction was quantitatively measured reading 

the absorbance with a spectrophotometer at a wavelength of 660 nm. It was thus possible to 

calculate the relationship between the concentration of Na2HPO4 and its absorbance values 

and analyze the obtained data through linear regression to determine CNPase activity. 

3.14.   Intracardiac perfusion  

Intracardiac perfusion is the best technique to fix tissues by replacing circulating blood with a 

fixative, allowing rapid and uniform fixation of the sample and maintaining cellular 

constituents in a nearly physiological state. Intracardiac perfusion was performed on AGC1 +/+ 

and AGC1 +/- mice both at 21 days after birth and in adult mice previously anesthetized by 

intraperitoneal injection with xylor (2%) and zoletyl (100mg/kg). A 23 ¾ butterfly needle was 

inserted into the left ventricle while connected to a peristaltic pump set at a flow rate of 20-25 

ml/min and first a PBS solution and then a 4.0% paraformaldehyde (PFA)- phosphate buffer 

(0.194 M Na2HPO4, 0.026 M NaH2PO4) solution were injected into the heart. In order to 

allow blood and PFA outward flow, a small opening in the right atrium was performed. PBS 

was used to remove red blood cell residues in the blood vessels and avoid the formation of 
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blood clots due to fixative-hemoglobin interactions. To minimize the risk of cerebral 

ischemia, perfusion was started quickly avoiding the formation of air bubbles in the capillary; 

correct fixation was verified by monitoring the color of the liver and stiffness of the mouse 

body. The mouse brain was then isolated, post-fixed for 24 hours at 4oC in PFA and left in 

18% sucrose-phosphate buffer (0.194 M Na2HPO4, 0.026 M NaH2PO4) for 24 hours at 4oC. 

After 3 washes in PBS in order to remove PFA and sucrose residues, the tissue was cut into 

the two hemispheres and stored at -80oC until needed for cryostat sectioning. 

3.15.   NSCs in vitro models 

In order to study the effect of AGC1-deficiency on proliferation and differentiation in vitro, 

two different cellular models of Neural Stem Cells (NSC) were prepared: neurospheres and 

NSCs derived from iPS cells (induced Pluripotent Stem cells).  

3.15.1. Neurospheres 

Neurospheres are cluster of neural stem cells in suspension, a valuable instrument to 

determine the potential (proliferation or differentiation) of neuronal stem cells in vitro144. 

Sub-ventricular zone (SVZ) microdissection were performed in adult male mice (8-month 

old) (3 AGC1+/+ and 3 AGC1+/- mice respectively). The brain was cut transversely near the 

optic chiasm and the olfactory bulbs and cerebellum were removed. The rostral part of the 

brainstem containing the lateral ventricles and their respective periventricular regions was 

then used for sub-ventricular (SVZ) withdrawal. The caudal part of the brain was separated at 

the level of the corpus callosum, the diencephalus was removed and the dentate gyrus was 

dissected from the hippocampus (Fig.3.1). 

 

Figure 3.1: Brain microdissection. (A) Ventral view of an adult rat brain. The dotted line indicates the cutting site in the 

rostro-caudal direction for the subsequent isolation of the SVZ. (B) Coronal section obtained by cutting along the dotted line 

in A. The rostral periventricular region of the lateral ventricle can be observed. (C) Sub-ventricular area visible after 

removal of striated tissue. (D) Dentate gyrus and hippocampus visible after the separation of the two hemispheres at the level 

of the corpus callosum. (E) Dissection and isolation of the dentate gyrus from the hippocampus145.  
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Dissected tissues were mechanically disaggregated by chopping with a sterile blade in Hank's 

Balanced Salt Solution (HBSS; HEPES 3.9 mg/ml, NaHCO 0.5 mg/ml, Glucose 0.9 mg/ml, 

penicillin/streptomycin 0.5%) under a sterile cell culture hood and centrifuged at 300g for 5 

min. The pellet was resuspended in papain solution (0.2 mg/ml EDTA + 0.66 mg/ml Papain + 

0.2 mg/ml cysteine in HBSS) to facilitate stem cell release and placed in a centrifuge tube at 

37 °C for 20 minutes in a water bath, shaking every 5 min. The pellet was then resuspended in 

HBSS and left in a water bath at 37 °C for another 10 min. Papain was inhibited by the 

addition of DMEM-F12 (Gibco Life Technologies, Waltham, MA, USA) supplemented with 

insulin from bovine pancreas (Sigma-Aldrich) (10 µg/ml) and the sample was centrifuged at 

300g for 5 min. The pellet was resuspended in HBSS and centrifuged at 400g for 5 min, the 

supernatant was discarded and the pellet was resuspended in DMEM-F12 (Gibco) 

supplemented with 2 mM glutamine, insulin (10 µg/ml), 20 ng/ml Epidermal Growth Factor 

(EGF; PeproTech EC, London, UK) 20 ng/ml Fibroblast Growth Factor-2, (FGF2; 

Peprotech), 1% N2 (Thermo Fisher), 1% B27 (Thermo Fisher) and 10 units/ml penicillin and 

10 µg streptomycin/ml (Sigma-Aldrich). In order to induce neurosphere growth, EGF and 

FGF growth factors were added every other day (FGF concentration was halved by the third 

passage onwards (10 ng/µl); neurospheres were passaged every week (5/7 days of growth) by 

mechanical procedures. For this purpose, neurospheres were collected in a centrifuge tube 

with 5 ml of DMEM-F12 medium, centrifuged at 300g for 5 minutes and the pellet was 

resuspended in sterile PBS (4-5 times). Neurospheres were then centrifuged at 300g for 5 

minutes, the supernatant was removed and 1 ml of Acutase (Aurogene Srl, Roma, Italy) was 

added to the pellet by gently resuspending 2 times and incubated at 37 °C for 5 minutes. 4 ml 

of DMEM:F12 were then added to the neurosphere suspension and then centrifuged at 1000 

rpm for 5 minutes. Single cells were counted and plated in complete DMEM;F12 

supplemented with insulin (10 µg/ml), 1% N2, 1% B27, 20 ng/ml EGF, 20 ng/ml FGF, 2 mM 

glutamine and 10 units/ml penicillin and 10ug streptomycin/ml (Sigma-Aldrich). 

3.15.2. Neurospheres proliferation assay 

To evaluate the proliferation and growth rate of SVZ-derived NSCs from AGC1+/+ and 

AGC1+/- mice, neurospheres were plated as single stem cells in 96 multiwell plates (5x103 

cells/well). Neurosphere proliferation experiments were set up after passage 3; cells were 

allowed to grow at 37˚C and 5% CO2 in an incubator for 4 days. After 4 days in culture, 5 

https://www.bing.com/search?q=Waltham&filters=ufn%3a%22Waltham%22+sid%3a%229ab6edbf-73c4-a900-b366-f55561bbe95f%22&FORM=SNAPST
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different image fields per well were acquired by using an eclipse TE 2000-s microscope 

(Nikon) in bright field mode using a 10x objective. Acquired images were then analyzed with 

Fiji ImageJ2 using the publicly available cell colony edge macro146 and only neurospheres 

with an area bigger than 400 μm2 were considered; results were expressed as average 

neurosphere number and average neurosphere size and analyzed using the two-tailed t-test 

Student to determine statistically significant variations. 

3.15.3. Neurospheres BrdU proliferation assay 

AGC1 +/+ and AGC1 +/- mouse neurospheres were passaged as single cells (1.43 x 105 single 

cells/6-cm diameter Petri dish) in complete DMEM-F12 medium supplemented with 10 μm 

BrdU (Sigma-Aldrich). BrdU was added every day for 4 days and then 30 neurospheres were 

plated in poly-L-lysine (10 μg/ml) and fibronectin (1 μg/ml) treated 13-mm diameter glass 

coverslips in complete DMEM-F12 medium and BrdU was added again. After 24 hours, 

neurospheres were fixed with 4% PFA for 30 minutes, washed with PBS and stored at 4°C in 

PBS until used. Experiments were conducted in duplicate with 3 replicates per condition.  

3.15.4. Neurospheres differentiation 

To study neurosphere differentiation, AGC1 +/+ and AGC1 +/- SVZ-derived neurospheres were 

counted and plated on 13-mm coverslips (30 neurospheres/well) previously treated with poly-

L-lysine (10 µg/ml) and then incubated at 37°C for at least 3 hours with fibronectin (1 µg/ml) 

in order to allow stem cell adhesion and subsequent differentiation. Cells were then plated in 

complete DMEM-F12 medium and allowed to differentiate for 1 or 7 days in an incubator at 

37°C. After differentiation, neurospheres were fixed with 4% PFA for 30 minutes, washed 

with PBS and stored at 4°C in PBS until used for immunofluorescence analysis. 

3.16.  hiPS (human induced Pluripotent Stem cells) 

Human induced pluripotent stem cells (hiPSCs) were generated through human adult somatic 

cell reprogramming by using four transcription factors: Oct4, Sox2, Klf4 and c-Myc118. iPS 

cells are a great advantage for the study of neurodegenerative diseases since they can be used 

to reproduce in vitro the various types of specialized cells in the body, enabling the ability to 

study multiple levels of disease cellular effects. For the study of AGC1, control iPS cells were 

obtained from human fibroblasts of healthy patients, kindly donated by Dr. Massimo Lasorsa 
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(IBIOM CNR Bari) whereas iPS cells derived from AGC1-deficient fibroblasts (from a pair 

of Indian twins affected by AGC1-deficiency), AGC1 M1-01 (male) and AGC1 F1-03 

(female), were kindly provided by Professor Stewart Anderson (Children's Hospital of 

Philadelphia, Upenn School of Medicine). Petri dishes were prepared adding diluted matrigel 

(consulting the Certificate of Analysis supplied with the Matrigel, add the recommended 

aliquot size“Dilution Factor”to make up 24 mL of diluted matrix) in cold DMEM-F12 and 

incubated at 37°C for 1-3 hours before use. Control and AGC1-deficiency patient iPS cells 

were thawed in a water bath at 37°C, taking care to leave a pea-sized liquid fraction in order 

not to over-stress the cells, and were then resuspended in DMEM F12 medium at room 

temperature. After a centrifugation at 300g for 5 minutes, the iPS pellet was resuspended in 

an appropriate volume of mTeSR1 (Basal Medium + 5X Supplement, STEMCELL 

Technologies, Cambridge, UK) with 10 μM Y-27632 dihydrochloride (RHO/ROCK pathway 

inhibitor, STEMCELL Technologies) and penicillin-streptomycin (10 units/ml penicillin and 

10 µg streptomycin/ml Sigma-Aldrich). Every day, half the volume of the culture medium 

was replaced and Y-27632 added only on the day cells were either plated or passaged. Two 

different protocols were used for iPS passaging depending on the reagent used: Accutase 

(Innovative Cell Technologies, Farmington Hills, MI, USA) or ReleSR (STEMCELL 

Technologies). When passaging with Accutase, cells were incubated with the reagent for 

different times (5-10 minutes) depending on cell sensitivity. After verifying cellular 

detachment through optical microscopy, Accutase was inhibited adding an equal volume of 

mTeSR1 medium (STEMCELL Technologies) and cells were centrifuged at 300g for 5 min. 

The supernatant was then discarded, the pellet was resuspended in mTeSR1 medium + 10 μM 

Y-27632 (STEMCELL Technologies) and cells were plated into matrigel-treated dishes 

(STEMCELL Technologies). The passaging protocol with ReleSR reagent is faster, and was 

used to remove differentiated cells within iPS cultures; in fact, ReleSR allows differentiated 

cells to remain attached to cell culture plates. After removing the growth medium and 

washing the cells with sterile PBS, iPS cells were incubated with ReleSR for 1 min. Then 

ReleSR was almost completely aspirated by leaving a thin liquid layer in the Petri dish and 

iPS cells were incubated at 37°C for 5-7 minutes. The reaction was inhibited by adding equal 

volume of mTesR1 medium. Lastly, cells were collected, resuspended in mTeSR1 medium + 

10 μM Y-27632 and plated. 
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3.16.1. iPS cell differentiation into NSCs 

Control and male patient-derived iPS cells were expanded and then differentiated to generate 

Neural Stem Cells (NSCs). In order to obtain NSCs, two different protocols were tested. The 

first protocol121 was performed by forming Embryoid Bodies (EBs, spheres of 

undifferentiated cells that, morphologically, resemble a gastrula) from suspended iPS cell 

aggregates. To obtain EBs, iPS cells were passaged as single cells and plated for 3/4 days in 

ultra-low adeshion (Corning) culture plates without matrigel and maintained in N2-B27 

medium (Table 3) (10 μM Y-27632 was added during the first passage).  

 

N2-B27 MEDIUM 

DMEM F-12 (StemCell) + Neurobasal (Invitrogen) 1 : 1 
 

Basic fibroblast growth factor (bFGF; Peprotech) 10 ng/ml 
 

Epidermal growth factor (EGF; Peprotech) 10 ng/ml 
 

N2 supplement (Thermo Fisher) 1% 
 

B27 supplement (Thermo Fisher) 2% 
 

Penicillin-Streptomycin (Sigma-Aldrich) 1% 
 

L-Glutamine (Sigma-Aldrich) 2 mM 
 

 

 

 

 

EBs were passaged as single cells after 3/4 days and plated on poly-L-lysine (10 mg/ml) and 

fibronectin (1µg/ml) treated culture plates in DMEM-F12 differentiation medium (Table 4) to 

allow cell adhesion and differentiation into NSCs (10 μM Y-27632 was added during the first 

passage). 

 

 

 

 

 

Table 3: N2B27 Medium composition. 
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DMEM F-12 DIFFERENTIATION MEDIUM  

DMEM F-12 (StemCell)  

Basic fibroblast growth factor (bFGF; Peprotech) 10 ng/ml 

Epidermal growth factor (EGF; Peprotech) 10 ng/ml 

B27 supplement (Thermo Fisher) 1% 

N2 supplement (Thermo Fisher) 1% 

Bovine serum albumin (BSA, Sigma-Aldrich)  50 µg/ml 

Penicillin-Streptomycin (Sigma-Aldrich) 1% 

L-Glutamine (Sigma-Aldrich) 2 mM 

 

 

For the second  iPS differentiation protocol147, iPS cells were passaged as single cells in ultra-

low adhesion (Corning Incorporated, NY, USA) culture plates with Neurobasal Medium + 

supplements (Table 5) (10 μM Y-27632 was added during the first passage).  

Neurobasal MEDIUM  

Neurobasal 1X (Gibco)  

Insulin-transferrin-selenium (ITS; Sigma) 1% 

N2 supplement (Thermo Fisher) 1% 

B27 supplement (Thermo Fisher) 2% 

Penicillin-Streptomicyn (Sigma-Aldrich) 1% 

L-Glutamine (2mM, Sigma-Aldrich) 2 mM 

Noggin (Peprotech) 200 ng/ml 

  

 

 

 

 

Table 4: DMEM F-12 differentiation medium composition. 

Table 5: Neurobasal Medium composition. 
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After 10 days, the cells were plated on poly-L-lysine (10 mg/ml) and fibronectin (1 µg/ml) 

treated culture plates with complete Neurobasal Medium without Noggin (PeproTech), and 

allowed to grow for 6-11 days. For NSC maintenance, culture medium was changed every 2/3 

days and cells passaged into poly-L-lysine (10 mg/ml) and fibronectin (1 µg/ml) treated 

culture plates once a week. 

3.17.  Cell and tissue lysate preparation 

Oli-Neu cell lysate samples were obtained by washing cell cultures with PBS and 

resuspending cell cultures in an appropriate volume of lysis buffer (50 mM Tris pH 7.4, 1 mM 

EDTA, 1% SDS, 10 μl/ml protease inhibitors). Mouse brain tissues were lysed in lysis buffer 

(10mM Hepes, 200mM mannitol, 70mM sucrose, 1% NP40, 1 mM EDTA pH 7.6, 10 µl/ml 

protease and phosphatase inhibitor cocktails, (all chemicals were from Sigma-Aldrich) with a 

Potter homogenizer at 1000rpm/30 strokes and then sonicated with a Branson 250 digital 

sonifier for 3 pulses of 2 seconds each (waiting for 5 seconds between each pulse) at 10% 

power output. All samples were stored at -80°C until used. Total protein sample content was 

determined by using the Lowry quantification method148. 

3.18.  Lowry quantification method 

Through the Lowry assay148 it is possible to quantify the total protein content in a sample. For 

quantification, bovine serum albumin (BSA, 1.5 mg/ml) was used to obtain a calibration 

curve. Each sample and each point of the curve were measured in duplicate: to 5µl of sample 

double-distilled water (ddw) was added up to 200 µl. Subsequently, 1 ml of solution I (98% 

solution A; 2% Na2CO3 in 0.1 N NaOH; 1% solution B: 0.5% CuSO4; 1% solution C; 1% Na-

K tartrate) was added to each sample and after a 10-minute incubation at room temperature, 

100 µl of solution II (50% Folin reagent and 50% bd H2O, all reagents were from Sigma-

Aldrich) were added and the samples were vortexed and allowed to incubate for 30 minutes at 

room temperature. Absorbance was then read at 700 nm and the relationship between BSA 

concentration and absorbance values was analyzed through linear regression in order to 

determine protein concentration of all samples. 
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3.19.  Western blot  

Sonicated samples were resolved in SDS-PAGE (Sodium Dodecyl Sulphate - PolyAcrylamide 

Gel Electrophoresis). Equal protein amounts (30 μg) from each sample were resuspended in 

4X Loading buffer (1M Tris-HCl pH 6.8; 20% sodium dodecyl sulfate; 0.4 µl/ml glycerol; 2 

g/l bromophenol blue and 2M dithiothreitol; all from Sigma-Aldrich), loaded onto sodium 

dodecyl sulfate–polyacrylamide gels, subject to electrophoresis and transfer onto a 

nitrocellulose membrane (GE Healthcare Life Sciences, Little Chalfont, UK). After blocking 

aspecific sites with PBS containing 0.1% Tween 20 (Sigma) and 5% nonfat dried milk (Bio-

Rad) for 1 hour at room temperature, membranes were incubated with a primary antibody 

overnight at 4 °C. The next day, after 3x10 min washes with 0.1% Tween-20/PBS, 

membranes were incubated with a specific secondary antibody conjugated to horseradish 

peroxidase for 90 minutes at room temperature in 0.1% Tween-20/PBS. Labeled proteins 

were visualized by using ClarityTM Western ECL Substrate (Bio-Rad) and detected using the 

software Image Lab with a ChemiDoc™ MP imaging system. Densitometric analysis was 

performed using Image Lab software (BioRad).  

Table 6 shows the antibodies used for Western Blot analysis. 
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Primary antibody Dilution Secondary antibody Dilution 

AGC1/Aralar1 mouse monoclonal IgG 

(Santa Cruz) 

1: 1000 Goat anti-mouse IgG HRP 

(Santa Cruz) 

1:2000 

MAG rabbit polyclonal IgG          

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

Histone H3 rabbit polyclonal IgG 

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

HSP60 rabbit polyclonal IgG        

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

TGFβ 1 rabbit polyclonal IgG      

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

TGFβ 2 rabbit polyclonal IgG      

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

TGFβ 3 rabbit polyclonal IgG      

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

TGFβ R1 rabbit polyclonal IgG    

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

TGFβ R2 mouse monoclonal IgG 

(Santa Cruz) 

1: 1000 Goat anti-mouse IgG HRP 

(Santa Cruz) 

1:2000 

PDGFα rabbit polyclonal IgG      

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

PDGFRα rabbit polyclonal IgG    

(Santa Cruz) 

1: 1000 Goat anti-rabbit IgG HRP 

(Santa Cruz) 

1:2000 

GAPDH mouse monoclonal IgG   

(Santa Cruz) 

1: 

20000 

Goat anti-mouse IgG HRP 

(Santa Cruz) 

1:2000 

 

3.20. Immunohistochemistry  

Immunohistochemistry (IHC) is a technique used to localize antigens or proteins in tissue 

sections or cells. IHC was performed on brain sections from AGC1 +/+ and AGC1 +/- 21-day 

old and adult mice, previously fixed with 4.0% PFA. Brain tissue dissection was performed 

by using a cryostat at a cutting temperature of -30 /-40 °C and sections of 40 µm were 

obtained. For protein detection, an indirect immunoperoxidase technique was used. This 

technique involves the use of a secondary antibody conjugated to horseradish peroxidase 

(HRP) able to recognize the primary antibody directed against a specific antigen of interest; 

Table 6: Primary and secondary antibodies used for Western Blot analysis.  
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HRP thus, reacting with the chromogenic substrate DAB (3,3'-diaminobenzidine), forms an 

insoluble colored precipitate visible through optical microscopy. Various antibodies were 

used for immunohistochemical analysis of the different brain cell types and proliferation 

levels. The main advantages of this method compared to the direct method are the greater 

sensitivity and lower amount of primary antibody required. Brain slices were washed in PBS 

and incubated for 30 minutes in 0.3% H2O2 in methanol to inactivate endogenous 

peroxidases. After 3 x 10 minutes washes with PBS and additional 3 x 10 minutes washes 

with PBS-0.1% Triton (Sigma-Aldrich), aspecific sites were blocked by incubating brain 

slices for 1 hour in blocking buffer (PBS-0.1% Triton + 2% normal goat serum [Sigma-

Aldrich]). Brain slices were incubated overnight at 4oC with primary antibodies diluted in 

blocking buffer. Then brain slices were washed 3 x 10 minutes in PBS-0.1% Triton and 

incubated for 2 hours with secondary antibodies in blocking buffer. After incubation with 

secondary antibodies, the sections were washed 2 x 10 minutes in PBS-0.1% Triton and 1 x 

10 minutes in 50 mM Tris, pH 7.6.  Brain slices were then incubated with diaminobenzydine 

(DAB) following the manufacturer's instructions (Vector Laboratories, Burlingame, Ca, USA) 

for 30-300 seconds depending on the antibody used and then washed in H2O. Slices were 

mounted on gelatin coated glass slides, air-dried overnight, dehydrated 1 x 1 minute in 90% 

ethanol and 2 x 1 minute in 100% ethanol, then incubated for 1 minute in xylene and mounted 

with Permount (Sigma-Aldrich). Glass slides were allowed to dry overnight and observed 

with an Eclipse Hoechst staining TE 2000-S microscope (Nikon) equipped with an AxioCam 

MRm (Zeiss, Oberkochen, Germany) digital camera. Table 7 shows the antibodies used for 

immunohistochemistry analysis. 
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Primary antibody Dilution Secondary antibody Dilution 

MBP mouse monoclonal               

(ABCAM) 

1: 500 Goat anti-mouse IgG 

HRP (Santa Cruz) 

1:500 

OLIG 2 rabbit polyclonal IgG              

(Santa Cruz) 

1: 500 Goat anti-rabbit IgG 

HRP (Santa Cruz) 

1:500 

CNPase rabbit monoclonal                     

(Cell signaling) 

1: 500 Goat anti-rabbit IgG 

HRP (Santa Cruz) 

1:500 

pHistone H3 (Ser10) rabbit polyclonal IgG 

(Santa Cruz) 

1: 500 Goat anti-rabbit IgG 

HRP (Santa Cruz) 

1:500 

Ki67 rabbit polyclonal                   

(ABCAM) 
1:500 

Goat anti-rabbit IgG 

HRP (Santa Cruz) 
1:500 

DCX rabbit polyclonal                   

(ABCAM) 
1:1000 

Goat anti-rabbit IgG 

HRP (Santa Cruz) 
1:500 

GFAP rabbit immunoglobulins    

(Dakopatts, Missouri, California, USA) 
1:2000 

Goat anti-rabbit IgG 

HRP (Santa Cruz) 
1:500 

 

 

3.21.  Immunofluorescence  

Immunofluorescence is a direct or indirect antigenic detection technique based on the use of 

antibodies labeled with fluorescent probes. Unlike IHC, immunofluorescence has the 

advantage of labeling at the same time two or more proteins using different fluorochromes 

with different emission wavelengths; double labeling was performed both on cells and tissue 

samples. After 3 x 10 minutes washes with PBST (PBS + 0.1% Triton) 4% PFA fixed cells, 

pre-fixed brain sections or neurospheres were incubated for 1h with Blocking Buffer (PBS-

0.1% Triton + 5% normal goat serum) to block non-specific antigenic sites and then incubated 

with primary antibodies overnight at 4oC in Blocking Buffer (PBST + 2% normal goat 

serum). After 3 x 10 minutes washes in PBST, samples were incubated with secondary 

antibodies diluted with Blocking Buffer (PBST + 2% normal goat serum) for 2 hours at room 

temperature in the dark. After secondary antibody incubation, samples were washed 3 x 10 

minutes with PBST, 1 x 10 min with PBS and then samples were incubated for 5 minutes with 

Hoechst 33258 (2 µg/ml, Sigma-Aldrich) to label nuclei. Samples were then washed in PBS 

for 5 min and brain slices and cells were then mounted using Ultracruz Aqueous Mounting 

Medium with DAPI and stored at 4oC in the dark until needed for Nikon EZ-C1 confocal 

microscopy. Table 8 shows the antibodies used for immunofluorescence analysis. 

 

Table 7: Primary and secondary antibodies used for immunohistochemistry analysis.  
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Primary antibody Dilution Secondary antibody Dilution 

AGC1/Aralar1 mouse monoclonal IgG 

(Santa Cruz) 

1: 250 Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 

1:1000 

HSP60 rabbit polyclonal IgG          

(Santa Cruz) 

1: 500 Anti-mouse IgG Alexafluor 

555 (ABCAM) 

1:1000 

Olig2 rabbit polyclonal IgG 

(Santa Cruz) 
1:500 

Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

MAG rabbit polyclonal IgG          

(Santa Cruz) 

1: 500 Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

TGFβ R1 rabbit polyclonal IgG    

(Santa Cruz) 

1: 500 Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

DCX rabbit polyclonal 

(ABCAM) 
1:500 

Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

GFAP rabbit immunoglobulins 

(Dakopatts) 
1:500 

Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

Nestin mouse monoclonal 

(ABCAM) 
1:500 

Anti-mouse IgG Alexafluor 

555 (ABCAM) 

1:1000 

Ki67 rabbit polyclonal 

(ABCAM) 
1:500 

Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

CNPase rabbit monoclonal                

(Cell Signalling) 
1:500 

Goat anti-rabbit IgG 

Alexafluor 488 (ABCAM) 
1:1000 

SSEA4-4 mouse monoclonal          

(Santa Cruz) 
1:500 

Anti-mouse IgG Alexafluor 

555 (ABCAM) 

1:1000 

BrdU rat anti- monoclonal antibody 

(ABCAM) 
1:100 

Goat anti-rat IgG Alexafluor 

488 (ABCAM) 

1:1000 

 

 

3.21.1. Oli-Neu BrdU immunofluorescence  

For Oli-Neu BrdU immunofluorescence, 105 cells/well were plated in 6-well plates previously 

treated with poly-L-lysine (10 μg/ml) coated glass coverslips. After 3-4h, BrdU (10 µM) was 

added to the medium. 24 hours later, cells were fixed for 30 minutes at room temperature with 

4% PFA and stored in PBS at 4°C until used. Coverslips were incubated with 2N HCl for 30 

minutes at room temperature, washed 4 x 10 minutes with PBS and then 3 x 5 min with PBS-

0.1% Triton (PBS-T). In order to block aspecific sites, cells were incubated at room 

temperature for 1 h in blocking buffer (PBS-T + 2% bovine serum albumin, BSA) and 

incubated overnight at 4°C in a humidifed chamber with a rat anti-BrdU antibody (1:500 

dilution in blocking buffer, Abcam). After 3 x 10 min washes with PBS-T, cells were 

Table 7: Primary and secondary antibodies used for immunofluorescence analysis.  
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incubated for 2 hours with goat anti-rat Alexa 488-conjugated antibody (1:1000 in blocking 

buffer, Abcam) and washed in PBS for 5 minutes. Lastly, coverslips were mounted on glass 

slides with UltraCruz Mounting medium with DAPI (Santa Cruz, cat. no. sc-24941) and 

stored at 4°C until used. 5 randomly selected fields for each coverslip were acquired and total 

nuclei stained with DAPI and BrdU positive nuclei counted. Labeling index was expressed as 

the ratio of BrdU positive/DAPI stained cells. 

3.21.2. Neurosphere BrdU immunofluorescence  

For BrdU immunofluorescence, previously fixed neurospheres were washed 3 x 5 minutes 

with PBS and then incubated for 1 hour in 2N HCl in order to denature DNA. After 6 x 10 

min washes with PBS and then 3 x 5 minutes permeabilization washes with PBS-0.1% Triton, 

neurospheres were incubated for 1 hour in blocking buffer (PBS-0.1% Triton + 5% normal 

goat serum [Sigma-Aldrich]) to block aspecific sites. Neurospheres were then incubated 

overnight at 4oC with a rat anti-BrdU antibody (1:500; Abcam) in blocking buffer. The next 

daym neurospheres were washed 3 x 5 minutes in PBS-0.1% Triton and incubated for 2 hours 

in the dark with a secondary anti-rat antibody (anti-rat Alexa 488, 1:1000; Abcam) in 

blocking buffer.  Neurospheres were then washed 3 x 5 minutes in PBS-0.1% Triton, 1 x 5 

minutes in PBS, then incubated for 5 minutes with Hoechst 33258 (2 µg/ml, Sigma-Aldrich) 

and after a 5-minute wash in PBS, glass slides were mounted with Ultra Cruz mounting 

medium (Santa Cruz, cat. no. sc-24941).  5 randomly selected fields for each coverslip were 

acquired and total nuclei stained with DAPI and BrdU positive nuclei counted. Labeling index 

was expressed as the ratio of BrdU positive/DAPI stained cells. 

3.22. Cell counting after immunofluorescence and 

immunohistochemistry 

Positive cell number quantification after immunohistochemical and immunofluorescence 

analysis was performed with Image J software provided by the National Institutes of Health 

(NIH). Tissue section images, previously obtained with the Eclipse TS100 (Nikon) optical 

microscope or Nikon EZ-C1 confocal microscope, were analyzed considering always the 

same area of corpus callosum (CC) and subventricular zone (SVZ). Considering the area of 

interest and the slice thickness (40 µm), obtained data were compared with the total volume of 

the section and subject to statistical processing and evaluation. For immunofluorescence 

surveys, 3D images for each slice of tissue were obtained by z-stack acquisition of 1 μm 
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thickness layers (40 stacks), then 3D image reconstruction was performed by using Fiji 

ImageJ2 software with the z-project plugin. All cell count values were subject to Student's 

test. 

 

3.23.  Statistical analysis  

All results were subject to statistical analysis by using one-way ANOVA followed by 

Bonferroni post-hoc comparison test or Student׳s t-test, depending on the experiment 

considered, in order to evaluate difference significance. Statistical analysis was performed by 

using the Graph Pad Prism 4 software and p values less than 0.05 were considered statistically 

significant. 
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4. RESULTS 

As previously described, the aim of this thesis was to study the molecular mechanisms 

underlying AGC1 deficiency in appropriate in vitro and in vivo disease models, in particular 

by focusing on oligodendrocyte precursor alterations in order to clarify whether a deficit in 

these cells, so important for myelin formation, could play a role in the demyelination and 

consequent neurodegeneration observed in patients.  

To this aim, we carried on experiments by using three different models of the disease: 

1) First, we developed an in vitro model by using the Oli-Neu cell line, which are 

immortalized mouse oligodendrocytes precursor cells (kind gift from Dr. Trotter); in these 

cells we partially silenced AGC1 expression, in order to obtain a reduction in the carrier 

activity down to about 30-40% of control cells, as in mitochondria from human patients.  

2) Then, we confirmed the results obtained in the cellular model by using the animal model 

of the disease, i.e. heterozygous mice for the AGC1 knock-out (AGC1+/- C57BL6/N 

background), as well as in neurospheres derived from the subventricular zone of the same 

animal model.  

3) Lastly, we performed preliminary experiments to further confirm the results obtained in 

mouse in vitro and in vivo models by using neural stem cells from iPS derived from 

AGC1-deficiency patients. 

In all these models, we studied the expression of AGC1, cell proliferation, as well as the 

expression of growth factors and receptors known to be involved in 

proliferation/differentiation of OPCs, mainly the PDGFα and TGFβ pathways. In addition, in 

collaboration with Dr. Massimo Lasorsa (IBIOM, CNR Bari) and Prof. Paolo Pinton 

(University of Ferrara), the mitochondrial effect of AGC1 silencing was evaluated in Oli-Neu 

cells. 
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4.1. Study of AGC1-silencing in Oli-Neu cells 

4.1.1. AGC1 expression in control and AGC1-silenced Oli-

Neu cells 

Stably-silenced AGC1 and controls Oli-Neu cells were prepared as described at paragraph 

3.1. In order to quantify AGC1 reduction, its expression was analyzed in control and AGC1 

stably-silenced Oli-Neu cells by Western blot. Densitometric analysis confirmed statistically 

significant reduced AGC1 expression in silenced Oli-Neu cells compared to control cells (fig 

4.1 A, B). To evaluate whether Oli-Neu cell differentiation could be altered or not after AGC1 

silencing, control and AGC1-silenced cells were stimulated for 1 to 3 days in vitro (DIV) with 

1 mM db-cAMP, which induced differentiation149. As shown in figure 4.1 C, obtained by 

optical microscopy, AGC1 silencing did not cause macroscopic morphological alterations and 

AGC1 silencing was maintained during cell differentiation, namely for 3 days, as shown by 

Western blot analysis (fig. 4.1 D). Moreover, undifferentiated and differentiated Oli-Neu cells 

expressed AGC1 and myelin associated glycoprotein (MAG) as observed in figure 4.1 D. 
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Figure 4.1: (A) AGC1 expression was evaluated by Western blot; (B): Densitometric analysis showed that 

AGC1 reduced expression in AGC1 silenced Oli-Neu cells was statistically significant; GAPDH was used a s 

an endogenous control to normalize data. Values are the mean ± SD from 3 independent experiments 

performed in triplicate, * P <0.05, ** P <0.01, *** P <0.001 compared to wild -type, t-test Student. (C) 

Optical microscopy images of control and siAGC1 Oli-Neu cells during differentiation with 1 mM db-cAMP. 

(D) AGC1 expression analysis by Western blot during differentiation; AGC1 silencing was maintained during 

the cell differentiation, namely for 3 days; moreover, undifferentiated and differentiated Oli -Neu cells express 

AGC1 and myelin associated glycoprotein (MAG) during differentiation.  
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4.1.2. Analysis of AGC1 subcellular localization  

To evaluate AGC1 subcellular localization, cytosol, mitochondria and nuclei were isolated by 

subcellular fractionation of control Oli-Neu cells and analyzed by Western blot. GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase) was used as a control for cytosol, HSP60 (a 

mitochondrial chaperonine present on the internal mitochondrial membrane) for 

mitochondria, whereas histone H3 was used as a nuclear control to demonstrate the purity of 

subcellular fraction. Western blot results showed that the AGC1 carrier was as expected, 

present in mitochondria (fig 4.2A). A further confirmation of AGC1 mitochondrial 

localization was obtained by confocal microscopy analysis carried out on control Oli-Neu 

cells (fig 4.2 B), where mitochondria were labeled with HSP60 (red). Moreover, Western blot 

analysis showed that the AGC1 carrier was unexpectedly present also in the nucleus (Figure 

4.2A); no role for nuclear localization of a mitochondrial carrier has been already described in 

the literature. A further confirmation of AGC1 nuclear presence was obtained by confocal 

microscopy analysis carried out on control Oli-Neu cells (fig 4.2C), where nuclei were 

labeled with histone H3 (green) and AGC1 (red) was also present in nuclei.  
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Figure 4.2: (A) Subcellular fractionation Western blot analysis on control and AGC1-silenced Oli-Neu cells. GAPDH was 

used as a control for the cytosol, while HSP60 for mitochondria and histone H3 for nuclei. (B-C) Confocal microscopy 

analysis of AGC1 localization in control cells: (B) AGC1 mitochondrial localization obtained by confocal microscopy 

analysis carried out on control Oli-Neu cells where mitochondria were labeled with HSP60 (red) and AGC1 (green); (C) 

AGC1 nuclear presence obtained by confocal microscopy analysis carried out on control Oli-Neu cells; nuclei were labeled 

with histone H3 (green) and AGC1 (red). 
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4.1.3. Effect of AGC1-silencing on Oli-Neu cell 

proliferation 

To study the possible role of AGC1 silencing in Oli-Neu cells proliferation, cell counting with 

a Neubauer chamber was performed 24 hours after plating cells. Cell count analysis (fig 4.3) 

showed that siAGC1 Oli-Neu cell number was statistically lower than control cells, 

suggesting that silenced cells proliferated less compared to controls.  

 
Figure 4.3: Cell count analysis; siAGC1 Oli-Neu cell number was decreased compared to control cells 24 

hours after plating. Values are the mean ± SD of  3 independent experiments performed in triplicate, * P 

<0.05, ** P <0.01, *** P <0.001 compared to control, t-test Student.  

 

To confirm the observed possible proliferation defect, BrdU incorporation was performed on 

control and silenced Oli-Neu cells both through immunofluorescence and ELISA assay. 

Immunofluorescent analysis showed decreased BrdU incorporation in silenced cells compared 

to control cells (expressed as labelling index; fig. 4.3.2B); the ELISA quantification was made 

after 6h (fig. 4.3 C) and 24h (fig. 4.3 D) BrdU incubation and results confirmed again reduced 

BrdU incorporation in AGC1-silenced cells, suggesting lower proliferation rates in siAGC1 

Oli-Neu cells. All these differences were statistically significant.  
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Figure 4.3: (A) BrdU immunofluorescence of control and AGC1-silenced Oli-Neu cells. Actively proliferating 

cells incorporated BrdU (yellow), while nuclei were stained with Hoechst (blue). (B) BrdU positive-cell count 

analysis expressed as labelling index. (C, D) BrdU incorporation by ELISA assay in control and siAGC1 Oli-

Neu cells after 6 (C) and 24-hour (D) BrdU incubation . Values are the mean ± SD of 3 independent 

experiments performed in triplicate. * P <0.05, ** P <0.01, P < 0.001 compared to control cells, t-test 

Student. 

 

In collaboration with Dr. Miriam Capri and Dr. Rita Ostan (University of Bologna), to further 

confirm proliferation studies, flow cytometry was used to detect the percentage of cells in the 

various cell cycle phases (M, G1, S, G2). DNA content was measured using propidium 

iodide, which dyes DNA, entering only into dead and permeable cells. Flow cytometry 

analysis (fig 4.4) showed that wild-type cells were predominantly in G0/G1 phase (58.56%) 

and in quiescence phase G2, while S phase cells were 15.37%; on the other hand, silenced 

cells in G0/G1 phase were 64.06% and 13.87% in S phase. Flow cytometry analysis 
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confirmed that AGC1-silenced Oli-Neu cell number in S phase was lower than wild-type cells 

suggesting a reduction in proliferation. 

 

 

 

 OLI NEU control OLI NEU siAGC1 

G0-G1 58.56% 64.06% 

S 26.51% 22.64% 

G2/M 15.37% 13.87% 

 

 

 

Figure 4.4: Flow cytometry analysis on control and AGC1-silenced Oli-Neu cells in order to evaluate the percentage of cells 

in the various cell cycle phases (G0-G1, G2-M and S).  

4.1.4. Effect of AGC1-silencing on Oli-Neu cell 

morphology  

Considering that AGC1-silencing does not affect cAMP-induced Oli-Neu differentiation (fig 

4.5), while it reduces their proliferation, we decided to evaluate whether it could induce by 

itself the differentiation of these cells. Therefore, the effect of AGC1 silencing on cell 

morphology, including its effect of filament length and number, which are index of 

differentiation, was evaluated in control and AGC1-silenced Oli-Neu cells. Silenced cells 

showed a more elongated and branched morphology compared to control cells. In fact, 

AGC1-silenced Oli-Neu cells showed a decrease in cell and process number (fig 4.5 B and fig 

4.5 C respectively) and an increase in average process length (fig 4.5 D). These differences 

were all statistically significant. 

 

Oli-Neu control Oli-Neu siAGC1 

In collaboration with Dr. Capri M and Dr. Ostan R 
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 Figure 4.5: (A) Immunofluorescence staining and optical microscopy images of control and AGC1-silenced Oli-Neu cells. 

For immunofluorescence analysis nuclei were labeled with DAPI while MAG, a myelin associated glycoprotein was used as 

a specific marker for Oli-Neu cells. (B, C, D) Analyses for cell number, filament number and length calculated with ImageJ 

software. Values are the mean ± SD of 3 independent experiments performed in triplicate, * P <0.05, ** P <0.01, *** P 

<0.001 compared to wild type, t-test Student.  
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4.1.5. Biochemical measurements 

In collaboration with Dr. Massimo Lasorsa (IBIOM, CNR Bari) and Prof. Paolo Pinton 

(University of Ferrara), biochemical analyses were conducted to understand the effect of 

AGC1 silencing on Oli-Neu cells at the mitochondrial level.  

4.1.5.1. Lactate production in AGC1-silenced Oli-Neu cells 

Since AGC1 down-regulation inhibits mitochondrial pyruvate oxidation in undifferentiated 

Neuro2A cells leading to increased production of lactic acid124, whether a similar effect could 

occur in AGC1-silenced Oli-Neu cells was hypothesized. After 48-hour incubation, lactic acid 

release levels in conditioned high-glucose medium from both undifferentiated and 

differentiated siAGC1 Oli-Neu cells was similar to levels measured in conditioned media 

from control cells (fig. 4.6). These data suggest that AGC1 down-regulation in Oli-Neu cells 

did not reduce the rate of glucose oxidation, probably due to the parallel expression of AGC2 

in Oli-Neu cells. 

 

Figure 4.6: Lactic acid was quantified in conditioned complete Oli-Neu cell medium harvested from control Oli-Neu (white 

bars) or AGC1-silenced Oli-Neu cells (black bars). Conditioned media from undifferentiated cells were harvested after 48 h 

of incubation; conditioned media from differentiated cells were harvested 48 h after addition of 1 mM dibutyryl-cAMP. 

Values are the mean ± SD of 3 independent experiments performed in triplicate. 

4.1.5.2.  Oli-Neu Mitochondrial Membrane Potetial (Ψm) 

Mitochondrial Ψm was measured by loading cells with 20 nM tetramethyl rhodamine methyl 

ester (TMRM; Life Technologies, T-668) for 30 minutes at 37°C. Images were taken on an 

inverted microscope (Nikon LiveScan Swept Field Confocal Microscope (SFC) Eclipse Ti 

equipped with NIS-Elements microscope imaging software, Nikon Instruments). TMRM 
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excitation was performed at 560 nm and emission was collected through a 590 to 650 nm 

band-pass filter. Images were taken every 5 seconds with a fixed 20 ms exposure time. FCCP 

(carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 10 µM), an uncoupler of oxidative 

phosphorylation, was added after 12 acquisitions to completely collapse the electrical gradient 

established by the respiratory chain.  As imaged by fluorescence microscopy, TMRM-stained 

mitochondria from AGC1-silenced cells did not appear remarkably different from 

mitochondria from control cells, in terms of morphology and membrane potential (fig. 4.7), 

suggesting that AGC1 silencing in Oli-Neu cells did not affect the mitochondrial network and 

OXPHOS activity. 

 

 

 

 

Figure 4.7: Oli-Neu Mitochondrial Membrane Potential (Ψm). Images were taken on an inverted microscope (Nikon 

LiveScan Swept Field Confocal Microscope (SFC) Eclipse Ti equipped with NIS-Elements microscope imaging software, 

Nikon Instruments). Images were taken every 5 seconds with a fixed 20 ms exposure time. FCCP (carbonyl cyanide p-

trifluoromethoxyphenylhydrazone, 10 μM), an uncoupler of oxidative phosphorylation, was added after 12 acquisitions to 

completely collapse the electrical gradient established by the respiratory chain. Data are the mean ± SD of TMRM 

percentage intensities normalized to values before agonist stimulation in three independent experiments. 

In collaboration with Dr. FM Lasorsa and Prof. P. Pinton  
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4.1.5.3.  Measurement of intracellular ROS 

Although AGC1-silenced cells showed a slight but significant increase of ROS production in 

the cytosol, as compared to control cells (fig. 4.8 A), no difference in mitochondrial ROS 

production were imaged with the ratiometric mt-Hyper (fig. 4.8 B), used as a ROS sensitive 

probe directly targeted to mitochondria. 

 

 

 

 

Figure 4.8: (A) Measurement of cytosolic hydrogen peroxide concentration (DCFDA): Mitochondrial and cytosolic 

hydrogen peroxide concentration was measured by loading cells with 5 µM 5-(and-6)-chloromethyl-2′,7′-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA; Life Technologies, C-6827) for 20 minutes at 37°C. The 

measurement was performed with a Tali® Image-Based Cytometer. (B) Measurement of mitochondrial hydrogen peroxide 

concentration (mtHYPER): Mitochondrial hydrogen peroxide concentration was measured by transfecting cells with a 

chimeric protein with mitochondrial localization pHyPer-dMito (mtHYPER). Images were taken on an epi-fluorescence 

microscope (Cell^R Olympus, multiple wavelength high resolution fluorescence microscopy system). For a ratiometric 

measurement, H2O2 (hydrogen peroxyde) was added. * P <0.05. 

In collaboration with Dr. FM Lasorsa and Prof. P. Pinton  
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4.1.5.4. Mitochondrial morphology measurement  

The mitochondrial morphology of Oli-Neu cells was detected by loading cells with 100 nM 

tetramethyl rhodamine methyl ester (TMRM; Life Technologies, T-668) for 30 minutes at 

37°C; control Oli-Neu cells are represented in the left panel and white columns while silenced 

Oli-Neu cells in the right panel and blue columns (fig. 4.9). Images were taken with a Nikon 

Swept Field confocal microscope equipped with a CFI Plan Apo VC60XH objective (n.a. 1.4) 

(Nikon Instruments) and an Andor DU885 EM-CCD camera (Andor Technology Ltd.) with 

NIS-Elements microscope imaging software (Nikon Instruments). TMRM excitation was 

performed at 560 nm, emission was collected through a 590 to 650 nm band-pass filter and 51 

planes z-stacks where acquired with a voxel dimension of 133 × 133 × 200 nm (X × Y × Z). 

No significant differences between control and silenced Oli-Neu cells were observed for 

number of objects, total mitochondrial network (µm3) and single object volume (µm3).  
 

 

 

Figure 4.9: Mitochondrial morphology of control Oli-Neu (left panel and white columns) or AGC1-silenced Oli-Neu (right 

panel and red columns) cells was analyzed by loading cells with 100 nM tetramethyl rhodamine methyl ester (TMRM) for 30 

min at 37°C. Images were taken through confocal microscopy. Mitochondrial networks, described in number and volume, 

and 3D renders were obtained with Imaris 4.0 (Bitplane). Representative images and quantitative data illustrating the 

number of TMRM+ 3D objects per cell (means ± SEM, n = 80). 

In collaboration with Dr. FM Lasorsa and Prof. P. Pinton  
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4.1.5.5. Measurement of mitochondrial and cytosolic Ca2+ 

and mitochondrial ATP concentration 

Since AGC1 is a Ca2+-stimulated transporter and its down-regulation in undifferentiated 

Neuro2A cells induced an increased mitochondrial response to Ca2+ stimulation124, whether a 

similar effect could occur in AGC1 down-regulated Oli-Neu cells challenged with Ca2+-

releasing agonists was tested. In stimulated AGC1-silenced Oli-Neu cells expressing the 

recombinant Ca2+-sensitive aequorin probe, cytosolic [Ca2+] ([Ca2+]c) was slightly, but 

significantly increased when compared to controls (fig 4.10 A), but no difference in 

mitochondrial [Ca2+] ([Ca2+]m) was measured (Fig 4.10 B). As a consequence, the similar 

mitochondrial Ca2+ uptake in both types of cells resulted in unvaried increase of Ca2+-induced 

mitochondrial ATP synthesis in stimulated cells (Fig. 4.10 C). 
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Figure 4.10: (A, B) Cytoplasmic and mitochondrial Ca2+: Oli-neu control and AGC1-silenced cells (105 cells/well) were 

seeded on poly-L-lysine coated (10 μg/ml) 13-mm glass coverslips. Cells were transfected with 1.5 µg of chimeric aequorins 

targeted to the cytosol (cytAEQ) or mitochondria (mtAEQmut) using Lipofectamine 2000 (Invitrogen-Life Technologies). All 

measurements were performed 24h after transfection. For aequorin measurements, 500 µM carbachol was used as an 

agonist. Shown traces are representative of the following measurements: for LVshMM-OliNeu cells, [Ca2+]c peak values, 

1.54 ± 0.14 μM, n = 20; [Ca2+]m peak values, 58,4 ± 6.2 μM, n = 20; for LVshAGC1-OliNeu cells, [Ca2+]c peak values, 

1.85 ± 0.09 μM, n = 20; [Ca2+]m peak values, 57,6 ± 4.1 μM, n = 20. (C) Mitochondrial ATP concentration: Oli-Neu 

control and AGC1-silenced cells (105 cells/well) were seeded on poly-L-lysine coated (10 μg/ml) 13-mm glass coverslips. 

Cells were transfected with 1.5µg of mitochondrial luciferase (mtLUC) using Lipofectamine 2000 (Invitrogen-Life 

Technologies). All measurements were performed 24 hours after transfection. For mitochondrial ATP concentration, 500µM 

carbachol was used as an agonist. Data are expressed as percentage of mtLuc light output increase from cells normalized to 

the prestimulatory values. Shown traces are representative of the following results: for LVshMM-OliNeu cells, 101 ± 8%, n = 

20 of the prestimulatory value; for LVshAGC1-OliNeu cells: 103 ± 9%, n=20.  
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4.1.6. AGC1 silencing effect on PDGFα and TGFβ 

pathways in Oli-Neu cells 

Previous results showed that AGC1 silencing does not alter cAMP-induced Oli-Neu 

differentiation, but it significantly reduced their proliferation and by itself induced a partial 

differentiation of the cells. However, this does not seem to be due to the bioenergetics 

function of this carrier, since biochemical data produced do not demonstrate any significant 

change in mitochondrial parameters. Therefore, we decided to evaluate the expression of 

PDGFα, TGFβ and respective receptors, as these are known to influence OPCs proliferation 

and differentiation78,100. As shown by Western blot analysis, AGC1-silenced Oli-Neu cells 

expressed significantly less PDGFα, which is the most important factor to stimulate OPC 

proliferation in an autocrine and paracrine manner, compared to control Oli-Neu cells (fig 

4.11 A), whereas PDGFRα expression did not change in AGC1-silenced cells compared to 

control cells (fig 4.11 B).  

 

 

 

 

Figure 4.11: PDGFα (A) and PDGFRα (B) expression was evaluated by Western blot analysis. Densitometric analysis 

showed that PDGFα expression was significantly reduced in siAGC1 Oli-Neu cells compared to control cells, while 

PDGFRα expression did not change; GAPDH was used as an endogenous control to normalize data. Values are the mean ± 

SD of 3 independent experiments performed in triplicate, * P <0.05, compared to control, t-test Student. 
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Considering the analysis of TGFβ factors, which regulate OPCs differentiation in mature 

oligodendrocytes, only immature (precursor) TGFβ1, 2 and 3 forms were expressed, whereas 

no mature (cleaved) forms were detected (fig 4.12). Pre-TGFβ1 expression was increased in 

siAGC1 Oli-Neu cells (fig 4.12 A), while pre-TGFβ2 expression was decreased in the same 

cells, when compared to control Oli-Neu cells (fig 4.12 B). While these differences were 

statistically significant, no difference was observed for pre-TGFβ3 expression (fig 4.12 C). 

 

 

Figure 4.12: Western blot and respective densitometric analyses of pre-TGFβ1(A), pre-TGFβ2(B) and pre-TGFβ3 (C) 

expression performed on wild-type and AGC1-silenced Oli-Neu cells; while pre-TGFβ1 expression was increased in silenced 

cells and pre-TGFβ2 was decreased in silenced cells, no difference was observed in pre-TGFβ3 expression. GAPDH was 

used as an endogenous control to normalize data. Values are the mean ± SD of 3 independent experiments performed in 

triplicate. 

 

 

TGFβ receptor 1 and TGFβ receptor 2 expression was also analyzed in the same samples. 

Expression of both TGFβR1 and TGFβR2 was significantly increased in AGC1-silenced Oli-

Neu cells compared to control Oli-Neu cells (fig 4.13 A and B). To further confirm these data, 

immunofluorescence analysis showed stronger labeling against TGFβR1 in AGC1-silenced 

Oli-Neu cells compared to control cells (fig 4.13 C). 
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Figure 4.13: Western blot and respective densitometric analysis of TGFβR1(A) and TGFβR2 (B) expression performed on-

wild type and AGC1-silenced Oli-Neu cells; the expression of both receptors was significantly increased in AGC1-silenced 

Oli-Neu cells compared to control cells. GAPDH was used as an endogenous control to normalize data. Values are the mean 

± SD from 3 independent experiments performed in triplicate. (C) Immunofluorescence staining of TGFβR1 (green) showed 

stronger labeling in AGC1-silenced Oli-Neu cells compared to control cells. 
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4.2. Study of AGC1-silencing in the mouse animal model 

4.2.1. In vivo analysis of AGC1 expression in AGC1 +/+ 

and AGC1 +/- mice 

To study whether the effect of decreased AGC1 expression and, therefore, also decreased 

AGC1 activity could affect OPCs proliferation in vivo, we focused on AGC1 +/+ and AGC1 +/- 

mice. Firstly, AGC1 expression was analyzed in 21 day-old (fig 4.14 A) and adult (fig 4.14 B) 

AGC1 +/+ and AGC1 +/- mice, since no AGC1 -/- mice were born. We chose 21 day old-mice, 

since this is the postnatal day in which OPCs reach a peak in proliferation; as previously done 

by Jalil and collaborators who studied 18-21day old AGC1-deficiency mice35. As shown in 

figure 4.14, while in AGC1 +/+ and AGC1 +/- adult mice several brain regions (cortex, 

hippocampus, cerebellum and spinal cord) were isolated, only whole brain and the cerebellum 

were analyzed in pups since they were too small and the different brain areas were difficult to 

dissect. In all analyzed areas, a statistically significant decrease in AGC1 expression was 

observed in AGC1 +/- mice.  

 

 

Figure 4.14: AGC1 expression analysis by Western Blot in wild-type (AGC1+/+ n = 8) and heterozygous (AGC1+/- n = 8) in 

21-day old  (A) and adult mice (B). To normalize data with respect to the amount of protein loaded, GAPDH was used as 

endogenous control. Respective densitometric analyses are shown below. Bars represent the mean ± SD of 3 independent 

experiments performed in triplicate, * P <0.05, ** P <0.01, *** P <0.001 compared to wild type, t-test of Student. 
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As shown in figure 4.15, a significant decrease in AGC2 expression was also observed in 21-

day old (fig 4.15 A) and adult (fig 4.15 B) AGC1 +/+ and AGC1 +/- mice.  

 

 

 

 

 

 

 

 

 

 

Figure 4.15: AGC2 expression analysis by Western Blot in wild-type (AGC1+/+ n = 4) and heterozygous (AGC1+/- n = 4) in 

21-day old  (A) and adult mice (B). To normalize data with respect to the amount of protein loaded, GAPDH was used as 

endogenous control. Respective densitometric analyses are shown below. Bars represent the mean ± SD of 3 independent 

experiments performed in triplicate, * P <0.05, ** P <0.01, *** P <0.001 compared to wild type, t-test of Student. 

4.2.2. Aspartate/glutamate and glutamate/glutamate exchange 

activity in mouse brain mitochondria  

 In order to confirm that the reduction in expression causes also a reduction in activity of 

AGC1, in collaboration with Dr. Massimo Lasorsa (IBIOM, CNR Bari) we assayed its 

activity in liposomes reconstituted with mitochondrial extracts and we observed that AGC1 

reduced expression in the brain of AGC1 +/- mice significantly inhibits both the 

aspartate/glutamate and glutamate/glutamate exchange of about 40 % and 25 % respectively, 

when compared to AGC1 +/+ mice. By contrast no difference in ATP/ATP exchange activity 

was measured (Fig. 4.16). These data suggested that also in the presence of one functional 

AGC1 allele, AGC activity is impaired even in the presence of unaffected AGC2 expression. 
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4.2.3. Effect of AGC1 deficiency on cell proliferation and 

differentiation in 21-day old AGC1 +/+ and AGC1 +/- mice 

In order to confirm in vivo the effect of AGC1 deficiency on cell proliferation and 

differentiation in the central nervous system, immunohistochemical and immunofluorescence 

analyses on 40 μm thick mouse brain sections were performed. Analyses were conducted both 

in 21 day-old and in adult AGC1 +/+ and AGC1 +/- mice, however since the most significant 

results were obtained in 21 day-old mice, at which also OPCs reach a proliferation peak, only 

these data are shown.  

4.2.3.1. Cell proliferation  

To evaluate proliferation differences, two different cell proliferation markers, pH3 and Ki67 

were considered.  Phosphorylated histone H3 (pH3) represents a mitotic and cell proliferation 

marker150 because phosphorylation of Ser 10 on the N-term tail of histone H3 by Aurora A 

and B kinases151,152 (Aurora/AIK family), is fundamental for the beginning of mitosis. Ki67 is 

expressed during active phases of the cell cycle (in particular in G2 and mitosis), but is absent 

in the quiescent phase (G0)153. A quantification of pH3 and Ki67 positive cell number was 

conducted in the corpus callosum, an OPC rich region154 and subventricular zone (SVZ), the 

main source of neural precursor cells (NPCs)155. Cell count showed a lower number of pH3+ 

(fig. 4.17 A) and Ki67+ (fig. 4.17 B) cells in the corpus callosum and SVZ of AGC1 +/- mice 

 

Figure 4.16: Aspartate/glutamate and glutamate/glutamate 

exchange activities in brain mitochondria from AGC1+/- mice. 

[14C]ATPext/ATPint  (0.1 mM ext/20 mM ext), 

[14C]aspartateext/glutamateint (0.05 mM ext/20 mM ext) and 

[14C]glutamateext /glutamateint (0.1 mM ext / 20 mM ext) were 

assayed in liposomes reconstituted with mitochondrial protein 

extracts isolated  from brain of AGC1+/+ (white column) and 

AGC1+/- mice (black column). Transport activities were measured 

30 minutes after the addition of radiolabeled substrates. Data are 

the mean ± SD, n=6, *p< 0.01 compared to liposomes 

reconstituted with AGC1+/+ mitochondrial extracts, one-way 

analysis with Bonferroni’s post-test. 

In collaboration with Dr. FM Lasorsa  
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compared to AGC1 +/+ mice. Only pH3 data were statistically significant (fig. 4.17 C and D 

respectively). 

 
Figure 4.17: Optical microscopy images (20X). Immunohistochemical analysis of pH3 (A) and Ki67 (B) proliferation 

markers in the corpus callosum and subventricular zone of 21 day-old AGC1+/+ and AGC1+/- mice. (C) Cell count analysis 

showed a significant reduction in pH3+ cell number in AGC1+/- (1.09472 x 10-5 cells / µm ^ 3) mice compared to AGC1+/+ 

mice (1.60714 x 10-5 cells / µM ^ 3). Similar results were obtained for Ki67+ cells however data were not statistically 

significant (AGC1+/- 6.90994 x 10-5 cells / µm ^ 3 compared to AGC1+/+ mice 7.72516 x 10-5 cells / µm ^ 3) (D). Bars 

represent the mean ± SE of three experiments. * P <0.05 compared to wild-type mice. Student T-Test. 

4.2.3.2. Proliferation and differentiation of OPCs 

Since pH3 and Ki67 staining showed a reduction in proliferating cells in the SVZ and corpus 

callosum, immunohistochemistry was performed to confirm whether this could be due to 

reduced OPC proliferation. 21-day old AGC1 +/+ and AGC1 +/- mouse brain sections were 

incubated with an anti-Olig2 antibody, a bHLH (basic helix-loop-helix) transcription factor 

essential for the differentiation of ventricular neuroectodermal cell progenitors into 

oligodendrocytes156. Following cell count analysis in the corpus callosum, a significantly 

reduced number of Olig2+ cells was determined in AGC1 +/- mice compared to AGC1 +/+ mice 

(fig. 4.18).  
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Figure 4.18: (A) Immunohistochemical analysis of Olig2+ cells in 21 day-old AGC1 +/+ (n = 3) and AGC1 +/- (n = 3) mouse 

brain sections. Optical microscopy images (20X). (B) Confocal microscopy images (10X) of Olig2+ cells (green) and 

Hoechst-labeled nuclei (blue) in the corpus callosum of 21 day-old AGC1 + /+ and AGC1 +/- mice. (C) Confocal microscopy 

images (40X) of Olig2+ cells (green) and Hoechst-labeled nuclei (blue) in the corpus callosum of 21 day-old AGC1 + /+ and 

AGC1 +/- mice. (D) Cell count analysis showed a significantly reduced number of Olig2+ cells in AGC1 +/- (3.381 x 10-3 cells 

/ μm ^ 3) mice compared to AGC1 +/+ (4.536 x 10-3 cells / μm ^ 3) mice; bars represent the mean ± SE of three experiments. 

*** P <0.001 compared to wild type tissues. Student T-Test. 
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Immunohistochemical analyses of 21 day-old AGC1 +/+ and AGC1 +/- mouse brain sections 

with anti-MBP and anti-CNPase antibodies were performed to study whether reduced AGC1 

expression had any effect on OPCs differentiation into mature oligodendrocytes and 

consequently on myelination. MBP (myelin basic protein) is a myelination marker since it is 

the most prominent protein of the myelin sheath where it constitutes up to 30% of total 

protein content and participates in maintaining myelin fiber structure157. On the other hand, 

CNPase constitutes about 4% of total protein content of the myelin sheath in the CNS, and is 

mainly localized at the myelin-axon interface; its distribution matches exactly that of 

myelin142. Neither MBP+ nor CNPase+ cell count was performed, however through 

immunohistochemistry and optical microscopy, no macroscopic differences in the corpus 

callosum of 21 day-old AGC1 +/+ and AGC1 +/- mice were observed (fig. 4.19), thus 

indicating that, similarly to in vitro, a reduction in AGC1 expression and activity does not 

affect oligodendrocyte differentiation and therefore myelination. 

 
Figure 4.19: Optical microscopy images (20X). MBP and CNPase immunohistochemical analysis in brain sections of 21 

day-old AGC1 +/+ (n = 3) and AGC1 +/- (n = 3) mice. Neither MBP+ nor CNPase+ cell count was performed, however 

through optical microscopy no macroscopic differences in MBP+ and CNPase+ cells were observed between 21 day-old 

AGC1 +/+ and AGC1 +/- mice. 

 

To further confirm these results, CNPase activity was measured in mouse brain tissue 

homogenates; for 21-day old mice, cortex and cerebellum were analyzed while for adult mice 

the same areas and also the hippocampus were studied. No statistically significant differences 

in CNPase activity between 21-day old (fig. 4.20 A) and adult (fig. 4.20 B) AGC1 +/+ and 

AGC1 +/- mice were detected. 
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Figure 4.20: CNPase activity analysis in 21-day old (A) and adult (B) AGC1 +/+ (n = 8) and AGC1 +/- (n = 8) mice. Bars 

represent the mean ± SE of two experiments, Student’s t-test.  

4.2.3.3. Neuronal and astroglial proliferation and 

differentiation 

To analyze the effect of AGC1 reduced activity not only on the proliferation and 

differentiation of oligodendrocytes, but also of neurons and astrocytes, which all derive from 

the same neural stem cells, 21 day-old AGC1 +/+ and AGC1 +/- mouse brain sections were 

incubated with an anti-doublecortin (DCX) antibody, which is an immature neuronal marker 

and an essential protein in the early phases of neuronal migration and lamination during 

cortical development158, and an anti-GFAP antibody, which is an intermediate type III 

intermediate filament protein and specific marker for astrocytes159. For quantitative 

evaluation, given that cell count was not possible to perform, DCX+ fluorescence signal 

intensity was evaluated with ImageJ2 (Fiji) software (fig. 4.21). After fluorescence intensity 

analysis, DCX+ signal in brain sections of AGC1 +/- mice was 40% lower than AGC1 +/+ mice 

(100% AGC1 +/+ vs 60% AGC1 +/-). 
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Figure 4.21: (A) Immunohistochemical analysis of DCX+ cells in brain sections of 21 day-old AGC1 +/+ (n = 2) and AGC1 

+/- (n = 2) mice. Image acquired by optical microscope (20X). (B) Confocal microscope image (10X) of DCX+ labeled cells 

(green) and Hoechst-labeled nuclei (blue). (C) Confocal microscope images (40X) of DCX+ labeled cells (green) and 

Hoechst-labeled nuclei (blue). DCX+ fluorescence signal intensity was evaluated by the ImageJ Fiji program; DCX+ signal 

in brain sections of AGC1 +/- mice was 40% lower than AGC1 +/+ mice (100% AGC1 +/+ VS 60% AGC1 +/-). 

 

To study the proliferation and differentiation of astrocytes, 21-day old AGC1 +/+ and AGC1 +/- 

mouse brain sections were incubated with an anti-GFAP antibody. For quantitative 

evaluation, since cell count was not possible to perform, GFAP+ fluorescence signal intensity 

was evaluated with ImageJ2 (Fiji) software (fig. 4.22). After fluorescence intensity analysis, 

GFAP+ signal in brain sections of AGC1 +/- mice was around 20% higher than AGC1 +/+ mice 

(100% AGC1 +/+ vs 123% AGC1 +/-). 
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Figure 4.22: (A) Immunohistochemical analysis of GFAP+ cells in 21-day old brain sections of AGC1 +/+ (n = 2) and AGC1 

+/- (n = 2) mice. Optical microscopy images (20X). (B) Confocal microscopy images (10X) of GFAP+ labeled cells (green) 

and Hoechst-labeled nuclei (blue). GFAP+ fluorescence signal intensity was evaluated with ImageJ2 (Fiji) software; 

GFAP+ signal in brain sections of AGC1 +/- mice was around 20% higher than AGC1 +/+ mice (100% AGC1 +/+ VS 123% 

AGC1 +/-). 

4.2.3.4. Effect of AGC1 silencing on PDGFα and TGFβ 

pathways in AGC1 +/+ and AGC1 +/- mice 

Previous in vivo results seem to indicate that, at least in the SVZ at 21 days after birth, 

reduction in AGC1 expression and activity determines a general proliferation reduction, 

which mainly affects OPCs and neuronal precursors, while inducing an increase in astrocyte 

staining and no change in oligodendrocyte differentiation and in myelination. These data are 

in agreement with data obtained in Oli-Neu cells, therefore, to study the possible 

dysregulation of the PDGFα and TGFβ pathways, we performed Western Blot analysis in 21 

day-old and adult AGC1 +/+ and AGC1 +/- mice. As shown in figure 4.23, PDGFα was less 

expressed in both 21-day old and adult AGC1 +/- mice compared to AGC1 +/+ mice 
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(respectively 21-day old mice fig 4.23 A and adult mice fig 4.23 B), this reduction was 

statistically significant only in adult AGC1 +/- mice (fig 4.23 B). A lower expression of 

PDGFα suggests impaired oligodendrocyte precursor proliferation due to reduced AGC1 

activity. However, a statistically significant increase in PDGFα receptor expression in 21-day 

old (fig. 4.23 C) and adult (fig. 4.23 D) AGC1 +/- mice compared to AGC1 +/+ mice was 

observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Western blot analysis of PDGFα and PDGFRα expression in 21 day-old (A, C) and adult (B, D) AGC1 +/+ (n = 

6) and AGC1 +/- (n = 6) mice and respective densitometric analyses. A reduction of PDGFα and an increase of PDGFRα 

expression was observed. GAPDH was used as an endogenous control to normalize data. Bars represent the mean ± SE of 

three experiments, Student’s t-test.  

 

Regarding the TGFβ pathway, only immature (precursor) TGFβ1 and 2 forms were expressed, 

whereas no mature (cleaved) forms were detected. TGFβ1 precursor expression was increased 

in 21-day old (fig. 4.24 A) and adult (fig 4.24 B) AGC1 +/- mice compared to AGC1 +/+ mice; 

in AGC1 +/- adult mice this difference was statistically significant (* P <0.05). Similarly, 

TGFβ2 precursor expression was significantly increased in 21-day old AGC1 +/- mice 

compared to AGC1 +/+ mice (* P <0.05; fig. 4.24 C), while adult mice pre-TGFβ2 expression 

was decreased in AGC1 +/- mice compared to AGC1 +/+ mice (fig. 4.24 D).  
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Figure 4.24: Western blot analysis of TGFβ1 and TGFβ2 expression in AGC1 +/+ (n = 6) and AGC1 +/- (n = 6) mice, in 21-

day old (A, C) and in adult (B, D) mice and respective densitometric analyses. An increase of pre-TGFβ1 was observed in 

AGC1 +/- mice compared to AGC1 +/+ mice both in 21-day old and adult mice while pre-TGFβ2 was more expressed in 21-

day old AGC1 +/-  mice and less expressed in adult AGC1 +/- mice compared to their AGC1 +/+ counterpart. GAPDH was 

used as an endogenous control to normalize data. Bars represent the mean ± SE of three experiments, * P <0.05, compared 

to the wild type, Student’s t-test. 

 

 

Lastly, TGFβ receptor 1 and 2 (TGFβR1 and TGFβR2) expression was evaluated. While 

TGFβR2 expression was increased in both 21 day-old (fig. 4.25 A, C) and adult (fig 4.25 B) 

AGC1 +/- mice compared to AGC1 +/+ mice, TGFβR1 expression was significantly reduced in 

21-day old AGC1 +/- mice compared to AGC1 +/+ mice (fig 4.25C) and increased in adult 

AGC1 +/- mice (fig 4.25 D) compared to AGC1 +/+ mice. 
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Figure 4.25: Western blot analysis of TGFβR1 and TGFβR2 expression in 21 day-old (A, C) and adult (B, D) mice AGC1 +/+ 

(n = 6) and AGC1 +/- (n = 6) mice and respective densitometric analyses. Western blot analysis showed that TGFβR1 

expression was significantly increased in 21-day old AGC1 +/- compared to AGC1 +/+ mice but less expressed in adult AGC1 

+/- mice compared to AGC1 +/+ mice (data not statistically significant). TGFβR2 expression was increased in both 21-day old 

and adult AGC1 +/- mice compared to AGC1 +/+ mice. GAPDH was used as an endogenous control to normalize data. Bars 

represent the mean ± SE of three experiments, * P <0.05, compared to the wild type, Student’s t-test. 

4.2.3.5. Neural Stem Cell proliferation in AGC1+/+ and 

AGC1+/- SVZ-derived neurospheres  

In order to further confirm the alteration of proliferation/differentiation in brain cell-

precursors, we produced SVZ-derived neurospheres from adult AGC1+/+ and AGC1+/- mice. 

Firstly, to validate the in vitro model, performed Western blot analysis showed that AGC1 

expression was reduced approximately by 65-70% in AGC1 +/- neurospheres compared to 

AGC1+/+ ones, as previously observed in the in vivo model (fig. 4.26 A). For proliferation 

assays, AGC1+/+ and AGC1+/- neurospheres were plated as single cells at a density of 5 x 103 

cells/cm2. After 4 days of incubation, the number of newly formed neurospheres was counted 

and proliferation was evaluated by using Fiji ImageJ2 software. After counting analysis, 
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AGC1+/- neurosphere size was significantly lower (* p<0.05) compared to AGC1+/+ 

neurospheres (fig. 4.26 B). On the other hand, AGC1+/- neurosphere cell number was 

significantly higher (***p<0.001) compared to AGC1+/+ neurospheres (fig. 4.26 B). AGC1 +/- 

neurospheres appeared also morphologically more heterogeneous, irregularly shaped and 

presented pseudopod-like cytoplasmic processes (fig. 4.26 C). 

 

Figure 4.26: (A) WB analysis confirmed reduced AGC1 expression in AGC1 +/- neurospheres compared to AGC1 +/+ 

neurospheres (about 65-70% reduction). GAPDH was used as an endogenous control to normalize data. (B) Newly formed 

AGC1 +/+ and AGC1 +/- neurosphere size (left) and number (right) analysis after 4 days of incubation. * P <0.05, *** P 

<0.001 compared to AGC1 +/+ neurospheres. Student’s t-test. (C)  Bright field microscopy images (10X) of AGC1 +/+ and 

AGC1 +/- neurospheres. AGC1 +/- neurospheres (right) showed heterogeneous morphology and appeared smaller than AGC1 

+/+ neurospheres. AGC1 +/- neurosphere cell number was also higher than AGC1 +/+ neurospheres. Bars represent the mean 

± SE of three experiments. 

 

 

To further analyze AGC1+/+ and AGC +/- neurosphere proliferation rate, BrdU incorporation 

(labeling index = BrdU positive cells/total cells) was quantified after a 24-hour pulse through 

confocal microscopy. A lower labeling index was observed in AGC1+/- neurospheres 

compared to AGC1+/+ neurospheres, suggesting a lower proliferation rate in AGC1+/- 

neurospheres as shown in representative 3D confocal microscopy images (fig. 4.27 A) and 

confirmed by BrdU positive cell count analysis (fig. 4.27 B).  
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 Figure 4.27: (A) BrdU immunofluorescence 3D confocal microscopy images (40X) on AGC1 +/+ and AGC1 +/- 

neurospheres; BrdU (green), nuclei (blue). (B) BrdU positive cell count showed a reduced number of BrdU+ cells in AGC1 

+/- neurospheres compared to AGC1 +/+ neurospheres; data were not statistically significant. Bars represent the mean ± SE 

of three experiments. 

 

To study the effect of AGC1 deficiency on NSC differentiation, neurospheres obtained from 

AGC1+/+ and AGC1+/- adult mice were plated on fibronectin and PFA-fixed after 1 or 7 days 

of spontaneous differentiation. In order to verify their neural stem nature, 1-day differentiated 

AGC1+/+ and AGC1+/- neurospheres were characterized by double-labeling 

immunofluorescence with an anti-Ki67 antibody (proliferation marker) and an anti-Nestin 

antibody (intermediate filament protein and NSC marker).  Proliferating cells (Ki67+) and 

neural stem cells (Nestin+) were observed in both AGC1+/+ and AGC +/- neurospheres (fig. 

4.28 A). Then, 1-day differentiated neurospheres were incubated with specific antibodies for 

3 brain cell lineages: anti-Olig2 for OPCs; anti-DCX for neural precursors; anti-GFAP for 

astrocytes (respectively fig. 4.28 B, C, D). Immunofluorescence analysis showed a reduced 

number of Olig2+ cells in AGC1+/- neurospheres compared to AGC1+/+ neurospheres, 

confirmed by positive cell count (fig. 4.28 E), whereas no significant differences in DCX+ 

cells (immature neurons) were found. Interestingly, after labeling with an anti-GFAP antibody 

specific for astrocytes and radial glia cells, GFAP+ labeling was homogeneous in 

50μm 50μm 

A 

B 

AGC1 +/- AGC1 +/+ 



 

94 

 

neurospheres from AGC1+/+ mice whereas in AGC1+/- neurospheres GFAP+ labeling was 

localized mainly in outer layer cells. 

 

Figure 4.28: 1-day differentiated AGC1 +/+ and AGC1 +/- neurosphere confocal microscopy images (40X). (A) Proliferation 

marker Ki67 (green) and NSC-specific marker Nestin (red) staining; (B, C, D) Immunofluorescence labeling for three brain 

cell lineages: oligodendrocyte precursors (Olig2), immature neurons (DCX) and astrocytes (GFAP). While a reduced 

number of Olig2+ cells was observed in AGC1 +/- neurospheres compared to AGC1 +/+ neurospheres, no significant 

differences in DCX+ cells (immature neurons) were found. Interestingly, GFAP staining, specific for astrocytes and radial 

glia cells, was more pronounced and homogeneous in neurospheres from AGC1 +/+ mice whereas in AGC1 +/- neurospheres, 

GFAP+signal was localized only in peripheral layers cells. (E) Cell count showed a significantly reduced number of Olig2+ 

cells in AGC1 +/- neurospheres compared to AGC1 +/+ neurospheres; ** P <0.01. T-Test Student. Bars represent the mean ± 

SE of three experiments. 
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Similar analyses were performed on 7-day differentiated neurospheres, labeled with anti-

Olig2, anti-DCX, anti-GFAP and anti-CNPase (mature oligodendrocyte marker) antibodies. 

Olig2+ cell number, indicative of oligodendrocyte precursor number, was lower in AGC1+/- 

neurospheres compared to AGC1+/+ neurospheres (fig. 4.29A), as observed by positive cell 

count (fig. 4.29 E), while no difference in mature oligodendrocyte number was observed 

(CNPase+ cells; fig. 4.29 B). On the other hand, a higher number of DCX+ (fig. 4.29 F) and 

GFAP+ cells (fig. 4.29 G) was observed in AGC1+/- neurospheres compared to AGC1+/+ 

neurospheres suggesting a higher spontaneous differentiation into neuronal or astroglial cells 

(fig. 4.29 C, D).  
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Figure 4.29: 7-day old AGC1 +/+ and AGC1 +/- neurosphere confocal microscopy images (40X). Immunofluorescence 

labeling for oligodendrocyte precursors (Olig2) (A), mature oligodendrocytes (CNPase) (B), immature neurons (DCX) (C), 

and astrocytes (GFAP) (D) Significant differences in Olig2+ cell number between AGC1 +/+ and AGC1 +/- neurospheres were 

observed whereas no differences in mature oligodendrocyte number (CNPase+ cells) were observed, similarly to what 

observed in vivo. GFAP+ and DCX+ labeling, however, was particularly intense in AGC1 +/- neurospheres, suggesting a 

higher spontaneous neuronal or astroglial differentiation. (E, F, G) Cell count respectively of Olig2+, DCX+ and GFAP+. 

Bars represent the mean ± SE of three experiments. 
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These results obtained from SVZ-derived neurospheres seem to confirm our in vivo results; in 

fact, neurospheres from AGC1+/- mice show a general decrease in cell proliferation and a 

specific reduction in OPCs number, with a parallel increase in neural and astrocytic cells and 

no change in oligodendrocytes. Furthermore, these data are in agreement with previous 

observations made in Oli-Neu cells, thus indicating that a decrease in AGC1 activity could 

affect myelin formation not through a direct effect on oligodendrocytes, but more probably on 

oligodendrocyte precursor cell proliferation and therefore affecting remyelination. 

4.3. Effect of AGC1-deficiency on brain cells derived from 

human induced pluripotent (hiPS) cells: preliminary 

results 

As shown in paragraph 4.1 and 4.2, results from mouse cell lines and a mouse animal model, 

both in vivo and in neurospheres, seem to indicate that a reduction in AGC1 activity due to its 

reduced expression determines a decrease in OPCs proliferation and a shift of NSCs 

differentiation towards a neural and an astrocytic phenotype. To further confirm the 

translational validity of these results into humans, we decided to perform preliminary 

experiments on Neural Stem Cells derived from iPS cells obtained from healthy controls and 

AGC1-deficiency patients fibroblasts (in collaboration with Prof. S. Anderson, Children's 

Hospital of Philadelphia, UPenn School of Medicine, Philadelphia, PA in the framework of a 

project from Italian Ministry of Foreign Affair and International Cooperation, MAECI Italia-

USA 2016-2018). 

4.3.1. human iPS cell characterization 

The pluripotency of hiPSs (human induced Pluripotent Stem Cells) was characterized by 

double immunofluorescence labeling for Nestin (neural stem marker) and SSEA-4 (glycolipid 

expressed in early stages of embryonic development and by pluripotent stem cells, used also 

as a human embryonic stem cell marker160. Analyses were conducted both in healthy controls 

and AGC1-deficiency patient iPS cells. Since no differences were observed between control 

and patient iPS cells, only control data are shown.  

Human iPS cells were Ki67+ confirming their active proliferation (fig. 4.30 A), SSEA-4+ (fig. 

4.30 B) and Nestin- (fig. 4.30 C) confirming their cellular pluripotency and DCX- (fig. 4.30 

D), confirming the absence of neuronal phenotype. 
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Figure 4.30: Ki67 (A), marker of active proliferation, SSEA-4 embryonic stem cell marker (B), Nestin neural stem cells 

marker (C) and DCX immature neurons marker (D) confocal microscopy images (40X) of control hiPS.  Control hiPSs  

appeared  SSEA-4+ and Nestin- confirming their cellular pluripotency, high level of proliferation (Ki67+), typical of stem 

cells. Furthermore, hiPSs appeared DCX- confirming the absence of neuronal phenotype. 
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4.3.2. Characterization of NSCs obtained by hiPSCs 

Following characterization, healthy control and AGC1-deficiency patient iPS cells were 

induced to differentiate into NSCs (Neural Stem Cells) according to a published protocol121 

(fig. 4.31).  

 

Figure 4.31: Bright field microscopy images (10X). NSCs (right panel) derived from control iPS cells (left panel) with a 

published differentiation protocol121. 

 

Effective NSC differentiation was verified by immunofluorescence against SSEA-4 and 

DCX, a differentiation index into a neuronal phenotype. Also in this case, analyses were 

conducted both in healthy control and AGC1-deficiency patient NSCs. Since no differences 

were observed between control and patient NSCs, only control data are shown No SEEA-4+ 

signal was detected, confirming the loss of cell pluripotency, while NSCs resulted DCX+, 

confirming the acquisition of a neuronal phenotype (fig. 4.32). 
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Figure 4.32: Confocal microscopy images (40X); NSC characterization according to a published differentiation protocol121 

by immunofluorescence analysis. No SEEA-4+ signal was detected, confirming the loss of cellular pluripotency, while NSCs 

were resulted DCX+, confirming the acquisition of a neuronal phenotype.  

4.3.3. Proliferation of NSCs  

To analyze the proliferation rate between control NSCs and NSCs derived from an AGC1-

deficiency patient, Ki67+ cells were quantified after immunofluorescence staining. 

Preliminary results (fig. 4.33) showed a decrease of Ki67+ cells in patient NSCs compared to 

control NSCs suggesting, also in this model, a proliferation deficit caused by AGC1 

deficiency. However, this data will need to be confirmed with further experiments.  
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Figure 4.33: Confocal microscopy images (40X) of immunofluorescence labeling for proliferation marker Ki67 (green) in 

control and AGC1-deficiency patient NSCs.  Cell count showed a reduced number of Ki67+ cells in patient NSCs compared 

to control NSCs. Bars represent the mean ± SE of three experiments. 
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5. DISCUSSION AND CONCLUSION 

 

AGC1 deficiency is a rare neurodegenerative disease caused by AGC1 carrier activity 

reduction, which results in cerebral hypomyelination and low levels of N-acetyl aspartate 

(NAA). Although the role of AGC1 in biochemical pathways such as MAS is well known, its 

direct role in NAA synthesis and myelin formation in the CNS remains largely unknown.  

In vitro, AGC1 partial silencing in undifferentiated N2A mouse neuronal cell lines (which 

display reduced mitochondrial carrier activity down to about 30% compared to controls), 

show reduced growth and NAA production124. This result could explain the main clinical 

phenotypes observed in AGC1-deficiency patients, such as cerebral atrophy and 

demyelination with reduced NAA levels1,2. In the CNS, NAA is generated in neurons and 

used for aspartate acetylation through aspartate-N-acetyltransferase and then transferred into 

oligodendrocytes where it provides acetyl groups for myelin lipid synthesis. From previously 

obtained data124, it was hypothesized that in normally proliferating neurons, AGC1 activity 

could support mitochondrial pyruvate oxidation leading to acetyl-CoA production, which 

enters the TCA cycle and is also necessary for lipid and NAA synthesis. Few data on the role 

of oligodendrocytes in this rare disease are currently available; Ramos and collaborators 

observed hypomyelination in the cerebral cortex of AGC1-/- mice with a parallel increase in 

the number of immature oligodendrocytes, thus suggesting a defect in oligodendrocyte 

maturation. However, the same authors observed no defects in oligodendrocyte maturation in 

in vitro cultures36. Moreover, no studies have been performed on oligodendrocyte precursor 

cells (OPCs) and on Neural Stem Cells (NSCs), from which OPCs derive. Given the 

importance of oligodendrocytes in myelin synthesis and their cross-talk with neurons, it was 

hypothesized that the pathological mechanism could involve an alteration of OPC and/or NSC 

proliferation and/or differentiation mechanisms. 

For this purpose, three different models were used: 

1) An in vitro model represented by the Oli-Neu cell line (immortalized mouse 

oligodendrocyte precursor cells), in which AGC1 expression was partially silenced, in order 

to obtain a reduction in carrier activity down to about 30-40% compared to controls; 

2) An in vivo model, represented by SLC25A12 heterozygous knockout mice (AGC1 +/- 

C57BL6/N background) and neurospheres derived from the subventricular zone of the same 

mice; 

3) Neural stem cells (NSCs) derived from AGC1-deficiency patients iPS cells. 
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Through in vitro studies, it was found that reduction of AGC1 expression is not essential for 

Oli-Neu cell differentiation, since no evident morphological and biochemical differences were 

found between control and silenced cells suggesting that AGC1 deficiency development may 

be influenced by functional alteration of undifferentiated cells. Both undifferentiated and 

differentiated control and silenced Oli-Neu cells express AGC1 but surprisingly, AGC1 was 

detected not only in mitochondria, but also in the nucleus. The nuclear/mitochondrial AGC1 

colocalization is an interesting result that deserves further investigation; currently, no role for 

nuclear localization of a mitochondrial carrier has been elucidated. 

Following cell proliferation studies (cell count and BrdU incorporation assays), we observed 

that AGC1-silenced Oli-Neu cells proliferated less than control cells, which was also 

confirmed by flow cytometry. Considering that AGC1 silencing reduced Oli-Neu cell 

proliferation, whereas it did not affect cAMP-induced differentiation, we decided to evaluate 

whether AGC1 silencing could induce by itself Oli-Neu cell differentiation. We therefore 

evaluated first the effect of AGC1 silencing on cell morphology. AGC1-silenced Oli-Neu 

cells showed a more elongated and branched morphology compared to control cells, a 

decrease in cell and process number and an increase in average process length, suggesting 

premature cell differentiation. 

Based on data obtained in collaboration with Dr. Lasorsa (IBIOM, CNR Bari) and Prof. 

Pinton (University of Ferrara), no differences between control and AGC1-silenced Oli-Neu 

cells were observed at the mitochondrial level. In particular, AGC1 silencing i) did not reduce 

glucose oxidation rate in Oli-Neu cells; ii) did not modify mitochondrial morphology or 

membrane potential, suggesting that AGC1 silencing did not affect the mitochondrial network 

and OXPHOS activity; ii) induced a slight, but significant increase of ROS production in the 

cytosol, when compared to control cells, while no difference in mitochondrial ROS 

production and in mitochondrial [Ca2+] was measured. 

We therefore thought the observed proliferation deficit could not be due to mitochondrial 

biochemical alterations, but rather associated with an alteration of trophic factors essential for 

maintaining the balance between oligodendrocyte proliferation and differentiation3. In fact, 

Western blot analysis showed a lower expression of PDGFα (involved in the proliferation 

process) and a significant increase of TFGβ1/2 (crucial for cell differentiation) in AGC1-

silenced Oli-Neu cells, supporting the hypothesis that AGC1 reduced expression could lead to 

OPCs proliferation impairment, thus favoring premature differentiation. While PDGFα 

receptor expression did not change, TGFβ receptors 1 and 2 were more expressed in AGC1-

silenced Oli-Neu cells, especially TGFβR2. This last result was unexpected since TGFβR2 
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deletion in oligodendrocyte progenitors caused hypomyelination preventing their 

development into mature myelinating oligodendrocytes100. Therefore, AGC1-silenced Oli-

Neu cells seem to express TGFβR2 because they may already be in a pre-differentiated state. 

Our in vitro results were also validated in an in vivo AGC1 deficiency model represented by 

SLC25A12 heterozygous knockout mice (AGC1 +/- C57BL6/N background). AGC1 +/- mice 

have a reduced AGC1 carrier expression of about 60% compared to AGC1 +/+ control mice. 

Moreover, AGC1 knockout mice (AGC1 -/-) have previously been described in the literature 

as an AGC1-deficiency model. AGC1 -/- mice showed growth retardation, epileptic seizures 

and reduced myelination (typical AGC1-deficiency patient symptoms), as well as global 

cerebral atrophy, neurofilament distribution alteration in cortical neurons and Purkinje cell 

abnormalities in the cerebellum, though they all died at weaning35,36,161. Unlike the AGC1 

deficiency in vivo models reported in the literature, in our mouse model, AGC1 knockout 

(AGC1 -/-) appeared to be embryonic lethal, since no AGC1 -/- mice were born alive whereas 

Jalil and Sakurai reported the use of live AGC1 -/- mice. This could be due to the presence of a 

truncated AGC1 protein containing one catalytic site for aspartate, resulting in a mutant 

protein with residual activity produced (Jalil’s model)35, and a different mouse background 

represented by a C57BL/6 and C57BL/6Tac chimera (Sakurai’s model)24. Since currently 

identified AGC1 mutations determine a reduction of activity down to 20-30% compared to 

wild-type AGC1 and not the total absence of mitochondrial carrier activity1, AGC1 +/- mice 

are considered a good disease model. AGC1 +/- mouse did not show any suffering phenotype, 

presenting only slight changes in social behavior that did not compromise normal 

physiological and behavioral functions. Furthermore, AGC1 +/- mice were not distinguishable 

from AGC1 +/+; however, they showed a reduction in brain structure size, particularly the 

subventricular zone (SVZ) and overall brain ventricle size. 

We performed studies on 21-day and adult AGC1 +/+ and AGC1 +/- mice, but in this PhD thesis 

we focused on 21-day old mice, since this stage represents the peak of OPCs proliferation. 

Significant number reduction of proliferating cells (positive for proliferation markers, such as 

phosphorylated histone H3 on serine 10 and Ki67) in the subventricular zone (SVZ) and the 

corpus callosum (CC) as well as a reduction of Olig2 (OPC marker) and DCX (immature 

neuron marker) positive cell number were observed in AGC1 +/- mice. DCX+ cell number 

reduction was a very interesting result, since DCX is known to be essential for neuronal 

migration, cell proliferation during neurogenesis and for the development of a functional 

brain162; this result could explain the difference in the subventricular zone and overall brain 

ventricle size observed in AGC1 +/- mice compared to AGC1 +/+ mice. All these data suggest 
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that proliferation defects affected mainly oligodendrocyte precursor cells, in agreement with 

our in vitro results. Moreover, reduced AGC1 expression had not effects on mature 

oligodendrocytes and myelination, since no significant differences in MBP+ and CNPase+ 

cells were observed through immunohistochemical and biochemical analysis. As in our in 

vitro model, an imbalance in PDGFα and TGFβ pathways was also observed in our in vivo 

mouse model; PDGFα reduced expression confirmed OPCs reduced proliferation in AGC1 +/-  

mice whereas TGFβ1 and TGFβ2 increased expression, which correlated with reduced 

PDGFα expression, confirmed that oligodendrocyte precursor cells proliferated less because 

they differentiated prematurely. PDGFα receptor was more expressed in AGC1 +/-  mice 

compared to AGC1 +/+ mice in agreement with literature data showing that PDGFRα 

expression is a key event in OPC ontogenesis163,164. On the other hand, TGFβR2 was more 

expressed in AGC1 +/-  mice as observed in AGC1 silenced Oli-Neu cells indicating that OPCs 

differentiated earlier into mature oligodendrocytes100. All these results confirmed our in vitro 

data, supporting that alterations induced by AGC1 reduced activity could impair the 

physiological cross-talk through growth factors between neurons and OPCs necessary for 

OPC proliferation and neuronal survival. These data not only are in agreement with data 

previously obtained by Ramos and collaborators36, who observed no alteration in 

oligodendrocyte maturation in both in vitro and in vivo models, but could also contribute to 

explain their results. 

In addition, the effect of AGC1 reduced expression on proliferation and differentiation was 

also evaluated in neural stem cells (NSCs) derived from neurospheres103, which represent a 

nearly perfect system able to provide a consistent and self-renewable source of CNS 

undifferentiated precursors for cell replacement therapies and in vitro studies for neural stem 

cell analysis/characterization. Defined as an "environmental adaptation", NSCs could be 

clustered to survive in the non-physiological conditions of in vitro cell culture by optimizing 

their cell-cell interactions and acquiring a thermodynamically favorable sphere shape104. Once 

plated as single NSCs and allowed to grow in culture for 4 days in the absence of an adhesion 

matrix, neo-formed neurospheres from AGC1 +/+ adult mice were larger in size and showed a 

more regular spherical morphology compared to AGC1 +/- cells. AGC1 +/- neurospheres, on 

the other hand, displayed a higher number compared to AGC1 +/+ neurospheres, meaning that 

while they may be able to organize themselves more easily into suspended clusters, which 

would explain the greater observed number, they presented proliferation defects and thus 

remained smaller. Proliferation defects in AGC1 +/- neurospheres were further confirmed 

through BrdU incorporation. In addition, AGC1 +/- neurospheres also appeared 
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morphologically more heterogeneous, irregularly shaped and presented pseudopod-like 

cytoplasmic processes suggesting a possible tendency to differentiate much more easily, 

similarly to what previously observed in Oli-Neu cells. AGC1 +/- neurospheres allowed to 

differentiate for 1 and 7 days in culture showed a significantly reduced number of Olig2+ cells 

compared to AGC1 +/+ neurospheres, while no differences were found in mature 

oligodendrocytes (CNPase+ cells) at 7 days of differentiation, in agreement with our in vivo 

immunohistochemical analysis. However, after 7 days of differentiation, AGC1 +/- 

neurospheres showed more intense DCX+ and GFAP+ labeling, suggesting a "shift" of neural 

stem cells towards neuronal or astroglial differentiation. 

Our last model examined was represented by neural stem cells (NSCs) derived from AGC1-

deficiency patient iPS cells (harboring the R353Q mutation). After iPS cell differentiation 

into NSCs by using a published protocol121, neural stem cells were characterized; 

immunofluorescence analysis confirmed the successful differentiation into NSCs, as shown 

by loss of pluripotency (SSEA4-) with acquisition of typical characteristics of neural 

phenotype cells (DCX+). Preliminary data also showed reduced proliferation of AGC1-

deficiency patient-derived NSCs compared to control cells, after Ki67+ cell count. Besides 

proliferation and differentiation studies, it would be extremely important to differentiate 

NSCs into oligodendrocyte precursors and mature oligodendrocytes to better understand 

disease mechanisms underlying hypomyelination. Figure 5.1 summarizes our in vitro (Oli-

Neu, neurospheres and NSCs) and in vivo (AGC1 deficiency mouse model) results.  

Since AGC1 is an important component of the malate-aspartate shuttle system (MAS), we can 

hypothesize that the reduced activity of this mitochondrial carrier, and consequently MAS 

shuttle reduced functionality, is involved in decreased acetyl group availability. This 

hypothesis is indirectly supported by data reported in the literature according to which 

treatment of an AGC1 deficiency patient with a ketogenic diet125 improves the pathological 

phenotype; in fact, reduced glycolysis could compensate the metabolic defect and allow 

myelination recovery in AGC1 deficiency. We hypothesize that decreased acetyl group 

availability could be involved in impaired NAA and/or N-acetyl-CoA synthesis in neurons, 

but it could also lead to a reduction of histone acetylation, possibly explaining gene 

expression alterations. To indirectly support our hypothesis, it has been observed that a 

ketogenic diet, which is often used in the treatment of epilepsy, has positive effects against 

neurodegeneration, by providing ketone bodies and fatty acids165. However, the biochemical, 

molecular and cellular mechanisms underlying this nutritional approach have not yet been 

completely clarified126. We think that a ketogenic diet could provide sufficient levels of 



 

107 

 

ketone bodies (for example β-OH-butyrate) as an alternative source of mitochondrial acetyl 

groups, thus improving NAA deficiency in neurons and favoring myelination in AGC1-

deficiency patients, though these acetyl groups could also contribute to gene expression 

regulation. Therefore, studying and eventually confirming a possible histone acetylation 

dysregulation in AGC1-deficiency OPCs, could contribute to understanding the role of AGC1 

in health and disease. Overall, these data could be useful to clarify biochemical and molecular 

mechanisms underlying proliferation deficits of neuronal and oligodendrocyte precursors, 

responsible for demyelination and consequent neurodegeneration in the rare genetic disease 

AGC1-deficiency, but possibly involved in other demyelinating and neurodegenerative 

diseases. It is well known that the interaction between neurons and oligodendrocytes is crucial 

for neuronal maturation and myelin sheath formation during brain development and also in 

the adult brain in order to guarantee proper brain functioning. Moreover studying the effect of 

supplementation with different metabolic substrates (glucose, pyruvate or lactate in 

absence/presence of glutamine or other acetyl group precursors such as leucine) or 

pharmacological treatment with histone deacetylase inhibitors such as valproic acid or 

lithium166-168 (which inhibit histone deacetylases such as HDAC1) on  

proliferation/differentiation of different brain cells could provide additional data for AGC1-

deficiency therapeutic strategies.  

The identification of AGC1 interactions through high throughput proteomic approaches169 

with transcription factors, such as c-myc, which is known to play a crucial role in regulating 

OPCs proliferation and differentiation100, support a possible nuclear role for AGC1. We have 

also confirmed this interaction in our laboratory from preliminary co-immunoprecipitation 

experiments. However, whether AGC1 has a biological role in the nucleus and how much this 

could influence disease mechanisms stills needs to be understood. Lastly, while AGC1-

deficiency remains a rare disease, data obtained from this study could be translated to other 

demyelinating and neurodegenerative and/or neurodevelopmental diseases with similar 

mechanisms, such as other pediatric diseases (rare genetic diseases, metabolic diseases and 

orphan diseases) or adult onset diseases such as multiple sclerosis. These diseases are not only 

extremely disabling due to the neurological deficits they cause, but also exert high social and 

economic impact. 
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Figure 5.1: Summary of our in vitro (Oli-Neu, neurospheres and NSCs) and in vivo (AGC1 deficiency mouse model) results. 
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