1	Alma Mater Studiorum – Un	iversità di Bologna
2		
3 ⊿	DOTTORATO DI R	ICERCA IN
4 5	DOTTORATO DI R	
6	Ingegneria Civile, Chimica, Amb	pientale e dei Materiali
7		
8	Ciclo XXX	-
9		
10	Settore Concorsuale: 03/D1	
11 12	Settore Scientifico Disciplinare: CHIM/11	
יב 12	Schole Scientifico Disciplinare. CITINI/ II	
14		
15	PRODUZIONE DI BIOIDROGENO I	DA REFLUI DI CASEIFICIO
16		
17		
18	-	
19	Presentata da: Ciro Vasmara	
20		
21 22		
23	Coordinatore Dottorato	Supervisore
24		
25		
26 27	Prof. Luca VITTUARI	Prof. Lorenzo BERTIN
27 28		Co-supervisore
29		do supervisore
30		Dr. Rosa MARCHETTI
31		
32 33		
34		
35		
36 27		
37 38		
39		
40		
41 42		
43		
44	Esame finale anno	o 2018
45		

INDICE

47

48 1.INTRODUZIONE

49	1.1. IDROGENO: CARATTERISTICHE CHIMICO – FISICHE
50	1.2. CAMPI D'APPLICAZIONE
51	1.3. PRODUZIONE D'IDROGENO
52	1.3.1. FONTI NON RINNOVABILI
53	IDROGENO DA GAS NATURALE
54	IDROGENO DA CARBONE
55	1.3.2. FONTI RINNOVABILI
56	IDROGENO DA ACQUA
57	IDROGENO DA BIOMASSE
58	1.4. PRODUZIONE BIOLOGICA D'IDROGENO
59	1.4.1. PROCESSI "LIGHT-DEPENDING"
60	1.4.2. PROCESSI "NON-LIGHT-DEPENDING"
61	1.5. PRINCIPI DELLA DARK FERMENTATION
62	1.5.1. BIOCHIMICA DELLA DARK FERMENTATION
63	1.6. PARAMETRI CHE INFLUENZANO LA DARK FERMENTATION
64	INOCULO
65	SUBSTRATI
66	pН
67	TEMPERATURA
68	PRESSIONE PARZIALE D'IDROGENO
69	AZOTO E FOSFORO
70	IONI METALLICI
71	CONFIGUARAZIONE DEL REATTORE
72	1.7. REFLUI DI CASEIFICIO
73	1.7.1. DISPONIBILITA' DEI REFLUI DI CASEIFICIO
74	1.7.2. ALTERNATIVE ALLO SMALTIMENTO
75	2. OBIETTIVO DEL PROGETTO
76	3. MATERIALI E METODI
77	3.1. SUBSTRATI
78	3.2. PREPARAZIONE DELL'INOCULO
79	3 3 COMPOSIZIONE DEL BIOGAS
80	3 4 METODI D'ANALISI
81	3 5 ADATTAMENTO DEL MODELLO E ANALISI STATISTICHE
82	3.6 ESTRAZIONE DEL DNA GENOMICO
83	3 7 PREPARAZIONE DELLA LIBRERIA E SEQUENZIAMENTO
84	3.8 ANALISI DEI DATI METATASSONOMICI
85	3.9 SUPPORTI PER L'IMMOBILIZZAZIONE DELLA BIOMASSA
88	4 DISEGNI SPERIMENTALI
87	4.1 ESPERIMENTO "A"
88	4.2 ESPERIMENTO "B"
20	4.3 ESPERIMENTO "C"
00	

- 90 4.4. ESPERIMENTO "D" 4.5. ESPERIMENTO "E" 91 4.6. ESPERIMENTO "F" 92 93 5. RISULTATI 5.1. ESPERIMENTO "A" – PRODUZIONE DI H₂ DA SCOTTA E PERMEATO 94 5.2. ESPERIMENTO "B" - CO-DIGESTIONE CON LIQUAME SUINO 95 5.3. ESPERIMENTO "C" – INFLUENZA DEP pH INIZIALE SULLA 96 PRODUZIONE DI H₂ IN DF 97 5.3.1. LATTOSIO RESIDUO 98 99 5.3.2. METABOLITI FINALI 100 ETANOLO 101 ACIDI GRASSI VOLATILI 102 ACIDO LATTICO 103 5.4. ESPERIMENTO "D" - INFLUENZA DEL pH INIZIALE SULLA 104 COMUNITA' MICROBICA IN DF 105 5.4.1. ALFA DIVERSITY 106 5.4.2. ABBONDANZA RELATIVA 107 FASE 1, FASE "LAG" 108 FASE 2, PRODUZIONE ESPONENZIALE DI H₂ 109 FASE 3, FASE STAZIONARIA . RELAZIONE TRA LA COMPOSIZIONE DELLA COMUNITA' 110 5.4.3. 111 MICROBICA E LA PRODUZIONE DI METABOLITI 112 5.5. ESPERIMENTO "E" – VALUTAZIONE DEI SUPPORTI PER 113 L'IMMOBILIZZAZIONE DI BIOMASSA MICROBICA 5.6. ESPERIMENTO "F" – CONFRONTO DI PRODUZIONE DI H₂ DA 114 115 BIOMASSA ADESA E SOSPESA 116 5.6.1. PRODUZIONE DI H₂ 5.6.2. pH 117 5.6.3. CONSUMO DI LATTOSIO E PRODUZIONE DI METABOLITI 118 119 **6. DISCUSSIONE** 6.1. EFFETTO DEL pH SULLA PRODUZIONE DI H₂ 120 6.2. EFFETTO DEL pH SULLA COMUNITA' MICROBICA IN DF 121 122 6.3. CONSUMO DI LATTOSIO 6.4. RELAZIONE TRA COMPOSIZIONE DELLA COMUNITÀ MICROBICA E 123 124 PRODUZIONE DEI METABOLITI 125 6.5. INOCULO 126 6.6. IMMOBILIZZAZIONE 127 6.7. CO-DIGESTIONE 128 7. CONCLUSIONI 129 RICONOSCIMENTI 130 **BIBLIOGRAFIA** 131
- 132

133 ABSTRACT

In questo studio è stata valutata la possibilità di produrre H₂ da reflui di caseificio. In 134 135 particolare, è stato utilizzato il permeato di scotta che è il residuo del recupero delle 136 sieroproteine, mediante ultrafiltrazione, della scotta che, a sua volta, e il residuo della 137 produzione della ricotta da siero di latte. Questo liquido è ancora ricco di lattosio (51 g 138 L^{-1}) da cui si può ricavare H₂ mediante la fermentazione al buio (*dark fermentation*, DF). 139 La DF è regolata da molti parametri e presenta ancora dei punti oscuri. L'attenzione è stata rivolta, in particolare, all'effetto che il pH ha sulla produzione di H₂, dei metaboliti 140 141 prodotti (acidi grassi volatili, etanolo e acido lattico) e sulla popolazione microbica coinvolta nella DF, mediante l'utilizzo della tecnica dell'high-throughput sequencing 142 143 (HTS), in un sistema non tamponato. La produzione di H₂ è stata nettamente influenzata 144 dal pH iniziale tanto che essa è stata molto più alta (+31%) nei reattori a pH alcalino (8 -145 10) che nei reattori a pH < 6. Lo studio della comunità microbica ha indicato che la 146 manipolazione del pH iniziale ha influenzato i rapporti interspecifici delle popolazioni 147 presenti all'interno dei reattori. Il pH alcalino ha favorito la proliferazione di un genere 148 in particolare, il Trichococcus. Sebbene questo genere non produca direttamente H₂, la sua 149 proliferazione e, dunque, la sua attività metabolica nella fase immediatamente precedente 150 alla DF propriamente detta, ha creato le condizioni ideali per l'attività dei clostridi 151 (produttori di H₂) che hanno iniziato a produrre H₂ quando il pH era sceso a 5.4. I 152 clostridi sono stati più attivi nei reattori con pH iniziale alcalino, ovvero, dove Trichococcus 153 aveva maggiormente proliferato.

154

155 In this study, the H₂ production from dairy waste was evaluated. Scotta permeate was 156 used as substrate. Scotta permeate is the residue of the recovery of the whey proteins, by means of ultrafiltration, from scotta which is the residue of the production of ricotta 157 from cheese whey. This liquid is still rich in lactose (51 g L^{-1}) and suitable for H₂ 158 production in dark fermentation (DF). DF is regulated by many parameters and it has 159 160 still dark sides. The attention was focused, in particular, on the effect of pH on H₂ 161 production, on metabolites production (volatile fatty acids, ethanol and lactic acid) and 162 on the microbial community involved in the DF, by means of high-throughput 163 sequencing (HTS), in an unbuffered system. The production of H₂ was strongly influenced by the initial pH: it was much higher (+ 31%) in the reactors at alkaline pH (8 164 - 10) in comparison with the reactors at pH < 6. The study of the microbial community 165 166 indicated that the manipulation of the initial pH influenced the interspecific relationships 167 of the populations resident in the reactors. The alkaline pH favored the proliferation of 168 one genus in particular, Trichococcus. Although this genus is not an hydrogen-producer, its proliferation and, therefore, its metabolic activity in the phase immediately preceding the 169 170 DF, has created the optimal conditions for the activity of the clostridia (H₂ producers) 171 who have started to produce H_2 when the pH had dropped to 5.4. The clostridia were 172 more active in reactors with initial alkaline pH, that is, where Trichococcus were most 173 abundant. 174

175 1. INTRODUZIONE

1.1.

177 178

179

IDROGENO: CARATTERISTICHE CHIMICO – FISICHE

180 L' idrogeno è l'elemento più abbondante nell'universo. Esso, infatti, costituisce il
181 70-80% di tutta la materia: costituisce le stelle ma anche l'acqua, molti composti
182 inorganici nonché tutti i composti organici.

In condizioni standard l'idrogeno si presenta sottoforma di gas biatomico (H₂)
inodore, incolore, insapore non velenoso e atossico, altamente infiammabile a
concentrazioni in aria che vanno dal 4 al 75% in volume. Il suo valore calorifico inferiore
(LHV) è di 120 MJ kg⁻¹ K⁻¹. Il suo basso peso specifico (0.0899 kg m³) permette ad esso
di sfuggire al campo gravitazionale della Terra, disperdendosi nello spazio. Ecco perché

188 l'H₂ rappresenta solo l'1% dei gas atmosferici terrestri. Parte dell'idrogeno, comunque,

189 rimane occluso nelle rocce, soprattutto di origine vulcanica, come il granito.

190 Nonostante l'alta volatilità, l'H₂ può ritrovarsi in diversi composti come l'acqua
191 (H₂O), i combustibili fossili, il gas naturale e in tutti i composti organici.

192

193

1.2. CAMPI D'APPLICAZIONE

194

L'idrogeno, attualmente, è ampiamente usato nell'industria petrolchimica. Esso,
infatti, è adoperato per la raffinazione dei combustibili fossili: nei processi di
idrodealchilazione e di desolforazione del petrolio e del gas naturale [1], nel processo di
hydrocracking per la produzione di carburanti per aeromobili [2] è, inoltre, usato per la
produzione di ammoniaca nel processo Haber-Bosch [3], di acido cloridrico e

200 nell'industria alimentare come agente idrogenante per aumentare il grado di saturazione201 dei grassi e degli oli insaturi [4].

202	Recentemente si sta diffondendo l'idea di utilizzare, in un futuro molto prossimo,
203	l'H ₂ come carrier energetico da utilizzare per la produzione di energia elettrica mediante
204	le fuel cell che permettono di ossidare l'H ₂ direttamente con l'ossigeno atmosferico
205	producendo elettricità [5] oppure da usare per l'autotrazione come combustibile
206	utilizzabile direttamente nei motori a combustione interna. L'H ₂ , infatti, ha un LHV di
207	2.4 volte superiore al metano e la sua combustione produce solamente acqua e,
208	inevitabilmente, NOx. Infine, un utilizzo futuro dell'idrogeno è nella fusione nucleare in
209	cui due nuclei di idrogeno (deuterio e trizio) vengono fusi per formare He con
210	conseguente rilascio di energia e un neutrone.
211	
212	1.3. PRODUZIONE D'IDROGENO
213	
214	Come detto in precedenza l' H_2 è in grado di sfuggire al campo gravitazionale della
215	Terra e, pertanto, è molto raro. Ciononostante esso si trova in molte sostanze molto
216	abbondanti sul nostro pianeta. L'H ₂ , quindi, può essere estratto dalle sostanze che lo

217 contengono (Fig. 1).

219 Figura 1. Fonti da cui è possibile estrarre l'idrogeno [6].

218

- 221 In base alla Fig. 1, le fonti da cui estrarre H_2 si possono dividere in non rinnovabili
- 222 (gas naturale e carbone), e rinnovabili (biomasse ed acqua).
- 223 Una panoramica delle tecniche attualmente utilizzate per la produzione di H_2 è
- 224 descritta nella Fig. 2.

di CH₄ e vapore acqueo in H₂ e CO (1.1). Questa reazione avviene a temperature di 700850 °C e tra i 3 e i 25 bar di pressione.

$$CH_4 + H_2O + heat \rightarrow CO + 3H_2 \tag{1.1}$$

243 Il monossido di carbonio può essere convertito a CO₂ e H₂ attraverso la scissione del
244 vapore acqueo (1.2):

 $245 \qquad CO + H_2O \rightarrow CO_2 + H_2 + heat \qquad (1.2)$

246 Il POX prevede la produzione di H_2 attraverso la parziale combustione del CH_4 con 247 l'ossigeno. In questo modo si forma CO e H_2 (1.3):

248
$$CH_4 + \frac{1}{2}O_2 \to CO + 2H_2 + heat$$
 (1.3)

Successivamente, la CO può essere convertita ad H₂ secondo la reazione (1.2).
L'ATR è la combinazione tra l'SMR e il POX. La reazione è esotermica e la
produzione di H₂ avviene secondo la reazione (1.2).

252

253 IDROGENO DA CARBONE

254

L'H₂ può essere prodotto dal carbone attraverso vari sistemi di gassificazione (e.g. letto fisso, fluido o trascinato). Onde evitare la formazione di prodotti sgraditi (e.g. materiale carbonizzato, catrami e fenoli) sono richieste alte temperature d'esercizio. La reazione tipica di gassificazione del carbone (1.4) rilascia CO + H₂. Ancora una volta, poi, la CO può essere utilizzata, insieme al vapore acqueo, per formare H₂ tramite la reazione (1.2).

261
$$C(s) + H_2O + heat \rightarrow CO + H_2$$
(1.4)

262	Come descritto in precedenza, CO_2 è il principale gas esausto di tutti i sistemi che
263	permettono di produrre H_2 da fonti non rinnovabili. Al fine di evitare di emettere CO_2
264	inquinante nell'ambiente è necessario attuare dei sistemi di sequestro di tale gas. Essi
265	sono: post-combustione, pre-combustione e ossi-combustione [6].
266	
267	1.3.2. FONTI RINNOV ABILI
268	
269	L'H ₂ può essere ricavato anche da fonti rinnovabili (e.g. acqua e biomasse),
270	mediante diversi processi.
271	
272	IDROGENO DA ACQUA
273	
274	È possibile ricavare H_2 da acqua attraverso l'idrolisi. Esistono diversi processi di
275	idrolisi dell'acqua:
276	Elettrolisi diretta
277	Elettrolisi alcalina
278	Elettrolisi su membrana polimerica elettrolitica (PEM)
279	Elettrolisi ad alta temperatura
280	Foto elettrolisi
281	Scissione termochimica dell'acqua
282	L'elettrolisi diretta dell'acqua permette la scissione dell'H ₂ O in H ₂ e O mediante
283	applicazione di energia elettrica (1.5):

284
$$H_2O + electricity \rightarrow H_2 + \frac{1}{2}O_2 \qquad (1.5)$$

L' elettrolisi alcalina permette l'idrolisi dell'acqua per mezzo di una soluzione
acquosa di KOH che circola attraverso le celle elettrolitiche. La reazione è descritta di
seguito ed avviene con applicazione di energia elettrica:

288	<u>Elettrolita:</u>	$4H_2O \rightarrow 4H^+ + 4OH^-$	(1.6)
289	<u>Catodo:</u>	$4H^+ + 4e^- \rightarrow 2H_2$	(1.7)
290	<u>Anodo:</u>	$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$	(1.8)
291	Somma:	$2H_2O \rightarrow O_2 + 2H_2$	(1.9)

La PEM permette l'elettrolisi dell'acqua per mezzo di una membrana polimerica
acida che funge da elettrolita evitando l'uso di KOH e ciò rende il sistema più sicuro.
L'assenza di KOH, poi, permette di avere un design più compatto dovuto all'alta densità
dell'elettrolita. La reazione avviene come descritto sotto [6]:

- 296 <u>Anodo:</u> $H_2O \to \frac{1}{2}O_2 + 2H^+ + 2e^-$ (1.10)
- **297** <u>Catodo:</u> $2H^+ + 2e^- \rightarrow H_2$ (1.11)

L'elettrolisi ad alta temperatura è basata sulla tecnologia delle "high-temperature
fuel cells". Attualmente si utilizzano celle elettrolitiche a ossidi solidi ("solid oxide
electrolyser cells; SOEC) che operano tra 700 e 1000 °C. A queste temperature l'energia
elettrica necessaria per l'elettrolisi dell'acqua è inferiore rispetto a quella necessaria per
l'elettrolisi a 100 °C. Il grosso nodo è rappresentato dal grande quantitativo di calore
necessario al processo. Attualmente si sta investigando sulla possibilità di utilizzare
calore generato da fonte geotermica, solare o gas naturale.

La foto elettrolisi è un processo in cui una cella fotovoltaica è accoppiata ad una
cella elettrolitica, ovvero, la cella fotovoltaica è avvolta dall'elettrolita e, utilizzando
direttamente la radiazione solare, fornisce l'energia elettrica necessaria alla reazione di
elettrolisi dell'acqua.

309 La scissione termo chimica dell'acqua permette di convertire l'acqua in H_2 e O per 310 mezzo di reazioni termo chimiche. Un esempio di tale processo è descritto dalla reazione 311 seguente [6]:

312
$$(850^{\circ}C): H_2SO_4 \to SO_2 + H_2O + \frac{1}{2}O_2$$
 (1.12)

313
$$(120^{\circ}C): I_2 + SO_2 + 2H_2O \rightarrow H_2SO_4 + 2HI$$
 (1.13)

314
$$(450 \,^{\circ}C): 2HI \to I_2 + H_2$$
 (1.14)

315
$$SOMMA: H_2O \to H_2 + \frac{1}{2}O_2$$
 (1.15)

316

317 IDROGENO DA BIOMASSE

318

319 Le biomasse sono quei materiali di origine organica costituiti da coltivazioni 320 dedicate, residui di coltivazioni e/o di animali, provenienti dall'agricoltura, dalla 321 silvicoltura e dalle industrie connesse. Esse, pertanto, sono materie prime rinnovabili. Il processo mediante il quale si estrae H2 da tali biomasse è sostanzialmente simile a quello 322 descritto precedentemente per la gassificazione del carbone (1.4). Le maggiori 323 324 problematiche di tale processo sono l'estrema variabilità nella composizione delle biomasse e dall'umidità delle stesse che può rendere necessario uno step di essiccamento 325 prima della gassificazione. 326

Tutti i sistemi descritti finora hanno bisogno di una fonte primaria di energia. È
chiaro che tali processi potrebbero avere un minore impatto ambientale utilizzando fonti
energetiche rinnovabili come l'elettricità fotovoltaica, che viene prodotta per mezzo
dell'energia solare, oppure l'energia geotermica, l'energia idroelettrica e l'elettricità
prodotta dall'eolico, oppure l'energia elettrica prodotta sfruttando le onde del mare o le
maree.

Indipendentemente dalla fonte da cui viene estratto l' H_2 , dal processo utilizzato e dalla fonte d'energia primaria utilizzata, l'efficienza di produzione di H_2 viene calcolata secondo l'equazione 1.17:

$$\eta_{H_2} = LHV_{H_2} / E_{PS} \tag{1.17}$$

337 Dove η_{H_2} è l'efficienza termica finale dell'idrogeno, LHV è il potere calorifico inferiore 338 mentre E_{ps} è l'energia consumata per produrre 1 kg di H₂. È chiaro che minore è 339 l'energia consumata per produrre 1 kg di H₂ maggiore sarà l'efficienza del processo. 340

341 1.4. PRODUZIONE BIOLOGICA D'IDROGENO

342

L'H₂ può essere prodotto anche tramite processi biologici oltre che termo chimici. I
processi biologici sfruttano le reazioni biochimiche che regolano il metabolismo di alcuni
microorganismi (alghe, batteri ed archea) che sono in grado di generare H₂ da materie
prime rinnovabili come l'acqua e i composti organici [8]. La produzione biologica di H₂
può essere divisa in due gruppi: "light-depending" e "light-independent" (Fig. 3).

Figura 3. Processi attualmente disponibili per la produzione biologica di idrogeno [7].

351 *1.4.1. PROCESSI "LIGHT-DEPENDING"*

352

I processi "light-depending" permettono di generare H₂ attraverso microorganismi
in grado di utilizzare la radiazione solare come fonte d'energia per le loro attività

355 metaboliche. I processi "light-depending" sono:

356 Biofotolisi diretta

357 Biofotolisi indiretta

358 Fotofermentazione

La biofotolisi diretta è condotta dalle alghe verdi. Il processo è stato descritto, per la
prima volta, da Gaffron e Rubin [9]: le alghe verdi sfruttano l'energia solare per estrarre

361 gli elettroni direttamente dall'acqua, generando O_2 che si accumula sul lato ossidante del

362 "fotosistema II" (PSII) (Fig. 4) e l'H₂ che, invece, si accumula sul lato riducente del 363 "fotosistema I" (PSI) (Fig. 4). Il processo avviene a carico dell'enzima idrogenasi alla 364 luce e in condizioni anaerobiche. Poiché l'idrogenasi è sensibile all'O₂, la presenza di 365 questo gas inibisce la produzione di H₂ e la biofotolisi diretta può essere mantenuta per 366 lunghi periodi solo se si rimuove costantemente l'O₂ dal sistema [8]. Wykoff et al. [10] 367 hanno dimostrato che una carenza di zolfo può drasticamente limitare l'accumulo di O₂ 368 su PSII.

369

371

372 I microorganismi maggiormente coinvolti nel processo di biofotolisi diretta sono:

- 373 Scenedesmus obliquus [11], Chlamydomonas reinhardii e C. moenusii [12]. Il fattore limitante di
- 374 tale sistema è l'efficienza: in condizioni di bassa luminosità, infatti, l'efficienza
- 375 dell'energia solare è quasi del 10%, mentre in condizioni di luminosità elevata, essa crolla

sotto l'1%. In queste condizioni, infatti, i pigmenti fotosintetici catturano il 90% dei
fotoni, me essi vengono rilasciati come calore o fluorescenza poiché viene superato il
limite di trasferimento di elettroni tra PSII e PSI [13].

379 La biofotolisi indiretta, è condotta dai Cianobatteri. Essi posseggono 3 vie 380 metaboliche per generare H_2 . La prima via è specifica dei cianobatteri azoto fissatori (A. variabilis, N. spongiaeforme e Westiellopsis prolifica) [14], questa via metabolica è catalizzata 381 dall'enzima nitrogenasi [MoFe] ed è energeticamente inefficiente dal momento che 382 vengono richieste 2 molecole di ATP per ogni elettrone trasferito. Inoltre, parte dell'H₂ 383 384 generato è consumato dall'enzima idrogenasi [NiFe] che partecipa al processo. La seconda via metabolica è condotta utilizzando l'acqua come donatore di elettroni come 385 386 nelle alghe. Poiché i cianobatteri, però, non dipendono dalla ferredoxina come unico 387 donatore di elettroni, questo modo di generare H₂, risulta più efficace che nelle alghe. La 388 terza via metabolica richiede una fonte esterna di carbonio (e.g. carboidrati) che vengono 389 metabolizzati in presenza di luce, cosicché l'H2 vene generato sia per mezzo

390 dell'idrogenasi che della nitrogenasi [7].

La biofotolisi può essere limitata solo dalla massima efficienza raggiungibile dalla
fotosintesi che, teoricamente, può convertire fino al 33% della luce assorbita in energia
chimica. Ma, poiché meno della metà dell'energia del sole si trova nella regione visibile,
che è foto sinteticamente attiva, e poiché ci sono perdite inevitabili, la massima efficienza
raggiunta dalla fotosintesi è generalmente attorno al 6%.

La fotofermentazione è stata descritta per la prima volta da Benemmann et al.
[15]. Essa è la fermentazione di composti organici in presenza di luce con conseguente
produzione di H₂. Due gruppi di batteri sono capaci di effettuare la fotofermentazione: i

purpurei e i verdi. I batteri purpurei possono essere suddivisi in: solfobatteri purpurei
(*Chromatium*) e batteri purpurei non solfurei (*Rhodobacter*). I batteri Verdi possono essere
suddivisi in solfobatteri verdi (*Chlorobium*) e "gliding bacteria" (*Chloroflexus*). Questi
batteri sono in grado di convertire l'energia luminosa in energia chimica via
fotofosforilazione. Un esempio del meccanismo di fotofermentazione è mostrato in Fig.
5.

Figura 5. Meccanismo di generazione di idrogeno in fotofermentazione [7].

Il substrato organico è utilizzato come donatore di elettroni, dunque, la
produzione di H₂ è determinata dal substrato che costituisce la riserva del un flusso di
elettroni. Il substrato organico può essere sostituito con del solfuro inorganico che funge
da donatore di elettroni, mentre i composti contenti zolfo costituiscono la riserva per il
flusso di elettroni, dopodiché l'NAD⁺ viene ridotto a NADH attraverso il flusso inverso
di elettroni. Gli elettroni, a questo punto, vengono trasferiti alla nitrogenasi via
ferredoxina con consumo di ATP e produzione di H₂. Questa via, dunque, è

415 energeticamente sfavorevole per i microbi poiché ogni mole di H_2 prodotta attraverso la 416 nitrogenasi richiede il consumo di 4 ATP [7].

I batteri purpurei non solfurei, invece, producono H₂ per fornire gli elettroni alla 417 fotosintesi. In questa via metabolica, la CO2 viene fissata attraverso il ciclo di Calvin e 418 l'O₂ si forma come accettore finale di elettroni. La nitrogenasi, però, è inibita dall'O₂ e 419 quindi la formazione di H2 è soppressa in presenza di O2. In questo caso l'energia 420 421 luminosa è utilizzata per produrre solo ATP e gli elettroni sono ottenuti dall'ossidazione del substrato organico. Tuttavia, in condizioni di carenza di azoto, la nitrogenasi catalizza 422 423 la formazione di idrogeno molecolare dai protoni anziché formare NH₃. La reazione è 424 riassunta sotto:

$$CH_3COOH + 2H_2O \rightarrow 4H_2 + 2CO_2 \tag{1.18}$$

426 I solfobatteri verdi possono fissare l'N attraverso l'enzima nitrogenasi e l' H_2 è 427 generato, in condizioni limitate di N_2 , attraverso una via metabolica simile a quella dei 428 batteri purpurei non solfurei.

429 I "gliding bacteria" verdi possono generare H₂ ma il loro metabolismo non è ancora
430 ben conosciuto [7].

431 La produzione di H_2 per via fotofermentativa sembra promettente in quanto 432 permette di produrre H_2 utilizzando la luce solare e i rifiuti organici. Questo processo, 433 infatti, può portare a un considerevole abbattimento della sostanza organica nelle acque 434 reflue. Il fattore limitante, però, è la bassa efficienza del processo così come il basso 435 tasso di produzione di H_2 [16].

- 436
- 437 1.4.2. PROCESSI "NON-LIGHT-DEPENDING"

439 L'idrogeno può essere prodotto anche per vie biologiche "non-light dependent":

440

Elettrolisi microbica

441 Fermentazione al buio (*dark fermentation*)

L'elettrolisi microbica permette di produrre H2 da matrici organiche utilizzando 442 microorganismi "elettrogenici" per produrre corrente elettrica in abbinamento con 443 444 l'ossidazione dei composti ridotti. I microorganismi "elettrogenici" producono un basso 445 potenziale redox all'anodo che può essere sfruttato per ottenere la riduzione dei protoni al catodo utilizzando un piccolo generatore. Questo sistema viene chiamato cella 446 447 elettrolitica microbica (MEC). Essa richiede un anodo, un catodo, una membrana, microorganismi elettrochimicamente attivi e un generatore: la materia organica viene 448 degradata dai microorganismi "elettrogenici" che si trovano sull'anodo, rilasciando 449 elettroni e protoni, il generatore guida gli elettroni verso il catodo attraverso un cavo 450 451 elettrico, mentre i protoni migrano verso il catodo per mezzo di una membrana a 452 scambio protonico (PEM). A questo punto gli elettroni e i protoni si combinano sul catodo formando H₂ (Fig. 6) [7]. 453

456

455 Figura 6. Funzionamento di una cella elettrolitica microbica.

457 Esistono diverse specie microbiche elettrochimicamente attive. Esse appartengono

458 a diversi generi quali: b-Protobacteria sp. (Rhodoferax), g-Protobacteria sp. (Shewanella and

459 Pseudomonas), d-Protobacteria sp. (Aeromonas, Geobacter, Geopsychrobacter, Desulfuromonas,

460 Desulfobulbus), Firmicutes sp. (Clostridium), Acidobacteria sp. (Geothrix) etc. [17]. L'efficienza

461 della produzione di H_2 nelle MEC è influenzata principalmente dall'efficienza della PEM

462 (che è il fattore limitante) dalla conducibilità elettrica e dalla stabilità chimica dell'anodo e

del catodo.

464 La *dark fermentation* (DF) è la conversione dei carboidrati in H_2 , CO₂ ed acidi

465 organici operata da alcuni batteri in anaerobiosi. Le vie metaboliche seguite durante la

466 DF sono riassunte in Fig. 7.

469

470 La DF, attualmente, costituisce il processo produttivo più consolidato per la 471 produzione di bioidrogeno. Essa, infatti, permette di fermentare un'ampia gamma di substrati da cui, teoricamente, si può generare H2 in reattori dal disegno semplice e facili 472 da controllare che permettono di avere rese di H2 più elevate se confrontate con quelle 473 ottenute nei sistemi fotosintetici [18]. Molti generi di batteri sono in grado di generare H₂ 474 in DF: Bacillus, Escherichia, Enterobacter, Ruminococcoi and Clostridium [19-22]. Alcuni di 475 476 questi microorganismi possono lavorare in condizioni di termofilia (40-60 °C) dove la 477 solubilità dell'H₂ è minore così da evitare un'inibizione nella produzione. In base al calcolo stechiometrico, la conversione del glucosio a H₂ dovrebbe essere di 12 mol H₂ 478 mol⁻¹ di esoso [16]. La resa in H₂ ottenuta in DF, però, si aggira attorno a 4 mol H₂ mol⁻¹ 479

480 esoso, ovvero il 33% di quella teorica. Questo è dovuto alla formazione di co-prodotti
481 (acido acetico e butirrico, etanolo, etc.) che accompagnano la produzione di H₂ durante
482 la DF.

483

484 1.5. PRINCIPI DELLA DARK FERMENTATION

485

486 Come detto in precedenza la DF suscita interesse perché permette di produrre H_2 487 da un'ampia gamma di substrati. In realtà, tra i vari substrati utilizzabili, la DF è stata 488 condotta con successo solo su materiali ricchi di carboidrati. Le proteine, infatti, 489 vengono idrolizzate ad aminoacidi e poi fermentati accoppiati secondo la reazione di 490 Stickland: un aminoacido funge da accettore di elettrone per l'ossidazione dell'altro 491 aminoacido [23]. Questa reazione, però, non genera H_2 (Fig. 8).

- 492
- 493

495 Figura 8. Schema della reazione di Stickland.496

I grassi vengono scissi in glicerolo e acidi grassi a lunga catena (LCFA). Il glicerolo
può essere fermentato direttamente a H₂ [24, 25] gli LCFA, invece, vengono degradati ad
acetato e H₂ da batteri sintrofici [26]. Questa reazione richiede una pressione parziale di
H₂ molto bassa che può essere mantenuta utilizzando microorganismi metanogeni
oppure batteri solfo riduttori.

La dinamica della produzione di H₂ durante la DF può essere descritta utilizzando
l'equazione di Gompertz modificata (1.19) [27].

504
$$H(t) = H_{\max} \exp\left\{-\exp\left[\frac{R_{\max}e}{H_{\max}}(\lambda - t) + 1\right]\right\}$$
 1.19

505 Dove: H (t) è l'ammontare totale di H₂ prodotto al tempo d'incubazione *t*, in 506 condizioni standard (STP) di temperatura (273 °K) e pressione (101.3 kPa). *e* è la 507 funzione esponenziale di 1. *Hmax* è la produzione massima di H₂ cumulata (resa in H₂). 508 *Rmax* (H₂mol⁻¹ h⁻¹) è il tasso orario di accumulo di H₂ (produttività di H₂) e λ è la durata 509 della fase lag, cioè il tempo necessario all' adattamento della flora microbica prima della 510 fase di produzione esponenziale di H₂.

511

512 1.5.1. BIOCHIMICA DELLA DARK FERMENTATION

513

514 Come mostrato in Fig. 7, la DF segue la via glicolitica che porta alla formazione di
515 piruvato. Il piruvato, in effetti, è l'intermedio chiave della DF: può essere scisso in acido
516 formico o Acetil-CoA da due differenti enzimi coinvolti nella produzione di H₂. Tra i

- 517 batteri capaci di generare H_2 , quelli che maggiormente si ritrovano nella DF sono 518 appartenenti ai generi *Enterobacter* e *Clostridium* [7, 28-30].
- Le specie appartenenti agli *Enterobacter* convertono le molecole di piruvato in Acetil
 Co-A e formiato attraverso l'enzima formato C-acetiltransferasi (Pfl) e poi, attraverso
 l'idrogenasi Hyd3, convertono il formiato a H₂ and CO₂ (Fig. 9). L'idrogenasi Hyd3 è
 peculiare delle specie di *Enterobacter*.
 Le specie appartenenti al genere *Clostridium* trasformano le molecole di piruvato in
- Le spècie appartenenti al genere *Clostridium* trasformano le molecole di piruvato in
 Acetil Co-A e CO₂. La ferredossina ridotta viene prodotta dall'enzima piruvato sintasi
 (PFOR). La ferredossina ridotta può fornire gli elettroni direttamente alla idrogenasi
 [FeFe], un enzima tipico dei clostridi, che catalizza la formazione di H₂ coniugando gli
 H⁺ derivanti dall'ossidazione della feredossina [30].

- 528
- 529
- **530** Figura 9. Vie metaboliche seguite da *Enterobacter* spp. (a) e *Clostridium* spp. (b) in DF [30].
- 531 532
- 533 Durante la DF, la produzione di H_2 è accompagnata dalla produzione di co-
- 534 prodotti. I co-prodotti più comuni sono acido acetico e butirrico [31]. Le reazioni
- 535 biochimiche che portano alla produzione di questi acidi sono:

536
$$C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$$
 1.20

537
$$C_6H_{12}O_6 \rightarrow CH_3CH_2CH_2COOH + 2CO_2 + 2H_2$$
 1.21

538 Entrambe le vie metaboliche generano H_2 , però, in alcuni casi può attivarsi una 539 terza via metabolica che porta alla formazione di acetato ed etanolo con conseguente 540 abbassamento della produzione di H_2 :

541
$$C_6H_{12}O_6 + 2H_2O \rightarrow CH_3CH_2OH + CH_3COOH + 2CO_2 + 2H_2$$
 1.22

542 In DF, inoltre, possono attivarsi altre vie metaboliche che portano alla formazione 543 di acido propionico, etanolo oppure acido lattico. La formazione di propinato consuma 544 H_2 (1.23), mentre la produzione di etanolo ed acido lattico (1.24 e 1.25) non generano H_2 545 [32]:

546
$$C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COOH + 2H_2O$$
 1.23

547
$$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2 \qquad 1.24$$

548
$$C_6H_{12}O_6 \rightarrow CH_3CHOHCOOH + 2CO_2$$
 1.25

549

550 1.6. PARAMETRI CHE INFLUENZANO LA DARK FERMENTATION

551

552 Come tutti i processi biologici, anche la DF è influenzata da diversi fattori. Il fattore
553 più importante è l'inoculo, poi ci sono diversi fattori ambientali capaci di influenzare la
554 DF sia direttamente che indirettamente.

555

556 INOCULO

I batteri capaci di generare H₂ sono ampiamente diffusi negli ambienti naturali. 558 559 Essi, infatti, possono vivere nel suolo, nelle deiezioni animali, nei fanghi dei trattamenti 560 di acque reflue etc. [33-35]. Tutti questi materiali possono essere usati come fonte d'inoculo per la produzione di H₂ in DF. Purtroppo, però, in questi stessi materiali oltre 561 ai produttori di H₂ si ritrovano anche i consumatori di H₂, che possono essere soppressi 562 563 da alcuni pretrattamenti che, comunque, non intaccano la capacità produttiva dei batteri 564 idrogeno produttori. I pretrattamenti includono: shock termici, trattamenti acidi, basici, aerazione, congelamento e scongelamento, trattamenti chimici; cloroformio, sodio 2-565 566 bromo etansolfonato o acido 2-bromo etansolfonico o iodopropano [36]. Attraverso i 567 pretrattamenti è dunque possibile ottenere delle colture miste arricchite di idrogeno produttori. 568

569 Gli idrogeno produttori sono, generalmente, batteri anaerobi stretti anche se alcuni 570 anaerobi facoltativi sono stati identificati come capaci di produrre H₂. Gli anaerobi facoltativi producono ATP in presenza di O2 attraverso la respirazione aerobica; in 571 assenza di O2, però, essi dono capaci di passare alla fermentazione anaerobica. Le specie 572 573 di Enterobacter sono i più comuni batteri anaerobi facoltativi capaci di produrre H₂ [25]. *Escherichia coli*, potenzialmente, è in grado di generare H₂ da zuccheri semplici anche se 574 575 sono necessarie modifiche genetiche per incrementarne la produttività [37]. Klebsella 576 oxytoaca si è rivelata in grado di produrre H₂ anche in presenza del 10% di O₂ nell'ambiente [38]. Oh et al. [39] hanno isolato Citrobacter sp. Y19 che può produrre H₂ 577 sia da CO e H₂O che da glucosio. 578 I batteri anaerobi sono capaci di usare un'ampia gamma di carboidrati per produrre 579

580 H_2 con un tasso di produttività alto. I maggiori produttori di H_2 sono i clostridi (fam.

Clostridiacae), altre specie minori appartengono alle famiglie *Streptococcaceae*, *Thermotogales* e *Bacillus* [40-42]. All'interno di queste famiglie possono essere presenti ceppi mesofili e
termofili. I mesofili crescono in un range di temperature compreso tra 25 e 40 °C, i
ceppi termofili possono crescere a temperature più elevate (alcuni ceppi ipertermofili
anche fino a 80 °C) [25].

586Poiché i batteri produttori di idrogeno appartengono a generi ben definiti, si è587pensato di utilizzare colture pure come inoculo da utilizzare in DF. *Clostridium* e588*Enterobacter* sono stati quelli più ampiamente utilizzati e studiati come inoculo per la DF.589Molti studi sono stati condotti con culture pure su glucosio come substrato ed in590modalità batch [29]. Ma è comunque auspicabile testare la produzione di H2 da colture591pure su rifiuti organici che rendono il processo più industrializzabile al fine di ottenere lo592smaltimento di rifiuti accoppiato alla produzione di energia.

La produzione di H₂ da batteri anaerobi stretti (e.g. Clostridium sp.) è più alta rispetto 593 594 a quella ottenuta da anaerobi facoltativi (e.g. Enterobacter sp.) [43-44]. Tuttavia, una co-595 cultura può rappresentare un'interessante soluzione [45-46]. Una co-cultura di C. butyricum e E. aerogens può rendere l'ambiente più favorevole alla DF: E. aerogens, infatti 596 597 può consumare l'ossigeno disciolto nel substrato liquido, garantendo le condizioni 598 anaerobiche ottimali per la crescita di C. butyricum. Questa soluzione, di fatto, 599 permetterebbe di evitare l'utilizzo di agenti riducenti costosi come L-cisteina che 600 permettono di mantenere le condizioni di anaerobiosi necessarie per le colture pure. 601

602 SUBSTRATI

603

604	Il substrato utilizzato, ovviamente, è fondamentale per la produzione di H ₂ . Tutta la
605	materia organica, teoricamente, può essere utilizzata per generare H_2 , ma le vie
606	metaboliche che i microorganismi scelgono di seguire in base al substrato dato possono
607	condurre alla produzione più o meno abbondante di H_2 . I substrati più utilizzati per la
608	produzione di H ₂ sono:
609	Materiali lignocellulosici
610	Reflui di caseificio
611	Melassi
612	Materiali amidacei
613	Scarti alimentari

614 I materiali lignocellulosici derivano dall'agricoltura e dall'industria del legno. Poiché 615 contengono cellulosa ed emicellulosa, essi costituiscono la maggiore fonte rinnovabile di esosi e pentosi che possono essere utilizzati per la produzione biologica di H₂. La 616 cellulosa, però, deve essere degradata in zuccheri semplici prima di poter essere utilizzata 617 [47]. Taguchi et al. [48] hanno ottenuto 4.46 mmol H₂ mmol⁻¹ glucosio da idrolizzato di 618 cellulosa. Levin et al. [49] hanno riportato una produttività di 1.6 mol H₂ mol⁻¹ glucosio 619 620 da fibre di legno delignificato. Teoricamente, per ogni g di cellulosa, è possibile ottenere 621 567 mL H₂ [50] ma, all'aumentare della concentrazione di cellulosa diminuisce la resa in 622 H₂ [51]. La produzione di H₂, comunque, viene incrementata attraverso l'acidificazione 623 dei materiali lignocellulosici. La produttività può essere incrementata da 10 a 136 volte 624 rispetto ai materiali non trattati [52-54].

625 I reflui di caseificio sono ricchi in lattosio e, teoricamente, sono adatti per produrre

626 H₂. Diversi autori [55-66] hanno condotto esperimenti per verificare la possibilità di

627 produrre H_2 da reflui di caseificio. Questi studi riportano rese in H_2 vanno da 1.1 a 3.5 628 mol H_2 mol⁻¹ lattosio.

629

Le melasse sono i rifiuti degli zuccherifici. Sono una buona fonte di saccarosio che

630	può essere facilmente degradato anaerobicamente a glucosio che può essere fermentato a
631	$\rm H_2.$ Ren et al. [67] riportano una produttività di 26.13 mol $\rm H_2kg^{-1}\rm COD$ (domanda
632	chimica di ossigeno) rimosso usando un substrato basato su melasso.
633	I materiali amidacei sono i residui di molti processi produttivi dell'industria
634	alimentaria. Siccome l'amido è un polimero di glucosio, è un'ottima fonte da cui
635	produrre H_2 in DF. Zhang et al. [68] hanno riportato una resa massima di 92 mL H_2 g ⁻¹
636	di amido, utilizzando un substrato basato su amido. Van Ginkel et al. [69] hanno
637	ottenuto 2.1 L H_2 L ⁻¹ di refluo della lavorazione delle patate addizionato di nutrienti. Gli
638	stessi autori, hanno ottenuto 0.9 L $\rm H_2L^{-1}$ di refluo di lavorazione delle mele addizionato
639	di nutrienti. Anche il riso è un materiale amidaceo e i residui della sua lavorazione
640	possono essere utilizzati per la produzione di H _{2.} Fang et al. [70] hanno testato la
641	produzione di H ₂ utilizzando un refluo della lavorazione del riso contenente una
642	concentrazione di 5.5 g $\rm L^{\text{-1}}$ di carboidrati, ottenendo una resa di 346 mL $\rm H_2g^{\text{-1}}$
643	carboidrato.

644 Gli scarti alimentari domestici ed industriali sono materiali estremamente eterogenei 645 ed ampiamente diffusi che contengono grosse quantità di carboidrati utilizzabili per la 646 produzione di H_2 in DF. Kim et al. [71] hanno riportato una produzione massima di 647 122.9 mL H_2 g⁻¹ carboidrato-COD da scarti alimentari. Pan et al. [72] hanno riportato 648 una resa di 57 mL H_2 g⁻¹ solidi volatili (VS). Kim et al. [73] hanno ottenuto 1.9 mol H_2 649 mol⁻¹ esoso utilizzando gli scarti alimentari della caffetteria universitaria.

pH

653	Il pH è considerato come uno dei parametri chiave per la produzione di H_2 in DF,
654	poiché esso può influenzare direttamente l'attività dell'idrogenasi [74]. Diversi studi sono
655	stati condotti per trovare il pH ottimale per la produzione di H ₂ biologico ed essi variano
656	tra 4.5 e 9. Questa disomogeneità nei valori riportati come ottimali può essere spiegata
657	con le differenze di substrato, fonte di inoculo, pretrattamenti applicati all'inoculo e le
658	condizioni operative adottate [25, 75-76]. Inoltre, i vari studi riportano i risultati dove
659	solo il pH iniziale era stato corretto e, durante la DF, non c'era stato nessun controllo
660	del pH [77]. Durante la DF, però, non viene prodotto solo H ₂ , ma anche acetato,
661	butirrato ed etanolo, la presenza dell'acido acetico e butirrico porta ad un calo del pH
662	che influenza le vie metaboliche [78]. A pH compreso tra 4.5-6.0, infatti, la produzione
663	di acetato e butirrato sembra essere favorita, mentre, si ritiene che a pH neutro o alcalino
664	siano promosse la produzione di etanolo ed acido propionico [28, 79-80]. Altri autori
665	suggeriscono che la produzione di etanolo (solventogenesi) rappresenti il segnale che i
666	<i>Clostridia</i> stanno passando dalla fase esponenziale di crescita, quando l'H ₂ viene prodotto
667	in maniera abbondante insieme all'acido acetico e butirrico (acidogenesi), alla fase
668	stazionaria, cioè, quando l' H_2 non viene più prodotto. Tale passaggio è causato
669	dall'accumulo di acidi grassi volatili (VFA) durante la fase di crescita esponenziale [81].
670	La solventogenesi rappresenta un metodo di disintossicamento della biomassa batterica
671	dall'eccesso di VFA associato al basso pH del substrato [82]. Infatti, quando la
672	concentrazione di VFA è elevata, la forza ionica della soluzione aumenta: gli acidi

indissociati non polari penetrano la parete cellulare dei batteri e, a valori bassi di pH del
substrato, rilasciano protoni dentro la cellula batterica che ha un pH interno più elevato
[83], questo implica un incremento dell'energia richiesta per mantenere il pH
intracellulare neutro. Tale surplus di energia grava sul coenzima A e dei gruppi fosfato
[25].

- 678
- 679 TEMPERATURA
- 680

681 La temperatura è uno dei parametri operativi più importanti (insieme al pH) in DF. 682 La temperatura, infatti, influenza il tasso di idrolisi del substrato e quello di produzione di H₂. È stato dimostrato che un aumento della temperatura, in uno specifico range, può 683 684 accelerare la produzione di H₂ che però crolla bruscamente appena fuori dal range di 685 temperatura ottimale [84]. I range di temperatura in cui può essere condotta la DF sono in mesofilia (25-40 °C), termofilia (40-65 °C) o ipertermofilia (65-80 °C) [85]. In 686 687 condizioni di termofilia e ipertermofilia si presume di ottenere il massimo rendimento e la massima produttività di H₂ a causa della maggiore attività delle reazioni biochimiche 688 689 così come suggerito dalle equazioni termochimiche [30]. Inoltre, la produzione di H_2 ad 690 alte temperature può essere un efficace soluzione per evitare la contaminazione di batteri 691 consumatori di H₂ [25]. Generalmente, la DF in termofilia ed ipertermofilia sembra avere delle prestazioni superiori in termini di produzione di H2, ed è largamente accettato 692 che più H₂ possa essere prodotto in termofilia piuttosto che in mesofilia. Tuttavia, i dati 693 694 reperibili in letteratura non supportano questa idea [86].

La scelta della temperatura operativa, infatti, influenza le specie batteriche coinvolte
nella DF e molti batteri mesofili hanno una migliore cinetica biochimica rispetto ai
batteri termofili a parità di substrato, inoltre, le alte temperature possono indurre la
denaturazione termica delle proteine e degli enzimi influenzando negativamente l'attività
microbica [87].

- 700
- 701

PRESSIONE PARZLALE D'IDROGENO

702

703 Come descritto in precedenza (cfr. par. 1.5.1.), durante la fermentazione 704 "clostridica", l'idrogenasi è coinvolta nel processo di ossidazione-riduzione reversibile della ferredoxina. Se la concentrazione di H₂ nella fase liquida è eccessiva l'ossidazione 705 706 della ferredoxina diviene meno favorevole rispetto alla sua riduzione e ciò riduce la 707 capacità produttiva di H₂ [32]. Così, la pressione parziale di H₂ (PH₂) in un reattore dove 708 avviene la DF può influenzare la produzione di H2: un'alta PH2 è inibente, al contrario, 709 una bassa PH₂ può facilitare il rilascio di H₂ nello spazio di testa [88-89]. La riduzione della PH₂ durante la DF può portare ad un incremento nella resa in H₂. Diversi autori 710 711 [90-91] sono riusciti ad incrementare le rese in H_2 diffondendo N_2 oppure Ar, rispettivamente, nel liquido. Un maggior rilascio di H₂, comunque, può essere ottenuto 712 713 anche incrementando la velocità di agitazione [92]. 714 715 AZOTO E FOSFORO

717	L'azoto è un fattore di crescita molto importante per i batteri poiché è il
718	componente degli acidi nucleici, delle proteine e degli enzimi. Allo stesso modo, anche i
719	fosfati sono un importante nutriente poiché servono come tamponi nelle reazioni
720	biochimiche. Dunque, un appropriato livello di azoto e fosforo sono necessari per
721	ottenere un'elevata proliferazione dei batteri idrogeno produttori [32]. L'azoto
722	ammoniacale è la fonte di azoto più largamente studiata, i dati disponibili in letteratura
723	però sono inconsistenti: Bisaillon et al. [93], per esempio, riportano come ottimale una
724	concentrazione di 0.01 g N L ⁻¹ , Salerno et al. [94], invece, riportano una concentrazione
725	ottimale di 7 g N L^{-1} .
726	Il fosforo è necessario per la produzione di H_2 . È stato dimostrato che aumentando
727	la concentrazione di fosfati, in un appropriato range, si può aumentare la produzione di
728	H ₂ , tuttavia, un eccesso della concentrazione di fosfati può ridurre drasticamente tale
729	produzione [93, 95].
730	Un appropriato C/N e C/P sono fondamentali per la produzione di H2 in DF, ma
731	vari rapporti di C/N e C/P sono riportati come ottimali: Argun et al. [96] riportano un
732	rapporto C/N 200 e C/P 1000 come ottimale, al contrario, O-Thong et al. [97]
733	riportano come ottimale C/N 74 e C/P 559.
734	
735	IONI METALLICI
736	
737	Gli ioni metallici influiscono sulla crescita cellulare come cofattori di enzimi,
700	

738 processi di trasporto e deidrogenasi. Un'alta concentrazione di ioni metallici, però, può

739 inibire l'attività batterica [98]. Lin e Lay [99] riportano che i nutrienti più importanti per i

740	batteri idrogeno produttori sono magnesio, sodio, zinco e ferro. Lo ione magnesio è un
741	importante cofattore che attiva quasi 10 enzimi (esochinasi, fosfofruttochinasi,
742	fosfogliceratochinasi etc.) che partecipano al processo di glicolisi durante le prime fasi di
743	DF [100]. Anche il Fe ²⁺ è stato ampiamente studiato in DF poiché la sua presenza è
744	fondamentale per l'idrogenasi [25]. I dati disponibili in letteratura per la concentrazione
745	ottimale di Fe ²⁺ sono inconsistenti: Liu e Shen [101] riportano che la concentrazione
746	ottimale è 10 mg Fe ²⁺ L ⁻¹ , ma Zhang et al. [102] riportano una concentrazione ottimale
747	di 589.5 mg Fe ²⁺ L ⁻¹ , O-Thong et al. [97], d'altra parte, riportano che la concentrazione
748	ottimale è 257 mg Fe ²⁺ L ⁻¹ , infine, Lee et al. [103] riportano una concentrazione ottimale
749	di 4000 mg FeCl ₂ L ⁻¹ .

751 CONFIGUARAZIONE DEL REATTORE

752

753 La configurazione del reattore è riconosciuta come un altro importante parametro 754 per aumentare la resa e la produttività di H₂. Vari studi hanno correlato la produzione di H₂ con la quantità di popolazione microbica, così, differenti strategie sono state 755 756 elaborate per evitare il dilavamento della popolazione microbica dal reattore [104-106]. 757 Queste strategie includono la granulazione del fango e la formazione di biofilm al fine di 758 aumentare la concentrazione batterica all'interno del reattore. Le configurazioni dei 759 reattori che sono stati: reattori agitati a flusso continuo (CSTR), reattori anaerobici a 760 letto fluidificato (AFBR), reattori anaerobici in batch sequenziali (ASBR), reattori a letto 761 fisso o impaccati, reattori UASB, reattori a letto filtrante, reattori a letto misto, reattori a 762 flusso a pistone e bireattori a membrana (MBR) [32].

763 Altri studi si sono focalizzati sulla fermentazione semi-secca (10-20 % di sostanza 764 secca) e secca (>20% sostanza secca) per la produzione di H₂, poiché l'interesse per la produzione di H₂ da biomasse residue è in aumento [82, 107-109], è stata studiata anche 765 766 l'influenza della ritenzione della sostanza secca (SRT) e il tasso di carico organico (OLR) sulla produzione di H₂. Ma, anche in questo caso, i dati in letteratura sono controversi. 767 768 Gavala et al. [110], per esempio, riportano che il tasso di produzione di H₂ in un reattore 769 UASB è più elevata che in un CSTR con un tempo di ritenzione basso, il CSTR, però, ha sempre avuto una maggiore produzione di H₂ a tutti i tempi di ritenzione testati. Show et 770 771 al. [105] hanno confrontato le prestazioni di un CSTR e di un AFBR per la produzione 772 di H₂. Questi sistemi avevano differenti strategie di crescita batterica: CSTR a biomassa 773 sospesa, CSTR con fango granulare, AFBR con fango granulare e AFBR con biofilm. La 774 massima produzione di H₂ è stata ottenuta con CSTR a biomassa sospesa (1.92 mol H₂ 775 mol⁻¹ glucosio), i sistemi granulari e il biofilm hanno raggiunto una produzione massima di H₂ di 1.83 ± 0.09 mol H₂ mol⁻¹ glucosio e 1.81 ± 0.08 mol H₂ mol⁻¹ glucosio, 776 777 rispettivamente.

Tempi lunghi di SRT favoriscono la crescita di microorganismi idrogenotrofi, tempi
corti di SRT, d'altro canto, possono ridurre l'utilizzo del substrato con un conseguente
dilavamento della biomassa attiva [111]. L'ORL, invece, può influire sull'accumulo di
VFA e sui cambiamenti di pH che influenzano la composizione della biomassa attiva
con conseguente modifica delle vie metaboliche [77].

783

784 1.7. REFLUI DI CASEIFICIO

785

786	Come detto in precedenza (cfr. par. 1.5.), la fonte da cui più facilmente si ricava
787	idrogeno sono gli zuccheri. Pertanto, i reflui di caseificio, che sono ricchi in lattosio
788	sembrano essere adatti per la produzione di H_2 (cfr. par. 1.6.2.).
789	I reflui di caseificio sono ampiamente diffusi in quasi tutto il mondo, poiché essi
790	derivano dal processo di caseificazione del latte. Tutti formaggi propriamente detti
791	vengono prodotti aggiungendo il caglio al latte che porta alla caseificazione della caseina
792	che porta alla formazione di una massa pastosa detta "cagliata" e di una fase liquida detta
793	"siero di latte" (SL) [112]. La rottura della cagliata e la sua successiva lavorazione
794	portano alla produzione del formaggio, SL, invece, è il liquido di scarto. In Italia, quasi
795	sempre SL viene utilizzato per la produzione di ricotta, composta maggiormente dalla
796	caseina e dalle sieroproteine non coinvolte nella caseificazione. Il liquido di scarto di tale
797	produzione è detto scotta che, di fatto, è un SL parzialmente deproteinizzato. Poiché il
798	lattosio è poco coinvolto nella produzione di ricotta, la scotta ha praticamente lo stesso
799	quantitativo di lattosio che da solo costituisce almeno il 75% della sostanza secca.
800	Inoltre, sono presenti anche minerali (8-10% della sostanza secca), urea, acido citrico,
801	lattico ed urico, ed anche vitamine del gruppo B [113-116].
802	
803	1.7.1. DISPONIBILITA' DEI REFLUI DI CASEIFICIO

Ogni anno nel mondo si stima che vengano prodotte circa 180-190 milioni di
tonnellate di SL; ma solo il 50% viene utilizzato dall'industria alimentare. In Europa,
annualmente, vengono prodotte 40 milioni di tonnellate di SL, il 68% delle quali viene
utilizzato maggiormente per l'alimentazione animale [117]. I reflui di caseificio hanno un
809	carico organico troppo elevato per essere smaltiti così come sono; il loro valore di COD						
810	può arrivare fino a 80 g $O_2 L^{-1}$ [118]. Attualmente il carico organico dei reflui di						
811	caseificio viene abbattuto mediante processi biologici aerobi in vasche di ossidazione						
812	prima di essere immessi nelle acque superficiali.						
813							
814	1.7.2. ALTERNATIVE ALLO SMALTIMENTO						
815							
816	Come detto in precedenza, solo il 50% del SL prodotto annualmente nel mondo						
817	viene utilizzato dalle industrie alimentari e mangimistiche. Così, circa 95 milioni di						
818	tonnellate di SL sono ancora disponibili per un'ulteriore valorizzazione prima dello						
819	smaltimento. Sia SL che la scotta sono ancora ricchi di sieroproteine ad alto valore						
820	biologico che potrebbero essere recuperate attraverso l'ultrafiltrazione con membrane						
821	selettive [119]. Le varie frazioni proteiche ottenute possono poi essere utilizzate per						
822	specifici utilizzi, il permeato che deriva dall'ultrafiltrazione è ancora ricco in lattosio e						
823	questo permetterebbe di avere a disposizione, annualmente, 4523 tonnellate di lattosio						
824	per una loro ulteriore valutazione. Gli scarti di caseificio, inoltre, potrebbero essere						
825	utilizzati per la fertirrigazione [120], per la produzione di polidrossibutirrato [121]						
826	oppure per la produzione di energia; poiché il lattosio è formato da 2 molecole di esoso,						
827	teoricamente, da esso è possibile ottenere 8 mol H_2 mol ⁻¹ di lattosio [16] e questo lo						
828	rende particolarmente appetibile per una sua valorizzazione energetica specialmente in						
829	DF [65].						

831 2. OBIETTIVO DELLA RICERCA

833	L'attività di dottorato è stata svolta nell'ambito del progetto "Sostenibilità della
834	filiera agroalimentare" (SO.FI.A., CTN01_00230_450760.). Tale progetto finanziato dal
835	Ministero dell'istruzione, dell'università e della ricerca era inquadrato all'interno del
836	Cluster Tecnologico Agrifood Nazionale (CL.A.N.). Il progetto SO.FI.A. era articolato
837	in 5 Obiettivi Realizzativi (O.R.) e l'attività di dottorato è stata svolta all'interno
838	dell'O.R.4: Recupero di sottoprodotti e biomolecole dell'industria lattiero-casearia.
839	Precisamente l'attività svolta presso CREA-ZA, ha riguardato la valorizzazione degli
840	scarti di caseificio per la produzione biologica di H_2 e CH_4 .
841	Come detto in precedenza, in Italia, dal SL si ricava la ricotta, il cui scarto è detto
842	scotta. La scotta, oltre ad essere ancora ricca in lattosio, contiene ancora delle
843	sieroproteine con un alto valore biologico. Un importante produttore italiano di latticini,
844	partner del progetto, era interessato al recupero delle siero proteine che, poiché hanno
845	un alto valore biologico, hanno un fiorente mercato. La scotta fornita da questo
846	produttore è stata ultrafiltrata nell'impianto di UF di ENEA (altro partner del progetto)
847	al Laboratorio Bioprodotti e Bioprocessi, Centro Ricerca Casaccia (Roma). Il refluo
848	liquido, ricco di lattosio, è stato valutato al fine di utilizzarlo per produrre H_2 . L'obiettivo
849	specifico del è stato la valorizzazione energetica degli scarti di caseificio (scotta e
850	permeato), utilizzandoli per la produzione di H_2 in DF mediante l'utilizzo di consorzi
851	microbici non selezionati. Le attività svolte sono state focalizzate sulla valorizzazione del
852	permeato di scotta (più povero della scotta) per la produzione di H_2 e sull'ottimizzazione
853	dei parametri che maggiormente influenzano la DF in una condizione in cui ci siano
854	diverse popolazioni microbiche all'interno del reattore anaerobico. L'evoluzione delle

855	popolazioni microbiche, infatti, è stata studiata mediante l'utilizzo della tecnica dell'high
856	throughput sequencing (HTS) che, permette di ottenere un responso rapido ed un'alta
857	copertura nell'identificazione delle comunità microbiche con costi relativamente bassi
858	[122]. L'HTS è stata utilizzata recentemente per lo studio della microbiologia dei reattori
859	di digestione anaerobica dei reflui industriali [123-124] ed anche per descrivere le
860	comunità microbiche in reattori in cui veniva prodotto H_2 che avevano diverse
861	condizioni operative [125-126]. Più di recente, Etchebehere et al. [127] hanno utilizzato
862	tale tecnica per confrontare le popolazioni residenti in 20 reattori in cui veniva prodotto
863	H ₂ , in diversi laboratori del Sud America.
864	In questa tesi, l'attenzione è stata maggiormente focalizzata sul substrato e sul pH.
865	
866	3. MATERIALI E METODI
867	
868	3.1. SUBSTRATI
869	
870	I substrati utilizzati durante il progetto di ricerca sono stati scotta, permeato di
871	scotta e liquame suino. La scotta è stata reperita in 4 caseifici diversi (G, H, R, S), la
872	scotta "G" è stata ultrafiltrata dall'ENEA (come riportato in precedenza) usando
873	membrane con cut-off 30 kDa. Sia le scotte che il permeato sono stati congelati a -28°C
874	immediatamente dopo la loro produzione e scongelati poco prima del loro utilizzo. Il
875	liquame suino è stato raccolto dalla vasca di stoccaggio della porcilaia sperimentale del
876	Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro Zootecnia e
877	acquacoltura, (CREA-ZA) sita a S. Cesario sul Panaro (MO), dopo omogeneizzazione

- 878 meccanica ed utilizzato fresco. Tutti i substrati sono stati utilizzati tal quali senza alcuna
- 879 aggiunta chimica o pretrattamenti, la loro composizione è riportata in Tab.1.

ID	TS %	VS %	Total	Ammonium	pH	Alcalinity	Total	Organic	COD	C/N	Lactose
	FW	FW	N %	N % FW	-	(mg	P %	C % TS	(gO_2/L^{-1})		g L-1
			FW			$CaCO_3 L^{-1}$)	TS				_
Pig slurry	1.19	0.79	0.11	0.08 (0.01)	7.4	15329.33	0.02	30.52	9.53 (2.65)	3.12	0.00
	(0.3)	(0.25)	(0.01)		(0.3)		(0.01)	(5.84)		(0.85)	
Scotta "G"	5.87	5.07	0.07	0.01 (0.00)	5.7	751.25	0.03	37.59	54.50 (2.12)	31.28	50.3 (0.1)
	(0.03)	(0.21)	(0.01)		(0.3)	(1.77)	(0.00)	(3.13)		(5.46)	
Scotta	6.42	5.19	0.06	0.01	5.91	519.00	0.04	33.18	52.00	36.66	46.3
"H"											
Scotta "R"	6.78	5.77	0.09	0.01	6.20	656.00	0.05	41.99	58.00	31.53	51.2
Scotta "S"	6.62	5.93	0.10	0.01	6.12	658.00	0.04	44.48	60.00	29.33	49.7
Permeate	5.85	5.21	0.03	0.01 (0.00)	6.1	592.50	0.02	36.51	54.25 (1.50)	80.10	50.6 (0.4)
	(0.09)	(0.14)	(0.00)		(0.1)	(47.30)	(0.00)	(1.67)		(6.85)	

880 Tabella 1. Caratterizzazione dei substrati utilizzati nei vari esperimenti. Deviazione standard in parentesi (n=3), TS= solidi totali, FW= peso fresco, VS = solidi volatili.

883

3.2. PREPARAZIONE DELL'INOCULO

884

885	L'inoculo è stato preparato utilizzando il liquame suino tal quale [128]. La frazione
886	liquida del liquame suino è stata prelevata all'uscita del separatore solido/liquido.
887	Duecento mL di liquame suino sono stati miscelati con 200 mL di terreno d'idratazione
888	sterilizzato (HM), contenente 348 mg L ⁻¹ K ₂ HPO ₄ , 227 mg L ⁻¹ KH ₂ PO ₄ , 500 mg L ⁻¹
889	NH_4Cl , 200 mg L^{-1} MgCl ·6 H_2O , 250 mg L^{-1} Ca Cl_2 ·2 H_2O , 2.25 g L^{-1} NaCl , 300 mg L^{-1} L-
890	cisteina, 300 mg L^{-1} Na ₂ S ·9H ₂ 0 e 0.1% resazurina, in bottiglie da 500 mL con
891	un'atmosfera di N ₂ -CO ₂ (80:20). I gas sono stati miscelati con un miscelatore KM 60-3
892	(Witt, Germania) e deossigenati tramite una colonna contenente pellets di Cu ridotti
893	(Glasgerätebau Ochs, Germania) e diffusi in ogni bottiglia con un distributore
894	d'alluminio di gas (Glasgerätebau Ochs, Germania) dopo essere stati filtrati con filtri per
895	gas autoclavabili in PTFE (Midisart [®] 2000, dimensione dei pori 0.2 μ m, Sartorius,
896	Germania).

La miscela liquame suino e HM è stata incubata a 35 °C in condizioni di 897 anaerobiosi stretta e la composizione dello spazio di testa è stata analizzata man mano 898 che il gas si accumulava. L'inoculo è stato considerato pronto quando la produzione di 899 gas si è fermata, indicando il completo esaurimento delle sostanze nutritizie inizialmente 900 presenti nel liquame suino. A questo punto la miscela è stata centrifugata e il pellet è 901 902 stato risospeso in 40 mL di HM in condizioni anaerobiche. L'inoculo è stato utilizzato 903 così, senza alcun pre-trattamento. La composizione degli inoculi utilizzati nelle varie 904 prove è riportata nella Tabella 2.

ID	TS %	VS %	Total	Ammonium	pН	Alcalinity (mg	Total	Organic	Density
	FW	FW	N %	N % FW		$CaCO_3 L^{-1}$)	P %	C % TS	
			FW				TS		
M3B0914	9.57	5.51	0.42	0.2	7.8	15400	0.2	30.42	1.07
M3B0415	8.42	5.00	0.42	0.2	7.8	15500	0.2	30.54	1.07
M3C0915	8.84	5.17	0.51	0.2	8.4	17202	0.25	30.80	1.07
M3B0216	9.42	5.21	0.47	0.2	8.1	16510	0.25	30.00	1.07
Mean	9.06	5.22	0.45	0.2	8	16153	0.23	30.44	1.07
SD	0.5	0.2	0.04	0.00	0.3	860	0.03	0.33	0.00

905 Tabella 2. Caratterizzazione degli inoculi utilizzati nei vari esperimenti. SD = deviazione standard (n=12), TS= solidi totali, FW= peso fresco, VS = solidi volatili.

3.3. COMPOSIZIONE DEL BIOGAS

907

908	Le concentrazioni di H_2 , CH_4 e CO_2 nel biogas sono state misurate con un
909	gascromatografo (GC) MicroGC Agilent 3000 (Agilent Technologies, U.S.A.),
910	equipaggiato con 2 colonne: Molsieve e Plot U; un detector TCD ed argon come gas
911	carrier.
912	Le misurazioni del biogas sono state fatte in accordo con quanto riportato in [129].
913	Il biogas è stato raccolto in siringhe di vetro da 100 mL (Poulten & Graf GmbH,
914	Germania), come descritto in [130]. In breve, le siringhe contenenti il biogas erano
915	equipaggiate con un tubo di lattice (diametro interno, 3 mm) per la connessione all'
916	entrata GC. I tubi erano chiusi con dei morsetti quando non utilizzate. Un'aliquota del
917	gas è stato spinto fuori prima di ogni iniezione per pulire la linea di iniezione.
918	
919	3.4. METODI D'ANALISI
920	
921	Solidi totali (TS), solidi volatili (VS), COD, alcalinità, N totale e ammoniacale e pH
922	sono stati determinati secondo quanto descritto in [131]. I solidi totali sono stati misurati
923	gravimetricamente come la differenza del peso del campione prima e dopo un
924	trattamento termico a 105 °C in stufa (G [®] -Therm 115, F.lli GALLI G.& P., Italia) fino a
925	peso costante. I solidi volatili sono stati calcolati come la differenza tra TS e le ceneri. Le
926	ceneri sono state determinate con l'incenerimento in una muffola (B180, Nabertherm,

927 Germania) a 550 °C per 10 ore. Il COD è stato determinato attraverso l'ossidazione del

928 dicromato usando un Tecator[®] Digester (Foss, Danimarca) come fonte di calore e un

condensatore a ricadere. L' N totale e ammoniacale sono stati determinati tramite
distillazione con un apparato Kjeldhal (KjeltecTM 2300 Foss, Danimarca), rispettivamente
con o senza digestione acida con H₂SO₄ (Sigma-Aldrich, Germania) e Cu (Pellet
KjeltabsTM CM AA50, Thompson Capper, UK) come catalizzatore. Il pH è stato
determinato con un pH-metro Crison Titromatic 1S equipaggiato con un elettrodo 5203
(Hach, USA).

Per le analisi dei metaboliti della fermentazione, 5 mL di campione di brodo di 935 936 fermentazione congelato sono stati scongelati e centrifugati a 4000 rpm per 15 minuti. Il 937 surnatante è stato usato per le analisi. Gli acidi grassi volatili sono stati determinati con 938 un gascromatografo Thermo Finnigan Trace GC Ultra (Thermo Finnigan LLC, U.S.A.), equipaggiato con una colonna capillare NukolTM (Supelco, U.S.A., cat. no. 24107), 30 m x 939 940 0.25 mm ID, 0.25 µm di spessore del film. Condizioni analitiche: detector FID, gas 941 carrier: He (S.I.A.D. S.p.A, Italia); flusso di gas: 0.8 mL min⁻¹ "split ratio": 80/100, forno a temperatura programmata: da 100 °C (per 1 min) a 193 °C con incremento di 8°C min-942 943 ¹, temperatura finale 193 °C per 2 min. I campioni sono stati preparati come descritto in [132], con alcune modifiche. Mezzo mL del surnatante del campione è stato aggiunto a 944 0.25 mL di 4% H₃PO₄ e 0.25 mL di standard interno, per un volume finale di 1 mL. Un 945 946 microlitro di questa miscela sono stati iniettati direttamente nella camera di iniezione del gascromatografo con una siringa Hamilton[®] (U.S.A.) da 10 µL. L'identificazione dei 947 picchi è stata fatta comparando i tempi di ritenzioni dei picchi sconosciuti con quelli di 948 949 una miscela standard di acidi grassi volatili commerciale (46975-U Supelco, U.S.A.). 950 L'acido 2-2 dimetilbutirrico (Sigma-Aldrich, Germania) è stato usato come standard 951 interno per quantificare la concentrazione di VFA come descritto in [133]. La

952	concentrazione totale di VFA (mg L ⁻¹) è stata calcolata come la somma delle
953	concentrazioni degli acidi acetico, propionico, butirrico e iso-butirrico, valerico e iso-
954	valerico, caproico e iso-caproico.

955 La concentrazione di lattosio, etanolo e acido lattico è stata determinata 956 enzimaticamente con dei kit R-Biopharm (R-Biopharm AG, Germany). Il lattosio è stato 957 prima idrolizzato a glucosio e galattosio dalla galattossidasi; il galattosio è stato poi 958 ossidato, in condizioni alcaline, a galattonato dall' NAD in presenza di galattosio 959 deidrogenasi. L'etanolo è stato ossidato ad acetaldeide in condizioni alcaline dal NAD, in 960 presenza di alcol deidrogenasi, e l'acetaldeide è stata successivamente ossidata ad acido 961 acetico dal NAD in presenza di aldeide deidrogenasi. L'acido lattico è stato ossidato a piruvato dal NAD, in presenza di lattato deidrogenasi. La quantità di NADH che si è 962 963 formata dal NAD in tutte le reazioni di ossidazione è stata sempre misurata con uno 964 spettrofotometro (V630, Jasco, U.S.A.) a 340 nm.

965

966 3.5. ADATTAMENTO DEL MODELLO E ANALISI STATISTICHE

967

I parametri delle curve della produzione cumulativa di H₂ sono stati valutati
attraverso un'equazione di Gompertz a 3 parametri modificata (1.19). Tutte le analisi
statistiche sono state effettuate usando le procedure del pacchetto SAS [134].
L'adattamento del modello Gompertz alle misurazioni è stato fatto usando PROC
NLIN e i valori dei parametri sono stati stimati secondo il metodo Gauss-Newton.
PROC LIN è stato usato per l'analisi della regressione dei valori di Rmax ed Hmax in
funzione del pH. PROC MIXED è stato usato per verificare la significatività degli effetti

975	dei trattamenti sui parametri della DF: λ , Rmax ed Hmax. Il confronto multiplo delle
976	medie è stato fatto utilizzando SAS LSMEANS. I fattori e gli effetti dell'interazione dei
977	fattori sono stati considerati significativi a P<0.05. Tukey Honestly Significant
978	Difference (HSD) a P = 0.05 è stato utilizzato per confrontare i valori medi dei
979	trattamenti.
980	Per descrivere la distribuzione delle OTUs (unità tassonomiche operative) in funzione
981	del tempo di DF e del pH iniziale le analisi metagenomiche è stata applicata la Principal
982	Coordinate Analysis (PCoA) utilizzando la funzione di ordinata del pacchetto R
983	PHYLOSEQ [135] utilizzando il metodo della distanza UNIFRAC [136]. Per mezzo di
984	analisi statistiche è stata valutata l'influenza del pH, durante la DF, sull'abbondanza
985	relativa dei 5 generi più rappresentativi: Bifidobacterium, Clostridium sensu strictu,
986	Enterococcus, Lactobacillus e Trichococcus. Le analisi sono state applicate per valutare i fattori
987	e gli effetti delle interazioni tra fattori sull'abbondanza relativa delle OTUs (ABUND).
988	ABUND (in percentuale) è stata usata come variabile dipendente nel modello. Per
989	valutare le differenze temporali in funzione del pH, le misure orarie sono state
990	raggruppate in Periodi. Questo ha permesso di aumentare il numero di campioni di ogni
991	trattamento. I trattamenti confrontati erano: pH (4, 8 e 10) e Periodo. Periodo 1 (fase lag
992	nella produzione di H_2) in cui sono state incluse le misure al tempo 0 e dopo 6 ore di
993	DF; Periodo 2 (fase esponenziale in cui sono state incluse le misure a 16,24 e 48 ore;
994	Periodo 3 (fase stazionaria) in cui sono state incluse le misure a 72 e 96 ore. PROC
995	MIXED è stato usato per verificare la significatività degli effetti dei trattamenti su
996	ABUND. Il test KENWARDROGER è stato utilizzato per calcolare i gradi

997	di libertà del denominatore. REPEATED è stato usato per gestire il trattamento Periodo.
998	I confronti multipli tra le medie sono stati effettuati usando SAS LSMEANS. I fattori e gli
999	effetti delle interazioni tra fattori sono stati considerati significativi a P < 0.05. Per
1000	confrontare i valori medi dei trattamenti è stato usato il test Tukey-Kramer per disegni
1001	non bilanciati.
1002	
1003	3.6. ESTRAZIONE DEL DNA GENOMICO
1004	
1005	Cinque mL di ogni campioni sono stati centrifugati in una mini centrifuga ad alta
1006	velocità (Microspin 12, Biosan, Lettonia) a 12400 rcf (forza centrifuga relativa) per 1
1007	minuto, 2 mL di pellet di ogni campione sono stati utilizzati per l'estrazione del DNA
1008	genomico. L'estrazione del DNA è stata fatto utilizzando PowerBiofilm® DNA Isolation
1009	Kit (Mo Bio laboratories, USA), seguendo le istruzioni del produttore. La preparazione
1010	della libreria, il sequenziamento del DNA e le analisi metatassonomiche sono state
1011	effettuate dal Research and Innovation Centre della Fondazione Edmund Mach (FEM)
1012	(S. Michele all'Adige, TN, Italia).
1013	
1014	3.7. PREPARAZIONE DELLA LIBRERIA E SEQUENZIAMENTO
1015	
1016	La preparazione della libreria ed il sequenziamento sono stati eseguiti come
1017	descritto in [137]. È stato usato il set di primer batterico specifico 515F (5'
1018	GTGYCAGCMGCCGCGGTAA 3') e 806R (5' GGACTACNVGGGTWTCTAAT 3')
1019	[138] con basi degenerate [139] e adattatori Illumina. Tutto il DNA genomico estratto è

1020	stato amplificato in PCR mirando ai frammenti ~250-bp del gene 16S rRNA della
1021	regione variabile V4. Venticinque μ l di amplificato e 1 μ M di ogni primer sono stati usati
1022	per l'amplificazione in PCR di ogni campione. Specificamente, 2.5 µl di DNA stampo
1023	$(5ng/\mu l)$ sono stati usati in combinazione con 2.5 μl di 2x KAPA HiFi HotStart
1024	ReadyMix, 5 µl di "forward" primer e 5 µl di "reverse" primer. L'amplificazione PCR è
1025	stata eseguita usando GeneAmp PCR System 9700 (Thermo Fisher Scientific, U.S.A.)
1026	con i seguenti passaggi: melting step; 95 °C per 3 minuti (1 ciclo), annealing step; 95 °C
1027	per 30 secondi, 55 °C for 30 secondi, 72 °C for 30 secondi (25 cicli), extension step; 72
1028	°C per 5 minutes (1 ciclo).
1029	La qualità dei prodotti della PCR è stata verificata su gel d'agarosio (1.5%) e le
1030	impurità sono state rimosse usando Agencourt AMPure XP system (Beckman Coulter,
1031	U.S.A.) seguendo le istruzioni del produttore. Successivamente, il doppio indice e gli
1032	adattatori di sequenziamento Nextera XT Index Primer (Illumina) sono stati attaccati
1033	con 7 cicli di PCR (16S Metagenomic Sequencing Library Preparation, Illumina). Le
1034	librerie finali ottenute sono state purificate con Agencourt AMPure XP system ed
1035	analizzate su una piattaforma Typestation 2200 (Agilent Technologies, U.S.A.) e
1036	quantificate utilizzando il kit Quant-IT PicoGreen dsDNA (Thermo Fisher Scientific,
1037	U.S.A.) con un lettore di micropiastre Synergy2 (Biotek, U.S.A.). Tutte le librerie
1038	ottenute sono state raggruppate in modo equimolare in un'unica libreria di ampliconi ed
1039	analizzata con una piattaforma a Typestation 2200. Le librerie segnate sono state
1040	sequenziate con una piattaforma Illumina® MiSeq (PE300) (MiSeq Control Software
1041	2.5.0.5 and Real-Time Analysis software 1.18.54.0).
1042	

1043 3.8. ANALISI DEI DATI METATASSONOMICI

1044

1045	L'analisi dei dati metatassonomici è il processo HTS utilizzato per caratterizzare
1046	l'intero microbiota di un ecosistema definito e creare il profilo metatassonomico della
1047	comunità microbica che mostra le relazioni esistenti tra tutte le sequenze ottenute.
1048	I dati grezzi ottenuti dal procedimento Illumina sono stai pre-processati con un
1049	sistema di software "pipeline" (MICCA v. 1.6.1) [140]. Le unità tassonomiche operative
1050	(OTUs) sono state assegnate raggruppando le sequenze con una somiglianza di almeno il
1051	97% di paia di basi e la loro sequenze rappresentative sono state classificate con RDP
1052	[141] versione 2.8.
1053	La stima dell'a diversity (la ricchezza all'interno del campione) è stata calcolata
1054	usando phyloseq R package [142], e confrontata con gli indici Chao 1 e Shannon.
1055	L'indice Chao 1 stima il numero assoluto di specie in un campione, basandosi sul
1056	numero di specie rare [143]. L'indice di Shannon quantifica l'entropia del sistema: in un
1057	sistema altamente eterogeneo (e campionato in maniera casuale); un individuo
1058	sconosciuto potrebbe appartenere a qualsiasi specie ed esiste una grande incertezza sulla
1059	predizione della sua identità. In un sistema meno eterogeneo, dominato da una o poche
1060	specie, è più semplice predire l'identità di un individuo sconosciuto poiché c'è meno
1061	incertezza nel sistema [144].
1062	
1063	3.9 SUPPORTI PER L'IMMOBILIZZAZIONE DELLA BIOMASSA

1063 3.9. SUPPORTI PER L'IMMOBILIZZAZIONE DELLA BIOMASSA1064

1065	I supporti scelti erano di origine inorganica (ceramica e zeoliti) e organica (biochar
1066	da deiezioni suine palabili e da cippato). I supporti in ceramica (Biomax, Askoll, Italia),
1067	sono stati scelti perché precedentemente descritti come il miglior supporto per l'adesione
1068	di biomassa di specie appartenenti al genere Thermotoga [145], le zeoliti (I.Z. Italiana
1069	Zeoliti srl, Italia) sono state scelte poiché esse sono state usate come supporto per
1070	l'adesione di microorganismi in diverse configurazioni di reattori di digestione
1071	anaerobica [146], i biochar sono stati scelti come supporti innovativi per l'adesione di
1072	biomassa microbica. Le dimensioni medie di ciascun supporto erano di 0.5-1 cm.
1073	I biochar sono stati prodotti come descritto in [147]. Brevemente 5 g di campioni
1074	secchi e setacciati di palabile suino o cippato sono stati trattati a 420 °C per 20 minuti in
1075	crogiuoli di porcellana coperti.
1076	
1077	4. DISEGNI SPERIMENTALI
1078	
1079	4.1. ESPERIMENTO "A"
1080	
1081	In questo esperimento è stata valutata la produzione di H ₂ da permeato in
1082	confronto con 4 scotte diverse (G., H., R., S.), al fine di capire se il permeato fosse un
1083	substrato adatto alla produzione di H ₂ . Le scotte sono state fornite da 4 caseifici
1084	differenti, il permeato è stato ottenuto dall'ultrafiltrazione della scotta "G". La DF è stata
1085	condotta in reattori da 100 mL (volume effettivo 118.5 mL), in condizioni batch non
1086	tamponato, in triplo per un totale di 15 reattori. La miscela di reazione era costituita da 5

1087 mL di inoculo (M3B0914) e 50 mL di substrato non sterile. Il pH iniziale era 1088 mediamente 6.3 ± 0.2 .

Lo spazio di testa dei reattori è stato flussato con 100% N₂ durante tutte le fasi di 1089 1090 preparazione prima dell'inoculo. I reattori sono stati chiusi con tappi di butile tenuti da 1091 sigilli in alluminio ed incubati a 35 °C per 4 giorni. Durante il periodo d'incubazione essi 1092 sono stati distribuiti in maniera casuale all'interno dell'incubatore. Il biogas è stato 1093 raccolto come descritto in precedenza (cfr. par. 3.3). I volumi di H₂ e CH₄ sono stati 1094 misurati una volta al giorno dopo l'incubazione. Il periodo d'incubazione è stato 1095 completato quando non vi era più alcuna produzione di biogas all'interno dei reattori. 1096 Nessuna produzione di H_2 e CH_4 è stata rilevata nei reattori in cui l'inoculo era stato sospeso in HM sterilizzato. 1097

1098

1099 *4.2. ESPERIMENTO* "B"

1100

In questo esperimento è stata valutata la produzione di H₂ da permeato e scotta in co-digestione o meno con liquame suino a diverse percentuali e a diversi livelli di pH iniziale, al fine di capire come la presenza di liquame suino potesse influenzare la produzione di H₂. Il permeato (PE) è stato ottenuto dall'ultrafiltrazione della scotta "G" (SC), il liquame suino (PS) è stato prelevato dalla vasca di raccolta della porcilaia sperimentale del CREA-ZA, sita a S. Cesario s/P. (MO), dopo omogeneizzazione meccanica.

La DF è stata condotta in reattori da 100 mL (volume effettivo 118.5 mL), in
condizioni batch non tamponato, in triplo per un totale di 135 reattori. La miscela di

1110 reazione era costituita da 5 mL di inoculo (M3B0415) e 50 mL di substrato non sterile. I 1111 trattamenti erano: SC o PE in co-digestione o meno con PS (0, 25, 50 e 75%) a 5 valori 1112 di pH iniziale (6.5, 7, 7.5, 8 e 8.5). Reattori contenenti 100% PS sono stati inclusi come 1113 controllo. Le correzioni di pH al livello desiderato sono stati fatte in ogni reattore prima 1114 dell'inoculo, con NaOH 32% (Chem-Lab, Belgio) o HCl 19%, (Sigma-Aldrich, 1115 Germania), utilizzando una siringa dotata di filtro sterile (dimensione dei pori 0.2 µm, Minisart® RC 15, Sartorius, Germania). Dopo la correzione del pH, i reattori sono stati 1116 flussati con 100% N₂ e poi inoculati. I reattori sono stati chiusi con tappi di butile tenuti 1117 1118 da sigilli in alluminio ed incubati a 35 °C per 14 giorni. Durante il periodo d'incubazione 1119 essi sono stati distribuiti in maniera casuale all'interno dell'incubatore. Dopo 7 giorni, quando la produzione di H₂ si era arrestata, il pH è stato controllato e corretto in ogni 1120 1121 reattore al proprio valore iniziale. Le correzioni di pH sono state fatte in una camera 1122 anaerobica (Whitley DG250 Anaerobic Workstation, Don Whitley Scientific Limited, 1123 UK) come descritto in precedenza. Il biogas è stato raccolto come descritto in 1124 precedenza (cfr. par. 3.3). I volumi di H₂ e CH₄ sono stati misurati una volta al giorno dopo l'incubazione. Il periodo d'incubazione è stato completato quando non vi era più 1125 1126 alcuna produzione di biogas all'interno dei reattori. Nessuna produzione di H₂ e CH₄ è 1127 stata rilevata nei reattori in cui l'inoculo era stato sospeso in HM sterilizzato. Al termine 1128 del periodo di fermentazione, il pH finale è stato misurato e sono stati analizzati i VFA. 1129 4.3. ESPERIMENTO "C" 1130

1132 Il pH è stato descritto (cfr. par. 1.6). come un parametro fondamentale per la DF.
1133 In questo esperimento è stata valutata l'influenza che il pH iniziale ha avuto sulla
1134 produzione di H₂ in DF from PE.

1135 Sette valori di pH iniziale sono stati confrontati: 4, 5, 6, 7, 8, 9, e 10. La DF è stata 1136 condotta in reattori da 500 mL (volume effettivo 588 mL), in condizioni batch non 1137 tamponato, in triplo per un totale di 21 reattori. La miscela di reazione era costituita da 1138 20 mL di inoculo (M3C0915) e 200 mL di PE non sterile. Le correzioni di pH al livello 1139 desiderato sono stati fatte in ogni reattore prima dell'inoculo, con NaOH 32% (Chem-1140 Lab, Belgio) o HCl 19%, (Sigma-Aldrich, Germania), utilizzando una siringa dotata di filtro sterile (dimensione dei pori 0.2 µm, Minisart[®] RC 15, Sartorius, Germania). Dopo 1141 la correzione del pH, i reattori sono stati flussati con 100% N₂ e poi inoculati. I reattori 1142 1143 sono stati chiusi con tappi di butile tenuti da sigilli in alluminio ed incubati a 35 °C per 4 1144 giorni. Durante il periodo d'incubazione essi sono stati distribuiti in maniera casuale 1145 all'interno dell'incubatore. Il biogas è stato raccolto come descritto in precedenza (cfr. 1146 par. 3.3). I volumi di H₂ e CH₄, il pH e le concentrazioni di lattosio, etanolo, VFA e 1147 acido lattico sono stati misurati durante le 96 ore. Il volume di gas e la sua composizione, 1148 così come il pH sono stati misurati dopo 6, 12, 16, 20, 24, 36, 42, 48, 72 e 96 ore di 1149 fermentazione. Il periodo d'incubazione è stato completato quando non vi era più alcuna 1150 produzione di biogas all'interno dei reattori. Nessuna produzione di H₂ e CH₄ è stata 1151 rilevata nei reattori in cui l'inoculo era stato sospeso in HM sterilizzato. Cinque mL, di brodo di fermentazione sono stati raccolti (da ogni rattore) in doppio in occasione di 1152 ogni misurazione e congelati a -28 °C immediatamente. Cinque mL sono stati utilizzati 1153

1154	per le analisi dei metaboliti di fermentazione e la misura del pH. Gli altri 5 mL sono stati
1155	utilizzati per l'esperimento "D".
1156	Per le analisi dei metaboliti di fermentazione, i 5 mL di campione del brodo di
1157	fermentazione sono stati centrifugati a 4000 rpm per 15 minti. Il surnatante è stato
1158	utilizzato per le analisi (cfr. par.3.4).
1159	
1160	
1161	4.4. ESPERIMENTO "D"
1162	
1163	In questo esperimento è stata valutata l'influenza che il pH iniziale ha avuto sulla
1164	composizione della comunità microbica in DF utilizzando PE come substrato. Durante
1165	l'esperimento "C", ad ogni tempo di misurazione, sono stati raccolti 5 mL di brodo di
1166	fermentazione da ogni reattore da utilizzare per l'estrazione del DNA genomico (cfr. par.
1167	3.6), il sequenziamento (cfr. par. 3.7) e le analisi dei dati metatassonomici (cfr. par. 3.8).
1168	Per la caratterizzazione della comunità microbica sono stati scelti 3 valori di pH
1169	rappresentativi (4, 8 e 10) e 7 punti temporali (0, 6, 16, 24, 48, 72 e 96 ore dopo l'inizio
1170	della fermentazione) in doppio e congelati fino al loro utilizzo per le analisi. Due
1171	campioni da 5 mL di inoculo iniziale (M3C0915) e di PE sono stati inclusi nelle analisi.
1172	In totale sono stati analizzati 40 campioni.
1173	
1174	4.5. ESPERIMENTO "E"
1175	

1176 La ritenzione della biomassa all'interno del reattore è stata identificata come una 1177 possibile miglioria della reattoristica per la DF (cfr. par. 1.6). In questo esperimento sono 1178 stati selezionati diversi supporti per permettere l'adesione della biomassa microbica. 1179 Innanzitutto è stata valutata la capacità specifica di assorbimento dell'acqua di ciascun 1180 supporto. I supporti sono stati tenuti a 105 °C fino a peso costante così da togliere 1181 eventuale umidità residua. In un cilindro da 500 mL sono stati inseriti 50 mL di supporto 1182 secco e pesati. Nel cilindro sono stati versati 500 mL di acqua distillata. Il cilindro è stato 1183 scosso e percosso finché non si è apprezzata più risalita di bolle. Il cilindro è stato 1184 svuotato su setaccio 0.2 mm (precedentemente pesato vuoto) e l'acqua raccolta in due 1185 ciotole di vetro da 500 mL. Per imbibire meglio i materiali l'acqua di raccolta è stata versata 5 volte sul setaccio contenente i supporti. Sgocciolamento del setaccio, alla fine 1186 1187 dello sgocciolamento il setaccio è stato messo su carta assorbente e scosso delicatamente 1188 finché non vi sono state più tracce di bagnato sulla carta assorbente. Il setaccio con 1189 materiale umido è stato pesato. La differenza di peso tra setaccio con materiale umido e 1190 setaccio secco vuoto è stata usata per ricavare l'acqua assorbita dal supporto. Il 1191 procedimento è stato ripetuto per ciascun supporto in triplo.

1192

1193 *4.6. ESPERIMENTO "F"*

1194

1195 In quest'esperimento è stata misurata la produzione di H_2 da PE utilizzando i 1196 materiali precedentemente descritti come supporti per l'adesione della biomassa. La 1197 produzione di H_2 è stata confrontata con quella ottenuta con biomassa sospesa.

1198 Questo esperimento è stato diviso in 3 fasi: acclimatamento, I ciclo di DF e II ciclo
1199 di DF, in reattori da 500 mL in modalità batch non tamponato a 35 °C a pH iniziale del
1200 PE = 8.7, in triplo per un totale di 15 reattori.

1201 Nella fase di acclimatamento, in ogni reattore da 500 mL (volume effettivo di 588 mL), sono stati inseriti i supporti, lo spazio di testa flussato con 100% N2 deossigenato e 1202 1203 poi sterilizzati. Successivamente, 20 mL di inoculo (M3B0216) sono stati disciolti in 200 1204 mL di soluzione fisiologica sterile deossigenata. Questa miscela è stata versata in un 1205 reattore da 500 mL. La procedura è stata ripetuta per ciascun reattore. L'inoculo è stato lasciato acclimatarsi per 7 giorni a 35 °C, senza agitazione e al buio. 1206 1207 Al termine della fase di acclimatamento i reattori sono stati svuotati del liquido e lavati per 2 volte con 50 mL di soluzione fisiologica sterile deossigenata. Questa 1208

1209 operazione è stata fatta in camera anaerobica.

1210 Successivamente (I ciclo DF), i reattori sono stati riempiti con 200 mL di PE non 1211 sterile. Il pH iniziale di PE è stato portato a 8.7 con NaOH 32% (Chem-Lab, Belgio), 1212 utilizzando una siringa dotata di filtro sterile (dimensione dei pori 0.2 µm, Minisart[®] RC 1213 15, Sartorius, Germania). Dopo la correzione del pH, il PE è stato flussato con 100% N₂ 1214 e versato in ciascun reattore. Contemporaneamente sono stati inoculati anche 3 reattori 1215 contenenti 200 mL di PE con 20 mL di inoculo (M3B0216), senza supporto (biomassa 1216 sospesa). I reattori sono stati chiusi con tappi di butile tenuti da sigilli in alluminio ed 1217 incubati a 35 °C per 4 giorni. Durante il periodo d'incubazione essi sono stati distribuiti 1218 in maniera casuale all'interno dell'incubatore. Il biogas è stato raccolto come descritto in precedenza (cfr. par. 3.3). Il volume di H₂ e CH₄, il pH e le concentrazioni di lattosio, 1219

1220 VFA ed acido lattico sono stati misurati durante le 96 ore. Il volume di gas, la sua

1221	composizione e il pH sono stati misurati dopo 17, 20, 24, 28, 40, 48, 72 e 96 ore di
1222	fermentazione. Dopo 96 ore i reattori sono stati svuotati dal liquido e i supporti lavati
1223	con 50 mL di soluzione fisiologica sterile deossigenata per 2 volte. Questa operazione è
1224	stata fatta in camera anaerobica. Successivamente (II ciclo di DF), i reattori sono stati
1225	riempiti con 200 mL di PE non sterile fresco, con la tessa procedura descritta per primo
1226	ciclo. Nuovamente sono stati inoculati, ex-novo, 3 reattori con PE senza supporti
1227	(biomassa sospesa). I reattori sono stati chiusi con tappi di butile tenuti da sigilli in
1228	alluminio ed incubati a 35 °C per 4 giorni. Durante il periodo d'incubazione essi sono
1229	stati distribuiti in maniera casuale all'interno dell'incubatore.
1230	Durante il periodo di fermentazione non è stata registrata produzione di H_2 e CH_4
1231	nei reattori dove l'inoculo era stato sospeso in HM sterile. Ad ogni punto di misurazione
1232	sono stati prelevati 5 mL di brodo di fermentazione per la misurazione del pH e
1233	immediatamente congelati a -28 °C. Essi sono stati utilizzati per le analisi dei metaboliti
1234	di fermentazione. Una volta scongelati sono stati centrifugati a 4000 rpm per 15 minuti
1235	ed il surnatante utilizzato per le analisi come descritto in precedenza (cfr. par. 3.4)
1236	
1237	5. RISULTATI
1238	
1239	5.1. ESPERIMENTO "A" – PRODUZIONE DI H_2 DA SCOTTA E
1240	PERMEATO
1241	
1242	Le scotte fornite da diversi caseifici (G., H., R. e S.) hanno permesso di produrre
1243	quantità simili di H ₂ (Fig. 10). La produzione media è stata pari a 155 \pm 11 mL ⁻¹ di H ₂ . Il

- 1244PE ha prodotto $166 \pm 2 \text{ mL}^{-1}$ di H2 risultando perfettamente in linea con la produzione1245di H2 ottenuta dalle scotte. Da notare come PE abbia avuto una produzione più1246abbondante (+14%) della sua scotta d'origine (G, 145± 2 mL-1). Comunque, in tutti i1247trattamenti, l'andamento della produzione di H2 è stato molto regolare.
- 1248

- 1256 produzione di H₂, invece, è stata ottenuta quando scotta e permeato sono stati
- 1257 fermentati in assenza di liquame suino e ad un pH iniziale di 8.5 (Fig. 11).

Figura 11. Produzione di idrogeno da liquame suino (PS), scotta (SC, a), permeato (PE, b), in co-digestione o meno, in diverse percentuali (25, 50, 75) e diversi livelli di pH (6.5, 7, 7.5, 8, 8.5).
1262

1263	Dalla Fig. 11, inoltre, si può notare come la presenza di liquame abbia avuto un
1264	effetto inibente sulla produzione di H ₂ . Confrontando la produzione di H ₂ da SC100 e
1265	PE100 con quella in cui SC e PE erano in co-digestione con il liquame suino, infatti, si
1266	può notare una netta mancanza di proporzionalità nella produzione di H ₂ . Infatti, SC75,
1267	SC50 e SC25, non hanno prodotto il 25, 50 e 75% in meno di H_2 se confrontati con i
1268	rispettivi SC100, ma molto meno (86, 91 e 98% rispettivamente, in media) (Fig. 11a).
1269	Stesso discorso per il permeato. PE75, PE50 e PE25 non hanno prodotto il 25, 50 e
1270	75% in meno di H ₂ se confrontati con i rispettivi PE100, ma molto meno (83, 91 e 98%
1271	rispettivamente, in media) (Fig. 11b).
1272	Anche la produzione di VFA è stata influenzata dalla presenza o meno di liquame
1273	suino (Tab. 3).

1275	Tabella 3. Concentrazione dei VFA nei brodi di fermentazione di scotta, permeato e liquame suino in monodigestione (SC100, PE100 e PS) o in co-digestione con
1276	liquame suino a diversi livelli (25, 50 e 75%). I valori sono le medie delle concentrazioni di VFA ai vari livelli di pH. SD = deviazione standard (n = 15, n = 3 per PS).

RECIPE	Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	Isocaproic	Caproic	TOTAL VFA	C/N
					(mg L ⁻¹)					
SC25	2155	28847	212	2781	206	1377	21	0	35599	8
SD	349	7823	16	966	189	90	9	0	8750	
SC50	7318	10511	362	10285	365	4870	108	0	33819	15
SD	1163	1955	23	578	282	1103	23	0	1856	
SC75	8006	4199	356	12299	449	4950	146	0	30405	23
SD	1367	376	157	1889	436	497	43	0	2437	
SC100	9298	74	31	17095	103	76	6	48	26731	35
SD	1927	12	39	2269	46	77	4	51	3438	
PE25	2267	29361	108	1979	205	1626	0	0	35544	9
SD	298	8174	34	159	84	102	0	0	8312	
PE50	9657	10625	372	11861	283	3993	6	5	36802	18
SD	1469	368	53	521	324	249	7	8	1702	
PE75	8002	3961	279	8487	182	4640	13	10	25573	36
SD	761	644	50	714	250	431	6	3	787	
PE100	9799	72	12	17950	85	72	4	61	28054	86
SD	1836	4	6	1584	49	69	4	45	2667	
PS	789	282	53	80	97	40	0	0	1341	3
SD	157	197	47	37	54	37	0	0	118	

1278 In co-digestione, la produzione di VFA totale è stata, in generale, più alta rispetto 1279 alla monodigestione (+20%, in media). Il profilo di produzione dei VFA è stato 1280 influenzato dalla ricetta: con il 75% di liquame in miscela l'acido grasso volatile più 1281 rappresentato era l'acido propionico (29 g L⁻¹, in media), seguito dall'acido butirrico (2.4 1282 g L⁻¹) e acetico (2.2 g L⁻¹) (Tab. 3). Al calare della percentuale di liquame suino, diminuiva 1283 drasticamente la produzione di acido propionico fino al livello minimo di 0.7 g L⁻¹ 1284 misurato sia in SC100 che in PE100 (Tab. 3).

1285 Dalla Tabella 4, si può notare che, in tutti i reattori dove era stato prodotto H₂ in 1286 maniera massiccia (SC100 e PE100), dopo 7 giorni il pH era sceso rispettivamente a 3.3 e 3.6, in media e, conseguentemente, la produzione di H₂ si era arrestata. Per completare 1287 1288 la fermentazione del lattosio, dunque, si è reso necessario correggere il pH. Correggendo 1289 il pH ai valori iniziali, infatti, si è assistito alla ripresa della produzione di H₂ (Δ = 107 e 1290 126 in media, rispettivamente per SC e PE), che si è definitivamente fermata a 14 giorni. 1291 La successiva correzione di pH, infatti, ha dato inizio alla metanogenesi ($\Delta = 0$ in tutti i 1292 reattori), segno inequivocabile del completo esaurimento del lattosio. Sebbene la correzione di pH si sia resa necessaria anche in tutti i reattori in co-digestione, una netta 1293 1294 ripresa della produzione di H₂ è stata osservata solo nei reattori con SC e PE in 1295 monodigestione, nonostante ciò, negli altri reattori in co-digestione l'inizio della 1296 metanogenesi è avvenuta contemporaneamente ai reattori con SC e PE in 1297 monodigestione.

Tabella 4. Produzione di idrogeno e andamento del pH nei reattori con scotta e permeato in monodigestione (SC100, PE100 e PS) o in co-digestione con liquame
 suino a diversi livelli (25, 50 e 75%). I valori sono le medie delle produzioni di idrogenoai vari livelli di pH. Deviazione standard in parentesi (n = 15) per PS).

RECIPE	H ₂ after 7days cumulated, mL ⁻¹	pH after 7 days	pH adjustment	H ₂ after 14 days cumulated, mL ⁻¹	$\begin{array}{c c} \Delta \ (mL^{-1} \\ H_2 \ cum. \\ after 14 \ d \\ vs \ after 7 \\ days \end{array}$	pH after 14 days	pH adjustment	H ₂ after 14days cumulated, mL ⁻¹	Δ (mL ⁻¹ H ₂ cum. After pH adj. vs after 14 days)
SC25	6 (0.9)	5.5 (0.2)	restored at each initial value	6 (0.9)	0	6.9 (0.2)	restored at each initial value	6 (0.0)	0
SC50	28 (5)	4.6 (0.1)	restored at each initial value	28 (5)	0	6.6 (0.2)	restored at each initial value	28 (0.0)	0
SC75	40 (14)	4 (0.2)	restored at each initial value	45 (10)	5	6.3 (0.1)	restored at each initial value	45 (0.0)	0
SC100	212 (29)	3.3 (0.0)	restored at each initial value	319 (31)	107	5.7 (0.1)	restored at each initial value	319 (0.0)	0
PE25	5 (2)	5.7 (0.2)	restored at each initial value	5 (2)	0	6.9 (0.4)	restored at each initial value	5 (0.0)	0
PE50	27 (4)	4.7 (0.1)	restored at each initial value	27 (4)	0	6.5 (0.2)	restored at each initial value	27 (0.0)	0
PE75	48 (4)	4 (0.2)	restored at each initial value	54 (5)	6	6.3 (0.1)	restored at each initial value	54 (0.0)	0
PE100	197 (23)	3.6 (0.0)	restored at each initial value	323 (37)	126	4.9 (0.2)	restored at each initial value	323 (0.0)	0

5.3. ESPERIMENTO "C" – INFLUENZA DEL pH INIZIALE SULLA 1301 1302 PRODUZIONE DI H₂ IN DF 1303 1304 I risultati del precedente esperimento hanno mostrato l'importanza del pH nel processo di DF. In questo esperimento sono state valutate: 1305 L'influenza del pH iniziale sulla produzione di H₂ 1306 L'influenza del pH iniziale sulla produzione di metaboliti 1307 L'evoluzione temporale del pH 1308 La produzione di H₂ e metaboliti in relazione all'andamento temporale del 1309 рΗ 1310 1311 I risultati di tale esperimento sono stati pubblicati in [148]. 1312 La durata della fase lag è stata di 15.7 h, in media (DS= 1.62 h), e non è stata 1313 influenzata dal pH iniziale in maniera significativa. (Tab. 5).

1315 Tabella 5. Valori dei parametri del modello Gompertz in funzione del pH iniziale nella DF del PE., fase lag;

1316	Rmax, tasso massimo di produzione di H ₂ ; Hmax,	ammontare massimo della produzione di H ₂ . Tutti i modelli
1017	\cdot	

1317 sono significativi per P<0.001. Sono stati riportati anche il valore finale del pH ed il lattosio residuo dopo 96 ore
1318 di fermentazione [148]

Initial pH	λ (h)	$ \begin{array}{c} \mathbf{Rmax} \\ (\mathrm{mol}\ \mathbf{H}_2\ \mathrm{mol}^{-1} \\ \mathrm{lactose}\ \mathbf{h}^{-1}) \end{array} $	Hmax (mol H_2 mol ⁻¹ lactose)	Final pH	Residual lactose (% initial)
4	17.6	0.0346	1.12	4.28	52.9
5	15.9	0.0359	1.35	4.30	59.0
6	15.3	0.0369	1.47	4.32	47.2
7	14.5	0.0417	1.55	4.28	47.8
8	16.6	0.0459	1.81	4.29	47.4
9	15.8	0.0405	1.69	4.33	45.5
10	14.9	0.0480	1.64	4.35	47.3
Mean	15.7	0.0402	1.52	4.31	49.6
HSD ¹	4.25 ^{NS}	0.0078***	0.22***	0.24 ^{NS}	4.89**

1319

¹ at P=0.05. Level of significance of the model: * = P < 0.05, ** = P < 0.01; *** = P < 0.001; NS=not significant

1320

1321 Durante questa fase, però, il pH ha raggiunto un valore medio di 5.4 (SD= 0.13) in tutti i campioni prelevati alla 16[^] ora. Il pH si è innalzato quando il valore di partenza 1322 1323 era di 4 o 5 e si è abbassato quando i valori di pH iniziali erano >5. Un abbassamento 1324 del pH più rapido è stato osservato nei reattori che avevano un pH iniziale più alto. (Fig. 1325 12a). Quando il valore del pH ha raggiunto il valore di 5.4, è iniziata la produzione 1326 esponenziale di H₂ (Fig. 12b). Nelle ore successive, i valori di pH sono ulteriormente 1327 scesi con un andamento simile in tutti i reattori. Alla fine del periodo di osservazione, il valore medio di pH misurato era di 4.3, senza differenze significative tra i vari 1328 1329 trattamenti (Tab. 5).

Figura 12. Andamento temporale di a) pH e b) produzione di H₂ durante la DF di PE. Le barre verticali rappresentano il valore della differenza meno significativa per ogni tempo di misurazione tra le medie secondo il test HSD di Tukey. La freccia indica la durata media della fase lag (15.8 ore) come stimato dal modello Gompertz [148].

1337	Dopo 24 ore di fermentazione, il pH era di 4.9 in tutti i reattori. Già da questo
1338	momento, in base ai valori di Rmax, è stato possibile dividere i trattamenti in 2 gruppi: il
1339	gruppo "acido" e quello "alcalino" (Tab. 5). I valori di Rmax sono aumentati in maniera
1340	direttamente proporzionale all'aumentare dei valori di pH iniziali (Rmax= 0.0021pH +
1341	0.0258; R^2 = 0.64, P < 0.0001), Rmax a pH 7 si è posto in una posizione intermedia.
1342	Mediamente, il valore di Rmax era del 26% più alto nel gruppo "alcalino" (pH 8 - 10),
1343	rispetto al gruppo "acido" (pH 4-6; 0.045 vs 0.035 mol H_2 mol ⁻¹ lattosio h ⁻¹). Questo
1344	tasso di produzione più alto si è tradotto in una resa in H_2 più elevata osservata nel
1345	gruppo "alcalino". Il valore di Hmax del gruppo "alcalino", infatti, è stato più alto del
1346	31%, in media, rispetto al valore di Hmax del gruppo "acido". A pH 7, il valore di Hmax
1347	si è posto in una posizione intermedia. La relazione tra Hmax e pH potrebbe essere
1348	spiegata bene da una curva di distribuzione normale, stimata secondo un modello
1349	polinomiale di secondo grado (Hmax = -0.027 pH ² + 0.468 pH – 0.336 ; R ² = 0.85 , P <
1350	0.0001). Poiché Hmax in funzione del valore del pH iniziale è massimo quando la
1351	derivata della funzione è 0, ponendo come 0 la derivata della funzione (0 = -
1352	2*0.027pH+0.468) è stato possibile stimare il valore di pH iniziale che permetterebbe di
1353	ottenere il valore massimo di Hmax. Tale valore di pH è risultato essere uguale a 8.7.
1354	
1355	5.3.1. LATTOSIO RESIDUO

1357 La maggior parte del lattosio è stata consumata nelle prime ore della DF, prima dell'inizio della produzione di H₂. Circa la metà (51%, in media) del consumo totale di 1358 1359 lattosio è avvenuta durante le prime 16 ore di fermentazione. Il consumo di lattosio 1360 durante il periodo di fermentazione è stato piuttosto omogeneo in tutti i reattori ad eccezione dei reattori a pH 4 e 5 che ne hanno consumato di meno (Fig. 13). Alla fine 1361 del periodo di osservazione, in media, il 51.5% del lattosio inizialmente disponibile non 1362 1363 era stato ancora fermentato. Questo può essere dovuto all'effetto inibente 1364 dell'abbassamento del pH a valori molto acidi, dovuti alla DF condotta in un sistema 1365 non tamponato.

Figura 13. Consumo di lattosio durante la DF di PE a diversi valori di pH iniziale. Le barre verticali
rappresentano il valore della differenza meno significativa per ogni tempo di misurazione tra le medie secondo il
test HSD di Tukey. [148].

- 1370
- **1371** 5.3.2. *METABOLITI FINALI*

ETANOLO

1374	La produzione di etanolo ha avuto un andamento simile a quella dell'H ₂ , con
1375	produzioni iniziali più alte nel gruppo "alcalino" (Fig. 14). Dopo 16 ore di
1376	fermentazione, infatti, i reattori con il pH inizaile alcalino avevano prodotto,
1377	mediamente, il 78% di etanolo in più rispetto ai reattori con il pH iniziale acido (144 mg
1378	L ⁻¹ e 81 mg L ⁻¹ , rispettivamente). Nelle prime 16 ore di fermentazione, nel gruppo
1379	"alcalino" era stato prodotto mediamente il 69% dell'etanolo totale, durante lo stesso
1380	periodo, nel gruppo "acido" era stato prodotto solo il 49% dell' etanolo totale. Alla fine
1381	del periodo di osservazione, i trattamenti con un ph iniziale compreso tra 6 e 10 aveveno
1382	prodotto mediamente il 34% in più di etanolo rispetto agli altri (206 mg L^{-1} e 153 mg L^{-1} ,
1383	rispettivamente). Alla 48^ ora di fermentazione la produzione di etanolo a pH 10 si è
1384	fermata e, alla fine del periodo di osservazione, era uguale a quella ottenuta a pH 6.

Figura 14. Andamento della concentrazione di etanolo nel brodo di fermentazione di PE durante la DF a diversi
valori di pH iniziale. Le barre verticali rappresentano il valore della differenza meno significativa per ogni tempo
di misurazione tra le medie secondo il test HSD di Tukey. [148].

1389

1390 ACIDI GRASSI VOLATILI

1391

1392 La concentrazione di VFA è aumentata durante il periodo di fermentazione (Fig.

1393 15). All'inizio della fermentazione la produzione di VFA è stata più bassa ai valori di pH

1394 più bassi, aumentando nel periodo intermedio della fermentazione.

1397 Figura 15. Andamento della concentrazione di acidi grassi volatili (VFA) nel brodo di fermentazione di PE
1398 durante la DF a diversi valori di pH iniziale. Le barre verticali rappresentano il valore della differenza meno
1399 significativa per ogni tempo di misurazione tra le medie secondo il test HSD di Tukey. [148].
1400

1401	Nelle prime 16 ore di fermentazione, l'acido acetico costituiva la maggiore
1402	percentuale dei VFA totali (Fig. 16a, grafico interno); dopo 40 ore di fermentazione,
1403	però, la situazione era invertita in favore dell'acido butirrico (Fig. 16b, grafico interno).
1404	Alla fine del periodo di osservazione, i VFA più abbondanti erano l'acido acetico e
1405	butirrico, che rappresentavano rispettivamente il 36.4% e il 62.4% (98.8% in totale) dei
1406	VFA totali.

1409 Figura 16. Andamento della concentrazione di a) acido acetico e b) butirrico nel brodo di fermentazione di PE 1410 durante la DF a diversi valori di pH iniziale. I grafici interni rappresentano l'andamento nella concentrazione 1411 come percentuale dei VFA totali. Le barre verticali rappresentano il valore della differenza meno significativa per 1412 1413 ogni tempo di misurazione tra le medie secondo il test HSD di Tukey. [148].

1415	La produzione di VFA più elevata si è registrata a pH 7 (Tab. 6). I livelli di VFA più
1416	bassi sono stati osservati ai pH alcalini (-21%, in media, rispetto a pH 7) o acidi (-13%, in
1417	media, rispetto a pH 7). La concentrazione di VFA minori come acido isovalerico,
1418	valerico e caproico è stata più alta ai valori di pH più elevati.

Initial pH	Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	Isocaproic	Caproic	Total VFA
					$(mg L^{-1})$				
4	4969	29	8.3	8444	5	12	3.1	27	13497
5	5229	39	8.9	8205	20	0	4.7	16 13523	
6	5402	36	8.4	8485	24	0	1.9	24	13982
7	6254	38	7.3	9251	47	13	2.7	35	15648
8	4516	38	6.7	9199	55	54	1.5	20 13891	
9	3868	36	7.4	7253	66	93	5.3	57	11386
10	3880	33	8.2	7718	46	90	3.1	129	11907
Mean	4874	36	7.9	8365	37	37	3.2	44	13405
HSD ¹	1112***	12 ^{NS}	2.1*	2940 ^{NS}	41**	54***	12.4 ^{NS}	30***	3717*

48]
4

1420 ¹ at P=0.05. Level of significance of the model: * = P < 0.05, ** = P < 0.01; *** = P < 0.001; NS=not significant

1421	Analogamente all'etanolo, anche l'accumulo di acido acetico ha seguito l'andamento
1422	della produzione di H ₂ , con produzioni più elevate e veloci a pH iniziale neutro o
1423	alcalino (Fig. 16a). In questi reattori, nelle prime 24 ore di fermentazione, è stato
1424	prodotto mediamente il 49% di acido acetico totale, mentre, nello stesso periodo, nei
1425	reattori con un pH iniziale acido è stato prodotto, in media, solo il 25% dell'acido acetico
1426	totale. Sedici e 24 ore dopo l'inizio della fermentazione, la concentrazione di acido
1427	acetico nel gruppo "neutro-alcalino" (pH 7-10) era mediamente più alta (34% e 52%,
1428	rispettivamente) rispetto al gruppo "acido". Successivamente, la concentrazione di acido
1429	acetico nel gruppo "alcalino" è divenuta più bassa rispetto alla concentrazione registrata
1430	nel gruppo "neutro-acido".
1431	La produzione temporale di acido butirrico non è stata influenzata dal valore del
1432	pH iniziale, se non nelle prime ore di fermentazione, quando essa è stata più lenta a pH
1433	4 (Fig. 16b).

1435 ACIDO LATTICO

La produzione di acido lattico è stata quasi istantanea e si è interrotta bruscamente
tra la 12^ e la 16^ ora di fermentazione (Fig. 17). Tra la 16^ e la 36^ ora l'acido lattico
era quasi scomparso. Il campione della 72^ ora, invece, ha mostrato un nuovo
incremento della concentrazione di acido lattico il cui incremento è continuato fino alla
fine dell'esperimento.

Figura 17. Andamento della concentrazione di acido lattico nel brodo di fermentazione di PE durante la DF a
diversi valori di pH iniziale. Le barre verticali rappresentano il valore della differenza meno significativa per ogni
tempo di misurazione tra le medie secondo il test HSD di Tukey. [148].

1448 5.4. ESPERIMENTO 'D" – INFLUENZA DEL pH INIZIALE SULLA

1449 COMUNITA' MICROBICA IN DF

1450

1457 stata osservata una stabilizzazione del pH ad un valore uguale a 5.4 (\pm 0.1). Con

1458	l'avanzamento della DF il pH ha continuato a calare in maniera molto uniforme in tutti i
1459	reattori. In base dell'andamento del pH e della produzione di H ₂ , è stato possibile
1460	dividere la DF in 3 fasi: una fase lag (0-16 ore, fase 1), la fase di produzione esponenziale
1461	di H_2 (16-72 ore, fase 2) e una fase finale stazionaria (72-96 ore, fase 3).
1462	
1463	5.4.1. ALFA DIVERSITY
1464	
1465	L'α diversity era più alta all'inizio che dopo 96 ore di fermentazione (Fig. 18) man
1466	mano che la fermentazione proseguiva solo alcuni gruppi microbici selezionati hanno
1467	proliferato e, conseguentemente, in tutti i reattori hanno prevalso gli stessi gruppi
1468	microbici. Poiché questa riduzione dell'α diversity è comune a tutti i trattamenti, essa è
1469	stata "lactose driven", piuttosto che influenzata dal pH iniziale.

Figura 18. Alpha diversity tracciata in funzione del tempo. L'alfa diversity rappresenta la misura della diversità
delle specie presenti in un habitat. Tre colori differenti sono stati utilizzati per i vari pH. L'alfa diversity è stata
calcolata per tutti i campioni utilizzando il numero di OTU osservate, per lo stimatore Chao1 e l'indice di
Shannon. [da Vasmara C., Pindo M., Micheletti D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL
COMMUNITIES COMPOSITION IN DARK FERMENTATION OF SCOTTA PERMEATE" – submitted
to International journal of Hydrogen Energy (HE)].

- 1478 5.4.2. ABBONDANZA RELATIVA
- 1479

- 1480 Durante la DF, in tutti i reattori c'è stato un incremento generale dell'abbondanza
- 1481 dei gruppi microbici capaci di metabolizzare il lattosio. L'incidenza relativa di ogni
- 1482 gruppo microbico sul totale della popolazione, invece, è stata chiaramente influenzata dal
- 1483 valore del pH iniziale (Fig. 19).

^{Figura 19. Evoluzione della composizione delle comunità microbiche nei reattori (valori medi delle letture) con} pH iniziale di 4, 8 e 10. Sono stati considerati i 12 generi più abbondanti. [da Vasmara C., Pindo M., Micheletti
D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL COMMUNITIES COMPOSITION IN DARK
FERMENTATION OF SCOTTA PERMEATE" – submitted to HE].

- 1490 Nella PCoA applicata all'abbondanza degli OTU, i primi due componenti della
- 1491 PCoA hanno intercettato il 78% della varianza totale, e i campioni erano chiaramente
- 1492 distribuiti lungo l'asse 1 in relazione al tempo di misurazione, mentre non c'era un chiaro
- 1493 schema di distribuzione guidato dal pH (Fig. 20).

Figura 20. Analisi delle Coordinate Principali (PCoA) della distanza tra campioni. Triangoli all'insù: pH 4; cerchi:
pH8; triangoli all'ingiù pH 10. [da Vasmara C., Pindo M., Micheletti D., Marchetti R., "INITIAL PH
INFLUENCES MICROBIAL COMMUNITIES COMPOSITION IN DARK FERMENTATION OF
SCOTTA PERMEATE" – submitted to HE].

1500 1	Nella Tabella ⁻	7 è stata correlata l	a distribuzione	delle 5 OTU	più abbondanti alle
--------	----------------------------	-----------------------	-----------------	-------------	---------------------

1501 fasi di produzione di H_2 in DF. Le abbondanze di *Bifidobacterium* e *Clostridium* sensu

1502 strictu erano significativamente influenzate solo dal fattore Periodo. Il fattore pH, invece,

1503 ha avuto un effetto significativo sull'abbondanza di Enterococcus, Lactobacillus e Trichococcus,

1504 con una significativa interazione pH x Periodo.

- 1505
- 1506 FASE 1, FASE "LAG"
- 1507

1508 Durante questa fase non sono state osservate differenze nella composizione della

1509 composizione microbica ai vari pH iniziali (Tab. 7).

1510 Tabella 7. Abbondanza relativa delle OTUs più rappresentative in funzione del pH e del periodo di DF. Periodo 1: 0, 6 h; Periodo 2: 16, 24 e 48 h; Periodo 3: 72 e 96 h. da Vasmara C., Pindo M., Micheletti D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL COMMUNITIES COMPOSITION IN DARK FERMENTATION OF SCOTTA PERMEATE" – submitted to International journal of Hydrogen Energy (HE)].

		Abundance (%)									
pН	Periodo DF	Bifidobacterium		<i>Clostridium</i> sensu strictu		Enterococcus		Lactobaciullus		Trichococcus	
4	1	0.02	С	27.1	cd	0.02	С	0.24	b	0.04	С
	2	0.20	С	59.3	а	0.28	С	0.10	b	1.04	С
	3	6.35	а	50.1	ab	0.22	с	5.35	b	0.30	с
8	1	0.02	С	23.0	d	0.05	с	0.21	b	0.15	с
	2	0.19	С	53.3	ab	1.65	bc	0.10	b	7.35	ab
	3	5.51	ab	43.9	ab c	0.91	с	14.28	а	2.95	bc
10	1	0.02	С	24.3	d	0.06	с	0.23	b	0.14	с
	2	0.08	С	52.2	ab	5.17	а	0.08	b	9.55	а
	3	2.85	bc	39.2	bc d	2.75	b	21.33	а	4.38	bc

1514

In ogni colonna, le medie seguite da lettere uguali non sono significativamente diverse per P < 0.05 (test Tukey-Kramer).

1516	Inizialmente l'inoculo era composto dal 94% di batteri e dal 6% di archea. La
1517	popolazione più abbondante era quella dei Clostridi (31%), seguita dai Bacteroidetes (12%).
1518	Dopo 6 ore di fermentazione a pH 4 si è avuto un incremento del gruppo dei Clostridia
1519	(Fig. 19). In generale, però, la situazione era sostanzialmente immutata rispetto a quella
1520	iniziale. Ai valori di pH iniziali alcalini, comunque, è stato osservato un marcato
1521	incremento di Trichococcus (appartenenti all'ordine dei Lactobacillales). L'abbondanza di
1522	$\mathit{Trichococcus}$ era aumentata da 0.04% a 12% (sia a pH 8 che a pH 10), mentre a pH4
1523	l'incremento è stato più ridotto (+2%) (Fig. 21b). In questa fase, Trichococcus era il genere

1524 di *Lactobacillales* maggiormente rappresentato in tutti i reattori (Fig. 19).

1527 DF. a) Clostridium sensu stricto, b) Trichococcus, c) Enterococcus, d) Bifidobacterium, e) Lactobacillus. [da Vasmara C., Pindo
1528 M., Micheletti D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL COMMUNITIES
1529 COMPOSITION IN DARK FERMENTATION OF SCOTTA PERMEATE" – submitted to HE].
1530

1525

1526

1532 FASE 2, PRODUZIONE ESPONENZIALE $DI H_2$

1533

1534 La seconda fase (16 -72 ore) è stata la fase caratterizzata dalla produzione

1535 esponenziale di H_2 (Fig. 12b). In questa fase, in tutti i rettori, l'ordine prevalente era

1536 quello dei clostridiales (68 \pm 0.05%, in media). La loro incidenza, sulla popolazione

1537	totale, era quasi raddoppiata rispetto a quella dell'inoculo iniziale (Fig. 19). Tra la 24^ e la
1538	48^ ora di fermentazione, l'incidenza di Trichococcus era drasticamente scesa (0.3% a pH
1539	4, 2% a pH 8 e 7% a pH 10) (Fig. 21b). Questo decremento è stato accompagnato dal
1540	simultaneo aumento della abbondanza relativa di Clostridium sensu stricto (Fig. 21a). In tutti
1541	i reattori, la loro incidenza è aumentata dal 43% che, mediamente, si era misurato dopo
1542	16 ore di fermentazione, al 67% che, in media, è stato misurato dopo 48 ore (Fig. 21a).
1543	Alla fine della fase 2 Clostridium sensu stricto costituiva, in media, il 92% \pm 0.86 della
1544	popolazione totale dei Clostridia (Fig. 19).
1545	
1546	FASE 3, FASE STAZIONARIA
1547	

1548	La terza fase della DF (72-96 ore) è stata la fase stazionaria di produzione
1549	d'idrogeno. In questa fase, in tutti i reattori, è stato osservato un incremento
1550	generalizzato dei generi Bifidobacterium (Fig. 21d) e Lactobacillus (Fig. 21e), specialmente
1551	nei reattori dove era stato prodotto più H ₂ . Infatti, in questa fase, i 2 generi
1552	rappresentavano, rispettivamente, il 20 e 24% del totale della popolazione nei reattori
1553	che avevano un pH iniziale di 8 e 10, mentre nei reattori a pH iniziale 4 il loro
1554	incremento è stato più ridotto (12%). In questa fase, inoltre, si è registrato un
1555	progressivo abbassamento della produzione di H_2 , il cui tasso di produzione oraria è
1556	sceso, mediamente, a 0.02 mol H_2 , rispetto a 0.06 mol H_2 prodotti mediamente nella fase
1557	2 (Fig. 12b). L'incremento dell'incidenza di Bifidobacterium e Lactobacillus si può
1558	considerare come una degenerazione della comunità microbica che era stata più
1559	produttiva nelle ore precedenti in cui i 2 generi erano quasi assenti (Fig. 19 e 21).

1561 5.4.3. RELAZIONE TRA LA COMPOSIZIONE DELLA COMUNITA' 1562 MICROBICA E LA PRODUZIONE DI METABOLITI

1563

1564 Nella fase 1, nei reattori a pH iniziale alcalino, è stata osservata una massiccia 1565 produzione di etanolo ($142 \pm 2 \text{mg L}^{-1}$ in media) che è stata molto più alta di quella 1566 osservata nei reattori con pH iniziale 4 (47 mg L⁻¹) (Fig. 22).

Figura 22. Produzione di etanolo (line) in relazione con la proliferazione del genere *Trichococcus* (istogrammi). Le
barre verticali rappresentano la deviazione standard della media [da Vasmara C., Pindo M., Micheletti D.,
Marchetti R., "INITIAL PH INFLUENCES MICROBIAL COMMUNITIES COMPOSITION IN DARK

1571 FERMENTATION OF SCOTTA PERMEATE" – submitted to HE].

1573	In particolare, nelle prime 16 ore di fermentazione, nei reattori a pH iniziale
1574	alcalino, era stato prodotto il 70% dell'etanolo prodotto durante l'intero periodo di
1575	fermentazione. Nello stesso periodo, invece, i reattori con pH iniziale 4 avevano
1576	prodotto solo il 37% dell'etanolo totale. Nei reattori con pH alcalino, inoltre, era stato
1577	prodotto anche più acido acetico rispetto a quello prodotto nei reattori a pH 4 (Fig.16a).
1578	La massiccia produzione di etanolo nei reattori alcalini può essere riferita alla grande
1579	proliferazione del genere Trichococcus, che si è avuta a questi valori di pH (Fig. 22).
1580	Per tutta la durata della fase 2 è stato osservato un forte incremento della
1581	popolazione del genere Clostridium sensu stricto. La proliferazione di tale genere si è
1582	tradotto con la massiccia produzione di H_2 osservata in tutti i reattori (Fig. 23a). Durante
1583	questo periodo, inoltre, c'era stato un ulteriore incremento della concentrazione di acido
1584	acetico (da 1257 \pm 394 mg L ⁻¹ , in media dopo 16 ore a 2954 \pm 635 mg L ⁻¹ , in media a 48
1585	ore) (Fig. 23b) e anche un incremento esponenziale della produzione di acido butirrico
1586	(da 1001 \pm 373 mg L ⁻¹ , in media dopo 16 ore a 6129 \pm 755 mg L ⁻¹ , in media a 48 ore)
1587	(Fig. 23c).

Figura 23. a) produzione di H₂ (linee) in relazione con la proliferazione del genere *C*. sensu stricto (istogrammi).
b) produzione di acido acetico e c) butirrico (linee) in relazione con la proliferazione del genere *C*. sensu stricto (istogrammi). Le barre verticali rappresentano la deviazione standard della media [da Vasmara C., Pindo M.,
Micheletti D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL COMMUNITIES COMPOSITION IN DARK FERMENTATION OF SCOTTA PERMEATE" – submitted to HE].

1595 La fase 3 è stata caratterizzata dall'incremento della concentrazione di acido lattico

1596 in tutti i reattori. Tale acido, durante la fase 2, non era stato rilevato in nessun reattore.

1597 L'incremento dell'acido lattico registrato in tutti i reattori è stato in concomitanza con la

1598 proliferazione dei generi Bifidobacterium e Lactobacillus, particolarmente abbondante in

1599 questa fase (Fig. 24).

1601 Figura 24. Andamento della concentrazione di acido lattico (linee) in relazione con la proliferazione dei generi
1602 *Bifidobacterium* (a) e *Lactobacillus* (b). Le barre verticali rappresentano la deviazione standard della media [da
1603 Vasmara C., Pindo M., Micheletti D., Marchetti R., "INITIAL PH INFLUENCES MICROBIAL
1604 COMMUNITIES COMPOSITION IN DARK FERMENTATION OF SCOTTA PERMEATE" – submitted
1605 to HE].
1606

1607 *5.5. ESPERIMENTO "E" – VALUTAZIONE DEI SUPPORTI PER*

1608 L'IMMOBILIZZAZIONE DI BIOMASSA MICROBICA

1609

- 1610 In quest'esperimento sono stati valutati i supporti scelti per l'immobilizzazione della
- 1611 biomassa microbica produttrice di H_2 .

I supporti valutati sono stati divisi in 2 gruppi in base alla loro origine: inorganici
(Biomax e zeoliti) e organici (i 2 biochar). La valutazione di tali supporti è stata fatta in
base alla capacità di assorbire acqua. A parità di volume di supporto (50 mL) i supporti
organici hanno mostrato più capacità di assorbire acqua (Tab. 8).

1616 Tabella 8. Capacità di assorbimento dell'acqua dei supporti testate per l'immobilizzazione della biomassa
 1617 microbica. BO = Biomax (ceramica), ZE = zeoliti, BM = biochar manure, BC = biochar cippato. Deviazione
 1618 standard in parentesi (n = 3)

etandara mp					
Support	volume support	Adsorbed water	operating volume	Adsorbed water	
1	(mL^{-1})	(mL ⁻¹)	support (mL ⁻¹)	(mL ⁻¹)	
BO	50	11.89 (0.01)	170	40.42 (0.01)	
ZE	50	11.38 (0.01)	170	38.69 (0.01)	
BM	50	42.41 (0.02)	50	42.41 (0.02)	
BC	50	40.26 (0.03)	50	40.46 (0.03)	

1619

1620 Al fine di lavorare a parità di capacità di assorbire acqua, si è scelto di usare volumi

1621 diversi di supporti (170 mL per i supporti inorganici e 50 mL per i supporti organici).

1622 Così facendo, infatti, la capacità media di assorbire acqua è stata 39.6 mL per i supporti

1623 inorganici e di 41.3 mL per i supporti organici (Tab. 8).

1624

1625 5.6. ESPERIMENTO "F" – CONFRONTO DI PRODUZIONE DI $H_2 DA$

1626 BIOMASSA ADESA E SOSPESA

1627

1628 In questo esperimento è stata valutata la produzione di H_2 da biomassa adesa sui

1629 vari supporti testati, in confronto alla produzione di H_2 ottenuta da biomassa sospesa.

1630 L'esperimento è stato ripetuto 2 volte per testare la capacità di ritenzione della biomassa

1631 dei supporti. Dopo una fase di acclimatamento della biomassa sui supporti durata 7

1632 giorni (Fig. 25), si è proceduto con i 2 cicli di DF.

1634 Figura 25. Acclimatamento dell'inoculo sui supporti testati a) dopo 1 giorno e b) dopo 7 giorni.
1635

- **1636** 5.6.1. PRODUZIONE DI H_2
- 1637

1638La produzione di H_2 nel primo ciclo di DF è stata abbastanza simile nei reattori SB1639e ZE (618 e 655 mL⁻¹, in media, rispettivamente), seguiti da BM (543 mL⁻¹ in media). La1640produzione di H_2 più bassa è stata registrata in BO (96 mL⁻¹ in media), BC si è posto in1641posizione intermedia (320 mL⁻¹ in media) da notare, però, che BC ha anche mostrato la1642SD più elevata (Fig. 26a).

1645 Figura 26. Produzione di H₂ sui vari supporti testati per l'adesione della biomassa microbica (BO = Biomax, ZE
 1646 = zeoliti, BM = biochar manure, BC = biochar cippato) in confronto con la produzione di H₂ da biomassa

1647 sospesa (SB), a) nel primo e b) nel secondo ciclo di DF su PE. Le barre verticali rappresentano la deviazione
1648 standard della media.

1650	Nel secondo ciclo di DF, i reattori in cui erano presenti i supporti per
1651	l'immobilizzazione, hanno mostrato una drastica riduzione della produzione di H_2 (Fig.
1652	26b). Solo in BM la riduzione è stata meno drastica (-59%, in media), mentre sia in ZE
1653	che in BC la produzione di H_2 è calata di 11 volte. In BO, invece, la produzione di H_2 è
1654	calata di 4 volte. La produzione di H_2 misurata in SB è rimasta sostanzialmente invariata
1655	tra il primo e il secondo ciclo di DF (618 mL ⁻¹ e 602 mL ⁻¹ , in media rispettivamente)
1656	nonostante i reattori SB siano stati inoculati ex novo.
1657	
1658	5.6.2. pH
1659	
1660	L'andamento del pH nel primo ciclo di DF è stato molto omogeneo in tutti i
1661	reattori. Dopo 17 ore di fermentazione, infatti, esso era sceso, in media, a 5.3 \pm 0.1,
1662	leggermente più basso in BO (Fig. 27a), per poi continuare a diminuire con l'avanzare
1663	delle DF fino ad arrivare, mediamente, a 4.2.
1664	

Figura 27. Andamento del pH del brodo di fermentazione derivante da DF dai vari supporti testati per l'adesione della biomassa microbica (BO = Biomax, ZE = zeoliti, BM = biochar manure, BC = biochar cippato)

1669 1670 1671	in confronto con l'andamento del pH del brodo di fermentazione derivante da biomassa sospesa (SB), a) nel primo e b) nel secondo ciclo di DF su PE. Le barre verticali rappresentano la deviazione standard della media.
1672	Nel secondo ciclo di DF, però, il calo di pH nei reattori con biomassa adesa è stato più
1673	repentino che in SB. Dopo 17 ore di fermentazione, infatti, i reattori con biomassa adesa
1674	avevano un pH medio di 4.6 mentre il pH medio di SB era 5.5. (Fig. 27b). Alla fine del
1675	periodo di osservazione, comunque, tutti i reattori avevano un pH simile (4 \pm 0.02).
1676	
1677	5.6.3. CONSUMO DI LATTOSIO E PRODUZIONE DI METABOLITI
1678	
1679	Il lattosio residuo è stato molto simile in tutti i reattori (22 g L ⁻¹ , in media) sia nel
1680	primo ciclo che nel secondo ciclo di DF (Tab. 9 e 10). Questo indica un consumo di
1681	lattosio abbastanza omogeneo in entrambi i cicli di DF. Poiché la concentrazione di
1682	lattosio iniziale nel permeato era di 51 g L ⁻¹ , alla fine di ogni ciclo, mediamente, era stato
1683	consumato il 43% del lattosio. Una situazione analoga è già stata descritta in precedenza
1684	(cfr. par. 5.3.1).
1685	

Tabella 9. Concentrazione di lattosio, acido lattico e VFA nei brodi di fermentazione alla fine del 1° ciclo di DF di PE da biomassa sospesa (SB) e biomassa

1687 immobilizzata su Biomax (BO), zeoliti (ZE), biochar manure (BM) e biochar cippato (BC). $SD = e^{h}$ la deviazione standard (n = 3). PE = permeato iniziale usato come substrato.

	Lactose	Lactic	Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	Isocaproic	Caproic	TOTAL
		acid									VFA
	g L-1	g L-1					$\mathrm{mg}\mathrm{L}^{\text{-1}}$				
SB	21	0.47	4881	34	4	8945	38	35	2	33	13972
SD	1	0.06	117	1	1	19	2	1	1	3	99
BO	25	1.15	4353	48	215	9795	25	76	24	0	14538
SD	1	0.21	280	2	5	20	0	2	5	0	310
ZE	22	0.70	4395	29	106	9913	26	64	0	0	14799
SD	2	0.10	234	2	3	129	1	2	0	0	332
BM	20	0.97	4004	107	157	6285	47	48	6	0	10721
SD	1	0.06	2	29	2	121	3	3	1	0	149
BC	21	1.30	3293	104	64	10327	67	4870	108	0	18833
SD	2	0.12	102	5	2	501	2	0	0	0	493
PE	51	0.68	58	339	17	728	0	0	8	0	1151

1690 Tabella 10. Concentrazione di lattosio, acido lattico e VFA nei brodi di fermentazione alla fine del 2° ciclo di DF di PE da biomassa sospesa (SB) e biomassa
 1691 immobilizzata su Biomax (BO), zeoliti (ZE), biochar manure (BM) e biochar cippato (BC). SD = è la deviazione standard (n = 3). PE = permeato iniziale usato come
 1692 substrato.

	Lactose	Lactic	Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	Isocaproic	Caproic	TOTAL
		acid									VFA
	g L-1	g L-1					$mg L^{-1}$				
SB	20	0.45	4730	34	5	8520	41	34	2	32	13399
SD	1	0.03	148	2	0	374	1	2	1	3	521
BO	25	4.15	2353	2658	249	2795	229	1576	24	0	9885
SD	3	0.21	280	267	53	20	33	281	5	0	405
ZE	21	3.33	2292	2701	262	2590	234	1766	26	0	9870
SD	2	0.15	266	296	30	203	25	41	3	0	689
BM	23	2.37	4006	495	356	5267	432	4936	129	0	15621
SD	3	0.21	1	4	3	52	23	21	17	0	77
BC	21	2.03	3220	1065	348	5290	342	4764	122	0	15152
SD	4	0.06	85	47	24	7	35	93	16	0	170
PE	50	0.70	52	371	13	727	0	0	8	0	1171

1693	La produzione totale di VFA nel primo ciclo di DF è stata più abbondante che nel
1694	secondo (14573 e 12785 mg L ⁻¹ , in media, rispettivamente). Questo perché la produzione
1695	di VFA totali su supporti inorganici (BO e ZE) si è abbassata (-33%, in media).
1696	Comunque, in entrambi i cicli, i VFA più rappresentati erano acido acetico (3585 e 3320
1697	mg L ⁻¹ , in media rispettivamente) e butirrico (9053 e 4892 mg L ⁻¹ , in media
1698	rispettivamente). Nel secondo ciclo, c'è stato un netto aumento della concentrazione di
1699	acido propionico in BO e ZE (2353 e 2292 mg L^{-1} in media, rispettivamente) e in BC
1700	(1065 mg L ⁻¹ , in media). La produzione di acido propionico, invece, è rimasta molto
1701	bassa in SB in entrambi i cicli (34 mg L ⁻¹ , in media) BM, nel secondo ciclo, ha fatto
1702	registrare una concentrazione media di acido propionico di 495 mg L ⁻¹ . Nel primo ciclo,
1703	in generale, la produzione di acido propionico era stata molto contenuta (64 mg L^{-1} in
1704	media) e solo BM e BC avevano superato i 100 mg L ⁻¹ (Tab. 9 e 10).
1705	La produzione di acido lattico è stata nettamente più abbondante nei reattori a
1706	biomassa adesa, in particolare nel secondo ciclo di DF (Tab. 9 e 10). Nei reattori a
1707	biomassa adesa, infatti, l'acido lattico misurato alla fine del secondo ciclo era
1708	mediamente di 2.97 g L ⁻¹ (con il massimo di 4.15 g L ⁻¹ in BO). Poiché alla fine del primo
1709	ciclo gli stessi reattori avevano prodotto, in media, 1.03 g L^{-1} di acido lattico, la
1710	produzione media è quasi triplicata. In SB, invece, la produzione media di acido lattico
1711	tra i 2 cicli è stata molto simile (0.47 e 0.45 g L^{-1} , rispettivamente) (Tab. 9 e 10).
1712	
1713	6. DISCUSSIONE

1715	Dall'esperimento "A" è emerso che non ci sono state sostanziali differenze nella
1716	produzione di H_2 in DF utilizzando scotta o permeato. Questo era un risultato atteso sia
1717	perché i vari substrati avevano contenuti di lattosio uguale (Tab. 1), sia perché era già
1718	stato ottenuto H_2 da permeato di SL [65] che, di fatto, è del tutto simile al permeato di
1719	scotta in quanto entrambi derivano dall'ultrafiltrazione. Una riconferma preliminare,
1720	tuttavia, era necessaria.
1721	
1722	6.1. EFFETTO DEL <i>pH</i> SULLA PRODUZIONE DI H_2
1723	
1724	Fin dall'esperimento "B" è stata evidenziata l'influenza del pH sulla produzione di
1725	H_2 . In quell'esperimento, infatti, la produzione totale di H_2 da scotta e permeato
1726	aumentava all'aumentare del pH iniziale. Tale risultato è diventato più evidente nel corso
1727	dell'esperimento "C", in cui sono stati testati i valori di pH iniziale tra 4 e 10. In
1728	quell'esperimento l' H_2 è stato prodotto a tutti i valori di pH testati, ma la produzione più
1729	elevata si è registrata ai valori di pH alcalini. La produzione di H_2 più elevata è stata di
1730	1.8 mol H_2 mol ⁻¹ lattosio iniziale ed è stata registrata nei reattori a pH iniziale 8 (Tab. 5).
1731	A causa della finalità dell'esperimento, il pH è stato lasciato libero di scendere a valori
1732	bassi che hanno portato al blocco della DF che, volutamente, non è stata fatta
1733	proseguire. Poiché è stato consumato solo il 52.6% di lattosio (Fig. 13) si può
1734	presupporre che se la DF fosse stata portata a termine, sarebbero state prodotte 3.44
1735	mol H_2 mol ⁻¹ lattosio iniziale. Questa resa è più alta di quella riportata dalla maggior
1736	parte degli autori che hanno lavorato su lattosio: 1.1 mol H_2 mol ⁻¹ lattosio [62], 2.5 mol
1737	$H_2 \text{ mol}^{-1}$ lattosio [57], 2.6 mol $H_2 \text{ mol}^{-1}$ lattosio [64], 2.74 mol $H_2 \text{ mol}^{-1}$ lattosio [63] (che,

1738però, hanno utilizzato un ceppo di *Escherichia* coli modificato) e 2.8 mol H_2 mol⁻¹ lattosio1739[60] ed è molto simile a quella riportata da Davila et al. [56] (3.1 mol H_2 mol⁻¹ lattosio) e1740da Azbar et al. [149] (3.5 mol H_2 mol⁻¹ lattosio). Questi ultimi autori, però, hanno1741arricchito il SL con micro e macro nutrienti. Nel nostro caso, invece, è stato manipolato1742solo il pH iniziale e non è stata fatta nessuna integrazione in termini di micro e macro1743elementi.

1744 Diversi autori hanno descritto l'effetto positivo che il pH alcalino ha sulla 1745 produzione di H₂. Lee et al. [78] hanno ottenuto la massima produzione di H₂ da saccarosio a pH 9 e 10, ma la produttività era più bassa a pH < 5 o > 9. A pH 3, 11 e 12 1746 1747 non vi era stata produzione di H₂. Davila-Vazquez et al. [56] ha ottenuto la produzione di H₂ più elevata a pH 6 da SL in polvere. Tuttavia, il tasso si produzione volumetrico di 1748 H₂ (mmol H₂ L⁻¹ h⁻¹) aumentava all'aumentare del pH, raggiungendo il massimo a pH 1749 1750 8.12 (che era il massimo valore di pH testato). Romão et al. [65] hanno usato un 1751 consorzio microbico che includeva specie dei generi Clostridium, Lactobacillus ed Enterobacter per la DF del permeato di SL che conteneva 20 g L⁻¹ di lattosio, combinando 1752 1753 diversi fattori di processo come pH e Fe e sali di NH₄. L'intervallo di pH tesato era 1754 compreso tra 5.6 e 8.4. I valori di pH >7 hanno permesso di ottenere la resa in H₂ più 1755 elevata. Ferchichi et al. [55], hanno valutato l'effetto del pH iniziale (nel range 5-10) sulla 1756 produzione di H₂ utilizzando C. saccharoperbutylacetonicum ATCC 27021 per la DF del SL 1757 tal quale ed ha osservato una maggiore velocità di fermentazione nel range di pH 6-8, ma 1758 la produzione totale di H₂ più elevata c'è stata a pH 5 e 6. La fase lag è stata più lunga a 1759 pH acido piuttosto che a pH alcalino. Gli stessi autori [150], d'altronde, utilizzando lo stesso ceppo microbico su glucosio invece che SL come fonte di carbonio e testando un 1760

1761 range di pH iniziale tra 5 e 8.5, hanno registrato il tasso di produzione più alto a pH 7, mentre la maggiore resa in H₂ è stata osservata a pH 8.5, mentre, a pH 5 non c'è stata 1762 1763 produzione di H₂. Junghare et al. [151] hanno ottenuto la resa più alta in H₂ utilizzando 1764 un ceppo alcalino-tollerante di C. butyricum. Nell' esperimento "C", la produzione di H₂ è partita quando il pH era uguale a 5.4. 1765 1766 Molti autori [81, 152-153] suggeriscono un pH acido come ottimale per la produzione di H₂, ma i risultati dell'esperimento "C" indicano che questa soglia di pH è necessario più 1767 1768 che ottimale. Siccome in questo esperimento la produzione totale di H₂ più elevata si è 1769 avuta a pH iniziali alcalini, per la produzione di H₂ in DF andrebbero presi in 1770 considerazione 2 valori di pH entrambi fondamentali: l'optimum iniziale che permette di avere la maggiore resa in H₂ e il necessario, ovvero, il valore di pH che permette di 1771 1772 produrre H₂. Questa distinzione è in accordo con quanto definito da [73]. Questa 1773 distinzione diviene più chiara guardando i risultati dell'esperimento "D". 1774 1775 6.2. EFFETTO DEL pH SULLA COMUNITA' MICROBICA IN DF 1776 1777 Nell' esperimento "D", è stato valutato l'effetto che il pH iniziale ha avuto sulla 1778 composizione della comunità microbica. I risultati di questo esperimento sono stati 1779 messi in relazione con quelli dell'esperimento "C" in cui era stato valutato l'effetto del 1780 pH iniziale sulla produzione di H₂. L'effetto del pH iniziale sulla comunità microbica coinvolta nella DF è stata poco 1781 1782 esaminata. Kim et al. [73], che hanno testato l'influenza di diversi pH iniziali sulla DF di

1783 scarti alimentari, hanno esaminato la composizione microbica solo alla fine della DF,

1784	utilizzando la DGGE (elettroforesi su gel in gradiente denaturante). I risultati hanno
1785	mostrato una netta predominanza di <i>Clostridia</i> senza differenze di rilievo tra i vari pH
1786	iniziali. Il substrato, però, era stato pretrattato termicamente per eliminare le popolazioni
1787	competitrici con i produttori di H_2 e favorire i clostridi che, essendo sporigeni, sono in
1788	grado di sopravvivere ad un tale pre-trattamento. Romão et al [65], hanno isolato ed
1789	identificato i microorganismi dell'inoculo utilizzato per la DF del permeato di SL a
1790	diversi valori iniziali. L'inoculo, che proveniva da un impianto di digestione di reflui di
1791	caseificio e che non era stato adattato preliminarmente al consumo di lattosio, era
1792	costituito maggiormente da individui dei generi Lactobacillus, Enterobacter e Clostridium.
1793	Tuttavia, l'influenza del pH iniziale sull'evoluzione di questi gruppi microbici durante la
1794	DF non è stata riportata. Nell' esperimento "D" la composizione del consorzio
1795	microbico, invece, è stata monitorata dall'inizio alla fine della DF, così da poterne
1796	studiare l'evoluzione mediante l'utilizzo della tecnica HTS.
1797	Siccome il permeato e l'inoculo utilizzati per la DF erano gli stessi in tutti i reattori,
1798	la riduzione dell'α-diversity registrata dopo la fase lag era da attribuire al prevalere dei
1799	generei capaci di fermentare il lattosio, come riportato in [65]. Il pH iniziale, però, ha
1800	influenzato nettamente l'abbondanza relativa del genere Trichococcus.
1801	Il genere Trichococcus include batteri Gram-positivi e non sporigeni, che hanno una
1802	morfologia delle colonie variegata: possono organizzarsi singolarmente, in paia, in catene
1803	corte o come conglomerati irregolari. Attualmente, questo genere comprende 5 specie:
1804	T. flocculiformis, T. palustris, T. pasteurii, T. collinsii and T. patagoniensis, che presentano
1805	un'elevata somiglianza nelle loro sequenze del gene 16S rRNA. I membri del genere
1806	Trichococcus sono stati descritti come anaerobi facoltativi capaci di creare condizioni

riducenti e di ridurre la resazurina in substrati aerobici durante la loro crescita. Inoltre,
essi sono tutti ossidasi e catalasi negativi e possono crescere su una grande varietà di
zuccheri e altri substrati [154].

L'incremento dell'abbondanza relativa di Trichococcus durante la transizione tra la 1810 1811 fase 1 e la 2, osservata specialmente a pH alcalini, può essere attribuita al pH registrato 1812 durante la loro fase di crescita. Questo genere può crescere in un ampio range di pH (5.5 - 9) con l'ottimale attorno a 7.8 [155]. Nei reattori che avevano il pH iniziale alcalino, 1813 1814 dopo 6 ore di fermentazione il pH medio era 7.9 e, dopo 12 ore, era di 6.2. Nei reattori a 1815 pH iniziale 4, invece, dopo 6 ore di fermentazione il pH era di 6.3 e, dopo 12 ore, era di 5.8 (Fig. 12a). Il genere Trichococcus, inoltre, è anche capace di metabolizzare il lattosio 1816 [156], producendo etanolo, acido acetico, formico e lattico [154-155 e 157]. I risultati 1817 1818 ottenuti sono in linea con quanto dichiarato da questi autori: nelle prime 16 ore di 1819 fermentazione, infatti, i reattori con pH iniziale alcalino avevano prodotto quasi il 70% 1820 dell'etanolo totale (in concomitanza con la massiccia proliferazione di Trichococcus), nei 1821 reattori a pH 4, dove la proliferazione di Trichococcus è stata molto più contenuta, nelle 1822 prime 16 ore di fermentazione era stato prodotto solo il 37% dell'etanolo totale (Fig. 22). 1823 Nella seconda fase si è osservata una riduzione dell'incidenza di Trichococcus sulla 1824 popolazione totale, che può essere spiegata con il contemporaneo abbassamento del pH 1825 che si è assestato attorno a 5.4 in tutti i reattori (Fig. 12a). Questo valore di pH, come 1826 detto in precedenza, è leggermente più basso del limite del range di crescita di questo genere. Nella seconda fase, comunque, c'è stato un netto predominio dei Clostridia in 1827 1828 tutti i reattori (Fig. 19), tale situazione era attesa poiché questo gruppo microbico è capace di metabolizzare i substrati particolarmente ricchi in lattosio ed è pesantemente 1829

coinvolto nella produzione di H₂ in DF, così come riportato da diversi autori [28-29]. Il 1830 1831 genere Clostridium sensu stricto, che ha nettamente prevalso nella comunità microbica di 1832 tutti i reattori durante la fase 2, è in grado di proliferare bene in un intervallo di pH 1833 compreso tra 3.6 e 7 senza un valore ottimale specifico [158]. I componenti del genere Clostridium sensu stricto sono indicati come buoni produttori di H2 [7] e questo spiega la 1834 massiccia produzione di H₂ registrata durante la fase 2 in tutti i reattori. Tuttavia, la 1835 produzione totale di H₂ è stata più alta quando il valore di pH iniziale era pari a 8 (+ 1836 1837 64% in confronto a pH 4) (Tab. 5). Nelle prime 24 ore di fermentazione la produzione 1838 di H₂ nei reattori alcalini era 1.9 volte più alta che a pH 4 (Fig. 12b). L'abbondante 1839 proliferazione del genere Trichococcus a pH alcalini suggerisce un'azione coadiuvante dovuta al metabolismo di tali batteri capaci di modificare il substrato di partenza nelle 1840 1841 prime fasi di fermentazione, in modo da favorire la successiva produzione di H₂ ad opera 1842 dei clostridi. Il genere Trichococcus, effettivamente, ha delle capacità riducenti [154], 1843 dunque, può migliorare le condizioni ambientali, rendendole più adatte alla DF. Infatti, sebbene la proliferazione di C. sensu stricto fosse stata simile in tutti i reattori, a pH 4, 1844 1845 dove la proliferazione di Trichococcus era limitata, è stato osservato un ritardo sia nella produzione di H₂ che di acido acetico e butirrico se confrontate alle produzioni ottenute 1846 1847 a pH iniziale alcalino in cui Trichococcus è stato capace di proliferare abbondantemente 1848 nelle prime 16 ore (Fig. 21 e 23). Inoltre, è interessante notare che tra la 20[^] e la 24[^] ora il tasso di produzione oraria a pH 10 era più alto che a pH 8 (+24%) (Fig. 23a). Questo 1849 può essere dovuto all'incremento del genere Enterococcus che c'è stato a pH 10 (Tab.7 e 1850 Fig. 21c). Poiché i rappresentati di tale genere sono produttori di H₂ [7], è possibile che 1851 essi stessi abbiano partecipato attivamente alla produzione di H2. Tuttavia, la coesistenza 1852

1853di Clostridium ed Enterococchi non è stata fruttuosa, poiché il tasso di produzione1854oraria di H_2 è progressivamente calato tanto che, alla fine, a pH 10, era stato prodotto1855meno H_2 che a pH 8 (Tab. 5). La coesistenza tra i due generi, d'altronde, è conflittuale1856[159-160].

- 1857
- 1858 6.3. CONSUMO DI LATTOSIO
- 1859

Al termine degli esperimenti "C" e "D", in tutti i reattori quasi la metà del lattosio 1860 iniziale era stato consumato. Questo può essere spiegato dall'effetto inibitorio del pH 1861 1862 molto acido che deriva dal processo di DF non tamponato. In effetti, l'enzima lattasi ha 1863 un optimum di attività a pH neutro [161], un pH acido, invece, inibisce l'attività di tale 1864 enzima [162]. Alla fine del periodo di osservazione, comunque, il lattosio residuo era 1865 molto simile in tutti i reattori, ovvero, in tutti i reattori era stato consumato lo stesso quantitativo di lattosio. Poiché ci sono state differenze nella produzione di H2 tra i vari 1866 trattamenti, si può dire che l'efficienza di conversione del lattosio in H₂ è stata 1867 1868 influenzata dal pH iniziale.

1869

1870 6.4. RELAZIONE TRA COMPOSIZIONE DELLA COMUNITÀ
1871 MICROBICA E PRODUZIONE DEI METABOLITI

1872

1873 Durante la DF propriamente detta assieme all' H_2 vengono prodotti, tipicamente, 1874 anche acido acetico e butirrico. La sintesi di tali acidi, infatti, è la tipica via metabolica 1875 seguita dai clostridi per produrre H_2 in DF [62, 81 e 163]. Durante la fase 2 della DF 1876 (fase di produzione esponenziale di H₂), cioè durante la proliferazione attiva dei Clostridium, in effetti, è stato osservato un incremento della concentrazione di acido 1877 1878 acetico e butirrico (Fig. 23b e c). Tali acidi, inoltre, erano quelli più abbondanti sul totale 1879 di VFA prodotti. La produzione totale di acido acetico e butirrico era stata più alta ai valori di pH più bassi, mentre la concentrazione finale di etanolo è stata più elevata ai 1880 1881 pH alcalini in accordo con quanto riportato in [28]. I livelli di acido propionico prodotti 1882 durante questo esperimento sono stati sempre molto bassi indipendentemente dal pH 1883 iniziale. La produzione di acido propionico ha conseguenze negative per la produzione di H₂ in DF, poiché la produzione di acido propionico non permette il rilascio di H₂ (cfr. 1884 1885 eq. 1.23).

Anche la produzione di acido lattico ha un effetto negativo sulla produzione di H₂ 1886 1887 (cfr. eq. 1.25). La maggior parte dell'acido lattico è stata prodotta nella fase 3 della DF 1888 cioè nella fase finale, ovvero, nella fase stazionaria della produzione di H₂, quando il pH 1889 nei vari reattori era di 4.4 (\pm 0.02) (Fig. 12a). Tale valore di pH ha favorito la proliferazione dei generi Bifidobacterium and Lactobacillus (Fig. 24) che producono 1890 1891 maggiormente acido lattico, in maniera più abbondante a pH < 4.5 [164]. In questa fase, 1892 infatti, in tutti i reattori è stata osservato un incremento nella produzione di acido lattico 1893 che era praticamente scomparso alla fine della fase 1 (Fig. 24). La proliferazione attiva di 1894 Lactobacillus e il simultaneo arresto della produzione di H₂, d'altronde, è in accordo con 1895 quanto riferito da Etchebehere et al., [127] che hanno notato una massiccia presenza di 1896 lattobacilli nei reattori che producevano basse quantità di H₂.

1897 In sintesi i risultati dell'esperimento "C" e "D" hanno permesso di identificare 2
1898 valori di pH ugualmente fondamentali per ottimizzare la produzione di H₂. Questi due

1899	valori sono il pH iniziale 8 che ha permesso di ottenere una particolare configurazione
1900	della comunità microbica che ha permesso di produrre più H_2 (Fig. 19) e un pH
1901	"operativo" di 5.4, il cui mantenimento, permetterebbe di mantenere la configurazione
1902	più produttiva della comunità microbica evitando che la stessa degeneri quando il pH si
1903	è abbassato a valori intorno a 4 (Fig. 19) e non si è registrata più produzione di H_2 ,
1904	nonostante circa la metà del lattosio fosse ancora indigerita.

1906 *6.5. INOCULO*

1907

L'inoculo utilizzato era un consorzio microbico misto ottenuto da liquame suino. 1908 Nessun pretrattamento atto ad eliminare la flora microbica idrogenotrofa è stato 1909 1910 effettuato, poiché lo scopo della ricerca era quello di ottimizzare la produzione di H₂ 1911 minimizzando gli input esterni. Nonostante l'inoculo non fosse stato pretrattato, però, 1912 non si è registrata alcuna produzione di CH₄ durante la fase di DF nei vari esperimenti. Inoltre, benché siano stati utilizzati lotti diversi di inoculo, le prestazioni degli inoculi 1913 1914 stessi, a parità di condizioni, sono state sempre molto simili. Poiché il substrato di 1915 partenza era sempre lo stesso, i risultati dei vari esperimenti possono essere messi a 1916 confronto a parità di condizioni, cioè, H₂ prodotto dopo 96 ore e a pH iniziale ottimale 1917 compreso tra 8 ed 8.7. In base a quanto appena affermato è possibile confrontare i mL 1918 di H₂ prodotti per mL di permeato. Nell' esperimento "B" a pH iniziale 8 sono stati 1919 prodotti 3.4 mL di H₂ per mL di permeato e 3.7 mL di H₂ per mL di permeato a pH 8.5, nell'esperimento "C" sono stati prodotti 3.6 mL di H₂ per mL di permeato a pH 8, 1920 nell'esperimento "F" (a pH 8.7) sono stati prodotti 3.1 e 3 mL di H₂ per mL di 1921

1922	permeato. In conclusione, a pH compreso tra 8 e 8.7, mediamente, sono stati prodotti
1923	3.36 ± 0.3 mL di H ₂ per mL di permeato. Poiché la concentrazione di lattosio della scotta
1924	è simile a quella del permeato, si può verificare che, nell'esperimento "B", dalla scotta
1925	"G" (che ha generato il permeato) è stato possibile ottenere 3.4 mL di H_2 per mL di
1926	scotta a pH 8 e 3.6 mL di H_2 per mL di scotta a pH 8.5. Questo permette di affermare
1927	che i dati ottenuti sperimentalmente sono molto riproducibili e ciò è dovuto anche
1928	all'estrema omogeneità della composizione dei vari lotti di inoculo (Tab. 2). I risultati
1929	altamente riproducibili e la bassa variabilità della composizione dei vari lotti di inoculo,
1930	uniti al fatto che la fonte di inoculo fosse stata sempre la stessa (liquame suino)
1931	suggeriscono che anche il comportamento del microbiota descritto nell'esperimento "D"
1932	si sia replicato negli altri esperimenti.
1933	
1934	6.6 IMMOBILIZZAZIONE
1935	
1936	Nell'esperimento "F" sono stati testati vari materiali per immobilizzare la
1937	biomassa all'interno del reattore ed evitarne il dilavamento, così da aumentare il tasso
1938	orario di produzione di H ₂ . Sebbene nel primo ciclo di DF, ZE e BM avevano mostrato
1939	produzioni di H ₂ simili ai reattori SB, nel secondo ciclo di DF si è assistito ad un
1940	generale abbassamento della produzione totale di H_2 nei reattori a biomassa adesa.

1941 Poiché il consumo di lattosio tra il primo e il secondo ciclo di DF è stato simile in tutti i

1942 reattori, il calo della produzione di H_2 indicava un dilavamento della biomassa idrogeno-

1943 produttrice dai vari reattori che, quindi, non ha aderito ai supporti. Guardando il profilo

1944 metabolico (Tab. 9 e 10) si può osservare che, durante il secondo ciclo di DF, nei reattori

a biomassa adesa c'è stata una massiccia produzione di acido lattico (2.97 g L⁻¹), questo 1945 1946 valore è simile a quello riportato in [165] ottenuto da biomassa adesa. Gli autori di questo lavoro hanno testato la produzione di H2 da biomassa adesa (che ha formato un 1947 biofilm su pietre di granito) e l'hanno confrontata con la produzione di H₂ da biomassa 1948 granulare. La produzione di H₂ da biomassa granulare è stata più elevata rispetto alla 1949 produzione di H2 da biomassa adesa. Gli autori, inoltre, riportano che la concentrazione 1950 di acido lattico, è stata pari a 2.4 g L⁻¹ da biomassa adesa, mentre, tale acido non è stato 1951 rilevato dalla biomassa granulare. Nel nostro caso la concentrazione di acido lattico da 1952 1953 SB, in entrambi i cicli di DF, è stata più bassa (0.46 g L^{-1}) della concentrazione misurata nel permeato iniziale (0.69 g L⁻¹). Nei reattori a biomassa adesa, invece, durante il primo 1954 1955 ciclo di DF (quello più produttivo) la concentrazione media di acido lattico era di (1.03 g 1956 L⁻¹), nel secondo ciclo di DF la concentrazione di acido lattico in questi reattori è quasi 1957 triplicata. Questo risultato, insieme al calo di pH più rapido osservato in questi reattori 1958 durante il secondo ciclo di DF, fa supporre che la biomassa che ha aderito ai supporti fosse costituita da batteri lattici. Inoltre, poiché la produzione di H₂ è calata tra il primo 1959 1960 ed il secondo ciclo di DF, si può supporre che la popolazione di clostridi non abbia aderito ai supporti e, pertanto, sia stata dilavata quando i reattori sono stati svuotati. 1961 Kumar et al. [166], d'altronde, pur riportando che l'immobilizzazione per 1962 1963 adsorbimento è la tecnica più comunemente utilizzata, presenta un punto cruciale 1964 costituito dalla scelta dei supporti, poiché non tutti i supporti presentano le caratteristiche giuste per permettere l'adesione della biomassa, così come ogni supporto 1965 ha un certo "indice di gradimento" che varia a seconda del microorganismo. Gli stessi 1966 autori riportano che, recentemente, un amalgama di calcio-alginato e carbone attivo ha 1967
1968	dato risultati interessanti. Un amalgama del genere, infatti, permette di contenere
1969	l'abbassamento del pH [167] che, inevitabilmente, avviene durante il corso della DF e,
1970	come ampiamente discusso in precedenza, il mantenimento del pH operativo è una
1971	condizione necessaria per portare a termine la DF con successo.
1972	
1973	6.7. CO-DIGESTIONE
1974	
1975	Nell'esperimento "B" è stato valutato l'effetto della co-digestione di scotta e
1976	permeato con liquame suino sulla produzione di H ₂ . I risultati hanno mostrato che dal
1977	liquame suino non è stato possibile ottenere H_2 e la presenza del liquame suino nella co-
1978	digestione ha avuto un effetto molto negativo sulla produzione di H_2 tanto che la
1979	produzione di H ₂ dalle varie miscele è stata molto al disotto di quella attesa se
1980	confrontata con la produzione quella ottenuta da scotta e permeato in monodigestione.
1981	Guardando la Tab. 3, si può notare che nei reattori in co-digestione era stato sempre
1982	prodotto un grosso quantitativo di acido propionico, la cui concentrazione ha avuto il
1983	picco massimo (circa 29 g L^{-1} , in media) quando nella miscela era presente il 75% di
1984	liquame, mentre la concentrazione più bassa (circa 4 g L^{-1}) è stata ritrovata nei reattori in
1985	cui in miscela c'era il 25% di liquame. Quando scotta e permeato sono sati fermentati in
1986	assenza di liquame, invece, la concentrazione media di acido propionico è stata solo di
1987	$0.07~{\rm g~L^{\text{-1}}}.$ Poiché la produzione di acido propionico è antagonista della produzione di ${\rm H_2}$
1988	(cfr. eq. 1.23), l'abbondante concentrazione di acido propionico osservata in co-
1989	digestione può spiegare la bassa produzione di H ₂ osservata in questi reattori.
1990	Indubbiamente il liquame suino ha indotto la produzione di acido propionico,

probabilmente perché il liquame suino ha abbassato il rapporto C/N (Tab. 3).
L'influenza negativa dell'azoto sulla produzione di H₂ da lattosio è stata
precedentemente riportata in [66], gli autori di questo lavoro, infatti, riportano che
all'aumentare della concentrazione di N nel substrato, la produzione di H₂ calava, in
accordo con i risultati dell'esperimento "B".

1996

1997 7. CONCLUSIONI

1998

1999 In questo studio è stato dimostrato che è possibile recuperare le siero proteine dalla 2000 scotta mediante ultrafiltrazione e valorizzarne lo scarto per produrre un carrier 2001 energetico come l'H₂. La monodigestione del permeato, inoltre, risulta essere più 2002 redditizia (in termini di rese in H₂) rispetto alla co-digestione con liquame suino. I 2003 risultati ottenuti dimostrano che il pH è un parametro fondamentale durante la 2004 produzione di H₂ in DF. Infatti, la produzione di H₂ è avvenuta quando il pH aveva 2005 raggiunto valori poco al disotto del 6 e si è fermata quando il pH ha raggiunto valori 2006 intorno a 4, tuttavia, è stato possibile influenzare la produzione totale di H₂ manipolando 2007 il pH iniziale. In particolare, aumentando il valore del pH iniziale è stato possibile 2008 aumentare sia il tasso di produttività oraria che la produzione totale dell'H₂, questo 2009 perché la manipolazione del pH iniziale ha permesso di modificare i rapporti interspecifici della popolazione microbica coinvolta nella DF del permeato e, pertanto, è 2010 2011 stato possibile identificare un profilo metatassonomico associato alla produzione di H₂ 2012 più elevata. Tale profilo è quello che è stato ottenuto quando il valore di pH iniziale era 2013 pari ad 8 ed era costituito, oltre che da Clostridiales, anche da Trichococcus, le cui attività

2014 metaboliche, che hanno anticipato quelle dei Clostridiales, si sono rivelate essere

2015 propedeutiche per la successiva produzione d'idrogeno.

2016

RICONOSCIMENTI 2017

- 2018
- 2019 Le attività di ricerca sono state svolte presso il laboratorio del Consiglio per la
- 2020 ricerca in agricoltura e l'analisi dell'economia agraria, Centro Zootecnia e acquacoltura,
- Sede di Modena, e finanziariamente supportate dal Ministero dell'Istruzione, 2021
- dell'Università e della Ricerca (MIUR; CTN01 00230 450760). Il permeato è stato 2022
- prodotto e fornito dal Laboratorio Bioprodotti e Bioprocessi dell'ENEA, Centro Ricerca 2023
- Casaccia. Un ringraziamento speciale ad Anna Orsi e Lidia Sghedoni per le analisi di 2024
- laboratorio e l'assistenza fornita. 2025
- 2026

2032

2033

2034

2035

2041

BIBLIOGRAFIA 2027

- 2028 1. Nazaroff W.W., Alvarez-Cohen L., 2001. Environmental Engineering Science. John Wiley & 2029 Sons, Inc., New York City - U.S., pp. 704.
- 2030 2. The U.S. Energy Information Administration (EIA) 2031 (https://www.eia.gov/todayinenergy/detail.php?id=9650) [ultimo accesso 13/12/2017]
 - 3. Buchner W., Schliebs R., Winter G., Buchel K.H., 1996. Chimica Inorganica Industriale. Piccin, Padua - Italy, pp. 694.
 - 4. Cappella P., Fedeli E., Bonaga G., Lercker G., 1997. Manuale degli oli e dei grassi. Tecniche Nuove, Milan-Italy, pp.488.
- 2036 5. DoITPoMS - University of Cambridge https://www.doitpoms.ac.uk/tlplib/fuel-cells/intro.php 2037 [ultimo accesso 13/12/2017]
- 2038 6. Riis T., Hagen E. F., Vie P.J.S., Ulleberg, Ø., 2006. Hydrogen production and storage: R&D 2039 priorities and gaps. IEA, Paris - France, pp. 33.
- 2040 Wang J., Yin Y., 2017. Biohydrogen Production from Organic Wastes. Springer Singapore. 7.
- Das D., Veziroglu T.N., 2001. Hydrogen production by biological processes: a survery of 8. 2042 literature. Int. J. Hydrogen Energy 26, 13-28.
- 2043 9. Gaffron H., Rubin J., 1942. Fermentative and photochemical production of hydrogen by algae. 2044 J. Gen. Physiol. 26, 219-240.

- 2045 10. Wykoff D.D., Davies J.P., Melis A., Grossman A.R., 1998. The regulation of photosynthetic
 2046 electron transport during nutrient deprivation in *Chlamydomonas reinhardtii*. Plant. Physiol. 117, 129-139.
- 2048 11. Schnackenberg J., Schulz R., Senger H., 1993. Characterization and purification of a hydrogenase from eukaryotic green alga *Scendesmus obliguus* FFB Lett. 327, 21-24.

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076 2077

2078

2079

2080

2081

2082

2083

2084

2085

2086 2087

2088

2089

2090

2091

2092

2093

2094

- Greenbaum E., 1990. Hydrogen production by photosynthetic water splitting. In: Veziroglu T.N., Takashashi P.K., (Eds.). Hydrogen energy progress VIII. Proceedings 8th WHEC, Hawaii. Pergamon Press, New York – U.S., pp. 743-754.
- Kok B., 1953. Pilot-plant in the production of chlorella. In: Burlew J.S., (Ed.). Algal culture: from laboratory to pilot plant. Washington D.C.: Carnegie Institute of Washington, pp.235-272.
- 14. Vyas D., Kumar H.D., 1995. Nitrogen fixation and hydrogen uptake in four cyanobacteria. Int. J. Hydrogen Energy 22, 163-168.
 - 15. Benemann J.R., Berenson J.A., Kaplan N.O., Kamen M.D., 1973. Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proc. Natl. Acad. Sci. 70, 2317-2320.
 - 16. Thauer R.K., Jungermann K.A., Decker K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180.
 - 17. Hallenbeck P.C., 2010. Microbial technologies in advanced biofuels production. Biofuels I, 129-142.
 - Levin D.B., Azbar N., 2012. Biohydrogen in Perspective. In: Azbar, N., Levin, D.B. (Eds.), State of the Art and Progress in Production of Biohydrogen. Bentham eBooks, United Arab Emirates. <u>http://dx.doi.org/10.2174/97816080522401120101</u>.
 - Claassen P.A.M., van Lier J.B., Lopez C.A.M., van Niel E. W. J., Sijtsma L., Stams A. J. M., de Vries S. S., Weusthuis R. A., 1999. Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52, 741-755.
 - 20. Levin D.B., Pitt L., Love M., 2004. Biohydrogen production: prospects and limitations to pratical application. Int. J. Hydrogen Energy 29, 173-185.
 - 21. Nandi R., Sengupta S., 1998. Microbial production of hydrogen: an overview. Crit. Rev. Microbiol. 24, 61-84.
- 22. Nath K., Das D., 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520-529.
- 23. Gottschalk G., 1986. Bacterial metabolism. 2nd ed. Springer. Berlin Germany.
- Ito T., Nakashimada Y., Senba K., Matsui T., Nishio N., 2005. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100, 260-265.
- Chong M.L., Sabaratnam V., Shirai Y., Hassan A., 2009. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy 34, 3277-3287. doi:10.1016/j.ijhydene.2009.02.010.
- 26. McInerney M.J., Rohlin L., Mouttaki H., Kim M., Rebecca S., Krupp R.S., Rios-Hernandez L., Sieber J., Struchtemeyer C.G., Bhattacharyya A., Campbell J.W., Gunsalus R.P., 2007. The genome of *Syntrophus aciditrophicus*: life at the thermodynamic limit of microbial growth. Proc. Natl. Acad. Sci. USA 104, 7600–7605.
 - 27. Wang J., Wei W., 2009. Kinetic models for fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 3313-3323.
 - Guo X.M., Trably E., Latrille E., Carrere H., Steyer J.P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy. doi:10.1016/j.ijhydene.2010.03.008.
- 29. Wang J., Wan W., 2009. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 34, 799-811.
- 30. Hallenbeck, P., 2009. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy 34, 7379-7389.

- 31. Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark
 fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J.
 Hydrogen Energy 32, 172–184.
- 2099 32. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., Esposito G., 2015. A
 2100 review on dark fermentative biohydrogen production from organic biomass: Process
 2101 parameters and use of by-products. Appl. Energy 144, 73–95.
 2102 doi:10.1016/j.apenergy.2015.01.045.

- 33. Cheong D.Y., Hansen .C.L., 2006. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl. Microbiol. Biotechnol. 72, 635-643.
 - 34. Hu B., Chen S.L., 2007. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int. J Hydrogen Energy 32, 3266-3273.
 - 35. Zhu H.G., Beland M., 2006. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy 31, 1980-1988.
 - 36. Wang J.L., Wan W., 2008. Comparison of different pretreatment methods for enriching hydrogen-producing cultures from digested sludge. Int. J. Hydrogen Energy 33, 2934-2941.
 - 37. Manish S., Venkatesh K.V., Banerjee R., 2007. Metabolic flux analysis of biological hydrogen production by *Escherichia coli*. Int. J. Hydrogen Energy 32, 3820-3830.
 - 38. Minnan L., Jinli H., Xiaobin W., Huijuan X., Jinzao C., Chuannan L., Fengzhang Z., Liangshu X., 2005. Isolation and characterization of a high H₂-producing strain *Klebsiella oxytoca* HP1 from a hot spring. Res. Microbiol. 156, 76–81.
 - 39. Oh Y.K., Seol E.H., Kim J.R., Park S.H., 2003. Fermentative biohydrogen production by a new chemoheterotrophic bacterium *Citrobactersp.* Y19. Int. J. Hydrogen Energy 28, 1353-1359.
 - Chen C-C., Chuang Y-S., Lin C-Y., Lay C-H., Sen B., 2012. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int. J. Hydrogen Energy 37, 15540-15546.
 - 41. Fang H.H.P., Zhang T., Liu H., 2002. Microbial diversity of a mesophilic hydrogen producing sludge. Appl. Microbiol. Biotechnol. 58, 112-118.
 - 42. Shin H.S., Youn J.H., Kim S.H., 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 29, 1355-1363.
 - 43. Girbal L., Croux C., Vasconcelos I., Soucaille P., 1995. Regulation of metabolic shifts in *Clostridium acetobutylicum* ATCC824. FEMS Microbiol. Rev. 17, 287-297.
 - 44. Yokoi H., Ohkawara T., Hirose J., Hayashi S., Takasaki Y., 1995. Characteristic of hydrogen production by aciduric *Enterobacter aerogenes* strain HO-39. J. Ferment. Bioeng. 80, 571-574.
 - 45. Yokoi H., Takushige T., Hirose J., Hayashi S., Takasaki Y., 1998. H2 production from starch by a mixed culture of *Clostridium butyricum* and *Enterobacter aerogenes*. Biotech. Lett. 20, 143-147.
 - 46. Yokoi H., Maki R., Hirose J., Hayashi S., 2002. Microbial production of hydrogen from starchmanufacturing wastes. Biomass Bioenerg. 22, 389-395.
 - 47. Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96, 673-686.
 - 48. Taguchi F., Yamada K., Hasegawa K., Taki-Saito T., Hara K., 1996. Continuous hydrogen production by *Clostridium* sp. strain no 2 from cellulose hydrolysate in an aqueous two phase system. J. Ferment. Bioeng. 82, 80-83.
 - 49. Levin D.B., Islam R., Cicek N., Sparling R., 2006. Hydrogen production by *Clostridium thermocellum* 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy 31, 1496-1503.
 - 50. Liu H., Zhang T., Fang H.P.P., 2003. Thermophilic H₂ production from cellulose containing wastewater. Biotechnol. Lett. 25, 365-369.
- 51. Lay J.J., 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 74, 280-287.
- 52. Fan Y.T., Zhang G.S., Guo X.Y., Xing Y., Fan M.H., 2006. Biohydrogen production from beer
 lees biomass by cow dung compost. Biomass. Bioenergy 30, 493-496.

53. Fan Y.T., Zhang Y.H., Zhang S.F., Hou H.W., Ren B.Z., 2006. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Biores. Technol. 97, 500-505.

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

- 54. Zhang M.L., Fan Y.T., Xing Y., Pan C.M., Zhang G.S., Lay J.J., 2007. Enhanced biohydrogen production from corn stalk wastes with acidification pretreatment by mixed anaerobic culture. Biomass Bioenergy 31, 250-254.
- 55. Ferchichi M., Crabbe E., Gil G.H., Hintz W., Almadidy A., 2005. Influence of initial pH on hydrogen production from cheese whey. J. Biotech. 120, 402-409.
- 56. Davila-Vazquez G., Alatriste-Mondragón F., de León-Rodríguez A., Razo-Flores E., 2008. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int. J. Hydrogen Energy 33, 4989–4997. doi:10.1016/j.ijhydene.2008.06.065.
- 57. Azbar N., Dokgoz F.T., Keskin T., Eltem R., Korkmaz K.S., Gezgin Y., Akbal Z., Öncel S., Dalay M. C., Gönen Ç., Tutuk F., 2009. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. Int. J. Green Energy 6, 192-200.
 - 58. Azbar N., Dokgöz Çetinkaya F.T., Keskin T., Korkmaz K.S., Syed H.M., 2009. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 34, 7441-7447.
 - 59. Castelló E., García y Santos C., Iglesias T., Paolino G., Wenzel J., Borzacconi L., Etchebehere C., 2009. Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int. J. Hydrogen Energy 34, 5674-5682.
- 60. Davila-Vazquez, G., Cota-Navarro, C.B., Rosales-Colunga, L.M., de León-Rodríguez, A., Razo-Flores, E., 2009. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int. J. Hydrogen Energy 34, 4296-4304. doi:10.1016/j.ijhydene.2009.02.063.
- 61. Napoli F., Olivieri G., Russo M.E., Marzocchella A., Salatino P., 2012. Continuous lactose fermentation by *Clostridium acetobutylicum*-Assessment of energetics and product yields of the acidogenesis. Enzyme and Microbial Technol. 50, 165-172.
- 62. Perna V., Castelló E., Wenzel J., Zampol C., Fontes Lima D.M., Borzacconi L., Varesche M.B., Zaiat M., Etchebehere C., 2013. Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int. J. Hydrogen Energy 38, 54-62.
- 63. Rosales-Colunga L.M., Alvarado-Cuevas Z.D., Razo-Flores E., De León Rodríguez A., 2013. Maximizing Hydrogen Production and Substrate Consumption by *Escherichia* coli WDHL in Cheese Whey Fermentation. Appl. Biochem. Biotechnol.,171, 704-715.
- 64. De Gioannis G., Friargiu M., Massi E., Muntoni A., Polettini A., Pomi R., Spiga D.,
 2014.Biohydrogen production from dark fermentation of cheese whey: Influence of pH. Int.
 J. Hydrogen Energy 39, 20930-20941.
- 65. Romão B.B., Batista F.R.X., Ferreira J.S., Costa H.C.B., Resende M.M., Cardoso, V.L., 2014. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Appl. Biochem. Biotechnol. 172, 3670-3685. doi:10.1007/s12010-014-0778-5.
- Moreno R., Fierro J., Fernández C., Cuetos M.J., Gómez X., 2015. Biohydrogen production from lactose: influence of substrate and nitrogen concentration. Environ. Technol. 36, 2401-2409. DOI:10.1080/09593330.2015.1032365.
 - 67. Ren N.Q., Li J.Z., Li B.K., Wang Y., Liu S.R., 2006. Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int. J. Hydrogen Energy 31, 2147-2157.
- 68. Zhang T., Liu H., Fang H.H.P., 2003. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Mang. 69, 149-156.
- 2197 69. Van Ginkel S.W., Oh S.E., Logan B.E., 2005. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 30, 1535-1542.

70. Fang H.H.P., Li C., Zhang T., 2006. Acidophilic biohydrogen production from rice slurry. Int.
J. Hydrogen Energ 31, 683-692.

2201

2202

2203

2204

2205

2209 2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2243

2244

2245

2246

2247

- 71. Kim S.H., Han S.K., Shin H.S., 2004. Feasibility of biohydrogen production by anaerobic codigestion of food waste and sewage sludge. Int. J. Hydrogen Energy 29, 1607-1616.
- 72. Pan J., Zhang R., El-Mashad H.M., Sun H., Ying Y., 2008. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 33, 6968-6975.
- Kim D.H., Kim S.H., Jung K.W., Kim M.S., Shin H.S., 2011. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresour. Technol. 102, 8646-8652. http://dx.doi.org/10.1016/j.biortech.2011.03.030.
 - 74. Dabrock B., Bahl H., Gottschalk G., 1992. Parameters affecting solvent production by *Clostridium pasteurianum*. Appl. Environ. Microbiol.58, 1233-1239.
 - 75. Luo G., Xie L., Zou Z., Zhou Q., Wang J.Y., 2010. Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl. Energy 87, 3710-3717.
 - 76. Wu X., Yao W., Zhu J., 2010. Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 35, 6592-6599.
 - 77. De Gioannis G., Muntoni A., Polettini A., Pomi R., 2013. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management 33, 1345-1361.
 - 78. Lee Y.J., Miyahara K., Noike T., 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77, 694-698.
 - 79. Rechtenbach D., Meyer M., Stegmann R., 2008. (Dis-) continuous production of biohydrogen and biomethane from raw and waste materials by fermentation. In: Proceedings of Venice 2008. Second International Symposium on Energy from Biomass and Waste, Venice (I), 17-20 November 2008 (manuscript on CD ROM, 10 pp.).
 - Rechtenbach D., Stegmann R., 2009. Combined bio-hydrogen and methane production. In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), 5–9 October 2009, pp. 79–80 (manuscript on CD ROM, 11 pp.).
 - 81. Khanal S.K., Chen W.H., Li L., Sung S., 2004. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29, 1123-1131.
 - Valdez-Vazquez I., Poggi-Varaldo H., 2009. Alkalinity and high total solids affecting H₂ production from organic solid waste by anaerobic consortia. Int. J. Hydrogen Energy 34, 3639-3646.
 - 83. Van Ginkel S., Sung S.W., Lay J.J., 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726-4730.
 - 84. Hafez H., Nakhla G., El Naggar H., 2012. Biological hydrogen production. In: Sherif SA, editor. Handbook of hydrogen energy. Boca Raton: CRC Press, Taylor and Francis.
 - 85. Sinha P., Pandey A., 2011. An evaluative report and challenges for fermentative biohydrogen production. Int. J. Hydrogen Energy 36, 7460-7478.
- 86. Elsharnouby O., Hafez H., Nakhla G., El Naggar M. H., 2013. A critical literature review on biohydrogen production by pure cultures. Int. J. Hydrogen Energy 38, 4945-4966.
 - Lee K.S., Lin P.J., Chang J.S., 2006. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int. J. Hydrogen Energy 31, 465-472.
 - Bastidas-Oyanedel J-R., Mohd-Zaki Z., Zeng R.J., Bernet N., Pratt S., Steyer J-P., Damien JohnBatstone D.J., 2012. Gas controlled hydrogen fermentation. Bioresour. Technol. 110, 503-509.
- 89. Mandal B., Nath K., Das D., 2006. Improvement of biohydrogen production under decreased partial pressure of H2 by *Enterobacter cloacae*. Biotechnol. Lett. 28, 831-835.

90. Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T., 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Biores. Technol. 73, 59-65.
91. Tanisho S., Kuromoto M., Kadokura N., 1998. Effect of CO₂ removal on hydrogen production from glucose by nitrogen gas sparging.

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

- 91. Tanisho S., Kuromoto M., Kadokura N., 1998. Effect of CO₂ removal on hydrogen production by fermentation. Int. J. Hydrogen Energy 23, 559-563.
- 92. Lay J.J., 2000. Modeling and optimization of anaerobic digested sludge concerting starch to hydrogen. Biotechnol. Bioeng. 68, 269-278.
 - 93. Bisaillon A., Turcot J., Hallenbeck P.C., 2006. The effect of nutrient limitation on hydrogen production by batch cultures of *Escherichia coli*. Int. J. Hydrogen Energy 31, 1504-1508.
- 94. Salerno M.B., Park W., Zuo Y., Logan B.E., 2006. Inhibition of biohydrogen production by ammonia. Water Res. 40, 11671172.
 - 95. Lay J.J., Fan K.S., Hwang J.I., Chang J.I., Hsu P.C., 2005. Factors affecting hydrogen production from food wastes by Clostridium-rich composts. J. Environ. Eng. 131, 595-602.
- 96. Argun H., Kargi F., Kapdan I.K., Oztekin R., 2008. Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int. J. Hydrogen Energy 33, 1813-1819.
- 97. O-Thong S., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N.K., 2008. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by *Thermoanaerobacterium*-rich sludge. Int. J. Hydrogen Energy 33, 1221-1231.
- 98. Li C.L., Fang H.H.P., 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Env. Sci. Technol. 37 1–39.
- 99. Lin C.Y., Lay C.H., 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 30, 285-292.
- 100. Voet D., Voet J.G., Pratt C.W., 1999. Fundamentals of biochemistry. US: John Wiley; p. 382.
- 101. Liu G.Z., Shen J.Q., 2004. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J. Biosci. Bioeng. 98, 251-256.
- 102. Zhang Y.F., Liu G.Z., Shen J.Q., 2005. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int. J. Hydrogen Energy 30, 855-860.
- 103. Lee Y.J., Miyahara T., Noike T., 2001. Effect of iron concentration on hydrogen fermentation. Biores. Technol. 80, 227-231.
- 104. Show K., Zhang Z., Tay J., Tee D., Lee D., Ren N., Wang A. 2010, Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater. Int. J. Hydrogen Energy 35, 13350-13355.
 - 105. Show K., Lee D., Chang J., 2011. Bioreactor and process design for biohydrogen production. Bioresour. Technol. 102, 8524-8533.
- 106. Zhang Z., Show K., Tay J., Liang D., Lee D., 2008. Biohydrogen production with anaerobic fluidized bed reactors- a comparison of biofilm-based and granule-based systems. Int. J. Hydrogen Energy 33, 1559-1564.
- 107. Motte J-C., Trably E., Escudié R., Hamelin J., Steyer J-P., Bernet N., Delgenes J-P., Dumas C., 2013. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 6, 164.
- 108. Motte J-C., Trably E., Hamelin J., Escudié R., Bonnafous A., Steyer J-P., Bernet N., Delgenès J-P., Dumas C., 2014. Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresour. Technol. 166, 610-615.
- 109. Robledo-Narváez P.N., Muñoz-Páez K.M., Poggi-Varaldo H.M., Ríos-Leal E., Calva-Calva G., Ortega-Clemente L.A., Rinderknecht-Seijas N., Estrada-Vázquez C., Ponce-Noyola M.T., Salazar-Montoya J.A., 2013. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. J. Environ. Manage. 128, 126-137.
- 110. Gavala H., Skiadas I., Ahring B., 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int. J. Hydrogen Energy 31, 1164-1175.

- 2302 111. Wang X., Zhao Y., 2009. A bench scale study of fermentative hydrogen and methane
 2303 production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 34, 245 2304 254.
 - 112. Alais C., 2000. Scienza del latte. Tecniche nuove. Milan Italy, pp. 780.

- 113. Malaspina F., Cellamare C.M., Stante L., Tilche A., 1996. Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor. Bioresour. Technol. 55, 131-139.
- 114. Siso M.I.G., 1996. The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57, 1-11.
- 115. Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G., 2009. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100, 3713-3717.
- 116. Prazeres A.R., Carvalho F., Rivas J., 2012. Cheese whey management: a review. J. Environ. Manag. 110, 48-68.
- 117. Mollea C., Marmo L., Bosco F., 2013. Valorisation of cheese whey, a by-product from the dairy industry, in: Muzzalupo I. (Ed.), Food Industry. Agricultural and Biological Sciences Series. InTech. Croatia, UE, pp. 549-588. doi:10.5772/53159.
- 118. Sansonetti S., Curcio S., Calabrò V., Iorio G., 2009. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass and Bioenergy 33, 1687-1692. doi:10.1016/j.biombioe.2009.09.002.
- 119. Hinkova A., Zidova P., Pour V., Bubnik Z., Henke S., Salova A., Kadlec P., 2012. Potential of membrane separation processes in cheese whey fractionation and separation, in: Procedia Engineering. pp. 1425-1436. doi:10.1016/j.proeng.2012.07.536.
- 120. Feng G.L., Letey J., Chang A.C., Campbell Mathews M., 2005. Simulating dairy liquid waste management options as a nitrogen source for crops. Agri. Ecosys. Environ. 110, 219-229.
- 121. Nath A., Dixit M., Bandiya A., Chavda S., Desai A.J., 2008. Enhanced PHB production and scale up studies using cheese whey in fed batch culture of *Methylobacterium* sp. ZP24. Biores. Technol. 99, 5749-5755.
- 122. Tolvanen K.E.S., Karp M.T., 2011. Molecular methods for characterizing mixed microbial communities in hydrogen-fermenting systems. Int. J. Hydrogen Energy 36, 5280-5288.
- 123. De Vrieze J., Saunders A. M., He Y., Fang J., Nielsen P. H., Verstraete W., Boon N., 2015. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research 75, 312-323.
- 124. Werner J.J., Knights D., Garcia M.L., Scalfone N.B., Smith S., Yarasheski K., Cummings T.A., Beers A.R., Knight R., Angenenta L.T., 2011. Bacterial community structures are unique and resilient in full-scale bioenergy systems. In: Pace, N. R. (Ed.) Proceedings of the National Academy of Sciences of the United States of America. pp. 4158-4163.
- 125. Ferraz J.A.D., Etchebehere C., Zaiat M., 2015. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour. Technol. 186, 81-88
- 126. Laothanachareon T., Kanchanasuta S., Mhuanthong W., Phalakornkule C., Pisutpaisal N., Champreda V., 2014. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J. Environ. Manage. 144, 143 -151.
- 2345 127. Etchebehere C., Castelló E., Wenzel J., del Pilar Anzola-Rojas M., Borzacconi L., Buitrón G.,
 2346 Cabrol L., Carminato V.M., Carrillo-Reyes J., Cisneros-Pérez C., Fuentes L., Moreno-Andrade
 2347 I., Razo-Flores E., Ruiz Filippi G., Tapia-Venegas E., Toledo-Alarcón J., Zaiat M., 2016.
 2348 Microbial communities from 20 different hydrogen-producing reactors studied by 454
 2349 pyrosequencing. Appl. Microbiol. Biotechnol.100, 3371-3384.
 2350 128. Vasmara C., Cianchetta S., Marchetti R., Galletti S., 2015. Biogas production from wheat straw
 - 128. Vasmara C., Cianchetta S., Marchetti R., Galletti S., 2015. Biogas production from wheat straw pre-treated with ligninolytic fungi and co-digestion with pig slurry. Environ. Eng. Manag. J. 14, 1751–1760. 107.

- 2353 129. Owen W.F., Stuckey D.C., Healy J.B., Young L.Y., McCarty P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492.
 2355 doi:10.1016/0043-1354(79)90043-5.
 2356 130. Vasmara C., Marchetti R., 2016. Biogas production from biodegradable bioplastics. Environ.
 - 130. Vasmara C., Marchetti R., 2016. Biogas production from biodegradable bioplastics. Environ. Eng. Manag. J. 15, 2041–2048.

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

- 131. APHA, 1992. American Public Health Association (APHA) method 9221: Standard methods for the examination of water and wastewater, Standard Methods.
- 132. Handajani M., 2004. Degradation of whey in an anaerobic fixed bed (AnFB) reactor. Thesis, Universität Karlsruhe, Faculty of Civil Engineering, Geo- and Environmental Sciences.
- 133. Malaspina F., Cellamare C. M., Stante L., Bortone G., Tilche A., 2000. Gascromatographic determination of volatile fatty acids produced by anaerobic digestion. Inquinamento 20, 58-64.
- 134. Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., 1996. SAS system for mixed models, SAS System for Mixed Models. doi:10.1017/CBO9781107415324.004.
- 135. McMurdie P.J., Holmes S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE 8 e61217. https://doi.org/10.1371/journal.pone.0061217.
- 136. Hamady M., Lozupone C., Knight R., 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17-27.
- 137. Salmaso N., Albanese D., Capelli C., Boscaini A., Pindo M., Donati C., 2017. Diversity and cyclical seasonal transitions in the bacterial community in a large and deep perialpine lake. Microb. Ecol. <u>https://doi.org/10.1007/s00248-017-1120-x</u>
- 138. Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C. A., Turnbaugh P.J. Fiererb N., Knighta R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. In: Gordon, J. I. (ed.), Proceedings of the National Academy of Sciences of the United States of America. pp. 4516-4522.
- 139. Apprill, A., McNally, S., Parsons, R., Weber, L., 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129-137.
- 140. Albanese D., Fontana P., De Filippo C., Cavalieri D., Donati C., 2015. MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci.Rep. 5, 9743.
 - 141. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261-5267.
 - 142. McMurdie P.J., Holmes S., 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217.
 - 143. Schloss P.D., Handelsman J. 2007. The last word: books as a statistical metaphor for microbial communities. Annu. Rev. Microbiol. 61, 23-34.
- 144. Shannon C., 1984. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423.
- 145. Alberini A., 2013. Production of bio-hydrogen in dark fermentation from agro-food industry wastes using hyperthermophilic bacteria. Thesis, Alma Mater Studiorum – Università di Bologna, PhD school of Biological, biomedical and biotechnological sciences. <u>http://amsdottorato.unibo.it/5388/</u>
- 146. Montalvo S., Guerrero L., Borja R., Sánchez E., Milán Z., Cortés I., de la la Rubia M. A., 2012. Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci. 58, 125-133.
- 147. Marchetti R., Castelli F., 2013.Biochar from Swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil. J. Environ. Qual.42, 893-901.
- 148. Vasmara C., Marchetti R., 2017. Initial pH influences in-batch hydrogen production from scotta permeate. Int. J. Hydrogen Energy 42, 14400-14408.

- 2403 149. Azbar N., Dokgöz Çetinkaya F.T., Peker Z., 2009. Optimization of basal medium for
 2404 fermentative hydrogen production from cheese whey wastewater. Int. J. Green Energy 6, 371 2405 380.
- 2406 150. Ferchichi M., Crabbe E., Hintz W., Gil G.H., Almadidy A., 2005. Influence of culture
 2407 parameters on biological hydrogen production by *Clostridium saccharoperbutylacetonicum* ATCC
 2408 27021. World J. Microbiol. Biotechnol. 21, 855–862. doi:10.1007/s11274-004-5972-0.
 - 151. Junghare M., Subudhi S., Sharma P. M., Mandal A. K., L.B., 2012. Mesophilic hydrogen production by *Clostridium butyricum* strain TM-9A, an alkaline-tolerant dark fermentative bacterium. Dyn. Biochem. Process Biotechnol. Mol. Biol. 6, 32–37.

2410

2411

2412

2413

2414

2415

2416 2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

- 152. Fang H.H.P., Liu H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93. doi:10.1016/S0960-8524(01)00110-9.
- 153. Wongthanate J., Chinnacotpong K., Khumpong M., 2014. Impacts of pH, temperature and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int. J. Energy Environ. Eng. 5, 1–6. doi:10.1007/s40095-014-0076-6.
 - 154. van Gelder A.H., Aydin R., Alves M.M., Stams A.J., 2013. 1,3-Propanediol production from glycerol by a newly isolated *Trichococcus* strain. Microb. Biotechnol. 5, 573-578.
- 155. Liu J.R., Tanner R.S., Schumann P., Weiss N., McKenzie C.A., Janssen P.H., Seviour E.M., Lawson P.A., Allen T.D., Seviour R.J.,2002. Emended description of the genus *Trichococcus*, description of *Trichococcus collinsii* sp. nov., and reclassification of *Lactosphaera pasteurii* as *Trichococcus pasteurii* comb. nov. and of *Ruminococcus palustris* as *Trichococcus palustris* comb. nov. in the low-G+C gram-positive bacteria. Int. J. Syst. Evol. Microbiol. 52, 1113-1126.
 - 156. Scheff G., Salcher O., Lingens F., 1984. *Trichococcus flocculiformis* gen. nov. sp. nov. A new grampositive filamentous bacterium isolated from bulking sludge. Appl. Microbiol. Biotechnol. 19, 114-119.
- 157. Strepis N., Sánchez-Andrea I., van Gelder A.H., van Kruistum H., Shapiro N., Kyrpides N., Göker M., Klenk H.P., Schaap P., Stams A.J., Sousa D.Z., 2016. Description of *Trichococcus ilyis* sp. nov. by combined physiological and in *silico* genome hybridization analyses. Int. J. Syst. Evol. Microbiol. 66, 3957-3963.
 - 158. Wiegel J., Tanner R., Rainey F.A., 2006. An Introduction to the Family *Clostridiaceae*. In: The Prokaryotes. New York: Springer US, pp. 654-678.
- 159. Noike T., Takabatake H., Mizuno O., Ohba M., 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27, 1367-1371.
- 160. Sreela-or C., Imai T., Plangklang P., Reungsang A., 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures Int. J. Hydrogen Energy 36, 14120-14133.
- 161. Dickson R.C., Dickson L.R., Markin J.S., 1979. Purification and properties of an inducible betagalactosidase isolated from the yeast *Kluyveromyces lactis*. J. Bacteriol. 137, 51-61.
- 162. Rajakala P., Karthigai Selvi P., 2006. The effect of pH, temperature and alkali metal ions on the hydrolsis of whey lactose catalysed by b-Galactosidase from *Kluyveromyces marxianus*. Int. J. Dairy Sci. 1, 167-172. <u>http://dx.doi.org/10.3923/ijds.2006.167.172</u>
- 163. Lin P.-Y., Whang L.-M., Wu Y.-R., Ren W.-J., Hsiao C.-J., Li S.-L., Chang, J.-S., 2007. Biological hydrogen production of the genus *Clostridium*: Metabolic study and mathematical model simulation. Int. J. Hydrogen Energy 32, 1728-1735.
- 164. Chramostova J., Mosnova R., Lisova I., Pesek E., Drbohlav J., Nemeckova I., 2014. Influence of cultivation conditions on the growth of *Lactobacillus acidophilus*, *Bifidobacterium* sp., and *Streptococcus thermophilus*, and on the production of organic acids in fermented milks. Czech J. Food Sci. 32, 422-429.
- 2450
 2450
 2451
 2451
 2452
 2452
 2453
 2453
 165. Chojnacka A., Blaszczyk M.K., Szczęsny P., Nowak K., Sumińska M., Tomczyk-Żak K., Zielenkiewicz U., Sikora A., 2011. Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria. Bioresour. Technol. 102, 10057-10064.

- 2454
 2454
 2455
 2456
 2456
 2456
 2457
 166. Kumar G., Mudhoo A., Sivagurunathan P., Nagarajan D., Ghimire A., Lay C.-H., Lin C.-Y., Lee
 D.-J., Chang J.-S., 2016. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour. Technol. 219, 725-737, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2016.08.065.
- 2458 167. Penniston J., Gueguim Kana E. B., 2017. Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells.
 2460 Biotechnol. Biotechnol. Equip., DOI: 10.1080/13102818.2017.1408430.