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Abstract

The aim of this research project is to propose a new method for supervised
classi�cation problems where the input features are ordinal. Ordinal data
are preponderant in many research �elds. They directly arise when the ob-
servations fall into separate distinct but ordered categories and they are very
common in surveys where answers are listed as Likert scales. Typically, they
are coded as equally spaced values and sometimes they are analyzed as nu-
merical values. These choices may not necessarily correspond to the real
distribution of the data.
The objectives of the study have been accomplished according to several
steps. The �rst phase consisted of an exhaustive analysis of the state of art
of the statistical literature with the aim of identifying the various approaches
to ordinal data analysis, the related limitations, and possible advantages. We
have then proposed to operate in the framework of Generalized Linear Latent
Variable Models (GLLVM), considering the response function approach with
a single latent variable Beta distributed. Our scope in using this method is
to shift from a set of ordinal features to a single continuous feature, which
well adapt the data, in order to directly apply the standard classi�cation
methods.
A dedicated EM algorithm has been developed on the basis of this theoretical
framework using the statistical software R.
Finally, we have compared our approach with several scoring methods through
a wide simulation study. The scoring methods that we have considered in the
simulation study are: the raw scores, the ridits, the blom scores, the normal
median scores and the conditional mean scores. These methods, although
have a long history in literature, have never been used for classi�cation pur-
pose.
In addition we present an example of the application of the proposed ap-
proach to real world business data problem.
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Sommario

Il lavoro di ricerca ha l'obiettivo di individuare una metodologia statistica per
la classi�cazione supervisionata di unità statistiche misurate da un insieme
di variabili ordinali. In generale, si parla di variabili ordinali ogniqualvolta il
carattere assume stati discreti ma ordinabili. Questo tipo di dati è molto dif-
fuso in diverse aree di ricerca e, in particolare, è molto comune nei sondaggi,
dove le categorie di risposta sono elencate tramite scale Likert. Tipicamente,
le categorie associate a queste variabili sono codi�cate attraverso apposite
etichette. Le etichette corrispondono solitamente a valori numerici progres-
sivi ed equi-distanziati che ri�ettono l'ordine delle categorie. In fase di anal-
isi non è però appropriato trattare questi dati come valori numerici reali, in
quanto, così facendo, si andrebbe ad introdurre una distanza tra categorie
che potrebbe non corrispondere a quella e�ettiva.
Il progetto di ricerca si articola in diverse fasi. Inizialmente, viene e�ettuata
un'analisi esaustiva dello stato dell'arte della letteratura, per identi�care i
vari approcci all'analisi dei dati ordinali, valutandone i limiti e i vantaggi.
Successivamente, sulla base dei risultati di questa analisi, viene proposto un
metodo basato sull'approccio response function, nel contesto dei modelli gen-
eralizzati a variabili latenti. A di�erenza del metodo classico, che prevede
variabili latenti normalmente distribuite, la nuova metodologia proposta con-
sidera una singola variabile latente con distribuzione Beta, poiché fornisce
speci�ci vantaggi in termini di e�cienza computazionale e di adattamento
ai dati. L'obiettivo è, sostanzialmente, di spostare il problema della classi�-
cazione da un insieme di variabili ordinali ad una singola variabile continua,
in modo da applicare i metodi di classi�cazione standard.
Sulla base di questo quadro teorico di riferimento è stato sviluppato un al-
goritmo EM, utilizzando il software statistico R.
In�ne, l'approccio proposto è confrontato, attraverso un ampio studio di sim-
ulazione, con diversi metodi di scoring, in particolare: raw scores, ridits, blom
scores, normal median scores e conditional mean scores. Questi metodi non
sono mai stati usati per scopi di classi�cazione, sebbene abbiano una lunga
tradizione nella letteratura.
Si presenta, in aggiunta, un'applicazione del metodo discusso ad un problema
di classi�cazione su dati reali.
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Chapter 1

Introduction

1.1 The context

It is very common, in many di�erent areas of statistical research, to deal
with data measured on the ordinal scale. These kind of data are particularly
preponderant in behavioural, political, educational, psychological and social
sciences and they generally arise in all the contexts where it is not possible
to obtain a �ner representation of the statistical unit attribute due to the
nature of the observed phenomenon or the availability of measuring instru-
ments.
A typical example of such data, coming from the psychometric �eld, is the
Likert scale, which is a technique consisting in developing a number of state-
ments (items) that express a positive or negative attitude to a speci�c aspect.
Respondents are asked to express their degree of agreement or disagreement
with respect to a speci�c statement, usually on a 5-points or 7-points scale
such as:

�strongly disagree� �disagree� �no opinion� �agree� �strongly agree�

The analysis of ordered response variables has become increasingly impor-
tant in the last decades and many speci�c approaches has been proposed.
Anyone of these approaches have to face with the unique challenges that or-
dinal features present: on one hand they di�er from nominal data as order
information is present and it has to be considered in the analysis, on the
other hand they also di�er from interval scaled data as they do not include
the notion of distance between categories. Despite the vast body of literature
on this topic, only few methods address the speci�c task of classifying ordinal
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2 CHAPTER 1. INTRODUCTION

data, which is the purpose of the present study. Speci�cally, the aim is to
�nd a suitable way for classifying these data in the supervised context, with
particular reference to the quantile-based classi�er, proposed by Hennig &
Viroli (2016a), which will be described in detail in the following chapters.
Before proceeding further, it seems reasonable to de�ne the notion of ordinal
data since, although this seems quite intuitive, it has been the subject of
several discussions over the years.

1.2 Ordinal data

In order to de�ne what the ordinal scale of measure is, it is necessary to start
from the early stage of measurement theory. Measurement theory is a branch
of applied statistic that attempts to describe and evaluate the quality, the
usefulness and the meaningfulness of measurements.
In the classical de�nition, measurement is the expression of some characteris-
tic through a real number times a unit (e.g., metres, grams). Thus, following
this de�nition, ordinal variables are not strictly considered as a measurement
as no unit of measurement is de�ned. However, the notion of ordinal scale of
measurement has been reintroduced in the early 1940's by Stevens (Stevens
et al., 1946), which has reformulated the concept of measurement in a more
general way as the assignment of numerals to objects or events according to
rules. Di�erent sets of rules lead to di�erent kinds of scales and di�erent
kinds of measurements.
Stevens �rst coined the terms nominal, ordinal, interval and ratio to describe
a hierarchy of measurement scales based on invariance of their meaning un-
der di�erent classes of transformations.
Table 1.1 from Steven's paper summarizes each scale by listing: the basic
empirical operations associated with it (column 2); the mathematical group
structure, i.e. the mathematical transformations which leave the scale-form
invariant (column 3) and the statistics that it is possible to use on the relative
scale type of data that preserve the invariance under the transformations in
the third column (column 4).
It needs to be pointed out that every column in the table is cumulative in the
sense that going from nominal to ratio scale the possible empirical operations
for a particular scale must be added to all those operations preceding it. The
same is true for the Mathematical group structure (i.e. each mathematical
group is contained in the group immediately above it) and for the permissible
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statistics associated to the scale (thus, if we are in the interval scale we can
perform mean and standard deviation as well as median and mode).
According to Stevens, only the interval scaled variables fall within the clas-
sical de�nition of measurement scale.

Table 1.1: Scales of Measurement.

Scale Basic Empirical Operations Mathematical Group Structure Permissible Statistics (invariantive)

NOMINAL Determination of equality
Permutation group
x′ = f(x)

f(x) means any one-to-one substitution

Number of cases
Mode
Contingency correlation

ORDINAL Determination of greater or less
Isotonic group
x′ = f(x)

f(x) means any monotonic increasing function

Median
Percentiles

INTERVAL Determination of equality of intervals or di�erences General linear group

Mean
Standard deviation
Rank-order correlation
Product-moment correlation

RATIO Determination of equality of ratios
Similarity group
x′ = ax

Coe�cient of variation

Once a consistent set of rules under which numerals are assigned to attributes
are de�ned, one should be able to understand the kind of measurement. This
set of rules correspond to all the isomorphisms (the set of appropriate trans-
formation) of the numerical attribute. Some authors (see Kampen & Swyn-
gedouw, 2000) pointed out that, as we do not know the �real� value of the
attribute before actually measuring it, we are not able to say whether a par-
ticular transformation is appropriate or not and this is a serious limitation
in the de�nition of measurement scale.
Although the critics moved over the years to this theory, we decide to proceed
with Steven's ordinal scale de�nition as it is the most adopted in practice
(Agresti, 2003), both in statistical and non-statistical �elds.
According to the de�nition of Stevens, the ordinal scale arises from the opera-
tion of rank-ordering, i.e. assigning to the statistical units the corresponding
ranks. The ordinal scale has the isotonic or order preserving structure.
So, for an ordinal variable, say X, it is assumed that:

1. X ∈ {x1, . . . , xk}, where xi ∈ IR, i = (1, 2, . . . , k) and k is the number of
exclusive and exhaustive categories.

2. The categories satisfy x1 < . . . < xk.



4 CHAPTER 1. INTRODUCTION

1.3 Approaches to ordinal data analysis

The appropriateness and the meaningfulness of methods for dealing with or-
dinal scale of measurement has been the subject of considerable controversy
for several years and this controversy is still ongoing. We present the issue
from a conceptual point of view, tracing the basic assumptions of each ap-
proach of handling ordinal variables and illustrating the motivations and the
associated issues.
From the literature three major approaches emerge for treating ordinal cat-
egorical data. In di�erentiating them, we follow the nomenclature used by
Kampen & Swyngedouw (2000) as it is of immediate comprehension:

• Parametric approach

• Non-parametric approach

• Underlying variable approach

1.3.1 The parametric approach

The parametric approach consists in replacing the categories with arbitrary
numerical values and proceeding in the analysis by using the classical para-
metric inference methods such as ANOVA or OLS (directly on the alternative
scores or after arithmetic synthesis of them).
Despite this �unsophisticated� approach has been strongly criticized by purists,
both from a theoretical and practical point of view, it is still used due to its
simplicity and immediacy in applications.
Stevens himself, in describing the ordinal scale, provides a justi�cation for
the use of ordinary statistics in this context:

[...] for this �illegal� statisticizing there can be invoked a kind
of pragmatic sanction: in numerous instances it leads to fruitful
results.

A great support to this approach is also due to the work of Labovitz, where
simulations were run to demonstrate that the use of ordinary statistics with
ordinal data does not lead to large errors (Labovitz, 1970 and Labovitz,
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1971). However, in a subsequent work, O'Brien showed that the underlying
latent distribution and the number of categories have an e�ect upon the size
of the errors (O'Brien, 1979).
The fundamental critic to this approach is that the original scale is an ordinal
scale, without the concept of distance. Once we introduce numbers, we are
implicitly de�ning arbitrary distances between categories, which exaggerates
the information provided by the data. As the categories re�ects only ordi-
nality, the di�erences between these numeric codes have no meaning. For
example, Clogg asserts that on a three-point happiness scale the distance
between �not too happy� and �pretty happy� categories is about three times
greater than the distance between �pretty happy� and �very happy� responses
(Clogg, 1982).

If the responses are coded 0,1,2,3 or 4, a linear regression would

treat the di�erence between a 4 and a 3 in the same way as a

di�erence between a 3 and a 2, while in fact they are only ranking.

(Greene, 1993)

Although sometimes this approach may be useful and numerical values may
well approximates �reasonable� continuous measurement for a �rst descriptive
analysis or in evaluating the e�ects of covariates on a response variable, one
should proceed very carefully with the conclusions drawn from the analysis of
these data. Since the numeric codes are assigned at the limit of arbitrariness,
it may happen that, changing the numerical attribute of one or more cate-
gories (even leaving the ordinality unchanged) will lead to di�erent results of
the analysis and this also implies that the analysis may be controversial.
In order to give a unique interpretation to the analysis on these data a sug-
gested practical approach could be to agree with a unique coding upon which
to base all the analyses. As a matter of fact, a widely popular choice is to
assign the rank ordering of the categories as numerical value. However, noth-
ing guarantees that this is the best way to proceed. Furthermore, if we were
allowed to use such scale as interval then there would be no point at all in
distinguishing between the two scales of measurement.
With reference to the work of Agresti we report here a practical example of
the limits that occur in the speci�c case of using a standard linear regres-
sion with an ordinal response variable (Agresti, 2003). Though these models
can be used e�ectively to determine the e�ect of covariates on an ordinal
response variable they present strong limitations that, for the most part, can
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be extended to any other kind of analysis:

1. It is usually not clear what scores should be. As mentioned, di�erent
set of scores may lead to di�erent results in the analysis.

2. If ordinal response variables come as the discretization of some con-
tinuous variable we do not take into account the measurement error
introduced by replacing an interval or ratio scale with an ordinal one.

3. It is likely to obtain predicted values above the highest category or
below the lowest.

4. The variability of the responses is nonconstant for categorical data.

5. Ordinary regression approach does not account for �ceiling e�ects� and
��oor e�ects� due to the �xed number of categories.

Regarding the �fth point we present a practical example from Agresti (2003),
where a standard linear regression is applied to simulated data. The data
set was generated considering a continuous uniform covariate x and a binary
covariate z (see Agresti, 2003 for details about data simulation). The ordered
categorical response variable y was generated from a underlying normally
distributed variable y∗. Figure 1.1 shows the observations in the dataset on
y∗ and x (left panel) and on y and x (right panel), where the data points are
labelled according with the value of z. The plot also shows the OLS �t of
both models.
As it is possible to notice, going from continuous to ordered response variable
there is a very high probability for observations to fall in the lowest category
of y when x < 50 and z = 1. This �oor e�ect causes the need to include
in the model a non necessary interaction term or a quadratic e�ect of x on
E(y).
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Figure 1.1: Floor e�ect.

1.3.2 The non-parametric approach

Advocates of non-parametric approach claim that the mathematical group
structure of ordinal scale identi�ed by Stevens prevents the use of models
developed for interval scaled variables.
Thus, the analyses are restricted solely to methods that only use ordering
information about the categories. No assumption are made on the distribu-
tion of the ordinal variable.
Examples are the methods based on ranks such as the Wilcoxon signed-rank
test, used when comparing two related samples or repeated measurements
on a single sample to assess whether their population mean ranks di�er. A
further example of non parametric approach is the proportional odds model
(Agresti, 2003; McCullagh, 1980), as it only uses the ordering information
in the categories of the response variable, thus it is not sensible to the nu-
merical values assigned to the categories. In addition, we cite the CUB
(Covariates in Uniform and shifted Binomial mixtures) models (Iannario &
Piccolo, 2012), which have been developed in the last few years with the
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aim of model the respondent's rating process, in terms of probability of re-
sponding in a speci�c category, through a weighted combination of feeling
and uncertainty towards the item/object and BOS (Binary Ordinal Search
distribution) models, which assume that an ordinal variable is the result
of a stochastic binary search algorithm within an ordered table, from 1 to
the maximum possible category level (Biernacki & Jacques, 2016; Jacques &
Biernacki, 2017).
These methods allow to avoid the problem of absence of an interval scaled
measure and they proved to be fairly powerful. We explained that using
integer scores and treating ordered response variables as if they were con-
tinuous may be questionable, specially if data have skew distributions. The
use of model-based approaches, which avoid scoring, gives the opportunity
to remove the arbitrariness consisting in assigning scores. However, strict
adherence to operations that utilize only the ordering scales limits the scope
of a useful methodology too severely.

1.3.3 The underlying variable approach

Because this terminology includes a wide range of possible approaches, we
de�ne the underlying variable approach in the broadest sense of the term
as recording the ordinal categories so that parametric statistics can be ap-
plied. Unlike the parametric approach, here numeric values are assigned to
categories in a meaningful way so that they meet as closely as possible some
theoretical distributional assumptions.
Broadly speaking, this consists in assigning numbers to the categories that
re�ect the researcher's knowledge of an appropriate mathematical distances
between the categories. So, rather than assigning arbitrary numeric values
to the categories, we perform inference on parametric models for the latent
variable, which is often more sensible.
Usually this is done by assuming a priori that the ordinal observed variables
are the result of the discretization of an unmeasurable underlying variable.
The ordinal scale comes from the categorization of an inherently continuous
scale that is not possible to observe.
Objections often surrounds the assumption of an underlying continuous vari-
able (see Kampen & Swyngedouw, 2000), since:

1. There is no way to prove that data actually comes from an underlying
variable, often ordinal is the best one can do.
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2. Even if the underlying variable exists, it is not possible to test any
assumption required for a correct and meaningful use of inferential
parametric statistics (e.g. normality assumption, homoschedasticity).

3. Given the �rst and second objections, it also becomes problematic to
understand to what extent conclusions one may draw from data are
valid or generalizable.

On the basis of whether an ordinal variable can or cannot be derived from a
measurable (or not) underlying variable, Kampen and Swyngedouw made an
useful distinction among �ve types of ordinal variables (Kampen & Swynge-
douw, 2000). They also consider the case where an objective standard can be
de�ned in order to calibrate a measurement instrument for the ordinal data
(this is necessary to de�ne a unit of measurement that is not dependent on
the experimenter taking the measures).

• Type I: The categorized metric variable with known thresholds.

It comes as a result of the categorization of a known measurable un-
derlying variable.
Example: classifying annual income selecting as threshold values 30.000e
and 50.000 e as �low�=< 30.000e, �middle�=30.000e − 50.000e and
�high�=> 50.000e.

• Type II: The categorized metric variable with unknown thresholds.

The underlying variable is measurable but classi�cation cannot be done
with reference to the units of this underlying variable.
Example: classifying annual income in �low�, �middle� and �high�.

• Type III: The categorized latent variable with unknown thresholds.

The underlying variable is not measurable.
Example: psychiatrists classifying patients in having �low�, �moderate�
and �high� intelligence.

• Type IV: The semi-standardized discrete variable with ordered cate-

gories.

Ordinal variable that cannot be conceived of having an underlying vari-
able.
Example: biologists classifying the young of intoxicated mice in �dead�,
�handicapped� and �sound�.



10 CHAPTER 1. INTRODUCTION

• Type V: The unstandardised discrete variable with ordered categories.

Ordinal variable that cannot be conceived of having an underlying vari-
able and reference to an objective standard is di�cult or impossible.
Example: classifying the level of agreement with respect to a speci�c
statement.

Only variable of type I have an objective standard while for variables of type
III and IV standardization can be obtained by maximizing the agreement of
experimenters taking the measures.
Kampen and Swyngedouw suggest to proceed by choosing a model that is
the most appropriate with the variable type we deal with as uncalibrated
measurements a�ects the validity of any method of analysis (Kampen &
Swyngedouw, 2000).
Objections are made from authors who assert that preservation of order is all
that is required and that any monotonic transformation of a set of numbers
would do as well as any other, thus any attempts to scoring are illusory and
one should just refer to non parametric approaches. If the assumption of a
particular functional form for a latent distribution seems reasonable this does
not imply scores to behave in a certain way and it does not lead in general
to a speci�c distributional requirement.
Suppose we are in the case of type I variables. If the ordered categories
are generated by choosing some feasible cut-points over the continuum scale
then there is no theoretical justi�cation that the obtained variables should
re�ect the properties of the reference continuous distribution. There is no
relationship between the assumed symmetry of the underlying distribution of
any assumed latent scale and the symmetry over the scores. If subjective un-
equal interval scaled scores are arbitrarily chosen they could be asymmetric
even if the assumed underlying variable is symmetric. One possibility could
be to test the ordered variable distributional form when this is required by
model assumption (as normality). Procedures are available for testing such
assumption as the PRELIS program suggested by Jöreskog (1990), which
uses the extra structure that joint normality imposes.
However, except for cases where we deal with type IV and V variables the
assumption of known distribution is often not unduly restrictive in many, if
not most, practical applications. If there is an underlying continuum then
there will be a population distribution on that continuum which will induce
the ordered classes.
Advocates of this approach proceed with the reasonable conviction that, by
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scoring the ordinal categorical data so that they re�ects some prior informa-
tion and treating them as interval scaled data, there is, potentially, less loss
of information than simply applying statistics to categories.

An alternative not mentioned in previous approaches is to ignore both the
order of the categories and any quantitative information and to treat the
variable as nominal, using indicator variables. This approach is common in
practice but, beyond the fact that it completely ignores the structure and
information brought by the data, its applicability for the analysis of large
data set is limited by the number of parameters introduced. As the number
of variables and categories increase, the number of parameters involved in
the model becomes enormous and performing the estimates become cumber-
some. If the data are treated as interval scaled there are fewer coe�cients to
be estimated (and possibly more stability in the results).

In addition to what said until now, it has to be pointed out that the number
of categories considered is of particular importance. Sometimes researchers
work under the assumption that, with a su�ciently large number of cate-
gories, categorical data tend to be similar to continuous data, then classical
statistical methodology may be applied directly.
Studies have examined the use of classical statistical analyses with ordi-
nal data when the number of categories increase. Examples are Rhemtulla
et al. (2012) and Beauducel & Herzberg (2006), which compare methods for
estimating con�rmatory factor analysis models with ordinal variables with
di�erent number of categories.
In the present study, however, the goal is to identify speci�c solutions to
problematic cases, that is, in contexts where we have a narrow set of possible
categories.

A large number of models for ordinal variables based on the presented ap-
proaches have been developed over time, each with its strengths and limita-
tions. For the interpretation of these models it is necessary to meticulously
look into the assumptions made in the models in order to be able to interpret
the analysis outcome.
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1.4 Thesis outline and objectives

In the present study we choose to proceed following the latent variable ap-
proach. Regarding the criticisms moved on the existence and the usefulness
of a latent variable, we choose what could be called a �pragmatic� solution
that allows us to operate free of these methodological limits. We move away
from Platonic point of view that there is a world with �true values� with
respect to which we should try to obtain the best possible approximation in
order to perform the analysis.
Here the focus is not the �true model� but operating in a framework that
approximates reality to a degree level su�cient for the practical purpose of
supervised classi�cation. This means that adequate predictions of the classes
can justify the existence of an underlying variable and the use of parametric
statistics, even if model assumptions are not ful�lled.
The objective is therefore to assess whether it is possible, through reasonable
assignment of numerical values to the categories of the ordinal variables, to
obtain good results in the context of supervised classi�cation.
Methods for assigning numeric values to categories, commonly known as scor-
ing methods, have a long history in literature but they have never been used
for classi�cation purposes.
Seven di�erent scoring methods, which will be described in detail in the next
chapter, have been considered in this research study.
We also propose a new methodology that we named Beta Response Func-
tion Approach (BRFA). Our proposal is based on the response function ap-
proach, developed in the context of Generalized Linear Latent Variable Mod-
els (GLLVM) and it allows to avoid the limits that emerge in the use of the
considered scoring methods. The BRFA leads to fruitful results in the simu-
lations performed.
The present work is structured as follows:

• In Chapter 2 the scoring methods considered in the simulations are
discussed, together with their speci�c advantages and limitations.

• In Chapter 3 the new proposed method is presented along with the
reasons that led us to formulate this innovative proposal.

• In Chapter 4 the classi�cation methods adopted in the analyses are
described.
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• In Chapter 5 simulations results are presented and discussed.

• In Chapter 6 an example of the application of our method on a real
world dataset is presented.

• In Chapter 7 conclusions and possible future research patterns are dis-
cussed.



Chapter 2

Scoring Methods

2.1 Previous studies

A scoring system is a systematic method for assigning numerical values to
the variable categories. As mentioned in the previous chapter, choosing a
particular set of scores does not guarantee that the assumptions of the cho-
sen model are always veri�ed. The central issue is the choice of the scoring
scale and not whether scoring measures per se are appropriate. The study
of scoring methods has a long story in the literature. An example is Yates
(1948), which analysed data coming from a pilot inquire into the conditions
in which school children do their homework. Data are reported below in a
contingency table with both column and row ordered variables that can be
regarded as having an underlying quantitative basis (Table 2.1). In this case,
a common procedure for testing independence is to perform a χ2 test. χ2

test covers all forms of departure from proportionality and it is consequently
insensitive to departures of a particular type.
Yates suggests to perform a traditional regression analysis to test for indepen-
dence after appropriately assigning scores that for convenience are centred
at 0 and are equally spaced. To the ith row category the score (2i− r− 1)/2

is assigned and to the jth column category the score (2j − c − 1)/2 is as-
signed. The χ2 test becomes then a test of a zero regression coe�cient from
the model performed over the scores. Yates extended the analysis also to
the case where just one variable in the contingency table is ordinal, thus
re-conducing to the case of one-way analysis of variance.
Another example of analysis of data in the form of contingency tables, in
which association is known to exist, can be found in the work of Fisher

14
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(1940) (further developed by Williams, 1952), where scores are chosen to
maximize the correlation between variables. These analyses have the advan-
tage of giving tests of association more sensitive than the overall χ2 test, and
also of providing a practical interpretation of the category values.
A quite di�erent procedure is shown by Snell (1964). In this work the scores
are computed so that they can be used in the analysis of variance methods.
The scoring system is determined so that it satis�es the two assumptions of
residual deviations normally distributed and homogeneous residual variances.
The categories are considered to come as a discretization of an assumed un-
derlying continuous scale of measurement, which should be normally dis-
tributed. However, for reason of simplicity in computations, the distribution
is assumed to be a logistic as the it agrees closely over most of its range
with the normal curve. Thus, the scores are assigned by �rst detecting the
threshold values xi for i = 1, . . . , k (where k is the number of categories)
by maximizing the likelihood and then computing the mid-points. Since the
origin is arbitrary x1 = 0 is assigned as the upper limit of the �rst category
(with the lower limit set at minus in�nity). For the �rst and the last cate-
gories scores are computed through an approximation algorithm. The scores
are then applied to one-way analysis of variance.
Also Bollen (1989) has reported studies in factor analysis and structural
equation models using a variety of scoring systems, including equally spaced
integer scoring and polychoric induced mid-points.

Table 2.1: Relation (in terms of numbers of children and percentages) between

conditions under which homework was carried out, and the teacher's rating

of the quality of that homework. Each scale is graded, �A� being the highest

rating.

Teacher's
rating

Homework conditions

A B C D E Total

A
B
C

141 (46%)
131 (42%)
36 (12%)

67 (46%)
66 (45%)
14 (9%)

114 (39%)
143 (48%)
38 (13%)

79 (44%)
72 (40%)
28 (16%)

39 (43%)
35 (39%)
16 (18%)

440 (43%)
447 (44%)
132 (13%)

Total 308 (100%) 147 (100%) 295 (100%) 179 (100%) 90 (100%) 1019 (100%)
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2.2 The scoring methods

From the literature review several di�erent methods of scoring have emerged.
They are motivated by a variety of considerations but usually so that tradi-
tional statistical procedures could be adapted. The key aspect is the choice
of appropriate relative distances between pairs of adjacent categories.
In the present study we have considered �ve types of scoring methods, among
the main and most commonly used, for their attractiveness in our particular
case of supervised classi�cation.
Before examining in detail the various methods, we de�ne:

• X, some ordinal categorical variable.

• k, the number of categories of X.

• n1, . . . , nk the frequencies of respondents in the categories, with N =∑k
i ni.

• p1, . . . , pk, the corresponding sample proportions, with pi = ni/N .

Following the notation in Brockett (1981) we denote the score associated
with the ith category as si = hk (i, p1, . . . , pk), and S = {hk (•, •, . . . , •)} the
scoring system determined by some scoring functions hk (•, •, . . . , •). The
response probabilities (p1, . . . , pk) may depend upon some latent underlying
distribution, the researcher knowledge about the phenomenon or to an em-
pirical response distribution.
It appears obvious, as we do not refer to any particular property of the
function upon which the scores are determined, that there is not a single �su-
perior� approach to the treatment of ranked categorical data; it depends on
the researcher's purposes and situation. Here we present �ve di�erent scor-
ing methods that will be used in the following simulations for classi�cations
pourposes:

• Raw scores;

• Ridit scores;

• Normal median scores;

• Blom scores;

• Conditional mean scores.
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2.2.1 Raw scores

We include raw scores as this particular scoring system is with no doubt the
most widely used in many di�erent �elds. Raw scores emerges by replacing
the categories with their the corresponding rank, thus non-negative integers
between 1 and k. Raw scores are hardly to classify in one of the previous ap-
proaches for ordinal data: we are at the limit of the parametric approach in
using this kind of scores because numerical values assigned to the categories
may be directly applied into standard parametric inference methods. Also,
we are at the limit of the non-parametric approach because the order infor-
mation is used. There is no intention here to approximate any distributional
form nor to utilize any prior knowledge about the data. Considering this,
they still have rights to be included, in the broadest sense, in the context
of underlying variable approach as equi-spaced scores may re�ect the lack of
knowledge about the distribution from which the data comes. They can be
seen as coming from a discretization of a uniform latent distribution.
We proceed by including the raw scores in the following simulations consid-
ering them as a benchmark for the method we propose. Often for descriptive
summaries it is more sensible to use �xed, equi-spaced scores such raw scores
instead of scores based on data. Moreover, in some cases (see Fielding, 1993)
they can compete with more speci�c scores.

2.2.2 Ridit scores

The ridit is a scoring system �rst introduced by Bross (1958). The �rst three
letters of the term stays for �Relative to an Identi�ed Distribution� and the
su�x �it� was added by analogy with the probit and the logit names because
ridits represents a type of transformation. The distribution to which the
term refers is the one from which the (p1, . . . , pk) are observed. Thus, the
crucial point in ridit analysis is the choice of the observed distribution upon
which the computations are based. Among the various possible applications,
the ridits are commonly used in epidemiology for analysis of ordinal data and
also useful for analysis of questionnaires. The ridit value ri for category i is
de�ned as:

ri =
1

2
(πi−1 + πi)

where πi =
∑

j≤i pj is the cumulative sample proportion.
We report an example of ridit computation from Bross (1958) in Table 2.2.
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The reference data set comes from the Cornell Automotive Crash Injury
Research Program (ACIR) and reports the severity of the injury after a car
accident (from �none� to �fatal�). Each column in the table represent a step
in ridit computation.

Table 2.2: Calculation of Ridits (Computing Form)

(1) (2) (3) (4) (5)

None
Minor
Moderate
Severe
Serious
Critical
Fatal

17
54
60
19
9
6
14

8.5
27
30
9.5
4.5
3
7

0
17
71
131
150
159
165

8.5
44
101
140.5
154.5
162
172

0.047
0.246
0.564
0.785
0.863
0.905
0.961

Total 179 179

Column (1): The frequency distribution in the identi�ed distribution (reference class).

Column (2): Half of the corresponding entry in Column (1).

Column (3): The cumulate of Column (1) (displaced one category downward).

Column (4): Column (2) + Column (3).

Column (5): The entries in Column (4) divided by grand total (ridits).

It is important to notice that ridit scores always vary between 0 and 1 and
the mean ridit applied to the identi�ed group will be identically 0.5. Since
all scores are on the same range, categorical variables with di�erent numbers
of response categories become readily comparable. The characteristics of rid-
its make them suitable for the analysis of large questionnaires where model
based approaches such log-linear models are limited by the large number of
parameters.
The ridit analysis proposed by Bross has the purpose of comparing di�erent
groups of individuals with the reference group (i.e. the one from which the
vector of sample proportions is computed). Bross gives a useful characteriza-
tion of the mean ridit of a new group in this context: it can be viewed as the
probability that, randomly sampling an individual from the new group, he
presents a category in the ordered scale lower than the category presented by
an individual randomly sampled from the reference group. Bross also con-
structed con�dence intervals for the mean ridits of di�erent classes of driver
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to draw inference about accident incidence. A simple way to use ridits in
order to perform classical statistical analysis for comparing two groups of
observations would be to determine the vector of sample proportions from
the groups combined and then perform the two sample t-test after applying
the scores to the groups separately. This can also be easily extended to the
comparison of multiple groups.
Ridit have also a strict link with another scoring system, the mid-ranks. Mid-
ranks are the averages of the ranks that would be assigned if the observations
in a category could be ranked without ties. So for example the mid-rank for
the �rst category m1 is the average of the ranks 1, . . . , n1 for the �rst n1

respondents, so m1 = (1 + n1)/2. Whereas ridit scores fall between 0 and 1,
mid-rank scores fall between 1 and N. The mid-rank for the ith category is
de�ned as:

mi =

[(∑i−1
h=1 nh

)
+ 1
]

+
∑i

h=1 nh

2

If the response probabilities are not theoretical but estimated from a sample
of N respondent then there is a linear relationship between ridits and mid-
ranks: we can obtain the former scores from the latter by subtracting 1/2 and
dividing by N . Selvin (1977) has also demonstrated that the mean ridit of a
new group of observations is a linear transformation of the sum of category
mid-ranks for this group when it is compared to the reference group as in
the Wilcoxon rank sum test with many ties. The relation between ridits and
mid-rank is the following:

ri =
mi − 0.5

N
i = 1, . . . , k

As the mid-ranks are just a linear transformation of ridits the relative dis-
tances among categories between the two set of scores are the same and thus
the classi�cation results obtained would be identical. For these reasons we
choose to not make use of mid-ranks in the simulations.
Equally spaced scores such raw scores or rank methods such ridits or mid-
ranks are commonly used for processing ordinal data. However, if the data
are right or left skewed or if some categories have many more observations
than the others, using these method can lead to poor results. It could be
more appropriate in these circumstances to rely on methods which incorpo-
rate some prior knowledge or expectation about the data distribution.
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2.2.3 Normal median scores

The normal median scores, introduced by Brockett (1981), are chosen so
that they minimize the Kolmogorov-Smirnov distance between F (observed
cumulative distribution function) and G (theoretical cumulative distribution
function underlying the ordinal variable):

d(F,G) = max
x
|F (x)−G(x)|

The distance is minimized when G(si) = ri, with i = 1, . . . , k. Where ri is
the ridit score for category i.
So the scoring system is de�ned as:

si = G−1(ri) i = 1, . . . , k

We assume here a standard normal distribution underlying the observed or-
dinal scale. Thus, normal median scoring select si to minimize the distance
to normality. If we take G as the uniform the scoring system become the
Bross ridits.
In the normal median scores G is chosen to be the standard normal cumula-
tive distribution function:

si = Φ−1(ri) i = 1, . . . , k

The ith score thus correspond to the ri-centile of the standard normal distri-
bution. In dealing with numerical values assigned to the categories of ordinal
variables in standard parametric analysis one may face with large standard
errors associated with parameter estimates. For how they are constructed
this kind of scores should enhance the robustness of the analysis using linear
models or in general any kind of analysis for which normality is an assump-
tion.
As well as the ridits, the normal mean scores can be used in order to perform
�ner statisical analyses where data are measured on the ordinal scale such
as in Educational and Psychological Testing. In fact, ordinal test items such
as Likert scales result in raw scores that are meaningless without purposeful
statistical interpretation. Normal mean scores, as well as other kind of scores
(see blom scores) allow to modify raw scores values mathematically through
a �rst step of standardization based on ranks that enables statistical proce-
dures and a second step of normalization, needed for meaningful comparisons
between scales.
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2.2.4 Blom scores

Blom scores are very close to normal median scores as they both try to ap-
proximate the percentiles of the standard normal distribution.
The scores proposed by Blom originate from the problem of order statistic
discussed originally by Pearson (1902), who provides a solution of a problem
proposed by Galton (1902) of �nding the average di�erence between two indi-
viduals in a ordered sample of size N . As the knowledge of average di�erences
for symmetric populations also involves knowledge of the expected values of
all the order statistic, several authors provide tables of such expected values,
more or less accurate (see Harter, 1961 for a summary of these works). The
Blom's proposed method for approximating the ith smallest value normal or-
der statistic for a sample of size N is the following:

si = Φ−1

(
mi − α

N − 2α + 1

)
i = 1, . . . , k

where mi is the mid-rank value for category i.
Blom's formula responds to the curvilinear relationship between a score's
rank in a sample and its normal variable.
In order to �nd the best value for α Blom tabulated the values required to
yield the correct expectation of the ith order statistic for i going from 1 to
N/2 (because we deal with symmetric population the knowledge of the �rst
N/2 expected values its su�cient as we can obtain the other half just by
switching the sign) and N going from 2 to 400. He noticed that α ranges
between 0.330 (for N = 2 and i = 1) and 0.5. In particular α increases as N
increases and, for �xed N , α is minimum for i = 1, then rises quickly to a
peak before dropping o� slowly as i increases too much.
For this reason Blom suggested to use α = 3/8 as a compromising value,
yielding the scores:

si = Φ−1

(
mi − 0.375

N + 0.25

)
i = 1, . . . , k

Several rank-based normalization procedures have been developed among the
years from ordinal data in order to perform analyses (see among the others
the Van der Waerden, Rankit and Tukey procedures, all cited in Solomon &
Sawilowsky, 2009). Arithmetically, all these methods do not di�er substan-
tially from blom scores, which are our choice in this study. We do not expect
signi�cant di�erences in the classi�ers performance going from one procedure
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to the other as numerical values assigned to the categories do not di�er if
not for decimals. We leave to further studies the inclusion of these methods
for comparative purposes.

2.2.5 Conditional mean scores

Conditional mean scores have been introduced by Brockett (1981) and then,
independently and in a di�erent formulation, by Fielding (1993). As in nor-
mal median and blom scores here it is assumed that the categories re�ect
an underlying continuous latent variable with cumulative distribution func-
tion G. The idea is to estimate the conditional mean of responses in the
group under the assumed distributional form. The expression of the score,
conditionally to the ith category is:

(2.1) si =
1

pi

∫ G−1(πi)

G−1(πi−1)

x dG(x) =
1

pi

∫ πi

πi−1

G−1(u) du

G denotes some given cumulative distribution, selected either in accordance
with some theoretical latent distribution of the categorical variable under
study or in accordance with the desirable properties for the planned method
of analysis. Di�erent choice of G lead to di�erent sets of scores.
G−1 is the corresponding quantile function of the latent distribution, eval-
uated in correspondence of the cumulative sample proportions πi for i =

2, . . . , k.
Fielding (1997) developed an axiomatic framework for ensuring that the con-
ditional mean scoring functions satisfy a set of postulates that a reasonable
scoring method should posses. These are as follows:

Postulate 1. h1(1, 1) = 0; that is, in the case of one category the score can arbitrary
set at 0.

Postulate 2. 0 ≤ h2(2, p, 1 − p) = −h2(1, 1 − p, p); this re�ects the idea that in the
case of two categories if the distribution is reversed than by symmetry
the absolute numerical values of the scores should be switched.

Postulate 3. If we are in the case of k > 2 and two adjacent categories are combined
then the remaining scores should stay unchanged. That is, if the ith

and (i+ 1)th categories are combined into one then:

hk−1(t, p1, . . . , pi−1, pi+pi+1, pi+2, . . . , pk) =

{
hk(t, p1, . . . , pk), if t ≤ i− 1

hk(t+ 1, p1, . . . , pk), if t ≥ i+ 1



2.2. THE SCORING METHODS 23

This postulate basically states that there is consistency in the scoring
system as k changes.

Postulate 4. hk is a bounded continuous function of the elements (p1, . . . , pk). This
ensures that small changes in the sample proportions do not change
the scores too much.

Postulate 5. If we are in the case of k > 2 and two adjacent categories are combined
then the overall mean score is una�ected.

Postulate 6. h1(1, p1, . . . , pk) ≤ h2(2, p1, . . . , pk) ≤ . . . ≤ hk(k, p1, . . . , pk); this means
that the scores should re�ect the order among the categories.

Fielding (1997) has carried on the previous work of Brockett & Levine (1977),
where is shown that postulates 1-4, together with further recruitment that
for k = 2 the expression h2(2, p, 1−p)−h2(1, 1−p, p) is non-decreasing in p,
lead to ridit scores. Fielding has shown that this was erroneous and that the
latter postulate was unnecessarily restrictive for a reasonable scoring system.
The ridits can be seen as a special case of conditional mean scores when the
underlying distribution is assumed to be uniform.
Although these are undoubtedly appropriate postulates for some kind of sta-
tistical analysis, we will not consider in this study any situation where they
can be useful with the only exceptions of postulates 4 and 6.

We consider in the present work three probability density functions for the
underlying latent variable, among the most used in the literature and which
seem to us useful in many practical problems, namely: the standard normal,
the logistic and the log-normal. In considering an underlying skewed distri-
bution such as the log-normal distribution we are violating the postulate 2.
This postulate may not be necessary in this case. Indeed, it appears rea-
sonable to consider an underlying distribution for possibly skewed observed
data. Fielding (1997) has suggested that what motivate the introduction of
postulate 2 (in Brockett & Levine, 1977) was the implicit assumption that
the underlying variable has a symmetrical distribution but this is not desir-
able in any circumstance. He demonstrated that taking G as the log-normal
cumulative distribution function the other postulates, and in particular the
order condition among the scores, were still ful�lled by the scoring system.
As in the classi�cation task what can possibly in�uence the classi�cator is
the information about the relative distances within the categories, it appears
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reasonable to think that any set of scores obtained by shifting the underlying
distribution on the axis of abscissas would lead to the same result in terms
of misclassi�cation error. So, for reason of simplicity, we proceed considering
underlying distributions centred at zero for scores based on normal and lo-
gistic latent distributions (i.e. the expected value E(x) = µ = 0, where x is
the respective underlying variable). For the scores based on the log-normal
latent distribution we consider the logarithm of the underlying random vari-
able, distributed according with a standard normal (thus with E(log(x)) = 0,
where x is log-normally distributed).
The scores for the ith category are computed as following:

1. Normal mean scores (NMS) arises when G is the cumulative distri-
bution function of the standard normal distribution. Following the
notation in Brockett (1981), we �rst de�ne Z(π) = Φ−1(π) to be the
Probit function. The scores are then:

si =
1

pi

∫ πi

πi−1

Z(u) du

=
1

pi

∫ πi

πi−1

√
2erf−1(u) du

=
1

pi
{φ [Z(πi−1)]− φ [Z(πi)]}

=
exp (−Z2(πi−1)/2)− exp (−Z2(πi)/2)

pi
√

2π

for i = 2, . . . , k.
Where erf(x) = (2/

√
π)
∫ x

0
e−t

2
∂t is the Gauss error function and φ is

the standard normal probability density function. For i = 1 the score
is:

s1 =
− exp (−Z2(π1)/2)

p1

√
2π

2. The logistic mean scores (LMS) are computed setting G(x) = 1/(1 +

e−x) (cumulative distribution function of the logistic distribution with



2.2. THE SCORING METHODS 25

mean 0 and variance π2/3), this yields scores:

si =
1

pi

∫ πi

πi−1

log

(
u

1− u

)
du

=
1

pi

[
πi log

(
πi

1− πi

)
− πi−1 log

(
πi−1

1− πi−1

)
+ log

(
πi−1

1− πi−1

)]
=
H(πi)−H(πi−1)

pi

where H(π) = π log(π) + (1 − π) log(π) is the entropy function. For
i = 1 and i = k the scores are, respectively:

s1 =
H(π1)

p1

sk =
−H(πk−1)

pk

3. The log-normal mean scores (LNMS) are computed setting G(x) =

Φ(log(x)) = 1
2

(
1
2

+ erf

[
log(x)√

2

])
, cumulative distribution function of

x ∈ (0,∞), where log(x) is the standard normal distribution. The
scores are as follows:

si =
1

pi

∫ πi

πi−1

exp
(
Φ−1(u)

)
du

=
Φ [Φ−1(πi)− 1]− Φ [Φ−1(πi−1)− 1]

pi

For i = 1 the score is:

s1 =
Φ [Φ−1(π1)− 1]

p1

Since these scores, if not based upon theoretical probabilities associated with
the variable categories, are functions of the observed sample proportions, it
appears to us that an appropriate choice of the score could not be clear in any
circumstances. This choice may depend on the data set upon which classi�-
cation is based. Therefore, we proceed by performing a sensitivity analysis,
that is choose scores in the di�erent ways just presented, that are not linear
transformations, and check whether conclusions depends on the chosen set
of scores.
As one may notice the most part of the implemented scoring methods used
in this study assume a normal or uniform latent distribution. This is not an
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unreasonable assumption and in many cases may lead to fruitful results. A
further justi�cation for this is that each variable in the dataset can be seen
as a mixture of observations from di�erent populations thus, if the number
of categories is low (generally for ordinal variables the classical examples in-
clude 5, 7 or 9 categories) it is possible that, by analysing the observations
belonging to each class separately, these show speci�c (and possibly skewed)
distributions but considering the distribution of all the observations jointly
a sort of �masking� e�ect may happen that can lead to prefer scores that
do not assume any particular information from the data. However, small
samples and skewed distributions are likely to degrade the performance of all
methods so we include also the case of log-normal latent distribution.

Before going further we would like to point out that all the scoring methods
have undoubtedly advantages because, as mentioned, they allow a direct ap-
plication of classical statistical analyses, allowing to overcome, with a choice
lead-by-data, the problems related to data collected on an ordinal scale. In
addition, these methods make comparisons between groups and descriptive
statistics possible. Particularly with regard to ridits, mid-ranks and normal
median scores, their simplicity of interpretation and of use make them a suit-
able tool also for non-technical researchers.
Since the application of the presented scoring methods is not routine in avail-
able software, dedicated algorithms have been developed using the statisti-
cal environment R. With regard to the computational times, we present in
Table 2.3 the times (in seconds) required to the statistical software R for
computing the scores. The table shows the elapsed time in R for running
each scoring method 100 times. The ordinal data upon which scoring meth-
ods have been applied has been obtained by categorizing a continuous vector
randomly sampled from a standard normal variable. Computational times
are reported for di�erent dataset sizes (N) and number of categories (C).
As it is possible to notice in every case the time required for computing scores
is extremely low, which is a clear advantage. Times required for computing
normal median scores and blom scores are generally higher than, respectively,
ridits and mid-ranks as they involve the computation of these last two kind
of scores (i.e. in order to obtain normal median scores, ridits have to be
computed and, similarly, to obtain blom scores, mid-ranks have to be com-
puted). Furthermore, as one would expect, computational time increases as
the dimension of the data set and/or the number of categories increases.
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Table 2.3: Computational times (in seconds) required for computing each

scoring method 100 times. The results are displayed for di�erent numbers of

observations (N) and numbers of categories of the ordinal variable (C).

N=100

C=5 C=7 C=9

Ridits 0.14 0.17 0.19
Midranks 0.32 0.42 0.56
Normal Median Scores 0.15 0.17 0.20
Blom Scores 0.33 0.44 0.56
Normal Mean Scores 0.14 0.17 0.20
Logistic Mean Scores 0.12 0.16 0.18
Log-Normal Mean Scores 0.14 0.17 0.22

N=200

C=5 C=7 C=9

Ridits 0.23 0.27 0.32
Midranks 0.50 0.64 0.85
Normal Median Scores 0.23 0.28 0.33
Blom Scores 0.49 0.67 0.86
Normal Mean Scores 0.22 0.27 0.33
Logistic Mean Scores 0.22 0.25 0.31
Log-Normal Mean Scores 0.20 0.26 0.32

N=400

C=5 C=7 C=9

Ridits 0.42 0.48 0.57
Midranks 0.87 1.14 1.41
Normal Median Scores 0.42 0.52 0.59
Blom Scores 0.85 1.14 1.42
Normal Mean Scores 0.39 0.47 0.55
Logistic Mean Scores 0.39 0.47 0.55
Log-Normal Mean Scores 0.40 0.47 0.56



28 CHAPTER 2. SCORING METHODS

To better understand the di�erences between score types we also present in
Figure 2.1 a graphical comparison of raw scores (on the abscissa axis) with the
other methods of scoring. The reference ordinal variable has been generated,
as for the computational times, randomly sampling from a standard normal
variable, which has been subsequently discretized, considering �ve categories
(more details on the method used in order to generate ordinal variables will
be provided in chapter 5). The scores have been computed on a sample of
200 observations.
We do not include in the graphs the comparison with mid-ranks as they
are just a linear transformation of ridits, so the relative distances between
categories would be the same. Mid-ranks are included in the Table 2.4,
where the sample proportions, together with the numeric values for the scores
presented in the graphs are provided.

Figure 2.1: Comparison of scoring methods with raw scores.
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As expected, we do not observe relevant di�erences between normal median
and blom scores from the graph in Figure 2.1 (di�erences are at the third
decimal place as it possible to see from Table 2.4). With regard to normal
mean and logistic mean scores we have that the scores for the high order
categories are more spread for the latter method. The exception is category
3 (i.e. the central category), where the scores are similar due to the fact that
both the underlying distributions are centred at 0. This is because the logistic
distribution has slightly longer tails compared to the normal distribution.
The main di�erence in the score's trend is observed for the log-normal mean
scores. In this case the scores are closer for the low order categories and the
distance increases for high order categories. When data are generated as in
this example, by discretizing from a continuous standard normal variable,
we may expect that, in a classi�cation context, using log-normal mean scores
would bring the worst result with respect to all other scores.

Table 2.4: Score's value for simulated standard normal data

Category 1 Category 2 Category 3 Category 4 Category 5

Frequencies 19 47 62 49 23
Sample Proportions 0.095 0.235 0.310 0.245 0.115
Raw Scores 1 2 3 4 5
Ridit Scores 0.0475 0.2125 0.4850 0.7625 0.9425
Mid-Rank Scores 10 43 97.5 153 189
Normal Median Scores -1.6696 -0.7978 -0.0376 0.7144 1.5761
Blom Scores -1.6639 -0.7965 -0.0376 0.7133 1.5713
Normal Mean Scores -1.7791 -0.8218 -0.0386 0.7348 1.6878
Logistic Mean Scores -3.3048 -1.3627 -0.0621 1.2105 3.1030
Log-Normal Mean Scores 0.1098 0.2745 0.5988 1.3013 3.6574

Again we remark that the location of the underlying curve is not of interest
in this context as long as the relative di�erences between categories stay the
same. A justi�cation for this come from the simple realization that any classi-
�er should be able to identify the best subdivision region among observations
into classes, regardless of translations of the data values (i.e. a reasonable
classi�er should be invariant with respect to linear transformations). For ex-
ample, suppose that we are in the situation of univariate classi�cation (with
two classes) with data coded as ridits scores in Table 2.4. If, from the chosen
classi�er, it results that the optimal misclassi�cation rate is obtained by as-
signing �class 1� to observations that fall in category 1 or 2 (0.0475 or 0.2125
from the table) and assigning �class 2� to the rest, then if we move to another
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set of scores by adding to each category a constant value k, with k ∈ IR, the
optimal misclassi�cation rate should come as result of the same subdivision
as before, whatever the value of k is.

As mentioned, all the scores in the table refer to the application to a single
ordinal variable. If the number of variables on which we rely is higher, it
is not generally possible to apply the presented methods on the whole set
of ordinal variables (for example, it may happen that the variables have not
the same number of categories). The scores have to be applied separately to
each variable.
For this reason, a strong limitation that emerge in using these scores is that
there is a loss of information due to the fact that the dependence structure
between variables is ignored. Correlated variables are not considered in the
scores computation but they may have a signi�cant e�ect on the classi�er's
performance. Moreover, as it is possible to see from Table 2.4, di�erent dis-
tributional forms hypothesized for the underlying variable lead to di�erent
score values, thus the relative distances among two pairs of adjacent cate-
gories also change. Therefore, if the underlying distribution is misspeci�ed
there is a possibility of high classi�cation errors.
In the next chapter we will present our proposal, based on the response func-
tion approach, which has the aim of overcome the issues associated with the
scoring methods.



Chapter 3

Our Proposal

3.1 The idea

Despite the fact that scoring methods presented in chapter 2 are de�nitely
a useful tool as they allow to treat ordinal data directly in a classi�cation
framework, they also present serious limitations as:

1. They do not allow to treat all variables simultaneously, thus there is a
loss of information due to possible correlations among variables. The as-
sumption of correlated observed variables in a classi�cation context is not
unreasonable. If the features we observe are informative for classi�cation,
we may expect that they are correlated to each other.

2. If we have knowledge about the distribution of the population from which
the data come, we may hypothesize a suitable functional form for the
distributions underlying each variable in the data set upon which scores
are computed, with the possibility of having good classi�cation results. In
many cases, however, we do not have such knowledge and we have to rely
on the empirical observations, which may be misleading. In these cases,
it would be preferable to consider an underlying distribution in order to
minimize the classi�cation error, assuming that there is no information
from the data.

In order to overcome these issues, we propose to use the response function
approach introduced by Moustaki (2000), developed within the framework of
Generalized Linear Latent Variable Models (GLLVM). As shown later, using
the response function approach allows to move from the problem of classifying

31
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a set of ordinal variables to classifying a set of continuous variables, smaller
in number, where traditional methods of classi�cation can be applied.
Cagnone & Viroli (2014) presented an innovative method where the response
function approach is applied considering as latent distribution a mixture of
multivariate Gaussians. This allows for a more �exible latent distribution
that may better �t the data in classi�cation tasks where observations come
from heterogeneous sub-populations. However, this method also presents
some serious limitations due to the large number of parameters to estimate.
The main idea of the present work is to avoid the limitations that emerge in
using the mixture of multivariate Gaussian distributions, considering for the
classi�cation task a Beta latent distribution. It will be shown that it allows
not only for more �exibility but also for faster computational times.

Latent Variable Models

Latent Variable Models (LVM) generally arise to explain the interdependence
within a large set of variables through a small number of underlying non-
observable factors, uncorrelated each other in the sense that, if the factors
were �xed and known, the observed (manifest) variables would be indepen-
dent. The basic idea is to summarize the information contained in a given set
of response variables x1, . . . , xp with a set of latent factors z1, . . . , zq, usually
assumed to be much smaller in number than the observable variables.
Dependently on the nature of the latent and manifest variables, it is possible
to distinguish among four di�erent kind of analyses, as shown in Table 3.1.
When both latent and manifest variables are continuous the latent model
is the well-known classical factor analysis. When the latent variables are
discrete then we have the latent pro�le analysis (for continuous manifest
variables) or latent class analysis (for discrete manifest variables). In our
case the aim is to move the classi�cation problem towards an interval mea-
surement scale so that standard classi�cation methods can be applied, thus
we are performing a latent trait analysis as we consider continuous latent
variables and discrete manifest variables.
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Table 3.1: Latent variable models classi�cation.

Latent Variables

Manifest variables Continuous Discrete

Continuous Factor Analysis Latent Pro�le Analysis
Discrete Latent Trait Analysis Latent Class Analysis

In dealing with ordinal variables using latent variable models we can distin-
guish between two main approaches: The Underlying Response Variable Ap-
proach (URVA), which is the most popular one (Jöreskog, 1990 and Muthén,
1984) and will be described brie�y below, and the response function ap-
proach, which is the method we choose and it will be described more in
detail in the next section. An overview of those type of models can be found
in Knott & Bartholomew (1999).
Before introducing the URVA and response function approach we introduce
the general framework upon which we base the computations.

General Framework

Let:

• x = (x1, . . . , xp) be the set of p observed ordinal variables;

• ki number of categories for the ith observed variable, (i = 1, . . . , p);

• xhi = ai be the hth observation of the ith ordinal variable belonging to
the ordered category a, for ai = 1, . . . , ki. Thus, xh = (xh1 = a1, xh2 =

a2, . . . , xhp = ap) is the response pattern associated with the hth unit
(h = 1, . . . , N). There are then

∏p
1 ki possible response patterns;

• z = (z1, . . . , zq) be the set of q latent variables, with q < p.

The underlying response variable approach (URVA)

The URVA follows the classical factor analysis model, assuming that each
ordinal variable comes as a discretization of an underlying Gaussian latent
variable. The origin of factor analysis is generally ascribed to Charles Spear-
man, who �rst developed a general framework in the psychometric �eld with
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a single general factor and a number of speci�c factors (Spearman, 1904).
The model has the form:

(3.1) x∗i = αi + λi1ξ1 + λi2ξ2 + . . .+ λiqξq + ui i = 1, . . . , p

where:

• αi is the mean value of x∗i , for i = 1, . . . , p.

• λij, for i = 1, . . . , p and j = 1, . . . , q, are the factor loadings as they
express the load of each factor on the observed variable.

• ξ1, . . . , ξq are the latent variables or common factors. In the standard
factor model it is assumed that the factors have zero mean, unitary
variance (because they do not have a given unit of measure and scale)
and that they are uncorrelated.

• ui are the error terms representing a speci�c factor and measurement
error. They are called unique factors and are assumed to be indepen-
dent and normally distributed as ui ∼ N(0, ψi) for i = 1, . . . , p.

Equation (3.1) is a suitable representation of a factor analysis model if the
observed variables are continuous (Table 3.1). This model is not appropriate
when the observed variables are ordinal. For this reason, in the model x∗i is
considered to be a standard normal variable underlying the ordinal variable
xi. We de�ne x∗i such that:

xi =


1 if x∗i ≥ τi1
2 if τi1 < x∗i ≤ τi2
...
ki if τiki−1 < x∗i

The parameters τi1, τi2, . . . , τiki−1 are called threshold values. For each ob-
served variable xi with ki categories there are ki − 1 related thresholds. The
thresholds re�ect the order condition of the categories:

τi0 = −∞, τi1 < τi2 < . . . < τiki−1, τiki = +∞

thus, the probability of a general p-dimensional response pattern xh = (xh1 =

a1, xh2 = a2, . . . , xhp = ap) is given by:

(3.2) P (xh) =

∫ τ1a1

τ1a1−1

∫ τ2a2

τ2a2−1

. . .

∫ τpap

τpap−1

φp (t1, t2 . . . , tp|P ) dt1, dt2, . . . , dtp,
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where φp is a p-dimensional normal density function with zero means, unit
variances and correlation matrix P .
The URVA is a full information maximum likelihood approach applied to
the factor analysis model. Parameters estimation requires the evaluation
of a p-dimensional integral (equation (3.2)). Computational times increase
rapidly with p so this approach is not computationally feasible. Other meth-
ods have been proposed such as a limited information method for estimating
the model parameters, which maximizes the sum of all univariate and bivari-
ate marginal likelihoods (Jöreskog & Moustaki, 2001).
Several authors proposed alternative methods for estimating the model pa-
rameters. These methods di�erentiate for the number of stages required to
obtain the estimates, usually two or three. Examples of three stage methods
are:

• Muthén (1984):

1. Estimation of �rst order statistic (means, variances, thresholds,
etc.) by maximum likelihood.

2. Estimation of second order statistics such as polychoric correla-
tions by conditional maximum likelihood.

3. Parameters of the stuctural part of the model are estimated using
a limited information generalized least squares method.

• Jöreskog (1994)

1. Estimation of �rst order statistic (means, variances, thresholds,
etc.) by maximum likelihood.

2. Estimation of second order statistics such as polychoric correla-
tions by conditional maximum likelihood.

3. Parameters of the stuctural part of the model are estimated using
weighted least squares (the weight matrix correspond to the in-
verse of asymptotic covariance matrix of polychoric correlations).

Example of two stage estimation:

• Lee et al. (1995):

1. First stage estimates like thresholds, polychoric and polyserial cor-
relations in the underlying correlation matrix are obtained using
a partition maximum likelihood approach.
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2. A generalized least squares approach is employed to estimate the
structural parameters in the correlation structure on the basis of
the joint asymptotic distribution of the �rst stage estimator and
a weight matrix.

3.2 The response function approach

The response function approach is particularly used within item response
theory with binary variables and a single latent factor (Jöreskog & Mous-
taki, 2001). Contrary to the URVA, an underlying variable is not de�ned for
each observed ordinal variable, instead the unit of analysis is the complete
p-dimensional response pattern distribution, conditionally on the latent fac-
tors, so there is no loss of information due to correlations within features.
It is assumed that responses to di�erent variables are independent for given
latent factors.
This approach is a generalization in the context of latent variable models
of the class of models discussed by McCullagh (1980), which include propor-
tional odds model and probit model. These models are in turn a multivariate
extension of generalized linear models.
Basing on the work of Moustaki (2003) and Moustaki & Knott (2000), we
considered a generalized latent variable model for ordinal data.

3.2.1 Measurement model

The joint density function of the ordinal variables x is given by:

(3.3) f(x) =

∫
IR
q

f(x, z) dz =

∫
IR
q

f(x|z)f(z) dz,

where z is the set of q latent variables.
Under the assumption of conditional independence, z accounts for the as-
sociation among ordinal variables. Conditional independence is a necessary
condition so that the conditioning variables provide an adequate explanation
of the correlation between the ordinal variables. For �xed z we have:

f(x|z) =

p∏
i=1

fi(xi|z).

A generalized linear model consist of three components (McCullagh, 1984):
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1. a random component with distribution that belongs to the exponential
family. It is generally assumed that each of the p manifest variables
has a distribution of the form:

(3.4) fi(xi; θi;φi) = exp

[
xiθi − bi(θi)

φi
+ ci(xi;φi)

]
, i = 1, . . . , p

where θi is the canonical parameter, φi is the scale parameter, bi(θi)
and ci(xi;φi) are speci�c functions, the former depends only on the pa-
rameters while the latter depends on the parameters and the observed
data;

2. a systematic component, in which the latent variables produce a linear
predictor for each observed variable xi:

ηi = λi0 −
q∑
j=1

λijzj, i = 1, . . . , p;

3. the link between the systematic component and the conditional mean
of the random component:

ηi = gi(µi(z)), i = 1, . . . , p

where µi(z) = E(xi|z) and gi is the link function. The link function
can be any monotone and di�erentiable function, whose domain is in
the range [0, 1] and that assumes values in [−∞,∞]. Examples of link
functions are the logit, the probit, the complementary log-log function
and the log-log function.

Since we are dealing with ordinal data the random component in the model
corresponds to the multinomial distribution. We de�ne:

• πi(l)(z) = P (xi = l|z) the conditional probability for the ith ordinal
variable to assume category l.

• γi(l)(z) = P (xi ≤ l|z) = πi(1)(z) + . . . + πi(l)(z) the cumulative prob-
ability of a response to be in category l or lower for the ith observed
variable.

The conditional probability of the ith observed variable is then:

(3.5) fi(xi|z) =

ki∏
l=1

πi(l)(z)xi(l) =

ki∏
l=1

[
γi(l)(z)− γi(l−1)(z)

]xi(l)
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where xi(l) = 1 if an observation is in category l for the ith observed variable
and xi(l) = 0 otherwise. Equation (3.5) can be rephrased as (we denote for
simplicity in notation γi(l)(z) = γi(l)):

(3.6) fi(xi|z) =

ki−1∏
l=1

(
γi(l)
γi(l+1)

)xi(l) (γi(l+1) − γi(l)
γi(l+1)

)xi(l+1)−xi(l)
.

If we apply the logarithm to equation (3.6) we have:

(3.7) log fi(xi|z) =

ki−1∑
l=1

(
xi(l) log

γi(l)
γi(l+1) − γi(l)

− xi(l+1) log
γi(l+1)

γi(l+1) − γi(l)

)
.

Then the conditional probability for the ith observed variable can be ex-
pressed in the general form of the exponential family distribution of equa-
tion (3.4):
(3.8)

fi(xi|z) = exp

[
ki−1∑
l=1

(
xi(l) log

γi(l)
γi(l+1) − γi(l)

− xi(l+1) log
γi(l+1)

γi(l+1) − γi(l)

)]
where:

θi(l)(z) = log
γi(l)

γi(l+1) − γi(l)
, l = 1, . . . , ki − 1,

and

bi[θi(l)(z)] = log
γi(l+1)

γi(l+1) − γi(l)
= log{1 + exp

[
θi(l)(z)

]
}, l = 1, . . . , ki − 1.

The systematic component of the model is category-dependent and is of the
form:

ηi(l) = link
[
γi(l)(z)

]
= λi0(l) −

q∑
j=1

λijzj,

where λi(l) are category-speci�c intercepts (or thresholds) with λi(1) < . . . <

λi(ki) = +∞ and the λij, for i = 1, . . . , p and j = 1, . . . , q, can be considered
as factor loadings because they measure the e�ect of the latent variables z
on the probability of responding in some category of the observed ordinal
variable γi(l)(z). The negative sign before λij means that, if the loading
has positive value, as zj increases it is more likely for xi to fall into higher
category. The link function considered in this study is the logit:

logit
[
γi(l)(z)

]
= λi0(l) −

q∑
j=1

λijzj
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thus, the cumulative probability can be expressed as:

γi(l)(z) =
exp

[
λi0(l) −

∑q
j=1 λijzj

]
1 + exp

[
λi0(l) −

∑q
j=1 λijzj

] = Ψ

[
λi0(l) −

q∑
j=1

λijzj

]

where Ψ(x) is the logistic distribution function.
Figure 3.1 shows an example where the cumulative probabilities γi(l) for an
ordinal variable with 5 categories are plotted against a single latent variable.
The values of the latent variable z have been simulated sampling at random
from a uniform distribution in the range [−2, 2], while the values of the in-
tercepts and factor loading have been generated sampling at random from a
uniform distribution with domains [−2, 2] and [0, 3], respectively. The chosen
values are reported in Table 3.2. Note that the threshold value for category
l = 5 has not been simulated.
The size of the factor loading determines if the curves grow up or down and
how quickly they do it. The curves for the cumulative probability have al-
ways the same order (corresponding to the order in the categories) whatever
the values of z is.
Figure 3.2 shows the response probabilities πi(l) correspondent to the cumu-
lative probabilities of Figure 3.1.

Table 3.2: Simulated intercepts and factor loading.

Simulated values

λ0(1) -1.621337
λ0(2) -0.4437145
λ0(3) 0.3322429
λ0(4) 1.410525
λ0(5) +∞
λ1 2.36024
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Figure 3.1: Cumulative probabilities γ(l) (y-axis), l = 1, . . . , 5, for di�er-

ent values of the latent variable z (x-axis). Cumulative probabilities have

been obtained from the simulated values of thresholds and factor loading in

Table 3.2.
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Figure 3.2: Response probabilities πi(l) (y-axis), l = 1, . . . , 5, for di�erent

values of the latent variable z (x-axis). The response probabilities correspond

to the cumulative probabilities in Figure 3.1.

3.2.2 Structural model

In the classical GLLVM z is assumed to be distributed according to a mul-
tivariate standard normal. Bartholomew (1988) suggested that the use of a
standard normal distribution has rotational advantages when there is more
than one latent variable.
However, the assumption of normally distributed latent variables cannot be
appropriate for classi�cation tasks where data come from an unobserved het-
erogeneous population.
Using alternatives to normality for the latent variables is not new in the
statistical literature on GLLVM. See, among the others, Cagnone & Viroli
(2014), Irincheeva et al. (2012), Wall et al. (2015), Montanari & Viroli (2010),
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Yung (1997) and Wedel & Kamakura (2001).
We present here an example to show the reason why a latent distribution that
allows for more �exibility is more appealing when the task is classifying data
coming from di�erent sub-populations. As mentioned in chapter 1, we work
within the underling variable approach, assuming a priori that the ordinal
variables are the result of the discretization of an unmeasurable underlying
variable. To exemplify this, Figure 3.3 shows the case where the underlying
distribution is a χ2 with 5 degrees of freedom for an ordinal variable with 5
categories. The threshold values have been chosen so that they are equidis-
tant. In classi�cation tasks, the data set is composed by observations which
are the realization of a p-dimensional random variable with di�erent and un-
known class-dependent multivariate distributions. In our case then we can
see the ordinal variables as coming from the discretization of a mixture of
p-variate distributions.
Suppose that we are in the univariate case, with one manifest ordinal vari-
able and one latent factor, where each observation can be assigned to one of
three possible classes. The ordinal variable comes from the discretization of
an underlying distribution, which is a mixture of three probability density
functions corresponding to the three population densities.
Figure 3.4 shows an example where the underlying probability density func-
tions associated to each populations are Gaussian distributions with means
µ = (0, 2, 5) and variances σ2 = (1, 1.5, 3), the bold black line represents the
mixture density, supposing equal weights.
It seems reasonable then to assume that good results may be obtained only if
the distribution of the latent variable, obtained through the response variable
approach, to which the classi�er is applied, approximates as well as possible
the �true� underlying mixture distribution. In the example in Figure 3.4 it is
possible to see that assuming the latent variable to be distributed according
to a standard normal distribution is not the best possible solution as the
mixture clearly shows asymmetry. Instead, it seems legit to choose a distri-
butional form that allows for more �exibility.



3.2. THE RESPONSE FUNCTION APPROACH 43

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

z

Category 1 Category 2 Category 3 Category 4 Category 5

Figure 3.3: Categories of an ordinal variable from a χ2 underlying distribu-

tion with 5 degrees of freedom.
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Figure 3.4: Gaussian underlying probability density functions and associated

mixture distribution (bold black line) with equal weights.

Before going further in the description of the structural model we highlight
that from now on we will consider only the case of a single latent variable. A
motivation of this choice is related to the properties of a classi�er that will be
presented in chapter 4. Furthermore, this simpli�es calculations and allows
for faster computational times. We leave to future studies the development
of the method for more than one latent factor.

3.3 A new proposal: The Beta Response Func-

tion Approach (BRFA)

The main idea proposed in this study is to introduce a Beta distributed la-
tent variable in the context of the response function approach, presented in
the previous section. As far as we know this distribution has never been
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applied in the latent variable models and, in particular, with the purpose of
supervised classi�cation of ordinal variables.
The idea of using a latent distribution that allows for more �exibility comes
from the realization that the usual normality assumption of the latent vari-
ables is not always justi�ed.
For this reason, in de�ning the structural part of the model we considered the
work of Cagnone & Viroli (2014), where a mixture of multivariate Gaussians
is proposed for the latent variables in order to account for heterogeneity in
the data. This model comes as an extension of a previous work developed for
binary data (Cagnone & Viroli, 2012). The aim of these models is twofold:
they operate a dimension reduction in the input space and allow to perform
a model based clustering in the latent space. Each cluster should correspond
to one component of the mixture. With a single latent variable the structural
part of the model takes the following form:

f(z) =
G∑
j=1

πjφj (µj, σj) z ∈ [−∞,+∞]

where φj is a Gaussian density with mean µj and variance σj. The πj are
the mixing proportions which are unknown and have to be estimated.
The distributional form proposed by Cagnone and Viroli seems appealing
in our case because, as mentioned, it allows to better approximate the case
where data come as a mixture of class-conditional distributions.
Anyway, despite its simplicity and reasonably for application, this method
presents some limitations. As the number of components of the mixture in-
creases, the �exibility of the distribution increases too, but, at the same time,
there is a loss in terms of computational e�ciency because there are more
parameters to estimate.
Moreover, the additional information of cluster membership that one may
obtain in using this model is redundant as the main purpose is just to op-
erate a dimension reduction from the ordinal space to the continuous space
in order to apply the standard classi�cation methods. As we operate in a
framework of supervised classi�cation the class membership is known in ad-
vance and this information is used only when the classi�er is applied. Thus,
considering a mixture of distributions may not be the best possible option.
As alternative, we propose to choose a Beta distribution for the latent vari-
able. The Beta distribution appears useful for our task since, as the α and
β parameters change, it assumes many di�erent shapes. Using the Beta we
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include the case of symmetric latent distribution (for which no signi�cant dif-
ferences with respect to using a Gaussian latent distribution are expected in
terms of classi�cation performance) but we also include possible deviations
from symmetry, which would possibly be more appropriate when dealing
with data coming from heterogeneous sub-populations. In particular, the
Beta distribution covers the case of highly skewed latent distribution, as well
as the case of uniform latent distribution (when α = β = 1).
Therefore, we assume:

f(z) =
1

B(α, β)
zα−1(1− z)β−1, z ∈ [0, 1]

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function.

The choice of a latent Beta distribution has been preferred to the Gaussian
mixture distribution because, as mentioned, it presents advantages in terms
of computational e�ciency. This due to the fact that considering a mixture
distribution the number of parameters of the model increases. Indeed, for
each component of the mixture, mean and variance have to be estimated, to-
gether with the corresponding weight, while with the Beta distribution only
the α and β parameters have to be estimated.
Table 3.3 shows the computational times (in seconds) needed by the EM al-
gorithm to estimate the model parameters for the two distributional forms.
The computational times in the table have been obtained by applying the
two methods to a dataset of 5 ordinal variables and 100 observations. The
dataset has been obtained by applying the exponential function to obser-
vations randomly generated from a standard normal distribution. Ordinal
variables have been obtained by subsequently discretizing the observations.
In order to obtain comparable results in terms of computational times the
parameters of the EM algorithm such as the number of iterations have been
held �xed and equal to 5 among the two methods compared. The structure
of the EM algorithm will be discussed in the next section.
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Table 3.3: Computational times (in seconds) required for estimating model

parameters with 5 iterations of the EM algorithm for di�erent distributions

of the latent variable. The reference dataset consists of 5 ordinal variables

and 100 observation.

Estimation times

Beta distribution 41.03
Gaussian mixture with 2 components 45.72
Gaussian mixture with 3 components 55.57
Gaussian mixture with 4 components 79.4

One may notice that moving from a mixture of multivariate Gaussian distri-
butions to a Beta distribution also the domain changes. The latent variable
upon which classi�cation is based does not assumes any more values in IR
but in the interval [0, 1]. This is not a�ecting the classi�cation results as the
class information is retained using the response function approach because
the only information we use is the order among the categories.

In the next two sections methods for parameter estimates in BRFA are in-
troduced together with the Beta factor scores upon which classi�cation is
based.

3.4 Model estimation

In this section we present the method used to obtain parameter estimates
considering the Beta response function approach.
Denote:

• θi = (λi0, λi), the vector of thresholds and factor loading for the ith

observed variable, where λi0 is a (ki − 1)-dimensional vector.

• δ = (α, β), the Beta distribution parameters.

• τ = (θ, δ), the model parameters, collectively.

Model parameters can be estimated by the EM algorithm (Dempster et al.,
1977), which is an iterative method for calculating the maximum likelihood
estimates when we deal with latent variables. Indeed, in the presence of latent
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variables, the classical maximum likelihood method through the computation
of the gradient becomes infeasible. Using the EM algorithm the problem of
maximizing the incomplete log-likelihood log f(x; τ ) is reformulated into the
problem of maximizing (M-step) the conditional expected value (E-step) of
the complete log-likelihood log f(x, z; τ ), which is computationally simpler.
Since implementing an EM algorithm for a Beta latent variable presents
unique challenges, dedicated algorithms have been developed in the statistical
software R as no packages are currently available.
The EM algorithm used in this study consists in the following steps:

1. Select initial values for τ̃ = (θ̃, δ̃).

2. Calculate τ which maximize Ez|x,τ̃ [log
∑n

h=1 f(xh, zh; τ )].
Set τ̃ = τ .

3. If the change in the observed data log-likelihood is greater than a �xed
ε, i.e. if convergence is not achieved, return to step 2 an iterate until
convergence.

In the �rst step of the algorithm the initial values of the model parameters
have been chosen randomly sampling from a uniform distribution. In partic-
ular, the intercept values and the factor loading for each observed variable
have been randomly sampled from Unif(−2, 2) and Unif(0, 3), respectively.
The intercept values have been subsequently sorted in order to re�ect cate-
gories order. The Beta distribution parameters α and β have been sampled
at random from Unif(0, 10).
The complete log-likelihood can be expressed as:

f(x, z) = f(x|z)f(z)

thus, the second step of the algorithm can be rephrased as:

• Calculate θ which maximize Ez|x,τ̃ [log f(x|z;θ)];

• Calculate δ which maximize Ez|x,τ̃ [log f(z; δ)].

where:

(3.9) Ez|x,τ̃ [log f(x|z;θ)] =

∫ 1

0

log f(x|z;θ)f(z|x; τ̃ ) dz
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and

(3.10) Ez|x,τ̃ [log f(z; δ)] =

∫ 1

0

log f(z; δ)f(z|x; τ̃ ) dz

In order to compute the conditional expected value of the complete log-
likelihood it is then necessary to determine the conditional distribution of
the latent variable given the observed variables. From Bayes theorem the
distribution is given by:

f(z|x; τ̃ ) =
f(z,x; τ̃ )

f(x; τ̃ )
=
f(z; δ̃)f(x|z; θ̃)

f(x; τ̃ )

=
f(z; δ̃)f(x|z; θ̃)∫ 1

0
f(z; δ̃)f(x|z; θ̃)∂z

where:

• f(z; δ̃) is the Beta distribution with known parameters;

• f(x|z; θ̃) =
∏p

i=1 fi(xi|z, θ̃i) is the conditional distribution of the man-
ifest variables with known parameters.

Considering that we express the conditional cumulative probabilities in equa-
tion (3.5) as a linear combination of latent scores through a logit link function,
the integral at the denominator has the following form:
(3.11)

f(x; τ̃ ) =

∫ 1

0

1

B(α, β)
zα−1(1−z)β−1

p∏
i=1

ki∏
l=1

[
eλi0(l)−λiz

1 + eλi0(l)−λiz
− eλi0(l−1)−λiz

1 + eλi0(l−1)−λiz

]
dz

Since equation (3.11) cannot be analytically solved it is approximated. Among
the several possible approximation methods, Gauss-Legendre quadrature points
have been used.

Gauss-Legendre quadrature points approximation

The general formula for approximating an integral with Gaussian quadrature
is the following: ∫ b

a

ω(x)f(x) dx =
n∑
i=1

wif(xi) +Rn,
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where ω(x) is the weight function, xi are the n nodes (i.e. points on the
abscissa axis where the function is evaluated) and wi are the weights. Rn is
the approximation error term.
The Gauss-Legendre integration formula is one of the most used as it has the
highest possible precision degree and it is analytically exact for polynomials
of degree at most 2n − 1 if nodes correspond to the roots of the orthogo-
nal polynomial for the same [a, b] interval and weighting function (Babolian
et al., 2005). The nodes in Gaussian quadrature are always interior points
of the reference interval so the Gaussian formulae provides advantages when
the function assumes an in�nite value at one end of the interval. Several
Gaussian quadrature methods exist, which di�erentiate for the integration
interval, weight functions and related orthogonal polynomials. Some of these
methods are reported in Table 3.4. Gauss-Legendre quadrature method pro-
vides for the case where the integral interval is [−1, 1] , with ω(x) = 1.
The quadrature points are the zero points of the Legendre polynomials of
the �rst kind Pn(x). Legendre polynomials are sometimes expressed through
what is know as Rodrigues' formula (Askey, 2005), introduced independently
by Rodrigues (1815), Ivory (1824) and Jacobi (1827):

Pn(x) =
1

2nn!

dn

dxx
[
(x2 − 1)n

]
Table 3.4: Some characteristics of Gaussian quadrature methods.

Interval ω(x) Related orthogonal polynomials

[−1, 1] 1 Legendre polynomials
[−1, 1] 1/

√
1− x2 Chebyshev polynomials

[0,∞] e−x Laguerre polynomials
[−∞,∞] e−x

2
Hermite polynomials

An integral on the interval a and b of a generic continuous function f(x) is
approximated through the Gauss-Legendre quadrature method as follows:∫ b

a

f(x)∂x =

∫ 1

−1

f

(
b− a

2
x′ +

b+ a

2

)
b− a

2
dx′(3.12)

=
b− a

2

n∑
i=1

ωif

(
b− a

2
x′i +

b+ a

2

)
+Rn,(3.13)
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where −1 < x′ < 1 and

x′ =
x− b−a

2
b−a

2

, x =
b− a

2
x′ +

b+ a

2
, wi =

2

(1− x′2i )[Pn(x′k)]
2
.

In equation (3.3) we have that a = 0 and b = 1, thus:

f(x; τ̃ ) =

∫ 1

0

f(z; τ̃ )f(x|z; τ̃ ) dz

=
1

2

∫ 1

−1

f(
z′

2
+

1

2
; τ̃ )f(x|z

′

2
+

1

2
; τ̃ ) dz′

=
1

2

n∑
i=1

wif

(
z′i
2

+
1

2

)
f(x|z

′
i

2
+

1

2
; τ̃ ) +Rn.

Therefore, the joint density function of the observed variables has been ap-
proximated as the weighted sum of the integrand in equation (3.11), evalu-
ated over a linear transformation of n quadrature points zi for i = 1, . . . , n.
In the simulations we have chosen to use n = 10 quadrature points.

Once the approximation of f(x; τ̃ ) is obtained, the M-step of the algorithm
consists in maximizing (3.9) and (3.10) respectively in θ and δ.
As an analytical estimator for these parameters cannot be derived, it is nec-
essary to introduce in the M-step of the algorithm a numerical optimization
algorithm. This leads to a generalized version of the EM algorithm (GEM,
McLachlan & Krishnan, 2007).
Estimates for intercepts and factor loading for each observed variable have
been obtained thought the Nelder-Mead algorithm or Simplex method (Nelder
& Mead, 1965), which is a popular direct search method due to its robustness
and its low overhead in storage and computation (Dennis & Woods, 1987 and
Lagarias et al., 1998). Generally, the Nelder-Mead algorithm is designed for
minimization of an objective function of several variables. In our case it has
been applied on the logarithm in (3.9) with inverted sign. For the ith ordi-
nal variable with ki categories the domain of the function has ki dimensions
(ki − 1 for the intercepts plus one factor loading).
The method requires only function evaluation and not derivatives of the func-
tion. As the name suggests the method works with geometrical objects called
simplex. In a general h-dimensional space the simplex consists in h+1 points
(or vertex) and all their interconnecting line segments, polygonal faces, etc.
At each step of the algorithm the worst vertex (i.e. the vertex where the
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objective function has the highest values) is rejected and replaced with a
new one.

The parameters of the Beta distribution have been estimated using the
method introduced by Brent (2013). This method is used to �nd minima
(or maxima) of continuous functions in one variable and it is a combina-
tion of the golden ratio search (Kiefer, 1953) and the method introduced
by Jarratt (1967), which uses successive parabolic interpolations. The two
methods are combined in a way that retains the advantages of both. Indeed,
with golden ratio search linear convergence is guaranteed. Processes like suc-
cessive parabolic interpolation do not always converge but if the objective
function has a continuous second derivative which is positive at the minimum
then convergence is superlinear, with order at least 1.324.
Starting from the initial values assigned to the Beta parameters on the �rst
step of the EM algorithm δ̃ = (α̃, β̃), the procedure we adopted consists in
two steps:

1. Calculate α which maximize Ez|x,τ̃
[
log f(z;α, β̃)

]
and set α̃ = α;

2. calculate β which maximize Ez|x,τ̃ [log f(z; β, α̃)] and set β̃ = β.

In order to keep computational times low in the performed simulations, both
Nelder-Mead and Brent methods are applied considering a maximum number
of iterations equal to 10, which is quite low for these kind of algorithms.
Anyway, as shown in the later chapters, this leads to quite satisfying results
but in order to increase the computational e�ciency alternative optimization
methods may be tested. We leave this for future studies.
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3.5 Factor scores

As mentioned, the main interest is to locate each unit basing on the response
pattern on the latent variable space and then proceed with classi�cation. We
move from a p-dimensional space of ordinal variables to a one dimensional
space with a single continuous variable where we can apply standard classi�-
cation methods. This problem has been traditionally treated by determining
factor scores.
Once the model parameters have been estimated through the EM algorithm,
the aim is to obtain the vector of latent variable scores associated with the
observations.
Bartholomew (1984) investigated a method to determine component scores
that can be used to scale units on the latent dimension when response vari-
ables are binary with logit link function. The posterior density function of
z|x depends on the observed binary variables x through the q components:

zj =

p∑
i=1

λijxi j = 1, . . . , q

where λij are the factor loadings.
Unfortunately, no simple linear function exists to summarize the informa-
tion contained in the latent variable because γi(l) (for i = 1, . . . , p and
l = 1, . . . , ki) is not a linear function of z. As suggested by Bartholomew
(1981), if all variables in the model are random, the mean of the posterior
distribution of z, given the response patter xh, can be used to score the
response pattern:

(3.14) E(z|xh) =

∫ 1

0

zf(z|xh) dz

As equation (3.14) cannot be analytically solved either, Gauss-Legendre
quadrature points have been used to approximate the integral with a proce-
dure similar to the one shown above.
In Table 3.5 we present an example of how the response patterns are scored.
We just show a sample of 10 response patterns simulated from 5 ordinal vari-
ables in the same way of data shown in Table 3.3. Each row in Table 3.5
shows the categories in the response pattern for each of the �ve ordinal vari-
ables. Model parameter estimates associated with these data are presented
in Table 3.6.
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Table 3.5: Simulated response patterns with associated scores obtained with

response function approach with latent Beta distribution.

V1 V1 V3 V4 V5 E(z|x)

x1 4 3 3 4 3 0.4293465
x2 1 1 1 3 3 0.3711781
x3 1 1 1 1 1 0.3404442
x4 4 1 1 1 3 0.3758608
x5 3 3 3 5 2 0.4293887
x6 3 2 4 3 3 0.4071265
x7 4 2 4 2 2 0.4008928
x8 2 2 1 1 1 0.3518677
x9 4 1 2 2 1 0.3739162
x10 5 2 3 3 2 0.4164381

Table 3.6: Estimates of model parameters.

V1 V2 V3 V4 V5

λ0(1) -0.732 -0.225 0.170 -1.084 -0.281
λ0(2) -0.443 1.373 0.880 -0.383 0.480
λ0(3) 0.219 2.898 1.905 0.353 1.347
λ0(4) 1.460 2.282 2.937 1.742 1.876
λ0(5) - - - - -
λ1 0.948 0.002 0.884 1.210 1.265

α = 4.5 β = 7.2

In the simulations performed in the later chapters the reference scores are
the ones obtained with the Beta response function approach.

3.6 Advantages of Beta response function ap-

proach

We have seen that response function approach, with respect to the URVA,
presents some advantages.
First of all, the analysis in the response function approach is focused on the
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entire response pattern of the individuals so it can be considered as a full
information method. Full information methods have a theoretical advantage
over limited information methods, in that they produce more e�cient pa-
rameter estimates because they use all the information available in the data,
while limited information methods only use the low order margins to esti-
mate model parameters.
On the contrary, the URVA is usually a limited information method because
estimating the model parameters involves the evaluation of a p-dimensional
integral (as in equation (3.2)), which is not computationally feasible. More-
over, the URVA can handle a limited number of items due to the large weight
matrix needed for parameter estimation with the generalized least squares
method.
Another advantage in using the response function approach is that there is
no need to de�ne an underlying distribution for each observed variable as
happen in the underlying response variable approach or in the conditional
mean scores.
Our approach seems attractive in this particular situation as it allows to
overcome the limitations of the scoring methods presented in chapter 2 since
the choice of the underlying distribution upon which classi�cation is based
is lead-by-data, moreover, as the focus is the entire response pattern, there
is no loss of information due to possible correlations among variables.
Furthermore, the innovation we propose in introducing a latent Beta distri-
bution allows to a �exible distributional form that may better approximate
the �true� underlying mixture distribution with shorter computational times
compared to the ones obtained considering a mixture of multivariate Gaus-
sians due to the fact that only two parameters have to be estimated.



Chapter 4

Classi�cation methods

The purpose of this chapter is to introduce the methods that will be used
in the simulations to classify the ordinal data. Each one of the presented
methods is designed for supervised classi�cation of variables measured on a
continuous scale.
We remark that until now the class membership information has never been
used in the presented scoring methods (chapter 2) and in the new proposed
method BRFA (chapter 3). We introduce this information when the classi�er
is applied on the scores.

The supervised classi�cation methods used are: the linear and quadratic dis-
criminant analysis, the naive Bayes classi�er, the support vector machine
with radial basis kernel and the quantile-based classi�er. These methods
have been chosen because they are among the most used in the supervised
classi�cation context (Bishop, 2006; Hastie et al., 2009).
Dedicated classi�cation algorithms are already implemented in speci�c pack-
ages of the statistical software R (R Development Core Team, 2008), which
has been chosen to perform the simulations. The linear discriminant analy-
sis and quadratic discriminant analysis are available in the R package MASS

(Venables & Ripley, 2002), support vector machine and naive Bayes are im-
plemented in the R package e1071 (Meyer et al., 2015) and quantile classi�er
is available in the R package quantileDA (Hennig & Viroli, 2016b). In the
simulations, each scoring method presented in chapter 2 and the response
variable approach with Beta latent distribution presented in chapter 3 have
been applied to the dataset and then the classi�ers have been compared
basing on the misclassi�cation rate.
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Supervised and unsupervised classi�cation

The supervised classi�cation is used in many areas of science and there is
plenty of possible applications:

• Biomedical studies: ex. basing on demographic, diet and clinical mea-
surements for the patients predict whether a patient, hospitalized due
to a heart attack, will have a second heart attack;

• Text analysis: ex. on the basis of e-mail records assign messages to
directories, �nding synonyms, SPAM detection, etc;

• Handwriting recognition;

• Speech recognition.

Usually, in the framework of statistics, pattern recognition, or machine learn-
ing we refer to classi�cation as the assignment of objects into one of K known
classes or populations Π1, . . . ,ΠK .
In other words, the main goal in classi�cation is to identify to which of a
set of possible classes a new observation belongs. Each new observation
xnew = (x1, . . . , xp) is supposed to be a realization of a p-variate random
variable, whose probability density corresponds to one of K possible popu-
lation densities.
A general distinction in classi�cation methods is between supervised and un-
supervised classi�cation (usually, we refer to the latter as clustering).
In the supervised classi�cation context the assignment of a class label to a
new observation is done on the basis of a training set, which is a set of obser-
vations whose class is known in advance. The information in a learning set
of labeled observations is used to construct a classi�er, i.e. a classi�cation
rule, which scope is to discriminate (or separate) the prede�ned classes as
much as possible. Ideally, the sample observations in the training set are
representative of the corresponding populations. Basing on the analysis of
the training data, one should be able to tune the parameters of an algorithm,
which can be used for mapping the new observations.
In clustering no prior information about the classes is given. Broadly speak-
ing, the scope is to select and group homogeneous elements in the data set.
From now on, following the machine learning terminology, we will refer to
the observations as instances and to the explanatory variables as features
(grouped into a feature vectors). We denote as X the N × p data matrix.
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The ith column of the data matrix x0i is a N × 1 feature vector (where N is
the total number of instances) while the jth row xj0 corresponds to a p × 1

instance vector.

Parametric and nonparametric classi�cation methods

On the basis of the assumptions we made about the data it is possible to
further divide the classi�cation methods into parametric methods and non-
parametric methods (Hand, 1997).
In parametric methods we make assumptions on the probability distribution
of the data conditionally to each class. In nonparametric methods no prior
information about the data is given. In these cases classi�cation is based on
the local vicinity of the instance to the class.
Nonparametric methods are usually more �exible than parametric ones as
they require fewer assumptions about the underlying population from which
data are drawn (Hollander et al., 2013) but they are usually slower than the
parametric counterpart. Moreover, if the assumptions for parametric meth-
ods are ful�lled, they generally result in better performances with respect to
nonparametric methods.
Linear and quadratic discriminant analysis and naive Bayes classi�er are
examples of parametric methods while support vector machine with radial
basis kernel and quantile classi�er fall within the de�nition of nonparametric
methods.

Since these classi�cation methods present di�erent properties, it seems ap-
propriate to introduce them brie�y before proceeding further with the simu-
lations.

4.1 Linear discriminant analysis (LDA)

Linear discriminant analysis comes as a generalization of Fisher's linear dis-
criminant (Fisher, 1936). It is a linear method of classi�cation as the goal is
to subdivide the input space into regions corresponding to the classes by lin-
ear decision boundaries. For a two-class problem a linear decision boundary
corresponds to a hyperplane that partitions the input space into two sets,
one for each class.
Linear decision boundaries arises when we �t linear regression models to
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the class indicator variable. In the case of K classes the linear regression
model for the kth class variable is f̂k(x) = β̂k0 + β̂Tk x for k = 1, . . . , K and
βk = (β1k, . . . , βpk). The decision boundary between classes k and k′ is the
set of points where f̂k(x) = f̂k′(x). This set of points is an hyperplane:
(β̂k0 − β̂k′0) + (β̂k − β̂k′)Tx = 0.
In linear discriminant analysis each instance is assigned to the class which
has the highest posterior probability. If we denote Π = (1, . . . , K) the nomi-
nal random variable of possible class labels then the posterior probability for
the jth instance to belong to class k is P (Π = k|xj0).
Suppose fk(xj0) is the class-conditional probability density function for the
jth instance and πk the prior probability of class k, with

∑K
l=1 πl = 1. Using

Bayes theorem we can write the posterior probability for class k as:

(4.1) P (Π = k|xj0) =
fk(xj0)πk∑K
l=1 fl(xj0)πl

.

In linear discriminant analysis fk(xj0) is supposed to be the probability den-
sity function of a multivariate Gaussian distribution:

(4.2) fk(xj0) =
1

(2π)
p
2 |Σk|

1
2

e
−

1

2
(xj0−µk)TΣ−1

k (xj0−µk)
,

moreover, in equation (4.2) it is assumed that the covariance matrices are
equal between classes Σk = Σ, for k = 1, . . . , K.
Substituting (4.2) into equation (4.1) we have:
(4.3)

P (Π = k|xj0) =

1
(2π)p/2|Σ|1/2 exp

(
−1

2
(xj0 − µk)TΣ−1(xj0 − µk)

)
πk

1
(2π)p/2|Σ|1/2

∑K
l=1 exp

(
−1

2
(xj0 − µl)TΣ−1(xj0 − µl)

)
πl

.

Taking the logarithm of equation (4.3) and keeping parts of the equation
which depend on k, this is equivalent to assigning the observation to the
class which as the largest value of:

(4.4) δk(xj0) = (xj0)TΣ−1µk −
1

2
µTkΣ−1µk + log(πk),

with k = 1, . . . , K. We often refer to (4.4) as linear discriminant function.
In order to determine the hyperplane separating the classes k and k′, we look
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at the log ratio of the posterior class probabilities:

log
P (Π = k|xj0)

P (Π = k′|xj0)
= log

fk(xj0)πk
fk′(xj0)πk′

=

= log
πk
πk′
− 1

2
(µk − µk′)TΣ−1(µk − µk′) + xTj0Σ−1(µk − µk′).

(4.5)

Since the parameters of the Gaussian distributions are unknown they are
estimated from the training set. The parameters for the kth class are obtained
as:

• µ̂k =
∑

j∈Πk
xj0/Nk, where Nk is the number of instances in the kth

class.

• Σ̂ =
∑K

k=1

∑
j∈Πk

(xj0 − µ̂k)(xj0 − µ̂k)T/(N −K).

• π̂k = Nk/N .

These linear decision boundaries are the same for every pair of classes and
divide the input space into K regions, labelled according to the classes.
Figure 4.1 shows an example of LDA from Hastie et al. (2009), where data
come from three classes in IR2. Data are a sample of 30 drawn from three
Gaussian distributions with the same covariance matrix and di�erent means.
Each data point is labelled according with the true class.
In the way hyperplanes are obtained (see equation (4.5)) the linear discrim-
inant analysis is similar to the logistic regression model. Indeed, in logistic
regression we have that:

(4.6) log
P (Π = k|xj0)

P (Π = K|xj0)
= βk0 + βTk xj0,

while equation (4.5) can also be rephrased as a linear function of the instance
as linearity is a consequence of the Gaussian assumption and the common
variance assumption:

(4.7) log
P (Π = k|xj0)

P (Π = K|xj0)
= αk0 + αTk xj0.

However, although very similar, coe�cients in equation (4.6) and (4.7) are
estimated di�erently as in logistic regression we do not assume any distribu-
tional form for the class-conditional densities.
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Figure 4.1: LDA decision boundaries.

4.2 Quadratic discriminant analysis (QDA)

Quadratic discriminant analysis is closely related to linear discriminant anal-
ysis but in this case the class-conditional covariance matrices in equation (4.2)
are not assumed to be equal. For this reason, in determining the separating
hyperplanes in (4.5), the cancellation of the normalization factor and the
quadratic part in the exponents does not occur. This results into a quadratic
decision boundaries and a di�erent discrimination function:

δk(xj0) = −1

2
log |Σk| −

1

2
(xj0 − µk)TΣ−1

k (xj0 − µk) + log(πk).

As we do not assume equal covariance matrices anymore, they have to be
estimated separately for each class, meaning that the number of parameters
to estimate is extremely larger than in LDA.
Another way to obtain quadratic decision boundaries is to estimate the pa-
rameters as in the LDA case but in the enlarged input space, considering the
cross-products and the squares of all the features in the data set. The clas-
si�cation results using this method are usually similar to the ones obtained
by simply using the QDA on the original input space.
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4.3 Naive Bayes classi�er

As in linear and quadratic discriminant analysis, the Bayes classi�er assigns
each instance to the class having the highest posterior probability:

P (Π = k|xj0) =
fk(xj0)πk∑K
l=1 fl(xj0)πl

,

where fk(xj0) is the class-conditional probability density function for the jth

instance and πk the prior probability of class k.
For the true but unknown πk and fk(xj0), with k = 1, . . . , K, the Bayes
classi�er has the lowest possible error rate. The term naive refers to the fact
that this classi�er implies two simplifying assumptions on the data (John &
Langley, 1995):

1. The features are conditionally independent given the class;

2. No hidden or latent attributes in�uence the prediction process.

The class-conditional probability density function fk(xj0) is then given by:

fk(xj0) =

p∏
i=1

fk(xji).

A further assumption that is usually made when dealing with continuous
data is that, conditionally to the class, the features are normally distributed.
Thus, we have:

fk(xj0) =

p∏
i=1

1√
2πσ2

k

e
−

(xij−µk)
2

2σ2
k .

As for LDA, parameters estimates are obtained by applying maximum likeli-
hood on the training set. Despite its simplistic form the naive Bayes classi�er
often provides good results compared with other more complicated classi�ers
(Langley et al., 1992).

4.4 Support vector machine

The current de�nition of support vector machine was presented in the work
of Cortes & Vapnik (1995).
The hyperplanes described for LDA are found to be optimal (i.e. they create
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the biggest margin between the training points for each pair of classes) when
the classes are perfectly separated. When the classes overlap and so they
may not be separable by a linear boundary, a useful technique, which is a
generalization of the linear decision boundaries introduced for LDA is the
support vector machine. The support vector machine produces non-linear
decision boundaries by constructing linear boundaries in the transformed
input space.
Consider a hyperplane separating two classes. In the training set it is assigned
value yj = 1 if the jth instance belongs to one class and yj = −1 if the jth

instance belongs to the other class.
The p-dimensional linear hyperplane can by described as in the LDA section
by:

β0 + β1xj1 + . . .+ βpxjp = 0,

if
β0 + β1xj1 + . . .+ βpxjp < 0

the jth instance is assigned to class yj = −1 and if

β0 + β1xj1 + . . .+ βpxjp > 0

the jth instance is assigned to class yj = 1. Thus, if the classes are separable,
we have that:

yj(β0 + β1xj1 + . . .+ βpxjp) > 0 ∀j = 1, . . . , p.

Hence it is possible to �nd the estimates of the beta parameters so that the
hyperplane creates the biggest margin between the training points for the
two classes, thus:

max
β0,β1,...,βp

M

subject to

yj(β0 + β1xj1 + . . .+ βpxjp) > M ∀j = 1, . . . , p

with
p∑
i=1

β2
i = 1.

The idea in support vector machines is to create the hyperplanes in a more
robust way allowing for instances to be on the wrong side of the boundary.
In this way we are able to deal with situations where classes overlap. This
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is done by considering the slack variables ξ = (ξ1, . . . , ξN) that represent the
proportional amount by which the prediction β0 +β1xj1 + . . .+βpxjp is on the
wrong side of its margin. Then M is still maximized under the constrictions:

yj(β0 + β1xj1 + . . .+ βpxjp) > M(1− ξj) ∀j = 1, . . . , p

with
p∑
i=1

β2
i = 1,

p∑
i=1

ξi = constant.

The value of the constant term appear crucial in SVM and has to be tuned on
the training set. Indeed, a large value for the constant can cause over�tting
while a small value may cause the boundary to be smoother.
Support vector machine described so far is designed for �nding linear bound-
aries for possibly overlapping classes in the input space. An extension of this
classi�er consists in applying this procedure but in a di�erent input space,
obtained considering a transformation of the features through some basis
functions h(x0i) = (h(x1i), . . . , h(xNi)).
Generally linear boundaries in the enlarged space result into non-linear bound-
aries in the original space. A very large or in�nite dimension of the enlarged
space should allow for a better training-class separation but this will possibly
result in high computational times. SVM deal with these issues by involving
the basis functions in the computations only through the kernel function:

K(x,xT ) = 〈h(x), h(xT )〉.

In the simulations we have considered the radial basis kernel:

K(x,xT ) = exp(−γ‖x− xT‖2).

4.5 Quantile classi�er

The quantile-based classi�er, introduced by Hennig & Viroli (2016a), is a
classi�cation method that tries to avoid the problems arising when we deal
with potentially high-dimensional data. In these high-dimensional settings
often the computations require long time and can be cumbersome. The
quantile-based method attempts to overcome these issues by considering a
distance-based classi�er using only the partial information of the class con-
ditional distributions. Distance-based methods typically consider as class-
conditional information the central moments of the distributions (Jörnsten,
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2004; Dabney, 2005; Fan & Fan, 2008). In particular, the quantile clas-
si�er comes as a generalization of the median-based classi�er (Hall et al.,
2009), which assigns the instances on the base of the distance from the class-
conditional medians.
In the quantile classi�er each instance is assigned to a class according to the
sum of component-wise distances to the within-class quantiles.
Consider a generic univariate random variable X with cumulative distribu-
tion function FX . Then, the θth quantile of X, denoted as qX(θ), is equal
to:

qX(θ) = F−1
X (θ) = inf{x : FX(x) ≥ θ}, θ ∈ [0, 1]

The quantile classi�er rule allocate a new instance xj0 to the class which
gives the lowest quantile distance:

argmin
k

p∑
i=1

Φki(xj0, θ) k = 1, . . . , K

where:

• qki(θ) is the θth class-conditional quantile for the jth feature;

• Φki(xj0, θ) =
(
θ + (1− 2θ)1[xji≤q(θ)]

)
|xji−q (θ) | is the quantile distance

between xij and qki(θ).

For θ = 0.5 the quantile classi�er corresponds to the median classi�er.
The optimal value of θ is determined empirically over a grid of values in the
interval [0, 1] basing on the misclassi�cation rate in the training set and it
is unique for all the features. When p = 1 and there are only two possible
classes, Π1 and Π2, the classi�cation rule takes the following simple form:

if xj0 ≤ q̃(θ) then xj0 ∈ Π1

if xj0 > q̃(θ) then xj0 ∈ Π2,

where q̃(θ) is a cuto� point given by the weighted average of the two class
conditional-quantiles. Letting q(1)(θ) = min{q1(θ), q2(θ)} and q(2)(θ) =

max{q1(θ), q2(θ)} the cuto� is given by:

(4.8) q̃(θ) = θq(1)(θ) + (1− θ)q(2)(θ).

Figure 4.2 shows an example of a two class decision problem in a univariate
setting where the populations are distributed according to location shifted χ2
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with 5 degrees of freedom. The �rst plot shows the case of median classi�er
(i.e. θ = 0.5) where the cuto� point is the averages between the population
medians. The second plot shows the case of optimal θ value for the quan-
tile classi�er (θ = 0.202). The error probability region (displayed in gray)
is greater for the median classi�er respect to the best quantile classi�er (for
which it reaches the minimum possible value).

Although the quantile classi�er is a recently proposed method and, therefore,
not among the most used, it has an interesting propriety, which motivates
its inclusion among the classi�cation methods considered in this study. For
a two class decision problem in the univariate case, considering the optimal
theoretical θ value, the cuto� given in equation (4.8) is the optimal decision
boundary point that minimizes the overall misclassi�cation probability (we
refer the reader to Hennig & Viroli, 2016a for the proof). This property
may result useful as we operate classi�cation in the univariate input space
obtained through dimension reduction with the response function approach
with Beta latent distribution.
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Figure 4.2: Two location shifted χ2 distributions and total misclassi�cation

probability (in gray) according to: (a) median classi�er and (b) the best quan-

tile classi�er.



Chapter 5

Simulation Study

In this chapter the simulation study performed in order to evaluate the per-
formance of the classi�cation methods described in chapter 4 on the scored
data is presented. We considered the e�ect of di�erent factors on the clas-
si�ers results, speci�cally: the number of features (p), the sample size (N)
and the number of categories of the ordinal variables (C).
The performance of the classi�ers have been evaluated in terms of the mean
misclassi�cation rate from a 10-fold cross-validation.
The classi�cation methods used in the simulations are:

• Quantile-based classi�er;

• Linear discriminant analysis (LDA);

• Quadratic discriminant analysis (QDA);

• Support vector machine (SVM);

• Naive Bayes classi�er (NB).

The scoring methods applied to the ordinal data set are the ones presented
in chapter 2, together with the Beta response function approach:

• Raw scores (Raw);

• Ridit scores (Ridit);

• Blom scores (Blom);

• Normal median scores (NM);
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• Conditional mean scoring functions:

� Normal mean scores (NMS);

� Logistic Mean Scores (LMS);

� Log-Normal Mean Scores (LNMS).

• Beta response function approach (BRFA).

In the BRFA case the classi�er is applied on the vector of latent variable
scores, i.e. the expected values of the latent variable, given the response
patterns.
Dedicated algorithms have been developed for the scoring methods in the
statistical software R as no packages are currently available.
All the presented simulation results consider a two class decision problem.
The data sets have been generated from two continuous populations that will
be denoted as Π1 and Π2.
We can distinguish between four steps in the procedure adopted for the sim-
ulations:

1. Two data sets have been generated randomly sampling two balanced
blocks of observations from two location shifted p-variate continuous
distributions, corresponding to the classes;

2. The data sets have been merged and subsequently discretized in order
to obtain a single ordinal data set;

3. The scoring methods have been applied to the data sets at step 2;

4. Classi�cation has been performed after subdividing the data sets ran-
domly into into training and test sets (10-fold cross-validation).

The aim of these simulations is not to directly compare the classi�ers but,
instead, to evaluate the e�ect of the di�erent scoring method upon the clas-
si�cation results.
In the next two sections the scenarios, i.e. the distributional forms, con-
sidered for data generation and the procedure adopted for discretizing the
resulting continuous features are described in detail.
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5.1 Simulation study scenarios

We generated p vectors for the two populations randomly sampling from two
location shifted multivariate distributions in four main scenarios. In each
scenario the p vectors have been generated so that they are uncorrelated,
considering an identity covariance matrix.
It may seems as a limitation for our method to proceed generating indepen-
dent features as an advantage of the BRFA is to take into account possible
correlations between features, which instead is ignored by the other scor-
ing methods. However, we proceed in this way because when we categorize
continuous vectors (with the procedure that will be presented in the next
section), we introduce a certain degree of correlation between features. This
is known as categorization error (Johnson & Creech, 1983) an occurs when
several continuous variables are collapsed into ordinal categories. In these
case the measurement errors introduced may be correlated.
When the number of simulated features increases for a �xed sample dimen-
sion this e�ect is more evident.

In the �rst scenario we considered p variables Xi (i = 1, . . . , p) distributed
accordingly to a Student's t distribution with 3 degrees of freedom for Π1

and p Student's t-distributed variables shifted by 1 for Π2.
In the second and third scenarios we considered highly skewed distributions.
For Π1 the p vectors have been generated from a multivariate Gaussian and
then transformed using the exponential function (second scenario) and the
logarithm function of the absolute value (third scenario). Vectors for Π2 have
been generated from the same distributions shifted by 1.5.
In the fourth scenario, which will be denoted as �mixture� scenario, vec-
tors have been randomly sampled from a multivariate Gaussian for Π1 and
subsequently they have been split in �ve balanced blocks of di�erent trans-
formations. Again, for Π2 the vectors come from the same distributional
form shifted on the right. The transformations considered in the �mixture�
scenario are the exponential, the logarithm of the absolute value, the square
and the square root. For the �fth block no transformation occurs.
In each simulation setting the same number of instances has been generated
from the two populations.
Table 5.1 summarizes the considered scenarios. For simplicity only the distri-
butions in the univariate case are shown. We denote as X the distribution for
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the �rst population and Y the corresponding distribution for the second pop-
ulation. For the �mixture� scenario the subscripts (from 1 to 5) di�erentiate
the blocks.

Table 5.1: Simulation scenarios.

Scenario Population 1 Population 2

1 X ∼ t3 Y = X + 1

2 X = exp(W ), with W ∼ N(0, 1) Y = X + 1.5

3 X = log |W |, with W ∼ N(0, 1) Y = X + 1.5

Mixture

X1 ∼ N(0, 1)

X2 = exp(W ), with W ∼ N(0, 1)

X3 = log |W |, with W ∼ N(0, 1)

X4 = W 2, with W ∼ N(0, 1)

X5 =
√
W , with W ∼ N(0, 1)

Y1 = X1 + 1

Y2 = X2 + 1.5

Y3 = X3 + 1.5

Y4 = X4 + 1

Y5 = X5 + 1
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5.2 Ordinal variables generation

In this section we describe the procedure used in order to obtain an ordinal
data set after that the continuous vectors have been generated in the scenar-
ios introduced in the previous section.
The procedure is presented considering a single vector x, generated from the
mixture of the two populations with equal weights.
The extension to the multivariate case is given by applying the same proce-
dure to all the variables in the data set.
Discretization is done directly on the mixture vector from the two popula-
tions Π1 and Π2.
We denote as C the number of categories for the ordinal variable we want to
obtain and N the vector length (i.e. sample size).
The feature discretization procedure is the following:

1. The x vector is sorted;

2. The sorted vector is subdivided into C equi-spaced intervals from the
1th to the 99th percentile;

3. Category i is assigned to the observations falling in the ith interval, for
(i = 1, . . . , C);

4. Observations below the 1th percentile are assigned to category 1, sim-
ilarly, observations above the 99th percentile are assigned to category
C.

We considered the 1th and 99th percentile in step (2) instead of minimum and
maximum values in order to avoid possible outliers in de�ning the intervals.
Step (4) of the procedure is included in order to keep under control the vector
dimension when data are generated. In this way we consider larger intervals
for categories 1 and C, thus the proportions of observations falling in these
two categories are higher. Anyway, if N is kept relatively small, the number
of observation falling out of the range given by the 1th and 99th percentile is
small and the di�erences in the sample proportions are negligible.

In order to be able to apply the scoring methods, it is necessary that each
category appears at least once in the data set since all the procedures are
based on the sample proportions. To be sure that in step (2) there are
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not �empty� intervals once the C percentile-based intervals are de�ned, C
observations are removed randomly from the data and replaced with the
same number of observations. Each new observation is assigned to a di�erent
interval (i.e. category). In this way the sample dimension N is held �xed
and, at the same time, the sample proportions do not vary too much as C is
small.

5.3 Results of simulation study

We present now the results of the simulation study. The main interest is
to evaluate the impact of di�erently scored data on the performance of the
classi�ers, which have been compared in terms of the mean misclassi�cation
rates obtained from a 10-fold cross-validation. We considered the e�ect of
di�erent factors on the classi�cation results:

• Number of features in the data set, p = 10, 20, 40, 100;

• Sample size, N = 100, 200, 400;

• Number of categories of the ordinal variables, C = 3, 5.
Each simulated data set is composed by features having all the same
number of categories. We considered also features with di�erent num-
ber of categories inside the same data set. In this case the data set
has been equally subdivided into features with 3,5 and 7 categories (to
identify this case we denote it as C = 357).

Because the simulations results are many, for the sake of clarity we decide to
not show all of them.
This section is articulated as follows: in the �rst part the results for the
quantile-based classi�er are shown for all the scenarios, in the second part
results for the other classi�ers are shown just for scenario 1. All the other
results are included in the appendix.
We choose to proceed considering the quantile-based classi�er among the
classi�cation methods because, as mentioned in the previous chapter, it par-
tially motivates the choice of the Beta response function approach for treating
the ordinal data.
Moreover, since the performance of the classi�ers proved to not vary too
much with di�erent number of categories for the ordinal features we present
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only the case C = 5.
The plots that will be shown have all the same structure: each block rep-
resent a di�erent number of features in the data set. Inside each block the
mean misclassi�cation rate in the test sets from the 10-fold cross-validation
is reported for di�erent sample sizes (N = 100, 200, 400). Black symbols are
used for the mean misclassi�cation rates obtained by applying the classi�er
on the scoring methods from chapter 2 while the red dots are for the BRFA
results. We have excluded from the graphs the results for the normal median
scores and blom scores as they are generally very similar to the ones of the
other scoring methods. These results, together with the standard errors, will
be included in subsequent tables.
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5.3.1 Quantile-based classi�er simulation results

In this section the simulation results obtained by applying the quantile-based
classi�er on the scored data are presented. Each of the following plots rep-
resents a di�erent scenario from which data are simulated.

Figure 5.1: Quantile-based classi�er results for scenario 1. Each block cor-

responds to a di�erent number of features. The points inside each block are

the mean misclassi�cation rates from a 10-fold cross-validation for di�erent

number of instances. Ordinal variables have been generated so that they have

C = 5 categories.
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Figure 5.2: Quantile-based classi�er results for scenario 2. Each block cor-

responds to a di�erent number of features. The points inside each block are

the mean misclassi�cation rates from a 10-fold cross-validation for di�erent

number of instances. Ordinal variables have been generated so that they have

C = 5 categories.
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Figure 5.3: Quantile-based classi�er results for scenario 3. Each block cor-

responds to a di�erent number of features. The points inside each block are

the mean misclassi�cation rates from a 10-fold cross-validation for di�erent

number of instances. Ordinal variables have been generated so that they have

C = 5 categories.
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Figure 5.4: Quantile-based classi�er results for �mixture� scenario. Each

block corresponds to a di�erent number of features. The points inside each

block are the mean misclassi�cation rates from a 10-fold cross-validation for

di�erent number of instances. Ordinal variables have been generated so that

they have C = 5 categories.
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The graphical results shown above are summarized in the following table,
together with the standard errors (in brackets). In the table are presented
also the results for the normal median scores and blom scores.

Table 5.2: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for quantile-based classi�er in the four con-

sidered scenarios. Simulation results refer to the case of ordinal features with

�ve categories (C = 5).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.20 (0.02) 0.26 (0.03) 0.24 (0.02) 0.20 (0.03) 0.13 (0.01) 0.18 (0.03) 0.12 (0.03) 0.08 (0.01) 0.11 (0.01) 0.1 (0.03) 0.08 (0.01) 0.05 (0.01)

Ridit 0.20 (0.02) 0.25 (0.03) 0.23 (0.02) 0.20 (0.03) 0.16 (0.01) 0.18 (0.03) 0.10 (0.03) 0.09 (0.02) 0.11 (0.01) 0.07 (0.03) 0.08 (0.02) 0.05 (0.01)

NM 0.20 (0.02) 0.25 (0.02) 0.25 (0.02) 0.18 (0.03) 0.16 (0.01) 0.18 (0.03) 0.12 (0.03) 0.09 (0.01) 0.11 (0.01) 0.07 (0.03) 0.07 (0.01) 0.05 (0.01)

Blom 0.20 (0.02) 0.25 (0.02) 0.25 (0.02) 0.18 (0.03) 0.16 (0.01) 0.18 (0.03) 0.12 (0.03) 0.09 (0.01) 0.11 (0.01) 0.07 (0.03) 0.07 (0.01) 0.05 (0.01)

NMS 0.20 (0.02) 0.25 (0.03) 0.25 (0.02) 0.20 (0.03) 0.17 (0.01) 0.18 (0.03) 0.12 (0.03) 0.09 (0.02) 0.11 (0.01) 0.07 (0.03) 0.08 (0.01) 0.05 (0.01)

LMS 0.20 (0.02) 0.25 (0.03) 0.25 (0.02) 0.20 (0.02) 0.17 (0.01) 0.18 (0.03) 0.12 (0.03) 0.09 (0.02) 0.11 (0.01) 0.08 (0.03) 0.07 (0.01) 0.05 (0.01)

LNMS 0.20 (0.02) 0.26 (0.03) 0.21 (0.02) 0.22 (0.03) 0.16 (0.01) 0.16 (0.02) 0.10 (0.03) 0.09 (0.01) 0.11 (0.01) 0.08 (0.03) 0.06 (0.02) 0.06 (0.01)

BRFA 0.17 (0.03) 0.21 (0.03) 0.21 (0.02) 0.16 (0.02) 0.15 (0.02) 0.13 (0.01) 0.06 (0.02) 0.06 (0.02) 0.05 (0.01) 0.08 (0.03) 0.05 (0.01) 0.03 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.07 (0.01) 0.05 (0.01) 0.03 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

Ridit 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.01) 0.05 (0.01) 0.03 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

NM 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.01) 0.05 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

Blom 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.01) 0.05 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

NMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.01) 0.04 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

LMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.01) 0.04 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

LNMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.07 (0.01) 0.04 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)

BRFA 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.02 (0.01)

Ridit 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)

NM 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)

Blom 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)

NMS 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)

LMS 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)

LNMS 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.03) 0.05 (0.01) 0.03 (0.01)

BRFA 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.07 (0.01) 0.04 (0.01) 0.09 (0.02) 0.05 (0.02) 0.03 (0.01) 0.10 (0.02) 0.04 (0.01) 0.03 (0.01) 0.14 (0.03) 0.05 (0.01) 0.03 (0.01)

Ridit 0.08 (0.02) 0.06 (0.01) 0.05 (0.01) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.09 (0.02) 0.06 (0.02) 0.03 (0.01) 0.11 (0.03) 0.04 (0.01) 0.03 (0.01)

NM 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.02) 0.04 (0.01) 0.10 (0.02) 0.05 (0.02) 0.03 (0.01) 0.14 (0.03) 0.05 (0.02) 0.03 (0.01)

Blom 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.02) 0.04 (0.01) 0.10 (0.02) 0.05 (0.02) 0.03 (0.01) 0.14 (0.03) 0.05 (0.02) 0.03 (0.01)

NMS 0.06 (0.03) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.02) 0.03 (0.01) 0.10 (0.02) 0.05 (0.02) 0.03 (0.01) 0.14 (0.03) 0.05 (0.02) 0.03 (0.01)

LMS 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.10 (0.03) 0.05 (0.01) 0.03 (0.01) 0.10 (0.02) 0.05 (0.02) 0.03 (0.01) 0.14 (0.03) 0.05 (0.02) 0.03 (0.01)

LNMS 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.10 (0.02) 0.04 (0.01) 0.05 (0.01) 0.10 (0.02) 0.05 (0.01) 0.02 (0.01) 0.10 (0.03) 0.05 (0.01) 0.02 (0.01)

BRFA 0.11 (0.02) 0.09 (0.01) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
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The �rst thing that can be noticed from the graphs is that, in the major-
ity of cases, the misclassi�cation rates decrease as the sample size increases.
This is generally true for every considered classi�er. Hennig & Viroli (2016a)
have shown that a larger sample size leads to a more consistent choice of the
empirical optimal θ and, consequently, an improvement in the performance
of the quantile classi�er.
Since all the features are informative for the classi�cation task (see the Simu-
lation study scenarios section for this) it is not surprising that for scenario 1
the classi�er seems to perform better as p increase for all the scoring systems.
This is not true when data come from highly skewed distributions (as for sce-
narios 2 and 3) or when they come from the mixture scenario. In these cases
it seems that there is no gain in adding more features as the discriminant
power is already high with p = 10. Indeed, the mean misclassi�cation value
over all the scoring method, sample sizes and number of feature is 0.051 for
scenario 2, 0.044 for scenario 3 and 0.059 for the �mixture� scenario.
From the simulation results it emerges that the performance of the quantile
classi�er on the Beta factor scores are generally competitive compared to all
the other scoring methods.
For scenarios 1 and 2 the quantile applied to the BRFA data provides better
or very similar results respect to all others scores for almost all the combi-
nations of N and p.
When the mean misclassi�cation rate obtained with the BRFA is not the
smallest one we have that, as can be seen from Table 5.2, the standard er-
rors intervals of the BRFA overlap with those obtained from scoring methods
with lower misclassi�cation rates.
Classifying the observations on the base of BRFA appears to be a prefer-
able solution with respect to the approach that in chapter 1 has been called
�parametric�, i.e. applying the classi�er to the raw scores. On the contrary,
it does not seems that there are relevant di�erences between the error rates
associated with raw scores and the error rates obtained through ridits and
conditional mean scores. In comparing these approaches no clear patterns
emerge and none of them appear to be uniformly better than the others.
For the BRFA method there is almost always an increment in terms of per-
centage of correctly classi�ed instances, particularly in the �rst scenario,
where data come as a discretization of roughly normal underlying distribu-
tions. Unfortunately, this is not always true: in scenario 3 and `mixture�
scenario we observe situations, when p = 10 or p = 20, where it is preferable
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to apply the classi�er to datasets obtained by applying alternative scoring
methods.
However, it is important to notice that in high dimensional cases (p = 40 or
p = 100) throughout the scenarios there is a gain in applying the quantile
on the BRFA, especially when the sample size is N = 100 or N = 200. As
it is possible to see from the graphs in the appendix this often happens also
considering the other classi�cation methods.
A possible explanation is that, as mentioned in the �rst section (Simulation
study scenarios), when continuous vectors are discretized, even if the observa-
tions are sampled from uncorrelated variables, we introduce a certain degree
of correlation between features, which is more evident when the number of
features increases for a �xed sample dimension.
When data are scored with ridits or conditional mean scores the correlation
between features is not taken into account (as they are applied separately to
each feature in the dataset), so there is a loss of information. The situation is
di�erent for the BRFA, where the dependence structure of the data is taken
into account. Indeed, in the BRFA scores are obtained conditionally to the
complete p-dimensional response pattern.
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5.3.2 Other classi�ers simulation results

This section presents the simulation results obtained by applying the lin-
ear and quadratic discriminant analysis, the support vector machine and the
naive Bayes classi�er on the scored data generated in the �rst scenario. The
following plots show the mean misclassi�cation rate obtained for each combi-
nation of p and N . The plots structure is the same presented in the previous
section. Because LDA and QDA require the number of predictor variables
to be less than the sample size in the case p = 100 and N = 100 the results
for these two classi�ers are missing and not displayed in the graphs.

Figure 5.5: LDA classi�er results for scenario 1. Each block corresponds to

a di�erent number of features. The points inside each block are the mean

misclassi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.



5.3. RESULTS OF SIMULATION STUDY 83

Figure 5.6: QDA classi�er results for scenario 1. Each block corresponds to

a di�erent number of features. The points inside each block are the mean

misclassi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.
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Figure 5.7: SVM classi�er results for scenario 1. Each block corresponds to

a di�erent number of features. The points inside each block are the mean

misclassi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.
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Figure 5.8: Naive Bayes classi�er results for scenario 1. Each block corre-

sponds to a di�erent number of features. The points inside each block are

the mean misclassi�cation rates from a 10-fold cross-validation for di�erent

number of instances. Ordinal variables have been generated so that they have

C = 5 categories.

From Figure 5.5 to Figure 5.8 we notice that, as for the quantile-based clas-
si�er results, in the majority of cases the misclassi�cation rates decrease as
the sample size and/or the number of features increases in each box of the
plots.
A special case is that of log-normal mean scores results associated to each
classi�er. In the data sets obtained through this scoring system the perfor-
mance are considerably worse (particularly for the naive Bayes classi�er and
the support vector machine). Indeed, this type of scoring method is the only
one that involve a highly skewed theoretical underlying distribution. Figure
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2.3 in chapter 2 shows that log-normal mean scores have smaller distances be-
tween lower order categories and bigger distances for higher order categories.
In the �rst scenario, where the data come from an underlying symmetric
distribution, this introduces a disturbing element in the allocation method
for the classes.
Contrary to what was expected, in scenario 2 (see related graphs in the ap-
pendix) the results associated with LNMS are rather poor, in particular when
the number of features is low (i.e. p = 10) and so the classi�er's discriminant
power is lower. Conversely, there is a remarkable improvement in the results
for LNMS in scenario 3, where the misclassi�cation rate is comparable (and
in some cases smaller) to the one obtained with the other scoring methods.
These results are explained by the fact that, broadly speaking, using the
conditional mean score methods we are going to modify the distance be-
tween categories on the basis of a theoretical latent distribution. Features
in scenario 2 are generated from a positively skewed log-normal distribution.
Therefore, when we discretize the features we will have a greater number
of observations in the lower order categories. As the features are generated
from two location shifted distributions with the same functional form, in sce-
nario 2 it is likely that lower order categories bring more information about
the classes, viceversa in scenario 3 (as the underlying continuous distribu-
tions are negatively skewed) higher order categories are likely to be more
discriminative. Considering this, it can be explained why better results are
obtained in scenario 3, where LNMS assigns greater distance to higher order
categories and, therefore, there is an improvement in the performance of the
classi�cation methods.

With the exception of the log-normal mean scores case, it can be noticed
that LDA and QDA have worse performance than other classi�ers in the
�rst scenario. This is also true for the other scenarios considered (see the
relative graphs in the appendix). As mentioned in chapter 4, these classi�ers
assume linearly separable classes while the data has been simulated so that
the classes are overlapped (see simulation study scenarios section).
For what concerns the support vector machines and the naive Bayes classi�er
results are very good in almost all the considered scenarios and better than
those obtained with the linear and quadratic discriminant analysis (particu-
larly for p = 40 and p = 100). Since the naive Bayes classi�er is structurally
very similar to the LDA, in that both classi�ers assume Gaussian within-class
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distributions, such a di�erence in performance might be surprising.
However, naive Bayes classi�er relies on a slightly di�erent distributional
model in that it assumes zero o�-diagonal covariance (i.e. it assumes that
variables within a class are not correlated). Since data in scenarios are gen-
erated from independent continuous variables this assumption is totally jus-
ti�ed. Thus, for the classi�cation task, ignoring the information given by the
empirical correlations between features could improve the results.

Unfortunately, it seems that there is no improvement in terms of misclassi�-
cation rate in using the SVM or naive Bayes classi�er on data scored through
the BRFA with respect to all the other scoring methods. For the naive Bayes
classi�er in p = 10 or p = 20 cases the results get worse for BRFA. However,
as for the quantile-based classi�er, in the high dimensional settings there are
not signi�cant di�erences between the scoring methods.

The situation is completely di�erent for linear and quadratic discriminant
analysis. Although these classi�cation methods are not particularly suitable
for this type of data, the gain in terms of correctly classi�ed cases, if the clas-
si�ers are applied on Beta latent variable scores (with particular reference to
the cases p = 40 and p = 100), is really considerable. Also, the classi�cation
results for BRFA become comparable to those obtained with naive Bayes
classi�er, support vector machine and quantile-based classi�er.

5.4 Beta response function approach: further

advantages

In high dimensional cases all the considered classi�ers applied to the obser-
vations scored with the BRFA provide better results, or at least comparable,
with those obtained for the other scoring methods.
The results obtained with BRFA, although not always the best ones, are sur-
prisingly good considering that the approach is based on a one-dimensional
latent variable. Each p-dimensional response pattern is reduced to a single
value and this could cause a certain loss of information from the data.
Despite it is precisely the scope of the latent variable model to summarize
the information carried from a wider set of observable variables, considering
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a single latent factor may be restrictive in some situations. However, from
the simulations emerged that, even operating on a one-dimensional space
we could have substantial improvements in the classi�cation results. This
may also be explained by the fact that with the BRFA we summarise the
dependence structure between the ordinal variables. When the features are
dependent, the advantage brought by operating with a method that takes
into account the dependence structure overcomes the possible loss of infor-
mation. In the simulated dataset there are two sources of dependence. One
source is originated from the class structure, i.e. from how data are simulated
we can assume that speci�c response patterns are likely to be associated with
one class and viceversa. The other source of dependence is due to the fact
that we collapse the continuous mixture vector from the two populations into
ordinal categories. In doing this, correlation among features is introduced.
It will be the subject of future studies to evaluate the e�ect of more than one
latent variable in the BRFA on the classi�cation results.

A further advantage that emerged in the use of BRFA for high dimensional
cases is that, unlike the other scoring methods, the misclassi�cation rates
obtained with each classi�er are not signi�cantly di�erent, regardless to the
scenario from which data are generated.
For LDA, QDA and naive Bayes classi�er we notice that when they are ap-
plied on the single continuous variable obtained through the BRFA the per-
formance are likely to be very similar as they just di�er on the assumptions
made for the class-conditional variance of the single feature σk, for k = 1, 2 .
This appears evident by observing �gures from 5.9 to 5.12 reported below. In
the plots the mean misclassi�cation rates obtained through the di�erent clas-
si�ers for each scoring method (abscissa axis) are shown. The case p = 100

and N = 200 is considered. Lines are di�erently dashed and have di�erent
colours to distinguish among classi�cation methods. Each plot shows the
results for a di�erent scenario.
Di�erences in misclassi�cation rates are not particularly evident for SVM
and naive Bayes classi�er, where the results are quite similar between the
scoring methods (with the exception of LNMS), while for the quantile-based
the performance are better on BRFA.
Instead, considering the linear and quadratic discriminant analysis there is a
clear advantage with BRFA. In these cases we get results comparable to those
of the other classi�ers with an evident gain in terms of misclassi�cation rate,
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in particular for the QDA, which is unsuitable for ordinal categorical data
(with a percentage of misclassi�ed observations smaller than about 30−40%).

Figure 5.9: Comparison of classi�ers on the scoring methods for p = 100 and

N = 200. Ordinal variables have been generated from scenario 1 so that they

have C = 5 categories.
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Figure 5.10: Comparison of classi�ers on the scoring methods for p = 100

and N = 200. Ordinal variables have been generated from scenario 2 so that

they have C = 5 categories.
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Figure 5.11: Comparison of classi�ers on the scoring methods for p = 100

and N = 200. Ordinal variables have been generated from scenario 3 so that

they have C = 5 categories.
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Figure 5.12: Comparison of classi�ers on the scoring methods for p = 100

and N = 200. Ordinal variables have been generated from �mixture� scenario

so that they have C = 5 categories.



Chapter 6

A comparison on a real dataset

In this chapter we compare the classi�cation methods considered in chapter
4 on a real dataset, scored through the scoring methods presented in chapter
2 and the Beta response function approach.
The data have been obtained from the KEEL (Knowledge Extraction based
on Evolutionary Learning) data set repository (Alcalá-Fdez et al., 2011).
The same dataset is also available from the UCI machine learning repository
(Lichman, 2013).
The dataset has been used in the second edition of the Computational in-
telligence and Learning (CoIL) competition challenge in the year 2000, orga-
nized by CoIL cluster. The CoIL cluster is a cooperation between EU funded
Networks of excellence with the aim to promote and develop joint cluster in-
ternationalisation strategies in di�erent business sectors.
The dataset has been donated by Peter van der Putten of the Dutch data min-
ing company Sentient Machine Research (Van Der Putten & van Someren,
2000) and contains information on customers of an insurance company.
The competition resulted in a wide variety of solutions in terms of approaches
and performance and consisted in two main tasks:

1. Predict which customers are potentially interested in a caravan insur-
ance policy (prediction task).

2. Describe the actual or potential customers and possibly explain why
these customers buy a caravan policy (description task).

In the application of the classi�cation methods we only focus on the predic-
tion task, but we just report the overall misclassi�cation rate as done in the
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simulation study.
The dataset proposed in this competition has properties that often appear
in real world problems. Features are highly skewed, noisy and correlated.
Moreover, there is weak relation between input and target features (Van
Der Putten & Van Someren, 2004).

6.1 CoIL dataset description

The dataset consists of 86 features that can be divided in socio-demographic
(features 1-43), product ownership (features 44-86) and one binary target
feature named �CARAVAN�, which takes values 1 or 0 respectively if the
customer is interested or not in the insurance product. Data have been
collected from 9822 customers. From the whole set of 9822 customers only
586 resulted to be interested in the insurance product.
In Table 6.1 all the features composing the original data set, along with their
description and range of possible values, are reported.
Socio-demographic data are derived from zip area codes so they are linked
to the postal code of the customer rather than to the individual customer.
All customers living in areas with the same zip code have the same socio-
demographic attributes. Because these features are linked to a single hidden
variable, i.e. geography, they may be highly correlated.
Since data that refer to socio-demographic have been collected from various
and possibly con�icting sources, the measurement noise in the dataset is also
high.
For what concerns the product ownership data, the majority of these features
are highly skewed with over the 90% of instances falling in the �rst category.
In addition, the average information gain of all features and also of the �ve
most predictive features is very low if compared to some selected datasets
from the well know UCI dataset repository (Van Der Putten & Van Someren,
2004).
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Table 6.1: CoIL challenge 2000 data dictionary.

ID Name Description Domain ID Name Description Domain

1 MOSTYPE Customer Subtype [1, 41] 47 PPERSAUT
Contribution car

policies
[0, 9]

2 MAANTHUI Number of houses [1, 10] 48 PBESAUT Contribution delivery van policies [0, 7]

3 MGEMOMV Average size household [1, 6] 49 PMOTSCO
Contribution motorcycle/scooter

policies
[0, 7]

4 MGEMLEEF Average age [1, 6] 50 PVRAAUT Contribution lorry policies [0, 9]

5 MOSHOOFD Customer main type [1, 10] 51 PAANHANG Contribution trailer policies [0, 5]

6 MGODRK Roman catholic [0, 9] 52 PTRACTOR Contribution tractor policies [0, 7]

7 MGODPR Protestant [0, 9] 53 PWERKT
Contribution agricultural machines

policies
[0, 6]

8 MGODOV Other religion [0, 5] 54 PBROM Contribution moped policies [0, 6]

9 MGODGE No religion [0, 9] 55 PLEVEN Contribution life insurances [0, 9]

10 MRELGE Married [0, 9] 56 PPERSONG
Contribution private accident insurance

policies
[0, 6]

11 MRELSA Living together [0, 7] 57 PGEZONG
Contribution family accidents insurance

policies
[0, 3]

12 MRELOV Other relation [0, 9] 58 PWAOREG
Contribution disability insurance

policies
[0, 7]

13 MFALLEEN Singles [0, 9] 59 PBRAND Contribution �re policies [0, 8]

14 MFGEKIND Household without children [0, 9] 60 PZEILPL Contribution surfboard policies [0, 3]

15 MFWEKIND Household with children [0, 9] 61 PPLEZIER Contribution boat policies [0, 6]

16 MOPLHOOG High level education [0, 9] 62 PFIETS Contribution bicycle policies [0, 1]

17 MOPLMIDD Medium level education [0, 9] 63 PINBOED
Contribution property insurance

policies
[0, 6]

18 MOPLLAAG Lower level education [0, 9] 64 PBYSTAND
Contribution social

security insurance policies
[0, 5]

19 MBERHOOG High status [0, 9] 65 AWAPART Number of private third party insurance [0, 2]

20 MBERZELF Entrepreneur [0, 5] 66 AWABEDR Number of third party insurance (�rms) [0, 5]

21 MBERBOER Farmer [0, 9] 67 AWALAND
Number of third party insurane

(agriculture)
[0, 1]

22 MBERMIDD Middle management [0, 9] 68 APERSAUT Number of car policies [0, 12]

23 MBERARBG Skilled labourers [0, 9] 69 ABESAUT Number of delivery van policies [0, 5]

24 MBERARBO Unskilled labourers [0, 9] 70 AMOTSCO
Number of motorcycle/scooter

policies
[0, 8]

25 MSKA Social class A [0, 9] 71 AVRAAUT Number of lorry policies [0, 4]

26 MSKB1 Social class B1 [0, 9] 72 AAANHANG Number of trailer policies [0, 3]

27 MSKB2 Social class B2 [0, 9] 73 ATRACTOR Number of tractor policies [0, 6]

28 MSKC Social class C [0, 9] 74 AWERKT
Number of agricultural machines

policies
[0, 6]

29 MSKD Social class D [0, 9] 75 ABROM Number of moped policies [0, 3]

30 MHHUUR Rented house [0, 9] 76 ALEVEN Number of life insurances [0, 8]

31 MHKOOP Home owners [0, 9] 77 APERSONG
Number of private accident insurance

policies
[0, 1]

32 MAUT1 1 car [0, 9] 78 AGEZONG
Number of family accidents insurance

policies
[0, 1]

33 MAUT2 2 cars [0, 9] 79 AWAOREG
Number of disability insurance

policies
[0, 2]

34 MAUT0 No car [0, 9] 80 ABRAND Number of �re policies [0, 7]

35 MZFONDS National Health Service [0, 9] 81 AZEILPL Number of surfboard policies [0, 1]

36 MZPART Private health insurance [0, 9] 82 APLEZIER Number of boat policies [0, 2]

37 MINKM30 Income <30000 [0, 9] 83 AFIETS Number of bicycle policies [0, 4]

38 MINK3045 Income 30-45.000 [0, 9] 84 AINBOED
Number of property insurance

policies
[0, 2]

39 MINK4575 Income 45-75.000 [0, 9] 85 ABYSTAND
Number of social security insurance

policies
[0, 2]

40 MINK7512 Income 75-122.000 [0, 9] 86 CARAVAN Number of mobile home policies [0, 1]

41 MINK123M Income >123.000 [0, 9]

42 MINKGEM Average income [0, 9]

43 MKOOPKLA Purchasing power class [1, 8]

44 PWAPART
Contribution private

third party insurance
[0, 3]

45 PWABEDR
Contribution third party insurance

(�rms)
[0, 6]

46 PWALAND
Contribution third party insurane

(agriculture)
[0, 4]
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6.2 CoIL dataset results

Before applying the classi�cation methods we have removed from the dataset
all the features that are not measured on an ordinal scale (as the MOSTYPE
and MOSHOOFD features) and all the binary features. Classi�cation results
refer to the set of the remaining 79 features. As one may notice from Ta-
ble 6.1, some features are ordinal while other are just integers (as the number
of houses, MAANTHUI). The latter have been considered as ordinal features
in the computations of scores. In doing this we lose some information as new
distances between categories, based on an underlying distribution, are intro-
duced. Indeed, for these features the raw scores are the most appropriate as
categories are equi-spaced.
Table 6.2 shows the mean misclassi�cation rates to the whole set of 9822
observations from a 10-fold cross-validation, obtained from each classi�er.
The columns in the table refer to the classi�cation method considered while
the scoring method is reported by row. The standard errors are displayed in
brackets.
The performance of linear discriminant analysis and support vector machine
appear to be uniformly better with respect to quantile and naive Bayes clas-
si�er.
For linear discriminant analysis and support vector machine the classi�ca-
tion results are almost identical over the di�erent scoring methods. Instead,
we notice that applying the quantile or the naive Bayes on the data scored
through the BRFA the misclassi�cation rate is reduced by about the half. In
this latter case the classi�cation results are the same for all the classi�ers.
Thus, accordingly to what seen in the simulation study, in this example
of highly dimensional and correlated data with the Beta response function
approach the best classi�cation result is reached independently from the clas-
si�cation method considered.
A particular case is given by the quadratic discriminant analysis. Indeed,
applying the QDA on the whole set of features results into a computation
error because, as mentioned, these features are highly correlated. Hence, at
least one of the covariance matrices can not be inverted and it is not possible
to directly apply the method. Usually, in these cases a features selection
procedure is needed before proceeding with quadratic analysis. Instead, by
scoring the dataset with the Beta response function approach it is possible
to perform the classi�cation anyway as we reduce to operate on a single con-
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tinuous variable. Moreover, the misclassi�cation result obtained in this way
is the same obtained with the other classi�cation methods.

We do not present the comparison with the results obtained in the CoIL
2000 challenge. Indeed, in the competition only a sample of 5822 training
units with known class labels has been provided to participants while our
method has been tested considering a 10-fold cross validation on the whole
set of 9822 observations. In addition, the task was only focused in predict
which customers where interested in the caravan insurance policy and not in
discriminating between who was interested or not. The results are therefore
not directly comparable.

Table 6.2: CoIL challenge 2000 dataset classi�cation results.

Quantile LDA QDA SVM NB

Raw scores 0.1038 (0.0161) 0.0595 (0.0066) - 0.0596 (0.0065) 0.1260 (0.0147)
Ridit scores 0.1009 (0.0125) 0.0594 (0.0067) - 0.0596 (0.0065) 0.2873 (0.0273)
Normal median scores 0.1024 (0.0149) 0.0596 (0.0065) - 0.0596 (0.0065) 0.1158 (0.0129)
Blom scores 0.1024 (0.0149) 0.0596 (0.0065) - 0.0596 (0.0065) 0.1158 (0.0130)
NMS 0.1024 (0.0149) 0.0596 (0.0065) - 0.0596 (0.0065) 0.1140 (0.0129)
LMS 0.1024 (0.0149) 0.0596 (0.0065) - 0.0596 (0.0065) 0.1014 (0.0116)
LNMS 0.1028 (0.0148) 0.0596 (0.0065) - 0.0596 (0.0065) 0.1291 (0.0152)
BRFA 0.0596 (0.0065) 0.0596 (0.0065) 0.0596 (0.0065) 0.0596 (0.0065) 0.0596 (0.0065)



Chapter 7

Conclusions and future research

7.1 Main �ndings of the study

The contribution of the present study is to propose a novel method for
analysing and classifying data measured on an ordinal scale. Indeed, al-
though a large amount of methods exists for dealing with situations where
the response variables are measured on an ordinal scale, limited work has
been done in the �eld of ordinal input features classi�cation, despite these
kind of data arise frequently in many di�erent domains of research.
Ordinal data present unique challenges as they di�er both from nominal and
interval scaled data. They di�er from the former in that they present order
information and they di�er from the latter as, if we follow the de�nition of
ordinal scale introduced by Stevens et al. (1946), the concept of distance
between categories is not present. For this reason we have dealt with the
problem starting from the early stage of de�ning an appropriate metric dis-
tance between the ordinal categories.
We have de�ned a new methodology following several research steps.
First of all, we have done an exhaustive analysis of the state of art of the
statistical literature on this topic with the aim of disentangling the most used
approaches to ordinal data.
Three main ways to deal with ordered categorical variables emerged from this
research: the parametric approach, which consists in replacing the categories
with arbitrary numerical values and proceeding in the analysis by using the
classical parametric inference methods; the nonparametric approach, which
considers methods that only use ordering information about the categories,
without making assumptions on the distribution of the ordinal variables and
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the underlying variable approach, which assigns numerical scores in such a
way to meet as closely as possible some distributional assumption. In the
last approach the scores should re�ect the researcher's knowledge of an ap-
propriate mathematical distance between the categories.
Considering the limitations and possible advantages of each of these three ap-
proaches, we have chosen to proceed with the underlying variable approach,
which seemed the most adapt to our scope. In this framework the main
interest, broadly speaking, is to evaluate whether it is possible to obtain ac-
ceptable classi�cation results by assigning scores in a meaningful way.
From the literature review it emerged that several methods for assigning nu-
meric values to categories, commonly known as scoring methods, have been
developed over the years. We performed our simulations considering, among
the others: the raw scores, the ridits, the blom scores, the normal median
scores and the conditional mean scores (speci�cally, normal mean scores, lo-
gistic mean scores and log-normal mean scores).
The e�ectiveness of these methods, as far as we know, has never been tested
for classi�cation purposes.
The scoring systems present speci�c advantages as they have fast computa-
tional times and they provide a simple interpretation of the data. However,
they also present some limitations as they do not allow to treat all the vari-
ables simultaneously, leading to a possible loss of information and, as seen
in the case of log-normal mean scores, if the underlying distribution is mis-
speci�ed this is likely to result in large classi�cation errors.
In order to overcome the problems related to the scoring methods we have
proposed, as possible solution, to operate inside the GLLVM framework, us-
ing the response function approach with a logit link function. This allows to
treat the distribution of the whole ordinal response pattern, conditionally to
a set of latent variables, without necessarily specifying a distributional form
of the latent variables for each manifest variable.
Our method, like a generic scoring system, has the aim to shift from ordinal
scaled to interval scaled input features in order to directly apply the standard
classi�cation methods.
In de�ning the most appropriate functional form for the latent variables we
faced to the problem that the assumption of normally distributed latent vari-
ables is not always appropriate for classi�cation tasks where data come from
an unobserved heterogeneous populations.
Therefore, we have considered the work of Cagnone & Viroli (2014), where
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a �nite mixture of multivariate Gaussians distributions is suggested for the
latent variables in order to deal with data heterogeneity.
Although this approach undoubtedly presents advantages, as it allows for a
�exible distributional form, it also has some limitations due to the fact that
we loss in terms of computational e�ciency as the number of components of
the mixture increases.
The solution we propose is to still operate in the framework of response func-
tion approach, which seems to be a better alternative to the classical scoring
methods, but choosing a di�erent underlying distribution.
It seemed to us that the Beta latent distribution may be an appealing alter-
native for our scope, as it allows for a trade-o� between �exibility and faster
computational times. This distribution has never been applied in the latent
variable models and, in particular, with the purpose of supervised classi�ca-
tion of ordinal variables.
From this theoretical framework we have developed a dedicated algorithm
with the aim of modelling the ordinal data and infer from the response pat-
terns the associated values on a continuous scale. We have implemented an
EM algorithm for parameters estimate. The integrals, which were not pos-
sible to solve analytically, have been approximated through Gauss-Legendre
quadrature points.
Finally, we have compared the Beta response function approach with the scor-
ing methods by performing a sensitivity analysis and by checking whether
conclusions depend on the chosen set of scores.
We have compared the performance of �ve di�erent classi�ers (quantile-
based, linear discriminant analysis, quadratic discriminant analysis, support
vector machine and naive Bayes classi�er) in terms of the mean misclassi�-
cation rates from a 10-fold cross-validation.
In the simulation study, the data sets upon which the scoring methods have
been applied have been generated according to four di�erent scenarios in or-
der to cover a set of possible situations. The scenarios include the cases of
data sampled from symmetrical or highly skewed distributions. Moreover,
the e�ect of speci�c factors such as the number of features, the sample size
and the number of categories for the ordinal variables has been considered.
From the wide simulation study and from the real data example we pre-
sented, it emerges that the Beta response function approach can be a useful
tool when we deal with ordinal variables and it allows to apply the standard
classi�cation methods directly. The properties of these classi�ers on contin-
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uous data are known and they have been widely analysed.
Unfortunately, our proposal is not always the optimal one and sometimes
alternative scoring methods should be preferred. However, in speci�c cases
it may lead to a considerable gain in terms of correctly classi�ed instances.
It is therefore an opportune alternative to consider the BRFA in a validation
set before proceeding with the classi�cation.
We notice that the classi�cation results obtained with BRFA are particularly
good considering that they are based on a single latent variable. As men-
tioned, a possible explanation is that the dependence structure of the data
is taken into account because the scores are obtained conditionally to the
p-dimensional response pattern. In the CoiL challenge dataset, where the
features are highly correlated, the Beta response function approach resulted
in the best classi�cation performance, independently from the chosen classi-
�er. As shown in the following section, it is our scope to extend the method
also to the case of more than one latent variable.
From the graphs in the appendix it is possible to notice that the classi�cation
results associated with the scoring methods present similar patterns among
datasets where di�erent number of categories have been considered.
Di�erences in the results associated with raw scores, ridits score, blom scores,
and conditional mean scores are generally not signi�cant. There is no method
that is uniformly superior to the others. The di�erences between category
scores attributed with these scoring systems do not appear to be large enough
to result in signi�cant variation in the misclassi�cation rates. A separate case
is given by the log-normal mean scores, which, as mentioned in chapter 5,
are particularly unsuitable in almost all the considered scenarios with the
exception of scenario 3, where data are generated from a negatively skewed
continuous underlying distributions. For scenario 3, the misclassi�cation
rates obtained through LNMS greatly improve and, in some cases, outper-
forms the BRFA results.

In particular, from the simulations emerge that, whenever the dataset is
generated from populations whose distributional form is symmetrical (specif-
ically in this simulation study the Student's t distribution) for quantile-based,
LDA and QDA the results associated with the BRFA are almost always sig-
ni�cantly better than those of all other scoring methods.
The case where the contribution of our method is more evident is that of
quadratic discriminant analysis. Indeed, this classi�er is particularly unsuit-
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able for this type of data and the results obtained by directly applying it to
raw scores (as well as the other scoring methods introduced in chapter 2) are
considerably worse with respect to all other classi�ers.
Instead, applying the classi�er to data scored through the BRFA, as it op-
erates on a single continuous variable, the results signi�cantly improve and
they become comparable to those obtained through the other classi�cation
methods.
When the observed variables are collinear, as in the real data example pre-
sented in the previous chapter, it is known that quadratic discriminant anal-
ysis can not be directly applied since it is not possible to obtain parameter
estimates with non-invertible covariance matrices. For this reason, sometimes
a feature selection procedure is required in order to apply the classi�er. In
certain circumstances, our method can be seen as an alternative to feature
selection. It may also lead to a signi�cant improvement in the classi�cation
results.
A secondary but nonetheless important aspect of BRFA is that, because it
operates in the framework of factorial analysis, it also allows to perform a
graphical analysis of the available data, which are synthesized into a single
continuous variable. This is often a useful tool since, as they say, �an image
is worth more than a thousand words�.
The Beta response function approach resulted to not be the optimal method
for assigning scores in the simulation study when SVM or naive Bayes clas-
si�er are considered (especially in scenario 2 and 3 where data are highly
skewed and well separated). These classi�ers generally provide for the best
results in any simulated dataset. Anyhow, when the number of features is
high (i.e. p = 40, 100), the misclassi�cation rates obtained through any scor-
ing method are close to 0 and do not signi�cantly di�er from each other.
The fact that the BRFA does not work properly with SVM and naive Bayes
in the simulations should not prevent the use of our method with these clas-
si�ers. As a matter of fact, in the large macrocosm of classi�cation methods,
there is not a classi�er that is uniformly superior to the others in every cir-
cumstance. Indeed, in the CoIL dataset the naive Bayes classi�er do not
provide for the best performance but the misclassi�cation rate reduces to
about the half if it is applied on BRFA data.
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7.2 Ongoing work

As shown in chapter 3, our proposal leads to shorter computational times
than those observed considering a �nite mixture of Gaussians distributions
(see Table 3.3). However, the computational times are still quite high for an
easy practical application.
The following table shows the computational times (in minutes) obtained
by applying the Beta response function approach to features simulated by
discretizing from a multivariate Gaussian distribution. Computational times
are recorded for di�erent combinations of sample size (N) and number of
features (p).
The times displayed in the table are the averages over 10 running of the
algorithm with di�erent initial seeds.

Table 7.1: Computational times (in minutes) required for computing scores

with BRFA.

p = 10 p = 20 p = 40 p = 100

N = 100 00:52 01:36 03:58 09:39
N = 200 01:58 03:52 08:36 20:13
N = 400 03:47 08:19 14:53 40:16

As it is possible to notice from Table 7.1, the computational times are very
high, especially for an increasing number of features.
We are currently trying to speed up the algorithm. The possible solutions
we have considered so far are two:

1. Consider alternative numerical optimization algorithms respect to those
selected for parameters estimation in the EM algorithm (see chapter
3). Indeed, these algorithms are the main cause of the code slowdown.

2. Consider an intermediate step of the R code in C, which is a general-
purpose computer programming language.

Once the code will has been speeded up, the next step will be to consider a
larger number of latent variables in the model.
A further application of BRFA can also be found in clustering, where the
concept of distance between observations is often used to de�ne groups of
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similar instances. We expect possible good results in applying our method
also in the �eld of cluster analysis. This can be a further guideline for future
researches.
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Appendix A

Other simulation results

The appendix is organized as follows: each section presents the simulation re-
sults, respectively for: quantile-based, linear discriminant analysis, quadratic
discriminant analysis, support vector machine and naive Bayes classi�er. For
each classi�er, plots for the mean misclassi�cation rates (for every combina-
tion of p and N) in the four considered scenarios are reported, along with a
summary table that shows the misclassi�cation rates and the related stan-
dard errors.
The sections are further subdivided on the base of the number of categories
considered for the features in the data set (i.e. C = 3, 5, 357).
With C = 357 we identify the cases where features with di�erent number of
categories (i.e. 3, 5 and 7 categories) are considered inside the same data
set. In these cases we consider p = 15, 30, 60 so that features with the same
number of categories in the data set can be equally subdivided.
The plots have the same structure of the ones presented in chapter 5, i.e. each
block represent a di�erent number of features. Inside each block the mean
misclassi�cation rates from the 10-fold cross-validation are reported. Black
symbols are used for the mean misclassi�cation rates obtained by applying
the classi�er on the scoring methods from chapter 2 while the red dots are
for the BRFA results.
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A.1 Quantile-based classi�er

Similarly to what observed in chapter 5, in the case C = 3 (�gures A.1 to
A.4) it is possible to notice that in scenario 1 there is a clear advantage in
applying the quantile-based classi�er on BRFA data. In scenarios 2, 3 and
�mixture� we have that, when the data set dimension is relatively small (i.e.
p = 10, 20), the BRFA does not seem to be the optimal approach as the
results are worse with respect to any other scoring method. Instead, in high
dimensional settings we have that no signi�cant di�erences in the classi�er
performance among the scoring methods are observed in the majority of sit-
uations. The exceptions are the cases where the number of features is high
(p = 40, 100) and the number of instances is small (N = 100). In partic-
ular in scenario 3 (for p = 100 and N = 100) and �mixture� scenario (for
p = 40, 100 and N = 100) the BRFA data set provides better results.
Figures A.5 to A.8 report classi�cation results for simulated datasets com-
posed by features with di�erent number of categories. In the �rst scenario we
observe that, as for simulations where the features have all the same number
of categories, the quantile-based classi�er performs at its best on data scored
through BRFA. In all other scenarios the BRFA does not provide the best
classi�cation result for every combination of N and p. However, when p is
high the misclassi�cation rate is comparable to the ones obtained through
ridits and conditional mean scores.
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A.1.1 Simulation results for C = 3

Figure A.1: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.2: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.3: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.4: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 3

categories.
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Table A.1: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for quantile-based classi�er in the four con-

sidered scenarios. Simulation results refer to the case of ordinal features with

three categories (C = 3).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.32 (0.03) 0.31 (0.02) 0.30 (0.02) 0.27 (0.03) 0.25 (0.03) 0.21 (0.02) 0.20 (0.03) 0.19 (0.01) 0.22 (0.02) 0.12 (0.02) 0.16 (0.02) 0.16 (0.02)
Ridit 0.34 (0.02) 0.34 (0.01) 0.29 (0.02) 0.26 (0.03) 0.26 (0.03) 0.21 (0.02) 0.19 (0.03) 0.19 (0.02) 0.23 (0.02) 0.12 (0.02) 0.17 (0.02) 0.15 (0.02)
NM 0.34 (0.03) 0.31 (0.02) 0.30 (0.02) 0.26 (0.03) 0.25 (0.03) 0.21 (0.02) 0.22 (0.03) 0.19 (0.01) 0.22 (0.02) 0.12 (0.03) 0.18 (0.02) 0.17 (0.01)
Blom 0.34 (0.03) 0.31 (0.02) 0.30 (0.02) 0.26 (0.03) 0.25 (0.03) 0.21 (0.02) 0.22 (0.03) 0.19 (0.01) 0.22 (0.02) 0.12 (0.03) 0.18 (0.02) 0.17 (0.01)
NMS 0.34 (0.02) 0.31 (0.02) 0.31 (0.02) 0.26 (0.03) 0.25 (0.03) 0.21 (0.02) 0.20 (0.03) 0.2 (0.01) 0.22 (0.01) 0.12 (0.03) 0.15 (0.02) 0.16 (0.02)
LMS 0.34 (0.03) 0.31 (0.02) 0.3 (0.02) 0.26 (0.03) 0.25 (0.03) 0.21 (0.02) 0.22 (0.03) 0.19 (0.01) 0.22 (0.02) 0.12 (0.03) 0.18 (0.02) 0.17 (0.01)
LNMS 0.34 (0.02) 0.34 (0.02) 0.29 (0.02) 0.24 (0.02) 0.28 (0.03) 0.22 (0.02) 0.20 (0.03) 0.21 (0.02) 0.22 (0.02) 0.14 (0.03) 0.21 (0.01) 0.16 (0.02)
BRFA 0.21 (0.03) 0.21 (0.02) 0.21 (0.01) 0.20 (0.03) 0.18 (0.01) 0.12 (0.01) 0.05 (0.02) 0.10 (0.02) 0.07 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.04 (0.02) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01)
Ridit 0.04 (0.02) 0.03 (0.01) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
NM 0.04 (0.02) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
Blom 0.04 (0.02) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
NMS 0.04 (0.02) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
LMS 0.04 (0.02) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
LNMS 0.04 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01)
BRFA 0.08 (0.02) 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
LNMS 0.05 (0.02) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
BRFA 0.08 (0.01) 0.05 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Ridit 0.07 (0.02) 0.06 (0.01) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.06 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Blom 0.08 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NMS 0.08 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
LMS 0.08 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
LNMS 0.06 (0.02) 0.08 (0.02) 0.08 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.01 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.1 (0.02) 0.08 (0.02) 0.08 (0.01) 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
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A.1.2 Simulation results for C = 357

Figure A.5: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.6: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.7: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.8: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have di�erent

number of categories C = 357.
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Table A.2: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for quantile-based classi�er in the four con-

sidered scenarios. Simulation results refer to the case of ordinal features with

di�erent number of categories (C = 357).

Scenario 1

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.28 (0.03) 0.19 (0.02) 0.19 (0.02) 0.16 (0.03) 0.14 (0.03) 0.15 (0.02) 0.10 (0.03) 0.09 (0.02) 0.09 (0.01)
Ridit 0.24 (0.04) 0.23 (0.03) 0.21 (0.02) 0.18 (0.03) 0.15 (0.02) 0.15 (0.02) 0.12 (0.02) 0.09 (0.02) 0.09 (0.01)
NM 0.21 (0.03) 0.23 (0.03) 0.20 (0.02) 0.17 (0.03) 0.16 (0.03) 0.12 (0.02) 0.12 (0.02) 0.09 (0.01) 0.09 (0.01)
Blom 0.21 (0.03) 0.23 (0.03) 0.20 (0.02) 0.17 (0.03) 0.16 (0.03) 0.12 (0.02) 0.12 (0.02) 0.09 (0.01) 0.09 (0.01)
NMS 0.22 (0.04) 0.23 (0.03) 0.20 (0.02) 0.18 (0.02) 0.17 (0.03) 0.13 (0.01) 0.12 (0.02) 0.09 (0.02) 0.09 (0.01)
LMS 0.28 (0.03) 0.23 (0.03) 0.20 (0.02) 0.18 (0.03) 0.18 (0.03) 0.12 (0.01) 0.14 (0.02) 0.10 (0.02) 0.09 (0.01)
LNMS 0.25 (0.04) 0.20 (0.03) 0.20 (0.01) 0.20 (0.02) 0.13 (0.03) 0.14 (0.02) 0.12 (0.02) 0.09 (0.02) 0.07 (0.01)
BRFA 0.18 (0.03) 0.20 (0.01) 0.15 (0.02) 0.12 (0.02) 0.08 (0.01) 0.08 (0.01) 0.06 (0.02) 0.06 (0.01) 0.07 (0.01)

Scenario 2

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)
Ridit 0.05 (0.01) 0.05 (0.01) 0.02 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
NM 0.05 (0.01) 0.06 (0.01) 0.03 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Blom 0.05 (0.01) 0.06 (0.01) 0.03 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NMS 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.04 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01)
LMS 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
LNMS 0.07 (0.02) 0.05 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.10 (0.03) 0.09 (0.02) 0.06 (0.01) 0.05 (0.01) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)

Scenario 3

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
Ridit 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
LMS 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
LNMS 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
BRFA 0.08 (0.01) 0.06 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)

Mixture scenario

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.02) 0.02 (0) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01)
Ridit 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.03 (0.01)
NM 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
Blom 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
NMS 0.04 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LMS 0.04 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01)
LNMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.07 (0.02) 0.02 (0.01) 0.10 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.09 (0.02) 0.10 (0.02) 0.06 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
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A.2 Linear discriminant analysis

In this section, as well as for the QDA, SVM and Naive Bayes classi�er sec-
tions, we include the results for the case C = 5 that have not been presented
in chapter 5. We notice that, as already mentioned, the LDA has worse per-
formance than the other classi�ers (quantile-based, SVM and Naive Bayes),
independently of the scenario and the scoring method adopted. From �gure
A.9 to A.11, in accordance with what observed in the previous chapters, it
is possible to notice that in scenario 2 and �mixture� scenario the LNMS are
particularly unsuitable for this classi�er. Referring to scenario 3, when the
number of instances is small and the number of features is high (N = 200 and
p = 100) there is a clear advantage in using the BRFA. In general, when the
number of features is high, the results obtained with BRFA are always com-
parable with the ones obtained with any other considered scoring method.
Also in the case C = 3 and C = 357 (�gures A.12 to A.19) there is a gain
in applying the LDA on BRFA in high dimensional settings in scenario 1.
Unfortunately, in scenario 2 and `mixture� scenario when the number of fea-
tures is small the performance associated to the BRFA are generally worse.
In these scenarios the results obtained through BRFA do not signi�cantly
di�er from the other scoring methods when p is high. For C = 3 we have
that in scenario 3 there are not signi�cant di�erences between BRFA and the
other scoring methods with the exception of the case N = 100 and p = 40

and the case N = 200 and p = 100, where the BRFA is the best method,
together with LNMS.
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A.2.1 Simulation results for C = 5

Figure A.9: Results for Scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.10: Results for Scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.11: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.



A.2. LINEAR DISCRIMINANT ANALYSIS 123

Table A.3: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for LDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with �ve categories

(C = 5).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.27 (0.02) 0.21 (0.02) 0.18 (0.02) 0.29 (0.03) 0.22 (0.03) 0.12 (0.01) 0.29 (0.02) 0.18 (0.03) 0.10 (0.01) - 0.34 (0.03) 0.15 (0.02)
Ridit 0.23 (0.03) 0.20 (0.02) 0.18 (0.02) 0.26 (0.02) 0.16 (0.02) 0.12 (0.02) 0.23 (0.03) 0.14 (0.03) 0.08 (0.01) - 0.31 (0.03) 0.09 (0.01)
NM 0.25 (0.04) 0.21 (0.02) 0.19 (0.02) 0.30 (0.03) 0.20 (0.03) 0.12 (0.01) 0.26 (0.02) 0.17 (0.02) 0.09 (0.01) - 0.34 (0.02) 0.14 (0.01)
Blom 0.25 (0.04) 0.21 (0.02) 0.19 (0.02) 0.30 (0.03) 0.20 (0.03) 0.12 (0.01) 0.26 (0.02) 0.17 (0.02) 0.09 (0.01) - 0.34 (0.02) 0.14 (0.01)
NMS 0.24 (0.03) 0.21 (0.02) 0.19 (0.02) 0.30 (0.03) 0.20 (0.03) 0.12 (0.01) 0.26 (0.03) 0.17 (0.02) 0.10 (0.01) - 0.34 (0.03) 0.14 (0.01)
LMS 0.26 (0.04) 0.22 (0.02) 0.19 (0.02) 0.31 (0.03) 0.22 (0.03) 0.12 (0.01) 0.30 (0.03) 0.18 (0.02) 0.11 (0.01) - 0.38 (0.03) 0.15 (0.02)
LNMS 0.34 (0.03) 0.34 (0.03) 0.32 (0.02) 0.34 (0.03) 0.32 (0.03) 0.29 (0.02) 0.27 (0.02) 0.30 (0.03) 0.26 (0.02) - 0.35 (0.02) 0.26 (0.02)
BRFA 0.22 (0.02) 0.22 (0.03) 0.19 (0.02) 0.20 (0.03) 0.20 (0.03) 0.15 (0.01) 0.06 (0.01) 0.08 (0.02) 0.07 (0.01) - 0.05 (0.01) 0.04 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.10 (0.02) 0.06 (0.01) 0.05 (0.01) 0.09 (0.02) 0.06 (0.01) 0.02 (0.01) 0.12 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.11 (0.01) 0.02 (0.01)
Ridit 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.08 (0.02) 0.03 (0.01) 0.02 (0.01) - 0.07 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.06 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.09 (0.02) 0.03 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
Blom 0.08 (0.02) 0.06 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.09 (0.02) 0.03 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
NMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.09 (0.02) 0.03 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
LMS 0.08 (0.01) 0.05 (0.01) 0.03 (0.01) 0.07 (0.01) 0.04 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.10 (0.02) 0.02 (0.01)
LNMS 0.23 (0.04) 0.18 (0.02) 0.15 (0.01) 0.24 (0.03) 0.18 (0.02) 0.11 (0.01) 0.26 (0.02) 0.20 (0.02) 0.12 (0.02) - 0.26 (0.02) 0.16 (0.01)
BRFA 0.16 (0.03) 0.08 (0.01) 0.05 (0.01) 0.17 (0.03) 0.08 (0.01) 0.05 (0.01) 0.1 (0.02) 0.09 (0.01) 0.06 (0.01) - 0.07 (0.01) 0.05 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01) 0.12 (0.03) 0.05 (0.01) 0.02 (0.01) - 0.11 (0.02) 0.02 (0.01)
Ridit 0.07 (0.02) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.08 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.07 (0.01) 0.02 (0.01)
NM 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.08 (0.03) 0.04 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
Blom 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.08 (0.03) 0.04 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.09 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.08 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.01) 0.05 (0.01) 0.02 (0.01) 0.10 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.09 (0.01) 0.02 (0.01)
LNMS 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.08 (0.01) 0.02 (0.01)
BRFA 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.08 (0.02) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.01) 0.04 (0.01) 0.02 (0.01) - 0.05 (0.02) 0.02 (0.01)
Ridit 0.08 (0.02) 0.07 (0.02) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) - 0.05 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.07 (0.02) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.06 (0.02) 0.02 (0.01)
Blom 0.08 (0.02) 0.07 (0.02) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.06 (0.02) 0.02 (0.01)
NMS 0.08 (0.02) 0.07 (0.02) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.06 (0.02) 0.02 (0.01)
LMS 0.08 (0.02) 0.07 (0.01) 0.04 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.07 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.06 (0.01) 0.02 (0.01)
LNMS 0.10 (0.02) 0.09 (0.01) 0.08 (0.01) 0.09 (0.02) 0.06 (0.01) 0.05 (0.01) 0.10 (0.02) 0.05 (0.01) 0.03 (0.01) - 0.07 (0.02) 0.02 (0.01)
BRFA 0.14 (0.02) 0.11 (0.02) 0.08 (0.01) 0.12 (0.03) 0.11 (0.02) 0.10 (0.01) 0.07 (0.02) 0.07 (0.01) 0.04 (0.01) - 0.03 (0.01) 0.02 (0.01)
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A.2.2 Simulation results for C = 3

Figure A.12: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.13: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.14: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.15: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 3

categories.



128 APPENDIX A. OTHER SIMULATION RESULTS

Table A.4: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for LDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with three categories

(C = 3).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.18 (0.03) 0.24 (0.03) 0.21 (0.02) 0.32 (0.03) 0.25 (0.02) 0.13 (0.01) 0.27 (0.03) 0.15 (0.02) 0.06 (0.01) - 0.26 (0.03) 0.12 (0.02)
Ridit 0.20 (0.03) 0.24 (0.03) 0.21 (0.02) 0.31 (0.03) 0.24 (0.02) 0.13 (0.01) 0.26 (0.03) 0.16 (0.02) 0.07 (0.01) - 0.24 (0.03) 0.12 (0.02)
NM 0.19 (0.03) 0.24 (0.04) 0.22 (0.02) 0.32 (0.03) 0.26 (0.03) 0.13 (0.01) 0.28 (0.02) 0.16 (0.02) 0.06 (0.01) - 0.25 (0.02) 0.12 (0.02)
Blom 0.19 (0.03) 0.24 (0.04) 0.22 (0.02) 0.32 (0.03) 0.26 (0.03) 0.13 (0.01) 0.28 (0.02) 0.16 (0.02) 0.06 (0.01) - 0.25 (0.02) 0.12 (0.02)
NMS 0.18 (0.03) 0.24 (0.04) 0.22 (0.02) 0.32 (0.03) 0.25 (0.03) 0.13 (0.01) 0.27 (0.02) 0.15 (0.02) 0.07 (0.01) - 0.25 (0.02) 0.13 (0.02)
LMS 0.19 (0.03) 0.24 (0.04) 0.22 (0.02) 0.34 (0.03) 0.26 (0.03) 0.13 (0.01) 0.28 (0.02) 0.16 (0.02) 0.06 (0.01) - 0.25 (0.03) 0.12 (0.02)
LNMS 0.30 (0.04) 0.32 (0.02) 0.27 (0.02) 0.34 (0.02) 0.24 (0.02) 0.21 (0.01) 0.29 (0.03) 0.24 (0.03) 0.19 (0.01) - 0.23 (0.02) 0.19 (0.02)
BRFA 0.23 (0.04) 0.26 (0.02) 0.23 (0.02) 0.23 (0.03) 0.22 (0.02) 0.12 (0.01) 0.09 (0.03) 0.08 (0.02) 0.08 (0.01) - 0.04 (0.01) 0.02 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.04 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.01 (0.01)
Ridit 0.07 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) - 0.03 (0.01) 0.01 (0.01)
NM 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.01 (0.01)
Blom 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.01 (0.01)
NMS 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.01 (0.01)
LMS 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.02 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.01 (0.01)
LNMS 0.16 (0.02) 0.11 (0.02) 0.11 (0.01) 0.14 (0.03) 0.12 (0.01) 0.06 (0.01) 0.20 (0.03) 0.09 (0.01) 0.04 (0.01) - 0.18 (0.02) 0.07 (0.01)
BRFA 0.14 (0.03) 0.10 (0.02) 0.08 (0.01) 0.10 (0.02) 0.10 (0.02) 0.06 (0.01) 0.08 (0.02) 0.07 (0.01) 0.06 (0.01) - 0.02 (0.01) 0.02 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.01 (0.01) 0.08 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.05 (0.01) 0.05 (0.01)
Ridit 0.05 (0.01) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.01) 0.05 (0.02) 0.02 (0.01) 0.01 (0.01) - 0.03 (0.01) 0.03 (0.01)
NM 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.01 (0.01) 0.07 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.04 (0.01)
Blom 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.01 (0.01) 0.07 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.04 (0.01)
NMS 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.01) 0.01 (0.01) 0.07 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.04 (0.01) 0.04 (0.01)
LMS 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.06 (0.02) 0.04 (0.01) 0.01 (0.01) 0.07 (0.02) 0.03 (0.01) 0.01 (0.01) - 0.05 (0.01) 0.05 (0.01)
LNMS 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) - 0.02 (0.01) 0.02 (0.01)
BRFA 0.06 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) - 0.02 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.03) 0.06 (0.02) 0.04 (0.01) 0.04 (0.02) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.02 (0.01) 0.01 (0.01)
Ridit 0.06 (0.02) 0.05 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.02 (0.01) 0.01 (0.01)
NM 0.06 (0.02) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.01 (0.01)
Blom 0.06 (0.02) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.01 (0.01)
NMS 0.06 (0.02) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.01 (0.01)
LMS 0.07 (0.03) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.01 (0.01)
LNMS 0.08 (0.02) 0.09 (0.02) 0.06 (0.01) 0.04 (0.02) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01) - 0.02 (0.01) 0.01 (0.01)
BRFA 0.16 (0.03) 0.15 (0.02) 0.10 (0.01) 0.09 (0.02) 0.09 (0.02) 0.07 (0.01) 0.04 (0.02) 0.05 (0.01) 0.03 (0.01) - 0.02 (0.01) 0.01 (0.01)
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A.2.3 Simulation results for C = 357

Figure A.16: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.17: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.18: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.19: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have di�erent

number of categories C = 357.
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Table A.5: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for LDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with di�erent number

of categories (C = 357).

Scenario 1

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.21 (0.03) 0.2 (0.01) 0.14 (0.01) 0.28 (0.03) 0.15 (0.02) 0.09 (0.01) 0.31 (0.02) 0.21 (0.03) 0.09 (0.01)
Ridit 0.18 (0.02) 0.17 (0.01) 0.13 (0.01) 0.22 (0.03) 0.12 (0.02) 0.08 (0.01) 0.26 (0.02) 0.16 (0.02) 0.07 (0.01)
NM 0.20 (0.02) 0.18 (0.01) 0.15 (0.01) 0.26 (0.03) 0.14 (0.02) 0.09 (0.01) 0.29 (0.02) 0.20 (0.02) 0.09 (0.01)
Blom 0.20 (0.02) 0.18 (0.01) 0.15 (0.01) 0.26 (0.03) 0.14 (0.02) 0.09 (0.01) 0.29 (0.02) 0.20 (0.02) 0.09 (0.01)
NMS 0.20 (0.02) 0.18 (0.01) 0.14 (0.01) 0.26 (0.03) 0.14 (0.02) 0.09 (0.01) 0.29 (0.02) 0.19 (0.02) 0.09 (0.01)
LMS 0.22 (0.03) 0.21 (0.01) 0.15 (0.01) 0.28 (0.02) 0.16 (0.02) 0.09 (0.01) 0.3 (0.02) 0.20 (0.02) 0.10 (0.01)
LNMS 0.32 (0.02) 0.31 (0.01) 0.25 (0.01) 0.34 (0.02) 0.26 (0.03) 0.19 (0.02) 0.31 (0.03) 0.31 (0.03) 0.22 (0.02)
BRFA 0.19 (0.03) 0.22 (0.03) 0.16 (0.03) 0.12 (0.02) 0.12 (0.02) 0.08 (0.01) 0.07 (0.02) 0.08 (0.02) 0.06 (0.01)

Scenario 2

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.03) 0.07 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.04 (0.01) 0.03 (0.01)
Ridit 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.08 (0.02) 0.03 (0.01) 0.03 (0.01)
NM 0.08 (0.03) 0.07 (0.02) 0.04 (0.01) 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.04 (0.01) 0.03 (0.01)
Blom 0.08 (0.03) 0.07 (0.02) 0.04 (0.01) 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.04 (0.01) 0.03 (0.01)
NMS 0.08 (0.03) 0.06 (0.02) 0.04 (0.01) 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.04 (0.01) 0.03 (0.01)
LMS 0.08 (0.03) 0.07 (0.02) 0.04 (0.01) 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.10 (0.03) 0.04 (0.01) 0.03 (0.01)
LNMS 0.18 (0.03) 0.17 (0.03) 0.08 (0.01) 0.15 (0.02) 0.09 (0.01) 0.06 (0.01) 0.24 (0.03) 0.11 (0.01) 0.05 (0.01)
BRFA 0.14 (0.02) 0.12 (0.02) 0.08 (0.02) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01)

Scenario 3

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.10 (0.02) 0.06 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.10 (0.03) 0.05 (0.01) 0.03 (0.01)
Ridit 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.07 (0.02) 0.04 (0.01) 0.03 (0.01)
NM 0.10 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
Blom 0.10 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
NMS 0.10 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01)
LMS 0.12 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01)
LNMS 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.02 (0.01) 0.08 (0.02) 0.02 (0.01) 0.02 (0.01)
BRFA 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)

Mixture scenario

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
LMS 0.07 (0.02) 0.03 (0.01) 0.04 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
LNMS 0.08 (0.03) 0.06 (0.01) 0.06 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
BRFA 0.14 (0.02) 0.14 (0.02) 0.10 (0.02) 0.10 (0.03) 0.09 (0.01) 0.06 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
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A.3 QDA

The QDA, along with the LDA, is the classi�er which returns the worst per-
formance on the simulated data in each scenario, whatever the value of C is.
In �gures from A.20 to A.26 it is possible to notice that, when p = 100, the
classi�er applied on BRFA performs much better if compared to any other
scoring method and the gain in term of correctly classi�ed observations is
really remarkable. When p = 10 or p = 20 the misclassi�cation rates associ-
ated with the BRFA method do not signi�cantly di�er from the other scoring
methods in the majority of the situations, though when p = 20 the BRFA is
often the optimal one. When p = 40 the BRFA returns better results only if
the number of instances N is 100 or 200. When N = 400 the gap between
the misclassi�cation rates associated with the scoring methods is signi�cantly
smaller.
In the case of simulated datasets composed by features with di�erent number
of categories (i.e. C = 357) there is a clear advantage in using the BRFA
in any scenario when the number of features is high (i.e. p = 60) and the
number of instances is 100 or 200.
In scenario 1 the BRFA mean misclassi�cation rate is lower than any other
when p = 30 or p = 60 while, when p = 15, for every values of N it is the
best or second best. In scenario 2 and 3 when p = 15 the BRFA mean mis-
classi�cation rates do not signi�cantly di�er from the other scoring methods.
The same situation occurs when p = 30, with the only exception of the case
N = 100, where the BRFA mean misclassi�cation rate is the best one.
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A.3.1 Simulation results for C = 5

Figure A.20: Results for Scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.21: Results for Scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.22: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.
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Table A.6: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for QDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with �ve categories

(C = 5).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.40 (0.02) 0.32 (0.02) 0.24 (0.02) 0.40 (0.02) 0.36 (0.03) 0.27 (0.03) 0.42 (0.02) 0.40 (0.02) 0.32 (0.02) - 0.39 (0.02) 0.45 (0.01)
Ridit 0.31 (0.03) 0.27 (0.01) 0.21 (0.01) 0.38 (0.02) 0.31 (0.03) 0.24 (0.02) 0.4 (0.01) 0.37 (0.02) 0.29 (0.02) - 0.43 (0.02) 0.45 (0.01)
NM 0.36 (0.02) 0.32 (0.03) 0.24 (0.01) 0.40 (0.02) 0.35 (0.03) 0.28 (0.03) 0.42 (0.02) 0.39 (0.02) 0.31 (0.02) - 0.40 (0.02) 0.44 (0.01)
Blom 0.36 (0.02) 0.32 (0.03) 0.24 (0.01) 0.40 (0.02) 0.35 (0.03) 0.28 (0.03) 0.43 (0.01) 0.39 (0.02) 0.31 (0.02) - 0.40 (0.02) 0.44 (0.01)
NMS 0.36 (0.02) 0.31 (0.03) 0.24 (0.02) 0.40 (0.02) 0.35 (0.03) 0.27 (0.03) 0.42 (0.02) 0.39 (0.01) 0.32 (0.02) - 0.41 (0.02) 0.44 (0.01)
LMS 0.38 (0.02) 0.33 (0.03) 0.25 (0.02) 0.42 (0.02) 0.35 (0.03) 0.30 (0.03) 0.42 (0.01) 0.40 (0.03) 0.32 (0.02) - 0.40 (0.02) 0.43 (0.01)
LNMS 0.40 (0.02) 0.36 (0.02) 0.40 (0.02) 0.40 (0.02) 0.36 (0.03) 0.39 (0.02) 0.34 (0.03) 0.34 (0.03) 0.35 (0.02) - 0.41 (0.02) 0.33 (0.01)
BRFA 0.22 (0.03) 0.24 (0.03) 0.23 (0.03) 0.20 (0.03) 0.22 (0.03) 0.15 (0.01) 0.06 (0.01) 0.08 (0.02) 0.07 (0.01) - 0.05 (0.01) 0.04 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.18 (0.02) 0.09 (0.02) 0.07 (0.01) 0.28 (0.02) 0.15 (0.02) 0.05 (0.01) 0.35 (0.03) 0.35 (0.02) 0.10 (0.01) - 0.42 (0.02) 0.38 (0.02)
Ridit 0.11 (0.01) 0.05 (0.01) 0.03 (0.01) 0.22 (0.02) 0.11 (0.01) 0.02 (0.01) 0.36 (0.02) 0.26 (0.03) 0.05 (0.01) - 0.43 (0.02) 0.34 (0.02)
NM 0.12 (0.02) 0.06 (0.01) 0.03 (0.01) 0.25 (0.02) 0.12 (0.01) 0.03 (0.01) 0.39 (0.02) 0.28 (0.02) 0.08 (0.01) - 0.44 (0.01) 0.35 (0.02)
Blom 0.12 (0.02) 0.06 (0.01) 0.03 (0.01) 0.25 (0.02) 0.12 (0.01) 0.03 (0.01) 0.39 (0.02) 0.28 (0.02) 0.08 (0.01) - 0.44 (0.01) 0.35 (0.02)
NMS 0.12 (0.03) 0.06 (0.01) 0.03 (0.01) 0.26 (0.02) 0.12 (0.01) 0.02 (0.01) 0.37 (0.02) 0.28 (0.02) 0.08 (0.01) - 0.43 (0.02) 0.35 (0.02)
LMS 0.14 (0.02) 0.07 (0.01) 0.04 (0.01) 0.27 (0.02) 0.13 (0.01) 0.04 (0.01) 0.40 (0.02) 0.30 (0.02) 0.08 (0.01) - 0.43 (0.01) 0.35 (0.01)
LNMS 0.33 (0.04) 0.33 (0.02) 0.31 (0.01) 0.30 (0.02) 0.30 (0.03) 0.27 (0.03) 0.31 (0.02) 0.32 (0.02) 0.23 (0.01) - 0.40 (0.02) 0.30 (0.02)
BRFA 0.16 (0.03) 0.08 (0.01) 0.05 (0.01) 0.14 (0.03) 0.09 (0.02) 0.04 (0.01) 0.10 (0.02) 0.09 (0.01) 0.06 (0.01) - 0.07 (0.01) 0.05 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.17 (0.03) 0.08 (0.01) 0.04 (0.01) 0.32 (0.04) 0.17 (0.01) 0.05 (0.01) 0.38 (0.03) 0.30 (0.02) 0.13 (0.01) - 0.44 (0.02) 0.35 (0.02)
Ridit 0.12 (0.02) 0.05 (0.01) 0.02 (0.01) 0.21 (0.04) 0.09 (0.02) 0.03 (0.01) 0.35 (0.03) 0.23 (0.02) 0.06 (0.01) - 0.43 (0.02) 0.36 (0.02)
NM 0.14 (0.03) 0.06 (0.01) 0.02 (0.01) 0.27 (0.04) 0.14 (0.02) 0.03 (0.01) 0.35 (0.03) 0.29 (0.02) 0.08 (0.01) - 0.44 (0.01) 0.37 (0.02)
Blom 0.14 (0.03) 0.06 (0.01) 0.02 (0.01) 0.27 (0.04) 0.14 (0.02) 0.03 (0.01) 0.35 (0.03) 0.29 (0.02) 0.08 (0.01) - 0.44 (0.01) 0.37 (0.02)
NMS 0.12 (0.03) 0.06 (0.01) 0.02 (0.01) 0.26 (0.03) 0.13 (0.02) 0.03 (0.01) 0.32 (0.03) 0.27 (0.02) 0.07 (0.01) - 0.45 (0.01) 0.37 (0.01)
LMS 0.16 (0.03) 0.06 (0.01) 0.02 (0.01) 0.28 (0.03) 0.14 (0.02) 0.03 (0.01) 0.34 (0.02) 0.28 (0.02) 0.09 (0.01) - 0.43 (0.01) 0.37 (0.01)
LNMS 0.08 (0.02) 0.04 (0.01) 0.04 (0.01) 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.13 (0.03) 0.07 (0.01) 0.04 (0.01) - 0.42 (0.02) 0.06 (0.02)
BRFA 0.07 (0.02) 0.06 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.08 (0.02) 0.05 (0.01) 0.16 (0.02) 0.10 (0.01) 0.05 (0.01) 0.18 (0.03) 0.11 (0.02) 0.05 (0.01) - 0.25 (0.03) 0.12 (0.01)
Ridit 0.09 (0.02) 0.07 (0.02) 0.03 (0.01) 0.10 (0.02) 0.07 (0.01) 0.03 (0.01) 0.20 (0.03) 0.09 (0.01) 0.03 (0.01) - 0.33 (0.01) 0.11 (0.01)
NM 0.10 (0.02) 0.08 (0.02) 0.03 (0.01) 0.14 (0.02) 0.1 (0.01) 0.04 (0.01) 0.23 (0.04) 0.11 (0.01) 0.04 (0.01) - 0.31 (0.01) 0.14 (0.01)
Blom 0.10 (0.02) 0.08 (0.02) 0.03 (0.01) 0.14 (0.02) 0.11 (0.01) 0.04 (0.01) 0.23 (0.04) 0.11 (0.01) 0.04 (0.01) - 0.31 (0.01) 0.14 (0.01)
NMS 0.10 (0.02) 0.07 (0.02) 0.03 (0.01) 0.12 (0.02) 0.10 (0.01) 0.04 (0.01) 0.22 (0.03) 0.12 (0.01) 0.04 (0.01) - 0.33 (0.02) 0.14 (0.01)
LMS 0.10 (0.02) 0.08 (0.02) 0.03 (0.01) 0.13 (0.02) 0.11 (0.01) 0.04 (0.01) 0.22 (0.03) 0.13 (0.01) 0.05 (0.01) - 0.32 (0.02) 0.14 (0.01)
LNMS 0.14 (0.03) 0.11 (0.02) 0.08 (0.01) 0.16 (0.02) 0.09 (0.01) 0.07 (0.01) 0.19 (0.02) 0.11 (0.02) 0.06 (0.01) - 0.40 (0.03) 0.12 (0.02)
BRFA 0.14 (0.02) 0.13 (0.02) 0.08 (0.01) 0.12 (0.03) 0.12 (0.02) 0.11 (0.01) 0.07 (0.02) 0.07 (0.01) 0.04 (0.01) - 0.03 (0.01) 0.02 (0.01)
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A.3.2 Simulation results for C = 3

Figure A.23: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.24: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.25: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.26: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 3

categories.
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Table A.7: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for QDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with three categories

(C = 3).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.32 (0.03) 0.28 (0.03) 0.27 (0.02) 0.33 (0.03) 0.33 (0.02) 0.21 (0.02) 0.42 (0.01) 0.36 (0.02) 0.27 (0.02) - 0.41 (0.02) 0.39 (0.02)
Ridit 0.31 (0.03) 0.28 (0.03) 0.27 (0.02) 0.34 (0.04) 0.31 (0.02) 0.21 (0.01) 0.39 (0.02) 0.35 (0.02) 0.25 (0.03) - 0.40 (0.02) 0.36 (0.02)
NM 0.33 (0.03) 0.28 (0.02) 0.27 (0.02) 0.34 (0.03) 0.34 (0.02) 0.22 (0.01) 0.42 (0.01) 0.37 (0.01) 0.29 (0.03) - 0.42 (0.02) 0.41 (0.02)
Blom 0.33 (0.03) 0.28 (0.02) 0.27 (0.02) 0.34 (0.03) 0.34 (0.02) 0.22 (0.01) 0.42 (0.01) 0.37 (0.01) 0.29 (0.03) - 0.42 (0.02) 0.41 (0.02)
NMS 0.33 (0.03) 0.28 (0.03) 0.27 (0.02) 0.35 (0.03) 0.33 (0.02) 0.21 (0.02) 0.42 (0.01) 0.37 (0.02) 0.28 (0.02) - 0.42 (0.02) 0.40 (0.02)
LMS 0.32 (0.03) 0.29 (0.02) 0.27 (0.02) 0.35 (0.03) 0.34 (0.02) 0.21 (0.02) 0.42 (0.01) 0.37 (0.01) 0.29 (0.03) - 0.42 (0.02) 0.41 (0.02)
LNMS 0.32 (0.04) 0.35 (0.02) 0.32 (0.01) 0.27 (0.01) 0.29 (0.03) 0.27 (0.02) 0.32 (0.03) 0.31 (0.02) 0.28 (0.02) - 0.42 (0.02) 0.32 (0.02)
BRFA 0.26 (0.04) 0.30 (0.02) 0.27 (0.02) 0.25 (0.03) 0.23 (0.02) 0.12 (0.01) 0.09 (0.03) 0.08 (0.02) 0.07 (0.01) - 0.04 (0.01) 0.03 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.12 (0.03) 0.07 (0.01) 0.06 (0.01) 0.17 (0.02) 0.09 (0.02) 0.03 (0.01) 0.31 (0.03) 0.24 (0.02) 0.05 (0.01) - 0.39 (0.02) 0.21 (0.02)
Ridit 0.10 (0.03) 0.06 (0.01) 0.04 (0.01) 0.16 (0.04) 0.06 (0.01) 0.02 (0.01) 0.30 (0.03) 0.18 (0.02) 0.03 (0.01) - 0.38 (0.02) 0.18 (0.02)
NM 0.12 (0.03) 0.07 (0.01) 0.06 (0.01) 0.17 (0.02) 0.08 (0.01) 0.03 (0.01) 0.32 (0.03) 0.23 (0.02) 0.05 (0.01) - 0.39 (0.02) 0.21 (0.02)
Blom 0.12 (0.03) 0.07 (0.01) 0.06 (0.01) 0.17 (0.02) 0.08 (0.01) 0.03 (0.01) 0.32 (0.03) 0.23 (0.02) 0.04 (0.01) - 0.39 (0.02) 0.21 (0.02)
NMS 0.12 (0.03) 0.06 (0.01) 0.05 (0.01) 0.16 (0.02) 0.08 (0.01) 0.03 (0.01) 0.31 (0.04) 0.23 (0.01) 0.04 (0.01) - 0.40 (0.02) 0.20 (0.02)
LMS 0.13 (0.03) 0.08 (0.01) 0.06 (0.01) 0.18 (0.02) 0.10 (0.02) 0.04 (0.01) 0.32 (0.03) 0.23 (0.02) 0.05 (0.01) - 0.39 (0.02) 0.20 (0.02)
LNMS 0.27 (0.03) 0.29 (0.04) 0.25 (0.02) 0.29 (0.04) 0.26 (0.02) 0.21 (0.02) 0.28 (0.03) 0.26 (0.02) 0.17 (0.01) - 0.41 (0.02) 0.28 (0.02)
BRFA 0.14 (0.03) 0.11 (0.02) 0.08 (0.01) 0.11 (0.02) 0.10 (0.02) 0.06 (0.01) 0.10 (0.02) 0.07 (0.01) 0.06 (0.01) - 0.04 (0.01) 0.02 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.13 (0.03) 0.08 (0.01) 0.07 (0.01) 0.18 (0.03) 0.11 (0.02) 0.03 (0.01) 0.32 (0.04) 0.15 (0.03) 0.06 (0.01) - 0.36 (0.02) 0.36 (0.02)
Ridit 0.08 (0.02) 0.07 (0.01) 0.05 (0.01) 0.14 (0.03) 0.08 (0.01) 0.02 (0.01) 0.29 (0.03) 0.12 (0.03) 0.05 (0.01) - 0.39 (0.02) 0.39 (0.02)
NM 0.12 (0.03) 0.07 (0.01) 0.07 (0.01) 0.18 (0.03) 0.11 (0.02) 0.03 (0.01) 0.31 (0.04) 0.15 (0.03) 0.06 (0.01) - 0.35 (0.02) 0.35 (0.02)
Blom 0.11 (0.03) 0.07 (0.01) 0.07 (0.01) 0.18 (0.03) 0.11 (0.02) 0.03 (0.01) 0.31 (0.04) 0.15 (0.03) 0.06 (0.01) - 0.35 (0.02) 0.35 (0.02)
NMS 0.11 (0.03) 0.07 (0.01) 0.07 (0.01) 0.18 (0.03) 0.11 (0.02) 0.03 (0.01) 0.31 (0.03) 0.14 (0.02) 0.06 (0.01) - 0.35 (0.01) 0.35 (0.01)
LMS 0.12 (0.03) 0.09 (0.01) 0.07 (0.01) 0.18 (0.03) 0.11 (0.02) 0.03 (0.01) 0.31 (0.03) 0.15 (0.03) 0.06 (0.01) - 0.36 (0.02) 0.36 (0.02)
LNMS 0.10 (0.02) 0.07 (0.01) 0.06 (0.01) 0.12 (0.03) 0.07 (0.01) 0.03 (0.01) 0.22 (0.04) 0.11 (0.02) 0.03 (0.01) - 0.37 (0.01) 0.37 (0.01)
BRFA 0.06 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) - 0.02 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.12 (0.03) 0.06 (0.01) 0.05 (0.01) 0.10 (0.03) 0.08 (0.02) 0.04 (0.01) 0.16 (0.02) 0.07 (0.01) 0.04 (0.01) - 0.24 (0.03) 0.09 (0.01)
Ridit 0.1 (0.03) 0.05 (0.02) 0.05 (0.01) 0.10 (0.03) 0.08 (0.01) 0.03 (0.01) 0.14 (0.02) 0.07 (0.01) 0.03 (0.01) - 0.28 (0.03) 0.10 (0.02)
NM 0.11 (0.03) 0.05 (0.01) 0.05 (0.01) 0.10 (0.03) 0.07 (0.02) 0.03 (0.01) 0.14 (0.02) 0.07 (0.01) 0.03 (0.01) - 0.22 (0.03) 0.09 (0.01)
Blom 0.11 (0.03) 0.05 (0.01) 0.05 (0.01) 0.10 (0.03) 0.07 (0.02) 0.03 (0.01) 0.14 (0.02) 0.07 (0.01) 0.03 (0.01) - 0.22 (0.03) 0.09 (0.01)
NMS 0.1 (0.03) 0.05 (0.01) 0.05 (0.01) 0.10 (0.03) 0.07 (0.02) 0.03 (0.01) 0.14 (0.02) 0.06 (0.01) 0.03 (0.01) - 0.23 (0.03) 0.09 (0.01)
LMS 0.12 (0.03) 0.05 (0.01) 0.05 (0.01) 0.10 (0.03) 0.08 (0.02) 0.03 (0.01) 0.15 (0.02) 0.07 (0.01) 0.04 (0.01) - 0.23 (0.03) 0.09 (0.01)
LNMS 0.10 (0.02) 0.12 (0.02) 0.09 (0.01) 0.14 (0.02) 0.10 (0.02) 0.07 (0.01) 0.20 (0.03) 0.10 (0.01) 0.05 (0.01) - 0.34 (0.04) 0.13 (0.02)
BRFA 0.16 (0.03) 0.15 (0.02) 0.10 (0.01) 0.09 (0.02) 0.09 (0.02) 0.07 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) - 0.03 (0.01) 0.01 (0.01)
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A.3.3 Simulation results for C = 357

Figure A.27: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.28: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.29: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.30: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have di�erent

number of categories C = 357.



148 APPENDIX A. OTHER SIMULATION RESULTS

Table A.8: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for QDA in the four considered scenarios.

Simulation results refer to the case of ordinal features with di�erent number

of categories (C = 357).

Scenario 1

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.35 (0.02) 0.29 (0.02) 0.22 (0.03) 0.42 (0.02) 0.32 (0.02) 0.24 (0.02) 0.39 (0.02) 0.42 (0.02) 0.33 (0.02)
Ridit 0.32 (0.04) 0.23 (0.02) 0.19 (0.02) 0.41 (0.01) 0.29 (0.02) 0.19 (0.01) 0.4 (0.01) 0.40 (0.02) 0.27 (0.02)
NM 0.35 (0.03) 0.28 (0.02) 0.21 (0.02) 0.43 (0.01) 0.32 (0.03) 0.24 (0.02) 0.41 (0.02) 0.42 (0.02) 0.34 (0.02)
Blom 0.35 (0.03) 0.28 (0.02) 0.21 (0.02) 0.43 (0.01) 0.32 (0.03) 0.24 (0.02) 0.41 (0.02) 0.42 (0.02) 0.34 (0.02)
NMS 0.34 (0.03) 0.28 (0.02) 0.21 (0.02) 0.43 (0.01) 0.32 (0.02) 0.24 (0.02) 0.40 (0.02) 0.41 (0.02) 0.33 (0.02)
LMS 0.34 (0.02) 0.30 (0.02) 0.22 (0.02) 0.42 (0.01) 0.33 (0.02) 0.25 (0.02) 0.40 (0.02) 0.43 (0.02) 0.34 (0.02)
LNMS 0.35 (0.03) 0.33 (0.01) 0.32 (0.02) 0.32 (0.03) 0.30 (0.02) 0.27 (0.02) 0.39 (0.02) 0.34 (0.02) 0.27 (0.02)
BRFA 0.22 (0.03) 0.25 (0.03) 0.17 (0.03) 0.13 (0.02) 0.12 (0.02) 0.08 (0.01) 0.07 (0.02) 0.08 (0.02) 0.06 (0.01)

Scenario 2

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.15 (0.03) 0.13 (0.02) 0.06 (0.01) 0.23 (0.02) 0.10 (0.02) 0.04 (0.01) 0.38 (0.02) 0.28 (0.03) 0.11 (0.01)
Ridit 0.10 (0.02) 0.06 (0.01) 0.03 (0.01) 0.18 (0.03) 0.07 (0.01) 0.03 (0.01) 0.40 (0.02) 0.24 (0.02) 0.07 (0.01)
NM 0.10 (0.02) 0.10 (0.01) 0.04 (0.01) 0.22 (0.03) 0.09 (0.01) 0.04 (0.01) 0.38 (0.02) 0.27 (0.02) 0.10 (0.01)
Blom 0.10 (0.02) 0.11 (0.01) 0.04 (0.01) 0.22 (0.03) 0.09 (0.01) 0.04 (0.01) 0.38 (0.02) 0.27 (0.02) 0.10 (0.01)
NMS 0.10 (0.02) 0.08 (0.02) 0.04 (0.01) 0.18 (0.03) 0.09 (0.01) 0.04 (0.01) 0.40 (0.02) 0.26 (0.02) 0.10 (0.01)
LMS 0.12 (0.03) 0.11 (0.01) 0.04 (0.01) 0.22 (0.04) 0.09 (0.01) 0.04 (0.01) 0.41 (0.02) 0.27 (0.02) 0.10 (0.02)
LNMS 0.34 (0.02) 0.30 (0.03) 0.23 (0.03) 0.29 (0.03) 0.25 (0.04) 0.21 (0.02) 0.34 (0.03) 0.29 (0.03) 0.21 (0.02)
BRFA 0.13 (0.02) 0.12 (0.02) 0.07 (0.02) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)

Scenario 3

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.12 (0.02) 0.09 (0.01) 0.05 (0.01) 0.28 (0.02) 0.12 (0.02) 0.04 (0.01) 0.42 (0.02) 0.27 (0.03) 0.10 (0.01)
Ridit 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.24 (0.02) 0.06 (0.01) 0.03 (0.01) 0.41 (0.01) 0.22 (0.01) 0.05 (0.01)
NM 0.11 (0.02) 0.06 (0.02) 0.04 (0.01) 0.24 (0.03) 0.09 (0.01) 0.04 (0.01) 0.40 (0.02) 0.24 (0.03) 0.07 (0.01)
Blom 0.10 (0.02) 0.06 (0.02) 0.04 (0.01) 0.25 (0.02) 0.09 (0.01) 0.04 (0.01) 0.40 (0.02) 0.24 (0.03) 0.07 (0.01)
NMS 0.12 (0.02) 0.06 (0.02) 0.03 (0.01) 0.26 (0.02) 0.08 (0.01) 0.03 (0.01) 0.40 (0.02) 0.24 (0.02) 0.06 (0.01)
LMS 0.12 (0.02) 0.07 (0.02) 0.03 (0.01) 0.26 (0.03) 0.09 (0.01) 0.04 (0.01) 0.42 (0.03) 0.26 (0.02) 0.07 (0.01)
LNMS 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.05 (0.01) 0.03 (0.01) 0.30 (0.03) 0.08 (0.01) 0.03 (0.01)
BRFA 0.07 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01)

Mixture scenario

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.09 (0.01) 0.06 (0.01) 0.04 (0.01) 0.12 (0.02) 0.06 (0.01) 0.04 (0.01) 0.25 (0.03) 0.09 (0.02) 0.03 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.12 (0.02) 0.05 (0.01) 0.02 (0.01) 0.2 (0.03) 0.06 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.12 (0.03) 0.05 (0.01) 0.03 (0.01) 0.2 (0.02) 0.07 (0.02) 0.03 (0.01)
Blom 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.12 (0.03) 0.05 (0.01) 0.03 (0.01) 0.2 (0.02) 0.07 (0.02) 0.03 (0.01)
NMS 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.13 (0.03) 0.05 (0.01) 0.03 (0.01) 0.22 (0.03) 0.07 (0.02) 0.03 (0.01)
LMS 0.1 (0.02) 0.06 (0.01) 0.04 (0.01) 0.14 (0.03) 0.07 (0.01) 0.03 (0.01) 0.24 (0.03) 0.08 (0.02) 0.02 (0.01)
LNMS 0.12 (0.01) 0.06 (0.01) 0.07 (0.01) 0.13 (0.02) 0.08 (0.02) 0.05 (0.01) 0.36 (0.03) 0.13 (0.02) 0.07 (0.01)
BRFA 0.14 (0.02) 0.14 (0.02) 0.09 (0.02) 0.10 (0.03) 0.09 (0.01) 0.06 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
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A.4 SVM

The support vector machine results to be one of the best classi�er on these
kind of data. In every scenario the results obtained through this classi�er are
almost always among the best ones, independently of the scoring methods.
The scoring methods, in the majority of cases, do not signi�cantly di�er in
term of the mean misclassi�cation rates.
Generally, in the case C = 5 in scenario 2 there are not signi�cant di�erences
among the scoring methods, with the exception of LNMS (�gure A.31). For
scenarios 3 and �mixture� (�gures A.32 and A.33) it is possible to notice
that the BRFA misclassi�cation rate is slightly higher than the others when
p = 10 or p = 20 while, for higher values of p, it is the best or second best,
although not signi�cantly di�erent.
As mentioned in chapter 5, the performance on LNMS greatly improve in
scenario 3 (�gure A.32). In this scenario the misclassi�cation rate associated
with LNMS is always the best or second best.
A similar situation is also observed in the case C = 3. From �gures A.34 to
A.37 it is possible to notice that in scenarios 1 and 2 the results associated
with LNMS are generally worse than the other scoring methods, which have
very similar mean misclassi�cation rates. In �mixture� scenario for p = 10

and p = 20, as already observed for the other classi�ers, it does not seem
that BRFA is the optimal choice, while it is in absolute value the best, along
with LNMS, for higher values of p. In scenario 3 the situation is similar to
the case C = 5.
For C = 357 the behaviour of the misclassi�cation rates associated to the
scoring methods is similar to what observed previously, therefore we will
not comment it further. It is to be noted, however, that although there are
di�erences in the absolute value of mean misclassi�cation rates, these are not
signi�cant considering the standard errors intervals reported in table A.11.
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A.4.1 Simulation results for C = 5

Figure A.31: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.32: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.33: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.
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Table A.9: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for SVM in the four considered scenarios.

Simulation results refer to the case of ordinal features with �ve categories

(C = 5).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.20 (0.04) 0.19 (0.03) 0.19 (0.02) 0.17 (0.02) 0.14 (0.03) 0.11 (0.02) 0.1 (0.02) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02) 0.06 (0.02) 0.05 (0.01)
Ridit 0.20 (0.03) 0.21 (0.02) 0.20 (0.02) 0.16 (0.02) 0.15 (0.03) 0.12 (0.02) 0.09 (0.02) 0.06 (0.02) 0.06 (0.01) 0.09 (0.02) 0.06 (0.01) 0.04 (0.01)
NM 0.19 (0.04) 0.20 (0.03) 0.20 (0.02) 0.17 (0.02) 0.14 (0.03) 0.11 (0.02) 0.09 (0.02) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02) 0.06 (0.01) 0.05 (0.01)
Blom 0.20 (0.04) 0.20 (0.03) 0.20 (0.02) 0.17 (0.02) 0.14 (0.03) 0.11 (0.02) 0.09 (0.02) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02) 0.06 (0.01) 0.05 (0.01)
NMS 0.20 (0.04) 0.20 (0.03) 0.20 (0.02) 0.17 (0.02) 0.14 (0.03) 0.11 (0.02) 0.09 (0.02) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02) 0.06 (0.01) 0.05 (0.01)
LMS 0.20 (0.04) 0.20 (0.03) 0.20 (0.02) 0.16 (0.02) 0.13 (0.02) 0.11 (0.02) 0.09 (0.02) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02) 0.06 (0.02) 0.05 (0.01)
LNMS 0.28 (0.03) 0.22 (0.03) 0.21 (0.02) 0.20 (0.03) 0.18 (0.03) 0.17 (0.02) 0.14 (0.02) 0.16 (0.02) 0.13 (0.01) 0.14 (0.03) 0.12 (0.02) 0.13 (0.01)
BRFA 0.18 (0.03) 0.21 (0.03) 0.20 (0.01) 0.18 (0.02) 0.17 (0.02) 0.15 (0.01) 0.08 (0.02) 0.07 (0.02) 0.06 (0.01) 0.08 (0.01) 0.06 (0.01) 0.04 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Ridit 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
LMS 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01)
LNMS 0.19 (0.03) 0.09 (0.02) 0.09 (0.01) 0.12 (0.02) 0.07 (0.01) 0.04 (0.01) 0.06 (0.02) 0.06 (0.01) 0.03 (0.01) 0.07 (0.02) 0.04 (0.01) 0.03 (0.01)
BRFA 0.08 (0.02) 0.05 (0.01) 0.05 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
LNMS 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.07 (0.02) 0.06 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.06 (0.02) 0.04 (0.01) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.08 (0.02) 0.06 (0.01) 0.03 (0.01)
Ridit 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01)
NM 0.08 (0.02) 0.05 (0.02) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.06 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
Blom 0.08 (0.02) 0.05 (0.02) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.06 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
NMS 0.08 (0.02) 0.05 (0.02) 0.04 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
LMS 0.08 (0.02) 0.06 (0.02) 0.04 (0.01) 0.07 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
LNMS 0.10 (0.02) 0.08 (0.01) 0.04 (0.01) 0.07 (0.01) 0.06 (0.01) 0.04 (0.01) 0.06 (0.01) 0.05 (0.01) 0.02 (0.01) 0.08 (0.02) 0.05 (0.01) 0.02 (0.01)
BRFA 0.10 (0.02) 0.07 (0.01) 0.05 (0.01) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
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A.4.2 Simulation results for C = 3

Figure A.34: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.35: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.36: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.37: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 3

categories.
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Table A.10: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for SVM in the four considered scenarios.

Simulation results refer to the case of ordinal features with three categories

(C = 3).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.22 (0.03) 0.23 (0.02) 0.23 (0.01) 0.25 (0.02) 0.19 (0.01) 0.10 (0.01) 0.1 (0.02) 0.07 (0.02) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01)
Ridit 0.24 (0.03) 0.22 (0.02) 0.23 (0.02) 0.25 (0.02) 0.19 (0.01) 0.09 (0.01) 0.08 (0.02) 0.08 (0.01) 0.06 (0.01) 0.07 (0.01) 0.05 (0.01) 0.04 (0.01)
NM 0.22 (0.03) 0.24 (0.03) 0.23 (0.02) 0.26 (0.02) 0.18 (0.02) 0.11 (0.01) 0.10 (0.02) 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01)
Blom 0.22 (0.03) 0.24 (0.03) 0.23 (0.02) 0.26 (0.02) 0.18 (0.02) 0.11 (0.01) 0.10 (0.02) 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01)
NMS 0.23 (0.03) 0.23 (0.02) 0.23 (0.01) 0.25 (0.02) 0.18 (0.02) 0.10 (0.01) 0.10 (0.02) 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01)
LMS 0.22 (0.03) 0.24 (0.02) 0.23 (0.02) 0.26 (0.02) 0.18 (0.02) 0.11 (0.01) 0.09 (0.02) 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01)
LNMS 0.30 (0.03) 0.29 (0.03) 0.28 (0.02) 0.24 (0.01) 0.19 (0.03) 0.16 (0.02) 0.17 (0.02) 0.14 (0.02) 0.14 (0.01) 0.11 (0.03) 0.09 (0.01) 0.10 (0.01)
BRFA 0.22 (0.03) 0.25 (0.02) 0.22 (0.01) 0.24 (0.03) 0.18 (0.02) 0.12 (0.01) 0.09 (0.02) 0.09 (0.02) 0.08 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.02) 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.07 (0.02) 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
Blom 0.07 (0.02) 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
NMS 0.07 (0.02) 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
LMS 0.08 (0.02) 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
LNMS 0.12 (0.02) 0.06 (0.02) 0.06 (0.01) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
BRFA 0.08 (0.02) 0.05 (0.01) 0.07 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.01) 0.07 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
Ridit 0.06 (0.01) 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
NM 0.06 (0.01) 0.07 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
Blom 0.06 (0.01) 0.07 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
NMS 0.06 (0.01) 0.07 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
LMS 0.06 (0.01) 0.07 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
LNMS 0.06 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)
BRFA 0.06 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)
Ridit 0.09 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)
Blom 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)
NMS 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)
LMS 0.08 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01)
LNMS 0.08 (0.02) 0.08 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
BRFA 0.11 (0.02) 0.10 (0.01) 0.09 (0.01) 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
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A.4.3 Simulation results for C = 357

Figure A.38: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.39: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.40: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.41: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have di�erent

number of categories C = 357.
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Table A.11: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for SVM in the four considered scenarios.

Simulation results refer to the case of ordinal features with di�erent number

of categories (C = 357).

Scenario 1

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.21 (0.03) 0.17 (0.01) 0.17 (0.01) 0.13 (0.02) 0.11 (0.02) 0.08 (0.01) 0.10 (0.03) 0.07 (0.02) 0.06 (0.01)
Ridit 0.2 (0.03) 0.19 (0.01) 0.15 (0.01) 0.12 (0.02) 0.09 (0.02) 0.08 (0.02) 0.10 (0.03) 0.08 (0.02) 0.05 (0.01)
NM 0.22 (0.03) 0.17 (0.01) 0.17 (0.01) 0.12 (0.02) 0.10 (0.02) 0.08 (0.01) 0.10 (0.03) 0.07 (0.02) 0.06 (0.01)
Blom 0.22 (0.03) 0.17 (0.01) 0.17 (0.01) 0.12 (0.02) 0.10 (0.02) 0.08 (0.01) 0.10 (0.03) 0.07 (0.02) 0.06 (0.01)
NMS 0.22 (0.03) 0.17 (0.01) 0.17 (0.01) 0.12 (0.02) 0.10 (0.02) 0.08 (0.02) 0.10 (0.03) 0.07 (0.02) 0.06 (0.01)
LMS 0.20 (0.03) 0.17 (0.01) 0.17 (0.02) 0.12 (0.02) 0.10 (0.02) 0.08 (0.02) 0.10 (0.03) 0.08 (0.02) 0.06 (0.01)
LNMS 0.22 (0.03) 0.22 (0.01) 0.19 (0.02) 0.20 (0.02) 0.13 (0.03) 0.11 (0.01) 0.14 (0.02) 0.14 (0.02) 0.11 (0.02)
BRFA 0.19 (0.03) 0.19 (0.01) 0.16 (0.02) 0.12 (0.02) 0.10 (0.01) 0.08 (0.01) 0.08 (0.02) 0.07 (0.01) 0.06 (0.01)

Scenario 2

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.05 (0.01) 0.03 (0.01) 0.07 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
Ridit 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.02 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
NM 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
LMS 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.07 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
LNMS 0.15 (0.03) 0.11 (0.02) 0.08 (0.01) 0.10 (0.02) 0.07 (0.01) 0.05 (0.01) 0.08 (0.02) 0.06 (0.02) 0.03 (0.01)
BRFA 0.10 (0.02) 0.09 (0.02) 0.06 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)

Scenario 3

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.01 (0.01)
Ridit 0.04 (0.01) 0.05 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
LNMS 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
BRFA 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01) 0.02 (0.01)

Mixture scenario

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.01) 0.05 (0.02) 0.04 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01)
Ridit 0.06 (0.01) 0.04 (0.02) 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01)
NM 0.07 (0.02) 0.04 (0.02) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01)
Blom 0.07 (0.02) 0.04 (0.02) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01)
NMS 0.07 (0.02) 0.04 (0.02) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01)
LMS 0.07 (0.02) 0.04 (0.02) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01)
LNMS 0.07 (0.01) 0.07 (0.01) 0.04 (0.01) 0.06 (0.01) 0.05 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01)
BRFA 0.10 (0.02) 0.08 (0.02) 0.05 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
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A.5 Naive Bayes

For C = 5 the mean misclassi�cation rates obtained by applying the naive
Bayes classi�er to the data scored through BRFA are generally the high-
est ones in scenario 2 and �mixture� (�gures A.42 and A.44), excluding the
log-normal scores. Our method of scoring does not seem to be the most
appropriate for the naive Bayes classi�er which, as mentioned in chapter 5,
is the classi�er that performs best (together with SVM) on the simulated
datasets. By reducing the p ordinal variables to a single continuous variable
with BRFA the naive Bayes classi�er provides generally worse results in the
simulations. The scenario 3 (�gure A.43) is an exception as, for p = 40 and
p = 100, the scoring methods applied to highly skewed and well-separated
data provide identical results. Generally, it is possible to notice that, except
for scenario 2, the mean misclassi�cation rates among the scoring methods
are not signi�cantly di�erent in high dimensional datasets.
Also for the naive Bayes classi�er the log-normal scores seems to not be ap-
propriate for these kind of data (with the exception of scenario 3) and are
associated with higher misclassi�cation rates.
As for the other classi�ers, the naive Bayes behaves in a similar way for C = 5

and C = 3. For this reason the latter case will not be further commented.
In the case of features with mixed number of possible categories (�gures
A.49 to A.52) in scenario 1, 2 and �mixture� for high dimensional datasets
the scoring methods do not signi�cantly di�er while, for lower values of p,
the BRFA results are generally worse. In scenario 3 there are not signi�cant
di�erences among scoring methods for every value of p.
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A.5.1 Simulation results for C = 5

Figure A.42: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.43: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 5 categories.
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Figure A.44: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 5

categories.
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Table A.12: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for naive Bayes in the four considered scenar-

ios. Simulation results refer to the case of ordinal features with �ve categories

(C = 5).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.22 (0.03) 0.2 (0.03) 0.19 (0.02) 0.17 (0.02) 0.13 (0.03) 0.11 (0.02) 0.06 (0.02) 0.06 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01)
Ridit 0.20 (0.04) 0.17 (0.02) 0.19 (0.02) 0.14 (0.02) 0.13 (0.02) 0.10 (0.02) 0.06 (0.02) 0.05 (0.02) 0.05 (0.01) 0.08 (0.02) 0.04 (0.01) 0.04 (0.01)
NM 0.20 (0.03) 0.17 (0.02) 0.19 (0.02) 0.14 (0.01) 0.13 (0.02) 0.10 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01)
Blom 0.20 (0.03) 0.17 (0.02) 0.19 (0.02) 0.14 (0.01) 0.13 (0.02) 0.10 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01)
NMS 0.19 (0.03) 0.17 (0.02) 0.19 (0.02) 0.14 (0.01) 0.13 (0.02) 0.10 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01)
LMS 0.20 (0.03) 0.18 (0.02) 0.19 (0.02) 0.16 (0.02) 0.13 (0.02) 0.10 (0.02) 0.06 (0.01) 0.06 (0.02) 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.04 (0.01)
LNMS 0.34 (0.03) 0.35 (0.02) 0.38 (0.01) 0.36 (0.03) 0.36 (0.02) 0.37 (0.02) 0.27 (0.02) 0.36 (0.02) 0.35 (0.02) 0.32 (0.02) 0.30 (0.03) 0.31 (0.03)
BRFA 0.22 (0.03) 0.24 (0.03) 0.23 (0.03) 0.20 (0.03) 0.22 (0.03) 0.15 (0.01) 0.06 (0.01) 0.08 (0.02) 0.07 (0.01) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Ridit 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Blom 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NMS 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.06 (0.02) 0.03 (0.01) 0.02 (0.01)
LMS 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LNMS 0.26 (0.04) 0.27 (0.03) 0.24 (0.01) 0.20 (0.03) 0.2 (0.01) 0.19 (0.02) 0.12 (0.02) 0.11 (0.02) 0.10 (0.02) 0.13 (0.02) 0.04 (0.01) 0.03 (0.01)
BRFA 0.16 (0.03) 0.08 (0.01) 0.05 (0.01) 0.14 (0.03) 0.09 (0.02) 0.04 (0.01) 0.10 (0.02) 0.09 (0.01) 0.06 (0.01) 0.20 (0.04) 0.07 (0.01) 0.05 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
LNMS 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.07 (0.02) 0.06 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.06 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
Ridit 0.05 (0.02) 0.05 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
NM 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
Blom 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
NMS 0.05 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LMS 0.05 (0.02) 0.06 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LNMS 0.08 (0.02) 0.09 (0.01) 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
BRFA 0.14 (0.02) 0.13 (0.02) 0.08 (0.01) 0.12 (0.03) 0.12 (0.02) 0.11 (0.01) 0.07 (0.02) 0.07 (0.01) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01)
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A.5.2 Simulation results for C = 3

Figure A.45: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.46: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.47: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have C = 3 categories.
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Figure A.48: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have C = 3

categories.
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Table A.13: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for naive Bayes in the four considered sce-

narios. Simulation results refer to the case of ordinal features with three

categories (C = 3).

Scenario 1

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.20 (0.03) 0.22 (0.03) 0.22 (0.02) 0.22 (0.02) 0.15 (0.02) 0.10 (0.01) 0.06 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
Ridit 0.19 (0.04) 0.22 (0.03) 0.23 (0.02) 0.22 (0.02) 0.17 (0.02) 0.10 (0.01) 0.06 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
NM 0.20 (0.03) 0.22 (0.03) 0.21 (0.02) 0.25 (0.02) 0.15 (0.02) 0.10 (0.01) 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
Blom 0.20 (0.03) 0.22 (0.03) 0.21 (0.02) 0.25 (0.02) 0.15 (0.02) 0.10 (0.01) 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
NMS 0.20 (0.03) 0.22 (0.03) 0.22 (0.02) 0.23 (0.02) 0.15 (0.02) 0.10 (0.01) 0.06 (0.02) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
LMS 0.20 (0.03) 0.22 (0.03) 0.21 (0.02) 0.24 (0.02) 0.15 (0.02) 0.10 (0.01) 0.07 (0.02) 0.06 (0.01) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 0.04 (0.01)
LNMS 0.28 (0.05) 0.34 (0.02) 0.32 (0.01) 0.33 (0.03) 0.27 (0.03) 0.27 (0.02) 0.24 (0.02) 0.22 (0.02) 0.22 (0.01) 0.16 (0.03) 0.19 (0.02) 0.20 (0.01)
BRFA 0.26 (0.04) 0.30 (0.02) 0.27 (0.02) 0.25 (0.03) 0.23 (0.02) 0.12 (0.01) 0.09 (0.03) 0.08 (0.02) 0.07 (0.01) 0.04 (0.02) 0.04 (0.01) 0.03 (0.01)

Scenario 2

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.07 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
NM 0.07 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
Blom 0.07 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
LMS 0.07 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
LNMS 0.21 (0.02) 0.19 (0.03) 0.23 (0.02) 0.12 (0.03) 0.13 (0.02) 0.14 (0.02) 0.06 (0.02) 0.06 (0.01) 0.05 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
BRFA 0.14 (0.03) 0.11 (0.02) 0.08 (0.01) 0.11 (0.02) 0.10 (0.02) 0.06 (0.01) 0.10 (0.02) 0.07 (0.01) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01) 0.02 (0.01)

Scenario 3

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
Ridit 0.04 (0.02) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
LNMS 0.05 (0.02) 0.05 (0.01) 0.04 (0.01) 0.04 (0.02) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
BRFA 0.06 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01)

Mixture scenario

p=10 p=20 p=40 p=100

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.05 (0.02) 0.04 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
Ridit 0.06 (0.02) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
NM 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
Blom 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
LMS 0.06 (0.02) 0.05 (0.02) 0.04 (0.01) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
LNMS 0.09 (0.02) 0.09 (0.02) 0.07 (0.01) 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
BRFA 0.16 (0.03) 0.15 (0.02) 0.10 (0.01) 0.09 (0.02) 0.09 (0.02) 0.07 (0.01) 0.04 (0.02) 0.04 (0.01) 0.02 (0.01) 0.03 (0.01) 0.03 (0.01) 0.01 (0.01)
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A.5.3 Simulation results for C = 357

Figure A.49: Results for scenario 1. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.50: Results for scenario 2. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.51: Results for scenario 3. Each block corresponds to a di�erent

number of features. The points inside each block are the mean misclassi�ca-

tion rates from a 10-fold cross-validation for di�erent number of instances.

Ordinal variables have been generated so that they have di�erent number of

categories C = 357.
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Figure A.52: Results for �mixture� scenario. Each block corresponds to a

di�erent number of features. The points inside each block are the mean mis-

classi�cation rates from a 10-fold cross-validation for di�erent number of

instances. Ordinal variables have been generated so that they have di�erent

number of categories C = 357.
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Table A.14: Mean misclassi�cation rates (with standard errors in brackets)

over a 10-fold cross-validation for naive Bayes in the four considered sce-

narios. Simulation results refer to the case of ordinal features with di�erent

number of categories (C = 357).

Scenario 1

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.19 (0.03) 0.17 (0.02) 0.14 (0.02) 0.12 (0.02) 0.09 (0.02) 0.07 (0.01) 0.08 (0.02) 0.07 (0.01) 0.04 (0.01)
Ridit 0.15 (0.02) 0.16 (0.02) 0.14 (0.02) 0.12 (0.02) 0.08 (0.02) 0.06 (0.01) 0.09 (0.02) 0.07 (0.01) 0.04 (0.01)
NM 0.16 (0.02) 0.16 (0.02) 0.15 (0.02) 0.12 (0.02) 0.08 (0.02) 0.06 (0.01) 0.08 (0.02) 0.07 (0.02) 0.04 (0.01)
Blom 0.16 (0.02) 0.16 (0.02) 0.15 (0.02) 0.12 (0.02) 0.08 (0.02) 0.06 (0.01) 0.08 (0.02) 0.07 (0.02) 0.04 (0.01)
NMS 0.18 (0.02) 0.17 (0.02) 0.14 (0.02) 0.12 (0.02) 0.08 (0.02) 0.06 (0.02) 0.08 (0.02) 0.07 (0.02) 0.04 (0.01)
LMS 0.18 (0.02) 0.17 (0.02) 0.14 (0.01) 0.13 (0.03) 0.09 (0.02) 0.06 (0.01) 0.08 (0.02) 0.07 (0.02) 0.04 (0.01)
LNMS 0.32 (0.01) 0.30 (0.02) 0.28 (0.02) 0.26 (0.03) 0.25 (0.03) 0.23 (0.02) 0.20 (0.02) 0.27 (0.03) 0.24 (0.01)
BRFA 0.22 (0.03) 0.25 (0.03) 0.17 (0.03) 0.13 (0.02) 0.12 (0.02) 0.08 (0.01) 0.07 (0.02) 0.08 (0.02) 0.06 (0.01)

Scenario 2

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.06 (0.02) 0.04 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.03 (0.01)
Ridit 0.07 (0.02) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01)
NM 0.07 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01)
Blom 0.07 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01)
NMS 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01)
LMS 0.07 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01)
LNMS 0.25 (0.03) 0.24 (0.03) 0.17 (0.03) 0.12 (0.02) 0.12 (0.02) 0.12 (0.01) 0.1 (0.02) 0.07 (0.01) 0.05 (0.01)
BRFA 0.13 (0.02) 0.12 (0.02) 0.07 (0.02) 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)

Scenario 3

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.08 (0.02) 0.05 (0.01) 0.04 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.05 (0.01) 0.03 (0.01)
Ridit 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
NM 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
Blom 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
NMS 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
LMS 0.08 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01)
LNMS 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
BRFA 0.07 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02 (0.01)

Mixture scenario

p=15 p=30 p=60

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

Raw 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)
Ridit 0.06 (0.02) 0.03 (0.01) 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
NM 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
Blom 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
NMS 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LMS 0.06 (0.02) 0.03 (0.01) 0.03 (0.01) 0.05 (0.02) 0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)
LNMS 0.07 (0.02) 0.04 (0.01) 0.06 (0.01) 0.03 (0.01) 0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) 0.01 (0.01)
BRFA 0.14 (0.02) 0.14 (0.02) 0.09 (0.02) 0.1 (0.03) 0.09 (0.01) 0.06 (0.01) 0.08 (0.02) 0.05 (0.01) 0.03 (0.01)
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