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Abstract 

 

With more than 100.000 extant species, Mollusca is the second Phylum for number of 

species after arthropods. Molluscs are abundant in most marine and terrestrial 

environments and some species have adapted to live in extreme conditions. Also, this 

taxon shows a great diversity in term of morphology, size, complexity and behavioral 

repertories. All these features make mollusc species excellent candidates for studying 

evolution. Nevertheless, few comparative genomic or transcriptomic works are present in 

literature and most of the biological questions investigated so far remain unexplored in this 

Phylum. In addition, most of the bioinformatics tools required to analyze High Throughput 

Sequencing (HTS) data are optimized for model species, making the investigation of non-

model organisms far to be straightforward.  

During my PhD, my research activity was twofold: I first developed a pipeline specifically 

designed for the annotation of transcriptomes in non-model animals; then I used RNA-Seq 

data to investigate transcriptomes from mature gonads of R. decussatus and R. 

philippinarum (Bivalvia, Veneridae), focusing my analyses on the evolution of sex-biased 

genes and on the co-evolution of mitochondrial and nuclear genomes. 
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Introduction 

High Throughput Sequencing for studying 
evolution 
 

The development of High-Throughput Sequencing (HTS) changed completely the         

way of doing biological research. Since the first human genome was completed in             

2001, with an estimated cost of 2.7 billion dollars and 10 years of work, large               

technological improvements have been made. Today, HTS have drastically reduced          

costs and times: different platforms have been developed to optimize the sequencing            

and the quality and length of the reads have been rapidly increasing (Table 1) (da               

Fonseca et al. 2016). As a consequence, obtaining complete genomes and           

transcriptomes is now easier for scientists and an unprecedented volume of data is             

available on public databases, such as the Sequence Read Archive (SRA) or the             

Transcriptome Shotgun Assembly (TSA) (http://www.ncbi.nlm.nih.gov). In addition,       

many projects aim at increasing the number of taxa sequenced: good examples are             

the Genome 10K Project, established for sequencing 10,000 vertebrate genomes          

(Koepfli et al. 2015).  

The availability of this huge amount of data allows to investigate virtually any             

biological question: HTS are indeed largely used in ecology, genetics, conservation           

biology, and biomedical fields. Moreover, the possibility to compare genomes or           

transcriptomes had a profound impact on evolutionary biology. Choosing the proper           

sequencing approach, it is possible to investigate biological questions at any           

evolutionary time scale. As shown in figure 1, different HTS methods are applied at              

distinct evolutionary times, providing insights from deep level relationship in Metazoa           

(see for example Smith et al. 2011), to microevolutionary mechanisms, such as in             

closely-related species or populations (Parker et al. 2017). 

Genomes and transcriptomes are therefore a crucial resource for studying evolution,           

and they are largely used for phylogenetic analyses, to investigate development,           
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genome structures, alternative splicing, regulatory networks, protein family        

expansion/contraction and gene gain/loss across taxa. 

 

 

 

Also, by analyzing the rate of protein evolution, typically calculated as rate of             

nonsynonymous to synonymous substitution (dN/dS), it is possible to detect rapidly           

evolving genes, and estimate the contribution of natural selection and genetic drift in             

the evolution of different lineages. For example, the calculation of dN/dS from            
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thousands of genes in mammals has shown that the mean rate of protein evolution              

ranges between 0.10 and 0.25 (Chimpanzee Sequencing and Analysis Consortium          

2005), and that about 75-90% of nonsynonymous substitution are removed by           

purifying selection. 

A method that represented a major breakthrough is RNA-Seq (Mortazavi et al. 2008),             

a powerful approach to investigate biological issues also in species where a genome             

reference is not available, providing information about both transcript sequence and           

abundance. This has great impact on the study of evolution, since it is commonly              

known that changes in spatio-temporal gene expression play a crucial role in            

adaptive evolution and are responsible for divergence in development (Harrison et al.            

2012). In fact, orthologous genes show large differences in expression even between            

closely related species. For example, most of the phenotypic differences between           

human and chimpanzees are not explained by changes in proteins but rather by             

differences in gene regulation (Romero et al. 2012). The same way, males and             

females share almost the same genome, and the differences in terms of sexual             

dimorphism and behavior are the result of genes that are preferentially expressed in             

one of the other sex (Ellegren & Parsch 2007). For a detailed discussion about this               

topic see Chapter 3. 

 
 

Figure 1. Application of different high-throughput sequencing methods to different 
evolutionary time scales (da Fonseca et al. 2016). 
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The importance of animal non-model species 
 

While for some species a large amount of sequencing data is available in the public               

databases, there is a severe lack of data for a wide range of taxa. Within vertebrates,                

50% of primate families have a genome reference, and mammals in general are well              

characterized; on the contrary, few data are available for reptiles and amphibian,            

while birds have been sequenced more extensively just very recently (Ellegren           

2014). On the other hand, outside vertebrates, sequencing data are far from being             

representative of animal diversity: there are no reference genomes for about half of             

the insect orders, and much less data are available for other invertebrates (see for              

example Dunn & Ryan 2015). Therefore, the list of sequenced animal taxa is greatly              

biased toward model species, vertebrates, domesticated species as well as species           

used for agriculture purposes. This lack of information precludes our capabilities to            

infer many biological questions and, so far, the study of evolution has been based on               

the investigation of a limited number of species, resulting often in a generalization of              

the studied mechanisms and in a limitation of our comprehension about the patterns             

of evolution. Indeed, works on non-model organisms often reveal lineage-specific          

features such as, for instance, adaptations, gene gain/loss, and gene          

neofunctionalization. For example, the sequencing of the Pacific sea gooseberry          

(Pleurobrachia bachei) genome, with other 10 ctenophore transcriptomes, revealed         

the absence of HOX genes as well as classical neurotransmitter pathways. This            

evidence suggested that the ctenophore neural system evolved independently from          

that in other animals (Moroz et al. 2014). Similarly, the genome of the African              

coelacanth, Latimeria chalumnae, revealed changes in genes and regulatory element          

involved in immunity and development of fins, tail, ear, brain and olfaction, providing             

insights into vertebrate evolution and water-to-land transition. Table 2 reports some           

key findings obtained from sequencing of non-model species. In order to have a             

complete landscape of the evolution, it is necessary to fill the gap with sequencing              

data from the least represented taxa. The Global Invertebrate Genomics Alliance           

(GIGA) is moving in this direction (GIGA Community of Scientists et al. 2014;             
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Voolstra et al. 2017), aiming to obtain 7000 between genomes and transcriptomes of             

non-model invertebrate species. 

On the other hand, it must be highlighted that working on non-model species is often               

far to be straightforward. In order to analyze the large amount of data coming from               

HTS, we need bioinformatics tools that were designed, tested, and optimized for            

model species. Also, assembling the whole genome or transcriptome is only the first             

step. A critical point is having a good annotation, fundamental for any downstream             

analysis: many of the annotation methods used so far are based on sequence             

similarity. Since most of the protein or nucleotide sequences in databases come from             

model species, this method is more adequate for taxa that are reasonably            

close—from an evolutionary point of view—to such species. If this is not the case, a               

considerable part of genes will have either no annotation, or a low quality annotation;              

as a result, sequences labeled with “unknown protein” are very common in            

databases. This issue will be discussed more in detail in Chapter 2. 

Another important point is the detection of orthologous genes. Orthologs are coding            

sequences that evolved from a common ancestral gene and diverged after a            

speciation event. Inferring orthology is a central point for comparative analyses,           

which, in turn, is fundamental for studying evolution. There are many methods for             

detecting orthologs but, even in this case, most of them are based on sequence              

similarity, therefore, when we compare species with phylogenetic distances of          

hundreds of millions years, only highly conserved orthologous genes will be           

identified, while those that are more variable, and likely more interesting for the study              

of evolution, will be discarded from the analyses (this point will be discussed in              

Chapter 3). 

There is no simple solution for these problems about the study of non-model species,              

but an increase in available data and an implementation of bioinformatic tools to             

allow a proper comparison between distant taxa is necessary for a complete            

comprehension of many biological fields. 
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Table 2. Example of key findings from genomes and transcriptomes of non-model species. 
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Why Mollusca? 
 
With more than 100,000 extant species, Mollusca is the second Phylum for number             

of species after arthropods (Haszprunar et al. 2008). This taxon originated before            

Cambrian and contains eight extant classes: Bivalvia, Cephalopoda, Gastropoda,         

Scaphopoda, Polyplacophora, Monoplacophora, Caudofoveata, and Solenogastres.      

These Classes show a great diversity in term of morphology, size, complexity, and             

behavioral repertories (figure 2). Molluscs are abundant in marine and terrestrial           

environments and some species can live in extreme conditions, such as           

hydrothermal vents. Some of species are invasive, like the Zebra mussel (Dreissena            

polymorpha), that causes every year millions of dollars of economic damage, while            

others are vectors of diseases and parasites. Furthermore, some bivalves (oysters,           

clams, mussels), gastropods (abalone, queen conch), and cephalopods (squid,         

octopus, and cuttlefish) represent a very important food source worldwide. Finally,           

other species are also important for their production of pearls (oysters) and shells.             

For all these reasons, molluscs are a fundamental component of fisheries and            

aquaculture. 

Figure 2. An example of the great diversity within the phylum Mollusca. A) Glaucus atlanticus (Gastropoda); 
B) Tonicella lineata (Polyplacophora); C) Ctenoides scaber (Bivalvia); D) Wirenia argentea (Solenogastres); E) 

Sepioteuthis sepioidea (Cephalopoda);  F) Antalis vulgaris (Scaphopoda). 
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Besides their economic and ecological importance, molluscs are a model for studying            

brain organization, learning, memory, and eye development (Haszprunar &         

Wanninger 2012; Ogura et al. 2004; Hochner & Glanzman 2016; Tamvacakis et al.             

2015).  

Considering their great diversity, the number of species, and their ancient history,            

molluscs have all the features to be good candidates for studying evolution,            

nevertheless, they are widely underrepresented for what concerns genomics data:          

Mollusca, among Metazoa, is the Phylum with the lowest ratio between fraction of             

sequenced genomes and number of described species (Schell et al. 2017; figure 3).  

 

 

 
Figure 3. Number of described species and fraction of sequenced genomes in Animal phyla (Schell et al. 

2017). 
 

 

Indeed, only 12 genomes were published so far and they are not representative of              

the phylogenetic diversity, since five out of eight Classes have no reference            
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genomes. Also, the available mollusc genomes are very variable in terms of quality             

and completeness (table 3). The first to be assembled, in 2012, was the complete              

genome of the Pacific oyster Crassostrea gigas (Zhang et al. 2012), followed by the              

genomes of four other bivalves (Pinctada fucata, Mytilus galloprovincialis,         

Patinopecten yessoensis and Dreissena polymorpha), six gastropods (Lottia        

gigantea, Patella vulgata, Aplysia californica, Conus tribblei, Radix auricularia and          

Biomphalaria glabrata) and one cephalopod (Octopus bimaculoides) (Albertin et al.          

2015). Although much more transcriptome data are available on public databases,           

few comparative transcriptomic works are present in the literature and most of the             

biological questions investigated so far remain unexplored in Mollusca. 

If, on the one hand, nuclear genomes are far from being characterized in Mollusca,              

on the other hand, mitochondrial genomes (mtDNAs) have been more deeply           

investigated, mostly by using Sanger sequencing. Such studies revealed several          

peculiar features: compared to most Metazoa, mitochondrial genomes of molluscs          

can be particularly large (> 42 kb), have great variations in gene content—in terms of               

both gene gain and loss—and gene order, with common events of rearrangements            

(Breton et al. 2014). Also, mollusc mtDNAs are tyically characterized by high            

substitution rates and a large fraction of non-coding regions (unassigned regions,           

URs). In addition, a unique mechanism of mitochondrial inheritance was found in            

~100 bivalve species (Gusman et al. 2016) and it will be discussed in the next               

Chapter.  

 

 

Introduction 10

https://paperpile.com/c/gYXBWc/1i31
https://paperpile.com/c/gYXBWc/4eLO
https://paperpile.com/c/gYXBWc/1i31
https://paperpile.com/c/gYXBWc/tYK1
https://paperpile.com/c/gYXBWc/bUQy


 

 
Table 3. Genome sequencing statistics of molluscs species, including assembly length, estimated 
genome size, % of assembled genome, n° of sequences obtained from the assembly , N50 length, 

technology used for the sequencing, coverage and a measure for the assessment of genome assembly 
completeness provided by BUSCO (Simão et al. 2015) . 
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An unusual mechanism of mitochondrial 
inheritance 
 
Metazoans are characterized by a strictly maternal inheritance of mitochondria (SMI),           

namely only females transmit mitochondria to the offspring, while paternal          

mitochondrial contribution is avoided in very different ways across eukaryotes (Sato           

& Sato 2013). It is commonly accepted that SMI appeared independently many times             

in the evolution of Eukaryotes, suggesting a strong evolutionary advantage of           

uniparental inheritance, such as limiting the spread of endosymbiotic parasites, lethal           

mutations and selfish genetic elements, and reducing intergenomic conflicts (Birky          

1995). Until now, the only known evolutionarily stable exception to SMI in Metazoa is              

the Doubly Uniparental Inheritance (DUI) (see Zouros 2013 for a detailed review). So             

far, DUI has been reported in ~100 species of seven families of bivalve molluscs              

(Donacidae, Hyriidae, Margaritiferidae, Mytilidae, Solenoidae, Unionidae and       

Veneridae; Gusman et al. 2016). In DUI species two distinct mitochondrial lineages            

are present: the F-type, inherited through eggs, and the M-type, inherited through            

sperm. The embryo, upon fertilization, receives both types of mitochondria, but if it             

develops into a female, the M-type gets degraded or diluted, and the adult female will               

be homoplasmic for the F-type. On the contrary, if the embryo develops into a male,               

the M-type will be predominant in the gonad, and present in variable amounts in the               

somatic tissues (Ghiselli et al. 2011). Consequently, the adult male will be            

heteroplasmic, but his gametes will be homoplasmic for the M-type (figure 4). 

Most of the issues about origin, evolutionary advantages (if any), as well as             

molecular mechanisms of DUI are still unknown. Figure 5 shows the distribution of             

DUI species within the Bivalvia class. The presence of this peculiar mechanism of             

mitochondrial inheritance is scattered across the phylogenetic tree, with entire          

families characterized by SMI. On the contrary, within families where DUI was            

detected, some species are characterized by SMI, while others by DUI. This            

evidence opens questions about the origin of DUI; if DUI appeared once during the              

evolution of Bivalvia, its origin should be dated in concomitance to the evolutionary             
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radiation of Autolamellibranchia (at the beginning of Ordovician), and this peculiar           

inheritance mechanism should have been subsequently lost in many taxa (Zouros           

2013). Otherwise, DUI could have been originated many times during the evolution of             

Bivalvia; in this case, multiple and independent origins might imply some sort of             

evolutionary advantage and/or functional role of this mechanism. In line with the            

hypothesis of a multiple emergence of DUI, a viral origin was proposed by (Milani et               

al. 2016): according to this theory, a virus could have infected some mitochondria,             

providing the organelles with the ability to avoid degradation in embryo and invade             

the germ line. 

 

 
Figure 4. Schematic illustration of DUI mechanism (Passamonti & Ghiselli 2009). 

 
The peculiar feature of DUI species is therefore the natural heteroplasmy of mtDNA             

in males. M-type and F-type genomes are very different in sequence: the amino acid              

p-distance varies according to the species, with lowest values in mytilids (~14%),            

highest in unionids (up to 52%) and with intermediate values in venerids (~34%)             
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(Zouros 2013; Doucet-Beauprè et al. 2010). Also, differences in gene content and            

gene order are common between the two mtDNAs. Particularly, a second copy of the              

gene cox2—120 bp longer than the original gene—was found in the M genome of              

Musculista senhousia (Passamonti et al. 2011). Similarly, the M-type genomes of           

Unionids show an extension of 48-192 codons at the 3’ end of the cox2 gene (Breton                

et al. 2009). Interestingly, a duplication of cox2 was detected also in Ruditapes             

philippinarum, but in the F-type genome. 

Finally, mitochondrial genomes of DUI species often harbor open reading frames with            

unknown homology and function (ORFans), located in the Unassigned Regions          

(URs) typical of most bivalve mtDNA (see Milani et al. 2013). ORFans were found in               

both M-type and F-type genomes of several DUI species and they are characterized             

by different lengths and positions. Although ORFans were initially considered as           

non-coding, the protein product of male and female ORFans was detected in gonads             

of Venustaconcha ellipsiformis, and a sex-specific function of such proteins was           

proposed by Breton et al. (2009). In addition, transcription of a M-type ORFan             

(rphm21) in R. philippinarum was reported in gonads, adductor and mantle of males             

(Ghiselli et al. 2013; Milani, Ghiselli, Iannello, et al. 2014). The protein RPHM21 was              

detected by Western blot and confocal microscopy in gonads and early embryos, as             

well (Milani, Ghiselli, Maurizii, et al. 2014). 
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Figure 5. Phylogenetic distribution of DUI families within Bivalvia class. 
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Aim of this thesis 
 
My research activity as PhD student was twofold: one, more general, is to start              

creating a comparative framework to analyze HTS data in non-model species           

(bivalve molluscs in particular); the other is to use such methodological structure to             

study the evolution of two bivalve species—Ruditapes decussatus and Ruditapes          

philippinarum (Bivalvia, Veneridae; figure 6)—focusing on sex biased genes and          

mito-nuclear coevolution.  

 
Figure 6. Ruditapes decussatus (left) and Ruditapes philippinarum (right). 

 
While R. decussatus—also known as grooved carpet shell—is native to the           

Mediterranean and European Atlantic coasts, R. philippinarum—also known as         

Manila clam—is native from Philippines, Korea, and Japan. Although the fishing of R.             

decussatus had historically a main role in the production of seafood in Italy, Spain              

and Portugal, the recent introduction in Europe of R. philippinarum led to a             

replacement of R. decussatus with R. philippinarum for aquaculture purposes, and to            

a consequent decline of R. decussatus population in the Southwestern Europe. In            

fact, compared to R. decussatus, R. philippinarum is preferred in fisheries, since it             

reaches sexual maturation at a smaller size, is faster growing, has a greater number              

of spawning events per year, a more extended breeding period, and a higher             

resistance to disease (Gosling 2003).  

Like some other bivalve species, R. philippinarum is characterized by DUI           

(Passamonti & Scali 2001) (see the paragraph “An unusual mechanism of           

mitochondrial inheritance”). Before the work in this thesis was carried out, no            
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information was available about the kind of mitochondrial inheritance of R.           

decussatus. The results of my first analyses showed that R. decussatus is a SMI              

species (Chapter 2 and Ghiselli et al. 2017), so it was used, in the following works, to                 

implement comparative analyses between congeneric species having a different         

mitochondrial inheritance mechanism (Chapters 3 and 4). Moreover, during my PhD,           

I developed a pipeline specifically designed for the annotation of transcriptomes in            

non-model animals (Chapter 1), then I used RNA-Seq data to: 1) obtain the             

mitochondrial genome of R. decussatus, validate it by Sanger sequencing, and           

investigate the kind of mitochondrial inheritance in this species (i.e.: DUI vs SMI; see              

Chapter 2 and Ghiselli et al. 2017); 2) investigate transcription data from mature             

gonads of R. decussatus and R. philippinarum, focusing on the evolution of            

sex-biased genes (Chapter 3); 3) analyze sequence and transcription variation in the            

subunits of the oxidative phosphorylation complexes between the two species,          

focusing on mito-nuclear coevolution (Chapter 4). I structured my work in the four             

following chapters, which correspond to 4 papers:one has been published in PeerJ            

(Chapter 2), one has been submitted to Genome Biology and Evolution (pending            

major revision Chapter 3), and two in preparation (Chapters 1 and 4):  

 

1) A transcriptome annotation pipeline for non-model organisms;  

2) The complete mitochondrial genome of the grooved carpet shell, Ruditapes          

decussatus (Bivalvia, Veneridae); 

3) Comparative transcriptomics in two bivalve species offers different        

perspectives on the evolution of sex-biased genes; 

4) No evidence for nuclear compensation hypothesis in species with different          

mechanisms of mitochondrial inheritance. 

 

Short summaries of the 4 articles are reported in the next paragraph. 
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Short summaries 
 
1. A transcriptome annotation pipeline for non-model organisms 
The introduction of high-throughput sequencing technologies allowed researchers to         

generate large amounts of genomic data at limited cost and time. This opportunity             

had a groundbreaking impact on the study of non-model organisms: above all,            

RNA-Seq and de novo transcriptome assembly represent a valuable source of           

information in species for which genomic resources are scarce or absent. However,            

sequencing and assembly are only the first steps, and an accurate annotation is             

fundamental for every kind of biological analysis. Annotation of transcriptomes from           

model organisms and their closely-related species is quite straightforward, and is           

generally based on simple sequence similarity searches. Conversely, non-model         

organisms require more complex and integrated procedures in order to infer remote            

homology and function. I present a pipeline specifically thought for the annotation of             

transcriptomes of non-model organisms. It consists of an integrated approach that           

combines different bioinformatics tools to obtain: 1) filtration from contaminant          

sequences; 2) ORF prediction, identification of pseudogenes and artificially fused          

transcripts; 3) annotation at the amino acid level, based both on sequence similarity             

and on the identification of conserved domains by protein signature recognition,           

functional annotation by the assignment of GO terms; 4) identification of orthologs            

and paralogs; 5) annotation at the nucleotide level; 6) low quality annotation and             

protein feature prediction. I tested this pipeline by re-annotating the transcriptome of            

Ruditapes philippinarum (Bivalvia, Veneridae). 

 

 

2. The complete mitochondrial genome of the grooved carpet shell, Ruditapes           

decussatus (Bivalvia, Veneridae) 

Molluscs, and particularly bivalves, show a great diversity of mitochondrial genomes,           

in terms of size (up to ∼47Kb) and features that are not common in most of Metazoa,                 

such as high proportion of non-coding sequences (URs), gene rearrangements,          

differences in strand usage and novel protein coding genes with unknown function            
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(ORFans). Also, a peculiar feature that characterized mtDNA of around 100 bivalve            

species is the doubly uniparental inheritance (DUI) (see the paragraph “An unusual            

mechanism of mitochondrial inheritance”). The detection of DUI is not a           

straightforward process when we sequence mitochondrial genomes, especially using         

PCR-based approaches: in fact, since M-type and F-type can exhibit a nucleotide            

p-distance above 40%, primers may fail to amplify one of the two mtDNAs, yielding a               

false-negative result. Although, HTS approach has been scarcely used in analyzing           

mitochondrial genome and transcriptome data, it can easily detect low copy           

mitochondrial variants. 

In this work, I used RNA-Seq data to assemble, for the first time, the complete               

mitochondrial genome of the grooved carpet shell, Ruditapes decussatus, revealing          

the presence of a unique mtDNA variant in both males and females and, therefore, a               

strictly maternal inheritance of mitochondria in this species. The mitochondrial          

genome was also validated by Sanger sequencing. Also, I performed an analysis on             

sequence polymorphism (SP) and structural variants among the samples. Finally, I           

compared the mitochondrial features of R. decussatus with those of other venerid            

bivalves. 

 

 

3. Comparative transcriptomics in two bivalve species offers different         

perspectives on the evolution of sex-biased genes 

Despite the differences in terms of sexual dimorphism and behavior, males and            

females share almost the same genome. Therefore, the vast majority of sex-specific            

characters and traits are the result of differential expression of the so-called            

‘sex-biased genes’. Previous works reported that, in many organisms, genes that are            

more or exclusively transcribed in males (male-biased genes) show a higher rate of             

protein evolution—calculated as the ratio of nonsynonymous to synonymous         

nucleotide substitution (dN/dS). Particularly, male-biased genes seem to be the most           

divergent also in terms of transcription level. This evidence inspired the hypothesis of             

a positive correlation between the evolution of protein sequences and transcriptional           

divergence. Although the study of sex-biased genes is crucial for understanding the            

mechanisms of gene regulation and evolution, investigations on evolution and          
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transcription of such genes are missing for many taxa and no data about this topic               

are available on Mollusca. 

Another central point for understanding molecular evolution is what shapes the rate            

of protein sequence change. According to the most recent theories, transcription           

level has been proposed to be the main responsible for the rate of protein evolution a                

strong negative correlation was found between dN/dS and transcription level, across           

the three domains of life. 

In this work I obtained the gonadal transcriptome from males and females of the              

European clam R. decussatus and I compared it with the available gonadal            

transcriptome data (Ghiselli et al. 2012) from the species R. philippinarum. This            

comparison allowed to investigate, for the first time in two bivalve species, the             

evolution of both protein sequence and transcription level divergence of sex-biased           

genes. I also characterized the biological processes represented in male and female            

mature gonads of the two species. Finally, I investigated the relationship between the             

transcription level and rate of protein evolution in both R. decussatus and R.             

philippinarum.  

 

 

4. No evidence for nuclear compensation hypothesis in species with different           

mechanisms of mitochondrial inheritance 

Mitochondria are a fundamental component of the eukaryotic cell. Although they are            

involved in many biological processes, a central role of mitochondria is the            

production of ATP through oxidative phosphorylation (OXPHOS). Genes involved in          

this metabolic pathway are encoded by both nuclear and mitochondrial genome and            

a tight co-evolution and co-regulation of these two genomes is essential to maintain             

efficient mitochondrial activity. Indeed, many works investigated the effects of having           

different mtDNA variants working with the same nuclear background by producing           

cytoplasmic hybrids. These works shows detrimental effects of heteroplasmy, such          

as reduction of OXPHOS activity, oxidative damage, disruption of mitochondrial          

functions. All these evidences supports the theory that Metazoa have evolved a            

non-mendelian mechanism of mitochondrial inheritance in order to avoid the          
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presence of mixed mtDNA haplotypes in the same organism (Lane 2012), reducing            

the emergence of genomic conflicts and mito-nuclear incompatibilities. 

Although generating cytoplasmic hybrids is the most common method used to           

investigate the effects of heteroplasmy, and thus the dynamics of mito-nuclear           

co-evolution, the heteroplasmic condition is artificial and the biological processes          

may be affected by this. On the contrary, in the DUI male heteroplasmy is natural,               

therefore its biological functions and interactions between nucleus and mitochondria          

are the unaltered result of evolution. In this work I took advantage of the natural               

heteroplasmic condition of DUI species to get insights into the dynamics of            

mito-nuclear co-evolution. I compared the transcriptomes of the SMI species R.           

decussatus and the DUI species R. philippinarum. I investigated the rate of protein             

evolution and the transcription of both nuclear and mitochondrial genes involved in            

mitochondrial functions and I particularly focused on genes encoding for subunits of            

OXPHOS complexes. 
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Introduction 

 

The development of High Throughput Sequencing (HTS) had a profound impact on            

the study of non-model species. In particular, RNA-Seq data allow scientists to            

investigate biological issues in species where a genome reference is not available,            

and with reduced times and affordable costs. Nevertheless, a good quality           

transcriptome annotation is not easy to achieve, and most of the bioinformatics tools             

are usually optimized for model species and organisms for which there is abundant             

information in the databases. Therefore, a multi-software, integrated approach is          

necessary in order to infer remote homology and predict function in non-model            

species. Also, being unfamiliar with the Unix environment, command line tools, and            

scripting—necessary for handling and analyzing large datasets such those produced          

by HTS—may represent an obstacle for many researchers. For this reason, we            

developed a transcription annotation pipeline specifically for non-model organisms. It          

combines different tools and databases in order to filter the results from contaminants             

and maximize the detection of remote homology. This pipeline is composed by six             

main steps, aiming to obtain: 1) filtering from contaminant sequences; 2) ORF            

prediction, identification of pseudogenes and artificially fused transcripts; 3) amino          

acid sequence annotation, based on sequence similarity and on the identification of            

conserved domains by protein signature recognition, and functional annotation by the           

assignment of GO terms; 4) identification of orthologs and paralogs; 5) nucleotide            

sequence annotation (for noncoding transcripts); 6) low quality annotation and          

protein feature prediction (figure 7). 

Each step of the pipeline is described separately in this chapter, and all the scripts               

used are reported in an appendix at the end of each module. Most of the tools used                 

are stand-alone (i.e. they can be installed locally), except for Argot2 (step 3) and              

OrthoMCL (step 4) that requires access to the web. The Bash language was used for               

most of the scripts and an automated version in Python is almost ready to make this                

pipeline more “friendly” for researches that have no experience in shell scripting.  

Transcriptomes typically consist of tens of thousands sequences, and the annotation           

of such a large amount of data requires high performance computing. Softwares like             

BLAST, HMMER and InterProScan work faster using multiple CPUs: in that way the             
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programs can assign a process to each available thread and run them in parallel,              

saving time. For this reason, the use of a high performance computing cluster, or at               

least of a powerful multicore workstation is strongly recommended. If not possible, a             

good alternative is cloud computing, like for example Amazon EC2. It is also             

important to take into account that the softwares and the databases used in the              

pipeline require an appropriate storage space. 

Performing searches on tens of thousands sequences is computationally intensive          

and can take several days. A possible solution is to split the input fasta file into n                 

parts—depending on the number of available nodes—and run each part on a            

node/CPU (the so-called “divide et impera” approach). In this way it is possible to get               

parallelization from tools that are normally serial. Of course, each process can be run              

on multiple threads in a node. 

To test this pipeline, we re-annotated a R. philippinarum gonadal transcriptome           

previously annotated using BLAST2GO and BLASTX in (Ghiselli et al. 2012).           

Compared to the previous annotation, this pipeline yielded 15% more annotated           

genes. General statistics for each annotation step are reported in table 4. 

A detailed step-by-step description of the pipeline, as well as all the data of R.               

philippinarum annotation, are available online as an Open Science Framework (OSF,           

www.osf.io) project:  

https://osf.io/cdkb9/?view_only=f0b2cde926db43719f3d705012c4eeaa 
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1) Contaminant Filtering 
 
The first module of the annotation pipeline aims at removing all the contaminant             

sequences, namely transcripts not coming from the organism(s) of interest for the            

study. The problem of contaminants is well known in HTS data, nevertheless a             

filtering step is often omitted. Contaminants can be of different types and origin,             

depending on the organism (e.g. ecology, behavior), and the sampled tissue;           

common sources of contamination are the environment (e.g. air, soil, water),           

symbionts and/or parasites, food, etc. This step is extremely important to avoid data             

misinterpretation and the attribution of sequences to the wrong organism. The           

second mistake is particularly detrimental because it propagates through the          

databases yielding erroneous and misleading search results (Merchant et al. 2014). 

In principle, filtering can be performed before the assembly, directly on the reads, or              

after the assembly, on the contigs. The former approach has the advantage that             

contaminant reads are excluded from the downstream processes, reducing the          

possibility of generating chimeric contigs, and speeding up the assembly. Such kind            

of approach (e.g.: blobtools, formerly blobology, see Kumar et al. 2013; Laetsch &             

Blaxter 2017) was successfully applied to identify and remove an extensive           

contamination from the genome of the tardigrade Hypsibius dujardini (Koutsovoulos          

et al. 2016). In that case, before it was identified, the contamination led to a wrong                

interpretation of the data (i.e.: massive horizontal gene transfer, see Boothby et al.             

2015). That said, this approach cannot be used on transcriptomes, so a            

“post-assembly” approach must be taken. 

In this pipeline, the removal of contaminant contigs is achieved through a BLASTX             

search (Altschul et al. 1990) performed on the assembly against the nr database. By              

using proper flags, BLASTX will output the first 10 best hits for each query, and the                

taxon ID of the subject (staxids) for each matching organism (see appendix A for              

details). Next, we use the “genomes” Bioconductor library to obtain the full taxonomic             

lineage from the BLAST staxids. Then, by using the custom script “filter.sh”, each             

staxids will be associated to the full taxonomic lineage and so that the filtering is               
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possible at any taxonomic level, by keeping only contigs that have a strong match              

with the chosen taxon. 

In the annotation of R. philippinarum, we decided to keep only the queries that did               

have a strong match with ‘Metazoa’. This step allowed the removal of 1.7% of the               

contigs, coming from non-Metazoa contaminants (table 4). 
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2) ORF prediction 
 
Detection of ORFs is an essential step in the annotation of a whole transcriptome. In               

principle, any sequence between a start and a stop codon in each assembled contig              

could be a coding sequence. However, each contig can include tens of putative             

ORFs but, only one—or at most a few of them—will code for a protein. Therefore, a                

program for the prediction of coding ORFs is essential to filter non-coding sequences             

and make computational work less intense. In this module, we use ‘findorf’ for this              

purpose. Findorf is an ORF prediction tool— developed by Vincent Buffalo and tested             

in Krasileva et al. (2013)—specifically for non-model organisms        

(https://github.com/vsbuffalo/findorf). Compared to other ORF prediction tools, this        

includes a BLASTX search against separate user-defined databases from         

closely-related species. The annotation reported in databases from non-model         

species are almost always predicted automatically without human supervision, and          

may include errors. The advantage of this approach is that, by using different             

databases, each search will be validated by multiple independent sources. An           

example of databases used in the ORF prediction of R. philippinarum is shown in              

table 5. Furthermore, this tool performs an ‘hmmscan’ search—as implemented in           

HMMER (Finn et al. 2011)—against the Pfam database (Finn et al. 2014) in order to               

predict ORFs using Hidden Markov Model (HMM) profiles. Since HMMER needs           

amino acid sequences as input file, we use the EMBOSS ‘transeq’ tool (Rice et al.               

2000) to translate contigs in all the six frames. Finally, findorf identifies also             

frameshift mutations, premature stop codons, misassembled transcripts, and        

pseudogenes. 
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3) High-quality amino acid sequence annotation 
 
The central module of this pipeline consists in a high-quality amino acid sequence             

annotation. For this purpose, we use different approaches to annotate the ORFs            

predicted in step 2, and transcripts are annotated by using both sequence similarity             

search and identification of protein domains. 

A sequence similarity search is obtained with BLASTP (Altschul et al. 1990) and             

HMMER. we use BLASTP against the UniProt database (The UniProt Consortium,           

2015): in this way a sequence similarity search is performed against a high quality              

protein sequence database. On the other hand, a search based on Hidden Markov             

Model (HMM) profiles is performed by HMMER against the Pfam database. BLASTP            

and HMMER outputs are combined together by using Argot2 (Falda et al. 2012). This              

tool allows to provide a function prediction by assigning Gene Ontology (GO) terms             

(Ashburner et al. 2000). Since a stand-alone version of Argot2 is not available, this              

step needs the BLASTP and HMMER outputs to be uploaded on the Argot2 web              

server (http://www.medcomp.medicina.unipd.it/Argot2/) and the Argot2 results to be        

downloaded. This time consuming step has been automatized in our annotation           

pipeline, so that it can be executed from command line. 

In addition to the sequence similarity searches, we use InterProScan (Jones et al.             

2014) to protein domains. InterProScan is a software developed to identify predictive            

signatures, provided by multiple databases. An example of signature databases,          

used in the annotation of R. philippinarum, is shown in table 5. InterProScan provides              

also sequence function prediction by the assignment of GO terms. Figure 8 shows             

the contribution of each tool in the annotation of R. philippinarum ORFs. 
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Figure 8. Contribution of InterProScan, BLASTP and HMMER in the high quality amino acid sequence 
annotation (left) and the contribution of Argot2 and InterPro2GO inr the functional annotation (right) 
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4) Identification of orthologs and paralogs 
 
Detection of orthologs and paralogs is a crucial step for any comparative analysis. As              

for many analyses, the identification of orthologs with the available tools is optimal in              

model species (or species that are closely-related to them), therefore a combination            

of different tools is essential in this case to find clusters of orthologous groups              

(COGs).  

OrthoMCL (Li et al. 2003) is one of the most widely used softwares for orthology               

prediction. This program clusters the input sequences into orthologous groups using           

a reciprocal best BLAST hit approach (Fischer et al. 2011). OrthoMCL interrogates            

the OrthoMCL-DB (Chen et al. 2006) public database that contains orthologous           

groups pre-computed using the OrthoMCL algorithm. Nevertheless, non-model        

organisms are often underrepresented—or missing completely—in OrthoMCL-DB; for        

example, it does not include any sequence from Spiralia. For this reason, we also              

use ProteinOrtho (Lechner et al. 2011) and Orthofinder (Emms & Kelly 2015), two             

stand-alone programs that implement an extended version of the reciprocal best hit            

method, but, most importantly, that allow to create custom databases and therefore            

to search for orthologs in species that are closely-related to the one investigated.             

Table 5 shows a list of species that we used to create the database used with                

ProteinOrtho and Orthofinder. Figure 9 shows the contribution of each tool in the             

detection of COGs. 

 
Figure 9. Contribution of ProteinOrtho, Orthofinder and OrthoMCL in the detection of clusters of 

orthologous groups 
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5) Nucleotide annotation 
 
A nucleotide sequence annotation is performed in this step by using BLASTN            

(Altschul et al. 1990) against the nt database. This module was thought to annotate              

sequences that were not included in the previously steps, such as: 

 

1. contigs that did not get hits from the BLASTX search in step 1; 

2. contigs for which no ORFs were predicted in step 2; 

3. contigs with no amino acid sequence annotation in step 3. 

 

This search allows to infer ORFs that for some reason were not included in the               

previously analyses as well as to identify non-coding sequences that may be found in              

RNA-Seq data, irrespective of the kind of library preparation used. 
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6) Low-quality amino acid sequence annotation 
 
Finally, if no annotation is obtained from the previous steps, we use HMMER and              

PSI-BLAST (Altschul et al. 1997) to further search for remote homology. This module             

is based on the concept of protein domain conservation, and includes: 1) a HMMER              

search against the Pfam database with more permissive thresholds than those used            

in other steps of the pipeline; 2) a PSI-BLAST performed nr database.  

In this step we use the same input file used for the BLASTN search in step 5 (i.e.:                  

contigs that did not get hits from the BLASTX search in step 1; contigs for which no                 

ORFs were predicted in step 2; contigs with no amino acid sequence annotation in              

step 3) translated with the EMBOSS ‘transeq’ tool. Clearly, this last step yields a              

low-quality annotation, therefore a particular caution is needed in inferring homology           

and biological function from the results of this analysis; the annotation obtained with             

this module must be supported by human supervision. 

As a last step, when no annotation is retrieved even through this last step, we use                

different tools to obtain structural feature annotation (see table 5 for an example of              

software that may be used for this purpose). 
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Table 4. Annotation results of the  R. philippinarum transcriptome.  Colors recalls those used for different 
steps of the annotation pipeline  in Figure 7 

 
 
 
 

 
 

Table 5 . Example of databases and software used in the transcription annotation of R. philippinarum. 
Colors recalls those used for different steps of the annotation pipeline  in Figure 7  
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ABSTRACT
Despite the large number of animal complete mitochondrial genomes currently

available in public databases, knowledge about mitochondrial genomics in

invertebrates is uneven. This paper reports, for the first time, the complete

mitochondrial genome of the grooved carpet shell, Ruditapes decussatus, also known

as the European clam. Ruditapes decussatus is morphologically and ecologically

similar to the Manila clam Ruditapes philippinarum, which has been recently

introduced for aquaculture in the very same habitats of Ruditapes decussatus, and

that is replacing the native species. Currently the production of the European clam is

almost insignificant, nonetheless it is considered a high value product, and therefore

it is an economically important species, especially in Portugal, Spain and Italy. In

this work we: (i) assembled Ruditapes decussatusmitochondrial genome from RNA-

Seq data, and validated it by Sanger sequencing; (ii) analyzed and characterized the

Ruditapes decussatus mitochondrial genome, comparing its features with those of

other venerid bivalves; (iii) assessed mitochondrial sequence polymorphism (SP)

and copy number variation (CNV) of tandem repeats across 26 samples. Despite

using high-throughput approaches we did not find evidence for the presence of two

sex-linked mitochondrial genomes, typical of the doubly uniparental inheritance of

mitochondria, a phenomenon known in ∼100 bivalve species. According to our

analyses, Ruditapes decussatus is more genetically similar to species of the Genus

Paphia than to the congeneric Ruditapes philippinarum, a finding that bolsters the

already-proposed need of a taxonomic revision. We also found a quite low genetic

variability across the examined samples, with few SPs and little variability of the

sequences flanking the control region (Largest Unassigned Regions (LURs).

Strikingly, although we found low nucleotide variability along the entire

mitochondrial genome, we observed high levels of length polymorphism in the LUR

due to CNVof tandem repeats, and even a LUR length heteroplasmy in two samples.

It is not clear if the lack of genetic variability in the mitochondrial genome of

Ruditapes decussatus is a cause or an effect of the ongoing replacement of Ruditapes

decussatus with the invasive Ruditapes philippinarum, and more analyses, especially

on nuclear sequences, are required to assess this point.
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Subjects Zoology

Keywords Completemitochondrial genome,Mitochondrial length polymorphism,Mitochondrial

repeats, Codon usage, Bivalve molluscs, European clam, Comparative mitochondrial genomics,

mtDNA de novo assembly, RNA-Seq, Doubly uniparental inheritance

INTRODUCTION
Despite a large number of animal complete mitochondrial genomes (mtDNAs) being

available in public databases (>55,000 in GenBank), up to now sequencing has been

focused mostly on vertebrates (∼50,000 in GenBank), and the current knowledge about

mitochondrial genomics in invertebrates—with the notable exception of few model

organisms (e.g., Drosophila and Caenorhabditis elegans)—is uneven. To better understand

invertebrate mitochondrial biology—and, most importantly, mitochondrial biology and

evolution in general—it is necessary to adopt a more widespread approach in gathering

and analyzing data. Failing to do so would bias our knowledge toward a few taxonomic

groups, with the risk of losing a big part of the molecular and functional diversity of

mitochondria. Actually, despite maintaining its core features in terms of genetic content,

mtDNA in Metazoa shows a wide range of variation in some other traits such as, for

example, genome architecture, abundance of unassigned regions (URs)—namely regions

with no assigned product (protein, RNA)—repeat content, gene duplications, introns,

UTRs, and even additional coding genes (see Breton et al., 2014 for a review) or genetic

elements (e.g., small RNAs, see Pozzi et al., 2017). All this emerging diversity is in sharp

contrast with the—at this point outdated—textbook notion about mtDNAs role being

limited to the production of a few subunits of the protein complexes involved in oxidative

phosphorylation.

This paper reports, for the first time, the complete mitochondrial genome of the

grooved carpet shell, Ruditapes decussatus (Linnaeus, 1758). Ruditapes decussatus—also

known as the European clam—is distributed all over the Mediterranean coasts, as well as

on the Atlantic shores, from Lofoten Islands (Norway) to Mauritania, including the

British Isles. Ruditapes decussatus lives in warm coastal waters, especially in lagoons, and it

is morphologically and ecologically similar to the Manila clam Ruditapes philippinarum,

which has been recently introduced for aquaculture in the very same habitats of Ruditapes

decussatus. Ruditapes philippinarum, native from the Philippines, Korea, and Japan, was

accidentally introduced into North America in the 1930s, and from there it was purposely

introduced in France (1972), UK (1980), and Ireland (1982) for aquaculture purposes

(Gosling, 2003). According to historical records, Ruditapes decussatus was one of the most

important species for aquaculture in Europe, but overfishing, irregular yields, recruitment

failure, and outbreaks of bacterial infection pushed the producers to introduce Ruditapes

philippinarum; Italy imported large quantities of Ruditapes philippinarum seed from

UK in 1983 and 1984. Compared to the European clam, the Manila clam turned out to be

faster growing, more resistant to disease, to have a more extended breeding period and

a greater number of spawning events, and to begin sexual maturation earlier (i.e., at a smaller

size). Upon introduction of the more robust Ruditapes philippinarum, Ruditapes decussatus

suffered a population decline in the Southwestern Europe (Arias-Pérez et al., 2016), and
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currently the production of the European clam is almost insignificant. Nonetheless the

grooved carpet shell is considered a high value product, and therefore it is an economically

important species, especially in Portugal, Spain and Italy (Gosling, 2003; Leite et al., 2013;

de Sousa et al., 2014).

Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of

mtDNA variability and unusual features, such as: large mitochondrial genomes (up to

∼47Kb), high proportion of URs (i.e., number of base pairs annotated as URs over the

total mtDNA length), novel protein coding genes with unknown function, frequent and

extensive gene rearrangement, and differences in strand usage (Gissi, Iannelli & Pesole,

2008; Breton et al., 2011; Ghiselli et al., 2013; Milani et al., 2014b; Plazzi, Puccio &

Passamonti, 2016). Moreover, mitochondrial genome size varies among bivalves

because of gene duplications and losses (Serb & Lydeard, 2003; Passamonti et al., 2011;

Ghiselli et al., 2013), and sometimes genes are fragmented as in the case of ribosomal genes

in oysters (Milbury et al., 2010). The most notable feature of bivalve mtDNA is the doubly

uniparental inheritance (DUI) system of transmission (Skibinski, Gallagher & Beynon,

1994a, 1994b; Zouros et al., 1994a, 1994b). Under DUI, two different mitochondrial

lineages (and their respective genomes) are transmitted to the progeny: one is inherited

from the egg (female-transmitted or F-type mtDNA), the other is inherited from the

spermatozoon (male-transmitted or M-type mtDNA). Following fertilization, the early

embryo is heteroplasmic, but the type of mitochondria present in the adult is tightly

linked to its sex. Females are commonly homoplasmic for F, while males are heteroplasmic

with the following distribution of mtDNA types: the germ line is homoplasmic for the

M-type (which will be transmitted via sperm to male progeny), the soma is heteroplasmic

to various degrees, depending on tissue type and/or species (Ghiselli, Milani &

Passamonti, 2011; Zouros, 2013). To date, the only known animals exhibiting DUI

are about 100 species of bivalve molluscs (Gusman et al., 2016). This natural and

evolutionarily stable heteroplasmic system can be extremely useful to investigate several

aspects of mitochondrial biology (see Passamonti & Ghiselli, 2009; Breton et al., 2014;

Milani & Ghiselli, 2015;Milani, Ghiselli & Passamonti, 2016). Indeed, despite the fact that

many aspects of DUI are still unknown, there is evidence that DUI evolved from a strictly

maternal inheritance (SMI) system (Milani & Ghiselli, 2015; Milani, Ghiselli &

Passamonti, 2016), by modifications of the molecular machinery involved in

mitochondrial inheritance, through as-yet-unknown specific factors (see Diz, Dudley &

Skibinski, 2012; Zouros, 2013 for proposed models). The detection of DUI is not a

straightforward process, especially using PCR-based approaches: given that the divergence

between F and M genomes is often comparable to the distance between mtDNAs of

different classes of Vertebrates, primers may fail to amplify one of the two mtDNAs,

yielding a false-negative result. Moreover, M-type mtDNA can be rare in somatic tissues,

so it may be difficult to amplify from animals sampled outside of the reproductive

season, when gonads are absent (thoroughly discussed in Theologidis et al., 2008).

High-throughput sequencing (HTS) approaches can overcome such problems, because a

prior knowledge of the mtDNA sequence is not needed, and low-copy variants can be

easily unveiled (see Ju et al., 2011; King et al., 2014). Until now, HTS has been scarcely
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utilized to study mitochondrial transcriptomes and genomes (Pesole et al., 2012; Smith,

2013), even if it showed very good potential (Lubośny et al., 2017/2; Yuan et al., 2016).

In this work we: (i) assembled Ruditapes decussatusmitochondrial genome from RNA-Seq

data, and validated it by Sanger sequencing, (ii) analyzed and characterized Ruditapes

decussatus mitochondrial genome, comparing its features with those of other venerid

bivalves; (iii) assessed mitochondrial sequence polymorphism (SP) and structural

variants—copy number variation (CNV) of tandem repeats—among the sampled

animals.

MATERIALS AND METHODS
Sampling
The 26 Ruditapes decussatus specimens used in this study were collected from the

Northern Adriatic Sea, in the river Po Delta region (Sacca di Goro, approximate GPS

coordinates: 44�50′06″N, 12�17′55″E) at the end of July 2011, during the spawning season.
Each individual was dissected, and gonadal liquid collected with a glass capillary tube.

All the samples showed ripe gonads, consistently with the time of the year when the

sampling occurred. The gonadal liquid was checked under a light microscope to assess the

sex of the individual, and to make sure that the sample consisted of mature gametes.

Both the gamete samples and the clam bodies were flash-frozen in liquid nitrogen, and

stored at -80 �C, until nucleic acid extraction. Table S1 shows the sample list, and details

about data availability.

RNA-Seq
In total, 12 samples (six males and six females) were used for RNA-Seq. Total RNA

extraction and library preparation were performed following the protocol described in

Mortazavi et al. (2008), with the modifications specified in Ghiselli et al. (2012). The

12 samples were indexed, pooled and sequenced in two lanes (two technical replicates) of

Illumina GA IIx, using 76 bp paired-end reads.

De novo assembly
The mitochondrial genome of Ruditapes decussatus was not available in the databases, so

we used the transcriptome data to generate a draft to be used as a guide for Sanger

sequencing. Illumina reads from all 12 samples were pooled and compared to a set of

20 Bivalvia mitochondrial genomes to identify reads with mitochondrial origin.

Alignment was done using BLASTN. All reads with similarity yielding E-value < 1E-5

were then assembled into contigs using the A5 pipeline (version 2013032; Tritt et al., 2012)

and joined into scaffolds using CAP3 (Huang & Madan, 1999). For the quality check step,

we applied a PHRED Q-score cutoff threshold of 33; the other A5 parameters were set as

default. CAP3 was run with default settings as well.

Sanger validation
In total, 14 Ruditapes decussatus samples from the same collection campaign—sexed, and

stored at -80 �C—were used for DNA extraction. DNA from the gonadic tissue was
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extracted using the Qiagen DNeasy kit. Primers for mtDNA amplification were designed

based on contigs obtained from RNA-Seq matching venerid mtDNA sequences, then the

“primer walking” method was used to Sanger-sequence the complete mitochondrial

genome of Ruditapes decussatus. The primers were designed with the software Primer3

(Rozen & Skaletsky, 2000) and tested on several samples, then a female was chosen as

reference sample for Sanger validation of mtDNA de novo assembly. In addition, we

amplified the largest unassigned region (LUR) of 13 females to assess its variability

(see Results and Discussion). The list of the primers and their sequences are reported in

Table S2. PCR reactions were performed in a final volume of 50 ml using the GoTaq

Flexi DNA Polymerase Kit (Promega, Madison, WI, USA), on a 2720 Thermal Cycler

(Applied Biosystem, Foster City, CA, USA). The PCR reactions were set as follows: initial

denaturation 95 �C for 1 min, then 30 cycles of amplification (denaturation 95 �C for

1 min, annealing 48–60 �C for 1 min, extension 72 �C for 1 min/kb), then the final

extension at 72 �C for 5 min. PCR products were checked by electrophoretic run on

1% agarose gel, and then purified using the DNA Clean & Concentrator-25 kit

(Zymo Research, Irvine, CA, USA).

Sanger sequencing was performed by Macrogen Inc. (http://www.macrogen.com).

Sequences were aligned with the software MEGA 6.0 (Tamura et al., 2013), using the

contigs obtained by RNA-seq as a reference.

Annotation
Open reading frames (ORFs) were identified with ORF finder (Wheeler et al., 2005).

Alternative start codons were considered functional because they are common in Bivalvia.

ORFs were annotated starting from the first available start codon (ATG, ATA, or ATC)

downstream of the preceding gene, and ending with the first stop codon in frame (TAA or

TAG). tRNA genes and their structure were identified with MITOS (Bernt et al., 2013) and

ARWEN (Laslett & Canback, 2008). Secondary structures were predicted using the

RNAFold Server, included in the ViennaRNAWeb Services (http://rna.tbi.univie.ac.at/;

Gruber et al., 2008); the folding temperature was set at 16 �C which is the average annual

temperature of the water fromwhich the Ruditapes decussatus specimens used in this work

were fished (download RNAFold results from figshare: https://ndownloader.figshare.com/

files/8387672). tRNAs and other secondary structures were drawn with the software Varna

GUI (Darty, Denise & Ponty, 2009). Ribosomal small subunit (rrnS) and large subunit

(rrnL) were identified with BLASTN, and annotated considering the start and the end of

the adjacent genes as the boundaries of the rRNA genes. Non-genic regions were

annotated as URs. In order to identify the putative D-loop/control region (CR), we

analyzed the LUR with the MEME suite (Bailey et al., 2009) to find DNA motifs using the

following bivalve species as comparison: Acanthocardia tuberculata, Arctica islandica,

Coelomactra antiquata, Fulvia mutica,Hiatella arctica, Loripes lacteus, Lucinella divaricata,

Lutraria rhynchaena, Meretrix lamarckii (F-type), Meretrix lamarckii (M-type),

Meretrix lusoria, Meretrix lyrata, Meretrix meretrix, Meretrix petechialis, Moerella

iridescens, Nuttallia olivacea, Paphia amabilis, Paphia euglypta, Paphia textile, Paphia

undulata, Ruditapes philippinarum (F-type), Ruditapes philippinarum (M-type),
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Semele scabra, Sinonovacula constricta, Solecurtus divaricatus, Solen grandis, Solen strictus,

Soletellina diphos and the sea urchin Strongylocentrotus purpuratus (Echinoidea,

Strongylocentrotidae). The list of the species used in the phylogenetic analysis and in the

comparative analyses of DNA motifs, sequence similarity, and gene order are available in

Table S3. The GOMo (Gene Ontology for Motifs; Buske et al., 2010) tool of the MEME

suite was used to assign GO terms to the motifs discovered.

The number of repeats in the LUR of the reference sample (F4) was calculated with

tandem repeat finder (http://tandem.bu.edu/trf/trf.html), since the complete LUR sequence

was available (download tandem repeat finder results from Figshare: https://ndownloader.

figshare.com/files/8387666). In the other cases, in which the LUR could not be sequenced

without gaps, the number of repeats was inferred from agarose gel electrophoresis.

Other analyses
Comparisons among venerid complete mtDNAs were performed with BLAST Ring Image

Generator (BRIG) (Alikhan et al., 2011) and Easyfig (Sullivan, Petty & Beatson, 2011).

Descriptive statistics were obtained with MEGA v6.0 (Tamura et al., 2013), except for the

codon usage table, which was obtained with the Sequence Manipulation Suite (Stothard,

2000). SP assessment from RNA-Seq reads was performed with the Genome Analysis

Toolkit (GATK, McKenna et al., 2010), with the Sanger-sequenced mtDNA as reference.

For SP discovery and genotyping we used standard hard filtering parameters or variant

quality score recalibration (DePristo et al., 2011). The MitoPhast pipeline (Tan et al., 2015)

was used to obtain the Maximum Likelihood (ML) tree, which was visualized with

Evolview v2 (He et al., 2016). Briefly, MitoPhast takes as input GenBank files (.gb),

extracts the coding sequences, profiles the sequences with Pfam (Finn et al., 2016)

and PRINTS (Attwood et al., 2003), performs a multiple sequence alignment with

Clustal Omega (Sievers et al., 2011), removes poorly aligned regions with trimAl

(Capella-Gutiérrez, Silla-Martinez & Gabaldón, 2009), concatenates the coding sequences,

performs data partitioning and model selection, and then carries out a ML analysis using

RAxML (Stamatakis, 2014). The species used in the ML analysis, and their GenBank

Accession Numbers are listed in Table S3. Amino acid sequences of three different cox3

ORFs inferred from Sanger sequencing and GATK polymorphism data were analyzed with

InterProScan (Jones et al., 2014).

RESULTS
De novo assembly and Sanger validation
Despite using HTS on extracts of ripe gonads (i.e., mature gametes), and multiple

assembly strategies (see Discussion for details) we could not find evidence for DUI. The de

novo assembly process produced 9 contigs, of which 8 included multiple genes, and one

included a single gene (see Table 1). The sequences of the contigs in FASTA format are

available on figshare (https://ndownloader.figshare.com/files/8906839). In four cases

(Contigs 1, 3, 6, and 7) a clear polyadenylation signal was present, in other four cases

(Contigs 2, 5, 8, and 9) it was not. Contig 4, the only one including a single gene (cox3),

ends with just 8 As, so it is not clear if a polyadenylation signal is present in this case.
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In Contig 7 (that includes cox2, tRNA-Ile, nd4L, nd2, nd1, tRNA-Leu1, and cox1 genes)

there is a polyadenylation signal (56 As) after the cox2 gene.

The nine contigs were used as a scaffold for the primer walking procedure used for

Sanger validation of the de novo assembly. We first tried to connect the contigs designing

primers close to the 5′ and 3′ ends of each contig and pairing them following the gene

order of Paphia, because the sequence of genes in the contigs suggested that Ruditapes

decussatus gene order might have been similar. During such process, Contig 1 turned out

to be a chimeric assembly between two non-contiguous portions of the mtDNA, one

including atp6, nd3, and nd5, the other including cox1, tRNA-Leu1, nd1, nd2, and nd4L.

Once we amplified and sequenced the portions of mtDNA between the contigs, we

proceeded with the Sanger resequencing of the remaining parts.

Annotation and mtDNA features
The mitochondrial genome contains 13 protein-coding genes, and in the reference female

is 18,995 bp long (Fig. 1); the gene arrangement and other details are shown in Table 2. All

genes are located on the heavy strand, and in addition to the classic start codon ATG

(Met), the alternative start codons ATA (Met) and ATC (Ile) are present. The most

frequently used start codons are: ATA (cox1, nd1, nd4L, cox2, cob, atp8, nd4), and ATG

(nd2, atp6, nd3, nd5, nd6, cox3). The stop codons found are TAG (cox1, nd2, nd4L, cox2,

cytb, nd4) and TAA (nd1, atp6, nd3, atp8, nd6). The nd4 gene has an incomplete stop

codon (TA-). 22 tRNA genes were identified, including two tRNAs for leucine, tRNA-Leu1

(TAG) and tRNA-Leu2(TAA), and two for serine, tRNA-Ser1(TCT) and tRNA-Ser2

(TGA), both showing degenerate D-arm branches. tRNA structures are shown in Fig. S1.

The two rRNAs, rrnS and rrnL, were both identified: the rrnS is located between cox3 and

cox1, while rrnL is between cytb and atp6. URs were identified on the basis of unannotated

spaces between different genes; we found 24 URs (Table 3).

The analysis of the nucleotide composition points out that the mitochondrial genome

of this bivalve species exhibits high A+T content, totaling 63% vs 37% G+C. The

Table 1 Features of the contigs obtained by de novo assembly of mtDNA.

Contig Length Gene content Poly-A Notes

1 6,794 atp6_nd3_nd5_cox1_

tRNA-Leu1_nd1_nd2_nd4L

Yes Chimeric assembly. The contiguity

between nd5 and cox1 is an artifact

2 1,884 rrnS_cox3 No –

3 1,288 atp6_nd3 Yes –

4 1,663 cox3 ? The contig ends with just 8 As

5 1,934 atp8_nd4_tRNA-His_tRNA-Glu_

tRNA-Ser2_tRNA-Tyr

No –

6 1,831 atp8_nd4_tRNA-His Yes –

7 5,478 cox2_tRNA-Ile_nd4L_nd2_nd1_

tRNA-Leu1_cox1

Yes There is a polyadenylation signal

(56 As) after the cox2 gene

8 2,879 cytb_rrnL No –

9 952 nd6_tRNA-Lys_tRNA-Val_tRNA-Phe_

tRNA-Trp_tRNA-Arg_tRNA-Leu2

No –
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minimum values of A+T are found in cytb (60.1%) and nd4 (61%). The nucleotide

composition of every gene is shown in Table 4. According to the analysis above, both A

and T occur very frequently at the third position of codons (64.6% on average of A+T),

while the less frequent base in third position is C (12%). The most used codons are UUU

(Phe), counted 269 times, and UUA (Leu) counted 210 times (6.78% and 5.29% of the

total, respectively), while the less used codons are CGC (Arg) counted 6 times (0.15%),

ACC (Thr) and CCG (Pro) each counted 16 times (0.4%) (Table 5). Only in four cases

over 20 (Lys, Leu, Gln, Val), the most frequently used codon matches the correspondent

mitochondrial tRNA anticodon.

The UR11 is the LUR and is located between atp8 and nd5 (Figs. 1 and 2A). The LUR of

the female used for whole mtDNA Sanger sequencing (i.e., the reference female, F4) is

2,110 bp long, and includes 6.5 repeated sequences—each repeat having a length of 54 bp

—localized in the 3′ region of the LUR, just upstream the atp8 gene (Fig. 2A). DNA

secondary structure analysis predicted three stem-loop structures in such region (Fig. 2B

and Supplemental Information files on figshare: https://ndownloader.figshare.com/files/

8387672), with a change in Gibbs free energy (�G) of -71.38 Kcal/mol. We also amplified

and sequenced the LUR of 13 more females. We were not able to completely sequence

LURs longer than 2,110 bp, because of the known difficulties in Sanger sequencing of

Figure 1 Ruditapes decussatus mtDNA gene arrangement.
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Table 2 MtDNA gene arrangement of Ruditapes decussatus.

Name Type Start Stop Length (bp) Start Stop Anticodon

cox1 Coding 1 1,716 1,716 ATA TAG

tRNA-

Leu1

tRNA 1,754 1,815 62 TAG

nd1 Coding 1,822 2,739 918 ATA TAA

nd2 Coding 2,755 3,774 1,020 ATG TAG

nd4l Coding 3,780 4,052 273 ATA TAG

tRNA-Ile tRNA 4,125 4,190 66 GAT

cox2 Coding 4,228 5,499 1,272 ATA TAG

tRNA-Pro tRNA 5,553 5,616 64 TGG

cytb Coding 5,641 6,864 1,224 ATA TAG

rrnL rRNA 6,865 8,385 1,521

atp6 Coding 8,386 9,123 738 ATG TAA

nd3 Coding 9,145 9,552 408 ATG TAA

nd5 Coding 9,631 11,268 1,638 ATG TAG

atp8 Coding 13,379 13,504 126 ATA TAA

nd4 Coding 13,526 14,865 1,340 ATA TA-

tRNA-His tRNA 14,866 14,928 63 GTG

tRNA-Glu tRNA 14,929 14,990 62 TTC

tRNA-Ser2 tRNA 14,991 15,052 62 TGA

tRNA-Tyr tRNA 15,081 15,140 60 GTA

tRNA-Asp tRNA 15,218 15,280 63 GTC

tRNA-Met tRNA 15,294 15,358 65 CAT

nd6 Coding 15,380 15,874 495 ATG TAA

tRNA-Lys tRNA 15,897 15,959 63 TTT

tRNA-Val tRNA 15,960 16,021 62 TAC

tRNA-Phe tRNA 16,030 16,092 63 GAA

tRNA-Trp tRNA 16,093 16,155 63 TCA

tRNA-Arg tRNA 16,171 16,232 62 TCG

tRNA-

Leu2

tRNA 16,233 16,295 63 TAA

tRNA-Gly tRNA 16,297 16,358 62 TCC

tRNA-Gln tRNA 16,359 16,427 69 TTG

tRNA-Asn tRNA 16,435 16,497 63 GTT

tRNA-Thr tRNA 16,498 16,560 63 TGT

tRNA-Cys tRNA 16,565 16,626 62 GCA

tRNA-Ala tRNA 16,632 16,696 65 TGC

tRNA-Ser1 tRNA 16,698 16,764 67 TCT

cox3 Coding 16,765 17,730 966 ATG TAA

rrnS rRNA 17,731 18,995 1,265

Note:
The anticodon of tRNAs are reported in the 5′-3′ direction.
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regions including multiple repeats. The sequence alignment of the 13 LURs is available for

download from figshare (https://ndownloader.figshare.com/files/8360789). LUR lengths,

inferred from gel electrophoresis, are reported in Table 6, and they range from 2,000 to

5,000 bp. Two females (F3 and F17) showed length heteroplasmy of the LUR. The portion

of the genome occupied by URs varies between 14.11% and 29.38%, depending on

LUR length. The analysis with MEME (output shown in Figs. S2 and S3) unveiled two

motifs (Fig. 2C) that show a strong conservation within the Veneridae family, and with

S. purpuratus. The sea urchin was included in the analysis because Cao et al. (2004)

reported a match between some motifs found in the CR of the marine mussels Mytilus

edulis and Mytilus galloprovincialis with regulatory elements of the sea urchin CR.

Accordingly, the search with GOMo assigned a series of GO terms related to transcription

to the two motifs (Table S4).

Polymorphism
Table 7 (top) shows the statistics associated with the SP analysis performed with GATK on

the 12 samples used for RNA-Seq, with the Sanger-sequenced mtDNA as reference.

Overall, 257 SPs were called, of which 145 (56.4%) were located in coding sequences

Table 3 Unassigned regions (URs).

UR name Start Stop Length (bp)

UR1 1,717 1,753 37

UR2 1,816 1,821 6

UR3 2,740 2,754 15

UR4 3,775 3,779 5

UR5 4,053 4,124 72

UR6 4,191 4,227 37

UR7 5,500 5,552 53

UR8 5,617 5,640 24

UR9 9,124 9,144 21

UR10 9,553 9,630 78

UR11 (LUR) 11,269 13,378 2,110

UR12 13,505 13,525 21

UR13 15,053 15,080 28

UR14 15,141 15,217 77

UR15 15,281 15,293 13

UR16 15,359 15,379 21

UR17 15,875 15,896 22

UR18 16,022 16,029 8

UR19 16,156 16,170 15

UR20 16,296 16,296 1

UR21 16,428 16,434 7

UR22 16,561 16,564 4

UR23 16,627 16,631 5

UR24 16,697 16,697 1
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(CDS). Interestingly, most of the SPs were called because of private alleles of one single

male specimen (mRDI01). More in detail, 151 SPs out of 257 (58.7%) along the whole

mtDNA sequence, and 103 SPs out of 145 (71%) in CDS, were private of mRDI01. In

CDS, if we exclude the SPs associated with this male, the number of polymorphisms drops

to 42 over 14,920 bp of coding mtDNA (GATKoutput in VCF format and a detailed list of

SPs in tabular format is available on figshare: https://ndownloader.figshare.com/files/

8902537), of which 18 are represented by indels, 6 of which are located in 4 different

coding genes: one each in cox1, cytb, and nd5, plus 3 in cox3 (see Table 8). A file showing

the ORF generated by the different variants of cox3, and alignments between them is

available on figshare (https://ndownloader.figshare.com/files/8402471). Table 7 (bottom)

shows the number of SPs in males, in males except mRDI01, and in females both along the

whole mtDNA, and in CDS. The number in brackets represent the number of private SPs

for each category.

Comparison with other veneridae
Figure 3 shows the Ruditapes decussatus mtDNA map (external gray circle), and the

BLASTN identity (colored inner circles) with complete mtDNAs of other 10 venerid

species (see list in Table S3). Figure 4 shows the ML tree obtained with the MitoPhast

Table 4 Nucleotide composition.

Name Length (bp) T (%) C (%) A (%) G (%) A+T (%) T3 (%) C3 (%) A3 (%) G3 (%) A3+T3 (%)

cox1 1,716 35.8 15.5 25.8 22.9 61.6 39 12.1 28.0 21.3 67.0

nd1 918 38.7 12.5 24.0 24.8 62.7 38 10.1 30.7 21.2 68.7

nd2 1,020 38.3 11.0 24.8 25.9 63.1 35 11.5 29.4 24.4 64.4

nd4l 273 39.9 12.8 25.3 22.0 65.2 34 14.3 30.8 20.9 64.8

cox2 1,272 29.7 14.8 29.1 26.4 58.8 30 15.3 27.4 27.6 57.4

cob 1,224 37.4 17.2 22.7 22.6 60.1 41 14.7 21.8 22.1 62.8

rrnL 1,749 33.2 11.5 32.6 22.6 65.8 33 10.6 33.4 23.0 66.4

atp6 510 42.0 15.7 20.8 21.6 62.8 45 13.5 21.8 20.0 66.8

nd3 408 39.5 11.0 24.8 24.8 64.3 33 11.0 30.1 25.7 63.1

nd5 1,638 37.6 11.7 27.7 23.0 65.3 35 11.0 34.2 19.8 69.2

atp8 126 44.4 11.9 19.0 24.6 63.4 45 4.8 23.8 26.2 68.8

nd4 1,340 38.9 12.9 22.1 26.1 61.0 41 10.8 24.9 23.5 65.9

nd6 495 39.2 12.1 23.0 25.7 62.2 38 13.9 27.9 20.0 65.9

cox3 966 36.9 12.7 24.8 25.6 61.7 39 9.6 28.6 23.0 67.6

rrnS 1,265 32.7 12.3 32.9 22.1 65.6 35 13.5 31.6 19.5 66.6

All coding 14,920 36.3 13.2 26.5 24.0 63.0 37 12.0 28.9 22.4 65.7

All rRNAs 3,014 32.9 23.8 32.7 22.3 65.7

All tRNAs 1,394 35.4 12.8 30.2 21.7 65.6

All URs 2,681 28.2 14.1 34.1 23.6 62.3

All genic DNA 16,314 36.2 13.2 26.8 23.8 63.0

All DNA 18,995 35.1 13.3 27.9 23.7 63.0

Note:
URs, unassigned regions.
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pipeline; the complete input and output of this analysis is available on figshare

(https://ndownloader.figshare.com/files/8360792). Figure 5 shows the variation in gene

order between Ruditapes decussatus and P. euglypta (Fig. 5A), M. lamarckii F-type

(Fig. 5B), Ruditapes philippinarum F-type (Fig. 5C), and among all the four species

(Fig. 5D).

Table 5 Codon usage.

Amino acid Codon # Frequency %TOT Amino acid Codon # Frequency %TOT

Ala GCG 29 0.15 0.73 Pro CCG 16 0.12 0.40

GCA 44 0.23 1.11 CCA 36 0.27 0.91

GCT 85 0.45 2.14 CCT 58 0.43 1.46

GCC 30 0.16 0.76 CCC 24 0.18 0.61

Cys TGT 94 0.76 2.37 Gln CAG 25 0.44 0.63

TGC 30 0.24 0.76 CAA 32 0.56 0.81

Asp GAT 54 0.66 1.36 Arg CGG 23 0.31 0.58

GAC 28 0.34 0.71 CGA 21 0.28 0.53

Glu GAG 87 0.6 2.19 CGT 25 0.33 0.63

GAA 58 0.4 1.46 CGC 6 0.08 0.15

Phe TTT 269 0.78 6.78 Ser AGG 69 0.19 1.74

TTC 78 0.22 1.97 AGA 69 0.19 1.74

Gly GGG 131 0.4 3.30 AGT 55 0.15 1.39

GGA 61 0.19 1.54 AGC 23 0.06 0.58

GGT 98 0.3 2.47 TCG 18 0.05 0.45

GGC 36 0.11 0.91 TCA 33 0.09 0.83

His CAT 37 0.62 0.93 TCT 76 0.21 1.92

CAC 23 0.38 0.58 TCC 22 0.06 0.55

Ile ATT 165 0.8 4.16 Thr ACG 21 0.17 0.53

ATC 40 0.2 1.01 ACA 30 0.24 0.76

Lys AAG 61 0.41 1.54 ACT 57 0.46 1.44

AAA 87 0.59 2.19 ACC 16 0.13 0.40

Leu TTG 122 0.23 3.08 Val GTG 113 0.3 2.85

TTA 210 0.39 5.29 GTA 121 0.32 3.05

CTG 43 0.08 1.08 GTT 119 0.32 3.00

CTA 70 0.13 1.76 GTC 23 0.06 0.58

CTT 75 0.14 1.89 Trp TGG 58 0.54 1.46

CTC 20 0.04 0.50 TGA 49 0.46 1.24

Met ATG 86 0.36 2.17 Tyr TAT 103 0.69 2.60

ATA 155 0.64 3.91 TAC 47 0.31 1.18

Asn AAT 76 0.66 1.92 STOP TAG 34 0.58 0.86

AAC 39 0.34 0.98 TAA 25 0.42 0.63

Note:
The codons corresponding to a tRNA present in the mitochondrial genome are underlined and in bold. The highest
frequency among synonymous codons is also underlined and in bold. #, number of codons; Frequency, frequency of
each codon among synonymous codons; %TOT, frequency of each codon among all the codons.
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DISCUSSION
RNA-Seq-guided sequencing of mtDNA
The de novo assembly of the mtDNA from RNA-Seq data turned out to be informative,

simplifying the primer walking procedure used for Sanger sequencing. Only one conting

(Contig 1) resulted to be a chimeric sequence obtained by the misassembly of two

smaller contigs. Most of the contigs (eight out of nine) contained more than one gene, and

most of the tRNA genes were included in the de novo assembly. Except for tRNA-Pro,

Figure 2 Principal features of the Largest Unassigned Region (LUR). (A): map of the lUR; (B): DNA secondary structure predicted in the repeat

region (boxed in A); (C): Logos of the two DNA motifs found in the LUR.

Table 6 LUR length and number of repeats in the 13 female samples analyzed.

Specimen Length (bp) Number of repeats GenBank Acc. No.

F3 2,100–3,500 6.5–25 MF055702

F5 5,000 45 MF055703

F7 3,500 25 MF055704

F9 3,500 25 MF055705

F10 3,000 20 MF055706

F11 3,000 20 MF055707

F13 3,500 25 MF055708

F15 3,000 20 MF055709

F16 3,500 25 MF055710

F17 2,500–3,500 8–25 MF055711

F19 3,500 25 MF055712

F20 2,500 8 MF055713

F21 2,100 6.5 MF055714

Note:
F3 and F17 are heteroplasmic with LURs of different length.
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tRNA-Ile, and tRNA-Leu1, all the other tRNA genes are organized in two big clusters: a 13-

gene cluster positioned between cox3 and nd6, and a 6-gene cluster between nd6 and nd4.

The assembly retrieved 6 out of 13 tRNAs from the first cluster (missing tRNA-Gly, tRNA-

Table 7 Sequence Polymorphism (SP): SPs and small indels called by GATK.

Feature Value Min Median Mean Max

Depth (all SPs) – 6 1,357 1,521 3,880

Phred score (all SPs) – 3.30E+01 5.76E+03 4.18E+07 2.15E+09

Depth (SPs in CDS) – 222 2,038 2,150 3,880

Phred score (SPs in CDS) – 1.18E+02 1.01E+04 4.45E+07 2.15E+09

Total number of SPs 257 – – – –

Number of mRDI01 private SPs 151 (58.7% of the total) – – – –

Number of SPs in CDS 145 (56.4% of the total) – – – –

Number of mRDI01 private SPs in CDS 103 (71% of the SP in CDS) – – – –

Number of SPs in CDS (excluding mRDI01) 42 – – – –

Frequency of SPs in CDS 0.0097 (∼1 every 103 bp) – – – –

Frequency of SPs in CDS (excluding mRDI01) 0.0028 (∼1 every 355 bp) – – – –

Total number of indels 18 – – – –

Number of indels in CDS 6 – – – –

Number of indels causing frameshift 4 – – – –

# Of SPs Whole mtDNA CDS

Males 234 (160) 136 (107)

Males (no mRDI01) 84 (15) 32 (6)

Females 97 (23) 38 (9)

Note:
CDS, coding sequences; Whole mtDNA, polymorphism in the whole mitochondrial genome; the number in brackets the bottom of the table represent private SPs (e.g.,
there are 23 female specific SPs in the whole mtDNA and 9 female specific SPs in CDS); p-value, significance of the Fisher’s exact test on number of SPs between sexes
(i.e., all males vs females, males except mRDI01 vs females).

Table 8 Indels located in coding sequences.

Position Depth Qual Gene SP Frameshift Sample Allele frequency Notes

1,698 3,732 1.38E+04 cox1 C/CAAA No mRDI02, mRDI03 0.089, 0.85 Insertion of 1 Lysine

6,364 1,929 2.15E+09 cytb CT/C Yes fRDI04, mRDI05 0.80, 0.81 Yields a shorter Cytb. Possible

sequencing error due to the

homopolymer CTTTTTTT

10,449 1,780 2.15E+09 nd5 C/CT Yes fRDI01, fRDI04,

fRDI05

0.11, 0.10, 0.11 Yields a nd5 gene divided in 2 ORFs.

Possible sequencing error due to the

homopolymer CTTTTTT

17,619 2,272 5.98E+03 cox3 AGCG/A No mRDI01 0.97 Deletion of one Alanine

17,621 2,188 9.99E+04 cox3 CG/C Yes mRDI01 0.99 Always combined with SP_17624.

Together change the last 35 amino

acids

17,624 2,287 5.98E+03 cox3 C/CAT Yes mRDI01 0.99 Always combined with SP_17621.

Together change the last 35 amino

acids

Note:
Depth, sequencing depth; Qual, quality of the called SP expressed in Phred score; Allele frequency, frequency of the alternative allele in each sample indicated in the
“Sample” column.
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Glu, tRNA-Asn, tRNA-Thr, tRNA-Cys, tRNA-Ala, and tRNA-Ser1), and 4 out of 6 tRNAs

from the second cluster (missing tRNA-Met and tRNA-Asp). All the tRNA genes not

located in these two clusters (tRNA-Pro, tRNA-Ile, and tRNA-Leu1) were included in the

contigs. The presence of a clear polyadenylation signal in four of the assembled contigs

(see Table 1) seems to indicate the existence of multiple polycistronic transcripts. It is also

noteworthy that poly-A sequences seem to be absent in contigs having tRNA of rRNA

genes at one end (Contigs 2, 5, 8 and 9). This could be either an evidence supporting the

“tRNA punctation model” of RNA processing proposed by Ojala, Montoya & Attardi

(1981) for human mitochondria, or a result of difficulties in sequencing/assembly of such

regions. More analyses are required to address this point.

Figure 3 BLASTN comparison of Ruditapes decussatus and other Veneridae. Ruditapes decussatus mtDNA map (external gray circle), and

BLASTN identity (colored inner circles) with complete mtDNAs of other 10 venerid species (see list in Table S3).
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General features
The size of the fully Sanger-sequenced mitochondrial genome of Ruditapes decussatus

(reference female F4) is of 18,995 bp, and it includes 13 protein-coding genes,

22 tRNAs and 2 rRNAs. Our data support the presence of the atp8 gene in the mtDNA

of Ruditapes decussatus; atp8 has been reported as missing in several bivalve species,

however, more accurate searches often led to the identification of the gene, so, in most

cases, the alleged lack of atp8 is likely ascribable to annotation inaccuracies due to the

extreme variability and the small size of the gene (Breton, Stewart & Hoeh, 2010;

Breton et al., 2014; Plazzi, Puccio & Passamonti, 2016).

The mitochondrial genome of Ruditapes decussatus shows a high content of A-T

(63%), a common feature in bivalve mtDNAs; moreover, T is the most common

nucleotide at the third codon base (64.6%). The most common codon is UUU (Phe),

which is also the most commonly used in bivalves, as well as in other invertebrates

(Passamonti et al., 2011).

Meret rix lusoria

Meret rix petechialis

Meret rix m eret rix

Meret rix lam arckii M

Meret rix lam arckii F

Ruditapes decussatus

Paphia euglypta
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Paphia text ile

Paphia undulata

Ruditapes philippinarum  M

Ruditapes philippinarum  F

Arct ica islandica
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100
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Figure 4 Maximum Likelihood (ML) tree of Veneridae obtained with all mitochondrial coding

genes. ML tree obtained with the MitoPhast pipeline; the complete input and output of this analysis

is available on figshare (https://doi.org/10.6084/m9.figshare.4970762.v1).
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Figure 5 Comparison of gene order in venerid mtDNAs. Variation in gene order between Ruditapes

decussatus and P. euglypta (A)M. lamarckii F-type (B) Ruditapes philippinarum F-type (C) and among all

the four species (D).

Ghiselli et al. (2017), PeerJ, DOI 10.7717/peerj.3692 17/30

Chapter 2 57

https://peerj.com/
http://dx.doi.org/10.7717/peerj.3692


Codon usage
As shown in Table 5, in 16 cases out of 20, the most frequently used codon does not

correspond to the anticodon of the inferred tRNA. In other words, there is not a

correspondence between the most abundant codons and the anticodons of the 22

mitochondrial tRNAs. According to the “wobble hypothesis”—first proposed by

Crick (1966)—the conformation of the tRNA anticodon loop enables some flexibility at

the first base of the anticodon, so aWatson–Crick type of base pairing in the third position

of the codon is not strictly necessary. This allows an amino acid to be correctly

incorporated by ribosomes even if the tRNA is not fully complementary to the codon;

according to Crick, this explains the degeneracy of the genetic code. This feature is

particularly interesting in the light of the debate about natural selection acting at

synonymous sites: since the early 1980s, evidence of a correlation between synonymous

codon usage and tRNA abundances started accumulating. According to these authors,

synonymous codon usage is biased to match skews in tRNA abundance, as a result of

selective pressure maximizing protein synthesis rates (reviewed in Chamary, Parmley &

Hurst, 2006). Following this rationale, the results here reported and data from other

marine bivalves and metazoans (Yu & Li, 2011; Passamonti et al., 2011) would suggest that

in some mitochondrial genomes translation efficiency is not maximized, and this

observation deserves further investigation.

Length and sequence polymorphism
The mtDNA of Ruditapes decussatus has a high proportion of URs mostly depending on

the length of the LUR (Table 6); on average, bivalve mtDNAs have 1.7� the amount of

URs in respect to other analyzed Metazoa (Ghiselli et al., 2013), and it is still unclear

whether there is an accumulation of non-functional sequences in bivalve mtDNA due to

genetic drift, or if such URs are maintained by natural selection because they contain—so

far unknown—functional elements (see Milani et al., 2013, 2014b; Breton et al., 2014;

Pozzi et al., 2017). The LUR of Ruditapes decussatusmost likely includes the mitochondrial

CR, as indicated by the presence of two motifs (Fig. 2C; Figs S2 and S3) similar to two

regulatory elements identified in the sea urchin CR. These two motifs are the same

identified in previous analyses on the clam Ruditapes philippinarum and the mussel

Musculista senhousia (Ghiselli et al., 2013; Guerra, Ghiselli & Passamonti, 2014) so they are

conserved across distant bivalve taxa, and the GO terms associated with such motifs are

related to transcriptional control (Table S4). An interesting feature of Ruditapes decussatus

LUR is its variable length (Table 6), most likely due to different repeat content. As a matter

of fact, the very same repeat sequence was present in every LUR, and our data strongly

suggest that LUR length variation is actually due to repeat CNV (see Supplemental

Information files on figshare: https://ndownloader.figshare.com/files/8387666 and

https://ndownloader.figshare.com/files/8360789), as observed in other bivalve species

(seeGhiselli et al., 2013;Guerra, Ghiselli & Passamonti, 2014). Tandem repeats have been also

reported in the mitochondrial genomes of the bivalves Acanthocardia tuberculata (Dreyer &

Steiner, 2006), Placopecten magellanicus (La Roche et al., 1990), Moerella iridescens,

Sanguinolaria olivacea, Semele scaba, Sinonovacula constricta, Solecurtus divaricatus
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(Yuan et al., 2012), Ruditapes philippinarum (Ghiselli et al., 2013), andMusculista senhousia

(Guerra, Ghiselli & Passamonti, 2014). These repeats are believed to arise from duplications

caused by replication slippage (Buroker et al., 1990; Hayasaka, Ishida & Horai, 1991;

Broughton &Dowling, 1994). The tandem repeats found at the 3′ end of Ruditapes decussatus

LUR are predicted to form a secondary structure (see Fig. 2B and Supplemental Information

files on figshare) composed by multiple stem-loops, which obviously increase in number

with the increment of the number of tandem repeats. The effect, if any, of tandem repeats in

mtDNA is unknown: since the repeats are almost always localized in proximity of the CR,

they might interact with regulatory elements—or even contain some—influencing

replication and/or transcription initiation, and such interactions might also be altered by

the formation of secondary structures (Passamonti et al., 2011; Ghiselli et al., 2013; Guerra,

Ghiselli & Passamonti, 2014).

We assessed the genetic variability of Ruditapes decussatus mtDNA using two different

approaches: by SP calling in CDS (RNA-Seq data on 12 individuals), and by analysis of the

LUR (Sanger sequencing of 14 individuals). The CR and its flanking regions are known to

be hypervariable, so they are commonly used to assess polymorphism at low taxonomic

levels. Our data strongly support a very low genetic variability: the number of SPs in CDS

is 145, of which 103 are private of a single individual (mRDI01)—thus reducing the

number to 42—while the number of variable sites in the analyzed LURs is 98 over 3,095

aligned positions. Considering the known variability of mtDNA in bivalves (Gissi, Iannelli

& Pesole, 2008; Ghiselli et al., 2013; Breton et al., 2014; Plazzi, Puccio & Passamonti, 2016),

this is a surprising result. Even more if we compare the results of the present work to a

methodologically identical analysis performed on 12 Ruditapes philippinarum samples

from the Pacific coast of USA, performed by Ghiselli et al. (2013): in that work, GATK

yielded 194 SPs in the M-type mtDNA and 293 in the F-type. Strikingly, the 12 Ruditapes

philippinarum samples analyzed were actually two families (6 siblings + 6 siblings). This

means that randomly sampled individuals of Ruditapes decussatus used in this work

showed a much lower mtDNA variability than Ruditapes philippinarum siblings. A

previous analysis on the cox1 gene of Ruditapes decussatus reported a nucleotide diversity

(π) of 0.15 for a population from the Northern Adriatic Sea (Cordero, Peña & Saavedra,

2014). Another analysis on the same gene of Ruditapes philippinarum from the same range

resulted in a π = 0.25 (Cordero et al., 2017), so Ruditapes decussatus has a lower nucleotide

diversity at the cox1 locus. The difference between the variability in mtDNA of Ruditapes

decussatus that we are reporting here and that of Ruditapes philippinarum reported in

Ghiselli et al. (2013) appears to be more marked. It is known that the genetic variability of

Ruditapes philippinarum in the Adriatic Sea is lower than in populations from its native

range in Asia (Cordero et al., 2017), probably because of the bottlenecks that this species

had to go through during the multiple colonization events. The introduction in North

America from Asia happened first (in the 1930s), and from there the Manila clam was

introduced in Atlantic Europe (in the 1970s and 1980s), and lastly into the Adriatic Sea

(1983 and 1984), and it is plausible that the genetic diversity decreased at each

introduction event. Accordingly, Cordero et al. (2017) observed that Ruditapes

philippinarum genetic variability in Europe is lower compared to that of the Pacific coast
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of the USA, so the samples analyzed in Ghiselli et al. (2013) could have been more

polymorphic than those analyzed in Cordero, Peña & Saavedra (2014), thus explaining the

more pronounced differences in genetic variability between the Manila clam and the

European clam discussed above. In any case, all the available data point to a lower genetic

diversity of Ruditapes decussatusmtDNA, and it would be interesting to know whether it is

a cause or an effect of the ongoing replacement of Ruditapes decussatus with the invasive

Ruditapes philippinarum. It will also be important to investigate genetic variability of the

nuclear genes, especially after Cordero, Peña & Saavedra (2014) reported contrasting levels

of differentiation between mitochondrial and nuclear markers.

With respect to SP effects, we found six indels in CDS, 2 of which do not cause

frameshift, but a simple insertion/deletion of one amino acid (SP_1698, and SP_17619,

see Table 8). Of the remaining four, SP_6364 and SP_10449 consist of a deletion and an

insertion of a single T in two homopolymeric sequences (CTTTTTTT and CTTTTTT,

respectively), raising the possibility of a sequencing error. In any case, the two SPs yield a

shorter CDS (cytb and nd5, respectively), and are present at relatively low frequencies in

the specimens carrying them, except for SP_6364 which has a frequency of 80% in fRDI04.

The cox3 gene shows three SPs: the first one, SP_17619, does not cause a frameshift, and

results in the deletion of one alanine residue, and its frequency in mRDI01 is 97%. The

second one, SP_17621, consists of a deletion of a G with respect to the reference sequence,

which is the Sanger-sequenced mtDNA of sample F4; all the individuals analyzed with

RNA-Seq carry this deletion except for mRDI01 which, at that position, has the same

sequence of the reference mtDNA (reference-like allele frequency in mRDI01 = 99%). The

third indel, SP_17624, consists of an insertion of two nucleotides, and its frequency in

mRDI01 is 99%. So, basically, for cox3 we have three types of sequences: (i) the Sanger-

sequenced reference, which yields a 966 bp (321 aa) ORF; (ii) a sequence found in 11/12 of

samples analyzed with RNA-Seq (except mRDI01) that carries a single-nucleotide deletion

(SP_17621), and yields a 963 bp (320 aa) ORF; (iii) a sequence, private of mRDI01, which

is obtained by combining SP_17624 and SP_17621 (both 99% of frequency, so most likely

co-occurring), which produces a 963 bp (320 aa) ORF. Interestingly, the ORFs obtained

from the sequences described in (ii) and (iii), are almost identical, namely the sequence

obtained by RNA-seq in 11/12 samples and the sequence obtained by RNA-Seq in

mRDI01 are basically the same, and differ from the Sanger-sequenced reference, yielding

an amino acid sequence that differs in the last 35 residues (all data available in

Supplemental Information files on figshare: https://doi.org/10.6084/m9.figshare.4970762.

v3). Given this consistent difference between the sequence obtained by Sanger-sequencing

of DNA, and those obtained by RNA-Seq, it is tempting to speculate that this difference

might be caused by RNA editing, a mechanism observed in mtDNA of some animals

(Lavrov & Pett, 2016), and recently reported to be common in cephalopods (Liscovitch-

Brauer et al., 2017). Actually, Liscovitch-Brauer et al. (2017) reported only A-to-I editing,

which is not the kind of change we are observing here, but other types of editing are

known across eukaryotes (see Gott & Emeson, 2000 for a review), and some others, still

unknown, might exist as well. Post-transcriptional modifications (thus including RNA-

editing) are still poorly understood mechanisms, but they appear to be responsible for
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most of the mitochondrial gene expression regulation (Scheibye-Alsing et al., 2007;

Scheffler, 2008; Milani et al., 2014a). What we propose here is a pure conjecture, but we

think in the future it might be worthy to investigate mitochondrial transcriptomes

looking for such kind of “unexpected” biological features.

Interestingly, in contrast with a low nucleotide variability along the entire mitochondrial

genome, we observed a pretty high polymorphism in LUR length due to CNV of tandem

repeats, and even a LUR length heteroplasmy: two females yielded two electrophoretic bands

each (∼2,100 and ∼3,500 bp in F3; ∼2,500 and ∼3,500 bp in F17; see Table 6). A possible

explanation is that the diversity (CNV) detected in the LURs could be recent: the

accumulation of nucleotide variation at different sites along themitochondrial genome needs

time, while the kind structural variability we observed can be achieved in few generations

(or even one) considering that replication slippage is common in repeat-rich regions.

Phylogenetic relationship with Ruditapes philippinarum
Despite Ruditapes decussatus and Ruditapes philippinarum being morphologically similar

and being ascribed to the same genus, the results here reported clearly show that they are

quite different both for mtDNA sequence (Figs. 3 and 4) and mtDNA gene arrangement

(Fig. 5). This is an unusual finding, even among bivalves, which are known to be fast-

evolving for these characters. This may point to the fact that these two species are less

related than previously thought. Actually, this is not the first clue that Ruditapes decussatus

and Ruditapes philippinarum are quite different genetically, as allozyme electrophoresis

(Passamonti, Mantovani & Scali, 1997, 1999) and satellite DNA content (Passamonti,

Mantovani & Scali, 1998) pointed out. More in-depth analyses are therefore needed to

correctly trace the phylogenetic relationships of these two Ruditapes species, which may

eventually end up in two different Genera. As shown in Figs. 3–5, the Genus Paphia is the

most similar to Ruditapes decussatus.

Presence/absence of DUI
We could not find evidence for sex-specific mtDNAs, typical of DUI. As stated in the

Introduction, the search for DUI is not a straightforward process. HTS can help thanks to

a much deeper sequencing coverage (in respect to the cloning-and-Sanger-sequencing

approach), and because it overcomes the problem of primer specificity, a limitation of the

classical approach. One possible concern about using HTS approaches based on short

reads in presence of DUI is about the ability of softwares to detect divergent reads and

assembly them correctly. More specifically, one could ask what is the divergence threshold

under which the assemblers are not able to partition the contigs into two sex-linked

groups. We do not know such a threshold, but we used different assembly strategies trying

to retrieve sex-specific mtDNA sequences from our data. Other than the approach

reported in Materials and Methods (which is the one that produced the data reported

here), we tried other techniques. After identifying reads that blasted to bivalve

mitochondrial sequences present in GenBank and discarding all the other reads, we

generated A5+CAP3 assemblies: (i) for each of the samples (obtaining 12 separate

assemblies), and (ii) pooling the six males together and the six females together, and
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assembling the two sex-specific pools. Both these approaches did not show evidence of

sex-specific mtDNAs. Then we took the assembly obtained from the females and removed

the reads from each of the samples that mapped (<8 mismatches) to these sequences. We

then used the remaining reads as A5 input. The program could not assemble anything.

Lastly, we tried the software MetaVelvet (Namiki et al., 2012)—that assembles

metagenomes—on all the reads matching bivalve mtDNAs, and only one genome was

produced. After all these alternative approaches failed to find two sex-linked mtDNAs, we

decided to proceed with the assembly as indicated in Materials and Methods, because it

was the technique that yielded the best quality contigs, most likely because using the reads

from all 12 the individuals granted a higher coverage of the mtDNA. Given these results,

we can propose three different explanations.

1. Ruditapes decussatus is characterized by SMI of mitochondria, so a male-transmitted

mtDNA is not present in this species.

2. The divergence between the two sex-specific mtDNAs is too low to be detected. This

could be the outcome of two different situations.

a) DUI is very young in this species, so the two sex-linked mtDNAs did not have the

time to diverge.

b) A role-reversal event occurred recently. Role reversal (a.k.a. “route reversal” or

“masculinization”) is a process—observed so far only in species of the Mytilus

complex—by which F-type genomes invades the male germ line becoming sperm-

transmitted, thus turning into M-type mtDNAs (Hoeh et al., 1997). This event

actually resets to zero the divergence between F- and M-type, although substantial

differences in the control regions were reported between the original F-type and the

“masculinized” one (see Zouros, 2013 for a thorough review). The hypothesis that

role reversal could have occurred multiple times in the evolutionary history of

bivalves and could have led to the complete replacement of M or F mtDNAs in

several species was proposed by Hoeh et al. (1997) to explain the scattered

phylogenetic distribution of DUI across Bivalvia. Indeed, according to the

hypothesis of a single origin, DUI arose >400 Mya, approximately at the origin of

Autolamellibranchia, but, as said, such hypothesis requires the assumption of

multiple role-reversal and/or DUI loss events in several branches of the bivalve tree

(see Zouros, 2013 for a detailed discussion). Recently, a multiple origin of DUI was

proposed (Milani et al., 2013, 2014b; Milani, Ghiselli & Passamonti, 2016; Mitchell

et al., 2016), and in such case there would be no need of multiple role-reversal events

to explain its phylogeny. In our opinion, until further evidence will be provided,

role-reversal should not be considered a rule, but rather an exception. Of course, we

cannot rule out that a masculinization event might have occurred in Ruditapes

decussatus, so this hypothesis must be taken into consideration.

3. In our data, even if there is no clear evidence of a male-specific mtDNA, a male sample

(mRDI01) clearly stood out from the others, both males and females (see Table 7).

Overall, the divergence between mRDI01 and the other 11 samples calculated
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considering its private SPs is of 151 sites over 18,995 bp (considering the whole

mtDNA), and of 103 sites over 14,920 bp (considering only CDS). In both cases the

divergence is very low (0.8% and 0.7%, respectively), which explains why the mtDNA of

mRDI01, although different, was not assembled as a separate genome. We have no

sufficient data to evaluate if such divergence is normal within Ruditapes decussatus

populations, but considered the variability usually observed in bivalves, we find the

difference unsurprising. On the contrary, the lack of variability among the other

11 samples is remarkable. For these reasons, we are inclined to believe that mRDI01

divergence is compatible with hypotheses (1) and (2). That said, there still could be a

third, quite conjectural, hypothesis by which these data might indicate an incipient

DUI, not yet fixed in the population.

All in all, we have a preference for the first explanation, but the present data are not

sufficient to exclude the others, and a more thorough investigation is necessary to assess

this point.

Up to now DUI was identified in only three Veneridae species: Cyclina sinensis,

Ruditapes philippinarum, and Meretrix lamarckii (Gusman et al., 2016). The status of

Paphia is still unknown, and in future works it would be interesting to investigate more

Heterodonta species to understand better the distribution of DUI in this derived group of

bivalves.
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Arias-Pérez A, Cordero D, Borrell Y, Sánchez JA, Blanco G, Freire R, Insua A, Saavedra C. 2016.

Assessing the geographic scale of genetic population management with microsatellites and

introns in the clam Ruditapes decussatus. Ecology and Evolution 6(10):3380–3404

DOI 10.1002/ece3.2052.

Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL, Moulton G, Nordle A,

Paine K, Taylor P, Uddin A, Zygouri C. 2003. PRINTS and its automatic supplement,

prePRINTS. Nucleic Acids Research 31(1):400–402 DOI 10.1093/nar/gkg030.

Ghiselli et al. (2017), PeerJ, DOI 10.7717/peerj.3692 24/30

Chapter 2 64

https://doi.org/10.6084/m9.figshare.4970762.v3
http://www.ncbi.nlm.nih.gov/nuccore/KP089983
http://www.ncbi.nlm.nih.gov/nuccore/MF055702
http://dx.doi.org/10.7717/peerj.3692
http://dx.doi.org/10.7717/peerj.3692#supplemental-information
http://dx.doi.org/10.1002/ece3.2052
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA170478
http://www.ncbi.nlm.nih.gov/nuccore/MF055714
http://dx.doi.org/10.1186/1471-2164-12-402
https://peerj.com/
http://dx.doi.org/10.7717/peerj.3692#supplemental-information
http://dx.doi.org/10.1093/nar/gkg030


Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009.

MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202–W208

DOI 10.1093/nar/gkp335.

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M,
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Lubośny M, Przy1ucka A, Sa�nko TJ, Śmietanka B, Rosenfeld S, Burzy�nski A. 2017/2. Next

generation sequencing of gonadal transcriptome suggests standard maternal inheritance of

mitochondrial DNA in Eurhomalea rufa (Veneridae). Marine Genomics 31:21–23

DOI 10.1016/j.margen.2016.11.002.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,

Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a

MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research

20(9):1297–1303 DOI 10.1101/gr.107524.110.

Milani L, Ghiselli F. 2015. Mitochondrial activity in gametes and transmission of viable mtDNA.

Biology Direct 10:22 DOI 10.1186/s13062-015-0057-6.

Milani L, Ghiselli F, Guerra D, Breton S, Passamonti M. 2013. A comparative analysis of

mitochondrial ORFans: new clues on their origin and role in species with doubly uniparental

Ghiselli et al. (2017), PeerJ, DOI 10.7717/peerj.3692 27/30

Chapter 2 67

http://dx.doi.org/10.7717/peerj.3692
http://dx.doi.org/10.1093/gbe/evw195
http://dx.doi.org/10.1093/bioinformatics/btu031
http://dx.doi.org/10.1038/ng.872
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1186/1471-2164-14-741
http://dx.doi.org/10.1016/j.cell.2017.03.025
http://dx.doi.org/10.1093/oxfordjournals.molbev.a040586
http://dx.doi.org/10.1101/gr.9.9.868
https://peerj.com/
http://dx.doi.org/10.1016/j.margen.2016.11.002
http://dx.doi.org/10.1016/j.fsigen.2014.06.001
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025839
http://dx.doi.org/10.1093/bioinformatics/btm573
http://dx.doi.org/10.1186/s13062-015-0057-6


inheritance of mitochondria. Genome Biology and Evolution 5(7):1408–1434

DOI 10.1093/gbe/evt101.

Milani L, Ghiselli F, Iannello M, Passamonti M. 2014a. Evidence for somatic transcription of

male-transmitted mitochondrial genome in the DUI species Ruditapes philippinarum (Bivalvia:

Veneridae). Current Genetics 60(3):163–173 DOI 10.1007/s00294-014-0420-7.

Milani L, Ghiselli F, Maurizii MG, Nuzhdin SV, Passamonti M. 2014b. Paternally transmitted

mitochondria express a new gene of potential viral origin. Genome Biology and Evolution

6(2):391–405 DOI 10.1093/gbe/evu021.

Milani L, Ghiselli F, Passamonti M. 2016. Mitochondrial selfish elements and the evolution of

biological novelties. Current Zoology 62(6):687–697 DOI 10.1093/cz/zow044.

Milbury CA, Lee JC, Cannone JJ, Gaffney PM, Gutell RR. 2010. Fragmentation of the large

subunit ribosomal RNA gene in oyster mitochondrial genomes. BMC Genomics 11(1):485

DOI 10.1186/1471-2164-11-485.

Mitchell A, Guerra D, Stewart D, Breton S. 2016. In silico analyses of mitochondrial ORFans in

freshwater mussels (Bivalvia: Unionoida) provide a framework for future studies of their origin

and function. BMC Genomics 17(1):597 DOI 10.1186/s12864-016-2986-6.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying

mammalian transcriptomes by RNA-Seq. Nature Methods 5(7):621–628

DOI 10.1038/nmeth.1226.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y. 2012. MetaVelvet: an extension of Velvet

assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research

40(20):e155 DOI 10.1093/nar/gks678.

Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human

mitochondria. Nature 290(5806):470–474 DOI 10.1038/290470a0.

Passamonti M, Ghiselli F. 2009.Doubly uniparental inheritance: twomitochondrial genomes, one

precious model for organelle DNA inheritance and evolution. DNA and Cell Biology

28(2):79–89 DOI 10.1089/dna.2008.0807.

Passamonti M, Mantovani B, Scali V. 1997. Allozymic characterization and genetic relationships

among four species of Tapetinae (Bivalvia, Veneridae). Italian Journal of Zoology 64:117–124

DOI 10.1080/11250009709356183.

Passamonti M, Mantovani B, Scali V. 1998. Characterization of a highly repeated DNA family in

tapetinae species (mollusca bivalvia: veneridae). Zoological Science 15(4):599–605

DOI 10.2108/zsj.15.599.

Passamonti M, Mantovani B, Scali V. 1999. Allozymic analysis of some Mediterranean Veneridae

(Mollusca: Bivalvia): preliminary notes on taxonomy and systematics of the family. Journal of

the Marine Biological Association of the UK 79(5):899–906 DOI 10.1017/s0025315498001064.

Passamonti M, Ricci A, Milani L, Ghiselli F. 2011. Mitochondrial genomes and Doubly

Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial

DNAs (Bivalvia Mytilidae). BMC Genomics 12(1):442 DOI 10.1186/1471-2164-12-442.

Pesole G, Allen JF, Lane N, Martin W, Rand DM, Schatz G, Saccone C. 2012. The neglected

genome. EMBO Reports 13:473–474.

Plazzi F, Puccio G, Passamonti M. 2016. Comparative large-scale mitogenomics evidences

clade-specific evolutionary trends in mitochondrial DNAs of Bivalvia. Genome Biology and

Evolution 8(8):2544–2564 DOI 10.1093/gbe/evw187.

Pozzi A, Plazzi F, Milani L, Ghiselli F, Passamonti M. 2017. SmithRNAs: could mitochondria

“bend” nuclear regulation? Molecular Biology and Evolution 34(8):1960–1973

DOI 10.1093/molbev/msx140.

Ghiselli et al. (2017), PeerJ, DOI 10.7717/peerj.3692 28/30

Chapter 2 68

https://peerj.com/
http://dx.doi.org/10.1017/s0025315498001064
http://dx.doi.org/10.1080/11250009709356183
http://dx.doi.org/10.1093/gbe/evw187
http://dx.doi.org/10.1089/dna.2008.0807
http://dx.doi.org/10.1038/nmeth.1226
http://dx.doi.org/10.1007/s00294-014-0420-7
http://dx.doi.org/10.1093/gbe/evt101
http://dx.doi.org/10.2108/zsj.15.599
http://dx.doi.org/10.1186/s12864-016-2986-6
http://dx.doi.org/10.1186/1471-2164-11-485
http://dx.doi.org/10.7717/peerj.3692
http://dx.doi.org/10.1093/molbev/msx140
http://dx.doi.org/10.1038/290470a0
http://dx.doi.org/10.1093/nar/gks678
http://dx.doi.org/10.1093/gbe/evu021
http://dx.doi.org/10.1186/1471-2164-12-442
http://dx.doi.org/10.1093/cz/zow044


Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist

programmers. Methods in Molecular Biology 132:365–386 DOI 10.1385/1-59259-192-2:365.

Scheffler IE. 2008. Mitochondria. Hoboken, NJ: Wiley.

Scheibye-Alsing K, Cirera S, Gilchrist MJ, Fredholm M, Gorodkin J. 2007. EST analysis on pig

mitochondria reveal novel expression differences between developmental and adult tissues.

BMC Genomics 8(1):367 DOI 10.1186/1471-2164-8-367.

Serb JM, Lydeard C. 2003. Complete mtDNA sequence of the North American freshwater mussel,

Lampsilis ornata (Unionidae): an examination of the evolution and phylogenetic utility of

mitochondrial genome organization in Bivalvia (Mollusca). Molecular Biology and Evolution

20(11):1854–1866 DOI 10.1093/molbev/msg218.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M,
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Sample ID Analysis GenBank Accession Data Availability
F3 Sanger sequencing of LUR MF055702 GenBank

F4 Sanger sequencing of whole mitochondrial genome KP089983 GenBank

F5 Sanger sequencing of LUR MF055703 GenBank

F7 Sanger sequencing of LUR MF055704 GenBank

F9 Sanger sequencing of LUR MF055705 GenBank

F10 Sanger sequencing of LUR MF055706 GenBank

F11 Sanger sequencing of LUR MF055707 GenBank

F13 Sanger sequencing of LUR MF055708 GenBank

F15 Sanger sequencing of LUR MF055709 GenBank

F16 Sanger sequencing of LUR MF055710 GenBank

F17 Sanger sequencing of LUR MF055711 GenBank

F19 Sanger sequencing of LUR MF055712 GenBank

F20 Sanger sequencing of LUR MF055713 GenBank

F21 Sanger sequencing of LUR MF055714 GenBank
fRDI01 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
fRDI02 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
fRDI03 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
fRDI04 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
fRDI05 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
fRDI06 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI01 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI02 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI03 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI04 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI05 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
mRDI06 De novo assembly of mtDNA; SNP PRJNA170478 https://doi.org/10.6084/m9.figshare.4970762.v3; GenBank
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Primer Direction Sequence 5’-3’ amplified Lenght(bp) 

ATP6-1 F ATTTGTGCTTCTTTTCAGTGTACTTTT 1517 bp 27 

ATP6-1 R TCATCCCAATTACTAGAATAAAACAGG  27 

ATP6-3 F TAACTGGTTGGTTCCCTTAATGTT 1321 bp 24 

ATP6-3 R AACTTTAATAGGGGAGTTCTTCG  23 

ATP6-4 F TTAAGGAAACGGTGTCTTATTTTTG 1379 bp 25 

ATP6-4 R CTAGGAAAACAGATCACTGACAAGA  25 

ATP6-5 F TTAGTTTGGTTGGGGTAATAATAAGG 1479 bp 26 

ATP6-5 R GTTAGCACAAATACAACTACCACCAT  26 

ATP6-6 F TATAGATTGAAATCAGTTGGGTTTTTC 1259 bp 27 

ATP6-6 R TCAACTACCCTAGATATCCTTTACTGC  27 

CYTB-1 F GATCATATAAACCGTAAGCGAATAATG 1433 bp 27 

CYTB-1 R ATATCTAGCAACTAACCCAACCCTAAT  27 

ATP8-2 F GGGCGTGTAGATGAATAGATTTTTA 1255 bp 26 

ATP8-2 R CTCTAAAGAAGGGATCACACCATAA  26 

ND6-1 F TAAATGTAATAAGGCGCTATAATCACC 1242 bp 28 

ND6-1 R TATTTCTGCCACCCTAACAAAATAAAG  27 

COX3-2 F TTAAATTAACCTTAACCAACGAAATAGG 1285 bp 29 

COX3-2 R TAATTCGAATTTGCTTTTTATTAAGTGA  29 

ATP8-ND6 F GCTTTAGGGTGTTCGATTCACTCAGGA 1323 bp 27 

ATP8-ND6 R AAACGCCCCCGTAAAAGCTAAGAACAC  27 

ATP6-CYTB F AGTTGTGTGGATCTGGCCACAGAGAAA 1300 bp 27 

ATP6-CYTB R TACCTGGGAAACCCCCATTATTCGCTT  27 

ND6COX3 F ATGGCGTAATGGAGGGTGTACGATTTC 1218 bp 27 

COX3ATP6 R CACCGGCCATTTAGAAATTTCAGGCA  26 

CYTB-2 F TCTGTGTTCAAAAATGTACAGCATAAT 1318 bp 27 

CYTB-2 R CTTTCTTTTTCAGAGACAAGCAACTT  26 

ATP6-2R F ATTAATAGTAGGTTGGGATGGTTTAGG 1501 bp 27 

ND6COX3-
R1 R AAATCGCCCGGCGTTCTTGAATACTGA  27 

ATP62R F TTCATGTAATTTTAGGAATTTGCTTTC 2283 bp 27 

COX3-R1 R AAATCGCCCGGCGTTCTTCTTGAATACTGA  30 

ATP6-3R F AACTTTAATAGGGGAGTTCTTCG 1729 bp 23 

ND6COX3-
R1 R AAATCGCCCGGCGTTCTTGAATACTGA  28 

ATP6-3R F AACTTTAATAGGGGAGTTCTTCG 2028 bp 23 

COX3-R1 R TTCATGTAATTTTAGGAATTTGCTTTC  27 
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ATP6CYTB-
F F AGTTGTGTGGATCTGGCCACAGAGAAA 1418 bp 28 

CYB-R1 R ATATCTAGCAACTAACCCAACCCTAAT  28 

ATP6-5 F TTAGTTTGGTTGGGGTAATAATAAGG 2076 bp 26 

ATP6-6 R TCAACTACCCTAGATATCCTTTACTGC  28 

NewATP8 F AAGGGGAGGTAGCGAGAAAA 729 bp 20 

NewND4 R GGCAACGAGGAACCTACAGT  20 

New16S F GTGACACGGTGGATTATTGCTT 1256 bp 22 

NewATP6 R AAACCCCATCACACAAACACAC  22 

NewCYTB1 F TGGGTACATGTCCCGTAGAAGA 870 bp 22 

New16S R TATGAACGCCTTACCCTATCCC  22 

NewND5 F TGGGGCTCTTTCAATAGCTGT 1731 bp 21 

NewATP8 R GCAAGCAAGAGGAGCAAACT  20 

NewCR-F3 F TGTAGAAATAGGCTGAATTCGAGG 1188 bp 24 

NewCR-F4 R ATAACTTTTGCGGCCCTTAGTC  22 

NewCR-F4 F TTGTGATAACTGCTAGGGTGGT 1529 bp 22 
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Species GenBank Acc. 
No. BRIGS Easyfig MEME MitoPhast 

Acanthocardia tuberculata NC_008452   x  
Arctica islandica NC_022709   x x 
Coelomactra antiquata NC_021375   x  
Fulvia mutica NC_022194   x  
Hiatella arctica NC_008451   x  
Loripes lacteus NC_013271   x  
Lucinella divaricata NC_013275   x  
Lutraria rhynchaena NC_023384   x  
Meretrix lamarckii NC_016174 x x   
Meretrix lamarckii F-type KP244451   x x 
Meretrix lamarckii M-type KP244452   x x 
Meretrix lusoria NC_014809 x  x x 
Meretrix meretrix NC_013188 x  x x 
Meretrix petechialis NC_012767 x  x x 
Moerella iridescens NC_018371   x  
Nuttallia olivacea NC_018373   x  
Paphia amabilis NC_016889 x x x x 
Paphia euglypta NC_014579 x  x x 
Paphia textile NC_016890 x  x x 
Paphia undulata NC_016891 x  x x 
Ruditapes philippinarum F-
type AB065375 x x x x 

Ruditapes philippinarum M-
type AB065374 x  x x 

Semele scabra NC_018374   x  
Sinonovacula constricta NC_011075   x  
Solecurtus divaricatus NC_018376   x  
Solen grandis NC_016665   x  
Solen strictus NC_017616   x  
Soletellina diphos NC_018372   x  
Strongylocentrotus 
purpuratus NC_001453   x  
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Supplementary Table 4 Most significant GO terms associated with the two DNA motifs 

found in the LUR. BP = Biological Process; CC = Cellular Component; MF = Molecular 

Function. 

 
 
Motif 1 Motif 2 

Positive regulation of transcription from RNA 

polymerase II promoter (BP) 

Transcription (BP) 
 

Transcription (BP) 
 

Negative regulation of transcription from RNA 

polymerase II promoter (BP) 

Negative regulation of transcription from RNA 

Polymerase II promoter (BP) 

- 

Transcription factor complex (CC) - 

Transcription activator activity (MF) - 
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Data Deposition 

R. decussatus short reads and transcriptome assembly are available on NCBI 
(BioProject PRJNA170478). 
R. philippinarum short reads and transcriptome assembly are available on NCBI 
(BioProject PRJNA68513). 
The pipeline used for transcriptome annotation (paper in preparation) is available 
as an Open Science Framework (OSF) project at: 
https://osf.io/cdkb9/?view_only=f0b2cde926db43719f3d705012c4eeaa 
All data (assemblies, differential transcription analysis, annotation, dN/dS, FPKM, 
clusters of orthologous genes and GO terms) are available on figshare: 
https://figshare.com/s/3c0bd3b82e72f882a772  
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Abstract 

Comparative genomics has become a central tool for evolutionary biology, and a 
better knowledge of understudied taxa represents the foundation for future work. In 
this study we characterized the biological processes represented in male and female 
mature gonads of the European clam Ruditapes decussatus, compared to those in 
the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, 
information about transcription dynamics and sequence evolution of sex-biased 
genes. In both the species we found a low number of sex-biased genes, probably 
due to the absence of sexual dimorphism. R. decussatus shows a prevalence of 
female-biased transcripts, the opposite is true for R. philippinarum. The 
transcriptional bias is maintained in only 14% of the orthologs between the two 
species, and female-biased genes show the highest divergence in transcription. 
Genes not maintaining the sex bias between the two species are involved in 
regulatory processes. The dN/dS between orthologs is low, indicating purifying 
selection, and genes having male-biased transcription in both species evolve 
significantly faster. Overall, among sex-biased orthologs we observed quite 
variable transcription opposed to high sequence conservation; regulatory genes 
show either high transcriptional variability or fast sequence evolution. In contrast 
with other studies that reported a negative correlation between transcription level 
and evolutionary rate, our analysis did not find any. We also report the presence of 
transcripts involved in embryo development in both female and male gametes, and 
an enrichment of GO terms related to immune response among female-biased 
genes in R. philippinarum. 
 
 
 

Key Words 

RNA-Seq, transcription level, evolutionary rate, gametogenesis, maternal genes, 
immunity. 
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Introduction 

 
Despite the differences in terms of sexual dimorphism and behavior, males and 
females share almost the same genome, especially in species lacking 
heteromorphic sex chromosomes. Therefore, the vast majority of sex-specific 
characters and traits are the result of differential expression of the so-called ‘sex-
biased genes’ (Ellegren & Parsch 2007; Parsch & Ellegren 2013; Ranz et al. 2003). 
The study of sex-biased gene expression is crucial for understanding the 
mechanisms of gene regulation and evolution (Grath & Parsch 2016): several 
works investigated the amount of sex-biased genes among animals, showing that 
the proportion of these genes is extremely variable, depending on the organism, 
analyzed tissue, developmental and reproductive stage. It has been reported that the 
number of transcribed sex-biased genes is higher in gonads, since most of them are 
involved in sexual dimorphism and competition (Parisi et al. 2003; Mank et al. 
2010; Harrison et al. 2015). Also, genes that are more or exclusively transcribed in 
males (male-biased genes) show a higher rate of protein evolution—calculated as 
the ratio of nonsynonymous to synonymous nucleotide substitution (dN/dS)—as 
reported in many organisms such as insects, nematodes, birds, and mammals 
(Grath & Parsch 2012; Meiklejohn et al. 2003; Khaitovich et al. 2005; Pröschel et 
al. 2006; Zhang et al. 2007; Assis et al. 2012; Harrison et al. 2015; Xu Wang et al. 
2015). Even if female-biased genes did not receive the same attention of male-
biased genes, some studies conducted in mammals, birds, fish, and insects reported 
evidence of high dN/dS of these transcripts compared to unbiased genes, namely 
genes showing no differential expression between sexes (Swanson et al. 2004; 
Yang et al. 2016; Mank et al. 2007). It is not clear whether the high rate of protein 
sequence evolution of sex-biased genes, and particularly male-biased genes, is an 
outcome of positive or relaxed selection. In the literature there are several studies 
supporting either one or the other theory. Works carried out mostly in Drosophila 
seem to point out that male-biased genes undergo evolution by positive selection 
(Swanson et al. 2004; Pröschel et al. 2006; Zhang & Parsch 2005): according to 
this theory, male-male competition drives a faster evolution of male reproductive 
proteins  (Swanson & Vacquier 2002; Clark et al. 2006; Turner & Hoekstra 2008). 
On the other hand, several studies support the hypothesis that male-biased genes 
are more dispensable (Mank & Ellegren 2009) and thus under relaxed selection, 
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while female-biased genes are under stronger constraints due to their functional 
pleiotropy (Zhang et al. 2007; Duret & Mouchiroud 2000; Xu Wang et al. 2015; 
Dapper & Wade 2016; Mank et al. 2008). Accordingly, genes exclusively 
expressed in males showed a higher accumulation of deleterious mutations 
(Gershoni & Pietrokovski 2014). Finally, the comparison of sex-biased genes 
across species revealed a large variability in transcription level, suggesting that 
differences in regulation of sex-biased genes may have a fundamental role in 
speciation (Romero et al. 2012; Brawand et al. 2011). Particularly, male-biased 
genes seem to be the most divergent also in terms of transcription level (Torgerson 
et al. 2002; Zhang et al. 2004, 2007; Meiklejohn et al. 2003; Ranz et al. 2003; 
Khaitovich et al. 2005): this evidence inspired the hypothesis of a positive 
correlation between the evolution of protein sequences and transcriptional 
divergence (Nuzhdin et al. 2004; Lemos et al. 2005; Khaitovich et al. 2005; Sartor 
et al. 2006; Liao & Zhang 2006). Nevertheless, this pattern is not consistent 
(Jordan et al. 2004; Harrison et al. 2015; Tirosh & Barkai 2008), indicating that 
protein sequence evolution and transcription level divergence can be decoupled. 
Therefore, many questions about evolution of sex-biased genes still remain open. 
What shapes the rate of protein sequence change is a central question for 
understanding molecular evolution. Several studies have reported different 
determinants that could influence dN/dS such as, for example, the functional 
importance of a protein, expression breadth among tissues, pleiotropy, protein-
protein interaction, and secondary structure (Larracuente et al. 2008; Ridout et al. 
2010). Nevertheless, according to the most recent theories, transcription level has 
been proposed to be the main responsible for the rate of protein evolution (see 
Zhang & Yang 2015 for a review). Particularly, a strong negative correlation, 
defined E-R correlation, was found between dN/dS and transcription level, across 
the three domains of life. One of the main hypothesis to explain the E-R correlation 
is that highly transcribed genes evolve more slowly thus reducing the amount of 
misfolded proteins, known to be cytotoxic and damaging for organism fitness 
(Drummond et al. 2005). 
The development of High-Throughput Sequencing has significantly increased the 
capability to get insights into the molecular mechanisms driving evolution. 
Particularly, RNA-Seq produces a large amount of data about both evolution of 
protein sequence and transcription level, also for nonmodel organisms. The latter 
point is important, because our knowledge is still restricted to a very limited 
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number of taxa; it is indeed not recommendable to formulate hypotheses and infer 
general evolutionary patterns based only on a small number of species. For 
example, although Mollusca is the second phylum of the animal kingdom for 
number of species, no comparative studies on the relationship between protein 
evolution and transcription have been performed so far in this group. 
In this work we obtained the gonadal transcriptome from males and females of the 
European clam Ruditapes decussatus (Linneaus, 1758)—also known as grooved 
carpet shell—and we compared it with the available gonadal transcriptome data 
(Ghiselli et al. 2012) from the species Ruditapes philippinarum (Adams and Reeve, 
1850). R. decussatus is a bivalve species of the family Veneridae, native to the 
Mediterranean and European Atlantic coasts. The fishing of R. decussatus has 
historically had a main role in the production of seafood in Italy, Spain and 
Portugal. The recent introduction in Europe of R. philippinarum—native from 
Philippines, Korea, and Japan—led to a replacement of R. decussatus with R. 
philippinarum for aquaculture purposes. Indeed, compared to R. decussatus, the 
Manila clam R. philippinarum, reaches sexual maturation at a smaller size, is faster 
growing, have a greater number of spawning events, a more extended breeding 
period, and a higher resistance to disease (Ghiselli et al. 2017 and references 
therein). All these issues probably contributed to a population decline of R. 
decussatus in the Southwestern Europe, as recently reported by Arias-Pérez et al. 
(2016). Here we characterize the biological processes represented in male and 
female mature gonad in R. decussatus. The comparison with gonad transcription in 
R. philippinarum allows to investigate, for the first time in two bivalve species, the 
evolution of both protein sequence and transcription level divergence of sex-biased 
genes. Our analyses provided further insight into the relationship between rate of 
protein evolution and transcription level. 

Materials and Methods 

Library preparation 

The 12 samples of R. decussatus used for this study were collected from the 
Northern Adriatic Sea, in the river Po delta region (Sacca di Goro, approximate 
GPS coordinates: 148 44°50’06”N, 12°17’55”E) at the end of July 2011, during 
the spawning season. Six males and six females were used to obtain the RNA-Seq 
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library. Clams were sexed by microscope inspection of gonadal liquid collected 
with a glass capillary tube. The samples were immediately frozen in liquid 
nitrogen, and preserved at −80˚C. Total RNA extraction, mRNA purification and 
fragmentation, cleaning, and cDNA synthesis were carried out following the 
protocols of Mortazavi et al. (2008), and modifications as reported in Ghiselli et al. 
(2012). Samples were barcoded and sequenced over two lanes (for two technical 
replicates) of an Illumina Genome Analyzer IIx machine, using 76bp paired-end 
reads. 

De novo assembly and differential transcription analysis 

Filtering, de novo assembly, and differential transcription analysis were performed 
following the protocol described in Ghiselli et al. (2012). 
Assembly completeness assessment was performed using BUSCO v2 (Simão et al. 
2015) as implemented in gVolante (Nishimura et al. 2017). 

Sex-biased transcription 

For each locus of R. decussatus and R. philippinarum, we calculated the median 
FPKM [Fragments Per Kilobase of transcript per Million mapped reads, 
(Mortazavi et al. 2008)] in males (m_median) and females (f_median). 
Transcription level fold change between sexes (FC) was obtained as 1 - (f_median 
/ m_median). Since many loci presented a sex-biased transcription, we classified 
genes basing on their m_median, f_median, FC and sex p-value. We defined as 
“male-specific” those loci with m_median > 1 FPKM, f_median < 1 FPKM, and 
sex p-value ≤ 0.05, and as “female-specific” those loci with m_median < 1 FPKM, 
f_median > 1 FPKM, and sex p-value ≤ 0.05. We also considered “male-enriched” 
those loci with FC < −1 and sex p-value ≤ 0.05; conversely, loci with FC > 1 and 
p-value ≤ 0.05 were considered as “female-enriched”. The generic term “male-
biased” includes both male-specific and male-enriched genes; similarly, the term 
“female-biased” includes both female-specific and female-enriched genes. All 
remaining loci were considered as “unbiased”. 

Transcriptome annotation 

In order to compare the transcriptome of R. decussatus with the closely-related 
species R. philippinarum, we used de novo assembly and transcription data of R. 
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philippinarum from Ghiselli et al. (2012). Both transcriptomes were annotated 
using a pipeline specifically developed for nonmodel organisms (protocol, 
information, and data available here: 
https://osf.io/cdkb9/?view_only=f0b2cde926db43719f3d705012c4eeaa). 

GO enrichment 

We used the Bioconductor version 3.5 of the package topGO (Alexa et al. 2006) to 
find GO term enrichment based on Kolmogorov-Smirnov test. GO enrichment was 
performed for the whole transcriptomes of R. decussatus and R. philippinarum. 
Furthermore, we obtained the enriched GO terms of male-specific, male-enriched, 
female-specific, and female-enriched genes in both species. Data were analyzed 
with REViGO (Supek et al. 2011) and GO term networks were visualized using the 
application DyNet (Goenawan et al. 2016) from the Cytoscape App (Lotia et al. 
2013). 

Transcription bias of orthologous genes 

Orthologs between the two species were found using OrthoVenn (Yi Wang et al. 
2015) with the default parameters. In order to investigate whether transcription 
sex-bias is maintained between orthologous genes, we selected groups of orthologs 
with at least a sex-biased gene in either species. Since some groups of orthologs 
included two or more paralogs from the same species with different sex-biased 
transcription, we defined the SCALE (Shifting in CAtegorical LEvels) index to 
quantify the overall bias in the transcription. This was computed as follows: 
paralogs from the same species were categorized into five levels (female-specific, 
female-enriched, unbiased, male-enriched, and male-specific) and normalized over 
the total number of paralogs. The cumulative sum of these five frequencies (in the 
above mentioned order) was then calculated, yielding a number comprised between 
1 (all paralogs are male-specific) and 5 (all paralogs are female-specific). Finally, 
this number was divided by 2 and 1.5 was subtracted from the result, in order to 
obtain a SCALE index (S) comprised between −1 and +1. Formally, 
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Where: 
FS = frequency of female-specific genes in the group of paralogs; 
FE = frequency of female-enriched genes in the group of paralogs; 
U = frequency of sex-unbiased genes in the group of paralogs; 
ME = frequency of male-enriched genes in the group of paralogs; 
MS = frequency of male-specific genes in the group of paralogs. 
  
Using the SCALE index it is possible to quantify biases for groups of orthologs as 
follows: 
−1 ≤ S < −0.6 male-specific groups of paralogs 
−0.6 ≤ S < −0.2 male-enriched groups of paralogs 
−0.2 ≤ S ≤ +0.2 unbiased groups of paralogs 
+0.2 < S ≤ +0.6 female-enriched groups of paralogs 
+0.6 < S ≤ +1 female-specific groups of paralogs 
  
We compared the S indexes of groups of paralogs belonging to the same 
orthologous groups in the two species. Comparisons were visualized in a bubble 
plot and grouped together in a hierarchical cluster. The GO annotations of most 
representative clusters were visualized with REViGO. 

Rate of protein evolution 

To investigate the rate of protein evolution, we selected clusters of orthologs with a 
single sequence for each species (1:1 orthology). Protein sequences were aligned 
with MUSCLE (Edgar 2004) and we used the EMBOSS package ‘distmat’ (Rice et 
al. 2000) to calculate amino acid p-distance. Amino acid alignments were back-
translated into nucleotides using a custom R script, and KaKs_Calculator 2.0 
(Wang et al. 2010) was used to obtain the ratio of nonsynonymous to synonymous 
nucleotide substitution (dN/dS). We plotted the dN/dS distribution of orthologs 
with unbiased transcription in both species (unbiased/unbiased). Additionally, we 
plotted the dN/dS distribution of orthologs with sex-biased transcription in either 
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species (unbiased/male-biased; unbiased/female-biased) and orthologs with sex-
biased transcription in both species (male-biased/male-biased; female-
biased/female-biased; male-biased/female-biased). The Dunn test with the 
Bonferroni correction was carried out with the R package ‘dunn.test’ to compare 
the dN/dS distribution among these groups. The same groups were also adopted to 
analyze the correlation between dN/dS and amino acid p-distance. Finally, in order 
to investigate the relationship between rate of protein sequence evolution and 
transcription level, we plotted log2 (dN/dS) vs log2 (FPKM) for all orthologous 
genes in both R. decussatus and R. philippinarum. 

Singlet genes 

We defined as ‘singlets’ those loci that were not recognized by OrthoVenn as 
orthologs between the two species. We performed a GO term enrichment analysis 
of singlets, in order to infer the function of such putatively species-specific loci. In 
addition, we visualized with REViGO the most recurring GO terms in both the 
species. 

Results 

De novo assembly 

More than 67 million paired-end reads were generated from the Illumina 
sequencing. Both raw reads and transcriptome assembly are available on NCBI 
(BioProject PRJNA170478). 
The de novo assembly yielded 69,279 contigs. The median length of contig 
sequences is 795 bp and the N50 length is 2,064 bp. Since many of these contigs 
represent isoforms, they were collapsed in 39,467 representative loci, with median 
length of 668 bp and N50 of 1,672 bp (see Supplementary Table 1). 
Supplementary Table 2 shows the results of the completeness assessment 
performed with BUSCO v2 (briefly: Eukaryota ortholog set: 91.09% complete, 
96.37% complete + partial, 3.63% missing; Metazoa ortholog set: 87.22% 
complete, 94.68% complete + partial, 5.32% missing).  
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Differential transcription analysis 

We found 3,935 (10%) loci with a sex-biased transcription in R. decussatus and 
2,114 (9.2%) in R. philippinarum. In R. decussatus 661 loci are transcribed more in 
males than in females (male-enriched), while 1,589 loci are transcribed more in 
females than in males (female-enriched). We also found 775 loci transcribed only 
in males (male-specific) and 910 only in females (female-specific). In R. 
philippinarum 909 loci are male-enriched, 631 are female-enriched, 448 are male-
specific and 126 are female-specific (Table 1, Figure 1). In total, 60% of  sex-
biased genes are female-biased in R. decussatus, while 60% of sex-biased genes 
are male-biased in R. philippinarum. 

Annotation 

Of the 39,467 loci in R. decussatus, 14,315 (36.3%) were annotated using amino 
acid similarity (as implemented in our annotation pipeline, see 
https://osf.io/cdkb9/?view_only=f0b2cde926db43719f3d705012c4eeaa) and 
13,697 (34.7%) with nucleotide similarity. GO terms were assigned to 13,865 loci 
(35.1%). In total, 28,022 loci (71%) were annotated with at least one method, 
while 11,445 (29%) did not get any annotation. We also re-annotated R. 
philippinarum: of the 22,886 assembled loci, 12,371 (54%) obtained an amino 
acid-level annotation, 3,997 (17.5%) a nucleotide-level annotation, and GO terms 
were assigned to 12,064 loci (52.7%). A total of 16,436 loci (71.8%) were 
annotated with at least one method, while 6,450 loci (28,2%) did not receive any 
annotation (Table 2). 

GO enrichment 

We performed a GO enrichment analysis of R. decussatus and R. philippinarum 
gonadal transcriptomes. In both the species, the most represented GO terms are 
involved in biological processes as cell proliferation, meiotic cell cycle, regulation 
of transcription, regulation of translation, biosynthetic process, chromosome 
organization, cellular component organization, protein folding, and reproduction 
(see Supplementary Material 1 and Supplementary Material 2 for the complete 
results of the GO enrichment analysis of R. decussatus and R. philippinarum, 
respectively). 
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In order to detect the Biological Processes associated with sex-biased loci, we 
retrieved the most represented GO terms in male-specific, male-enriched, female-
specific, and female-enriched loci. Among male-specific loci of both R. decussatus 
and R. philippinarum we found enrichment in GO terms such as sexual 
reproduction, spermatogenesis, biosynthetic process, and gene expression. 
Male-enriched loci are characterized by GO terms involved in reproduction, 
spermatid development, and nucleic acid metabolism in both species. 
Female-specific loci are mainly involved in regulation of metabolic process, 
transmembrane transport, and lymphocyte and leukocyte differentiation in R. 
decussatus, and in regulation of transcription, and biosynthetic process in R. 
philippinarum. 
In female-enriched loci of R. decussatus, GO terms are enriched in cytoskeleton 
organization, regulation of gene expression, regulation of developmental process, 
cell differentiation, and mitotic cell cycle. In R. philippinarum, such loci are 
principally involved in macromolecule metabolic process, rRNA modification and 
processing, gene expression, chromatin organization, organelle organization, 
transcription, DNA replication and recombination, and nucleosome assembly. 

Differential transcription and sequence evolution of orthologous genes 

A total of 7,180 orthologous groups were found between R. decussatus and R. 
philippinarum; 1,521 of these groups (21.2%) include at least a sex-biased gene in 
one of the two species. The transcription bias of orthologous genes was defined 
using the SCALE index (see Materials and Methods). We performed a cluster 
analysis using the SCALE index calculated for each group of orthologs in order to 
investigate differences and similarities in transcription sex bias between R. 
decussatus and  R. philippinarum (Figure 2, Table 3). Among the 1,521 groups 
with at least one sex-biased gene, only in 213 (14%) the sex bias is maintained 
(Figure 2 cluster B; table 4), while in the remaining 1,308 (86%), the orthologs 
show a change in sex bias between the two species. More in detail, 521 groups of 
orthologs (34.2%) are unbiased in R. philippinarum and female-enriched in R. 
decussatus (Figure 2, cluster A), 201 groups of orthologs (13.2%) are unbiased in 
R. decussatus and female-enriched in R. philippinarum (figure 2, cluster C), 175 
groups of orthologs (11.5%) are male-enriched in R. decussatus and unbiased in R. 
philippinarum (figure 2, cluster D), and 120 groups of orthologs (7.9%) are 
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unbiased in R. decussatus and male-enriched in R. philippinarum (figure 2, cluster 
E). Supplementary Material 3 reports the GO annotation of the five most abundant 
clusters (A-E, see Figure 2 and Table 3) of the 1,521 groups of sex-biased 
orthologs. Among these five clusters, the most recurring GO terms are gene 
expression, transport, signal transduction, regulation of transcription, translation, 
DNA replication, RNA processing, regulation of cell cycle, and protein 
phosphorylation (Supplementary Material 3). We focused on six genes that showed 
a reversed transcription sex-bias between the two species (Supplementary Table 3): 
BLAST annotation revealed a pre-mRNA processing factor, innexin, and E3 
ubiquitin-protein ligase MARCH2, while the remaining three are involved in 
mitochondrial biology. 
Figure 3 shows the distribution of dN/dS among orthologous genes with 1:1 
orthology between the two species (N=6,954). We found that the dN/dS 
distribution of orthologous genes with unbiased transcription in both the species 
(N=5,508) is not statistically different from almost all groups with a sex-biased 
transcription in at least one of the two species (Figure 3), indeed the median dN/dS 
is always included between 0.05 and 0.06. The only condition that shows a 
different distribution is represented by the orthologs in which male-biased 
transcription is maintained in the two species (Dunn test p-value=0). This group 
(N=194) is characterized by a first peak of density corresponding to dN/dS=0.07 
and a second peak at 0.2 (Figure 3, black line). Genes with a reversed sex-bias 
between the two species present a median dN/dS of 0.08, but given the low sample 
size (N=4) we did not include this group in the statistical analysis. The distribution 
of amino acid p-distance (Supplementary Figure 1) shows that orthologous genes 
between R. decussatus and R. philippinarum are characterized by a median 
divergence of 8%. In only 1.4% of genes the p-distance is ≥60%. We investigated 
the relationship between dN/dS of orthologs detected by OrthoVenn and the amino 
acid p-distance in both unbiased genes and sex-biased genes. We found that among 
orthologs with lower amino acid divergence, approximately below 40%, the 
relationship between dN/dS and p-distance shows a linear trend (Figure 4a, black 
dashed line). Instead, when the amino acid divergence is higher, the trend is better 
described by an exponential function (Figure 4a, red dashed line). This pattern is 
particularly evident in unbiased genes (Figure 4b). On the contrary, we found that 
among sex-biased categories, genes with a p-distance higher than 40% are rare, a 
linear model fits the data (Figure 4c-f, colored solid lines), and the trend for each 
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sex-biased category is comparable to the linear trend of unbiased genes (Figure 4b-
f, black dashed lines). Among the genes following an exponential relationship 
between dN/dS and amino acid p-distance (Figure 4a, red dashed line), we focused 
on two clusters: one includes orthologs with a p-distance included between 40-60% 
and a dN/dS<0.2, the other includes orthologs with a p-distance >60% and a 
dN/dS>0.2. We refer to the orthologs belonging to the abovementioned clusters as 
‘fast-mutating’ and ‘fast-evolving’, respectively (see Discussion). The most 
recurring GO terms associated with the two clusters are reported in  Supplementary 
Material 4. Table 4 shows the top 20 most frequent GO terms associated with ‘fast-
mutating’ and ‘fast-evolving’ orthologs. Of the 25 GO terms represented, 15 
appear in both groups of orthologs (metabolic process, transport, oxidation-
reduction process, transcription, DNA-templated, regulation of transcription DNA-
templated, phosphorylation, cellular protein modification process, transmembrane 
transport, signal transduction, translation, ion transport, carbohydrate metabolic 
process, proteolysis, protein phosphorylation, intracellular signal transduction), 
while 10 appear only in one group (biosynthetic process, response to stimulus, 
regulation of RNA biosynthetic process, regulation of nucleic acid-templated 
transcription, and ion transmembrane transport for the ‘fast mutating’ orthologs; 
nucleobase-containing compound metabolic process, lipid metabolic process, 
nucleotide biosynthetic process, cellular response to DNA damage stimulus, and 
nucleic acid phosphodiester bond hydrolysis for the ‘fast-evolving’ orthologs). 
Finally, by analyzing the relationship between dN/dS of orthologous genes and 
FPKM in R. decussatus (Figure 5), we found no evidence of correlation between 
rate of protein evolution and transcription level (Spearman's rank correlation ρ=-
0.01; p-value=0.3). The same lack of correlation was detected in R. philippinarum 
(Spearman's rank correlation ρ=-0.03; p-value=0.001). 

GO annotation of singlets 

For 5,652 loci of R. decussatus, OrthoVenn did not find any ortholog in R. 
philippinarum, while 5,066 loci of R. philippinarum had no orthologs in R. 
decussatus. We performed a GO term enrichment analysis of singlets: the network 
in Figure 6 shows the biological processes enriched in singlets of R. decussatus 
(green) and R. philipparum (red); GO terms shared between the two species are in 
white. The complete results of this analysis are shown in Supplementary Material 
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5. In R. philippinarum singlets seem to be involved mostly in cell part 
morphogenesis, cAMP biosynthesis, inorganic anion transmembrane transport, 
lymphocyte activation, leukocyte differentiation, and ribonucleoprotein complex 
subunit organization. In R. decussatus singlets, the most represented GO terms are 
related to anatomical structure formation involved in morphogenesis, gamete 
generation, locomotion, protein dephosphorylation, cell development, biological 
regulation, and reproduction. The only biological process found to be enriched in 
singlets of both species is cell projection organization. 

Discussion 

In this work we obtained the transcriptome of mature gonads in male and females 
of R. decussatus, and performed a comparative analysis with the related species R. 
philippinarum. Since gonads are known to be the tissue with the higher 
transcription of sex-biased genes (Zhang et al. 2004, 2007; Reinke et al. 2004; 
Torgerson et al. 2002; Good & Nachman 2005) this experiment gave the 
opportunity to investigate the evolution of sex-biased genes in two bivalve species, 
both in terms of protein sequence and transcription level. Also, we report here 
information about the biological processes represented in male and female mature 
gonad, as well as an analysis of the relationship between transcription level and 
rate of protein evolution. 
About 100 species of bivalve molluscs show the Doubly Uniparental Inheritance 
(DUI; (reviewed in Zouros 2013), an unusual mechanism of mitochondrial 
transmission. While R. philippinarum has DUI, so far R. decussatus did not show 
evidence for the presence of two sex-linked mitochondrial genomes typical of DUI 
(Ghiselli et al. 2017), so it is probable that it is a species with strictly maternal 
inheritance. It is therefore conceivable that some of the diversity in transcription of 
genes related to mitochondrial biology is related to a different mitochondrial 
inheritance system between the two species. Given the complexity of the issue, we 
will deal with such issue in a dedicated manuscript (Iannello et al., in preparation). 

Biological processes represented in mature gonads  

The GO term analysis of the whole transcriptomes shows, for both the species, an 
enrichment of biological processes involved in reproduction, cell proliferation, 
meiotic cell cycle, regulation of transcription and translation, chromosome 
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organization and cellular component organization, as expected given the analyzed 
tissue and reproductive stage (Supplementary Material 1, Supplementary Material 
2). Also the most recurring GO terms associated with sex-biased genes reflect 
biological processes which are typically involved in cell proliferation, which 
characterizes both female and male mature gonads. So, it is unsurprising to find 
among female-biased transcripts an enrichment of GO terms involved in cell cycle 
process, cell division, and cell project organization. GO terms reflect also the 
dynamics of cytoskeleton organization: cell divisions are indeed strictly controlled 
in both time and space from the action of microtubules and microfilaments, that 
ensure the formation of the spindle and the segregation of homologous 
chromosomes during the first meiotic division, the segregation of sister chromatids 
during the second meiotic division, the asymmetry between oocyte and polar 
bodies, and cell division (Brunet & Maro 2005). Among female-biased transcripts 
there is also an overrepresentation of GO terms involved in regulation of 
macromolecule metabolism, gene expression, regulation of transcription and 
organic substance transport: this is likely due to cytoplasmic maturation of the 
oocyte, which consists in the accumulation of mRNA, proteins, and nutrients 
required for early embryo development (Watson 2007). Finally, we found an 
enrichment of GO terms involved in immune system and embryo development 
which will be discussed in detail in two dedicated sections. For what concerns 
male-biased transcripts, they are enriched in GO terms involved in reproduction 
and cell division as well, matching the biological processes expected for a mature 
gonad. GO terms associated with organization of cytoskeleton are largely 
represented: besides mitosis and meiosis, microtubules are heavily involved in 
spermiogenesis, the last phase of spermatogenesis, where they are necessary for 
nuclear elongation, and for the development of acrosome and flagellum (Sperry 
2012). Among male-biased genes we found GO terms related to embryo 
development, as well (see discussion below). 

Comparative analysis of transcription level and rate of protein evolution of sex-
biased orthologous genes between R. decussatus and R. philippinarum 

In both R. decussatus and R. philippinarum, about 10% of the assembled contigs 
show a sex-biased transcription (Table 1). These values are lower compared to 
what reported in other taxa, even when detection of sex-biased genes was 
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performed in somatic tissues: more than 81% of genes showed a sex-biased 
transcription in frogs (Malone et al. 2006), about 75% in wasps (Xu Wang et al. 
2015), up to 57% in Drosophila (Ranz et al. 2003), 50% in Daphnia pulex (Eads et 
al. 2007), and similar patterns were found in copepods (Poley et al. 2016), 
Anopheles (Papa et al. 2017), fish (Small et al. 2009), birds (Mank et al. 2010), and 
mammals (Yang et al. 2006). Nevertheless, it should be considered that the amount 
of sex-biased genes increases with the number of tissues analyzed (Ellegren & 
Parsch 2007; Yang et al. 2006), while only gonads were investigated in this work. 
Furthermore, clams lack sexual dimorphism as well as mating behavior, which are 
responsible for the majority of differential transcription between sexes (Ellegren & 
Parsch 2007; Harrison et al. 2015). Therefore, in these bivalves all the genes 
showing differential transcription between sexes are likely involved in 
gametogenesis, and this experiment offers the opportunity to observe the 
transcriptional difference between female and male gonads and gametes. Since 
gonads were sampled during the same stage of gametogenesis in two related 
species that lack sexual dimorphism, we did not expect to detect considerable 
differences in transcription of sex-biased genes. Nevertheless, while we found that 
among sex-biased genes of R. decussatus there is a higher proportion of female-
biased genes—as already seen in Daphnia galeata and Ischnura elegans 
(Huylmans et al. 2016; Chauhan et al. 2016)—R. philippinarum is characterized by 
a higher proportion of male-biased genes—which seems to be the most common 
situation, as reported by the studies cited in the Introduction. Overall, in 86% of the 
orthologous genes the sex bias is not maintained between the two species (Figure 
2, Table 3). The most frequent condition is represented by genes that are female-
biased in one species and unbiased in the other species; therefore, despite male-
biased genes showing the greater transcription divergence in many studies (Ranz et 
al. 2003; Meiklejohn et al. 2003; Brawand et al. 2011; Khaitovich et al. 2005), 
female-biased genes are the most transcriptionally variable in these two bivalves, a 
situation previously reported in frogs (Malone et al. 2006). Among genes where 
the sex bias is not maintained, the most represented GO terms include gene 
expression, transport, signal transduction, regulation of transcription, translation, 
DNA replication, RNA processing, regulation of cell cycle, and protein 
phosphorylation (Supplementary Material 3). This finding is consistent with genes 
having divergent transcription being involved in regulatory functions. 
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Sex-biased genes are considered to evolve faster, in particular those expressed 
preferentially or exclusively in reproductive tissues (Parisi et al. 2003; Harrison et 
al. 2015; Mank et al. 2008). In order to test this condition, we investigated the rate 
of protein sequence evolution in both unbiased and sex-biased genes, and among 
the latter we separated those where the bias was maintained from those where the 
bias changed between the two species (Figure 3). We found that the only group of 
orthologs with a significant higher rate of protein evolution is composed of genes 
that are male-biased in both the species (Figure 3, black line, Dunn test p-value=0). 
Conversely, orthologs that show a male-biased transcription in only one of the two 
species have dN/dS comparable to that of unbiased genes, as already reported in 
birds and Drosophila (Harrison et al. 2015; Grath & Parsch 2012; Metta et al. 
2006). Similarly, the dN/dS distribution in female-biased genes is comparable to 
that in unbiased genes, independently on whether the female-bias was maintained 
or not in the species. So, if on the one hand male-biased genes show a higher 
dN/dS, on the other hand female-biased genes are the most variable in terms of 
transcription between the two species. This evidence reveals two different kinds of 
evolution of sex-biased genes, where a more rapid evolution of protein sequence 
seems to be predominant for male-biased genes, whereas a more variable 
transcriptional regulation is presumable for female-biased genes. Also, this 
observation is consistent with the assumption that transcription level divergence 
and rate of protein evolution are decoupled (Jordan et al. 2004; Harrison et al. 
2015; Tirosh & Barkai 2008). Why would male- and female-biased genes evolve 
differently? One possible hypothesis is that female-biased genes are more 
constrained in terms of protein sequences, because they are involved in more 
biological processes (‘functional pleiotropy’, see: Zhang et al. 2007; Mank & 
Ellegren 2009), but, perhaps for the same reason, are subject to a more variable 
transcriptional regulation. Following this rationale, male-biased genes would be 
more specialized, but it is not clear whether their higher amino acid sequence 
evolution is a result of positive selection, as expected for male proteins involved in 
sexual competition (Swanson & Vacquier 2002; Clark et al. 2006; Turner et al. 
2008), or if they are more dispensable and thus free to accumulate mutations 
(Gershoni & Pietrokovski 2014). Further analysis, involving more tissues and 
several different species may help to investigate this point in Bivalvia. 
Nevertheless, in our data, dN/dS distribution is strongly skewed toward 0 in all 
cases, values higher than 0.4 are quite rare, and we did not find any sign of positive 
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selection. Given what reported in the literature, this is surprising because proteins 
involved in male reproductive traits, such as sperm-eggs recognition, or sperm 
competition are expected to have dN/dS higher than 1, or at least close to this value 
(Swanson & Vacquier 2002; Dapper & Wade 2016; Clark et al. 2006). This should 
be even more evident in marine invertebrates where fertilization occurs externally, 
and positive selection acting on proteins involved in fertilization is thought to 
trigger the evolution of reproductive isolation (Turner & Hoekstra 2008). We 
wondered if these results were due to a biological condition or to a technical 
artefact. On the one hand, if we obtained an accurate representation of the actual 
evolutionary rates, then orthologs transcribed in the gonads of these two bivalve 
species experience only purifying selection. So why such a slow evolutionary rate? 
In species with heteromorphic—thus non-recombining—sex chromosomes, sex-
biased genes are non-randomly distributed across the genome, so there can be 
cooperation and conflict among different chromosomal regions depending on 
whether they are co-transmitted as part of male or female sex determination. Such 
transmission asymmetry entails a high probability of sex chromosomes being 
involved in genomic conflicts, leading to sexually antagonistic variation (Rice & 
Chippindale 2001; Rice 2013), resulting in faster evolution. In particular, the Y 
chromosome does not recombine and is male-limited, and males generally evolve 
faster, so the conflicts will result in a faster evolution of male-biased genes. One 
could argue that the Y chromosome contains only few genes, but—to use Rice’s 
words—Y is a “coding dwarf” but a “regulatory giant” (Rice 2013): in Drosophila, 
polymorphisms at loci on Y chromosome influence thousands of genes (Stewart et 
al. 2010). So given that bivalves lack heteromorphic sex chromosomes, such 
conflicts—thus evolutionary rates—should be different, perhaps softer. Another 
non-mutually exclusive hypothesis should be considered. The sex determination 
system in bivalves is still unknown, but there is experimental evidence that sex is 
determined by maternal nuclear genome (Zouros 2013), and—since triploids 
develop male gonads—that maleness is achieved by exceeding a threshold of some 
yet unknown masculinizing factor. It was proposed that the activation of sex 
determination genes depends on genetic elements (RNAs, proteins) stored in the 
oocyte, whose concentration depends on maternal genotype. In this way, F1 sex 
depends only on maternal genotype, while paternal genotype contributes to F2 sex 
(see Fig. 7 in Ghiselli et al. 2012 for a scheme). Brisson and Nuzhdin (2008) 
showed that in a system with a strong reproductive skew between males and 
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females (pea aphids), male-biased genes undergo mutational decay, while female-
biased genes are under constant selection. Clams do not experience such a strong 
reproductive skew, but if the above-mentioned model is true, feminizing factors—
which should be female-biased genes—and masculinizing factors—which should 
be male-biased genes—might experience different selective pressures, mainly 
because masculinizing genes do not produce their effect in the embryos receiving 
them, but in their progeny. Basically their transmission does not depend on their 
masculinization action, and this might result in the elimination of pressure on 
male-biased genes to evolve fast. This idea is still at the stage of speculation, but 
we think it deserves further investigation. On the other hand, to explain the 
unexpectedly low dN/dS in sex- biased genes, we also want to consider the 
possibility of a too strict method for orthology detection: this could lead to a 
considerable number of false negatives, especially among the more variable 
orthologous genes, and the consequent exclusion of such sequences from the 
analyses. This would be particularly damaging, because fast evolving genes are the 
more informative and interesting genes for studying molecular evolution. In order 
to understand whether the method we used to identify orthologs introduced a bias 
toward slow evolving sequences, we investigated the relationship between dN/dS 
and amino acid p-distance (Figure 4).The analysis showed that the method inferred 
orthology in sequences that diverged up to 80%. Nevertheless, orthologs with a p-
distance ≥60% are about 1% of the total, and they are almost absent among sex-
biased genes, that are expected to be the most variable. Given all the published 
literature on this subject, the complete absence of orthologous genes showing a 
dN/dS ≥0.8 is quite surprising, especially considering that we are analysing genes 
transcribed in gonads. A possible explanation is that most of the rapidly evolving 
genes were not recognized as orthologs and were erroneously included among 
singlets. Detection of orthologs is a well-known problem: to date, basically two 
approaches are used: the graph-based methods and the tree-based methods 
(Kristensen et al. 2011). In the graph-based method, clusters of orthologs are based 
on sequence similarities, but, as mentioned before, the most rapidly evolving and 
thus informative sequences could be discarded, due to high sequence divergence. 
On the other hand, a tree-based method requires good a priori knowledge of both 
gene family trees and species trees, that is not easily obtainable especially for 
nonmodel taxa, which are poorly represented in the construction of gene family 
trees. Besides, by comparing different programs based on both methods on a 
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curated database of orthologs, Trachana et al. (2011) found that all repositories 
predict only a fraction of these orthologs.  
Going back to our data, it is worth noting that the relationship between dN/dS and 
amino acid p-distance has two different trends, depending on whether the p-
distance is lower or higher than 40% (Figure 4a). Below 40% the relationship 
follow a linear trend; on the contrary, when the amino acid divergence is higher 
than 40%, the correlation is better described by an exponential function. We can 
think the x-axis on the plot (amino acid p-distance) as a measure of 
nonsynonymous change, while the y-axis represent the amount of nonsynonymous 
change “normalized” by the proportion of synonymous change. Therefore, for a 
fixed p-distance, an increasing dN/dS value corresponds to a decreasing proportion 
of synonymous changes, namely a faster rate of amino acid sequence evolution. 
Accordingly, we can observe that between 40% and 60% of p-distance there is a 
cluster of genes that shows a low dN/dS, meaning that the high number of 
nonsynonymous changes is coupled with an even higher proportion of synonymous 
changes. These genes therefore seem to experience a high mutation rate, but a 
relatively low rate of evolution, intended as the proportion of nonsynonymous 
change (‘fast-mutating’ orthologs). Between a p-distance of 60% and 80% the 
dN/dS rate is much higher, meaning that for the genes included in this interval 
most of the change is nonsynonymous, so they undergo a faster evolution (‘fast-
evolving’ orthologs). Unexpectedly, most of such genes did not show a sex-biased 
transcription in either R. decussatus or R. philippinarum. The top 20 most recurring 
GO terms associated with ‘fast-mutating’ and ‘fast-evolving’ orthologs (Table 4) 
are similar: the two groups share 15 of the 25 GO terms listed (Table 4), and the 
remaining 10 are closely related among each other. So there seems to be little 
difference in overrepresented biological processes between the two groups, and 
orthologs involved in gene expression regulation (at any level) are among the most 
rapidly evolving genes in our dataset. 

The controversial relationship between evolutionary rate and transcription level 

According to recent studies, the evolutionary rate of a protein would be mainly 
influenced by its transcription level (Zhang & Yang 2015 and references therein), 
and a negative correlation between transcription level and evolutionary rate, 
defined E-R correlation, was found across a variety of species. In contrast, our 
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analysis on two bivalves shows no correlation. One hypothesis is that bivalves 
undergo different patterns of protein evolution and/or that protein sequence 
evolution is not driven by transcription level, for yet unknown reasons. In this case, 
bivalves—or at least the two clam species we analyzed here—would represent an 
exception, and further investigation would be necessary to understand how, and 
why. A second hypothesis concerns the methodology: is our opinion that the 
common practice used for investigating the relationship between dN/dS and 
transcription level could yield inaccurate results, for three main reasons. 
1) Transcription level is extremely variable. Transcription is a quite noisy 
process—especially in multicellular eukaryotes—and it is influenced by both 
genetic factors—that modify gene expression depending, for example, on the 
tissue, developmental stage, phase of life cycle, etc.—and environmental factors 
(e.g.: diet, stress). Most of the times, the variation caused by genetics, 
environment, and by the combination of both is unpredictable. There could also be 
technical issues, like different sequencing methods and RNA quality, which are 
known to influence the measurement of transcription level. In addition, in 
multicellular organism the transcription level is often calculated averaging the 
mRNA concentration across several tissues: such values are likely inaccurate and 
not representative of the physiological condition of the organism. In order to 
perform reliable comparative analyses, it is important to use homogeneous data, 
and for all the abovementioned reasons, this is a condition which is not often 
achieved.   
2) dN/dS are calculated between the species for which transcription level is 
measured and one related species. Since the rate of protein evolution is influenced 
by the phylogenetic distance between the considered species, dN/dS are variable as 
well, depending on the species used in the comparison. Since available 
transcriptome data are not equally representative of all the taxa, it is often difficult 
to find species with homogeneous evolutionary distances, so that the comparisons 
would be consistent across all the analyzed taxa.  
3) For each dN/dS, we do not know whether it is the result of an even 
accumulation of divergence along the two branches that separate the two species 
under analysis, or if it is due to just one species evolving much faster than the 
other. In the latter case, the evolutionary rate is overestimated in one species, and 
underestimated in the other. In addition, if transcription levels are not strongly 
correlated between the two species the relationship between dN/dS and 
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transcription level would show different trends, depending on what species is used 
for the transcription quantification. In such case, what is the correct trend? 
In the present work we tried our best to overcome the problems mentioned in point 
1 by comparing data obtained using the same experimental design (number of 
biological and technical replicates, sex, tissue, sampling season, and reproductive 
phase), the same protocols performed in the same lab, the same sequencing 
technology, and the same pipeline of analysis. The fact that we used two species 
and a single tissue eliminated the other issues raised in point 1, and those in point 
2. Point 3 is more difficult to address: despite R. decussatus and R. philippinarum 
are morphologically and ecologically very similar, during their evolutionary 
history they experienced very different population dynamics (Arias-Pérez et al. 
2016; Cordero et al. 2017), which could have resulted in significantly different 
evolutionary rates between the two species. Unfortunately, with the available data, 
a more accurate estimate is not possible. For what concerns the transcription level 
of orthologous genes, the two species show a moderate correlation (Spearman’s 
rank correlation ρ=0.2, p-value=2.2E-16, see Supplementary Figure 2). This affects 
the E-R plots that yield different results depending on which transcription data—R. 

decussatus or R. philippinarum—are being used in the analysis (Figure 5). In this 
case, despite the differences, the final result is unambiguous (i.e. no correlation), 
but in cases where the transcription level of orthologs is less/not correlated, results 
might be significantly different, potentially even opposite. Thus, the chance of 
getting ambiguous results increases with the transcriptional divergence between the 
analyzed species, which, in turn, increases with phylogenetic distance plus a large 
number of factors which—as discussed above—are difficult to predict or 
standardise. 
More work is needed to establish whether the absence of E-R correlation reported 
here is an exception—and what biological/evolutionary causes are responsible for 
it—or it is a more widespread feature. In the latter case, the hypothesis that 
transcription level is the main responsible for the rate of protein evolution should 
be revised. The results of this work are not compelling enough to reject the E-R 
correlation theory, but in our opinion they show that caution is needed when 
performing comparative analyses, especially when doing it across a wide range of 
distantly related species. Consequently, we think that more clear-cut evidence is 
needed to support the hypothesis by which transcription level drives protein 
evolution. Alternatively, many other features are thought be involved in protein 
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evolution, such as functional importance, pleiotropy, protein-protein interaction, 
network property, and structural constraints (Larracuente et al. 2008; Ridout et al. 
2010).  

Transcripts involved in embryo development are stored in gametes 

Animal eggs contain the substances required for sustaining the first stages of 
development. Other than vitamins, minerals, fatty acids, and other nutrients 
provided by the yolk, egg cells contain RNAs and proteins produced by the so-
called ‘maternal genes’ during oogenesis. Such products sustain and guide embryo 
development, especially before the activation of zygotic gene expression (Marlow 
2011). Indeed, the first cell divisions after fertilization occur in absence of new 
transcription, and in this phase the embryonic development relies solely on 
maternal gene products. The analyses here reported further support the existence of 
maternal genes in both the species. Indeed, among female-biased genes, we found 
an enrichment of GO terms involved in embryonic organ morphogenesis, and in 
development and formation of primary germ layer. This result supports the storage 
in the egg of maternal gene products (in this case mRNAs) that would be used 
during embryo development. Interestingly, we also found an enrichment of GO 
terms involved in embryo development and organ morphogenesis among singlets 
of both R. decussatus and R. philippinarum, indicating that a large number of 
genes involved in such processes are not conserved between the two species.  
What about paternal contribution? Until few years ago it was thought that the 
primary function of sperm was to deliver the paternal DNA to the embryo. 
Recently, it was discovered in mammals, insects, and plants that sperm carry 
thousands of RNAs (Hosken & Hodgson 2014; Dadoune 2009). These transcripts 
persist in spermatozoa, where the machinery for their translation is inactive (Miller 
et al. 2005), so it is unlikely that the RNAs stored in spermatozoa are necessary for 
its survival, but it is more plausible that they contribute to embryo development, 
even if their function is still unknown (Hosken & Hodgson 2014). Accordingly, in 
the last years, evidence of sperm transcriptional contribution to the offspring 
development is increasing. Several experiments highlighted the importance of 
epigenetic inheritance acquired through sperm RNAs (Chen et al. 2016), and the 
role of paternal miRNAs in the first embryo division (Yuan et al. 2015; Liu et al. 
2012). Interestingly, among male-biased genes, we found several GO terms 
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involved in developmental process and determination of bilateral symmetry. To the 
best of our knowledge, this is the first evidence of sperm transcripts related to such 
processes, supporting the hypothesis that sperm can be involved not only in the 
first cleavage division, but also it could have a role in the following stages. A role 
of paternal factors (RNAs, proteins) in embryo development and sex determination 
has been already proposed for R. philippinarum (Ghiselli et al. 2012; Milani et al. 
2013). 

Immune system 

Knowledge about invertebrate immunity is rapidly increasing (Yuan et al. 2014): 
while vertebrates are characterized by an adaptive immune system, where 
immunological memory allows to develop specific responses to pathogens after 
their first attack, invertebrates possess only an innate immune system that was 
initially thought to be a quick, nonspecific defense to all pathogens and 
distinguished by a lack of memory. More recently, several experiments 
demonstrated instead that invertebrates show a great plasticity of immune response 
to both different pathogens and different strains (Kurtz & Franz 2003). 
Furthermore, there is evidence of immune memory in several invertebrate taxa, 
that protects organisms from specific pathogens after their secondary exposure 
(Milutinović & Kurtz 2016; Kurtz & Franz 2003). Although most of the molecular 
components involved in innate immune system are still unknown, it has been 
proposed that high genomic diversity, alternative splicing, rearrangement of gene 
exons, as well as synergistic interaction of components and dosage effects could be 
responsible for these highly specific responses in invertebrates (Schulenburg et al. 
2007). Also, it is known that in both vertebrates and invertebrates, maternal 
immunity plays a crucial role for the survival of early stage embryos (Grindstaff et 
al. 2003; Knorr et al. 2015). By this mechanism, mothers transfer immunity to the 
offspring through eggs, so that embryos are protected from external pathogens 
during the first stages of their development. This is particularly important in 
species where the fertilization is external and both eggs and embryos are highly 
exposed to environmental factors. Immune response has been thoroughly 
investigated in Bivalvia due to the ecological and commercial importance of this 
group (see for example: Moreira et al. 2012; Pauletto et al. 2014; Gerdol & Venier 
2015), and evidence of both memory and maternal transfer of immunity were 
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found (Cong et al. 2008; Lingling Wang et al. 2015). Immune system components 
are recurring in the gonadal transcriptome of both R. decussatus and R. 
philippinarum females, and we found several GO terms involved in leukocyte 
differentiation among female-biased transcripts. Moreover, GO terms involved in 
immune system were frequent among genes with p-distance between 40-60% and 
dN/dS< 0.2 (‘fast-mutating’ orthologs), suggesting a high mutation rate but a 
contained rate of evolution of these genes. Intriguingly, GO terms related to 
immune response resulted to be enriched among singlets of R. philippinarum, but 
not of R. decussatus. We propose two possible explanations for this result: i) these 
genes are present in both R. decussatus and R. philippinarum genomes, but they 
are transcribed only in R. philippinarum because of the exposition to a pathogen 
that was absent in the environment from where R. decussatus was sampled. Since 
immunity is highly specific, the upregulated transcription of genes involved in 
strain-specific response in R. philippinarum females would not be transcribed in R. 
decussatus. Accordingly, it has been reported that the presence of a pathogen can 
influence the maternal transfer of immunity, so that the offspring receive a strain 
specific defense from the pathogen present in that environment (Yue et al. 2013; 
Little et al. 2003). ii) These genes are only present in the genome of R. 
philippinarum, that evolved a higher genetic diversity in response to pathogens, 
highlighting a very different evolution of immune response between the two 
species. In a transcriptome comparative study of genes involved in immune system 
between R. decussatus and R. philippinarum Moreira et al. (2012) reported that, 
following bacterial infection, R. decussatus seems to have a less effective and 
lower immune response compared to R. philippinarum. This might explain the 
population decline of R. decussatus and its lower resistance to diseases, explaining 
also the ongoing replacement of the European clam by the invasive R. 
philippinarum, which might have been evolved a more efficient response to 
pathogens. 
Finally, we found an overrepresentation of GO terms involved in lymphocyte 
activation in both R. decussatus and R. philippinarum: this is surprising, since 
lymphocytes are involved in vertebrate immunity. Nevertheless, lymphocyte-like 
cells were found in amphioxus (Huang et al. 2007) and this could open new 
perspectives about invertebrate immunity.     
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Conclusions 

This work provides new information about transcription dynamics and sequence 
evolution of sex-biased genes in a group of Metazoa for which such data are 
missing. Compared with other taxa, both the bivalve species analyzed showed a 
low number of sex-biased genes, probably due to the absence of sexual 
dimorphism and other sex-specific features (e.g. mating behavior). Surprisingly, 
we found striking differences in transcription between the two species: R. 
decussatus shows a prevalence of female-biased transcripts, while in R. 

philippinarum the majority of sex-biased genes are male-biased. Moreover, the 
transcriptional bias is maintained in only 14% of the orthologs between the two 
species, and—contrarily to what reported in multiple studies on other animals—
female-biased genes show the highest divergence in transcription. Genes not 
maintaining the sex bias between the two species appear to be mainly involved in 
regulatory processes. For what concerns sequence evolution, orthologs showed a 
low dN/dS indicating a prevalence of purifying selection; genes having a male-
biased transcription in both species resulted to be evolving significantly faster than 
other groups of genes. Among orthologs, we identified two groups that stood out 
against the others: a cluster of ‘fast-mutating’ genes, and a cluster of ‘fast-
evolving’ genes. The biological processes associated to both the groups are 
involved in regulation of gene expression. Overall, the central theme seems to be 
that of a quite variable transcription opposed to a high sequence conservation; 
genes involved in regulatory functions show either high transcriptional variability 
or fast sequence evolution. We also report the presence of transcripts involved in 
embryo development in both female and male gametes, and an enrichment of GO 
terms related to immune response among female-biased genes in R. philippinarum. 
During the development of this work we had to face several technical challenges 
typical of comparative analyses performed on nonmodel organisms. This allowed 
us to think about the difficulties in inferring orthology and about some downsides 
of the common practices used to investigate the relationship between protein 
sequence evolution and transcription level. The concerns we raised about such 
technical approaches do not have straightforward solutions, but we think a 
significant improvement can be achieved through more careful experimental 
designs—from both methodological and biological points of view—and a wider 
sampling across the whole ‘Forest of Life’. Our growing understanding of the 
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diversity of life clearly advise against the routine of  formulating hypotheses and 
inferring general evolutionary patterns based only on a small number of species. 
Therefore, since comparative genomics has a fundamental role in almost every 
field of biology, an improvement in comparative methods will represent one of the 
main challenges for the next future. Such improvement require a better knowledge 
of genomes and transcriptomes that, in turn, depends on our ability in annotating 
genes and inferring phylogenetic relationships across taxa. The problem is 
evidently circular, and at the moment the focus should be on getting a more 
uniform representation of the actual biodiversity in genomics data. This is a 
demanding endeavour, but in the last few years numerous international 
collaborative projects have been established with the goal of filling the gap of 
knowledge sequencing an increasing number of species (Voolstra et al. 2017 and 
references therein). 
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Figure Legends 

Figure 1 

Volcano plot of the transcription in R. decussauts (top) and R. philippinarum 
(bottom). Male-enriched transcripts are represented in blue, female-enriched 
transcripts in red, unbiased transcripts in grey. Dashed lines: log2(fold change)=-
1,1 (fold change=-2,2). 

Figure 2 

Sex bias difference in groups of orthologs between R. decussatus and R. 
philippinarum (N=1521), as represented by a cluster analysis performed using the 
SCALE index. Cluster B: no difference in transcription bias between groups of 
orthologs; yellow=R. philippinarum; green=R. decussatus. 

Figure 3 

Kernel density plot of the distribution of dN/dS in unbiased genes in both the 
species (green line), in genes that are unbiased in one species and male- or female-
biased in the other species (respectively blue line, and pink line), in genes where 
the sex bias is maintained (black line for male-biased genes, red line for female-
biased genes) and in genes with a reversed sex bias (yellow line). 

Figure 4 

a) Relationship between dN/dS and amino acid p-distance of all orthologous genes 
between R. decussatus and R. philippinarum. A linear function (black dashed line) 
describes the relationship between dN/dS and p-distance in genes with lower p-
distance. In genes with p-distance higher than 40%, the relationship is better 
explained by an exponential function (red dashed line). b) unbiased genes in both 
the species (green); c) genes that are unbiased in one species and male biased in the 
other (blue); d) genes that are unbiased in one species and female-biased in the 
other species (pink);  e) genes where a male-bias is maintained (black); f) genes 
where a female-bias is maintained (red). Dashed lines in b-f represent the 
regression lines corresponding to the linear model calculated for all genes; solid 
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colored lines in b-f represent the regression lines corresponding to the linear 
models calculated with the specific subset of genes. 

Figure 5 

Plot indicating the relationship between the rate of protein sequence evolution 
indicated as log2(dN/dS), and transcription level indicated as log2(FPKM) in R. 
decussatus (left), and R. philippinarum (right). 

Figure 6 

Network of GO term enrichment in singlets of R. decussatus (green), and R. 
philippinarum (red). 
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Volcano plot of the transcription in R. decussauts (top) and R. philippinarum (bottom). Male-enriched 
transcripts are represented in blue, female-enriched transcripts in red, unbiased transcripts in grey. Dashed 

lines: log2(fold change)=-1,1 (fold change=-2,2).  
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Sex bias difference in groups of orthologs between R. decussatus and R. philippinarum (N=1521), as 
represented by a cluster analysis performed using the SCALE index. Cluster B: no difference in transcription 

bias between groups of orthologs; yellow=R. philippinarum; green=R. decussatus.  
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Kernel density plot of the distribution of dN/dS in unbiased genes in both the species (green line), in genes 
that are unbiased in one species and male- or female-biased in the other species (respectively blue line, and 
pink line), in genes where the sex bias is maintained (black line for male-biased genes, red line for female-

biased genes) and in genes with a reversed sex bias (yellow line).  
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a) Relationship between dN/dS and amino acid p-distance of all orthologous genes between R. decussatus 
and R. philippinarum. A linear function (black dashed line) describes the relationship between dN/dS and p-
distance in genes with lower p-distance. In genes with p-distance higher than 40%, the relationship is better 

explained by an exponential function (red dashed line). b) unbiased genes in both the species (green); c) 
genes that are unbiased in one species and male biased in the other (blue); d) genes that are unbiased in 
one species and female-biased in the other species (pink);  e) genes where a male-bias is maintained 

(black); f) genes where a female-bias is maintained (red). Dashed lines in b-f represent the regression lines 
corresponding to the linear model calculated for all genes; solid colored lines in b-f represent the regression 

lines corresponding to the linear models calculated with the specific subset of genes.  
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Plot indicating the relationship between the rate of protein sequence evolution indicated as log2(dN/dS), and 
transcription level indicated as log2(FPKM) in R. decussatus (left), and R. philippinarum (right).  
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Network of GO term enrichment in singlets of R. decussatus (green), and R. philippinarum (red).  
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Table 1: Number (and percentage) of sex-biased transcripts in R. decussatus and R. 

philippinarum. 

 

 

 

 

 

 

 

 M-specific M-enriched Unbiased F-enriched F-specific 

R. decussatus 775 (2%) 661 (1.7%) 35,532 (90%) 1,589 (4%) 910 (2.3%) 

R. philippinarum 448 (2%) 909 (4%) 20,772 (90.7%) 631 (2.8%) 126 (0.5%) 
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Table 2: Annotation statistics of R. decussatus and R. philippinarum transcriptomes. 

 

 

 

 
Assembled 

Loci 

Protein  

Annotation  

GO 

Annotation 

Nucleotide 

Annotation 

Total 

Annotated 

Not 

Annotated 

R. decussatus 39,467 14,315 

(36.3%) 

13,865 

(35.1%) 

13,697 

(34.7%) 

28,022 

(71%) 

11,445 

(29%) 

R. philippinarum 22,886 12,371  

(54%) 

12,064 

(52.7%) 

3,997  

(17.5%) 

16,436 

(71.8%) 

6,450 

(28.2%) 
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Table 3: comparison of transcription sex bias of orthologous groups between R. decussatus 

and R. philippinarum according to the SCALE index. 

 

 

 

 

 

 

Sex Bias of Orthologous Groups Number of 

Orthologous Groups 

(%) 

Cluster (Fig.2) 
R. decussatus R. philippinarum 

Female Enriched Unbiased 521  (34.2%) A 

Sex Bias Maintained 213  (14%) B 

Unbiased Female Enriched 201  (13.2%) C 

Male Enriched Unbiased 175  (11.5%) D 

Unbiased Male Enriched 120  (7.8%) E 

Female Specific Unbiased 87  (5.7%) na 

Male Specific Unbiased 56  (3.7%) na 

Male Enriched Male Specific 40  (2.6%) na 

Male Specific Male Enriched 32  (2.1%) na 

Unbiased Female Specific 27  (1.8%) na 

Unbiased Male Specific 24  (1.6%) na 

Female Specific Female Enriched 11  (0.7%) na 

Female Enriched Female Specific 8  (0.5%) na 

Female Enriched Male Specific 2  (0.1%) na 

Male Specific Female Enriched 1  (0.07%) na 

Male Enriched Female Enriched 1  (0.07%) na 

Female Enriched Male Enriched 1  (0.07%) na 

Female Specific Male Enriched 1  (0.07%) na 

Male Specific Female Specific 0 na 
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Table 4: top 20 most frequent GO terms associated with 'fast mutating' (dN/dS<0.2, 

40%≤p-distance≤60%), and 'fast evolving' orthologs (dN/dS>0.2, p-distance>60%).  
Of the 25 GO terms represented in this list, 15 appear in both groups of orthologs, while 10 

(underlined) appear only in one group. 

 

 

'Fast-mutating' orthologs 'Fast-evolving' orthologs 

metabolic process metabolic process 

biosynthetic process nucleobase-containing compound metabolic process 

transport transport 

oxidation-reduction process oxidation-reduction process 

response to stimulus transcription, DNA-templated 

transcription, DNA-templated regulation of transcription, DNA-templated 

regulation of RNA biosynthetic process transmembrane transport 

regulation of nucleic acid-templated transcription phosphorylation 

regulation of transcription, DNA-templated cellular protein modification process 

transmembrane transport signal transduction 

phosphorylation translation 

cellular protein modification process ion transport 

signal transduction carbohydrate metabolic process 

translation proteolysis 

ion transport protein phosphorylation 

carbohydrate metabolic process intracellular signal transduction 

proteolysis lipid metabolic process 

protein phosphorylation nucleotide biosynthetic process 

intracellular signal transduction cellular response to DNA damage stimulus 

ion transmembrane transport nucleic acid phosphodiester bond hydrolysis 
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Supplementay figures and tables 

 

 

Supplementary figure 1. Distribution of amino acid p-distance of orthologous genes between R. 

decussatus and R. philippinarum. 

 

 

Supplementary figure 2. Transcription levels correlation between orthologous genes of R. decussatus 

(log2(FPKM) Rde) and R. philippinarum (log2(FPKM) Rph). 
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Supplementary Table 1: R. decussatus de novo assembly statistics. 

 

  

Total number of reads 67,386,984 

Total nucleotides 5,121,410,784 

Contigs  

Total number of contigs 69,279 

Median length of contig sequences 795 

N50 length of contig sequences 2,064 

Representative loci sequences  

Total number of loci 39,467 

Median length of loci sequences 668 

N50 length of loci sequences 1,672 

Total length of all loci sequences 43,791,854 

Number of loci having multiple contigs 12,300 
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Supplemantary Table 2: completeness assessment of transcriptome assemblies according to 
BUSCO v2 as implemented in gVolante (https://gvolante.riken.jp/). 
eBUSCO = Eukaryota ortholog set; mBUSCO = Metazoa ortholog set. 
 
 

 
R. decussatus R. philippinarum 

eBUSCO mBUSCO eBUSCO mBUSCO 

Total # of core genes queried 303 978 303 978 
Complete 276 (91.09%) 853 (87.22%) 224 (73.93%) 692 (70.76%) 
Complete + Partial 292 (96.37%) 926 (94.68%) 282 (93.07%) 859 (87.83%) 
Missing 11 (3.63%) 52 (5.32%) 21 (6.93%) 119 (12.17%) 

SEQUENCE STATISTICS 

# of sequences 39,467 22,818 
Total length (nt) 43,791,854 17,963,136 
Longest sequence (nt) 28,079 24,386 
Shortest sequence (nt) 300 259 
Mean sequence length (nt) 1,110 787 
Median sequence length (nt) 668 502 
N50 sequence length (nt) 1,672 1,006 
L50 sequence length (nt) 7,117 4,649 
# of sequences > 1K (nt) 13,276 (33.6%) 4,687 (20.5%) 
# of sequences > 10K (nt) 60 (0.2%) 13 (0.1%) 
GC-content (%) 35.05 39.18 

Base composition (%) A:33.08, C:17.16, G:17.77, 
T:31.66, N:0.33 

A:32.27, C:18.76, G:20.41, 
T:28.55, N:0.01 
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Supplementary Table 3:

Supplementary Materials 1-5 are available on figshare: https://figshare.com/s/55515385c449ca16c042

BLAST annotation of the orthologous groups that showed an opposite transcription sex bias between R. decussatus and R. 
philippinarum.

Sex Bias of Orthologous Groups
BLAST Annotation

R. decussatus R. philippinarum

Male Specific Female Enriched Pre-mRNA-processing factor 40-like A
Male Enriched Female Enriched Coiled-coil-helix-coiled-coil-helix domain containing protein 3; Mitochondrial

Female Specific Male Enriched Probable tRNA N6-adenosine threonylcarbamoyltransferase; Mitochondrial
Female Enriched Male Specific Innexin
Female Enriched Male Specific E3 ubiquitin-protein ligase MARCH2
Female Enriched Male Specific ATP-binding cassette sub-family B member 10; Mitochondrial
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Abstract 
 

Mitochondria are a fundamental component of the eukaryotic cell that derived from a free living               
α-proteobacterium. Although mitochondria retained part of their original genome, most of the            
genes involved in biogenesis, transmission and homeostasis of these organelles are encoded by             
the nucleus. Also, the genes involved in the main process of energy production of most               
eukaryotes (oxidative phosphorylation, OXPHOS) are encoded by both nuclear (nuDNA) and           
mitochondrial (mtDNA) genomes. Therefore a tight co-regulation between mtDNA and nuDNA           
is essential for mitochondrial activity, and it is the result of a long-lasting mitonuclear              
co-evolution. It is commonly accepted that Metazoa have evolved a non-mendelian mechanism            
of mitochondrial inheritance, to avoid the presence of mixed mtDNA haplotypes in the same              
organism and reduce genomic conflicts and mito-nuclear incompatibilities. Several works          
investigated the effects of having different mtDNA variants working with the same nuclear             
background by producing cytoplasmic hybrids. These works show detrimental effects of           
heteroplasmy, such as reduction of OXPHOS activity, oxidative damage, disruption of           
mitochondrial functions. 
While most eukaryotes are characterized by a Strictly Maternal Inheritance (SMI) of            
mitochondria, some species of bivalve molluscs present the Doubly Uniparental inheritance           
(DUI), where two distinct mitochondrial lineages are present: F-type, inherited through eggs, and             
M-type, inherited through sperm. So, in DUI species, the same nuclear background have to              
coordinate two different mitochondrial mtDNAs, characterized by a high nucleotide divergence           
(20-40%) and different replication and transcription dynamics. 
In this work we took advantage of the natural heteroplasmic condition of DUI species to get                
insights into the dynamics of mito-nuclear co-evolution. Particularly, we used RNA-Seq to            
investigate the transcription and rate of protein evolution of OXPHOS genes in gonads of two               
related bivalve species: Ruditapes decussatus, a species with SMI, and Ruditapes philippinarum,            
a species with DUI. 
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Introduction 
Mitochondria are a primary component of the eukaryotic cell and they are characterized by              
peculiar features concerning their origin, evolution, and inheritance mechanism. It is now            
commonly acknowledged that mitochondria derived from a free-living α-proteobacterium that ~2           
billion years ago became an endosymbiont of an archaeon (see Martin et al. 2015 for a thorough                 
review), and this event played a crucial role in the evolution of eukaryotes (see for example:                
Martin & Koonin 2006; Lane & Martin 2010). Since then, a massive gene transfer from the                
ancestral mitochondrial genome to the nucleus (endosymbiotic gene transfer) occurred during           
evolution, and most of the genes involved in mitochondrial function and biogenesis are now              
encoded by the nucleus (Timmis et al. 2004). Nevertheless, mitochondria retained part of their              
original genome, and the proteins involved in the main process of energy production of most               
eukaryotes—that is oxidative phosphorylation (OXPHOS)—are encoded by either the nuclear          
(nuDNA) or the mitochondrial genome (mtDNA), and they have to function together in 4 out of                
5 complexes (Complex I, III, IV, and ATPase). Accordingly, it was proposed that a tight               
co-evolution and co-regulation of these two genomes is essential to maintain an efficient             
mitochondrial activity (see for example: Rand et al. 2004; Bar-Yaacov et al. 2012; Allen 2015).               
Still, mitochondrial OXPHOS subunits seem to be subject to different evolutionary forces            
compared to nuclear subunits. For instance, the rate of amino acid sequence evolution (calculated              
as the ratio of nonsynonymous mutations per nonsynonymous site to the number of synonymous              
mutations per nonsynonymous site, dN/dS) of mitochondrial subunits is remarkably lower than            
that of nuclear subunits in all taxa investigated so far (see for example: Nabholz et al. 2012;                 
Popadin et al. 2012). Furthermore, there is evidence for strong purifying selection acting on              
mitochondrially-encoded OXPHOS subunits (Popadin et al. 2012; Piganeau & Eyre-Walker          
2009), even if signs of positive selection were also reported (James et al. 2016; Castellana et al.                 
2011; Pavlova et al. 2017; Gibson et al. 2010). Three hypotheses were proposed to explain such                
differences: first, mitochondrial OXPHOS subunits could be subject to tighter functional           
constraints, since they assemble the core of OXPHOS complexes, while nuclear subunits—that            
are instead more peripheral—could be under a more relaxed selection (Zhang & Broughton             
2013; Popadin et al. 2012). Second, as mitochondrial genome in animal tends to accumulate              
mutations from 9 to 25 times faster than the nuclear genome (Lynch et al. 2006), positive                
selection would act on nuclear OXPHOS subunits to compensate the insurgence of mutations in              
mitochondrial genes, ensuring a proper structural/functional match among the subunits of           
OXPHOS complexes. This theory, called ‘nuclear compensation hypothesis’, was adopted by           
several authors (Burton et al. 2006; Dowling et al. 2008; Osada & Akashi 2012; Havird & Sloan                 
2016; Aanen et al. 2014; Burton & Barreto 2012). Third, Nabholz et al. (2012) proposed that                
transcription level could be the main responsible in affecting the rate of protein evolution in               
OXPHOS genes, supporting the assumption that a negative correlation—called ‘E-R          
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correlation’—exists between transcripts abundance and rate of protein evolution (Zhang & Yang            
2015). How tight is the co-evolution between mitochondrial and nuclear genomes? So far many              
works investigated the effects of having different mtDNA variants working in the same nuclear              
background by producing cytoplasmic hybrids. Some of these experiments included hybrids           
carrying mitochondrial and nuclear genome of different species (McKenzie et al. 2003; Sackton             
et al. 2003; Niehuis et al. 2008), showing good evidence for detrimental effects of heteroplasmy,               
such as reduction of OXPHOS activity, oxidative damage, and disruption of mitochondrial            
functions (see for example: Kazuno et al. 2006; Moreno-Loshuertos et al. 2006; Barreto &              
Burton 2013). Similar results were obtained when inter-population hybrids carried mitochondrial           
variants different from those co-adapted with their respective nuclear background (Barreto &            
Burton 2013; Ellison & Burton 2008; Sharpley et al. 2012). Therefore, cytonuclear            
incompatibilities are also believed to play an important role in postzygotic barriers, in adaptation              
and speciation (Hill 2016, 2017; Ballard et al. 2007; Wolff et al. 2014; Gershoni et al. 2009). 
Since mixing different mitochondrial lineages can foster the emergence of genomic conflicts or             
generate mito-nuclear incompatibilities, it has been proposed that Metazoa have evolved a            
non-mendelian mechanism of mitochondrial inheritance, in order to avoid the presence of several             
mtDNA haplotypes in the same organism (see for example Birky 1995; Lane 2012). Indeed,              
metazoans are almost invariably characterized by SMI of mitochondria (Birky 1995), namely            
only females transmit mitochondria to the offspring, while paternal mitochondrial contribution is            
avoided in very different ways across eukaryotes (Birky 1995; Sato & Sato 2013). Until now, the                
only known evolutionarily stable exception to SMI in Metazoa is the Doubly Uniparental             
Inheritance (DUI; Skibinski et al. 1994a, 1994b; Zouros, Ball, et al. 1994; Zouros, Oberhauser              
Ball, et al. 1994), a peculiar mechanism of mitochondrial heredity observed in ~100 species of               
bivalve molluscs (Gusman et al. 2016). In DUI species, two distinct mitochondrial lineages are              
present: the F-type, inherited through eggs, and the M-type, inherited through sperm. While             
F-type mtDNA is transmitted from females to all the progeny, M-type mtDNA is transmitted              
from males to male progeny only. Consequently, females are homoplasmic for the F-type, while              
males are heteroplasmic. Therefore, differently to all other Metazoa, in DUI bivalves the same              
nuclear background had to co-evolve with two DISTINCT mtDNAs, presenting a high            
nucleotide divergence (up to 40%; Zouros 2013) and different replication and transcription            
dynamics (Ghiselli et al. 2011; Obata et al. 2011; Ghiselli et al. 2013; Milani et al. 2014; Guerra                  
et al. 2016). Thus, DUI species offer a unique opportunity to investigate the effects of               
heteroplasmy, without the need to generate cytoplasmic hybrids: in the DUI male, heteroplasmy             
is natural, therefore its biological functions and interactions between nucleus and mitochondria            
are the unaltered result of evolution.  
In this work we investigated the rate of protein evolution and the transcription level of nuclear                
and mtDNA-encoded OXPHOS subunits in two related bivalve species: Ruditapes decussatus,           
characterized by SMI of mitochondria, and Ruditapes philippinarum, with DUI of mitochondria.            
We also examined the relationship between transcription level and dN/dS in OXPHOS subunits.             
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Lastly, we investigated the rate of protein evolution of nuclear genes involved in mitochondrial              
functions.  
 

Materials and Methods 

Data 
Transcriptome data of mature gonads from twelve individuals (six females and six males) of R.               
decussatus and twelve individuals (six females and six males) of R. philippinarum were retrieved              
respectively from Ghiselli et al. (submitted to Genome Biology and Evolution, pending major             
revisions) and Ghiselli et al. (2012). Raw reads and transcriptome assembly from both             
experiments are available on NCBI, under BioProjects PRJNA68513 (R. philippinarum) and           
PRJNA170478 (R. decussatus). For technical details about the de novo assembly and differential             
transcription analysis between males and females refer to Ghiselli et al. (2012). Both             
transcriptomes were annotated using a pipeline specifically designed for non-model organisms           
(Ghiselli et al. in preparation; protocol and detailed information available here:           
https://osf.io/cdkb9/?view_only=f0b2cde926db43719f3d705012c4eeaa). Orthologous genes   
between the two species were found using OrthoVenn (Wang et al. 2015) with default              
parameters. Nuclear-encoded OXPHOS subunits were found combining the protein annotation          
obtained by BLASTP (Camacho et al. 2009), HMMER3 (Mistry et al. 2013) and InterProScan              
5.3-46.0 (Jones et al. 2014), as implemented in the above-mentioned annotation pipeline.            
MtDNA-encoded OXPHOS subunits were retrieved from the mitochondrial genomes available          
on NCBI GenBank under the Accession Numbers AB065374 and AB065375 for R.            
philippinarum M and F mtDNAs, and KP089983 for R. decussatus (Ghiselli et al. 2017).              
Transcription level of mtDNA-encoded OXPHOS subunits was calculated by mapping the reads            
on whole mitochondrial genomes with BWA (Li & Durbin 2009).  
 

Transcription of OXPHOS genes 
We performed a comparative transcription analysis of nuclear- and mtDNA-encoded subunits of            
complexes involved in OXPHOS.  
Differences in the transcription level between nuclear and mitochondrial subunits were assessed            
by plotting the distribution of log2 (FPKM), and the Wilcoxon rank-sum test was performed for               
statistical support. A hierarchical clustering analysis (Euclidean distance, Ward's method) was           
applied to generate transcription level (FPKM) heatmaps of both nuclear and mitochondrial            
subunits in each sample. Spearman's rank correlation coefficient was calculated across           
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transcription levels of males and females for each species and across males and females between               
species. 
In order to detect sex- and/or species-specific co-transcriptional patterns of OXPHOS subunits,            
we calculated correlation matrices separately for the following conditions: R. decussatus males,            
R. decussatus females, R. philippinarum males, R. philippinarum females. More in details, for             
each pair of OXPHOS subunits, we calculated the Spearman’s correlation coefficient to estimate             
the transcriptional correlation among all samples belonging to a given condition. Matrices were             
visualized through heatmaps.  

Rates of protein evolution of OXPHOS subunits 
We used MUSCLE (Edgar 2004) to align orthologous protein sequences, then protein alignments             
were back-translated into nucleotides using a custom R script. KaKs_Calculator 2.0 (Wang et al.              
2010) was used to obtain the ratio of nonsynonymous to synonymous nucleotide substitution             
(dN/dS) between R. decussatus and R. philippinarum. Since males and females of R.             
philippinarum have different mitochondrial genomes, we reported two distinct dN/dS for           
mitochondrial subunits: one referred to male mitochondrial subunits (dN/dS between R.           
decussatus and R. philippinarum M-type) and one referred to female mitochondrial subunits            
(dN/dS between R. decussatus and R. philippinarum F-type). We plotted the distribution of             
dN/dS of nuclear and mitochondrial complexes and the Wilcoxon test was performed to evaluate              
significant differences. In order to investigate the presence of correlation between dN/dS and             
transcription levels, we plotted log2(FPKM) of nuclear subunits and their dN/dS for both R.              
decussatus and R. philippinarum. Concerning mitochondrial subunits, we plotted log2(FPKM) of           
R. philippinarum males against dN/dS between R. decussatus and R. philippinarum M-type;            
likewise we plotted log2(FPKM) of R. philippinarum females against dN/dS between R.            
decussatus and R. philippinarum F-type. Finally, we chose to plot log2(FPKM) of R. decussatus              
mitochondrial subunits against dN/dS between R. decussatus and R. philippinarum F-type, since            
F-type is considered the ancestral mitochondrial genome (Zouros 2013). The Spearman’s rank            
correlation coefficient was calculated for each comparison.. 
 

Rates of protein evolution of nuclear genes involved in mitochondrial          
processes 
In order to identify genes involved in mitochondrial processes, we used AmiGO2 (Balsa-Canto             
et al. 2016) to select loci annotated with the GO term “Mitochondrion” and every associated               
child terms. When these genes were recognized as orthologs between the two species, we              
obtained dN/dS following the same pipeline we used for OXPHOS subunits. When orthologous             
genes had a dN/dS higher than 0.2, we used REViGO (Supek et al. 2011) to highlight the GO                  
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annotation in both the species, and networks of GO terms were visualized using the application               
DyNet (Goenawan et al. 2016) from the Cytoscape App Store (Shannon et al. 2003; Lotia et al.                 
2013). When genes were not recognized as orthologs, we used REViGO to obtain the GO               
annotations of these species-specific loci involved in mitochondrial processes and GO terms            
networks we visualized with DyNet.  
  

Chapter 4 139

https://paperpile.com/c/juGBHm/3rCb9
https://paperpile.com/c/juGBHm/nSoSA+bf8yI
https://paperpile.com/c/juGBHm/nSoSA+bf8yI


Results 

Differential transcription of OXPHOS genes 
Combining the annotation obtained from BLASTP, HMMER, and Interpro2GO, we retrieved 40            
nuclear-encoded subunits involved in OXPHOS. All mtDNA-encoded subunits were retrieved,          
but atp8 was not included in the analyses because of known annotation/alignment issues of this               
gene in bivalves (Breton et al. 2010).  
The transcription level of OXPHOS subunits in the two species is reported in Supplementary              
tables 1 and 2. The transcription level of nuclear-encoded OXPHOS subunits is more correlated              
between males and females within species (R. decussatus = 0.87, Supplementary figure 1, green              
dots; R. philippinarum = 0.92, Supplementary figure 1, blue dots), and less between males              
(Spearman's rank correlation = 0.66, Supplementary figure 1, orange dots) and females            
(Spearman's rank correlation = 0.5, Supplementary figure 1, red dots) between species.            
Compared with nuclear subunits, the transcription level of mtDNA-encoded subunits is less            
correlated between males and females within species (R. decussatus = 0.69, Supplementary            
figure 1, dark green triangles; R. philippinarum = 0.67, Figure 1, dark blue triangles), while it                
shows a higher correlation between males of the two species (Spearman's rank correlation =              
0.67, figure 1, dark orange triangles), and between females (Spearman's rank correlation = 0.94,              
Supplementary figure 1, dark red triangles). 
We compared the transcription levels of nuclear- and mtDNA-encoded orthologous genes           
involved in OXPHOS. In both R. decussatus and R. philippinarum, the transcription of             
mitochondrial subunits is markedly higher than that of nuclear subunits (figure 1). In R.              
decussatus the median transcription level of mitochondrial subunits is 19-fold higher than that of              
nuclear subunits (3,596 FPKM as opposed to 189 FPKM, respectively; Wilcoxon test p-value =              
9.54E-07). In R. philippinarum, the median transcription level of mitochondrial subunits is            
121-fold higher than that of nuclear subunits (5,101 FPKM vs 42 FPKM, respectively;             
Wilcoxon test p-value = 1.431E-06). Considering males and females separately, mitochondrial           
subunits are 12 times more transcribed than nuclear subunits in males of R. decussatus              
(Wilcoxon test p-value =5.855E-05), 36 times more transcribed in females of R. decussatus             
(Wilcoxon test p-value = 6.042E-07), 110 times more transcribed in males of R. philippinarum              
(Wilcoxon test p-value = 1.431E-06), and 131 times more transcribed in females of R.              
philippinarum (Wilcoxon test p-value = 9.54E-07) (Supplementary figure 2). In nuclear           
complexes, the transcription level seems to be more variable between males and females of R.               
decussatus— particularly for Complex II, IV and ATPase—while it is more similar between in              
males and females of R. philippinarum (Supplementary figure 3A). On the contrary, the             
transcription level of mitochondrial complexes is similar among males of R. philippinarum and             
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males and females of R. decussatus, while females of R. philippinarum are characterized by              
lower and more variable log2(FPKM) of Complex I and higher log2(FPKM) of Complex IV              
(Supplementary figure 3B). 
We performed a hierarchical clustering analysis of transcription level in nuclear subunits of             
males and females of R. decussatus and R. philippinarum (figure 2). While many of these               
subunits seem to have similar levels of transcription in both the species, some subunits of               
Complex I, IV and ATPase are much more transcribed in males of R. decussatus. So, in R.                 
philippinarum the transcription level is more uniform between males and females and generally             
lower than that in R. decussatus, where males tend to have a higher transcription compared to                
females. This pattern results in five of six males of R. decussatus to cluster separately from all                 
other samples. While the cluster analysis was able to separate both sexes and species based on                
their transcription level, it did not cluster together subunits belonging to the same complex. 
The same hierarchical clustering analysis was performed on mitochondrial subunits (figure 3): in             
this case, females of R. philippinarum cluster separately from other samples, due to the higher               
transcription of subunits of Complex IV (cox1, cox2, cox3), Complex III (cytb) and one subunit               
of Complex I (nad4) and to the lower transcription of some subunits belonging to Complex I                
(nad4L, nad2, nad5, nad3). On the contrary, the transcription level of most subunits is              
comparable among males and females of R. decussatus and males of R. philippinarum, so that               
the cluster analysis could not always cluster separately the two species. Also in this case,               
subunits were not clustered together based on Complex they belong to. 
When we considered all OXPHOS subunits in the cluster analysis, we found that mitochondrial              
subunits tend to cluster separately from almost all nuclear subunits, due to their higher              
transcription level (Supplementary figure 4). Among samples, females of R. philippinarum           
cluster separately from all other samples because of the high variability in their mitochondrial              
subunits transcription, then males of R. decussatus cluster separately from other samples due to              
their higher transcription level of some nuclear subunits. 
We performed correlation heatmaps of OXPHOS subunits transcription (figure 4), separately for            
males and females of both species. Correlation coefficients among subunits are reported in             
Supplementary table 3.  
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Evolutionary rates of OXPHOS genes 
The ratio of nonsynonymous to synonymous nucleotide substitution (dN/dS) was calculated           
between nuclear subunits of R. decussatus and R. philippinarum, between mitochondrial subunits            
of R. decussatus and R. philippinarum F-type, and between mitochondrial subunits of R.             
decussatus and R. philippinarum M-type. As shown in figure 5, dN/dS of nuclear and              
mitochondrial subunits is pretty uniform (median nuclear = 0.14; median R. decussatus vs R.              
philippinarum F-type = 0.11; median R. decussatus vs R. philippinarum M-type = 0.15), and the               
differences are not statistically significant. Among nuclear subunits (figure 6, Supplementary           
table 4), dN/dS is variable, with highest values in Complex III (median = 0.28) and lowest values                 
in Complex II (median = 0.04). Among mitochondrial subunits (figure 7), Complexes IV and              
ATPase have the highest dN/dS in the R. decussatus vs R. philippinarum M-type comparison              
(dN/dS≥0.15; figure 7A), and R. decussatus vs R. philippinarum F-type comparison (figure 7B;             
dN/dS≥0.15), while Complex III is characterized by the lowest value (dN/dS=0.08; figure 7A,B)             
(Supplementary table 4).  

Correlation between transcription level and evolutionary rate in        
OXPHOS genes 
Figure 8 shows the relationship between log2(FPKM) and dN/dS in nuclear and mitochondrial             
subunits. We did not find a negative correlation between transcription level and dN/dS of nuclear               
subunits neither in R. decussatus (Spearman’s correlation = 0.13, p-value = 0.41; figure 8A,              
circles), nor in R. philippinarum (Spearman’s correlation = 0.33, p-value = 0.03; figure 8B,              
circles). At the same way, we did not find a statistically supported correlation between              
transcription level and rate of protein evolution in mitochondrial subunits, neither in R.             
decussatus (Spearman’s correlation = 0.26, p-value = 0.4; figure 8A, black triangles) nor in R.               
philippinarum M-type (Spearman’s correlation = -0.16, p-value = 0.6; figure 8B, empty            
triangles), nor in R. philippinarum F-type (Spearman’s correlation = 0.09, p-value = 0.7; figure               
8B, black triangles). 
 

Annotation and differential transcription of genes involved in 
mitochondrial biology 
We found 1,264 loci in R. decussatus and 1,159 in R. philippinarum annotated either with the                
GO term ‘Mitochondrion’ or any of its child terms. Of these loci, 747 in R. decussatus and 696                  
in R. philippinarum were recognized as orthologs between the two species, while 148 were              
specific of R. decussatus and 141 were specific of R. philippinarum. 
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Among orthologous genes annotated with the GO term “Mitochondrion”, we retrieved 51 loci             
with a rate of protein evolution >0.2. Based on the GO annotation, such genes are involved in                 
regulation of transcription, translation, DNA recombination, respiratory chain assembly, and          
response to oxidative stress (figure 9). A list of the most abundant GO terms is also reported in                  
Supplementary table 5. In particular, the two genes with the highest rate of protein evolution               
(dN/dS = 0.5) are involved in mitochondrial translation initiation, and apoptotic signaling. 
Concerning species-specific genes, both in R. decussatus and R. philippinarum, GO annotation            
seems to be mainly related to mitochondrion organization, fission and fusion, and apoptotic             
changes (Figure 10). Several GO terms were found exclusively in R. decussatus (Figure 10,              
green nodes, Supplementary table 6) or R. philippinarum (Figure 10, red nodes, Supplementary             
table 6), and they are mainly involved in regulation of mitochondrion organization (e.g.:             
localization, inner membrane organization, mitochondrial fission, sperm mitochondrion        
organization), in calcium ion homeostasis, and in regulation of mitochondrial DNA replication,            
transcription and translation. 
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Discussion 
 
In this work we investigated the rate of protein evolution and the transcription level of nuclear                
and mtDNA-encoded OXPHOS subunits in the bivalve species Ruditapes philippinarum and           
Ruditapes decussatus. R. philippinarum share with ~100 bivalve species a peculiar mitochondrial            
inheritance mechanism: two mitochondrial lineages are present in these animals, one—the           
F-type—is transmitted by mothers to all the progeny, and one—the M-type—is transmitted by             
fathers to males only. Therefore, R. philippinarum is naturally heteroplasmic and its nuclear             
genome had to co-evolve with two different mitochondrial genomes. On the contrary, R.             
decussatus is characterized by a standard maternal inheritance of mitochondria, where the            
paternal mitochondrial contribution is avoided. Therefore, the comparison of nuclear and           
mitochondrial subunits between these two species offers an exceptional opportunity to           
investigate the dynamics of mito-nuclear evolution, and the response of nuclear genome to a              
natural condition of high mitochondrial variability. 
 

Rate of protein evolution of OXPHOS subunits 
The rate of protein evolution (dN/dS) of mtDNA-encoded OXPHOS subunits was largely            
investigated across Metazoa(see for example Popadin et al. 2012; Piganeau & Eyre-Walker            
2009; Nabholz et al. 2012), commonly revealing values very close to zero. To explain this strong                
purifying selection, it was hypothesized that mitochondrial subunits are subject to strict            
functional constraints, since they assemble the core of OXPHOS complexes, and the            
accumulation of nonsynonymous substitution may compromise the proper protein-protein         
recognition. Nevertheless, evidence of higher dN/dS of mitochondrial OXPHOS subunits was           
reported as well, either due to positive or relaxed selection acting on mitochondrial genes. On the                
one hand, Bazin et al.(2006) reported evidence of positive selection on mtDNA, particularly in              
invertebrates, where over 60% of nonsynonymous substitutions are likely fixed(James et al.            
2016). On the other hand, other studies suggested that species with high energy needs due to                
their locomotive habits are characterized by a lower dN/dS of mitochondrial OXPHOS subunits,             
compared to species with lower energy needs. On the contrary, mitochondrial OXPHOS subunits             
of species with a more sedentary life have a higher dN/dS(Shen et al. 2009; Strohm et al. 2015;                  
Mitterboeck & Adamowicz 2013; Chong & Mueller 2013). Considering the lower energy needs,             
the Authors hypothesized a relaxed purifying selection acting on mitochondrial OXPHOS           
subunits, rather than an adaptive evolution. 
Here, we show that dN/dS of mitochondrial OXPHOS subunits between R. decussatus and R.              
philippinarum is an order of magnitude higher compared to that of most animal taxa investigated               
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so far(Nabholz et al. 2012; Popadin et al. 2012), both when we consider R. philippinarum F-type                
and R. philippinarum M-type in the comparison with R. decussatus (figure 5). Therefore,             
apparently mitochondrial subunits in these species are allowed to be more variable and             
nonsynonymous substitutions accumulate easier compared to most taxa investigated so far.           
Considering OXPHOS complexes separately, dN/dS ranges between 0.1 and 0.2, with higher            
values in Complex IV and ATPase e lower in Complex I and Complex III in both the R.                  
decussatus vs R.philippinarum M-type comparison (figure 7A), and R. decussatus vs           
R.philippinarum F-type comparison (figure 7B). As mentioned before, higher dN/dS could           
reflect either positive or relaxed selection. On the one hand, here we investigated dN/dS of               
mtDNA-encoded subunits in two bivalve species that lead a very sedentary life, spending most              
of the time buried in the sand. Therefore, the higher dN/dS could be the result of a relaxation in                   
functional constraints, due to the sedentary life of these species. On the other hand, it should be                 
highlighted that the two species investigated are characterized by different mechanisms of            
mitochondrial inheritance and two mtDNA variants, which are very different in sequence,            
co-exist in R. philippinarum (amino acid p-distance = 34%). Also, it was assumed that mtDNA               
genomes of DUI species undergo more changes and at a faster rate than the genomes of species                 
with standard maternal inheritance, and that the two mitochondrial variants could have            
sex-specific functions (Zouros 2013). Therefore, the higher dN/dS could be due to a positive              
selection acting on mtDNA in DUI species. Further analyses including more species—both DUI             
and SMI—could help to clarify this point. Alternatively, it has been recently proposed that              
transcription level is the main determinant in affecting the rate of protein evolution of              
mitochondrial subunits ((see for example: Nabholz et al. 2012; Popadin et al. 2012)). For a               
detailed discussion about this topic, see the paragraph ‘The relationship between transcription            
level and rate of protein evolution in OXPHOS subunits’. 
Few works investigated the rate of protein evolution of both nuclear and mtDNA-encoded             
OXPHOS subunits and the coevolution between these two genomes ((see for example: Nabholz             
et al. 2012; Popadin et al. 2012); (Burton et al. 2006; Dowling et al. 2008; Osada & Akashi 2012;                   
Havird & Sloan 2016; Aanen et al. 2014; Burton & Barreto 2012); (Nabholz et al. 2012; Popadin                 
et al. 2012)). In particular, most of these studies focused on model-organisms such as primates,               
mice, and copepods, and investigated the effects of mitochondrial heteroplasmy by producing            
cytoplasmic hybrids. One of the main hypotheses about the dynamics of mito-nuclear            
coevolution is the ‘nuclear compensation hypothesis’, which posits that nuclear subunits evolve            
faster to compensate for the high mutation rate of mtDNA, and ensure the proper recognition               
among OXPHOS subunits. In this work we investigated the nuclear response to a natural              
condition of heteroplasmy and to the above discussed high dN/dS of mitochondrial subunits.             
According to the nuclear compensation hypothesis, we expected to see an increase of dN/dS of               
nuclear subunits in response to the higher rate of protein evolution of mitochondrial genes in the                
species we investigated. Surprisingly, while dN/dS of the mitochondrial subunits is an order of              
magnitude higher compared to species where mito-nuclear coevolution was investigated so far,            
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dN/dS of nuclear subunits is comparable to that of other species; furthermore, there are no               
statistically significant differences in the distribution of dN/dS between nuclear and           
mtDNA-encoded subunits (figure 5). Therefore, no evidence for nuclear compensation was           
found in these species in response to the higher rate of evolution of mitochondrial genome. In                
addition, this lack of compensation is remarkably evident when we investigate the evolution of              
sequences for each OXPHOS complex separately: among nuclear subunits, Complex III has the             
highest dN/dS (median dN/dS = 0.28), on the contrary Complex III has the lowest rate of protein                 
evolution among mitochondrial complex (median dN/dS = 0.08); furthermore in Complex IV            
and ATPase the dN/dS is higher in mitochondrial subunits compared to nuclear subunits (figure              
6 and 7, Supplementary table 4). Similar results were obtained by analyzing synonymous             
substitution rate (dS) and nonsynonymous substitution rate (dN) of OXPHOS and non-OXPHOS            
genes in vertebrates (Zhang & Broughton 2013). The authors found that dN of mitochondrial              
subunits is not always higher than that of nuclear subunits in each complex, and suggested a                
minor role for compensatory mechanism in the evolution of OXPHOS genes. Although many             
works support the importance of a proper interaction among OXPHOS subunits, the present             
study rather suggests an independent trend of nuclear and mitochondrial OXPHOS complexes            
concerning rates of protein evolution. In any case, it should be considered that these proteins are                
under purifying selection, with values of dN/dS that are mostly below 0.3. Also, while many               
works report dN/dS in OXPHOS subunits, few works have examined the effects of these              
mutations on proteins function (da Fonseca et al. 2008; Azevedo et al. 2009; Schmidt et al.                
2001). Therefore, it is possible that OXPHOS proteins can tolerate mutations whilst maintaining             
their function intact (i.e.: robustness, see Kitano 2004), particularly if such mutations affect             
domains not directly involved in the interactions among subunits, or if such mutations are              
compensated by other nonsynonymous substitutions. In addition, even a nonsynonymous          
substitution could have no effects on the protein structure thus yielding a working complex,              
particularly in species with low metabolic requirements. Nevertheless, mitochondrial genome of           
the species we investigate not only has relatively high dN/dS but also more variants exist within                
R. philippinarum (F type and M type). Many works highlight the negative effects of having               
different mtDNA variants within the same organism, and uniparental inheritance of mitochondria            
is thought to have evolved in order to avoid mixing different mitochondrial lineages (see for               
example Lane 2012). So far, most of the works about mito-nuclear incompatibilities investigated             
the effects of heteroplasmy by creating cytoplasmic hybrids and the consequent reduction or             
breakdown of OXPHOS was ascribed to a mismatch between nuclear and mitochondrial            
subunits. Here we see that, in a natural condition of heteroplasmy, nuclear-encoded OXPHOS             
subunits do not seem to be affected by the mitochondrial variability that characterized these              
species, at least not at the DNA level. Still, other nuclear genes could be likely involved in                 
mito-nuclear incompatibilities, like those arising in heteroplasmic hybrids, as proposed by           
Ellison and Burton (2008). It is known that there are ~1,500 nuclear genes involved in               
mitochondrial biology (Wallace 2005), that have to constantly interact with mitochondrial           
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genome, RNAs, and proteins, and some of these genes could be responsible for mito-nuclear              
incompatibilities. Since the nuclear genome of R. decussatus have to interact with only one              
mitochondrial variant, while the nuclear genome of R. philippinarum evolved interacting with            
two different mitochondrial lineages, these species provide a unique chance to investigate what             
genes, if any, evolved faster in response to mitochondrial variability. For this purpose, we              
investigated orthologous nuclear genes with putative mitochondrial target and dN/dS higher than            
0.2; also, we detected species-specific loci involved in mitochondrial functions. We found genes             
involved in regulation of transcription, translation, DNA recombination, respiratory chain          
assembly, and response to oxidative stress (figure 9). In particular, we found two genes with               
dN/dS of 0.5 involved in mitochondrial translation initiation, and apoptotic signal. GO terms             
involved in mitochondrial regulation of transcription and translation were also found among            
species-specific nuclear genes (figure 10). In addition, GO terms involved in mitochondrial            
organization—including mitochondrial fission and fusion, fragmentation, mitochondrial       
localization, and apoptosis—were largely represented in specie-specific loci. Ellison and Burton           
(2008) already proposed that nuclear genes involved in mitochondrial transcription could be            
responsible for mito-nuclear incompatibilities, and thus mainly involved in mito-nuclear          
coevolution. Here we report that genes involved in regulation of transcription and translation, as              
well as respiratory chain assembly factors, have a high rate of protein evolution in these species                
and could be subject to a faster evolution in response to the exceptional mtDNA variability.  

Transcription level of mitochondrial and nuclear OXPHOS subunits 
We found that transcription level of mtDNA-encoded OXPHOS subunits is much higher than             
that of nuclear-encoded subunits in both the species. This pattern was already reported in a wide                
range of eukaryotes, where the transcript abundance of mitochondrial subunits is 20-fold higher             
than that of nuclear subunits in animals, 18-fold higher in plants and 6-fold higher in fungi                
(Nabholz et al. 2012; Havird & Sloan 2016). Here, we report a high abundance of mitochondrial                
transcripts in R. decussatus, and a particularly high abundance in R. philippinarum, that is,              
respectively, 19-fold and 121-fold higher than the transcription of nuclear subunits (figure 1).             
The reason of this remarkable difference in transcript abundance between mitochondrial and            
nuclear subunits it is not clear. This pattern was proposed to be ascribed to peculiar property of                 
mitochondrial transcription machinery, and different hypotheses were taken in consideration,          
such as inefficient mitochondrial translation (Woodson and Chory, 2008; Havird and Sloan,            
2016). 
It is not clear if the transcription level is correlated among OXPHOS subunits; previous works               
found patterns of co-transcription among subunits belonging to the same OXPHOS complex (van             
Waveren & Moraes 2008; Garbian et al. 2010). We found that the cluster analysis can usually                
separate samples based on species and sex. In particular, when we consider nuclear subunits,              
males of R. decussatus cluster apart for their higher transcription in some subunits of Complex I,                
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Complex IV, and ATPase (figure 2). A different pattern is shown when we consider              
mitochondrial subunits, where females of R. philippinarum cluster separately from all the other             
samples due to their higher transcription level, then females of R. decussatus cluster separately              
from males of the two species, which cluster together (figure 3). Interestingly, the cluster              
analysis is not able to separate subunits based on their complex affiliation in any case. This                
observation suggests that transcript abundance is considerably variable among subunits, and no            
pattern of complex-specific co-transcription is found in these species. In addition, we performed             
correlation matrices among subunits, separately for males and females in each species. Even in              
this case, a lack of complex-specific correlation pattern is evident in each condition (figure 4,               
Supplementary figures 5-8). This is interesting, because most of the OXPHOS subunits exist at              
same ratio in all complexes, except for some subunits of the ATPase (Hüttemann et al. 2007).                
Concerning mitochondrial subunits, it should be highlighted that the knowledge about           
mitochondrial transcription, as well as post-transcriptional regulatory mechanisms and protein          
turnover, is very restricted (Sirey & Ponting 2016). Most of the studies about these topics focus                
on mammals (Asin-Cayuela & Gustafsson 2007) and, in any case, many genes and mechanisms              
remain uncharacterized. Even more surprisingly, we still do not know the role of polyadenylation              
in mitochondrial transcripts. It is commonly known that poly(A) tail confers stability to cytosol              
transcripts, ensures their exit from the nucleus and allows the initiation of translation (Rorbach &               
Minczuk 2012). On the contrary, a poly(A) tail is required for transcript degradation in bacteria               
and plant mitochondria (Gagliardi et al. 2004). So, what is the role of poly(A) tail in animal                 
mitochondrial transcripts? Does it confer stability, or is it rather required to degradation,             
similarly to prokaryotes? Slomovic et al. (2008) proposed that these two mechanisms could             
co-exist in mitochondria. Considering that the libraries for RNA-Seq experiments are constructed            
by isolating polyadenylated transcripts, knowing the role of the poly(A) tail is fundamental. On              
the one hand, if poly(A) tail is required for degradation, by estimating the abundance of               
polyadenylated transcripts we would count transcripts destined to degradation. On the other            
hand, if poly(A) tail is required for both stabilization and degradation, a quantification based on               
polyadenylated transcripts would represent an overestimation of the transcripts that will be            
eventually expressed. The convoluted dynamics of protein expression in mitochondria could then            
explain the absence of the expected correlation within OXPHOS complexes; if this is the case,               
we should also take into consideration the possibility that mitochondrial transcriptomics           
invariably yields noisy data.  
That said, we observed a lack of co-transcription also among nuclear subunits. Even in nuclear               
genes, there is evidence of a low correlation between transcription level and protein abundance,              
and it was estimated that ~60% of the variation in protein concentration is due to               
post-transcriptional regulation (Vogel & Marcotte 2012).  
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The relationship between transcription level and rate of protein evolution          
in OXPHOS subunits 
According to a rapidly spreading theory, transcription level is the main factor determining the              
rate of protein evolution, and highly-transcribed genes are characterized by lower dN/dS (Zhang             
& Yang 2015). Therefore there is a negative correlation (defined E-R correlation) between             
transcript abundance and dN/dS. Recently, the E-R correlation was taken in consideration to             
explain the low rate of protein evolution affecting mitochondrial OXPHOS subunits. Nabholz et             
at. (2012) found a negative correlation between transcription level of OXPHOS subunits and             
dN/dS in different organisms, and the Authors proposed that the high transcription level of              
mitochondrial genes is the main responsible for the low rate of protein evolution. In the present                
work we investigated the relationship between transcripts abundance and dN/dS in two bivalve             
species. This is an interesting analysis, since R. philippinarum has a particularly high             
transcription of mitochondrial subunits, that is 210-fold higher compared to nuclear subunits and             
10-fold higher than that in other animal mitochondrial subunits. Therefore, according to E-R             
correlation, a remarkable low dN/dS should characterize mitochondrial subunits of R.           
philippinarum. Still, dN/dS of these subunits is high as well, compared to other animals, and it is                 
instead comparable to R. decussatus, where the transcription of mitochondrial genes is            
considerably lower. In addition, we did not find any negative correlation, neither in             
mitochondrial nor nuclear subunits in both the species (figure 8). Similar results were obtained              
by Havird and Sloan (2016) in plants, and the Authors concluded that transcript abundance              
cannot be responsible for dN/dS. In Chapter 3 we already discussed about the need to be careful                 
in searching a correlation between these two variables. Here we confirm no evidence for E-R               
correlation. Also, our results show that transcription level of both nuclear and mitochondrial             
subunits is highly variable, and it is not uniform even among samples within species. Our               
opinion is that dN/dS is not affected by transcripts abundance and we suggest that the role of                 
transcription level in determining the rate of protein evolution should be reconsidered. 
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Main figures

 

Figure 1: Transcription level of nuclear (NU) and mitochondrial (MT) OXPHOS subunits in R. decussatus 

and R. philippinarum. 
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Figure 2: hierarchical clustering heatmap of nuclear OXPHOS subunits transcription in male (M1-M6) and 

female (F1-F6) samples of R. decussatus (Rde) and R. philippinarum (Rph). 

Chapter 4 158



 

Figure 3: hierarchical clustering heatmap of mitochondrial OXPHOS subunits transcription in male (M1-

M6) and female (F1-F6) samples of R. decussatus (Rde) and R. philippinarum (Rph). 
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Figure 4: heatmaps of transcription correlation matrices among OXPHOS subunits in males and females 

of R. decussatus (respectively A and B) and males and females of R. philippinarum (respectively C and D). 

Red=positive correlation; Blue=negative correlation. Black solid squares=correlation among nuclear 

subunits within each OXPHOS complex; black dotted squares=correlation among mitochondrial subunits; 

yellow dashed squares=correlation among nuclear and mitochondrial subunits. 

Chapter 4 160



 

Figure 5: rate of protein evolution between nuclear OXPHOS subunits (NU) of R. decussatus and R. 

philippinarum (Rde_Rph) and between mitochondrial OXPHOS subunits (MT) of R. decussatus and R. 

philippinarum F-type (Rde_RphF) and R. decussatus and R. philippinarum M-type (Rde_RphM). 
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Figure 6: rate of protein evolution of nuclear subunits separately for each OXPHOS complex. 
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Figure 7: rate of protein evolution between mitochondrial OXPHOS subunits of R. decussatus and R. 

philippinarum M-type (A) and R. decussatus and R. philippinarum F-type (B) separately for each OXPHOS 

complex. 
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Figure 8: Relationship between transcription level (log2(FPKM)) and rate of protein evolution (dN/dS) of 
OXPHOS subunits in R. decussatus (A) and R. philippinarum (B). Circles=nuclear subunits; black triangles= 

F-type mitochondrial subunits; empty triangles= M-type mitochondrial subunits. Lines represent linear 
regression among nuclear subunits (solid line), among F-type mitochondrial subunits (dashed line) and 

among M-type mitochondrial subunits (dotted line). 
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Figure 9: mitochondrial GO annotations of faster evolving genes (dN/dS >0.2). Brighter colors indicate 

more represented GO terms; similar GO terms are linked by edges. 

 

 

 

Figure 10: Mitochondrial GO annotations of R. decussatus (green) and R. philippinarum (red) specific 

genes. Shared annotations among species specific genes are visualized in white. Similar GO terms are 

connected by green edges in R. decussatus and red edges in R. philippinarum. 
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Supplementary materials

 

Supplementary figure 1: Correlation of OXPHOS subunits transcription levels between males and females 
within species (R. decussatus=green; R. philippinarum=blue), between males of R. decussatus and R. 

philippinarum (orange) and between females of R. decussatus and R. philippinarum (red). Dots=nuclear 
subunits; triangles=mitochondrial subunits. 
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Supplementary figure 2: Transcription level of nuclear (NU) and mitochondrial (MT) OXPHOS subunits in 
R. decussatus (Rde) and R. philippinarum (Rph), separately for male (M) and female (F) samples.  

 

 

 

 

Supplementary figure 3: transcription level of nuclear (A) and mitochondrial (B) subunits separately for 
each OXPHOS complex in males of R. decussatus, females of R. decussatus, males of R. philippinarum and 

females of R. philippinarum. 
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Supplementary figure 4:  hierarchical clustering heatmap of OXPHOS subunits transcription in male (M1-
M6) and female (F1-F6) samples of R. decussatus (Rde) and R. philippinarum (Rph). 
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Supplementary figure 5:  hierarchical clustering heatmap of transcription correlation matrices among 
OXPHOS subunits in males of R. decussatus. Red=positive correlation; Blue=negative correlation. 
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Supplementary figure 6: hierarchical clustering heatmap of transcription correlation matrices among 
OXPHOS subunits in females of R. decussatus. Red=positive correlation; Blue=negative correlation. 
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Supplementary figure 7: hierarchical clustering heatmap of transcription correlation matrices among 
OXPHOS subunits in males of R. philippinarum. Red=positive correlation; Blue=negative correlation. 
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Supplementary figure 8:  hierarchical clustering heatmap of transcription correlation matrices among 
OXPHOS subunits in females of R. philippinarum. Red=positive correlation; Blue=negative correlation. 
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Supplementary table 1: Transcription levels (FPKM) of nuclear and mitochondrial OXPHOS subunits in males and females of Ruditapes philippinarum. 

 

Name Rph_F1 Rph_F2 Rph_F3 Rph_F4 Rph_F5 Rph_F6 Rph_M1 Rph_M2 Rph_M3 Rph_M4 Rph_M5 Rph_M6 

NU_CI_NDUFS1 9.02843 2.42811 3.81139 10.5065 9.52189 10.2262 1.87598 6.14987 9.40763 14.4318 3.60722 11.2678 

NU_CI_NDUFS2 2.48683 1.19202 4.05167 3.30141 6.00435 1.11809 1.79284 7.49446 3.32824 6.77676 4.05176 5.08449 

NU_CI_NDUFS3 70.6618 95.6179 73.8358 114.322 103.659 101.656 107.343 140.473 104.764 147.512 119.658 147.581 

NU_CI_NDUFS4 317.896 139.249 314.406 408.833 425.555 469.897 183.321 189.052 209.239 256.055 305.463 288.764 

NU_CI_NDUFS7 173.334 139.77 198.798 163.827 131.669 131.523 116.05 130.256 125.688 199.349 143.12 173.876 

NU_CI_NDUFS8 2.64739 6.45042 8.4926 10.1466 3.79971 8.73442 6.04826 19.484 11.224 22.5488 23.8286 22.7322 

NU_CI_NDUFV1 9.64544 1.30209 5.8243 4.18471 4.51733 3.65911 6.96205 3.56333 4.33634 12.1489 0.812406 6.17088 

NU_CI_NDUFV2 29.7933 38.2672 59.4522 66.735 43.0226 59.0929 15.8403 41.3371 31.6714 38.6636 28.8225 27.9752 

NU_CI_NDUFA3 28.8745 19.8331 28.6337 22.8711 48.7834 25.9998 4.34527 22.4622 13.3739 23.8289 22.7783 22.3871 

NU_CI_NDUFA4 57.5513 35.8771 31.6761 25.4076 15.0549 26.3694 17.1459 20.8691 39.138 14.0688 12.5103 14.2581 

NU_CI_NDUFA7 75.7042 65.0396 108.544 122.439 65.9803 123.613 113.99 122.518 152.497 163.74 161.524 239.222 

NU_CI_NDUFA8 3.35037 3.49741 7.40858 2.50695 5.4012 2.38793 2.12059 6.31793 4.48955 6.0769 11.7631 7.24271 

NU_CI_NDUFA10 26.0626 7.33697 37.4311 0.007203 0.03657 0.65223 34.7889 55.1504 30.0882 0.977368 42.7296 0.677183 

NU_CI_NDUFA12 5.90982 4.5129 14.9716 16.9245 19.8763 3.31754 1.46371 4.57194 5.43395 5.04106 7.02941 3.17635 

NU_CI_NDUFB2 190.523 82.6986 77.8042 92.5717 68.0915 77.8454 123.735 75.0469 88.7854 71.9189 52.5672 99.3637 

NU_CI_NDUFB3 178.706 110.351 217.328 228.843 172.426 211.925 314.409 367.607 312.235 369.01 349.109 433.754 

NU_CI_NDUFB4 299.576 296.528 285.646 459.653 569.84 487.659 203.64 363.419 359.038 375.171 465.485 396.487 

NU_CI_NDUFB5 212.717 130.669 250.775 239.477 191.256 203.746 285.47 423.032 393.596 412.474 412.628 494.445 

NU_CI_NDUFB6 5.05955 0.07748 2.65158 1.49809 0.091832 0.047021 3.04437 8.63543 5.38312 2.8573 9.30637 0.023984 

NU_CI_NDUFB7 37.972 19.5865 24.1134 40.5769 75.4173 60.1117 33.2672 33.1295 50.5741 52.0482 62.8846 62.5948 

NU_CI_NDUFB9 19.5327 3.12404 17.6965 24.7321 30.1628 29.1613 19.0283 45.8051 22.6004 50.262 41.4162 30.9506 

NU_CI_NDUFB10 10.2921 0.2015 19.4824 8.90959 12.8946 18.4385 10.7163 23.0875 16.2238 21.4978 26.675 20.0757 

NU_CI_NDUFB11 126.61 67.7378 82.6335 124.786 123.359 135.562 162.66 191.468 154.476 179.286 259.705 228.358 

NU_CII_SDHC 1.8131 3.01584 0.486838 4.1449 0.219107 0.10947 1.2757 3.12991 2.86094 6.4723 6.57852 3.80679 

NU_CII_SDHD 52.9956 18.8094 29.6273 54.1351 60.1857 71.1792 51.6097 56.2047 20.6441 82.5868 50.9071 66.3728 

NU_CII_SDHA 11.2953 0.87176 5.05843 11.5116 8.32319 12.3992 5.56921 4.96171 3.62208 7.58335 16.1058 3.97212 

NU_CII_SDHB 1.12588 0.934187 0.65734 15.2964 5.76163 20.9904 0.791933 0.92778 0.70772 26.0714 4.10613 2.95079 

NU_CIII_ISP 22.6858 34.5422 43.6189 0.551608 1.07632 3.05872 33.3434 6.83246 47.4173 0.687648 41.6776 7.86171 

NU_CIII_QCR2 6.51899 1.56937 5.16311 7.76294 6.08646 5.2267 6.02446 7.74536 7.21305 16.2925 18.8457 15.6168 
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 NU_CIII_QCR7 9.00852 27.9651 22.192 56.3005 44.9194 64.2702 39.9618 62.029 64.6775 100.959 111.223 158.479 

NU_CIV_COX10 0 11.5619 9.21124 6.1152 8.20368 9.5855 4.73721 6.28552 19.5138 3.36148 2.8752 1.18388 

NU_CIV_COX4 67.0821 13.8155 67.7196 84.5157 85.0554 79.6494 47.8632 50.4276 43.6096 97.1632 74.8571 80.8579 

NU_CIV_COX6B 198.185 101.15 147.897 141.788 193.124 166.14 222.001 251.093 351.733 223.078 257.041 247.823 

NU_CIV_COX11 34.21 19.3757 14.7921 37.7078 18.9221 34.3066 15.7142 31.5412 15.4274 30.6524 34.3189 25.5433 

NU_CIV_COX15 15.8627 0.185439 2.68805 24.028 26.5659 6.34897 2.23894 3.89234 0.036828 2.2837 0.030677 1.9928 

NU_ATPase_delta 278.236 108.562 261.982 329.433 207.955 342.446 179.247 298.616 245.997 398.389 356.087 264.705 

NU_ATPase_epsilon 311.814 313.377 284.162 328.951 272.122 422.253 296.462 264.365 334.695 255.002 188.207 277.144 

NU_ATPase_OSCP 295.826 100.572 356.22 370.613 330.832 355.172 150.529 177.432 125.796 379.653 304.061 278.041 

NU_ATPase_b 17.911 15.7097 12.3675 14.8089 12.9775 7.83668 6.22236 11.0061 19.0371 9.91204 30.8882 19.8203 

NU_ATPase_c 465.248 239.052 574.041 500.471 630.177 503.433 443.964 669.719 381.473 599.452 612.73 431.188 

MT_CI_NAD1 3583.7 2512.83 3546.97 2406.53 2166.03 1748.42 3181.01 6207.81 4806.79 3768 4315.07 5104.98 

MT_CI_NAD2 1146.48 416.69 658.49 418.85 434.54 516.15 790.13 2322.47 1881.88 778.66 1275.81 1390.21 

MT_CI_NAD3 265.97 233.65 368.51 416.77 261.85 333.84 2182.84 6004.16 3492.29 4662.9 3105.79 7017.46 

MT_CI_NAD4 6968.85 5753.12 4027.62 3547.56 3024.77 3375.32 1262.28 3418.75 2609.74 1470.32 1512.66 2613.76 

MT_CI_NAD4L 259.91 134.86 325.81 224.45 152.98 230.09 1994.67 4311.35 3661.88 2399.95 2524.68 1784.26 

MT_CI_NAD5 1333.28 1198.75 823.43 600.23 601.01 1084.12 1711.56 3088.26 2741.58 1030.5 2387.34 1411.81 

MT_CI_NAD6 2670.08 1715.86 2873.24 1637.25 1504.9 1264.05 2662.28 4204 4497.43 3118.13 4515.03 8009.59 

MT_CIII_CYTB 6258.28 5585.77 10761.08 5163.29 7628.8 5040.56 1536.19 6131.57 3744.7 2199.7 2357.58 3155.31 

MT_CIV_COX1 16910.42 15760.12 20727.59 11849.75 12991.18 14795.3 4562.74 6670.17 7256.35 6067.6 4409.4 6494.71 

MT_CIV_COX2 7408.05 7744.09 8686.58 4446.35 6151.67 7581.14 3453.15 8256.1 7298.01 5287.89 5863.8 7600.46 

MT_CIV_COX3 11282.07 10867.87 12270.82 7543.64 7788.82 6037.4 4061.31 11201.07 8521.55 3163.32 3328.23 6522.49 

MT_ATPase_ATP6 4144.65 2881.13 3206.93 1677.37 1536.73 1885.34 1785.02 5473.37 4450.6 5012.19 2938.4 6635.46 
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Supplementary table 2: Transcription levels (FPKM) of nuclear and mitochondrial OXPHOS subunits in males and females of Ruditapes decussatus. 

 

Name Rde_F1 Rde_F2 Rde_F3 Rde_F4 Rde_F5 Rde_F6 Rde_M1 Rde_M2 Rde_M3 Rde_M4 Rde_M5 Rde_M6 

NU_CI_NDUFS1 0.256574 16.7106 3.33154 0 5.0892 9.18158 2.59195 0 6.46754 0 7.78973 0.198751 

NU_CI_NDUFS2 42.5147 54.6407 5.26758 42.287 26.7237 44.0125 103.476 47.6604 58.6937 62.8251 67.4573 86.2929 

NU_CI_NDUFS3 341.574 341.171 263.842 259.392 266.037 286.568 816.366 833.139 676.064 765.031 637.045 627.521 

NU_CI_NDUFS4 386.802 165.185 214.523 246.135 240.983 240.627 648.893 680.014 834.103 666.53 524.091 445.37 

NU_CI_NDUFS7 294.366 212.568 361.977 248.751 237.185 181.65 323.256 265.822 356.108 328.178 386.533 426.466 

NU_CI_NDUFS8 167.27 246.767 160.411 187.073 192.321 148.41 521.313 460.639 540.737 428.78 402.236 517.306 

NU_CI_NDUFV1 33.6196 28.2461 17.1711 21.5651 28.7509 7.31502 23.5278 20.6488 29.4908 15.7486 17.7176 32.2796 

NU_CI_NDUFV2 40.1388 6.9801 13.2259 6.23965 13.5757 11.0722 7.52973 8.48713 10.1912 9.67821 9.32791 24.1668 

NU_CI_NDUFA3 114.055 67.5886 116.964 60.6896 105.784 46.357 70.9505 42.3828 66.2619 36.3486 27.3013 48.0383 

NU_CI_NDUFA4 89.4162 115.007 86.6172 122.289 104.028 139.8 100.073 73.6636 89.4358 56.3933 86.8765 53.5075 

NU_CI_NDUFA7 153.77 132.651 96.4216 133.019 128.958 194.232 923.261 862.175 607.764 476.135 415.393 306.254 

NU_CI_NDUFA8 80.9358 98.2589 80.6626 82.0531 66.5864 60.1945 88.6035 117.899 114.358 91.5422 93.8534 86.348 

NU_CI_NDUFA10 313.717 358.263 469.629 397.088 425.566 189.254 463.147 481.533 582.719 397.057 385.279 673.996 

NU_CI_NDUFA12 439.798 290.282 292.84 260.31 282.768 447.548 656.055 754.392 848.721 688.136 558.168 498.026 

NU_CI_NDUFB2 485.688 305.396 432.744 330.634 362.583 466.313 1329.97 1378.07 1482.35 955.301 955.833 403.714 

NU_CI_NDUFB3 535.608 245.096 414.251 361.062 329.662 413.064 651.101 507.287 515.774 523.301 379.792 443.614 

NU_CI_NDUFB4 43.8565 31.5271 23.2771 29.3704 33.0757 123.523 224.033 270.96 194.067 227.714 222.031 56.8999 

NU_CI_NDUFB5 2.94337 0.533173 4.6486 7.39293 1.0687 101.743 10.6282 670.381 65.2493 8.56799 290.369 1.83171 

NU_CI_NDUFB6 77.4328 85.4307 56.4676 75.3248 43.7429 109.231 259.796 251.972 314.598 218.857 139.476 101.722 

NU_CI_NDUFB7 46.5873 48.3753 42.7036 47.8067 41.406 75.5905 208.911 127.288 176.411 96.989 113.844 78.0546 

NU_CI_NDUFB9 37.3713 25.524 46.1634 13.7877 17.0272 90.8604 206.817 198.337 329.196 158.161 184 58.8796 

NU_CI_NDUFB10 144.642 280.89 160.132 244.643 176.39 380.787 1013.18 936.537 1040.23 780.003 723.49 558.245 

NU_CI_NDUFB11 130.745 159.902 111.775 139.199 106.182 151.178 326.483 267.032 385.226 244.575 211.116 166.56 

NU_CII_SDHC 0.806169 10.9878 5.01509 7.74532 6.13995 6.97471 6.52103 5.27481 16.8891 10.5562 7.23024 11.0986 

NU_CII_SDHD 122.276 201.019 136.451 177.849 142.737 174.353 325.76 300.227 342.777 342.871 229.888 230.997 

NU_CII_SDHA 80.5888 101.417 93.3534 96.3164 54.1203 31.5364 90.5438 49.9664 32.0673 54.6383 36.0965 71.596 

NU_CII_SDHB 14.0585 0 0.017886 0 13.8131 0.229216 15.4906 0.705397 30.414 21.594 0.257981 0.120339 

NU_CIII_ISP 43.8514 32.0455 1.47707 22.3062 21.8801 1.8049 38.1437 222.474 219.964 99.8521 59.9606 2.13514 

NU_CIII_QCR2 44.6431 26.674 32.7279 32.6057 31.9574 31.5176 101.522 101.894 155.671 138.643 110.248 83.3897 
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NU_CIII_QCR7 570.15 364.729 367.685 333.784 355.353 667.961 1781.85 2056.1 2078.64 1723.57 1648.17 825.073 

NU_CIV_COX10 512.095 159.731 364.629 167.416 251.732 88.4264 62.4519 65.5523 83.9875 65.2078 71.6373 53.9088 

NU_CIV_COX4 554.097 654.531 427.868 536.512 422.091 733.219 2264.66 2003.77 2037.12 1922.5 1269.84 1644.16 

NU_CIV_COX6B 850.122 480.145 704.339 509.467 576.891 1120.88 2498.85 2718.79 2671.8 2048.74 1844.39 1036.31 

NU_CIV_COX11 1.86984 4.13135 8.0935 2.85903 8.97131 1.76175 3.34279 3.3148 2.30843 2.06289 1.42561 0.923233 

NU_CIV_COX15 145.87 152.271 143.361 127.538 161.466 70.6341 44.1779 36.5379 61.4581 39.831 29.7333 34.6929 

NU_ATPase_delta 511.765 874.829 527.858 725.927 610.509 656.873 1288.37 1090.88 1152.12 1142.9 964.526 1085.78 

NU_ATPase_epsilon 572.94 541.086 396.65 427.979 407.959 1699.28 5916.87 6940.12 4742.68 4198.74 4482.52 1060.78 

NU_ATPase_OSCP 515.682 378.333 484.933 335.729 326.427 270.316 594.452 957.07 681.824 563.802 547.596 602.187 

NU_ATPase_b 66.6265 81.4617 57.1459 45.1624 43.2948 92.0064 163.492 131.068 166.154 184.502 93.6314 70.0394 

NU_ATPase_c 2608.83 4005.07 2450.85 2995.39 2894.32 3762.9 7150.42 6721.86 6172.89 6179.16 5950.35 4442.8 

MT_CI_NAD1 3135.269 3248.212 2330.334 2974.398 3863.442 3071.939 1565.915 1735.106 1899.751 1186.188 1117.561 1205.396 

MT_CI_NAD2 2501.801 2280.796 2195.536 3162.572 2877.766 2542.762 1416.605 1284.135 1202.011 986.5388 1003.032 1070.944 

MT_CI_NAD3 2212.241 1515.474 1096.656 2002.482 2032.695 1768.666 1637.737 1784.499 1751.381 865.6536 1241.233 614.7322 

MT_CI_NAD4 2899.706 5175.253 4056.368 7216.748 5159.5 4056.14 2755.904 2868.544 2160.515 2812.234 2773.395 2628.979 

MT_CI_NAD4L 1692.393 1009.684 974.7059 1321.445 1750.217 1182.136 993.1324 1815.467 1262.647 1499.61 1078.721 983.25 

MT_CI_NAD5 1548.966 2150.238 1375.886 2624.303 2205.046 1994.498 1320.87 1083.028 1172.797 836.3867 766.1857 1072.841 

MT_CI_NAD6 3319.512 2933.951 2056.86 3360.866 4160.5 3791.407 4334.672 5196.441 4092.202 4734.026 3400.761 1623.972 

MT_CIII_CYTB 5712.202 6297.558 6385.257 7334.151 8406.908 4111.683 1941.87 2134.804 2022.261 1879.716 1575.928 2505.89 

MT_CIV_COX1 6139.872 6385.616 7301.02 8237.131 9016.431 5398.148 3378.831 3449.165 3480.555 3843.588 3058.105 4378.005 

MT_CIV_COX2 5791.332 5004.019 5612.452 6511.007 6489.742 3844.308 4005.916 3673.058 3377.702 3753.142 3619.641 4249.544 

MT_CIV_COX3 5572.661 4506.484 3920.555 5830.732 6517.493 4088.493 4009.083 4316.274 4229.351 4041.913 3475.111 3471.22 

MT_ATPase_ATP6 3577.745 3603.098 2222.948 4353.33 3952.429 2833.674 1656.353 2196.444 1818.909 1769.062 1395.27 2065.612 
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Supplementary table 3:  Top)Medians of correlations between : i) nuclear subunits; ii) mitochondrial subunits; iii) nuclear versus mitochondrial subuinits; iiii) 
all subunits; Bottom) Medians of correlations between nuclear subunits of CI, CII, CIII, CIV, CV 

 
 Nuclear subunits Mitochondrial subunits Nuclear ~ mitochondrial subunits All 

R. decussatus M 0.14 0.28 0.08 0.25 

R. decussatus F 0.07 0.6 -0.08 0.14 

R. philippinarum M 0.37 0.65 0.08 0.14 

R. philippinarum F 0.25 0.54 -0.08 0.03 
 

 CI CII CIII CIV CV 

R. decussatus M 0.37 0.25 0.82 0.85 0.14 

R. decussatus F 0.08 0.48 0.54 -0.11 0.14 

R. philippinarum M 0.37 0.68 0.37 0.14 0.42 

R. philippinarum F 0.2 0.85 0.11 0.4 0.42 
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Supplementary table 4: medians of dN/dS for each OXPHOS complex. NU Rde~Rph= dN/dS 
between nuclear subunits of Ruditapes decussatus and Ruditapes philippinarum; MT Rde~Rph 
F=dN/dS between mitochondrial subunits of Ruditapes decussatus and Ruditapes philippinarum F 
type; MT Rde~Rph M=dN/dS between mitochondrial subunits of Ruditapes decussatus and 
Ruditapes philippinarum M type. 

 

  CI CII CIII CIV ATPase 

NU Rde~Rph 0.16 0.04 0.28 0.09 0.14 

  CI CIII CIV ATPase 

MT Rde~Rph F 0.08 0.08 0.15 0.19 

MT Rde~Rph M 0.12 0.08 0.18 0.18 
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Supplementary table 5: most abundant GO annotations associated to genes with mitochondrial 
annotations and dN/dS > 0.2 . 

 
GO term Description % 

GO:0006810  transport  17,62% 

GO:0044281  small molecule metabolic process  15,14% 

GO:0055114  oxidation-reduction process  15,06% 

GO:0006351  transcription, DNA-templated  10,66% 

GO:0006355  regulation of transcription, DNA-templated  9,92% 

GO:0055085  transmembrane transport  8,92% 

GO:0016310  phosphorylation  7,76% 

GO:0006412  translation  5,69% 

GO:0006811  ion transport  5,34% 

GO:0006468  protein phosphorylation  4,14% 

GO:0035556  intracellular signal transduction  4,00% 

GO:0032259  methylation  3,10% 

GO:0008652  cellular amino acid biosynthetic process  2,93% 

GO:0006974  cellular response to DNA damage stimulus  2,36% 

GO:0015031  protein transport  2,25% 

GO:0006281  DNA repair  2,23% 

GO:0006310  DNA recombination  1,64% 

GO:0006260  DNA replication  1,58% 
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Supplementary table 6: mitochondrial GO annotation of R. decussatus and R. philippinarum specific 
genes  
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Conclusions  
 
The work carried out in this thesis allowed me to develop some methodological             

approaches for HTS data analysis to be used in a comparative framework. I was able               

to investigate the evolution of nuclear and mitochondrial genes in two mollusc            

species—Ruditapes decussatus and Ruditapes philippinarum (Bivalvia,      

Veneridae)—providing insights into biological processes in a Phylum where         

genomics data are largely missing. Compared to taxa investigated so far, the study of              

these two non-model species offered different perspectives on several biological          

issues. 

By analyzing RNA-seq from gonads of R. decussatus and R. philippinarum, I            

investigated—for the first time in Mollusca—the transcription level and sequence          

evolution of sex-biased genes. These species showed a low number of sex-biased            

genes, compared to other taxa. This is not surprising since clams lack sexual             

dimorphism as well as mating behavior, which are responsible for the majority of             

differential transcription between sexes. Nevertheless, there are considerable        

differences in the transcription of such genes: in 86% of orthologs, the sex-bias is not               

maintained between the two species and the most frequent condition is represented            

by genes that are female-biased in one species and unbiased in the other species.              

This is surprising, since male-biased genes show the greater transcription divergence           

in most studies. On the other hand, I investigated the sequence evolution of             

sex-biased genes and I found that genes that are male-biased in both the species              

are characterized by a higher rate of protein evolution, confirming a pattern observed             

in most of the taxa. This evidence suggests that both transcription level divergence             

and rate of protein sequence variation act on the evolution of sex-biased genes. In              

particular, a faster evolution of protein sequence seems to be predominant for            

male-biased genes in the analyzed species, while a more variable transcriptional           

regulation is observed for female-biased genes, suggesting that these two kinds of            

evolution may be decoupled. In addition, the investigation of all genes in both the              

species revealed a lack of correlation between rate of protein evolution and            
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transcription level. Since the evolutionary rate of a protein would be mainly influenced             

by its transcription level according to recentest theories, the lack of correlation in             

these two bivalve species suggest that this hypothesis might not account for coding             

sequence evolution in all the Metazoa. 

The study of bivalve species offered also an exceptional opportunity to investigate            

the dynamics of mito-nuclear evolution. In fact, R. decussatus and R. philippinarum            

are characterized by different mechanisms of mitochondrial inheritance, and R.          

philippinarum presents a natural condition of mitochondrial heteroplasmy. In the work           

reported in Chapter 4, I took advantage of this condition to infer the co-evolution of               

mitochondrial and nuclear genome. I found that in these species the rate of protein              

evolution (measured as dN/dS) of mitochondrial OXPHOS subunits is an order of            

magnitude higher compared to that in species where mito-nuclear coevolution was           

investigated so far; on the contrary dN/dS of nuclear OXPHOS subunits is            

comparable to that in other species. This finding does not support one of the main               

hypothesis about the dynamics of mito-nuclear coevolution, the ‘nuclear         

compensation hypothesis’, which posits that nuclear subunits evolve faster to          

compensate the high mutation level acting on mtDNA, thus ensuring the proper            

molecular interaction among OXPHOS subunits. Although nuclear-encoded       

OXPHOS subunits do not seem to be affected by mitochondrial variability, I found             

that other nuclear genes could be likely involved in mito-nuclear incompatibilities.           

Genes involved in regulation of transcription, translation, and recombination of          

mitochondrial DNA, as well as genes for the respiratory chain assembly and            

response to oxidative stress were characterized by significantly higher dN/dS in the            

analyzed species, suggesting a fast evolution in response to the high mitochondrial            

protein sequence variability. 

If, on one hand, the purpose of this thesis was to increase the knowledge about               

molluscs, on the other hand most biological issues remain unexplored in these            

species and little is known about their evolution, adaptation and development.           

Genomics data are now, more than ever, easy to obtain. Nevertheless, the analysis             

of such complex and extensive data is still not optimized for non-model organisms.             

During this work, I indeed had to face several technical issues: most of the              

bioinformatic tools for inferring differential expression analysis or enrichment of          
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biological processes were discarded, since they worked only on model species. In            

addition, I had to develop an annotation pipeline for non-model organisms that            

combined different tools and databases in order to detect remote homology and be             

non-model organism-friendly. Finally, the detection of orthology and paralogy have          

remarkable limitations when distantly-related species are investigated, and this can          

have deep impact in the interpretation of results. Comparative genomics has a            

fundamental role in almost every field of biology, so an improvement in comparative             

methods—both theoretical and technical—is a key point for a better exploitation of            

genomics data in the next future. 
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