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ABSTRACT  
 

Characterizing thermodynamics and kinetics of molecular systems is the ultimate goal 

of biophysics. In drug discovery, this information becomes essential. Understanding local 

and global rearrangements, how formation and disruption of biomolecular complexes 

occur, the molecular determinants involved and the preferred pathways followed, 

contribute to forming a solid ground for the development of new drugs. Quantifying 

specific kinetic parameters, such as off rates and the closely related residence time, is 

increasingly being incorporated in the drug optimization phase. Several experimental 

techniques established to study and quantify kinetic features. Conversely, the 

computational counterpart still faces severe challenges, such as accessing the time scales at 

which these slow events occur, while acquiring acceptable statistics. 

During this PhD program, we explored current, state-of-the-art computational 

methods, and combination thereof, to study kinetic properties of pharmaceutically relevant 

biomolecules. In particular, we applied different protocols to three test systems. In the first 

case, we reconstructed the free energy surface of an intrinsically disordered protein and 

calculated interconversion rates between the differently folded states identified. In the 

second application, Markov State Models were employed to identify relevant states along 

the protein-ligand binding pathway. Using these states as a template, a putative pathway on 

which computing the free energy profile associated with the binding process was 

determined. As for the third test case, we performed unbinding simulations on a series of 

ligands and prioritized them according to their average computational unbinding time. The 

obtained ranking was subsequently confirmed by performing experimental assays. 

Despite clear limitations, the picture arising from the studies was encouraging. 

Computer simulations emerged undoubtedly as a valuable instrument for assessing kinetic 

properties of biomolecular systems. Therefore, in light of the rapid advances in computer 

power expected from the upcoming years, their role as effective tools to assist the 

discovery of novel drug-like molecules is extremely promising.  
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1. INTRODUCTION 
 

1.1 Kinetics, besides thermodynamics 
 

Macromolecules are the key characters of the cellular machinery. By taking part in a 

plethora of intricate networks consisting of functional pathways, they ensure the 

subsistence of cell homeostasis. Proteins, in particular, represent the major operative bricks 

on which this complex scheme in constructed. If, on the one hand, the physiological status 

is maintained by the regular activity of macromolecules, on the other hand, pathological 

conditions arise as a result of alterations in these functionalities. Intervening with the aim 

of resolving a pathological state implies a thorough understanding of the molecular basis 

underlying the specific, altered mechanisms. This, in turn, translates to the necessity of a 

detailed characterization of both structural and dynamical features of the biomolecules of 

interest. By investigating thermodynamic properties of biological systems, equilibrium 

populations can be determined. Thus, it is possible to identify the most relevant states in 

which a specific macromolecule can be found, and the relative stabilities can be quantified 

in terms of free energy differences. Most of the scientific work that has been carried out up 

to this date was focused at achieving this static, nevertheless pivotal, description.1 

However, a complete comprehension of the molecular mechanisms is obtained when 

integrating such information with the kinetic counterpart.2 This includes determining the 

time scales at which the events occur, identifying the preferred pathways followed when 

transitioning from one state to another one, and recognizing the slowest, known as rate-

limiting, steps comprised in the mechanism under study. However, achieving these goals is 

complicated by the transient nature of intermediate, elusive states that are difficult to 

observe both through experiments and computer simulations, thus justifying the more 

contained advancements in this prospect. 

In the context of drug discovery, this integral picture becomes the essential ground 

field on which devising strategies and protocols leading to a desired pharmacological 

effect. Once the molecular basis underlying specific physiological and pathological 

conditions is well characterized, rational approaches basing on the available information 

can be developed. Thus, the activity of proteins, such as enzymes or membrane receptors, 

can be modulated to obtain a therapeutic response, or the access to non-physiological states 
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causing the onset of the pathology can be prevented. In the vast majority of cases, this is 

achieved by means of the interaction of small molecules with specific biomolecular targets. 

The ultimate goal then becomes the identification of novel drug-like molecules able to take 

part in the molecular mechanisms of interest producing a desired therapeutic effect.  

 

1.2 On- and off-rates in drug discovery 
 

Current drug discovery and development programs rely on experimental and 

computational supervision. Over the last decades, the advancements in technologies and 

methodologies on both sides have been tremendous. Nevertheless, the invested efforts are 

not balanced by the poor success rate in the identification of novel drugs.3 Most frequently, 

drug-like molecules that appear extremely promising in the early phases of the drug 

discovery pipeline end up being discarded during the subsequent clinical trials. This is 

generally ascribed to insufficient or inappropriate pharmacokinetic qualities, evidences of 

unexpected toxicity, or in vivo inefficacy. In the latter case, the importance of kinetic 

parameters as a measure of the in vivo effect has gradually emerged.4–6 Traditionally, the 

activity of drug-like molecules has been expressed in terms of the equilibrium dissociation 

constant, Kd, or by the half-maximal inhibitory concentration, IC50, both often determined 

under closed in vitro conditions. However, in many cases the correspondence does not 

hold, particularly when the duration of the pharmacological effect is a considerable 

component of the in vivo efficacy. These findings started to shed light on the kinetic 

profiles of the compounds. Thus, there has been a shift of focus in order to include the 

association rate constant, kon, and the dissociation rate constant, koff, in drug discovery 

programs.4 In particular, the aim has become a rational control of such properties during 

the drug optimization phase. 

A fast binding drug, possessing a high on-rate, would be desirable when dealing with a 

short-living biomolecular target, as the chance of encounter is increased.7 Moreover, the 

role of on-kinetics for ligand selectivity has been also outlined in recent studies.8,9 On the 

dissociation side, devising drugs with smaller off-rates is the goal in the vast majority of 

cases. This translates to prolonged occupation of the binding site on a molecular target, 

resulting in extended duration of the effect. The term residence time, expressed as the 

inverse of koff, was coined to designate this concept.10 However, a drastic increase of side 

effects is observed in certain proteins when the residence time is extended. In such 
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circumstances, fast-off rates would be ideal.11 Therefore, while the overall relevance of on- 

and off-rates has been now recognized, it is clear that best kinetic features should be 

identified on a case-by-case basis, depending on the specific macromolecular target of 

interest.  

  

1.3 Gaining insights into biological kinetics via computer 
simulations 
 

Determining thermodynamic properties of biological systems has been a major 

objective of structural biology since the early times. Thus, significant advances have been 

made over the years from both the experimental and computational point of view. As such, 

established methodologies exist nowadays in this respect. Drug discovery has certainly 

gained from these developments. On one hand, understanding mechanisms and structural 

features of relevant macromolecules contributed to creating a solid base for a rational 

approach. On the other hand, striking support for drug discovery and development 

programs was acquired. The recent scientific literature is clearly indicating that the effort 

should now be directed towards kinetics.5,6 Therefore, integrating such information in 

current drug discovery protocols has become rather appealing and undoubtedly promising.  

Experimental methods such as nuclear magnetic resonance (NMR) spectroscopy and 

surface plasmon resonance (SPR) gained considerable popularity in this respect. The 

former proved to be very effective in characterizing highly dynamic systems,12,13 while the 

latter in measuring kinetic quantities.14 However, from the computational standpoint, 

providing insights about kinetic features of biomolecular systems is still extremely 

challenging. A wide configurational space, including relevant transitions along slow 

degrees of freedom demands for both significant computational resources and effective 

strategies to make sampling accessible and efficient. Although techniques to enhance the 

exploration of the phase space can be exploited, time resolution is typically lost. Thus, 

methods to reconstruct information about the timescales need to be subsequently 

integrated.  

In the work carried out during this PhD program, we took advantage of state-of-the-art 

computational methods and combination of these to gain insights into kinetic properties of 

biological systems bearing pharmaceutical relevance. We devised different protocols 

depending on the specific scientific problem to address and on the characteristic of the 
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considered biomolecules. Specifically, three strategies are shown, each one applied to a 

different test case.  

In the first application, we reconstructed the free energy surface (FES) of an 

intrinsically disordered protein15 by taking advantage of enhanced sampling methods.16 

Subsequently, we built a kinetic model basing on the determined free energy to provide 

kinetic information. Thus, besides identifying the differently folded states accessible, we 

were able to compute interconversion rates between these states.  

As for the second test case, Markov State Models (MSM)17 were combined to path 

collective variables18 with the aim of determining the free energy profile associated to a 

protein-ligand binding process. MSM were employed in the initial stage in order to 

identify relevant states along the binding pathway. This information was then used as a 

template on which constructing a putative pathway for the process, as required by the 

implementation of the path collective variables.  

Finally, in the last test case, we carried out unbinding simulations on a protein-ligand 

system. To this end, as reproducing unbinding is a non-trivial task, we exploited an 

enhanced sampling method, namely scaled MD.19,20 A series of small molecules were 

considered and we prioritized them according to their average computational unbinding 

time.21 Subsequently, the obtained ranking was compared to experimental data by carrying 

out experimental assays that allowed evaluating kinetic parameters, achieving a 

satisfactory agreement. 

To provide a general understanding about the employed techniques, we first give some 

theoretical insights about the core concepts. This is illustrated in the next Theory chapter, 

preceded by a short historical contextualization on rate constants. The single applications 

are introduced and discussed separately in the following Results chapter. The discussion is 

then closed with conclusive remarks and perspectives about future directions. 
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2. THEORY 
 

2.1 Kinetics of chemical reactions 
 

The foundation of chemical kinetics can be found in the Arrhenius equation, an 

empirical expression formulated in 1889 by the Swedish scientist. According to this 

equation, the rate constant k of a chemical reaction can be denoted as: 

 

𝑘 = 𝐴𝑒%&' ()⁄  (1) 

 

where A is a constant, named the pre-exponential factor, that is characteristic for each 

chemical reaction, Ea is the activation energy, R is the gas constant and T is the 

temperature. The expression was essentially derived to describe the dependence of a rate 

constant on temperature. However, it inherently introduced and highlighted fundamental 

concepts for reaction kinetics. First of all, Arrhenius argued that, for the reaction to take 

place and products to be formed, the reactants need to first gain a certain, minimum 

amount of energy, that he termed the activation energy. Secondly, in order to determine the 

value of the rate, the energetic term is multiplied by a pre-exponential factor, a concept that 

was further elaborated by subsequent theories. 

The collision theory, proposed independently by Trautz in 1916 and by Lewis in 1918, 

was devised to describe chemical reactions between simple species in the gas phase. For a 

bimolecular elementary reaction of the type: 

 

𝐴 + 𝐵 → 𝑃 (2) 

 

the velocity of formation of the product P can be calculated as: 

 

𝑣 = 𝑘[𝐴][𝐵] (3) 

 

where k is the rate constant associated to the reaction, and [A] and [B] are the molar 

concentrations of the reactants. The central idea behind this theory is that, in order to 

generate products, reactants need to get in touch through collision, and collisions need to 
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be sufficiently energetic. A further complication comes from the relative orientation in 

which reactants need to find themselves for the collision to become effective. In this 

context, the rate can be expressed as: 

 

𝑘 = 𝑃𝜎3456)
78

𝑁:𝑒%&' ()⁄  (4) 

 

where P is a steric factor accounting for the orientation of the reactants, s is the collision 

cross section, µ is the reduced mass of the reactants, NA is the Avogadro number, Ea is the 

activation energy, and kB, R and T are the Boltzmann constant, the gas constant and the 

temperature, respectively. The equation essentially summarizes the aspects introduced 

above, namely the steric requirement, indicated by the steric factor P, the encounter rate or 

collision frequency, computed through the product 𝜎;(8𝑘>𝑇 𝜋𝜇⁄ )𝑁:, and the minimum 

energy requirement, represented by the exponential incorporating the activation energy Ea. 

Provided that the dependence on temperature prevails in the exponential, compared to the 

non-exponential term representing the encounter rate, the expression has the Arrhenius 

form. Therefore, in this illustration, the pre-exponential factor incorporates the 

requirements for the encounter of the reacting species.  

With the subsequent transition state theory, developed simultaneously in 1935 by 

Eyring and by Evans and Polanyi, the problem was discussed in terms of statistical 

thermodynamics. The theory introduces the idea of a transition state, indicated by C‡:  

 

𝐴 + 𝐵 ⇄ 𝐶‡ ⟶ 𝑃 (5) 

 

The transition state is an activated complex in rapid equilibrium with the reactants and 

that turns into the product P by unimolecular reaction. Eyring’s formulation for the rate 

constant associated to the forwards reaction was: 

 

𝑘 = 56)
G
𝑒%HI‡ ()⁄  (6) 

 

where h is the Plank’s constant, ∆G‡ is the free energy barrier between the reactants 

and the transition state, and kB and T are the Boltzmann constant and the temperature. The 

equation tells that the more energy is necessary to form the transition state C‡, the smaller 
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the value of the exponential and, in turn, of the overall rate of reaction. We can make the 

expression explicit in terms of the corresponding enthalpy (∆H‡) and entropy (∆S‡) 

differences by means of the equality: 

 

∆𝐺‡ = ∆𝐻‡ − 𝑇∆𝑆‡ (7) 

 

Thus obtaining:  

 

𝑘 = 56)
G
𝑒%∆O‡ ()⁄ 𝑒∆P‡ ()⁄  (8) 

 

It is interesting to discuss the simple example of a unimolecular reaction in the gas 

phase. In this case, it is valid the equivalence: 

 

𝐸R = ∆𝐻‡ + 𝑅𝑇 (9) 

 

The above formula can be substituted in equation 8, thus obtaining: 

 

𝑘 = 56)
G
𝑒T𝑒∆P‡ ()⁄ 𝑒%&' ()⁄  (10) 

 

By isolating the exponential that expresses the dependence on the activation energy Ea, all 

of the remaining terms can be incorporated in the pre-exponential factor. In this view, the 

pre-exponential is a measure of the activation entropy associated to the reaction.  

According to Eyring’s equation, when the reacting chemicals accumulate enough 

energy, they always proceed to formation of the product. However, this is not necessarily 

always correct, and discrepancies with experiments arise. Therefore, to explicitly take into 

account this possibility, the concept of transmission coefficient was formulated. The 

transmission coefficient, expressed as k, is a factor varying from 0 to 1 that indicates the 

fraction of reacting molecules that are in fact converted to product. Eyring’s equation can 

be thus modified accordingly in order to include k:  

 

𝑘 = 𝜅 56)
G
𝑒%∆I‡ ()⁄  (11) 
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In this expression, the transmission coefficient represents an additional contribution to 

the pre-exponential factor. When k equals 1, the expression corresponds to Eyring’s 

formulation and energy is the only requirement for product formation. Conversely, with a 

value of 0, no product is obtained. What affects the value of k is essentially the nature of 

the local environment in which the reaction takes place. This formulation can be attributed 

to Kramers, that in 1940 presented his interpretation of the transmission coefficient as a 

function of the solvent viscosity.22 Kramers’ theory is based on the Langevin equation that 

describes the motion of a body with mass m along a generic reaction coordinate x as: 

 

𝑚WXY
WZX

= −W[(Y)
WY

− 𝛾𝑚 WY
WZ
+ 𝑓(𝑡) (12) 

 

Truncating the expression to the first term on the right side of the equivalence returns 

the traditional Netwon’s equation of motion. Under the Langevin regime, Newton’s 

equation is augmented by two additional forces: a friction force, measured by including the 

solvent viscosity g, that dissipates the energy of the body, and a random force, f(t), that acts 

agitating the body in a stochastic manner. Starting from the Langevin equation, Kramers 

carried out elegant mathematical operations to calculate the dependence of a reaction rate 

on g. Without going into further details, we mention that Kramers found two solutions for 

limiting regimes of g, that is very high g, named the Kramers high friction regime, and very 

low g, termed the Kramers low viscosity regime. However, he was not able to find any 

formulation for the rate constant that worked for the full range of g. This point was 

subsequently addressed by Pollak and coworkers.23  

Following the given illustration about rate theories, an increasing level of complexity 

can be observed. Starting from the more general, empiric expression conceived by 

Arrhenius, we arrived at presenting the more complete interpretation given by Kramers. In 

the context of the present thesis, where it comes to dealing with biomolecular systems 

plunged into liquid solvents, Kramers’ theory is undoubtedly more appropriate to achieve a 

better description of the dynamics involved. 

 

2.2 Exploiting computational methods to study kinetic 
properties of biological systems 
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When we talk about kinetics of biological macromolecules, we aim at describing the real 

dynamics of these systems. In other words, one wishes to follow their journey along 

different, possible states that they are able to visit and populate. A transition from an initial 

state to a different one might consist in a conformational change. This would be the case 

when folding or unfolding take place, or when a major structural rearrangement occurs due 

to intrinsic propensity or in response to a trigger event. Another example of transitioning 

between states is represented by ligand binding or unbinding. In this case, the picture is 

complicated by the necessity of different bodies not only to approach, but also to get in 

touch in specific regions of their surfaces, and potentially with specific orientations and 

conformations. A further source of complexity would be a conformational change that 

needs to take place before the final protein-ligand complex can be formed. What is 

common to such plethora of different scenarios is the fact that the events involved can be 

considered very slow in all cases. With slow, we mean that such transitions require 

considerably higher time scales to happen compared to local fluctuations of the atomic 

coordinates. In the best case, experiments succeed at describing and quantifying these 

events at a macroscopic scale. From a computational standpoint, the most appropriate 

technique to follow the dynamics of a macromolecular system over time is Molecular 

Dynamics (MD) simulations.24 However, plain MD does not guarantee the access to these 

timescales that we are usually interested in. First of all, when performing MD, we deal 

with a microscopic representation of the system, and, secondly, the allowed time-

resolution for the dynamics of these microscopic systems is considerably confined. This 

discrepancy is typically referred to as the timescale problem. Consequently, an increasing 

number of approaches have been specifically devised for improving sampling of the 

configurational space and for extracting longer timescales information while exploiting 

achievable computational resources.  

In this section, we provide some theoretical background on methods and combination 

thereof that we employed to study kinetic properties of biologically relevant systems. 

Applications to three specific test cases are then shown in the subsequent Results chapter. 

Briefly, we combined enhanced sampling,16 namely Metadynamics (MetaD),25 with a bin-

based kinetic model26 to determine kinetic rates between differently folded states of an 

intrinsically disordered protein. As for the second test case, a Markov State Model 

(MSM)17 was constructed to identify relevant states along the binding pathway of a 

protein-ligand system. Subsequently, such states were employed to build a guess path on 

which applying the path collective variables (path CVs).18 Thus, information from MSM 
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was integrated with path CVs in order to reconstruct the free energy profile along the 

binding process, in this second example. Finally, unbinding simulations were performed 

for a series of ligands of a test case protein taking advantage of another enhanced sampling 

method, namely scaled molecular dynamics (scaled MD).19,20 

Firstly, we give a basic theoretical overview about these techniques that we took 

advantage of in order to improve the sampling of the configurational space. Secondly, we 

discuss the methods employed to recover kinetic information from the molecular 

simulations.  
 

2.2.1 Sampling the configurational space 
 

As introduced above, due to the timescale problem, we cannot always rely on plain 

MD to adequately sample a configurational space involving slow events. Inspired by this 

necessity, the so-called enhanced sampling methods have been developed.16 As suggested 

by the term, common to this class of techniques, independently from the specific strategy 

underlying, is an improved, still statistically correct, exploration of the configurational 

space. Broadly speaking, we can recognize two major subclasses. On the one side, we have 

methods based on reaction coordinates that describe slow degrees of freedom of the 

system. These reaction coordinates, referred to as collective variables (CVs), are used to 

guide the exploration of the phase space. Approaches such as umbrella sampling,27 steered 

MD28,29 and MetaD25 belong to this class. On the other side, we have non CV-based 

techniques of different flavors, in which sampling is enhanced along all of the degrees of 

freedom of the system. Part of this second class are for instance tempering methods, such 

as parallel tempering (PT),30 and scaled MD.19,20 

In this work, we took advantage of both CV-based and non-CV-based enhanced 

sampling methods. In the following, we provide a brief description of the theory behind the 

techniques that we employed.  

 

2.2.1.1 Metadynamics 

In MetaD,25 we add a history-dependent bias potential along specific reaction 

coordinates of our system, the CVs. These essentially describe slow degrees of freedom of 

the system, that allow guiding sampling towards relevant regions of the phase space. 
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Therefore, by taking advantage of CVs, the exploration of the highly dimensional phase 

space accessible to the system is reduced to a lower dimensional problem. The bias 

potential added through MetaD is expressed by means of the following function: 

 

𝑉I(𝑞, 𝑡) = ∑ 𝑊𝑒%de%e(Z)f
X ghXi

Zjk,l,gl,..  (13) 

 

It has the form of a Gaussian possessing width W and height s, which is deposited 

along the CV q at increasing intervals t of the simulation time. The overall bias VG(q,t) 

deposited at time t is then given by the summation over the total amount of Gaussians 

deposited. What happens in practice is that, at time intervals t during the simulation, the 

value of the CV is computed and a small Gaussian deposited on that specific point of the 

CV space. This Gaussian placed has now a repulsive effect, as it discourages the system to 

visit again that region of the CV space, thus exhorting the exploration of non-previously 

visited ones. Therefore, if we start our simulation with the system located inside a certain 

local energy minimum, the bias is going to favor first the exploration of the CV space 

belonging to that basin. As shown in Figure 1, we can look at the bias as if we were 

gradually filling the energy basin.  

 

 
Figure 1. Pictorial representation of the MetaD method. The bias (filled curves from red to light pink) is 

gradually deposited at increasing time intervals t (going from red to light pink) along a CV q. Assuming that 

a simulation is started from inside basin A, the gradual filling due to bias deposition allows crossing the 

barrier and visiting basin B. Accordingly, basin C is eventually sampled. Once all of the relevant minima 

have been visited, the system experiences free diffusion along the reaction coordinate. At that point, minus 

the total bias accumulated gives the free energy.  
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Suppose we are in basin A, at some point this would be filled and the system would 

fall inside basin B, and so on. Once all of the basins are filled, the system is able to freely 

diffuse in the CV space. We can then reconstruct the FES in such CV space as: 

 

𝑉I(𝑞, 𝑡 → ∞) = −𝐹(𝑞) (14) 

 

 When employing MetaD, two major drawbacks are encountered: assessing the 

convergence of the simulation and choosing the CVs to bias.31 As for the first one, it is not 

obvious when to stop the simulation. Once all of the basins are visited, and while the 

simulation keeps running, the bias keeps being deposited. This has the effect of overfilling 

the underlying FES and inducing the system to visit high-energy regions of the CVs space. 

Thus, for a reliable FES estimate, the simulation should be stopped as soon as the system 

starts diffusing in the CVs space. However, this is not straightforward to assess. In order to 

overcome this limitation, a variant of MetaD has been introduced, referred to as well-

tempered MetaD.32 While in standard MetaD Gaussians of constant height W are deposited 

over time, in well-tempered MetaD the bias is gradually reduced. As a result, the 

overfilling mentioned above is less pronounced. In this variant of MetaD, Gaussian height 

becomes a function of the simulation time, according to: 

 

𝑊(𝑡) = 𝑊k𝑒%pq(e,Z) 56⁄ ∆) (15) 

 

where W0 is the initial Gaussian height, and VG(q,t) is the total bias deposited at time t. In 

the equation, DT represents the upper limit of the temperature range at which the CVs are 

sampled. In regular MetaD, the gradual addition of the potential energy bias in the CV 

space corresponds to sampling along the chosen CVs at increasing temperature values. 

Conversely, in the well-tempered variant, this behavior is confined and the mentioned 

overfilling of energy basins alleviated. 

Each time the system is brought inside a new basin, the initial Gaussian height W0 is 

restored and the simulation time-dependent scaling of the hills restarted. As a result, the 

bias potential tends to smoothly converge in the long time limit. Particular care is 

necessary when deciding the entity of decrease in Gaussian height per time unit. W should 

not become too small before the basin is completely filled, otherwise not enough bias 

would be gathered to overcome the barrier and the system would remain stuck inside the 
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minimum as a result. In the current implementation, this can be controlled by setting for 

the simulation a specific parameter called bias factor, defined as: 

 

𝛾 = )r∆)
)

 (16) 

 

where DT is the upper limit of the temperature range to which the sampling of the CVs is 

confined. 

Through this scheme, the potential smoothly converges in the long time limit. 

However, it does not fully correspond to the underlying free energy, as: 

 

𝑉I(𝑞) = − ∆)
)r∆)

𝐹(𝑞) (17) 

 

The second limitation is about the identification of an appropriate set of CVs. As 

already discussed, all of the relevant degrees of freedom of the system need to be taken 

into account by the CVs. If this is not the case, the simulation will not converge and 

pathological behaviors are likely to be observed. Identifying relevant CVs involves 

probably the largest initial effort, and is more a trial and error procedure. Nevertheless, it is 

worth noting that the effort is not completely vain, as much understanding about the 

system under study is typically gained at this stage. In order to reduce the possibility of 

neglecting relevant degrees of freedom, several strategies can be applied. Among those 

relying on the use of CVs, one is using bias-exchange MetaD,33 in which multiple replicas 

of the system are simulated in parallel, and a different CV is biased in each replica. 

Another possibility, specifically devised to manage particularly complex reaction 

pathways, is the use of path CVs. Conversely, the problem can be in part alleviated by 

coupling MetaD with non-CV-based methods, such as parallel tempering.30 In the latter 

case, temperature is exploited to facilitate transitions along all of the degrees of freedom 

that might be neglected by the choice of CVs. 

 

2.2.1.2 Path Collective Variables 

As already widely discussed, plain MD is extremely limited when dealing with rare 

events. Achieving satisfactory sampling for a wide phase space, possibly comprising 

significant energetic barriers, would require an impressive computational effort, if 
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achievable at all. The risk for the system is to station within local energy minima for long 

periods of time, and infrequently crossing barriers in favor of different regions. Obtaining 

proper statistics for the estimation of an accurate FES becomes unfeasible in such a 

scenario. As a result, a plethora of strategies have been devised that enhance sampling and 

thus optimize the computational effort.16 MetaD,25 described in detail, is one of such 

methods and allows an efficient reconstruction of complex FES. However, as already 

discussed, a major limitation of this technique is the initial effort required to identify a 

valid set of CVs to guide sampling.31 On the one hand, the chosen CVs need to take into 

account all of the slow degrees of freedom of the system. If this is not true, then the 

simulation will not converge. On the other hand, the number of CVs must be contained to 

avoid exceedingly slow filling times. Essentially, one needs a reasonable number of 

relevant CVs. This point becomes particularly challenging when it comes to protein-ligand 

binding, as a plethora of slow degrees of freedom can be potentially involved, ranging 

from solute desolvation, conformations of the ligand and rearrangements in protein 

residues. Therefore, with the purpose of overcoming the difficulty of managing highly 

dimensional phase space and reducing human intervention on the choice of the CVs, the 

path CVs formalism has been developed.18  

Let us assume that we have an idea of what happens along a complex reaction, and we 

are able to describe it by means of a putative pathway, which is a series of frames 

capturing the system at intermediate states along the reaction of interest. Then we can 

exploit this frameset to guide sampling along the “guess path” by means of the following 

CVs:  
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For a certain microscopic configuration X of the system during the MetaD simulation, 

the variable s can range between 0 and P, where P is the number of frames comprised in 

the frameset. The summations run over each frame i in the frameset, and for each of them 

the difference (X-X(i))2 is the distance between the configuration X of the system and the 

one adopted in frame i. Notably, there is no restriction in the distance metric used. 
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However, it is common practice to use the mean square deviation (MSD), resulting in 

squared distance units. This is preferred over the RMSD for numerical reasons, but they 

are conceptually interchangeable. Whenever the microscopic configuration sits on, that is 

corresponds to, a specific frame i, then all of the other terms in the summation disappear 

and s(X) = i. Thus, in practice, s describes the progression along the frameset. As for the 

second parameter, z can be thought as orthogonal to s, and expresses the distance from the 

putative pathway. While we advance along the putative pathway, z allows exploring 

adjacent regions of the phase space. To give a practical illustration, we can imagine the 

configurational space accessible to the system as confined within a cylinder, where the axis 

corresponds to the frameset, and z defines the radius. In the above functions, l is a tunable 

parameter that ensures continuous progression. It is proportional to the inverse of the 

average MSD between subsequent frames in the frameset. As a rule of thumb, the 

following formula has been suggested: 

 

𝜆 = g.�(u%T)
∑ |�|%�|��|}y�
|~�

 (20) 

 

 In summary, the highly dimensional phase space is reduced to a 2-dimensional 

description exploiting as CVs the progression along a putative pathway. The main 

advantage from combining s to z is a more permissive exploration of the configurational 

space around the guess route. As such, in the reconstructed FES, the minimum free energy 

pathway can be then recognized. 

However, the non-trivial point here is that the overall framework is based on the 

availability of a putative pathway, that is an a priori idea of what is going on along the 

complex reaction. There is no general rule to obtain the required frameset, and the 

feasibility is strictly dependent on the information one can access. Additionally, a valid 

frameset responds to specific requisites. First of all, subsequent frames need to describe 

unidirectional progression towards the final state. No loops leading back and forth should 

be present. Secondly, equal spacing between subsequent frames is required. This is 

expressed in terms of the metric used to parameterize the guess path. Finally, an 

appropriate number of frames should be chosen, so that the distance between subsequent 

frames is not excessive. Indeed, the resolution of the reconstructed FES is going to reflect 

the amplitude of the spacing achieved. 
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2.2.1.3 Parallel Tempering 

As already discussed, several methods have been developed over the years to improve 

sampling of the complex configurational space accessible to molecular systems. While 

techniques based on CVs can be very efficient, they nevertheless require a considerable 

intervention and effort by the user. Indeed, identifying reaction coordinates that represent 

slow degrees of freedom of the system is far from trivial, if achievable at all. Conversely, 

in non CV-based techniques the bias affects the entire system, acting along all of the 

degrees of freedom.  

PT30 belongs to the non-CV-based class of methods. As suggested by the name, N 

replicas of the system are simulated in parallel at increasing temperature values T1, T2, T3, 

… TN. At fixed intervals during the simulation, exchanges of configurations between 

adjacent replicas are attempted. The probability of accepting the exchange responds to the 

Metropolis Monte Carlo Scheme: 

 

𝑃(𝑖 → 𝑗) = 𝑚𝑖𝑛�1, Δw�u)� (21) 

 

with: 
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where U(x) is the potential energy associated to configurations xi and xj of the system at 

temperatures Ti and Tj, respectively. 

At the higher temperature replicas, transitions over moderately high free energy 

barriers are facilitated along all of the degrees of freedom of the system. At the same time, 

the canonical distribution is guaranteed at the lowest temperature T1. The latter represents 

the reference replica, and is set to the real temperature of interest for the simulation. 

Therefore, the procedure has the clear advantage of including states, in the configurational 

space sampled at T1, that would not be easily accessible to a traditional simulation 

performed at that temperature value.  

According to equation 21, the acceptance probability for an exchange is strictly 

dependent on the overlap between the energy distributions of neighboring replicas. The 

acceptance ratio between adjacent replicas, expressed as the ratio between attempted and 

successful exchanges, is here an important parameter. By monitoring the acceptance ratio, 
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we assess that an adequate number of replicas have been appropriately distributed in the 

considered temperature range, as to guarantee sufficient overlap that allows for the desired 

exchanges. It is worth mentioning that this aspect is also related to the efficiency of the 

method. In the ideal situation, one would set the PT framework to achieve a constant 

acceptance ratio between any two neighboring replicas in the considered temperature 

range. This would ensure an optimal round trip time across temperatures, that is the time 

required for a cold replica to move to the highest temperature and come back, and is a 

measure of the efficiency of the setup.  

Energy fluctuations for a molecular system increase with temperature. As such, going 

from T1 to TN, the difference in temperature between adjacent replicas can be gradually 

increased in order to maintain the same extent of overlap, and thus a similar acceptance 

ratio. Traditionally, a geometric progression of temperatures was suggested:34  
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where Ti is the temperature value for each of the N replicas i, comprised between the 

temperature of the canonical replica, Tmin, and the one of the replica at the highest 

temperature Tmax. 

It is worth noticing that the requirement of overlap between the potential energy 

distribution is also causing the major drawback when dealing with PT. That is, in order to 

cover a certain temperature range, a significant amount of replicas is typically required. 

This, in turn, tends to translate to high computational costs to carry out efficient PT 

simulations. As discussed below, this practical issue can be attenuated by taking advantage 

of the well-tempered ensemble.35  

 

2.2.1.4 The well-tempered ensemble 

As already mentioned, with MetaD we guide sampling along specific CVs. These are 

usually functions based on geometric criteria, such as distances, angles or the RMSD. 

However, we can also bias the potential energy of the system. If this is carried out through 

the well-tempered declination of MetaD, then the simulation is taking place in what is 

called the well-tempered ensemble (WTE).35 The resulting potential energy becomes: 
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where g is the bias factor applied, and N(U(x)) is the number of states with potential 

energy U(x). It has been shown that this procedure has the effect of enhancing the 

fluctuations of the potential energy, while preserving the same average potential energy as 

in the unbiased ensemble. 

Since its first formulation, the potential of this approach has been highlighted in its 

combination with PT. By simulating in the WTE at each replica of a certain PT scheme, 

the energy fluctuations at each temperature are significantly increased, to an extent 

determined by the bias factor applied.36 As a consequence, the same continuous desired 

overlap can be achieved while placing the replicas at a farther distance between each other. 

Covering a certain temperature range requires, in turn, a more contained number of 

replicas. The overall computational effort required is thus considerably reduced and the 

efficiency of the method improved. 

 

2.2.1.5 Scaled Molecular Dynamics 

Another non-CV-based technique is scaled MD.19,20 When applying this method, the 

potential energy surface (PES) of the system is scaled by multiplying it for a factor l 

comprised between 0 and 1. When l equals 1, then the PES corresponds to that obtained 

from a plain MD. As we go to lower values of lambda, approaching the 0 value, the energy 

profile is increasingly smoothed. Figure 2 gives a pictorial representation of the effect of l 

on the PES. As a result, as easily understandable from the picture, the energy barriers 

between different states are lowered and thus transitions between them are facilitated. This 

behavior is equivalent to sampling at high temperatures. However, contrary to scaled MD, 

this would require shorter time steps, inevitably reducing the efficiency of the 

simulations.19  

The method was initially proposed by Tsujishita et al.,20 and was subsequently 

reconsidered and exploited by Sinko and coworkers.19 Under scaled MD conditions, the 

canonical probability distribution for a given state of the system is modified to: 

 

𝑝∗(𝑥) = 𝑒%�p(Y) 56⁄ ) (25) 
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Figure 2. Effects of the scaling factor on the potential energy surface of the system. As more aggressive l 

values are applied (that is, smaller), the potential energy profile is increasingly smoothed. 
 

where V(x) is the potential energy along a generic reaction coordinate x, kB is the 

Boltzmann constant and T is the temperature. 

In the implementation from Sinko et al., a population-based reweighting scheme was 

proposed to reconstruct the canonical distribution of populations: 

 

𝑝(𝑥) = 𝑝∗(𝑥)T �⁄  (26) 

 

It is worth noticing that it is possible to envisage other reweighting schemes, including 

for instance an energetic term. However, it was shown that the population-based strategy is 

more accurate, as energy terms are subjected to larger energy fluctuations that introduce 

larger errors.19  

 

2.2.2 Recovering kinetics 
 

2.2.2.1 Markov State Models 

In computational biology, MSM construction is typically based on plain MD trajectory 

data.17,37,38 There is bit of a shift of perspective compared to the traditional interpretation of 

computer simulations, as with MSM we analyze MD trajectories through a purely 

statistical approach. The clear advantage for computational biologists is the possibility of 

aggregating multiple, shorter plain MD simulations to achieve a description of longer 

timescale kinetics. Nevertheless, adequate sampling obtained via plain MD is necessary to 
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construct the model. Specifically, all of the states accessible to the system need to be 

visited with statistical significance. To this end, the model itself, as we construct it, is able 

to give guidance about those regions of the phase space for which more sampling is 

required. Notwithstanding this capability, considerable computational resources are 

typically required to gather sufficient data to construct a reliable MSM.  

The approach represents a systematic way of decomposing the configurational space 

of the molecular system into a set of microstates. By counting the transitions in the 

microstate space according to what observed in the plain MD trajectories, one is able to 

calculate a transition matrix. Such matrix contains the transition probabilities between the 

microstates. Besides transitions probabilities, several useful properties of the system can be 

calculated. In particular, the slowest relaxation timescales, long-living states, that is 

metastable states, and also pathways and rates involved in the transition from one 

microstate to another, can be determined. 

In the following sections, we provide some insights into the major concepts behind the 

construction of a MSM, namely state decomposition, count of the transitions and coarse 

graining. 

 

2.2.2.1.1 State decomposition 

The core concept behind the construction of a MSM is state decomposition.37 

Generally speaking, a MSM is essentially a transition probability matrix in which the 

probabilities of going from one state to a different one are stored. In the context of MSMs, 

the term microstate is preferred. A critical step is thus the definition of the microstates in 

which a certain molecular system can be found. In practice, this corresponds to 

decomposing a broad configurational space, characterized by a plethora of possible 

configurations of the system, into a finite, valid set of microstates that provide a suitable 

representation of the initial configurational space. This procedure is named state 

decomposition. In order to achieve such discrete subdivision, clustering is the natural 

choice, with the obtained different clusters representing different microstates accessible to 

the system. If we were able to compute the average transition time between all of the 

configurations sampled in a MD simulation, such average transition time would be the 

obvious variable on which carrying out clustering. Then, on a hypothetic journey in the 

microstate space, at each step the system would loose its memory about previously visited 

microstates. Thus, reaching the next microstate would be simply a deterministic function 

of the microstate on which the system currently lies. This is called the Markov property, 
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and is an essential characteristic that needs to be fulfilled by a MSM. This is true if no 

significant internal energy barriers exist within a microstate, while barriers are found when 

we are at abandoning it. In other words, for the Markov property to hold, transitions 

between members of the same state need to be faster than transitions between different 

microstates. However, determining average transition times between pairs of 

configurations is currently not attainable. Thus, the just introduced framework would 

break. Nevertheless, we can think about a kinetically relevant clustering procedure, 

achieved through geometric criteria. Translated in more practical terms, this means 

grouping together configurations according to geometric similarity. If the result is not too 

spread, that is configurations clustered together are sufficiently similar, it becomes 

reasonable thinking that transitions between them will be fast. This, in turn, is connected to 

clustering algorithm intrinsic properties and on the subdivision of the phase space. It is not 

in the intent of the current discussion to go into details, but we mention that, as for the 

latter point, one would be tempted by a finer subdivision of the phase space as a mean to 

increase similarity within clusters. However, it needs to be kept in mind that adequate 

statistics for each microstate is also required, and this is typically inversely proportional to 

the number of clusters.  

From this illustration, the arising elements are a clustering algorithm and an 

appropriate distance metric on which applying it. By using the latter terminology, we 

intend variables that are able to capture the relevant dynamics of interest, distinguishing 

different configurations and identifying similar ones relatively to the process under study. 

In other words, variables that allow us effectively estimating geometric, and thus possibly 

kinetic, similarity between two structures. To give some examples, we might want to use 

dihedral angles to describe a small molecule possessing many degrees of freedom, while 

we might prefer distances between a-carbons to deal with a major conformational change 

in a protein. As in many cases, there is no general rule and a distance metric that fits all of 

the possible scenarios, thus the choice is left to the user depending on the specific scientific 

problem. In a nutshell, when constructing a MSM, as a first step we map all of the sampled 

configurations on the chosen distance metric.  

For what concerns clustering, a plethora of algorithms have been reported in the 

literature over the years. Among these, K-medoids, K-means, K-centers, regular spatial 

and regular temporal have been reviewed for application in the context of MSMs.39 By 

examining published papers on MSMs,40–42 we deduced that a popular choice in the MSM 

community is the K-means clustering algorithm.43,44 In K-means, data points belonging to 
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the same cluster present minimal pairwise distances. This is achieved by minimizing the 

following function: 
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where k is the number of clusters, n is the amount of data points contained in the cluster, 

and d(xi-cj)2 is a function estimating the distance, in units of the distance metric selected, 

between the data point xi and the cluster center cj. In subsequent iterations, the cluster 

centers are recalculated and data points reassigned to the closest centroid. The iteration 

keeps going until cluster centers do not change anymore. 

One reason of K-means popularity, in the first place, is its tendency to generate 

microstates including a more similar number of configurations. Put differently, the 

algorithm creates more clusters in more sampled regions. On the one hand, the clear 

advantage is that this feature helps guaranteeing more reliable estimates of transition 

probabilities, since, as previously introduced, satisfactory statistics is required for each 

microstate in order to build a meaningful MSM. On the other hand, there are drawbacks 

when using K-means. First of all, the described behavior might exacerbate resulting in an 

over-division of some regions and under-division of others. Moreover, when applying K-

means, the amount of clusters has to be specified by the user, thus requiring some sort of 

iteration in order to select an appropriate number. Finally, a cluster center is characterized 

by the average of the variable values from the configurations belonging to that cluster. 

Thus, in molecular systems, they usually do not correspond to physically meaningful 

states. Nevertheless, other strategies can be employed to easily identify representative 

structures for the generated clusters.  

As a final remark, it is important to mention the possibility of reducing the number of 

dimensions before performing clustering. The most widespread technique for this purpose 

in computational biology is undoubtedly principal component analysis (PCA).45,46 In PCA, 

a covariance matrix is calculated between chosen variables in order to identify those 

vectors on which the highest variance of the data can be projected. For instance, if we use 

Cartesian coordinates from a MD trajectory as input variables, the method prioritizes 

vectors along which the largest motion has been observed during the simulation. Another 

possibility, that is undoubtedly gaining increasing attention, is time-lagged independent 

component analysis (TICA).42,47,48 The underlying concepts are similar to those of a PCA, 
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however here the focus is on the timescales. Instead of weighting vectors according to the 

variance, we prioritize those vectors that incorporate the slowest motions. To give an 

example, let us consider the MD simulation of a globular protein comprising structured 

domains and loops. Now, let us assume that no significant structural rearrangement took 

place, while the most significant fluctuations are observed in non-interesting loop regions. 

If we performed PCA on all of the a-carbon coordinates, the first components would likely 

comprise loop motions as they were the widest in terms of displacement. Conversely, if we 

performed a TICA, we would not likely see loop motions as the relevant component, 

because they are typically fast motions and thus less relevant in term of timescales. In the 

first place, our choice of variables could result in an extremely large number of dimension, 

thus we might just want to contain it. Differently, we could consider performing TICA in a 

pure kinetic perspective. Since its purpose is focusing on the slowest motions, our data 

would somehow result cleaned of the least relevant information in this sense. However, it 

is worth noticing that interpreting outcomes from dimension reduction techniques is not 

straightforward, and moving our distance metric towards a component space might result 

in a less intuitive microstate definition. 

 

2.2.2.1.2 Counting the transitions 

Through state decomposition we discretize a configurational space, thus allowing for a 

computationally manageable description of a molecular system’s dynamics. Essentially, 

we identify clusters that correspond to possible states, referred to as microstates in this 

framework. In a MD trajectory, each frame corresponds to a specific configuration of the 

system, which can be assigned to a certain microstate among those identified. By carrying 

out this assignment, we can convert our conventional trajectory, that is a series of 

structures over time, into a discrete trajectory, that is a series of microstates visited over 

time. In a more general view, we are doing nothing more than assigning data points to 

previously defined clusters. With these discrete trajectories in our hands,37 we can follow 

the journeys taken by a molecular system around the microstate space. In particular, we 

can make jumps of fixed size while accompanying the system on these journeys. As each 

of these jumps substantially corresponds to a transition from a certain microstate to a 

different one, we can record the number of transitions observed between each pair of 

microstates and store them in a matrix. The result is a count matrix C. Thus, for each point 

ij of this matrix, Cij is the number of transitions between microstates i and j. Ideally, in the 
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limit of ergodic sampling, each count Cij could be converted in the corresponding transition 

probability Tij by simply maximizing the likelihood of the function: 
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where the summation runs over all of the possible k transitions observed from state i, and t 

is the jump size. With a transition probability matrix in our hands, we would be able to 

determine the slowest motions implied in the dynamics under study, metastable states 

populated by our system, and the most likely pathways leading from a certain microstate to 

another one. However, several issues arise in real life, such as finite sampling for the 

microstates, and imperfections in state decomposition, the so-called discretization error. As 

a result, obtaining transition probability matrices translates into more complicated routines 

that we will not go through in the current illustration.  

Focusing back on the transition counts, a criterion for jumping over the discrete 

trajectories needs to be considered. As already mentioned, the advancement has a fixed 

size t, so we could just keep moving forward for n steps until we reach the end of the 

considered discrete trajectory. In this more intuitive scheme, shown in Figure 3A, we are 

gathering independent counts. This would work in the limit of infinite sampling, or at least 

of sufficient sampling for the slowest relaxation time. Again, this is not the case in real life, 

and it would cause imprecise estimation of transition probability matrices. The reason is 

that a large fraction of the data is neglected as we jump over it, thus less statistics is 

obtained for each point of the count matrix.  

 

 
Figure 3. Schematic representation of the two methods for counting transitions over discrete trajectories. The 

series of numbers represents a sample sequence of microstates, that is a sample, short discrete trajectory. 
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Thus, in the vast majority of cases, it is common practice to exploit a sliding window 

scheme, as depicted in Figure 3B. Contrary to the previous strategy, in this case we 

consider all of the available information. However, it has been noted that this has the effect 

of underestimating the model uncertainty, so it needs to be taken into account when 

assessing it.37  

Besides state decomposition, a second critical element when constructing a MSM is 

the size of the jumps. This is called the lag time of the model, and, as already shown, is 

expressed as t. Roughly speaking, it coincides with a multiple of the input trajectory time 

step, intending the frequency with which frames have been saved and not the integration 

time step of the simulation. The lag time somehow defines the highest resolution of the 

model. In other words, we cannot expect to be able to extract information about events 

occurring at timescales smaller than t. The lag time corresponds to the Markov time, 

which is the smallest size used to gather the transition counts that guarantees Markovian 

behavior. The approach that is typically followed to determine such lag time relies on 

monitoring how relaxation time scales, usually referred to as implied time scales, depend 

on it. As Markovian dynamics implies constancy of implied time scales on t, we can assess 

at which value of t the time scales reach a plateau, and then use such value to build the 

model. An example is given in Figure 4. 

 

 
Figure 4. A typical implied timescale (ITS) plot. Relaxation timescales are calculated at increasing lag times. 

The Markov time is the lag time value at which the curves reach a plateau, as they become independent from 

t. Adapted with permission from Ref.39 Copyright 2017 American Chemical Society. 
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Given a transition probability matrix, through diagonalization we obtain the 

corresponding eigenvectors and eigenvalues. While the former describe specific transitions 

of the system, from the latter we can determine the time scales at which these motions 

occur. Such relaxation time scales are computed according to the function: 

 

𝑡w = − l
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  (29) 

 

where li is an eigenvalue of the matrix underlying the MSM. According to this framework, 

calculating the implied time scales requires having at disposal a transition probability 

matrix, and this in turn means that a MSM has been constructed. Therefore, since we 

compute the time scales at increasing t values in order to spot the Markov time, this 

translates essentially to constructing a series of MSMs at different lag times. Finally, once 

the eigenvalue spectrum becomes stable and independent from t, we use that t to build the 

model.  

In conclusion of this general illustration, it is worth noting that another relevant aspect 

when constructing a model is its validation. For what concerns MSMs, a lot of effort is 

currently focused in this direction. Nevertheless, approaches exist already, and have been 

widely used, to test the robustness and thus a significant part of the validation process.39 

Among these, the Chapman-Kolmogorov test is undoubtedly the most popular.38 For a 

certain transition probability matrix calculated applying a certain lag time t, we evaluate 

the probability of remaining within a certain microstate A at later times kt, where k defines 

multiple integers of t. The same procedure is performed on the original data set, that is the 

discrete trajectories, and the results are compared. This is expressed by the following 

function: 

 

𝑝¯°(𝐴, 𝐴; 𝑘𝜏) = 𝑝¯P¯(𝐴, 𝐴; 𝑘𝜏)  (30) 

 

and, in practice, we assess how well the equation holds. This should be performed for the 

achievable kt values, according to the original dataset. With this test, we estimate the self-

consistency of the constructed model, as we evaluate how well it is able to reproduce the 

information that has been used to parameterize it. However, the equality is not expected to 

hold exactly, because of statistical uncertainties due to finite sampling for the estimation of 

the transition probability matrix.38 Thus, uncertainties are calculated for the probabilities 
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from the discrete trajectories, that is the initial MD trajectory data. Then, the result is 

positive if equation 30 holds within the uncertainties for the MD data. Typically, the 

procedure is repeated constructing several MSMs at different lag times, and showing that, 

at that the chosen t, a satisfactory result for the test is achieved.  

 

2.2.2.1.3 Coarse graining 

While precious information about both thermodynamic and kinetic properties of a 

molecular system is engraved in a MSM, connecting back with the biology is not an easy 

task. An extremely wide configurational space has been discretized into a finite number of 

microstates. However, since the number of microstates is still very large, interpreting 

transition networks is challenging and typically not intuitive. Therefore, one can coalesce 

microstates into a reduced number of macrostates. This procedure is referred to as coarse 

graining the model. While, after contracting the complex picture into a set of few states, 

the possibility of a reliable, quantitative prediction is likely to be lost, however important 

indications can still be provided to direct new investigations. By coarse graining, we 

identify those transitions that correspond to the slowest timescales. These essentially 

underlie the higher barriers between the relevant metastable states of the molecular system.  

Several techniques have been developed to carry out the coarse graining step. Herein, 

we mention Perron Cluster Cluster Analysis (PCCA)49,50 and the more robust version 

PCCA+.51,52 We remand the reader to the literature for technical insights about these 

methods. Herein, we give some general details about the logic behind. To facilitate the 

illustration, we follow Figure 5. As already said, for a given transition probability matrix, 

that is, for a given MSM, we can calculate eigenvectors and eigenvalues. A sample 

eigenvalue spectrum is shown in Figure 5C. While, as explained, the eigenvalues can be 

converted into timescales, the corresponding eigenvectors represent the transition that is 

occurring at that timescale. In reality, the components of the first eigenvector, 

corresponding to the first, thus largest, eigenvalue, are proportional to the equilibrium 

population of the states and is usually neglected. For the other eigenvectors the conversion 

to timescales is meaningful. In particular, from the second eigenvalue we determine the 

slowest timescale. The corresponding eigenvector describes the transition between the 

metastable states separated by the highest energy barrier. This, in Figure 5A and B, is 

represented by the transition between states B and C. According to the same logic, the third 

eigenvector expresses transitions over the second highest barrier, separating metastable 

states A and B, and so on. 
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Figure 5. Coarse graining into relevant metastable states. A) A potential energy function comprising four 

metastable states, separated by three energy barriers. B) The four dominant eigenvectors calculated from a 

hypothetical transition probability matrix. C) Eigenvalue spectrum (the first fifteen are shown) and the 

corresponding relaxation time scales. Adapted with permission from Ref.39 Copyright 2017 American 

Chemical Society. 
 

As shown in the example, given three energy barriers, we would observe three slower 

timescales. This would be highlighted by the presence of a gap between the fourth and fifth 

values in the eigenvalue spectrum. This general framework is exploited by PCCA and 

several other methods to perform coarse graining. In this specific example, where three 

clear barriers are present, microstates would be grouped into four metastable states. 

However, in most cases the separation of timescales is not as clear as in the shown 

example. In such circumstances, the number of microstates can be interpreted as an 

adjustable parameter that a user can eventually comment according to the corresponding 

outcoming picture.37  

 

2.2.2.2 Bin-based kinetic model 

When it comes to sampling wide and complex configurational spaces, enhanced 

sampling methods are typically preferred over plain MD. Besides being hazardous, as 

access to all of the relevant regions is not guaranteed a priori, plain MD by definition calls 

for more onerous computational resources. However, when exploiting enhanced sampling 
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techniques, we loose completely the information about the time, and we can only discuss 

in terms of energetics. Given that a reconstructed FES is sufficiently accurate, and that the 

choice of CVs allows for an unambiguous description of the configurational space, we 

would be able to identify univocal metastable states and quantify the height of the barriers 

separating them. With this information, one should be able, at least in theory and through 

approximations for the pre-exponential factor, to compute kinetic rates. However, this 

might not be the case and other strategies need to be envisaged to extract kinetic 

information from biased sampling. A possible way is the construction of a kinetic model 

based on the free energy. Herein, we provide a general description of relevant theoretical 

features underlying a kinetic model based on a binning procedure of the FES.26  

 

2.2.2.2.1 Kinetic Monte Carlo 

As for a certain molecular system we can expect different states, a rate constant kij can 

be considered that describes, per time unit, the probability of escaping from a certain state i 

in favor of a certain state j. Transitions between different, relevant states are infrequent if 

compared to local fluctuations within a specific state. In other words, once it enters state i, 

the system is going to spend more time fluctuating locally before being able to leave it and 

reach another state j. Thus, transition probabilities from i to j are independent from 

previously visited sates. We say that the system is memoryless in this case, and the 

corresponding walk in the state space is called Markovian. In this picture, leaving i is a 

first-order process and: 

 

𝑝w�(𝑡) = 𝑘w�𝑒%5|�Z (31) 

 

represents the probability distribution function of the first escape time towards state j. 

For each state i of the system, a set of possible states j is accessible, and to each one of 

these different pathways is associated a specific kinetic rate kij. If we knew the values of 

each kij, we would be able to correctly describe the dynamics in the state space by means of 

a stochastic algorithm. One engine that is available to propagate the system along this 

Markov walk is Kinetic Monte Carlo (KMC).53  

We describe herein the simplest implementation for illustrative purposes. From the 

exponential first-escape time distribution, we can draw an exponentially distributed 

random number: 
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𝑡²³R´ = − T
5
ln 𝑟 (32) 

 

where k is a rate constant associated to a certain path and r is random number comprised 

between 0 and 1. Basing on this, we can produce a trajectory by generating, at each step, 

tdraw for each kij associated to the accessible pathways. The lowest time tjmin towards state j 

is going to be chosen and the overall clock of the simulation updated by adding tjmin. The 

procedure is then repeated from the state j. 

 

2.2.2.2.2 Bin-based procedure 

With enhanced sampling methods, the bias has the effect of pushing the system 

towards relevant regions of the CV space. As such, transitions take place at simulation 

times that do not reflect the real dynamics. Therefore, transition probabilities calculated 

from the transitions observed in the biased trajectories cannot be used to determine real 

rates. However, since by means of enhanced sampling techniques we can reconstruct a 

FES, to which kinetic properties are intimately related, it is possible to derive free energy 

based models describing the kinetics of the system. Herein, we discuss a kinetic model 

based on a binning procedure of the FES.26  

For a given FES described by N CVs, we can define small volumes in this CV space 

representing a certain state of the system, characterized by a specific value of the free 

energy. To this end, a binning procedure can be applied. The values spanned by each CV 

can be discretized in equal increments, each one of which defines one of the N sides 

delineating a small volume. When executing this procedure, both large and small bin sizes 

are not advisable. Since transition probabilities between bins are evaluated in order to 

construct the model, collecting sufficient statistics for each bin becomes more challenging 

as we reduce the size, and thus increase the number, of bins. As for large size, and thus low 

number, of bins, this brings to a poor description of the underlying FES, loosing resolution 

of the minima identified. 

In this bin-based kinetic model, the transitions between pair of bins a and b are 

regulated by the following definition of rate: 

 

𝑘¶· = 𝑘¶·k 𝑒%d¸¹% º̧f g56)⁄   (33) 
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where Fa and Fb are free energy associated to bins a and b, T is the temperature of 

interest, and k0 is the rate corresponding to simple diffusion on a flat free energy surface, 

considering k0 equal for transitions from a to b and from b to a. In this formulation, the 

probability of visiting bin a is proportional to the negative exponential of Fa, thus visiting 

lower energy states is more likely. The rates k0 depend on the diffusion properties of the 

system in the reaction coordinate, that is CV, space and on the sides of the bins. In the 

simplest, one dimensional example: 

 

𝑘(w)(w±T)
k = °

²¼X
 (34) 

 

where k0 between neighboring bins i and i±1 is calculated from the diffusion 

coefficient D and the side ds of the bin in the single reaction coordinate space. In d 

dimensions, D becomes a matrix that stores the different values of the diffusion coefficient 

for dynamics in all of the possible direction of the d dimensional space. As a result, for 

each possible direction in bin space, k0 is estimated from the respective bin sizes and 

elements of the diffusion matrix.  

In order to determine the diffusion matrix, one performs several plain MD runs started 

at different points of the CV space. If relevant metastable states are known, the accuracy of 

the procedure can be improved by starting the simulations from the regions they belong to. 

As a good practice, representative structures can be extracted from the minima identified in 

the FES. The trajectories are then projected in the bin space by applying a certain lag time 

t. Basing on the associated CV value, each frame of the trajectory is assigned to a specific 

bin. Thus, a trajectory is converted from a series of structures into a series of bins. We then 

make jumps of integer size t, and record the transitions observed accordingly. This 

information becomes the ground on which determining the diffusion matrix. Starting from 

the bins visited in the MD runs and using the same t, several KMC trajectories are started 

to visit the bin space with a k0 based on an initial guess value for D. Through the KMC 

runs, the transition probabilities between pair of bins at lag time t are computed as: 

 

𝑝°(𝛾|𝛽) =
�d�(l)|·(k)f

�(·)
 (35) 
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where n(b) is the number of times state b was visited, and, considering to be in that state at 

time 0, n(g(Dt)|b(0)) counts the number of transitions to state g at time t during the KMC 

simulation. Finally, taking advantage of these transition probabilities, we can express the 

likelihood of observing the same sequence of bins obtained from the MD trajectories as: 

 

𝐿(𝐷) = 𝑙𝑜𝑔∏ 𝑝°d𝛼(𝑡 + 𝜏)|𝛼(𝑡)fZ  (36) 

 

By maximizing equation 36 as a function of D, we eventually determine the diffusion 

matrix for our kinetic model. Another aspect to consider is the dependence of D on the lag 

time. As a typical behavior, as t increases, D increases consequently until it converges to 

defined values. At that point, the dynamics in the bin space is approximately Markovian. 

This means that transition between states are memoryless, they only depend on the current 

states and not on previously visited ones. Under such circumstances, the constructed 

kinetic model returns a good approximation of the dynamics of the system. The t from 

which the Markovian behavior is observed is called Markov time. This corresponds to the 

highest resolution of the kinetic model. Thus, transitions occurring at timescales lower than 

the Markov time cannot be reproduced. In conclusion, one maximizes the likelihood as a 

function of D for different values of t, until the elements of the diffusion matrix converge 

to stable values.  

Once D is determined, we have all of the ingredients composing the kinetic model. We 

can thus perform KMC trajectories in the bin space. These are started from each bin, and 

those on which most of the trajectories end are used to define the main kinetic basins. 

Finally, starting KMC runs from each kinetic basin, one can record the average time 

required to visit each one of the other basins and calculate the corresponding rates. 

 

2.2.2.3 Relative residence time 

The residence time of a certain ligand towards a specific biomolecular target estimates 

for how long that ligand is able to occupy the binding site of that target. Such quantity, 

determined as the inverse of the unbinding rate constant, has recently gained much interest 

in drug discovery.5,6 A longer residence time for a certain drug translates to extended 

modulation of the activity of the target biomolecule. As such, the resulting 

pharmacological effect is prolonged. In the vast majority of cases, this is a desired 

scenario. Therefore, being able to assess kinetic profiles for drug-like molecules during the 
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optimization phase of a drug discovery campaign would be extremely desired. In 

particular, the possibility of predicting efficiently such properties for a series of 

compounds by means of computational methods would provide a significant improvement 

to the optimization pipeline. Although significant efforts are currently being focused on 

determination of on- and off-rates through computer simulation, assessing absolute values 

of these kinetic parameters still represents a major challenge. Considerable efforts are 

required in terms of both computational resources and user intervention for system-

dependent setup. Thus, such framework does not provide appealing strategies that could be 

applied to several protein-ligand systems in a routinely manner. 

In a typical optimization scenario, several analogues of a hit compound are considered 

in order to identify chemical substituents that result in an increased activity. Similarly, 

being able to prioritize chemicals with improved kinetic profiles would be of striking 

support. Recently, a methodology based on scaled MD19,20 has been introduced that allows 

ranking a series of similar ligands according to their computational unbinding times.21 

Despites these are not the real residence times, they can still be employed in a relative 

manner to prioritize promising ligands within a series of congeneric compounds. Thus, 

rather than aiming at an accurate determination of the absolute values of unbinding rates, 

the goal is a ranking of the ligands, so as to identify those characterized by a prolonged 

occupation of the binding site. Relying on scaled MD, multiple unbinding events for each 

ligand can be sampled in reasonable times, making the procedure more suitable and 

appealing for real life applications. In particular, given a series of analogue compounds, 

several unbinding simulations can be carried out for each ligand so as to determine average 

computational unbinding times. After a rescaling procedure considering the l used in the 

scaled MD simulations, the correlation with experimental off-rates can be evaluated by 

fitting to a simple linear function.  

According to Eyring’s equation (eq. 6) and to the subsequent developments leading to 

the general formulation in which the transmission coefficient k was introduced (eq. 11), we 

can express the unbinding rate constant for a ligand from the binding site of a specific 

molecular target as:  

 

𝑘ÅÆÆ = 𝜅 56)
G
𝑒%∆IÇÈÈ

‡ ()⁄  (37) 

 



 40 

where ∆𝐺ÅÆÆ
‡  is the free energy difference between the ligand-target complex and the 

transition state leading to the unbound state. By incorporating all of the non-exponential 

contributions in a general pre-exponential factor A, similarly to Arrhenius’ equation, we 

can simplify the notation of equation 37 to: 

 

𝑘ÅÆÆ = 𝐴𝑒%∆IÇÈÈ
‡ ()⁄  (38) 

 

For two ligands binding to a certain biomolecular target under similar conditions, we can 

assume a similar A. Therefore, we can express the ratio the ratio between their koff as:  

 

5ÇÈÈ,�
5ÇÈÈ,X

= :�x
y∆qÇÈÈ,�

‡ ÉÊi
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y∆qÇÈÈ,X

‡ ÉÊi
= 𝑒%∆∆IÇÈÈ,�,X

‡ ()⁄  (39) 

 

According to the previously introduced equation 7, we can make equation 38 explicit in 

terms of enthalpic and entropic contributions: 

 

𝑘ÅÆÆ = 𝐴𝑒%∆IÇÈÈ
‡ ()⁄ = 𝐴𝑒%�∆OÇÈÈ

‡ %)∆PÇÈÈ
‡ � ()⁄  (40) 

 

Therefore, by applying the scaled MD l factor to equation 38 and considering the explicit 

formulation introduced in the above expression, we can write:  

 

𝑘ÅÆÆ,� = 𝐴𝑒%��∆OÇÈÈ
‡ %)∆PÇÈÈ

‡ (�)� ()i  (41) 

 

where ∆𝑆ÅÆÆ
‡ (𝜆) indicates the unknown effect of l on the entropic term. Assuming equal 

entropic contributions for the two considered ligands, since we manage analogues from the 

same scaffold that are unbinding from the same protein under the same conditions, we can 

cancel out the entropic term contained in the ratio introduced by equation 39. Under this 

assumption, and considering the form of equation 39, l can be collected and the equation 

expressed as: 

 

5ÇÈÈ,z,�
5ÇÈÈ,z,X

= 𝑒%��∆∆IÇÈÈ,�,X
‡ ()⁄ � = 𝑒%�∆∆IÇÈÈ,�,X

‡ ()⁄ �
z

= �5ÇÈÈ,�
5ÇÈÈ,X

�
�
 (42) 
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Being the residence time tr the inverse of the off-rate, the above equivalence can be 

rewritten as: 

 

ZÌ,z,X
ZÌ,z,�

= �5ÇÈÈ,�
5ÇÈÈ,X

�
�
 (43) 

 

This relationship between unscaled and scaled parameters can be used to assess the 

correlation between real, experimental values and those computed at a certain l. In this 

way, the ability of the method to correctly rank ligands in terms of the unbinding kinetics 

profile, as predicted by means of scaled MD simulations, can be evaluated.  
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3. APPLICATIONS 
 

3.1 TEST CASE 1: NTAIL 

 

3.1.1 Introduction 
 
In the last decade, it has become clear that a significant proportion of eukaryotic 

proteins are unstructured under physiological conditions.54,55 The lack of a stable 

secondary and tertiary structure is the peculiar feature of this class, hence the term 

Intrinsically Disordered Proteins (IDPs). This intrinsic disorder may involve the overall 

amino acid sequence or just be limited to specific domains. Notably, it is responsible for 

the highly dynamic nature of these proteins. Indeed, rather than possessing a well-defined, 

most probable state at equilibrium, IDPs typically exist as a dynamic conformational 

ensemble of states, among which they can easily interconvert. This feature accounts for the 

peculiar ability of IDPs to interact with multiple targets and thus to take on many 

physiological roles related to, for example, signaling or regulation.56,57 Likewise, 

dysfunctions of these proteins can lead to several pathological conditions, such as 

neurodegenerative disorders and cancer.58,59 To gain a comprehensive picture of their 

functionality and implication in diseases, it is thus essential to produce a detailed 

characterization of the equilibrium properties of free IDPs in solution, in terms of both 

thermodynamics and kinetics.  

Exploration of this part of the proteome is still in its infancy. Effective experimental 

tools for studying IDPs include NMR spectroscopy,60 small angle X-ray scattering 

(SAXS),61 and fluorescence Förster resonance energy transfer (FRET),62 which are well- 

suited to dealing with the structural dynamics of proteins. However, characterizing the 

equilibrium properties of IDPs remains challenging due to their highly dynamic nature, as 

well as the heterogeneity of the above techniques in terms of space and time resolution. 

From a structural standpoint, NMR spectroscopy has been particularly successful in 

characterizing the ensemble of conformations that collectively describe these peptides. A 

two-step procedure called “sample and select” (SAS) is typically the most common 

process for identifying a representative ensemble of structures sampled at equilibrium. 

First, a pool of configurations is generated, usually by exploiting conformer libraries. 
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Then, through an iterative process, the ensemble is filtered by satisfying the best agreement 

between experimental and back-calculated NMR observables, such as scalar couplings (J), 

chemical shifts (CSs), and residual dipolar couplings (RDCs). Notwithstanding the power 

and elegance of this approach, SAS does not provide any kinetic information on the 

implied timescales regulating the interconversion between conformations. But this 

information is instrumental to understand the folding of IDPs and the recognition 

mechanisms with molecular partners. The only source of dynamic and time-resolved 

information by NMR is the study of spin dynamics: a method for IDPs was recently 

proposed,63 based on multiple temperature measurements, to discriminate between motions 

on different timescales. However, even within the framework of this new family of 

experimental techniques, the nature of 15N spin relaxation only allows the identification of 

motions in the timescale of tens of nanoseconds, i.e. within times that are shorter than the 

ones governing the interconversion between different local structures present along a 

disordered chain (e.g. considering the folding of a helix occurring within the µs timescale). 

In this context, all-atom MD is emerging as a key tool,24,64–67 as it provides an 

ensemble of conformations in equilibrium conditions. Additionally, MD can describe the 

kinetics of the observed events,4 allowing a comprehensive picture of IDPs at a fully 

atomistic level. However, when applying MD to study slow processes such as folding and 

unfolding, extensive simulations (in the microsecond-to-millisecond timescale) are 

typically required, even for relatively short amino acid sequences.68 MD-based enhanced 

sampling methods are particularly promising in this regard, as they allow for an efficient 

exploration of the configurational space, while preserving the Boltzmann distribution of 

states in the given statistical ensemble.16 In these methods, the sampling is accelerated by 

either exploiting high temperature replicas, as in replica exchange (or Parallel Tempering 

MD, PT-MD), or through bias potentials or forces acting on selected degrees of freedom, 

which are known to describe the event one wishes to accelerate (reaction coordinates or 

collective variables, CVs). MetaD25 is one such CV-based methods that can ultimately be 

combined with PT-MD69 to further improve sampling effectiveness (PTMetaD).70 The 

ever-increasing number of computational studies focusing on IDPs71,72 demonstrates the 

strong need for robust techniques to simulate these systems. Such techniques range from 

force field optimization to the use of implicit solvent models. Interestingly, NMR can be 

directly combined with MD, leading to ensemble-restrained MD simulations.73 Within 

these approaches, chemical shifts are implemented as additional terms of the molecular 

mechanics force field.74 It has been shown that using replica-averaged restraints improves 
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the description of the protein dynamics around the native structure.75 Conversely, the so-

called NMR-guided MetaD incorporates experimental information in the form of a 

purposely designed CV. It has been successfully used to characterize the complex free-

energy landscape of the Aβ1-40 peptide.76  

The C-terminal domain (NTAIL) of the nucleoprotein of the Sendai virus, a member of 

the Paramyxoviridae family, is intrinsically disordered.77 Experimental studies on NTAIL 

and similar peptides from the same family have revealed a high helical propensity in the 

central region of the sequence, giving rise to differently folded states that are accessible to 

this class of domains (Figure 6).78  

 

 
Figure 6. NTAIL proposed conformational equilibrium in solution. The central region of the sequence (top, 

residues 476-492) encodes for differently folded states (bottom) that can be visited by the peptide. The three 

arginines (R482, R486, R490, in ice blue in the top sequence), through which the interaction with the 

molecular target PX is established, are highlighted as ice blue surface in the structures.  

 
Herein, we investigate the ability of state-of-the-art computational methods to tackle 

both the thermodynamic and kinetic aspects of IDPs. In particular, we first used the 

enhanced sampling method PTMetaD in the WTE (PTMetaD-WTE, for clarity hereafter in 

this chapter simply referred to as MetaD)35,36 to explore the conformational space of NTAIL 

and to characterize its free-energy landscape without any bias towards experimental 

observables. The reliability of calculations was then validated by comparing the back-

calculated CS with previously collected NMR data. Finally, a bin-based kinetic model was 

built to describe the interconversion between states populated by the peptide, and to 
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calculate the corresponding rates. Although there were marginal discrepancies with 

structural observables, our approach succeeded in identifying all of the relevant 

conformational states of NTAIL, and can be useful in characterizing interconversion rates 

that are otherwise elusive to direct experimental investigation. In addition, the rather good 

agreement between theoretical and experimental NMR observables provides, to the best of 

our knowledge, the first quantitative assessment of MetaD to fully explore the FES of a 

disordered polypeptide. 

 

3.1.2 Methods 
 

3.1.2.1 Simulation setup 

The initial system for our simulations was prepared from conformation H1 of the 

peptide (sequence: NDEDVSDIERRIAMRLAERRQEDSAT, top in Figure 6), determined 

via NMR in a previous work. Termini were capped by adding the acetyl (ACE) and N-

methyl amide (NME) groups at the N- and C-terminus respectively. Solvation was 

accomplished by adding 15,622 water molecules in a cubic box having 78 Å edge size. Na+ 

counter ions were subsequently added to neutralize the system. A last generation force-

field was used to treat the peptide. In particular, the Amber ff99SB*-ILDN,79 resulting 

from the original ff99SB80 corrected with the “ILDN” side-chain torsion parameters and 

the helix-coil transition balance optimizations,81 was adopted. While other computationally 

more expensive simulative setups could be envisioned (e.g. Amber ff03w82 combined with 

TIP4P/200583 or Amber ff99SB-ILDN combined with TIP4P-D),84 Amber ff99SB*- ILDN 

was recently used in several studies together with cheap water models, and worked well for 

a large variety of proteins including IDPs.64,79,85–87 Accordingly, the TIP3P88 model was 

applied for the water molecules, and the ions were described as indicated in a recent 

reparameterization carried out by Joung and Cheatham.89  

After an initial minimization consisting of 5,000 steps of steepest descent, the system 

was equilibrated in two stages. First, we performed a 500 ps long simulation at 298 K in 

the NVT ensemble using the velocity-rescaling thermostat,90 with a 0.1 ps time constant 

for coupling. This was followed by 500 ps in the NPT ensemble using the Parrinello-

Rahman barostat,91 with a 2.0 ps time constant for coupling. Long-range electrostatics 

were treated via the particle mesh Ewald method.92 A cut-off of 12 Å was used for short-

ranged non-bonded interactions. All simulations were performed applying a 2 fs time step. 
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For the PT, the 298-400 K temperature range was covered with 8 replicas, 

geometrically distributed34 according to eq. 20, as discussed in the Theory chapter. 

Specifically, the obtained values were: 298.00, 310.80, 324.15, 338.07, 352.60, 367.73, 

383.53, 400.00 K. The system equilibrated at 298 K was heated up to 400 K in 7 

subsequent steps in order to obtain the starting configurations for each replica. All 

simulations were performed with the 4.6.7 version of the GROMACS MD engine,93 

patched with the PLUMED 2.1 software.94  

To run in the WTE, a preliminary 5 ns long PTMetaD run was carried out, using the 

potential energy as the only CV. Gaussians with a height W of 2.5 kj/mol and width σ of 

500 kj/mol were added every 250 steps. A bias factor of 50 was applied to ensure a 

sufficient overlap between the energy distribution of neighbouring replicas, and exchanges 

were attempted every 100 steps. The bias gathered in this preliminary run was then kept 

fixed during the subsequent PTMetaD production run, thus allowing simulating in the 

WTE. The overlap from standard PT is compared to the one achieved through combination 

of PT and WTE (PT-WTE) in Figure 7; to appreciate the improvement obtained, note that 

the same number of replicas was employed in the same temperature range.  

 

 
Figure 7. Energy distribution of replicas at increasing (blue to red) reference temperatures. Standard PT (left 

panel) is compared to PT-WTE (right panel) while employing the same number of replicas. No overlap 

between adjacent replicas was observed in the former case. Thus, a higher number of replicas would be 

required to cover the considered temperature range. The overlap was increased in PT-WTE, allowing the use 

of a reduced number of replicas to cover the same range. 

 

For the production phase, the alpha helical content (αcont)95 and the radius of gyration 

(Rgyr)96 were chosen, respectively defined as: 
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The first CV generates a set of all the possible portions comprising six contiguous 

residues in the amino acid sequence of a peptide. The RMSD (root mean squared 

deviation) between each element of this set and an idealized six residues alpha helix is then 

calculated. These RMSDs are finally summed to estimate the overall alpha helical content 

of a certain conformation of the peptide under study. The second CV is based on the 

distance ri between each point comprised in an ensemble possessing center of mass rCOM. 

As points are more spread in the Cartesian space, Rgyr returns higher values, while it 

returns lower values if they are closer. Herein, the α-carbons in the peptide were 

considered. Thus, lower values of the CV correspond to more compact conformations of 

the peptide, while higher values correspond to more elongated ones. Gaussian with 

nominal height 0.4184 kj/mol and σ of 0.15 for αcont and 0.025 for Rgyr were deposited 

every 500 steps with a bias factor of 15. Exchanges between neighbouring replicas were 

attempted with the same frequency as the preliminary step, resulting in an average 

exchange probability of about 10% in the production phase. Each replica was simulated for 

about 400 ns, resulting in a total simulation time of about 3.2 µs. 

 

3.1.2.2 NMR data prediction 

As reported in the past in a work published by some of the authors of the present 

publication,97,98 experimental chemical shifts (δexp) have been extracted and tabulated from 

the original paper and put in comparison with chemical shifts predicted by means of an 

iterative use of an existing software. In this case, chemical shifts (specifically Cα, Cβ, C', 

N, HN, Hα) have been predicted (δpred) using SPARTA+,99 a software based on artificial 

neural networking, applied to single structures extracted from the trajectories of each 

simulation every 0.1 ns, with chemical shifts calculated for each of them and then 

reweighted as follows: 

 

𝛿ÞÙßà = 	∑ 𝑤Y,w£
wjT 𝛿ÞÙßà,w  (46) 
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where wx,i represents the weight w attributed to the single structure i according to method x, 

and δpred,i is the chemical shift predicted for the structure i. The root mean square deviation 

(RMSD) between δpred and δexp for each nucleus has been calculated over all the residues j 

(excluding the N and C termini ones) according to the formula: 

 

RMSD =	 T
£
	3∑ d𝛿ÞÙßà,� − 	𝛿ßãÞ,�fgä

�jg   (47) 

 

A total number of 80055 structures have been extracted from the original trajectory, 

and four different methods have been adopted to assign weights: 

a. a clustering of the structures based on the simple linkage method, i.e. a structure has 

been added to a cluster when its distance to any element of the cluster computed on 

the protein backbone between residues 473 and 496 was less than 1 Å; a total of 4335 

clusters have been obtained, whereas only 594 clusters containing more than 3 

members have been considered for the final chemical shifts and residual dipolar 

couplings calculations and statistics; 

b. a binning of the FES obtained from MetaD simulations has been adopted that led to 

2912 Boltzmann weighted representative structures of NTAIL; 

c. a “sample and select” procedure has been used to select an ensemble of 7858 

structures that optimize the agreement between the predicted and the experimental 

observables, i.e. the set that best minimizes the following RMSD-based figure of 

merit, namely 𝑤RMSD = RMSDuα + RMSDuv + RMSDuβ where RMSDCα, 

RMSDC’, RMSDCβ, are respectively the RMSDs between experimental and 

computed values of Cα, C’ and Cβ chemical shifts, with the last one reduced in weight 

due to its relative insensitivity to secondary structure variations. The limit value of 

wRMSD that led to the ensemble was chosen to be 2.75 ppm. 

d. a sampling method based on the bin-based kinetic model, with a population attributed 

to the NTAIL microstates after numerically solving the equations that describe the 

interconversion between them. 

 

3.1.2.3 Kinetic model setup 

In our binning scheme, we first explored the possibility of exploiting the free energy 

landscape projected onto the 2 CVs used to bias our MetaD simulation. We thus divided 
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the FES obtained into different combinations of N x M grids, where N and M are the 

number of bins along αcont and Rgyr, respectively. However, even using finer grids (e.g. 70 

x 40) this approach resulted in significantly dissimilar conformations being grouped in the 

same microstate. Same αcont values can be shared by conformations in which the helicity is 

positioned in different, diametrically opposite regions along the peptide sequence (see 

sample structures belonging to a same energy minimum in Figure 10 of the following 

Results and discussion section). This observation led us to identify Δα as a promising, 

effective CV able to discriminate the location of the α-helices in the structure: 

 

∆𝛼 = d𝛼ÍÎ¢Ï,T%T� − 𝛼ÍÎ¢Ï,Tå%gæf  (48) 

 

where indices 1-13 and 14-26 refer to the first and second half of NTAIL sequence 

respectively. Positive values of the variable indicate the helicity prevails in the first half of 

the peptide, while negative values in the second one. 

Thus, relying on the reweighting scheme developed in previous studies, we projected 

the FES in the two-dimensional space of the αcont and Δα CVs (Figure 13 in the Results and 

discussion section), and carried out the binning procedure introduced above. We divided 

our FES applying different combinations of N x M. The best compromise between number 

of bins (which influences microstate populations) and conformational consistency within 

the microstates was achieved applying a 40 x 8 grid along the CVs, αcont and Δα 

respectively. 

To determine D in our CV space, we carried out 4 plain MD simulations, 100 ns long 

each. The initial structures were chosen among medoids identified via the cluster analysis, 

and were selected to be as much distant as possible along the αcont CV. For each trajectory, 

we computed D at increasing values of Δt. The diagonal elements of D, named D11 and 

D22 respectively, converged at Δt = 8 ns (Figure 8A). As for the off-diagonal terms, we 

deducted from our calculations that they need to be 2 orders of magnitude lower than the 

diagonal terms. For calculation of the kinetic rates, the average value of D obtained at Δt = 

8 ns in the 4 simulations was applied. We also assessed the dependence of D on trajectory 

length at fixed Δt. One out of the 4 trajectories was extended to 200 ns, and D elements 

computed at increasing trajectory length, namely 25, 50, 100, 150 and 200 ns (Figure 8B). 
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Figure 8. A) Convergence of the diffusion matrix D. The diagonal elements D11 (blue) and D22 (red) are 

reported as a function of the time lag (Dt). Error bars represent the standard deviation obtained after 

averaging over the 4 plain MD trajectories. B) Dependence of diagonal elements D11 (blue) and D22 (red) 

on simulation time. Y axis are shown in log scale in both panels. 

 

While no clear-cut separation among the times scales could be identified in the 

eigenvalue spectrum obtained from the transition matrix computed applying the 

determined D, a noticeable slope change was at approximately the fourth or fifth 

eigenvector. Thus, a series of kinetic models were built including an increasing number of 

states, ranging from 3 to 6. In retrospect, we decided to employ the kinetic model including 

six states, since six was the minimum number required to observe the four experimentally 

derived conformations in individually distinct states. We computed the kinetic rates by 

performing 100 KMC simulations between each pair of the six identified states.  

 

3.1.2.4 Calculation of equilibrium populations 

Having a set of kinetic constants of formation and disruption of all the microstates 

identified by our kinetic model is in principle possible to compute the theoretical 

equilibrium concentration of each species by means of a set of differential equations that 

describe the rate of formation of each species present in the system. Every interconversion 

can be seen as a first order kinetics process that allows a transformation of one microstate 

into all the others and vice versa. Hence, the rate of formation/disappearance of A (as well 

as the one of the other states) can be described by the following differential equation that 

takes into account the coexistence of several interconversion processes: 
²[:]
²Z

= 	 (−𝑘>:[𝐴] +	𝑘:>[𝐵]) +	(−	𝑘:[𝐴] +	𝑘:[𝐶]) + (−	𝑘°:[𝐴] +	𝑘:°[𝐷]) +

(−	𝑘&:[𝐴] +	𝑘:&[𝐸]) + (−	𝑘¸:[𝐴] +	𝑘¸:[𝐹]) = 	−∑ 𝑘w:[𝐴]w + ∑ 𝑘:w[𝑖]w   (49) 
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where [A], [B], [C], [D], [E], [F] indicate the concentration of microstates, kiA (with i = B, 

C, D, E, F) are the rates of interconversion of any state i into A and kAi are the rates of 

interconversion of A into any other state i. In this way, the kinetics of the system can be 

fully described by six differential equations in the same form of equation 49, and they have 

been numerically solved with the help of the program for symbolic calculations SAGE100 

imposing the boundary condition: 

 

[𝐴] + [𝐵] + [𝐶] +	 [𝐷] +	[𝐸] +	[𝐹] = constant  (50) 

 

for respecting the physical condition of the conservation of mass during the 

interconversion time, and approximating the system of differential equations putting to 

zero the kiA and kAi that correspond to interconversion times longer than 300 ns. 

 

3.1.3 Results and discussion 
 
We designed our experimental studies to achieve a thorough understanding of the 

conformational dynamics adopted by free NTAIL in solution. In previous works, plain MD 

has been applied to sample the conformational space of proteins, and average 

spectroscopic observables have been predicted in agreement with experiments, thus 

certifying the reliability of the simulations.98,101 Similar procedures have been presented in 

the context of enhanced sampling and employed to study structured proteins.97,102 

However, to the best of our knowledge, such framework has not been explored for 

structurally heterogeneous systems such as IDPs. Our study on the IDP NTAIL revealed an 

ensemble comprising a random coil (RC) in equilibrium with differently folded states, 

involving residues ranging from 476 to 492.78 In particular, conformation H1, in which 

five consecutive residues from the first half of the peptide form a small helix, has been 

reported as predominant by NMR experiments. We tackled this heterogeneous 

conformational space by exploiting MetaD. Our sampling strategy used two general 

purpose CVs, namely the radius of gyration (Rgyr)96 and the α-helical content (αcont).95 To 

improve the sampling effectiveness along the orthogonal degrees of freedom not explicitly 

included in the CVs, we used eight replicas spanning a temperature range of more than 100 

K, together with enhanced potential energy fluctuations (WTE framework, see Figure 7 in 
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the Methods section). Notably, a similar setup was recently used by Han et al. to study the 

free-energy landscape of the closely related measles virus (MeV) NTAIL.103 Our simulations 

reached a satisfactory convergence of sampling after 2.6 µs (325 ns per replica, Figure 9).  

 

 

 
Figure 9. Convergence of the MetaD simulation. A) Free energy surface as a function of the simulation time. 

B) Unsigned free energy difference between the deepest minima, namely the ones located at αcont = 1.5 and 

9.5, as a function of the simulation time. 
 

The result was a relatively flat and rough free-energy surface (FES), displaying 

multiple shallow energy minima (Figure 10). In the obtained energy landscape, the basins 

are mostly distributed along the αcont CV, indicating the presence of a plethora of 

conformations possessing different and increasing secondary α-helix content. Structural 

characterization of these minima, achieved with a k-medoids clustering algorithm,104 

revealed differently folded states represented by α-helices mostly distributed in the 

peptide’s central region. Notably, our simulation strategy reproduced all the relevant 

conformations previously identified by NMR experiments. In the free-energy landscape 

obtained, the relevant minima, mostly iso-energetic, are found at increasing amounts of 

helical content (αcont ≈ 1, 3, 6, and 9) and reasonably small values of radius of gyration, 

always lower than 14 Å. The random-coil conformations of NTAIL were characterized by 

the lowest αcont values (αcont ≈ 1 and Rgyr < 12 Å). 
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Figure 10. Free-energy surface of NTAIL obtained from the PTMetaD-WTE simulations. Contour lines are 

reported with intervals of 2 kcal/mol. Representative structures from each local minimum are also shown. 
 

Notably, in this region of the CV space, we could also identify β-hairpin motifs. This 

reflects the ability of our MetaD setup to efficiently identify conformations bearing 

structural elements that were not explicitly accounted for by the CVs used. Interestingly, 

the most extended helix identified by NMR measurements, spanning 15 residues 

(conformation H3, 478-492), was sampled at approximately αcont ≈ 9 and Rgyr ≈ 12 Å 

together with differently folded intermediates. Conformation H2, comprising 13 residues 

(476-488), was found at αcont ≈ 6 and Rgyr ≈ 12 Å, in a minimum separated from the 

previous one, and from the one including the least folded conformation H1 (αcont ≈ 3 and 

Rgyr ≈ 8 Å). Moreover, a fully folded state (αcont > 18) was observed in a region of higher 

free energy (ΔF > 6 kcal mol-1). 

The conformational ensemble reconstructed by MetaD simulations was validated by 

assessing its ability to reproduce observed NMR chemical shifts. As demonstrated in 

previous works, single structures cannot provide accurate atomic level reproductions of 

polypeptide chain experimental data. However, including dynamic information 

dramatically improves these reproductions, encoding into single experimental observables 

the heterogeneity of structures due to thermal motions. 
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Applying the same type of approach previously adopted for structured proteins, we 

calculated the expected 13C, 15N, and 1H backbone chemical shifts for each structure of the 

ensemble using the SPARTA+ program.99 For all nuclei, we evaluated the RMSD between 

the chemical shifts estimated from the models and the experimental ones. From our 

calculations, it is clear that MetaD can reproduce experimental data rather well (Table 1), 

i.e. with an RMSD comparable with (or even lower than) those that can be calculated for 

structured proteins.97,98,101 This represents a clear and quantitative indication of the ability 

of MetaD simulations to provide an efficient and reliable sampling of the FES and of the 

conformational space of IDPs. To the best of our knowledge, this is the first MetaD-based 

study of an IDP that offers such a quantitative evaluation of the atomic-level reliability of 

the conformational sampling via a very simple and intuitive metrics. 

Two different schemes of population weighting were adopted. One was based on the 

reconstruction of the statistical ensembles following the Boltzmann equilibrium. The other 

was based on geometrical clustering and discarding scarcely populated ensembles. The 

former is derived from the FES binning and the latter from the structural similarity 

between NTAIL conformers. 

 

Sampling Ca Cb C’ HN N 

Clustering 0.887 0.451 0.752 0.213 1.863 

Boltzmann 0.949 0.472 0.902 0.185 1.807 

Kinetic reweighting 0.944 0.442 0.947 0.166 1.686 

Sample and select 0.426 0.484 0.328 0.172 1.578 

 

Table 1. Average Root Mean Square Deviations (RMSDs, in ppm) between Calculated (Using SPARTA+) 

and Experimental Chemical Shifts. Four different methods were compared, as indicated in NMR data 

prediction of the Methods section. 
 

In both cases, there was very good reproduction of the experimental data, with 

deviations generally being very close to each other. This is a reflection of the small free-

energy differences among the most relevant conformations (Figure 10). It suggests that the 

energetic convergence of the simulation (Figure 9) corresponds to an excellent sampling in 

terms of molecular geometry too. Interestingly, for the most structurally informative nuclei 

Cα, Cβ and C', the geometrical clustering provided a better agreement (in terms of RMSD, 
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see Table 1) than the FES binning. This can be explained in terms of suboptimal force field 

performance. Moreover, the great FES roughness, typical for IDPs,105,106 can partially 

influence the accuracy of any binning/clustering procedure used for weighting the 

populations, hence randomly biasing the final result to a small extent. Furthermore, a 

sample-and- select procedure applied to the whole trajectory indicates that it contains the 

core of the chemical information encoded by NMR spectra. This indicates that MetaD can 

be efficiently used as a source of structural information in an SAS procedure stemming 

from the protein FES. Notably, the ability of the SAS based procedure to reproduce 

experimental data supports the use of MetaD to efficiently explore at least the full 

experimentally accessible conformational space of IDPs. 

The absolute chemical shifts calculated according to the four different methods 

mentioned above are compare with the experimental counterparts in Figure 11. As 

expected, good correlations for Cα and Cβ atoms could be obtained, while a slightly noisy 

pattern was found for the carbonyls.  

However, the most relevant probes for capturing details about the structure and 

dynamics along the sequence are the secondary structure chemical shifts (ss in the present 

text, i.e. the difference between the computed or measured δ and its value in the random 

coil). 

 

 
Figure 11. Absolute Chemical shifts for the Ca (left panel), C’ (central panel) and Cb (right panel) atoms of 

NTAIL. Results from the calculations on the clustered trajectory (red, circles), the Boltzmann weighted 

trajectory (blue, diamonds), the kinetic ensembles (green, triangles) and the conformational selection 

procedure (maroon, triangles) are compared to the experimental values (black, squares). 
 

In our calculations (Figure 12), ssCα and ssC' exhibit positive values, indicating the 

formation of alpha helical structures throughout the chain, in agreement with the average 

slightly negative value of ssCβ. Notably, all the above-mentioned secondary shifts exhibit a 

significant deviation from the experimental data around residue Alanine 484, 

corresponding to the C terminus of helix H1 (479- 484). Several almost fully helical 



 56 

structures displaying a tilt centred on residues 484-486 are present in the minimum energy 

region (see sample structures reported in Figure 10). This is compatible with the 

discrepancy between the simulated and experimental data. This tilt can be explained by the 

presence of a small three-residue hydrophobic cluster (I483, A484, and M485), with side 

chains that tend to stay closer in space in order to exclude the solvent, consequently 

inducing a higher mobility in the two branches of the chain. Most likely, more demanding 

simulative setup are required to reduce these discrepancies.107  

 

 
Figure 12. Secondary chemical shifts (difference with respect to the corresponding random coil values) for 

the Cα, Cβ, and C′ atoms. Boltzmann weighted (blue) and cluster weighted (red) values, calculated on the 

structures obtained from the MetaD simulations, are compared to the the corresponding experimental data 

(black). For clarity, the NTAIL sequence is also shown above the top panel, along with the a-helical regions 

in states H1, H2 and H3.  
 

While previous experiments succeeded in providing structural information, little is 

known about the dynamics underlying the interconversion between accessible states, which 

is still a major challenge for biophysics. We used the statistics collected in our biased 
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simulations to construct a discrete- states kinetic model of the NTAIL conformational 

ensemble in solution, following the approach in Ref.26 The essential requirements for 

building the kinetic model are a FES and a matrix of diffusion coefficients in a CV-space 

that is not necessarily the same as that used during simulations. We obtained the former 

applying a reweighting scheme as explained in the Kinetic model setup subsection of the 

Methods section, obtaining the FES shown in Figure 13. 

 

 
Figure 13. We employed all of the structures obtained from the MetaD simulation to reweight the FES in the 

two-dimensional space described by the αcont and Δα CVs. To build the kinetic model, a binning procedure 

applying a 40 x 8 grid along the two CVs (αcont and Δα, respectively) was carried out. 

 

To determine the latter, we maximized the likelihood that a given set of plain MD 

trajectories could be reproduced by the kinetic model, whose transition rate matrix is a 

function of the diffusion coefficient itself. The model allowed us to identify the kinetically 

representative conformations of NTAIL and the corresponding rates (kex) between each pair 

of states. MFPTs are defined as the reciprocal of kex. Our kinetic model identified a total of 

six distinct states (states A to F in Figure 14). 

Notably, all the relevant conformations previously identified in experiments78 were 

also identified as major states in dynamic equilibrium in our model. In detail, the RC, H1, 

H2, and H3 conformations corresponded to states A, B, C, and D, respectively, while states 

E and F represented two additional conformations with a significantly high helical 

propensity. The numerical solution of the simplified system, as indicated in the 

Calculation of equilibrium populations subsection of the Methods section of this chapter, 

led to the following populations of the state in the stationary regime: PA = 30.5%, PB = 
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41.4%, PC =19.9%, PD =1.7%, PE =2.4%, PF =4.1%. A fairly good agreement could be 

observed between the obtained values for states A, B, C and D and the corresponding 

values for conformations RC, H1, H2 and H3 from the proposed conformational 

equilibrium in solution for NTAIL.  

 

 
Figure 14. Interconversion between the kinetically representative conformations of NTAIL. The areas of the 

discs are proportional to the equilibrium populations of the states, while the widths of the arrows are 

proportional to the corresponding MFPT. MFPTs (in ns) are indicated on the arrow ends, close to the 

destination state. 
 

Remarkably, we computed kinetic rates that fall above, and are thus in agreement 

with, the regime of fast exchange (kex > 105 s-1) indicated by previous works for the 

interconversion among equilibrium conformations for NTAIL in solution.13 A closer look at 

the kinetic model reported in Figure 14 allows two sub-ensembles of conformations to be 

identified, reflecting different interconversion regimes and thus distinct thermodynamic 

stabilities. The first group, characterized by the fastest transitions, with MFPT values 
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below 200 ns, is represented by states A, B, and C, corresponding to the mostly unfolded 

RC, H1, and H2 conformations, respectively. Conversely, interconversions between the 

remaining states (D, E, and F), possessing a higher alpha helical content, are significantly 

slower, requiring at least 280 ns (D to F transition) to take place. Going from the unfolded 

to the folded sub-ensemble through direct transitions is also much slower than the reverse. 

This is reflected by the consistently higher thermodynamic stability of states A, B, and C 

compared to states D, E, and F. Indeed, the slowest direct unfolding transition (E to A) is 

much faster than the fastest direct folding transition (C to F), with MFPTs of 172 and 303 

ns, respectively. The binding of NTAIL to its molecular target PX, the C-terminal domain of 

the viral phosphoprotein, is accomplished through electrostatically driven interactions.108 

The binding site is a negatively charged cleft on the surface of PX, with which NTAIL 

interacts, adopting conformation H3. In this state, three arginine residues (R482, R486, 

R490, see Figure 6), located at the centre of the helical motif, are positioned on the same 

side of the helix, forming a positively charged counterpart of the PX binding site. It has 

been proposed that achieving the bound state involves a two-step process.13 An encounter 

complex is first formed between PX and NTAIL in the H2 conformation. This subsequently 

evolves into the native bound state by establishing specific electrostatic interactions. This 

framework suggests a coupled folding and binding process, arising from a sequential 

cooperation of the conformational selection and induced fit recognition mechanisms, as 

already observed in previous works on IDPs.109  

In our model and in agreement with previous studies,78 despites being favoured upon 

binding to PX,13 state D (corresponding to conformation H3) is also shown to be accessible 

in the absence of the molecular target. In other words, even though it is intrinsically 

disordered, the NTAIL sequence encodes for the structural determinants required to adopt 

the bound conformation. Moreover, among the unfolded sub-ensembles, state C 

(corresponding to conformation H2) can be easily accessed through both the A and B 

states, which are in rapid dynamic equilibrium. Remarkably, reaching C from state A is 

only slightly more favourable than from state B. This is interesting because it suggests 

there is no preferential route leading to the partially folded state C adopted in the encounter 

complex. It is accessible from the completely unstructured A without necessarily passing 

through state B. 

3.1.4 Conclusions 
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In the present study, we used atomistic simulations to sample conformational states 

visited at equilibrium by NTAIL, an IDP test case,77 free in solution. To the best of our 

knowledge, this is the first time that computational methods have been used to provide 

both thermodynamic and kinetic atomic-level details of an IDP with a quantitative 

comparison between experimental and spectroscopic data. In particular, we determined the 

free-energy landscape of NTAIL and calculated the kinetic rates for interconversion 

between the main free-energy attractors. Our study demonstrates how, despite the current 

limitations, a fairly good agreement with experimental data can be achieved, provided that 

there is an exhaustive sampling of the conformational space. This is encouraging, as it 

points the way to studies aimed at understanding the interaction with molecular targets, 

and eventually developing effective strategies to drug IDPs.110 In particular, our findings 

suggest that MetaD is a particularly suitable methodology for disordered systems that 

present transient structures, also offering the possibility to explore their FES in a form that 

has a strong correlation with experimental data at atomic level. 

 

3.2 TEST CASE 2: b2-AR 
 

3.2.1 Introduction 
 

A major goal in drug discovery is the identification of small molecule ligands that are 

able to bind and modulate the activity of biomolecules involved in a certain, or sometimes 

multiple, pathological conditions. Binding of small molecule ligands is usually represented 

as a two-state, all-or-none process in which the ligand is either free in the bulk or placed in 

a binding site on the molecular target. Ligand binding affinity and binding rates are 

quantitative parameters that are crucial during the drug discovery and development 

process. These parameters depend on the free energy profile of binding. Affinity is 

typically expressed in term of Kd and depends on the free energy difference between bound 

and unbound states, while kinetic rates, namely kon and koff, depend on the free energy 

difference between these states and the transition states, which are pretty elusive and 

difficult to observe (a schematic representation is given in Figure 15). 
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Figure 15. Schematic representation of a two-state model for the protein (P)-ligand (L) binding process. 

Assessing affinity (in terms of Kd) implies determining the difference in free energy between the bound and 

unbound states (∆Gd), which in turn is independent from the route followed from the former (P + L) to the 

latter (PL) state. Conversely, calculating the on- and off- rates (kon and koff, respectively) requires a detailed 

knowledge about the intermediate states visited along the reaction coordinate (x). 
  

In drug discovery and optimization phases, one wishes to achieve a rational 

optimization of these interesting quantities in order to improve drug binding properties.4,6 

Therefore, an accurate prediction of the free energy profile associated to ligand binding is 

of paramount relevance. However, this is still an ambitious goal for modern drug design. 

Additionally, a more complex picture compared to the two-state mechanism can be also 

envisioned, where a series of intermediate, lower energy states are separated by higher 

energy transition states. Complex reaction pathways are difficult to characterize at such 

level of detail through experiments. Therefore, computer simulations, and MD24 in 

particular, can be extremely helpful in this regard as an all-atom description of complex 

processes, including protein-ligand binding, can be provided. In the limit of an ergodic 

simulation, useful insights about transition and metastable states can be extracted and the 

affinity and rates would be determined with high accuracy.  

An increasing number of studies is demonstrating how simulating spontaneous 

binding/unbinding of small molecules to biomolecular targets via unbiased, plain MD 

simulations is becoming more and more viable,111–114 also for systems of considerable size 

such as GPCRs.111 However, the computational resources required are still impressively 

high, and certainly not accessible to most of the current research groups. Furthermore, in 

this scenario, collective proper statistics of such rare events is prohibitive. Enhanced 

sampling methods have been developed to overcome these limitations.16 MetaD25 is one of 

such techniques, and allows an efficient exploration of a system’s phase space guiding the 
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sampling along reaction coordinates representing slow degrees of freedom, the so-called 

CVs. However, identifying appropriate CVs is not trivial and requires the major efforts 

when using MetaD.31 Moreover, this aspect exacerbates when it comes to protein-ligand 

binding, where many, and potentially system-dependent, degrees of freedom, are involved. 

Thus, the path CVs18 have been specifically devised to manage complex reaction 

pathways. The idea is to guide MetaD sampling along a putative pathway representing the 

progression along the reaction, while exploring adjacent regions of the phase space. While 

multiple pathways can be considered, the one in which the minimum free energy lies can 

be recognized. However, as one might expect, providing the required “guess path” is far 

from trivial, as this implies the availability of some sort of information about the process 

we are aiming at studying.  

Herein, we present our strategy to tackle this problem. First of all, we construct a 

MSM17 from available, large-scale plain MD simulations. The model allows identifying 

relevant intermediate states visited by the ligand along its way to the binding site. 

Subsequently, we exploit such states as a template to construct a putative binding pathway, 

as required by the implementation of the path CVs. Taking advantage of such “guess 

path”, our aim is to reconstruct the free energy surface along the binding process through 

path CVs-based MetaD. This would allow us exploring the possible routes accessible to 

the ligand, determining the minimum free energy pathway, and identifying the 

intermediate metastable and transition states visited. 

We applied our procedure to binding of the ligand Alprenolol to the b2-adrenergic 

receptor (b2-AR) (Figure 16). In a recent study, the D. E. Shaw research group reported 10 

binding events for the ligand Dihydroalprenolol and 2 for the ligand Alprenolol.111 While 

in three out of the ten runs from the first group the ionic concentration of Na+ and Cl- was 

specified in order to neutralize the system, in all of the other runs the necessary amount of 

Cl- ions was added only. Accumulating the 12 runs provided a total simulation time of 

about 63 µs. Interestingly, 11 strikingly similar pathways were observed (see Table 2). 

Moreover, while in all of the simulations the ligand was able to reach the orthosteric 

binding site, in 6 of them only the binding pose reported in the crystal of the protein-ligand 

complex (PDB ID: 3NYA, resolution 3.16 Å) was reproduced (RMSD < 0.8 Å). Given the 

very small difference in chemical substituents (Figure 16, right-hand side), both ligands 

Dihydroalprenolol and Alprenolol showed the same interactions with the molecular target 

in the reported simulations as well as and in experimental studies. Therefore, the runs were 
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grouped and analyzed together in the original paper and the ligand was simply referred to 

as Alprenolol. 

 

 
Figure 16. The b2-adrenergic receptor (b2-AR, left-hand side) and the two analogue inhibitors considered 

for the present work (right-hand side). The transmembrane helices towards the reader (I, II, V-VII) are 

labelled for clarity, as well as the extracellular loops (ECL1-3) between the helices; a schematic 

representation of the positioning inside the cellular membrane is also given. The location of the orthosteric 

site is highlighted by the presence of the ligand, shown in the van der Waals drawing method. 2D structures 

of Dihydroalprenolol and Alprenolol are shown on the right; according to the plain MD simulations and 

previously reported experimental data, no relevant difference in the behaviour of the two small molecules 

was observed. Numbering is shown on heavy atoms to help the reader when specific positions of the 

molecule are mentioned in the text. 
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Run Liganda Conditionb Duration (µs) Binding posec 

1 DA N 11 - 

2 DA N 3 √ 

3 DA N 5 √ 

4 DA N 4 √ 

5 DA N 10 - 

6 DA N 5 √ 

7 DA N 9 - 

8 DA I 5 - 

9 DA I 3 √ 

10 DA I 5 - 

11 A N 3 √ 

12 A N 3 - 

 

Table 2. Summary of the available trajectory set, as provided by the D. E. Shaw Research group. a DA stands 

for Dihydroalprenolol, while A for alprenolol. b N designates those systems that have been neutralized by 

adding only the appropriate number of ions of the opposite sign. I indicates instead that the ionic strength 

was set, thus both positively and negatively charged ions were present in the bulk. c Where a √ sign is 

present, the ligand was able to reach the binding pose reported in the crystallographic structure (PDB ID: 

3NYA) with an RMSD < 0.8 Å. 

 

3.2.2 Methods 
 

We used all of the available simulations reported in Table 2 to build a MSM.111 As 

previously mentioned, in only 6 out of 12 runs the authors were able to reproduce the 

binding pose observed in crystal structure of the complex (PDB ID: 3NYA) with an 

RMSD < 0.8 Å. We refer to these simulations as “productive”. However, in all of the 12 

runs the ligand reached the orthosteric site on the b2-AR. In other words, while in the 

remaining cases Alprenolol was able to access the binding site, it remained stuck in 

alternative poses without reproducing the crystallographic one. These are referred to as 

“non-productive” runs. Therefore, we aggregated both productive and non-productive runs 

to construct the model, as information about access to the orthosteric site is guaranteed in 

both cases. In order to reach the site, which lies buried deep inside the bundle of seven 

transmembrane helices, the ligand needed to squeeze through a narrow passage between 
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ECL2 and and helices 5-7. To approach the passage, the so-called extracellular vestibule is 

first occupied, enclosed by ECL2, ECL3 and helices 5-7. 

All of the simulations were started in the unbound state, with 10 replicas of the ligand 

placed in the bulk. Trajectory frames were saved every 180 ps, and included a significant 

amount of time during which ligands wandered in the solvent without accomplishing 

durable contacts with the solvent-exposed surface of the protein. Therefore, in order to 

reduce the amount of data to process, and considering that our goal was to achieve a 

thorough understanding about the behavior of the ligand from the surface to the orthosteric 

site, we discarded these initial, non-relevant parts. Specifically, for each trajectory, we 

defined contacts between the Alprenolol and residues from the b2-AR when the distance 

between heavy atoms was below 5 Å in at least one frame. We then monitored the distance 

relative to such contacts along the trajectory, and discarded those frames in which the 

minimum among the distances recorded was above a 30 Å value. Applying this procedure, 

we gathered a total number of frames equal to 296659.  

In the upcoming sections, we first go through the steps followed to build the MSM for 

Alprenolol binding to the orthosteric site of the b2-AR. Subsequently, we highlight the 

procedure applied to select relevant states along the binding pathway. In order to carry out 

these steps, the software PyEMMA, version 2.4, was used.115 Finally, we describe how we 

constructed the guess path. 

 

3.2.2.1 Choice of the variables 

As already pointed out in the Theory chapter, the first step when constructing a MSM 

is selecting appropriate variables.37 By using the term appropriate, we refer to variables 

that are able to describe the dynamics of interest, and to recognize different states of the 

system relatively to the process under study. In this specific case, the aim was to monitor 

the advancement of Alprenolol along its route from the surface of the protein towards the 

occupation of the orthosteric site.  

A first obvious choice would be considering the RMSD of the ligand after aligning the 

system on the protein a-carbons. However, distinguishing such a plethora of different 

states taking advantage of a single value can be misleading. In particular, similar values of 

RMSD could gather together extremely different configurations of the protein-ligand 

system. Therefore, after considering such option and confirming the expected behavior, we 
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discarded this choice. Another obvious possibility is the distance between the center of 

mass of the ligand with respect to the one adopted in the crystallographic binding pose. 

However, similar issues as for the RMSD were encountered in this case. Specifically, 

different configurations of the ligand can be expected at same values of distance. We 

iterated over several other options, and tested the outcomes in the ability of clustering to 

group together similar states employing different variables and combination of variables. 

Inspired by a previous work in which the authors tackled similar issues,116 we considered 

the minimum distance between protein and ligand heavy atoms. Another aspect, when 

choosing variables, is the desired trade-off between their number and the ability to be good 

variables. Since clustering is going to be applied, the wider the variable space, the highest 

the computational effort required. Moreover, in our experience, using increasing number of 

variables would not necessarily lead to an improvement in the definition of different states, 

and we related this effect to an increase in the overall noise. Therefore, we reduced the 

picture to considering a-carbons only for the protein, and heavy atoms for the ligand. 

Moreover, since the process under investigation involves directly only a fraction of the 

protein residues, we restricted our selection to those belonging to the bulk-exposed surface, 

to the extracellular vestibule, to the narrow passage leading to the binding pocket, and to 

those making up the orthosteric site. Figure 17 gives a pictorial representation of the 64 

protein residues resulting from this selection. As for the ligand, not all of the heavy atoms 

were considered as well. We reduced the selection to the most significant heavy atoms 

needed to describe a relevant configuration of the ligand. Specifically, the two oxygen 

atoms belonging to the phenol ether and the hydroxyl groups respectively, and the nitrogen 

present in the secondary amine group, positively charged at the physiological pH. These 

chemical groups allow the ligand to interact with protein residues by means of hydrogen 

bonds and salt bridges. Additionally, two carbon atoms were selected in order to take into 

account the possibility of having a flip of the phenyl ring while the other chemical groups 

in the small molecule would maintain the same configuration. Following the numbering 

reported in Figure 16, the 5 atoms O14, O17, N19, C11 and C7 were chosen. Therefore, 

320 minimum distances between these two groups of atoms, namely the a-carbons from 

the 64 protein residues selected and the 5 heavy atoms from the ligand, were obtained and 

used as variables for the next steps. 
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Figure 17. Protein residues (highlighted in yellow, all of the corresponding heavy atoms are shown in sticks) 

selected for the calculation of minimum heavy atom distances with respect to the ligand. From these residues, 

the a-carbons only were considered. 

 

3.2.2.2 Clustering of the variables 

After appropriate variables have been defined and their values calculated for each 

frame of the available trajectories, the subsequent phase involves clustering such data. We 

call this step state decomposition,37 meaning that we are dividing the system’s 

configurational space into a set of states (the clusters), referred to as microstates. Since the 

aim is to quantify the transitions between these microstates, in the ideal situation one 

would achieve a kinetic clustering. This would require determining the average transitions 

times between all couples of conformations visited by the system, and defining groups 

basing on such information. In such a scenario, no internal energy barriers would be 

encountered within a microstate and all of the members would interconvert more rapidly 

between them than with respect to any other microstate. However, there is currently no 

way to obtain these average transition times easily and in a straightforward manner. 

Therefore, the typical procedure is to devise a kinetically relevant geometric clustering. 

The idea is that similar configurations in terms of geometry are likely to rapidly 

interconvert. On the one hand, this would become even more likely as we divide the 

configurational space more and more finely. On the other hand, we need to ensure 

sufficient statistics for each microstate, or, in other words, a reasonable population for that 

cluster, in order to determine transition probabilities between the microstates accurately.  
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In order to cluster our data, we employed the K-means clustering algorithm.43,44 We 

emphasize that several clustering algorithms have been devised over the years,117 but no 

general algorithm exists that one can expect a priopri to be effective. Clustering is not an 

application independent problem, it is strictly dependent on the context, and each 

algorithm has its own advantages and disadvantages. As for K-means, it has gained great 

popularity in the MSM community and has been employed with satisfactory results in 

several previous works.40–42 This clustering algorithm tends to locate more clusters in more 

densely sampled regions. This avoids creating too many groups with small counts, thus 

favoring a more accurate determination of the transition probabilities. However, one needs 

to be aware that risks are the over division of certain regions and under division of others. 

When using K-means, the number of clusters needs to be specified by the user. A rule of 

thumb is to use the square root of the number of initial data points. In this case we had 

about 300000 data points, thus resulting in a number of clusters of 500. As stressed in the 

original paper,111 strikingly similar pathways were observed in the binding trajectories. 

Visual inspection confirmed such picture, and we observed a contained amount of states in 

which the ligand stations for a long time. Therefore, we considered reducing the number of 

cluster to as low as possible. We tested increasing number of clusters, specifically 50, 100, 

150, 200, 300, and 500. Since we worked in a 320-dimensional space, we projected the 

corresponding clusters in a more intuitive space in order to assess the quality of the results. 

For each cluster obtained, we calculated the RMSD on the ligand with respect to the 

crystal bound state for all of the configurations contained in that cluster, and took the 

average; similarly, the average distance between the center of mass (COM) of the ligand in 

each configuration of the cluster and in the crystallographic complex was used as a second 

dimension. In Figure 18, the different numbers of clusters considered were projected in 

such space. As shown by the plots, increasing the number of clusters from 50 to 100 and 

150 clearly leads to an improved distribution of the clusters. Conversely, a further 

increment to 200, 300 and 500 does not broaden significantly the distributions, while 

determines instead a finer subdivision of the already considered space. As already 

introduced, we aimed at maintaining the amount of clusters contained. Therefore, we chose 

150 as the number to build our model. 
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Figure 18. Projection of different number of clusters in a 2D space. Distributions of the clusters in the 

considered space do not change significantly increasing their number from 150 to 200, 300 and 500.  

 

3.2.2.3 Lag time selection and Chapman-Kolmogorov test 

Constructing a MSM can be roughly summarized in two major stages. First of all, a 

state decomposition is carried out to define the microstates in the system. This allows 

shifting from the conventional view of trajectories as a series of structures over time to a 

series of microstates over time, the so-called discrete trajectories. Secondly, jumps are 

performed over these discrete trajectories and the corresponding transitions in the 

microstate space recorded and stored in a count matrix, from which a transition probability 

matrix can be eventually derived. A critical element in this picture is the size of such 

jumps, as different count matrices would be obtained as a consequence. As already 

introduced in the Theory chapter, we refer to such element as the lag time of the model. 

Markov time is called the smallest lag time that gives the Markovian behavior.37 Under the 

Markovian assumption, systems are memoryless, meaning that the probability of being in 

the current state only depends on the previous state, and not on all of the preceding ones. In 

this view, transition counts are statistically independent. Assessing the lag time 

dependence of the relaxation time scales implied in the system dynamics has been shown 

to be a useful approach to determine appropriate lag times to ensure memory loss. The 

outcoming plot is usually referred to as ITS plot (Implied Time Scales plot).37,38  
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We monitored the dependence of the time scales of the system on increasing values of 

lag time. The state decomposition phase was repeated three times and the corresponding 

ITS plots determined. As shown in Figure 19, very similar results were obtained. As can be 

observed, the relaxation time scales level off at a value of about 600 steps. As already 

mentioned, when performing the simulations that we subsequently exploited for this work, 

the authors saved trajectory frames every 0.180 ns. Since we did not stride the trajectories, 

1 step corresponds to 0.180 ns. Therefore, our choice of 600 steps corresponded to a lag 

time of about 100 ns.  

 

 
Figure 19. Relaxation time scales as a function of lag time (ITS plots). The results after performing three 

independent state decompositions are reported. In all of the three cases, lag time dependence of the time 

scales ceases after a lag time of about 600 steps.  
 

Notably, in order to carry out the procedure just described above and to produce the 

plots in Figure 19, our first attempt was to aggregate all of the 12 productive and non-

productive trajectories from the original paper.111 However, this did not allow observing 

clear convergence of the relaxation time scales. As such a behavior would typically 

indicate presence of states not adequately sampled, we run through the simulations to 

identify possible sources. Thus, while in 11 out of the 12 simulations the binding pathways 

were extremely similar, we observed one single trajectory in which the ligand got access to 

the orthosteric site through a different route. Therefore, we discarded the trajectory and 

repeated the analysis. This allowed achieving a significant improvement in the ITS plots, 

obtaining the converged plots reported in Figure 19. While this clearly indicates that the 

procedure is extremely sensible and responsive to the input data, we are aware that we 

neglected part of the information. Nevertheless, we do not exclude that other binding 

pathways might be envisaged. Therefore, we decided to focus our view on the most 

frequent route observed in the available simulations without producing additional plain 

MD data. 



 71 

One validation that is typically considered at this point is the Chapman-Kolmogorov 

test (CK test).38 Through this procedure, we evaluate whether the MSM, obtained imposing 

a certain lag time on a discretized phase space, is consistent with the data used to 

parameterize it. In practice, what one does is assessing the probability of remaining within 

an initial microstate after multiples of the lag time used to construct the model. This 

procedure is repeated for MSMs built at increasing values of lag time, and for the original 

MD trajectories. The aim is to determine whether consistency is met between the MSM 

built at the desired lag time and the MD data within statistical error. Herein, we carried out 

the analysis constructing three MSMs, specifically with lag time of 200, 400 and 600 steps. 

As can be seen in Figure 20, an increasing consensus with the plain MD data was found. In 

particular, the MSM built with the chosen lag time of 600 steps lies within the 

uncertainties of the transition probabilities estimated from the MD trajectories. 

 

 
Figure 20. Chapman-Kolmogorov test. The consistency between MSMs constructed at increasing values of 

lag time (200, 400 and 600 steps) and the original MD data (green line, with bars indicating the standard 

error) is evaluated by means of the test. 

 

3.2.2.4 Selection of the relevant states 

We exploited transition path theory (TPT)118,119 to identify relevant states along the 

binding pathway of Alprenolol from the protein surface to the orthosteric site. In order to 

apply TPT, an initial and a final state, typically denoted by the A and B letters, need to be 

indicated. At this stage, we employed the ligand RMSD with respect to the 

crystallographic binding pose. Thus, we chose as initial state the one with the highest 

RMSD, and the one with the lowest as the destination state.  
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We carried out pathway decomposition in order to obtain all possible pathways 

leading from state A to state B. For each pathway, the associated flux was also determined. 

Subsequently, we devised a simple prioritization procedure for the MSM states visited in 

all of the pathways obtained. Specifically, each state was assigned a score basing on the 

number of times it was observed in the ensemble of possible pathways, weighting for the 

fluxes associated to these pathways: 

 

𝑓𝑠 = ∑ 𝑓:>,w 𝑓:>,ZÅZ⁄£
wjT   (51) 

  

where the summation runs over all of the possible pathways i in which the considered state 

is present, fAB,tot is the total flux related to the transition A to B, and fAB,i is the flux 

associated to pathway i. Through this analysis, the top ranking states were identified. It is 

worth noticing that centroids are defined by the K-means clustering algorithm as averages 

over the variables values possessed by all of the states gathered in each cluster. While it 

has the clear advantage of generating centroids that are representative of the clusters, this 

does not necessarily correspond to physically meaningful states. Therefore, the mdtraj 

software120 was employed to extract representative configurations from the top ranking 

microstates. Specifically, those structures possessing the lowest RMSD with respect to any 

other one contained in the same cluster were selected as centroids. 

 

3.2.2.5 Construction of the guess path 

In order to use the path CVs, a frameset representing a putative pathway needs to be 

provided.18 The series of frames catches the system at intermediate states along the process 

of interest, namely ligand binding in the present case. An essential requirement is equal 

spacing in terms of RMSD between these subsequent snapshots. Accordingly, including 

more frames has the effect of reducing such distance, thus increasing the resolution of the 

output free energy.  

Obviously, few states would not be sufficient to reconstruct an accurate FES of the 

complex process we were facing. Considering the states that we extracted basing on 

information from the MSM, the RMSD distances between subsequent frames were 

respectively 5.8 Å, 7.7 Å, 7.2 Å, 1.2 Å and 2.5 Å. First of all, significant distances were 

present amongst some of the states, thus inevitably affecting the resolution of the FES. 

Secondly, they did not guarantee the equal spacing required. Therefore, we devised a 
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multi-step procedure in which we first enrich the amount of configurations and 

subsequently select equally spaced frames.  

In order to achieve the desired enrichment, we performed a series of steered MD28,29 

simulations starting in each one of the identified states. As parameters for the protein and 

the ligand could not be transferred from the original topology, the entire system was re-

parameterized. Both protein and lipids were modeled according to the Amber ff14,121 in 

which Lipid 14122 is comprised to describe the latter. Ligand parameters were taken from 

the general Amber force field (GAFF)123 and charges were assigned following the typical 

RESP procedure.124 In each of the steered MD runs between two of the subsequent states 

identified through the MSM, the RSMD was used as CV and targeted to 0. Moreover, one 

additional run was carried out from the first point. In this case, we acted increasing the 

coordination of the ligand by water molecules in order to obtain additional points with 

fully solvated states. We then reverted this first short trajectory and merged it with the 

other steered MD runs, resulting in a 30 ns-long binding trajectory. For the resulting 6 

runs, 5 ns-long each, force constants ranging from 20 to 50 kcal/(mol Å2) were applied. 

The work required was monitored and each run was repeated multiple times to ensure 

reproducibility of the outcomes. As expected, since ligand configurational space from the 

surface to the orthosteric site was relatively limited, all the RMSD-based runs were 

extremely similar. Sample work profiles from the runs are reported in Figure 21B. 

Conversely, as shown in Figure 21A, increasing the solvation of the ligand while detaching 

from the protein opened the way to a variety of states, less relevant for the purposes of our 

study. Therefore, amongst the runs characterized by lower work, we selected in this case 

the one in which it was minimum. All simulations were carried out by means of the 

GROMACS MD engine, version 4.6.7,93 patched with the PLUMED software, version 

2.1.1,94 in order to perform steered MD. 

Once the 30 ns binding trajectory was obtained, we proceeded to selection of equally 

spaced frames in terms of RMSD. Our aim was a spacing of about 1 Å, thus allowing to 

distinguish relatively close states along the binding pathway and to achieve a reasonable 

resolution of the outcoming FES. This was a non-trivial step, as required iterating until the 

initial amount of 13000 frames was reduced to a more contained number, and the desired 

spacing was achieved at the same time. At this stage, we took advantage of a script wrote 

by the path CVs developer, specifically devised for this purpose. Once an input trajectory 

with N frames is provided and the user specifies the number M of output states, the script 

iterates until the best selection among the available frames is found. 
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Figure 21. Work profiles from the performed steered MD simulations. A) Ligand coordination by water 

molecules was increased during the first step, in order to enrich with completely solvated states of 

Alprenolol. Different profiles (work run 1-5) were obtained, thus the one requiring the least work was 

retained for subsequent analysis. B) First (left panel) and last (right panel) steered MD runs using as CV the 

RMSD with respect to the subsequent state. 
 

Figure 22 compares the RMSD between subsequent frames obtained from the first and 

the last iteration steps. As shown in the x axis of the figure, this allowed us selecting 80 

states separated by 1.25 Å.  

It is worth noticing that a requirement for the script is that the states in the input 

trajectory need to be already sequential. However, this is not obvious, as even in a steered 

MD run the system is able to fluctuate around a specific region of phase space and revisit 

it. This was particularly likely in our case, in which we considered the least aggressive 

force constants as possible to guide the ligand. Therefore, we devised an in-house script to 

solve this issue and remove from the steered MD simulation the mentioned loops. After 

applying this procedure, we gathered 110 frames that uniquely represented the 

advancement of the ligand in the 30 ns-long steered MD trajectory. However, such amount 

was not sufficient to guarantee that equally spaced, subsequent frames were present and 

could be identified by the method described above. 
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Figure 22. RMSD between subsequent structures calculated over the 80 frames comprised in the frameset. 

At the beginning of the procedure, 80 among all of the available frames were selected. This initial arbitrary 

choice returned significantly different values of RMSD between subsequent frames (red line). After a certain 

number of iterations, frames for which the spacing was as close as possible were identified (black line). 
 

Therefore, we took advantage of a well-established interpolation method, the Catmull-

Rom splines,125 to use the 110 frames as control point and add intermediate frames in 

between. It is not our purpose to go into details about this interpolation technique herein, 

interested readers are exhorted to find more exhaustive material in the literature. The 

outcome of this pipeline was a set comprising 1091 frames, to which we applied the 

procedure described above in order to extract the guess path made up of the 1.25 Å-spaced 

80 states. 

 

3.2.3 Results and discussion 
 

We aggregated available plain MD simulations for Alprenolol binding to the b2-AR in 

order to build a MSM of the process. To this end, as already introduced in the Methods 

sections, we selected 11 out of the 12 binding simulations as extremely similar pathways 

were observed. In order to construct a count matrix of the transitions in the discrete 

trajectory space, we selected a lag time of 600 steps from the ITS plots. Since 1 trajectory 

step is equal to 0.180 ns, this corresponded to a lag time of about 100 ns. By storing the 

transitions in the count matrix and subsequently determining the corresponding transition 

probability matrix, we built our MSM for the protein-ligand binding process. Starting from 
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the 150 microstates defined through clustering in the state decomposition phase, 93 % was 

the fraction of retained states in the MSM, corresponding to 140 states. It is worth pointing 

out that, despites the aggregated MD trajectories reached a simulation time of about 60 µs, 

the corresponding sampling for the binding process is extremely limited, as 12 events do 

not guarantee adequate statistics for such a complex process, for which multiple pathways 

might also be envisaged. Moreover, runs were stopped once the ligand reached the 

crystallographic pose, thus no unbinding neither re-binding were observed. Nevertheless, 

taking advantage of the 11 similar pathways, we were able to construct a non-reversible 

model for the considered binding process. The obtained MSM is shown in Figure 23, 

projected in a 2D space.  

 

 
Figure 23. Markov State Model obtained for Alprenolol binding to the b2-AR. Circle sizes are proportional 

to the MSM microstate population, while black arrows indicate possible transitions between the states. The 6 

structures in the insets represent the relevant states along the ligand route from the protein surface (top right-

hand side of the model) to the binding site (bottom left-hand side) that have been selected by means of TPT, 

according to the procedure described in the Methods section. 
 

Notably, each microstate was defined by 320 variables, representing minimum 

distances between heavy atoms from specific protein residues and from the ligand. Thus, in 

order to interpret the outcome more easily, we projected the model in a more intuitive 
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space. Specifically, we calculated the average RMSD of the ligand with respect to the 

crystallographic binding pose from all of the configurations contained in each MSM 

microstate, and, similarly, we took the average distance between the center of mass (COM) 

of the ligand in each configuration of the MSM states and in the crystallographic complex. 

Configurations in which the ligand was located on the protein surface were found on the 

top right-hand corner of the plot, while, on the bottom left-hand one, MSM states were 

located in the orthosteric site. As can be observed, at same distances along the binding 

pathway, different values of RMSD are possible. Clearly, this meant that the ligand was 

able to station in same regions while adopting significantly different configurations. 

Following the strategy described in the Methods section, MSM states that were visited 

more frequently by the ligand on its way to the orthosteric site were identified. Shown in 

the insets of Figure 23 are the corresponding configurations, which were subsequently 

employed as a template to construct the guess path. Remarkably, all of the metastable 

states recognized in the original paper111 were caught following our procedure. 

Specifically, such agreement refers in Figure 23 to poses 2 and 3, in which the ligand 

approached and occupied the extracellular vestibule, and pose 4, located at approximately 

the half way between the extracellular vestibule and the orthosteric site. Interestingly 

herein, besides pose 1, that represented an arbitrary state on the surface, almost completely 

surrounded by water molecules, we identified pose 5, in which the hydroxyl group was 

captured while reorienting from state 4 towards the final bound state 6. It is worth noticing 

that specific interactions stabilized each of the states identified. This was in support of their 

relevance in the binding process. 

The 6 states were employed as starting points for the construction of a guess path. As 

already stressed, the latter was required in order to exploit the implementation of the path 

CVs. The resulting putative pathway, that is essentially a frameset describing a likely 

binding pathway according to the input data, comprised 80 equally spaced structures. As a 

result of the RMSD matrix optimization procedure, the distance between each subsequent 

structure was 1.25 Å in terms of RMSD.  

In order to validate the quality of the reconstructed guess path, we projected all of the 

plain MD trajectories used to build the MSM in the space defined by the path CVs, namely 

the s and z variables. The result is shown in Figure 24, where different colors in a scale 

going from black to light gray identify the different input trajectories. As already 

introduced, through the s variable we monitor the progress of our system along the 

frameset. In other words, at a certain simulation step, the value returned by this variable is 
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going to identify the index of the closest among all of the available frames in the guess 

path. Therefore, since we had 80 structures in the guess path, the allowed values went from 

1 to 80. The z variable, instead, is a measure of the distance from the frameset, calculated 

in terms of MSD and thus expressed in Å2. For a more intuitive interpretation, we showed 

the square root of z in Figure 24. For easier reading, from now on in the text, we are going 

to discuss about z values in terms of Å, implicitly referring to the square root of the real 

values of z. In practice, for a certain state of our system, with a combination of the s and z 

variable we determine respectively which frame in the frameset is the most similar to the 

current state and quantify how actually similar is the system with respect to that frame. The 

purpose of this strategy is to also take into account states that are relatively far from the 

guess path, and, since the associated free energy is characterized by MetaD, to detect the 

minimum free energy route for going from frame 1 to 80. According to the projection 

showed in Figure 24, most of the plain MD data was located at low z values. This indicated 

that the constructed guess path represented very well the regions of the phase space visited 

by the original data. As expected, part of the data was placed farther away, reaching values 

of z as large as 7 Å and up to 12 Å. While, as already stressed, the pathways leading to the 

orthosteric site were extremely similar, some of the trajectories did not achieve the 

crystallographic binding pose and featured different states in which the ligand stationed for 

a significant amount of time. Indeed, the regions observed at higher values of z reflected 

such behavior. 

Moreover, we also projected on the path CVs space the 6 states that were used as a 

template to construct the frameset. They are shown as larger white dots in Figure 24, and 

are numbered accordingly to Figure 23. As can be observed, all of the 6 states lied very 

close to the guess path, as they were characterized by low values of the z variable. This 

finding was very encouraging, as indicated that the guess path was well parameterized on 

the states used as a template. 

In order to give a quick overview and interpretation, we subdivided the plot in two 

major areas. A left side that comprised the regions labeled as bulk and surface, and the 

right side that included those indicated as extracellular vestibule and site. Points belonging 

to the left side were more spread. Before achieving contacts with the extracellular 

vestibule, the ligand lacked of stable interactions with protein residues and was from 

completely to partially solvated by water molecules. As a result, the accessible phase space 

was extremely wide and no specific configurations appeared to be particularly favored. 

Conversely, as the extracellular vestibule was approached by the ligand, the configurations 
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were more concentrated in specific regions. Moreover, once the orthosteric site was 

reached, most of the trajectories lied very close and within a 4 Å distance from the guess 

path, highlighting high similarity in the visited phase space. 

 

 
Figure 24. Projection of the original plain MD trajectories on the path CVs space. For an easier 

interpretation, the square root of z, in Å and equivalent to RMSD, is shown on the y axis instead of the real 

MSD values in Å2. Right above the plot, a gross indication of the ligand position (bulk, surface, extracellular 

vestibule, site) in correspondence of s values is given. Each colour, from black to light grey, identifies one of 

the 11 different trajectories used to build the MSM. The larger white dots, labelled by numbers from 1 to 6, 

are the projection of the 6 states used as templates to construct the frameset. At the very top, structures 

labelled by letters A, B, C and D are shown for sample, more concentrated regions of the CVs space. 
 

Shifting to a more practical perspective, the z variable is typically assigned an upper 

wall during MetaD simulations, meaning that sampling is confined within a certain value 

along this variable. In particular, in previous applications, it has been common practice to 

allow for a maximum value of 3 Å (corresponding to 9 Å2 for the real values of the 

variable). For the purposes of this work, in order to include the largest amount of sampled 

regions in plain MD, a value of 4 Å would be more appropriate. While one might be 

tempted to include larger regions of the CVs space, allowing for sampling to larger z, this 
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choice is not free of drawbacks and inevitably exhibits pathologies. First of all, this 

obviously would translate into a significantly more demanding setup in terms of 

computational cost. Secondly, approaching higher values of z, we start loosing the 

resolution that we aim at achieving in the resulting free energy surface. Focusing our 

attention on the regions with z higher than 4 Å in the plot reported in Figure 24, we can 

observe that points tend to be compressed and to form narrow lines in the CV space. This 

is an unavoidable behavior, as the consequence of going significantly farther away from 

the reference path is that different conformations are going to be assigned to a same s 

value, thus creating the observed lines.  

In order to assess the effect of limiting sampling at a maximum of 4 Å for z, we back-

tracked the states belonging to the more concentrated regions observed in the plot. Sample 

corresponding configurations are shown explicitly at the top of Figure 24. In particular, 

state C, that we expected to be a reasonable state to be visited along the way from states 3 

to 4 (highlighted by the white dots and labeled with the corresponding number, 

accordingly) lied within the 4 Å range that we aimed at considering for our production 

phase. State B, where the ligand is flipped completely with respect to the orientation 

assumed in the guess path, would be also considered with such setup. This was particularly 

exciting in the perspective of possibly including, in the outcoming free energy, pathways 

that differ significantly from the parameterized one. States A and D, also very different 

from the configurations included in the guess path, lied instead over the 4 Å cutoff. As a 

consequence, by employing such cutoff, these sates would reasonably be excluded from 

sampling in the subsequent MetaD production phase. 

The above setup is going to be exploited to reconstruct the free energy surface of the 

protein-ligand binding process, namely Alprenolol binding to the b2-AR. To this end, path 

CVs-based MetaD is going to be performed. From the free energy landscape, information 

about alternative binding routes, also relatively far away from the guess path, is going to be 

provided and the one associated to the minimum free energy determined. Structural 

features of metastable states can be extracted and, potentially, transition states between 

these relevant free energy minima can be recognized. In theory, besides energetics, insights 

about kinetics can be also achieved. Provided that the transition states are appropriately 

sampled and the related energy barriers accurately determined, and introducing some 

approximations for a reliable estimate of the pre-exponential factor, kinetic rates can be 

eventually computed. 
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3.2.4 Conclusions 
 
In this study, we laid the ground for the estimation of the free energy profile 

associated to a protein-ligand binding process through computer simulation. Determining 

the FES for a complex reaction, such as a binding process, can be achieved by means of 

the path CVs. These CVs guide the sampling along, and around, a “guess path” that needs 

to be provided as input to the enhanced sampling engine.18 This is essentially a frameset of 

the system captured at intermediate steps along the process under investigation. Herein, we 

constructed a guess path for Alprenolol binding to the b2-AR,111 in order to use it for 

subsequent path CVs-based MetaD simulations. MetaD would allow calculating the 

desired FES. However, in order to built the needed putative pathway, some sort of 

indication about the process is necessary. To this end, we took advantage of plain MD 

simulations carried out in the D. E. research group for the spontaneous binding of 

Alprenolol to the b2-AR.111 Basing on the available data, we constructed a MSM for the 

protein-ligand binding process, and determined the most relevant states. Notably, most of 

these corresponded to the ones suggested in the original paper. Once the relevant states 

were identified, they were used as template to build a guess path. Finally, we projected 

both the relevant states from the MSM and the plain MD trajectories into the path CVs 

space in order to validate our parameterization. The result was promising, with the relevant 

states located at low values of the z variable, and most of the plain MD trajectories, 

notably those with strikingly similar features, placed within the limit of z that could be 

affordable in the subsequent MetaD production phase. 

 

3.3 TEST CASE 3: hDAAO 
 

3.3.1 Introduction 
 

In a typical drug discovery pipeline, after promising scaffolds are identified and 

selected in the hit identification phase, in the subsequent optimization step one aims at 

improving pharmacokinetic and pharmacodynamic properties. These include for instance 

absorption and distribution in the former case, and binding affinity in the latter. 

Traditionally, the affinity of a potential drug, generally speaking a ligand, towards a 

pharmacological target has been expressed in terms of Kd, the dissociation constant, or 
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IC50, the drug concentration leading to the half-maximal inhibition of a biological activity. 

However, there has been a shift of perspective over the last decade, as the importance of 

kinetic quantities has become increasingly evident.4–6 Specifically, we refer to kon and koff, 

the association and dissociation rate constants, respectively.4 However, most of the focus 

has been directed to koff, as this is directly related to drug residence time, which is 

expressed as the inverse of the kinetic parameter.5,10 While the critical significance of 

binding affinity as an estimate of drug potency remains doubtless, there are cases in which 

integrating such information with residence time is more convenient. For instance, this is 

particularly true when the duration of the pharmacological effect plays a substantial role in 

in vivo efficacy.5 In this view, it is clear why possibly achieving a rational optimization of 

the kinetic properties becomes extremely desired. 

During the drug optimization phase, the classic framework would require 

synthesizing, or in the best scenario purchasing, analogs of the scaffold under study, and 

subsequently performing biological assays in order to estimate affinity and kinetic 

properties. Several experimental techniques, such as SPR,126 NMR127 and fluorescence 

methods,128 have become established tools to characterize kinetic features and determine 

kinetic parameters.129 However, being able to integrate or potentially replace completely 

this procedure with a computational approach would have the effect of improving 

considerably the efficiency, not to say the accessibility, of the optimization strategy. From 

the computational standpoint, this would require assessing the atomic-level determinants 

underlying binding and unbinding kinetics. The more appropriate approach would demand 

for MD simulations of the entire binding and unbinding processes. However, besides being 

not straightforward, the application of MD to this type of problems neither would be 

efficient. As already stressed out abundantly, most of the limitation lies inside the 

timescales problem. Undoubtedly, enhanced sampling methods16 are currently the most 

effective and promising tools to sample, and thus to achieve information about, slow 

events. Nevertheless, by means of the current frameworks and considering that 

computational resources are typically limited, we can aim at managing one to a few ligands 

at the time. In addition, such procedures do not provide outcomes in a timely manner, as 

usually requested in an optimization phase. 

Recently, a more practical and accessible methodology has been introduced to tackle 

the limitations described above.21 In particular, the focus is on residence time, the inverse 

of the dissociation rate constant.5 Instead of aiming at calculating absolute values for 

kinetic observables, the goal is being able to rank ligands according to their residence time. 
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Once this is achieved, ligands can be classified and distinguished in faster and slower in 

terms of unbinding simulation time.21,130 Slower ligands would then be selected for further 

improvements. As discussed in detail in the Theory chapter, the methodology is based on 

scaled MD,19,20 as it allows observing unbinding events at considerably more accessible 

computational costs. 

Herein, we applied the ranking procedure to human D-amino acid oxidase (hDAAO). 

The flavoprotein hDAAO catalyzes the oxidative deamination of D-amino acids with 

excellent stereospecificity.131 Firstly, the enzyme oxidizes the substrate with the 

concomitant reduction of a molecule of FAD, which acts as a cofactor; secondly, the 

produced imino acid is released into the solvent, where it non-enzymatically hydrolyzes 

into the corresponding α-keto acid and ammonia. A schematic representation of the 

mechanism is given in Figure 25. 

 

 
Figure 25. Mechanism of the D-serine oxidative deamination catalysed by hDAAO. Adapted from Ref.131 

 

In humans, the enzyme is mainly present in liver and kidney, where it detoxifies D-

amino acids from dietary and bacterial origin,132 and in several regions of the brain, from 

cerebellum to frontal cortex, where it is involved in regulation of D-serine levels.133–135 In 

the central neuronal system, the amino acid D-serine acts as a synaptic co-agonist at the 

NR1 subunit of the N-methyl-D-aspartate receptors (NMDARs), activation of which is 

associated with synaptic plasticity, learning and memory, and pain sensation.136 From a 

pharmacological standpoint, D-serine dependent, aberrant NMDARs activity is involved in 

several neurological diseases. In particular, it has been highlighted that the lowered activity 

of the receptors is associated to psychiatric disorders, such as schizophrenia137 and 

neuropathic pain.138 The role of hDAAO in the brain was unknown until recently, when 

reciprocal correlation between D-serine and hDAAO concentration was demonstrated, 

suggesting the involvement of the enzyme in the metabolism of the neuromodulator.133–135 

Therefore, by increasing D-serine levels and thus activation of NMDARs, inhibition of 
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hDAAO has been proposed as a potential effective therapeutic approach. Since 

determination of the crystal structure in 2006, many efforts have been focused on 

development of potent inhibitors of the enzyme.137  

Inspired by the result of a previous virtual screening campaign carried out in our 

laboratory, we selected among the reported compounds those that shared a chemical 

scaffold. Without any a priori knowledge of kinetic properties, we prioritized the 

compounds according to the computational time of unbinding from our simulations. 

Subsequently, kinetic data were produced and compared with the predicted values. The 

outcoming picture showed a good agreement between simulation and experiments. 

Moreover, from the analysis of our scaled MD trajectories, we were able to identify two 

major conformations for the loop located at the entrance of the hDAAO binding site.139,140  

 

3.3.2 Methods 
 

A first virtual screening campaign carried out in our lab, and aimed at identifying 

inhibitors of hDAAO, led to the purchase of 24 chemical compounds. Among these, 6 

active compounds were identified in the µM regime. The goal was a competitive inhibition 

by targeting the protein binding pocket, where the oxidation of the substrate takes place 

through reduction of a molecule of the FAD cofactor.131 The activity of the ligands 

identified ranged from about 10 to about 500 µM. Basing on these results, purchasable 

analogs of the compounds were searched by means of the SciFinder engine.141 Thus, other 

19 chemicals were gathered and activity assays performed. Scaffolds already reported in 

the literature were present among all of the selected compounds. However, no data were 

previously reported for the molecules considered in the virtual screening campaign. From 

the assays, no significant improvements were observed. Nevertheless, a group comprising 

4 of the compounds was particularly interesting, as minor differences in chemical 

substituents were responsible for considerably different values of activity. Moreover, while 

IC50 values were available, no information about kinetic properties was provided. Inspired 

by all of these factors, we considered applying the ranking procedure reported in previous 

studies in order to prioritize these compounds in terms of unbinding simulation times.21 

One important aspect when applying the mentioned procedure is that, as a starting point for 

the scaled MD simulations, the structures of the ligands in complex with the protein are 

needed. In the literature, no crystal structure of hDAAO in complex with the scaffold 
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representing the selected compounds was reported. However, the crystal for a closely 

related small molecule was available. While the scaffold was different, the portion giving 

the core interactions was perfectly identical. Therefore, such crystal structure was 

employed as a template to position the ligands inside the binding pocket. As the scaffold 

without any substituent was previously reported in the literature,142 we added it to the 

group of the considered compounds. Therefore, the 5 small molecules reported in Figure 

26 were eventually considered.  

 

 
Figure 26. Structure of the compounds chosen for scaled MD simulations. 

 

3.3.2.1 Simulation setup 

As a first step, the complexes between ligands and hDAAO needed to be constructed. 

As already mentioned, no crystal structure was available in the Protein Data Bank (PDB) 

for the protein in complex with ligands possessing a common scaffold with the chosen 

compounds. Therefore, we took advantage of a closely related small molecule for which 

the PDB in complex with hDAAO was present (PDB ID: 3CUK, resolution 2.49 Å). The 

structure of the compound is reported in Figure 27B and compared with the common 

scaffold found for the 5 compounds. Focus on the binding site and the main interactions 

with the protein are also reported in Figure 27A. As shown in the Figure, the pyrrole-2-

carboxylic acid moiety is responsible for all of the most significant interactions with the 

target. All of the chosen ligands maintained the identical moiety, thus we expected the 

same interactions to take place. Therefore, using 3CUK as a template, we created the 

complexes for our chemicals by placing them in hDAAO binding site with the Cartesian 

coordinates of the common moiety perfectly overlapping. The resulting superposition is 

shown in Figure 27C. Once the protein-ligand complexes were constructed, each system 
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was solvated in a cubic box with TIP3P water molecules.88 In order to neutralize the 

overall charge, an adequate number of Na+ ions was added. 

 

 
Figure 27. Creating the hDAAO-ligand complexes. A) Bound state for the crystal structure 3CUK. The 

ligand is packed between the flavin from FAD and the side-chain phenol from Tyr 224 (left panel). The 

pyrrol-2-carboxyl group gives rise to two hydrogen bonds, one with LYS313 and the other with TYR228, 

and a salt bridge, specifically with ARG283 (right panel). Such features are preserved in several PDBs for the 

protein in complex with different inhibitors. B) 2D structures for the ligand found in PDB 3CUK (top) and 

for the scaffold of the ligands selected for scaled MD simulations. The structures are shown for comparison. 

C) Superposition of the considered scaffold on the ligand of the 3CUK complex (shown as transparent). 
 

The Amber ff99SB-ILDN80,143 was employed for the protein, while the ligands were 

modeled according to the GAFF,123 following the RESP procedure124 to determine the 

charges. As already mentioned, substrate oxidation by hDAAO is concomitant with the 

reduction of a molecule of the FAD cofactor.131 Notably, the cofactor flavin group is 

located at the very bottom of the substrate binding pocket. In all of the crystal complexes 

reported in the literature, the group is in close vicinity of ligands and it is oriented such as 

to give rise to a pi-pi stacking interaction with them. Therefore, we needed to include it in 

our system. Cofactors are usually composite molecules, typically comprising diverse 

chemical groups with different properties, as is the case for FAD. Moreover, due to their 

relatively large size, they are characterized by many degrees of freedom. Thus, deriving 
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proper, as to say reliable, parameters for such chemical species is far from trivial. For the 

present case, we took parameters for the FAD cofactor from the R.E.DD.B. database, 

where multiple conformations of each building blocks comprised in the molecules are 

considered in the systematic procedure followed to derive charges.144  

According to the classic pipeline for system preparation, we first minimized and 

subsequently equilibrated each protein-ligand complex. In particular, position restraints of 

about 2.4 kcal/(mol Å2) were first applied to all system heavy atoms and then to a-carbons 

and FAD and ligand heavy atoms in two subsequent steepest descent runs, 5000 step-long 

each. After this, during the equilibration phase, temperature was first increased in the NVT 

ensemble in three subsequent steps lasting 200 ps each. This was followed by a 400 ps-

long run in NPT to relax the volume and, finally, a 500 ps run in the NVT ensemble were 

carried out under the same conditions employed for the subsequent production phase. 

We took advantage of a GROMACS 4.6.1 version93 appropriately modified in-house 

in order to perform scaled MD. As described extensively in the Theory chapter, under 

scaled MD conditions the PES of the system is scaled by a factor l, where 0<l<1.19 On the 

one hand, this has the effect of facilitating transitions along all of the degrees of freedom 

comprised in the system, in a similar way as simulating at high temperatures would do. On 

the other hand, a major drawback is that system stability is compromised as one applies 

lower, thus more aggressive, scaling factor values. More precisely, the secondary, and 

consequently the tertiary, structure of proteins tends to be disrupted. As a practical 

solution, the authors of the methodology applied weak position restraints in non-relevant 

regions of the considered protein. Specifically, values as low as 0.12 kcal/(mol Å2) on 

backbone heavy atoms were sufficient to maintain protein structural features when a l 

value of 0.4 was employed.21,130 To choose a convenient scaling factor for our simulation, 

we performed some test runs on the fastest and slowest ligand at increasing l values, such 

as 0.4, 0.45, 0.5 and 0.6. We note that values as low as 0.4 and 0.5 were applied in the 

previous works. In particular, in one of these cases,130 it was shown that a significant 

improvement in ligand discrimination was achieved when repeating the procedure at the 

higher value of 0.5. While this was reasonable, as the effect on the PES responds to an 

exponential dependence, it translated into a considerably increased computational effort. It 

is worth noticing at this stage that no rule exists to determine the more appropriate scaling 

factor. While the method can be considered general as it affects the entire system, the 

choice of the l factor is not. In our test runs, we were able to obtain a satisfactory 
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separation between the fastest and the slowest ligand, falling within the 100 ns range, when 

a scaling factor of 0.45 was employed. Therefore, such value was used to perform all of 

our scaled MD simulations. For what concerned the position restraints, taking the already 

mentioned crystal structure 3CUK as a reference, we selected those residues that were 

farther than a 6 Å distance from the ligand. All of the residues comprised in the loop 

located at the entrance of the binding site (residues 216 to 228)139,140 were also excluded 

from the selection. Moreover, as the flavin ring from FAD was in close vicinity of the 

ligand, no restraints were set on it. As indicated in the previous works,21,130 0.12 kcal/(mol 

Å2) weak restraints were applied to the backbone heavy atoms from the selected residues. 

Figure 28 gives a pictorial representation of the unrestrained regions of the protein. 

 

 
Figure 28. In order to preserve the overall protein structure, weak position restraints were applied to regions 

located far away from the binding site. In red colour, residues on which no restraints were set are highlighted.  
 

Production runs were started from the final frame obtained in the last equilibration 

step, carried out in the NVT ensemble. For each simulation, initial velocities were 

randomized. In order to assess unbinding, the distance between ligand and pocket centers 

of mass was monitored as a function of the simulation time. When the distance reached a 

value of 30 Å, the run was stopped and the corresponding simulation time recorded. At 

such distances, ligand could be considered fully solvated and detached from the protein.21 

We considered such state as achieved unbinding. In case the protein-ligand complexes 

were not dissociated within 100 ns, the run was also terminated. As the major goal of this 

procedure was efficiency, we decided to contain the computational effort so as to be as low 
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as possible. Notably, no unbinding within the 100 ns took place more often for the slowest 

ligand only. For each of the 5 considered small molecules reported in Figure 26, we carried 

out 18 scaled MD simulations and recorder the computational unbinding times. We then 

took the mean of the values registered in order to rank the ligands according to their 

propensity to leave the binding site.  

 

3.3.2.2 Enzymatic assays 

Once the scaled MD simulations were performed, the compounds were purchased and 

experimental assays performed by our colleague Elena Rosini at The Protein Factory, 

Politecnico di Milano, ICMR-CNR, Università degli studi dell’Insubria.  

To determine IC50 values, an Amplex Red-based assay has been utilized. This allowed 

measuring hDAAO product formation and thus determining the inhibitory activity for the 

compounds under investigation. hDAAO, horseradish peroxidase (HRP), FAD, as long as 

the considered compound were incubated for 30 minutes. After this pre-incubation period, 

D-serine and Amplex Red were added and the reaction proceeded for 30 additional 

minutes. A fluorescent product caused by hydrogen peroxide-dependent Amplex Red 

oxidation during hDAAO-catalyzed substrate turnover was measured in endpoint mode 

(excitation and emission wavelengths of 530 and 590 nm, respectively). The final 

concentration for the reactive components were as follows: 50 mM sodium phosphate, pH 

7.4, 0.06 mg/mL human serum albumin, 7 nM His-hDAAO, 0.1 units/mL HRP, 4 µM 

FAD, 35 µM Amplex Red, 5mM D-serine, 0.8% (w/v) dimethyl sulfoxide (DMSO), 0-1.25 

mM compound inhibitor. All enzymatic assays were conducted at room temperature in 96-

well plate format. Data were fit to a standard, four parameters equation to determine curve 

top, bottom, concentration producing 50% inhibition (the IC50) and hill slope. 

Equilibrium binding constants were determined via absorption spectroscopy. The 

binding of the different small molecules was investigated by adding increasing 

concentrations of the ligand to a fixed amount of hDAAO (10 µM) in presence of 4 µM 

free FAD in 50 mM potassium phosphate buffer, pH equal to 7.5, and at 15 ºC. Absorption 

spectra were collected in the 300-800 nm range. The dissociation constant Kd, hereafter 

referred to as static Kd, was determined from the change in absorbance at about 492-494 

nm in response of increasing ligand concentrations. 

Association and dissociation kinetic constants kon and koff were calculated by means of 

stopped flow spectrophotometry. The dynamic dissociation constant, expressed as dynamic 
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Kd, was also determined from the ratio of the obtained values of the kinetic rates. Under 

the same experimental conditions as indicated in the previous paragraph, hDAAO (1.1 

mg/mL) was rapidly mixed in a SFM-300 Biologic apparatus with a similar volume of 

increasing concentrations of inhibitor. The time course of spectral changes was recorder in 

the 300-700 nm wavelength range, and the absorbance versus time data sets were 

extrapolated at the wavelength identified by static titrations. Observed rate constants (kobs) 

at increasing inhibitor concentrations were determined from the time courses by nonlinear 

regression using single exponential equations. The rate constants of inhibitor association 

and dissociation were determined by linear regression of the equation kobs versus inhibitor 

concentration. 

 

3.3.3 Results and discussion 
 

We performed 18 scaled MD simulations for each one of the 5 ligands selected 

(Figure 26). Runs were stopped once unbinding took place or if no detaching of the 

compounds was observed within a computational time of 100 ns. As we already stressed, 

no information about kinetics was available at this point. Moreover, the considered 

compounds presented the same scaffold and only minor chemical substitutions. Notably, 

such substituent groups did not introduce the possibility to accomplish any additional 

hydrogen bond nor salt bridges. Thus, we applied the methodology to a particularly 

challenging framework. The resolution of the procedure was tested in a real-life situation, 

that is exploiting computer simulations in a prospective manner with a choice of 

compounds that reflects a likely picture one might encounter during the optimization 

phase. As far as we know, such a scenario was not considered before. The unbinding times 

that we obtained were recorded and, according to the procedure followed in previous 

works, the corresponding average, median, standard deviation and standard error values 

were calculated over the 18 runs performed for each ligand. The results are reported in 

Table 3. 

As highlighted by the outcomes shown in the table, the ligands were characterized by 

considerably different average unbinding times, despite the small differences in their 

structures. In particular, ligand A9 was the fastest at leaving the binding site, while LIT 

was the slowest. 
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Ligand A9 A4 A7 A15 LIT 

Avg. (ns) 17.7 25.8 28.4 55.5 62.5 

Median (ns) 18 20.8 25.9 50 51.2 

St. Err. 3.2 4.3 4.2 8.1 6.4 

St. Dev. 13.4 18.2 17.7 34.2 27.2 

 

Table 3. Average, median, standard deviation and standard error obtained for the 5 ligands. The values were 

computed from the 18 scaled MD simulations performed for each ligand A9, A4, A7, A15 and LIT.  
 

At a more comprehensive glance, we could distinguish two major regimes. Ligands 

A9, A4 and A7 could be grouped together in a fast regime, while ligands A15 and LIT in a 

slow regime. The separation was justified by an increase of more than 25 ns in terms of 

average unbinding time. Notably, while the first group is characterized by ligands 

possessing methyl or ethyl substituents on the pyrrol, this is not the case for ligands A15 

and LIT. In other words, the hindrance caused by chemical groups on that side of the 

molecules, pointing towards the bottom of the binding pocket, is unfavorable for a tight 

binding of the active site, and causes ligands to detach faster. Notably, structure-activity 

relationship (SAR) carried out on scaffolds binding hDAAO reported in the literature 

suggested how the presence of bulkier substituents, such as methyl and ethyl groups, 

tended to reduce the activity of the compounds.145,146 Thus, our results were in line with 

known behavior for hDAAO inhibitors. Moreover, the observations also confirmed that the 

initial complexes that we reconstructed for the 5 ligands, for which no crystal structure was 

available, were reasonable. 

In our opinion, what was most informative was the qualitative interpretation of the 

unbinding simulations. Figure 29 shows the distribution of the computational unbinding 

times for each ligand. More than focusing on the values of average unbinding time, the 

aforementioned separation was what was clearest according to the Figure.  

 



 92 

 
Figure 29. Distribution of the computational residence times. The counts for bins of 10 ns, from 0 to the 

maximum allowed value of 100 ns, are indicated on the y axis.  
 

Going from ligand A9 to LIT, there was a shift on the distributions, with a gradual 

reduction of the amount of fast unbinding events and an increase of slow ones. According 

to this picture, one would have definitely gathered precious indications on ligands to 

further optimize or to discard in a drug optimization context. 

Once the set of scaled MD simulations was completed, the compounds were purchased 

and assays to assess both activity and kinetic properties were carried out. The results are 

shown in Table 4. Unfortunately, despite ligand LIT was indicated as available for 

purchase, it was not possible to acquire it. Thus, we were able to carry out the experimental 

assays only for A9, A4, A7 and A15. Nevertheless, once purchase of the ligand LIT will be 

possible, we will integrate the results with the corresponding missing information. 

 
Ligand  IC50 (µM) Inactivation (%) Static Kd (µM) kon (µM/s) koff (1/s) Dynamic Kd (µM) 

A9 250.81 ± 23.31 50 - - - - 

A4 10.63 ± 0.91 total 5.65 ± 0.73 0.15 ± 0.01 1.11 ± 0.08 7.4 ± 0.72 

A7 14.5 ± 4.1 40 6.28 ± 0.71 0.12 ± 0.01 0.78 ± 0.08 6.5 ± 0.85 

A15 5.38 ± 0.26 total 12.91 ± 2.35 0.23 ± 0.01 0.66 ± 0.06 2.9 ± 0.28 

 

Table 4. Experimental data obtained from assays carried out on the 5 considered ligands. Uncertainties 

associated to the determined values are also indicated.  
 

Surprisingly, notwithstanding a very subtle difference between A9 and A7, no binding 

was observed for the former. We adduce such behavior to an increase in steric hindrance 
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when replacing a fluorine with a methyl group. As we already outlined, the size of the 

hDAAO active site is relatively limited. Thus, the protein appears to be very sensible in 

terms of dimensions for the ligands to host in the binding pocket.  

The trend of the koff values determined through the experiments was in agreement with 

the one expected basing on the scaled MD runs. In particular, predicted increasing 

residence times from the simulations corresponded to decreasing experimental koff values. 

The comparison is shown in Figure 30, where the correlation between simulations and 

experiments is reported.  

 

 
Figure 30. Computational versus experimental residence time. Values from both axes were normalized with 

respect to the slowest ligand A15; errors associated to the computational residence times, shown as error 

bars, were normalized as well, according to error propagation. Kinetic rates were subjected to exponential 

scaling according to the scaling factor adopted for performing the scaled MD simulations, that is 0.45. As no 

binding was reported for compound A9 in the assays, an arbitrary value was assigned; the choice was on one 

order of magnitude smaller than the dissociation rate constant determined for the slowest ligand. 
 

It is worth noticing that no clear-cut separation between A7 and A15, corresponding to 

the one observed in the predicted unbinding time values, was present in the experiments. 

Nevertheless, A15 was distinguished as the slowest ligand among the ones tested, in 

agreement with what determined through the scaled MD runs. Therefore, in the perspective 

of prioritizing ligands in terms of their residence times, the qualitative interpretation of the 

results from the simulations was able to provide strikingly relevant indications, in line with 

the experimental assays. In light of this, ligand A9 would have been undoubtedly discarded 

while ligand A15 preserved, during a hypothetic drug optimization campaign.  
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A characteristic structural feature of hDAAO is the presence of a loop at the entrance 

of the binding site, comprising residues 216 to 228.131 In the literature, it is typically 

referred to as the active-site lid.139,140 Most of the hDAAO ligands posses an aromatic, 

double-ring moiety that tends to place in the active site, specifically stacked in between of 

the FAD flavin ring and the side chain phenol from Tyr 224.145,147 Such configuration was 

already highlighted above and shown in Figure 27A. This stacked pi-pi scheme was 

observed in the bound state of several crystal complexes.148,149 In such configuration, 

access to the binding site is hindered. This is clearly shown in Figure 31, where a surface 

representation of the protein is given and the region to access the binding pocket is 

indicated.  

 

 
Figure 31. Focus on the active-site lid. The loop, comprising residues 216 to 228 (highlighted in red in the 

left hand panel), is located at the entrance of the binding site. In the central and right hand panels the protein 

is represent as vdW surface; in particular, the loop is intentionally not shown in the former. The comparison 

of the two surfaces highlights how the access to the ligand binding cavity is hindered by the presence of the 

active-site lid.  
 

hDAAO binding pocket has a relatively small volume, and this feature is confirmed by 

the typical small size of known inhibitors. However, ligands of greater dimensions able to 

inhibit the enzyme were subsequently discovered. The crystal structures for complexes 

with these ligands bound showed a more open state of the active site lid.139,149 This was 

necessarily related to the already mentioned small size of the pocket and to the binding 

pose of the inhibitors, that tend to direct one moiety towards the entrance of active site. 

Despites this behavior, no crystal structure with a completely open state for the active-site 

lid was reported up to this date. Moreover, while the possible involvement of this loop in 

ligand binding has been long proposed and argued,139,140 no systematic characterization 

was carried out.  
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As we carried out unbinding simulations, we observed the active-site lid behavior in 

our scaled MD runs. As outline above, no position restraints were applied to the loop. 

Thus, this was able to rearrange and respond to ligand unbinding. We stress that, as already 

mentioned, transitions along all of the degrees of freedom of the system are significantly 

enhanced under scaled MD conditions. In other words, we had no means to assess that the 

observed active-site lid behavior reflected the real dynamics that would be recorded under 

plain MD conditions. This is particularly true as observing spontaneous unbinding (and 

also binding) in such a scenario, with a salt bridge, hydrogen bonds and pi-stacking 

stabilizing the bound state, and the binding site entrance closed by the loop, would likely 

require extremely long plain MD simulations. Nevertheless, we monitored the overall 

stability of the protein and the behavior of the loop by carrying out 3 plain MD simulations 

with no ligands in the binding site. In particular, as the active form of the enzyme is a 

homodimer,131 we performed two 100 ns-long run for the monomer, and one 100 ns-long 

run for the dimer. The Root Mean Square Fluctuation (RMSF) on the a-carbons was 

calculated to observe mean fluctuations, and is shown in Figure 32.  

 

 
Figure 32. RMSF for the monomer in the plain MD runs. Four curves are shown, two corresponding to 100 

ns-long simulations for the monomer, and two from the monomers present in the homodimer, for which one 

100 ns long run was performed. The grey and white fingerprint in the background highlights structured, 

namely a-helices and b-sheets, and loop regions, respectively. 
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As it can be seen, beside high values for residues 295-305 that are comprised in a fully 

solvated loop located at a significant distance from the binding site, all of the runs 

demonstrated higher RMSF for residues 216-228. Despite no active-site lid 

opening/closure event was observed in the aggregated 400 ns of plain MD simulations for 

the monomer, this is undoubtedly an evidence of intrinsic flexibility for the active site 

loop.  

Focusing on the active-site lid in the scaled MD runs during the unbinding process, we 

notice two major behaviors, to which we refer as pathway A and pathway B. In pathway A, 

Tyr 224 is fully solvated before the ligand is able to leave the active site. Whit the loop 

opened in such configuration, the entrance to the cavity is not hindered anymore and water 

molecules are able to access. This in turn facilitates the ligand detachment and unbinding 

takes place. Contrarily, when pathway B is followed, Tyr 224 points towards the binding 

pocket and is bent towards the base of the site. While the change with respect to the initial 

configuration is not as drastic as in pathway A, the cavity is also more accessible as a 

result. Thus, the ligand is able to squeeze through the available volume that connects with 

the bulk, once the stable interactions with protein residues are broken. To monitor the two 

possible cases, we calculated the distance between Tyr 224 and the binding site centers of 

mass as a function of the simulation time. Sample runs with unbinding in pathway A or 

pathway B are shown in Figure 33.  

 

 
Figure 33. Sample pathways A (left panel) and B (right panel) during unbinding, respectively taken from 

scaled MD runs 15 and 16 on ligand A15. The ligand-pocket distance is shown on the x axis to assess 

unbinding. The values on the y axis was exploited to determined which of the two pathways was followed. In 

particular, a cut-off value of 10 Å (1 nm in the plots) was used to distinguish the two cases.  
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The frequency with which the two possible pathways were followed over the 18 scaled 

MD runs was registered for each one of the 5 ligands considered. The results are shown in 

Figure 34.  

 

 
Figure 34. Classification of the unbinding events according to the path followed by the active-site lid, 

namely pathway A or pathway B. The corresponding bars are coloured basing on the simulation time of the 

unbinding events. 
 

At a first glance, it is clear immediately that, in the vast majority of the cases, the 

pathway A was preferred. In other words, the opening of the lid was the limiting, necessary 

condition to allow the small molecules for jumping into the bulk. Notwithstanding the 

lower frequency with which the pathway B was followed, it is undoubtedly interesting 

observing that all of the ligands were able to access it. One relevant aspect arising is the 

different timescales related to the two paths. Notably, when pathway B was followed, 

unbinding was generally faster. Thus, while this route was less likely in our scaled MD 

simulations, it also required less time. Conversely, pathway A resulted as more likely, but 

longer times were involved to reach unbinding. We stress again that little can be concluded 

about the active-site lid behavior, as not enough statistics was gathered in the first place, 

and also because of the significantly smoothed potential energy surface due to the l factor 

applied. Nevertheless, our observations were in line with a potential involvement of the 

loop in ligand binding/unbinding, and also suggested possible mechanisms. Certainly, 

assessing the real dynamics would require additional, and specifically devised, simulations 
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and possibly experiments. From such perspective, our observations might provide a useful 

starting point.  

 

3.3.4 Conclusions 
 
It is doubtless that residence time has gained significant relevance in drug discovery.10 

Thus, being able to improve kinetic properties during the drug optimization phase would 

be extremely desirable. For instance, devising inhibitors that give prolonged binding would 

extend the duration of the pharmacological effect, a particularly important point when this 

represents a large component of in vivo activity.5 Within this framework, a computational 

approach based on enhanced sampling was recently developed to prioritize ligands 

according to their residence time.21 Based on scaled MD, it relies on simulating several 

unbinding events for series of small molecules presenting a common scaffold. The average 

time necessary for unbinding is then calculated from the scaled MD runs for each ligand. 

The idea is to be able to discriminate between fast and slow binders, thus offering guidance 

in terms of kinetic properties during the optimization phase. In this study, we applied the 

procedure to a series of small molecules binding to hDAAO. The ligands, all possessing 

the same scaffold, were characterized by subtle modifications in term of substituent 

groups. Without any a priori knowledge about their residence time, we ranked these 

ligands according to the computational unbinding times. Subsequently, we performed 

assays to determine experimental off rates and the corresponding residence times. The 

correlation that we obtained was very satisfactory. Besides being able to distinguish 

between fast and slow binders, the ranking obtained through the computational procedure 

was confirmed by the experiments. Moreover, we investigated the scaled MD trajectories 

to possibly extract information about molecular features related to the unbinding process. 

Thus, we recognized two main conformations in which the active-site lid, located at the 

entrance of the binding pocket,139,140 can be found during ligand unbinding. Despite no real 

quantification was achieved, this undoubtedly provided interesting indications that could 

be examined more thoroughly by subsequent studies.  
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3.4 AUTHOR CONTRIBUTION 
 

The PhD candidate contributed substantially to all of the three applications presented 

herein. In particular, as for test case 1, namely NTAIL, he performed the MetaD simulations 

and the analysis thereof. Additionally, he worked on the construction of the kinetic model 

proposed for the peptide. Concerning the second test case, that is the b2-AR complexed 

with the ligand Alprenolol, the candidate constructed the MSM starting from already 

available MD trajectories, performed the steered MD simulations, and built the guess path 

for the protein-ligand binding process. Finally, he carried out the scaled MD simulations 

on the third test case, hDAAO. All of the analysis of the produced trajectories, including 

the estimation of the computational unbinding times and the investigation about the active 

site lid behavior during ligand unbinding, were accomplished by the PhD candidate. 
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4. CONCLUSIVE REMARKS AND PERSPECTIVES  
 

A comprehensive analysis of both structural and dynamical aspects pertaining to 

relevant biological systems demands for the inclusion of kinetics, alongside 

thermodynamics. In this dissertation, we explored possible strategies based on current, 

state-of-the-art computational techniques to achieve this end. We devised different 

protocols according to the specific biomolecular system and to the particular scientific 

question that we were interested in addressing. In all of the cases presented, despite 

recognized limitations, computational approaches proved to be effective and reliable tools 

for the considered purposes. 

We showed that enhanced sampling, and in this specific case MetaD, can be exploited 

to characterize the highly heterogeneous configurational space accessible to an intrinsically 

disordered protein. The procedure was applied to NTAIL, a test case IDP. In this particular 

context, force field represented indeed a more evident limitation than sampling itself. 

Although details about the timescales at which events take place are lost when employing 

enhanced sampling, we backtracked this information by constructing a kinetic model based 

on a binning strategy of the free energy. As a result, it was possible to estimate both 

thermodynamic and kinetic equilibrium properties of NTAIL, achieving results in good 

agreement with available experimental data. The study clearly demonstrated how the 

proposed strategy is already approachable by means of current hardware and software 

architectures. The limiting steps are the reconstruction of a detailed and reliable FES and 

the determination of a diffusion matrix. Since the latter can be relatively easily obtained 

from multiple, short and not necessarily converged plain MD simulations, the former goal 

represents the major challenge. Undoubtedly, achieving a comprehensive and statistically 

relevant exploration of a configurational space is a more general matter in structural 

biology, that extends beyond the specific problem addressed in this dissertation. We dealt 

here with a single solute molecule possessing a highly heterogeneous conformational 

space. While systems of similar molecular size and complexity can be already addressed, 

even more challenging scenarios could be considered in the future, such as protein-protein 

or protein-ligand association. Therefore, as long as the FES related to specific processes of 

interest can be accurately reconstructed, the proposed procedure holds great potential in 

elucidating the underlying kinetics.  
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Unveiling the molecular features associated with protein-ligand binding would provide 

a striking support to the optimization of potential, novel drug-like molecules. 

Unfortunately, from a computational standpoint, achieving such detailed description with 

statistical significance is extremely onerous. In this context, we aimed at reconstructing the 

free energy surface for the binding process of the well-known inhibitor Alprenolol to the 

b2-AR. We constructed a Markov State Model taking advantage of long-timescale plain 

MD simulations to spot the relevant states along the binding route. MSM are typically 

constructed from plain MD trajectories, through count of the transitions between the 

different microstates in which the system can be found Thus, the model allows identifying 

the timescales associated with such transitions and predicting longer timescales kinetics. 

Notwithstanding the possibility of aggregating multiple, shorter, independent trajectories, 

that has increased significantly the appealing of such method, the demand in terms of 

sampling is still remarkable. Indeed, gathering appropriate statistics for each microstate, 

which is an essential requirement for the estimation of a reliable transition probability 

matrix, is currently the major challenge. In the case we faced herein, tens of microseconds 

were necessary to capture few spontaneous binding events. Notably, no unbinding nor 

rebinding were observed, making the information even more limited. Despites providing 

precious indications about the molecular features involved, these were not statistically 

meaningful. As such, we employed the data to build a non-reversible MSM from which 

determining the relevant states along the binding route. Basing on this information, we 

were able to reconstruct a putative pathway going from the protein surface to the 

orthosteric binding site, that will be subsequently exploited to perform path CV-based 

MetaD in order to determine the free energy surface associated with the process. In 

particular, energy barriers between metastable states could be ultimately determined and 

kinetic rates computed, achieving a level of characterization that is typically not accessible 

to experiments. While the proposed procedure can be successful, it is extremely case-

dependent and applicable to one to few systems, considering the effort involved. 

Nevertheless, in light of the advances in computer power observed during the recent years, 

it is reasonable to expect that gathering sufficient statistics for complex processes via plain 

MD will be increasingly feasible. This, in turn, will allow constructing reliable MSM from 

which extracting kinetic information directly. Furthermore, recent theoretical advances are 

demonstrating the possibility of exploiting enhanced methods as a source of sampling for 

MSM construction, considerably accelerating the possibility of retrieving kinetics from 

molecular simulations. 
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Real life scenarios in drug discovery and development programs demand for practical, 

effective and relatively fast solutions, possibly applicable to a bunch of drug-like 

molecules. Both academia and mostly industry are gradually including protocols to 

evaluate kinetic parameters in the ligand optimization stages. However, from a 

computational standpoint, due to the complex, system-specific setup and the significant 

computational effort involved, achieving a detailed characterization of molecular 

determinants and the estimation of kinetic parameters in a routinely manner is not feasible 

yet. Nevertheless, strategies are emerging aiming at fulfilling such demand. We applied a 

recent procedure based on prioritization of ligands according to their relative residence 

times determined through unbinding simulations carried out via scaled MD. Specifically, 

we considered a series of congeneric ligand of hDAAO bearing subtle structural 

differences. Without any a priori information about their kinetic profiles, we showed that 

the obtained prioritization reflected the subsequently determined experimental kinetic data. 

The present application along with previous studies are demonstrating that the strategy is 

able to rank ligands in agreement with experiments. Assessing this consensus represents a 

crucial, necessary step towards the utilization of these simulations as a reliable, 

independent tool. From a drug discovery standpoint, the ability of discriminating faster and 

slower ligands is undoubtedly of great interest. Being able to prioritize those ligands 

possessing the desired kinetic features for further optimization would be of remarkable 

support. Despite being a promising picture, the computational effort involved is still not 

negligible. For instance, in the present case, where five ligands were examined, the 

protocol led to production of an amount of trajectories in the order of hundreds of 

nanoseconds. However, as already stressed, few to no binding events would be observed 

via plain MD for a single ligand within such simulation lengths. While the strategy is 

already emerging as a promising tool, the possibility of handling larger sets of compounds 

will express its real potential in the drug discovery pipeline. Future developments of 

current hardware and software architectures will be the major determinants towards this 

goal. In a more focused perspective, more gentle scaling factors could be also explored on 

representative ligands. Once an appropriate space is envisaged on which attempting a 

reweighting procedure, the underlying FES can be reconstructed and precious insights 

gained into the energetics and kinetics associated with the binding event. Notably, the 

latter scheme can find broader applications besides protein-ligand binding, including 

conformational changes and protein-protein association.  



 103 

As a final remark, we can distinguish two main pictures arising from our studies. On 

the one side, more demanding computational protocols can be applied when particularly 

challenging scenarios need to be tackled, and specific questions need to be addressed. 

Although this does not configure well within routinely applicable procedures, it 

nevertheless represents a precious resource. On the other side, real life challenges require 

juggling multiple ligands and possibly multiple pharmacological targets. Therefore, 

computational chemistry strategies that are relatively easy to apply, and that involve 

contained computational resources, are starting to gain attention. Notwithstanding a 

possibly questionable accuracy in single, specific cases, an overall effectiveness when 

dealing with large numbers and aiming at a gross selection would nevertheless be a 

significant achievement. 
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