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ABSTRACT 

 

 

Cardiovascular disease rarely manifests in pre-menopausal women meanwhile, the incidence of 

these pathologies dramatically increases after the menopause suggesting the possibility that sex 

hormones could have a key role. 17β-estradiol is the main female circulating hormone in the 

premenopausal period and showed protective effects on the cardiovascular system. Moreover, 

recent evidences underlie the importance to take into account the gender in clinical studies as it can 

influence the response to cardiovascular medications. Therefore, we hypothesize that sex hormones 

can also influence the cardioprotective effects of nutraceutical compounds, such as sulforaphane, 

isothiocyanate present in Brassica vegetables. This study was designed to investigate the protective 

effects of sulforaphane in presence of 17β-estradiol against H2O2-induced oxidative damage in 

cardiomyocytes. 17β-estradiol enhanced sulforaphane cardioprotection against H2O2-induced cell 

death with respect to 17β-estradiol or sulforaphane alone, as measured by 3-(4,5-dimethylthiazol-2-

yl)-2,5diphenyl-tetrazolium bromide and lactate dehydrogenase assays. Moreover, 17β-estradiol 

boosted sulforaphane antioxidant activity, reducing intracellular reactive oxygen species and 8-

hydroxy-2′-deoxyguanosine levels and increasing the expression of phase II enzymes. The observed 

effects seem to be not mediated by estrogen receptor α and β, as we used specific antagonists. 

Otherwise, ERK1/2 and Akt signaling pathways seem to be involved, as the treatment with specific 

inhibitors reduced the protective effect of sulforaphane/17β-estradiol co-treatment. Furthermore, 

estrogen receptor β and G protein-coupled receptor 30 seem to contribute to Akt activation, as using 

receptor specific agonists sulforaphane-induced Akt phosphorylation was enhanced. The activation 

of Akt kinase is also involved in the activation of Nrf2 transcription factor elicited by 

sulforaphane/17β-estradiol co-treatment, as treated cells with Akt-inhibitor, the co-treatment-

induced Nrf2 activation was prevented. Our results demonstrated, for the first time, that estrogen 

could enhance sulforaphane protective effects, suggesting that nutraceutical efficacy might be 

modulated by sex hormones. 
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1. CARDIOVASCULAR DISEASE AND SEX-GENDER 

DIFFERENCES 

 

 

Nowadays, cardiovascular disease (CVD) still remain the most common cause of 

death worldwide, with 4 million people dying only across the European continent, 

every year 
1
. Although they have always been perceived as pathologies regarding 

essentially males, it is now clear that a sex-gender component is involved in the 

incidence and death from cardiovascular events. Furthermore, the development of 

coronary artery disease occurs ten year later in women than men 
2
. Indeed, the 

protection from cardiovascular events during fertile period in women dramatically 

decrease after menopause, so that the major cause of death in women after 65 years 

of age is CVD 
3, 4

. Many aspects of CVD are similar in males and females but 

obviously they differ in the anatomy and physiology of the cardiovascular system and 

some differences in risk profile, symptoms, age of onset and response to medical 

treatments have been evidenced 
5
.  

These differences are due in part to the biological differences between men and 

women, usually defined as sex differences, meanwhile the individual interaction with 

the society and environment results in gender differences. These two concepts are 

separated but intertwined in medicine, because they interact and become tangled 

together (Fig. 1.1) 
6
.  
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Figure 1.1: Schematic representation of the interaction between sex and gender 
7
 

 

In fact in this scenario it's also clear that sex hormones can influence behavior and 

lifestyle 
6
. However, studies analyzing the impact of sex and gender in health and 

disease are still inadequate. Despite it has been cleared that there are also sex-gender-

related differences in the pharmacokinetics (i.e. how the drugs are absorbed, 

distributed, biotransformed and excreted) and pharmacodynamics (Fig. 1.2) (i.e. how 

the drug interacts with the site of action), a real clinical relevance of these differences 

is moderate or remains uncertain due to underrepresentation of women in clinical 

trials 
2
.  
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Figure 1.2: Schematic representation of a drug pharmacokinetics and pharmacodinamics 
2
. 

 

So the current guidelines on CVD are based on evidences mostly obtained in middle-

aged men, implying low appropriateness for therapeutic interventions in women 
2
. 

  

 

1.1 Ischemic Heart Disease (IHD) 

 

Ischemic heart disease develops differently in men and women. Men are prone to 

occlusive artery disease linked to a more pronounced and severe atherosclerosis in 

their coronary arteries, which they develop earlier than women, with the consequence 

of precocious myocardial infarction 
7
. On the other side, women experience 

myocardial ischemia, which is due to an imbalance between oxygen supply and the 

demand of the myocardium, for pathological vasoreactivity 
8
. Commonly, perfusion 

problems in women arise from spasm and endothelial dysfunction, or from 

microvascular dysfunction. 

The reason why pre-menopausal women develop less atherosclerosis than men is 

poorly investigated. It has been suggested that it could be related both to a better lipid 

profile than men and to a protective effect mediated by sex hormones. Women with 

hormonal disorders experience atherosclerosis early than healthy women 
7
. 
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Acute mortality after myocardial infarction (MI) is major in younger women than 

age-matched men 
9
. In general, different studies conducted worldwide evidenced that 

women have a higher mortality rate than men for MI, and women die more from 

cardiac rupture at acute MI 
9
. 

Takotsubo syndrome is an IHD manifestation which affects predominantly women, 

and appears as an acute coronary syndrome, though the exact etiopathology is 

unclear. Probably, the lowering in estrogen levels, which occurs in post-menopausal 

period, makes heart more sensible to catecholamines activity 
7
. However, this 

syndrome often manifests in pre-menopausal women after a marked acute 

psychological or physical stress, other cause of increased in catecholamines activity 

on heart. Most of the patients recover a normal ejection capacity, despite the recent 

epidemiological data showed a mortality of 8% per year 
10

. 

 

 

1.2 Hypertension 

 

The prevalence in hypertension related to gender is different if we compare young or 

old population. Whereas there are more young males with hypertension, the situation 

totally capsizes in the old population where the percentage of women with 

hypertension is double than men 
11

. Moreover, at older ages, women are more prone 

to develop vascular and myocardial harshness than men, and frequently they present 

aortic harshness, reflecting a systolic hypertension
12

. Nevertheless,  hypertensive 

women maintain major left ventricular ejection fraction than men 
13

. 

 

 

1.3 Pressure Overload 

 

The adaptation of female heart to pressure overload is different from male. During 

progression of aortic stenosis more often women preserve myocardial contractility 
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and ejection fraction than men, and this could be due to a minor induction of collagen 

remodeling 
14

. In a study from Petrov et al. 
15

 in patients undergoing aortic valve 

replacement, the same percentages of women and men had a superior diameter of left 

ventricle than reference values, but after surgery,  this superiority persisted in major 

percentage in men than in women. Also hypertrophy reversed more in women than in 

men. All these effects are connected to a different collagen I, collagen III and matrix 

metalloproteinase 2 gene expression, so that less fibrosis prior surgery can promote a 

faster regression 
15

. Overall, the studies demonstrated sex-specific pattern in  

myocardial remodeling. 

 

 

1.4 Exercise-induced Cardiac Hypertrophy  

 

Few data have been collected about endurance-induced hypertrophy, and so far a 

different cardiac adaptation was described. Women and men undergoing identical 

training program experience different metabolic adaptation 
16

. In particular, women 

had more body fat reduction in 6 months of training whereas men had a reduction 

only after 12 months. Moreover, women had similar or greater increase in left 

ventricular mass as men after 3 months, but not further increase going on with 

training, instead the greater increase in men left ventricular mass was at month 12. 

Cardiac hypertrophy stimuli in women is controlled by phosphatidylinositol 3-

kinase/Akt and/or β-catenin pathways. In pre-menopausal period women exhibit 

greater Akt cardiac activity with anti-hypertrophic predominant effect 
17

. 

Hypertrophy in men could be partially explained as an effect of testosterone, that is 

known to increase with physical activity 
18

. However more data are needed in this 

context. 
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1.5 Heart Failure 

 

Heart failure (HF) is a chronic, progressive condition in which the heart muscle is 

unable to pump enough blood for the body needs in terms of blood and oxygen. In 

Western societies HF affects more than 10% of people over 70 years, and derives 

from different pathophysiological conditions 
7
. Different forms of HF exist, with 

reduced ejection fraction (typical of men), and with preserved ejection fraction 

(affecting predominantly women) 
19

. Generally, the clinical outcomes for both 

syndromes are better for women, with a different adaptation of the heart with respect 

to men 
20

.  Women develop less ventricular dilatation than men, though they present 

smaller and stiffer ventricles probably due to the different composition in fibrous 

tissue, but maybe also related to different calcium handling which comports variable 

relaxation kinetics 
21

.  

 

 

1.6 17β-estradiol and cardioprotection 

 

Estrogens belong to steroid hormone family which includes also glucocorticoids, 

mineralcorticoids, androgens and progesterone. All steroid hormones derive from 

cholesterol and they share the same key chemical structure (cyclopentane-perhydro-

phenanthrenic) (Fig. 1.3). The synthesis of sex hormones starts early during 

embryonic development. They are mainly synthesized in gonads, but exist also an 

extragonadal synthesis in cardiomyocytes, bone cells and neurons. Sex hormones act 

with many mechanisms, as they belong to the vast family of endogenous signaling 

molecules, which modulate different cellular processes via gene and protein 

regulation. The main female circulating hormone is 17β-estradiol (E2), major product 

of ovary secretion, which owns the strongest potency and has the capability to bind 

all subtypes of estrogen receptors. Other naturally occurring estrogens are estrone (12 

times less potent than E2), produced in both males and females in less extent with 
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respect to E2, meanwhile estriol (80 times less potent than E2) unlike E2 and estrone 

is not synthesized in or secreted from the ovaries but it mainly derives from 16α-

hydroxylation of the other two estrogens, by cytochrome P450 enzymes in liver. 

 

 

 

Figure 1.3: Biosynthesis of sex hormones 
22

. 

 

As mentioned before, E2 can also be produced locally as a result of the conversion of 

testosterone by the enzyme aromatase 
23

. Aromatase is present in a number of 
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extragonadal tissues, such as the adipose tissue, bone, brain, heart, and the 

vasculature in both sexes 
24

. 

It has been proposed that E2 possesses cardioprotective activity and acts through 

different mechanisms. E2 reduces cardiomyocyte apoptosis in vivo and in vitro 

through estrogen receptors (ERs) and phosphoinositide-3-kinase (PI3K)/Akt 

signaling pathways 
25, 26

. E2 differentially modulates p38α and β MAPK during 

hypoxic/oxidative stress, preventing apoptosis and counteracting mitochondrial 

reactive oxygen species (ROS) generation in cardiomyocytes 
27

. In cardiomyocytes, 

E2 is also able to differently modulate prohypertrophic (class I) and antihypertrophic 

(class II) histone deacetylase proteins through the binding to ERβ, thus counteracting 

cardiac hypertrophy 
28

. It has also been shown that SIRT1 (class III) functions as an 

important regulator of E2-mediated cardiomyocyte protection during angiotensin-II-

induced heart hypertrophy and injury 
29

. 

In vascular smooth muscle cells, E2 possesses antioxidant activity 
30

 and up-regulates 

the expression of genes as endothelial nitric oxide synthase (eNOS), superoxide 

dismutase (SOD), and down-regulates NADPH oxidase in the cytoplasm 
31

, thus 

contributing to its vasoprotective effects. 

Moreover, in cardiomyocytes, E2 exposure up-regulates corticotrophin-releasing 

hormone receptor type 2 expression by interacting with ERα and enhances the 

protective effect of urocortin against hypoxia/reoxygenation 
32

. In the H9C2 

myocardial cell line, Hsieh et al. 
33

 showed that E2 provides cardioprotection through 

the inhibition of hypoxia induced HIF-1α and downstream BNIP3 and IGFBP3-

dependent apoptotic responses. Furthermore, E2 cardioprotective effects were also 

confirmed in animal models: E2 prevented Fas-dependent and mitochondria-

dependent apoptotic pathways, and cardiac hypertrophy induced by ovariectomy, in 

rat models 
34, 35

; E2 reduced infarct size and exerted a protective effect on ischemic 

myocardium in rabbits, mice, and rats 
36-38

; E2 prevented global myocardial 

ischemia/reperfusion injury in rats 
39

. The specificity of these effects was well 

documented by the reversion of the effect using ER antagonist ICI182780 
40, 41

. The 
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administration of E2 was also demonstrated to exert antihypertrophic effects in 

various models of pressure overload. The mechanisms involved are: the inhibition of 

the expression of prohypertrophic genes and the reduction of left-ventricular 

hypertrophy 
42

; the regulation of two proteins involved in the hypertrophy 

development, such as atrial natriuretic factor and myosin heavy chain beta 
43, 44

; the 

reduction of systolic dysfunction and fibrosis with the involvement of ERα in 9-

weeks administration model 
45

. 
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2. ESTROGEN RECEPTORS AND SEX-GENDER 

DIFFERENCES IN CARDIOVASCULAR SYSTEM 

 

 

Before 1996, only one estrogen receptor has been discovered and the predominant 

idea was that all estrogen effects were mediated by this receptor that acted as a 

ligand-regulated transcription factor. Now we refer to this receptor as ERα. Over the 

past 20 years the knowledge about estrogen signaling has grown, so that now three 

different receptors have been characterized: ERα, ERβ and G protein-coupled 

receptor 30 (GPR30), which can act through traditional transcription regulation as 

well as by non-genomic pathways. 

 

 

2.1 Chemical structure and localization of Estrogen receptors 

 

ERα and ERβ belong to the superfamily of nuclear steroid hormone receptors. Like 

all steroid receptors they have: an amino (NH2)-terminal region, A/B domain, which 

contains constitutive AF-1 (activation function 1) that acts on target gene 

transcription in a ligand-independent way; a zinc finger-based DNA-binding domain 

(DBD) named as C region, which contains regions that mediate dimerization; a hinge 

domain (D region) which connects C region to E region and it is the binding site for 

heat shock protein 90; a carboxy (COOH)-terminal ligand-binding domain (LBD) (E 

region), which contains the ligand-dependent activation function (AF-2) 
7
 (Fig. 2.1). 

They have been identified in several cardiovascular cells from male and female 

individuals, such as cardiomyocytes, cardiac fibroblasts, vascular smooth muscle 

cells and vascular endothelium 
46-49

. 

Interestingly in human heart, ERα mRNA levels are similar in men and women, 

meanwhile ERβ mRNA levels are more abundant in men than in women 
50

. 
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A part of the classical localizations at the plasma membrane and nucleus, both ERs 

have also been detected in mitochondria 
51

. 

 

 

 

Figure 2.1. Domain organization and sequence homology of human ERα and ERβ 
52

. 

 

 

Only in the last decade, GPR30 emerged as an important mediator of non-genomic 

estrogen actions. It is a G-protein coupled receptor, so belongs to the largest known 

class of membrane receptors (Fig. 2.2). The most important characteristic of G-

protein coupled receptors is the presence of seven transmembrane alpha helices, and 

as the name implies they interact with G-proteins. G-proteins are specialized proteins 

with the ability to bind guanosine diphosphate (GDP) and guanosine triphosphate 

(GTP), and all those that associate with G-protein coupled receptors are 

heterotrimeric, meaning they have three different subunits (α-, β-, and γ-subunit). 

GPR30 protein is structurally different from classical ERs but it possesses the same 

binding characteristics 
53

.  

The expression of GPR30 has been identified in multiple tissues, such as ovary, 

uterine endometrium, brain, kidney, adrenal, breast, heart and endothelium 
54-56

. 
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Instead, regarding GPR30 cellular location there is some debate, because some 

research groups found it localized in the endoplasmic reticulum and the Golgi 

apparatus but not in plasma membrane 
57

, meanwhile other reported GPR30 to 

localize in plasma membrane 
58, 59

. Cheng et al. 
60

, showed a constitutive endocytosis 

for GPR30, which results in a half-life of 30 minutes, demonstrating its presence also 

in endosomes and endoplasmic reticulum. 

 

 

Figure 2.2. Structure of GPR30 (modified from 
61

). 

 

 

 The GPR30 rapid recycle from plasma membrane through endosomes formation 

could explain why data on receptor localization are not clear. Therefore, the 

localization of GPR30 appears to be heterogeneous, but so far data for functionality 

at endoplasmic reticulum level are uncertain. 
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2.2 Estrogen genomic effects 

 

E2 activating ERs can regulate gene expression through different pathways: 1) direct 

binding to DNA; 2) indirect binding to DNA through other transcription factors; 3) 

ligand-indipendent binding 
62

 (Fig. 2.3). 

In the classical mechanism, E2 binds ER facilitating its dissociation from cytoplasmic 

chaperones and promoting its translocation to the nucleus and its dimerization, thus 

facilitating the binding to ERE sequence (estrogen response element) in the DNA and 

mediating the regulation of gene expression. In this case coactivators and 

corepressors can activate or inhibit gene expression. E2 can also regulate gene 

expression via the mediation of ER-tethering with transcription factors, such as 

activator protein-1 and specificity protein-1, so acting via non-ERE pathways 
63

; 

alternatively, growth factors and E2 can activate kinase signaling pathways leading to 

the phosphorylation of a specific serine site on ERs 
64

, significant for the induction of 

the trascription via ligand-indipendent or ERE-pathway. 
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Figure 2.3. Genomic ER signaling 
62

.  

 

 

2.2.1 Distinct roles for ERα and ERβ genomic effects, who wins? 

 

The analysis of ERs genomic effects is really difficult for several reasons. First of all, 

there are variations in ERα and ERβ protein levels that are temporal and tissue-

related, moreover their levels and also coactivators and corepressors levels can vary 

during ageing, diseases, and with sex, so modifying E2 effects. 

In wild type mice aorta O'Lone et al. 
65

, examining aorta whole vessels after long-

term exposure to E2, showed that ERα was sufficient and necessary for the induction 

of some genes, meanwhile for another group of genes both receptors ERα and ERβ 

act in concert to stimulate gene expression. The same study revealed the involvement 

of ERβ in down-regulating some genes, including several nuclear-encoded 
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mitochondrial genes, supporting its role in a gene active repression and not simply an 

opposite effect to ERα. 

Nikolic et al. examined the effects of 2 h heart perfusion with a selective ERβ 

agonist, revealing a cardioprotective effect mediated by the up-regulation of different 

genes. These different results could be due to the diverse exposition times and cells 

(aorta or ventricular myocytes) 
66

.  

Studies explored the roles of both ERs after myocardial infarction, using unique 

models of cardiac-specific ER overexpression (OE) in mice. ERα-OE protects the 

heart from ischemic damage, enhancing neovascularization of peri-infarct area and 

inducing less fibrotic genes 
67

. ERβ-OE mice showed improved survival after 

myocardial infarction, likely for a better sustenance of Ca
2+ 

cycling and attenuated 

cardiac fibrosis 
68

. 

Also in vitro models have been explored for ERs differential genomic regulation. 

Endothelial nitric oxide synthase (NOS), the enzyme primarily responsible for the 

generation of nitric oxide (NO) in the vascular endothelium 
69

, was up-regulated by 

ERα in endothelial cells 
70

, whereas ERβ was responsible for the induction in cardiac 

muscle 
71

.  

As mentioned also before, both ERs can act in concert to regulate gene expression. In 

endothelial cells, they contrast the over-generation of reactive oxygen species (ROS) 

from mitochondria, up-regulating superoxide dismutase 2 (SOD2), with the result of 

a lower mitochondrial dysfunction and vascular damage 
72

.  

 

 

2.3 Estrogen non-genomic signaling 

 

The first report of a non-genomic response by estrogen has been showed in the 1960s 

by Pietras and Szego 
73

. They demonstrated a rapid response on cAMP concentration 

in endometrial cells, within minutes from E2 exposure.  
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It is now well characterized that physiological concentrations of E2 can induce 

cellular rapid responses, which do not involve protein synthesis or gene transcription, 

and that are controlled by receptors localized on plasma membrane 
74, 75

 (Fig. 2.4). 

 

 

 

 

Figure 2.4. Non genomic ER signaling 
62

. 
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2.3.1 ERα and ERβ signaling 

 

ERs localize at plasma membrane for a ≈ 5%-10% of their total amount 
76

. 

Unfortunately, the distribution of membrane-bound ERs in the cardiovascular tissues 

is poorly investigated, but both ERα and ERβ have been found in vascular endothelial 

cells 
77

. In the other tissues, the relative distribution of ERα and ERβ at the plasma 

membrane is different among cell type; in breast cancer cells ERβ is more abundant 

than ERα 
78

, and the opposite is true for the reproductive cells 
79

. 

Post-translational modifications are found to be involved in the binding of ERs to 

plasma membrane, such as palmitoylation that increases the association of the 

receptors to plasma membrane 
80, 81

. 

Moreover, several studies identified different sites on ERα, important for its 

localization to the plasma membrane. Ser522 is required for the interaction between 

ERα and caveolin-1, facilitating the receptor  binding to caveolae 
80, 82

, but the 

mutation of this residue does not block the traslocation of ERα to the membrane as 

reported by Razandi et al., suggesting that Ser522 is not the only residue involved in 

the membrane association 
82

. Palmitoylation of Cys447 has been reported to be 

crucial for membrane localization of ERα 
82, 83

. Therefore, the group of Levin 

identified in human and mouse cells an amino acid motif in estrogen binding domain 

of both ERα and ERβ, as involved in the membrane traslocation, and Cys447 residue 

is part of this motif 
84

. 

The palmitoylation can happen only on ER monomer, so if dimerization occurs, such 

as after estrogen binding, the receptors available for palmitoylation are less and in 

turn less receptors translocate to the membrane 
62

. Another mechanism involved in 

the trafficking to plasma membrane is the binding between heat shock protein 27 and 

palmitoylation site on ERα monomer 
82

. 
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2.3.1.1 Cardiomyocytes 

 

Unfortunately, only few studies have been conducted to examine the role of ERs non-

genomic pathways in cardiomyocytes.  

Short-term treatment with E2 is able to improve heart function after I/R injury, and 

this effect is reversed in the presence of NOS inhibitor,  suggesting the contribution 

of NO production via ER activation in this process 
85

. Other studies demonstrated that 

non-genomic estrogen signaling by ERβ can act on cardiac hypertrophy 
43, 86

. 

Moreover, the involvement of this receptor has been elucidated by another study, 

which found that the prevention on angiotensin-induced hypertrophy elicited by E2 

was abolished in ERβ knockout mice 
87

. The effects on cardiomyocyte hypertrophy 

were due to sequestering of transcription factors in the cytoplasm which prevents 

target gene activation. 

 

 

2.3.1.2 Endothelial cells 

 

E2 can stimulate eNOS phosphorylation in endothelial cells (EC) activating 

membrane-localized ERs 
88

. Endothelial eNOS activation is a main pathway in the 

regulation of vascular relaxation, EC proliferation and migration. Endothelium health 

is really important in the cardiovascular system, indeed endothelial dysfunction is 

responsible for an increased cardiovascular risk 
89

. E2 is able to activate eNOS by 

several signaling pathways. After E2 binding at membrane level, ERα forms a 

complex with the regulatory subunit of PI3K, p85α, and with c-Src at the SH2 

domain 
90

. This complex leads to the activation of protein kinase B (Akt), 

extracellular-signal-regulated kinases 1/2 (ERK1/2) and also phosphorylation and 

activation of eNOS 
91

. In agreement, the pre-treatment with E2 in mice exposed to I/R 

injury, increased eNOS activation and decreased leukocyte accumulation at vascular 

level, and the protective effect was abolished using PI3K or eNOS inhibitors 
74

.  
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Moreover, ERα can interact with G proteins Gαi and Gβγ, leading to eNOS activation 

and stimulation of cell migration 
92

. 

In addition to the effects on eNOS, physiological concentrations of E2 (10
-9 

mol/L) 

can modulate intracellular calcium homeostasis through non-genomic pathways. E2 

was able to cause a rapid increase in intracellular calcium levels in both human and 

rat EC, and in this last cell type, the effect was blocked using the ER antagonist ICI 

182,780 
93, 94

.  

 

 

2.3.1.3 Vascular Smooth Muscle Cells 

 

It has been reported that E2 can rapidly inhibit vascular smooth muscle cells 

(VSMCs) proliferation 
95, 96

. The proliferation of VSMCs is implicated in 

cardiovascular disease, particularly in atherosclerosis 
62

. The activation of ERα 

through E2 treatment induces the activity and the expression of different 

phosphatases, such as protein phosphatase 2A, MAP kinase phosphatase-1 and so on. 

Therefore, stimulating these phosphatases which lead to the dephosphorylation of 

kinases, E2 induces a stop in cell migration and growth 
95, 97, 98

. Karas et al. 
99

 

evidenced the role of E2 on blocking VSMCs proliferation, thanks to an enhanced 

activity of phosphatase 2A on phosphorylated Akt. This outcome was controlled by 

the complex formed between ERα and phosphatase 2A. In the same study, the 

researchers evidenced that in cells derived from a transgenic mouse line, which 

overexpressed a peptide that disturb the trafficking of ERs to plasma membrane, E2 

did not influence cell proliferation. Data from microarray analysis confirm that 

disturbing ERs non-genomic signaling alters transcriptional response to E2 treatment. 

The genes involved are those associated with vascular function, so underling the 

importance of short term signaling on vascular health 
100

. 
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2.3.2 GPR30 signaling 

 

The expression of GPR30 is ubiquitous, so it is not surprising that its activation has 

been connected to multiple biological activities, such as production and secretion of 

IL-10 in immune system 
101

; cardiovascular and cancer cell growth and death 
102, 103

; 

effects on depression disorders 
104

. 

The signaling cascade initiated by GPR30 involves the activation of a stimulatory G 

protein and the subsequently formation of cAMP after activation of adenyl cyclase. 

Interestingly, E2 is able to trigger this rapid intracellular response, whereas estrone 

and estriol are inactive. Moreover, many other signaling pathways have been linked 

to GPR30 activation, as epidermal growth factor receptor (EGFR) 
105

, PI3K 
106

, and 

ERK pathways 
107

. 

 Of note, these pathways are the same widely studied as non-genomic pathways 

mediated by ERα and ERβ 
91

. 

 

 

2.3.2.1 Vascular effects 

 

Several reports aimed to investigate the vascular effects mediated by GPR30.  

Surprisingly the largely used ERs antagonist ICI 182,780 did not attenuate the 

estrogen-induced vasodilatation in arteries 
108, 109

, and the genomic deletion of ERα 

and ERβ did not reverse the cardiac responses mediated by E2 
110

. Indeed, although 

ICI 182,780 is a well known ERα and ERβ antagonist, it acts as an agonist for 

GPR30. So these discoveries suggest that GPR30 might regulate the vasodilatatory 

effect of E2. To deepen this aspect multiple studies were conducted using the 

selective GPR30 agonist G-1, so confirming the vasodilatative effect of GPR30 in 

both human and non-human arteries, and in vitro, in vivo models 
111-113

. In particular, 

in in vivo models, researchers evidenced a reduction of blood pressure also in 
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normotensive rats with no response in animals knockout for GPR30 
113

, and the total 

vasorelaxation effect after G-1 treatment was about 30% to 40% 
114

.  

 

 

Figure 2.5. GPR30 effect on vasculature via endothelium-dependent and endothelium-independent 

mechanisms 
62

. 

 

 

The GPR30 effects on vasculature involved mechanisms endothelium-dependent and 

endothelium-independent (Fig. 2.5). It has been demonstrated that E2-mediated 

GPR30 activation leads to an increase in NO production 
108

, so supposing its 

implication. But several studies also demonstrated a residual effect in endothelium-

prived vessels after G-1 treatment 
112, 115

. G-1-induced relaxation in coronary smooth 

muscle is supposed to be mediated by a large conductance calcium-activated 

potassium channel. Indeed, it has been evidenced an inhibition in G1-induced 

vasorelaxation, only with the channel block and not when NOS production was 
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inhibited
115

. Vascular remodeling can occur as response to acute or chronic (vascular 

injury, and atherosclerosis) stress factors and includes adaptive and maladaptive 

responses (hypertension and vascular stenosis) 
116

. It is well-known that E2 is able to 

decrease proliferation of VSMC after injury 
62

. Different findings support the role of 

GPR30 in inhibiting the inflammatory response associated with atherosclerosis 
117

 

and proliferation 
118

, meanwhile it stimulates apoptosis 
119

, and mitigates the 

expression of adhesion molecule mediated by TNF 
120

. G-1 agonist also demonstrated 

to be able to reduce DNA synthesis and proliferation in different models of 

endothelial cells interfering with the cell cycle 
121

.  

A role of GPR30 in atheroprotection has also been evidenced. The deletion of GPR30 

gene led to increase in blood pressure, low-density lipoprotein (LDL) cholesterol 

levels, and the presence of inflammation markers 
117

.  

The mechanisms insight this protection are related to cholesterol metabolism. Indeed 

GPR30 activation has been linked to the up-regulation of LDL receptors at hepatic 

level, increasing the clearance of circulating LDL cholesterol; and on the other hand 

GPR30 activation reduces LDL receptor degradation, through the inhibition of 

proprotein convertase subtilisin/kexin type-9 (PCSK9), which is the major 

mechanism for the receptor degradation 
122

.  

 

 

2.3.2.2 Cardiac effects 

 

E2 modulation of cardiac calcium intracellular levels was reported to be ERα and 

ERβ-independent. As confirmation to this, researchers used  cells derived from ERα 

and ERβ knockout mice, and the E2-mediated calcium levels alterations were not 

changed 
110

. The development of a GPR30 knockout model confirmed the role of this 

receptor in the modulation of calcium influx 
113

. Using G-1 agonist a protective effect 

against I/R injury in rat hearts was also evidenced, preserving cardiac contractility, 

reducing infarct size, and the levels of inflammatory markers (TNF, IL-1β, IL-6), and 
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also inhibiting the opening of mitochondria permeability transition pore after the 

injury, so saving cardiac cells from the death 
103, 123-125

. The molecular pathway 

involved in cardiac protection seems to be PI3K signaling, because using a PI3K 

inhibitor reverses G-1 protective effects 
103

. 

 

 

2.3.3 Sex-gender differences 

 

More and more studies aimed to investigate the role of ERs and GPR30 in different 

pathological conditions and consequently to observe the presence of sex-differences. 

For this purpose animal models with specific genetic deletion of these receptors have 

been used.  

The genetic deletion of ERβ (BERKO) in conditions of pressure overload evidenced 

a detrimental consequence for both males and females but for different mechanisms 

126
. The presence of ERβ in females reduced fibrosis, cardiomyocytes hypertrophy 

and cell apoptosis, meanwhile in males it promotes fibrosis but again limits 

cardiomyocytes hypertrophy and cell apoptosis 
126

. 

The greater importance of ERβ in females was also confirmed in an I/R model, where 

BERKO females showed a greater degree of injury 
127

. Similarly, in another study E2 

treatment resulted in a smaller infarct size in a model of genetic deletion for ERα 

(ERKO) in respect to BERKO 
128

.  

In a model of exercise-induced hypertrophy ERβ had a role as modulator for sex-

differences 
129

. The cardiac response to exercise in females is modulated by the 

regulation of PKB and MAPK signaling pathways, such as protein synthesis and 

mitochondrial adaptation via ERβ 
129

. Moreover, the alteration in circulating free fatty 

acids with an augmented adipose tissue lipolysis has been reported. Therefore, sex 

differences in exercise-induced hypertrophy are also related to changes in cardiac 

metabolism, shifting to a greater use of fatty acids in females
130

. 
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Only female BERKO mice with a condition of chronic MI showed a prolonged 

ventricular repolarization with a reduction in automaticity  
131

.  

All these considerations promote the hypothesis of a role for ERβ in mediating a 

mitigated response to several cardiac injuries in females. 

Interestingly, from other studies emerged the role of  ERα in mediating E2-

protection. For example, in I/R injury ERα functionality at endothelial level seems to 

have an important role in the E2-induced prevention of endothelial dysfunction 
132

. 

Studies utilizing ERKO animals evidenced worse cardiac damages after I/R injury in 

the group with the deletion 
133

. 

On the other side, also GPR30 cardiovascular effects could be influenced by sex and 

gender. In particular, regarding vasodilatative effects, the genetic deletion of GPR30 

in a mouse model, comported the increase in blood pressure in females 
134

. Moreover, 

the endothelial-dependent GPR30 effects were also observed to be gender-influenced, 

because in the presence of a NOS inhibitor vasodilatation was reversed only in 

vessels from pregnant women, and partially in those from postmenopausal women, 

meanwhile no effects were demonstrated on vessels from men 
135

.  

The importance of GPR30 in the regulation of blood pressure was also pointed out 

thanks to the identification of a common hypofunctional missense variant of GPR30 

namely P16L 
136, 137

. Individuals carrying the hypofunctional variant showed higher 

blood pressure, as observed in a population of normotensive, especially in 

premenopausal women 
136

. Furthermore, the probability to carry this genetic variant 

was twice in women (mainly postmenopausal) with resistant hypertension 
136

. 

As mentioned in previous paragraph, the deletion of GPR30 gene leads to increase in 

blood pressure, low-density lipoprotein (LDL) cholesterol levels, and the presence of 

inflammation markers 
117

. All these consequences were more pronounced in females 

than in males 
117

. And in two different cohort populations, women but not men, which 

present the hypofunctional receptor variant, showed significantly higher LDL and 

total circulating cholesterol levels 
122

.  
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In conclusion, the results provided from the literature suggest that both ERs are 

important and participate to the cardioprotection by E2. 

Moreover, all observations lead to support the role of GPR30 activation especially in 

the regulation of blood pressure and atherosclerotic risk factors.   
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3. OXIDATIVE STRESS AND CARDIOVASCULAR DISEASE 

 

 

3.1 Oxidative stress 

 

Oxidative stress is a condition of disequilibrium between oxidative species, mainly 

reactive oxygen species (ROS), and the endogenous antioxidant defenses (Fig 3.1). 

This condition refers to overall alterations that can occur at tissue, cellular and 

biological macromolecule level. ROS and other reactive species are a natural by-

product of different biochemical processes and adequate quantities are essential for 

the homeostasis maintenance and for cell signaling. In this regard, the 'redox window' 

hypothesis has been postulated: adequate ROS production is needed for physiological 

cellular functions, but an excess of ROS levels can contribute to the development of 

pathological conditions 
138

. The alteration of the normal redox state can have 

damaging effects, with the consequence of damage to proteins, lipids and nucleic 

acids leading to different pathological states such as atherosclerosis, CVD, aging, 

diabetes and cancer. 
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Figure 3.1. The balance between antioxidants and oxidants determines oxidative stress [modified from 
139

]. 

 

 

3.2 Free radicals and ROS 

 

Free radical is a chemical specie having one or more unpaired electrons on one 

atomic or molecular orbital. The free radicals are characterized by an extremely high 

reactivity and instability, as they tend to catch the electron they miss from other 

molecules. They trigger chain reactions leading to shutdown of starting radical and/or 

to the generation of a new radical. The free radicals most involved in cellular 

processes are the ROS 
140, 141

. Sources of ROS production are many and include 

NADPH oxidase, uncoupled nitric oxide synthases, xanthine oxidase and 

mitochondria 
142

 (Fig 3.2). 
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Figure 3.2. Representation of the main ROS  sources [modified from 
143

]. 

 

 

Our body produces different kinds of ROS, such as superoxide (O2
•-
) and hydroxyl 

(OH
•
) free radicals, and hydrogen peroxide (H2O2) which is a non-free radical.  

H2O2 is relatively stable but with strong oxidative properties 
144

 and its production can 

be mediated by superoxide dismutation and peroxidase enzymatic reactions  in 

peroxisomes 
145

. It represents the main ROS involved in cellular signaling, as it acts 

activating several cellular signaling pathways as secondary messenger 
146

. This is due 

to its longer half-life in respect to other free radicals and ability to permeate through 

cellular membranes 
147

. 

The production of H2O2 is particularly increased in inflammatory conditions 
146, 148

. In 

addition to the oxidative stress condition which comports alteration of cellular 

functionality, apoptosis or necrosis, ROS can also cause post-translational 

 

 
Figure 3.2.  
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modifications involving important cellular proteins and signaling pathways in the 

heart 
149-151

. 

 

 

3.3 Enzymes involved in ROS production 

3.3.1 NADPH oxidase 

 

NAD(P)H oxidase (Nox) is an enzyme catalyzing O2
•- 

or H2O2 release by reduction of 

molecular oxygen using as electron donor NAD(P)H, in various intracellular and 

extracellular compartments 
152

. Several isoforms of Nox were described in various 

cardiovascular cells such as enodthelial cells and VSMC. In particular Nox1 and 

Nox2 isoforms represent an important source of ROS at vascular level in different 

pathological conditions, as hypertension, diabetes and atherosclerosis 
152

. However 

generation of ROS through Nox enzymes have also a physiological role in various 

processes, including immune system reactivity and redox-dependent signaling 

pathways. The activation of Nox enzyme needs of  the assembly of multiple protein 

components in the cell membrane 
153

 (Fig. 3.3).  

 

 

Figure 3.3. Schematic representation of NADPH oxidase activation [modified from 
153

]  
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3.3.2 Xanthine oxidase 

 

Xanthine oxido-reductase system is involved in purine catabolism, it oxidizes 

hypoxanthine to xanthine, and then xanthine to uric acid 
154

. The system consists of 

two interconvertible forms, the liver synthesizes xanthine dehydrogenase that under 

pathophysiological conditions, such as ischemia and reperfusion, undergoes 

proteolysis releasing xanthine oxidase (XO) 
154

. XO can associate with 

glycosaminoglycans present in endothelial cells and localizes with them 
155

. As for 

Nox enzymes, XO catalyzes the reduction of molecular oxygen to superoxide and 

hydrogen peroxide. Circulating levels of XO were increased in animal models of 

hypercholesterolemia and using a XO inhibitor as oxypurinol the superoxide levels 

were reduced leading to an improved endothelial function 
155, 156

.   

 

 

3.3.3 Mitochondrial respiratory chain enzymes 

 

Complex I and III are responsible for the production of a substantial amount of 

superoxide in mitochondrial electron transport chain. Superoxide is released into the 

mitochondrial matrix by complex I so reversing the electron flow from complex II. 

Complex III releases superoxide into the mitochondrial intermembrane space. 

Mitochondria are cellular organelles really sensitive to oxidative damage. Increased 

ROS production slows their activity and promotes further ROS release 
157

. Moreover, 

mito-ROS can subsequently activate other ROS sources 
158

. Increased mito-ROS 

levels can lead to the release of apoptotic agents 
159

. 
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3.3.4 Endothelial nitric oxide synthase (eNOS) 

 

eNOS enzyme has a key function in the endothelium for its production of NO which 

induces vasodilatation, prevents atherogenesis and inhibits platelet aggregation and 

adhesion 
160

. Similarly to the other NOS isoforms, eNOS switches electrons from 

NADPH, via the flavins flavin adenine dinucleotide and flavin mononucleotide in the 

carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase 

domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO 
160

 (Fig. 

3.4). Inadequate amount of NO production can lead to endothelial dysfunction. 

Oxidative stress is markedly implicated in endothelial dysfuction, because the excess 

of superoxide rapidly inactives NO forming peroxynitrite (ONOO
-
). The essential 

NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation 

by ONOO(-) 
161

. All this lead to eNOS impairment and it is no longer able to produce 

NO but rather it become a source of superoxide 
160

. eNOS uncoupled has been found 

in various animal models and in patients with endothelial dysfunction 
160

.  
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Figure 3.4. Schematic representation of eNOS-mediated NO synthesis 
162

. 

 

 

3.4 Antioxidant defenses 

 

As mentioned before ROS are extremely reactive and can induce damages in all 

cellular districts. They are able to modify and inactivate proteins and oxidize 

membrane phospholipids (lipid peroxidation) altering the composition of plasma 

membrane. In particular, H2O2 which is able to cross the membrane, can interact with 

the DNA inducing mutations. In addition, it has been demonstrated the direct 

correlation between oxidative stress and inflammation, as ROS can activate NF-kB, a 

key factor for inflammation 
163

. NF-kB is a transcription factor which regulates the 

expression of many proteins involved in inflammatory processes (cytokines, adhesion 

molecules, inflammatory enzymes and several receptors) 
164

. 

Our organism is able to protect cells from the overproduction of ROS by different 

antioxidant defense mechanisms. The defense systems could be: enzymatic and non-
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enzymatic, in the first case, the radical removal happens with a catalytic mechanism, 

while the non-enzymatic defenses have heterogeneous working mechanisms, they can 

bound and sequestrate pro-oxidant molecules, or they can act as radical scavenger; 

intracellular and extracellular depending on whether the site of their action is in or 

out of the cell. The defense systems can be classified as follows: 

 

 enzymatic antioxidants like SOD, CAT, GPx, GR, GST, NQO1, HO-1 and TRXr; 

 intracellular non-enzymatic antioxidants: coenzyme Q and Glutathione (GSH); 

 extracellular non-enzymatic antioxidants:  

o metal chelating agents: albumin, uric acid, metallothionein, ceruloplasmin, 

transferrin; 

o non-enzymatic scavengers: ascorbic acid, tocopherol, carotenoid, and 

polyphenols.  

 

 

3.4.1 Superoxide dismutase (SOD) 

 

SOD is an enzyme belonging to the oxidoreductase class and catalyzes the reaction 

where superoxide is converted to H2O2 
165

: 

 

2 O2
•-
 + 2 H

+
 
 
→  H2O2 + O2 

 

For its catalytic activity SOD exploits metallic ions, mainly manganese (Mn), copper 

(Cu) and zinc (Zn). Several isoforms of this enzyme exist which are distinguishable 

for their localization and cofactor (metallic ion). SOD1 localized in the cytoplasm 

and is known as  Cu/Zn SOD, mitochondrial SOD2 is known as MnSOD and SOD3 

is the extracellular form 
165

. 

 

SOD 
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3.4.2 Catalase (CAT) 

 

CAT catalyzes the reduction of H2O2 to H2O and O2 with the follow reaction 
166

: 

 

2H2O2  
 
→  2H2O + O2 

 

 

CAT is localized in peroxisomes, citoplasm, and mitochondria.  Its activity is reduced 

when low levels of H2O2 are present meanwhile it tends to increase with increasing 

H2O2 levels 
167

. Cytosolic or mitochondrial CAT overexpression showed protective 

effects against oxidative injury 
168

. 

 

 

3.2.3 Glutathione Peroxidase (GPx), Glutathione Reductase (GR) and Glutathione-S-

transferase (GST) 

 

GPx is together with CAT a key enzyme for H2O2 detoxification. It is a selenium-

dependent enzyme and uses GSH as electron donor for H2O2  or hydroperoxides 

reduction 
167, 169

. During the reaction GSH is oxidized (GSSG)  with the formation of 

a disulfur bridge between two molecules of GSH : 

 

 

H2O2 + 2GSH  →  2H2O + GSSG 

 

2GSH + LOOH  →  GSSG +LOH + H2O 

 

 

 

 

CAT 

GPx 

GPx 
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GSSG can be reduced by GR with a mechanism NAPH-dependent that led to the 

reduction of GSSG to GSH and to the oxidation of NADPH to NADP
+
: 

 

 

GSSG + NADPH  →  2GSH + NADP
+
 

 

 

GSTs are a class of enzymes which catalyzes the conjugation of GSH to electrophilic 

compounds : 

 

 

GSH + Xenobiotic  →  GSX + 

 

 

The conjugation with GSH is also the first step of the mercapturic acid pathway, 

maybe the main detoxification process. Several cytosolic isoforms of GST have been 

described and grouped in four classes on the basis of their substrate specificity and 

amino acid sequences: α, µ, π, τ.  

 

 

3.4.4 GSH 

 

GSH is the most abundant cellular non-enzymatic antioxidant. It is a tripeptide, 

synthesized at hepatic level, consisting of glutammic acid, L-lysine and L-glycine, 

and represents the main cellular thiol. GSH synthesis starts from the formation of a γ-

dipeptide by γ-glutamilcystein synthetase, after this the dipeptide bounds glycin by γ-

glutathione synthetase 
170

. 

GR 

GST 



~ 36 ~ 
 

At cellular level, glutathione can be reduced (GSH) or oxidized (GSSG), contributing 

to the maintenance of optimal redox state. 

GSH is particularly concentrated in organs which are more exposed to toxics, as liver 

and kidney.  

GSH, GPx and GR represent a key system for ROS detoxification thanks to continue 

re-cycling of GSH 
166, 171

. 

 

 

3.4.5 Thioredoxin Reductase (TRXr), NAD(P)H-quinone oxidoreductase (NQO1), 

Heme Oxigenase 1 (HO-1) 

 

Thioredoxin/Thioredoxin Reductase constitutes another important system for H2O2 

detoxification. In particular TRXr acts using NADH to restore the oxidized 

thioredoxin in the reduced form. The reduced form of thioredoxin is needed for the 

reduction of H2O2 to H2O by thioredoxin peroxidase 
172

. 

 

NQO1 is a flavoprotein that catalyzes the reduction of quinone or other similar 

xenobiotics in a two steps reaction with the involvement of two electrons. The 

enzyme uses as cofactor NADH or NADPH indistinctly. The reaction mechanism has 

been named as 'ping pong'. In particular, NQO1 reduces quinone to hydroquinone in 

a two step reaction with the transfer of two electrons, so avoiding the formation of a 

reactive intermediary semiquinone 
173

, which could reacts with O2 leading to ROS 

formation 
174

. 

 

HO system consists of different isoforms and HO-1 is the inducible form in oxidative 

stress condition 
144

. These enzyme family has a key role in the heme catabolism. The 

enzyme cleaves heme ring and converts it to biliverdin using NADH or NADPH. The 

biliverdin is then converted into bilirubin by biliverdin reductase. Moreover bilirubin, 

the final product of heme catabolism showed antioxidant capacities.  
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3.4.6 Modulation of the endogenous defense system by Nrf2/ARE pathway 

 

The nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2)/ antioxidant 

responsive element (ARE) pathway is the main regulator of cytoprotective responses 

to oxidative and electrophilic stress 
175, 176

. Nrf2, under basal condition, has a short 

half life within 7-15 minutes because it is rapidly degradated 
177, 178

. 

In normal (basal) conditions Nrf2/ARE pathway is repressed by the sequestration of 

Nrf2 in the cytoplasm where it is continuously degradated. In cytoplasm Nrf2 binds 

the cysteine-rich Kelch-like ECH associated protein 1 (Keap1), which represents its 

major negative regulator and that forms a RING E3-ubiquitin ligase with Cullin 

(Cul)3/Rbx1, so targeting the transcription factor for ubiquitinantion and proteasomal 

degradation. During oxidative stress or in response to electrophiles compounds, redox 

modification of cysteine residues in Keap1 protein happens, the Nrf2 ubiquitination is 

prevented, and the transcription factor is accumulated into nucleus activating 

transcription of nearly 500 genes, encoding for antioxidants, phase II enzymes and 

anti-inflammatory proteins (Fig. 3.5). On the other hand, activation of intracellular 

kinases, such as MAPK, PI3K or PKC, can in turn phosphorylate Nrf2, influencing 

cytosol-nucleus trafficking or Nrf2-nuclear stability 
179

. 
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Figure 3.5.  Nrf2/ARE pathway in the basal and induced state 
180

. 

 

 

Moreover, using FLIM-FRET-based system the researchers were able to study the 

dynamism of the Keap1-Nrf2 interaction in live cells 
181

. Data from this study 

revealed that in basal state Keap1-Nrf2 complex exists in two distinct conformations: 

an 'open conformation' in which only the EDGE (high affinity) motif bounds Keap1, 

and the 'closed conformation' where both EDGE and DLG motifs bound Keap1 

dimer. Deeping the dynamism behind what emerged is that in the basal state Nrf2 

protein first binds the free Keap1 through EDGE motif (open conformation) 
181, 182

, 

after this the closed conformation is formed through the binding between Nrf2 DLG 

motif and the other member of Keap1 dimer. Nrf2 in closed conformation is located 

in the orientation favoring ubiquitination by Keap1-dependet E3-ligase 
183, 184

, so 
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Nrf2 is released and degraded from proteasoma, and the free Keap1 can again bound 

a new Nrf2. 

Nrf2 is a protein that consist of 605 aa and possesses seven functional domains, 

denominated as Neh1-7 
185

. Neh1 has the bZip DNA binding and heterodimerization 

domain, and thanks to this domain Nrf2 can form the heterodimer with small Maf 

transcription factor. The heterodimer Nrf2/Maf is responsible for binding to ARE 

sequence, localized on the promoter of cytoprotective genes. Neh2 domain is 

functional for Nrf2 binding to Keap1 protein, containing the motifs through which 

monomeric Nrf2 binds the dimeric Keap1, named 'DLG' and 'ETGE' motif 
181

. Neh3 

domain binds to a Nrf2 co-activator, the chromo-ATPase/helicase DNA binding 

protein family member CHD6 
186

. Neh4 and Neh5 domains synergize to bind CBP, 

another Nrf2 co-activator 
187

. Other negative regulatory domains are Neh6, which 

mediates Keap1-indipendent Nrf2 degradation 
188

, and Neh7 that is responsible for 

Nrf2 interaction with retinoid X receptor alpha 
189

.  

On the other side, Keap1 is a 624 aa protein containing 
181

: 

 a N-terminal region; a BTB domain that allow Keap1 to do a homodimer and to 

interact with Cul3; an intervening region, the cysteine-rich domain; the Kelch domain 

useful for Nrf2 binding; and the C-terminal region.  

Regarding the Nrf2 export from the nucleus, the phosphorylation of Tyr568 by the 

kinase FYN, which is in turn activated by glycogen synthase kinase 3β (GSK-3β) 

lead to a strong binding with the nuclear exporting protein CRM1 
188

. Another 

mechanism is the binding between Nrf2 and the E3 ubiquitin ligase β-TrCP 

(βtransducing repeat-containing protein) via the Nrf2 Neh6 domain, which can be 

phosphorylated by GSK-3β, leading to Cullin 1 (Cul1)-dependent ubiquitination and 

degradation of Nrf2 via a Keap1-independent way 
177, 188

. In turn, GSK3β can be 

inhibited through phosphorylation, which can be catalyzed by Akt, ERK and PKC 

kinases. 
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3.3 Oxidative stress and CVD 

 

Several are the cardiovascular sources of ROS. Level and activity of xanthine 

oxygenase are increased in heart failure as well as that of NAD(P)H oxidase 
154, 190

.  

The implication of ROS in the pathogenesis of CVD is particularly prominent in 

endothelial dysfunction, where the vascular microenvironment is altered. Vascular 

endothelium plays an active role in several mechanisms, such as regulation of 

vascular tone, inflammation, thrombosis, platelet activity and atherosclerosis 
154

. 

Substances like NO, endothelins, and prostacyclins are crucial in the maintenance of 

endothelium tone 
191

. The reduction in NO bioavailability leads to endothelial 

dysfunction promoting platelet adhesion and aggregation.
154

.  

Several mechanisms are implicated in the reduction of NO levels, including increased 

degradation, altered functionality of eNOS, reduced expression of eNOS 
192

. 

Furthermore ROS levels influences NO bioavailability, because ROS can oxidize NO 

to ONOO
- 

and tetrahydrobiopterin to dihydrobiopterin, so leading to eNOS 

dysfunction and further ROS release 
191

. As proof of NO importance for endothelial 

health, the up-regulation of hydrobiopterin and as consequence, NO amount, has been 

shown to improve endothelial function and decrease superoxide production 
193

.  

Vascular oxidative stress has also been linked to hypertension in several animal 

models 
194-196

. Patients with essential hypertension, renovascular hypertension, 

malignant hypertension and pre-eclampsia showed an increased ROS yield 
197-199

. 

ROS production has been evidenced in different types of vascular cells as endothelial, 

adventitial and vascular smooth muscle cells, mainly derived from NAD(P)H oxidase 

activity
200

. The effects of some pharmaceutical agents (for example angiotensin 1 

receptor blockers) acting on cardiovascular system have been attributed to their direct 

inhibitory activity on NAD(P)H oxidase enzyme. In addition, the outputs of more 

common antihypertensive agents (ACE-inhibitors, Ca
2+ 

channel blockers, β-

adrenergic blockers ecc.) could be related to their capacity to diminish vascular 

oxidative stress 
201-203

.  
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As mentioned before oxidative stress leads to endothelial dysfunction so affecting 

CVD incidence. In this context, ROS can induce a direct injury modifying cellular 

components, altering key proteins for contraction and diminishing NO availability 
204

.  

During myocardial ischemia, the amount of ROS produced in the reoxygenation step 

is the crucial cause of the reperfusion injury, and they can damage directly cellular 

constituents or indirectly through the induction of local inflammation 
205

. Moreover 

ROS can influence and alter several cellular pathways so modifying cellular function 

206
. For example, H2O2 has been shown to activate the protein kinase Akt in VSMC, 

leading to hypertrophy 
207

; in cardiomyocytes H/R induces activation of p38 and JNK 

pathways, involved in apoptotic cellular death 
208

. 

 

 

3.4 Sex-gender differences in oxidative stress 

 

The importance to deepen potential sex-gender differences in oxidative stress starts 

from the assumption that oxidative stress is implicated in many diseases with 

incidence, prevalence, symptoms, severity and outcomes that differ in males and 

females. Unfortunately, few studies have investigated the differences in oxidative 

stress or antioxidant defenses due to sex-gender.  

Biomarkers for oxidative stress were reported to be higher in young men than in 

young women 
209

. Likewise using vascular cells derived from men or women, the 

susceptibility to oxidative stress was greater in those from men 
210

. Data from clinical 

and experimental studies evidenced a more pronounced antioxidant capability in 

females than males 
211

. 

Differences in expression and activities of antioxidant enzymes were analyzed in 

males and females. Regarding SOD activity, one study showed a higher activity in 

female hearts but other investigations did not show uniform results, however it has 

been proposed that the differences depend on the tissue 
209, 212-214

. In animals, SOD 
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levels decreased after castration so implicating a role for sex hormones in the 

regulation of SOD activity 
212

. 

Catalase activity was found to be similar in both sexes as analyzed in different tissues 

213, 215
, so suggesting that H2O2 detoxification from catalase is not affected by gender 

or sex hormones. 

Several studies confirmed a minor activity for GPx enzyme in females 
209, 212, 213

, and 

no significant changes in males and females after castration 
212

. 

On the other side analyses of the NADPH-oxidase levels, guilty of the great 

production of superoxide, showed discrepancies between sexes.  

Different studies were consistent in showing a higher expression of Nox1 and Nox4 

in males than females, which can explain the differences in superoxide levels 

between sexes 
216-218

. At the same time, no differences were evidenced for Nox2 or 

the three isoforms of SOD (SOD1, SOD2, SOD3) 
216, 217, 219

. It seems that the greater 

basal oxidative stress seen in men could be mainly due to a higher superoxide 

production rather than a minor rate of detoxification. 

Apart from this, the major differences in antioxidant properties between males and 

females could be attributed to the antioxidant action of E2. It can act as scavenger of 

free radicals thanks to the presence of a phenolic hydroxyl group 
212

. Moreover E2 

also demonstrated to increase the gene expression of SOD2 via MAP-kinase 

signaling pathway 
220

. Oxidative stress level was also analyzed in pathological 

conditions. 
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Figure 3.6. Chemical structure of 17β-estradiol  

 

 In spontaneously hypertensive rats, males had higher superoxide levels than females 

due to a higher NADPH-oxidase activity, and, in line with this, males demonstrated 

lower levels of NO because it was degraded by superoxide 
221

. A study on coronary 

artery disease comparing men and post-menopausal women showed that the post-

menopausal group women had oxidative stress level almost three times higher than 

men 
222

. Furthermore, it has been shown that ovariectomyzed females have an 

increase in  NADPH-oxidase activity and treatment with E2 led to normal levels 
216

. 

This suggests a role for the hormone in mediating NADPH-oxidase activity.  

In conclusion, what emerged from these studies is that sex-gender differences in 

susceptibility to oxidative stress are principally due to a higher production of reactive 

species rather than a low antioxidant levels, and E2 seem to have a role in the 

orchestration of cellular redox balancing.  
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4.SULFORAPHANE AND CARDIOVASCULAR DISEASE  

 

 

4.1 Glucosinolates 

 

In the XIX century the first glucosinolate has been isolated from Sinapis alba 
223

. 

Later more than 120 different glucosinolates were described, mainly derived from 

plants belonging to Brassicaceae 
224

. 

The family of Brassicaceae includes more than 350 genera and over 3000 species. 

Common edible plants from this family are: broccoli, brussels sprouts, cabbage, 

capers, cauliflower, mustard, radishes. 

The pungent taste of these vegetables is due to the reaction products of myrosinase 

enzyme. 

 

 

 

 

Figure 4.1. Glucosinolate chemical structure. 

 

 

The glucosinolates are chemically a β-thioglucoside N-hydroxysulfate (Fig. 4.1) 
225

. 

Their basic structure includes a solphonated oxime, a β-D-thioglucose group, and a 

variable amino acidic side chain R, which can derive from methionine, phenyalanine, 

tryptophan or branched amino acids 
226

. In plants, the glucosinolates are associated, 

but physically separated, to β-thiogluosidase enzymes, known also as myrosinases 
227

. 
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Substrate and enzyme come in contact after plant cells injury (e.g. by chewing and 

cutting) and the consequence is a rapid hydrolysis with the release of glucose and 

instable aglycones, these last spontaneously rearrange into reactive compounds 

(Fig.4.2). In particular, all biological activities can be attributed to the glucosinolate 

hydrolysis products, and among these isothiocyanates are the most studied. Humans 

do not have myrosinase enzymes but glucosinolates can be converted into 

isothiocyanates thanks to gut microbiota. Reduction or abnormalities in the 

gastrointestinal microbiota reduce the bioavailability of the isothiocyanates 
228

.  

 

 

 

 

 

Figure 4.2. Myrosinase reaction products. (a) Glucosinolate hydrolisis products. Depending on 

reaction conditions and glucosinolate side chain (R), a range of products can be formed. (b) 

Chemical structure of aromatic isothiocyanates with anticarcinogenic activity. (c) Chemical 

structure of isothiocyanate sulforaphane and its synthetic norbonilic derivates. 
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4.2 Sulforaphane 

 

Sulforaphane (SF) (1-isothiocyanate-(4R)-(methylsulfinyl) butane) 
229

 derives from 

the hydrolysis of glucoraphanin, the main glucosinolate presents in broccoli (Fig 4.3) 

230, 231
. It is the most studied and well described isothiocyanate present in 

Brassicaceae 
232

. 

In particular, SF induces phase II enzymes 
233

, demonstrating efficacy in a range of 

cell lines. This group of enzymes, also known as drug-metabolizing enzyme, are 

responsible for detoxifying electrophiles and oxidants. Examples of enzymes 

belonging to this group are GST, GR and NQO1. Moreover, the Nrf2/ARE pathway 

has been demonstrated and widely studied as principal mechanism for SF 

bioactivities, which in turn up-regulate antioxidant and phase II enzymes expression 

233
. 

 

 

 

Figure 4.3. Schematic reaction between glucoraphanin and myrosinase. Modified from 
234
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4.3 Sulforaphane bioavailability 

 

The isothiocyanates in humans are metabolized through the mercapturic acid 

pathway. In the human studies, the first critical step was the identification of 

analytical instruments able to quantify and identify the isothiocyanates and their 

metabolites. All together they can be quantified by 1,2 benezenedithiol-based 

cyclocondensation 
235

 or individually by liquid chromatography coupled with mass 

spectrometry 
236

, and these instruments were used in pharmacokinetics studies. A 

study that compared a high dose (52 µmol) versus a low dose (16 µmol) of SF 
237

 

showed a rapid increase in SF and its metabolite plasmatic concentrations, with the 

maximum peak at 1.5 h and 2 h for low and high dose, respectively. The AUC (area 

under the curve) and maximum concentration (Cmax) resulted to be dose-dependent, 

with the Cmax of 2.2 ± 0.8 µM and 7.3 ± 2.9 µM for low and high dose, respectively. 

Shapiro et al. carried out a phase I clinical study to evaluate security, tolerance, and 

pharmacokinetics of broccoli sprout extracts containing glucosinolates or 

isothiocyanates. The study demonstrated absence of toxicity and high variability in 

glucosinolate metabolism. The participants were divided into four groups: placebo; 

25 µmol of glucosinolates; 100 µmol of glucosinolates; 25 µmol of isothiocyanates. 

The analysis of 32 different markers, including those for thyroid (TSH, T3, T4) and 

hepatic functionality (transaminases), did not evidence systemic adverse effects. The 

dithiocarbamates total excretion was (expressed as dose fraction) 17.8 ± 8.6% e 11.7 

± 19.6% for low and high dose of glucosinolates, respectively, finding a high 

interindividual variation. In the group who received isothiocyanates, the total 

excretion was 70.6 ± 2.0%, with few interindividual variation 
228

.  

These and other studies 
238-240

 clearly point out that the intake of glucosinolates, rather 

than isothiocyanates, is associated with lower bioavailability, slower excretion and 

more interindividual variation. The most likely cause in interindividual variations is 

the interconversion of the glucosinolates to isothiocyanates by gut microbiota, as also 

evidenced by Li et al., supporting the importance of gut microbiota in the degree of 



~ 48 ~ 
 

glucosinolates hydrolysis 
241

. Atwell et al. suggested that another factor influencing 

SF absorption could be the food matrix and meal composition. Whole broccoli 

sprouts contain minerals, nutrients and phytochemicals that could enhance SF 

transport through cellular membranes. Therefore, raw sprouts have more fiber, 

slowing gut transit and increasing the contact time with gut epithelium surface 
239

. 

 

 

4.4 Nrf2/ARE pathway and sulforaphane 

4.4.1 Sulforaphane direct effects 

 

The central carbon in the isothiocyanate group of SF is electrophilic and can react 

with the cysteine residues present in Keap1 protein. It has been evidenced that SF is 

able to directly interact with critical Keap1 cysteine residues, blocking Nrf2 

ubiquitination and degradation and increasing Nrf2 translocation to the nucleus 
242

. 

In particular, C151 has been implicated as one of the site responsible for SF effects. 

Indeed, when C151 was mutated to a Ser, the induction of Nrf2 by SF was repressed 

243
. C151 residue involvement was also confirmed by other groups using a biotin-

switch technique and again mutagenesis experiments 
244

. Studies with mass-

spectrometry approach evidenced that, depending on the experimental conditions, 

besides C151 other residues can be involved in SF-Keap1 interaction 
245, 246

. Baird et 

al., with their FILM-FRET findings, hypothesized that inducers such as SF tend to 

stabilize Nrf2 in the closed conformation 
181

. In particular, SF interaction with 

cysteine residues, that leads to a conformational change of Keap1-Nrf2 complex, may 

alter the positioning of Nrf2 in respect to the ubiquitination machinery so that it can 

no longer be ubiquitinated and targeted for proteosomal degradation. However, in this 

conformation Nrf2 is not released from Keap1, so acting as a suicide substrate to 

inactivate Keap1 and new free Keap1 is not regenerated. The newly synthesized Nrf2 

will not find free Keap1 for its cytoplasmic sequestration, so it can translocate to the 

nucleus and activate gene transcription. This hypothesis can also explain how in 
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absence of new translation, using a translation inhibitor, also in presence of inducers, 

Nrf2 did not induce cytoprotective genes expression 
247-249

. 

 

 

4.4.2 Sulforaphane indirect effects 

 

Different kinases can modulate Nrf2/ARE pathway, including MAPK, PKC and 

PI3K 
250

. SF demonstrated to activate a variety of intracellular kinases, which in turn 

phosphorylate Nrf2, influencing cytosol-nucleus trafficking or Nrf2-nuclear stability 

250, 251
. Indeed, Kensler et al. demonstrated that phosphorylation of Nrf2 at serina 40 

can potentiate its activation 
252

.  

Leoncini et al. deepened the mechanism involved in SF effects using neonatal rat 

cardiomyocytes 
253

. The results evidenced SF-mediated increasing in Akt and ERK 

1/2 phosphorylation, which are kinases implicated in cardiac proliferation and 

survival. These kinases in turn augmented Nrf2 activation and ARE binding. The use 

of specific kinase-inhibitors showed the involvement of PI3K/Akt pathway in SF-

mediated cytoprotective genes induction via Nrf2/ARE pathway. 

 

 

4.4.3 Induction of long-term effects 

 

As mentioned before in this chapter, the ingestion of broccoli or SF leads to a peak in 

plasmatic concentration after few hours, with a rapid clearance from the body. 

However, several studies evidenced that SF can induce long-term protective effects 

against oxidative injury. In an astrocyte cellular model, a 4 h treatment with SF 

triggered an increase in mRNAs of HO-1 and NQO1 up to 24 h later, with the levels 

of the corresponding proteins elevated up to 48 h 
254

. Bai et al. treated diabetic mice 

with SF for three months and showed as the treatment was able to reduce the 

incidence of diabetic cardiomyopathy at the end of the treatment and also after six 
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months 
255

. Angeloni et al. also showed as SF treatment can cause long-term 

protection against oxidative stress, reducing the levels of intracellular ROS and DNA 

fragmentation and increasing the expression of cytoprotective enzymes in neonatal 

rat cardiomyocytes 
256

. 

 

 

4.5 Sulforaphane in Hypertension 

 

As mentioned in the previous chapter, oxidative stress has been demonstrated to play 

a key role in the etiopathogenesis of hypertension.  

In an animal model of spontaneously hypertensive rats, diet containing broccoli 

sprouts high in glucoraphanin was able to decrease oxidative stress. Moreover,  SF, 

the main glucoraphanin derivative,  demonstrated to improve blood pressure 
257

. In 

vascular smooth muscle cells derived from hypertensive rats, SF-treatment (0.05-1 

µM) reduced oxidative injury up-regulating phase II enzyme, increasing basal level 

of reduced glutathione. These changes have been correlated with an improved 

endothelial relaxation and blood pressure 
258, 259

. 

 

 

4.6 Sulforaphane in Atherosclerosis  

 

Atherosclerosis represents an important risk factor for CVD. It is usually associated 

with a chronic inflammation status in the arterial wall. Inflammation status increases 

the expression of cell adhesion molecules as intercellular adhesion molecule-1 

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), both associated with an 

increase in VSMC proliferation. In several studies SF-treated VSMC (1-5 µg/mL) 

showed reduced mRNA and protein levels of cell adhesion molecules, after exposure 

to an inflammatory cytokine as TNF-α, and so suppressing inflammation within the 

atherosclerotic lesion 
260-262

. 
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It is well known that an important factor for the development of atherosclerosis is the 

plasmatic level of cholesterol and in particular its distribution between HDL and LDL 

cholesterol. Endothelial lipase is an enzyme belonging to the triacylglycerol family 

and it is responsible for the reduction in HDL levels. Two different studies carried out 

in HUVEC cells, indicated SF as a powerful agent in contrasting cholesterol level 

alterations at endothelial site. In particular SF was able to reduce the increase TNF-

induced of endothelial lipase 
263

, and to counteract oxidative injury induced by 

oxidized-LDL, increasing the expression of HO-1 and GSH content 
264

. 

Platelet aggregation plays a role in the incidence of atherosclerosis, and the potential 

effects of SF were investigated. SF demonstrated to inhibit human platelet 

aggregation in a dose-dependent manner preventing the activation of PI3K-Akt 

pathway 
265, 266

. SF showed to clearly decrease glycoprotein IIb/IIIa activation and 

thromboxane A2 formation 
266

. 

 

 

4.6 Sulforaphane in cardiac Ischemia/Reperfusion injury 

 

I/R injury is well known to be associated with the pathology of important CVD such 

as stroke or heart attack 
267

. The damage that can occur in the two phases, ischemia 

and reperfusion, is often irreversible for cells or tissues. However, a third phase of 

this pathological process exists, which is the post-reperfusion phase when tissue 

remodeling and adaptation occur. Increased ROS levels seem to play a key role in all 

these phases 
267

. Cardiomyocytes treated with SF (0.1-5 µM) and then subjected to 

I/R injury showed improved cellular viability and Bcl2/Bax ratio associated with 

increased SIRT1 expression and reduced cellular apoptotic death and expression of 

endoplasmic reticulum stress-related apoptosis proteins. SF-containing broccoli 

provided cardioprotective effects against I/R injury, ameliorating post-ischemic 

ventricular function and reducing the myocardial infarct size, in rats 
229, 268

. These 

effects were associated with higher Nrf2 activity. Regarding cardiac remodeling, SF 
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demonstrated to reduce fibrosis and to induce a favorable redox environment 

(increased HO-1) switching the kinase balance toward pro-survival kinases (ERK 1/2 

and Akt) so mitigating the progression of cardiac remodeling after the infarction.   

 

 

4.7 Sulforaphane protection from Diabetes complications 

 

Diabetes pathology reached an epidemic characteristic worldwide. Diabetic patients 

are prone to develop CVD and the diabetic complications involve micro- and 

macrovascular impairment. The most common diabetic complications include 

retinopathy, neuropathy, nephropathy, diabetic cardiomyopathy. A chronic high-

glucose status is linked with an increased production of ROS and all contribute to 

oxidative and inflammatory damage, increasing the possibility to develop a diabetes 

complication.  

In diabetic nephropathy, which results in premature death associated with CVD and 

kidney collapse, SF helped to counteract the pathological deficits thanks to its 

antioxidant and antinflammatory activities, with a dual behavior on Nrf2 and NF-kB 

269
. In experimental model of streptomycin-induced nephropathy, SF ameliorated 

renal function and metabolic indices, but only in animals with functional Nrf2/ARE 

pathway, indicating a key role of this pathway 
270

. Streptomycin-induced diabetic 

type I was associated with increased ROS and inflammation which led to fibrotic 

response after 6 months of diabetes. In this model SF completely reversed diabetes-

induced changes 
271

. 

Diabetic cardiomyopathy is the complication which account the most deaths for 

diabetes 
272

. Researchers investigated whether SF can prevent cardiomyopathy in 

different diabetic models. In db/db type II diabetic mice, administration of SF (0.5 

mg/kg) or a high dose of broccoli sprout extracts (equivalent to 1 mg/kg) prevented 

hypertrophy, cardiac dysfunction and fibrosis diabetes-induced, and the effects were 

associated with an improved Nrf2 activity 
273

. Also in a model of high-fat diet-
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induced type II diabetes mellitus, SF demonstrated to prevent lipid accumulation, 

significantly improving cardiac function, fibrosis, oxidative stress and inflammation 

274
. 

 

 

4.8 Conclusion 

 

Oxidative stress plays a pivotal role in contributing to the development of cardiac 

pathologies. SF is an isothiocyanate found in edible brassica vegetables, which 

demonstrated to act as an indirect antioxidant. The main mechanism related to SF-

induced protective effects is the activation of Nrf2/ARE pathway and its downstream 

target genes. Bioavailability studies evidenced that its absorption can be influenced 

by dietary form, i.e. fresh broccoli sprouts (myrosinase-active) showed the highest 

bioavailability rather than broccoli with inactive myrosinase (as example broccoli 

overly cooked). Regarding the amount of SF that should be achieved for CVD 

prevention, it has been demonstrated that 5 µM SF protects cardiomyocytes from 

oxidative damage and that 2.8 µmol/kg of SF prevents CVD in diabetic mice. If we 

applied the conversion formula between animals and humans 
275

, a man with body 

weight of 70 kg is supposed to consume a SF dose of 19.6 µmol per day, i.e. 12 g per 

day of fresh broccoli. This is much lower than the dosage used in studies for cancer 

prevention (150 µmol per day) which showed no toxic effects 
236, 276

.  

In conclusion, diet habits containing Brassicaceae as source of SF could be helpful in 

the prevention of CVD. The amount of SF which showed cardioprotective effects is 

easily achievable. However, it could be opportune to perform clinical trials to clarify 

the effects and the optimal dose for SF in the prevention of CVD. 
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5. AIM 

 

 

Cardiovascular disease continues to be the most common cause of death worldwide 
1
. 

Several studies demonstrate as women with myocardial infarction have a better 

prognosis than men 
277-279

, but this difference is reversed after menopause 
280

. 

Furthermore, the development of coronary artery disease occurs ten year later in 

women than men 
2
. Thus, it has been suggested that sexual steroid hormones can play 

a role in the protection from CVD in women, so implying a sex-gender dependent 

effect. 17β-estradiol (E2) is the principal female estrogen, major product of ovary 

secretion, which owns the strongest potency and has the capability to bind all 

subtypes of estrogen receptors. It has been demonstrated that E2 provides protection 

on bone density, central nervous and cardiovascular system 
281

. Regarding 

cardioprotection, in several studies it has been investigated the potential role of E2 in 

cardiac cell survival against different insults. E2 reduces cardiomyocytes apoptosis in 

vivo and in vitro through estrogen receptors and phosphoinositide-3-kinase 

(PI3K)/Akt signaling pathways 
25, 26

. In cardiomyocytes, E2 is also able to differently 

modulate prohypertrophic (class I) and antihypertrophic (class II) histone deacetylase 

proteins through the binding to ERβ, thus counteracting cardiac hypertrophy 
28

. 

Short-term treatment with E2 has shown to be able to improve heart function after I/R 

injury, and using a NOS inhibitor this effect was reversed, so suggesting the 

contribution of NO production via ER activation in this process 
85

.  

It has also been shown that sex-gender can influence the pharmacokinetics and 

pharmacodynamics of a drug 
2
, and as a consequence it can influence the response to 

cardiovascular medications 
4, 282, 283

. In this context, we hypothesized that sex 

hormones could also differently influence the preventive/protective effects of 

nutraceutical compounds in males and females. To the best of our knowledge no 

studies have been carried out to test this hypothesis. 



~ 55 ~ 
 

Among nutraceutical compounds, sulforaphane has been highly investigated for its 

anticancer activity 
284

. Sulforaphane is a dietary isothiocynate, mainly found in 

brassica vegetables, produced after the breakdown of its precursor glucoraphanin. 

Recently it has been reported that SF has got cardioprotective activity in different in 

vitro and in vivo models 
285-287

. The main mechanism involved in SF protective 

effects is the activation of Nrf2/ARE signaling pathway 
253

 and consequently the up-

regulation of the antioxidant defense system. SF elicits many other biological 

activities beyond the antioxidant effects, as anticancer, anti-inflammatory, 

antiglycative and neuroprotective properties 
284, 288-291

.  

 

Aim of this PhD thesis was to explore the modulatory effect of E2 on the 

cardioprotective activity of SF against oxidative stress in primary cultures of rat 

cardiomyocytes against oxidative stress by analyzing antioxidant/survival 

pathways and investigating the involvement of ERs and GPR30. 

 

Part of this thesis was conducted in the Institute of Gender in Medicine-Charité-

Universitätsmedizin, in Professor Vera Regitz-Zagrosek’s laboratory in Berlin. 

 

As experimental model we used primary cultures of rat cardiomyocytes and rat 

cardiomyoblast cell line. Cells were pre-treated with SF (0.1-5 µM) and/or E2 (10-

500 nM) and oxidative stress was induced exposing cells to 100 µM of H2O2. We 

evaluated cell viability by MTT and LDH assays, oxidative stress injury by DCFH-

DA assay and immunofluorescence staining, glutathione levels by MCB assay, 

antioxidant/phase II enzymes, Nrf2 and ERs gene expression by RT-PCR, Nrf2 

activity by ELISA-based kit and Western Blotting, and the phosphorylation of ERK 

1/2 and Akt kinases by Western Blotting. 
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6. MATHERIALS AND METHODS  

 

 

6.1 Chemicals  

 

PhosSTOP was purchased from Roche Diagnostics (Mannheim, Germany). 3-(4,5-

dimethylthiazol-2-yl)-2,5diphenyl-tetrazolium bromide (MTT), 2,7-

dichlorodihydrofluorescein diacetate (DCFH-DA), H2O2, dimethyl sulfoxide 

(DMSO), monochlorobimane (MCB), phosphate-buffered saline (PBS), bovine 

serum albumine (BSA), Dulbecco’s modified Eagle’s medium (DMEM) F-12, 

DMEM, fetal calf serum, horse serum, Charcoal-stripped fetal calf serum, 

gentamicin, sodium pyruvate, inositol, amphotericin B, collagenase IA, 17β-estradiol 

(E2), LY294002 (LY), PD98059 (PD), 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-

piperidinylethoxy)phenol]-1H–pyrazoledihydrochloride hydrate (MPP), 2-phenyl-3-

(4-hydroxyphenyl)5,7-bis(trifluoromethyl)-pyrazolo[1,5-a]pyrimidine,4-[2-phenyl-

5,7-bis(trifluoromethyl)pyrazolo[1,5-a] pyrimidin-3-yl] phenol (PHTPP), sodium 

fluoride, sodium pyrophosphate, sodium orthovanadate, methylglyoxal (MG) and all 

other chemicals of the highest analytical grade were purchased from Sigma Chemical 

(St. Louis, MO, USA), unless otherwise stated. 4,4',4''-(4-Propyl-[1H]-pyrazole-

1,3,5-triyl)trisphenol (PPT) and (±)-1-[(3aR*,4S*,9bS*)-4-(6-Bromo-1,3-

benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]- ethanone 

(G1) were purchased from TOCRIS (Wiesbaden-Nordenstadt, DE). KB5 were kindly 

provided from Novartis (Cambridge, MA, USA). E2 was dissolved in DMSO at a 

concentration of 10 mmol/L and kept at –20 °C until use. D,L-sulforaphane (SF) 

(LKT Lab., Minneapolis, Minn., U.S.A.) was dissolved in DMSO at a concentration 

of 10 mmol/L and kept at –20 °C until use. 
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6.2 Cell cultures and treatments 

 

Primary cultures of neonatal Sprague-Dawley rat cardiomyocytes were prepared as 

previously described 
292

. The investigation conforms with the Guide for the Care and 

Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH 

Publication 85-23, revised 1996) and approved by the Ethics Committee of our 

institution. Briefly, rats were sacrificed and the ventricles were placed in a special 

medium (946 mg /100 mL Ham-F10, 93 mM KH2PO4, 38.5 mM Na2HPO4, 14.2 mM 

NaHCO3 and 0.5 mM inositol) and finely minced. The special medium was then 

replaced with the trypsinization medium obtained by adding trypsin 10x (10% v/v) 

and collagenase IA (5% v/v) to the special medium (85%). Subsequently, tissue 

fragments were resuspended in complete medium (DMEM F-12 supplemented with 

10% (v/v) FBS, 10% (v/v) HS, 1mM sodium pyruvate, 0.1 mg/mL gentamicin and 

2.5 µg/mL  amphotericin B, in a ratio of 1 mL medium / 100 mg of initial tissue. The 

cell suspension were "pre-plated", after filtration, in T75 flasks. After the steps of 

"pre-plating", the cells were counted with a hemocytometer and plated at a 

concentration of 5x10
5
 cells / mL and incubated at 37 °C, 5% CO2, 95% humidity.  

Cells were treated, with different concentration (0.1-5 µM) of SF and with different 

concentration (10-500 nM) of E2 or co-treated with SF and E2 for 24 h. The control 

group were treated with an equivalent volume of the vehicle alone. Oxidative stress 

was induced by 100 μM H2O2 for 30 min or by 0.5 mM MG for 24 h. 

Rat embryonic cardiomyoblast-derived H9c2 cells were obtained from American 

Type Culture Collection (ATCC, Rockville, MD). Cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, glucose content 5.5 mM) supplemented with 

10% FBS, 2.5 mM glucose, 21.4 mM bicarbonate and a combination of penicillin and 

streptomycin (1%) in a humidified 5% CO2 atmosphere at 37 °C. For all experiments, 

cells were plated at an appropriate density according to the experimental design. 

Before treatments, cells were starved with 3% charcoal stripped FBS in phenol-red 

free media. Cells were treated with 0.5 µM SF and with 10 nM E2 or co-treated with 
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SF and E2 for different times (30 min, 2 h). For experiments with ER agonists, cell 

were treated with G1 (100 or 1000 nM), PPT (10or 100 nM) and  KB5 (10 or 100 

nM). The control group was treated with an equivalent volume of the vehicle alone. 

 

 

6.3 Cell viability and Lactate Dehydrogenase Activity Assays 

 

Cell viability was evaluated by measuring MTT reduction, as previously reported (2). 

Briefly, at the end of each experiment, 0.5 mg/ml MTT were added and incubated for 

1 h at 37°C. After incubation, MTT solution was removed, 200 µl DMSO were 

added, and the absorbance was measured at λ=595 nm using a microplate 

spectrophotometer (VICTOR3 V Multilabel Counter; Perkin-Elmer, Wellesley, MA, 

USA). Lactate dehydrogenase (LDH) activity was evaluated in the culture medium 

using the Lactate Dehydrogenase Activity Assay Kit (SIGMA) according to the 

manufacturer's instructions. Data are reported as percentage of control cells. 

 

 

6.4 Immunofluorescence Staining 

 

Cells were seeded on glass coverslips, and at the end of each experiment, 

cardiomyocytes were washed twice with PBS, fixed with 3% paraformaldehyde, 

washed with 0.1 M glycine in PBS and permeabilized in 70% ice cold ethanol. After 

fixing, the cells were incubated with anti-8-hydroxy-2′-deoxyguanosine (8-OHdG) 

(StressMarq Biosciences, Victoria, CA, USA) or anti-Nrf2 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. Subsequently, the samples 

were washed with 1% BSA in PBS and incubated with CY3- or FITC-conjugated 

secondary antibodies for 1 h at room temperature. DAPI was used for labeling nuclei. 

Preparations were embedded in Mowiol, and images were acquired using an Axio 

Scope A1 microscope (Zeiss, Oberkochen, Germany).  
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6.5 Intracellular ROS production assay 

 

Intracellular ROS levels were evaluated using the fluorescent probe DCFH-DA, as 

previously reported 
293

. At the end of each experiment, cardiomyocytes were 

incubated with 10 μg/ml DCFH-DA in PBS for 30 min. After removal of DCFH-DA, 

cells were exposed to 100 μM H2O2 in PBS for 30 min. Cell fluorescence was 

measured using 485-nm excitation and 535-nm emission with a microplate 

spectrofluorometer (VICTOR3 V Multilabel Counter, Perkin-Elmer). Data are 

reported as percentage of H2O2-treated cells. 

 

 

6.6 Reduced Glutathione levels 

 

Glutathione (GSH) levels were determined with a fluorimetric assay as previously 

reported 
289

. Briefly, at the end of each experiment, culture medium was removed, and 

cardiomyocytes were washed and incubated for 30 min at 37°C in fresh PBS 

containing 50 μM MCB. After incubation, fluorescence was measured at 355 nm 

(excitation) and 460 nm (emission) with a microplate spectrofluorometer (VICTOR3 

V Multilabel Counter, Perkin-Elmer). Data are reported as percentage of control. 

 

 

6.7 Western Blotting  

 

Preparation of nuclear and cytoplasmic fractions was performed according to the 

method of Bahia et al. 
294

. Briefly, cells were washed with ice-cold PBS and lysed on 

ice using a buffer composed of 10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 2.5 

mM EDTA, 2 mM EGTA and 0.05% NP4O containing mammalian protease 

inhibitors. The lysates were centrifuged at 1000 g for 5 min at 4°C and at 2000 g for 

further minute. The supernatant containing the cytoplasmic fraction was taken off and 
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the remaining pellet was resuspended in 100 μL of a buffer comprising: 5 mM 

HEPES, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 300 mM NaCl and 

26% v/v glycerol. Samples were homogenized and centrifuged at 15 000 g for 20 

min. The supernatant containing the nuclear fraction was retained. For evaluation of 

protein kinases phosphorylation, after treatments, cells were collected and 

homogenized in radioimmunoprecipitation assay  (RIPA) buffer with a mammalian 

protease inhibitor mixture and PhosSTOP.  

Samples were boiled for 5 min prior to separation on 4%–20% MiniPROTEAN TGX 

Precast Protein Gels (BIO-RAD, Hercules, CA, USA). The proteins were transferred 

to a nitrocellulose membrane (Hybond-C; GE Healthcare, Buckinghamshire, UK) in 

Tris-glycine buffer at 110 V for 90 min. Membranes were then incubated in a 

blocking buffer containing 5% (w/v) skimmed milk and incubated with anti-phospho-

ERK1/2, anti-ERK1/2, anti-phospho-Akt, anti-Akt (Cell Signaling Technology, 

Beverly, MA) and anti-Nrf2, anti-lamin A (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and anti-β-actin (SIGMA), as internal normalizers, overnight at 4°C on a 

three-dimensional rocking table. The results were visualized by chemiluminescence 

using Clarity Western ECL reagent according to the manufacturer's protocol (BIO-

RAD). Semiquantitative analysis of specific immuno-labeled bands was performed 

using a ImageLabTM 5.2 Software (Bio-Rad, Hercules, CA). 

 

 

6.8 Analysis of the Nrf2-ARE binding activity  

 

After cellular treatments, nuclear extracts were prepared using a Nuclear Extraction 

Kit (Active Motif, Carlsbad, Calif., U.S.A.) according to the manufacturer's 

instructions. Nrf2 binding activity to ARE was measured in nuclear extracts using a 

TransAM™ Nrf2 Kit (Active Motif, Carlsbad, Calif., U.S.A.) following the 

manufacturer's recommended protocol. Briefly, nuclear extracts were added to a 96 

well plate coated with double-strand oligodeoxynucleotides containing the ARE 
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consensus binding site (5′-GTCACAGTGACTCAGCAGAATCTG-3′). A primary 

antibody against Nrf2 (1: 1000), added to each well and incubated for 1 h, was 

detected by secondary horseradish peroxidase (HRP)-conjugated antibody, using a 

colorimetric substrate. The signal was recorded at 450 nm using a microplate reader 

xMarkTM (Bio-Rad Lab., Hercules, Calif., U.S.A.), and Nrf2-ARE binding was 

evaluated as optical density units at 450 nm and reported as fold increase in 

comparison to controls. 

 

 

6.9 RNA extraction 

 

After the treatments, total RNA was extracted using Absolutely RNA Miniprep Kit 

(Agilent Technologies, Palo Alto, CA), following the manufacturer's protocol. The 

yield and purity of the RNA were measured using NanoVue Spectrophotometer (GE 

Heathcare). The integrity of the RNA was determined using an Agilent 2100 

BioAnalyzer (Agilent, Willmington, DE). 

 

 

6.10 Analysis of mRNA expression by RT-PCR 

 

mRNA was reverse transcribed into cDNA starting from 1 µg of total RNA using 

iScriptTM cDNA Synthesis Kit (BIO-RAD), following manufacturer's protocol. The 

subsequent PCR was performed in a total volume of 20 µL containing 5 µL (25 ng) 

of cDNA, 10 µL (1x) SsoAdvancedTM Universal SYBR Green Supermix (BIO-

RAD), and 1 µL (500 nM) of each primer (SIGMA). The primers used are as follows. 

CAT 5' CAAGTTCCATTACAAGACTGAC (Forward) 3' 

TTAAATGGGAAGGTTTCTGC (Reverse),  NQO1 5' 

TAGCTGAACAGAAAAAGCTG (Forward) 3' GTCTTCTTATTCTGGAAAGGAC 

(Reverse),  SOD1 5' AATGTGTCCATTGAAGATCG (Forward) 3' 
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CACATAGGGAATGTTTATTGGG (Reverse), SOD3 5' 

AGGAATCCTTCACACCTATG (Forward) 3' GTCCTCAGAGTAAAAGGAGAG 

(Reverse), HO-1 5' CCTGGTTCAAGATACTACCTC (Forward) 3' 

ACATGAGACAGAGTTCACAG (Reverse), β-actin 

5′AAGACCTCTATGCCAACAC3′ (forward) 5′TGATCTTCATGGTGCTAGG3′ 

(reverse) and β2-microglobulin 5′ACTGGTCTTTCTACATCCTG3′ (forward) 

5′AGATGATTCAGAGCTCCATAG3′ (reverse) from Sigma. Another set of primers 

was purchased from Qiagen (Milano, Italy) and corresponded to the following 

catalog numbers: GPX-1, PPR45366A; GR, PPR46891B; GSTa3, PPR44866A; Trx, 

PPR51711A; GSTp2, PPR52644B GSTm1: PPR42787B. β-Actin and β2-

microglobulin were used as reference genes. The cDNA amplification was started by 

activating the polymerase for 30 s at 95°C, followed by 40 cycles of 5 s at 95°C and 

30 s at 60°C. A melt curve was run to ensure quality control and the generation of a 

single product. Normalized expression levels were calculated relative to control cells 

according to the 2
−ΔΔCT

 method 
295

. 

 

 

6.11 Statistical analysis 

 

Each experiment was performed at least three times, and all values are represented as 

means ± SEM. One-way analysis of variance (ANOVA) was used to compare 

differences among groups followed by Bonferroni's test (Prism 5; GraphPad 

Software, San Diego, CA, USA). Values of p<0.5 were considered statistically 

significant. 

  



~ 63 ~ 
 

7. RESULTS 

 

 

7.1 E2-enhancement of SF protective effects against oxidative stress  

 

First aim of this project was to evaluate the potential protective effect of E2 and SF 

against oxidative injury. Cells were treated with  increasing concentrations of E2 (10-

500 nM) and SF (0.1-5 µM) and after 24 h cells were exposed to 100 μM H2O2 for 30 

minutes (Fig. 7.1) and the cellular viability measured by MTT assay. 100 μM H2O2 

for 30-min has been choosen as in previous studies it demonstrated to reduce cell 

viability of 50% in rat cardiomyocytes 
293, 296

. The pre-treatment with 0.5 µM, 1 µM 

and 5 µM SF induced protection against oxidative damage, increasing cell viability in 

respect to H2O2-treated cells (Fig. 7.1 A). In particular, 5 µM SF was able to maintain 

cell viability to level comparable to control cells, meanwhile 0.1 µM SF did not 

protect from oxidative injury. Differently, the pre-treatment with E2 did not show any 

protective effect against H2O2-induced damage (Fig. 7.1 B).  

To explore the possible effect of E2 on SF protective activity against oxidative stress 

we chosen the highest SF concentration that did not protect from oxidative stress (0.1 

µM) and the lowest SF concentration that showed efficacy against oxidative damage 

(0.5 µM) (Fig. 7.1 A). Noteworthy, these concentrations are easily achievable in 

plasma after broccoli intake 
239, 297

. Regarding E2 concentration, no concentration 

tested showed protective effects, so we decided to use physiological concentrations of 

the hormone (10 nM, 50 nM) 
298, 299

. Cardiomyocytes were treated with SF (with 0.1 

and 0.5 μM) in the absence or presence of E2 (10 and 50 nM). After 24 h cells were 

exposed to peroxide for 30 min and cell viability was evaluated by MTT assay (Fig. 

7.2 A) and LDH release (Fig. 7.2 B). The co-treatments with 0.5 μM SF and E2 was 

able to increase cell viability with respect to H2O2-treated cells. On the contrary, 0.1 

μM SF in the presence of E2 did not increase cell viability in respect to peroxide 

treated cells. 
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Figure 7.1. Effect of increasing SF and E2 concentrations against H2O2-induced oxidative stress in 

cardiomyocytes. Cells were treated with SF (0.1-5 µM) (A) and E2 (10-500 nM) (B) for 24h and exposed to 

100 µM H2O2 for 30 minutes. Cell viability was measured by MTT assay as reported in Materials and 

Methods. Each bar represents means±SEM of at least four independent experiments. Data were analyzed by 

one-way ANOVA followed by Bonferroni's test. *p<0.05 vs CTRL; °p<0.05 vs H2O2. 

 

 

A 
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The co-treatment with 0.5 μM SF and 10 nM E2 was the most powerful to mitigate 

oxidative damage as it significantly increased cell viability with respect to both H2O2- 

and 0.5-μM-SF-treated cells. Moreover, this co-treatment maintained cell viability to 

level comparable to control cells, suggesting that E2 strongly enhances SF protective 

effect against oxidative stress (Fig. 7.2 A). These results were confirmed by LDH 

release assay. The co-treatment with 0.5 μM SF and 10 nM E2 significantly reduced 

LDH release in respect to both H2O2- and 0.5-μM-SF-treated cells (Fig. 7.2 B).  

To investigate whether E2 can boost SF protective effects also against other oxidative 

injuries, cardiomyocytes were pre-treated with 0.5 μM SF in absence or presence of 

10 nM E2 and then exposed to 0.5 mM Methylglyoxal (MG) for 24 h (Fig. 7.3). 

MG is a dicarbonyl compound, by-product of glycolysis, and its ability to cause 

oxidative stress has been extensively reported 
300, 301

. In a previous paper this MG 

concentration was able to induce oxidative damage in cardiomyocytes 
302

. The 

treatment with 0.5 µM SF significantly increased cell viability in respect to MG 

treated cells as measured by MTT assay (Fig. 7.3 A); on the contrary, E2 had no 

effect against MG-induced injury. In agreement with the data on the protection 

against H2O2, SF and E2 co-treatment significantly increased cell viability in respect 

to both MG- and SF-treated cells, suggesting that E2 modulates SF ability to 

counteract also MG-induced oxidative damage. These results were confirmed by 

LDH release assay. The co-treatment significantly reduced LDH release with respect 

to both MG and SF-treated cells (Fig. 7.3 B). 

As the co-treatment with 0.5 µM SF and 10 nM E2 was the most effective in 

counteracting oxidative stress, we chose these concentrations for the subsequent 

experiments. To deepen the mechanisms behind E2 ability to enhance SF 

cardioprotection against H2O2-induced injury, we investigated the potential 

modulatory effect of E2 on SF capability to reduce intracellular ROS levels in 

cardiomyocytes by the DCFH-DA assay. Cells were pre-treated with 0.5 μM SF in 

the absence/presence of 10 nM E2 and then exposed to 100 µM H2O2 for 30 min (Fig. 

7.4). 
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Figure 7.2. Effect of E2 on SF protective activity against H2O2-induced injury in cardiomyocytes. Cells 

were treated with SF (0.1 – 0.5 µM) in the absence/presence of E2 (10 – 50 nM). (A) Cell viability was 

measured by MTT assay as reported in Materials and Methods. (B) Cell damage was measured by LDH 

activity in the culture medium as reported in Materials and Methods. Each bar represents means ± SEM of 

at least 4 independent experiments. Data were analyzed by one-way ANOVA followed by Bonferroni’s test. 

*p <0.05 with respect to control; °p< 0.05 with respect to H2O2; §p< 0.05 with respect to SF 0.5 µM. 
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Figure 7.3. Effect of E2 on SF protective activity against MG-induced injury in cardiomyocytes. Cells 

were treated with 0.5 µM SF in the absence/presence of 10 nM E2.  (A) Cell viability was measured by MTT 

assay as reported in Materials and Methods. (B) Cell damage was measured by LDH activity in the culture 

medium as reported in Materials and Methods. Each bar represents means ± SEM of at least 4 independent 

experiments. Data were analyzed by one-way ANOVA followed by Bonferroni’s test. *p <0.05 with respect 

to control; °p< 0.05 with respect to H2O2; §p< 0.05 with respect to SF 0.5 µM+H2O2. 
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Figure 7.4. Effect of E2 on SF capability to reduce intracellular ROS levels in cardiomyocytes. Cells were 

pre-treated with 0.5 µM SF in absence/presence of 10 nM E2. Intracellular ROS levels were measured with 

the ROS-sensitive probe DCFH-DA as reported in Material and Methods. Data are expressed as percentage 

in respect to H2O2-treated cells. Each bar represents means ± SEM of  at least 4 independent experiments. 

Data were analyzed by one-way ANOVA followed by Bonferroni’s test. °p< 0.05 with respect to H2O2; §p< 

0.05 with respect to SF 0.5 µM. 

 

 

SF treatment significantly reduced intracellular ROS production with respect to H2O2; 

meanwhile, E2 did not significantly modify ROS levels compared to H2O2. 

Interestingly, the co-treatment was the most effective in reducing ROS levels in 

respect to SF alone, in agreement with viability data. 

To validate the boosting effect on SF antioxidant ability elicited by E2 in 

cardiomyocytes, we evaluated the formation of 8-OHdG, a marker of oxidative 

damage to DNA (Fig. 7.5). The cells were plated in coverslips, treated with 0.5 µM 

SF in absence/presence of 10 nM E2 and then exposed to 100 µM H2O2 for 30 min. 

The coverslips were then fixed and stained with anti-8-OHdG antibody, as reported in 

Materials and Methods. Positive staining for 8-OHdG was nearly noticeable in the 

cytoplasm or nucleus of control and SF and/or E2-treated cardiomyocytes not 

exposed to peroxide. As expected, H2O2 triggered a strong positive staining for 8-

OHdG, meanwhile the pre-treatment with SF and/or E2 mitigated the positive 
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staining for 8-OHdG. In agreement with the data on viability, the co-treatment was 

the most effective in reducing the positive staining.   

As GSH is the main endogenous antioxidant involved in the maintenance of cell 

redox status, we investigated the effect of SF and E2 co-treatment on intracellular 

GSH levels by the MCB assay. Cells were pre-treated with 0.5 μM SF in the 

absence/presence of 10 nM E2 and then exposed to 100 µM H2O2 for 30 min (Fig. 

7.6). Peroxide significantly decreased GSH levels with respect to control cells. E2 

was not able to restore GSH levels, meanwhile, both SF alone and the co-treatment 

were able to significantly increase the amount of GSH with respect to H2O2, and to 

maintain it to a level comparable to control cells. 
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Figure 7.5. Effect of E2 on SF capability to contrast oxidative DNA injury in cardiomyocytes. Cells were 

pre-treated with 0.5 µM SF in absence/presence of 10 nM E2 and then exposed to H2O2 for 30 min. 

Intracellular oxidative DNA damage was detected using an immunofluorescence staining with anti-8-OHdG 

antibody as reported in Material and Methods. Images were acquired with a 100x objective. 8-OHdG: red 

fluorescence (Cy3); Nuclei: blue fluorescence (DAPI). 
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Figure 7.6. Effect of E2 and SF on GSH levels in cardiomyocytes. Cells were pre-treated with 0.5 μM SF in 

absence/presence of 10 nM E2 and then exposed to H2O2 for 30 min. GSH levels were assessed using the 

fluorescence probe MCB as reported in Material and Methods. Each bar represents the mean ± SD of 4 

independent experiments. Data were analyzed by one-way analysis of variance (ANOVA) followed by 

Bonferroni’s test. *p < 0.05 with respect to control; °p < 0.05 with respect to H2O2. 

 

 

7.2 Effect of E2 and SF on Nrf2 and phase II enzymes  

 

It has been extensively reported that SF is a strong phase II enzyme inducer 
256

, so we 

next examinated the potential modulatory effect of E2 on SF ability to up-regulate 

phase II enzymes and the related transcription factor, Nrf2. In particular, we 

investigated the expression of GSTM1, GSTp2, GSTa3, HO-1, GR, CAT, NQO1, 

TrxR1, SOD1, SOD3, GPX and Nrf2. Cells were treated with 0.5 μM SF in the 

absence/presence of 10 nM E2, and after 24 h the RNA has been extracted, reverse 

transcribed into cDNA and mRNA levels analyzed by RT-PCR. 

As reported in Fig. 7.7, SF alone significantly up-regulated GSTM1, GSTp2, GSTa3, 

GR, CAT, NQO1 and TrxR1 with respect to control cells, meanwhile it did not 

modulate the expression of HO-1 and Nrf2. On the contrary, the co-treatment was 

able to significantly up-regulate the expression of Nrf2 and all the enzymes reported 
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in Fig. 7.7. In particular, in the co-treated cells the expression of GSTp2, HO-1, GR, 

NQO1 and TrxR1 was higher with respect to SF-treated cardiomyocytes, suggesting 

that E2 boosts the upregulation of phase II enzymes induced by SF. On the other side, 

E2 did not influence the expression of any considered gene. Regarding SOD1, SOD3 

and GPX, their mRNA levels were not influenced by any treatments (Fig. 7.8). 

 

 

 

Figure 7.7. Effect of  E2 and SF on the mRNA level of GSTM1, GSTp2, GSTa3, HO-1, GR, CAT, NQO1, 

TrxR1, Nrf2 in cardiomyocytes. Cells were treated with 0.5 μM SF in absence/presence of 10 nM E2 for 24 

h. Total RNA was isolated and the mRNA level of target genes was quantified using RT-PCR normalized to 

β-actin and β2-microglobulin housekeeping genes as reported in Materials and Methods. Triplicate 

reactions were performed for each experiment. Each bar represents the mean ± SEM of 3 independent 

experiments. Data were analyzed by one-way analysis of variance (ANOVA) followed by Bonferroni’s test. * 

p < 0.05 with respect to control; § p < 0.05 with respect to SF. 
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Figure 7.8. Effect of  E2 and SF on the mRNA level of GPX, SOD1 and SOD3 in cardiomyocytes. Cells 

were treated with 0.5 μM SF in absence/presence of 10 nM E2 for 24 h. Total RNA was isolated and the 

mRNA level of target genes was quantified using RT-PCR normalized to β-actin and β2-microglobulin 

housekeeping genes as reported in Materials and Methods. Triplicate reactions were performed for each 

experiment. Each bar represents the mean ± SEM of 3 independent experiments. Data were analyzed by one-

way analysis of variance (ANOVA) followed by Bonferroni’s test. 

 

 

To further study the modulation of Nrf2 by SF/E2 co-treatment, we measured it by 

immunofluorescence staining (Fig. 7.9) and by Western blotting analysis (Fig. 7.10). 

As reported in Materials and Methods, for immunofluorescence analysis, cells were 

seeded in coverslips, and at the end of each treatment, cells were fixed and incubated 

with an anti-Nrf2 specific antibody. As for the RT-PCR data, E2 did not increase 

total level of Nrf2 protein expression (Fig. 7.9); meanwhile, SF and the co-treatment 

induced a positive staining for Nrf2 with respect to control cells. Of note, the co-

treatment increased Nrf2 protein expression more effectively than SF alone. In order 

to investigate the translocation of Nrf2 to the nucleus, we treated cells with SF or E2 

and then performed immunoblot analysis of the cytosolic and nuclear fractions (Fig. 

7.10) using a specific Nrf2 antibody. Data revealed that E2 treatment reduced Nrf2 

protein level in the cytosolic fraction without increasing Nrf2 level in the nuclear 

fraction. On the contrary, both SF and the co-treatment were able to significantly 

reduce Nrf2 expression in the cytosolic fraction and, at the same time, to significantly 

increase Nrf2 in the nucleus. In particular, the Nrf2 translocation to the nucleus was 

higher in co-treated cells. 
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Figure 7.9. Effect of E2 and SF on Nrf2 protein expression in cardiomyocytes. Cells were treated with 0.5 

µM SF in absence/presence of 10 nM E2 for 24 h. Nrf2 was detected using an immunofluorescence staining 

with anti-Nrf2 antibody as reported in Material and Methods. Images were acquired with a 100x objective. 

Nrf2: green fluorescence (FITC); Nuclei: blue fluorescence (DAPI). 
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Figure 7.10. Effect of E2 and SF on Nrf2 translocation. Cells were treated with 0.5 μM SF in 

absence/presence of 10 nM E2 for 24 h, and cytosolic and nuclear extracts were immunoblotted with anti-

Nrf2 antibody as reported in Materials and Methods. Relative amounts were normalized to the intensity of β-

actin (cytosolic fraction) or lamin A (nuclear fraction) and represented as fold increase with respect to 

control. Data were analyzed by one-way ANOVA followed by Dunnett's test. *p<0.05 with respect to control 

cells; §p<0.05 with respect to SF. 

 

 

7.3. Involvement of ERα and ERβ in SF/E2 co-treatment counteracting H2O2-induced 

damage 

 

E2 mediates its physiological functions through the activation of estrogen receptors. 

So, we next analyzed the expression of both ERα and ERβ by RT-PCR in neonatal 

cardiomyocytes treated with 0.5 μM SF in the absence/presence of 10 nM E2 (Fig. 

7.11). Both receptors are expressed in the cells, and the treatments did not alter their 

mRNA levels. To investigate whether ERα or ERβ could influence E2 ability to boost 

SF protection against H2O2, we examined cell viability of cells co-treated with SF and 

E2 in the absence/presence of specific ERα and ERβ antagonists, MPP and PHTPP, 

respectively, before oxidative stress induction (Fig. 7.12). Both antagonists, MPP and 

PHTPP did not modify cell viability with respect to control cells. Interestingly, 

neither MPP nor PHTPP, reduce the efficacy of SF/E2 co-treatment against H2O2-
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induced damage, suggesting that ERs are not involved in co-treatment-mediated 

cardioprotection.  

 

 

 

 

Figure 7.11. Effect of  E2 and SF on the expression of ERα and ERβ in cardiomyocytes. Cells were 

treated with 0.5 μM SF in absence/presence of 10 nM E2 for 24 h. Total RNA was isolated and the mRNA 

level of target genes was quantified using RT-PCR normalized to β-actin and β2-microglobulin housekeeping 

genes as reported in Materials and Methods. Triplicate reactions were performed for each experiment. Each 

bar represents the mean ± SEM of 3 independent experiments. Data were analyzed by one-way analysis of 

variance (ANOVA) followed by Bonferroni’s test. 
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Figure 7.12. Effect of ERα and ERβ antagonists on H2O2-induced damage in cardiomyocytes. Cells were 

co-treated with 0.5 µM SF and 10 nM E2 in the absence/presence of 100 nM MPP (ERα antagonist) or 100 

nM PHTPP (ERβ antagonist) for 24 h prior to H2O2 exposure. Cell viability was measured by MTT assay as 

reported in Materials and Methods. Each bar represents means ± SEM of  at least 4 independent 

experiments. Data were analysed by one-way ANOVA followed by Bonferroni’s test. *p <0.05 with respect 

to control; °p< 0.05 with respect to H2O2; 

 

 

7.4 Effect of E2 and SF on ERK1/2 and Akt signaling 

 

We next evaluated the effect of E2 and SF on two pro-survival signaling pathways in 

cardiomyocytes 
303, 304

, ERK1/2 and Akt pathways by Western Blot analysis (Fig. 

7.13). Cells were treated with 0.5 μM SF in the absence/presence of 10 nM E2 for 

different time points (30 min, 2 h and 6 h) and then the phosphorylated- and total-

forms of ERK1/2 and Akt kinases were analyzed by immunoblotting, using specific 

antibodies. ERK1/2 was rapidly activated (phosphorylated) by all treatments, but 

only SF/E2 co-treatment maintained ERK1/2 activation at 2 and 6 h, suggesting a 

synergic effect of SF and E2 on the phosphorylation of this MAPK. 

Like ERK1/2, Akt was rapidly phosphorylated by SF, E2 and the co-treatment but at 

2 h, only E2 and the co-treatment were able to maintain Akt activation. Noteworthy, 



~ 78 ~ 
 

with the exception of 6 h time point, SF/E2 co-treatment induced a significantly 

greater Akt activation than the single treatments.  

 

 

 

 

 

 

Figure 7.13. Modulation of ERK1/2 and Akt by SF/E2 co-treatment in cardiomyocytes. Cells were pre-

treated with 0.5 μM SF in the absence/presence of 10 nM E2 for different times (30 min–6 h), and proteins 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotted and probed 

for total and phosphorylated forms of ERK1/2 and Akt as reported in Materials and Methods. Each bar 

represents means ± SEM of at least three independent experiments. Data were analyzed by one-way ANOVA 

followed by Bonferroni's test. *p<0.05 with respect to C; §p<0.05 with respect to SF, E2. 

 

 

To characterize the role of these two kinases on the enhanced cardioprotection 

elicited by SF/E2 co-treatment against oxidative injury, we verified the viability of 
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cells pre-treated with SF/E2 co-treatment in the absence/presence of specific ERK1/2 

and Akt inhibitors, PD and LY, respectively, before the induction of oxidative stress 

(Fig. 7.14). Interestingly, only when the cells were simultaneously exposed to the two 

inhibitors, a significant reduction of cell viability was recorded with respect to SF/E2-

treated cells. 

 

 

 

Figure 7.14. Effect of Akt and ERK1/2 inhibitors on H2O2-induced damage in cardiomyocytes.. Cells were 

treated with SF/E2 co-treatment in the absence/presence of 10 μM LY or 10μM PD prior to H2O2 exposure. 

Cell viability was measured by MTT assay as reported in Materials and Methods. Each bar represents 

means ± SEM of at least three independent experiments. Data were analyzed by one-way ANOVA followed 

by Bonferroni's test. °p<0.05 with respect to H2O2, §p<0.05 with respect to SF/E2 + H2O2 cells. 

 

 

7.5 Involvement of ERs and GPR30 in the activation of Akt kinase in H9c2 cells 

 

Our next aim was to better characterized the effect of SF/E2 co-treatment on Akt 

signaling pathway. To this purpose, we used the cardiomyoblast cell line H9c2. To 

verify that the co-treatment of H9c2 cells elicits the same effect observed in 

cardiomyocytes on Akt activation, we treated H9c2 cells with 0.5 μM SF in the 
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absence/presence of 10 nM E2 for different time points (30 min, 2 h) and then the 

phosphorylated- and total-forms of Akt kinase were analyzed by immunoblotting. 

Akt was rapidly activated by all treatments at 30 min, with SF/E2 co-treatment most 

effective that the other treatments (Fig. 7.15). To analyze the possible involvement of 

estrogen receptors in the activation of Akt induced by SF/E2 co-treatment, we treated 

H9c2 cells with selective agonists of ERα, ERβ and GPR30 and analyzed the 

activation of Akt by western blotting. 

 

 

 

 

 

Figure 7.15. Modulation of Akt by SF/E2 co-treatment in H9c2 cells. Cells were treated with 0.5 μM SF in 

the absence/presence of 10 nM E2 for different times (30 min–2 h), and proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotted and probed for total and phosphorylated 

forms of Akt (A)  as reported in Materials and Methods. We used as positive control (PC) cells starved for 1h 

in DMEM w/o FBS and then exposed to 10% FBS DMEM for 20 min. C1: DMEM 30 min; C2: DMSO 30 

min (as SF+E2 treatment); C3: DMSO 2h (as SF+E2 treatment). Each bar represents means ± SEM of at 

least three independent experiments. Data were analyzed by one-way ANOVA followed by Bonferroni's test. 

*p<0.05 with respect to C2, §p<0.05 with respect to SF and E2. 
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As illustrated in Fig. 7.16 (A), we used PPT, agonist for ERα, at two different 

concentrations (10 nM and 100 nM) in absence/presence of 0.5 µM SF. SF and 10 

nM PPT alone were able to induce the activation (phosphorylation) of Akt; whereas 

SF/PPT co-treatments did not activate Akt kinase at any agonist concentration tested. 

Indeed, rather than enhancing SF-induced Akt activation, PPT inhibited its activation. 

To test ERβ contribution to Akt activation, we treated cells with 0.5 µM SF in 

absence/presence of KB5, agonist of ERβ, at two different concentrations (10 nM and 

100 nM) (Fig. 7.16 B). SF and 10 nM KB5 alone significantly activated Akt, 

meanwhile the SF and KB5 co-treatments enhanced Akt activation, suggesting that 

KB5 agonist could act like E2 in enhancing Akt phosphorylation induced by SF. 

Finally, we verify GPR30 involvement using G1 agonist. Cells were treated with 0.5 

µM SF in absence/presence of G1 at two concentrations (100 nM and 1 µM) (Fig. 

7.16 C). SF alone induced Akt phosphorylation, meanwhile G1 alone did not act on 

Akt phosphorylation. However, in agreement with the data obtained with KB5 

agonist, SF treatment in the presence of 1 µM G1 significantly boosted Akt 

phosphorylation induced by SF. These results suggest that the contribution of E2 on 

SF/E2 co-treatment effect could be mediated by ERβ and GPR30. 
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Figure 7.16. Involvement of estrogen receptors in the activation of Akt kinase. Cells were treated with 0.5 

μM SF in the absence/presence of selective agonists for 30 min, and proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotted and probed for total and phosphorylated 

forms of Akt as reported in Materials and Methods. (A) PPT is a selective agonist for ERα; (B) KB5 is a 

selective agonist for ERβ; (C) G1 is a selective agonist for GPR30. Each bar represents means ± SEM of at 

least three independent experiments. Data were analyzed by one-way ANOVA followed by Bonferroni's test. 

*p<0.05 with respect to C, §p<0.05 with respect to SF/agonist co-treatment. 
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7.6 Nrf2 activation and Akt signaling in H9c2 cells 

 

To further confirm the involvement of Nrf2/ARE pathway in the cardioprotection 

elicited by SF/E2 co-treatment, we evaluated Nrf2 ARE-binding activity through 

ELISA-based kit in H9c2 cells. Cells were treated with 0.5 μM SF in the 

absence/presence of 10 nM E2 and then Nrf2 ARE-binding activity was analyzed in 

nuclear extracts.  

In agreement with the data obtained in primary cardiomyocytes, the co-treatment 

demonstrated to be the most effective in increasing Nrf2 activity (Fig. 7.17).  

Akt kinase is involved in Nrf2 nuclear stabilization. Indeed, Akt activation results in 

inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3), which mediates 

Nrf2 export from the nucleus. Therefore, Akt-mediated GSK-3 inhibition prevents 

Nrf2 proteosomal degradation 
305

. For this reason, we used a specific Akt inhibitor to 

study the involvement of Akt activation by the co-treatment in Nrf2/ARE pathway. 

To confirm LY ability to inhibit Akt activation we co-treated cells with SF and E2 in 

the absence/presence of LY before performing western blot analysis (Fig. 7.18). As 

expected, in presence of LY co-treatment-induced Akt phosphorylation was 

significantly reduced. So we next verified the effect of the co-treatment in 

absence/presence of LY on Nrf2 ARE-binding activity by ELISA-based kit (Fig. 

7.19). As illustrated in Fig 7.18, SF and E2 co-treatment significantly increased Nrf2 

activity, meanwhile, in the presence of LY, the activation of Nrf2 induced by the co-

treatment was prevented. These results suggest a key role played by Akt kinase in co-

treatment-induced Nrf2 activation.  
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Figure 7.17. Effect of E2 and SF on Nrf2 binding activity. Cells were treated with 0,5 μM SF in 

absence/presence of 10 nM of E2 for 6h. ARE binding activity of Nrf2 was analyzed in nuclear extracts using 

the ELISA-based kit Trans AM Nrf2 as reported in Materials and Methods. Values represent means ± SEM 

of 3 independent determinations and are reported as fold increase over controls. Data were analyzed by one-

way ANOVA followed by Bonferroni’s test. *p< 0.05 with respect to C. 

 

 

 

 

 

Figure 7.18. Effect of SF/E2 co-treatment on Akt phosphorylation in presence of Akt inhibitor. Cell were 

treated with SF/E2 co-treatment for 30 min in absence/presence of 10 µM LY inhibitor. Proteins were 

separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotted and probed for total 

and phosphorylated forms of Akt as reported in Materials and Methods. *p<0.05 with respect to C; §p<0.05 

with respect to SF/E2 co-treatment. 

 

 



~ 85 ~ 
 

 

 

Figure 7.19. Effect of co-treatment on Nrf2 binding activity in presence of Akt inhibitor. Cells were treated 

with the co-treatment for 6 h in absence/presence of  10 μM LY. ARE binding activity of Nrf2 was analyzed 

in nuclear extracts using the ELISA-based kit Trans AM Nrf2 as reported in Materials and Methods. Values 

represent means ± SD of 3 independent determinations and are reported as fold increase over controls. Data 

were analyzed by one-way ANOVA followed by Bonferroni’s test. *p < 0.05 with 

respect to C; §p < 0.05 with respect to SF/E2 co-treatment. 
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8. DISCUSSION 

 

 

In 2010, the prestigious journal Nature, entitled its editorial as 'Putting gender on the 

agenda', underling that still nowadays, the medications used on women have been 

prevalently tested on men 
306

. Indeed, from Ippocrates to the modern medicine, 

preclinical and clinical studies including subjects of both sexes are really few. 

Women enrolled in clinical trials for cardiovascular disease medications represent 

only the 30%; and the first trial on statins (WOSCOP) did not enroll any woman, as 

well as that studying aspirin as preventive agent of CVD. The philosophy of drug 

development needed to change from the paradigm of 'one size fits all' to a new 

concept of precision medicine. Women and men can be affected by the same 

pathologies but they show differences in the age of onset, symptoms, risk factors, 

pathology progression and not less important, they respond differently to the 

medications. These discrepancies are due to those we refer to as sex-gender 

differences. Women and men are biologically different at the level of the cells, the 

organs and the organism 
307

. Sex leads to biological differences between males and 

females, in terms of endocrinology, epigenetics and genetics, while gender refers to 

individual interaction with the society and environment. Gender concept is specific 

for humans, while sex differences can be evidenced in animal models and isolated 

cells. The impact of sex-gender differences is well studied in the field of 

cardiovascular disease. Nowadays, CVD are still the first cause of death worldwide, 

and despite the improvement of their prevention, in the elderly CVD represent the 

first cause of disability 
1
. CVD rarely manifest in pre-menopausal women meanwhile, 

the incidence of these pathologies dramatically increases after the menopause. This 

phenomenon has been in part correlated to the lost of sexual hormones after 

menopause, in particular to the lower levels of 17β-estradiol, the main premenopausal 

circulating form of estrogen 
4
. In post-menopausal women, oxidative stress status 

could represent a helpful biomarker for the risk of cardiovascular disease. Oxidative 
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stress is a condition of disequilibrium between oxidative species, mainly reactive 

oxygen species, and the endogenous antioxidant defenses, and it leads to high level of 

lipid peroxidation, oxidative damage to DNA, mitochondrial dysfunction and altered 

protein expression. Oxidative stress represents the common characteristic in CVD, as 

it plays a role in the initiation and progression of these 
154, 308, 309

. In physiological 

conditions, cells are able to counteract the excess of intracellular ROS production 

through the endogenous antioxidant defense system, which belongs phase II and 

antioxidant enzymes. SOD, CAT, GST, GR, TrxR1, NQO1, HO-1 are examples of 

phase II enzymes, which play a key role in the maintenance of intracellular redox 

state and in the protection of cells from oxidative damages. In particular, Nrf2 

transcription factor represents the main regulator of these cytoprotective proteins. 

The intriguing possibility to counteract the elevation of ROS levels in CVD through 

dietetic intervention has been largely deepened, and many investigations reported 

cardioprotective effects played by nutraceutical compounds with several mechanisms, 

including the reduction of oxidative stress 
310, 311

. However, all studies investigating 

the cardioprotective role of nutraceutical compounds did not take into account sex-

gender differences.  

Sulforaphane is a dietary isothiocyanate, plant secondary metabolite, which derives 

from the hydrolysis of its precursor glucoraphanin, present in brassica vegetables. 

The main mechanism elicited by SF is the induction of a battery of cytoptotective 

enzymes through the involvement of Nrf2/ARE pathway 
229

. Several studies reported 

the cardioprotective role of sulforaphane in counteracting oxidative injury 
256, 285-287

. 

As mentioned before, it has been demonstrated that males and females respond 

differently to cardiovascular medications. These differences were mainly attributed to 

the actions of E2, so we hypothesize that sex hormones could also differently 

influence the preventive/protective effects of nutraceutical compounds in males and 

females, such as those of SF. 
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Aim of this PhD thesis was to explore the modulatory effect of E2 on the 

cardioprotective activity of SF in primary cultures of rat cardiomyocytes against 

oxidative stress by analyzing antioxidant/survival pathways and investigating 

the involvement of ERs and GPR30. 

 

In this thesis we focused on the effects of E2 on SF protection against oxidative 

damage in primary cardiomyocytes. And to the best of our knowledge, for the first 

time we demonstrated that estrogen could modulate the protective activity of a 

nutraceutical compound. In particular, our data show that E2 can enhance SF capacity 

to counteract oxidative injury by boosting the up-regulation of antioxidant enzymes 

and the activation of pro-survival signaling pathways. Our data evidence that E2 

significantly enhances SF cardioprotection against oxidative injury. Previous studies 

demonstrated that 5 µM SF is able to protect against oxidative damage, inducing a 

panel of key cellular cytoprotective enzymes 
253, 256, 302

. Interestingly, in these 

previous studies, only 5 µM SF led to a total protection of cardiomyocytes against 

oxidative stress. In this thesis, we used 0.5 µM SF, a 10-fold lower concentration 

which, in absence of E2, led to a slight protection in cardiomyocytes; meanwhile, in 

presence of E2, it induced a full protection against oxidative injury. Differently, E2 

alone did not protect from H2O2-induced oxidative injury. Data from Urata et al. 
312

 

are in accordance with our data, as they showed that 10 nM E2 was not able to 

contrast oxidative injury elicited by H2O2; differently, other researchers observed 

protective effects with E2 treatment against different damages, in cardiomyoblast cell 

line. In H9c2 cells, Hsieh et al. 
33

 demonstrated that 10 nM E2 is able to reduce 

hypoxia-induced apoptosis. Likewise, Kim et al 
27

, and Cong et al. 
32

, using the same 

E2 concentration on neonatal cardiomyocytes, showed protective effects against H/R-

induced apoptosis. The dissimilarity between our data and these results could be 

attributed to the different injury induced to cells, as H/R leads to a more complex 

scenario than H2O2, involving other mechanisms beside oxidative stress. To further 

confirm the observation that E2 boosts SF protective effect against oxidative damage, 
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we evaluated the effect of E2 on SF protection in another oxidative stress model. 

Therefore, we exposed cardiomyocytes to the alpha-oxoaldehyde MG, which widely 

demonstrated to induce oxidative stress 
300, 301

. According to the data obtained with 

H2O2, E2 demonstrated to enhance SF protection against MG, suggesting that E2 can 

modulate SF cardioprotection in different oxidative stress models. To deepen the 

mechanisms behind E2 ability to enhance SF protection against H2O2-induced 

damages, we also evaluated the effect of SF/E2 co-treatment on redox intracellular 

state, in cardiomyocytes exposed to peroxide. In agreement with the viability data, 

the SF/E2 co-treatment counteracted, more effectively than SF alone, intracellular 

ROS release and 8-OHdG formation induced by H2O2, suggesting a modulator effect 

of E2 on SF antioxidant capability. Differently, the recovery action on GSH levels of 

SF/E2 co-treatment, after peroxide exposure, was comparable to that of SF alone. 

In rat cardiomyocytes, 5 µM SF demonstrated to up-regulate several antioxidant and 

phase II enzymes, so counteracting oxidative stress 
253, 256, 302

 through the involvement 

of Nrf2 transcription factor. Genes codifying for phase II enzymes contain in their 

promoter regions ARE (antioxidant responsive element) sequence, which is 

recognized from Nrf2 
180

. These enzymes represent key components of the cellular 

antioxidant defense system and are important for the prevention/protection of the 

CVD 
313

. The importance of Nrf2/ARE signaling pathway has been widely explored 

in the cardio-prevention of oxidative injury 
293, 314

, as well as in the protection from 

heart dysfunction 
315-317

. In this project, SF capacity to induce antioxidant enzymes 

was significantly enhanced by E2; in particular, SF/E2 co-treatment significantly up-

regulated the expression of NQO1, TrxR1, GR, GSTp2, HO-1 and Nrf2 with respect 

to SF alone. Interestingly, E2 alone did not influence the expression level of any 

tested enzyme. To verify the mechanism behind the induction of phase II enzyme and 

Nrf2 mRNA levels elicited by SF/E2 co-treatment, we studied the effect of SF and E2 

on Nrf2 nuclear translocation. Indeed, Nrf2 is known to induce, once translocated 

into the nucleus, itself expression beyond that of antioxidant enzymes 
248

. The co-

treatment significantly enhanced Nrf2 nuclear accumulation with respect to SF alone, 
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so suggesting that E2 is able to boost the up-regulation of phase II enzymes induced 

by SF through Nrf2. Interestingly, E2 alone led to a reduction in Nrf2 cytosolic level, 

which did not correspond to an increase in Nrf2 nuclear level. As E2 did not show to 

modulate neither antioxidant enzymes expression nor Nrf2 expression with respect to 

control cells, the reduction in Nrf2 cytosolic level might involve different 

mechanisms. Recently, novel E3 ubiquitin ligases has been identified that mediate 

Nrf2 degradation via Keap1-indipendent mechanisms 
318

. We can hypothesize that E2 

mediates the release of Nrf2 from Keap1 but the free Nrf2 is rapidly degraded before 

its translocation to the nucleus with a Keap1-indipendent mechanism. Obviously, 

further investigations are needed to verify this hypothesis. 

Our data on E2 effect on Nrf2 activation are not in agreement with the results 

obtained by Yu et al. 
319

, as they showed the activation of Nrf2 and the induction of 

HO-1, SOD1 and GST with 5 µM E2. In our opinion, these discrepancies between 

our and their results are not surprising, as we used physiological concentration of E2 

(10nM), that is one order of magnitude lower than the ones used by Yu et al. 

E2 mediates its physiological functions through genomic and non-genomic pathways 

320
. The firsts can be mediated by ERα and ERβ, which in the classical mechanism act 

as transcription factors; whereas non genomic signaling is modulated by membrane-

associated ERα and ERβ 
321

, and by the G protein–coupled receptor named as 

GPR30, which is the main responsible for estrogen effects acting via non-classic 

receptor systems 
116

. All receptors are expressed in cardiac cells 
46, 322

 from both male 

and female rodents 
112, 323, 324

. Different authors suggested that E2 cardioprotection 

against oxidative stress is mediated by ERs. In H9c2 cardiomyoblasts, E2 exerted 

protection from H2O2-mediated injury through a transcriptional modulation 

mechanism controlled by ERβ 
312

. In another study, E2 treatment counteracted, in rat 

cardiomyocytes, H/R-induced damage with a mechanism mediated by ERα via the 

up-regulation of corticotrophin-releasing hormone receptor type 2 
32

. 

In our study, we used specific ERα and ERβ antagonists (MPP and PHTPP, 

respectively) but we did not observe a reduction in the protective effect elicited by 
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SF/E2 co-treatment, suggesting that probably E2 enhances SF cardioprotection 

against oxidative injury without the involvement of ERs. 

A battery of protein kinases, including Akt and ERK1/2, showed to exert 

cardioprotective activity against oxidative stress 
325

; so we hypothesized that in the 

enhanced protection elicited by SF/E2 co-treatment, Akt and ERK1/2 signaling 

pathways could be involved. 

Several studies showed a beneficial role of ERK1/2 pathway in the heart 
326

. Once 

activated, ERK1/2 can phosphorylate many intracellular targets at both cytoplasmic 

and nuclear level. ERK1/2 cytosolic targets include approximately 70 proteins 
327

, 

while in the nucleus it phosphorylates multiple transcription factors, inducing gene 

expression in the heart 
328

. Interestingly, ERK1/2 activation was markedly higher in 

SF/E2 co-treated cells with respect to single treatments, suggesting a synergic effect 

of SF and E2 on the phosphorylation of this MAPK. 

Akt is a serine/threonine kinase which modulates several aspects of cellular 

functions, such as growth, survival and metabolism, and its upstream kinase is PI3K 

329, 330
. After 30 min, all treatments increase Akt phosphorylation with respect to 

control cells; meanwhile at 2h, only E2 and the co-treatment maintained Akt 

activation; nevertheless, the co-treatment greatly activated Akt with respect to SF or 

E2 alone, so suggesting a potential contribution of E2 in the regulation of this 

protective kinase. Our data are in agreement with previous observations on E2 

capacity to activate Akt signaling pathway in cardiac cells 
26, 312

. Moreover, these 

effects cannot be explained by a simple additive effect of E2 and SF but rather by a 

synergic action.  

To better clarify the role of these two kinases on enhanced cardioprotection of SF 

induced by E2, we used specific inhibitors of Akt and ERK1/2 phosphorylation (LY 

and PD, respectively). Of note, only the simultaneously presence of both inhibitors, 

significantly reduced co-treatment protective effect against oxidative injury. This is 

not surprising, because these kinases often have the same target protein, and can act 

in concert to promote cell survival 
331

. Examples are forkhead box O (FOXO) and c-
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Myc transcription factors BCL2-associated agonist of cell death and GSK3 
332-335

. To 

better characterize the contribution of E2 on Akt phosphorylation, we used receptor 

selective agonists. In particular, we selected PPT, KB5 and G1 as selective agonists 

for ERα, ERβ and GPR30, respectively. The co-treatment with SF and PPT did not 

activate Akt kinase, so implying no involvement of ERα in SF/E2 co-treatment 

synergic effect on Akt phosphorylation. Meanwhile, co-treatment with SF and KB5 

or G1 agonists enhanced the activation of Akt with respect to single treatments, 

suggesting a role for these two receptors in the modulation of Akt phosphorylation. 

Moreover, it has been widely demonstrated the involvement of Akt signaling 

pathway in the nuclear accumulation and activation of Nrf2 
179, 253

. As expected, the 

inhibition of Akt phosphorylation by LY led to a reduction of the ARE-binding 

activity of Nrf2 induced by SF/E2 co-treatment, suggesting, once more, a role for this 

kinase in the protective effects elicited by SF/E2 co-treatment. 
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9. CONCLUSION 

 

 

Our data show that E2 enhances SF protective effects against oxidative damage in 

cardiomyocytes. In particular, E2 enhanced the expression of antioxidant enzymes 

induced by SF through the involvement of Nrf2/ARE pathway, and the activation of 

cardioprotective signaling pathways. Interestingly, our findings reveal that the 

enhanced protective effects elicited by SF in presence of E2 can only be related to a 

synergic effect between the bioactive compound and the hormone. Therefore, this 

study suggests that nutraceutical efficacy might be modulated by sex hormones. 

Moreover, it provides promising indications for the promotion of a isothiocyanate-

rich diet for cardiovascular prevention in women.  

In conclusion, the data open new avenues for further researches and strengthen the 

concept that, similarly to studies on drugs, investigations on bioactive compounds 

should take into account sex-gender differences. 
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