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Abstract

Computing is moving towards pervasive, ubiquitous environments in which devices, soft-
ware agents and services are all expected to seamlessly integrate and cooperate in support
of human objectives – anticipating needs, negotiating for services, acting on our behalf,
and delivering services in an anywhere any time fashion.

An important next step for pervasive computing is the integration of intelligent agents
that employ knowledge and reasoning to understand the local context and share this
information in support of intelligent applications and interfaces. Such scenarios, char-
acterised by “computation is everywhere around us”, require on the one hand software
components with intelligent behaviour in terms of objectives and context, and on the
other their integration so as to produce social intelligence.

Since its inception, Logic Programming (LP) has been recognised as a natural paradigm
for addressing the needs of distributed intelligence. Yet, the development of novel archi-
tectures, in particular in the context Internet of Things (IoT), and the emergence of new
domains and potential applications, are creating new research opportunities where LP
could be exploited, when suitably coupled with agent technologies and methods so that it
can fully develop its potential in the new context. In particular, the LP and its extensions
can act as micro-intelligence sources for the IoT world, both at the individual and the
social level, provided that they are reconsidered in a renewed architectural vision. Such
micro-intelligence sources could deal with the local knowledge of the devices taking into
account the domain specificity of each environment.

The goal of this thesis is to re-contextualise LP and its extensions in these new do-
mains as a source of micro-intelligence for the IoT world, envisioning a large number of
small computational units distributed and situated in the environment, thus promoting
the local exploitation of symbolic languages with inference capabilities. The topic is ex-
plored in depth and the effectiveness of novel LP models and architectures –and of the
corresponding technology– expressing the concept of micro-intelligence is tested. In par-
ticular, two different, integrated models are presented, namely Logic Programming as a
Service (LPaaS) and Labelled Variables in Logic Programming (LVLP) designed so as to
act synergistically in order to support the distribution of intelligence in pervasive systems.
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Chapter 1

Introduction

Pervasive computing has evolved substantially since its inception, scaling up to today’s
societal-scale applications such as mobile crowdsensing [JXJ+15] and the Internet of
Things (IoT) [GBMP13, AIM10, FGRS14], from smart appliances and smart environ-
ments in the early days to systems of much broader scope such as smart cities and smart
transportation.

Pervasive computing calls for ubiquitous intelligence where everyday physical objects
should be able to network in the IoT: intelligence is everywhere, software components are
required to behave intelligently, understanding their own goals and the context where they
operate; devices are required to understand each other, learn and understand situations,
and understand us [LMMZ17]; in short, our everyday objects should be(come) intelligent
objects in the Internet of Intelligent Things (IoIT) [ASF+14]. Moreover, their integration
is supposed to add social intelligence, possibly through coordination [Cas98].

At the same time, the peculiarities of pervasive contexts –such as size of the amount of
data, information, and knowledge to handle, supporting adaptation and self- management,
providing intelligence in a light-weight, easy to use and customise, highly-interoperable way
—make engineering effective distributed situated intelligence far from trivial.

Logic Programming (LP) [Llo12] languages and technologies represent in principle a
natural candidate for injecting intelligence within computational systems [Bro11]: yet,
many issues have to be addressed—among these, the computational costs, the machin-
ery often not suited for programming in the large (the intrinsic modularity provided by
predicates does not scale up effectively, and modules are not enough for the purpose),
the “no types” approach that makes it difficult to deal with domain-specific applications,
the distance from mainstream programming paradigms, the integration with mainstream
technologies.

Since the IoT inherently calls for a fully distributed architecture, the relationship be-
tween “LP & distribution” needs to be addressed and investigated in depth. LP seems not
to fit well for nowadays perception of distributed systems, at least according to their his-
torical meanings, since nowadays pervasive system are far away from the “simple” parallel

3



CHAPTER 1. INTRODUCTION

computing of LP, arising new issues such as, among others, the universal notion of consis-
tency of logic theory that does not cope well with the incompleteness and inconsistency
intrinsically implied by a distributed scenario.

For these reasons, this thesis approaches the matter of engineering pervasive systems
from the intelligence perspective, dealing with the aforementioned issues at the infras-
tructural level and re-interpreting the classical LP notions in the distributed, pervasive
contexts. The aim is to exploit the potential of LP and its extensions as sources of micro-
intelligence for IoT scenarios, in particular when coupled with agent-based technologies
and methods, at both the individual and the collective level, along with an overall archi-
tectural view of IoT systems exploiting logic-based technologies.

Based on previous research efforts, we identify some major elements that need to be
considered throughout the development phases of any IoT system [SGFW10]—namely,
intelligence, complexity, size, time & space, and architecture & Everything-as-a-Service.

Here we just sketch the discussion of these features, leaving an in-depth analysis to
Section 1.1.

Intelligence is intended here in the Gottfredson definition as “a very general mental
capability that, among other things, involves the ability to reason, plan, solve prob-
lems, think abstractly, comprehend complex ideas, learn quickly and learn from
experience” [Got97]. In fact, IoT applications typically collect lots of raw data from
several sources (e.g., GPS data of vehicles, real-time traffic data of road cameras,
weather data) from environment sensors, as well as user-generated contents (e.g.,
tweets, micro-blog, check-ins, photos) from mobile social APPs, that all need to be
transformed into suitable knowledge (high-level information) to be later exploited by
the collective and social intelligence. In particular, sensor data have specific charac-
teristics that need to be taken into account when reasoning and to transform them
into proper knowledge—namely, they can be multi-source, heterogeneous, large-
scale, continuously produced in a real-time streaming, ever-expanding, and situated
both in space and time.

Complexity The IoT includes a large number of sensors, actuators and other devices that
interact autonomously. Devices may appear, communicate and disappear. Interac-
tions may differ significantly depending on the objects capabilities —some objects
may have very few capabilities, limited storage and no processing capabilities at all.

Size The number of devices, and therefore of interactions, also increases significantly:
billions of parallel and simultaneous events have to be managed.

Time & Space Due to the massive number of interactions, the IoT calls for proper
handling of billions of parallel and simultaneous events. Real-time data processing
is also essential in a wide variety of technologies, ranging from feedback control
systems in vehicles and power plants to real-time imaging for minimally invasive
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CHAPTER 1. INTRODUCTION

medical procedures. Moreover, the space location, in terms on the environment in
which the device is situated, plays a significant role to reason over the data and
interactions are highly dependent on their locations, surroundings, and presence of
other entities (e.g. objects and people) [BPRD08].

Architecture & Everything-as-a-Service Everything as a service (XaaS) [BFB+11]
is a category of models introduced in cloud computing [PRJ12] aiming at offering
infrastructure, platforms and software applications as services —according to a more
Service-Oriented Architecture (SOA) interpretation of the term “service”. The XaaS
model is highly efficient, scalable, and easy to use and it uses the same infrastructure
IoT envisions [PZCG14]. Therefore, most of the technological solutions that are
developed following the XaaS architecture, can be used to realise the vision of IoT,
enabling people to benefit from ubiquitous information access.

Based on these considerations, we define the concept of micro-intelligence in the IoT
era (Section 1.1) and explore how suitable LP models and technologies can support and
promote its development. In fact, micro-intelligence could be encapsulated in devices
of any sort, making them work together in groups, aggregates, societies by promoting
observability, malleability, understandability, formalisability, and norm compliance.

The goal of this work is both to explore the topic in depth and to develop the cor-
responding technology in terms of service-oriented architectures, according to the Logic
Programming as a Service (LPaaS henceforth) approach.This approach exploits the XaaS
metaphor to promote maximum availability and interoperability: any resource of any
sort should be accessible as a service (possibly an intelligent one) via standard network
operations.

Another key issue in the IoT context is the need to enable diverse computational
models, each tailored to a specific situated component, to coherently and fruitfully coexist
and cooperate within the same (logic-based) framework, so as to cope with domain-specific
aspects. This is what the Labelled Variables in Logic Programming (LVLP) model is for:
the added value of such a hybrid approach is to make it possible to exploit LP for what
it is most suited for, such as symbolic computation, delegating other aspects – such as
situated computations – to other languages or other computational levels.

1.1 Micro-Intelligence for the IoT

Moving from the Gottfredson definition of intelligence [Got97], we define micro-intelligence
as:

MICRO

INTELLIGENCE

the capability of micro entities to reason, plan, solve problems, abstract,
and learn from experience in relation to the surrounding environment.
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The fundamental traits of micro-intelligence are precisely:

• the micro-level feature, influenced by the Things vision in IoT

• the ability to abstract, reason, plan, solve, and learn capabilities

• the situatedness feature, as the capability to interact with and act on the environ-
ment.

Micro-level feature Everyday ‘things’ are beginning to mix with digital systems.
What used to be ordinary objects of day-to-day life, like clothing, furniture, tools, and
toys, are becoming extraordinary things, seamlessly woven into global networks, infused
and animated by sophisticated digital systems. PCs as we know them will disappear
relatively quickly. They will give way to vast amounts of sophisticated computing and
communication in our surroundings, known as Things that Think [HPT97, FN08].

New paradigms for the Internet of Things are therefore crucial for migrating from
nowadays sensor networks into networks of intelligent sensors enabled with actuation
mechanisms. Such networks consists of the “Internet of Intelligent Things” (IoIT). This
paradigm is the next step in the evolution of networking, for creating the experience of
an ubiquitous [ASF+14], and intelligent, living, internet.

One one hand, the IoT is an enabling paradigm for other forms of networking and
computing, such as IoIT and Robotics as a Service (RaaS) paradigms [CDGA10]. These
new paradigms propose to add intelligence to the things that are connected to the Internet,
or consider things as robots that are available as a service to the users, respectively. In
these scenarios, connected intelligent things are capable to solve collaboratively complex
problems autonomously: by connecting and sharing ideas, large numbers of people and/or
machines can provide more accurate answers to complex problems than single individuals
[AIMN12].

On the other hand, all things are not only becoming connected to the Internet, but are
also increasingly become equipped with sensors, actuators, and the processing required
for closing the loop in terms of intelligence and autonomy. Such capabilities will allow
new forms of communication to things, especially with humans.

The micro-level feature means to highlight and remind this peculiarity of intelligence:
very small chunks of intelligence, spread all over the system, can enable the individual
intelligence of any sort of devices, promoting coordination and interoperation among
different entities.

MICRO-INTELLIGENCE

FEATURE

Our approach aims to bring intelligence at the micro-level of the IoT
system, so that micro-entities, i.e. Things, (agents, robots, humans’
wearable devices,...), possibly with limited sensing and computation,
“may operate intelligently in very large groups or swarms to affect the
macroworld and reach the global and social intelligence” [MHH98].
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CHAPTER 1. INTRODUCTION

Abstract, Reason, Plan, Solve, and Learn Historically, many approaches to Artifi-
cial Intelligence (AI) have been followed, each by different people with different methods
and many definition of “what AI is” have been discussed [RN03]. What is relevant for
micro-intelligence now, however, is not commit to a specific definition of intelligence, but
to identify some basic features associated with intelligence so as to exploit them widely
in pervasive systems. Therefore we concentrate on some general principles behind AI, in
particular on its main features that can be summarised as reason, plan, solve, abstract,
and learn capabilities —in other words [RN03], as the abilities to:

MICRO-INTELLIGENCE

ABILITIES

(i) represent and manipulate intelligence

(ii) create new associations discovering new knowledge

(iii) make consistent reasoning, starting from premises deducing
consequences.

Since Bob Kowalski’s and Alain Colmerauer’s opening of Logic Programming in the
1970s, LP has expanded in various directions and contributed to the development of many
other areas of Computer Science. LP has helped to place logic firmly as an integral part
of the foundations of Computing and Artificial Intelligence. Logic programming was the
enabling technology for new AI and ‘knowledge processing’ applications and it provided a
unifying foundation for developments in AI, in programming languages, in formal methods
for software engineering, and in parallel computing.

In the mid 1980’s, Carl Hewitt argued that Logic Programming (LP) was inadequate
for modelling open systems [Hew90]. Hewitt’s objections rest on classical logic’s use of a
static, globally consistent system which cannot represent dynamic activities, inconsisten-
cies, and non-global concerns. At the time, his broadside was addressed by two papers.
Kowalski [Kow85] agreed that model theoretic formulations of logic were lacking, and
proposed the use of knowledge assimilation to capture change, along with additional el-
ements to deal with belief systems. Kowalski’s subsequent work on the event calculus
and reactive and rational agents [KS96, KS99] can be viewed as developments of these
ideas. Kahn and Miller suggested concurrent LP as the logical framework for open sys-
tems [KM88]. Another way of replying to Hewitt’s objection is to look at the new era
of pervasive open system. The survey [Dav02] shows that LP is a successful component
of Internet programming languages, employed for tasks ranging from security semantics,
composition of heterogeneous data, to coordination ‘glue’. Many approaches have moved
beyond first order logic (e.g. to concurrent constraints, linear logic, higher order), and LP
is frequently combined with other paradigms (e.g. mutable state, objects). Furthermore,
many of the programming concerns for the Internet are still less than fully understood:
for example, there are unanswered problems related to mobility, security, and failure. Per-
vasive systems have no global time or state (knowledge base). Administrative domains
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CHAPTER 1. INTRODUCTION

mean there is no single naming scheme. Control/coordination is decentralised: to avoid
bottlenecks in communication, because it is more scalable, and due to the impossibility
of organising a single locus of control or coordination.

According to [Dav02], LP is a natural choice when a programming task requires sym-
bolic manipulation, extended pattern matching, rule-based representation of algorithms,
inference/deduction, a high degree of abstraction, and notation which reflects the mathe-
matical basis of computation. So, it is not surprising that LP languages have found wide
usage in the Internet domain and seems an ideal way of distributed intelligence in IoT
things.

This is why we select logical models and mechanisms to investigate its potential as
micro-intelligence sources in IoT pervasive scenarios.

Accordingly, in the LP context, micro-intelligence could build over typical features
of computational logic, such as the representation of knowledge in terms of First-Order-
Logic, FOL in the following, (abstract), the ability to make valid inferences and deduction,
and more generally to demonstrate theorems given a FOL theory (reason, plan, solve,
learn). Consistently, our definition of micro-intelligence in the LP world builds on these
abilities by providing

LP

MICRO-INTELLIGENCE

ABILITIES

(i) the possibility of programming devices with logical theories,

(ii) logical inference engines, and

(iii) the possibility of exploiting logical demonstration and deduc-
tion.

Then, on the basis of the asserted knowledge it should be possible to (i) automatically
derive new knowledge about the current context, and (ii) detect possible inconsistencies
in the context information. With respect to (i), reasoning aims to infer new context
information based on the facts and on the information retrieved from sensors and other
context sources—for instance, to derive the set of individual objects that are related to
a given one by a particular property (e.g., the set of activities taking place in a specific
location), or to calculate the most specific class an individual object belongs to (e.g.,
the fact that the activity performed by a given employee is a business meeting). With
respect to (ii), new possible scenarios –including automatic consistency checking– could
be supported to capture possible inconsistencies in fragmented knowledge by exploiting
model checking techniques that can be applied to check compliance rules.

Situatedness feature After Brooks’ work [Bro91], another fundamental feature of AI
is being reactive and situated. Our definition of micro-intelligence means to capture this
aspect as the ability to cope with possible changes in perceived environment.

In case of LP models and technologies, the situatedness can thus be defined as:
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CHAPTER 1. INTRODUCTION

LP

MICRO-INTELLIGENCE

FEATURE
the ability of logic theories, queries, and resolutions, to be context-
aware w.r.t. (computational) environment, space, and time

The concept of situatedness has been used extensively since the mid-1980s in the cog-
nitive science and AI literature, in terms such as ‘Situated Action’ [Suc87], ‘Situated Cog-
nition’ (e.g., [Cla97]), ‘Situated AI’ (e.g. [HHC93]), ‘Situated Robotics’ (e.g., [HMB+94]),
‘Situated Activity’ (e.g., [HJ96]), and ‘Situated Translation’ [Ris02]. Roughly speaking,
the characterisation of an agent as situated is usually intended to mean that its behaviour
and cognitive processes are first and foremost the outcome of a close coupling between
agent and environment. Hence, situatedness is considered nowadays by many cognitive
scientists and AI researchers a conditio sine qua non for any form of intelligence, natural
or artificial.

A fundamental issue in the engineering of self-organising systems is the so-called “local-
to-global” issue—that is, how to “link” the local mechanisms, through which the compo-
nents of the system interact, to the emergent, global behaviour, exhibited by the system
as a whole [BB06]. The exploitation of a situated LP approach, based on a common lan-
guage of the knowledge, tries to give an answer to this issues, promoting at the same time
the local inference and reasoning –concerning the local view of the system, and without
any constraint of consinstency– and the global activities of more intelligent entities to
gain the collective intelligence.

Overall, our approach means to provide distributed intelligence, direct or indirect in-
teractions among relatively simple agents, flexibility, and robustness, in the perspective
of the so-called swarm intelligence [Ken06]—the emergent collective intelligence of groups
of simple agents, relying on the exploitation of fragmented knowledge with no attempt to
put all the pieces together. There, huge numbers of small unit of computation (with in-
ferential capabilities), situated within a spatially-distributed environment and promoting
the local exploitation of high-level symbolic languages, collaborate to produce the social
intelligence.

1.1.1 LPaaS as Micro-Intelligence

This thesis aims at exploring the effectiveness of an LP approach for modelling the micro-
intelligence in the IoT world. In particular we propose theLPaaS model, where all the
above LP features are made available in terms of service in the system.

In such a vision, the LPaaS abstraction represents a form of micro-intelligence, en-
abling situated reasoning, interaction and coordination in distributed systems, as the
process by which an entity reasons about its local actions and the (anticipated) actions
of others to try and ensure the community acts in a coherent manner. The LPaaS ap-
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proach makes one step further, providing intelligence as a service – according to a SOA
interpretation of the term service –, enabling people to benefit from ubiquitous informa-
tion access. Emphasis is on on-demand applications, where the enabling infrastructure –
servers, storage, networks, and client devices –moves towards cloud computing. LPaaS
means to enable reasoning in distributed systems taking into account the explicit defini-
tion of the spatial-temporal structure of the environment in which situated entities act
and interact, thus promoting an approach based on key features descending from the inner
nature of pervasive systems like coordination, interaction and environment awareness.

1.1.2 LVLP as Micro-Intelligence

Specific local domains, however, may not be easily addressed by traditional logic descrip-
tion, in particular it could be difficult to model individual differences and the domain-
specific knowledge of peculiar situations. Since domain specific concepts are necessary
to model the ambient context, we complete our proposal with the Labelled Variables in
Logic Programming (LVLP). The approach is consistent with the artificial intelligence
literature, which has nearly universally determined that domain-specific knowledge is a
major determinant of the success of expert systems [Cre93].

The LVLP purpose is to enable diverse computational models, each one tailored to the
specific needs of situated components, to coherently and fruitfully coexist side by side,
interacting within a logic-based framework —thus guaranteeing a shared and common
understanding of some domain that can be communicated between people and application
systems.

1.2 Structure of the Thesis

Accordingly, the contribution of this thesis may be conveniently organised in four main
parts:

Part I (Chapters 2-3) addresses the intelligence issue in pervasive systems discussing
the complementary research contributions necessary both to conceptually ground
the LPaaS model, and to design & implement the LPaaS framework. First we review
the literature historical perspective, analysing the evolution of the distributed LP
approaches proposed over the time; then, we introduce and frame the LPaaS model
and architecture.

Part II (Chapters 4-5) addresses the situatedness and domain-specific issues in logic
programming, describing the state of the art and discussing how the LVLP model
and technology could be seen as a possible answer.

Part III (Chapters 6-7-8) develops the LPaaS and LVLP technologies, rooted on the
tuProlog system, and discusses some experiments in Smart Environments, designed
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mostly to prove the feasibility and effectiveness of the above approach.

Part IV provides final remarks and a glimpse possible next steps.

More precisely, each Part starts with an overview Chapter and then goes in depth in its
topics in the next Chapter(s).

Part I Chapter 2 first provides a review of the literature regarding the history and evo-
lution of intelligence in distributed system, focussed on the models and technologies which
mostly influenced the thesis: in particular, the intelligence issue is first addressed from the
point of view of the distribution, then from the pervasive systems perspective. Finally,
the way classical distributed LP notions need to be rethought in the IoT perspective is
introduced.

Then, Chapter 3 introduces the notion of Logic Programming as a Service (LPaaS)
as a means to address the needs of pervasive intelligent systems through logic engines
exploited as a distributed service, it thoroughly describes the LPaaS model for spreading
intelligence in pervasive systems. First the vision and the abstract architectural model
are described by re-interpreting classical LP notions in the IoT context, then the nature
of LP interpreted as a service is discussed by describing the basic LPaaS interfaces.

Part II Chapter 4 is devoted to address the Situatedness & Domain-specific issue in
Logic Programming. In particular, the state of the art is discussed, focussing on the
models and technologies which mostly influenced the thesis.

Chapter 5 presents the Labelled Variables in Logic Programming (LVLP) extension to
enable LP to deal with the diversity of pervasive systems, where many heterogeneous,
domain-specific computational models could benefit from the power of symbolic compu-
tation. The model for labelled variables in logic programming is defined. The fixed-point
and the operational semantics are also introduced, discussing the correctness, complete-
ness, and their equivalence. Finally, an implementation on the top of the tuProlog system
is presented and discussed.

Part III Chapter 6 presents the tuProlog environment, consisting of a prototype of both
LVLP and LPaaS and a complete eco-system currently under development.

Chapter 7 explores the effectiveness of merging the two above proposed approaches,
LPaaS and LVLP, to promote situated distributed intelligence in pervasive systems and in
particular in Smart Environments. After reviewing the literature, the Butlers for Smart
Spaces approach, a technology-neutral reference framework focused on users’ situatedness
and interaction aspects, is described.

Chapter 8 reports on some experiments of the integration of the two presented tech-
nologies in Smart Environments deployed on the Home Manager platform, designed to
prove the feasibility and test the effectiveness of the above approach. The technology is
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discussed, describing both a prototype middleware and a complete eco-system currently
under development. Some running example are presented and discussed.

Part IV Part IV concludes the thesis with final remarks and outlining a research
roadmap for further work, about each of the research lines brought by the thesis.

Table 1.1 lists the main acronyms used in this book.

Acronym Meaning
LP Logic Programming

FOL First-Order-Logic
DSL Domain-specific languages
IoT Internet of Things
IoIT Internet of Intelligent Things
SOA Service-Oriented-Architecture
MAS Multi Agent System

LPaaS Logic Programming as a Service
LVLP Labelled Variables in Logic Programming

SE Smart Environment
STS Socio-Technical System
KIE Knowledge-Intensive Environment
MCS Multi-Context System

Table 1.1: Table of Acronyms

1.3 List of Publications

Here follows a comprehensive list of the publications which directly contributed to the
body of work presented in this thesis, authored, or co-authored, by the same author of
this thesis:

Chapter 3

• Roberta Calegari, Enrico Denti, Stefano Mariani, and Andrea Omicini. Logic
Programming as a Service (LPaaS): Intelligence for the IoT. In Giancarlo
Fortino, MengChu Zhou, Zofia Lukszo, Athanasios V. Vasilakos, Francesco
Basile, Carlos Palau, Antonio Liotta, Maria Pia Fanti, Antonio Guerrieri, and
Andrea Vinci, editors, 2017 IEEE 14th International Conference on Network-
ing, Sensing and Control (ICNSC 2017). IEEE, May 2017

• Roberta Calegari, Enrico Denti, Stefano Mariani, and Andrea Omicini. To-
wards logic programming as a service: Experiments in tuProlog. In Corrado
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Santoro, Fabrizio Messina, and Massimiliano De Benedetti, editors, WOA 2016
– 17th Workshop “From Objects to Agents”, volume 1664 of CEUR Work-
shop Proceedings, pages 91–99. Sun SITE Central Europe, RWTH Aachen
University, 29–30 July 2016. Proceedings of the 17th Workshop “From Ob-
jects to Agents” co-located with 18th European Agent Systems Summer School
(EASSS 2016)

• Enrico Denti, Andrea Omicini, and Roberta Calegari. tuProlog: Making Prolog
ubiquitous. ALP Newsletter, October 2013

Chapter 5

• Roberta Calegari, Enrico Denti, Agostino Dovier, and Andrea Omicini. Ex-
tending logic programming with labelled variables: Model and semantics. Fun-
damenta Informaticae, 2017. Special Issue CILC 2016

• Roberta Calegari, Enrico Denti, Agostino Dovier, and Andrea Omicini. La-
belled variables in logic programming: Foundations. In Camillo Fiorentini and
Alberto Momigliano, editors, CILC 2016 – Italian Conference on Computa-
tional Logic, volume 1645 of CEUR Workshop Proceedings, pages 5–20, Milano,
Italy, 20-22 June 2016. CEUR-WS. Proceedings of the 31st Italian Conference
on Computational Logic

• Roberta Calegari, Enrico Denti, and Andrea Omicini. Labelled variables in
logic programming: A first prototype in tuProlog. In Elena Bellodi and Alessio
Bonfietti, editors, Proceedings of the Doctoral Consortium of the 14th Sympo-
sium of the Italian Association for Artificial Intelligence (AI*IA 2015 DC),
volume 1485 of CEUR Workshop Proceedings, pages 25–30, Ferrara, Italy, 23–
24 September 2015. AI*IA, CEUR-WS

Chapter 7-8

• Roberta Calegari and Enrico Denti. Context Reasoning and Prediction in
Smart Environments: The Home Manager Case, pages 451–460. Springer In-
ternational Publishing, Cham, 2018. Proceedings of IIMSS 2017, Vilamoura,
Portugal, 21-23 June 2017

• Roberta Calegari and Enrico Denti. Building Smart Spaces on the Home Man-
ager platform. ALP Newsletter, December 2016

• Roberta Calegari and Enrico Denti. The Butlers framework for socio-technical
smart spaces. In Franco Bagnoli, Anna Satsiou, Ioannis Stavrakakis, Paolo
Nesi, Giovanna Pacini, Yanina Welp, Thanassis Tiropanis, and Dominic DiFranzo,
editors, Internet Science. 3rd International Conference (INSCI 2016), volume
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• Enrico Denti and Roberta Calegari. Butler-ising HomeManager: A pervasive
multi-agent system for home intelligence. In Stephane Loiseau, Joaquim Filipe,
Beatrice Duval, and Jaap Van Den Herik, editors, 7th Int. Conf. on Agents and
Artificial Intelligence (ICAART 2015), pages 249–256, Lisbon, Portugal, 10–
12 January 2015. SCITEPRESS

• Enrico Denti, Roberta Calegari, and Marco Prandini. Extending a smart home
multi-agent system with role-based access control. In 5th Int. Conf. on Internet
Tech & Society, pages 23–30, Taipei, Taiwan, 10–12 December 2014. IADIS
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Intelligence Issue in Pervasive
Distributed Systems
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In the first part of this thesis the engineering challenges posed by three different but
related kinds of complex systems are discussed from a coordination models & technologies
perspective, then a novel approach to deal with each of them is presented. In particular,
the focus is on the history and evolution of intelligence & distribution and intelligence &
situated pervasive systems (Chapter 2).

Each contribution is a necessary ingredient for building the LPaaS model described in
Chapter 3 of this thesis, a novel approach intended as the natural evolution of distributed
LP in pervasive systems, explicitly designed to exploit context-awareness so as to promote
the distribution of situated intelligence within smart environments. Namely, the approach
has to deal with distribution in that it aims to deliver intelligence as a service, granting
ubiquitous access to knowledge and on-demand reasoning via LP services, spread over
the network and configured to respond to specific local needs. Similarly, time and space
situatedness enable clients to submit situated queries where the notions of time and locus
explicitly intervene in the computation.
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Chapter 2

History and Evolution

In this chapter the issue of intelligence in pervasive distributed system is addressed, provid-
ing an overview of the main research approaches during the last decades. In particular,
since Logic Programming (LP) languages and technologies represent the most natural
candidates for injecting intelligence within computational systems, the evolution of dis-
tributed logic programming is retraced. Then the classical distributed LP notions are
re-framed in the IoT perspective, from both the engineering standpoint of interaction,
and from the standpoint of architecture.

As discussed in the Introduction, computation is moving towards pervasive, ubiquitous
environments where devices, software agents, and services are expected to seamlessly
integrate and cooperate in support of human users, anticipating their needs and more
generally acting on their behalf, delivering services in an “anywhere, anytime” fashion
[FJK+01, ZOA+15].

The above scenarios are naturally fit for a distributed approach: tasks are often dis-
tributed in space, time, or functionality, and can benefit from the chance of solving sub-
problems modularly and concurrently. At the same time, these scenarios inherently call
for intelligence – namely, distributed situated intelligence [Par08] – to exploit domain
knowledge, understand local context, and share information in support of intelligent ap-
plications and services [CFJ03, Sma17].

Accordingly, the issue of distributed situated intelligence is addressed, firstly taking
into account the evolution and the history of distributed logic programming in Section 2.2,
then, reporting the state of the art about dealing with intelligence in pervasive system
(Section 2.1). Finally, as a natural evolution of these works, Section 2.3 introduces the key
features behind LPaaS, by discussing how the service perspective and the new situated
dimension of computation mandate for a re-interpretation of some basic LP concepts.
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2.1 Intelligence in Situated Pervasive Systems

Distributed Artificial Intelligence (DAI) is concerned with the study and construction
of semi-autonomous automated systems that interact with each other and their envi-
ronments. It goes beyond the study of individual intelligent agents solving individual
problems, towards problem solving that has social components. With the advent of large
computer and telecommunications networks, the problem of integrating and coordinating
many human and automated problem solvers working on multiple simultaneous problems
has become a pressing concern [Ros94]. Just as “conventional” AI research has sometimes
used individual human psychology or cognition as a model or driving metaphor, DAI con-
siders concepts such as group interaction, social organisation, and society as metaphors
and problem generators [Ros94]. Highly-organised DAI systems are now a research reality,
and are rapidly becoming practical partners in critical human problem-solving environ-
ments.

As defined in [GH90], researchers would most like to have a theory which relates
features of domain problems and knowledge organisation to choices on modelling, im-
plementation, and performance questions, but this theory is incomplete. Some criteria
for DAI applications problems, that help identify domains in which coordination among
intelligent agents is a basic issue, include:

• clear (possibly hierarchical) structure of time, knowledge, communication, goals,
planning, or action

• natural (not forced) distribution of actions, perceptions, authority, and/or control

• interdependence because local decisions may have global impacts, and possible
harmful interactions among agents

• possible limits on communication time, bandwidth, etc., so that a global view-point,
controller, or solution is not possible.

Increasing contextual awareness could help to face this issue; in fact in [DLC87],
agents can approximate the accuracy of centralised reasoning if they are provided with
more knowledge about other problem solvers in order to reason about potential con-
flicts in knowledge, goals, plans, and activities. Promising techniques include incremen-
tally expanding local views based on causal plan relations, as in multistage negotiations
[CKLM91].

Research into context and context-awareness (generally) focuses on relatively simple
context-aware applications using principally spatio-temporal and identity information.
Current research aims to develop generic context models with “representation and query
languages and context reasoning algorithms” [SLP04] to facilitate context sharing and in-
teroperability of applications. The context modelling approaches are classified in [SLP04]
under six major headings:
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• Key-Value Models (KVM)

• Markup Scheme Models (MSM)

• Graphical Model (GM)

• Object-Oriented Models (OOM)

• Logic-Based Models (LBM)

• Ontology-Based Models (OBM)

KVM The KVM approach is used in [SAW94] to propose: “an extended form of mo-
bile computing in which users employ many different mobile, stationary and embedded
computers over the course of a day” and PARCTab [WSA+95]. The model operates on
the basis that computation does not occur at a single location or in a single context, as
in desktop computing, but covers a number of situations, locations, and environments.

MSM A markup language combines text with additional descriptive information. The
best-known markup languages in modern use are the Hypertext Markup Language (HTML)
and the Extensible Markup Language (XML). Markup languages form the basic compo-
nents of MSM which are characterised by a hierarchical data structure using a combination
of tags with attributes and content, the attributes are context properties [MH06].

OOM A common feature of OOM approaches is the aim of achieving the (principal)
benefits of object oriented approaches which are (1) encapsulation and (2) reusability
[SP99] to address issues arising from the dynamics of context in ubiquitous environments.
Context processing [WSA+95] is encapsulated into an object level with access to contex-
tual information through specified interfaces.

LBM Logic addresses scenarios in which an expression or fact(s) may be derived from a
set of expressions or facts. Formal systems use inference rules to support such reasoning
[MH07]. In logic-based context models, a context is (generally) defined using facts (context
properties) with expressions and rules to describe and define relationships and constraints.
Contextual information is generally added, updated or deleted in terms of facts or is
inferred using rules that describe and define relationships and constraints in logic-based
systems.

OBM Ontologies represent a valid approach with which to specify concepts and rela-
tionships [UG96, Gru93, HPSvH03] being particularly suitable to represent contextual
information in machine readable form in a data structure such as RDF/S with OWL
[MH07, ADB+99]. The preceding context modelling approaches can all be viewed as
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precursors to OBM, ontologies incorporating and utilising many of the concepts that
characterise the other modelling approaches.

Relation with multi-context systems The Multi-Context System (MCS) framework
[BA10, BRS07, GG01, SH12], which evolved from MultiLanguage systems [Giu92], is an
expressive, uniform, high-level framework for the integration of heterogeneous knowledge
sources in a modular and very general way. It is a powerful knowledge representation
formalism for many application scenarios where heterogeneity and inter-contextual infor-
mation exchange are essential. More concretely, in MCS decentralised and heterogeneous
system parts interact via (possibly non-monotonic) bridge rules for information exchange.

Being mainly designed for static scenarios, however, MCS are not well suited for
dynamic environments characterised by streams of constantly-arriving data [BEG+18],
which should make it possible to reason continuously over such heterogeneous knowledge.
More generally speaking, our approach is different in that we do not intend to interlink
and build consistency between all the distributed logic theory. Instead, we move from
the assumption that each situated node should have its partial knowledge, possibly even
inconsistent with the whole picture, but sufficient for partial reasoning on that specific
situation/location.

2.2 Intelligence in Distributed Logic Programming

Systems

Research on distributed intelligence has gained increasing popularity over the years [Par08].
Starting from the seminal work of [CG81], concurrency, parallelism, and several ap-
proaches for distributing intelligence have been explored—from LP languages specially
designed for distribution, to pure logic-based models, rule-based systems, probabilistic
graphical models, and ontologies. In the following we organise and describe some of the
most relevant contributions to the field, focussing on those that mostly relate to our
approach in the effort of motivating the need for further advancement.

Implicit Parallelism. The first efforts to advance beyond sequential LP start from the
programming schemes for the interpretation of logic programs—in particular, towards
implicit parallel evaluation, leading to explore AND-parallelism, OR-parallelism, Search
parallelism, and Stream-AND-parallelism.

[Rei78] introduces a scheme that allows negative literals in queries; some years later,
the Naish scheme [Nai88] introduces co-routing among procedure calls. Meanwhile, [WML84]
focuses on AND-parallel evaluation: their asynchronous version corresponds to the execu-
tion models of parallel LP languages. These schemes perform and adapt well to different
forms of parallelism: altought, they were not meant to face distributed programming.
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Also, it is worth noting that implicit parallelism lacks two important control mechanisms:
synchronisation of logic processes, and control over non-determinism of schedulers.

Explicit Parallelism. Later approaches focus on “extraction” of parallelism via explicit
language constructs.

A first research line moves from concurrent logic languages, rooted in Relational Lan-
guage [CG81], generally acknowledged as the first concurrent LP language. In Concurrent
Prolog [Sha87], Guarded Horn Clauses [Ued86], and Parlog [Cla87], goal evaluation is car-
ried out by a network of fine-grained logic processes (i.e., atomic goals) that are executed
in parallel: processes communicate via shared streams, i.e., bi-directional channels on
which data items flow.

An alternative research line follows the idea of extending Prolog with special fea-
tures for distributed execution, like message passing. This approach preserves the op-
erational semantics of sequential Prolog, augmenting the language with ad-hoc commu-
nication primitives. One of the major references in this field is Delta Prolog [BG89],
where Prolog is extended with constructs for sequential and parallel composition of goals,
inter-process communication and synchronisation, and external non-determinism. Delta
Prolog programs using concurrency mechanisms [CFP89] do not lend themselves to the
usual declarative interpretation as Horn clauses, but are grounded on the theory of Dis-
tributed Logic [Mon84]. This approach extends Horn clause logic with the notion of
time-dependent events, on which process communication and synchronisation are based,
making distributed logic a special kind of temporal logic.

Besides enabling inter-process communication for logic programs, orthogonal aspects
such as their deployment are not considered, neither are the issues brought along by
distribution taken into account—such as validity in time of logic theories and their global
consistency.

Agents, Communication, and Coordination for Distributed LP. Further steps
towards distributed LP came with Shared Prolog [BC91], based on parallel agents that
are Prolog programs extended with a guard mechanism. The programmer controls the
granularity of parallelism, coordinating agents’ communication and synchronisation via a
centralised data structure, the blackboard, inspired to the omonymous model [Nii86] as well
as to the Linda coordination model [Gel85]. The main idea is to exploit the blackboard
within the logic framework to coordinate logic processes. However, the inference engine
is not situated in time and space, i.e., the query result is independent from the position
of the entities, flow of time, and context/situation changes.

LP in Pervasive, Context-aware Systems. More recently, LP has been explored as
a promising solution to bring intelligence into pervasive context-aware systems.

[RC03] shows that first-order logic is a very effective and powerful way of dealing
with context, promoting an approach to develop a flexible and expressive model support-
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ing context-awareness, thus enabling deduction of higher-level situations from perceptions
about basic contexts—through rule-based approaches. A key advantage of a formal model
for context is that the expressiveness of the model can be clearly specified and automat-
ically verified. [Lok04] emphasises that LP is generally useful for context reasoning, as
well as for supporting rule-based (meta)programming in context-aware applications, en-
abling, i.e., hierarchical description of complex situations in terms of other situations.
The approach encourages a high-level of abstraction for representing and reasoning about
situations, and supports building context-aware systems incrementally through modular-
ity and separation of concerns. The focus on context-awareness of both contributions
motivates our focus on re-interpreting distributed LP targeting especially context-aware
systems, as pervasive ones usually are—being the IoT a prominent example.

Other works take different approaches from pure logic-based models to rule-based
systems and probabilistic graphical models, up to ontologies.

Rule-based systems [SDA99, Dey01, ECB06, WMSC11] have been in use for decades
for both model representation and reasoning in context-aware applications. More recently,
[NB14] have proposed a rule-based, learning middleware for storage and reasoning in a
distributed scenario. The idea is to delegate context acquisition to the middleware, that
is, a rule-based context reasoning platform tailored to the needs of intelligent distributed
mobile computing devices. The need for a dedicated middleware layer is apparent in the
aforementioned work, further strengthening the idea that distributed LP is not confined
to context manipulation, but deserves general attention.

In [RAMC04], fuzzy and probabilistic logic is exploited to handle uncertainty of the
environment and to deal with the imperfections of data. Probabilistic graphical models
[BBH+10] can be exploited to support the modelling of, and the reasoning about, un-
certain information in pervasive systems, even if exact inference in complex probabilistic
models can be a NP-hard task. Description logic, usually used in combination with on-
tologies, is another LP extension that has proven effective for modelling concepts, roles,
individuals, and their relationships, as well as to provide simple reasoning capabilities
[HWD12]. However, only simple classification tasks can be solved, and no mechanisms
are provided to infer more complex information from existing data [NB14]. Also, design
and implementation are typically more difficult and time-consuming than with other ap-
proaches. Uncertainty of information is the natural enemy of global consistency, thus our
approach considers to abandon the idea of globally (in terms of both time and space)
consistent logic theories (or, knowledge bases—KB) in favour of locally consistent ones.

2.3 Re-thinking classical distributed LP notions in

the IoT perspective

The evolution of LP in parallel, concurrent, and distributed scenarios is the main moti-
vation for re-interpreting the notion of distribution of LP in today’s context.

24



CHAPTER 2. HISTORY AND EVOLUTION

Logic programming boasts a long-respected reputation in supporting intelligence: orig-
inally conceived for single solvers and later extended towards concurrency and parallelism,
LP has the potential to fully support pervasive computing scenarios once it is suitably
re-interpreted. The re-interpretation of LP should develop along three main lines: (i)
architecture—that is, the need to go beyond the (originally monolithic) structure of LP
systems, which is unsuitable for distributed contexts such as IoT mobility/cloud ecosys-
tems, typically grounded on the service-oriented computing paradigm [Dug12, Erl05]; (ii)
situatedness—that is, the ability of logic theories, queries, and resolutions, to be context-
aware w.r.t. (computational) environment, space, and time; (iii) interaction—that is, the
opportunity to re-think the interaction patterns used by clients to query logic engines,
which should lean towards on-demand computation.

At the same time, the declarativeness and the explicit knowledge representation of LP
enable knowledge sharing an adequate level of abstraction while supporting modularity
and separation of concerns [OP11], which are especially valuable in open and dynamic
distributed systems (serendipitous interoperability, [Nie13]). As a further element, its
sound and complete semantics naturally enables intelligent agents to reason and infer
new information. Finally, specific LP extensions or logic-based computational models –
such as meta-reasoning about situations [Lok04] or labelled variables systems [CDDO16] –
could be incorporated so as to enable complex behaviours tailored to the needs of situated
components.

Our approach promotes key properties of pervasive systems as observability, mal-
leability, understandability, formalisability, and norm compliance. The service behaviour
follows the specification for which it has been forged: given that specification and the
history, the dynamic behaviour of the system can be observed, understood and somehow
predicted.

2.4 Remarks & Outlook

The material presented in this chapter is at the very core of the Logic Programming as a
Service (LPaaS) model described in Chapter 3. In particular:

• our approach is intended as the natural evolution of distributed LP in pervasive
systems, explicitly designed to exploit context-awareness so as to promote the dis-
tribution of situated intelligence within smart environments

• client/service interaction is no longer bound to the traditional console-based query/re-
sponse loop, but is redesigned to provide the dynamism, flexibility, and expressive-
ness required by the targeted application scenarios—e.g., IoT

• time and space situatedness is taken into account from the design, promoting novel
forms of client/service interaction, enabling clients to submit “situated” queries
where the notions of time and locus explicitly intervene in the computation.
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Next chapter presents the abstract architectural model, conceived and designed to better
support the approach here described to engineering intelligence, within pervasive com-
puting scenarios.
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Chapter 3

Logic Programming as a Service

In this Chapter moving from the comparison of the approaches and techniques discussed in
chapter 2, we define a new paradigm, namely Logic Programming as a Service (LPaaS),
as the natural evolution of distributed LP in nowadays pervasive systems to support
context-aware distributed intelligence in smart environments (e.g. intelligent meeting
rooms, smart homes and smart vehicles). The new proposed approach could be effec-
tive for designing and developing distributed context aware systems, keeping into account
the advantages of previous research in this area while giving a re-interpretation of clas-
sical LP notion in a novel pervasive contex-aware perspective. Thus, LPaaS starts from
requirements resulting from the actualisation of the discussed approaches.

The LPaaS abstraction enables situated reasoning, interaction and coordination in
distributed systems, as the process by which an entity reasons about its local actions and
the (anticipated) actions of others to try and ensure the community acts in a coherent
manner. It promotes the interactions, coordination and cooperation of numerous, casually
accessible, and often invisible computing devices of pervasive systems, particularly taking
into account the localised and dynamic nature of interaction.

The LPaaS is a paradigm that exploits the strengths of service oriented architectures
but it incorporates an idea of a mobile device in a distributed system as an autonomous
context-aware entity, equipped with intelligent and context-aware inference service. The
architecture offers context-based reasoning to many applications at the same time, en-
forcing the interoperability between different entities in order to reach a social desired
behaviour.

Accordingly, Section 3.1 introduces the vision behind LPaaS, by discussing how the
service perspective and the new situated dimension of computation suggest for a re-
interpretation of some basic LP concepts. Section 3.2 shows how such a re-interpretation
affects LP at the architectural level, by discussing the logic-based service-oriented architec-
ture supporting LPaaS more practically. Section 3.3 defines the LPaaS service interface,
and elaborates on the interaction patterns. In Section 3.4 some prototype implementation
developed on the top of the tuProlog system are discussed and tested in some simple case
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studies.

3.1 Vision

Since SOA are the de facto standard for distributed application development in both the
academia and the industry [GS12], our starting point is how LP can be re-interpreted in
the service perspective (Subsection 3.1.1). The service perspective further emphasises the
role of situatedness, already brought along by distribution in itself: thus, Subsection 3.1.2
discusses how being situated in space, time, and context affects LP computation. The
two novel perspectives are brought together in Subsection 3.1.3, which develops the idea
of LP as a situated service.

3.1.1 The Service Perspective

The service-oriented perspective deeply affects the way in which LP engines are conceived,
designed, and used—in particular, as far as the very nature of LP encapsulation, the
way in which clients interact (requiring statelessness), and the assumptions about the
surrounding context (locality) are concerned.

Encapsulation. A service hides both data representation and the computational mech-
anisms behind a public interface exposed to its clients. In the context of LP engines,
this means that both the logic theory (the data) and the resolution process (the com-
putational mechanism) are inaccessible and in general not observable from outside the
boundary of the service interface. As a consequence, theory manipulation mechanisms,
such as assert/retract, should be no longer directly applicable from the client perspec-
tive: since the logic theory is the data encapsulated by the service, dedicated mechanisms
are required for its handling. For instance, in an IoT scenario, this could happen via a
separate “sensor API” through which sensor devices update the KB of the LP service
according to their perception of the environment.

Accordingly, the logic theory of a LPaaS service can be either static or dynamic (which
are mutually exclusive configurations), affecting the way in which the LP service can be
accessed obviously depends on that —namely, time is an issue for dynamic KB, not for
static ones.

Statelessness. Encapsulation makes it irrelevant how the encapsulated behaviour is im-
plemented: what actually matters are the inputs and outputs triggering and resulting from
that behaviour. Furthermore, in the SOA perspective, services are usually redundantly
distributed over a network of hosts for enhancing the service availability and reliability:
thus, it doesn’t really matter who actually carries out the encapsulated behaviour. In the
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context of LP, this means that interactions with clients should be allowed to be stateless—
that is, include all the information required by the resolution process, since a different
component may serve a different request. Notably, stateless interaction is preferred for
RESTful web services, too [FT02].

Locality. The distributed nature of the system drastically changes the perspective over
consistency: maintaining globally-consistent information is typically unfeasible in such
systems. Furthermore, when pervasive systems come to play, even globally-available infor-
mation is usually not a realistic assumption: for instance, in IoT scenarios, heterogeneous
data streams are continuously made available by sensor devices scattered in specific por-
tions of the physical environment. As a consequence, encapsulation is inevitably bound
to a specific, (local) portion of the system—with a notion of locality extending up to
when/where availability and/or consistency are necessarily lost.

In the context of LP, this means first of all turning to a multi-theory logical framework,
exploiting the typical approach to modularity adopted in traditional LP in order to allow
for parallel and concurrent computation [BLM94]. Then, locality also implies that each
logic theory describes just what is locally true —which basically means leaving aside in
principle the global acceptation of the closed world assumption [Rei78] in favour of a more
realistic locally-closed world assumption. Accordingly, every LP service is to be queried
about what is locally known to be true, with no need to have a global knowledge of any
sort—and with no need to distribute the resolution process in any way.

3.1.2 The Situatedness Perspective

The distribution of LP service instances directly calls for situatedness, intended as the
property of the LP service to be immersed in the surrounding computational/physical
environment, whose changes may affect its computations [MO15]. As an example, new
sensor data may change the replies of an LP service to queries. Situatedness adds three
new dimensions to LP computations: space, time, and context.

Space. To be situated in space means that the spatial context where the LP service is
executing may affect its properties, computations, and the way it interacts with clients.

Distribution per se constitutes a premise to spatial situatedness: each LP instance
runs on a different device, thus on a different network host, therefore accessing the dif-
ferent computational and network resources that are locally available. Moreover, since
LP services encapsulate the logic theory for their resolution process, the locally-gathered
knowledge affects the result, once it is represented in terms of logic axions.

Also, more articulated forms of spatial situatedness may be envisioned: for instance,
mobile clients may request LP services from different locations at each request, possibly
even while moving, which means that the LP service must be able to coherently identify
and track clients so as to reply to the correct network address. Finally, it is possible in
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principle to conceive logic theories – or even individual axioms therein – with spatially-
bound validity, that is, holding true in specific points or regions in space—analogously to
spatial tuples in [RVO+17].

Time. Complementarily, being situated in time means that the temporal context when
the LP service is executed may affect its properties, computations, and interactions with
clients. Yet again, distribution alone already brings about temporal issues: moving infor-
mation in a network takes time, thus aspects such as expiration of requests, obsolescence
of logic theories, and timeliness of replies should be taken into account when designing
the LP service.

Furthermore, since reconstructing a global notion of time in pervasive systems is either
unfeasible or non-trivial, it is more likely that each LP service operates following its own
local time, thus computing deadlines, leasing times, and similar according to its local
perception of time. Also, in the same was as for spatial situatedness, temporal situatedness
may also imply that logic theories or individual axioms may have their validity bound in
time—e.g., holding true up to a certain instant in time, holding no longer from then on.

Context. Besides the space/time, situatedness also regards the generic environment
within which LP services execute—that is, the computational and physical context which
may affect their working cycle: for instance, it may depend on the available CPUs and
RAM, whether an accelerometer is available on the current hosting device, etc.

A basic level of contextual situatedness is already embedded in the very nature of the
LP service: in fact, locality of the resolution process implies that the logic theory for
goal resolution belongs to the context of the LP service, affecting its behaviour. However,
especially in the IoT scenarios envisioned for LPaaS, the computational and physical
contexts may both impact the LP service: e.g., sensor devices may continuously update the
service KB with their latest perceptions, while actuators may promptly provide feedback
on success/failure of physical actions.

3.1.3 Towards LP as a Situated Service

The above perspectives promote a radical re-interpretation of a few facets of LP, moving
LP itself towards the notion of LPaaS envisioned in this work—that is, in terms of a
situated service. Such a notion articulates along four major aspects:

• the conservation (with re-contextualisation) of the SLD resolution process;

• stateless interactions;

• time-sensitive computations;

• space-sensitive computations.
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The re-contextualisation of the SLD resolution process. The SLD resolution
process remains a staple in LPaaS: yet, it is re-contextualised in the situated nature of
the specific LP service. This means that, given the precise spatial, temporal, and general
contexts within which the service is operating when the resolution process starts, the
process follows the usual rules of SLD resolution: situatedness is accounted for through
the service abstraction with respect to such three contexts.

With respect to the spatial context, the resolution process obviously takes place in
the hosting device where the LP service is running, thus taking into account the specific
properties of the computational and physical environment therein available – CPU, RAM,
network facilities, GPS positioning, etc. – there included the specific logic theory the LP
service relies on. As mentioned in Subsection 3.1.2, more complex forms of spatial situat-
edness, e.g. involving mobility of clients (and LP services, in principle), or virtual/physical
regions of validity for logic axioms, could be envisioned.

The temporal context refers to the resolution process taking place on a frozen snapshot
of the LP service state – there including its KB –, which stays unaffected to external
stimuli (possibly affecting the resolution process) until the process itself terminates. This
way, despite the dynamic nature of the KB – encapsulated by the service abstraction –
which could change e.g. due to sensors’ perceptions, the resolution process is guaranteed
to operate on a consistent stable state of the logic theory.

Finally, the resolution process depends on the general context of the specific device
hosting the LP service instance—thus considering the state of KB therein available, as
assembled by e.g., the set of sensors devices therein available, the service agents gathering
new local information, and so on.

Stateless interactions. A first change brought by LPaaS concerns the interaction with
the clients of the LP service.

In classical LP, interactions are necessarily stateful : the user first sets the logic theory,
then defines the goal, and then asks for one or more solutions, iteratively. This implies that
the LP engine is expected to store the logic theory to exploit as its KB, to memorise the
goal under demonstration, and to track how many solutions have been already provided
to the user: all these information become part of the state of the LP engine.

Instead, in LPaaS interactions are first of all (even though not exclusively) stateless :
coherently with SOA, the LP service instance that actually serves each request may be
different at each time, e.g. due to redundancy of distributed software components aimed
at improving availability and reliability of the LP service. In such a perspective, each
client query (interaction) should be possibly self-contained, so that it does not matter
which specific service instance responds—because there is no need for it to track the state
of the interaction session.

Time-local computation. Another change stemming from the situated nature of LPaaS
regards the relationship between the resolution process and the time flow.
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In pure LP, the logic theory is simply assumed to be always valid, and time-related
aspects do not affect the resolution process; for instance, assertion / retraction mechanisms
are most typically regarded as extra-logic. As discussed above, in LPaaS the consistency
of the resolution process is guaranteed by the fact that the possibly ever-changing KB
encapsulated by the service is frozen in time when the resolution process itself begins:
nevertheless, time situatedness requires by definition that time affects the LP service
computation in some way.

Accordingly, in LPaaS each axiom in the KB is decorated with a time interval, in-
dicating the time validity of each clause. Every time a new resolution process starts in
order to serve a LPaaS request, the logic theory used is the one containing all and only
the axioms holding true at the timestamp associated to the resolution process itself. In
the simplest case, such a timestamp is implicitly assigned by the LP server as the current
local time when the request for goal demonstration is first served. However, it could also
be explicitly assigned by clients along with the request—e.g., specifying a specific time
when asking for a goal demonstration.

Space-local computation. Analogously, classical LP has no notion of space situated-
ness: be it virtual or physical space, the LP engine is a monolithic component providing
its “services” only locally, to its co-located “clients” executing on the same machine.

The LPaaS interpretation stems again from the very nature of service in modern
SOA-based applications—a computational unit providing its functionalities through a
network-reachable endpoint. Therefore, in LPaaS the resolution process is naturally and
inherently affected by the specific computational locus where a given LP service instance
is executing at a given moment—there including the locally-available resources.

3.2 Model and Architecture

Following the lines traced in Subsection 3.1.3, we now elaborate more practically on
how encapsulation, statelessness, and locality – that is, the service perspective (Subsec-
tion 3.1.1) – are exploited in LPaaS according to the three dimensions of situatedness
described in Subsection 3.1.2—that is, time, space, and context. Then, we briefly de-
scribe microservices [Fam15] as a key enabler architecture for LPaaS.

3.2.1 The Service Architecture

Encapsulation As it straightforwardly stems from SOA principles, encapsulation is
exploited in LPaaS so as to define a standard API that shields LPaaS clients from the
inner details of the service while providing suitable means of interaction.

Accordingly, each LP server node exposes its LP service to clients via two interfaces,
depicted in Figure 3.1:
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• Client Interface: exposes methods for observation and usage. Client refers to
any kind of users, either individuals (humans, software agents) or groups entitled to
exploit the LPaaS services.

• Configurator Interface: enables service configuration and requires proper access
credentials. Configurator refers to service managers—privileged agents with the
right of enforcing control and policies for that local portion of the system.

Applications can access the service as either Clients or Configurators, via the correspond-
ing interfaces. The service is initialised at deployment-time on the server machine: once
started, it can be dynamically re-configured at run-time by any configurator.

Locality. Situatedness is exploited as a means to consistently handle locality w.r.t.
context, time, and space.

In fact, dealing with situated logic theories means first of all giving up with the idea
of global consistency in a closed world: in LPaaS multiple KB are spread throughout a
network infrastructure, likely geographically distributed, executing within different com-
putational contexts, and possibly either fed by sensors or manipulated by service agents
perceiving the physical context. Nevertheless, by allowing distributed access and reason-
ing over its own locally-situated knowledge base, each LPaaS node actively contributes to
the overall availability of the global knowledge.

Accordingly, pervasive application scenarios where logic theories represent local knowl-
edge inherently call for dynamic KB, autonomously evolving during the service lifetime.
Here,“autonomously” means that in the LPaaS perspective the logic KB may evolve over
time with no need for a client to invoke assert/retract, or equivalent methods – which,
in fact, are not included in the LPaaS standard API detailed in Subsection 3.3.1 – but,
i.e., due to sensor devices’ perceptions transparently feeding the LP service KB. As such,
each situated KB of a LPaaS service can be seen as representing what is known to be
true and relevant in a given location in space at a given time, thus possibly changing over
time – e.g., due to data streams coming from sensor devices –, and potentially different
from any other KB located elsewhere—as depicted in Figure 3.2. Accordingly:

Figure 3.1: LPaaS Configurator Service Architecture (left) and Client Service Architec-
ture (right)
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Figure 3.2: Situatedness of LPaaS: the same query (q) by the same client may be resolved
differently (r [s1], r [s2′ ], r [s2′′ ]) by distinct LPaaS services (LPaaS 1,LPaaS 2′ ,LPaaS 2′′)
based on their local computational, physical, and spatio-temporal context (S1, S2′ , S2′′)

• each LPaaS clause has a lifetime, expressed as a time interval of validity—as in the
case of the “current” temperature in a room

• as a result, at any point t in time a LPaaS service has precisely one logic theory
made of all and only the clauses that hold true at time t

• each LPaaS resolution process is either implicitly (by the LPaaS server) or explicitly
(by the LPaaS client) labelled with a timestamp, used to determine the KB to be
used for the resolution itself—which then works then as the standard LP resolution

Statelessness. Uncoupling is one of the main requirements for interaction in distributed
systems: that is why LPaaS provide stateless client-server interaction as a one of its main
features. This same holds in particular for pervasive systems, where instability is one of
the main issues, as well as for mobile systems, with any sort of mobility: physical mobility
of users and devices; users who change their computing device while using applications;
service instances migrating from machine to machine, as in a cloud-based environment.

The need for uncoupling mandates for stateless interaction in LPaaS. Thus, for in-
stance, both LPaaS clients and service instances can freely move with no concerns for
requests tracking and identity/location bookeeping.

In order to counterbalance the effect of statelessness on the typical LP user-engine
interaction, LPaaS also provide clients with the ability to ask for more than one solution
at a time, and even all of them, with a single request. Nevertheless, LPaaS also makes it
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possible to obtain a stream of solutions from the resolution process, rather than a single
solution at a time in an individual interaction session, to better meet the needs of fast-
paced dynamic scenarios in which clients want to be constantly updated by the LP service
about some situation.

Accordingly, LPaaS provide clients with the means to obtain both stateless and stateful
client-server interaction:

stateful once the logic theory to consider is settled, and the goal stated, the client should
be able to ask for any amount of solutions, possibly iteratively, possibly at different
times and from different places, with the service being responsible to guarantee
consistency and validity of solutions by keeping track of the related interaction
sessions with the same client;

stateless in this case, no session state is tracked by the server, so each client request
should contain all the necessary (state) information.

It is worth highlighting that nothing prevents the service from being stateful and stateless
simultaneously, because the LP server can manage multiple kinds of requests concurrently:
of course, each client request in LPaaS is either stateful or stateless.

3.2.2 Microservices as Enablers

As mentioned above, SOA the standard approach for distributed system engineering: so,
LPaaS adopts the Software as a Service (SaaS) architecture as its architectural reference
[Cus10].

Accordingly, information technology resources are conceived as continuously-provided
services: SaaS applications are supposed to be available 24/7, scale up & down elastically,
support resiliency to changes (i.e., in the form of suitable fault-tolerance mechanisms),
provide a responsive user experience on all popular devices, and require neither user
installation nor application updates.

In particular, LP services in LPaaS can be fruitfully interpreted as microservices
[Fam15]. Microservices are a recent architectural style for SaaS applications promot-
ing usage of self-contained units of functionally with loosely-coupled dependencies on
other services: as such, they can be designed, developed, tested, and released indepen-
dently. Thanks to their features, microservices are deserving increasing attention also
in the industry – pretty much like SOA in the mid 2000s – where fast and easy deploy-
ment, fine-grained scalability, modularity, and overall agility are particularly appreciated
[Ric16].

Technically speaking, microservices are designed to expose their functionality through
standardised network-addressable APIs and data contracts, making it possible to choose
the programming language, operating system, and data store that best fits the service
needs and the developers’ skills set, without worrying about interoperability. Microser-
vices should also be dynamically configurable, possibly in different forms and with different

35



CHAPTER 3. LOGIC PROGRAMMING AS A SERVICE

Table 3.1: LPaaS Configurator Interface

setConfiguration(+ConfigurationList)

getConfiguration(-ConfigurationList)

resetConfiguration()

setTheory(+Theory)

getTheory(-Theory)

setGoals(+GoalList)

getGoals(-GoalList)

configuration levels. Of course, actual support to interoperability requires multiple levels
of standardisation: to this end, LPaaS defines its own interfaces for both configuration
and exploitation, while relying on widely adopted standards as far as the representation
formats (i.e., [JSO17]) and interaction protocols (i.e. REST over HTTP, or [MQT17]) are
concerned.

3.3 The Service

Following the reference architecture above, designing LPaaS amounts first of all at defining
the Configurator Interface and the Client Interface—as in Figure 3.1.

Generally speaking, the LP service should support (i) observational methods to provide
configuration and contextual information about the service, (ii) usage methods to trigger
computations and reasoning, as well as to ask for solutions, and (iii) configuration methods
to allow the configurator to set the LP service configuration.

Observational methods make it possible to query the service about its configuration
(stateful/stateless and static/dynamic), the state of the knowledge base, and the admis-
sible goals: as such, they belong to the Client Interface, but can be made available also in
the Configurator Interface for convenience. Usage methods, instead, belong uniquely to
the Client Interface: they allow clients to ask for one or more solutions—one solution, n
solutions, or all solutions available, for stateful or stateless requests as well. Configurator
methods belong uniquely to the Configurator Interface, and are intended to set the service
configuration, knowledge base nature, and admissible goals.

3.3.1 Service Interfaces

Adopting the Prolog notation for input/output [DDC96], the actual Configurator methods
are detailed in Table 3.1, while the Client Interface is detailed in Table 3.2. Since the first
is rather self-explanatory, we focus on the Client Interface.
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The first thing worth noting is that usage predicates are slightly different for stateless
or stateful requests: in the former case, the solve operation is conceptually atomic and
self-contained – Goal is always one of its arguments –, whereas in the latter case it is up
to the server to keep track of the request state, so the goal is to be set only once before
the first solve request is issued.

The second key aspect is the threefold impact of time awareness : regardless of whether
the server is either computing or idle, time flows, so predicates must be time-sensitive:

• solve predicates can also contain a Timeout parameter (server time) for the reso-
lution, so as to avoid blocking the server indefinitely: if the resolution process does
not complete within the given time, the request is cancelled, and a negative response
is returned;

• for stateful requests, the client could also ask for a stream of solutions, which is par-
ticularly useful in IoT scenarios exploiting sensor devices, or monitoring processes:
to this end, solve takes a time argument (server time), meaning that each new
solution should be returned not faster than every time milliseconds;

• when the KB is dynamic, all predicates take an additional Timestamp argument,
meaning that each theory has a time-bounded validity : this feature can be used dur-
ing the proof of a goal to ensure that only the clauses valid at the given Timestamp

are taken into account in that resolution process.

For the sake of convenience, solveAfter methods provide for mimicking the LP stateful
interaction on a stateless request channel, fast-forwarding to the N+1 solution AfterN.

Finally, the reset primitive resets the resolution process, with no need to reconfigure
the service (i.e., re-select the goal); in contrast, the close primitive actually closes the
communication with the server, so the goal must be re-set before re-querying the server.

3.3.2 Computational Model

The computational model of the service is depicted by the Finite State Machine (FSM)
in Figure 3.3, made of four states:

• ready (initial state), where the service is started and the engine is configured;

• run, where the service is undergoing some resolution process triggered by queries;

• pause, representing the temporary suspension of computations;

• no goal selected (final state), when the client connection is closed.

In the ready state, the service can be queried about its properties and a new goal can be
set, thus defining a new resolution process. When a new query is submitted, the service
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Table 3.2: LPaaS Client Interface

STATIC KNOWLEDGE BASE

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution) solve(-Solution)

solveN(+Goal, +NSol, -SolutionList) solveN(+N, -SolutionList)

solveAll(+Goal, -SolutionList) solveAll(-SolutionList)

solve(+Goal, -Solution, within(+Time)) solve(-Solution, within(+Time))

solveN(+Goal, +NSol, -SolutionList, within(+Time)) solveN(+NSol, -SolutionList, within(+Time))

solveAll(+Goal, -SolutionList, within(+Time)) solveAll(-SolutionList, within(+Time))

solveAfter(+Goal, +AfterN, -Solution)

solveNAfter(+Goal, +AfterN, +NSol, -SolutionList)

solveAllAfter(+Goal, +AfterN, -SolutionList)

solve(-Solution, every(@Time))

solveN(+N, -SolutionList, every(@Time))

solveAll(-SolutionList, every(@Time))

pause()

resume()

reset()

close()

DYNAMIC KNOWLEDGE BASE

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory, ?Timestamp)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)

solveN(+Goal, +NSol, -SList, ?TimeStamp) solveN(+N, -SolutionList, ?TimeStamp)

solveAll(+Goal, -SList, ?TimeStamp) solveAll(-SolutionList, ?TimeStamp)

solve(+Goal, -Solution, within(+Time), ?TimeStamp) solve(-Solution, within(+Time), ?TimeStamp)

solveN(+Goal, +NSol, -SList, within(+Time), ?TimeStamp) solveN(+NSol, -SList, within(+Time), ?TimeStamp)

solveAll(+Goal, -SList, within(+Time), ?TimeStamp) solveAll(-SList, within(+Time), ?TimeStamp)

solveAfter(+Goal, +AfterN, -Solution, ?TimeStamp)

solveNAfter(+Goal, +AfterN, +NSol, -SList, ?TimeStamp)

solveAllAfter(+Goal, +AfterN, -SList, ?TimeStamp)

solve(-Solution, every(@Time), ?TimeStamp)

solveN(+N, -SList, every(@Time), ?TimeStamp)

solveAll(-SList, every(@Time), ?TimeStamp)

pause()

resume()

reset()

close()
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Figure 3.3: The LPaaS Finite State Machine

moves to the run state, indicating that a resolution process is taking place. Computation
may then be paused several times, causing the service to move back and forth from the
pause state: from there, resolution can also be reset (coming back to the initial state), or
closed (moving to state no goal selected).

3.4 The LPaaS Technology

In this section, we present two different prototype implementations, as a Web Service
and as an agent in a Multi Agent System, both built on top of the tuProlog system,
which provides the required interoperability and customisation. We showcase the LPaaS
potential through two case studies designed as a simplification of the motivating scenarios.

3.4.1 LPaaS as a RESTful Web Service

In order to test the effectiveness of the proposed architecture, we implement a first pro-
totype of LPaaS as a RESTful web service (WS) [FT02]: we reuse and adapt patterns
commonly used for the REST architectural style, and introduce a novel architecture sup-
porting embedding Prolog engines into WS. Figure 3.4 shows the general architecture
focussing on the server side and its components (access interfaces, Prolog engine, and
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Figure 3.4: The LPaaS RESTful WS.

data store), as well as some exemplary client applications interacting via HTTP requests
and JSON objects.

The server-side inner architecture (Figure 3.5) is composed by three logical units: the
interface layer, the business logic layer, and the data store layer. The interface layer
encapsulates the Configurator and Client Interfaces. The Business Logic wraps the Pro-
log engine with the aim of managing incoming requests consistently. The Data Layer is
responsible for managing the data store tracking, i.e., all the configuration options neces-
sary to restore the service in case of unpredictable shutdown (i.e., operating parameters
and security metadata such as clients’ role, username, password, . . . ).

Since these data are expected to be limited in size for most scenarios, we choose to
keep them in the server application so as to offer a light-weight, self-contained service:
however, they could be easily moved to a separate persistence layer on, i.e., an external
DB application, if necessary.

The server implementation is built by exploiting a number of technologies commonly
available in the field: in particular, the Business Logic is built using the J2EE framework
[J2E17], exploiting EJB [EJB17], whereas the database interaction is implemented on top
of JPA [Jav17].

The Prolog engine is implemented on top of the tuProlog system [DOR01], which pro-
vides not only a light-weight engine, particularly well-suited for this kind of applications,
but also a multi-paradigm and multi-language working environment, paving the way to-
wards further forms of interaction and expressiveness. Since version 3.2, tuProlog also
natively supports JSON serialisation, ensuring the interoperability as required by a WS.
The tuProlog engine, distributed as a Java JAR (or, as Microsoft .NET DLL, or, as An-
droid app), is easily deployable and exploitable by applications as a library service—that
is, from a software engineering standpoint, a suitably-encapsulated collection of related
functionalities.

The service interfaces exploit the EJB architecture, but can also be accessed as REST-

40



CHAPTER 3. LOGIC PROGRAMMING AS A SERVICE

ful WS, realised using JAX-RS Java Standard (Jersey) [Jer17]. Security is based on jose.4.j
[jos17], an open source (Apache 2.0) implementation of JWT and the JOSE specification
suite [jos17]. The application is deployed using the Payara Application Server [Pay17], a
Glassfish open source fork, and its source code is freely available on Bitbucket [tup01].

3.4.2 LPaaS RESTful Example Application

A testbed scenario, discussed in depth in [CDMO17], let us consider a Smart Bathroom
to monitor physiological functions so as to deduce symptoms and diseases, and properly
alert the user. Sensors collect data and undertake reasoning based on LPaaS provided
by tuProlog, to come up with solutions made available to the user through a dedicated
Android application. The Smart Bathroom system is composed of three different tuProlog-
enabled LPaaS services processing data collected by

• toilet sensors analysing biological products, such as temperature, volume or glucose
sensors like in [RTA14] (Toilet Server)

Figure 3.5: The LPaaS WS server architecture.
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Figure 3.6: KB extraction of two different LPaaS server: namely, LPaaS Personal
Server and LPaaS Toothbrush Server.

• nano sensors integrated into the toothbrush (Toothbrush Server)

• ultrasonic bathtubs, pressure sensing toilet seats and other devices to monitor peo-
ple’s cardiovascular health (Personal Server)

Collected data may trigger different alerts: urgent ones, such as presence of Streptococcus
infection, positive Diabetes Tests, etc. and normal ones, such as the need to drink more
water, recharge batteries, and so on. An excerpt of the knowledge base of the services is
shown in Figure 3.6.

The system is built on the following hardware configuration:

• Toilet Server: Raspberry Pi 3 (Ubuntu Mate Arm)

• Toothbrush Server: Lubuntu laptop

• Personal Server: Windows 10 laptop

• Client 1: Lenovo A10 tablet with Android 5.0.1
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• Client 2: Windows 10 laptop running a desktop application.

Currently, all the data collected by sensors are simulated: Figure 3.7 shows some screen-
shots of the Android application. Urgent messages are in red boxes, minor warnings in
green boxes.

Despite its simplicity, the case study means to show the potential of the LPaaS ap-
proach: local sensors can perform situated reasoning, applying their local knowledge to
aggregate the raw data and synthesise higher-level information. Such higher-order data
can then enable the creation of new computing services that autonomously respond to a
user, and provide more accurate predictions based on situatedness—in this case, provided
by the Android application.

Figure 3.7: The Android application exploiting LPaaS: non-urgent messages are shown
in green, urgent ones in red. The left screenshot shows three non urgent messages (drink
more water, brush your teeth, and toothbrush battery low), while the right one shows
two non-urgent (limit sodium intake, high blood pressure) and two urgent messages (the
possibility of diabetes, and the suggestion of a colon screening).

3.4.3 LPaaS and Multi-Agent Systems

In this section we discuss how LPaaS can fit a Multi-Agent System (MAS), with the
twofold aim of showing why merging LPaaS and MAS could be useful, especially in the
IoT landscape, and how LPaaS and MAS could be successfully integrated.
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Motivation

MAS for IoT. Agent-oriented engineering and MAS have been already recognised as a
promising way of developing IoT applications and Cyber-Physical Systems (CPS), since
they are well suited for supporting decentralised, loosely-coupled and highly dynamic,
heterogeneous and open systems, in which components should cooperate opportunistically
[CMS+17, AK15, ZO04]. They also offer a higher level of abstraction to system designers
and developers than, i.e., RESTful approaches, as they replace low-level notions such as
HTTP requests / responses with messages and interaction protocols [ON98].

Adopting the thing-oriented definition of IoT – that is, the so-called Smart Object (SO)
IoT vision in which SOs are the basic IoT building blocks –, it is quite natural to map the
sensing and actuating capabilities of SOs onto the perception and action capabilities of
situated agents [HBKR10]. Also, SOs are meant to be autonomous in acting on behalf of
their owner in the most common everyday activities such as, for a smart home scenario,
adjusting temperature, tuning lights intensity, lock the doors, and so on. Not by chance,
autonomy is also the core feature of agents [HCF03].

Another straigthforward mapping may be drawn between the need for cooperation
amongst SOs in complex IoT scenarios and the social dimension of agency [Cas98]—and,
consequently, of MAS. In fact, SOs can be expected to interact with each other in order
to perform even simple tasks, such as those related to situation recognition, and the usual
means to do so in current IoT practice is either (i) to let the Cloud handle dependencies
between tasks, for instance by monitoring a given sensor perceptions to trigger a given
actuator when a threshold is met, or (ii) to exchange very simple messages (i.e. JSON
structures) in a peer-to-peer way. Agents, instead, are naturally capable of diverse forms of
social interactions, by exchanging rich messages in compliance with well-defined protocols
having a clear and well-understood semantics—i.e. FIPA protocols and ACL messages
[ON98].

Finally, featuring a goal-oriented/driven behaviour [Cas12], agents can plan and act
based on the specific contingencies of the environment in which they operate. This deeply
contrasts the imperative way of commanding SOs in current IoT practice, where actuator
devices are usually only able to react to precise and direct instructions about what/how
to do, not what to achieve, as a more declarative approach would suggest.

In spite of the above benefits, a relevant issue may hinder adoption of the agent
abstraction, thus of MAS, in the IoT landscape: the computational limitations of SOs,
which can be too severely resource-constrained to embed a full-fledged software agent.
Here is where LPaaS comes into play, as explained in the next section.

LPaaS for MAS. Besides autonomy, situatedness, and sociality, agents may have other
features that could map onto SOs: for instance, mobility – intended as code mobility –
can be easily implemented even on resource-constrained devices, whereas intelligence –
a hot topic in current IoT research – is considerably a more challenging issue. The fact
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is that providing a reasonable perception of intelligence for a given SO (agent) requires
many different technologies, such as machine learning, common-sense reasoning, natural
language processing, advanced situation recognition and context awareness—which are
all typically computationally expensive per se, let alone in conjunction with the others.
This is why the concept of LPaaS may actually improve the state of art in engineering
intelligent IoT systems: with LPaaS, just the “required amount” of situated intelligence
can be seamlessly spread where needed, and/or where the available resources are able
to bear the computational effort, with no need to have a full-fledged intelligent agent
embedded in every SO.

In this new perspective, whenever local intelligence cannot be available for any reason
– i.e. memory constraints hindering the opportunity to have a local KB, CPU constraints
limiting efficiency of reasoning, etc. – a given agent (SO) may simply request to another,
“more intelligent” one, to perform some inferences on its behalf. Moreover, the LPaaS
functionality may also be charged upon the infrastructure, instead of the agents. In this
scenario, agents are always computationally efficient and responsive, since they delegate
reasoning-related tasks – such as situation recognition, planning, inference of novel in-
formation, etc. – to dedicated infrastructural services—either hosted in the Cloud, as it
currently happens for most IoT platforms, or spread amongst a distributed set of devices
working as gateways for SOs.

As a last remark, traditional LP has well proven valid over time both as a knowledge
representation language and as an inference platform for rational agents. Logic agents
may interact with an external environment by means of a suitably defined observe–think–
act cycle. Significant attempts have been made to integrate rationality with reactivity
and proactivity in logic programming [KS96, DST98, KS99]: the re-interpretation of LP
under the LPaaS approach in MAS could be seen as the evolution of these research threads
for modern pervasive and distributed systems.

Fitting LPaaS in MAS

Engineering a MAS generally requires three orthogonal yet complementary dimensions
[ORV08] to be considered: the agents dimension, where the internal structure of agents
is designed and their behaviour programmed; the social dimension, where the focus is on
the space of interaction [OOR04], thus in designing how agents interact; the environment
dimension, where the representation of anything in the physical or computational world
relevant to the MAS itself lives. Integrating LPaaS with MAS thus requires first to
carefully decide where the integration should take place—that is, along which dimension,
and involving which abstractions.

agent Integrating along the agent dimension is probably the most natural way to pro-
ceed, as it directly injects intelligence more closely to the agents’ business logic,
or even deeply in their inner reasoning workflow—likewise for BDI agents [Rao96].
Nevertheless, it is probably also the least suitable for the average IoT scenario,
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where devices can be severely resource-constrained, hence unable to host a software
agent together with a LP engine. LPaaS is conceived precisely to enable this kind
of integration with no need to host the LPaaS engine within the agent itself: the
engine can in fact be hosted anywhere, and made accessible to agents through a
dedicated service layer—be it implemented according to REST, as exemplified in
Section 3.4.1, or to any other architectural style / technology.

society Integrating LPaaS and MAS along the social dimension amounts to embed LP
functionalities in the coordination artefacts devoted to manage the interaction space
[ORV06]. This approach is similar to the one adopted in TuCSoN [OZ99a] with
the ReSpecT coordination language [Omi07], where coordination rules enacted by
enhanced tuple spaces [OD01b] are expressed in a Prolog-like language (actually
interpreted by a tuProlog engine, the same used for LPaaS).

environment The last alternative is to consider LPaaS services as part of the MAS
environment. Usually this means deploying LPaaS as a middleware service, provided
by the infrastructure hosting agents and enabling them to access the network and
devices’ capabilities. This approach could be implemented by exploiting LPaaS as
a RESTful WS, as described in Section 3.4.1, and is complementary to the first
one, in the case agents do not embed an LP inference engine but exploit LPaaS
opportunistically.

The three aforementioned approaches are not to be taken as mutually exclusive: in fact,
our choice in the prototype system is to exploit the first and last one together, leaving
MAS designers free to choose whether they mean to embed intelligence within agents, or,
instead, to have it provided as an infrastructural service.

Figure 3.8 illustrates the model of the LPaaS approach depicting the whole picture in
the hybrid case where (1) some agents are kept more lightweight and rely on infrastruc-
tural services (or other more “intelligent” agents) to get LPaaS functionalities, (2) some
agents embed the LPaaS functionalities, and (3) some LP functionalities are embedded
in some services provided by the middleware (namely by the containers).

The traditional MAS architecture is enriched with the notion of LPaaS agent / service,
which allows for situated reasoning on locally-available data by design. In this vision,
agents can be split in two groups: local agents and global agents. The former includes all
the agents embedded in sensor and actuator devices, and in charge of generating the local
knowledge: they represent the local view of the IoT system. The latter group includes
agents with a higher-level view of the system, not necessarily embedded in SO devices,
which act and coordinate their activities to properly pursue the system’s goal. In the
service layer, LPaaS and other typical middleware / application services are supplied.
These services can be provided by the devices located in the physical world, by the MAS
agents, or by dedicated infrastructural components.

Figure 3.9 (left) illustrates in detail the case where SO agents embed the LPaaS service
(namely, case 2), and are therefore able to both perform their own reasoning and offer their
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Figure 3.8: Overview of a LPaaS multi-agent system. At the bottom layer, the physical
/ computational environment lives, with boundary artefacts [ORV06] taking care of its
representation and interactions with the rest of the MAS. Then, typically, some middle-
ware infrastructure provides common API and services to application-level software – i.e.
the containers where service components live – there including the coordination artefacts
[ORV06] governing the interaction space. Finally, on top of the middleware, the applica-
tion / system as a whole lives, in LPaaS MAS view as a mixture of services – possibly
RESTful, as for LPaaS as a WS – and agents.

Figure 3.9: The Smart Object as an LPaaS Agent: typical SO conceptual architecture
enriched with LPaaS service (left) and inner architecture (right).

47



CHAPTER 3. LOGIC PROGRAMMING AS A SERVICE

capabilities to others. In this case, each SO has a representative autonomous software
agent, which is capable of monitoring the state of the device, make decisions on behalf of
the device, and discover and exploit external help if necessary.

Revisiting Agents’ Inner Architecture

Figure 3.9 (right) shows the inner architecture of a SO modelled as an LPaaS agent:

• The Perception Handler takes care of measurements coming from sensors. The
new data feed the knowledge base of the SO, may alter existing knowledge, and
contribute to the inference of novel knowledge

• The KB Update component evaluates incoming data, and updates the knowledge
base accordingly. A trivial implementation of the LPaaS agent can simply insert
novel information with no modifications or restrictions (actually acting as an infor-
mation repository), whereas a more sophisticated one interacts with the KB Query
component to perform consistent updates of the KB (actually supporting the inter-
pretation of the KB as a logic theory of the local world)

• The KB Query component receives queries from the agent specific behaviour im-
plementation, from the Perception Handler, and from the KB Update component.
In the first case, it supports the agent’s internal decision-making; in the second,
it helps the KB to remain consistent while updating itself in reaction to external
stimuli. In the latter case, it helps in selecting which information will be inserted
in the KB

• The Knowledge Base is a logic theory. In principle, any modification of the sur-
rounding environment perceived by sensors can produce an update

• The LP Inference component performs deduction from the existing KB. Its inputs
is the current KB, which is a mixture of background knowledge, measured metrics,
and deduced facts; its output is the novel inferred knowledge.

On LPaaS Agents’ Lifecycle

To realise the LPaaS MAS architecture, a container-component programming model can
be adopted: the LPaaS agent is a component living inside a container that manages its
life cycle. The container-component model simplifies the configuration and usage of the
LPaaS inferential engine in a distributed system, by separating concerns : on the one hand,
the component is the one responsible for the LPaaS inferential engine and its business
logic; on the other, the container is a portion of the middleware that manages the number
of instances, configuration, and life cycle of the handled components.

Accordingly, an LPaaS agent is handled by an LPaaS container which manages the ser-
vice’s core. The agent is characterised by a cyclic behaviour: at each iteration, it receives
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a service request from a client, synthesises the response, and communicates the operation
result. Figure 3.10 shows the operations performed by the container for creating and con-
figuring an LPaaS component: the container, after loading the component’s metadata,
creates the component, configures the inferential engine, and runs the automatic methods
(for self-configuration).

Figure 3.10: The LPaaS container in a MAS.

3.4.4 LPaaS MAS Prototype: LPaaS in Jade

The proposed approach has been implemented on top of the Jade middleware [BCG07,
JAD], which facilitates the development of interoperable, open, and heterogeneous multi-
agent systems by relying on the FIPA standard [ON98], and exploiting tuProlog [DOR01,
tup01] as the LPaaS Prolog engine. We choose tuProlog because of its peculiar blend
of imperative, object.oriented, and logic programming styles: apart from being Java-
based, light-weight, and easy deployable, it also enables and promotes a multi-paradigm
programming style, where the Prolog code can invoke Java code and viceversa, yet keeping
the two computational models clearly separate [DOR05].

Following Jade approach to openness, the LPaaS agent must register with the Jade
Directory Facilitator (DF) – Jade yellow pages for services offered by agents in a Jade
MAS – by providing a logical identifier and indicating the sort of service offered (i.e.,
LPaaS). In this way, clients can dynamically perform a discovery operation and identify
which LPaaS agents live in the system—since many may provide the LPaaS service si-
multaneously, i.e. for resiliency and performance reasons. In its turn, a client wishing to
use a LPaaS service must, as a first action, perform a discovery via the DF, requesting
either the list of all agents offering LPaaS services, or a specific service, given its logical
identifier.

The communication between Jade agents occurs via ACL (Agent Communication
Language) messages [FIP02], that is, well-structured messages with a clear semantics
and interoperable encoding. The request ACL message for an LPaaS service is always
a FIPA Request, and should contain both the logical identifier of the LPaaS agent and
the identifier of the operation to be run (a string that uniquely identifies a method).
The request message may also contain the goal to demonstrate, possibly the number of
solutions to be scanned, and the maximum service running time (i.e., timeout), depending
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on the nature of the LPaaS configuration (i.e. stateless vs. stateful, dynamic vs. static).
The response ACL message is always a FIPA Inform [JAD], notifying the customer of the
service result: the response message contains either the requested solutions or an error
message if the service could not be run.

The client agent, who obtained the Jade AID (Agent IDentifier) of one or more
agents from the DF as a result of the discovery phase, sends an LPaaS Request ACL
message to the selected agent: in turn, the LPaaS agent replies with an LPaaS response
message, which contains the service outcome (Figure 3.11). Interaction always adheres
to the request-response pattern: the LPaaS agent is supposed to reply to the client in all
cases, possibly with a failure message in case of errors.

Figure 3.11: The LPaaS Service-DF-Client interaction.

The reception of the message may be blocking or not blocking, both for the LPaaS
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agent and the client, depending on the configuration parameter: blocking mode is the
default for the LPaaS agent (so, with no service requests the agent is suspended), while
the client fully depends on the application logic.

As far as security is concerned, two aspects are currently supported: (i) authentication
and confidentiality of the communication; (ii) identification of client’s permissions to
access the service. The first is ensured using Jade-S (Secure Jade) [PRT01]: each
LPaaS message is signed and encrypted. In particular, when an LPaaS agent receives a
service request message, it first checks whether the message is signed by a known agent
(via Jade-S) and only in this case proceeds by decrypting the message; otherwise, an
error message is sent back. The second level implies that LPaaS agents can distinguish
privileged, configurator agents which can start, stop, and reconfigure (admissible goals,
kb, . . . ) the service.

Example Application

As a first testbed for LPaaS in Jade, we implemented a Smart Kitchen IoT scenario.
Four IoT devices – namely, a fridge, a pantry, a mixer and an oven – supply information
to clients, exploiting the LPaaS approach, about the food supply and users’ preferences.

The fridge and the pantry are capable of monitoring the quantity of food, and of col-
lecting historical data on user’s habits, i.e. the most commonly eaten food and preferred
meals. The oven aims at supporting the user’s cooking experience by relying on any
available technology to identify and cook food. The user profile is supposed to include
information about his/her dietary requirements. The mixer manages the recipe instruc-
tions, interacting with both the fridge – to check that the ingredients for the selected
recipe are actually available – and with the oven—to check its ability to cook that food,
and potentially synthesise the proper control instructions. Each device is supposed to
have a limited computational capacity, such as that of a Raspberry Pi or of an Arduino
board.

The application scenario requires that each device does not merely provide raw data,
but is instead capable of producing higher-level knowledge and simultaneously of coor-
dinating and collaborating with other entities in the system. In particular, each node
(identified by a device) must maintain local knowledge about its status, be aware of the
surrounding environment, and be able to communicate with the control device to share
information about the kitchen state. Moreover, it should be possible to migrate the soft-
ware from a device to another (e.g. if the device needs to be replaced) and to add / remove
IoT devices to the system without shutting the system down first, i.e. in a “plug and play”
fashion.

Assuming that all IoT and control devices are connected to a single home subnet,
we choose to adopt a single Jade platform: the Jade Main Container is located on the
controller node and is in charge of interacting / retrieving information from the smart
kitchen devices. Each IoT device is designed as an LPaaS component, and is supposed
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Figure 3.12: The Smart Kitchen Architecture in a LPaaS tuProlog in Jade.

to manage the node knowledge base and expose the goals. In this case, the available
goals make it possible to query devices about available food and the user’s habits—e.g.,
trace the available products, quantities, expiration date for perishables, purchase price
and retailer, origin, users’ preferred products, etc.

Figure 3.12 gives an overview of the corresponding Jade system. The Smart Kitchen
Agent is the global agent, in our terminology, in charge of ensuring a coherent behaviour of
the overall system based on the overall knowledge gathered. The interaction between the
Smart Kitchen Agent and the LPaaS local agents – that is, those responsible of gathering
local information and providing situated reasoning – occurs via ACL messages: the Smart
Kitchen can thus obtain high-level information from the devices, process it, and decide
the action(s) to be taken. For instance, if a given kind of food in the fridge is running
out, the Smart Kitchen Agent may place an online order.

Some screenshots from the current experimental prototype are shown in Figure 3.13.
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Figure 3.13: The Smart Kitchen Prototype: example of possible inferences.

In its simplicity, the example scenario outlined here showcases how easy it is to spread
situated intelligence in a IoT deployment by merging LPaaS with MAS. The Smart
Kitchen agent, for instance, needs not to bother tracking low-level data such as the amount
and kind of perishables, recipes requirements, etc. altogether, so as to have all the system
knowledge available and plan action accordingly. This is what typically happens in Cloud-
based IoT deployments. In LPaaS MAS instead, the Smart Kitchen agent may directly
ask to its peers the higher-level information it needs for decision making – with queries
such as “May I start cooking a lasagna?” or “Does Lisa like broccoli?” – expecting an
informative reply—instead of a raw measurement, such as “We are missing besciamella
for lasagne”.

3.4.5 Benefits & Open Issues

In this section we discuss the envisioned benefits of the LPaaS approach, both in itself
and merged with MAS, especially considering the IoT landscape, and along with the open
issues to be dealt with for fully realising LPaaS, and LPaaS in MAS.

The first benefit, discussed throughout the Chapter, is enabled by LPaaS alone: ubiq-
uitous intelligence for pervasive scenarios. LPaaS enables system designers to distribute
reasoning and inference capabilities amongst the components they have, and let them bal-
ance the computational requirements to best suit the deployment scenario at hand—for
instance, embedding LPaaS in more powerful components and letting ask their services
by need. To the best of our knowledge, this is something unprecedented in the current
IoT landscape, where most approaches either assume a fully-distributed network of smart
objects capable of performing general-purpose computations, or resort to a Cloud-based
setting where the whole system intelligence resides on the Cloud side.

The second benefit naturally follows: situated reasoning. LPaaS enables reasoning and
inferential processes to be context-aware w.r.t. the (possibly ever-changing) environment
where the process takes place. For instance, a sensor augmented with LPaaS capabilities
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– or, able to interact meaningfully with an LPaaS service – can reason on the locally-
gathered data and provide to other system components not just raw measures, but high-
level, inferred information about the sensed situation. In turn, this enables actuators to
carry out a situated decision-making process, where the course of actions to undertake
is the result of a situated planning (inference) process. It is worth noting that resorting
mostly to locally available information reduces both the bandwidth consumption and
the need for reliable communications between the distributed components, which are
especially desirable features in IoT scenarios.

Furthermore, other benefits can be envisioned when coupling LPaaS with MAS: for
instance, goal-orientedness. LPaaS agents may in fact exploit LPaaS to reason about their
own goals, the plans and actions needed to achieve them, and the effects brought by—
which is something only rational agents (such as BDI ones [Rao96]) usually do. Also, even
non-LPaaS agents and non-agent components may do so, by simply interacting with the
available LPaaS services. This is a simple and effective way to inject goal-orientedness in
components of any kind, regardless of their inner architecture and implementation logic.

Lastly, when compared with the RESTful WS approach, the MAS-based one has
some notable advantages: (i) complex interaction protocols built upon semantically rich
messages (i.e. FIPA protocols on ACL messages); (ii) an interaction model particularly
suitable for decentralised computations, based on the peer-to-peer model, yet not imposing
a strict separation between client and server roles; and (iii) potential mobility of the service
through the agent’s own mobility.

In order to fully exploit the potential of the LPaaS approach, a few open issues are
yet to be addressed.

For instance, deploying LPaaS in a real IoT scenario is likely to require integration
with databases, possibly distributed, which should work as the distributed knowledge base
of the system. Then, the issue of handling replication and consistency of data scattered in
connected devices arise, in particular when a coherent, logical interpretation of the data
in LP terms is required—that is, as a logic theory of the state of the world.

Related to this, strict integration with sensor devices is desirable, so as to have LPaaS
always working the most up-to-date perception of the environment properties of interest
for the application at hand. In this respect, devising out ways to automatically embed
the process of gathering sensors’ perceptions into the LPaaS working cycle could prove
to be extremely useful in facilitating adoption of the LPaaS approach and embedding of
LPaaS within devices.

On the opposite side of the IoT spectrum – that is, looking at actuator devices – deep
integration with their operation API is welcome, so as to have the LPaaS distributed
engine automatically command devices whenever some reasoning process results in the
need of interacting with the physical world.

Another open issue is how to deal with situatedness in space, and mobility. Many mod-
ern applications would in fact benefit from having logic theories and inference processes
somehow bound to spatial aspects of the application domain—similarly, and complemen-
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tarily, to what LPaaS does with time. For instance, resolution of a query may consider also
logic theories and LP engines in the neighbourhood of the queried one, and LPaaS engines
may be able to move from node to node in search for better computational resources.

All the above issues are presently under consideration and will be subject of future
research.

3.5 Remarks & Outlook

In this Chapter we presented the LPaaS approach for distributed situated intelligence as
the natural evolution of LP in nowadays pervasive computing systems. We discussed its
properties and its computational and architectural models in constant relationship and
comparison with the notions and development of LP over the years.

The main advantages of applying an LP approach to pervasive systems can be sum-
marised as

• the chance of writing declaratively complex rules that involve the context,

• the empowerment of designers in making provable statements about the expressive
power and decidability of the context model, and

• the possibility of actually supporting light-weight reasoning and cooperation among
distributed components.

Our service-based approach, in particular, (i) encourages representing and reasoning
with situations using a declarative language, providing a high level of abstraction; (ii)
supports the incremental construction of context-aware systems by providing modularity
and separation of concerns; (iii) promotes the cooperation and interoperation among the
different entities of a pervasive system; and (iv) enables reasoning over data streams, like
those collected by sensors.

We also presented a first prototype implementation built on top of the tuProlog system,
to demonstrate and test the effectiveness of the LPaaS approach. Our implementation
is designed on the top of tuProlog, a light-weight, multi-platform, and multi-language
engine that is well suited for the purpose. We discussed and implemented two different
architectures: the first is based on the usual SOA infrastructure—namely, RESTful web
services [FT02], while the second is based on multi-agent system [Fer99]. In addition,
we discussed the integration of these different paradigm and solutions, highlighting the
advantages of such a hybrid approach.

Of course, a number of enhancements, both to the model and the infrastructure, are
still possible. From the model viewpoint, the LPaaS interface can be extended with spe-
cific space awareness methods to consider the space around either the client or the server,
exploring the chance to opportunistically federate LP engines upon need as a form of
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dynamic service composition. Space-awareness and situatedness will be investigated, ex-
ploring the idea to opportunistically federate LP engines by need as a form of dynamic
service composition. From the infrastructure viewpoint, we plan to focus on the design
and implementation of a specialised LP-oriented middleware, dealing with heterogene-
ity of platforms as well as with distribution, life-cycle, interoperability, and coordination
of multiple situated Prolog engines – possibly based on the existing tuProlog technol-
ogy and TuCSoN middleware [OZ99a] – so as to explore the full potential of logic-based
technologies in IoT scenarios and applications.
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In this second part of this thesis, the Situatedness & Domain-specific issue in Logic
Programming is addressed.

The vast majority of applications, nowadays, have to be designed taking into consider-
ation the local situation in which entities are involved, that is, space, the people around,
and the local activities, because they may affect the perception and the knowledge of the
entity leading to different solutions in the deduction process. Indeed, context-awareness
enables a system to take action automatically, reducing the burden of excessive user
involvement, and providing proactive intelligent assistance. Logic programming is gener-
ally useful for such reasoning and for supporting the rule-based programming paradigm
in context-aware applications. Dealing with situations, and therefore with the locality
in which each entity is immersed, leads to the requirement of shaping the domain speci-
ficity. Of crucial importance, in this task, is the possibility to use different paradigms /
languages to express the domain specific situation, and capturing the local model.

Accordingly, in this part of the thesis, the state of the art in the literature is discussed,
focussed on the models and technologies which mostly influenced the thesis (Chapter 4);
then, the LVLP model is presented as our contribution to enable LP to deal with the
diversity of pervasive systems, where many heterogeneous, domain-specific computational
models could benefit from the power of symbolic computation (Chapter 5).

59





Chapter 4

State of the Art

4.1 Logic Programming & Situatedness

Surveying the literature reveals a large number of diverse proposals pushing computational
logic towards distributed situated intelligence [Par08] in pervasive systems—to exploit do-
main knowledge, understand local context, and share information in support of intelligent
applications and services [CFJ03, Sma17]. There, systems are expected to respond in-
telligently to contextual information about the physical world acquired via sensors and
information about the computational environment.

Many languages extension have been proposed in order to allow intelligent agents to
interact with the environments and deal with specific situation, highlighting the benefits
of LP for reasoning in pervasive systems. XLOG [FB98] is a hybrid programming envi-
ronment where predicate logic is integrated into an object-oriented computational model,
specially adequate for working with reactive agents to enable the principles of emergence
and situatedness. Along this line, CIFF [EMS+04] is a system implementing a novel ex-
tension of Fung and Kowalski’s IFF abductive proof procedure [FK97] aimed at building
intelligent agents that can construct plans and react to changes in the environment. The
proposed solution improves more conventional abductive theories for planning by adding
the possibility to interact with the environment, by observing environment properties as
well as actions executed by other agents, thus enhancing agent situatedness.

Moreover, many researches exploit LP extensions to model context and situations. In
the works by Ranganathan and Campbell [RC03] and Katsiri and Mycroft [KM03], FOL)is
used for representing and reasoning with context, whereas Henricksen [HIR02] exploits
FOL to describe and reason with situations. On the other hand, the above way does not
adopt a modular approach or meta-reasoning as in [Lok04], where an extension of Prolog
(LogicCAP) is presented: the notion of situation program is introduced, thus highlighting
the primacy of the situation issue for building context-aware pervasive systems.

The need for a more specialised language support to solve problems in well-defined
application domains has resurfaced constantly in the research over the years. Over time,
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the following solutions have been tried:

• Subroutine libraries contain subroutines that perform related tasks in well-defined
domains like, for instance, differential equations, graphics, user-interfaces and databases.
The subroutine library is the classical method for packaging reusable domain-knowledge
[vDKV00].

• Object-oriented frameworks and component frameworks continue the idea of subrou-
tine libraries. Classical libraries have a flat structure, and the application invokes the
library. In object-oriented frameworks it is often the case that the framework is in
control, and invokes methods provided by the application-specific code [JF88, FS97].

• A domain-specific language (DSL) is a small, usually declarative, language that
offers expressive power focused on a particular problem domain. In many cases,
DSL programs are translated to calls to a common sub-routine library and the DSL
can be viewed as a means to hide the details of that library [Ken97].

Domain-specific languages are usually declarative. Consequently, they can be viewed as
specification languages, as well as programming languages. Many DSLs are supported
by a DSL compiler which generates applications from DSL programs. In this case, the
DSL compiler is referred to as application generator in the literature [Cle88], and the
DSL as application-specific language. Other DSLs, such as YACC [Ben86] or ASDL
[WAKS97], are not aimed at programming (specifying) complete applications, but rather
at generating libraries or components. Also, DSLs exist for which execution consists in
generating documents (TEX), or pictures (PIC [Ben86]). A common term for DSLs geared
towards building business data processing systems is 4th Generation Language (4GL).

4.2 Logic Programming & Labels

Orthogonally, Labelled Deductive Systems (LDS) have been proposed for providing logics
from different families with a uniform presentation of their derivability relations and
semantic entailments to deal with domain-specific situations [Gab96]. The main idea
there is to provide a new unifying methodology, replacing the traditional view of logic,
manipulating sets of formulas by the notion of structured families of labelled formulas.
LDS is a unifying framework for the study of logics and of their interactions. In the LDS
approach the basic units of logical derivation are not just formulae but labelled formulae,
where the labels belong to a given labelling algebra. The derivation rules act on the labels
as well as on the formulae, according to certain fixed rules of propagation. By virtue
of the extra power of the labelling algebras, standard (classical or intuitionistic) proof
systems can be extended to cover a wider territory without modifying their structure.

Detailed investigations have been undertaken to explore the benefits of using the LDS
methodology to reformulate intuitionistic modal logics [Sym94] and substructural log-
ics [BFR99, DGB99]. Specialised frameworks based on LDS have been also proposed
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[AGR02, Bla00, Rus96]. Among the others, the Compiled Labelled Deductive Systems
(CLDS) approach demonstrated how LDS techniques facilitate the reformulation and gen-
eralisation of a large class of modal logics and conditional logics [Rus96, BGLR02].

Along the same line, deductive object-oriented databases (DOODs) seek to combine
the complementary benefits of the deductive and the object-oriented paradigms in the
context of databases exploiting labels mechanism. Research into DOODs has been taking
place for almost ten years, and a significant number of designs and implementations have
been developed. It was at first felt that paradigms were incompatible, or that combining
them would lead to unacceptable compromises, but in fact a number of proposals have
been made that support both comprehensive deductive inference and rich object-oriented
modelling facilities. DOODs are classified according to the language design strategy
exploited during their development. There is more variety in the approaches taken to the
development of DOODs than was the case with deductive relational databases (DRDBs),
as in the latter case an agreed data model gave rise to the development of Datalog as a
widely accepted starting point for the development of practical DRDBs. The following
strategies have been adopted in the design of DOOD systems:

Language Extension this approach consists of extending an existing deductive lan-
guage model with object-oriented features. This approach is familiar from work on
DRDBs such as LDL [NT89] or CORAL [RSS92], in which the syntax and semantics
of Datalog were extended incrementally with negation, set terms, built in predicates,
etc. In the language extension approach to DOODs, Datalog is generally an ances-
tor of the DOOD language, which is extended to support identity, inheritance, etc.
Note that this strategy does not imply the existence of an earlier deductive database
implementation or syntactic conformity with existing languages.

Language Integration here, a deductive language is integrated with an imperative pro-
gramming language in the context of an object model or type system. In this strat-
egy, the resulting system supports a range of standard object- oriented mechanisms
for structuring both data and programs, while allowing different and complementary
programming paradigms to be used for different tasks, or for different parts of the
same task. The idea of integrating deductive and imperative language constructions
for different parts of a task was pioneered in the Glue-Nail DRDB [DMP93], and
later adapted for object-oriented databases.

Language Reconstruction an object model is reconstructed following the rationale of
Reiter [Rei84], creating a new logic language that includes object- oriented features.
In this strategy, the goal is to develop an object logic that captures the essentials of
the object-oriented paradigm and that can also be used as a deductive programming
language in DOODs. This is a revolutionary approach in the sense that much of the
associated implementation technology may have to be conceived from scratch. The
driving force behind the language reconstruction strategy is an argument that lan-
guage extensions fail to combine object-orientation and logic successfully [KLW95],
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by losing declarativeness through the introduction of extra-logical features, or by
failing to capture all aspects of the object-oriented model. The major drawbacks
of reconstruction are the difficulty of providing efficient implementations of all the
features of the object logic and the lack of agreement on the target model to be
formalised.

4.3 Remarks & Outlook

All the models and technologies presented in this chapter influences the LVLP, in particu-
lar in how the model is conceived and designed. The LVLP work builds upon the general
notion of label as defined by Gabbay [Gab96], and adopts the techniques introduced by
Holzbaur [Hol92] to develop a generalisation of LP where labels are exploited to define
computations in domain-specific contexts. Our characterisation can be viewed as a gen-
eralisation of the aforementioned approaches, blending the benefits of labels and LP so
as to enable the very intrinsic nature of distributed situated intelligence. Indeed, LVLP
allows heterogeneous devices in the IoT to have specific application goals and manage
specific sorts of information, enabling reactivity to environment change while capturing
diverse logic and domains.

Among the many differences w.r.t. the approaches described in this chapter is the fact
that the approach proposed in this thesis does not change the basic of the logic language,
which remains the same, but allows for different specific extensions tailored to local needs.
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Chapter 5

Labelled Variables in Logic
Programming

In order to enable logic programming to deal with the diversity of pervasive systems,
where many heterogeneous, domain-specific computational models could benefit from the
power of symbolic computation, we explore the expressive power of labelled systems.
To this end, we define a new notion of truth for logic programs extended with labelled
variables interpreted in non-Herbrand domains—where, however, terms maintain their
usual Herbrand interpretations.

First, a model for labelled variables in logic programming is defined. Then, the fixpoint
and the operational semantics are presented and their equivalence is formally proved. A
meta-interpreter implementing the operational semantics is also introduced, followed by
some case studies aimed at showing the effectiveness of our approach in selected scenarios.
Accordingly, in the following we present the LVLP vision (Section 5.1). Then, we introduce
the LVLP framework, moving from the definition of the theoretical model (Section 5.2) to
the fixpoint and operational semantics (Section 5.3): we discuss correctness, completeness,
and their equivalence is formally proved. Then, we present the technology (Section 5.4)
implemented on the top of tuProlog system where a meta-interpreter implementing the
operational semantics is discussed, which is exploited to illustrate LVLP through some
case studies in different domains (Subsection 5.4.2).

5.1 Vision

The requirement for intelligence in pervasive systems is ubiquitous: computation sur-
rounds us, devices and software components are required to behave intelligently, by un-
derstanding their own goals as well as the context where they work; integration of software
components is supposed to add further (social) intelligence, possibly through coordina-
tion [Cas98]. This is the case, for instance, of the IoT[GBMP13, AIM10, FGRS14], where
physical objects are networked, and are required to understand each other, learn, un-
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derstand situations, and understand us [LMMZ17]—in short, our everyday objects are
expected to be(come) intelligent in the Internet of Intelligent Things (IoIT) [ASF+14].

In the overall, IoIT scenarios mandate for distributed and situated micro-intelligence,
where huge numbers of small units of computation, situated within a spatially-distributed
environment, are required to behave in a smart way, and need to cooperate in order
to achieve a coherent and intelligent social behaviour. However, engineering effective
distributed situated intelligence is far from trivial, mostly due to (i) the huge amount
of data, information, and knowledge to handle, (ii) the need for adaptation and self-
management, (iii) the requirements of resource constrained devices, (iv) the heterogeneity
of models and technologies against interoperability, and (v) the many diverse specific
domains to be integrated.

Along that line, the goal of the LVLP model is to exploit the potential of LP and its
extensions as sources of micro-intelligence for IoIT scenarios, in particular to deal with
the domain-specific aspects. The LVLP domain-specific perspective further emphasises
the role of situatedness, already brought along by spatial distribution of components in
pervasive systems.

Accordingly, lightweight and interoperable LVLP Prolog engines could be distributed
even on resource-constrained devices [DOC13]: multiple logic theories would then be scat-
tered around, encapsulated in each engine, and associated to individual computational
devices and things in the IoT. As a result, each logic theory is conceived as situated, and
represents what is locally true, according to a simple paraconsistent overall interpretation.
The LP resolution process is then local to each theory / engine, so it is both standard
and consistent [Rob65]. Thus, LVLP allows in principle logic-based micro-intelligence
to be encapsulated within devices of any sort, and make them work together in groups,
aggregates, and societies, by promoting features such as observability, malleability, un-
derstandability, and formalisability via LP.

5.2 Model

Let C be the set of constants, with c1, c2 ∈ C being two generic constants. Let V be the
set of variables, with v1, v2 ∈ V being two generic variables. Let F be the set of function
symbols, with f1, f2 ∈ F being two generic function symbols; each f ∈ F is associated
with arity ar(f) > 0, stating the number of function arguments. Let T be the set of
terms, with t1, t2 ∈ T being two generic terms. Terms can be either simple – a constant
(e.g., c1) and a variable (e.g., v2) are both simple terms – or compound—a functor of
arity n applied to n terms (e.g., f1(c2, v1)) is a compound term. A term is said ground if
it does not contain variables. Let H denotes the set of ground terms, also known as the
Herbrand universe.

A model for Labelled Variables in Logic Programming (LVLP) is defined as a triple
〈B, fL, fC〉, where
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• B = {β1, . . . , βn} is the set of basic labels, the basic entities of the domain of labels

• L ⊆ ℘(B) is the set of labels, where each label ` ∈ L is a subset of B

• fL : L ×L −→ L is the (label-)combining function computing a new label from
two given ones

• fC : H ×L −→ {true, false} is the compatibility function, assessing the compati-
bility between a ground term and a label when interpreted in the domain of labels

• a labelled variable is a pair 〈v, `〉 associating label ` ∈ L to variable v ∈ V

• a labelling is a set of labelled variables

B can be either finite or infinite—in the latter case, with the two extra requirements
that (i) each label ` can be represented finitely, including the new labels generated by
the combining function fL, and (ii) the compatibility function fC can argue over the
representation. Also, for the sake of simplicity, a “singleton” label {β} where β ∈ B will
be written just as β henceforth, and a “singleton” labelling {〈v, `〉} will be written as
〈v, `〉, and as v∧` in the examples.

Finally, we require that fL is associative, commutative, and idempotent, with the
empty set as its neutral element—namely:

fL(`1, fL(`2, `3)) = fL(fL(`1, `2), `3), fL(`1, `2) = fL(`2, `1), fL(`, `) = `

Accordingly, in order to simplify notation, in the following we will simply write fL(`1, . . . , `n−1, `n)
instead of fL(`1, fL(. . . , fL(`n−1, `n) . . .)).

Details on fC and fL are provided in the remainder of the Chapter, in particular in
Subsection 5.2.2.

5.2.1 Programs, clauses, unification

An LVLP program is a collection of LVLP rules of the form

Head ← Labelling ,Body .

to be read as “Head if Body given Labelling”. There, Head is an atomic formula, Labelling
is the list of labelled variables in the clause, and Body is a list of atomic formulas.

As in standard LP [Kow83, Bra13], an atomic formula (or atom) has the form p(t1, . . . , tm),
where p is a predicate symbol and ti are terms. Atom p(t1, . . . , tm) is said ground if
t1, . . . , tn are ground. Predicate symbols represent relations defined by a logic program,
whereas terms represent the elements of the domain. HB is the Herbrand base, namely the
set of all ground atoms of whose argument terms are in H . Every variable occurring in
a clause is universally quantified, and its scope is the clause in which the variable occurs.

67



CHAPTER 5. LABELLED VARIABLES IN LOGIC PROGRAMMING

An essential LP mechanism is represented by unification, involving two different terms
that are supposed to refer to the same domain element. While discussing LP unification
is out of the scope of this work (we refer the reader to [Kow83, Bra13] for the basics of
LP), any extension to LP needs to define its own unification rules.

Thus, Table 5.1 reports the unification rules for LVLP. Since, by design, only variables
can be labelled, the only case to be added to the standard unification table is represented
by labelled variables. There, given two generic LVLP terms, the unification result is
represented by the extended tuple

(true/false, θ, `)

where true/false represents the existence of an answer, θ is the most general unifier (mgu),
and ` is the new label associated to the unified variables defined by the (label-)combining
function fL. In order to lighten the notation, undefined elements in the tuple (i.e., labels
or substitutions that make no sense in a given case) are omitted in Table 5.1.

Taking into account all the variables of a goal, a solution for a LVLP computation is
represented by the extended tuple

(true/false,Θ, A)

where Θ represents the mgu for all the variables, and A represents the corresponding
labelling.

5.2.2 Compatibility

Expressing the solution of the labelled variables program as a tuple (true/false, Θ, A)
implicitly assumes that the LP computation, whose answer is given by Θ, and the label
computation, whose answer is given by A, can be read somehow independently from each
other. So, whereas any computed label-variable association could be acceptable as far as
LP is concerned (where symbols are uninterpreted), some label-variable association could
be actually unacceptable when interpreted in the domain of labels.

To formalise such a notion of acceptability, the compatibility function fC is defined as
follows:

fC : H ×L −→ {true, false}

In particular, given a a ground term t ∈H and label ` ∈ L :

fC(t, `) =


true if there exists at least one element of the do-

main of labels which the interpretations of t
and ` both refer to

false otherwise
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Example 1 illustrates an application scenario where variables are labelled with their ad-
missible numeric interval, formalising the fL and fC functions accordingly.

Example 1. LVLP with numeric intervals

As a simple LVLP example, let us suppose that logic variables span over integer domains, and are
labelled with their admissible numeric intervals. The combining function fL, which embeds the
scenario-specific label semantics, is supposed to intersects intervals—that is, given two labels
`1 = {β11, . . . , β1n} and `2 = {β21, . . . , β2m}, the resulting label `3 is the intersection of `1 and `2:

`3 = fL(`1, `2) = fL({β11, . . . β1n}, {β21, . . . β2m}) =

{(β11 ∩ β21), · · · , (β11 ∩ β2m), . . . , (β1n ∩ β21), · · · , (β1n ∩ β2m)}

Here the LP computation aims at computing numeric values, while the label computation aims at
computing admissible numeric intervals for logic variables.
In principle, since the LP computation and the label computation proceed independently, the solution
tuple (true/false, Θ, A) could also describe situations such as (true, X/3, 〈X, [4, 5]〉), where logic variable
X would be associated to both value 3 and label [4, 5]. However, if the numeric intervals are to be
interpreted as the boundaries for acceptable values of LP variables, such labelling would be inconsistent,
and the system should reject such a solution as incompatible.

This is what the compatibility function fC is for: fC(t, `) connects the LP and the label universes by

checking whether ground term t ∈ H is compatible with label ` ∈ L . In particular, in our example

fC(t, `) is supposed to be true only if t belongs to the interval represented by `: in this case, fC(3, [4, 5])

should be reasonably return false, thus rejecting labelling 〈X, [4, 5]〉, with X = 3, as incompatible.

Summing up, the result of a LVLP program can be written as

((true/false) ∧ fC(Θ, A),Θ, A)

meaning that the truth value potentially computed by the LP computation can be re-
stricted – i.e., forced to false – by fC(Θ, A); in turn, this is just a convenient shortcut for
the conjunction of all fC(t, `) ∀(t, `) pairs, where ` and t are such that 〈v, `〉 ∈ A and
v/t ∈ Θ. Of course, in case of independent domains, fC(t, `) is merely true ∀t and ∀`.
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5.3 Foundations & Semantics

In order to maintain the basic theoretical results of LP, such as the equivalence of deno-
tational and operational semantics, labels domains must support tests and operations on
labels.

To this end, Subsection 5.3.1 defines the denotational (fixpoint) semantics in the con-
text of labels domain (under reasonable requirements for fL), while Subsection 5.3.2
discusses the operational semantics of the model through an abstract state machine.

5.3.1 Fixpoint semantics

Let us call X = (H ,L ) a LVLP domain, and define the notion of X -interpretation I as
a set of pairs of the form 〈

p(t1, . . . , tn), [`1, . . . , `n]
〉

where p(t1, . . . , tn) is a ground atom, and `1, . . . , `n are labels s.t. for i = 1, . . . , n the
term ti is compatible with the label `i, i.e., fC(ti, `i) = true. Truthness of fC is based on
the LVLP domain X . With a slight abuse of notation, we write X |= [〈t1, `1〉, . . . , 〈tn, `n〉]
iff
∧n
i=1 fC(ti, `i) = true. We also write X |= 〈p(t1, . . . , tn), [`1, . . . , `n]〉 if p is a predicate

symbol and
∧n
i=1 fC(ti, `i) = true.

We denote as Λ the part of clause body that stores labelling. Without loss of generality
we assume that there is exactly one labelling for each variable in the head. We define the
function f̃L that extends fL and takes as arguments, orderly, a rule

r = h← Λ, b1, . . . , bn

a labelling, and n lists of labels. The rule r is used here to identify multiple occurrences
of the variables. Let us assume the variables in h are x1, . . . , xm, and consider one of
them, say xi. If xi occurs in h (and hence in Λ) and in (some of) b1, . . . , bn then the
corresponding labels `, `1,i, . . . , `n,i for xi are retrieved from Λ (if xi does not occur in bj
simply we do not consider such contribution). Then `′i = fL(`, fL(`1,i, . . . , fL(`n−1,i, `n,i)))
is computed and the pair 〈xi, `′〉 is returned. This is done for all variables x1, . . . , xm
occurring in the head h and the list [`′1, . . . , `

′
m] is returned.

The denotational semantics is based on the one-step consequence functions T P defined
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as:

T P (I) =

{
〈 p(t̃), ˜̀ 〉 :

r = p(x̃)← Λx̃ , b1, . . . , bn (1)
where r is a fresh renaming of a rule of P,

v is a valuation on H such that v(x̃) = t̃, (2)∧n
i=1 ∃ ˜̀i s.t. 〈v(bi), ˜̀i〉 ∈ I, (3)

X |= Λt̃ ∧
∧n
i=1 fC

(
v(bi), ˜̀i), (4)˜̀= f̃L

(
r,Λt̃,

˜̀
1, · · · , ˜̀n) (5)

}
where Λt̃ = v(Λx̃) = [〈t1, `1〉, . . . , 〈tn, `m〉] if Λx̃ = [〈x1, `1〉, . . . , 〈xm, `m〉]. Notice that the

condition X |=
∧n
i=1 fC

(
v(bi), ˜̀i) in line 4 is always satisfied when TP is used bottom-up,

starting from I = ∅.
For the sake of convenience, unspecified labels are assumed to be read as the any

label, defined as the neutral element of fL: in this way, any standard (i.e. non labelled)
LP variable can be read as implicitly labelled with such any label—represented as �
henceforth.

Example 1 reports an example of computation of the least fixpoint of TP in a simple
case. There, and in the following examples, =/2 represents the equality operator of LVLP,
whose behaviour is described in Table 5.1 (unification rules), and can be summarised as:

X = Y : −[< X, � >,< Y, � >], X =LP Y

where =LP is the =/2 standard LP unification operator.

Example 1. Computing the least fixpoint of TP in a simple case

Let us consider the LVLP program P:

r(0). r(1). r(2). r(3). r(4). r(5). r(6). r(7). r(8). r(9).
q(Y,Z) :- Y^[[2 ,4]] , Z^[[3 ,8]] , Y=Z, r(Y), r(Z).
p(X,Y,Z) :- X^[[0 ,3]] , Y^[�], Z^[�], X=Y, q(Y,Z).

where � is used as a shortcut for any basic label (any interval).
Let us consider the interpretation I0 = ∅. Then, the next interpretation I1 can be obtained as:

I1 = TP (I0) =
{
〈r(0), [�]〉, . . . , 〈r(9)[�]〉

}
Applying TP to I1 leads to I2:

I2 = TP (I1) = I1 ∪
{
〈q(3, 3), [[3, 4], [3, 4]]〉, 〈q(4, 4), [[3, 4], [3, 4]]〉

}
One further step leads to I3, which is also the least fixpoint of TP :

I3 = TP (I2) = I2 ∪
{
〈p(3, 3, 3), [[3], [3], [3]]〉

}

The example above shows how LVLP on a domain X – LVLP(X ) – looks like CLP(X ):
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in fact, [〈Y, [2, 4]〉, 〈Z, [3, 8]〉] can be interpreted as the constraints Y ∈ [2, 4], Z ∈ [3, 8].
However, this does not hold for all the label domains, since LVLP aims at covering domains
beyond the reach of constraint logic programming.

This is the case, for instance, of Example 2, where labels are words in the Word-
Net lexical database [Fel06]. There, the combining function fL is supposed to find and
return a WordNet synset compatible with both the given labels, or fail otherwise: for
instance, if `1 = ‘pet′ and `2 = ‘domestic cat’, the new label generated by fL could be
[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal’]. The compatibility function fC is always true, since
any animal name is considered compatible with any animal group.

Example 2. TP in the WordNet case

In this example, labels are words describing the object represented by the variable. The combination of
two different labels (performed by the combining function fL) returns a new label only if the two labels
have a lexical relation, or fail otherwise. The decision is based on the WordNet network [Fel06], a large
lexical database of English where nouns, verbs, adjectives, and adverbs are grouped into sets of
cognitive synonyms (synsets). Synsets are interlinked by means of conceptual-semantic and lexical
relations: the resulting network of meaningfully related words and concepts can be navigated. WordNet
superficially resembles a thesaurus, in that it groups words together based on their meanings.
In this first showcase, some WordNet groups are collected and stored in the knowledge base a priori,
but a dynamic consultation to WordNet could be implemented. Let program P be represented by the
following facts—where wordnet fact is a simulated wordnet synset, while animal(Name) is a predicate
describing an animal’s name:

wordnet_fact ([‘dog’,‘domestic dog’,‘canis ’,‘pet’,‘mammal ’]).
wordnet_fact ([‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’]).
wordnet_fact ([‘fish’,‘aquatic vertebrates ’, ‘vertebrate ’]).
wordnet_fact ([‘frog’,‘toad’, ‘anuran ’, ‘batrachian ’]).

pet_name(‘minnie ’).
fish_name(‘nemo’).
animal(X) :- X^[‘pet’], pet_name(X).
animal(X) :- X^[‘fish’], fish_name(X).

The combining function fL is supposed to find and return a WordNet synset compatible with both
labels. So, if `1 = pet and `2 = ‘domestic cat′, the new generated label `3 is
[‘cat′, ‘domestic cat′, ‘pet′, ‘mammal′]. The compatibility function fC in this scenario is always true,
since any animal name is considered compatible with any animal group.
In order to show the construction of TP , let us consider the interpretation I0 = ∅. Then, the subsequent
step I1 can be computed as:

I1 = TP (I0) =
{
〈pet name(‘minnie′), [�]〉, 〈fish name(‘nemo′)[�]〉

}
Now, let us apply TP to I1 to compute I2:

I2 = TP (I1) = I1 ∪
{

〈animal(‘minnie′), [[‘dog′, ‘domestic dog′, ‘canis′, ‘pet′, ‘mammal′]]〉,
〈animal(‘minnie′), [[‘cat′, ‘domestic cat′, ‘pet′, ‘mammal′]]〉,
〈animal(‘nemo′), [[‘fish ′, ‘aquatic vertebrates′, ‘vertebrate′]]〉

}
which is also the least fixpoint of TP .
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We prove that TP , if applied bottom-up starting from the empty interpretation, always

leads to a minimum fixpoint (Corollary 5.3.3). Such an interpretation is the denotational
semantics of the program P . In order to achieve that result, we need to prove that TP
is monotonic and continuous, and use the Knaster-Tarksi and Kleene’s fixpoint theorems
(Proposition 5.3.2).

An interpretation, for being a model, should satisfy the meaning of every rule, namely:
if for a given valuation of the variables the body is considered true by the interpretation,
then the head must also be true. We state this property formally:

Definition 5.3.1 An interpretation I is a model of a program P if for each rule r =
p(x̃) ← Λx̃ , b1, . . . , bn of P and each valuation v of the variables in r on H (let us
denote with t̃ = v(x̃)) it holds that if

• for i = 1, . . . , n there are 〈v(bi), ˜̀i〉 ∈ I
• such that X |= fC(v(bi), ˜̀i) and

• X |= Λt̃

then it holds that
〈
p(t̃), f̃L

(
r,Λt̃,

˜̀
1, · · · , ˜̀n)〉 ∈ I.

Proposition 5.3.2 Given a LVLP program P and a LVLP domain X , TP is (1) mono-
tonic and (2) (upward) continuos, and (3) TP (I) ⊆ I iff I is a model of P .

Proof: (1) Let I and J be two interpretations such that I ⊆ J . We need to prove that

TP (I) ⊆ TP (J). If a = 〈 p(t̃), ˜̀ 〉 ∈ TP (I), there are a clause r ∈ P , a valuation v on H

for the variables in r and n elements 〈v(bi), ˜̀i〉 ∈ I satisfying the remaining conditions.
Since I ⊆ J , they belong to J as well: so, a ∈ TP (J).

(2) Let us consider a chain of interpretations I0 ⊆ I1 ⊆ . . . : we need to prove that
TP
(⋃∞

k=0 Ik
)

=
⋃∞
k=0 TP (Ik).

(⊆) Let a = 〈 p(t̃), ˜̀ 〉 ∈ TP (⋃∞i=0 Ik
)
. Thus, there are a clause r ∈ P , a valuation v on

H for the variables in r, and n elements 〈v(bi), ˜̀i〉 ∈ ⋃∞k=0 Ik satisfying the remaining

conditions. This means that there are j1, . . . , jn such that for i = 1, . . . , n 〈v(bi), ˜̀i〉 ∈ Iji .
Now let j = max{j1, . . . , jn}: since I0 ⊆ I1 ⊆ · · · ⊆ Ij, all 〈v(bi), ˜̀i〉 ∈ Ij. Thus
a ∈ TP (Ij+1) and henceforth a ∈

⋃∞
k=0 TP (Ik).

(⊇) Let a = 〈 p(t̃), ˜̀ 〉 ∈ ⋃∞k=0 TP (Ik). This means that there is j such that a ∈ TP (Ij).
Then, due to monotonicity, a ∈ TP

(⋃∞
k=0 Ik

)
.

(3) Let TP (I) ⊆ I and let r = p(x̃) ← Λx̃ , b1, . . . , bn be a generic clause of P , and v be

a generic valuation on H of all the variables of r. If we assume that 〈v(bi), ˜̀i〉 ∈ I for
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i = 1, . . . , n, and that X |= fC(v(bi), ˜̀i) and X |= Λt̃, then the pair h = v(p(x̃), ˜̀) ∈ TP (I)

by definition of TP—and ˜̀ is the same of the definition of model. Since TP (I) ⊆ I then
h ∈ I, therefore (since r and v are chosen in general) I is a model of P .

On the other hand, if I is a model of P we prove that TP (I) ⊆ I. Let a = 〈 p(t̃), ˜̀ 〉 ∈
TP (I). This means that there is a rule r = p(x̃) ← Λx̃ , b1, . . . , bn of P and a valuation

v of the variables in r on H such that for i = 1, . . . , n there are
(
v(bi), ˜̀i) ∈ I and

X |= Λt̃ and ˜̀= f̃L
(
r,Λt̃,

˜̀
1, · · · , ˜̀n)), such that X |= fC(v(bi), ˜̀i). Since I is a model and

X |= fC(v(bi), ˜̀i) then a ∈ I. �
Let TP ↑ ω be defined as usual: TP ↑ ω =

⋃
{TP ↑ k : k ≥ 0}, where TP ↑ 0 = ∅ and

TP ↑ (n+ 1) = TP (TP ↑ n). Then

Corollary 5.3.3 TP has a least fixpoint.

Proof: Being TP monotonic, the Knaster-Tarksi theorem ensures that it admits a least
(and a greatest) fixpoint. Being (upward) continuous, Kleene’s fixpoint Theorem states
that TP ↑ ω is the least fixpoint. �

5.3.2 Operational semantics

In this section we define the operational interpretation of labels. Our approach is inspired
by the methodology introduced for constraint logic programming (CLP) [Coh90, ICW93,
JM94]: accordingly, we define the LVLP abstract state machine based on that suggested
by Colmerauer for Prolog III [Col90]. We define a labelled-machine state σ as the triplet:

σ = 〈t0 t1...tn,W,Λ〉

in which t0 t1...tn is the list of terms (goals), W is the current list of variable bindings, Λ
is the current labelling on W .

An inference step for the machine consists of making a transition from the state σ to
a state σ′ by applying a program rule. If m ≥ 0 and Λ′ is a set of labelled variables, a
program rule

s0 ← Λ′, s1, s2, . . . , sm

is applicable if the following conditions hold:

• ∃mgu θ such that θ(t0) = θ(s0), and

• f̃θL(Λ, θ(Λ′)) 6= ∅

Function f̃θL is a generalisation of fL taking as arguments two labellings. If xi occurs in
both Λ and θ(Λ′) with labels ` and `′, `′′ = fL(`, `′) is first calculated, then the labelled
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variable 〈xi, `′′〉 is returned, provided that fC(θ(xi), `
′′) = true; otherwise, false is returned.

Thus the new state becomes:

σ′ = 〈θ(s1, . . . , sm, t1, . . . , tn),W ′ = W ◦ θ,Λ′′ = f̃θL(Λ, θ(Λ′))〉

where ◦ applies the classical composition of substitutions.
A solution is found when a final state is reached. The final state has the form:

σf = (ε,Wf ,Λf )

where ε is the empty sequence, Wf is the final list of variables and bindings, and Λf is
the corresponding labelling. A sequence of applications of inference steps is said to be a
derivation. A derivation is successful if it ends in a final state, or failing if it ends in a
non-final state where no further inference step is possible.

Proposition 5.3.4 Let p(x̃) be an atom, v a valuation on H such that v(x̃) = t̃ where

t̃ are ground terms, and ˜̀ a list of labels. Then there is a successful derivation for
〈p(t̃), v, 〈v(x̃), ˜̀〉〉 iff 〈p(t̃), ˜̀〉 ∈ TP ↑ ω.

Proof: In the following we omit some standard details for the sake of brevity, please
refer to, e.g., [JM94]

(→). We prove the proposition by induction on the length k of the derivation. If k = 0
the result holds trivially.

For the inductive case, let us suppose that there is a successful derivation for 〈p(t̃), v, 〈v(x̃), ˜̀〉〉
of k + 1 steps. Let us focus on the first step: there is a rule r: s0 ← Λ′, s1, s2, . . . , sm
such that θ(p(t̃)) = θ(s0) leading to the new state σ = 〈θ(s1, s2, . . . , sm), v ◦ θ,Λ′′ =

f̃θL(Λ, θ(Λ′)〉, where fC(Λ′′) = true, that admits a successful derivation of k steps.
Consider now the states σ1, . . . , σm defined as σi = 〈θ(si), v ◦ θ,Λ′′i 〉 where Λ′′i is the

restriction of Λ′′ to the variables in si. Since σ admits a successful derivation of k + 1
steps, each σi should admit a successful derivation of at most k steps.

If for all i ∈ {1, . . . ,m}, θ(si) is ground, then, by inductive hypothesis we have
that 〈θ(si), `i〉 ∈ TP ↑ ω where `i = π2(Λ

′′
i ), and hence that there are his such that

〈θ(si), `i〉 ∈ TP ↑ hi. Since Tp is monotonic, all of them belong to TP ↑ h where
h = maxi=1,...,m hi. Then, by applying TP considering the rule r, since we already know

that Λ′′ = f̃θL(Λ, θ(Λ′)), and fC(Λ′′) = true, we have that 〈p(t̃), ˜̀〉 ∈ TP ↑ h+ 1, hence to
TP ↑ ω.

If for some i, θ(si) is not ground, the above property holds for any ground instantiation
of the remaining variables and again the results follows.

(←). Now, let us analyse the converse direction. If 〈p(t̃), ˜̀〉 ∈ TP ↑ ω this means that

there is a k ≥ 0 such that 〈p(t̃), ˜̀〉 ∈ TP ↑ k.
Let us prove by induction on k. Again, if k = 0 the result holds trivially. Let us

suppose now that 〈p(t̃), ˜̀〉 ∈ TP ↑ k + 1. This means (by definition of TP ) that there is a
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rule r: s0 ← Λ′, s1, s2, . . . , sm such that s0 = p(x̃) and there is a valuation u on H such
that u(s0) = p(t̃) and that, in particular, 〈s1, `1〉, . . . , 〈sm, `m〉 ∈ TP ↑ k (and fL can be
computed and fC is true on these arguments). By inductive hypothesis, for i ∈ {1, . . . ,m}
there is a derivation, say, of hi steps for σi = 〈u(si), v ◦ u, 〈u(si), `i〉〉

Since fC is true on such arguments and fL can be computed, the same holds for TP :
so, we have a derivation of

∑m
i=1 hi + 1 steps for 〈p(t̃), v ◦ u ◦ θ, 〈t̃, ˜̀〉〉.

This completes the proof of the inductive step. �

5.4 Technology

5.4.1 Meta-interpreter

The operational semantics of LVLP is captured in the meta-interpreter shown in Listing
5.1: the code is developed in tuProlog [DOR05], a light-weight Prolog system whose
(Java-based) design inherently enables the injection of Prolog programs within pervasive
systems, as well as their integration with diverse programming languages and paradigms,
over computing platforms of any sort [DOC13].

%%%% solve(+Goals , +LVarsIn , -LVarsOut)
%% Goals is the list of goals to solve
%% LVarsIn is the labelling on goals variables
%% LVarsOut is the final labelling on output variables
% termination condition
solve ([], LVars , LVars) :- !. % for efficiency
% goal iterator
solve ([Goal|Goals], LVarsIn , LVarsOut ):- !,

solve(Goal , LVarsIn , LVarsTempOut),
solve(Goals , LVarsTempOut , LVarsOut ).

% solve core
solve(Goal , LVarsIn , LVarsOut ):-

clause(Goal , LVars , Body),
mergeLabels(LVarsIn , LVars , LVarsTempOut),
solve(Body , LVarsTempOut , LVarsOut ).

Listing 5.1: The LVLP meta-interpreter: the solve/3 predicate.

The solve/3 predicate1 has three arguments (Listing 5.1), namely:

• the list of the goals to be processed

• the current labelling

• the new labelling updated by the goal resolution process

The solve/3 predicate recursively calls itself to process the goal list, and exploits clause/3
and mergeLabels/3 to, respectively, handle single goals and combine labels: in particular,

1solve/3 refers to standard meta-interpreter Prolog [SSW86]
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clause/3 finds a clause in the database whose head matches with Goal and returns both
the Body of the clause and the labelling in the selected clause, LVars.

The core of the meta-interpreter is embedded in the mergeLabels/3 predicate (detailed
in Listing 5.2), which combines two sets of labels – the previous labelling, LVarsIn, and
the labelling introduced by the current clause, LVars – into the new LVarsTempOut, or
fails if no solution can be found. The generation of the new label is performed via the
label generate/3 predicate, which embeds the combining function fL, and is provided
by the user according to the domain-specific features of the application scenario.

%%%% mergeLabels (+LVars1 , +LVars2 , -LVars3)
%% LVars1 , LVars2 , LVars3 are lists of labelled variables
%% LVars3 is obtained merging the labelled variables in LVars1 and LVars2
%% LVars1 and LVars2 are sorted according to the same criterion--e.g.,
%% alphabetically.
%% For all the variables that appear both in LVars1 and LVars2 , the resulting
%% label is obtained using the combining function embedded in label_generate /3
% termination conditions
mergeLabels(LVars , [], LVars) :- !.
mergeLabels ([], LVars , LVars) :- !.
% variable Var1 propagation in LVars3 if it is contained only in LVars1
mergeLabels ([Var1^L1|LVars1], LVars2 , [Var1^L1|LVars3 ]):-

not_in(Var1 ,LVars2), !,
mergeLabels(LVars1 , LVars2 , LVars3 ).

% variable Var2 propagation in LVars3 if it is contained only in LVars2
mergeLabels(LVars1 , [Var2^L2|LVars2], [Var2^L2|LVars3 ]):-

not_in(Var2 ,LVars1), !,
mergeLabels(LVars1 , LVars2 , LVars3 ).

% generation of a new label if variable Var is contained both in LVars1 and
% LVars2
mergeLabels ([Var^L1|LVars1], [Var^L2|LVars2], [Var^L3|LVars3 ]):-

label_generate(L1, L2, L3),
mergeLabels(LVars1 , LVars2 , LVars3 ).

% utility func not_in (+Var , +LVars) checks if the list LVars does not contain Var
not_in(_,[]).
not_in(X,[Y^_|_]) :- !, fail.
not_in(X,[_|T]) :- not_in(X,T).

Listing 5.2: The LVLP meta-interpreter: the mergeLabels/3 predicate.

5.4.2 Case studies

In the following we show some LVLP computations based on our prototype rooted in
Labelled tuProlog [CDO15], which exploits the meta-interpreter presented in Subsec-
tion 5.4.1—available on Bitbucket [tup01].

WordNet network

This example extends and implements the case study of Example 2. A label is a network
of related words describing the semantic net of the object represented by the associated
variable according to the WordNet lexical database [Fel06]. Listing in Figure 5.1 (top)
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shows the tuProlog implementation of the label generate/3 predicate embedding the
combining function fL. Here, the label generate checks if `1 and `2 are contained in a
common wordnet fact.

Following our prototype syntax, X^label is a labelled variable denoting a logic variable
X labelled with label—where label is a term in the set of admissible labels defined by
the user. In a LVLP clause, the list of the labelled variables precedes the remaining part
of the body. So, given the following LVLP program:

wordnet_fact ([‘dog’,‘domestic dog’,‘canis’,‘pet’,‘mammal ’,‘vertebrate ’]).
wordnet_fact ([‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’]).
wordnet_fact ([‘fish’, ‘aquatic vertebrates ’, ‘vertebrate ’]).
wordnet_fact ([‘frog’, ‘toad’, ‘anuran ’, ‘batrachian ’]).
animal(X) :- X^[‘pet’], X = ‘minnie ’.
animal(X) :- X^[‘fish’], X = ‘nemo’.
animal(X) :- X^[‘cat’], X = ‘molly ’.
animal(X) :- X^[‘dog’], X = ‘frida ’.
animal(X) :- X^[‘frog’], X = ‘cra’.

the following query, looking for a pet animal, generates four solutions:

?- X^[‘pet’], animal(X).

yes. X / ‘minnie ’
X^[‘dog’, ‘domestic dog’, ‘canis’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

%% label_generate (+L1 , +L2 , -L3) embedding f_L behaviour for WordNet groups
label_generate(L1, L2, List):-

wordnet_fact(List), sublist(L1, List), sublist(L2, List).

Figure 5.1: label generate/3 example: WordNet case study
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yes. X / ‘minnie ’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

yes. X / ‘molly’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’];

yes. X / ‘frida’
X^[‘dog’, ‘domestic dog’, ‘canis’, ‘pet’, ‘mammal ’, ‘vertebrate ’]

Looking instead for a less specific vertebrate produces five solutions:

?- X^[‘ vertebrate ’], animal(X).

yes. X = ‘minnie ’
X^[‘dog’, ‘domestic dog’, ‘canis’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘minnie ’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘molly’
X^[‘cat’, ‘domestic cat’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘frida’
X^[‘dog’, ‘domestic dog’, ‘canis’, ‘pet’, ‘mammal ’, ‘vertebrate ’] ;

yes. X = ‘nemo’
X^[‘fish’,‘aquatic vertebrates ’, ‘vertebrate ’]

A relevant aspect of LVLP is that labels are not subject to the single-assignment as-
sumption: each time two labelled variables unify, their labels are processed and combined
according to the user-defined function that embeds the desired computational model, and
the resulting label is associated to the unified variable. Thus, while the LP model per se is
left untouched, diverse computational models can be associated with, possibly influencing
the result of a logic computation by restricting the set of admissible solutions according
to each specific domain.

Dress selection

In the following example the application scenario is the selection from a wardrobe of a dress
that is “similar enough” to a given colour. A fact shirt(Description, Colour ) repre-
sents a shirt with of colour Colour , expressed as a triple of the form rgb(Red,Green,Blue )

in Description .
For instance, shirts in a wardrobe could be represented as follows:

shirt(rgb (255 ,240 ,245) , my_pink_blouse ).

shirt(rgb (255 ,222 ,173) , old_yellow_tshirt ).

shirt(rgb (119 ,136 ,153) , army_tshirt ).

shirt(rgb (188 ,143 ,143) , periwinkle_blouse ).

shirt(rgb (255 ,245 ,238) , fashion_cream_blouse ).

Without any colour constraints, the following query would return all the shirts in the
wardrobe:
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?- [], shirt(Description , Colour ).

Instead, by defining a target colour in the goal via labelled variables, the query can be
refined in order to get only those dresses whose dress colour is “similar enough” to the
target—with similarity embedded through a suitably-defined combining function fL.

In our example, two colours are considered as similar if their distance is below a given
threshold. Thus, during the unification of labelled variables, if the dress colour is similar
to the target colour, the returned label is dress colour (that is, the colour of the selected
shirt); otherwise, the empty label is returned, so unification fails.

As a first step, we assume that a colour c is represented as RGB (c = rgb(r, g, b), the
threshold is ≤ 30, and the colour distance is normalised and computed as a distance in
a 3D Euclidean space. For instance, let us look for all the shirts similar to the papaya
colour through the following query, where Colour is labelled according to the papaya
RGB triple (255, 239, 213):

?- Colour ^[rgb (255 ,239 ,213)] , shirt(Description , Colour ).

yes. Description / my_pink_blouse , Colour / rgb (255 ,240 ,245)
Colour ^[rgb (255 ,239 ,213)];

yes. Description / old_yellow_tshirt , Colour / rgb (255 ,222 ,173)
Colour ^[rgb (255 ,239 ,213)];

yes. Description / fashion_cream_blouse , Colour / rgb (255 ,245 ,238)
Colour ^[rgb (255 ,239 ,213)]

since the normalised distances dN are:

dN ( papaya = rgb(255, 239, 213), lightpink = rgb(255, 240, 245)) = 7.25

dN ( papaya = rgb(255, 239, 213), lightyellow = rgb(255, 222, 173)) = 9.84

dN ( papaya = rgb(255, 239, 213), armyblue = rgb(119, 136, 153)) = 40.95

dN ( papaya = rgb(255, 239, 213), periwinkle = rgb(188, 143, 143)) = 30.88

dN ( papaya = rgb(255, 239, 213), creamwhite = rgb(255, 245, 238)) = 5.82

Making one step further, by adding to the label the neighbourhood information (i.e., the
admissible threshold), allows the user to dynamically change the similarity criterion. For
instance, the same query as the one in Listing 5.4.2 could be expressed as:

?- Colour ^[rgb (255 ,239 ,213) , d = 30], shirt(Description , Colour ).

whereas a stricter constraint could be imposed by the following query:

?- Colour ^[rgb (255 ,239 ,213) , d = 6], shirt(Description , Colour ).

yes. Description / fashion_cream_blouse , Colour / rgb (255 ,245 ,238)
Colour ^[rgb (255 ,239 ,213) , d = 6]

Once again, while LP is left untouched, LVLP captures a parallel computation on the
domain of interest, which affects the final result.
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%% label_generate (+L1 , +L2 , -L3) embedding f_L behaviour for integer intervals
label_generate ([H1|([T1|T11])], [H2|([T2|T22])], [H3|T3]):-

((H1>H2) -> H3=H1; H3=H2), ((T1<T2) -> T3=T1; T3=T2), H3<T3.

Figure 5.2: label generate/3 example: numeric interval intersection

Integer intervals

All standard domains for logic languages – including the CLP ones [Coh90] – are also sup-
ported. For instance, labels could be used to represent the integer interval over which the
logic variable values span: accordingly, the label syntax could take the form X^[min,max ],
and a simple interval program could look as follows:

interval(X):- X^[-1 ,4].
interval(X):- X^[6 ,10].

The unification of two variables labelled with an interval would then result in a variable
labelled with the intersection of the intervals. Accordingly, the following simple query
generates two solutions:

?- X^[2,7], interval(X).

yes.
X^[2,4] ;

yes.
X^[6,7]

However, the expressiveness of LVLP makes it possible to easily move from the domain of
integer intervals to more articulated domains, thus going beyond the reach of constraint
logic languages.
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For instance, the above example could be easily extended to the domain of integers
with a neighbourhood, as in the following program:

neighbourhood(X):- X^[-1 ,4], X=3.
neighbourhood(X):- X^[6,10], X=8.

There, constant values unify with labelled variables if they belong to the interval in the
label. Accordingly, the following query would result in just one solution:

?- X^[2,7], neighbourhood(X).

yes. X / 3
X^[2,4]

because the second clause would set X out of the interval in the query.

5.5 Remarks & Outlook

The primary results of this Chapter is the definition of the LVLP theoretical framework,
where different domain-specific computational models can be expressed via labelled vari-
ables, capturing suitably-tailored labelled models. The framework is aimed at extending
LP to face the challenges of today pervasive systems, by providing the models and tech-
nologies required to effectively support distributed situated intelligence, while preserving
the features of declarative programming.

We present the fixpoint and operational semantics, discuss correctness, completeness,
and equivalence, and test the effectiveness of our approach through some case studies.

While the first LVLP prototype [CDO15] is currently implemented over tuProlog
[DOR05] via the described meta-interpreter, the full integration of the LVLP model in
the tuProlog code is currently in advanced stage of development.

The next stage is represented by the design and implementation of a full-fledged logic-
based middleware for LVLP, which could be exploited to test the effectiveness of LVLP
in real-world pervasive intelligence scenarios. As far as the formal aspects are concerned,
future work will be devoted to deeper exploration and better understanding of the conse-
quences of applying labels to formulas, as suggested by Gabbay [Gab96]. Other research
lines will possibly include the application of the LVLP framework to different scenarios
and approaches—such as probabilistic LP [SAFP15], the many CLP approaches [Coh90],
distributed ASP reasoning [DP09], and action languages [DFP13].
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In the third part of this thesis, the effectiveness of the integration of all the different,
but complementary, contributions presented so far (Part I an Part II) is discussed. In
particular, some experiments are presented, showing how LPaaS and LVLP can provide
distributed situated micro-intelligence in Smart Environments.

First of all the technology is presented, the current state of tuProlog for IoT technology
is provided, that is, a report on the extent to which the tuProlog engine has been actually
implemented and extended implementing LPaaS and LVLP models –Chapter 6.

Then, we test the effectiveness of the tuProlog technology in a Smart Home context –
namely Home Manager– developed following the Butlers for Smart Spaces approach. The
Butlers for Smart Spaces approach is described in Chapter 7, presenting a technology-
neutral reference framework focused on users’ situatedness and interaction aspects in
the IoT environments. Then, some experiments built on the Home Manager Framework
(inspired to the Butlers for Smart Spaces approach) are discussed, designed mostly to
prove the feasibility and effectiveness of our approach –Chapter 8.
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Chapter 6

The tuProlog engine for the IoT

In this chapter we present the tuProlog engine, starting from its key features and moving
to the envisioned architecture in a complex IoT system.

Accordingly, Section 6.1 overviews the basic elements and structure of the tuProlog
engine, while Section 6.2 describes an envisioned full-fledged micro-intelligence ecosystem
exploiting the tuProlog engine with the extension of LPaaS and LVLP, whose building
blocks are currently under development. Prototype version of these extensions are avail-
able from http://tuprolog.apice.unibo.it.

6.1 The tuProlog in a nutshell

tuProlog is a light-weight Prolog system for distributed applications and infrastructures,
intentionally designed around a minimal core, to be either statically or dynamically con-
figured by loading/unloading libraries of predicates. tuProlog natively supports multi-
paradigm programming, providing a clean, seamless integration model between Prolog
and mainstream object-oriented languages – namely Java, for tuProlog Java version, and
any .NET-based language (C#, F#..), for tuProlog .NET version.

tuProlog and related packages are released under the GNU Lesser General Public Li-
cense, via Bitbucket (https://bitbucket.org/tuprologteam/tuprolog/overview) as
a Git (http://apice.unibo.it/xwiki/bin/view/TuCSoN/Git) repository and on Maven
Central Repository.

While they all share the same core and libraries, the latter features an ad hoc library
which extends the multi-paradigm approach to virtually any language available on the
.NET platform.

Unlike most Prolog programming environments, aimed at providing a very efficient
(yet monolithic) stand-alone Prolog system, tuProlog is explicitly designed to be min-
imal, dynamically configurable, straightforwardly integrated with Java and .NET so as
to naturally support multi-paradigm/multi-language programming (MPP), and easily de-
ployable.
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Minimality means that its core contains only the Prolog engine essentials – roughly
speaking, the resolution engine and some related basic mechanisms: any other feature is
implemented in libraries. So, each user can customize his/her prolog system to fit his/her
own needs, and no more: this is what we mean by tuProlog configurability—the necessary
counterpart of minimality.

Libraries provide packages of predicates, functors and operators, and can be loaded and
unloaded in a tuProlog engine both statically and dynamically. Several standard libraries
are included in the tuProlog distribution, and are loaded by default in the standard
tuProlog configuration; however, users can easily develop their own libraries either in
several ways – just pure Prolog, just pure Java1, or a mix of the two.

Multi-paradigm programming is another key feature of tuProlog. In fact, the tuProlog
design was intentionally calibrated from the early stages to support a straightforward,
pervasive, multi-language/multi-paradigm integration, so as to enable users to:

• using any Java2 class, library, object directly from the Prolog code with no need of
pre-declarations, awkward syntax, etc., with full support of parameter passing from
the two worlds, yet leaving the two languages and computational models totally
separate so as to preserve a priori their own semantics—thus bringing the power of
the object-oriented platform to the Prolog world for free;

• using any Prolog engine directly from the Java/.NET code as one would do with
any other Java libraries/.NET assemblies, again with full support of parameter
passing from the two worlds in a non-intrusive, simple way that does not alter
any semantics—thus bringing the power of logic programming into virtually any
Java/.NET application;

• augmenting Prolog by defining new libraries either in Prolog, or in the object-
oriented language of the selected platform (again, with a straightforward, easy-to-use
approach based on reflection which avoids any pre-declaration, language-to-language
mapping, etc), or in a mix of both;

• augmenting Java3 by defining new Java methods in Prolog (the so-called ‘P@J’
framework), which exploits reflection and type inference to provide the user with an
easy-to-use way to implement Java methods declaratively.

Last but not least, easy deployability means that the installation requirements are
minimal, and that the installation procedure is in most cases4 as simple as copying one

1The .NET version of tuProlog supports other languages available on the .NET platform: more on
this topic in http://tuprolog.apice.unibo.it

2For the .NET version: any .NET class, library, object, etc.
3This feature is currently available only in the Java version: a suitable extension to the .NET platform

is under study.
4Exceptions are the Eclipse plugin and the Android versions, which need to be installed as required

by the hosting platforms.
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archive to the desired folder. Coherently, a Java-based installation requires only a suitable
Java Virtual Machine, and ‘installing’ is just copying a single JAR file somewhere. Of
course, other components can be added (documentation, extra libraries, sources..), but
are not necessary for everyday use. The file size is quite similar for the Android platform
– the single APK archive is 234KB – although an Android-compliant install is performed
due to Android requirements. The install process is also quite the same on the .NET
platform, although the files are slightly larger. The Eclipse platform also requires a
different procedure, since plugin installation have to conform to the requirements of the
Eclipse plugin manager: consequently, an update site was set up, where the tuProlog
plugin is available as an Eclipse feature. Due to these constraints, file size increases to
1.5MB.

Finally, tuProlog also supports interoperability with both Internet standard patterns
(such as TCP/IP, RMI) and coordination models and languages. The latter aspect, in
particular, is currently developed in the context of the TuCSoN coordination infrastructure
[OZ99a, OD01b], which provides logic-based, programmable tuple spaces (called tuple
centres) as the coordination media for distributed processes and agents.An alternative
infrastructure, LuCe [DO01], developed the same approach in a location-unaware fashion:
this infrastructure is currently no longer supported.

6.1.1 Predicate categories

In tuProlog, predicates are organized into three different categories:

built-in predicates — Built-in predicates are so-called because they are defined at the
tuProlog core level. They constitute a small but essential set of predicates, that any
tuProlog engine can count on. Any modification possibly made to the engine before
or during execution will never affect the number and properties of these predicates.

library predicates — Predicates loaded in a tuProlog engine by means of a tuProlog
library are called library predicates. Since libraries can be loaded and unloaded in
tuProlog engines both at the system start-up, or dynamically at run time, the set of
the library predicates of a tuProlog engine is not fixed, but can change from engine
to engine, as well as at different times for the same engine. Library predicates
cannot be individually retracted: to remove an undesired library predicate from the
engine, the whole library containing that predicate needs to be unloaded.

Library predicates can be overridden by theory predicates –that is, predicates de-
fined in the user theory.

theory predicates — Predicates loaded in a tuProlog engine by means of a tuProlog
theory are called theory predicates. Like above, the set of the theory predicates of
a tuProlog engine is not fixed, and can change from engine to engine, as well as at
different times for the same engine.
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Although library and theory predicates they may seem similar, they are not the same,
and are handled differently by the tuProlog engine. The difference between the two
categories is both conceptual and structural.

Conceptually speaking, theory predicates should be used to axiomatically represent
domain knowledge at the time the proof is performed, while library predicates should
be used to represent what is required (procedural knowledge, utility predicates) in order
to actually and effectively perform proofs in the domain of interest. So, from this view-
point, library predicates are devoted to represent more “stable” knowledge than theory
predicates. Correspondingly, library and theory predicates are represented differently at
run-time, and are handled differently by the engine—in particular, with respect to the
observation level for monitoring and debugging purposes. In particular, library predicates
are usually step over during debugging, coherently with their more stable (and expectedly
well-tested) nature, while theory predicates are step into in a detailed way during the con-
trolled execution. This is also why all the tools in the tuProlog GUI show in a separate
way the theory predicates, on the one hand, and the loaded libraries and predicates, on
the other.

6.1.2 Engine configurability

tuProlog engines provide four levels of configurability:

Libraries — At the first level, each tuProlog engine can be dynamically extended by
loading or unloading libraries. Each library can provide a specific set of predicates,
functors, and a related theory, which also allows new flags and operators to be
defined. Libraries can be either pre-defined or user-defined. A library can be loaded
by means of the predicate load library (Prolog side), or by means of the method
loadLibrary of the tuProlog engine (Java/.NET side).

Directives — At the second level, directives can be given by means of the :-/1 predicate,
which is natively supported by the engine, and can be used to configure and use
a tuProlog engine (set prolog flag/1, load library/1, include/1, solve/1),
format and syntax of read-terms (op/3).

Flags — At the third level, tuProlog supports the dynamic definition of flags to describe
relevant aspects of libraries, predicates and evaluable functors. A flag is identified
by a name (an alphanumeric atom), a list of possible values, a default value, and
a boolean value specifying if the flag value can be modified. Dynamically, a flag
value can be changed (if modifiable) with a new value included in the list of possible
values.

Theories — The fourth level of configurability is given by theories: a theory is a text
consisting of a sequence of clauses and/or directives. Clauses and directives are
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terminated by a dot, and are separated by a whitespace character. Theories can be
loaded or unloaded by means of suitable library predicates.

6.1.3 Libraries

The tuProlog engine is by design choice a minimal, purely-inferential core, which includes
only the small set of built-ins introduced in the previous Chapter. Any other piece of
functionality, in the form of predicates, functors, flags and operators, is delivered by
libraries, which can be loaded and unloaded to/from the engine at any time: each library
can provide a set of predicates, functors and a related theory, which can be used to define
new flags and operators.

The dynamic loading of libraries can be exploited, for instance, to bound the avail-
ability of some functionalities to a specific use context, as in the following example:

% println/1 is defined in ExampleLibrary

run_test(Test, Result) :- run(Test, Result),

load_library(’ExampleLibrary’),

println(Result),

unload_library(ExampleLibrary’).

The tuProlog distribution include several standard libraries, some of which are loaded by
default into any engine–although it is always possible both to create an engine with no
pre-loaded libraries, and to create an engine with different (possibly user-defined or third
party) pre-loaded libraries.

The fundamental libraries, loaded by default, are the following:

BasicLibrary (class alice.tuprolog.lib.BasicLibrary) — provides the most com-
mon Prolog predicates, functors, and operators. To clearly separate computation
and interaction aspects, no I/O predicates are included.

ISOLibrary (class alice.tuprolog.lib.ISOLibrary) — provides predicates and func-
tors that are part of the built-in section in the ISO standard, and are not provided
as built-ins or by BasicLibrary.

IOLibrary (class alice.tuprolog.lib.IOLibrary) — provides the classic Prolog I/O
predicates, except for the ISO-I/O ones.

OOLibrary (class alice.tuprolog.lib.OOLibrary) — provides predicates and func-
tors to support multi-paradigm programming between Prolog and Java, enabling a
complete yet easy access to the object-oriented world of Java from tuProlog: fea-
tures include the creation and access of both existing and new objects, classes, and
resources.
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ThreadLibrary (class alice.tuprolog.lib.ThreadLibrary) — provides primitives for
explicit multi-thread handling.

Other libraries included in the standard tuProlog distribution, but not loaded by default,
are the following:

ISOIOLibrary (class alice.tuprolog.lib.ISOIOLibrary) — extends the above IOLi-
brary by adding ISO-compliant I/O predicates.

SocketLibrary (class alice.tuprolog.lib.SocketLibrary) — provides support for
TCP and UDP sockets.

DCGLibrary (class alice.tuprolog.lib.DCGLibrary) — provides support for Defi-
nite Clause Grammar, an extension of context free grammars used for describing
natural and formal languages.

Further libraries exist that are not included in the standard tuProlog distribution, because
of their very specific domain: they can be downloaded from the tuProlog site, along with
their documentation.

6.1.4 Multi-paradigm programming

tuProlog supports multi-paradigm and multi-language programming between Prolog and
Java in a complete, four-dimensional way:

• using Java from Prolog: OOLibrary

• using Prolog from Java: the Java API

• augmenting Prolog via Java: developing new libraries

• augmenting Java via Prolog: the P@J framework

Using Java from Prolog: OOLibrary

The first MPP dimension offered by tuProlog is the ability to fully access objects, classes,
methods, etc. in a full-fledged yet straightforward way, completely avoiding the intricacies
(object and method pre-declarations in some awkward syntax, pre-compilations, etc) that
are often found in other Prolog systems. The unique tuProlog approach keeps the two
computational models clearly separate, so that neither the Prolog nor the Java semantics
is affected by the coexistence of the logical and imperative/object-oriented paradigms in
the same program. In this way, any Java package, library, etc. is immediately available to
the Prolog world with no effort, So, for instance, Swing classes can be easily exploited to
build the graphical support of a Prolog program, and the same holds for JDBC to access
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databases, for the socket package to provide network access, for RMI to access remote
Java objects, and so on.

The two basic bricks of OOLibrary are:

• the mapping between Java types and suitable Prolog types;

• the set of predicates to perform operations on Java objects.

Using Prolog from Java: the Java API

The tuProlog Java API provides a complete support for exploiting Prolog engines from
Java: its only requirement is the presence of tuprolog.jar (or the more complete 2p.jar)
in the Java project’s class path. The API defines a namespace (alice.tuprolog) and
classes to enable the definition in Java of suitable objects representing Prolog entities
(terms, atoms, lists, variables, numbers, etc, but also Prolog engines, libraries and the-
ories), and use them to submit queries and get the results back in Java, thus effectively
supporting multi-paradigm, multi-language programming.

Augmenting Prolog via Java: developing new libraries

So far, the two first dimensions of tuProlog’s support to multi-paradigm, multi-language
programming have been explored, that enable a language (and the corresponding paradigm)
to be used from the other. The two further dimensions concerns augmenting the language
instead—that is, exploiting a language (and a paradigm) to increase the other.

In this section the focus is on augmenting Prolog from Java, exploiting the latter
to increase the first by developing new tuProlog libraries; the next Section (6.1.4) will
focus on the opposite direction, exploiting Prolog to augment Java via the so-called P@J
framework.

Moreover, although tuProlog libraries are expressed in Java, they are not required to
be fully implemented in this language. In fact, Java-only libraries are the simplest case,
but hybrid Java + Prolog libraries are also possible, where a Prolog theory is embedded
into a Java string so that the two parts cooperate to define the overall library behavior.
This opens further interesting perspectives, that will be discussed below.

Augmenting Java via Prolog: the P@J framework

The last dimensions of tuProlog’s support to multi-paradigm, multi-language program-
ming is still a form of augmenting a language (that is, exploiting a language and a
paradigm to increase the other)—in this case, augmenting Java from Prolog, exploiting
the so-called P@J framework [CV08].

This approach makes it possible to “inline intelligence” into Java code, enabling Prolog
to be used for implementing Java (abstract) methods, via Java reflection and suitable
annotations. The basic idea is that the methods to be implemented in Prolog are declared
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abstract from the Java syntax viewpoint5, so that the Java compiler does not expect to
find any implementation, while annotating them with the Prolog clauses that provide the
actual implementations. On the user side, the factory method PJ.newInstance will be
used to automatically create a Java implementation of this method, which interacts with
the Prolog engine in a totally transparent way.

6.1.5 JSON Serialisability

Version 3.2.0 of tuProlog introduces the support for the serialisation and deserialisation
of the engine’s state via JSON representation [JSO17]. This new feature enables the user
to serialise the engine and re-create it on another node.

Note that, this is a quite heavy action because it needs to serialise the engine’s state, to
send it to another node, with possible network overhead, and to re-compute the solution
on the destination node. For such a reason, the tuProlog engine’s state can be of two
different types: FullState or ReducedState. The first is composed by the knowledge base
of the engine, the last computed query, the number of result given to the user and the
timestamp of the serialisation. The latter is equal to the first, except for the knowledge
base, which is not serialised.

Following this approach, the engine answers the IoT demand for interoperability, both
with a light way primitive –ReducedState– and with a full fledged primitive –FullState.
Accordingly, depending on the requirements of the scenarios the user can exploit the
more appropriate primitive. For instance, the ReducedState can be exploited in case of
necessity of stateful connection between the client and the engine, while the FullState can
be exploited for mobility or recovering of a node.

The JSON API is built on top of Gson [GSO], a tool developed by Google which
automates serialisation and deserialisation of POJO 6 [POJ17]. So, in order to use the
tuProlog JSON API, Java users have to add the Gson jar [GSO] to the dependency of their
project. Users can find the gson-2.6.2.jar file into the Java distribution of tuProlog.
For .NET users, the tuprolog.dll already contains the Gson core, so no other libraries
are required.

6.2 The tuProlog under the IoT vision

6.2.1 Related & Motivation

There are many frameworks that make use of Prolog to realise IoT platforms.
Prolog is well suited for developing intelligent solutions due to its inherent features

which include unification, resolution and depth first search. Its declarative nature and

5Of course, the corresponding class must be syntactically qualified abstract, too.
6In software engineering, a plain old Java object (POJO) is an ordinary Java object, not bound by

any special restriction and not requiring any class path.
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efficient handling of tree structures makes it highly efficient and productive. Prolog also
offers dynamic code, which allows traits such as learning and intelligence to be easily
incorporated. Morover, the ability of a Prolog engine and the parallelism exhibited by
mobile agents can be exploited to allow emulation of complex algorithms.

Jini [Tar99] and Movilog [ZCM03] reportedly use a combined Java and Prolog based
framework for creating agent based systems. The use of two different languages generally
deters a developer from using such platforms as it makes the knowledge of these concerned
languages mandatory. A pure Prolog based mobile agent framework possibly could serve
the purpose better. ALBA [DCT07] and IMAGO [Li01] cater to a Prolog- only envi-
ronment for mobile agent based system development. ALBA is more of a library rather
than a platform, and uses SICStus Prolog [CF14] for commissioning agents. IMAGO
[DCT07], on the other hand, is a hierarchy-based mobile agent system: agents in IMAGO
are categorised into three types - Stationary imagos which are powerful but lack mobility,
Worker imagos which are mobile but limited in ability, and Messenger imagos which are
used for communications between different imagos. However, IMAGO comes as a sepa-
rate package and cannot be used in tandem with other interpreters. Typhon is a mobile
agent framework which uses LPA Prolog (http://www.lpa.co.uk). Typhon (a mythical
monster) assisted by the Chimera (the offspring of Typhon) Agent System provided with
LPA Prolog facilitates an environment to create and program mobile agents with logic
embedded within.

Between the other, our choice shakes down to the tuProlog system. Developing an
IoT Prolog framework exploiting tuProlog would mean that these all the Prolog engines
envisioned into the system can benefit from the key features of the tuProlog system,
particularly suitable in IoT architectures:

• minimal and configurable engines running without heavy computational costs [DOR01]

• multi-platform technology, including resource-constrained devices [DOC13]

• interoperability with widespread languages, technologies, and standards

• clean model integration for conceptual integrity [DOR05]

Moreover, tuProlog is a light-weight Prolog system for distributed applications and in-
frastructures, intentionally designed around a minimal core; it can be either statically or
dynamically configured by loading/unloading libraries of predicates. It natively supports
multi-paradigm programming [Denti et al., 2005], providing a clean, seamless integration
model between Prolog and mainstream object-oriented languages and finally runs on most
known platforms and devices. Agents can easily make use of extra features required to
exhibit intelligence just loading a library. The tuProlog system allows a user to exploit
the intelligence programming abilities inherent in Prolog and at the same time program
and rapidly emulate complex parallel algorithms.

97



CHAPTER 6. THE TUPROLOG ENGINE FOR THE IOT

6.2.2 tuProlog LPaaS

The LPaaS prototype available on Bitbucket [tup01] has been implemented on top of
the tuProlog system, which provides not only a light-weight engine, particularly well-
suited for this kind of applications, but also a multi-paradigm and multi-language working
environment, paving the way towards further forms of interaction and expressiveness.

In particular, from the service perspective, there are key requirement, captured na-
tively from the tuProlog engine:

• ensuring the interoperability –natively supported by JSON serialisation

• exploitability by applications as a library service—that is, from a software engineer-
ing standpoint, a suitably-encapsulated collection of related functionalities

From the MAS perspective, we choose tuProlog because of its peculiar blend of im-
perative, object-oriented, and logic programming styles: apart from being Java-based,
light-weight, and easy deployable, it also enables and promotes a multi-paradigm pro-
gramming style, where the Prolog code can invoke Java code and viceversa, yet keeping
the two computational models clearly separate [DOR05].

Details on the RESTful and the MAS-LPaaS prototype implementations can be found
in Section 3.4.

6.2.3 tuProlog LVLP

The operational semantics of LVLP is captured by a meta-interpreter developed on the
top of tuProlog.

Once again, our choice follows the tuProlog design that inherently enables the injection
of Prolog programs within pervasive systems, as well as their integration with diverse
programming languages and paradigms, over computing platforms of any sort.

While the first LVLP prototype [CDO15] is currently implemented over tuProlog
[DOR05] via a described meta-interpreter, the full integration of the LVLP model in
the tuProlog code is currently in advanced stage of development.

Details on the Labelled-tuProlog prototype implementations can be found in Sec-
tion 5.4.
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Chapter 7

The Butlers for Smart Space
Reference Architecture

In this Chapter, we explore the construction of Smart Environments (SE) exploiting the
micro-intelligence models proposed in Part I and Part II of these thesis.

In recent years a plethora of novel open, pervasive, highly dynamic, and mostly un-
predictable systems, such as self-organising ones, have emerged, presenting brand new
challenges demanding for innovative models of intelligence [Mar16a].

Smart Environments, and in particular Socio-Technical Systems (STS) and Knowledge-
Intensive Environments (KIE), are both examples of systems conceived and designed to
combine business processes, technologies and people’s skills [Whi06] to store, handle, and
make accessible large repositories of information [Bha01]. Recent advances in sensor net-
works, micro-scale, and embedded vision technologies are enabling the vision of ambient
intelligence and smart environments. Environments have to react in an attentive, adap-
tive and active way to the presence and activities of humans and other objects in order
to provide intelligent and smart services. Heterogeneous sensor networks with embedded
vision, acoustic, and other sensor modalities offer a pivotal technology solution for real-
ising such systems. Networks with multiple sensing modalities are gaining popularity in
different fields because they can support multiple applications that may require diverse
resources. Here, the Internet of Things plays a key role: appliances and devices of any
sort are networked together and can possibly embed some form of (limited) intelligence
to provide suggestions from the user’s context and habits.

Managing their distributed intelligence is of paramount importance, for guaranteeing
their functionalities, as well as for providing desirable non-functional properties [EM14]—
e.g., scalability, fault-tolerance, self-* properties in general. Modern autonomic component-
based systems [DYZ09] aim to change their configuration during the running time in order
to satisfy the user requirements or the environment changes. Usually, the reconfiguration
is done after analysing the requirements and making the suitable decision, exploiting in-
telligence mechanism [DDF+06]. Moreover, an important component of an intelligent
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environment is to anticipate actions of a human inhabitant and then automate them.
However, engineering and design intelligence is far from trivial, mostly due to the pecu-
liar characteristics of the aforementioned systems.

The micro-intelligence approach, such as LPaaS and LVLP, aims at modelling intelli-
gence in such systems by properly supplying inference mechanism for knowledge-intensive
STS.

In this chapter we introduce a framework, namely the Butlers for Smart Spaces, con-
ceived starting from the micro-intelligence notion for the design and development of STS
and KIE —and more in general of SE. In particular, in Section 7.1 we address the in-
telligence issues of SE, making an overview of the state of the art; then we present the
Butlers vision [Den14] and the Butlers for Smart Spaces framework [CD16a, CD16b], as
a conceptual reference framework for the design and development of advanced services to
users immersed and situated in time and space Section 7.3.

7.1 Micro-Intelligence in Smart Environment

As mentioned in [CD16b], Smart Environments (also called Smart Spaces) [CFJ+04b,
WDC+04] aim at augmenting apartments, offices, museums, hospitals, schools, malls,
universities, outdoor areas with smart objects and systems: both people and smart objects
are immersed in time and space, and computer systems seamlessly integrate into people’s
everyday lives “anywhere, anytime” [SM03]. Intelligence pervades the environment, and
space and time awareness sets the base for a contextualised, adaptive user experience.

A key aspect of these scenarios is that the technology complexity is amplified by the
organisational complexity of the application domain: such systems need to be conceived,
designed and developed taking into account both the technological and the human/organ-
isational aspects from the earliest stage, combining different dimensions and behaviour
from pervasive, distributed, situated and intelligent computing—altogether [RPTC15].
Because of their characteristics, Smart Environments assume the co-existence of hetero-
geneous entities, differing in terms of execution platform, development language, enabling
technologies, support infrastructures, models, roles, objectives, etc.—which is why they
inherently call for a multi-paradigm approach: in fact, their development calls for skills,
concepts, methodologies, technologies from a variety of fields (such as, for instance, AI,
coordination, distributed systems, organisational sciences, etc.).

The Internet of Things [Mic15a, RPTC15, SKP+11] is providing the fundamental
bricks to make such scenarios concrete: appliances and devices of any sort are networked
together and can possibly embed some form of (limited) intelligence to provide suggestions
from the user’s context and habits (examples include Apple [App14], Amazon [Ama16],
Google [Goo14a], Microsoft [Mic15a], Samsung [Sam15], to name just a few).

Yet, most applications today merely provide some nice app, very much like a novel
form of remote-control–which is probably the main reason for the gadget-like feeling that
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still affects most of the available prototypes [Ama16, App14, Goo14a, Mic15a, Sam15].
To make one step further, three key preconditions seem to be (i) the availability of an
effective coordination middleware, going beyond the basic support to interoperability;
(ii) an effective support to distributed situated intelligence, intended as awareness of the
environment and chance to react to changes—the basic brick to support contextualised
reasoning and possibly prediction; and (iii) guidelines and enabling techniques exploiting
skills, concepts, methodologies, technologies from the most diverse (socio-technical) fields,
in a multi-paradigm perspective.

In this context, the goal is to define an intelligent system which is able to anticipate,
predict, and take decisions with autonomy. The key features the system needs to manage,
related to micro-intelligence issue, can be grouped into the following ones:

• modelling of context (intended as time and space) and context reasoning –i.e. situ-
atedness;

• proactive recommendation;

• situations prediction.

In the following we discuss these features along with the main research works in the area.

7.2 Related Works

Research addressing Smart Environments has in the past largely focused on network-
and hardware-oriented solutions [AN06]. AI-based techniques which promote intelligent
behaviour have not been examined to the same extent, until the last decades. Then, there
has been a growing body of research on the use of context-awareness as a technique for
developing pervasive computing applications that are flexible, adaptable, and capable of
acting autonomously on behalf of users.

7.2.1 Context Reasoning

A large part of the research investigates approaches to modelling context information used
by context-aware applications and reasoning techniques for context information. Context
awareness [ADB+99], as a core feature of ubiquitous and pervasive computing systems,
has existed and been employed since the early 1990s.

Reasoning about space and time plays an essential role in our everyday lives: when
navigating around our cities through road networks, when working according to schedules
at our work places, or when finding our way around at home. In the latter case, smart
environments can support us in this reasoning process, as they can remind us to do certain
things at certain times or to be at certain places at certain times. This is of particular
benefit for the elderly or people with cognitive impairments.
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Due to the inherent complexity of context-aware applications, the development should
be supported by adequate software engineering methods. The overall goal is to develop
evolvable context-aware applications. Therefore the design of the general functions of
such applications should not be intertwined with the definition and evaluation of context
information, which is often subject to change.

Context, as intended in this work, can be considered as a specific kind of knowledge.
Thus, it is quite natural to investigate if any known framework for knowledge represen-
tation and reasoning may be appropriate for handling context.

A number of context modelling and reasoning approaches have been developed over
the last decade ranging from very simple early models to the current state-of-the-art
context models. The research on the models was accompanied by development of context
management systems that were able to gather, manage, evaluate and disseminate context
information [BBH+10]. Three of the main research approaches, which influenced the
Butlers reference architecture, are discussed.

Context Modelling Language Fact-based context modelling [BBH+10] approaches
have been investigated, including the object-role modelling approach, originated from at-
tempts to create sufficiently formal models of context to support query processing and
reasoning, as well as to provide modelling constructs suitable for use in software engi-
neering tasks such as analysis and design. Early context modelling approaches, such as
attribute-value pairs, could not satisfy these requirements, particularly as the types of
context information used by applications grew more sophisticated. Context modelling
approaches have their early roots in database modelling techniques. In particular, it fo-
cuses on the Context Modelling Language (CML), which was described in a preliminary
form by Henricksen et al. in 2002 [HIR02] and refined in later publications [HI04, HI06].
CML is based on Object-Role Modeling (ORM) [HM10], which was developed for con-
ceptual modelling of databases. The formality of ORM and the CML extensions makes
it possible to support a straightforward mapping from a CML- based context model to
a runtime context management system that can be populated with context facts and
queried by context-aware applications. A detailed discussion of both the model and the
software engineering process used in conjunction with CML can be found in [HI06].

Ontology-based models of context information The tradeoff between expressive-
ness and complexity of reasoning has driven most of the research in symbolic knowledge
representation in the last two decades, and description logics [BCM+03] have emerged
among other logic-based formalisms, mostly because they provide complete reasoning
supported by optimised automatic tools. Since ontologies are essentially descriptions of
concepts and their relationships, it is not surprising that the subset of the Web Ontology
Language (OWL) [GHM+08] admitting automatic reasoning (i.e., OWL-DL) is indeed a
description logic. Ontology-based models of context information exploit the representa-
tion and reasoning power of these logics for multiple purposes: (a) the expressiveness of
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the language is used to describe complex context data that cannot be represented, for ex-
ample, by simple languages like CC/PP [KRW+04]; (b) by providing a formal semantics
to context data, it becomes possible to share and/or integrate context among different
sources; (c) the available reasoning tools can be used both to check for consistency of
the set of relationships describing a context scenario, and, more importantly, to recognise
that a particular set of instances of basic context data and their relationships actually
reveals the presence of a more abstract context characterisation (e.g., the user’s activity
can be automatically recognised). The formalism of choice in ontology-based models of
context information is typically OWL-DL [HPSvH03] or some of its variations, since it is
becoming a de facto standard in various application domains, and it is supported by a
number of reasoning services. OWL-DL ontological models of context have been adopted
in several architectures for context-awareness; among the others, we recall the Context
Broker Architecture (CoBrA) [CFJ04a] and the SOCAM [GWPZ04] middleware, that
adopt the SOUPA and CONON ontologies, respectively.

High-level context abstractions Information from physical sensors, called low-level
context and acquired without any further interpretation, can be meaningless, trivial, vul-
nerable to small changes, or uncertain [BP80]. Schilit et al. [SAW94] observed hence
that context encompasses more than just the user’s location, because other things of in-
terest, including the user’s social situation, are also changing. The limitation of low-level
contextual cues when modelling human interactions and behaviour risks reducing the use-
fulness of context-aware applications. A way to alleviate this problem is the derivation
of higher-level context information from raw sensor values, called context reasoning and
interpretation. The idea is to abstract from low-level context by creating a new model
layer that gets the sensor perceptions as input and generates or triggers system actions.
In the literature, different notions have been employed to refer to this higher-level context
layer. Situational context [GSB02] and situation [Dey01, DY06] are the most common
ones. The notion of situation is used as a higher-level concept for a state representation.
Initially, the term “situation” was used in linguistics and natural language semantics.

Time & Space Focussing on the following broadly formulated questions What does
“situatedness” mean? How does situatedness influence the concept of knowledge and vice
versa —how does knowledge produce situatedness? many works reflect in deep on the two
main concepts around which the situatedness is concived, namely time and space.

Time. The ability of providing and relating the temporal representation of facts at
different levels of granularity is an important research theme in computer science and,
in particular, in the database area [BJW00, CR04]. In this area, one of the earliest
formalisation of the concept of time granularities is described in [CR87]. Other relevant
works on time granularities has been done in the context of classical and temporal logics
[CCMSP93, BB94] and some of these works have been applied to the verification of real-
time system specifications and to temporal reasoning in the artificial intelligence area. The
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representation and reasoning about temporal constraints related to several granularities is
very important also for Smart Environments applications, which are applications related
to environments which are capable to react “in an intelligent way” to some occurring
situations [Aug05, AN04, GSK+04].

Space. An important context in many context-aware applications. Most context defini-
tions mention space as a vital factor: e.g., Schilit, Adams and Want define three important
aspects of context as “Where you are, who you are with and what resources are nearby”
[SAW94]. Also, in the most frequently used context definition by Dey et al. [Dey01],
space can be seen as a central aspect of context entities. Thus, some context modelling
approaches give space and location a preferential treatment. As we will see, space is
well suited to organise and efficiently access context information. Spatial existence also
serves well as an intuitive metaphor for non-physical context information (e.g., virtual
information towers [LKRF99] for context-tagged web pages or Pascoe’s Stick-E-Notes
[Pas97]). Most spatial context models are fact-based models that organise their context
information by physical location. Moreover, the spatial context model developed in the
Nexus project (called Augmented World Model [NM01]) is an object-based class hierar-
chy of context information that supports multi-inheritance, multi-attributes, and both a
geometric coordinate system and a simple symbolic location system. The Nexus context
model was designed to be sharable between different context-aware applications in a po-
tentially global scope and thus to be scalable to a high amount of context data [GBH+05].
In contrast to the Nexus model, the Equator project context model [MRS04] is a typical
contextual ontology that represents all tiers by an OWL class model. Its location model
is a hierarchical notion of inter-connected symbolic spaces, such as Buildings, Floors and
Rooms. Properties define spatial relations between these spaces. Although the ontology
also offers coordinate features (properties that represent, e.g., a GPS location), Millard et
al. states that it is very hard to perform any inference over them using a normal reasoner,
as they are usually not spatially aware.

7.2.2 Proactive Recommendation

Recommender Systems (RSs) are software tools and techniques providing suggestions for
items to be of use to a user [RRS11]. In particular, we are interested in Knowledge-based
Recommender Systems [Tre00], which pursue a knowledge-based approach to generate a
recommendation, by reasoning about what items meet the user’s requirements. Knowledge
is built by recording user preferences/choices or through asking users to provide informa-
tion as to the relevance of the choices. The similarity function represents an estimate of
the extent that user needs correlate with available content item options; the similarity
function’s value is typically shown to illustrate the usefulness of each recommendation.

So, one of the goals of a recommender system is to help the user in finding interesting
objects, based on interests, preferences and personal characteristics.

For instance, Yang et al. proposed a location-aware recommender system that accom-
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modates customers’ shopping needs with location-dependent vendor offers and promotions
[YCD08]. Yuan and Tsao introduced a framework which enables the creation of tailor-
made campaigns targeting users according to their location, needs and devices’ profile
(i.e. contextualised mobile advertising) [YT03].

Such systems perform some similarity measure between object-object, object-user and
user-user, with the purpose to determine a set of objects to be recommended to a specific
user. The result can be a prediction, i. e., a numeric value given to each object that
expresses likeliness of an object for the user; or a recommendation, i. e., a top-N list of
objects [Kar05]. Recommendations may be based on similar items to those a given user
has liked in the past (content-based recommendation); or on items owned by users whose
taste is similar to those of the given user (collaborative recommendation). Combining
content-based and collaborative recommendations originate hybrid approaches, which are
commonly used, considering that both types of recommendations may complement each
other [dCFLHRM10, van05]. Besides the difference given by the above recommendation
approaches, recommender systems are also differentiated by [BHC98]: the items they rec-
ommend (systems have been developed to recommend web pages [dCFLHRM10], movies
[MLdlR03], etc.); the nature of the user profile they use to guide the recommendations
(e.g. history of items accessed by the user, topics indicating user interest, etc.); the recom-
mendation techniques (mainly, how the user model is represented, what kinds of relevance
mechanisms are used to update the user model, and which algorithm is used to generate
recommendations); and the recommendation trigger, i.e. whether the recommendation is
started by the user or by the proactive behaviour of the system.

Collaborative filtering recommender systems usually use the whole user profiles (the
whole set of rated objects) to calculate similarities among them. In situation where the
recommender system should recommend objects in various domains, this may lead to
mistakes, once the system assume that if two users have the same preferences in a certain
domain, so in others domains their preferences will also resemble. But, in many cases,
this is not true. Context-aware platforms may also benefit by the use of recommender
systems, mainly to support recommendation of the services offered by the platforms. In
this case, the user would not need to manually request the platform for the services in
which he is interested. These services would be automatically recommended based on the
user’s context and profile. It is important to realise that the central goal of context-aware
systems and recommender systems is the same, i.e. providing users with relevant infor-
mation and/or services selected from a potentially overwhelming set of choices [vSPK04].
The difference is that in the former one the selection is based on the user’s context while
in the latter it relies on the user’s interest. This suggest that these kinds of systems are
rather complementary than competing, hence motivating their integration.

Between the others, COReS [CF07], is a Context-aware, Ontology-based Recom-
mender system for Service recommendation, which uses the capabilities of the Infraware
platform to support services selection, making service offer by this platform more efficient,
personalised and proactive, and thus satisfying the needs of the user in a particular con-
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text. It is a hybrid system implementing recommendation technics based on an existing
system named KARe. An innovation of COReS is the adoption of compartmentalised
the user profiles according to different domains. The suitable profile part for a given
recommendation is selected in time of prediction, based on the user’s context.

One of the main attempt to integrate context awareness with mobile recommender
systems is the COMPASS application [vSPK04]. COMPASS, which means Context-aware
Mobile Personal ASSistant, is a context-aware mobile tourist application that serves a
tourist with information and services based on his interests and current context. The
application consists of a map showing the user location. Depending on his profile and goal,
the system selects nearby buildings, buddies and other objects and shows (recommend)
them on the map and in a list. The application is built upon the WASP platform [Cos03]
that provides generic supporting services, such as a context manager and service registry.
To show objects on the map, COMPASS first queries the service registry for search services
that are bound to deliver objects related to the user’s context. The WASP retrieves
services matching the user’s context and goal. After that, the relevant search services
are queried to retrieve the objects matching the context’s criteria, e.g. being in a certain
distance from the user. The retrieved objects are then sent to the recommendation engine
which scores each object based on the user’s interests and contextual factors. The resulting
objects and scores are displayed on the map and in the list of objects.

Another approach is Ubi-Mate [HB], a mobile recommender system proposed by An-
nie Chen. Chen proposed a context-aware collaborative filtering system that can predict
a user’s preference in different context situations based on past user-experiences. The
system uses what other like-minded users have done in similar context to predict a user’s
preference towards an item in the current context [Che05]. The context information that
UbiMate include are: user information (profile and rating history), social environment
(alone, friends, family, etc.), tasks (activity), location (coordinates), weather (derived
from coordinates) and time (time of interaction). The composition of different context
information establishes a snapshot of context. The collaborative filtering algorithm the
user’s profile and a snapshot of the current context along with the rating, and use statis-
tical methods to predict the items the user will most prefer.

7.2.3 Situation Prediction

Predictive Ambient Intelligence (PAI) techniques are used in a smart home environment
in order to forecast the behaviour of inhabitant under a monitoring environment [SM15].
A Predictive Ambient Intelligence environment, fon instance, gathers information from
Wireless Sensor Networks (WSN) including environmental changes and occupants’ inter-
actions with the objects within the monitoring environment. Collected data are used to
determine the behaviour of inhabitant at different times by using prediction methods.
The prediction involves the extraction of patterns related to sensor activations and then,
as in [DC05], it is used to classify the sequence of activities and match it to predict the
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next activity.
At the heart of any prediction system, a prediction algorithm is essential to function

in a dynamic world. For an agent to perform prediction, it should be capable of applying
the limited experience of environmental event history to a rapidly changing environment,
where event occurrences are related by temporal relations. In particular, a smart space
must be able to accurately predict mobility and other activities of its inhabitants [DC05].
Using these predictions, the SS can accurately route messages and multimedia informa-
tion, and can automate activities that would otherwise be manually performed by the
actors. Oftenly, machine learning techniques are required to predict actors movement
patterns, tasks, and typical interactions with the space, and to use that information in
automating decisions, routing information, and optimising inhabitant comfort, security,
and productivity.

Forecasting in smart environments equipped with sensor networks is a learning task.
A major task for the intelligent home monitoring system is to have the ability to perceive,
understand and realise the new situations. This will support an interpretation of sensory
information in order to represent, understand the environment and perform correctly
based on the prior knowledge when there is a situational change. For execution of these
tasks, a variety of methods such as Analysis of Knowledge Discovery, Soft Computing
Techniques and Statistical Modelling methods were introduced.

Analysis of Knowledge Discovery

The purpose of this analysis is an attempt to learn the daily activity patterns from a large
data set to realise a new situation for predicting the abnormal behaviour of the system.
Some of the existing methods are context-aware case-based reasoning as proposed in
[KSL12]. The objective of [KSL12] is on the activity-based context-aware services; the
contextual information is presented in terms of environment, temporal and inhabitant
identification. The context prediction method is proposed to improve the accuracy of
diagnosing a person’s state of health with a single activity sensor. The shortcoming of
this technique is that when the sample data are incomplete and somewhat inconsistent due
to sensor conditions, the reasoning process is not accurate. Similarly, knowledge-driven
approaches to activity recognition in a smart home using contextual information with
large repositories are proposed [CNW12], while in [GWT+09], methods for recognising
sequential, interleaved and concurrent activities using emerging patterns are discussed.

Soft Computing Techniques

Soft computing, as opposed to traditional computing, deals with approximate models and
gives solutions to complex real-life problems. Unlike hard computing, soft computing is
tolerant of imprecision, uncertainty, partial truth, and approximations. In effect, the role
model for soft computing is the human mind. Soft computing is based on techniques
such as fuzzy logic, genetic algorithms, artificial neural networks, machine learning, and
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expert systems [Ibr16]. Study on inhabited intelligent environment, like for instance iDorm
[CCC+04], exploit the Adaptive Fuzzy Inference System [QY07] mechanism for prediction
in various phases for learning, controlling and adaption. Different techniques of clustering
approach and quantification of fuzzy membership functions are used to extract the fuzzy
membership function for the collected information on the observation of interactions by
the inhabitant. Accordingly, fuzzy rules were extracted from the documented data and
a control agent approximates the likelihood of the activity by adjusting with the current
situation [DHCL04]. Several methods including neural networks, heuristic and machine
learning techniques are used to extract ADL patterns from observed daily activities and
these patterns are used later as predictive models [BCR09]. However, these techniques
need alternating solution (i.e. the activities learning model need regular updates), if the
execution environment is changed and there can be issues of data inadequacy for adapting
to a new system. There are methods for deriving abnormal activity models from a general
normal model via a Kernel Nonlinear Regression (KNLR) and Support Vector Machines
(SVM’s) and Hidden Markov Models to reduce the false positive rate in an unsupervised
manner, however these methods were applied for wearable sensors on the body [CEF+12].

Probabilistic and Statistical Analysis

In healthcare sector, many methods have been used such as statistical analysis [AMSM08]
and probabilistic methods [YKB+03] to predict health issues; most of the prediction mod-
els depend on arithmetic formulas and probabilistic models. Arithmetic formulas predict
defects in software using size and complexity metrics, testing metrics and processing qual-
ity data. The probabilistic models mostly used are multivariate approaches and Bayesian
belief networks [FN99].

Probabilistic models are more suitable than the above mentioned two techniques.
There are several investigations on activity recognition aiming on the use of probability
concepts, and statistical analysis procedures such as [NH12, STF08]. Some of them are
Markov representations [NH12] and their variants Conditional Random Fields (CRFs).
The methods require large training data for acceptable reasoning with no guarantee for
detecting an appropriate abnormality condition.

In order to detect behavioural changes and for better prediction of object usages in a
smart home; a new framework termed “wellness determination” in smart home has been
devised and extensive work is being performed [SGRM12, MMS+12].
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Figure 7.1: Micro-Intelligence approach in the Butlers Vision

7.3 Butlers for Smart Space

7.3.1 Towards a Model & Framework for Micro-Intelligence in
the Smart Space context

With respect to the requirements detailed above –namely, intelligent system able to an-
ticipate, predict, and take decisions with autonomy– we revised the Butlers architecture
[Den14] (a technology-neutral framework made of seven conceptual layers, relating tech-
nologies, features and the corresponding value-added for users) in the micro-intelligence
vision.

The micro-intelligence definition (chapter 1 Section 1.1) finds its position in the upper
level of the Butlers architecture, providing intelligent situated models and mechanisms.
Figure 7.1 shows how the two upper layers, Reasoning and Situated reasoning, are captured
by the micro-intelligence vision and, in particular, by the LPaaS and LVLP models.

In this scenario, micro intelligence sources can be provided by exploiting application
models and technologies, or infrastructure/middleware services or artefacts for intelligent
coordination of the system entities, enabling agents to have a higher-level, domain-free
reasoning capability. As mentioned above, the approach results especially effective in
Smart Environments where knowledge representation and qualitative spatial and temporal
reasoning are required more often.

The micro-intelligence approach, concretised by the LPaaS and LVLP models, is a
possible answer to the required key features of SEs discussed in Section 7.1. In particular:

• modelling of context is provided both by LPaaS –by means of suitable LP knowledge–
and by the LVLP approach that supply a model to overcome LP limitation in the
description of domain specific situation and local peculiarity;

• context reasoning is provided by LP inference engines which are situated in time
and space and can deal with the surrounded environment
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Figure 7.2: Micro-Intelligence approach in the Butlers Vision: MAS specialisation

• proactive recommendations follows from the two previous items, supplying all the
abstractions for autonomous reactions, as a more autonomous approach for recom-
mendation delivery, by anticipating information needs in advance and acting on
users’ behalf with minimal efforts and without disturbance;

• prediction as a consequence of the to combination of history and situated reasoning.

Although this reference architecture is technology neutral the blend of this vision with
the Multi Agent System (MAS) architectures can bring additional benefits, especially in
the SEs and pervasive IoT scenarios as highlighted in many recent works. Since agents are
reactive, proactive and exhibit an intelligent and autonomous behaviour, MAS emerges
as a natural approach to develop IoT systems and smart environments [VZ17, SC17,
MPS+16, MAT13].

The specialisation of the micro-intelligence approach blended with the Butlers for
Smart Spaces vision is depicted in Figure 7.2, where different dimensions and abstrac-
tions are taken into consideration. At the bottom layer, the physical / computational
environment lives, with boundary artefacts [ORV06] taking care of its representation and
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interactions with the rest of the MAS. Then, typically, some middleware infrastructure
provides common API and services to application-level software – i.e. the containers where
service components live – there including the coordination artefacts [ORV06] governing
the interaction space. Finally, on top of the middleware, the application / system as a
whole lives, in LPaaS-LVLP MAS view as a mixture of services – possibly RESTful, as
for LPaaS as a WS – and agents.

Figure 7.2 illustrates how the Butlers vision, exploiting the LPaaS-LVLP model makes
use of an hybrid approach where (1) some agents are kept more lightweight and rely on
infrastructural services (or other more “intelligent” agents) to get LPaaS-LVLP func-
tionalities, (2) some agents embed the LPaaS-LVLP functionalities, and (3) some LP
functionalities are embedded in some functionalities provided by the middleware (namely
by the containers).

The traditional MAS architecture is enriched with the notion of LPaaS-LVLP agent /
service, which allows for situated reasoning on locally available data by design.

This model is the basis and the very core of the Home Manager architecture, described
in the next Chapter, designed and implemented to show the effectiveness of such an
approach.

7.3.2 Butlers Model & Architecture

The Butlers architecture [Den14] defines a technology-neutral framework made of seven
conceptual layers, relating technologies, features and the corresponding value-added for
users (Figure 7.3). Although originally defined for the smart home context, it can be
fruitfully specialised to STSS, KIE, and specifically to IoT scenarios.

The bottom layers concern the enabling technologies, such as mono or bi-directional
communication-enabled sensors, meters, actuators, etc.; in the middle, infrastructural /
middleware layers aim to provide coordination and geographical information services. The
top layers focus on specific aspects, like intelligence, sociality, gamification: as such, they
are not necessarily to be taken in the sequence. The resulting map can be used both to
locate a system based on its feature or, conversely, to identify unexplored market niches.

Most of today’s smart/domotic devices (e.g. [Ama16]), in particular, basically provide
just remote monitoring or control facilities via some suitable Android/iOS app: so, they
are conceptually located at level 2. The Butlers vision suggests that this is just the first
chapter of the story: there’s much more to be added to achieve real Smart Spaces. This
is where the upper layers should come into play—and the conceptual map provides its
key to what, how and why.

As discussed in [Den14] what is relevant here is that a smart space (e.g. a smart home)
can interact with its users not only to monitor (level 1) or remote-control (level 2) the
environment (e.g. the home appliances), but – via a suitable coordination infrastructure
(level 3) – more generally to provide an immersed, smart experience, taking into account
the users’ habits, behaviour, location, preferences (level 4) to reason on the overall situa-
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Figure 7.3: Butlers multi-layer reference architecture, from [Den14]

tion (level 5) and possibly anticipate the user’s needs. In this view, social networks (level
6) can be further sources of user-related information, while gamification (level 7) can be
essential for technology acceptance—a crucial success factor in STS, where the human
factor is at least as relevant as advanced technicalogies.

Butlers for Smart Spaces (Figure 7.4) is the contextualisation of the Butlers vision
to Socio-Technical Smart Spaces. In this context, some lower-level functionalities are
typically provided by the underlying infrastructure, while some envisioned upper func-
tionalities are too far from the foreseeable future or from the current state of the art, so
their layers can be collapsed/dropped. This is why information (1) and control (2) layers
are grouped together in a single Monitoring layer—the ability to act on the environment
being a fundamental property of the Smart Space notion itself. Smart Spaces also grab a
lot of raw information, which needs to be pre-processed to become exploitable knowledge:
since this activity is somehow in-between information retrieval (layer 1) and coordination
(layer 3), a single Services layer is introduced on top of the Monitoring layer.

Moreover, since users and environment are the main protagonists of a Smart Space,
coordination must necessarily take users into account, so coordination (3) and user-aware
(4) layers can also be conveniently grouped. Such coordination is likely to be complex
enough to justify a clear separation between (general and user-specific) goals and policies,
so that different policies can be developed for the same goals. Accordingly two mid-layers,
Goals and Policies, are introduced side-by-side at that level, making a step towards pro-
activity and situatedness. Moving up, the very nature of a Smart Space suggests that
the reasoning about the surrounding environment, which shapes the “Space”, can be
conveniently separated from the “more basic” reasoning layer—for both conceptual and
practical reasons. The Reasoning and Situated reasoning layers capture this separation,
representing, respectively, the reasoning capabilities which exploit only the local/user
knowledge, and which exploit also the surrounding environment. Gamification is left
aside at this stage, as it is orthogonal to the tailoring of Butlers to the Smart Spaces
context.
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Figure 7.4: Tailoring Butlers to the Smart Spaces context
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Chapter 8

The Home Manager

In this chapter we present Home Manager [Hom14], inspired to the Butlers for Smart
Spaces architecture: a multi-paradigm, agent-based platform for the implementation of
Smart Living contexts—particularly focused on the reasoning aspects, mainly to antici-
pate the users’ needs. An overview of the current state of the Home Manager framework
and technology is provided, that is, a prototype reflecting the extent to which the micro-
intelligence model and approach has been actually implemented into a working system.
For concreteness, running examples are presented.

The last section discusses describes how these running examples inspired the micro-
intelligence approach discussed in this work, both from the point of view of the model
and from the architecture.

8.1 The Home Manager

Home Manager [DC15, DCP14] is an open source platform [Hom14] for Smart Spaces,
inspired to the above architecture and explicitly conceived to be open, deployable on a
wide variety of devices (PCs, smartphones, tablets, up to Raspberry PI 2), and – thanks to
the underlying TuCSoN [OZ99a] infrastructure and the suitable integration with tuProlog
– suitable to accommodate “as much intelligence as the system needs, where the system
needs”.

Its purpose is to provide advanced services to users immersed in / interacting with the
surrounding environment—in particular, the ability to reason on potentially any kind of
relevant data, both extracted from the users’s preferences and grabbed from other sources,
so as to anticipate the users’ needs.

Before discussing the platform, we shortly summarise the main features of TuCSoN
infrastructure.
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8.1.1 The TuCSoN infrastructure in a nutshell

TuCSoN [OZ99a, OZ99b] is a tuple-based agent coordination infrastructure for open dis-
tributed MAS, rooted on ReSpecT tuple centres [OD01a]. Moreover, two middleware
abstractions play the role of boundary artefacts—namely, Agent Coordination Contexts
(ACC) [Omi02] for agents, and transducers for resources.

Tuple centres are enhanced logic tuple spaces, distributed over a network of TuCSoN
nodes, and programmable via the (Turing-equivalent) ReSpecT [Omi07] logic language:
in fact, the ReSpecT virtual machine is itself built on top of tuProlog. In the TuCSoN
vision, tuple centres embed the coordination laws, enabling MAS designers to govern the
interaction space and reifying the “social intelligence”. Moreover, ReSpecT support to
situatedness [CO09, CO10] makes it possible to associate events in the interaction space
– occurring as a consequence of agents activities or environment changes – to appropriate
handlers (computations).

Each agent is also associated to an ACC, the security and organisation abstraction in
charge of mediating the agent interactions with the MAS—in particular, providing the
agent with available operations, based on its role and task. Transducers [CO09] represent
individual resources, with their own peculiar ways of interacting: each transducer is ca-
pable of two-way interaction, to map meaningful resource events upon admissible MAS
events.

The TuCSoN technology is light-weight, open source [tuc08], and Java-based—although
some (limited) interaction with Windows 10-IoT is also possible [Mar16b].

8.1.2 Butlers on Home Manager

Figure 8.1 shows how the five layers of Butlers for Smart Spaces re-shape on the Home
Manager platform. The TuCSoN infrastructure surrounds and encompasses all layers, as
it enables the seamless integration of heterogeneous entities, bridges among technologies
and agents’ perceptions, and supports situated intelligence.

Each device is equipped with an agent, which acts as a sort of “proxy” to bring the
physical device into the agent society that powers the Smart Space. At a basic stage, this
agent enables the device monitoring and (possibly) remote control, grabbing the necessary
information through TuCSoN sensors and probes, and acting on the environment via its
actuators and transducers.

The Services layer takes the concrete form of Service-Level Agents and Basic Policies :
the idea is that agents in this layer perform some information elaboration and possibly
retrieval via mechanisms that, however, do not require sophisticated reasonings—for in-
stance, grabbing information from weather web sites, or from selected Twitter pages,
based on the selected basic policies, such as the user’s preferred weather sites or followed
Twitter people.

Analogously, Goals and Policies take the concrete form of Goal-Oriented Agents and
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Figure 8.1: Butlers for Smart Spaces on Home Manager

Higher-Level policies, respectively. Policies at this stage typically concern everyday life
habits and aspects – such as children not being allowed to set any twitter policy, etc.;
so, they are generally rather stable. Accordingly, the Goal-oriented Agents are charged
of autonomous decisions based on such policies: for instance, in the Twitter service case,
the agent goal could be to retrieve suitable tweets from selected people and highlight the
ones that, say, receive more than 100 likes, or refer to given topics, etc.

More complex, intelligent and fine-tuned behaviours call for further reasoning: Rea-
soner Agents are charged of potentially any kind of reasoning over user-related knowledge
– typically the user’s profile, habits, and preferences –, while Reasoning Support Poli-
cies encapsulate the corresponding rules. The top layer extends such capabilities towards
situatedness, in time and space: Situated Reasoner Agents take into account the user
location, movement, etc. to make situated deductions and perform real-time suggestions
and pro-active actions: e.g., in the Twitter case, a reasoner could decide to include further
Twitter pages if the user is moving to another city, assuming she might desire to receive
travel/destination information (weather forecast, traffic, entertainments, etc.). Situated
Specific Policies encapsulate the corresponding rules.

In Home Manager, Butlers for Smart Spaces layers are concretised into a TuCSoN-
based MAS. This is why the TuCSoN infrastructure surrounds all layers, enabling the
seamless integration of heterogeneous entities, bridging among technologies and agents’
perceptions, and supporting situated intelligence.

From the architectural viewpoint, each device is supposed to be equipped with an
agent, acting as a sort of “proxy” to interface the physical device to the agent society
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Figure 8.2: The Home Manager logical architecture

that powers the Smart Space. Then:

• in the Monitoring layer, proxy agents provide for the device monitoring and (pos-
sibly) remote control, interacting via TuCSoN to grab the required information and
operate on the environment;

• the Services layer is concretely split into Service-Level Agents and Basic Policies,
following the idea that information is elaborated in this layer via mechanisms that
do not require sophisticated reasonings (e.g. grabbing weather info based on the
simple user policies, like the preferred weather sites);

• analogously, Goals and Policies take the concrete form of Goal-Oriented Agents and
Higher-Level policies : at this stage, policies concern everyday life habits and aspects,
and are generally rather stable; the corresponding agents handle the autonomous
decisions which refer to such policies;

• the Reasoning layer also splits into Reasoner Agents and related Reasoning Sup-
port Policies, reasoning on user-related knowledge (profile, habits, preferences) and
corresponding rules;

• similarly, the Situated Reasoning layer concretises into Situated Reasoner Agents
(which take into account the user location, movement, etc. to provide real-time
suggestions and pro-active actions) and related policies.
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8.1.3 The technology

The Home Manager platform is built on top of three main technologies: TuCSoN and its
artifacts – tuple centres and ACCs – for MAS coordination, the ReSpecT logic language to
bring situated intelligence to TuCSoN nodes, and tuProlog to build light-weight intelligent
agents.

The logical architecture is shown in Figure 8.2: each device is assumed to be equipped
with an agent, which is connected to a TuCSoN ACC defining its admissible operations
and roles in the agent society; as such, they embed the individual intelligence. Tuple
centres, on the other hand, embed the “social intelligence”, further supported by tuple
centres’ linkability—the ability to trigger reactions in other tuple centres as a consequence
of a local event [ORZ06].

The infrastructure embeds and enforces the coordination laws to mediate among
agents, governing the agent-agent and the agent-environment interaction. Heterogeneous
entities, such as legacy agents, can be integrated by charging the infrastructure of bridging
the gap between the common ontology and the specific agents’ representations and on-
tologies [OD01b]: agents can thus be heterogeneous in nature, implementation language,
etc.—the only requirement being that they coordinate via the TuCSoN APIs, adhering to
their intended semantics.

The prototype enables users to control the system configuration and interaction, yet
with no need to know or operate directly on the underlying machinery—i.e., the inner
tuple-based representation of data and policies.

It is worth highlighting that the declarative, tuple-based approach is what makes it
easy to evolve the system incrementally from a purely-simulated environment hosted on a
personal computer (with simulated house, inhabitants, and sensors) to an “increasingly-
real” system, interfaced – for instance – to an Android smartphone as shown in the
following sections, so that users can interact with the system in mobility via a suitable
app—which, by the way, takes care of geo-localising the user and to support advanced
services based on the user’s situatedness in space and time (Subsection 8.3).

Going farther, the system can also be interfaced to handling actual hardware devices,
up to possibly run “out of the box” on low-cost stand-alone platforms like a Raspberry
PI 2 Model B. The latter choice provides i) an independent installation on a dedicated
software+hardware platform, dropping the requirement of a personal computer for the
hosting environment, and ii), perhaps more relevantly, the chance to exploit the many
Raspberry sensors and devices.

8.1.4 The Raspberry porting

For our intended application context (Subsection 8.2.1), the support of displays and RFID
readers is particularly relevant, to simulate the presence and movement of items, users,
etc.; but several other (low cost) sensors and actuators are necessary for a reasonable
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simulation. This is why we developed our prototype on top of the GrovePi [Gro] board,
which comes with many nice sensors and actuators (displays, switches, temperature sen-
sors, etc.) in an all-in-one pack with customized Raspbian version: the resulting platform
[Car15] is shown in Figure 8.3 (top).

Figure 8.3: Home Manager out-of-the-box on a Raspberry Pi 2 + GrovePi kit (top);
interaction with a Windows-10 system – architecture and prototype (bottom).

Even more interestingly, and orthogonally, the Raspberry can be exploited as an imple-
mentation platform for smart devices – Smart Fridge, Smart Oven, etc. Although Java and
a Raspbian-based Raspberry is the most obvious choice, a multi-platform, multi-language
environment could be another, challenging, perspective. To this end, we explored the Mi-
crosoft Windows 10-IoT Core [Mic15a, Mic15b] platform, which enables UWP (Universal
Windows Platform) applications to be designed in Visual Studio and then deployed to
the Raspberry PI, supporting remote executing and debugging.

In order to integrate it into Home Manager, an ad-hoc bridge has to be set up to
interface the (Java-based) TuCSoN primitives, used by Home Manager, with the Windows
10 platform (Figure 8.3, bottom left): to ensure that the communication with TuCSoN is
seamless, the bridge itself is written in Java. The (C#-coded) client agent and the bridge
communicate via UTF-8 strings: a suitable XML configuration file specifies the data
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required by the client agent (bridge IP and port numbers, target tuple centre name, etc.)
and maps the client coordination language primitives onto the TuCSoN one. Figure 8.3
(bottom right) shows a trivial demo application, where some LED are controlled via such
a bridge.

8.2 Building Smart Spaces on Home Manager

According to Figure 8.1, and following the logical architecture in Figure 8.2, building a
smart space on top of Home Manager means i) to identify the device and service categories
that are relevant for that specific space; ii) to define a suitable tuple-based representation
of the relevant knowledge, and iii) the desired agent interaction protocols – which, by
the way, need not match the knowledge representation 1-1, since tuple centres can be
suitably programmed to bridge the gap; iv) to develop an agent for each device category
and for each external service to interact with – possibly testing and debugging them
separately from the rest of the system, thanks to the data-driven approach. The whole
design process is aimed at keeping the social/individual intelligence, on the one hand, and
mechanisms/policies, on the other, clearly separate.

8.2.1 Application scenario

The intended application scenario is a smart house immersed in a smart living context,
with devices (air conditioners, lights, etc.) and users of different categories and (RBAC-
based) roles [DCP14].

At the basic operation level, the goal is to satisfy the users’ desires (e.g. room light,
temperature) while respecting some global constraints (e.g. energy saving, temperature
range, etc.): as an example, Table 8.1 shows the ReSpecT reactions that control the
temperature of a room, averaging the preferred temperatures of users in case two or more
people are present.

At a higher level, however, the goal is more ambitious—to anticipate the user’s needs
by reasoning on the user’s habits and on any user-related information, including the
environment where he lives, travels, purchases goods, etc. The idea is to go beyond the
mere monitoring and remote control of house appliances via app, as it is often found
today, towards:

• exploiting the user’s location, tracked by the smartphone GPS, to enable an intel-
ligent reasoner agent to take autonomous “situated” decisions;

• explore the environment around the user’s location, extracting information about
shops, services, etc, to be taken as a further reasoning knowledge base;

• getting information about the surrounding environment (e.g. weather) so as to tailor
decisions to the user’s habits and needs;

121



CHAPTER 8. THE HOME MANAGER

% 2+ Users
reaction(

in(new_temperature(L,Users ,T)),
(request),
( Users > 1,

out(avg_temp(L,L,Users ,0))
)

).
% Calculate the temperature ..
reaction(

out(avg_temp(L,[ user_pref(X,WarmTemp ,W,Z)| OtherPrefs],Users ,Sum)),
(internal),
( in(avg_temp(L,[ user_pref(X,WarmTemp ,W,Z)| OtherPrefs],Users ,Sum)),

rd(temp_mode(heat)),
NewSum is Sum+WarmTemp ,
out(avg_temp(L,OtherPrefs ,Users ,NewSum ))

)
).
reaction(

out(avg_temp(L,[ user_pref(X,Y,CoolTemp ,Z)| OtherPrefs],Users ,Sum)),
(internal),
( in(avg_temp(L,[ user_pref(X,Y,CoolTemp ,Z)| OtherPrefs],Users ,Sum)),

no(temp_mode(heat)),
NewSum is Sum+CoolTemp ,
out(avg_temp(L,OtherPrefs ,Users ,NewSum ))

)
).
reaction(

out(avg_temp(L,[],Users ,Sum)),
(internal),
( in(avg_temp(L,[],Users ,Sum)),

Average is Sum/Users ,
out(new_temperature(L,Users ,Average ))

)
).

Table 8.1: Excerpt of ReSpecT code for temperature management from [CD16a]

122



CHAPTER 8. THE HOME MANAGER

• interacting with selected social networks (e.g. Twitter) to grab information that
could later be exploited fur further reasonings;

• tracking the human presence for intrusion detection or elderly applications (e.g. to
detect falls, stand or walk status, etc.);

• overall, providing novel, integrated services by coupling smart appliances (smart
fridge, smart ove, etc.) with environment and user information.

8.3 Space situatedness via geo-localisation

As a first step in supporting the user’s situatedness in the environment in time and space,
[DC15] presented a simple scenario exploiting the geo-localisation facility embedded in
any modern smartphone to:

• extend the system intelligence, recognising places and services based on their posi-
tion, via the Google Places API;

• provide user-location-related information e.g. about surrounding services.

There, the user location is monitored and conceptually used to control a Smart Oven,
switching it on automatically if the user buys a take-away pizza in her way back home:
Figure 8.4 shows the exploration of the surrounding services in the Android app at different
user’s positions [Pao15]. As a further consequence, the smart house switches on the oven,

Figure 8.4: Exploration of surrounding services, and notification for autonomous ac-
tions
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so that the user find it hot enough for warming the pizza as she comes back. The system
decision is notified to the user (Figure 8.4, right), so that she always remains in control
and has the last word.

A possible evolution, envisioned in [Den14], could be to exploit such info not to over-
come the electrical power threshold, e.g. postponing the washing machine to switch on
the oven without causing a blackout—which would be particularly dangerous after dusk,
in presence of elderly people or children, etc.

8.4 Space and time situatedness based on weather

Weather info is by nature situated in time and space, and – even more relevant – suitable
to inherently and continuously condition everyone’s life: many “micro-decisions” we take
every day depends on weather—doing laundry, to (not) go out for shopping, switching on
heating, closing windows, etc.

This is why a Home Manager agent has been developed for that purpose (Figure 8.5)
[Cel15]: once retrieved, weather info can be later exploited in several ways—from intelli-
gent appliances scheduling (e.g., avoid scheduling the washing machine in a raining day,
so as to avoid the dryer), to the automatic control of rolling shutters based on sunrise and
sunset times, to just taking into account the user’s mood, etc. For instance, intelligent
shutter control could be obtained by embedding a small piece of intelligence – a ReSpecT
reaction – in the infrastructure, so as to intercept the addition of new relevant weather
data (independently of the specific tuple format) and generate the shutter actions.

Weather sources can be Google’s [Goo14b], Yahoo’s [Yah14] or OpenWeatherMaps
[Ope14]’s web services—but they all require the house location. This datum can either be
statically stored in some tuple centre or, better, be dynamically extracted from the house’s
IP number, thanks to services like IP-API.com, and then turned onto a physical city name,
via Flicker or similar services. The retrieved info is reified in form of suitable tuples
(Figure 8.5, bottom right) in the weather-tc tuple centre: the history is maintained, so
as to enable any potential reasoning.

8.5 Let’s be social: Twitter integration

As recalled in Figure 8.1, the social aspects have been included in the Butlers framework
from its very origin—mainly as a source of further knowledge about the user (habits,
interests, traffic, special offers, government warnings, etc.), but also, more in the long-
term perspective, of butlers networks [Den14].

The first choice has been to develop a Twitter agent (Figure 8.6) [Bev15] – both
because Twitter’s text-based nature makes it easier to parse and extract data, and because
messages are typically more informative than, say, Facebook posts, which are more often
oriented to closed groups of friends commenting on their own lives.
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Figure 8.5: Weather agent and the respective tuples

To keep things simple, this early prototype considers a single Twitter user, representing
the home butler, with read-only capabilities: the goal is to monitor selected “interesting”
users, and – like the weather info above – store the related tweets in a suitable tuple
centre, for further reasoning (Figure 8.6, bottom right). Technically, Twitter is accessed

Figure 8.6: The Twitter agent

via REST API, with OAUth [OAu] to handle the user authentication and Twitter4J [Twi]
for Java inter-operability. Due to its nature of early implementation, severe limitations
apply—in particular, Twitter credentials are currently stored in a tuple centre; security
issues are to be engineered in a future release.

In the longer-term perspective, however, the butler account could also post messages—
e.g. to share result of its reasonings with its own followers.

8.6 A Context Reasoning case study: The Smart

Kitchen

In this Section, we discuss the case of the Smart Kitchen, made of a Smart Fridge, a
Smart Pantry, a Smart Oven, a Smart Mixer, integrated with a Smart Shopper butler
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Figure 8.7: The Smart Kitchen Scenario

aimed at managing the food supply.

Figure 8.7 shows the envisioned scenario, highlighting the layers described in the previ-
ous section. Bottom-up, the Smart Fridge and the Smart Pantry are capable of monitoring
the quantity of food, and of collecting historical data on user’s habits, e.g. the most com-
monly eaten food and preferred meals. All data are reified on selected tuple centres to
create a knowledge base, usable by upper-level reasoning agents (like the Smart Shop-
per) to predict the user’s needs or make contextualised suggestions. In the Services level,
whenever a product is taken from the fridge, suitable Basic Policies check its quantity
against user-defined, per-product thresholds, and generate the corresponding buy tuple if
necessary (details in [CD16a]). No Service-Level agents are devised at this layer.

Goals and Policies refer to user preferences and constraints, like making sure that
there are at least 2 bottles of milk, that fish is cooked twice a week, etc.

At the upper layer, the Smart Shopper butler (Figure 8.8) compiles the shopping
list based on the above tuples, contacting the “proper” vendor via the “appropriate”
means: what “proper” and “appropriate” stand for depends on context-aware policies.
Vendor selection could be based e.g. on fidelity cards, promotional campaigns, distance,
consumer habits, etc., while contact means could be email, online shopping, up to “ask
your neighbour”, etc. Policies could also require that the shopping cart total reaches a
minimum amount to get free home delivery, that multiple markets are compared to find
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Figure 8.8: Policies setup (a), order monitoring (b), Shopper Agent (c), Hardware (d)

the most convenient—possibly taking into account fidelity cards and special offers; and
so on.

In its turn, the Smart Oven aims to support the user’s food cooking—in principle,
exploiting any available technology to identify and cook the food; the user profile is
supposed to include information about his/her dietary requirements. The Smart Mixer
manages the recipe instructions, interacting with both the Smart Fridge – to check that
the ingredients for the selected recipe are actually available – and with the Smart Oven
– to check its ability to cook that food and potentially synthesise the proper control
instructions. Since recipes are prepared based on the current content of Smart Pantry
and Smart Fridge, the Smart Mixer behaviour aims to exhibit a (primitive) form of context
adaptation.

In the current experimental prototype (Figure 8.8), the Smart Oven, Mixer and
Pantry are simulated in software, while the Smart Fridge integrates software-only and
software+Raspberry+GrovePI hardware (for display, sensors and LEDs), plus an RFID
tag reader for tracking the content [CD16a].

Given the proof-of-concept nature of this prototype, policies are intentionally kept sim-
ple. The Smart Fridge monitors the fridge content, reified as fridge content/4 tuples:
a product is scarce when its quantity falls below a pre-defined threshold, expressed as an-
other suitable tuple. So, whenever an item is taken out of the fridge, the policy performs
the above check and generates a scarcity/5 tuple if this is the case. Based on this infor-
mation, other policies generate the purchase orders, in the form of buy/3 tuples: the cur-
rent (trivial) policy is to produce an order when “enough” (user-defineable) scarcity tu-
ples have been accumulated. The result is a suitable buy(product,quantity,timestamp )
The Smart Shopper finally consumes these tuples and, based on its own policies, decides
the quantities to be purchased, and sends the order to the “proper” (currently: the pre-
defined) vendor via the “appropriate” means (currently: by email).

The middleware infrastructure encapsulates the coordination laws, enabling interop-
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erability and integration with third-part services, like the mailing service that sends shop-
ping orders. Apart from the knowledge base, the declarative approach provides a lingua
franca to bridge among the different forms of heterogeneity, supports the agent uncoupling
and the separation between policies and mechanisms, and supports context reasoning.

Of course, it is up to the designer to balance between the intelligence to be embedded
in higher-level policies and to be put onto reasoning agents: generally speaking, agents
can be expected to focus on opportunistic behaviour, while policies on synthesising the
information for higher-level reasonings—especially to take into account environmental
time- and space-situatedness. For instance, opportunistic behaviour could exploit the
user’s location to alert of a nearby market, minimising the time spent in traffic (and
therefore also fuel consumption and cost), or suggest an alternative market to avoid traffic
jams; and so on.

8.7 Discussion & Remarks

As highlighted by the above running examples, enabling the ambient intelligence IoT
vision means that consumers will be provided with universal and immediate access to
available content and services, together with ways of effectively exploiting them. From a
software engineering standpoint, this means that the actual implementation of intelligent
behaviours requested by a user can only be resolved at runtime according to the user’s
specific situation. In particular, all the proposed examples emphasise the requirement in
ambient intelligence, and more generally in pervasive computing, of not solely ubiquitous
computing (i.e., useful, pleasant and unobtrusive presence of computing devices every-
where) but also of ubiquitous networking (i.e., access to network and computing facilities
everywhere) and of intelligent aware interfaces (i.e., perception of the system as intelli-
gent by people who naturally interact with the system that automatically adapts to their
preference).

While available technologies provide us with base enablers of the ambient intelligence
vision, there is still a long way to go before offering robust ambient intelligence systems
to consumers, requiring advances in most areas relating to the computer science field:
e.g., hardware supporting low-power high-performance wireless devices, network ensuring
connectivity everywhere, human-computer interaction enabling intelligent multi-modal
interfaces, development support for deploying ubiquitous applications.

To this end, the micro-intelligence vision (chapter 1 Section 1.1) supports the abstract
specification of intelligence together with its dynamic composition according to the en-
vironment. The proposed model builds on the SOA architecture, whose pervasiveness
enables both services availability in most environments, and specification of applications
supporting automated retrieval and composition. Moreover, as a key aspect for IoT per-
vasive scenarios, it defines a unique standard interface.

The LP micro-intelligence approach addresses support for distributing intelligence in
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pervasive scenarios, concentrating more specifically on enabling seamless access to content
and services any-time, any-where. The key feature of our approach consists of enabling
the dynamic composition of the intelligence resource, possibly distributed, offering it as
services according to the mobile users’ situation.

Reinterpreting the LP as a service and enhancing the model with the label concept
lay the basis for context aware reasoning, proactive recommendation and situations pre-
diction, in that enable a standard access to situated intelligence. The composable nature
of SOA enable dynamic (runtime) composition and exploitation of intelligent behaviours,
while the heterogeneous nature make it possible to run on a variety of platforms and
small object and constrained resourced hardware. Finally, the SOA vision guarantees
actors agree upon standard exchange protocols and languages to interact with each other
(e.g., XML, WSDL, SOAP, UDDI).

The Home Manager case study provides both an inspiration for the micro-intelligence
model –highlighting requirements and constraints of IoTreal scenarios– and a testbed
system to verify the model choice.

With respect to existing ambient intelligence framework, its main originality is that
it enables IoT systems to face the distribution of intelligence (from the design phase) as
a stand-alone aspect, without loss of integration with all other components. Moreover, it
shows how relevant emergent behaviours of IoT can be deal by focussing on local situated
intelligence, in that pervasive systems promote designing and developing applications in
terms of autonomous software entities, situated in an environment, and that can flexibly
achieve their goals by interacting with one another in terms of high-level protocols and
languages.

Of course, many advances have to be done in order to deeper understand the ad-
vantages and limitations of the framework in terms of performance and responsiveness.
Performance measurement seeks to monitor, evaluate and communicate the extent to
which various aspects of the health system meet key objectives.

In particular, the provision of relevant, accurate and timely performance information
is essential for assuring and improving the performance of pervasive systems. Citizens,
patients, governments, politicians, policy-makers, managers and clinicians all need such
information in order to assess whether smart systems are operating as well as they should
and to identify where there is scope for improvement. Without performance information,
there is no evidence with which to design health system reforms; no means of identifying
good and bad practice; no protection for patients or payers; and, ultimately, no case for
investing in the health system.
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Chapter 9

Conclusion & Future Work

This thesis deals with micro-intelligence issues in IoT systems, proposing a new approach
based on LPaaS and LVLP.

The basic idea is to spread small inference engines over the distributed system, aimed
at providing local, situated reasoning capabilities to contribute to the global system goals.
Accordingly, the proposed framework extends LP to face the challenges of today perva-
sive systems, by providing the models and technologies required to effectively support
distributed situated intelligence, while preserving the features of declarative program-
ming. The resulting architectural and linguistic approach relies on an inference engine
with deduction capabilities available in term of services and extensible through suitably-
tailored labelled models. We also present, discuss and evaluate the tuProlog model and
technology for micro-intelligence in IoT systems.

The rationale is to engineer effective intelligent mechanism for large-scale, data-intensive
systems with “humans in the loop” —notably a difficult task, to be approached in a
holistic way by considering the model, the architecture, and the domain specificity of
each node. The reinterpretation of LP mechanisms in terms of service architecture and
extensibility to domain-specific situation is what makes them capable of dealing with
distribution, decentralisation, unpredictability, and scale in a simple yet expressive way.
The service-based approach, in particular, (i) promotes the representation and reasoning
with situations using a declarative language, providing a high level of abstraction; (ii)
supports the incremental construction of context-aware systems by providing modularity
and separation of concerns; (iii) promotes the cooperation and interoperation among the
different entities of a pervasive system; and (iv) enables reasoning over data streams, like
those collected by sensors.

Accordingly, the main contributions of this thesis can be summarised as follows:

• the definition of LPaaS approach for distributed situated intelligence as the natural
evolution of LP in nowadays pervasive computing systems;

• the definition of a novel theoretical framework, LVLP, where different domain-
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specific computational models can be expressed via labelled variables, capturing
suitably-tailored labelled models;

• a novel software framework providing not only the core functionalities of the afore-
mentioned model, but also those the satellite services necessary for spreading intel-
ligence in a real-world pervasive system deployment.

Open issues to be addressed in the future research include:

• a specialised LP-oriented middleware, dealing with heterogeneity of platforms as
well as with distribution, life-cycle, interoperability, and coordination of multiple
situated Prolog engines – possibly based on the existing tuProlog technology and
TuCSoN middleware [OZ99a] – so as to explore the full potential of logic-based
technologies in IoT scenarios and applications;

• the extension of the LPaaS interface with specific space awareness methods other
than the existing time-aware methods: for instance, a solveNeighbours primitive
could be added to consider the space around the client or the server, exploring the
chance to opportunistically federate LP engines by need as a form of dynamic service
composition;

• deeper exploration and better understanding of the consequences of applying labels
to formulas, as suggested by Gabbay [Gab96];

• the application of the LVLP framework to different scenarios and approaches—such
as probabilistic LP [SAFP15], the many CLP approaches [Coh90], distributed ASP
reasoning [DP09], and action languages [DFP13]

• further formal investigation of uniform primitives expressiveness, for better framing
the relative expressiveness of probabilistic coordination languages;

• the improvement of tuProlog for IoT prototype (already under development).

Performance and responsiveness are other key issues in pervasive and service-oriented
scenarios, especially considering the huge amounts of data possibly generated by IoT
devices: so, in the perspective, we also mean to address such issues more in depth.

Finally, it must be highlighted that the case studies are currently implemented as
proofs of concept, to demonstrate the model properties and the feasibility and effectiveness
of the proposed approach, but do not constitute a full implementation usable e.g. for
actual test performance. For such a reason, in the perspective we plan to implement
the system in a real pervasive scenario, that enables performance measurement both in
comparison to other non-logic based systems or possibly different logic based systems.
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2nd International Conference on Logic Programming (ICLP 1984), pages 263–
276, Uppsala, Sweden, 2–6 July 1984.

[WMSC11] Hongyuan Wang, Rutvij Mehta, Sam Supakkul, and Lawrence Chung. Rule-
based context-aware adaptation using a goal-oriented ontology. In 2011 Inter-
national Workshop on Situation Activity & Goal Awareness (SAGAware ’11),
pages 67–76, New York, NY, USA, 2011. ACM.

[WSA+95] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R.
Ellis, and M. Weiser. An overview of the parctab ubiquitous computing exper-
iment. IEEE Personal Communications, 2(6):28–43, Dec 1995.

[Yah14] Yahoo Meteo. https://www.yahoo.com/news/weather, 2014.

[YCD08] Wan-Shiou Yang, Hung-Chi Cheng, and Jia-Ben Dia. A location-aware recom-
mender system for mobile shopping environments. Expert Systems with Appli-
cations, 34(1):437 – 445, 2008.

[YKB+03] Quanhe Yang, Muin J Khoury, Lorenzo Botto, JM Friedman, and W Dana
Flanders. Improving the prediction of complex diseases by testing for multi-
ple disease-susceptibility genes. The American Journal of Human Genetics,
72(3):636–649, 2003.

158



BIBLIOGRAPHY

[YT03] Soe-Tsyr Yuan and Y.W. Tsao. A recommendation mechanism for contextu-
alized mobile advertising. Expert Systems with Applications, 24(4):399 – 414,
2003.

[ZCM03] Alejandro Zunino, Marcelo Campo, and Cristian Mateos. Movilog: A platform
for prolog-based strong mobile agents on the www. Inteligencia artificial: Re-
vista Iberoamericana de Inteligencia Artificial, ISSN 1137-3601, N. 21, 2003,
pags. 83-92, 7, 02 2003.

[ZO04] Franco Zambonelli and Andrea Omicini. Challenges and research directions
in agent-oriented software engineering. Autonomous Agents and Multi-Agent
Systems, 9(3):253–283, November 2004. Special Issue: Challenges for Agent-
Based Computing.

[ZOA+15] Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco L. DeAngelis, Giovanna Di Marzo Serugendo, Simon Dobson,
Jose Luis Fernandez-Marquez, Alois Ferscha, Marco Mamei, Stefano Mari-
ani, Ambra Molesini, Sara Montagna, Jussi Nieminen, Danilo Pianini, Matteo
Risoldi, Alberto Rosi, Graeme Stevenson, Mirko Viroli, and Juan Ye. Develop-
ing pervasive multi-agent systems with nature-inspired coordination. Pervasive
and Mobile Computing, 17:236–252, February 2015. Special Issue “10 years of
Pervasive Computing” In Honor of Chatschik Bisdikian.

159



BIBLIOGRAPHY

160



List of Figures

3.1 LPaaS Configurator Service Architecture (left) and Client Service Architecture
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Situatedness of LPaaS: the same query (q) by the same client may be resolved dif-
ferently (r [s1], r [s2′ ], r [s2′′ ]) by distinct LPaaS services (LPaaS 1,LPaaS 2′ ,LPaaS 2′′)
based on their local computational, physical, and spatio-temporal context (S1,S2′ ,S2′′) 34

3.3 The LPaaS Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 The LPaaS RESTful WS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The LPaaS WS server architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 KB extraction of two different LPaaS server: namely, LPaaS Personal Server and
LPaaS Toothbrush Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 The Android application exploiting LPaaS: non-urgent messages are shown in
green, urgent ones in red. The left screenshot shows three non urgent messages
(drink more water, brush your teeth, and toothbrush battery low), while the
right one shows two non-urgent (limit sodium intake, high blood pressure) and
two urgent messages (the possibility of diabetes, and the suggestion of a colon
screening). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Overview of a LPaaS multi-agent system. At the bottom layer, the physical /
computational environment lives, with boundary artefacts [ORV06] taking care of
its representation and interactions with the rest of the MAS. Then, typically, some
middleware infrastructure provides common API and services to application-level
software – i.e. the containers where service components live – there including the
coordination artefacts [ORV06] governing the interaction space. Finally, on top
of the middleware, the application / system as a whole lives, in LPaaS MAS view
as a mixture of services – possibly RESTful, as for LPaaS as a WS – and agents. 47

3.9 The Smart Object as an LPaaS Agent: typical SO conceptual architecture en-
riched with LPaaS service (left) and inner architecture (right). . . . . . . . . . . 47

3.10 The LPaaS container in a MAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 The LPaaS Service-DF-Client interaction. . . . . . . . . . . . . . . . . . . . . . . 50

3.12 The Smart Kitchen Architecture in a LPaaS tuProlog in Jade. . . . . . . . . . . 52

3.13 The Smart Kitchen Prototype: example of possible inferences. . . . . . . . . . . . 53

5.1 label generate/3 example: WordNet case study . . . . . . . . . . . . . . . . . . 79

5.2 label generate/3 example: numeric interval intersection . . . . . . . . . . . . . 82

161



LIST OF FIGURES

7.1 Micro-Intelligence approach in the Butlers Vision . . . . . . . . . . . . . . . . . . 109
7.2 Micro-Intelligence approach in the Butlers Vision: MAS specialisation . . . . . . 110
7.3 Butlers multi-layer reference architecture, from [Den14] . . . . . . . . . . . . . . 112
7.4 Tailoring Butlers to the Smart Spaces context . . . . . . . . . . . . . . . . . . . . 113

8.1 Butlers for Smart Spaces on Home Manager . . . . . . . . . . . . . . . . . . . . . 117
8.2 The Home Manager logical architecture . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Home Manager out-of-the-box on a Raspberry Pi 2 + GrovePi kit (top); interac-

tion with a Windows-10 system – architecture and prototype (bottom). . . . . . 120
8.4 Exploration of surrounding services, and notification for autonomous actions . . 123
8.5 Weather agent and the respective tuples . . . . . . . . . . . . . . . . . . . . . . . 125
8.6 The Twitter agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.7 The Smart Kitchen Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.8 Policies setup (a), order monitoring (b), Shopper Agent (c), Hardware (d) . . . . 127

162



List of Tables

1.1 Table of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 LPaaS Configurator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 LPaaS Client Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Unification rules in LVLP, adopting standard LP unification rules and represen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1 Excerpt of ReSpecT code for temperature management from [CD16a] . . . . . . 122

163


	Abstract
	Introduction
	Micro-Intelligence for the IoT
	LPaaS as Micro-Intelligence
	LVLP as Micro-Intelligence

	Structure of the Thesis
	List of Publications

	I Intelligence Issue in Pervasive Distributed Systems
	History and Evolution
	Intelligence in Situated Pervasive Systems
	Intelligence in Distributed Logic Programming Systems
	Re-thinking classical distributed LP notions in the IoT perspective
	Remarks & Outlook

	Logic Programming as a Service
	Vision
	The Service Perspective
	The Situatedness Perspective
	Towards LP as a Situated Service

	Model and Architecture
	The Service Architecture
	Microservices as Enablers

	The Service
	Service Interfaces
	Computational Model

	The LPaaS Technology
	LPaaS as a RESTful Web Service
	LPaaS RESTful Example Application
	LPaaS and Multi-Agent Systems
	LPaaS MAS Prototype: LPaaS in Jade
	Benefits & Open Issues

	Remarks & Outlook


	II Dealing with Situatedness & Domain-specific Scenarios in LP
	State of the Art
	Logic Programming & Situatedness
	Logic Programming & Labels
	Remarks & Outlook

	Labelled Variables in Logic Programming
	Vision
	Model
	Programs, clauses, unification
	Compatibility

	Foundations & Semantics
	Fixpoint semantics
	Operational semantics

	Technology
	Meta-interpreter
	Case studies

	Remarks & Outlook


	III Applications of micro-intelligence LP models in IoT
	The tuProlog€ engine for the IoT
	The tuProlog in a nutshell
	Predicate categories
	Engine configurability
	Libraries
	Multi-paradigm programming
	JSON Serialisability

	The tuProlog under the IoT vision
	Related & Motivation
	tuProlog LPaaS
	tuProlog LVLP


	The Butlers for Smart Space Reference Architecture
	Micro-Intelligence in Smart Environment
	Related Works
	Context Reasoning
	Proactive Recommendation
	Situation Prediction

	Butlers for Smart Space
	Towards a Model & Framework for Micro-Intelligence in the Smart Space context
	Butlers Model & Architecture


	The Home Manager
	The Home Manager
	The TuCSoN infrastructure in a nutshell
	Butlers on Home Manager
	The technology
	The Raspberry porting

	Building Smart Spaces on Home Manager
	Application scenario

	Space situatedness via geo-localisation
	Space and time situatedness based on weather
	Let's be social: Twitter integration
	A Context Reasoning case study: The Smart Kitchen
	Discussion & Remarks


	IV Conclusion & Future Work
	Conclusion & Future Work
	Bibliography


