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Abstract 

 

In organic chemistry, dynamic processes involving the conformational exchange are ubiquitous 

phenomena that occur even in the simplest molecule. The study of the preferential disposition of 

functional groups and the definition of new interaction is therefore, of vital importance in order to 

foresee the spatial shape of organic molecules.  

In the following work, this has been accomplished by: first, an in silico DFT analysis of the 

conformers, second an experimental evaluation of the relative stability of the predicted conformers 

using the Dynamic-NMR, Dynamic-HPLC, and kinetic studies, and last the assessment of the 

potential absolute configuration by mean Electronic Circular Dichroism spectroscopy.  

The work herein reported finally aim to define the border between unstable conformations and stable 

ones (configurations). This border has been explored from both sides: 1) the stereodynamic side, that 

includes low energy process where the stereochemistry is not stable due to a low energy barrier. In 

this context are analysed molecules displaying long range interactions where only conformational 

changes are considered; 2) the stereostable side, where the energy barrier between conformers is high 

enough to generate distinct molecules. In this framework, the design and the synthesis of stereogenic 

axes in scaffold that cannot bear conventional stereogenic centre are reported. 

This work gives a well-rounded view of the conformational analysis of organic molecules providing 

new insight in the interaction within stereolabile conformations as well as the generation of new 

stereostable conformers by the insertion of steric demanding groups. 

 

  



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chirality is in the eyes of the beholder. 
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1 Introduction 

1.1 Chirality 

Chirality is a pervading property of the universe. It is a feature of nature spanning from the living 

being to the inanimate world of light and elementary particles.1 

In chemistry, in particular it is followed the definition provided by IUPAC: “The geometric property 

of a rigid object (or spatial arrangement of points or atoms) of being non-superimposable on its mirror 

image; such an object has no symmetry elements of the second kind (a mirror plane,  = S1, a centre 

of inversion, i = S2, a rotation-reflection axis, S2n). If the object is superimposable on its mirror image 

the object is described as being achiral.”2 

This definition is particularly true at molecular level in which chirality allows the generations of 

enantiomers that are mirror images one of the other but not superimposable. While in an achiral 

environment an enantiomeric couple has the same chemical and physical properties, in a chiral one 

they can display striking different behaviour. This effect is magnified in the living beings, where there 

is a high concentration of chiral elements (from the helix of the double strand of the DNA to the L-

amino acid abundance), and is displayed a high sensitivity towards the interaction with single 

enantiomers. On this regards, fragrance and drugs can well exemplify the susceptibility of the 

biological systems towards chiral object.  

For instance, limonene ((±)-1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene) exists as S and R 

enantiomers that interact differently with our body and respectively each enantiomer are responsible 

for the scent of lemon and orange (Figure 1.1.1a).  

Unfortunately, the importance of chirality in synthetic drugs was taken much more into consideration 

when negative side effects showed up. Thalidomide was a drug prescribed to pregnant women in the 

1960s as anti-nausea. While the R enantiomer was active to alleviate nausea, its mirror image, the S 

enantiomer was a teratogen agent. Undisclosed the side effects, the drug was approved as a mixture 

50:50 of the R and the S enantiomer (racemic) and it has caused hundreds of cases of severe birth 

defects3 (Figure 1.1.1b). 

Since then, the stereochemical behaviour of biologically active compound has gained increasingly 

attention and many sophisticated ways of enantioselective synthesis were designed. Moreover, once 

the globally and health related importance of chirality and its wide range of applicability was realised, 

researchers have focused their attention in study new type of molecular chirality in which it is 

explored the limits to determine the non ”superimposability” of a molecule with its mirror image. 
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Figure 1.1.1 Structure of chiral biological active molecules 

 

1.2 Nomenclature and classification 

Due to the different activity of enantiomers it is of crucial importance to discriminate them in a 

chemical system. Although this detection may appear trivial it is not always straightforward to define 

the chirality of a chemical object. Therefore, it is important to have in mind how to detect and classify 

the chiral systems.  

Taking as example two compounds with the same molecular formula they are considered 

constitutional isomers if they do not have the same connectivity between the atoms (as in 2-nitro and 

3-nitro toluene). On the contrary, stereoisomers display the same connectivity but differs in the 

disposition of atoms in the space. It is noteworthy that are formally considered stereoisomers also the 

different disposition resulting from the rotation around a single bond, as the four stereoisomers 

conceivable for the n-butane (Figure 1.2.1).  

 

Figure 1.2.1 Stereoisomers determined by the rotation around a single bond of n-butane 

A stereoisomer that are non-superimposable with its mirror image is called enantiomer otherwise it 

is identified as diastereoisomer. The geometrical conditions requested for a chemical system to have 

its mirror image non-superimposable with itself identify chirality in that system. These conditions 
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can be described as a lack of some symmetry element2 (mirror plane and/or centre of inversion) and 

can be achieved in chemical system by the presence of a stereogenic units (Figure 1.2.2).  

 

Figure 1.2.2 Classification of chiral molecules 

A stereogenic centre is the most common among the stereogenic units and it is identified by a single 

atom that carries four different substituents (Figure 1.2.3a). Chiral axes, instead, are identified by 

stereoisomers that can be interconverted by rotation about single bonds with a rotational barrier high 

enough to avoid interconversion at room temperature (Figure 1.2.3b).4 Such enantiomers, where the 

rotational barrier is higher than 24-25 kcal/mol, are called atropisomers. 

 

Figure 1.2.3 a) Chiral molecule displaying chiral centre. b) Chiral molecule displaying chiral axes 

Stereogenic units such as chiral axes and helicity identify enantiomers that are topologically 

equivalent, where is it possible to interconvert the two without crossing or breaking bonds. While in 

chiral axes the distinction is made by merely the rotation around a bond, left-handed and right-handed 

helical molecules interconvert by the unwind and rewind of the helix. Although such structures can 
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be found more easily in polymers and bio-polymers like DNA, there are a handful of examples in 

which helix can be formed in small molecules and their stereodynamic needs to be considered (Figure 

1.2.4). 

 

Figure 1.2.4 a) Chiral helicene. b) chiral triaryl propeller 

Helicenes5 (Figure 1.2.4a) possess a twist in the highly conjugated aromatic system due to an overlap 

of the benzene rings. The steric clash generates two distinct molecules with a left-handed helix and 

right-handed ones respectively. While the helicenes display only helical chirality, propeller like 

molecules such as tri-arylmethane shows three different stereogenic units, namely, a chiral centre, 

chiral axes and helicity (Figure 1.2.4b). Correspondingly, 23 stereoisomers due to the three chiral axes 

are generated, the CH group generates a chiral centre doubling the number of possible stereoisomers, 

and lastly the possible stereoisomers can be counted as large as 25 = 32 due to the arrangement of the 

aryls group as right- or left-handed helix. 

The latter derived from the helical disposition of the blades (i.e. the aryl substituent around the chiral 

centre) and is often referred to as propeller chirality. The steric requirements impose the skewed 

disposition of the blades respect to the central CH, moreover the arrangement of the aryl rings is co-

dependent and undergo energetically correlated movement. 

The stereoisomers conceivable in a triaryl-propeller are greatly influenced by the nature of the 

substituents. In the case of identity between A, B and C6 the chiral centre is lost and, despite the 

presence of stereogenic units, some of the possible stereoisomers are not chiral due to the rising of 

symmetry elements in the molecule. In these cases, the molecule retains its stereogenic units however 

it is not chiral. It is a meso form. 

In fact, although in most of the cases stereogenic units generate chiral molecules the lack of symmetry 

element has never to be overlooked. The presence of one or more of this units it is not an assurance 

of chirality. 

A meso compound is defined as a particular compound that has always at least two stereogenic units 

and between all the conceivable stereoisomers it is the achiral member(s) of a set of diastereoisomers 

which also includes one or more chiral members.7 
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In Figure 1.2.5 Top are analysed the possible stereoisomers derived from the two chiral centre of 1,2-

dimethylcyclopropane. Once the methyl groups lay on the same side of the cyclopropane (cis) a 

symmetry plane is generated and the resulting diastereoisomer is achiral and its mirror image is 

superimposable to itself. Analogously, in Figure 1.2.5 Bottom is reported a meso compound generated 

by two stereogenic axes, also in this case the molecule gains a plane of symmetry once the 2-methyl-

1-naphtyl substituent lay on the same side of the plane defined by the maleimide core.8 

 

Figure 1.2.5 Top: stereochemistry of 1,2-dimethylcyclopropane Bottom: stereochemistry of 1-benzoyl-3,4-bis(2-

methylnaphthalen-1-yl)-1H-pyrrole-2,5-dione 

OO OO

Cis - achiral
meso form -

Trans chiral
form

Cis - achiral
meso form -

Trans chiral
form

Stereogenic
centres

Stereogenic
axes



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

6 

1.3 Stereochemical descriptors 

A discussion about stereochemistry needs a clear distinction about stereochemical descriptor. While 

for chiral centre the R and S descriptors are well known and defined, there is a lack of clarity in the 

descriptor P and M related to molecules carrying chiral axis and/or helix. 

Chiral axes generate stereoisomers that are related one to the other by the rotation around a single 

bond, therefore, the absolute configuration of these molecules should be related to the dihedral angle 

involved in the rotation. A dihedral angle is identified by four points and defines the torsion angle 

between two planes. The choice of those four points is crucial to define a descriptor linked to a 

dihedral angle. An example is reported in Figure 1.3.1 where the four points are described as a chain 

of atoms a-b-c-d, and the torsion angle is the dihedral between the plane identified by the atoms a, b, 

c and the one identified by b, c, d (from -180° to +180°).  

In the assignment of absolute configuration of chiral axis, the b and c points are placed on the chiral 

axis while a and d are the substituent of highest priority (selected with the Cahn–Ingold–Prelog rules) 

on each side of the bond. Looking from the closest (a) and moving along the shortest path to the 

substituent of highest priority on the other side (d), the absolute configuration is assigned P (Positive 

dihedral angle) for clockwise and M (Minus, as negative torsion angle) for counter clockwise. 

 

Figure 1.3.1 Left: P descriptor representation and (P)-6,6'-dimethyl-[1,1'-biphenyl]-2,2'-diol. Right: M descriptor 

representation and (M)-6,6'-dimethyl-[1,1'-biphenyl]-2,2'-diol. 

The P and M descriptors are commonly used also to describe helicity, in which P stands for a right-

handed helix, while M stands for a left-handed one. 

1.4 Symmetry and time scale: Dynamic stereochemistry 

It is much simpler to look at a molecule as a rigid object, dictate the symmetry rules presented in 

Paragraph 1.1 and therefore define its chirality. However, real molecules rotate, stretch, shrink, rock, 

bend their angles, torsional angles and bonds. Therefore, often exist a series of continuously 
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interconverting conformational isomers of a single molecule. If this process is relatively slow with 

respect to the time scale of the observation, it is necessary to take into consideration the motion of 

the object in the analysis of the symmetry element of the molecule. 

For instance, an amine with three different substituents in its pyramidal form is chiral, however it 

rapidly interconverts into its enantiomer, passing through a sp2 trigonal planar hybridation state. The 

process is so fast that is not possible to appreciate the chirality of each pyramidal form and the overall 

system appears to be achiral. In this case the molecule results achiral due to slowness of the 

observation method, Figure 1.4.1.  

 

Figure 1.4.1 Enantiomers interconversion of an amine with three different substituents passing through a sp2 hybridized 

trigonal planer state. 

Chiral diaminocyclohexanes are widely used in chiral organo and organometallic catalysis,9,10,11 

however only the 1,2 or 1,3-trans isomers are used. The chair inversion (passing through the boat 

conformation) in the trans molecules does not produce the relative mirror image, but only provides 

the exchange of the axial/equatorial positions. While, 1,3-cis isomer possess a plane of symmetry and 

is achiral, the 1,2-cis isomer can be considered inherently chiral. However, the ring flipping 

transforms one enantiomer into its mirror image and it is not possible to isolate neither of them. 

Analogously, to the three-substituted amine, also in this case the chirality of the system is related to 

the time scale of the observation (Figure 1.4.2).  
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Figure 1.4.2 Top and center: 1,2 and 1,3 trans diaminecyclohexane and their non-superimposable mirror image; Bottom: 

1,2 cis diaminecyclohexane in which the ring flipping transforms one enantiomers into the other.  

1.5 Dynamic Stereochemistry and chiral axes 

As the rapid interconversion of three substituted amines or the chair inversion of cyclohexane, the 

rotation around a bond is a time-dependent process. When the rotating bond is a chiral axis, the 

rotation implies racemization. Therefore, depending on the rotational stability of the chiral axis, the 

half-lives of the stable conformations can dramatically change between minutes to years, depending 

on the magnitude of several factors: steric hindrance, electronic influences, temperature, solvent, etc.  

It is quite straightforward that the definition of what is an atropisomers is not trivial. The first 

observation of this phenomenon has been reported in 1922 by Christie and Kenner with the separation 

of the 6,6’-dinitroniphenyl-2,2’-dicarboxylic acid and its 4,4’,6,6’-tetranitrobiphenyl derivatives by 

crystallization with salt of 10,11-dimethoxystrychnine, while the same procedure for biphenyl-2,2’-

dicaboxylic acid fails due to the fast rotation about the 1,1’ bond.12 

 

Figure 1.5.1 (R) and (S) -4,4',6,6'-tetranitro-[1,1'-biphenyl]-2,2'-dicarboxylic acid first resolved by Christie and Kenner 

by derivatization with 10,11-dimethoxystrychnine 
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The term “atropisomer” was later coined by Kuhn from the word a (not andtropos () 

= rotate identifying those stereoisomers that arise from the not-rotation of a single bond.13 However, 

this first attempt of definition does not sets any boundaries about the stability of the atropisomers and 

the energy barrier related to the stereogenic axis rotation. Based on these observations, Oki4 refined 

the definition of atropisomer: it is as a conformer that upon bond rotation interconverts slowly enough 

(rotational barrier 21.8 kcal/mol at 25 °C)14 to be observed and eventually physically resolved. 

Nowadays, this concept is still not exhaustively defined, but it is commonly related to conformers 

separated by an energy barrier involved in the rotation of a chiral axis that at least permits a half-life 

time of 1000 s (at 298 K) and that allows, eventually, the physical resolution of the enantiomers. 

Recently a very useful map of stereogenic axes stability has been proposed by LaPlante (Figure 1.5.2) 

for the field of drug discovery.15 According to his evaluation, compounds can be divided in three 

classes based on rotational energy barriers. 

• Class 1 the molecules which belong to this class possess relatively fast axial rotation rates (to 

the order of nanoseconds to few seconds) displaying not even observable (at +25°C) 

stereoisomers related to the rotation around a single bond and therefore can be intended as 

single entities. The energy barriers involved are generally lower than 19 kcal/mol and the 

compounds belonging to the Class 1 cannot be identified as a atropisomer. 

• Class 2 These compounds have metastable situation in which the rotational barriers are 

between 20 kcal/mol and 30 kcal/mol and the half-life time (t1/2) spans from few minutes to 

years. Molecules with these features are expected to show some observable indication of the 

presence of atropisomers. However, the less stable components of this class cannot always be 

physically resolved (at +25 °C). With this criterion, this class can be divided further in to two 

subclasses: 

• Class 2a: 20 kcal/mol ≤ ΔErot ≤ 23 kcal/mol in which the two enantiomers can 

be clearly detected, and in some cases even resolved, but the racemization 

process is fast enough to consider them enantiomerically pure only for several 

seconds (at +25 °C) then the complete racemization occurs at most in 1 hour. 

Such fast process makes the single enantiomer existence elusive and for most 

of the practical application the compounds can be considered a single entity. 

• Class 2b: 23 kcal/mol < ΔErot < 30 kcal/mol in this sub-class the enantiomers 

can be detected, resolved and stored as single enantiomerically pure 

atropisomer at +25 °C for hours or even weeks. 



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

10 

• Class 3 compounds are those with half-life time in the order of years. These are chiral stable 

compounds with a ΔErot ≥ 30 kcal/mol and the single enantiomers can be considered 

kinetically stable. Therefore, little to no axial rotation is expected to occur at +25 °C. 

 

Figure 1.5.2 Rotational energy barrier map with relative half-life time (t1/2) at 298 K of the single atropisomer. [Reprinted 

(adapted) with permission from ChemMedChem, 2011, 6, 503-513. Copyright (2011) WILEY-VCH Verlag GmbH & Co. 

KGaA] 

The classification depicted by LaPlante is not intended to be a rigid classification but a gradual 

passage from a zone of instability to a zone of stability of chiral axis. 

Moreover, although useful, this classification lack of some considerations: 

1. The state of the compound has a high impact on the rotational barrier, for instance a compound 

in solution has generally a lower rotational barrier than in solid state. In addition, each solid 

state (i.e. crystalline forms, amorphic forms) has his rotational barrier related to the packing 

of the crystalline structure. In this manuscript, the energies of the rotational barrier are 

considered in solution unless otherwise stated. 

2. The stability consideration proposed for the detection and resolution of atropisomers are 

intended at room temperature (+25 °C). In fact, as any kinetic process, the rotation of a bond 

is highly influenced by the temperature. In particular, the half-life time of a single atropisomer 

is inversely proportional to the temperature. Therefore, by changing the temperature is 

possible, on one hand to racemize some Class 3 compounds and on the other to detected 

chirality in some Class 1 compounds. 
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With this consideration and this map in hand is possible to explore the parameters that influence the 

magnitude of a rotational energy barrier and how this energy is identified. 

On this regard, it is very useful to imagine the energy profile of a molecule along the rotation around 

the stereogenic axis. One of the simplest case is the 2,2’-disubstituted biphenyls (Figure 1.5.3). In the 

ground states (GS) the phenyl rings are in a skewed disposition, where the dihedral angle (φ) is neither 

0° nor ± 90° reaching a compromise between the minimization of the steric repulsion and the 

maximization of the aromatic resonance stabilization. The latter would be maximized by a coplanar 

situation (0°) but it would also cause a high hindered structure due to the clash of the ortho substituent 

(in 2’ or in 6’ position) on the other phenyl ring. While the steric repulsion would be minimized in an 

orthogonal situation (± 90°) the stabilization due to π-electron overlap would be completely lost. 

Thus, each atropisomer of 2,2’-disubstitued biphenyl molecules usually populate ground states with 

torsional angles that span from 30° to 80° and from 100° to 150°, depending on the relative disposition 

of the 2,2’ group. The anti disposition is usually the most stable16 and see the ortho groups on the 

opposite side respect to the chiral axis, while the syn disposition has the ortho substituents on the 

same side.  

The orthogonal arrangement among the two phenyl rings represent a local maximum of the energy 

corresponding to the transition state (TS) between the anti and the syn disposition. Meanwhile, the 

coplanar arrangement represents the transition state between one atropisomer and its mirror image. 

This disposition can be achieved with two opposite rotation: a 0° rotation in which the two 2,2’ groups 

clash one on the top of the other; or with a 180° rotation in which each R group has a steric interaction 

with the H on the other phenyl ring (i.e. 2, 6’ and 2’, 6 R-H steric clash). The latter situation displays 

a lower steric repulsion resulting in an energetically favoured TS. The rotational energy barrier is 

defined as the energy difference between the most stable (i.e. the most populated) GS and the most 

stable TS, it can be more precisely defined as the difference between free Gibbs energies ΔGǂ
rot, Figure 

1.5.3. 
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Figure 1.5.3 Energy profile of 2,2’-disubstitued biphenyls. In blue is highlighted the lowest rotational energy barrier: 

ΔGǂ
rot 180°. 

The entity of the ΔGǂ
rot is therefore defined by the energies level of the lowest coplanar TS (LC-TS) 

and of the lowest GS (L-GS). It is straightforward that any modification in the magnitude of the ΔGǂ
rot 

implies a stabilization or destabilization of LC-TS and/or L-GS. 

The biaryl system is a good starting point to evaluate the parameters that modify the energy level of 

the LC-TS and L-GS. The energy barrier to the atropisomerization of biphenyl can be easily related 

to the bulkiness of the substituents. In fact, the rotation of chiral axis in a crowded system implies a 

high steric hindrance and the generation of a high energy (i.e. distorted) LC-TS. The LC-TS of 

2,2’disubstitued-biphenyls (Figure 1.5.3) minimized the steric hindrance pairing the most bulky 

substituent on one ring with the hydrogen on the other. In a 2-isopropyl-2’-R-substitued biphenyl the 

replacement of R = O-Me with more steric demanding group raises the ΔGǂ
rot proportionally to the 

size of the latter. Therefore, it is possible to determine which are the steric requirement to develop a 

stable atropisomer (R = t-Bu, ΔGǂ
rot = 32.7 kcal/mol). Altogether the measurement of the rotational 

energy barrier provides indirectly the measurement of the steric size of the functional groups R, 

where: OMe < CF3 < i-Pr < t-Bu, Figure 1.5.4 A.17 
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Figure 1.5.4 A Dependence of the rotation barrier with increasing demanding steric group in 2,2’-disubstitued biphenyls. 

B Buttressing effect of meta ethyl substituent in 2,2’-bis(trifluoromethyl)biphenyl. C Electronic effect of para substituent 

in 4,4’ disubstituted 2,2’-bis(trifluoromethyl)biphenyl. D 4-methoxy-4’-nitro-2,2’-bis(trifluoromethyl)biphenyl push-pull 

effect and its planar zwitterionic state E CH/π interaction occurring in 4,4’-diamino-2,2’-diisopropylbiphenyl. 

Also, the meta substituent in respect to the chiral axis exhibit an effect on LC-TS, the so-called 

buttressing effect. In which, the meta substituent reduces the flexibility of the adjacent ortho 
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substituent reducing the degree of freedom of the latter during the rotation about the chiral axis. 

Incorporation of a relatively small ethyl group into the meta-position of the 2,2’-

bis(trifluoromethyl)biphenyl raises the ΔGǂ
rot from 27.3 kcal/mol to 30.2 kcal/mol (Figure 1.5.4 B). 

This is mainly a steric effect that is related to the size both the meta and the ortho-positions 

substituents. In fact, the introduction of the ethyl group on the other meta position (C-5) does not 

modify consistently the rotational barrier of the system (27.4 kcal/mol), Figure 1.5.4 B.  

Although the steric effects play an important role in the determination of the stability of the chiral 

axis, also the electronic effects needed to be considered. During the studies of the rotational barrier 

of a series of 2,2’-bis(trifluoromethyl)biphenyls, Wolf and collaborators18,19,20 noted that electron-

withdrawing group located on the 4,4’ position stabilize the ground states while the electron-donating 

groups decrease the ΔGǂ
rot. The latter groups are able to increase the electron density on the C-1 and 

C-1’ weakening the pivotal bond and facilitate the out-of-plane bending. On the other hand, the 

electron-withdrawing groups lower the negative charge on the 1,1’ position obstructing the out-of-

plane bending and therefore, stabilize the L-GS. The order established by Wolf of stabilizing para-

substituents is: F ≈ NO2 > Cl > CF3 > NH3
+ > Br ≈ H > CH3 > OCH3 > OH > NHAc >> NH2 (Figure 

1.5.4 C). Once an electron-withdrawing group and an electron-donating group are placed in the 4 and 

4’ positions respectively, a push pull effect generates an almost planar partial double bond in 1,1’ 

position stabilizing the LC-TS and therefore decreasing the rotational energy barrier (Figure 1.5.4 D).  

Although these trends can be widely confirmed in biphenyls, some alkyl biaryls that undergo to CH/π 

interaction could develop opposite trend than the one previously exposed. This is the case of alkyl 

substituted 2,2’-diisopropylbyphenyl where an electron withdrawing group allows the rotation while 

an electron donating group, such as an amino, increase the rotational barrier. In this case the electronic 

effect influences the GS lowering its energy. In fact, the hydrogens of the i-Pr groups have the right 

geometry to interact with the π cloud of the adjacent phenyl ring only in the ground state (i.e. not 

periplanar position). Therefore, the ground state is stabilized by those functional group able to 

increase the electron density on the aromatic ring and accordingly the ΔGǂ
rot increase (Figure 1.5.4 

E). 

It is worth to be noted from Figure 1.5.4 that the ΔGǂ
rot is influenced by the temperature. At +25 °C 

the rotational barrier of 2,2’-bis(trifluoromethyl)biphenyl is 25.5 kcal/mol, while at +128.9 °C it is 

27.3 kcal/mol. This is generated by a negative entropic contribution to the energy of the TS, where 

the compromised rotational freedom generates a more ordered state. Although the entropic effects are 

always present, in most of the case in which is involved the rotation of a chiral axis the entropic factor 

is negligible with respect to the enthalpy. 
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Tertiary aryl-amides with ortho aromatic substituent display a not orthogonal disposition with respect 

to the phenyl plane. Depending on the steric hindrance of the amide and the ortho substituents, 

rotation around the carbonyl and the aryl ring (Car-Cco) can be restricted generating atropisomers. 

Moreover, in the Cco-N, an electronic effect occurs, the rotation is partially blocked due to the partial 

double bond nature and it is possible to correlate the two isomerization process. When the kinetic 

constants for the rotations Car-Cco (kCar-Cco) and Cco-N (kCco-N) are about the equal, the two process 

occurs with similar rates and their movement are correlated. Meanwhile when the kCar-Cco > kCco-N the 

Ar-CO is fast due to low steric demanding ortho substituents and the movement are not correlated. 

On the other hand, with ortho-aryl bulky group the kCar-Cco < kCco-N and the Ar-CO rotation occurs 

only geared with the CO-N rotation while the latter can experience some independent movement, 

Figure 1.5.5.21,22 In the case of the N-substituted anilides beside the eventual N-Caryl 

atropisomerization process, the restrict rotation around the CO-N axis determine an E/Z isomerism 

of the amide bond that can arrange the carbonyl group on one side (Z) or the other (E) of the phenyl 

ring.23 Therefore, with an ortho bulky aryl substituent the anilides show two stereodynamic process: 

E/Z- isomerization and atropisomerization (Figure 1.5.5).24 Although less common, also in this case 

are possible geared movements between the two stereomutations.25 

 

Figure 1.5.5 Stereodynamic of: top, N-disubstituted amides displaying the interdependence of the rotation around the Car-

Cco and the Cco-N axes; bottom, N-substituted anilides and the two stereodynamic process occurring. 

The formation, also transient, of an interaction (even if with a bond order < 1) between the two 

scaffolds at each side of a chiral axis (bridge effect) can significantly compromise the conformation 

stability of the chiral compound. The steric considerations on rotational barrier exposed previously 

define that a four substituted biaryl system should has a stable chiral conformation. However, if the 

bridge effect occurs the atropisomerization could happen also at room temperature. This is reported 
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in 1-(2-hydroxy-4,6-dimethylphenyl)-2-naphthaldehyde26,27 where the hemiacetal resulting from the 

aldehyde and hydroxy substituents in the 2,2’ position allows the rotation of the chiral axis leading 

to a surprisingly low ΔGǂ
rot = 23.7 kcal/mol (Figure 1.5.6 A).  

 

Figure 1.5.6 A hemiacetal formation in 1-(2-hydroxy-4,6-dimethylphenyl)-2-naphthaldehyde and its relatively low 

rotational barrier. B Long range interaction in the phenyl-pyridine system with SN2 geometry and the effects on the ΔGǂ
rot 

of an electron-withdrawing R substituent compared to the biphenyl analogous. C 3,4-bisnitrophenyl-maleimide anti chiral 

populated form and not populated meso achiral one. The solid tubular structure and their relative energy are calculated at 

ωB97XD/6-311++G(2d,p) level. Distances in Å. 

Similar effect has been reported for an aryl-pyridine system in which a SN2 interaction in the TS 

occurs between an electron poor methylene system and the electron rich nitrogen on the pyridine. 

This leads, depending on the electron-withdrawing power of the substituent on the methylene, to a 

more stable TS and therefore to a lower rotational barrier than the biphenyls analogous, in which the 

ΔGǂ
rot is driven only by steric effects, Figure 1.5.6 B.28 

These particular interactions may have high power in the discrimination between diastereoisomers; 

this is the case of the maleimide molecules studied by Mazzanti and collaborator.29 The 3,4-bis-

nitrophenyl-maleimides considered, bearing two non-symmetrical aryl systems, generate a syn meso 

form and a chiral anti form. However, only the anti diastereoisomer is present due to a newly 

discovered NO2/CO interaction that stabilized the ground state of the anti conformation making the 

syn conformation completely unstable and therefore, not populated (Figure 1.5.6 C).  

In medicinal chemistry, the presence of one or more semi-stable chiral axes can makes the drug 

discovery campaigns more complex due to the formation of temperature instable stereoisomers. 

anti 0.0 kcal/mol syn 3.4 kcal/mol

C

Double CO/NO2 interaction
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Therefore, more often the chiral axes are eliminated by using more rigid and conformationally 

constrained structures. This is the case of a NKI antagonist where a full bridge bond is inserted into 

the drug scaffold between the amide moiety and the steric demanding 2,3-disubstituted naphthyl 

group to remove the cumbersome presence of two chiral axes.30 This expedient resolves altogether 

the chiral axis due to: the partial double bond nature of the amide bond and the steric hindrance of 

the naphthyl moiety, Figure 1.5.7.  

 

Figure 1.5.7 Removal of chiral axes in a NKI antagonist through the introduction of a bridge between the naphthyl and 

the amide moiety 

On the contrary, in the case of vancomycin the several stereochemical feature are essential to the 

antibiotic proprieties of this scaffold. During the multistep total synthesis of this natural occurring 

macrocycle31 the undesired M diastereoisomer resulted from the synthesis is simply transformed in 

the P target diastereoisomer by heating the M diastereoisomer at +55 °C, Figure 1.5.8.  

 

Figure 1.5.8 Vancomycin and its synthetic precursor. A temperature of 55 °C is sufficient to convert the instable M 

diastereoisomer to the stable one. 

In fact, rather being influenced by the sterical demanding element, the chirality of the aglycone 

precursor is controlled by the whole architecture of the scaffold. Therefore, to foresee the 

conformational stability of chiral axes is not only of academic interest but it is involved and 

sometimes requested in such biological active molecules. 

P

P

M
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1.6 Dynamic stereochemistry and chiral propellers 

In most of the cases, conformations arise due to concerted movement, in which two different part of 

a molecule moves simultaneously in a unique process. Therefore, the passage from one conformation 

to another can, not only occur by the rotation around one bond as previously described, but also 

through a synchronous movement of two or more parts of the molecule. This system is usually 

compared to a cog in a geared mechanism in which every cog (i.e. moving part of the molecule) 

cannot move independently.  

One of the simplest example is benzophenone, in which the two phenyl rings act as two blade of a 

propeller that flip around the hub represented by the sp2-hybridized carbon. Although this movement 

has been computationally simulated32 the low activation energy of this process makes practically 

impossible to experimentally observe the stereomutation. As previously stated and widely reported 

in literature, hindered systems display an increased interconversion barrier. Lunazzi and coworkers33 

reported the stereomutation analysis of a series of dimesityl derivative of benzophenone. The work 

provided proofs of the existence of the M and P conformation, where the two mesityl rings are 

symmetrically skewed with respect to the carbonyl plane and in which the methyls in the ortho 

positions are diastereotopic. The interconversion process was found to occur via correlated rotation 

of the two mesityl rings (cog wheel effect) with activation energy of 4.6 kcal/mol. This path is by far 

the more energetically favoured with respect to the independent movement of the two mesityl rings. 

For instance, in the asymmetric and apparently less crowded analogous phenyl mesityl ketone the 

interconversion barriers were found higher than the more hindered dimesityl analogous.34 This 

apparent contradiction is due to the lack of a concerted movement during the rotation around the C-

C axes. The absence of the cog wheel effect makes the two-aryl ring rotation independent one from 

other and each ring displays a rotational barrier (13.7 kcal/mol and 15.2 kcal/mol for phenyl and 

mesityl respectively). In a two-ring propeller correlated movement can occur as conrotatory or 

disrotatory. The comparison between the experimental and the computed rotational barriers pointed 

out that the interconversion in the dimesityl system occurs with a disrotatory one-flip movement, 

where one ring is orthogonal while the other is parallel to the plane identified by the carbonyl. On the 

other hand, the 2 possible conrotatory movements (zero and two ring flip) have a higher energy due 

to simultaneous orthogonal (two-ring flip) or parallel (zero-ring flip) disposition of both aryl ring, 

Figure 1.6.1.  

The study performed on dynamic stereochemistry in atropisomerism and chiral propellers have paved 

the way to the recent development in the field of molecular motor.35 Unidirectional molecular motor 

as the ones developed by Feringa and coworkers35a were possible thanks to the knowledge gained on 
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the preferential conformation and stereodynamic of organic molecules, and therefore represents the 

perfect summary of the all the studies on the subject. 

 

Figure 1.6.1 Dimesityl ketone stereomutation pathways and the relative potential energy map computed as a function of 

the two Ar-CO dihedral angles (MMFF-94 force field). The ground states of the energetically equal enantiomeric 

conformers are represented as circle and the transition state are located at the edge of each pathway. [Reprinted (adapted) 

with permission from J. Org. Chem, 2001, 66, 488-495. Copyright (2001) American Chemical Society] 

The designed motors are light-driven and are derived from overcrowded chiral alkenes in which the 

steric demanding group are not completely coplanar to the double bond plane. On one side of the 

double bond is located the stator (thioxanthene) while on the other the rotor (benzothiochromene). In 

order to have a unidirectional movement is essential an ambivalent behaviour of the rotor with both 

conformational flexibility and chiral stability. The rotation around the C-C double bond is driven by 

a controlled series of thermal and photochemical process in which only one motion, controlled by the 

chiral centre and the helical conformation, is available. The whole process is composed by four steps 

(as a four-stroke engine): two of photoisomerization and two of thermal helix inversion. Since the 

interconversion transforms between diastereoisomers both the directions of the motion are populated 

but with different percentage depending on the Boltzmann distribution, making the motion 

unidirectional with 26.6% of total efficiency. In other words, 26.6% of the starting molecules make 

the complete rotation around the stator in one direction, Figure 1.6.2.  

Two

ring flip

One 

ring flip

Zero 

ring flip

Transitionstates

DGǂ
calc = 42.4 kcal/mol

DGǂ
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DGǂ
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Figure 1.6.2 Four-stroke unidirectional molecular motor of the rotor around the stator designed by Feringa and coworkers. 
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2 Dynamic Stereochemistry analysis and methodologies  

The importance of the conformational stability of organic molecules are beyond the simple academic 

research and involved the whole organic chemistry field. Therefore, methods have been established 

to foresee and determine the dynamic stereochemical proprieties of such compounds. Among those, 

Dynamic Nuclear Magnetic Resonance (D-NMR) and Dynamic High Performance Liquid 

Chromatography (D-HPLC) arose as the most useful experimental methods, and computational 

studies performed with Density Functional Theory model (DFT) are nowadays widely used as 

theoretical support. 

2.1 Dynamic Nuclear Magnetic Resonance (D-NMR) 

NMR is able to observe the conformational exchange of chemical species that happens at a rate 

sufficiently low to observe separate anisochronous signals, in the milliseconds-seconds region:  

𝑡 =  
√2

2𝜋 ∆ν
 

where:  

t = conformational exchange time (s); 

∆ν = chemical shift difference (in Hz) without exchange. 

This equation states that two exchanging nuclei can display different chemical shifts when they 

occupy two positions with different magnetic environment for a time longer than the conformational 

exchange time (t).  

In order to make compatible the time scale of the NMR acquisition to the kinetic process involved, 

the spectra are usually recorded at different temperature and the observed line shape is the result of 

the conformational process taking place within the NMR time scale. 

As first example, we can consider dimethylformamide (DMF).1 This molecule displays a hindered 

rotation around the C-N axis due to the partial double bond nature of the amide functional group. 

When the rotation is slow in the NMR time scale, each methyl experiences a magnetically different 

environment for a time long enough to be detected by the NMR, resulting with two different signals. 

Once the temperature is raised the process occurs faster and the signals broaden until the coalescence 

point is reached. At this temperature, the two diastereoisomers are no longer distinguishable, and only 

one broad peak is observable. The D-NMR investigation on DMF is described in Figure 2.1.1 where 

it is summarized the evolution of the line shape of an uncoupled dynamic two site system. 
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Figure 2.1.1 D-NMR profile of an uncoupled dynamic two site system. 

On the other hand, when the conformational process results in the formation of two conformational 

diastereoisomers, and in particular when the temperature is low enough to froze their interconversion 

they are observed as “standard” diastereoisomers, and all the NMR techniques are available for their 

structural identification. As an example, 1,8-di-o-tolylanthracene has two different conformation due 

to the relative disposition of the o-tolyl moieties that can be anti or syn with respect to the anthracene 

plane.2 

At relatively low temperature (+85.5 °C) both the methyl peaks belonging to each diastereoisomer 

are observed (unequally populated). Analogously to the DMF case, on raising the temperature also 

the interconversion rate is faster, until the coalescence is reached (+136 °C). The NMR spectra 

recorded at different temperature provide a qualitative indication of the magnitude of the ΔGǂ. 

However, to obtain a measure of the energy of activation involved in the process is necessary to 

extrapolate the kinetic constant from the D-NMR analysis. 

The coalescence method can be used only in the simplest system in which two nuclei in absence of 

any coupling, with equal intensity (50:50 population) undergo to chemical exchange and eventually 

coalesce with the temperature. The DMF system respect these parameters (Figure 2.1.2). Therefore, 

the first order interconversion rate constant can be calculated as  

𝑘𝑇𝑐 = 𝜋
∆𝜐

√2
      (Eq. 2.1) 

Where kTc is the rate constant at the coalescence temperature Tc and ∆ν is the chemical shift difference 

(Hz) without exchange (at low temperature). 

However more complicate cases can occur in which the species displays different thermodynamic 

stability and more complicate NMR with several coupling constants.3,4,5,6 

k
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In these cases, the kinetic constant is derived by line shape simulation analysis of the D-NMR spectra. 

This method allows to handle mathematical models that can simulate second-order spectra and quite 

complex spin systems (up to 11 nuclei).7 To use this method, first a simulated spectrum is obtained 

where the dynamic processes are blocked (k ≈ 0), then the line shape at higher temperatures are 

simulated by simple changing the values of the rate constants. However, corrections need to be made 

to consider the temperature dependence of J couplings, chemical shifts and conformers ratio. The 

best value of the kinetic constant at each temperature is then found by simple comparison of the in 

silico simulated and the experimental line shape of the spectrum. 

 

Figure 2.1.2 Left: 1H NMR methyl signals of 1,8-di-o-tolylanthracene (600 MHz in DMF-d7) as a function of temperature. 

Right: Line shape simulation obtained with the rate constants and the ΔGǂ obtained. [Reprinted (adapted) with permission 

from J. Org. Chem. 2007, 72, 5391. Copyright 2007 American Chemical Society] 

Conformational processes as the ones involved in an axis rotation, are usually a first-order process, 

and therefore they are not dependent upon concentration. Eventually, the free energy of activation 

can be extracted by means of the derived Erying equation8 in the case where T is expressed in Kelvin 

and ΔGǂ in kcal/mol. 

∆Gǂ = 4.574 ×10−3 ×T (Log
10

T

𝑘
+ 10.318)    (Eq. 2.2) 

Experimental Line shape simulation

∆ 

DGǂ= 21.8 kcal/mol

Tc
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In the case of the 1,8-di-o-tolylanthracene only line shape simulation is applicable (the syn: anti 

population is not exactly 50:50 Figure 2.1.2). The line shape simulation is more precise because it 

provides a mean value of the ΔGǂ overall the temperature analysed. Moreover, it can reveal the 

entropic contribution by analysing the variation of the ΔGǂ value at different temperatures. However, 

in most of the cases where a conformational process is involved, the free energy of activation is found 

invariant with the temperature, thus making the entropic contribution negligible, or below the 

experimental uncertainty. 

The D-NMR approach can determine energy values between about 4.5 and about 22 kcal/mol by line 

shape simulation. The range of energies that can be studied is limited by the NMR time scale, the 

resolution of the spectrum, the technical range of temperatures the spectrometer can handle, which is 

from about -180 °C to +160 °C, and it is limited also by the deuterated solvent (melting or boiling 

point).  

Conformational diastereoisomers, as the 1,8-di-o-tolylanthracene, are directly recognizable in a 

standard NMR analysis due to their different spectroscopic properties. This is not the case for 

enantiomers and atropisomer in which the two specular images have the same NMR spectra. 

However, in some cases NMR can detect whether the system is chiral or not. In fact, diastereotopic 

groups as the methyls in a iso-propyl (i-Pr) or the protons in a methylene (CH2) display different 

chemical shift when they are placed in a chiral environment. This is particularly useful in the case of 

interconverting atropisomers. With these probe of chirality, in fact the signal of diastereotopic group 

follows an analogous evolution of a mixture of interconverting diastereoisomers. In this case, line 

shape simulation is essential due to the presence of coupled system and its complexity (Figure 2.1.3). 

Although useful D-NMR, has a limited range of energy detectable. Therefore, is possible to study the 

compound that belong to the Class 1 and partially to the Class 2 of LaPlante (see Introduction 1.4).9 

The racemization of slow interconverting atropisomers (ΔGǂ > 22 kcal/mol) is not accessible with this 

technique. In these cases, other techniques as Dynamic High Performance Liquid Chromatography 

(D-HPLC) or kinetic studies can be applied. 
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Figure 2.1.3 D-NMR (600MHz DMSO-d6) and line shape simulation of 3-arylthiazolidine-2-thiones10. The diastereotopic 

signal of the CH2 serves as a probe of chirality. [Reproduced (adapted) with permission from Org. Biomol. Chem. 2016, 

14, 11137. Copyright (2016) Royal Society of Chemistry] 

 

2.2 Dynamic High Performance Liquid Chromatography (D-HPLC) 

The recent development of HPLC and UPLC with the introduction of Chiral Stationary Phase (CSP) 

expanded in the recent years the application of this technique to stereodynamic measures. 

High performance liquid chromatography can be easily applied to the study of stereo labile 

compounds. Chromatograms are collected at variable temperature in order to follow the 

interconversion of stereo labile species. D-HPLC is complementary to the D-NMR in fact:  

1. Enantiomers or atropisomer that interconvert can be analysed without the presence of a probe 

of chirality. 

2. The rotational barrier of more stereochemical stable system can be measured reaching the free 

energy rotational barrier of 25-26 kcal/mol. 

An example is reported in the analysis of the rotational barrier of 3-(naphthalen-1-yl)thiazole-2(3H)-

thione performed by Ciogli and coworkers (Figure 2.2.1).10  
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Figure 2.2.1 D-HPLC coupled with single-wavelength ECD analysis performed on 3-(naphthalen-1-yl)thiazole-2(3H)-

thione. Column: R, R Whelk-O1, 250 × 4.6 mm I.D., eluent: n-hexane : dichloromethane 70 : 30 +2% MeOH, flow rate: 

1.0 ml min−1, UV detection at 254 nm. [Reproduced (adapted) with permission from Org. Biomol. Chem. 2016, 14, 11137. 

Copyright (2016) Royal Society of Chemistry] 

This molecule is the dehydrated form of the 3-arylthiazolidine-2-thione shown in Figure 2.1.3, and 

its rotational barrier cannot be analysed with D-NMR due to the absence of a probe of chirality, 

moreover, its rotational energy is close to the upper limit for D-NMR analysis. Therefore, D-HPLC 

analysis has been employed (Figure 2.2.1). Using a chiral column, the atropisomers generated by the 

hindered rotation of the 1-naphthyl group are perfectly separated at +2 °C, as shown by the opposite 

peaks in the ECD signals detected at 300 nm. Once the temperature is raised, the rotation starts to 

occur in column while eluting. The competition between atropisomerization and resolution generates 

elution profiles with a plateau between the peaks. The height of the plateau increases with the 

temperature, until the stereodynamic process has a faster rate than the separation, and it is possible to 

observe peaks coalescence at +40 °C. Analogously to the D-NMR, in the D-HPLC the kinetic constant 

is evaluated through line shape simulation of the chromatograms recorded at different temperature. 

Although different methods can be applied to reproduce the line shape (theoretical plate model,11 

continuous flow model12) one of the most reliable is the stochastic model,13 where the separation is 

described through a time dependent function, that can be simulated with an appropriate software. 

DGrot =21.6 kcal/mol
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D-HPLC plays an important role substituting the D-NMR technique when the chemical system 

defects of diastereotopic nuclei and when rotational barrier is higher than 21 kcal/mol (to avoid 

performing D-NMR at temperature over + 140 °C). However, thermodynamic limits and the liquid 

phase issues hamper the possibility to explore the high energy atropisomer (ΔGǂ > 26 kcal/mol).  

To study systems in which the stereodynamic processes involved have half-life time of days to years 

are necessary high energy technique. Dynamic Gas Chromatography (D-GC) works analogously to 

D-HPLC but can reach higher temperature, enabling the determination of the rotational barrier of 

stable atropisomer (ΔGǂ > 25 kcal/mol)14. However, this technique requires particular conditions: 1) 

a Chiral Gas Chromatography column in which the stationary phase is typically composed by an 

enantiopure molecule such as -cyclodextrins or camphorate complex of Ni(II);15 2) organic molecule 

stable at high temperature typical required in a GC analysis. For these reasons to high rotational 

barrier D-GC is not a widely spread technique and instead are used discontinuous analysis in which 

the kinetic development is speeded up at high temperature and then analysed at room temperature 

(where k ≈ 0). 

2.3 Kinetic studies 

The combination of D-NMR and D-HPLC can determine the extent of stereodynamic process that 

occurs with energy between 4.5 kcal/mol and 26 kcal/mol. However, to understand the magnitude of 

rotational barrier of more stereochemical stable chiral molecules is of crucial importance to get 

information about the retention of chirality of slow interconverting atropisomers. Dynamic analyses 

cannot follow high energy process, therefore to monitor such systems are used discontinuous 

technique, in which an isolated atropisomer is racemized at high temperature and then analysed at 

room temperature, where k ≈ 0 and is possible to take snapshots of this interconversion process. 

Mancinelli and coworkes analysed the atropisomerization barrier of a series of 2,1-

borazaronaphthalenes.16 In one case the barrier was found too high for D-HPLC and D-NMR 

techniques. Therefore, the slow interconverting enantiomers were resolved in CSP-HPLC and then a 

small amount of the enantiopure compound were placed at high temperature. Small aliquots were 

then collected and injected at room temperature in HPLC at different times (Figure 2.3.1). 
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Figure 2.3.1 Racemization of e1 at +130 °C followed by CSP-HPLC (Lux Cellulose-2 5µm, 250×10 mm, 5 mL/min, n-

hexane : i-PrOH = 9 :1). [Reproduced (adapted) with permission from Org. Lett. 2016, 18(11), 2692. Copyright (2016) 

America Chemical Society]. 

From the chromatograms reported it is possible to observe the racemization process occurring at high 

temperature, until the equilibrium is reached. In any racemization process, due to the equal nature of 

the compounds involved, the rate constant of interconversion of each enantiomer will be the same in 

both the directions. Therefore, the kinetic equation derived considering a first order process at the 

equilibrium is found independent from the initial concentration of the atropisomer. 

ln(𝑥𝑒𝑞 − 𝑥) = −2𝑘𝑟𝑎𝑐𝑡 + ln 𝑥𝑒𝑞    (Eq. 2.3) 

where: 

x is the molar fraction of e2 

xeq is the molar fraction of e2 at the equilibrium (xeq = 0.50) 

Extrapolating x from the area of e2 in the chromatograms and plotting ln(xeq - x) respects the time (t), 

the kinetic constant can be obtained through the analysis of the slope, the kinetic constant and 

therefore the magnitude of the energy barrier involved is determined (33.0 kcal/mol). Furthermore, 

performing experiment at different temperature is possible to validate the data obtained and to 

evaluate any entropic contribution to the ΔGǂ (Figure 2.3.2). 
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Figure 2.3.2 Plot of the kinetic equation of the atropisomerization of e1 respect ln(xeq - x) at two temperature +130 °C and 

+140 °C and the rotational energy derived. [Reproduced (adapted) with permission from Org. Lett. 2016, 18(11), 2692. 

Copyright (2016) America Chemical Society]. 

2.4 Theoretical models 

The introduction of kinetic studies enlarges the whole range of stereodynamic process that occurs 

from 4.5 kcal/mol to 35 kcal/mol (with half-life time of several years). Although this interval is large 

it does not cover the conceivable energy barrier of all the stereodynamic process. Moreover, the 

experimental analysis described have some requisite: peculiar structural motif, solubility in organic 

solvent, availability of particular deuterated solvent, stability at high temperature, separation of the 

single stereoisomers among the others. On the other hand, in silico computational methods can 

analyse whatever stereodynamic process might occur in the system, without the condition dictated by 

the experimental technique. Furthermore, computational methods can be useful prior the synthesis in 

the design of the molecule and investigate the steric requirement needed to obtain stable atropisomers.  

Molecular mechanics such as MM3,17 MMX,18 MMFF,19 Amber20 have been the only computational 

methods available during the early ‘90. The computational times were quite short and the results 

obtained quite accurate. However, some limitations of these technique were disclosed when the 

calculation of transition states were performed. In particular, the geometry of transition state needed 

to be manually built, and the energy was calculated as a single point energy without further 

optimization. Therefore, even if the transition state was found there were no indication regarding the 

presence of a more stable transition state, and the computational analysis proceed essentially with a 

trial and error approach.  

The Density Functional Theory (DFT) was introduced in the late 60’s by Hohenberg and Kohn,21 

with their two theorems they gave central importance to the electron density, which they state is the 

only responsible for the potential and thus all properties of the system, including the many-body wave 

function. In particular, their hypothesis involves the dependence of the proprieties of the systems (i.e. 
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the ground state) only on the electronic density, which is a function of the three spatial coordinates 

(x,y,z). The basic idea of DFT is that for a collection of electrons and nuclei the ground state molecular 

energy, the wavefunction and all other molecular electronic properties are uniquely determined by 

the electron probability density ρ(x,y,z), a function of three variables, in which the ground state 

energy, E0, is a functional of the density ρ: E0 = F [ρ].23 

Hohenberg and Kohn demonstrated that the combination of the appropriate functional with the 

electron density provides the molecular energy, moreover, the density was demonstrated to follow 

the variational principle (it can describe the lowest eigenstate), and a mathematical approach to the 

energy calculation was proposed.22 Kohn-Sham Density Functional Theory (DFT) has the great 

advantage of considering the electronic correlation, improving performance and accuracy with 

respect to other computational methods, at a reasonable computational cost.23 

In recent years, the availability of inexpensive high-performance servers and manageable software 

(Gaussian 09,24 and Spartan25) has allowed high-level calculations to be performed in a reasonable 

amount of time for molecules containing up to 50–100 atoms. 

DFT is a ground-breaking technique because other than the more accurate investigation of the ground 

state it answers to mechanistic question through the analysis of the energy and geometry of the 

transition states, that can be unambiguously identified by the analysis of the vibrational states 

(Paragraph 2.4.2). 

2.4.1 Density Functional Theory 

The Hartree-Fock (HF) approach consists in searching of an approximation to the ground-state of the 

N-electron problem by minimizing the total-energy wave-function functional (Eq. 2.4) allowing only 

N-electron Slater determinants (Eq 2.5) as variational functions.26 

𝐸[Ψ] =
⟨Ψ|𝐻|Ψ⟩
⟨Ψ|Ψ⟩      (Eq. 2.4) 

Φ𝛼1,…,𝛼𝑁 (𝑥1, … , 𝑥𝑁) ∶=
1

√𝑁!
(
𝜑𝛼1(𝑥1) ⋯ 𝜑𝛼𝑁(𝑥1)

⋮ ⋱ ⋮
𝜑𝛼1(𝑥𝑁) ⋯ 𝜑𝛼𝑁(𝑥𝑁)

)   (Eq. 2.5) 

Where:  

• Ψ is the wave function for N-electron system Ψ(𝑥1, . . . , 𝑥𝑁), where x is a single electron 

degree of freedom. 

• Φ𝛼1,…,𝛼𝑁 (𝑥1, … , 𝑥𝑁) is the Slater determinant for N electron with 𝜑𝛼 electron states. For 

instance, the one electron orbital the Slater determinant simplify in Φ𝛼(𝑥) = 𝜑𝛼(𝑥), while 

for N = 2 the determinant is Φ𝛼1,𝛼2(𝑥1, 𝑥2) =
(𝜑𝛼1(𝑥1)𝜑𝛼2(𝑥2)−𝜑𝛼1(𝑥2)𝜑𝛼2(𝑥1))

√2
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In the HF theory, the energy can be described as a linear combination: 

𝐸𝐻𝐹 = 𝑉 + 〈ℎ𝑃〉 +
1

2
〈𝑃𝐽(𝑃)〉 −

1

2
〈𝑃𝐾(𝑃)〉    (Eq. 2.6) 

where  

• V is the nuclear repulsion energy. 

• P is the density matrix describing the statistical ensemble of several quantum states. 

• 〈ℎ𝑃〉 is the one-electron (kinetic and potential) energy. 

• 
1

2
〈𝑃𝐽(𝑃)〉 is the classical coulomb repulsion of the electrons. 

• −
1

2
〈𝑃𝐾(𝑃)〉 is the terms corresponding to the exchange energy (Pauli repulsion) that results 

from the quantum nature of electrons and is due to the exchange symmetry of the Ψ of 

indistinguishable particle. 

The density functional theory proposed by Kohn and Sham replace the exchange energy for a single 

determinant with a more general functional: the exchange-correlation functional, which include terms 

for both the electron correlation and exchange energies. The energy in this case can be formulated as  

𝐸𝐾𝑆 = 𝑉 + 〈ℎ𝑃〉 +
1

2
〈𝑃𝐽(𝑃)〉 + 𝐸𝑋[𝑃] + 𝐸𝐶[𝑃]   (Eq. 2.7) 

where 𝐸𝐶[𝑃] is the correlation functional and 𝐸𝑋[𝑃] is the exchange functional. 

The functionals (𝐸𝐶[𝑃] and 𝐸𝑋[𝑃]) normally used in DFT are integrals of function of density and 

eventually its gradient. Different methods were developed to propose and adequate function to 

evaluate correctly the exchange-correlation functionals. Among the others hybrid functionals became 

popular in the late ’90 the introduction of B3LYP. This type of functionals linearly combines the HF 

exchange with the DFT exchange-correlation functionals, leading to integrals that can be solved only 

by numerical methods, but having a much wider application especially in the field of organic 

chemistry. 

A common DFT approach in the calculation involving a single molecule is to define which functional 

has to be employed (hybrid, pure, etc.) and the basis set.27 The functional, as described previously, is 

needed to define the approximation to consider the exchange and correlation energy. The EHF and EKS 

are reachable only with an infinite set of atomic orbitals. To mathematically describe each orbital, a 

combination of multiple Gaussian-Type Orbital (GTO) that approximate the more computational 

expensive Slater-type (STO) was adopted. To define the orbitals of an atom, a combination of GTOs 

(basis function) can be attributed to each occupied orbital. This defines a basis set of orbitals for that 

atom, and in particular this particular basis set is the minimum basis (single-zeta). Minimum basis sets 

are always inadequate to describe the interaction between atoms. Therefore, multiple basis function 

for each orbital can be assigned. Due the chemical importance of the valence orbital in making bonds, 
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these orbitals are usually descripted by multiple basis function. One of the most common approach is 

the double-zeta split-valence basis set, where the core orbitals are described with a single-zeta set 

(only the occupied orbital are taken in consideration), and the valence orbital are described with 

double-zeta set, doubling the number of basis function for each orbital occupied. In the Pople 

notation,28 these basis set are described in the form of three number: A-BCg. Where for A is intended 

the number of GTO assigned to the core shell and the last two number indicate the double zeta 

composition of the valence orbitals (i.e. two basis functions each), where the first is composed by a 

linear combination of B GTOs, while the second is composed by a linear combination of C GTOs. 

The notation A-BCDg simply add another basis function to the valence shell orbital that would be 

composed by D GTOs. One of the most common double-zeta split-valence basis set in DFT 

calculation of organic molecules is 6-31G. The carbon atom with this basis set is described by: 

• 6 GTOs for the 1s2 core shell orbital; 

• 3 GTOs for the 2s2,2px, 2py, 2pz valence shell orbitals; 

• Additionally, 1 GTO for the 2s2,2px, 2py, 2pz valence shell orbitals. 

However, the flexibility of GTO is restricted and with these function is not possible to well describe 

electronic dispersion present in organic molecule, therefore are usually added polarization and 

diffusion function.  

The polarization functions add basis function to the atoms in the valence shell allowing for charge 

polarization away from the atomic distribution to occur. In the Pople notation these function can be 

denoted with “*”, “**” or “(d)”, “(d,p)” respectively. The symbols “*” or “(d)” indicate in the case 

of the carbon atom the addition of 6 d-type basis function for the heavy atom to hybridize the valence 

orbitals, while “**” or “(d,p)” designate 6 d-type basis function for the heavy atoms and 3 p-type 

basis function for the hydrogen.  

The diffusion functions are added to allow the electron to expand when some net charge is present 

(ions). To arrange this diffusion, some additional basis functions are added: one for each valence 

orbital. In the case of the carbon atom, can be added four diffusion functions 1 s-type and 3 p-type 

(denoted with “+” in Pople notation). This can be expanded to the hydrogen (1 s-type diffusion 

functions) using the “++” notation. 

2.4.2 Transition states 

The evaluation of transition state (TS) structures and energies is a central point for stereodynamic 

analysis, because it represents the energy barriers involved in the process. Young states that a saddle 

point (TS) structure is mathematically defined as “the geometry that has zero derivative of energy 

with respect to moving every one of the nuclei, and has positive second derivative energy for all but 
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one geometric movement”.29 In other words, a transition state links two energy minima (ground states) 

and represents a maximum of energy in the direction of the reaction path, but it is a minimum for all 

the other movements, Figure 2.4.1. 

 

Figure 2.4.1 Potential energy surface. The saddle point is indicated by the black arrow. Dotted line and blue circle indicate 

the reaction path, and full dot represent the energy minima (ground state). [Reprinted (adapted) with permission from J. 

Org. Chem, 2001, 66, 488-495. Copyright (2001) American Chemical Society] 

The computation of vibrational frequency verifies whether the stationary point found in the energy 

map is a saddle point (TS). This is connected to the definition of the TS itself proposed by Young, 

the second derivative of the potential energy surface (PES) in a saddle point corresponds to an 

imaginary frequency, and the related vibrational motion corresponds to the motion that bring the 

molecule from one energy minima to the another.30 

The simplest mathematical description of the movement of a diatomic molecule is the simple 

harmonic motion. In this description, can be easily derived the connection between imaginary 

frequency of vibration and the individuation of the saddle point, Figure 2.4.2. 
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Figure 2.4.2 Connection between imaginary frequency and saddle point individuation. 

Unfortunately, in the case of intramolecular transformations, such as axis rotation or geared 

movement the magnitude of the imaginary vibrational frequency is small and it can be difficult to 

find. On the other hand, in these conformational processes the transition state geometry is much 

simpler to hypothesize due to the rigidity of the scaffold respect to intermolecular transformation 

where the molecules have more degrees of freedoms. Therefore, the TS are usually easier to find 

respect more flexible molecules. 

The application of DFT in the study of atropisomers and the possibility to easily individuate the 

transition state allow to widen the rotational energy barrier analysable and to compare the computed 

barrier with the experimental one obtained with D-NMR, D-HPLC or kinetic studies. Moreover, with 

a valid DFT method is possible to design the molecule in order to modulate its stereodynamic 

behaviour. 

2.5 Electronic Circular Dichroism: configuration and conformation analysis 

Electronic Circular Dichroism (ECD) analyses the different capability of chiral molecule to absorb 

right or left circularly polarized radiation (R-CPL and L-CPL respectively Figure 2.5.1) at wavelength 

compatible with electronic excitation (UV-VIS, 180 nm to 600 nm). Racemic or not chiral molecules 

do not distinguish between left or right circularly polarized light and absorb both with the same extend 

leading to a flat ECD spectrum. 

 

Figure 2.5.1 Left: Left circular polarized light (L-CPL). Right: Right circular polarized light (R-CPL) 
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The CD signal is composed by the difference: 𝐶𝐷 = 𝐴𝐿 − 𝐴𝑅. Namely, the difference between the 

absorbance of left circular polarized light and the right circular polarized light that is usually 

expressed in the difference of molar attenuation coefficient for the L and R CPL of the chiral media: 

Δ𝜀 = 𝜀𝐿 − 𝜀𝑅 = 𝐶𝐷/𝑐𝑙 because it is independent by the concentration c and the path length l. 

The absorbance of light implies the presence of a chromophore and its related electronic transition. 

The ECD signal is therefore subjected to the existence of an absorption band to which can be 

associated a Cotton Effect (CE) that determines a positive or negative ECD band. (Figure 2.5.2 Top). 

The preferential absorbance of L-CPL or R-CPL from a circular polarized light by the chiral 

substance, rotate the elliptical polarization of the CPL, since one electromagnetic field vector (right 

or left, ER and EL respectively) of the light is absorbed and then does not propagate as fast as the 

other, generating an out of phase interaction between the two components (L and R CPL) and 

therefore a signal in terms of D.31  

The different absorbance of one of the CPL component determines the rotation of the elliptical 

polarization, in other words the rotation of the plane of oscillation of the Electronic Resultant Vector 

(E) of the ER and EL. This rotation can be measured directly in degree as an angle  (rotatory power) 

and its measure in function of the wavelength is the Optical Rotation Dispersion (ORD) plot of the 

molecule, that is usually displayed as specific rotatory power []/ cl (Figure 2.5.2). 

The Electronic Circular Dichroism directly measures the ellipticity () of the ellipsoid plane of 

oscillation of E defined as 𝜃 = 𝑎𝑟𝑐𝑡𝑔(𝑏 𝑎⁄ ) and expressed in millidegree (mdeg) where b and a are 

the semi-axes minor and major of the ellipse respectively (Figure 2.5.2). The correlation with the D 

can be easily derived; in fact, if is small 𝑡𝑔𝜃 ≅  𝜃 = (𝑏 𝑎⁄ ) = 32.98 ∗ 𝐶𝐷 when CD is expressed 

in degree. Usually the ECD spectra are reported as the variation of Dor [𝜃] = 𝜃 𝑐𝑙⁄ =

3298 Δ𝜀 [
𝑑𝑒𝑔𝑟𝑒𝑒∗𝑐𝑚2

𝑑𝑚𝑜𝑙
] in function of the wavelength (Figure 2.5.2).  

The source of the rotation of the plane of oscillation of E is the rotational strength of the molecule at 

that wavelength, which is directly proportional to electric and magnetic transition dipole moments µ 

and M respectively. 
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Figure 2.5.2 Top. Effect of Cotton Effect on different spectroscopic technique. Bottom. Behaviour of the resultant 

electric component of the CPL (E) in achiral environment and in the presence of an enantiomer and the relative rotation 

of the plane of oscillation of E.  

In brief, the ECD signal is a consequence of the rotation of the oscillation plane of E determined by 

the rotational strength that is dependent by the magnitude and the angles of the transient magnetic 
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and electric moments, defined, at least the latter, by the nature and disposition of the chromophores 

in the molecular structure. In this regard, the ECD signal reflects the electronic environment of each 

chromophore and gives important information about the conformation32 moreover, the ECD spectrum 

is opposite for a pair of enantiomers,33 which renders this technique an ideal candidate for the 

determination of absolute configuration (AC).34 

2.5.1 Exciton coupling35 

One of the most popular method to perform the analysis of the AC is the exciton coupling. When two 

or more strong absorbing chromophores are present and not conjugate in a chiral molecule their 

electric transient dipole moments (ETDMs) generate a split in the electronic excited states that result 

in a change in the UV absorption and ECD spectra. Such response allows the determination of the 

disposition and lastly the AC of the chromophore through the exciton coupling method (Figure 2.5.3).  

 

Figure 2.5.3 Ground states 0 and excited states a of isolated and coupled chromophore, in the latter an exciton is 

generated and the a splits in  and  states with Davydov split (Va,b) 

An exciton is generated when the excitations of two (or more) not-conjugate and spatially near 

chromophores with an intense * absorption with equal or similar wavelength (i.e. energy) of 

excitation cannot occur independently. Thus, the excitation of each chromophore delocalized in the 

system generating an exciton that can interact and couple with each other giving rise, in the case of 

two chromophore, to a characteristic ECD band with opposite sign and comparable amplitude at 

different wavelength (ECD exciton couplet). This difference in wavelength between the two 

maximum of the exciton coupled is the Davydov splitting (Va,b).
36,37  

In Figure 2.5.4 is represented an example of an exciton coupling occurring in di-p-benzoate 

cyclohexane derivative. In this case, where there are two close and equal chromophore the 

absorption wavelength is equal and the Davydov splitting results symmetric. Thus, the ECD exciton 

couplet is clearly detected as sequence of first a positive and then a negative CE of equal amplitude 

and area. The sequence of positive and negative CE is dictated by the relative disposition of the 

chromophore in the molecule. In fact, if the electron transient dipole moments (ETDM) on the long 

axis of the chromophores constitute a clock-wise screw passing by the shortest path from the 



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

40 

nearest to the farthest chromophore, the ECD shows first positive, then negative CE, with inversion 

of CD sign at the same wavelength of the maximum UV absorbance of the chromophore (Positive 

Exciton Chirality). On the contrary, if the ETDM are arranged in a counter-clock wise screw the 

ECD displays first a negative then a positive CE with inversion of CD sign at the same wavelength 

of the maximum UV absorbance of the chromophore (Negative Exciton Chirality), Figure 2.5.4. 

 

Figure 2.5.4 Positive and Negative Exciton Chirality of two identical chromophores in enantiomers of p-benzoate 

cyclohexane derivative, the H are in syn with respect to the ester carbonyl and the latter is in s-trans conformation. 

The relevant properties of the ECD exciton couplet can be described as follows: 

• The amplitude of the CD (ACD) is inversely proportional to the square of the distance between 

the chromophores maintaining equal the angle between them. 

• The amplitude (ACD) is also a function of the dihedral angle between two transition moments, 

where the maximum ACD is generally obtained when the angle is equal at 70°.38 

• The ACD is proportional to the square of the coefficient of molar extinction of the 

chromophore. Therefore, to have a strong ECD exciton couplet are indicated chromophores 

that undergo to strong * absorptions. 

• If the Cotton Effects have the same rotational strength with the opposite sign for the  and  

states, the two Cotton Effect are called conservative and therefore the sum of the integrated 

areas is equal to zero. 

• The rotational strength, defined by the electric and magnetic transition dipole moments µ and 

M, is origin-independent and is a physically observable quantity.  

The exciton coupling chirality method can be expanded with some approximations to system more 

complicated with two or more different chromophores to obtain the AC. However, this method is not 
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applicable when the experimental ECD contains multiple bands, due to the presence chromophores 

with a manifold of electronic transitions or in flexible molecules. Although is not always applicable, 

this technique can, with relative ease in a rigid system where the chromophore orientation is known, 

determine the absolute configuration of molecule with accuracy comparable to the X-ray analysis.  

2.5.2 Quantum-Mechanical calculations. 

When the system present multiple chromophores with flexible conformations, the absolute 

configuration (AC) is usually determined by comparison of the experimental ECD spectrum to a 

computed one. In fact, modern computational techniques, are able to simulate the ECD spectrum for 

a single enantiomer calculating the rotational strength (R) of each transition (once are established the 

electronic (µ) and magnetic (M) operators of the dipole moments) with the Rosenfeld equation (Eq. 

2.8).39 

𝑅 = 𝐼𝑚{⟨0|𝝁|𝑎⟩  •  ⟨𝜎|𝑴|𝑎⟩}    (Eq. 2.8) 

Where:  

• Im denotes the imaginary parts of the terms in brackets,  

• 〈  〉 notation stands for integration over the configuration space,  

• 0 and a are the wavefunctions of the ground state and excited state respectively. 

Simply speaking, Eq. 2.7 indicates that the rotational strength R is the imaginary part of the scalar 

product between the electric and magnetic transition dipole moments. 

To perform such calculation, various functionals for Time Dependent DFT (TD-DFT) were 

developed. The most commons ones are hybrid functional such as BH&HLYP,40 M06-2X,41 

ωB97XD that includes empirical dispersion,42 and CAM-B3LYP that includes long range correction 

using the Coulomb Attenuating Method.43 TD-DFT needs a large orbital space in order to calculate 

electronic transition, therefore large basis sets are usually taken into account, one of the most reliable 

and used is the 6-311++G(2d,p) basis set that proved to be sufficiently accurate at a reasonable 

computational cost.44 However, the best performance in terms of electronic transition, with an higher 

computational cost is represented by Dunning's correlation consistent basis sets with double, triple, 

quadruple, quintuple-zeta and sextuple-zeta (cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, cc-pV6Z) that 

automatically contains the polarization and diffusion function.45  

A single molecule can populate different conformations as ground state without changing its chirality. 

Since the CD timescale is extremely short, in this case the experimental ECD spectrum is determined 

by linear combination of ECD spectra of each conformation weighted by their population (i.e. the 

energy). In order to simulate the experimental ECD spectrum properly, all the stable conformations 

need to be found and their ECD spectra calculated. Then the weighted computed spectrum is obtained 



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

42 

considering the Boltzmann distribution and then this spectrum is compared with the experimental 

one.46 As example of this kind of approach, herein the determination of the absolute configuration of 

three highly flexible natural products with remarkable biological activity is reported by the means of 

a combination of experimental (in solution and in solid state) and calculated ECD spectra.47 

 

 

Figure 2.5.5 Electronic Circular Dichroism spectra of ximaolide A, sinulaparvalide A and B and determination of the 

absolute configuration by comparison of experimental and computed ECD spectra. [Reproduced with permission from 

Eur. J. Org. Chem. 2012, 6722. Copyright (2011) WILEY-VCH Verlag GmbH & Co. KGaA] 
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3 Aim of the research 

There is a huge variety of molecules that can display stereodynamic behaviour along an axis. The 

systems that are taken in consideration in this manuscript well exemplify the variety of application 

that such stereodynamic structure can reach. The molecular systems presented can be in fact used: to 

generate steric scale of substituents, to find new and unexpected long range intramolecular 

interactions that can have a wider and general implication, to introduce chirality into scaffold that 

cannot bear an ordinary chiral centre and can be used as new enantiopure stable drugs or ligands, or 

to develop new stereodynamic sensor for biologically relevant molecules.  

Consequently, the Ph.D. work herein presented is divided in:  

• Chapter 4, where is discussed the analysis of stereodynamic rotation around a C-C or C-N 

bond in different molecules to elucidate their conformational behaviour and to provide new 

insight about weak interaction within their system;  

• Chapter 5, where is analysed the development and the steric requirement need to produce 

stable stereogenic axis and therefore stable atropisomers (belonging to the Class 3 of LaPlante, 

see Introduction 1.4). This different type of stereogenic units is recently gaining importance 

and represent a new and challenging type of chirality that can introduce chirality into scaffolds 

that cannot bear ordinary stereogenic centre; 

• Appendix where is presented an ongoing project, developed in collaboration with the Prof. 

Christian Wolf at the Georgetown University, about 1,8 disubstituted naphthalene as 

stereodynamic sensor for nucleobases or chiral primary amine. 
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4 Dynamic stereochemistry and conformational analysis 

The three-dimensional arrangement of the functional groups in a molecule can determine its chemical 

and biological behaviour. On this regard, it is of extreme importance to determine the most 

energetically favoured conformation of functional groups in organic molecules, in order to determine 

properties and reactivity. Many studies and methodology were developed to understand the different 

arrangement of organic molecules.1 The study of stereodynamic chiral axis allows to monitor the 

conformational arrangement of molecules, quantifying the dependency on steric and electronic 

parameters.2  

4.1 Long-Range Bonding/Nonbonding Interactions: A Donor−Acceptor 

Resonance Studied by Dynamic NMR3 

The study of energy barriers that involves the rotation around one hindered bond is directly connected 

to the steric parameters of the substituents in the nearest environment of that bond. 

One of the first method to assess the steric bulkiness of substituents is the A value4 in which is 

considered the preferential axial or equatorial disposition of the substituent in cyclohexanes. A more 

advanced and precise research was performed by the seminar work of Sternhell and coworkers,5 who 

studied the rotational barriers of 6-aryl-1,1,5-trimethylindans system by D-NMR (see Paragraph 2.1). 

However, with these scaffolds and experimental settings it was not possible to explore the steric 

bulkiness of small substituent, therefore an additional hindrance Y (an OMe or Me groups) is needed 

in position 5, and then individual steric bulkiness was calculated as a difference between the 

experimental rotational barrier and an interaction constant IOMe/Me-H due to the presence of the Y 

group. Trying to avoid the dependence of an interaction constant, Schlosser, Mazzanti and Ruzziconi6 

performed a series of works in which they studied a 3’-2-disubstitued-1,1’-biphenyl with D-NMR at 

very low temperatures, thus eliminating the need for the interaction constant and finding the steric 

interaction of small substituents referred to the hydrogen. More recently, Roussel and coworkes2d 

explored the rotational barrier of atropisomers (from stereolabile to stable) of N-(o-substituted-

aryl)thiazoline-2-thione by means of D-HPLC and kinetic studies (see Paragraph 2.2 and 2.3) and 

defined a steric scale, developed by thermal racemization of atropisomers, independent by chiral 

probe or interaction constant.  
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Figure 4.1.1 Scaffold use to define steric scale, the rotational barrier explored and the techniques used. 

Starting from these major works and deepening the interest on very small substituent7 a new series of 

simple pyridyl-benzyl derivates were synthesized and studied (6-14, Figure 4.1.2). Considering the 

literature regarding the relation on the steric bulkiness and rotational barrier, a particular series of 

these new compounds behaved in an unexpected way displaying a long-range interaction that perturbs 

the expected rotational barriers related to the steric bulkiness of substituents. 

 

Figure 4.1.2 Pyridyl-benzyl derivates 1-14. 

Some compounds of the 2-(2-(X-substituted-methyl)phenyl)pyridine series displayed different 

rotational barrier depending on the nature of the X substituent (Figure 4.1.3). For instance, the methyl 

(X=H) derivative (11) showed a rotational barrier of 13.7 kcal/mol in line with the steric hindrance 

consideration, however when X was changed to a methoxy group (14) the determination with D-

NMR pointed out a barrier of 12.6 kcal/mol. The ΔGǂ
rot. of 14 with respect to the one found for 11 is 

not compatible with the above steric scale in which a methoxy group is surely larger than a simple 

hydrogen.  

To explain such unusual feature a computational analysis of the rotational barrier was performed on 

a model system (1-5 in Figure 4.1.3) at B97XD/6-31G(d) level of theory.  
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Figure 4.1.3 Left: 11 and 14 and their respective rotational barrier is unrelated to the steric hindrance. Right: Model system 

used for the computational analysis 

The analysis of the geometry of the ground states and transitions states (TS) revealed the presence of 

two valid TS involved in the rotation of the 2-(1’-phenyl)-pyridine bond. One has the dihedral angle 

(N-C2-C1’-C2’) close to 0° (TS0), while the second corresponds to an angle close to 180° (TS180), 

therefore, the rotation of the benzyl moiety towards the lone pair of the nitrogen or towards the C-H, 

respectively (Figure 4.1.4). 

 

Figure 4.1.4 The two conceivable transition states occurring during the rotation (TS 0° and TS 180°) and the relative two 

possible ethyl group dispositions. [Reprinted (adapted) with permission from Org. Lett. 17, 2015, 2740-2743. Copyright 

(2015) American Chemical Society]. 

80°

                1 TS 180 skewed

0°
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As the steric scale dictates, the lowest TS was found occurring with a TS180 geometry. Furthermore, 

in the TS180 the CH2-X fragment can adopt two geometries, one planar in which the X substituent 

lay in the plane identified by the phenyl ring and one skewed where the X is tilted out of the aryl plane 

of about 80° (Figure 4.1.4). To esteem the contribution of the lone pair of the pyridine, the energies 

were recalculated (as single points) at the higher CCSD(T)/6-31+G(d)//B97XD/6-31G(d) level of 

theory.8 The rotational barrier found in case of 1 was equal to the experimental one proving the 

reliability of these calculation (Table 4.1.1). Moreover, these results pointed out again that when X= 

H (2) the rotational barrier was higher than in the case in which X was a more sterically demanding 

substituent such as a methoxy or a fluorine group (3 and 5, Table 4.1.1). 

Table 4.1.1 Experimental and calculated torsional barriers for 2-arylpyridines. Calculations at the CCSD(T)/6-

31+G(d)//B97XD/6-31G(d) level (energies in kcal/mol). Values in bold indicate the preferred transition state. 

[Reprinted (adapted) with permission from (R. Ruzziconi, et al. Org. Lett. 17, 2015, 2740-2743). Copyright (2015) 

American Chemical Society.] 

Compound X 
exptl. 

value 

planar  

TS 

skewed 

TS 
DE 

pl-ska 

1 Me 5.9b 8.4 6.2 +2.2 

2 H - 5.9c 5.9c 0c 

3 OMe - 4.9 6.7 -1.8 

4 NMe2 4.8 6.8 6.6 +0.2 

5 F - 4.0 6.9 -2.9 
a 

a positive value indicates a favoured skewed transition state. 
b 

See ref. 7. 
c
 For 2 there is only one geometry of TS 180° 

A close inspection of the geometries of the respective lowest TS showed that, while the conformations 

of the methyl and partially of the dimethylamine (1 and 4) substituents were skewed, the 

conformations preferred by the methoxy and fluorine were planar (3 and 5). This discrepancy in the 

preferred geometry of TS can explain the inverted steric scale found in 11 and 14 and in 2 and 3, 5. 

It is possible, in fact, to hypothesize a stabilizing interaction occurring in the TS between the lone 

pair of the nitrogen an electron demanding methylene group. In fact, on the contrary of the methyl 

and hydrogen, the methoxy and fluorine groups are able to remove charge from the  carbon 

favouring long-range stabilizing interaction that lowers the transition state and therefore the rotational 

barrier (Figure 4.1.5). On this perspective, the planar TS state occurring in 3 and 5 resemble much of 

SN2 intermediate, where the nucleophile group (N lone pair) need to be on the same plane of the 

electrophile (X group). 
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Figure 4.1.5 Schematic representation of the rotational barrier trend, implying the same energy for the GS of different 

pyridine derivative. [Reprinted (adapted) with permission from Org. Lett. 17, 2015, 2740-2743. Copyright (2015) 

American Chemical Society]. 

As consequence of this resemblance this long-range interaction can be defined as a resonance between 

a bonding (B) and non-bonding (NB) limiting structures. Although, the participation of lone pair on 

the nitrogen of a pyridine is commonly see in the reactivity of this aromatic ring (Minisci reaction, 

etc.), in the exceptional case here occurring the lone pair interacts with an atom four interposed bonds 

away without any conjugation effect (Figure 4.1.6). Due to the uncommon nature of this interaction 

experimental confirmations were needed. 

 

Figure 4.1.6 Non-Bonding (NB) and Bonding (B) limiting structure occurring with the long-range lone pair - methylene 

interaction. [Reprinted (adapted) with permission from Org. Lett. 17, 2015, 2740-2743. Copyright (2015) American 

Chemical Society]. 

The compounds 6-8, and 11-14, were synthetized by Ziegler-type addition9 starting from 3,5-

dimethylpyridine, and 3,5-diethylpyridine, respectively, and the appropriate phenyllithium 

derivative. The compound 9 and 10 containing the methoxy and fluorine atom was synthesized by 

Suzuki-Miyaura coupling10 because the Ziegler protocol yields only, especially in the case of 10, to 

the cyclized form B due to intramolecular attack of the lithium-amide on the methylene carbon ( 

Figure 4.1.7, detailed experimental procedures are reported in Paragraph 7.1). 

Lone pair interaction in
Planar TS lower its energy
and the DGrot associated
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Figure 4.1.7 Synthetical routes adopted to obtain 6-18.  

Once the products were synthesized the rotational barrier were determined by D-NMR analysis and 

line shape simulation (Figure 4.1.8). In all the molecules the evolution of the diastereotopic methylene 

signal with the temperature is followed (see Paragraph 7.1.2). 

In the case of 11, once the rotation is blocked (in the NMR time scale) at -28 °C, the AB system is 

shown, then by raising the temperature it first coalesces at + 4 °C then at room temperature, become 

one signal, implying a fast rotation in which the NMR is no longer able to distinguish the chiral 

environment. The line shape simulation is then able to extract the kinetic constant and determine the 

experimental calculated energy (see Paragraph 2.1). 
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Figure 4.1.8 1H D-NMR spectra of CH2 signal of 11 at 600 MHz in CD2Cl2 (left) and line shape simulation and 

corresponding derived rate constant (right). [Reprinted (adapted) with permission from Org. Lett. 17, 2015, 2740-2743. 

Copyright (2015) American Chemical Society]. 

The experimental and calculated rotational energies collected are displayed in Table 4.1.2. From the 

reported values is straightforward to correlate the different rotational barrier with the leaving group 

tendency of X. In the series where R1 and R2 are the same is possible to see the decrease of rotational 

barrier upon increase of leaving group tendency of X (series 6-8, 9-10, and 11-14). Moreover, the 

comparison of 8 with 9 demonstrate that a hindrance in position 5 does not influence the ΔGǂ
rot at any 

extend.  

When X=H the diastereotopic nuclei are lost, therefore, to evaluate the contribution of a hydrogen on 

the rotational barrier, the series 11-14 were synthesized where R1 and R2 are ethyl group that serves 

as chirality probes. Again, in this series is possible to evaluate the dependency of the rotational barrier 

on the leaving group tendency of X. In both series, 6-8 and 11-14 the tendency of the dimethylamino 

group (7 and 13 respectively) does not differ clearly from the respective ethyl derivatives. This is due 

principally to the coordination in the GS of the lone pair of the dimethylamino group to the electron 

poor carbon in position 2 of the pyridine ring lowering the energy of the GS and overall rising the 

barrier (see CH/interaction Figure 1.5.4 E). 

∆Gǂ
rot=13.8 kcal/mol

2.5 2.32.4 ppm

11

-23

-18

-12

-7

-2

4

T(°C)

25

< 2

7

15

28

46

76

k (s-1)

500



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

54 

As expected from the hypothesis of limiting structure in Figure 4.1.6, when the X= Br and the X=Cl 

derivatives were synthesized by Suzuki-Miyaura reaction from 2-pyridine boronic acid or 2-bromo-

pyridine with the respective 2-bromobenzyl halides or [2-(halo-methyl)phenyl]boronic acid, they 

yielded only the cyclized product B 6H-pyrido[2,1-a]isoindol-5-inium halides. 

Table 4.1.2 Experimental and calculated rotational barriers for compounds 6-18. Calculations at the CCSD(T)/6-

31+G(d)//B97XD/6-31G(d) level of theory (energies in kcal/mol). [Reprinted (adapted) with permission from Org. Lett. 

17, 2015, 2740-2743. Copyright (2015) American Chemical Society]. 

Compound R1 R2 X 
Experimental 

barrier 

Calculated 

barrier 

DE 

planar-

skeweda 

6 Me Me Me 13.1 13.1 2.3 

7 Me Me NMe2 12.8 14.7 0.0 

8 Me Me OMe 11.1 12.4 -1.4 

9 Me H OMe 10.9 12.2 -1.4 

10 Me H F 8.8 10.5 -3.4 

11 Et Et H 13.7 - - 

12 Et Et Me 14.4 - - 

13 Et Et NMe2 14.7 - - 

14 Et Et OMe 12.6 - - 

15 - Me 15.9 18.9 2.1 

16 - NMe2 15.5 18.8 3.1 

17 - OMe 15.1 17.7 2.4 

18 - F 15.1 17.9 1.5 
 

a 
a positive value indicates a favoured skewed transition state.  

Despite all these confirmations, another proof of the presence of a long-range interaction were 

provided by the analogous biphenyls 15-18 easily synthesized by Suzuki-Miyaura reaction. In this 

series, the lone pair of the pyridine was simulated by an ortho methoxy group, however both the 

experimental and calculated rotational barrier proved to be almost independent by the nature of the 

X substituent, and the in silico calculation showed only a skewed TS180 geometry for the TS, proving 

that the planar disposition is a proper feature of the long-range interaction determined by the presence 

of the lone pair of the pyridine. This work at first glance has a really limited scope, but if one thinks 

how the weak interactions, as the H-bond, - and halogen-halogen interactions, are fundamental 

for the construction of an ordered supramolecular structure and scaffold;11 the discovery of any new 

intra and inter molecular interaction, as this long-range interaction, can open new strategies and 

technique to impose order to a vast number of molecules. 
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4.2 New azo-decorated N-pyrrolidinylthiazoles: synthesis, properties and an 

unexpected remote substituent effect transmission.12 

Following the same consideration used to explore the long-range interaction in phenyl-pyridine 

system (Paragraph 4.1) a study on a new series N-pyrrolidinylthiazole was performed.  

This study was performed as a following project of the work on stable Wheland-Meisenheimer 

intermediate13 changing the electrophile from 4,6-dinitrobenzofuroxan DNBF to a diazonium salt 

21a-g and using as nucleophile both bis (19) or mono (20) substituted pyrrolidyl-thiazole in position 

4 and 2 (Figure 4.2.1).  

 

Figure 4.2.1 Top: previous work on the isolation of Wheland-Meiseinheimer intermediate. Bottom: current work on 

reaction between diazonium salt and thiazole and synthesis of product 22a-b and 23a-g). [Reprinted (adapted) with 

permission from Org. Biomol. Chem., 2016, 14, 7061. Copyright (2016) Royal Society of Chemistry]. 

The exceptional reactivity of the 19 made impossible to isolate or even to detected the Wheland 

intermediate A deriving from the attack of the nucleophile position 5 of 19 to the diazonium salt 21 

(Figure 4.2.2). Instead the formation of a protonated form of the thiazole 19H was detected that 

immediately after the formation of the desired intermediate A helps to rearomatize the thiazole ring 

removing the proton and leading to the formation of products 22a-c. This reactivity of 19 is mainly 

due to its ability to delocalize a positive charge on the two free lone pair of the pyrrolidyl rings. The 

compound 20, on the other hand, bearing only one pyrrolidyl ring can stabilize the Wheland 

intermediate without helping in the rearomatization as instead happen with 19. 
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As expected, the reaction with 20 is slower and with less side products leading almost exclusively to 

the corresponding products 23a-g. Despite this, it was only possible to detect in NMR experiment a 

resonance between 20 and its protonate form while the positive adduct B remains elusive (Figure 

4.2.2).  

 

Figure 4.2.2 Positive Wheland intermediate of the reaction between the thiazole and the diazo-aryl salt. 

A close inspection of the NMR spectra of 23a-c at +27 °C revealed that the methylene signal in the 

 position of the pyrrolidine ring broadens at different extend in function of the substituent on the 

phenyl ring. Since the para position is the only difference between 23a-c, the broadening of the 

methylene signal must be connected to an electronic effect of this group, that enhance the double 

bond nature of the C-N bond slowing down the rotation around the C-N axis and therefore 

differentiate at the NMR the two alpha positions of the pyrrolidine ring (analogously to the DMF, see 

Paragraph 2.1). This partial double bond nature is further proved by X-Ray diffraction on 23a where 

the C1-N4 bond (1.330 Ǻ) is shorter than a usual C10-N4 (1.475 Ǻ) highlighting a partial double bond 

nature of this bond also in solid state (Figure 4.2.3).  

Bond Lenght (Å)
C1-N4 1.330
C1-N5 1.331
C2-N5 1.355
C2-C3 1.375
C3-N1 1.350
N1-N2 1.281
C4-N2 1.414
C10-N4 1.475

C1-N4 is shorter than 
a normal C-N bond (C10-N4)

Figure 4.2.3 X-ray structure of 23a and the relative bond length (Ǻ). The C1-N4 bond is shorter than a normal single 

C-N bond. [Reprinted (adapted) with permission from Org. Biomol. Chem., 2016, 14, 7061. Copyright (2016) Royal 

Society of Chemistry]. 
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Two hypotheses were taken in consideration: 1) a positive mesomeric effect (+M) where the lone pair 

of the para substituent is delocalized all the way through the C1-N4; or 2) a negative mesomeric effect 

(-M), where an electron poor substituent recall the lone pair on the pyrrolidine nitrogen forming a 

resonance form with a partial double bond (Figure 4.2.4).  

 

Figure 4.2.4 Mesomeric effects of 23c (+M) and 23a (-M) ending up as partial double bond on the C1-N4 bond 

Although the +M hypothesis imply an improbable negative tetra-coordinate nitrogen, the mechanism 

needed to be verified. Thus, D-NMR analysis of 23a and 23c were performed and the rotational 

barrier around the C1-N4 was derived by line-shape simulation assuming a kinetic equation of the 

reversible first order (Figure 4.2.5). These analyses revealed that the 23a has a higher rotational 

barrier with respect to 23c (14.2 kcal/mol and 12.9 kcal/mol respectively), indicating, as expected, a 

stronger double bond formation with an electron withdrawing group rather than with an electron 

donating and verifying the negative mesomeric (-M) hypothesis. 

+M mesomeric effect

-M mesomeric effect

23c

23a
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Figure 4.2.5 D-NMR spectra recorded in CDCl3 at 600 MHz of 23a (left) and 23c (right) and their respective line shape 

simulated spectra and rotational barrier. The arrow in 23c experimental spectrum indicates an impurity. [Reprinted 

(adapted) with permission from Org. Biomol. Chem., 2016, 14, 7061. Copyright (2016) Royal Society of Chemistry]. 

To further prove the electronic effect of the para substituent on the C1-N4 bond, the D-NMR and line 

shape simulation were performed on all the compound synthesized (23a-g, Figure 4.2.5 and 

Paragraph 7.2.1). The rotational barrier derived are reported in Figure 4.2.6, in which is possible to 

observe that the ΔGǂ
rot increases on going from less to more electron-withdrawing substituents. 

Moreover, in Figure 4.2.6 are also reported the Hammett parameter of each substituent,14 they were 

found to be linearly correlated to the energy involved in the rotation of the C1-N4 bond, further relating 

the mesomeric nature of the substituent on the azo-moiety ring to the double bond entity of the 

thiazole-pyrrolidinyl bond. 

 

Figure 4.2.6 Left: experimental energy barrier for the rotation of the pyrrolidinyl ring and the respective Hammett constant 

for each substituent. Right: Rotational barrier of 23a-g correlated to the  Hammett parameter. [Reprinted (adapted) with 

permission from Org. Biomol. Chem., 2016, 14, 7061. Copyright (2016) Royal Society of Chemistry].  

ΔG =12,9  0,2kcal/mol

2400

Simulation Experimental

k(s-1)

950

490

280

95

50

27

T(°C)

13

4

-1

-10

-19

*

ΔGǂ
rot = 14.2  0.2 kcal/mol

950

Simulation Experimental
k(s-1)

330

290

260

220

125

45

T(°C)

30

27

25

24

18

*

Simulation Experimental

*

2400

k(s-1)

950

490

280

95

50

ΔGǂ
rot = 12.9  0.2 kcal/molΔG =12,9  0,2kcal/mol

2400

Simulation Experimental

k(s-1)

950

490

280

95

50

27

T(°C)

13

4

-1

-10

-19

* T(°C)

Compound Substituent DGǂ (Kcal/mol)a,b c

23a 4-NO2 14.2 0.78d

23b 4-Br 13.5 0.23d

23c 4-OCH3 12.9 –0.27d

23d 4-CN 14.2 0.66d

23e 4-CF3 13.7 0.54d

23f 4-Cl 13.6 0.23d

23g 3,5-Dichloro 13.9 0.37 (x2) e

a. As the mean of DG± calculated at each temperature. b. ±0.2 kcal/mol. c. See ref.
d.  para value e. meta value
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4.3 Computational and D-NMR Analysis of the Conformational Isomers and 

Stereodynamics of Secondary 2,2′-Bisanilides 

The disposition in space of functional groups in an organic framework is directly connected to its 

reactivity and physical proprieties. Organic amides are a particular functional group that can undergo 

a E/Z isomerism, due to the partial double bond nature of the C-N bond and hindered rotation around 

the carbonyl-carbon axis. On this regard, stereodynamic behavior of this group have been detected 

and investigated in tertiary amide moiety showing restricted rotation about the aryl-carbonyl and 

carbonyl-nitrogen bonds and their correlation (see Figure 1.5.5).15  

Anilides are a particular class of amide derived from organic oxoacid by replacing an OH group by 

the NHPh group or derivative formed by ring substitution.16 In other words, in the anilides the 

nitrogen is directly linked to an aryl group and therefore the stereodynamic process involved can 

occur along the Caryl-N and the N-Ccarbonyl axes (atropisomerization and E/Z isomerization, 

respectively, see Figure 1.5.5).17  

The interest in the anilides goes beyond their particular stereodynamic, anilides, in fact, finds 

application: 1) as analgesic, especially in the paracetamol family (propacetamol, acetanilide, 

phenacetin); 2) as auxiliary groups in asymmetric synthesis reported by Curran and Clayden, where 

the anilides moiety aids to retain or transfer axial chirality in organic radicals passing by a meta-stable 

C-N atropisomer (Figure 4.3.1).17,18 

Figure 4.3.1 Anilides, structure and application in asymmetric synthesis and drug derivatives. 

Although the wide application of this structural motif, its stereodynamic remains not exhaustively 

studied.19 
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Both for this reason, and following a previous work on 2,2’-binaphthalene-1,1’-diol (24),20 where the 

dynamic stereochemistry of the hindered rotation of the two ester-aryl moieties and the naphthyl-

naphthyl bond was reported, the stereodynamic of 2,2’-bisanilides analogous of 24 (25-33) were 

investigated (Figure 4.3.2).21  

 

Figure 4.3.2 Structure of 2,2’-binaphthalene-1,1’-diol diisobutyrate 24, and structural analogues bisanilides 25-33 

investigated. 

The 1H-NMR of 25 was recorded (in a mixture 5/1 v/v of CDFCl3/CDF2Cl) from -47 °C down to -

139 °C. At first, it showed for the diastereotopic methyl of isopropyl group an anisochronous doublet 

related to chiral environment associated to the slow aryl-aryl rotation in the NMR timescale. Then, 

once the temperature was further decreased (-128 °C), instead of detecting the expected 

conformational diastereoisomer corresponding to the Caryl-N bond hindered rotation a new series of 

peak emerged directly from the baseline, indicating the formation of dynamic new species in solution. 

A detailed inspection of the aliphatic region of the spectra revealed the presence of two species with 

80:20 ratio, in which the major shows four methyls and 2 CH while the minor displays only two CH3 

and one methine. This can be ascribed to the simultaneous presence of two species: a symmetric one 

(C2 symmetry) in which the methyl and CH of each phenyl ring have the same magnetic environment 

and an asymmetric one (C1 symmetry) in which each methyl and methine have a different chemical 

shift (Figure 4.3.3). Considering an identical rate constant for the interconversion of one signal of the 

symmetric species into two signals of the asymmetric one and vice versa, a line shape simulation was 

performed in the range between -97 °C to -107 °C. An energy of activation related to the exchange 

between the two conformations were calculated as large as 8.6 ± 0.2 kcal/mol considering a reversible 

first order kinetics (Figure 4.3.4 left).  
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Figure 4.3.3 Temperature dependence of the 1H NMR spectra of 25 (600 MHz in CDFCl2/CDF2Cl 5/1 v/v). [Reprinted 

(adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright (2016) American Chemical Society]. 

However, the change on lowering the temperature of the ratio between the two conformations is 

related to a DH° of -4.1 kcal/mol and a DS° of -25 cal/mol K for the conversion of the C2 to the C1 

conformations (Figure 4.3.4 right). 

The deuterated Freon solvent is useful to reach extremely low temperature with NMR spectroscopy; 

however, it lacks polarity. To study the response of 25 at low temperature in a much polar solvent, 

the D-NMR was performed again in deuterated Freon in presence of about 3 equivalents of CD3OD. 

The NMR spectra recorded (Figure 7.3.1) show similar results, however the peaks emerged from the 

baseline at lower temperature with respect to the sample without CD3OD. This behaviour indicates 

an interference of polar solvent during the generation of the dynamic species. 

CH

CH3

Anisochronous

doublet

Asymmetric species

Symmetric species

80%

20%

New peaks from the baseline!
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Figure 4.3.4 Line shape simulation and thermodynamic data for the exchange between C1 and C2 conformers of the 

compound 25. [Reprinted (adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright (2016) American 

Chemical Society]. 

In order to see if this behaviour can be extended to other derivatives of the secondary 2-2’ bisanilides, 

the products 26-28 were synthesized and analysed. As expected, on lowering the temperature also 26-

28 display a new series of peaks emerging from the baseline, although the intensity and the 

temperature of formation of the new species are different (Figure 4.3.10). 

X-ray diffraction on single crystal of 25 and 28 obtained by slow evaporation of a CHCl3 and 

acetonitrile solutions respectively, revealed that in solid-state the amides do not lay in the plane of 

the phenyl ring in order to form an intramolecular hydrogen bond between the two amide moieties 

with a global C1 symmetry (Figure 4.3.5 A). On the other hand, X-ray analysis on single crystals of 

27 (from CHCl3) showed a completely different conformation, in which the molecule can arrange in 

two different C2 conformers that dispose the amide moiety with dihedral angleH-N-C2-C1) of 31.4° 

and -121.7° respectively in order to form an intermolecular hydrogen bond connecting the CO with 

the NH of the nearest molecule (Figure 4.3.5 B). The dissimilar X-ray structures between the different 

derivatives highlight that the solid-state conformations are separated by small energy differences and 

both intramolecular and intermolecular interaction can be obtained.  

Experimental Simulated

DGǂ = 8.6  0.2 kcal/mol DH° = -4.1 kcal/mol DS° = -25 cal/(mol K)

C2C1
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Figure 4.3.5 X-ray determined structures of A) 25 and 28 displaying an intramolecular H-bond B) 27 displaying an 

intermocular H-bond between the carbonyl and the NH of the neighbour molecule. [Reprinted (adapted) with permission 

from J. Org. Chem. 2016, 81, 89. Copyright (2016) American Chemical Society]. 

Still, the nature of the new peaks arising at low temperature in the 1H-NMR of 25-28 remains 

unknown. These X-ray structures, showing an intra- or inter-molecular H-bond suggested the 

existence of such interaction also in solution, this hypothesis can explain the NMR pattern showed at 

low temperature in two different scenarios (Figure 4.3.6): 

1. The formation of an intramolecular H-bond with C1 geometry similar to the one found in 

solid-state for 25 and 28 that breaks the molecular symmetry generating an asymmetric 

species responsible for the four methyl and two methine peaks. In this perspective, the 

conformer with C1 geometry would be in equilibrium with a C2 symmetric species responsible 

for the two methyl and one methine peaks. 

2. The formation of an intermolecular H-bond in which the formation of the dimer (with a 

similar geometry of the one found for 27 in solid state) would explain the main set of peaks 

(asymmetric one) found at low temperature, while the co-presence of the monomer would be 

attributed to the minor symmetric species. 

In principle, both scenarios cannot be ruled out merely on the basis of these information, therefore a 

set of more accurate experimental and theoretical analysis were designed.  

Theoretical investigation of the intramolecular H-bond scenario led to the identification of two 

conformations: one with a C2 symmetry where the amide lies in the plane of the phenyl ring (C2-NH-

in) without any hydrogen bonding and another with a C1 symmetry similar to the ones observed in 

the X-ray of 25 and 28, where the amide is skewed with respect to the phenyl ring and undergoes an 

intramolecular H-bond with the amide on the other aryl system (C1-H-bond). However, the 

computational analysis performed with different functionals and the basis set 6-31G(d) led to different 

results (Table 4.3.1). In fact, while B3LYP suggested the C2-NH-in as the most stable conformation, 

25 28 27

Intramolecular H-bond Intermolecular H-bond

C1 symmetry C1 symmetry C2 symmetry

A B
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the M06-2X functional led to an almost equally populated situation between C2-NH-in and C1-H-

bond, and when the B97XD functional was used the C1-H-bond was no longer populated (it was 

no longer an energy minimum). Without producing any valuable result in the intramolecular H-bond 

scenario, the theoretical investigations were further focused on the intermolecular H-bond 

hypothesis and therefore to the formation of dimers.  

Due to the presence of the hindered rotation about the CPh-CPh axis is necessary to take into 

consideration two type of dimers: a homodimer, where are present two bisanilides with the same axial 

chirality, or a heterodimer, where are employed the two bisanilides with opposite chirality. While 

with a homodimer the conceivable geometry would lead to conformations with a C2 or a C1 global 

symmetry, in the case of the heterodimer the accessible symmetry would be Ci and Cs. The DFT 

investigation of the dimers hypothesis revealed two stable conformations for both cases with similar 

energy. B3LYP and M06-2X was explored while B97XD was ruled out due to its incapability to 

find the intramolecular interaction in the intramolecular scenario.  

 

Figure 4.3.6 Structures related to the intramolecular H-bond and intermolecular H-bond scenarios of 25, derived from X-

ray or from DFT calculations.  

The heterodimer (Ci symmetry) results more stable respect to the homodimer (C2 symmetry) with 

both functional: by 0.5 kcal/mol and by 2.7 kcal/mol at B3LYP/6-31G(d) and M06-2X/6-31G(d) level 

of theory, respectively. Both structures resulted in agreement with the 1H-NMR analysis at -128 °C 

Both intramolecular and 

intermolecular scenarios 

provide a structure for the 4 

CH3, 2 CH peaks related to 
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displaying two different isopropyl groups for each molecule that lead to four methyl peaks once 

considered the intrinsic diastereotopicity of this moiety. The calculated gain in energy obtained from 

the formation of a dimer22 is 6.8 kcal/mol for the heterodimer and 5.0 kcal/mol for the homodimer at 

B3LYP/6-31G(d) level of theory (21.3 kcal/mol and 18.3 kcal/mol with M06-2X respectively). 

Expanding these studies also to 26-28 was noted a not clear trend for the stability of homo and 

heterodimers and a huge difference between the dimerization energies calculated with the two 

functionals (Table 4.3.1) that finally did not allow to a consistent explanation of this scenario.  

Table 4.3.1 .TOP: Computational data for the C2-NH-in and C1-H-bond conformations of 25. BOTTOM: Dimers energies 

and dimerization energies for 25-28. Dimerization energies EDim were calculated with counterpoise correction. [Reprinted 

(adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright (2016) American Chemical Society]. 

 

a This geometry degenerates to the C2-NH-in.
 

Since in both scenario the computed energy differences were not conclusive in the indication of a 

preferred system, the NMR chemical shifts were considered. The NH and the H3 moieties of each 

phenyl ring can display different chemical shifts once an H-bond process is occurring. In fact, the low 

temperature signals at 9.9 ppm and 4.5 ppm could be attributed to the H-bond (NH) and free NH 

(NH) respectively that once the temperature is raised collapse at the average chemical shift of these 

two peaks (7.0 ppm while the experimental is around 7.2 ppm). Although is not possible to have an 

experimental support for these consideration, it is worth to explore in silico this possibility. 

Conformation Method Energy (a.u.) DE (kcal/mol)

C2-NH-in B3LYP/6-31G(d) -1036.596083 0.00

C1-H-bond B3LYP/6-31G(d) -1036.591816 2.68

C2-NH-in M06-2X/6-31G(d) -1036.185695 0.00

C1-H-bond M06-2X/6-31G(d) -1036.185473 0.13

C2-NH-in B97XD/6-31G(d) -1036.281224 0.08

C1-H-bond B97XD/6-31G(d) -1036.281361a 0.00

Compounds

B3LYP/6-31G(d) M06-2X/6-31G(d)

Heterodimer Homodimer Heterodimer Homodimer

E EDim. E EDim. E EDim. E EDim.

25 0.00 -6.8 0.50 -5.0 0.00 -21.3 2.67 -18.3

26 0.75 -5.5 0.00 -0.6 0.54 -17.2 0.00 -13.1

27 5.55 -4.3 0.00 -1.6 0.31 -24.0 0.00 -17.7

28 0.00 -8.6 2.03 -6.4 0.00 -18.0 1.16 -17.8

Intermolecular H-bond – Dimers DFT energies (E) and Energy gain for the Dimerization (Edim.)

In kcal/mol of 25-28.

Intramolecular H-bond – C2-NH-in and C1-H-bond DFT energies of 25
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Calculations were performed both on the dimer and on the monomers (C2-NH-in and C1-H-bond) at 

GIAO-B3LYP/6-311++G-(2d,p)//B3LYP/6-31G(d) level of theory. The results showed different 

chemical shifts for C1-H-bond and the dimers of the NHs or the H-3s depending if they are involved 

in the H-bond or not (Table 4.3.2). In particular C1-H-bond displayed the higher NHs split as can be 

supposed due to the more shielded arrangement of the NH not involved in the H-bond in this 

conformation. Moreover, the H-3 in the dimers is found in an environment where the carbonyls almost 

lay in the plane of aryl therefore the formation of the dimer should move the H-3 signal at higher 

ppm. In other words, in the dimers the carbonyl does not change its orientation remaining near the H-

3, instead in C1-H-bond the carbonyl is moved away from the H-3’, leaving the H-3’ in a much 

electron rich environment as the calculation suggest (upfield shift of H-3’). The experimental D-NMR 

showed an upfield of the H-3 on lowering the temperature indicating a behaviour more consistent 

with the intramolecular H-bond formation. 

Table 4.3.2 Calculated Chemical shift at GIAO-B3LYP/6-311++G-(2d,p)//B3LYP/6-31G(d) for 25  

 

However, this indication is far from be conclusive. To collect more experimental evidence the 

infrared spectrum of 25 was recorded (Figure 4.3.7). Despite it was recorded at room temperature, 

the faster time scale of IR vs NMR might be helpful in detecting the split in NH or C=O region due 

to the two conformations observed also in the NMR. Interestingly in the NH region was observed two 

bands, one sharp at 3415 cm-1 and one broad at 3340 cm-1 that can be connected to an N-H that is in 

equilibrium between the free form and the H-bond respectively. 

 

Figure 4.3.7 IR region of the N-H stretching region of the spectrum and calculated IR spectrum of 25 for the same spectral 

region at the B3LYP/6-31G(d) level. [Reprinted (adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright 

(2016) American Chemical Society]. 

Conf. 25 NH NH’ H-3 H-3’

C1-H-bond 8.1 6.5 9.0 7.4

C2-NH-in 6.7 6.7 9.5 9.5

Heterodimer 8.7 7.5 9.5 9.0

Homodimer 8.2 7.5 9.0 8.5
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Although this region can be strongly affected by the presence of the water the calculated IR spectrum 

at B3LYP/6-31G(d) level of theory confirms that an NH H-bond interaction generate two bands 

where the one found at lower frequency is the one involved in an H-bond. Although this experiment 

confirms that the NH undergoes to an H-bond equilibrium, it was not able to discriminate between 

the intramolecular and intermolecular H-bond scenario. 

The IR spectrum and the evidence collected with the 1H-NMR at low temperature with three 

equivalents of CD3OD, indicate that the conformations rely on the presence of H-bonds, and more 

specifically a polar solvent seems to interfere with the formation of this interaction whether it comes 

from a monomer that undergoes to intramolecular H-bond or a dimer formed by intermolecular 

hydrogen bonding. In order to study this interference a titration with DMSO-d6 tracked by NMR 

spectroscopy at room temperature was performed. When aliquot of DMSO-d6 was added to a solution 

of 25 in CDCl3 the NMR spectra shows a large upfield shift (0.4 ppm) for the H-3 and an even more 

large downfield shift for the NH (1 ppm). All the other signals did not show any significative change 

of the chemical shift (Figure 4.3.8).  

 

Figure 4.3.8 DMSO-d6 titration followed by 1H NMR of bisanilide 25 in CDCl3 (600 MHz, 25 °C). The concentration of 

25 is maintained 0.04 M. [Reprinted (adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright (2016) 

American Chemical Society]. 

A modelling of the system was performed at B3LYP/6-31G(d) level of theory considering the mono 

and double interaction of one or two DMSO molecule with one or two NH respectively. The energy 

stabilization deriving from the NH-DMSO interaction was found to be -8.3 kcal/mol and -16.4 
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kcal/mol for the mono and the double adduct respectively.23 The theoretical investigation pointed out 

that the adducts display the geometry of the C1-H-bond conformation that upon solvation move the 

carbonyl out of the plane. This explain the downfield shift of the H-3 that now found itself far from 

the C=O with respect to the C2-NH-in conformation. 

To elucidate the DMSO titration experiments and the relative theoretical model obtained, a solute or 

bis-solute system was proposed (Figure 4.3.9). In this view at room temperature there is a fast 

exchange between the C2-NH-in stabilized by the amide conjugation and C1-H-bond stabilized by 

the intramolecular bond leading to a mediated NMR spectra. Once the temperature is decreased the 

equilibrium rate decreases and the signal of both conformations can be discriminated. The hydrogen 

acceptor solvent disrupts this equilibrium firstly coordinate one of the two free NH, then, when the 

amount of polar solvent increases, both the NH ending up forming a bis-solute that completely 

sequesters the bisanilide from the C2-NH-in ↔ C1-H-bond equilibrium. 

 

Figure 4.3.9 Model to explain the dynamic interaction of 25 with DMSO in solution. [Reprinted (adapted) with permission 

from J. Org. Chem. 2016, 81, 89. Copyright (2016) American Chemical Society]. 

The interaction with the solvent plays an important role in determining magnitude of the 

conformational split at the NMR at low temperature. In fact, analysing the behaviour of 25-28 at low 

temperature is possible to note that the amount of the asymmetric conformer (H-bond conformer) 

decrease in the series (Figure 4.3.10). In the intramolecular H-bond scenario the R substituent is an 

obstacle to the disrupting solvent coordination of the amide moiety, therefore bulky R substituent 

protect the amide moiety from the solvent favouring the intramolecular coordination. On the other 
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hand, in the intermolecular H-bond scenario the formation of dimers (and therefore the asymmetric 

species) is obstructed by R bulky substituent that in this geometry crowds the interdimeric space. In 

other words, for the dimers there should be an inverse proportion between the bulkiness of R 

substituent and the amount of asymmetric species found at low temperature. The exactly opposite 

experimental tendency found in 25-28 (Figure 4.3.10) is a strong evidence that support the 

intramolecular H-bond scenario.  

 

Figure 4.3.10 1H NMR spectra of compounds 25-28 acquired at -140 °C (600 MHz in CDFCl2/CDF2Cl). [Reprinted 

(adapted) with permission from J. Org. Chem. 2016, 81, 89. Copyright (2016) American Chemical Society]. 

The dimeric structures feature two molecules of bisanilides in C2-NH-in where the dihedral angle 

between the two phenyl subunits is almost 90°, on the other hand the intramolecular H-bond relies on 

the possibility of the CPh-CPh bond to rotate passing by an almost 90° C2-NH-in (as supported by the 

X-ray analysis) to a much closer angle in C1-H-bond.  

To corroborate these considerations (M)-33 was synthesized starting from enantiopure (M)-6,6’-

dimethyl-2,2’-diaminobiphenyl and it proton NMR was recorded at low temperature (Figure 4.3.11 
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Left). This molecule having a tetra-ortho-substituted biphenyl unit cannot rotate the CPh-CPh existing 

in fact as a couple of atropisomers with a dihedral angle approximately of 90°.  

The 1H-NMR low temperature spectra of (M)-33 and its racemate in CDFCl2 were strikingly different 

from the one recorded for compounds 25-28. In fact, it these cases were only possible to observe a 

downfield shift of the amide and an upfield shift of the neighbouring H-3. It was not detected the 

formation of any asymmetric species.  

The formation of the dimer is not obstructed by the more rigid scaffold of 33, yet it was not detected 

any new species emerging from the baseline. Therefore, to rationalize this result is necessary to 

consider only the intramolecular H-bond as a possible scenario, where the constrains imposed by the 

fixed CPh-CPh angle impede the realization of the C1-H-bond conformation and therefore the 

intramolecular H-bond. 

 

Figure 4.3.11 Left: D-NMR of 33 (600 MHz in CDFCl2/CDF2Cl). No detection of any asymmetric species. Right: D-

NMR of tertiary anilide 32 (600 MHz in CDFCl2/CDF2Cl). [Reprinted (adapted) with permission from J. Org. Chem. 

2016, 81, 89. Copyright (2016) American Chemical Society]. 

To completely rule out the dimer formation, DOSY experiment24 of 25 and 33 were performed in 

C2D2Cl4. The results of DOSY performed in both diluted and concentrated solution highlighted a 

small radius for the all the samples (around 2.30:1 with respect to the solvent radius); since the 
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dimerization should involve an increase in the hydrodynamic radius the result of the DOSY analysis 

favoured the hypothesis of an intramolecular H-bond interaction. 

To further prove the importance of the NH in this equilibrium the methylated derivative 29-32 were 

synthesized. In the tertiary anilides is populated the both E and Z conformation of the amide, while 

in the secondary is populated only the Z. The 1H-NMR of 32 at room temperature displays a series of 

bands in the N-Me and CH3CO region correlated to different interconverting conformers generated 

by the E/Z isomerism of the tertiary amide moiety. Once 32 was cooled down the 1H-NMR spectrum 

showed the splitting of many signals in a large set of peaks related to the high number of conceivable 

stereoisomer (up to 9, Figure 7.3.2 ) with 14 related CH3 peaks (Figure 4.3.11 right). Unfortunately, 

due to partial overlapping of peaks and low populated stereoisomers was difficult to establish the 

exact number of conformers present. Although the system is complicated by the equilibria of different 

species related to the E/Z isomerism the absence of the NH moiety made impossible to the system to 

generate an H-bond interaction and therefore 29-32 have a stereodynamic behaviour related to the 

one observed for 24. 

References

1 a) Sigaloc M. V., Pylaeva S. A., Tolstoy P. M. J. Phys. Chem. A. 2016, 120, 2737-2748; b) Loera D., Liu F., Houk K. 

N., Garcia-Garibay M. A. J. Org. Chem. 2013, 78, 11623-11626; c) Lunazzi L., Macciantelli D., Cerioni G. J. Org. Chem., 

1982, 42, 4579-4581.  
2 a) Lunazzi L., Mazzanti A., Spagnolo P. J. Org. Chem. 1997, 62, 2263-2266; b) Lunazzi L., Mazzanti A., Alvarez A. 

M. J. Org. Chem. 2000, 62, 3200-3206; c) Wolf C., Tumambac G. E. J. Phys. Chem. A, 2003, 107, 815-817; d) Ghosn 

M. W., Wolf C. J. Org. Chem. 2011, 76, 3888-3897; e) Lunazzi L., Mazzanti A., Minzoni M. J. Org. Chem. 2006, 71, 

9297-9301; f) Surya Prakash G. K., Wang F., Ni C., Shen J., Haiges R., Yudin A. K., Mathew T., Olah G. A. J. Am. 

Chem. Soc. 2011, 133, 9992-9995; g) Flos M., Lameiras P., Denhez C., Mirand C., Berber H. J. Org. Chem. 2016, 81, 

2392-2382; d) Belot V., Farran D., Jean M., Albalat M., Vanthuyne N., Roussel C., J. Org. Chem. 2017, 82, 10188-10200. 
3 Ruzziconi R., Lepri S., Buonerba F., Schlosser M., Mancinelli M., Ranieri S., Prati L., Mazzanti A., Org. Lett. 2015, 17 

2740-2743. 
4 a) Winstein S., N. J. Holness, J. Am. Chem. Soc. 1955, 77, 5562-5578. b) J.A. Hirsch, Top. Stereochem. 1967, 1, 199-

222, c) E. Kleinpeter, F. Taddei, P. Wacker, Chem. Eur. J., 2003, 9, 1360-1368 
5 G. Bott, L.D. Field, S. Sternhell, J. Am. Chem. Soc., 1980, 102, 5618-5626 
6 a) Ruzziconi, R., Spizzichino, S., Lunazzi, L., Mazzanti, A., Schlosser, M. Chem – Eur. J. 2009, 15,2645-2652. b) 

Lunazzi, L., Mancinelli M., Mazzanti, A:, Lepri, S., Ruzziconi, R., Schlosser, M., Org. Biomol. Chem. 2012, 10, 1847-

1855; c) Ruzziconi, R, Spizzichino, S., Mazzanti, A., Lunazzi, L., Schlosser, M., Org. Biomol. Chem. 2010, 8, 4463-

4471; d) Mazzanti A., Lunazzi L., Minzoni M., Anderson J. E. J. Org. Chem. 2006, 71, 5474-5481. 
7 Mazzanti A., Lunazzi L., Lepri S., Ruzziconi R., Schlosser M. Eur. J. Org. Chem. 2011, 6725–6731. 
8 Dahlgren M. K., Schyman P., Tirado-Rives J., Jorgensen W. L. J. Chem. Inf. Model, 2013, 53, 1191-1199. 
9 Ziegler K., Zeiser K., Ber. Dtsch. Chem. Ges. 1930, 63, 1847-1851. 
10 Miyaura N., Suzuki A. Chem Rev. 1995, 95, 2457–2483. 
11 Ward M. D., Raithby P. R. Chem. Soc. Rev. 2013, 42, 1619-1636. 
12 Boga C., Cino S., Micheletti G., Padovan D., Prati L., Mazzanti A., Zanna N. Org. Biomol. Chem., 2016, 14, 7061. 
13 Forlani L., Boga C., Mazzanti A., Zanna N. Eur. J. Org. Chem., 2012, 1123. 
14 Lowry T. H., Richardson K. S. Mechanism and Theory in Organic Chemistry 3rd Ed., Harper Row, Publ., New York 

1987. 
15A) Takahashi Y., Ikeda H., Kanase Y., Makino K., Tabata H., Oshitari T., Inagaki S., Otani Y., Natsugari H., Takahashi 

H., Ohwada T. J. Org. Chem. Article ASAP DOI: 10.1021/acs.joc.7b01759; b) Adams R., Gordon J. R. J. Am. Chem. 

Soc. 1950, 72, 2454−2457; c) Clayden J., Lund A., Vallverdu L., Helliwell M. Nature 2004, 431, 966−971. 
16 PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure 

(IUPAC Recommendations 1995)) on page 1317. 

                                                 



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

72 

                                                                                                                                                                  
17 a) Curran D. P., Liu W., Chen C. H. T. J. Am. Chem. Soc. 1999, 121, 11012-11013; b) Bruch A., Ambrosius A., Fröhlich 

R., Studer A., Guthrie D. B., Zhang H., Curran D. P. J. Am. Chem. Soc. 2010, 132, 11452−11454; c) Curran D. P., Chen 

C. H. T., Geib S. J., Lapierre A. J. B. Tetrahedron 2004, 60, 4413–4424. 
18 Clayden J. Angen. Chem. Int. Ed Engl 1997, 36(9), 949-951. 
19 Ilieva S., Hadjieva B., Galabov B. J. Mol. Struct. 1999, 508, 73−80. 
20 Mazzanti A., Chiarucci M., Bentley K. W., Wolf C. J. Org. Chem. 2014, 79, 3725-3730. 
21 Mazzanti A., Chiarucci M., Prati L., Bentley K.W., Wolf C. J. Org. Chem. 2016, 81, 89. 
22 To correlate one molecule with a two molecules system in DFT is necessary to consider a counterpoise correction. In 

this case was adopted the one proposed by Bernardi and Boys: a) Boys S. F., Bernardi F. Mol. Phys. 1970, 19, 553; (b) 

Simon S., Duran M., Dannenberg J. J. J. Chem. Phys. 1996, 105, 11024−11031. 
23 The gain in energy were calculated by the difference between the BSSE counterpoise corrected energy of the adduct 

and the energy of the single components (the bisanilide was considered in C2-NH-in conformation). 
24 Gradient strength goes from 1 to 62 G/cm and with diffusion delay of 50 ms. The radius was measured by comparison 

with the solvent radius. 



Chapter 5 – Chase for new atropisomers 

73 

5 Chase for new atropisomers 

Dynamic stereochemistry investigations on small organic molecule can elucidate long-range 

electronic (Paragraphs 4.1 and 4.2) or H-bond interaction (Paragraph 4.3) and more other interactions 

occurring between two or more exchanging conformers. Them can occur in particular structures that 

are somehow sensible to the electronic, steric or thermal environment.  

At the high energy limit of the stereodynamic processes there are stable compound in which the 

exchange barrier is high enough to avoid interconversion between different stereoisomers of the 

molecules. As reported in Paragraph 1.5, chiral axes can display both stereodynamic and stereostable 

behaviour in function of some internal parameter (steric hindrance and electronic conjugation) and 

some external as the temperature. 

Herein are discussed the attempts to produce stable conformations in which the rotation around a 

single bond is inaccessible at room temperature, and stable atropisomers1 are therefore produced. The 

final aim of these works is to introduce chirality, through stable atropisomers, in scaffolds that cannot 

bear an ordinary stereogenic centre (i.e. quaternary carbon). The introduction of stereogenic axes in 

achiral scaffolds is nowadays pursued with particular interest in order to generate atropisomers and 

diastereoisomers in molecules already known for their usefulness in a wide range of areas (from 

pharmaceutical to asymmetric synthesis). 

5.1 Conformational Analysis and Absolute Configuration of Axially Chiral 1-aryl 

and 1,3-diaryl-xanthines.2 

Specular chiral molecular system can generate different biological responses. More often, only one 

of the two enantiomers exhibits a pronounced biological effect. In this cases in medicinal chemistry 

the enantiomer displays stereoselectivity due to its preferential interaction with the recognition site 

(chiral environment). It is intuitive that the most active stereoisomer (eutomer) reaches the best steric 

and electronic complementary interaction in respect to the less active stereoisomer (distomer). 

Despite this clear picture, that can be also simulated in silico with docking studies, in real biological 

environment the situation is not this straightforward. In fact, in vivo the difference in activity observed 

are not exclusively related to the fitness of the acceptor-ligand. In a real biological environment, also 

the distribution and all the process related to the pharmacokinetic of the drug are chiral. In other 

words, the in vivo difference of activity between the eutomer and distomer is a combination of 

interactions with different biologic chiral acceptors, in which the fit into the recognition site is just 

accounted as the last of them.  
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The activity difference between the two enantiomers is usually described with the Eudismic ratio 

(ER) or with the Eudismic index (EI). The ER is usually calculated as the ratio between the EC50 

(Half maximal Effective Concentration) or the IC50 (Half maximal Inhibitory Concentration) of the 

eutomer (Affinity-Eu) and the respective EC50 or IC50 of the distomer (Affinity-Dis). While the EI is 

calculated as the logarithm of the ER (Figure 5.1.1).3,4,5 

 

Figure 5.1.1 Definitions of Eudesmic Index and Eudismic Ratio and some examples of biological active molecules where 

the activity of one enantiomer differ from the other 

Although, in biological environment there are several chiral interactions of the eutomer other than 

the one in the recognition site, the difference in activity of the two stereoisomers were related to 

different models considering merely the interaction of the eutomer with the binding site. The three 

point contact model firstly suggested by Easson, Stedman and Beckett6,7 was modelled on the binding 

of the R(-)-epinephrine with its receptor. The R(-)-epinephrine undergoes to three interactions with 

its receptor thus implying a very specific molecular orientation that can be obtained only with the R 

enantiomer and not with the S (it undergoes only to two interaction), Figure 5.1.2.  
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Figure 5.1.2 Interaction of R(-) and S(+) epinephrine with the receptor. Only the R enantiomer can achieve three 

interactions.  

The three points contact model have some limitation: it required a perfect understanding of the 

environment of the interactive site and moreover found some limitation when more than one 

stereogenic element is present. Pursuing a more general rule, Pfeiffer8 stated an empirical rule “the 

greater the difference between the pharmacological activity of the R and S isomers, the greater is the 

potency of the eutomer”. Although this rule is very general and find only few exceptions,9 it does not 

provide a useful tool to foreseen the EI of a couple of enantiomers.  

Therefore, the most common way to evaluate the difference in potency of two enantiomers is a 

separate synthesis and biological screening. Four possibilities can arise comparing the ratio between 

the affinity of the eutomer (Aeu) and the racemate (Arac):
10,11 

1. Aeu / Arac  = 2. The eutomer is the only active. The distomer does not contribute in any way to 

the affinity. The chiral compound is highly stereoselective. 

2. Aeu / Arac  > 2. In this situation in the racemate the distomer counteracts the effect of the 

eutomer leading to an overall attenuated activity in the racemate. 

3. Aeu / Arac  < 2. Both the stereoisomers are active. The distomer presents smaller activity than 

the eutomer indicating a smaller stereoselectivity of the active principle. 

4. Aeu / Arac  = 1. In this case there is no stereoselectivity and it is not observed differences in the 

activity of the two stereoisomers. This behaviour is not uncommon and can be related to three 

factors, a) the stereogenic unit is not involved in the interaction with the receptor; b) the 

mechanism of interaction of the molecule is not specific for the receptor; c) the interaction 

with the receptor involves only two points of contact not discriminating between the two 

different chiral centres.  

The latter case is related only to classic stereogenic centre in which an asymmetric tetra-substituted 

atom is involved, on the other hand stereogenic axis and helix can display different stereoselective 

interaction with the biological receptor. In fact, these stereogenic units generate enantiomers that need 

less than three contact point to be discriminated. Moreover, these particular stereogenic units can be 
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introduced in rigid bioactive scaffolds that does not allow the presence of a conventional stereogenic 

centre. 

The generation of enantiomers in previously achiral biological active scaffold can be useful to 

enhance the known activity and to generate pharmacologically different compounds. In fact, 

enantiomers can differ in the magnitude of the activity toward a certain substrate but also in the effects 

(Figure 5.1.3).12,13,14,15 The (+)-N-methyl-3-methoxy morphinane is an analgesic and present 

addictive proprieties while the levo-stereoisomer is non-addictive and shows only antitussive 

proprieties. The same behaviour is displayed by the enantiomers of the propoxyphene, where the 

dextro-isomers is well-known for its analgesic proprieties while the levopropoxyphene retains 

antitussive effect. 

 

Figure 5.1.3 Differences in pharmacological profile of couple of enantiomers  

Therefore, the introduction of chiral axis in biological active scaffolds that cannot bear an ordinary 

centre of chirality can, on one side enhance the pharmaco-related effect and on the other differentiate 

the activity of the two newly obtained enantiomers. Moreover, atropisomers are free from the need 

of three points of contact to exerts a stereoselective interaction. 

On this regard Csp2-N are one of the most common bonds in biological environment, moreover they 

are present in different class of molecule in which the insertion of chiral axis can be valuable in order 

to insert chirality in biological active scaffold. 

Several organic scaffolds such as: imides,16 lactames17, oxazolidine-2-one18 and thiazolidine-2-

thiones19, pyrrole,20 indole,21 pyrazole,22 1,2,4-triazole23 are eligible for the insertion of stereogenic 

axis (Figure 5.1.4 A). Among them, barbiturates are well known for their biological activity and are 

one of the most studied biological active compound in which is conceivable the insertion of a Csp2-N 
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stereogenic axis. 24 The biological effect of barbiturates is related to the resemblance of this scaffold 

to the pyrimidine nitrogen bases. Following the same rational the xanthine scaffold is analogous to 

the purine nucleobases and is well known to be the forefather of a class of biological active molecules 

(Figure 5.1.4 B).25 

 

Figure 5.1.4 A stable atropisomeric compound that carry a Csp2-N stereogenic axis. B Nitrogenous bases and their 

respective biological active synthetic analogue bearing a N-aryl stereogenic axis.  

However, despite its biological activity, poor attention has been given to the dynamic conformations 

of this scaffold. The motivation of this lack of studies has to be ascribed in the chemistry of the 

scaffold itself: it is not possible to install an ordinary stereogenic element without modify one of its 

essential functional groups, while it is possible to install stereogenic axes.  

The xanthine scaffold is planar and an aryl substituent linked to the nitrogen in positions 1 or 3 would 

be skewed out of the plane of the xanthine plane due to steric hindrance caused by the two carbonyls 

or by one carbonyl and the imidazole moiety.  

If the aryl substituents lack of local C2 symmetry and the rotation around the Csp2-N is hindered 

(depending on the steric bulkiness of the aryl-substituents) the resulting conformational enantiomers 

would be either stereo labile or configurationally stable. 

In order to evaluate the steric requirement to conceive stable atropisomers on the xanthine scaffold, 

an in silico evaluation was firstly carried out. The starting point was the known structure of 1-phenyl 

xanthine,26 that arranges the aryl ring skewed (79.5°) with respect to the planar xanthine scaffold. 

However, some modification to this structure are needed. To have atropisomer related to the hindered 

rotation around the Csp2-N1 the aryl ring needs to be locally asymmetric (i.e. does not have a local C2 

symmetry axis). If an analogous situation is simultaneously introduced on the nitrogen in position 3, 

the combination of two stereogenic axes generates four stereoisomers. As a theoretical model it was 

considered the introduction of two o-tolyl groups in 1 and 3 positions (1,3-di-o-tolyl xanthine).  
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Figure 5.1.5 Theoretical studies performed at the B3LYP/6-31G(d) level of theory on the model system (1,3-ditolyl-

xanthine). Ground states showed the existence of two populated diastereoisomers, while the analysis on the transition 

states evaluate the stability of the rotational stereoisomers. [Reprinted (adapted) with permission from J. Org. Chem. 

2017, 82, 6874-6885. Copyright (2017) American Chemical Society]. 

The two diastereoisomers were optimized at the B3LYP/6-31G(d) level of theory, however due to 

the imperfect orthogonality of the o-tolyl moiety two conformation need to be accounted for each 

diastereoisomer leading to a total of eight conformers. The most stable Ground State (GS) of each 

diastereoisomer are presented in Figure 5.1.5. Obviously, the corresponding enantiomer of cis and 

trans diastereoisomer have the same energy. To evaluate the entity of the rotational barrier (and 

therefore the thermal stability of the atropisomer itself) the Transition States (TS) were calculated. 

As happens in most of the cases where a chiral axis is involved the interconversion pass through a TS 

in which the two aryl moieties are coplanar (Paragraph 1.5). Analogously to the biphenyls in Figure 

1.5.3 each aryl in 1 or in 3 positions can be coplanar with the xanthine scaffold forming a ≈ 0° dihedral 

angle (TS0), where the o-tolyl of the rotating ring points towards the carbonyl in position 2, or 

forming a ≈ 180° dihedral angle (TS180) when the aryl rotates in the other direction (i.e. towards the 
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carbonyl in 9 for the N1-aryl and towards the imidazole for the N3-aryl). The calculated energy 

barriers related to the rotation for the N1-aryl and N3-aryl were 27.5 kcal/mol and 23.9 kcal/mol 

respectively having both the TS0 geometry as the most stable TS. Due to the higher steric constrain 

exerted by the carbonyls in 2 and in 9 the rotation of the o-tolyl in position 1 results higher enough 

with respect to the one in position 3 to observe the two rotations independently. Following the 

definition of Oki1 and the LaPlante chart (see Paragraph 1.5 and Figure 1.5.2 there reported) these 

rotational barriers are high enough to develop slow to very slow interconverting atropisomer (Figure 

5.1.5). 

At least, in silico, the o-tolyl moiety in both the 1 and 3 positions has been proved bulky enough to 

generates stable conformational diastereoisomers. To experimentally prove these theoretical barriers 

a series of xanthine bearing a chiral axis in 1 and in 3 positions were synthesized (34-42, Figure 

5.1.6).  

Figure 5.1.6 N1-aryl and N1-N3 bisaryl xanthine synthesized 

 

The synthesis of the 1-aryl xanthines (34-39) (Figure 5.1.8)27 differs from the procedure used to 

introduce an aryl also in 3 position (40-42) (Figure 5.1.7).28 The latter were synthesized starting from 

the appropriate aryl-substituted isocyanate and aniline yielding an 1,3-diarly urea29 that can be 

cyclized with malonyl chloride giving the respective pyrimidine-trione.30 The chlorination of one of 

the carboxyl moieties was performed with POCl3 and afforded the compounds VII, VIII, IX, in which 

the latter two were used as mixture of regioisomers that was separated in 41a-41b and 42a–42b only 

on the last stage of the synthesis. The amination of the vinyl chloride with MeNH2 followed by the 

insertion in the alpha position of a nitroso group lead to compounds XIII, XIV and XV. The ring 

closure and the formation of the xanthine 40-42 were achieved by dehydration at high temperature 

followed by one-pot methylation of the imidazole ring (Paragraph 7.4.2). 
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Figure 5.1.7 Synthetic procedure to obtain 40-42. 

 

The 1-aryl xanthine (Figure 5.1.8) could be synthesized starting by the commercially available XIX, 

but the amount needed requested an in-house synthesis. Compound XIX derives from ethyl-

benzylglicinate (XVI) and ethyl (E)-N-cyanoformimidate (XVII) through the cyano-immino derivate 

XVIII that can be cyclized to the imidazole XIX with a base that allows the cyano group to attack 

the alpha position of the ester moiety. The synthesis goes on with the addition of the appropriate 

isocyanate to XIX and the formation of the urea derivatives XX a-c that can be easily cyclized with 

a base and the elimination of ethanol to form the xanthine scaffold 34-36 subsequently methylated 

with MeI to yield 37-39 (Paragraph 7.4.2).  

 

Figure 5.1.8 Synthetic procedure to obtain 34-39. 

 

The determination of the rotational barrier can be carried out with different methodologies (Chapter 

2). In the 1-aryl series (34-39) the introduction of the benzyl group was designed to determine the 

racemization barrier with D-NMR (Paragraph 2.1), however the expected AB system of the 

methylene of 34 did not undergo to coalescence even when heated to 120 °C (Figure 7.4.1) suggesting 

a rotational barrier too high for this technique. Therefore, a kinetic study was approached (Paragraph 

2.3). Unfortunately, the free NH of 34-36 made difficult the isolation of the atropisomer on HPLC 

columns with chiral stationary phase (CSP). To solve this issue compounds 37-39 were synthesized 
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where the free NH is protected with a methyl group that does not interfere with the rotation barrier 

on the N1 and allows a better separation on CSP column. 

The single enantiomer of each compound was then heated up to a fixed temperature and aliquots 

taken at different times were analysed at CSP-HPLC at 25 °C to determine the amount of enantiomer 

generated at high temperature (37 Figure 5.1.9 and Figure 7.4.2, 38 Figure 7.4.3 and 39 Figure 7.4.4). 

The fitting of the experimental data into a first order reversible kinetic equation (Eq 2.3) allowed the 

determination of the kinetic constant for each kinetic study performed and therefore through the 

Eeryng equation (Eq 2.2) the rotational barrier involved in the racemization.  

 

Figure 5.1.9 Racemization of enantiopure 37 (performed at +115 °C in C2D2Cl) followed by CSP-HPLC analysis recorded 

at room temperature. The same procedure on 38 and 39 leads to their racemization barrier displayed in the Table among 

the half-life time of each enantiomer at 25°C and at 37°C and the calculated racemization barrier. [Reprinted (adapted) 

with permission from J. Org. Chem. 2017, 82, 6874-6885. Copyright (2017) American Chemical Society]. 

The experimental values determined are even higher than the theoretical ones and in the case of 37 

and 39 they display a very long half-life time (both at 25 °C and 37 °C). It is noteworthy that although 

the nitro group and the methyl are considered almost isosteric,31 compound 38 shows a 5 kcal/mol 

lower rotational barrier. This effect has an electrostatic nature and corresponds to a stabilization of 

the TS due to the formation of a NO/CO interaction that facilitate the rotation around the Csp2-N axis 

(Figure 1.5.6 C).32 

Given the very high barriers determined for 37-39 for the rotation of the aryl in position 1 the presence 

of the chiral probe was no longer necessary, and therefore the benzyl moiety was substituted with a 

methyl for the preparation of the 1,3-bisaryl xanthines 40-42.  
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This series is composed by a compound bearing two chiral axes (40) and two compounds that have 

an ortho substituted aryl ring in position 1 and a symmetric aryl ring in position 3 (41a, 42a), or vice 

versa (41b, 42b). The first, very similar to the model compound, generates two diastereoisomers 

almost equally populated, while the latter carry only one chiral axis and it is possible to evaluate the 

effect on ΔGǂ
rot of the same ortho hindered group when it is placed in position 1 or in position 3. The 

rotational barriers of compounds 41-42 were determined analogously to the compounds 37-39 (41a 

Figure 7.4.6, 41b Figure 7.4.7, 42a Figure 7.4.8 and 42b Figure 7.4.9).  

Compound 40, bearing two chiral axes behaves in silico very similarly to the model compound (to 

which the only difference is the methyl of the imidazole ring), displaying two distinct rotational 

barriers for the aryl in position 1 and in position 3, where the latter is lower by 2.1 kcal/mol (at the 

B3LYP/6-31G(d) level). The lower energy rotation (N3-aryl) should yield diastereomerization 

(interconversion trans-cis) while the higher (N1-aryl) should lead to racemization.  

The room temperature NMR of 40 showed four methyl peaks ascribable to the two diastereoisomer 

(in 57:43 ratio) and the four stereoisomers could be completely resolved on amylose CSP column 

(Figure 5.1.10). 

 

Figure 5.1.10 Left: 1H NMR spectrum (300 MHz in CDCl3) of the mixture of the diastereoisomers of compound 40 (57:43 

ratio). The signal of the ortho-methyl signals is shown. Right: CSP-HPLC of 40 (Chiralpak AD-H, 10 m, 250 x 20 mm, 

20 mL/min hexane/iPrOH 80/20 v/v) showing the four available stereoisomers. [Reprinted (adapted) with permission 

from J. Org. Chem. 2017, 82, 6874-6885. Copyright (2017) American Chemical Society]. 

The NMR analysis performed individually on each chromatographic peak of 40 allowed to assign the 

first two eluted peaks to one diastereoisomer, while the last two to the other diastereoisomer (the first 

two and the last two of eluted stereoisomers have the same NMR spectra respectively). 

NMR-NOE spectra were performed to determine the relative configuration of the two 

diastereoisomers. In fact, DFT calculations suggested that the cis diastereoisomer should arrange the 

two ortho- methyls near enough (≈ 3.5 Ǻ) to provide a detectable NOE enhancement. Unfortunately, 

in both the diastereoisomers the methyls have very similar chemical shift (less than 10 Hz from one 

peak to the other), therefore a fully selective irradiation was not conceivable. Instead, the 13C satellites 

1H-NMR CSP-HPLC
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of both methyls were saturated simultaneously to detect the NOE effect on the 12C signals (Figure 

5.1.11). While this experiment performed on the mixture of first and second eluted stereoisomers did 

not produce any detectable NOE effect, the same experiment performed on the third and fourth 

stereoisomers yielded a detectable NOE enhancement on the 12C signals, straightforwardly assigning 

to the 3+4 eluted couple the cis configuration (40b) and the 1+2 couple to the trans configuration 

(40a), Figure 5.1.11. 

 

Figure 5.1.11 DPFGSE-NOE for compound 40, on saturation of the 13C satellites of both methyls (600 MHz in CDCl3). 

Left: first two eluted stereoisomer. Right: third and fourth eluted stereoisomer. Bottom: 1H control spectra. [Reprinted 

(adapted) with permission from J. Org. Chem. 2017, 82, 6874-6885. Copyright (2017) American Chemical Society]. 

The diastereomerization process can be easily followed with NMR without the presence of a chiral 

probe. In the case of 40, the diastereomerization barrier was measured starting from an enantiopure 

sample at +77 °C and +82 °C with NMR, monitoring the increase of the other diastereoisomer (Top 

of Figure 5.1.12). The fitting of the data with a first kinetic reversible equation lead to a rotational 

barrier of 26.0 kcal/mol. On the other hand, the enantiomerization was followed by CSP-HPLC 

heating at different temperature a sample composed by an equilibrated mixture of two diastereomer 

having the same chirality on the most stable chiral axis (first and fourth eluted in bottom of Figure 

5.1.12).  
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Figure 5.1.12 Top: Kinetic diastereomerization of compound 40 observed with 1H NMR (600 MHz in DMSO) at + 77 

°C. Bottom: kinetic measurement of enantiomerization rate of compound 7 by HPLC (Chiralpak AD-H, eluent 

hexane/iPrOH 80/20 v/v), starting from the two thermodynamically equilibrated diastereoisomers 1+4, kept at +115 °C 

in C2D2Cl. [Reprinted (adapted) with permission from J. Org. Chem. 2017, 82, 6874-6885. Copyright (2017) American 

Chemical Society]. 

Treating the sum of the enantiomers generated (second and third) as a single compound involved in 

a simple racemization the racemization barrier derived was 30.4 kcal/mol (Figure 7.4.5), perfectly 

compatible with the one already determined for 37. 

All the stereoisomers analysed by kinetic studies showed a rotational barrier high enough to be 

considered stable atropisomer at room temperature and in physiological condition as had been 

previously foreseen by DFT calculations (Table 5.1.1, Paragraph 7.4.1). Despite these studies, the 

absolute configuration (AC) of the atropisomers of 37-42 remains undisclosed. Unfortunately, these 

molecules do not contain any heavy atom suitable to the assignment of the absolute configuration by 

anomalous dispersion X-ray diffraction. It was then straightforward to choose the comparison of 
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computed ECD spectra (TD-DFT method) with the one experimentally recorded for each 

enantiomer.33 

Table 5.1.1 Experimental and computed energy barrier (in kcal/mol) for the rotation around the Csp2-N axis of 40-42 and 

corresponding half-life times at +37 °C. 

  1-aryl rotation (kcal/mol) 3-aryl rotation (kcal/mol) 

Compd. DGǂ
calc. DGǂ

exp. t1/2 (+37 °C) DGǂ
calc. DGǂ

exp. t1/2 (+37 °C) 

40 27.5 30.4 9.1 years 23.5 26.0 2.6 days 

41a 27.5 30.5 10.7 years - - - 

41b - - - 23.7 26.2 4.6 days 

42a 30.1 32.8 422 years - - - 

42b - - - 25.6 28.4 0.4 year 

 

As discussed in Paragraph 2.5.2 this method involves the simulation of the ECD spectra for each 

populated ground state of the enantiomer. The final computed spectrum results as a linear 

combination of the single ground state spectrum weighted by their Boltzmann population. 

The 1 aryl-xanthines 37-39, bearing a benzyl group have a wider conformational space (i.e. more 

ground states). In fact, the benzyl group can arrange on the same side of the ortho substituent (syn 

conformers) or on the opposite side (anti conformers). Although these are not stable conformers, both 

their simulated ECD spectra needed to be taken into account to correctly determine the AC of the 

compounds (37-39). In Figure 5.1.13A are shown the calculated ECD spectra of each stable ground 

state of 39 with the four different functional (for data redundancy) CAM-B3LYP, BH&HLYP, M06-

2X, ωB97XD and the same basis set 6-311++G(2d,p), while in Figure 5.1.13 B are displayed the 

Boltzmann weighted ECD spectra for each functional with the experimental one for the second eluted 

enantiomer. The direct comparison of the weighted calculated ECD spectra for the M atropisomer 

with the experimental one led to the assignment of the M configuration to the second eluted 

enantiomer of 39, Table 5.1.2.  

An analogous approach was used to determine the AC of 40-42 (Table 5.1.2). The absence of the 

benzyl group reduces the degree of freedom of the molecules and only the geometries deriving from 

the imperfect orthogonality of the aryl substituent have to be considered (also the p-anisole although 

present a local C2 symmetry axis have two conformations that must be taken into account) Figure 

5.1.14.  
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Figure 5.1.13 A) Left: Conformers of 39 generated by the syn or anti disposition of the benzyl moiety respect the hindered 

aryl substituent. Right: Calculated ECD spectra with four different functional (CAM-B3LYP, BH&HLYP, M06-2X, 

ωB97XD) with the same basis set, 6-311++G(2d,p), of each conformer of 39. B) Left Atropisomers of 39. Centre: 

Experimental ECD recorded in ACN (path length 0.2 cm) of the first and second eluted atropisomer of 39. Right: 

comparison between the second eluted experimental ECD spectra and the computed ones with the four functionals. The 

calculated ECD spectra are red-shifted by 10, 10, 1 and 14 nm and multiplied by a factor 0.75, 0.72, 0.70 and 0.80 

respectively for each functional. [Reprinted (adapted) with permission from J. Org. Chem. 2017, 82, 6874-6885. 

Copyright (2017) American Chemical Society]. 

The introduction of stereogenic axes in the xanthine scaffold produced stable atropisomers that can 

be easily simulated, synthesized and resolved. The good agreement between the computed and the 

experimental rotational barrier and computed spectra demonstrated the reliability of the DFT 

calculations into foreseen the steric requirement needed to produce stable atropisomers and in the AC 

assignment. The stability of the atropisomers generated spans from day to years in physiological 

conditions (+37 °C). The introduction of chirality in this biological active molecule could open to the 

opportunity to differentiate the effect of the two stereoisomers and to enhance the activity of one over 
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the other, introducing the concept of ER (or EI) also for this widely diffused biologically active 

scaffold. 

 

Figure 5.1.14 Top: experimental ECD of: 40a (left) and 40b (right) recorded in ACN (path length 0.2 cm). Bottom: 

comparison of the experimental ECD spectra of the second eluted (left) and third eluted (right) atropisomers with the 

calculated one for 40 1P,3P and 1P,3M respectively at CAM-B3LYP/6-311++G(2d,p) level of theory. [Reprinted 

(adapted) with permission from J. Org. Chem. 2017, 82, 6874-6885. Copyright (2017) American Chemical Society]. 

Table 5.1.2 Absolute configuration of compounds 37-42 derived from the ECD spectra and the CSP-HPLC column 

employed to resolve the atropisomers. 

    Absolute Configuration 

Compd. CSP-HPLC Column 1° eluted 2° eluted 3° eluted 4° eluted 

37 ChiralPak AD-H 1M 1P 
  

38 Lux Cellulose-2 1M 1P 
  

39 ChiralPak AD-H 1P 1M 
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5.2 Tetrasubstituted cyclopentadienones as suitable enantiopure ligands with 

axial chirality.34 

Over the last three decades the organic chemistry has been facing a continue and increasing demands 

of new, efficient and robust procedure to achieve enantiomerically pure compounds. The increasing 

demand comes in major instance from the life science related disciplines, where the absolute 

configuration of organic compound is intrinsically related to their biological activity. Various 

international entity such as FDA (Food and Drug Administration) or EMA (European Medical 

Agency) now require to any company submitting a licence request for a novel racemic Active 

Pharmaceutical Ingredient (API) to establish the activity of each enantiomer separately. Moreover, 

most of the drugs now present on the market are chiral and a large part of them are commercialized 

as single enantiomer. This imply the development of methods to obtain enantiopure molecules.  

Nowadays three approaches exist to obtain pure enantiomers:  

1) The use of natural chiral pool as reagents source to synthesize the target enantiomer. However, this 

method implies the perfect knowledge of the stereochemistry of the native natural product and the 

employment of reactions that do not imply racemization. 2) The resolution of racemic mixture. This 

procedure simplifies the synthesis of the desired product and enables the use of more efficient 

procedures. On the other hand, the separation of the enantiomers can be far from trivial, especially in 

a large scale production. In fact, most of the resolution are performed by co-crystallization with 

enantiopure chiral salt (i.e. citric acid, tartaric acid, mandelic acid) or with Chiral Stationary Phase 

(CSP) HPLC column. Both methods are time consuming, optimized by trial and error approach and 

in order to be sustainable, large purification apparatus are needed (as the simulated moving bed 

(SMB) for an industrial CSP-HPLC apparatus). 3) The asymmetric synthesis accomplishes the 

synthesis of the desired product with extremely high enantioselectivity and are usually performed by 

the use of enantiopure reagent or auxiliaries and a large amount of well-established methods are 

available.35 Although this approach can be time consuming to optimize and with a restricted scope, 

the main advantages is the use of the enantiopure component with catalytic loading to produce large 

quantity of enantiopure molecules.  

The role of the enantiopure catalyst is to generate a diastereomeric transition states energetically 

favoured over the others, thus generating an enantioselective reaction path. The extend of this 

stabilization is directly proportional to the enantio-selection.36 The nature of the chiral auxiliary can 

be organic, metallo-organic37 or enzymatic.38  

Although these catalyst are usually appealing in terms of turnover number and enantioselectivity the 

use of rare and expensive metal often limits their usage in industries. On this regard, both academia 
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and industries are striving to develop metallo-organic catalyst with common metals such as Fe or Zn. 

In this framework metallo-organic catalyst are now presenting a valuable option to scale up the 

production of enantiopure molecule.  

In particular, during the synthesis design, transition-metal-mediated asymmetric hydrogenation 

represent a preferred way to introduce a stereogenic unit into the desired scaffold. In fact, this 

procedure can be easily applied to alkenes, imines, ketones using simply H2 as reagent.39 Over than 

a broad scope it is one of the asymmetric procedures with the highest reactivity, regio- and 

enantioselectivity and the lowest production of waste (generally it stoichiometrically produces H2O 

as byproduct). 

Unfortunately, the design of the metallo-organic compounds relies mostly on a trial and error 

approach. Since 1968, when Knowles and Horner 40 reported the first chiral version of the 

Wilkinson’s Ruthenium catalyst, an incredibly wide number of chiral ligands have been successfully 

employed. In particular some of them represent (Figure 5.2.1) the forefathers of entire class of 

asymmetric metallo-organic ligands providing extremely valuable insights into ligand design. Among 

them can be noted two atropisomeric compounds. 

 

Figure 5.2.1 Important chiral ligands for asymmetric hydrogenation. C and G present a stereogenic axis.   

The first in the time (C) designed by Noyori represented a major breakthrough because of the novel 

metal-ligand bifunctional system operating with ruthenium and an axially chiral 2,2′-

bis(diphenylphosphino)-1,1′-binaphthyl (BINAP)41 that expand the scope of this asymmetric reaction 

from olefins to the carboxylic moieties either functionalized or not. Together with Knowles, Noyori 

were appointed the Nobel Prize in 2001 for its ground-breaking contribution to the field of 

asymmetric hydrogenation. 



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

90 

More recently also monodentate phosphorous atropisomeric molecules have proved that not only 

bidentate ligands can be valid candidates as enantiopure ligands in asymmetric reaction (Figure 5.2.1 

G). 42 

It is worth reminding that the difficulties into a priori design of the ligands are located to the fact that 

a simple energy difference of 2 kcal/mol between the two conceivable diastereomeric adduct metal-

organic complex / substrate (transition states) can be responsible for a 95% enantiomer excess. The 

same activation barrier can be found in the rotation of the ethane, thus the prediction of what kind of 

ligand structures will be effective is far from predictable. 

The use of phosphorous seems to be widespread in the asymmetric ligand design; its affinity relies 

on the electron availability in orbitals that easily overlap with second or third row transition metals. 

Recently, the use of less expensive transition metals is the only valuable option for the application in 

industry of the novel asymmetric organo-metallic catalyst. On this regard, the phosphorous ligands 

losses their attractiveness respect to their oxygen relatives. Moreover, atropisomeric ligands are well 

established as one of the most important classes of ligands for asymmetric metal catalyzed reactions.43  

In fact, oxygen related ligands are now taken in consideration (Figure 5.2.2). Namely, the Mn 

epoxidation catalyst A possesses two axially chiral binaphthyl subunits embedded in a sterically 

demanding backbone.44 and more recently, attention has been focused on non-C2-symmetric biaryl 

compounds such as the tertiary aminophenol or binaphtylazepine structure (B), which catalyzes the 

enantioselective addition of diethylzinc to aldehydes.45,43d 

 

Figure 5.2.2 Axially chiral ligands without phosphorus used to perform asymmetric reactions with first row transition 

metals. 

The Shvo catalyst has been extensively studied as hydrogenation catalyst (Figure 5.2.3 Top).46 In this 

framework it represents, also for its good tolerance of first row transition metals, a valuable 

hydrogenation catalyst to become enatioselective with an appropriate enantiopure ligand. However, 

in the Shvo catalyst the election ligand is a tetraphenylcyclopentadienone where an ordinary 

stereogenic centre is difficult to be installed. As previously discussed atropisomeric ligands for the 

asymmetric hydrogenation was proved to be very effective, therefore the introduction of axial 
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chirality into the tetraphenylcyclopentadienone scaffold was a straightforward choice to introduce a 

stereogenic unit into this ligand. In fact, if any of the aryl rings lacks local C2 symmetry and the 

rotation around the Csp2-Csp2 is frozen atropisomers arise and the ligand (and the derived metal-

organic catalyst) becomes chiral.  

However, the presence of one or more stereogenic axes can create geared mechanism that usually 

makes easier the rotation around the Csp2-Csp2 axis (the tetraphenylcyclopentadienone is already 

known to be a propeller-like motor).47 To avoid this issue, the introduction of a 2’,2” bond between 

the two phenyl moieties in 4,5 positions of cyclopentadienone creates a planar and rigid phenanthrene 

framework fused with the cyclopentadienone that results in the formation of a so-called phencyclone 

(Figure 5.2.3 Bottom).48 In this particular scaffold the aryl rings are skewed out of the planar core by 

127.6° and 138.2° by the simple hindrance of the two ortho-hydrogen with the rigid framework as 

proved by the X-ray diffraction crystalline structure.49 

 

Figure 5.2.3 Top: Dimeric form of the Shvo hydrogenation catalyst. Bottom: Tetraphenylcylopentadienone and diphenyl-

phencyclone. In blue is highlighted the planar core of the phencyclone scaffold. [Reprinted (adapted) with permission 

from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

 

In order to evaluate the steric requirement to produce configurationally stable stereoisomers a DFT 

model was designed. The 1,3-di-o-tolyl-phencyclone 43a structures was optimized at B3LYP/6-31G 

(Figure 5.2.4). This molecule carries two stereogenic axes on the 1 and 3 positions, however the syn 

conformation (M*,P*) where the two ortho-methyls are arranged on the same side with respect to the 
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phencyclone core, belongs to the a Cs symmetry and it is an achiral meso form (Figure 1.2.5). On the 

other hand, the anti conformation (P*,P*) is a chiral structure that belongs to the C2 symmetry group 

and thus two conformational enantiomers (P,P and M,M) are generated, which conformational 

stability relies on the entity of the rotational barrier of the ortho tolyl moieties.  

As expected from the X-ray diffraction analysis on the diphenylphencyclone the DFT analysis 

suggested that the o-tolyl rings are not exactly perpendicular to the planar core. Thus, two dispositions 

of the aryl ring must be considered: they can conveniently described as “in” conformation when the 

methyl of the o-tolyl is near the phenanthrene core and “out” conformation when the CH3 is close to 

the carbonyl. Adding this to the presence of two asymmetric rings the conceivable conformations 

count to twelve, however they are halved by the meso combination of the syn conformer ending up 

with a total of six diastereoisomeric conformation (Figure 5.2.4). The DFT model considered all the 

conceivable conformer populated identifying the P*,P* (anti) out-out as the most stable.  

 

Figure 5.2.4 Left: 1,3-di-o-tolyl-phencyclone (43a) and side view of its syn and the anti conformers. Right: The six 

diastereoisomeric conformation of the ground states for 1,3-di-o-tolyl-phencyclone 43a and their relative energy in 

kcal/mol. The P*,P* (anti) out-out conformer resulted the most stable. [Reprinted (adapted) with permission from Org. 

Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

To quantify the rotational barrier and thus the stability of the conformational stereoisomers the 

possible transition states energy must be calculated. The rotation about the Csp2-Csp2 of one o-tolyl 

moiety transforms the anti arrangement into the syn. This exchange is made possible through the 
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passage of the CH3 moiety towards the phencyclone core (TS-180) or the carbonyl moiety (TS-0) 

(Figure 5.2.5). Computational analysis performed at B3LYP/6-31G(d) level of theory indicates that 

the most stable transition state rotates the methyl rotate towards the carbonyl (TS-0) with an estimated 

ΔGǂ
rot of 17.9 kcal/mol (Table 5.2.1).  

Although a barrier of this magnitude is easily detectable and measurable, the conformational 

stereoisomer produced are not stable, belonging to the Class 1 of LaPlante (see Paragraph 1.5, Figure 

1.5.2). Therefore, to produce stable atropisomer more hindered system must be taken into account 

(43b-e, Figure 5.2.6), DFT analysis of such systems revealed that the barrier for 43d and 43e, with a 

2-methyl-1-naphthyl as aryl substituent, should be sufficiently high (DGǂ > 30 kcal/mol) to obtain 

stable atropisomers at room temperature and above.1 

 

Figure 5.2.5 Transition states of 43a optimized at B3LYP/6-31G(d) level of theory. [Reprinted (adapted) with permission 

from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

It is worth noting (Table 5.2.1) that other than the case when the aryl substituents are equivalent (43a 

and 43b) or when there is only one stereogenic axis (43e), the phencyclone displays two distinct 

rotational barriers related to the independent rotation of each aryl substituents. The lowest barrier 

would be the diastereomerization barrier while the higher would racemize the system (ΔGǂ
diast. and 

ΔGǂ
enant. respectively). 
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Figure 5.2.6 Phencyclone derivatives (43a-e) considered during the DFT analysis. [Reprinted (adapted) with permission 

from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

To provide an experimental support to the DFT analysis the synthesis of compounds 43a-e were 

performed. The synthetic approach involved a key-step double aldol condensation of the 9,10-

phenanthrenequinone with a suitable 1,3-diaryl-propan-2-ones. 

Table 5.2.1 Calculated energy barriers for rotation of the aryl substituents of compounds 43a-e. In parenthesis is reported 

the geometry of the most stable transition state (values in kcal/mol at the B3LYP/6-31G(d) level of theory). 

Compound ΔGǂ
diast (kcal/mol) ΔGǂ

enant (kcal/mol) 

43a 17.9 (TS-0) - 

43b 19.6 (TS-0) - 

43c 17.7 (TS-0) 19.6 (TS-0) 

43d 18.3 (TS-0) 31.8 (TS-0) 

43e 31.1 (TS-0) - 

 

While 1,3-diphenyl-2propoanone is commercially available, the remaining ketones were synthesized 

following two different synthetic strategies: 1) sequential double Corey-Seebach reaction50 on 1,3-

dithiane with the appropriate benzyl derivatives, followed by mild deprotection with I2/NaHCO3;
51 

2) opening of the appropriate epoxide with a Grignard reagent and catalysed by CuBr∙S(CH3)2,
52 

followed by oxidation of the resulting alcohol performed with Dess-Martin periodane (DMP), Figure 

5.2.7.  

The X-ray diffraction on a single crystal of 43a confirmed the geometries calculated by DFT 

calculation. The structure experimentally determined, in fact, displayed the so-called anti in-in 

disposition with both the methyl pointing towards the phenanthrene planar core, one of the most stable 

structure determined at B3LYP/6-31G(d) level of theory (Figure 5.2.8). 
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Figure 5.2.7 Synthetic pathways followed for the preparation of 1,3 diaryl-phencyclones 43a-e. [Reprinted (adapted) with 

permission from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

It is worth mention that this structure is not the one foreseen as the most stable by DFT calculation 

(P*,P* (anti) out-out), this can be rationalized taking into account that the DFT calculations were run 

in gas phase while the X-ray analysis returns the most stable geometry in solid state where packing 

effect and other weak interaction plays an important role. Nonetheless the DFT hypothesis of not 

orthogonality of the o-tolyl rings was confirmed by the experimental X-ray data.  

 

Figure 5.2.8 Compound 43a P,P (anti) in-in. Left: Calculated structure (B3LYP/6-31G(d)). Right: X-Ray determined 

structure. [Reprinted (adapted) with permission from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society 

of Chemistry]. 

The rotational barrier can be evaluated with dynamic analysis such as D-HPLC and D-NMR. When 

both enantiomerization and diastereomerization barrier are present (43c and 43d), the latter can be 

43a P,P (anti) in-in 43a P,P (anti) in-in

E = 0.4 kcal/mol

DFT – B3LYP/6-31G(d) X-Ray Diffraction



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

96 

used to determine the diastereomerization (i.e. the lowest) while the first (with CSP) is needed to 

evaluate the enantiomerization barrier. 

Compound 43c (1-(naphth-1-yl), 3-(o-tolyl)) bearing two different asymmetric aryl group in 1 and 3 

position displays two distinct rotational barriers where the lowest is the one involved in the rotation 

of the o-tolyl as foreseen by DFT analysis, and the highest (by about 2.0 kcal/mol) rotates the 1-

naphthyl (Table 5.2.2). The room temperature 1H-NMR on this compound showed two well-resolved 

peaks, corresponding to the methyls of each diastereoisomer, P*,P* and M*,P* respectively. This is 

related to the sufficiently slow rotation of the aryl rings in the NMR time. 

When a D-NMR analysis was performed on 43c the aryl rings started to rotate faster until the 

diastereoisomers are no longer detectable by the NMR (i.e. when coalescence is reached) at +110 °C 

(Figure 5.2.9). The line shape simulation of the 1H-NMR spectra recorded at different temperatures, 

allowed to determine the kinetic constant related to the diastereomerization process and the respective 

ΔGǂ
rot by Eyring equation (21.2 kcal/mol, Table 5.2.2).  

 

Figure 5.2.9 Left: 1H NMR methyl signals of the two diastereoisomers of compound 43c at different temperatures (600 

MHz in C2D2Cl4). Right: line shape simulations obtained with the corresponding rate constants. [Reprinted (adapted) with 

permission from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 
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Analogously, 43a and 43d were analysed by D-NMR (Figure 7.5.1) and the relative rotational barrier 

were determined. 

Alternatively, the compound 43b was more conveniently analysed by D-HPLC on achiral silica 

column (Figure 5.2.10 Left). The procedure involved a series of HPLC analysis at different 

temperature (+5 °C, 10 °C, 15 °C and 20 °C) to detect the evolution of the syn/anti exchange with the 

temperature. Likewise, the D-NMR analysis, is possible to determine the kinetic constant and the 

ΔGǂ
rot by line shape simulation of the chromatograms (Figure 5.2.10 Left, red dotted line) and 

therefore the rotational energy barrier involved (21.1 kcal/mol).  

When the HPLC trace of 43b was recorded at +4 °C using CSP-HPLC, while the two anti enantiomers 

showed two opposite ECD bands (coupled to the UV-Vis chromatogram), the syn diastereoisomer, 

being a meso form, was straightforwardly identified by the lack of ECD signal (Figure 5.2.10 Right).  

 

Figure 5.2.10 Left: Chromatogram of 43b on Nova-pak Silica column, 6 μm, 19x300 mm, n-hexane/CH2Cl2 92/8, 20 

mL/min. Right: CSP-HPLC of 43b at +4 °C (Chiralpak IA 250 x 4.6 mm eluent n-hexane/CH2Cl2 98/2 + 0.05% EtOH, 

1.0 mL/min, UV detection at 280 nm) and the relative ECD detection at 280 nm. [Reprinted (adapted) with permission 

from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

 

The CSP-HPLC was used also to evaluate the highest rotational barrier (i.e. enantiomerization) of the 

compound 43c, related to the rotation of the 1-naphthyl ring. 
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At room temperature, this rotation occurs partially during elution on CSP column showing an elution 

profile with two peaks with a plateau in between (Figure 7.5.2). To determine the enantiomerization 

barrier a lower temperature is therefore needed. 

At -20 °C the chromatogram showed four peaks corresponding to the four stereoisomers as confirmed 

by the ECD profile, however the D-HPLC analysis cannot be performed with four interconverting 

peaks (Figure 7.5.3). Then, the dynamic analysis was performed in a temperature range where the 

rotation of o-tolyl is fast and therefore the system collapse into a simple couple of enantiomer of 

which is possible to determine the enatiomerization barrier related to the 1-naphthyl rotation by line 

shape simulation. 

Compounds 43d and 43e presented a bulkier system such as the 2-methyl-1-naphthyl group and DFT 

analysis have foreseen that stable atropisomers would arise. CSP-HPLC chromatograms of 43d-e 

showed two peaks related to the presence of an atropisomeric couple due to the hindered rotation of 

the 2-methyl-1-naphthyl aromatic substituent. The related ECD spectra of each eluted peaks showed 

the expected opposite profile ( Figure 5.2.11).  

 
Figure 5.2.11 Top: Chromatogram of 43d on CSP-HPLC (ChiralPak AD-H, n-hexane/i-PrOH, 92/8, +35 °C 1 mL/min) 

and 43e (Chiral AD-H n-hexane/i-PrOH, 70/30 at +25 °C). Bottom: ECD spectra in acetonitrile of the relative 

atropisomers (first eluted in blue and the second eluted in red). * impurity. [Reprinted (adapted) with permission from 

Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 
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Due to the high stability of the atropisomers of 43d-e it was not possible to obtain the 

enantiomerization barrier with D-HPLC or D-NMR as previously performed for 43a-c (compound 

43d was already analysed by D-NMR but to determine the barrier for the o-tolyl rotation, in other 

words the diastereomerization barrier). Once the atropisomers were physically separated on CSP-

HPLC they were subjected to kinetic studies at high temperature (several hours at +147 °C in 

refluxing 1,1,2,2-tetrachloroethane) to evaluate the racemization barrier. Interestingly in these 

conditions, both 43d and 43e ( Figure 5.2.12), did not undergo racemization, confirming the high 

energy barrier for racemization and the thermal stability of these compounds. From these data, it has 

been estimated a barrier larger than 35 kcal/mol. In fact, the racemization process can be described 

with a kinetic of the first order and so the half-life time (t1/2) is independent from the concentration 

and is a function of the kinetic constant (𝑡1/2 = ln 2 𝑘⁄ ). A racemization barrier of 35 kcal/mol 

implies that at +147 °C the half-life time is 2154 min (~36h). In the case of 43d-e the chromatograms 

did not show any trace of the second enantiomer after 48 hours at +147 °C, thus the real 

enantiomerization barrier is surely larger than 35 kcal/mol. 

 
Figure 5.2.12 Chromatogram of enantiopure 43d and 43e eluted after having been left at +147 °C in C2D2Cl4 for different 

times. (Chiral AD-H, n-hexane/iPrOH, 92/8, 1 mL/min for 43d and Chiral AD-H n-hexane/i-PrOH, 70/30 at +25 °C for 

43e). 

A close inspection of the experimentally determined rotational barrier of compounds 43a-e revealed 

a difference in the ΔGǂ
rot of 43a with respect to 43c and 43d related to the rotation of the same aryl 

group (i.e. o-tolyl group) (Table 5.2.2). This apparent contradiction has to be attributed to a statistical 

effect. In compounds 43c and 43d, that have different substituent in 1 and in 3 position the 

diastereomerization takes place with the rotation of the unique o-tolyl ring. On the contrary, the 

compound 43a has the o-tolyl in both 1 and 3 positions and the diastereomerization process that can 
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occur by rotation of one of the two o-tolyl rings. This doubles the probability to rotate an aryl group 

and so doubles the experimental rate constant, thus it lowers the related diastereomerization barrier 

by ≈0.5 kcal/mol (RTln2 at the coalescence temperature). Considering this effect, the energy to rotate 

an o-tolyl ring is the same in 43a, 43c and 43d. The analogous effect occurs for the energy barrier 

related to the rotation of 1-naphtyl in 43b and 43c, when the molecule is symmetric (43b) it shows a 

lower experimental barrier with respect to the asymmetric one (43c).  

Compounds 43d-e displayed a racemization barrier over the 35 kcal/mol generating highly stable 

atropisomers. Even if each enantiomer has been separated the absolute configuration (AC) of each 

one of them is not straightforwardly determined. 

Table 5.2.2 Calculated and experimental diastereoisomeric ratio and calculated and experimental energy barriers for 

rotations of aryl substituents of phencyclones 43a-e (values in kcal/mol at the B3LYP/6-31G(d) level of theory). 

 d.r. Diastereomerization Enantiomerization 

Compd. 
(P*,P*:P*,M*) 

Calc./Exptl. 
ΔGǂ calc. ΔGǂ exp. ΔGǂ calc. ΔGǂ exp. 

43a 57:43 / 50:50 17.9 20.7±0.3a - - 

43b 69:31 / 52:48 19.6 21.1±0.2b - - 

43c 52:48 / 51:49 17.7 21.2±0.3a 19.6 21.7±0.2b 

43d 53:47 / 52:48 18.3 21.2±0.3a 31.8 ≥ 35c 

43e - - - 31.1 ≥ 35c 

a by D-NMR analysis; b by D-HPLC analysis; 
c Kinetic studies; 

The classical approach using X-ray diffraction of the single enantiomer cannot be used in the 

determination of the AC of 43d-e due to the lack of suitable heavy atoms. Then to determine the AC 

was chosen the ECD method. This procedure consists as discussed in Paragraph 2.5.2, in the 

comparison of computed ECD spectra (TD-DFT method) with the one experimentally recorded for 

each enantiomer. 

To correctly compute the ECD for each enantiomer is necessary to determine the populations of the 

ground state conformations. In fact, the overall spectrum is generated by combination of the ECD 

spectra of the single conformers weighted by their relative stability. The four conformers of 43d are 

related to the possibility of the o-tolyl: 1) to arrange itself on the same side (syn) or on the opposite 

side (anti) respect to the orthogonal 2-methyl-1-naphthyl, and 2) to dispose in the “in” or “out” 

conformation. Each of these conformations is populated and their calculated ECD at CAM-B3LYP, 

BH&HLYP, M06-2X and ωB97XD / 6-311++G(2d,p) level of theory are reported in Figure 5.2.13 

Top. The weighted ECD spectra calculated for the M configuration of the stereogenic axis is then 

compared to the experimental one relative to the second eluted enantiomer (Figure 5.2.13 Bottom). 
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The good superimposition of the experimental spectrum to the computed ones lead straightforwardly 

to the assign the M configuration to the second eluted enantiomer of 43d.  

 

Figure 5.2.13 Top: Computed spectra (at CAM-B3LYP, BHandHLYP, M06-2X, ωB97XD / 6-311++G(2d,p) level of 

theory) for the four stable ground states of M,P* atropisomer of 43d. The conformations were red-shifted by 18 nm and 

scaled of a 0.4 factor in mdeg. Bottom: Experimental and calculated ECD spectra of the second eluted atropisomer of 

43d, obtained with four functionals: CAM-B3LYP (blue), BH&HLYP (red), M06-2X (green), ωB97XD (purple). 

[Reprinted (adapted) with permission from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of 

Chemistry]. 

For 43e the AC was assigned analogously. However, in this case the computed ECD spectrum is 

simplified by the fact that there are only two conformations populated generated by the in or out 

disposition of the para-tolyl (due to the local symmetry of the p-tolyl group the syn and anti 

conformers does not exist) (Figure 5.2.14). 
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axes 43d-e. The computations (DFT and TD-DFT methods) supported the rotational barriers 

experimentally evaluated and enabled the assignment of the absolute configuration of the stable 

axially chiral enantiomers. The latter can be used as chiral modification of the classic 

tetraphenylcyclopentadienone ligand of the Ruthenium based Shvo catalyst in order to perform 

asymmetric hydrogenations. Even though the design of the atropisomers 43d-e came from this 

particular catalyst, the cyclopentadienone moiety allows these brand new molecules to be used as 

ligand for a wider number of organo-metallic systems. 

 

Figure 5.2.14 Top: Computed spectra (at CAM-B3LYP, BHandHLYP, M06-2X, ωB97XD / 6-311++G(2d,p) level of 

theory) for the two stable ground states of M atropisomer of 43e. the simulated spectra were red-shifted by 18 nm, 21 nm, 

18 nm, 18 nm for CAM-B3LYP, BH&HLYP, M06-2X, B97XD, respectively, and scaled of a 0.3 factor in mdegfor all 

the functionals. Bottom: Experimental and calculated ECD spectra of the second eluted atropisomer of 43d, obtained with 

four functionals: CAM-B3LYP (blue), BH&HLYP (red), M06-2X (green), ωB97XD (purple). [Reprinted (adapted) with 

permission from Org. Biomol. Chem. 2017, 15, 8720. Copyright (2017) Royal Society of Chemistry]. 

  

-160

-120

-80

-40

0

40

80

120

160

180 200 220 240 260 280 300 320 340 360 380 400m
d

e
g

nm

M06-2X

M-GS1

M-GS2

-160

-120

-80

-40

0

40

80

120

160

180 200 220 240 260 280 300 320 340 360 380 400m
d

eg

nm

ωB97XD

M-GS1

M-GS2

-160

-120

-80

-40

0

40

80

120

160

180 200 220 240 260 280 300 320 340 360 380 400m
d

e
g

nm

CAM-B3LYP

M-GS1

M-GS2

-160

-120

-80

-40

0

40

80

120

160

180 200 220 240 260 280 300 320 340 360 380 400m
d

eg

nm

BHandHLYP

M-GS1

M-GS2GS1 E = 0.0 kcal/mol

GS2 E = 0.5 kcal/mol

O

O

Calculated ECD spectra for each conformation

-40

-30

-20

-10

0

10

20

30

40

195 215 235 255 275 295 315 335 355 375 395m
d

e
g

nm

Experimental vs. Calculated

CAM-B3LYP

BHandHLYP

M06-2X

WB97Xd

Experimental 2nd eluted

-40

-30

-20

-10

0

10

20

30

40

190 240 290 340 390m
d

eg

nm

Experimental ECDs

II

I



Chapter 5 – Chase for new atropisomers 

103 

References

1 Oki M. Top. Stereochem. 1984, 14, 1−81. 
2 Mancinelli M., Perticarari S., Prati L., Mazzanti A. J. Org. Chem. 2017, 82, 6874-6885. 
3 Waldmeier P. C., Baumann P. A., Hauser K., Maitre L., Storni A. Biochem. Pharmacol., 1982, 31, 1653-1663. 
4 Lovell R. A., Freedman D. X. Mol. Pharmacol. 1976, 12, 620-630. 
5 Martino-Barrows A. M., Kellar K. J. Mol. Pharmacol 1987, 39, 751-757. 
6 Easson L. H., Stedman E. Biochem J. 1933, 27, 1257-1266. 
7 Beckett A.H. Stereochemical factors in biological activity. In: Jucker E., editor. Fortschritte der arzneimittel forschung, 

Basel: Birkhäuser Verlag, 1959, vol. I., 455-530. 
8 Pfeiffer C. C. Science 1956, 124, 2931. 
9 Barlow R. B. Trends Pharmacol Sci. 1990, 11, 14850. 
10 Casy A. F. Stereochemistry and biological activity. In: Burger A., editor. Medicinal chemistry, New York: Wiley-

Interscience, 1970, vol. 1. 81107. 
11 Schröder E., Rufer C., Schmiechen R. Arzneimittelchemie [Pharmacological chemistry], Stuttgart: Georg Thieme 

Verlag; 1976, vol. 1., 48 [in German]. 
12 Benson W. M., Stefko P. L., Randall L. O. J. Pharmacol Exptl Therap 1953, 109, 189200. 
13 Drayer D. E. Clin Pharmacol Ther 1986, 40(2), 12533. 
14 Bullock M. W., Hand J. J., Waletzky E. J Med Chem. 1968, 11, 1697. 
15 Remy D. C., Rittle K. E., Hunt C. A., Anderson P. S., Engelhardt E. L., Clineschmidt B. V. J Med Chem. 1977, 20, 

16814. 
16 (a) Shimizu K. D., Freyer H. O., Adams R. D. Tetrahedron Lett. 2000, 41, 5431−5434; (b) Bennett D. J., Pickering P. 

L., Simpkins N. S. Chem. Commun. 2004, 1392−1393. 
17 (a) Kitagawa O., Fujita M., Kohriyama M., Hasegawa H., Taguchi T. Tetrahedron Lett. 2000, 41, 8539−8544; (b) 

Bennett D. J., Blake A. J., Cooke P. A., Godfrey C. R. A., Pickering P. L., Simpkins N. S., Walker M. D., Wilson C. 

Tetrahedron 2004, 60, 4491−4511; (c) Kitagawa O., Yoshikawa M., Tanabe H., Morita T., Takahashi M., Dobashi Y., 

Taguchi T. J. Am. Chem. Soc. 2006, 128, 12923−12931. 
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6 Appendix  

6.1 Study of 1,8 naphthalene derivatives as sensors for nucleobases and chiral 

primary amine 

The development of time-efficient and cost-effective stereoselective assays is essential in high-

throughput screening (HTS).1 In particular it can be applied in chiral reactions in order to determine: 

1) the enantiopurity and stereochemical integrity, 2) the best parameters of asymmetric reactions and 

3) the enantiomeric excess. Enantioselective sensing based on fluorescence spectroscopy offers a 

variety of advantages over NMR spectroscopy with chiral shift reagents and chiral chromatography, 

such as different detection modes (fluorescence quenching, enhancement, or lifetime), high 

sensitivity, low cost of instrumentation, waste reduction, time efficiency, and the possibility of 

performing real-time analysis. 

Because of the high sensitivity inherent to fluorescence spectroscopy, only a very small amount of 

the sensor is required, which makes this technique a cost-effective and practicable alternative. To 

date, only few enantioselective fluorescence sensor,2 including chiral macrocycles,3 dendrimers,4 and 

oligomers,5 have been reported. 

6.1.1 Nucleobases sensing 

Nucleobases are important biological structural motif and moreover their analogous have also 

biological activity (i.e.  xanthine, Paragraph 5.1). Therefore, in the framework of HTS has become 

urgent a method to easily quantify the nucleobases present in a particular sample. 

In the development of a nucleobases sensor the first step to take in consideration is the molecular 

design. This should incorporate:  

1. a functional group able to interact with the substrate, preferentially through H-bonding;  

2. a transmitter that have optical properties relatively easy to detect, like a fluorophore;  

3. a rigid scaffold that arranges the transmitter and the functional group one next to the other, 

preferentially with a π-stacking interaction.  

The designs take in consideration a naphthalene scaffold substituted in 1 and 8 positions, bearing the 

transmitter and the functional group (Figure 6.1.1). The functional group chosen to interact with the 

nucleobases is a nucleobase itself and in particular an adenine was chosen. The transmitter is a large 

asymmetric aromatic system that can undergo to π stacking with the adenine or the substrate. The 

spacer chosen allows freely conjugation between the naphthalene scaffold and the transmitter and, 

moreover a relatively degree of freedom for the rotation of the transmitter. 
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Figure 6.1.1 Molecular designs of the nucleobase sensors 

The design developed was firstly tested in silico with the geometry optimization performed through 

DFT method (B3LYP/6-31g(d), Figure 6.1.2). This procedure was developed in order to verify the 

potential of the molecule to interact with nucleobases. 

 

Figure 6.1.2 Ground states of pyrene sensor studied at B3LYP/6-31g(d) level of theory 

 

Among the populated conformations the syn-hindered shows a good potential to sense the 

nucleobases due to its substituents arrangement and the relative overlap of the large π system and the 

adenine. The recognition of the guanine by the adenine would stabilized the already populated syn-

hindered conformation over the conjugated ones. 
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Synthesis 

The retrosynthetic analysis (Figure 6.1.3) shows three possible pathways for the synthesis of the 

molecules designed. 

 

Figure 6.1.3 Retrosynthetic analysis of the sensor designed 

All of these synthetic approaches were experimentally evaluated, however only Path 1 allowed to 

obtain the desired product. The carefully optimized procedure (Figure 6.1.4) involved a microwave 

assisted C-N coupling with CuI and N1,N2-dimethylethane-1,2-diamine as ligand. The subsequent 

Sonogashira coupling with the corresponding ethynyl derivative produced the desired product with 

an overall yield of close to 40%. 

 

 

Figure 6.1.4 Synthesis of the nucleobase sensor designed 

 

The molecules synthetized carried as Aryl group a 1-naphthalene (H) or a 1-pyrene (I). Despite the 

computational studies and all the efforts involved in the synthesis, the molecules H and I do not show 

any type of interaction with the target nucleobase (cytosine). There are no evident changes in the UV-

Vis or in the fluorescence spectra upon adding cytosine to H or I. Moreover, titration experiments 

PATH 1

PATH 2

PATH 3
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were performed with cytosine and H and I at NMR. However, the 1H-NMR does not reveal any type 

of the typical δ shifting related to an H-bond formation (Paragraph 4.3). 

6.1.2 Chiral primary amine sensing 

Although was not successful, the approach and the design used for the nucleobases can be translated 

to be used in sensing other substrates. As target was chosen primary chiral amine, that has been 

demonstrated to be a suitable and useful substrate to be sensed.6 

Even if the design (Figure 6.1.5) is similar to the one used for the nucleobases, the mechanism of 

detection is changed. The amine, that in this case is the substrate, interacts with the sensor with the 

formation of a C=N bond. Enantiomeric excess and absolute configuration is determined by the 

interaction of the chiral amine substituents with a stereodynamic chiral axis placed on the sensor, and 

reveled by CD measurement. 

 

 

Figure 6.1.5 Molecular design of the chiral amine sensors. 

 

Synthesis 

The synthetic approach used (Figure 6.1.6) involve a monoformylation of the 1,8-dibromo-

naphthalene followed by a glycol protection and a Suzuki coupling with the appropriate boronic acid. 

Instead of the Suzuki coupling, for the benzoyl derivative was performed a lithiation of the protected 

monoformylated naphthalene followed by the addition of the benzoyl chloride. 
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Figure 6.1.6 Synthesis of the sensors designed 

 

In order to have a full reactivity towards the imine formation the aldehyde needs to be deprotected. 

The process involves a fast reaction with diluted HCl in organic solvent. However, the molecules 

bearing an electron-donating group shows a different behavior respect the ones that carries an 

electron-withdrawing group (Figure 6.1.7). While with the latter the deprotection occurs without any 

by-products, with the electron-donating group an intramolecular Fridel Craft acylation followed by 

an oxidation occurs (Figure 6.1.7). The reaction produces a planar scaffold (7H-benzo[de]anthracen-

7-one) substituted in the 10 position. This unexpected reaction showed the impossibility to obtain and 

use the sensor designed with an electrodonating group. However, the simplicity of the reaction and 

the relative high yields make this pathway interesting to explore in order to synthesized the benzo-

anthracene fused ring. This reaction in fact, usually involved some high reactive compound as organic 

periodate, radical reaction or through Pd catalysis.  

 

Figure 6.1.7 Reactivity of the sensors towards the acid deprotection. 

Sensing 

The stable deprotected Suzuki products and the benzoyl derivative were tested as sensor for the 

detection of an equimolar amounts of (S)-1-phenylethan-1-amine. The formation of the imine was 

checked by 1H-NMR and the reaction appears to be quite slow (around 24h). After this period, the 

crude reaction mixture was analyzed with ECD in order to determine the ability of the just formed 

imine to amplify the chirality of the substrate (Figure 6.1.8). All the sensors synthesized are able to 
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detect the presence of the amine and the deriving imine shows an amplified and red-shifted ECD 

signal, proving a successful sensing of the amine.  

Further researches will be carried out in order to produce derivative of these sensors able to enhance 

the CD intensity and to determine altogether the concentration of the amine in solution. 

 

Figure 6.1.8 ECD sensing spectra of different sensor with (S)-1-phenylethan-1-amine. 
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7 Experimental section 

7.1 Long-Range Bonding/Nonbonding Interactions: A Donor−Acceptor 

Resonance Studied by Dynamic NMR 

7.1.1 Synthetical procedure 

Synthetical routes adopted to obtain 6-18. 

 

3,5-diethylpiridine. 

A 100 mL steel autoclave was charged with a mixture of N-methylidene-tert-butylamine1 (15.3 g, 

0.18 mol), butanal (39.0 g, 49 mL, 0.54 mol), piperidine (6.8 g, 0.080 mol) and acetic acid (0.27 g, 

0.0045 mmol) in toluene (23 mL). The autoclave was tightened and heated up to 200 °C for 2 h using 

an electric resistance heating jacket. After cooling at 25 °C, the autoclave was cautiously opened and 

the mixture was evaporated at reduced pressure (40 °C, 15 mbar) to remove the most volatile fraction. 

The residue was then distilled in vacuum (13 mbar) in a glass oven Kugelrohr, by collecting the 

fraction boiling in the 80–90 °C temperature range. Chromatography of the collected yellow oil on 
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silica gel (eluent, diethyl ether) allowed to recover pure 3,5-diethylpyridine7 (24.9 g, 34% from 

butanal).  

1H-NMR (400 MHz, CDCl3)  1.10 (t, 6H, J = 7.6 Hz), 2.61 (q, 4H, J = 7.6 Hz), 7.32 (s, 1H), 8.28 

(s, 2H). 13C NMR (100.6 MHz, CDCl3)  15.2 (CH3), 26.0 (CH2), 134.5 (CH), 138.6 (Cq), 148.8 

(CH). MS (70 eV) m/z (%), 135 (M+, 80), 134 (61), 120 (100), 106 (27), 91 (22), 77 (30).  

 

1-bromo-2-(fluoromethyl)benzene. 

To a solution of 2-bromobenzylalcohol (6.0 g, 24 mmol) in CH2Cl2 (20 mL) kept at -78°C, N,N-

Diethylaminosulfur trifluoride (DAST, 4.03 g, 25 mmol) was added dropwise. After 10 minutes the 

solution was warmed to ambient temperature and aqueous NaHCO3 1M was added to quench the 

residual DAST. The mixture was extracted with CH2Cl2 and the organic phase was dried on Na2SO4. 

CH2Cl2 was removed by distillation at ambient pressure and the residue was purified by evaporation 

with a Kugelrohr apparatus (oven temp = +150°C, 18 mbar) to yield pure 1-bromo-2-

(fluoromethyl)benzene as a colorless oil. Yield: 1.81 g (40% relative to 2-bromobenzylalcohol). 

1H-NMR (600 MHz, CD3CN)  5.32 ppm, +25°C): δ 5.50 (d, 2H, JH-F = 47.5 Hz), 7.33 (tt, 1H, J 

=7.8, 1.5 Hz), 7.45 (t, 1H, J = 7.6 Hz), 7.53 (d, 1H, J = 7.6 Hz), 7.66 (d, 1H, J = 7.6 Hz). 13C-NMR 

(150.8 MHz, CD3CN, 54.20 ppm, +25°C): δ 83.90 (CH2, JC-F=165.5 Hz), 122.61 (Cq), 128.6 (CH), 

130.07 (CH, d, JC-F = 8.5 Hz), 130.98 (CH, d, JC-F = 2.7 Hz), 133.14 (CH), 135.80 (Cq, d, JC-F = 17.1 

Hz). MS (70 eV) m/z (%), 190 (M++1, 20), 188 (M+–1, 21), 109 (100), 90 (4), 83 (22). HRMS (EI-

MS) m/z: [M]·+ Calcd. for C7H6BrF: 187.9637; found: 187.9635. 

 

1-(2-bromophenyl)-N,N-dimethylmethanamine.2 

2-bromobenzylbromide (1.0 g, 4 mmol) and dimethylamine (33% w/w solution in ethanol, 2.15 ml, 

12 mmol) were dissolved in 25 ml of dichloromethane. The stirred solution was kept for 6 hours at 

reflux. After this time, 20 ml of water were added. The mixture was made basic with solid NaHCO3 

(pH  10-11) and it was extracted with ethyl acetate (3 x 20 ml). The collected organic layers were 

dried on Na2SO4 and evaporated. The crude was kept at high vacuum to remove excess of 

dimethylamine, yielding the pure compound as colorless oil. Yield: 0.65 g (76% relative to 2-

bromobenzylbromide).  

1H-NMR (400 MHz, CDCl3, +25°C): δ 2.29 (s, 3H), 3.51 (s, 2H), 7.10 (dt, J=7.8, 1.7 Hz, 1H), 7.27 

(dt, J=7.4, 1.3 Hz, 1H), 7.42 (dd, J=7.7, 1.7 Hz, 1H), 7.53 (dd, J=8.0, 1.2 Hz, 1H). 13C-NMR (100.6 

MHz, CDCl3, +25°C): δ 45.49 (CH3), 63.26 (CH2), 124.68 (Cq), 127.16 (CH), 128.39 (CH), 130.91 

(H), 132.70 (CH), 138.13 (Cq). MS (70 eV) m/z (%), 215 (M++1, 37), 213 (M+–1, 38), 171 (30), 169 
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(30), 132 (12), 91 (18), 89 (18), 58 (100). HRMS (EI-MS) m/z: [M]·+ Calcd. for C9H12BrN 213.0153; 

Found: 213.0155. 

 

N,N-dimethyl-1-[2-(pyridin-2-yl)phenyl]methanamine (4) 

tert-Butyllithium (1.7M in pentane, 5 mL, 8.5 mmol was added, to N,N-dimethylbenzylamine (1.71 

g, 8 mmol) in diethyl ether (20 mL) at 25 °C. After 70 hours a white crystalline solid precipitates and 

pyridine was added (0.63 g, 8.0 mmol). After 24 hours at 25 °C the mixture was concentrated, 

absorbed on a small quantity of silica gel and dried before being poured on a chromatography column. 

Elution with a 1:4 (v/v) mixture of diethyl ether and petroleum ether mixture gave a colorless oil. 

Analytically pure samples were obtained by semi-preparative HPLC on C18 column using 

Acetonitrile/H2O+0.1% HCOOH as eluent (70:30 v/v). The elute was concentrated to remove 

acetonitrile and the aqueous phase was made basic (pH  9) with NaOH 0.5M. Then the aqueous 

phase was extracted with Et2O and the organic phase was evaporated at high vacuum (0.1 torr) to get 

the pure compound as colorless oil. Yield: 0.77 g (46% relative to N,N-dimethylbenzylamine).  

1H-NMR (600 MHz, CD3CN, +25°C): δ 2.06 (s, 6H, NMe2), 3.50 (s, 2H, CH2), 7.32 (ddd, 1H, J 

=7.5, 4.8, 1.1 Hz), 7.35-7.44 (m, 3H), 7.53 (m, 1H), 7.58 (dt, 1H, J = 7.8, 1.1 Hz), 7.81 (td, 1H, J = 

7.8, 1.9 Hz), 8.64 (ddd, 1H, J = 4.9, 1.8, 0.9 Hz). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 44.86 

(2CH3), 61.18 (CH2), 122.72 (CH), 124.61 (CH), 127.25(CH), 128.36 (CH), 130.24 (CH), 130.56 

(CH),136.54 (CH), 137.58 (Cq), 141.49 (Cq), 149.25(CH), 159.98 (Cq). HRMS (ESI-TOF-MS+) m/z: 

[M+H] Calcd. for C14H17N2: 213.1392; Found: 212.1396. 

 

2-(2-ethylphenyl)-3,5-dimethylpyridine (6). 

At –78 °C, tert-butyllithium (1.7M in pentane, 5 mL, 8.5 mmol) and 3,5-dimethylpyridine (0.86 g, 

8.0 mmol) were added consecutively to 2-bromoethylbenzene (1.48 g, 8 mmol) in diethyl ether (20 

mL). After 5 h at +25 °C the mixture was concentrated, absorbed on a small quantity of silica gel and 

dried before being poured on a chromatography column. Elution with a 1:4 (v/v) mixture of diethyl 

ether and petroleum ether mixture gave a colorless oil. Analytically pure samples were obtained by 

semi-preparative HPLC on C18 column (Acetonitrile/H2O 80:20 v/v). Yield: 0.99 g (59% relative to 

3,5-dimethylpyridine). 1H-NMR (600 MHz, CD2Cl2, 5.32 ppm, +25°C): δ 1.00 (t, J = 7.4 Hz, 3H), 

2.04 (s, 3H), 2.35 (s, 3H), 2.39 (bs, 2H), 7.11 (d, J = 7.7 Hz, 1H), 7.26 (m, 2H), 7.36 (d, J = 7.8, 1H), 

7.50 (bs, 1H), 8.30 (s, 1H). 13C-NMR (150.8 MHz, CD3CN, 118.69 ppm, +25°C): δ 14.88 (CH3), 

17.47 (CH3), 18.64 (CH3), 26.10 (CH2), 125.88 (CH), 128.29 (CH), 128.95 (CH), 129.26 (CH), 

131.21 (Cq), 132.23 (Cq), 138.53 (CH), 140.48 (Cq), 142.41 (Cq), 147.12 (CH), 156.94 (Cq). HRMS 

(ESI-TOF-MS+) m/z: [M+H] Calcd. for C15H18N1: 212.1439; Found: 212.1437. 
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1-[2-(3,5-dimethylpyridin-2-yl)phenyl]-N,N-dimethylmethanamine (7). 

At –78 °C, tert-butyllithium (1.7M in pentane, 3 mL, 5.1 mmol) and 3,5-dimethylpyridine (0.86 g, 

5.0 mmol) were added consecutively to 1-(2-bromophenyl)-N,N-dimethylmethanamine (1.07 g, 5 

mmol) in diethyl ether (15 mL). After 5 h at +25 °C the mixture was concentrated, absorbed on a 

small quantity of silica gel and dried before being poured on a chromatography column. Elution with 

a 1:4 (v/v) mixture of diethyl ether and petroleum ether mixture gave a colorless oil. Analytically 

pure samples were obtained by semi-preparative HPLC on C18 column using Acetonitrile/H2O+0.1% 

HCOOH as eluent (75:25 v/v). The eluate was concentrated to remove acetonitrile and the aqueous 

phase was made basic (pH  9) with NaOH 0.5M. Then the aqueous phase was extracted with Et2O 

and the organic phase was evaporated at high vacuum (0.1 torr) to get the pure compound as colorless 

oil. Yield: 0.58 g (48% relative to 3,5-dimethylpyridine).  

1H-NMR (600 MHz, CD2Cl2, 5.32 ppm, +25°C): δ 2.04 (s, 9H), 2.35 (s, 3H), 3.17 (s, 2H), 7.11 (d, J 

= 7.1 Hz, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.36 (t, J = 7.1 Hz, 1H), 7.39 (bs, 1H), 7.56 (d, J=7.7 Hz, 1H), 

8.28 (s, 1H). 13C-NMR (150.8 MHz, CD2Cl2, +25°C): δ 17.38 (CH3), 18.76 (CH3), 45.14 (2CH3), 

60.64 (CH2), 126.34 (CH), 127.50 (CH), 128.76 (CH), 129.26 (CH), 130.97 (Cq), 131.43 (Cq), 13.51 

(Cq) 137.93 (CH), 141.210 (Cq), 146.64 (CH), 156.36 (Cq). MS (70 eV) m/z (%), 240 (M+, 7), 225 

(17), 196 (73), 182 (100), 152 (8), 58 (5). HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C16H21N2: 

241.1705; Found: 241.1706. 

 

2-[2-(methoxymethyl)phenyl]-3,5-dimethylpyridine (8). 

At –78 °C, tert-butyllithium (1.7M in pentane, 3 mL, 5.1 mmol) and 3,5-dimethylpyridine (0.86 g, 

5.0 mmol) were added consecutively to 1-Bromo-2-(methoxymethyl)benzene (1.00 g, 5 mmol) in 

diethyl ether (15 mL). After 5 h at +25 °C the mixture was concentrated, absorbed on a small quantity 

of silica gel and dried before being poured on a chromatography column. Elution with a 1:4 (v/v) 

mixture of diethyl ether and petroleum ether mixture gave a colorless oil. Analytically pure samples 

were obtained by semi-preparative HPLC on C18 column (Acetonitrile/H2O 80:20 v/v). Yield: 0.59 

g (52% relative to 3,5-dimethylpyridine).  

1H-NMR (600 MHz, CD3CN, +25°C): δ 2.05 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 4.20 (bs, 2H), 7.18 

(dd, 1H, J = 7.5, 1.3 Hz), 7.37 (td, 1H, J = 7.5, 1.3 Hz), 7.43 (td, 1H, J = 7.5, 1.3 Hz), 7.50 (m, 1H), 

7.53 (d, 1H, J = 7.7 Hz), 8.29 (bs, 1H). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 17.47 (CH3), 

18.62 (CH3), 57.72 (CH3), 71.86 (CH2), 127.52 (CH), 128.08 (CH), 128.53 (CH), 129.28 (CH), 

131.42 (Cq), 132.38 (Cq), 137.01 (Cq), 138.56 (CH), 140.24 (Cq), 147.06 (CH), 156.02 (Cq). ). MS 

(70 eV) m/z (%), 227 (M+, 2), 212 (100), 184 (16), 106 (5), 45 (1). HRMS (ESI-TOF-MS+) m/z: 

[M+H] Calcd. for C15H18NO: 228.1388; Found: 228.1387. 
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2-[2-methoxymethyl)phenyl]-3-methylpyridine (9). 

2-(methoxymethyl)bromobenzene (1.0 g, 5.0 mmol) was dissolved in dry THF (20 mL), under 

nitrogen flux and kept at -78°C. At this solution n-BuLi (1.6M in hexane, 4.7 ml, 7.5 mmol) was 

added dropwise and the solution was kept stirred at -78°C for 1 hour. At the same temperature, 

trimethylborate (1.54 g, 15 mmol) was added dropwise. The reaction was kept stirred overnight 

reaching the ambient temperature, then the resulting 0.2M solution of dimethyl(2-

(methoxymethyl)phenyl)boronate was used for the next step without any further work up. 3-Methyl-

2-bromopyridine (110 L, 1 mmol, 1 eq) was added to dimethyl(2-(methoxymethyl)phenyl)boronate 

(7.5 mL of the 0.2M solution in THF, 1.5 mmol), under nitrogen flux. Then K2CO3 (2M solution, 0.69 

g, 5 mmol) and Pd(PPh3)4 (11.5 mg, 0.01 mmol) were added. The solution was kept stirred at reflux 

for 2 hours, then H2O was added and the solution was extracted three times with dichloromethane. 

The organic layer was dried (Na2SO4), filtered on silica gel and concentrated at reduced pressure. The 

crude was pre-purified by flash chromatography on silica gel (7:3 petroleum ether/ethyl acetate). 

Analytically pure samples were obtained by semi-preparative HPLC on Synergi Hydro-RP 10x250 

mm (acetonitrile/H2O 80:20 v/v). Yield: 102 mg (48% relative to 2-(methoxymethyl)bromobenzene). 

1H-NMR (600 MHz, CD2Cl2, +25°C): δ 2.09 (s, 3H), 3.20 (s, 3H), 4.21 (s, 2H), 7.18 (d, 1H, J = 7.9 

Hz), 7.22 (dd, 1H, J = 7.5, 7.2 Hz), 7.38 (t, 1H, J = 7.5 Hz), 7.42 (t, 1H, J = 7.5 Hz), 7.54 (d, 1H, J = 

7.5 Hz), 7.62 (d, 1H, J = 7.9 Hz), 8.46 (d, 1H, J = 4.3 Hz). 13C-NMR (150.8 MHz, CD2Cl2, +25°C): 

δ 19.72 (CH3), 58.74 (CH3), 71.62 (CH2), 123.05 (Cq), 127.92 (CH), 128.64 (CH), 128.94 (CH), 

129.42 (CH), 132.59 (Cq), 137.25 (CH), 138.48 (CH), 140.39 (Cq), 147.09 (CH), 159.34 (Cq). 

HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C14H16NO: 214.1232; Found: 214.1237. 

 

2-[(2-fluoromethyl)phenyl]-3-methylpyridine (10). 

2-(Fluoromethyl)bromobenzene (0.94 g, 5.0 mmol) was dissolved in dry THF (20 mL), under 

nitrogen flux and kept at -78°C. At this solution n-BuLi (1.6M in hexane, 4.7 ml, 7.5 mmol) was 

added dropwise and the solution was stirred at -78°C for 1 hour. At the same temperature, 

trimethylborate (1.54 g, 15 mmol) was added dropwise and the solution was kept for 3 hour at -78°C. 

The reaction was stirred overnight allowing the temperature to raise to ambient temperature, then the 

resulting 0.2M solution of dimethyl(2-(fluoromethyl)phenyl)boronate was used for the next step 

without any further work up. 3-Methyl-2-bromopyridine (0.11 mL, 1 mmol, 1 eq) and dimethyl-(2-

fluoromethyl)phenyl)boronate (7.5 mL of the 0.2 M solution in THF, 1.5 mmol), were stirred under 

nitrogen flux, then K2CO3 (2 M solution, 0.69 g, 5 mmol, 5 eq) and Pd(PPh3)4 (11.5 mg, 0.01 mmol) 

were added, and the solution was kept at reflux for 2 hours. Water was then added and the solution 

was extracted three times with dichloromethane. The organic layer was dried (Na2SO4), filtered on 
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silica gel and concentrated at reduced pressure. The crude was then purified by silica flash 

chromatography (7:3 petroleum ether/ethyl acetate) to yield a slightly green oil.  Yield: 147 mg (49 

% relative to 2-(fluoromethylbromobenzene).  

1H-NMR (600 MHz, CD3CN,+25°C): δ 2.12 (s, 3H), 5.22 (d, 2H, JH-F = 48.5 Hz, CH2F), 7.3 (m, 2H), 

7.47-7.53 (m, 2H), 7.61 (m, 1H), 7.71 (m, 1H), 8.46 (d, 1H, J = 4.9 Hz). 19F-NMR (564.3 MHz, 

CD3CN, +25°C): δ -209.06 (t, JH-F = 48.5 Hz). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 18.80 

(CH3), 82.73 (d, JC-F = 162.5 Hz, CH2F), 123.10 (CH), 128.60 (CH, d, JC-F = 1.4 Hz), 128.95 (CH, d, 

JC-F = 3.0 Hz), 129.08 (CH, d, JC-F = 7.6 Hz), 129.49 (CH, d, JC-F = 1.6 Hz), 132.24 (Cq), 134.71 (Cq, 

d, JC-F = 16.5 Hz), 138.43 (CH), 140.4 (Cq, d, JC-F = 4.4 Hz), 146.78 (CH), 158.05 (Cq). HRMS (ESI-

TOF-MS+) m/z: [M+H] Calcd. for C13H13NF: 202.1032; Found: 202.1037. 

 

3,5-diethyl-2-(2-methylphenyl)pyridine (11)  

At –78 °C, tert-butyllithium (1.7M in pentane, 5 mL, 8.5 mmol) and 3,5-diethylpyridine (1.08 g, 8.0 

mmol) were added consecutively to 2-bromotoluene (1.37 g, 8 mmol) in diethyl ether (20 mL). After 

5 h at +25 °C the mixture was concentrated, absorbed on a small quantity of silica gel and dried before 

being poured on a chromatography column. Elution with a 1:4 (v/v) mixture of diethyl ether and 

petroleum ether mixture gave a colorless oil. Analytically pure samples were obtained by semi-

preparative HPLC on C18 column (Acetonitrile/H2O 75:25 v/v). Yield: 0.99 g (55 % relative to 3,5-

diethylpyridine). 

1H-NMR (600 MHz, CD3CN +25°C): δ 1.03 (t, 3H, J = 7.6 Hz), 1.30 (t, 3H, J = 7.6 Hz), 2.05 (s, 

3H), 2.40 (bs, 2H), 2.70 (q, 2H, J = 7.6 Hz), 7.15 (d, 1H, J = 8.3 Hz), 7.26 (m, 1H), 7.32 (m, 2H), 

7.58 (d, 1H, J = 2.5 Hz), 8.35 (d, 1H, J = 2.5 Hz). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 14.59 

(CH3), 15.28 (CH3), 19.24 (CH3), 25.47 (CH2), 25.85 (CH2), 125.81 (CH), 128.11 (CH), 129.25 (CH), 

130.38 (CH), 136.07 (CH), 136.37 (Cq), 137.20 (Cq), 138.60 (Cq), 140.95 (Cq), 146.59 (CH), 156.80 

(Cq). MS (70 eV) m/z (%) 225 (M+, 22), 224 (52), 210 (100), 196 (53), 180 (21), 77 (10). HRMS 

(ESI-TOF-MS+) m/z: [M+H] Calcd. for C16H20N: 226.1596; Found: 226.1591 

 

3,5-diethyl-2-(2-ethylphenyl)pyridine (12) 

At –78 °C, tert-butyllithium (1.7M in pentane, 5 mL, 8.5 mmol) and 3,5-diethylpyridine (1.08 g, 8.0 

mmol) were added consecutively to 2-bromoethylbenzene (1.48 g, 8 mmol) in diethyl ether (20 mL). 

After 5 h at +25 °C the mixture was concentrated, absorbed on a small quantity of silica gel and dried 

before being poured on a chromatography column. Elution with a 1:4 (v/v) mixture of diethyl ether 

and petroleum ether mixture gave a colorless oil. Analytically pure samples were obtained by semi-
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preparative HPLC on C18 column (Acetonitrile/H2O 80:20 v/v). Yield: 0.82 g (53 % relative to 3,5-

diethylpyridine). 

1H-NMR (600 MHz, CD3CN, +25°C): δ 1.02 (t, 3H, J = 7.6 Hz), 1.05 (t, 3H, J = 7.7 Hz), 1.29 (t, 

3H, J = 7.7 Hz), 2.34 (broad, 4H), 2.70 (q, 2H, J = 8.3 Hz), 7.12 (d, 1H, J = 7.7, 0.9 Hz), 7.25 (m, 

1H), 7.37 (m, 2H), 7.59 (bs, 1H), 8.32 (d, 1H, J = 1.9 Hz). 13C-NMR (150.8 MHz, CD3CN, 118.69 

ppm, +25°C): δ 14.47 (CH3), 14.86 (CH3), 15.18 (CH3), 25.44 (CH2), 25.78 (CH2), 26.17 (CH2), 

125.72 (CH), 128.34 (CH), 128.78 (CH), 129.36 (CH), 136.058 (CH), 137.29 (Cq), 138.63 (Cq), 

140.18 (Cq), 142.42 (Cq), 146.23 (CH), 156.59 (Cq). MS (70 eV) m/z (%) 239 (M+, 13), 223 (3), 210 

(100), 195 (20), 180 (12), 77 (4). HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C17H22N: 240.1752; 

Found: 240.1749 

 

1-[2-(3,5-diethylpyridin-2-yl)phenyl]-N,N-dimethylmethanamine (13) 

At ambient temperature, tert-butyllithium (1.7M in pentane, 5 mL, 8.5 mmol was added to 1-(2-

bromophenyl)-N,N-dimethylmethanamine (1.71 g, 8 mmol) in diethyl ether (20 mL). After 70 hours 

a white crystalline solid precipitates and 3,5-diethylpyridine was added (1.08 g, 8.0 mmol). After 24 

hours at ambient temperature the mixture was concentrated, absorbed on a small quantity of silica gel 

and dried before being poured on a chromatography column. Elution with a 1:4 (v/v) mixture of 

diethyl ether and petroleum ether mixture gave a colorless oil. Analytically pure samples were 

obtained by semi-preparative HPLC on C18 column using acetonitrile/H2O+0.1% HCOOH as eluent 

(75:25 v/v). The eluate was concentrated to remove acetonitrile and the aqueous phase was made 

basic (pH  9) with NaOH 0.5M. Then the aqueous phase was extracted with Et2O and the organic 

phase was evaporated at high vacuum (0.1 torr) to get the pure compound as colorless oil. Yield: 0.96 

g (45 % relative to 3,5-diethylpyridine). 

1H-NMR (600 MHz, CD2Cl2, 5.32 ppm, +25°C): δ 1.05 (t, 3H, J = 7.6 Hz), 1.30 (t, 3H, J = 7.6 Hz), 

2.02 (s, 6H), 2.40 (bs, 2H), 2.71 (q, 2H J = 7.7 Hz), 3.17 (bs, 2H), 7.14 (dd, 1H, J = 7.6, 1.2 Hz, 1H), 

7.31 (td, 1H, J = 7.2, 1.3 Hz), 7.40 (dt, 1H, J = 7.7, 1.2 Hz), 7.57 (m, 2H),8.31 (d, 1H, J = 2.1 Hz). 

13C-NMR (150.8 MHz, CD3CN, +25°C): δ 15.39 (CH3), 16.26 (CH3), 26.40 (CH2), 26.82 (CH2), 

46.19 (CH3), 62.00 (CH2), 127.62 (CH), 128.97 (CH), 130.37 (CH), 130.42 (CH), 136.70 (CH), 

138.41 (Cq), 139.14 (Cq), 139.46 (Cq), 141.88 (Cq), 147.14 (CH), 157.43 (Cq). MS (70 eV) m/z (%) 

268 (M+, 6), 253 (20), 224 (68), 210 (100), 196 (41), 180 (7), 58 (15). HRMS (ESI-TOF-MS+) m/z: 

[M+H] Calcd. for C18H25N2: 269.2018; Found: 269.2015. 

 

3,5-diethyl-2-[2-(methoxymethyl)phenyl]pyridine (14) 
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At –78 °C, tert-butyllithium (1.7M in pentane, 5 mL, 8.5 mmol) and 3,5-diethylpyridine (1.08 g, 8.0 

mmol) were added consecutively to 1-bromo-2-(methoxymethyl)benzene (1.61 g, 8 mmol) in diethyl 

ether (20 mL). After 5 h at +25 °C the mixture was concentrated, absorbed on a small quantity of 

silica gel and dried before being poured on a chromatography column. Elution with a 1:4 (v/v) mixture 

of diethyl ether and petroleum ether mixture gave a colorless oil. Analytically pure samples were 

obtained by semi-preparative HPLC on C18 column (acetonitrile/H20 80/20 v/v). Yield: 1.20 g (59 

% relative to 3,5-diethylpyridine).  

1H-NMR (600 MHz, CD3CN,+25°C): δ 1.04 (t, 3H, J = 7.3 Hz), 1.30 (t, 3H, J = 7.9 Hz), 2.41 (q, 

2H, J = 7.3 Hz), 2.71 (q, 2H, J = 7.3 Hz), 3.17 (s, 3H), 4.18 (s, 2H), 7.18 (dd, 1H, J = 7.8, 1.2 Hz), 

7.36 (td, 1H, J = 7.5, 1.1 Hz), 7.43 (td, 1H, J = 7.7, 1.2 Hz), 7.54 (d, 1H, J = 7.8 Hz), 7.59 (m, 1H), 

8.33 (d, 1H, J = 2.1 Hz). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 14.40 (CH3), 15.16 (CH3), 25.38 

(CH2), 25.77 (CH2), 57.85 (CH3), 71.87 (CH2), 127.34 (CH), 128.08 (Cq), 128.34 (CH), 129.37 (CH), 

135.99 (CH), 137.17 (Cq), 137.41 (Cq), 138.73 (Cq), 140.05 (Cq) 146.33 (CH), 155.75 (Cq). MS (70 

eV) m/z (%) 255 (M+, 3), 240 (100), 224 (3), 212 (7), 196 (13), 180 (7), 77 (3). HRMS (ESI-TOF-

MS+) m/z: [M+H] Calcd. for C17H22NO: 256.1701; Found: 256.1697. 

 

2-ethyl-2’-methoxy-1,1’-biphenyl (15) 

A mixture of 2-bromoanisole (0.1 ml, 0.8 mmol) and 2-ethylphenylboronic acid (0.150 g, 1 mmol, 

1.25 eq), under nitrogen flux, were dissolved in a 8:3 mixture of toluene/ethanol (0.15M). Then K2CO3 

(1 M solution, 4 mL, 4 mmol) and Pd(PPh3)4 (11.5 mg, 0.01 mmol) were added and the stirred solution 

was kept at reflux for 3 hours. Water was then added and the solution was extracted three times with 

CH2Cl2. The organic layer was dried (Na2SO4), filtered on silica gel and concentrated at reduced 

pressure. The crude was then purified by semi-preparative HPLC on Luna C18 column 

(acetonitrile/H2O 90:10 v/v). Yield: 96 mg (57 % relative to 2-bromoanisole).  

1H-NMR (600 MHz, C2D2Cl4,+25°C): δ 1.11 (t, 3H, J = 7.6 Hz, 3H), 2.49 (bs, 2H), 3.79 (s, 3H), 

7.01 (d, 1H, J = 8.6 Hz), 7.05 (td, 1H, J = 7.3, 0.8 Hz), 7.19 (dd, 1H, J = 8.7, 1.4 Hz), 7.20 (d, 1H, J 

= 8.2 Hz), 7.26 (m, 1H), 7.35 (m, 2H), 7.39 (td, 1H, J = 7.9, 1.7 Hz). 13C-NMR (150.8 MHz, C2D2Cl4, 

+25°C): δ 15.06 (CH3), 26.20 (CH2), 55.56 (CH3), 110.83 (CH), 120.50 (CH), 125.42 (CH), 125.41 

(CH), 127.36 (CH), 127.92 (CH), 128.64 (CH), 130.44 (CH), 130.65 (Cq) 132.35 (CH), 138.31 (Cq), 

142.91 (Cq), 156.60 (Cq). HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C15H17O1: 213.1279; 

Found: 213.1278. 

 

1-(2’-methoxy-[1,1’-biphenyl]-2-yl)-N,N-dimethylmethanamine (16) 
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A mixture of 1-(2-bromophenyl)-N,N-dimethylmethanamine (0.250 g, 1.04 mmol ) and 2-

methoxyphenylboronic acid (237 mg, 1.56 mmol), under nitrogen flux, were dissolved in a 8:3 

mixture of toluene/ethanol (0.10M). Then K2CO3 (2M solution, 2 mL, 4 mmol) and Pd(PPh3)4 (23.0 

mg, 0.02 mmol) were added. The stirred solution was kept at reflux for 2.5 hours. Water was then 

added and the solution was extracted three times with CH2Cl2. The organic layer was dried (Na2SO4), 

filtered and concentrated at reduced pressure. The crude was then purified by a silica plug 

(dichloromethane + triethylamine 0.5%). Analytically pure samples were obtained by semi-

preparative HPLC on C18 column using acetonitrile/H2O+0.1% HCOOH as eluent (80:20 v/v). The 

eluate was concentrated to remove acetonitrile and the aqueous phase was made basic (pH  9) with 

NaOH 0.5M. Then the aqueous phase was extracted with Et2O and the organic phase was evaporated 

at high vacuum (0.1 torr) to get the pure compound as colorless oil. Yield: 100 mg (40 % relative to 

1-(2-bromophenyl)-N,N-dimethylmethanamine). 

1H-NMR (600 MHz, CD3CN, +25°C): δ 2.08 (s, 6H), 3.16 (broad doublet, 1H, J = 13.5 Hz), 3.36 

(broad doublet, 1H, J = 13.5 Hz) 3.73 (s, 3H), 7.03 (dt, 1H, J = 7.4, 1.1 Hz), 7.06 (d, 1H, J = 8.4 Hz), 

7.13 (m, 2H), 7.30 (td, 1H, J = 7.4, 1.3 Hz), 7.36 (td, 1H, J = 7.6, 1.4 Hz), 7.39 (ddd, 1H, J = 9.2, 7.5, 

1.8 Hz), 7.62 (d, 1H, J = 7.8). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 45.80 (CH3), 55.29 (CH3), 

60.72 (CH2), 111.18 (CH), 120.71 (CH), 126.96 (CH), 127.66 (CH), 129.18 (CH), 129.29 (CH), 

130.34 (Cq), 130.48 (CH), 131.27 (CH), 137.65 (Cq), 139.19 (Cq), 156.97 (Cq). HRMS (ESI-TOF-

MS+) m/z: [M+H] Calcd. for C16H20NO: 242.1545; Found: 242.1544. 

 

2-methoxy-2’-(methoxymethyl)-1,1’-biphenyl (17). 

A mixture of 2-methoxyphenylboronic acid (152 mg, 1 mmol) and 1-bromo-2-

(methoxymethyl)benzene (201 mg, 1 mmol) were dissolved in 5 mL of THF. Then K2CO3 (2M 

solution, 1 mL, 2 mmol) and Pd(PPh3)4 (11.5 mg, 0.01 mmol) were added and the mixture was stirred 

at reflux for 2 hours. Then water was added and the aqueous phase was extracted three times with 

CH2Cl2. The organic phase was dried, filtered and concentrated under reduced pressure. The crude 

was then purified by semi-preparative HPLC on C18 column (acetonitrile/H2O 90:10 v/v). Yield: 139 

mg (61 % relative to 1-bromo-2-(methoxymethyl)benzene). 

1H-NMR (600 MHz, CD3CN, +25°C): δ 3.25 (s, 3H), 3.77 (s, 3H), 4.27 (bs, 2H), 6.97 (d, J = 8.4 Hz, 

1H), 7.03 (t, 1H, J = 7.5), 7.18 (dd, 1H, J = 7.4, 1.7 Hz), 7.23 (d, 1H, J = 7.2 Hz), 7.33 (t, 1H, J = 7.2 

Hz), 7.38 (t, 1H, J = 7.2 Hz), 7.53 (d, 1H, J = 7.5 Hz). 13C-NMR (150.8 MHz, CD3CN, +25°C): δ 

55.35 (CH3), 57.72 (CH3), 72.13 (CH2), 111.28 (CH), 120.77 (CH), 127.41 (CH), 127.69 (CH), 

127.83 (CH), 129.44 (CH), 129.76 (Cq), 130.50 (CH), 131.19 (CH), 137.61 (Cq), 138.21 (Cq), 156.95 

(Cq). HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C15H17O2: 229.1229; Found: 229.1225. 
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2-(fluoromethyl)-2’-methoxy-1,1’-biphenyl (18) 

2-bromoanisole (0.12 ml, 1 mmol) and dimethyl (2-fluoromethyl)phenyl) boronate (7.5 mL of a 0.2M 

solution in THF, 1.5 mmol, see compound 10) were mixed under nitrogen flux, Then K2CO3 (2 M 

solution, 2 mL, 4 mmol) and Pd(PPh3)4 (11.5 mg, 0.01 mmol) were added, and the stirred solution 

was kept at reflux for 2 hours. Water was then added and the solution was extracted three times with 

CH2Cl2. The organic layer was dried (Na2SO4), filtered on silica gel and concentrated at reduced 

pressure. The crude was then pre-purified by silica flash chromatography (9:1 petroleum ether/ethyl 

acetate). Analytically pure samples were obtained by semipreparative HPLC on C18 column 

(acetonitrile/H2O 80:20 v/v). Yield: 118 mg (55 % relative to 2-bromoanisole). 

1H-NMR (600 MHz, CD3CN +25°C): δ 3.74 (s, 3H), 5.18 (broad dd, 2H, J = 11 Hz, JH-F = 48.6 Hz), 

7.06 (td, 1H, J = 7.4 Hz, 1.0 Hz), 7.09 (dd, 1H, J = 8.4, 1.0 Hz), 7.18 (dd, 1H, J = 7.4, 1.8 Hz), 7.25 

(m, 1H), 7.40-7.47 (m, 3H), 7.56 (m, 1H). 19F-NMR (564.3 MHz, CD3CN, +25°C): δ -208.48 (t, J = 

48.0 Hz). 13C-NMR (150.8 MHz, CD3CN,+25°C): δ 55.40 (CH3), 83.14 (CH2, d, JC-F = 163.5 Hz), 

111.37 (CH), 120.91 (CH), 128.01 (CH), 128.35 (CH, d, JC-F = 7.4 Hz ), 128.89 (CH, d, JC-F = 3.3 

Hz), 128.94 (Cq), 129.80 (CH), 130.85 (CH), 131.35 (CH), 135.43 (Cq, d, JC-F = 16.0 Hz), 138.33 

(Cq, d, JC-F = 5.2 Hz), 156.83 (Cq). HRMS (ESI-TOF-MS+) m/z: [M+H] Calcd. for C14H14OF: 

217.1029; Found: 217.1034 
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7.1.2 Dynamic NMR 

 

Figure 7.1.1 Dynamic 1H-NMR spectra of compound 4 (CH2 signal) and 6 (CH2 signal) respectively at 600 MHz in 

CDFCl2/CHF2Cl and CD2Cl2. On the right of the experimental spectra is reported the line shape simulations and the 

corresponding rate constants.  
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Figure 7.1.2 Dynamic 1H-NMR spectra of compound 7 (CH2 signal) and 8 (CH2 signal) at 600 MHz in CD2Cl2. On the 

right of the experimental spectra is reported the line shape simulations and the corresponding rate constants. 

7
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Figure 7.1.3 Dynamic 1H-NMR spectra of compound 4 (CH2 signal) and 6 (CH2 signal) at 600 MHz in CD2Cl2. On the 

right of the experimental spectra is reported the line shape simulations and the corresponding rate constants. 
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Figure 7.1.4 Dynamic 1H-NMR spectra of compound 12 (signal of the two diastereotopic CH2 signals) and 13 (CH2 

signals) at 600 MHz respectively in CD2Cl2 and CDCl3. On the right of the experimental spectra is reported the line shape 

simulations and the corresponding rate constants. In the case of 12 the number of the lines exceeded the software limit. 

For this reason, the full line shape simulation was obtained by the point to point sum of two ABX3 systems. 



Chapter 7 – Experimental section 

125 

 

Figure 7.1.5 Dynamic 1H-NMR spectra of compound 14 (CH2 signal) and 15 (CH2 signal) at 600 MHz respectively in 

CD2Cl2 and C2D2Cl4. On the right of the experimental spectra is reported the line shape simulations and the corresponding 

rate constants. 
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Figure 7.1.6 Dynamic 1H-NMR spectra of compound 14 (CH2 signal) and 15 (CH2 signal) at 600 MHz in C2D2Cl4. On 

the right of the experimental spectra is reported the line shape simulations and the corresponding rate constants. 
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Figure 7.1.7 Dynamic 1H-NMR spectra of compound 14 (CH2 signal) and 15 (CH2 signal) at 600 MHz in C2D2Cl4 

(Asterisks mark an impurity). On the right of the experimental spectra is reported the line shape simulations and the 

corresponding rate constants. Note: the doublet at +82 °C is due to the coupling with fluorine. 

1 Vijn R. J., Arts H. J., Green R., Castelijns A. M. Synthesis, 1994, 573–578. 
2 Mahmud T., Iqbal J., Imran M., Mckee V. J. Appl. Sciences 2007, 7, 1347–1350 
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7.2 New azo-decorated N-pyrrolidinylthiazoles: synthesis, properties and an 

unexpected remote substituent effect transmission 

7.2.1 Dynamic NMR 

 

Figure 7.2.1 Methylene dynamic 1H-NMR spectra in CDCl3 and line shape simulations and correspondent kinetic constant 

for 23b and 23f. Black arrows indicates impurity. 

 

 

Figure 7.2.2 Methylene dynamic 1H-NMR spectra in CDCl3 and line shape simulations and correspondent kinetic constant 

for 23d and 23e. Black arrows indicates impurity. 
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7.3 Computational and DNMR Analysis of the Conformational Isomers and 

Stereodynamics of Secondary 2,2′-Bisanilides 

 

Figure 7.3.1 Temperature dependence of the 1H NMR spectra of compound 25 (CDFCl2:CDF2Cl 5:1, 600 MHz) in 

presence of 3 equivalent of CD3OD. 
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Figure 7.3.2 Possible conformers for 32. Optimized geometries and relative energies were calculated at the B3LYP/6-

31G(d) level. 

7.3.1 Synthetical procedure 

 

Structure of 2,2’-binaphthalene-1,1’-diol diisobutyrate 24, and structural analogues bisanilides 25-33 investigated. 

 

1,1’-Biphenyl-2,2’-diamine diisobutyramide, 25.  
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2,2’-Diaminobiphenyl (50 mg, 0.27 mmol, 1 eq) and NEt3 (94 μL, 0.68 mmol, 2.5 eq) were dissolved 

in 5 mL of dichloromethane and cooled to 0 °C. Isobutyryl chloride (68 μL, 0.65 mmol, 2.4 eq) was 

added and the mixture was slowly warmed to room temperature and stirred for 2 hours. The reaction 

was quenched with water and extracted with dichloromethane. The combined organic layers were 

dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography on silica gel 

(CH2Cl2:EtOAc 85:15) afforded 85 mg (0.26 mmol, 95%) of a white solid. Crystal suitable for X-ray 

diffraction were obtained by slow evaporation of a CHCl3 solution.  

1H NMR (600 MHz, CD3CN, +25 °C): δ = 0.91 (d, J = 6.8 Hz, 6H), 0.96 (d, J = 6.8 Hz, 6H), 2.28 

(septet, J = 6.8 Hz, 2H), 7.18 (dd, J = 7.6Hz, 1.7Hz, 2H), 7.27 (dd, J = 7.6Hz, 8.1Hz, 2H), 7.42 (dd, 

J = 8.1 Hz, 7.6 Hz, 2H), 7.63 (s, 2H), 7.77 (d, J = 8.1 Hz, 2H). 13C NMR (150 MHz, CD3CN, +25 

°C): δ = 19.4 (2CH3), 19.5 (2CH3), 36.3 (2CH), 125.8 (2CH), 126.2 (2CH), 129.4 (2CH), 131.4 

(2CH), 133.6 (2Cq), 136.9 (2Cq), 176.8 (2CO). Anal. Calcd. for C20H24N2O2: C, 74.05; H, 7.46; N, 

8.63. Found: C, 74.01; H, 7.73; N, 8.59. 

 

1,1’-Biphenyl-2,2’-diamine bis(trifluoromethylacetamide) 26.1  

2,2’-Diaminobiphenyl (60 mg, 0.33 mmol, 1 eq) and NEt3 (95 μL, 0.68 mmol, 2 eq) were dissolved 

in 5 mL of dichloromethane and cooled to 0 °C. Trifluoroacetic anhydride (114 μL, 0.82 mmol, 2.5 

eq) was added and the mixture was slowly warmed to room temperature and stirred for 4 hours. The 

reaction was quenched with water and extracted with dichloromethane. The combined organic layers 

were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography on silica 

gel (CH2Cl2: EtOAc 85:15) afforded 92 mg (0.24 mmol, 75%) of a brown solid. Crystal suitable for 

X-ray diffraction were obtained by slow evaporation of a CHCl3 solution.  

1H NMR (600 MHz, CD3CN, +25 °C): δ = 7.30 (d, J = 7.6 Hz, 2H), 7.45 (dd, J = 7.6 Hz, 7.9 Hz, 

2H), 7.54 (dd, J = 7.9 Hz, 7.6 Hz, 2H), 7.69 (d, J = 7.9Hz, 2H), 8.71 (bs, 2H). 13C NMR (150 MHz, 

CD3CN, +25 °C): δ = 116.8 (q, JCF = 288 Hz, 2CF3), 126.7 (2CH), 128.5 (2CH), 130.3 (2CH), 131.7 

(2CH), 133.5 (2Cq), 134.5 (2Cq), 156.6 (2CO). 19F NMR (376 MHz, CDCl3): δ = -76.1.  

 

1,1’-Biphenyl-2,2’-diamine dibenzamide, 27.2 

2,2’-Diaminobiphenyl (80 mg, 0.43 mmol, 1 eq) and NEt3 (150 μL, 1.09 mmol, 2.5 eq) were dissolved 

in 5 mL of dichloromethane and cooled to 0 °C. Benzoyl chloride (106 μL, 0.91 mmol, 2.1 eq) was 

added and the mixture was slowly warmed to room temperature and stirred for 2 hours. The reaction 

was quenched with water and extracted with dichloromethane. The combined organic layers were 

dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography on silica gel 

(CH2Cl2:EtOAc 85:15) afforded 130 mg (0.33 mmol, 75%) of a white solid.  
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1H NMR (600 MHz, CD3CN, +25 °C): δ = 7.28-7.33 (m, 4H), 7.41-7.48 (m, 6H), 7.53 (m, 2H), 7.66 

(m, 4H), 7.81 (d, J = 7.4Hz, 2H), 8.58 (s, 2H). 13C NMR (150 MHz, CD3CN, +25 °C): δ = 126.6 

(2CH), 126.8 (2CH), 127.9 (4CH), 129.5 (4CH), 129.6 (2CH), 131.4 (2CH), 132.7 (2CH), 135.1 

(2Cq), 135.3 (2Cq), 136.8 (2Cq), 167.1 (2CO).  

 

1,1’-Biphenyl-2,2’-diamine acetamide, 28.  

2,2’-Diaminobiphenyl (612 mg, 0.33 mmol, 1 eq) and 4-aminopyridine (40 mg, 0.033 mmol, 1 eq) 

were dissolved in 4 mL (40 mmol, 12 eq) of acetic anhydride. The dark orange mixture was stirred 

for 1 hour at 75 °C. The reaction was quenched with 20 mL of HCl (0.2M). The solution was diluted 

with 20 mL of dichloromethane and the organic phase was separated. The aqueous phase was 

extracted with DCM (3 x 15 mL); the combined organic layers were washed with a saturated aqueous 

solution of NaHCO3 (20 mL) and brine (20 mL), then dried over Na2SO4. Purification by flash 

chromatography on silica gel (hexane:ethyl acetate 80:20) afforded 680 mg (2.54 mmol, 76%) of a 

white solid. Crystal suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile 

solution.  

1H NMR (600 MHz, CD3CN, +25 °C): δ = 1.84 (s, 6H), 7.21 (dd, J = 7.6Hz, 1.6Hz, 2H), 7.27 (dd, J 

= 7.6 Hz, 7.6 Hz, 2H), 7.42 (dd, J = 7.6Hz, 8.1Hz, 2H), 7.62 (s, 2H), 7.83 (d, J = 8.1Hz, 2H). 13C 

NMR (150 MHz, CD3CN, +25 °C): δ = 23.7 (2CH3), 125.5 (2CH), 126.1 (2CH), 129.4 (2CH), 131.8 

(2CH), 132.5 (2Cq), 136.9 (2Cq), 170.0 (2CO). Anal. Calcd. for C16H16N2O2: C, 71.62; H, 6.01; N, 

10.44. Found: C, 71.36; H, 5.73; N, 10.32. 

 

N,N'-(6,6'-dimethyl-[1,1'-biphenyl]-2,2'-diyl)bis(2-methylpropanamide) 33 and (M)-N,N'-(6,6'-

dimethyl-[1,1'-biphenyl]-2,2'-diyl)bis(2-methylpropanamide) (M)-33. 

In an oven-dried two-necked round bottomed flask 6,6’-dimethyl-2,2’-diaminobiphenyl3 or (M)-6,6’-

dimethyl-2,2’-diaminobiphenyl (0.24 mmol, 1 eq.) was dissolved in 2 mL of anhydrous 

dichloromethane and the solution was cooled at 0 °C. Triethylamine (1.44 mmol, 6 eq.) and isobutyryl 

chloride (0.96 mmol, 4 eq) were added in sequence. The solution was stirred at room temperature 

until complete consumption of the starting material (TLC, 3 hours). The reaction mixture was diluted 

with dichloromethane (10 mL) and quenched with 1M HCl (5 mL) at 0 °C. The organic layer was 

washed with brine (10 mL) and saturated aqueous solution of NaHCO3 (2 x 5 mL). The organic phase 

was dried over Na2SO4 and the solvent was removed under reduced pressure to afford the product as 

a pale brown solid in 82 % yield (69 mg, 0.19 mmol). 

1H NMR (600 MHz, CDCl3, +25 °C)  = 0.92 (d, J = 6.6 Hz, 6H), 0.97 (d, J = 6.6 Hz, 6H), 1.97 (s, 

6H), 2.23 (septet, J = 6.6 Hz, 2H), 6.98 (bs, 2H), 7.15 (d, J = 7.8 Hz, 2H), 7.34 (dd, J = 7.8 Hz, 7.9 
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Hz, 2H), 8.03 (d, J = 7.8 Hz, 2H). 13C NMR (150 MHz, CDCl3, +25 °C)  = 19.0 (2CH3), 19.1 

(2CH3), 19.5 (2CH3), 36.2 (2CH), 120.3 (2CH), 126.4 (2CH), 127.1 (2Cq), 129.0 (2CH), 135.7 (2Cq), 

137.0 (2Cq), 175.4 (2CO). GC-MS (m/z): 352 (25) [M]+, 309 (5) [M-iPr]+, 282 (25), 239 (25), 

212(20), 195 (100), 180 (15), 71(15). Anal. Calcd. for C22H28N2O2: C, 74.97; H, 8.01; N, 7.95. Found: 

C, 74.78; H, 8.39; N, 7.85. 

 

N,N'-([1,1'-Biphenyl]-2,2'-diyl)bis(N-methyl-2-dimethylpropanamide) 29.  

In an oven-dried round balloon purged with nitrogen a solution of N,N'-dimethyl-2,2'-

diaminobiphenyl (0.47 mmol, 1 eq.) in dichloromethane (4 mL) was cooled at 0 °C and 5.7 mmol (12 

eq) of TEA was added. Isobutyryl chloride (3.8 mmol, 8 eq) was added dropwise and the reaction 

mixture was stirred and allowed to return to the room temperature in 3h. The reaction was quenched 

with HCl (1M), and the phases were separated. The aqueous phase was extracted with DCM (3 x 10 

mL). The combined organic layers were washed with a saturated aqueous solution of NaHCO3 (20 

mL) and brine (20 mL), and dried over Na2SO4. The solvent was removed under reduced pressure 

and the desired product was obtained as a white solid (113 mg, 0.32 mmol) by semi-preparative HPLC 

in 70% yield. Column: LUNA-C18 (250 x 21.20 mm), MeCN/H2O 80/20, 20 ml/min, λ 254 nm, tR: 

4.72 min. mp 152-154 °C.  

1H NMR (600 MHz, CDCl3, +25 °C): δ = 0.80 (bs, 1H), 1.4 (d, J = 6.7Hz ,1H), 1.08 (d, J = 6.7Hz, 

4H), 1.14 (d, J = 6.7Hz, 4H), 1.17-1.27 (bs, 2H). 2.25 (bs, 0.3H) 2.39 (sept, J = 6.7Hz, 0.3H), 2.59 

(sept, J = 6.7Hz, 1.4H), 2.79-2.87 (bs, 4H), 2.95 (bs, 0.7H), 3.07 (bs, 1H), 3.37 (bs, 0.3H), 7.24 (bs, 

1H), 7.29 (bm, 2.6H), 7.33 (bm, 0.6H), 7.39 (bm, 2.2H), 7.43(bm, 1.4H), 7.47 (bs, 0.2H). 13C NMR 

(150 MHz, CDCl3, +25 °C): δ = 18.8, 19.0, 19.6, 20.3, 20.7 (b), 30.4, 31.4, 31.6 (b), 35.6 (b), 128.1, 

128.2, 128.7, 129.27, 129.34, 129.4, 129.5, 130.9, 131.2, 134.0, 134.7, 141.4, 141.8, 177.5, 177.8 (b). 

Anal. Calcd. for C22H28N2O2: C, 74.97; H, 8.01; N, 7.95. Found: C, 74.57; H, 8.43; N, 7.83. 

 

N,N'-([1,1'-biphenyl]-2,2'-diyl)bis(2,2,2-trifluoro-N-methylacetamide) 30.  

A solution of 1.0 mL of trifluoroacetic anhydride was cooled to 0 °C and 0.1 mmol (1 eq.) of N,N'-

dimethyl-[1,1'-biphenyl]-2,2'-diamine were added. The solution was stirred for 1 hour at room 

temperature and then diluted with ethyl acetate and quenched with HCl (1M, 10 mL). The organic 

layer was washed with brine (10 mL) and a saturated aqueous solution of NaHCO3 (10 mL). The 

organic phase was dried over Na2SO4 and the solvent was evaporated under reduced pressure to afford 

a sticky solid. A sample was purified by preparative HPLC on the LUNA-C18 phase (250 x 21.20 

mm), MeCN/H2O 70/30, 20 ml/min, λ 254 nm, tR: 9.14 min. The HPLC purification gave 32mg (0.08 

mmol,80%) of a sticky solid.  
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1H NMR (600 MHz, CDCl3, +25 °C)  = 2.80 (s, 1.2H), 2.86 (bs, 0.6H), 2.95-3.07 (bm, 1.8H), 3.15 

(bs, 0.9H), 3.54-3.66 (bs, 1.5H), 7.24-7.52 (bm, 8H). 19F NMR (564 MHz, CDCl3, +25 °C)  = -66.1, 

-66.2, -67.2, -70.2, -70.3, -70.6, -70.8. 13C NMR (150 MHz, CDCl3, +25 °C)  = 37.1, 37.4 (b), 39.7 

(b), 116.4 (q, J = 291.7Hz, CF3), 127.2 (b), 128.4, 128.9, 129.1 (b), 129.7, 129.8, 130.0 (b), 130.5, 

131.0, 133.4 (b), 134.0 (b), 134.7, 138.2, 140.0 (b), 140.7 (b), 156.1(b), 157.4, 157.6, 157.8, 158.1. 

HRMS (ESI-QTOF) Calcd for C18H15F6N2O2: 405.1032. Found: 405.1038. Anal. Calcd. for 

C18H14F6N2O2: C, 53.47; H, 3.49; N, 6.93. Found: C, 53.12; H, 3.85; N, 6.69. 

 

General procedure for the preparation of tertiary amides 31 and 32. 

 

In an oven dried Schlenk tube under nitrogen atmosphere 0.2 mmol (1 eq.) of amide was dissolved 

in 1 mL of anhydrous THF and the solution was cooled at 0 °C. NaH (60% dispersion in mineral oil, 

0.5 mmol, 2.5 eq.) was added and the reaction mixture was stirred for 15 minutes at ambient 

temperature, then MeI (0.6 mmol, 3 eq.) was added at 0 °C. The reaction mixture was stirred at 

ambient temperature until complete consumption of the starting material (TLC, 2-6 hours) and then 

quenched with a saturated solution of NH4Cl (5 mL). The aqueous phase was extracted with ethyl 

acetate (3 x 5 mL), the combined organic layers were washed with brine (10 mL) and then dried over 

Na2SO4. The solvent was removed under reduced pressure to afford the desired product which was 

used as is or purified by semi-preparative HPLC for the VT-NMR analysis.  

 

N,N'-([1,1'-Biphenyl]-2,2'-diyl)bis(N-methylbenzamide) 31.  

Using 27 in the protocol described above, were obtained 56 mg (67% yield) of a white solid. Mp 157-

159 °C.  

1H NMR (600 MHz, CDCl3, +25 °C)  = 1.98 (s, 0.4H), 3.07 (bs, 2.9H), 3.56 (s, 2.7H), 5.95 (bs, 

1.3H), 6.85 (bdd, J = 6.0 Hz, J = 6.0 Hz, 0.8H), 7.03-7.20 (bm, 4.2H), 7.20-7.69 (bm, 9.1H). 13C 

NMR (150 MHz, CDCl3, +25 °C)  = 37.7, 125.6, 126.5 (b), 127.1, 127.2, 127.6, 128.2, 128.4, 128.7, 

129.3, 129.5, 129.8, 130.9 (b), 132.5, 135.0, 135.2, 135.3, 136.0 (b), 141.2, 142.0, 168.9, 169.7, 172.0 

(b). Anal. Calcd. for C28H24N2O2: C, 79.98; H, 5.75; N, 6.66. Found: C, 79.53; H, 5.65; N, 6.66. 

 

N,N'-([1,1'-biphenyl]-2,2'-diyl)-bis(N-methylacetamide) 32.  
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Using 28 in the protocol described above, were obtained 38 mg (63% yield) of a white solid. Mp 173-

175 °C. Crystals suitable for X-ray analysis were obtained by slow evaporation of a CDCl3 solution. 

1H NMR (600 MHz, CDCl3, +25 °C)  = 1.85 (s, 1.2H), 2.01 (bs, 4.1H), 2.16 (bs, 0.7H), 2.77 (bs, 

4.1H), 2.87 (bs, 0.5H), 2.96 (s, 1.5H), 3.37 (bs, 0.7H), 7.24 (bd, 1.9H), 7.27 (d, J = 7.2Hz, 1.4H), 7.31 

(bd, 0.6H), 7.37 (bm, 0.5H), 7.41-7.44 (bm, 3.5H). 13C NMR (150 MHz, CDCl3, +25 °C)  = 22.0, 

22.5, 22.6, 22.7, 35.4, 36.6, 127.9, 128.1, 128.2, 129.1, 129.2, 129.3, 131.2, 132.4, 135.0, 136.1, 

141.8, 142.1, 170.7, 170.9, 171.0. Anal. Calcd. for C18H20N2O2: C, 72.95; H, 6.80; N, 9.45. Found: 

C, 72.57; H, 6.49; N, 9.85. 

1 Zhang S., Zhang D., Liebeskind L. S. J. Org. Chem. 1997, 62, 2312-2313. 
2 Ames D. E., Opalko A. Tetrahedron 1984, 40, 1919-1925. 
3 Gillerspie K. M., Sanders C. J., Westmoreland I., Thickitt C. P., Scott P. J. Org. Chem., 2002, 67, 3450–3458 
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7.4 Conformational Analysis and Absolute Configuration of Axially Chiral 1-aryl 

and 1,3-diaryl-xanthines 

 

Figure 7.4.1 1H NMR spectrum of compound 34 for the benzyl signal at +120 °C in DMSO at 600 MHz. 

A B

T (+120 °C) in DMSO
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7.4.1 Kinetic studies 

 

Figure 7.4.2 First Order Kinetics of Compound 37 at +100 °C, +105 °C, +110 °C and +115 °C in C2D2Cl4. The slope 

gives the sum of the kinetic constant at each temperature. 
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Figure 7.4.3 First Order Kinetics of Compound 38 at +30 °C, +50 °C, +56 °C and +58 °C in C2D2Cl4. The slope gives the 

sum of the kinetic constant at each temperature. 

y = -0,000009x - 0,9

R² = 1y = -0,00009x - 0,7392

R² = 0,9995

y = -0,0002x - 0,7948

R² = 0,9992

y = -0,0002x - 0,8702

R² = 0,9974-3

-2.5

-2

-1.5

-1

-0.5

0

0 20000 40000 60000 80000 100000 120000

ln
 (

x
en

a
1
-x

eq
)

t (s)

T 30 °C

T 50 °C

T 56°C

T 58°C

T +30 °C T +50 °C T +56 °C T +58 °C

t (s) ln(xena1-xeq) t (s) ln(xena1-xeq) t (s) ln(xena1-xeq) t (s) ln(xena1-xeq)

0 -0,90042 0 -0,73397 0 -0,81803 0 -0,90189

74700 -1,59554 2280 -0,95946 1680 -1,09602 3540 -1,48281

97860 -1,81523 5880 -1,25702 5100 -1,77078 7920 -2,29066

9120 -1,5616 8760 -2,4986 10020 -2,752

12660 -1,86821

14340 -2,0402238



Chapter 7 – Experimental section 

139 

 

Figure 7.4.4 First Order Kinetics of Compound 39 at +100 °C, +110 °C, +120 °C and +130 °C in C2D2Cl4. The slope 

gives the sum of the kinetic constant at each temperature. 
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Figure 7.4.5 Left: First order kinetics at +77 °C and +82 °C obtained at 1H-NMR of 40. The slope provides the sum of 

the kinetic constants at each temperature. Right: First Order Kinetic treatment at +105 °C, +110 °C and +115 °C of 40. 

The slope gives the sum of kinetic rate constants at each temperature. 

 

Diastereoisomerization barrier – 1H-NMR Enantiomerization barrier –kinetic studies
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Figure 7.4.6 Top: kinetic measurement of enantiomerization rate of compound 41a by HPLC (Chiralpak AD-H, eluent 

hexane/iPrOH 70/30 v/v, 0.8 mL/min), starting from one enantiomer kept at +115 °C in C2D2Cl4 Bottom: first order 

kinetic treatment at +115 °C and +110 °C. The slope provides the sum of kinetic rate constant at each temperature. 
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Figure 7.4.7 Top: kinetic measurement of enantiomerization rate of compound 41b by HPLC (Chiralpak AD-H, eluent 

hexane/iPrOH 70/30 v/v, 0.8 mL/min), starting from one enantiomer kept at +55 °C in C2D2Cl4 Bottom: first order kinetic 

treatment at +55 °C and +50 °C. The slope provides the sum of kinetic rate constant at each temperature. 
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Figure 7.4.8 Top: kinetic measurement of enantiomerization rate of compound 42a by HPLC (Chiralpak AS-H, eluent 

hexane/iPrOH 50/50 v/v, 0.6 mL/min), starting from one enantiomer kept at +130 °C in C2D2Cl4. Bottom: first order 

kinetic treatment at +130 °C and +120 °C. The slope provides the sum of kinetic rate constant at each temperature. 
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Figure 7.4.9 Top: kinetic measurement of enantiomerization rate of compound 42b by HPLC (Chiralpak AS-H, eluent 

hexane/iPrOH 50/50 v/v, 0.6 mL/min), starting from one enantiomer kept at +70 °C in C2D2Cl4. Bottom: first order kinetic 

treatment at +90 °C and +70 °C. The slope provides the sum of kinetic rate constant at each temperature. 
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7.4.2 Synthetic procedures 

1,3-diary-xanthines 

 

Figure 7.4.10 synthetic pathway followed for molecules 40-42 

General procedure for the synthesis of compounds I-III.1  

In a round bottom flask equipped with a stir bar were added the appropriate isocyanate (8 mmol) in 

CHCl3 (50 mL, 0.16 M), while stirring were added the appropriate aryl amine (12 mmol) and Et3N 

(18.4 mmol, 2.6 mL). The mixture was stirred at room temperature from 3 h to overnight until 

complete disappearance of the isocyanate. The products were filtrated and washed with CHCl3 and 

isolated as white precipitate.  

 

1,2-di-o-tolylurea (I, CAS Number: 617-07-2). 

Yield 93% (1.79 g, 7.45 mmol). 1H-NMR (400 MHz, DMSO-d6, 2.54 ppm, +25 °C) δ 2.31 (s, 6H, 

CH3), 6.98 (td, J = 7.5, 1.2 Hz, 2H), 7.14-7.24 (m, 4H), 7.84 (dd, J = 8.1, 0.9 Hz), 8.27 (bs, 2H, NH). 

13C-NMR (100 MHz, DMSO-d6, 40.45 ppm, +25 °C): δ 18.9 (CH3), 122.4 (CH), 123.6 (CH), 127.0 

(CH), 128.6 (Cq), 131.1 (CH), 138.4 (Cq), 153.9 (CO).  

 

1-(4-methoxyphenyl)-3-(o-tolyl)urea (II, CAS Number: 106106-60-9). 

Yield 78% (1.6 g, 6.25 mmol). 1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25 °C): δ 2.23 (s, 3H, 

CH3), 3.71 (s, 3H, CH3), 6.87 (m, 2H), 6.92 (dd, J=7.2 Hz, 7.2 Hz, 1H), 7.13 (dd, J=7.9 Hz, 7.2 Hz, 

1H), 7.16 (d, J=7.2 Hz, 1H), 7.36 (m, 2H), 7.81 (s, 1H, NH), 7.83 (d, J=7.9 Hz, 1H), 8.82 (s, 1H, 

NH). 13C-NMR (150.8 MHz, DMSO-d6, 40.45 ppm, +25 °C): δ 18.3 (CH3), 55.6 (CH3), 114.5 (CH), 

120.2 (CH), 121.3 (CH), 122.8 (CH), 126.6 (CH), 127.7 (Cq), 130.6 (CH), 133.4 (Cq), 138.0 (Cq), 

153.3 (Cq), 154.8 (Cq). 

 

1-(4-methoxyphenyl)-3-(naphtalen-1-yl)urea (III).2  
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Yield 82% (1.92 g, 6.56 mmol). 1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25 °C): δ 3.73 (s, 3H, 

CH3), 6.90 (m, 2H), 7.43 (m, 2H), 7.47 (dd, J=8.0 Hz, 8.1 Hz, 1H), 7.54 (dd, J=7.5 Hz, 7.3 Hz, 1H), 

7.57-7.63 (m, 2H), 7.92 (d, J=8.0 Hz, 1H), 8.04 (d, J=7.3 Hz, 1H), 8.13 (d, J=8.1 Hz, 1H), 8.69 (s, 

1H, NH), 8.87 (s, 1H, NH). 13C-NMR (600 MHz, DMSO, 40.45 ppm, +25 °C): δ 55.6 (CH3), 114.5 

(2CH), 117.6 (CH), 120.3 (2CH), 121.7 (CH), 123.1 (CH), 126.1 (CH), 126.27 (Cq), 126.3 (CH), 

126.34 (CH), 128.9 (CH), 133.3 (Cq), 134.2 (Cq), 135.0 (Cq), 153.5 (Cq), 154.9 (Cq). 

 

General procedure for the synthesis of compounds IV-VI.3  

In an oven dried round bottom flask purged with N2 was dissolved the appropriate urea (I-III, 3.11 

mmol) in anhydrous CHCl3 (0.39 M, 8 mL); successively malonyl chloride (3.11 mmol, 0.3 mL) was 

added dropwise. The reaction mixture was refluxed for 5 h. After the solvent was removed in vacuo 

the crude solid was washed with i-PrOH until the mother liquors were clear of the product. The mother 

liquors were purified by a chromatographic column to afford products IV-VI as yellowish solids. A 

small sample for each product were purified by semi-preparative HPLC for characterization purpose.  

 

1,3-di-o-tolylpyrimidine-2,4,6(1H,3H,5H)-trione (IV, CAS Number: 184589-06-8). 

Compound IV was prepared as described by the general procedure except the addition of 0.33 eq of 

malonyl chloride (1.03 mmol, 0.1 mL) after 5 h and a longer reaction time (12 h). The product was 

purified by chromatographic column (DCM:MeOH = 95:5 with gradient to 90:10) to afford IV with 

92% yield (882 mg, 2.86 mmol). Further purification was performed by semi-preparative HPLC on 

a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr = 5.45 min, ACN:H2O = 70:30 v/v).  

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): Mixture syn 57.2% + anti 42.8%:  2.229 (s, 6H, 

syn), 2.233 (s, 6H, anti), 3.98 (d, J=21.2 Hz, 1H, syn), 4.00 (s, 2H, anti), 4.05 (d, 2H, J=21.2 Hz, syn), 

7.24-7.28 (m, 4H, syn+anti), 7.32-7.36 (m, 4H, syn+anti), 7.36-7.40 (m, 8H, syn+anti). 13C-NMR 

(150.8 MHz, CD3CN, 118.3 ppm, +25 °C): Mixture syn + anti:  17.5 (CH3), 17.6 (CH3), 41.4 (CH2), 

41.6 (CH2), 127.87 (CH), 127.91 (CH), 129.7 (CH), 129.75 (CH), 130.16 (CH), 130.17 (CH), 131.8 (2 

CH), 135.3 (Cq), 135.4 (Cq), 137.5 (Cq), 137.8 (Cq), 151.98 (Cq), 152.0 (Cq), 166.3 (Cq), 166.34 

(Cq). 

 

1-(4-methoxyphenyl)-3-(o-tolyl)pyrimidine-2,4,6(1H,3H,5H)-trione (V).  

Yield 91% (915 mg, 2.82 mmol). The compound was purified by chromatographic column on silica 

gel (DCM:MeOH = 95:5). Further purification was performed by semi-preparative HPLC on a Luna 

C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr = 6.23 min, ACN:H2O = 65:35 v/v).  
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1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C): δ 2.18 (s, CH3), 3.80 (s, CH3), 3.94 (m, CH2), 6.97 

(m, 2H), 7.12 (m, 3H), 7.27-7.37 (m, 3H). 13C-NMR (150.8 MHz, CDCl3, 77.0 ppm, +25 °C): δ 17.4 

(CH3), 55.4 (CH3), 40.2 (CH2), 114.6 (CH), 126.2 (Cq), 127.1 (CH), 128.3 (CH), 129.2 (CH), 129.5 

(CH), 131.1 (Cq), 133.1 (Cq), 135.6 (Cq), 150.3 (Cq), 159.8 (Cq), 164.0 (Cq), 164.7 (Cq). 

HRMS(ESI-QTOF). Calcd. for C18H17N2O4
+ 325.1183. Found 325.1188. 

 

1-(4-methoxyphenyl)-3-(naphthalen-1-yl)pyrimidine-2,4,6(1H,3H,5H)-trione (VI).  

Yield 92% yield (1.03 g, 2.86 mmol). The compound was purified by chromatographic column on 

silica gel (DCM:MeOH = 95:5 with gradient to 90:10). Further purification was performed by semi-

preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr = 5.82 min, 

ACN:H2O = 60:40 v/v).  

1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C): δ 3.82 (s, CH3), 4.12 (d, J=22.0 Hz, 1H), 4.17 (d, 

J=22.0 Hz, 1H), 6.99 (m, 2H), 7.21 (m, 2H), 7.41 (d, J=7.4 Hz, 1H), 7.52-7.63 (m, 4H), 7.94 (d, J=8.2 

Hz, 1H), 7.97 (d, J=7.8 Hz, 1H). 13C-NMR (150.8 MHz, CDCl3, 77.0 ppm, +25 °C) δ: 40.5 (CH2), 

55.5 (CH3), 114.7 (2CH), 121.0 (CH), 125.4 (CH), 126.2 (Cq), 126.6 (CH), 126.8 (CH), 127.5 (CH), 

128.9 (CH), 129.3 (2CH), 129.7 (Cq), 130.1 (CH), 130.6 (Cq), 134.5 (Cq), 151.2 (Cq), 159.9 (Cq), 

164.3 (Cq), 164.7 (Cq). HRMS(ESI-QTOF). Calcd. for C21H17N2O4
+ 361.1183. Found 361.1174. 

 

General procedure for the synthesis of compounds VII-IX.  

In a test tube with a Teflon pressure-resistant cap was added the opportune bis-aryl barbituric acid 

(IV-VI, 2.80 mmol), H2O (8.96 mmol, 160 L), and slowly dropwise POCl3 (19.6 mmol, 1.83 mL). 

Once the heat produced was dissipated the reaction mixture was refluxed overnight. The excess of 

POCl3 was removed in vacuo and the reaction was quenched with ice. The aqueous phases were 

extracted with EtOAc (30 mL) five times. The combined organic layers were dried on Na2SO4, filtered 

and concentrated under reduced pressure. The crude was purified by chromatographic column and 

semi-preparative HPLC. 

 

6-chloro-1,3-di-o-tolylpyrimidine-2,4(1H3H)-dione (VII).  

Compound VII was obtained starting from IV (2.8 mmol, 863 mg). The product was purified by a 

chromatographic column on silica gel (petroleum ether : EtOAc 70:30) affording a yellow solid in 

22% yield (201 mg, 0.616 mmol). Further purification was performed by semi-preparative HPLC on 

a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr = 6.46 min, ACN:H2O = 80:20 v/v with 

0.05% HCOOH as acid modifier). 
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1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): Mixture a 57,0% + b 43,0%:  2.18 (s, 3H, b), 

2.19 (s, 3H, a) 2.25 (s, 3H, b), 2.27 (s, 3H, a), 7.24 (s, 1H, b), 7.25 (s, 1H, a), 7.33-7.46 (m, 16 H, a 

+ b). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, +25 °C) Mixture a + b  17.41 (CH3), 17.4 (CH3), 

17.47 (CH3), 17.48 ( CH3), 103.1 (CH) 103.14 (CH), 118.3 (Cq), 127.9 (CH), 128.0 (CH), 128.2 (CH), 

128.23 (CH), 129.5 (CH),129.6 (CH), 130.0 (CH), 130.07 (CH), 130.1 (CH), 131.04 (CH), 131.05 

(CH), 131.8 (CH), 132.0 (CH), 135.58 (Cq), 135.6 (Cq), 136.9 (Cq), 137.10 (Cq),137.11 (Cq), 137.2 

(Cq), 137.7 (Cq),138.0 (Cq),147.5 (Cq), 147.53 (Cq), 150.9 (Cq), 150.93 (Cq), 161.7 (Cq), 161.74 

(Cq). HRMS(ESI-QTOF). Calcd. for C18H16ClN2O2
+ 327.0895. Found 327.0889. 

 

6-chloro-1-(4-methoxyphenyl)-3-(o-tolyl)pyrimidine-2,4(1H,3H)-dione (VIIIa) and 6-chloro-3-

(4-methoxyphenyl)-1-(o-tolyl)pyrimidine-2,4(1H,3H)-dione (VIIIb).  

The two regioisomers of compound VIII were obtained starting from V (2.8 mmol, 910 mg). The 

mixture was purified by a chromatographic column on silica gel (petroleum ether : EtOAc 70:30) 

affording a yellow solid in 48% yield (1.34 mmol, 460 mg). Further purification was performed by 

semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr = 7.91 min, 

ACN:H2O = 70:30 v/v with 0.05% HCOOH as acid modifier). 

1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C) mixture a 60.3% + b 39.7%: δ 2.20 (s, 3H, CH3, a), 

2.25 (s, 3H, CH3, b), 3.82 (s, 3H, CH3, a), 3.84 (s, 3H, CH3, b), 6.15 (s, 1H, CH, b), 6.17 (s, 1H, CH, 

a), 6.98 (m, 4H, a + b), 7.15-7.24 (m, 8H, a + b), 7.28-7.39 (m, 8H, a + b). 13C-NMR (150.8 MHz, 

CDCl3, 77.0 ppm, +25 °C) mixture a + b : δ 17.36 (CH3), 17.44 (CH3), 55.4 (CH3), 55.5 (CH3), 102.39 

(CH), 102.44 (CH), 126.8 (Cq), 127.0 (CH), 127.2 (CH), 128.2 (CH), 128.8 (CH), 128.9 (C1), 129.1 

(CH), 129.3 (CH), 129.9 (CH), 130.0 (CH), 131.1 (CH), 131.2 (CH), 133.7 (Cq), 135.5 (Cq), 135.6 

(Cq), 136.3 (Cq), 146.4 (Cq), 147.0 (Cq), 150.4 (Cq), 150.5 (Cq), 159.7 (Cq), 160.3 (Cq), 160.5 (Cq), 

161.2 (Cq). HRMS(ESI-QTOF). Calcd. for C18H16ClN2O3
+ 343.0844. Found 343.0843. 

 

6-chloro-3-(4-methoxypheyl)-1-(naphthalen-1-yl)pyrimidine-2,4(1H3H)-dione (IXa) and 6-

chloro-1-(4-methoxypheyl)-3-(naphthalen-1-yl)pyrimidine-2,4(1H3H)-dione (IXb).  

The two regioisomers of compound IX were obtained starting from VI (2.8 mmol, 1010 mg). The 

mixture products18 were purified by a chromatographic column on silica gel (petroleum ether : 

EtOAc 70:30) affording a yellow solid in 40% yield (1.12 mmol, 424 mg). Further purification was 

performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, tr 

= 8.76 min, ACN:H2O = 70:30 v/v with 0.05% HCOOH as acid modifier).  
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1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C) mixture a 62.0% + b 38.0%: δ 3.80 (s, 3H, CH3, a), 

3.84 (s, 3H, CH3, b), 6.22 (s, 1H, CH, b), 6.25 (s, 1H, CH, a), 6.98 (m, 4H, a + b), 7.22 (m, 2H, a), 

7.26 (m, 2H, b), 7.44 (d, J=7.9 Hz, 1H, b), 7.48-7.65 (m, 9H, a + b), 7.68 (d, J=8.5 Hz, 1H, b), 7.89-

7.95 (m, 2H, a + b), 7.98 (d, J=8.8 Hz. 1H, a). 13C-NMR (150.8 MHz, CDCl3, 77.0 ppm, +25 °C) 

mixture a + b: δ 55.4 (CH3), 55.5 (CH3), 102.5 (CH), 102.6 (CH), 114.6 (2CH), 121.1 (CH), 121.4 

(CH), 125.3 (CH), 125.5 (CH), 126.3 (CH), 126.5 (CH), 126.7 (Cq), 126.8 (CH), 127.3 (CH), 127.4 

(CH), 128.0 (CH), 128.67 (CH), 128.74 (Cq), 128.8 (Cq), 129.2 (2CH), 129.5 (Cq), 129.7 (CH), 129.8 

(CH), 129.9 (CH), 130.2 (Cq), 130.5 (CH), 131.2 (Cq), 132.8 (Cq), 134.3 (Cq), 134.5 (Cq), 147.0 

(Cq), 147.3 (Cq), 150.87 (Cq), 150.89 (Cq), 159.7 (Cq), 160.2 (Cq), 160.9 (Cq), 161.2 (Cq). 

HRMS(ESI-QTOF). Calcd. for C21H16ClN2O3
+ 379.0844. Found 379.0849. 

 

General procedure for the synthesis of compounds X-XII. 

In a round bottom flask were dissolved the opportune chloro-derivative (VII-IX, 0.61 mmol) in EtOH 

(1M, 0.61 mL) and were added CH3NH2 40% aq (6.1mmol, 0.47 mL). The reaction mixture was 

heated to reflux overnight. Once removed the EtOH at reduced pressure the crude was quenched with 

H2O and extracted with EtOAc. The combined organic layers were dried on Na2SO4, filtered and 

concentrated. The crude products X-XII were used without further purification in the next steps of 

the synthesis. Eventually a semi-preparative HPLC purification were carried out in order to obtain 

analytically pure sample for characterization. 

 

6-(methylamino)-1,3-di-o-tolylpyrimidine-2,4(1H,3H)-dione (X).  

Compound X was obtained as a yellow solid in 97% yield (0.59 mmol, 190 mg). Further purification 

was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 

mL/min, tr = 4.15 min, ACN:H2O = 60:40 v/v with 0.05% HCOOH as acid modifier). Due to hindered 

rotation of the two aryl ring, two conformational diastereoisomer are present in a 61:39 mixture (a:b). 

1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25°C): δ 2.12 (s, 3H, a), 2.13 (s, 3H, b), 2.15 (s, 3H, a), 

2.17 (s, 3H, b), 2.68 (s, 3H, a), 2.69 (s, 3H, b), 4.86 (m, 2H, a + b), 5.81-5.83 (m, 2H, a + b), 7.13-

7.15 (d, 1H, J= 7,5 Hz, b), 7.16-7.17 (d, 1H, J= 7,5 Hz, a), 7.27-7.37 (m, 8H, a + b), 7.39-7.42 (m, 

2H, a + b), 7.46-7.47 (m, 4H, a + b).13C-NMR (150.8 MHz DMSO-d6, 40.45 ppm, +25 °C) mixture 

a + b δ 17.6 (CH3), 17.7 (CH3), 17.9 (CH3), 18.1 (CH3), 30.4 (CH3), 73.9 (CH), 73.94 (CH), 127.33 

(Cq), 127.34 (CH), 128.6 (CH), 128.9 (CH), 130.2 (CH),130.23 (CH),130.7 (Cq), 130.73(CH), 130.76 

(CH), 130.8 (CH), 131.1 (CH), 132.26 (CH), 132.3 (CH), 133.7 (Cq), 133.73 (Cq),136.4 (Cq), 136.7 

(Cq), 136.9 (Cq),137.7 (Cq), 137.9 (Cq), 150.8 (Cq), 150.9 (Cq), 154.8 (Cq), 154.9 (Cq), 162.5 (Cq), 

162.54 (Cq). HRMS(ESI-QTOF). Calcd. for C19H20N3O2
+ 322.1550. Found 322.1544. 
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1-(4-methoxyphenyl)-6-(methylamino)-3-(o-tolyl)pyrimidine-2,4(1H,3H)-dione (XIa) and 3-(4-

methoxyphenyl)-6-(methylamino)-1-(o-tolyl)pyrimidine-2,4(1H,3H)-dione (XIb). 

The mixture of compounds XI were obtained as a yellow solid in 70% yield (0.427 mmol, 144 mg). 

Further purification was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 

21.2 mm, 20 mL/min, tr = 4.92 min, ACN:H2O = 60:40 v/v with 0.05% HCOOH as acid modifier). 

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C) mixture a 60.2% + b 40,8%: δ 2.15 (s, 3H, CH3, 

a), 2.18 (s, 3H, CH3, b), 2.66 (m, 6H, N-CH3, a + b), 3.82 (s, 3H, CH3, a), 3.85 (s, 3H, CH3, a), 4.60 

(bs, 1H, NH, a), 4.71 (bs, 1H, NH, b), 4.83 (s, 1H, CH, b), 4.84 (s, 1H, CH, a), 6.98 (m, 2H, a), 7.10 

(m, 2H, b), 7.16 (m, 4H), 7.25-7.32 (m, 6H), 7.30-7.46 (m, 2H). 13C-NMR (150.8 MHz, CD3CN, 

118.3 ppm, +25 °C) mixture a + b: δ 16.3 (CH3), 16.7 (CH3), 28.82 (CH3), 28.84 (CH3), 55.2 (CH3), 

55.4 (CH3), 73.47 (CH), 73.53 (CH), 114.0 (CH), 115.4 (CH), 115.5 (CH), 126.5 (Cq), 126.6 (CH), 

127.9 (CH), 128.3 (CH), 129.3 (CH), 129.4 (Cq), 129.8 (CH), 130.16 (CH), 130.18 (CH), 130.5 (CH), 

130.9 (CH), 131.0 (CH), 131.7 (CH), 133.1 (Cq), 136.2 (Cq), 136.7 (Cq), 137.9 (Cq), 151.3 (Cq), 

151.4 (Cq), 154.2 (Cq), 155.1 (Cq), 159.2 (Cq), 160.6 (Cq), 162.5 (Cq), 163.1 (Cq). HRMS(ESI-

QTOF). Calcd. for C19H20N3O3
+ 338.1499. Found 338.1493. 

 

3-(4-methoxyphenyl)-6-(methylamino)-1-(naphthalene-1-yl)pyrimidine-2,4(1H,3H)-dione 

(XIIa) and 1-(4-methoxyphenyl)-6-(methylamino)-3-(naphthalene-1-yl)pyrimidine-2,4(1H,3H)-

dione (XIIb).  

The mixture of compounds XII were obtained as a yellow solid in 80% yield (0.487 mmol, 182 mg). 

Further purification was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 

21.2 mm, 20 mL/min, tr = 3.65 min, ACN:H2O = 80:20 v/v with 0.05% HCOOH as acid modifier). 

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C) mixture a 77.2% + b 22,8%: δ 2.59 (d, J=5.3 Hz, 

3H, N-CH3, a), 2.73 (d, J=5.3 Hz, 3H, N-CH3, b), 3.82 (s, 3H, CH3, a), 3.85 (s, 3H, CH3, b), 4.69 

(bs, 1H, NH, a), 4.83 (bs, 1H, NH, b), 4.92 (s, 1H, CH, b), 4.93 (s, 1H, CH, a), 6.99 (m, 2H, a), 7.11 

(m, 2H, b), 7.35 (m, 2H, b), 7.45 (d, J=7.5 Hz, 1H, b), 7.55-7.69 (m, 8H, a + b), 7.80-7.85 (m, 2H, a 

+ b), 7.99 (m, 2H, b), 8.06 (m, 2H, a + b), 8.11 (d, J=8.2 Hz, 1H, a). 13C-NMR (150.8 MHz, CD3CN, 

118.3 ppm, +25 °C) mixture a + b: δ 29.5 (CH3), 29.7 (CH3), 56.0 (CH3), 56.2 (CH3), 74.3 (CH), 74.5 

(CH), 114.8 (CH), 116.2 (CH), 116.3 (CH), 122.6 (CH), 123.3 (CH), 126.6 (CH), 127.07 (CH), 127.11 

(CH), 127.2 (Cq), 127.7 (CH), 127.8 (CH), 127.9 (CH), 128.6 (CH), 129.1 (CH), 129.30 (CH), 129.34 

(CH), 129.4 (CH), 130.1 (Cq), 131.0 (CH), 131.2 (CH), 131.4 (Cq), 131.6 (Cq), 131.7 (CH), 131.8 

(CH), 134.6 (Cq), 135.0 (Cq), 135.7 (Cq), 152.60 (Cq), 152.64 (Cq), 155.5 (Cq), 156.1 (Cq), 160.0 



Chapter 7 – Experimental section 

151 

(Cq), 161.4 (Cq), 163.8 (Cq), 164.0 (Cq). HRMS(ESI-QTOF). Calcd. for C22H20N3O3
+ 374.1499. 

Found 374.1488. 

 

General procedure for the synthesis of compounds XIII-XV.  

The appropriate methyl-amino derivative (X-XII, 1 eq, 0.4 mmol) and NaNO2 (2eq, 0.8 mmol, 55 

mg) were dissolved in H2O (11.2 mL) and acetic acid (1.5 mL). The reaction mixture was left stirring 

at 0 °C overnight and the product was collected as a bright pink precipitate and washed twice with 

cold water. The mother liquors were eventually extracted with EtOAc to fully recover the product. 

The combined organic layers were dried on Na2SO4, filtered and the solvent was removed at reduced 

pressure. The crude product was used without further purification in the next steps of the synthesis. 

Eventually a semi-preparative HPLC purification were carried out in order to obtain analytically pure 

samples for characterization. 

6-(methylamino)-5-nitroso-1,3-di-o-tolylpyrimidine-2,4-(1H,3H)-dione (XIII).  

The product XIII was obtained in 57.5% yield (pink solid, 0.23 mmol, 81 mg). Further purification 

was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 

mL/min, tr = 7.08 min, ACN:H2O = 60:40 v/v with 0.05% HCOOH as acid modifier). Due to hindered 

rotation of the two aryl rings, two conformational diastereoisomer are present in a 57:43 mixture 

(a:b).  

1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25 °C)  2.22 (s, 6H, a + b), 2.24 (d, 3H, J=4.9 Hz, a), 

2.25 (d, 3H, , J=4.9 Hz, b), 2.29 (s, 3H, a), 2.31 (s, 3H, b), 7.35-7.45 (m, 14H, a + b), 7.49-7.50 (m, 

2H, a + b), 7.62 (d, 1H, J=8.1 Hz, a), 7.70 (d, 1H, J=8.1 Hz, b). 13C-NMR (150.8  MHz, DMSO-d6, 

40.45 ppm, +25 °C) mixture a + b  17.9 (CH3), 18.0 (CH3), 18.01 (CH3), 18.1 (CH3), 31.1 (CH3), 

31.15 (CH3), 127.57 (CH), 127.6 (CH), 127.76 (CH), 127.8 (CH),129.69 (CH), 129.71 (CH), 129.96 

(CH), 130.01 (CH), 130.9 (CH), 131.0 (CH), 131.3 (CH), 131.4 (CH), 131.5 (CH), 131.77 (CH), 

131.82 (CH), 135.0 (Cq), 135.1 (Cq), 135.2 (Cq), 135.3 (Cq), 135.7 (Cq), 137.2 (Cq), 138.7 (Cq), 

139.0 (Cq), 139.5 (Cq), 139.6 (Cq), 147.86 (Cq), 147.9 (Cq), 149.4 (Cq), 149.44 (Cq), 160.2 (Cq), 

160.3 (Cq). HRMS(ESI-QTOF). Calcd. for C19H19N4O3
+ 351.1452. Found 351.1444. 

 

1-(4-methoxyphenyl)-6-(methylamino)-5-nitroso-3-(o-tolyl)pyrimidine-2,4-(1H,3H)-dione 

(XIVa) 3-(4-methoxyphenyl)-6-(methylamino)-5-nitroso-1-(o-tolyl)pyrimidine-2,4-(1H,3H)-

dione (XIVb).  
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The mixed products XIV were obtained in 50% yield (pink solid, 0.2 mmol, 73 mg). Further 

purification was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 

mm, 20 mL/min, tr = 5.88 min, ACN:H2O = 50:50 v/v with 0.05% HCOOH as acid modifier).  

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C) mixture a 60.0% + b 40.0%: δ 2.23 (s, 3H, CH3, 

b), 2.25 (d, 3H, J=5.3 Hz N-CH3, a), 2.29 (s, 3H, CH3, a), 2.34 (d, 3H, J=5.3 Hz N-CH3, b), 3.85 (s, 

6H, OCH3, a + b), 7.05 (m, 4H, a + b), 7.29 (m, 3H, a + b), 7.34-7.49 (m, 7H, a + b). 13C-NMR 

(150.8 MHz, CD3CN, 118.3 ppm, +25 °C) mixture a + b: δ 17.5 (CH3), 17.8 (CH3), 31.1 (CH3), 31.8 

(CH3), 56.1 (CH3), 56.3 (CH3), 115.3 (CH), 115.5 (CH), 127.8 (CH), 128.0 (CH), 128.2 (Cq), 128.9 

(CH), 129.8, (CH) 130.0 (CH), 130.8 (CH), 130.9 (CH), 131.5 (CH), 131.7 (CH), 132.1 (CH), 132.3 

(Cq), 135.3 (Cq), 135.7 (Cq), 137.5, (Cq) 139.4 (Cq), 139.5 (Cq), 139.7 (Cq), 147.8 (Cq), 148.4 (Cq), 

150.6 (Cq), 150.8 (Cq). HRMS(ESI-QTOF). Calcd. for C19H19N4O4
+ 367.1401. Found 367.1392. 

 

1-(4-methoxyphenyl)-6-(methylamino)-3-(naphthalen-1-yl)-5-nitrosopyrimidine-2,4-(1H,3H)-

dione (XVa) and 3-(4-methoxyphenyl)-6-(methylamino)-1-(naphthalen-1-yl)-5-

nitrosopyrimidine-2,4-(1H,3H)-dione (XVb).  

The mixture of compounds XV were obtained in 56% yield (pink solid, 0.224 mmol, 90 mg). Further 

purification was performed by semi-preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 

mm, 20 mL/min, tr = 7.04 min, ACN:H2O = 50:50 v/v with 0.05% HCOOH as acid modifier). 

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C) mixture a 79.9% + b 20.1: δ 1.99 (d, J=4.8Hz, 3H, 

N-CH3, a), 2.39 (d, J=5.0Hz, 3H, N-CH3, b), 3.85 (s, 6H, CH3, a + b), 7.06 (m, 2H, a), 7.35 (m, 2H, 

b), 7.48 (bs, 1H, b), 7.53 (bs, 1H, a), 7.60-7.70 (m, 3.8H, a + b), 7.75 (d, J=8.0Hz, 1H, a), 8.00 (m, 

1H, b), 8.06 (m, 2H, a + b), 8.14 (d, J=8.5Hz, 1H, a). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, 

+25 °C) mixture a + b: δ 31.5 (CH3), 32.2 (CH3), 56.5 (CH3), 56.7 (CH3), 115.6 (CH), 115.8 (CH), 

123.3 (CH), 123.6 (CH), 126.7 (CH), 127.1 (CH), 127.8, (CH) 128.3 (CH), 128.5 (CH), 129.2 (CH), 

129.54 (CH), 129.56 (CH) 129.7 (CH), 129.9 (CH), 130.6 (CH), 131.1 (CH), 131.6 (Cq), 132.2, (CH) 

132.5 (Cq), 132.7 (Cq), 133.0 (Cq), 133.6 (Cq), 135.2 (Cq), 135.5 (Cq), 140.0, (Cq) 148.8 (Cq), 151.5 

(Cq), 161.0 (Cq), 161.7 (Cq), 162.1 (Cq). HRMS(ESI-QTOF). Calcd. for C22H19N4O4
+ 403.1401. 

Found 403.1386. 

 

General procedure for compounds 40-42.  

The opportune nitroso-pyrimidine-dione (XIII-XV, 1eq, 0.2 mmol) was refluxed for 3 hours in 1 mL 

of DMF until complete disappearance of the bright pink colour. Then to the reaction mixture cooled 

at room temperature was added K2CO3 (6 eq, 1.2 mmol, 166 mg) and CH3I (10 eq, 2.00 mmol, 0.12 

mL). Then the solution was heated at +50 °C for further 3 hours. The work up proceeds with H2O 
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and extraction with EtOAc. The combined organic layers were dried on Na2SO4, filtered and the 

solvent was removed at reduced pressure. The crude products were purified by semi-preparative 

HPLC in high yields as separate isomers.  

 

7-methyl-1,3-di-o-tolyl-1H-purine-2,6(3H,7H)-dione (40).  

The mixture of 40a and 40b was obtained in ratio 45:55 respectively with overall 98% yield (white 

solid, 0.196 mmol, 68 mg, m.p. 213.3-215.5 °C). HRMS(ESI-QTOF). Calcd. for C20H19N4O2
+ 

347.1502. Found 347.1493. The mixture of stereoisomers was resolved using ChiralPak AD-H 

column (10 μm, 250 x 20 mm, 20 mL/min, hexane:iPrOH = 80:20 v/v).  

40a (trans) 1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C) δ 2.19 (s, 3H), 2.20 (s, 3H), 3.94 (s, 

3H), 7.24-7.25 (m, 1H), 7.33-7.43 (m, 7H), 7.62 (s, 1H). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, 

+25 °C) 17.5 (CH3), 17.7 (CH3), 34.0 (CH3), 108.8 (Cq), 127.7 (CH), 127.9 (CH), 129.7 (CH), 

130.2 (CH), 130.23 (CH), 130.24 (CH), 131.6 (CH), 131.9 (CH), 135.8 (Cq), 136.4 (Cq), 137.7 (Cq), 

137.9 (Cq), 143.7 (CH), 150.2 (Cq), 151.3 (Cq), 156.0 (Cq).  

The atropisomers were resolved with tr = 10.36 min and tr = 11.41 min, respectively. 

40b (cis). 1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C)  2.17 (s, 3H), 2.18 (s, 3H), 3.93 (s, 3H), 

7.25-7.26 (m, 1H), 7.35-7.43 (m, 7H), 7.62 (s, 1H). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, +25 

°C) (CH3); (CH3), 34.0 (CH3), 108.7 (Cq), 127.8 (CH), 128.0(CH), 129.7 (CH), 130.1 

(CH), 130.2 (CH), 130.25 (CH), 131.6 (CH), 131.9 (CH), 135.7 (Cq), 136.4 (Cq), 137.5 (Cq), 137.8 

(Cq), 143.7 (CH), 150.2 (Cq), 151.3 (Cq), 156.1 (Cq). 

The atropisomers were resolved with tr = 12.86 min and tr = 17.89 min, respectively. 

 

Compounds 41a and 41b.  

The mixture of 41a and 41b was obtained in ratio 42:58 respectively with overall 99% yield (white 

solid, 0.199 mmol, 72 mg, m.p. 204.5-205.3 °C). The two compounds were isolated by semi-

preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, ACN:H2O = 60:40 

v/v) with tr = 9.88 min (41a) and tr = 9.34 min (41b). 

 

3-(4-methoxyphenyl)-7-methyl-1-(o-tolyl)-1H-purine-2,6(3H,7H)-dione (41a). 

1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25 °C): δ 2.14 (s, 3H, CH3), 3.85 (s, 3H, CH3), 3.93 (s, 

3H, CH3), 7.08 (m, 2H), 7.27-7.41 (m, 6H), 8.01 (s, 1H). 13C-NMR (150.8 MHz, DMSO-d6, 40.45 

ppm, +25 °C): δ 18.0 (CH3), 34.1 (CH3), 56.3 (CH3), 108.0 (Cq), 115.1 (CH), 127.5 (CH), 128.8 (Cq), 

129.3 (CH), 130.3 (CH), 130.7 (CH), 131.3 (CH), 136.1 (Cq), 137.0 (Cq), 143.9 (Cq), 150.2 (Cq), 
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151.2 (Cq), 155.2 (Cq), 159.9 (Cq). HRMS(ESI-QTOF). Calcd. for C20H19N4O3
+ 363.14517. Found 

363.1462. 

The racemic mixture was resolved with ChiralPak AD-H column (10 μm, 250 x 20 mm, 20 mL/min, 

hexane:iPrOH = 72:28 v/v) with tr = 10.04 min and tr = 13.74 min.  

 

1-(4-methoxyphenyl)-7-methyl-3-(o-tolyl)-1H-purine-2,6(3H,7H)-dione (41b).  

1H-NMR (600 MHz, DMSO-d6, 2.54 ppm, +25 °C): δ 2.14 (s, 3H, CH3), 3.83 (s, 3H, CH3), 3.94 (s, 

3H, CH3), 7.04 (m, 2H), 7.26 (m, 2H), 7.37-7.43 (m, 6H), 7.99 (s, 1H). 13C-NMR (150.8 MHz, 

DMSO-d6, 40.45 ppm, +25 °C): δ 18.1 (CH3), 34.1 (CH3), 56.2 (CH3), 108.0 (Cq), 114.9 (CH), 127.7 

(CH), 129.3 (Cq), 129.8 (CH), 130.2 (CH), 131.2 (CH), 131.6 (CH), 135.5 (Cq), 137.2 (Cq), 143.9 

(Cq), 149.4 (Cq), 151.3 (Cq), 155.9 (Cq), 159.7 (Cq). HRMS(ESI-QTOF). Calcd. for C20H19N4O3
+ 

363.1452. Found 363.1456.  

The racemic mixture was resolved with ChiralPak AD-H column (10 μm, 250 x 20 mm, 20 mL/min, 

hexane:iPrOH = 72:28 v/v) with tr = 10.91 min and tr = 14.10 min. 

 

Compounds 42a and 42b.  

The mixture of 42a and 42b was obtained in ratio 17:83 respectively with overall 99% yield (white 

solid, 0.198 mmol, 79 mg, m.p. 194.6-195.7 °C). The two compounds were isolated by semi-

preparative HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 20 mL/min, ACN:H2O = 35:65 

v/v) with tr = 18.58 min (42a) and tr = 17.54 min (42b). Single enantiomers were separated by Lux 

Cellulose 2 column (5 μm, 250 x 10 mm), or ChiralPak AS-H column (5 μm, 150 x 4.6 mm, 50/50 

n-hexane/iPrOH 0.6 mL/min).  

 

3-(4-methoxyphenyl)-7-methyl-1-(naphthalene-1-yl)-1H-purine-2,6(3H,7H)-dione (42a).  

1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C): δ 3.83 (s, 3H, CH3), 4.01 (s, 3H, CH3), 7.02 (m, 

2H), 7.43 (m, 2H), 7.50 (m, 3H), 7.56 (s, 1H), 7.59 (dd, J=8.3 Hz, J=8.3 Hz, 1H), 7.69 (m,1H), 7.94 

(m, 2H). 13C-NMR (150.8 MHz, CDCl3, 77.0 ppm, +25 °C): δ 33.6 (CH3), 55.5 (CH3), 108.0 (Cq), 

114.6 (CH), 121.6 (CH), 125.6 (Cq), 126.3 (CH), 127.0 (CH), 127.2 (CH), 127.3 (Cq), 128.7 (CH), 

129.2 (CH), 129.4 (CH), 130.3 (Cq), 132.0 (Cq), 134.6 (Cq), 141.9 (CH), 149.8 (Cq), 151.2 (Cq), 

155.5 (Cq), 159.7 (Cq). HRMS(ESI-QTOF). Calcd. for C23H19N4O3
+ 399.1452. Found 399.1445. 

The racemic mixture was resolved with Lux Cellulose 2 column (32/68 n-hexane/iPrOH, 5 mL/min) 

with tr = 18.63 min and tr = 31.20 min, respectively. Kinetic studies were performed in ChiralPak AS-

H column with tr = 16.85 min and tr = 21.07 min.  
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1-(4-methoxyphenyl)-7-methyl-3-(naphthalene-1-yl)-1H-purine-2,6(3H,7H)-dione (42b).  

1H-NMR (600 MHz, CDCl3, 7.26 ppm, +25 °C): δ 3.75 (s, 3H, CH3), 3.94 (s, 3H, CH3), 6.94 (m, 

2H), 7.21 (m, 2H), 7.37 (s, 1H), 7.43 (m, 2H), 7.54 (m, 3H), 7.86 (d, J=8.5 Hz, 1H), 7.92 (m, 1H). 

13C-NMR (150.8 MHz, CDCl3, 77.0 ppm, +25 °C): δ 33.6 (CH3), 55.5 (CH3), 107.8 (Cq), 114.6 

(CH), 122.0 (CH), 125.6 (Cq), 126.5 (CH), 127.0 (CH), 127.3 (CH), 127.6 (Cq), 128.7 (CH), 129.7 

(CH), 130.07 (CH), 130.1 (Cq), 131.4 (Cq), 134.7 (Cq), 142.1 (CH), 149.8 (Cq), 151.4 (Cq), 155.8 

(Cq), 159.5 (Cq). HRMS(ESI-QTOF). Calcd. for C23H19N4O3
+ 399.14517. Found 399.1447. 

The racemic mixture was resolved with Lux Cellulose 2 (40/60 n-hexane/iPrOH, 5 mL/min) column 

with tr = 40.65 min and tr = 50.19 min, respectively. Kinetic studies were performed in ChiralPak AS-

H column with tr = 14.06 min and tr = 21.22 min respectively. 

  



Dynamic stereochemistry of chiral axes. Design and synthesis of stable atropisomers. 

156 

1-aryl-xanthine 

 

Figure 7.4.11 Synthetic pathway followed to synthesized molecules 34-39. 

General procedure for the synthesis of compounds 34-36 

The appropriate aryl isocyanate (0.4 mmol) was added to a solution of ethyl-4-amino-1-benzyl-1H-

imidazole-5-carboxylate (XIX 0.2 mmol) in THF (4.7 mL) and the reaction mixture was stirred under 

reflux conditions for 7h. The resulting mixture, containing XX a-c, was concentrated under reduced 

pressure conditions and then dissolved in 5 mL of DMF. t-BuOK (0.067g, 0.6mmol) were added to 

this solution. The mixture was stirred under reflux overnight. Subsequently, the mixture was 

quenched with an aqueous solution of HCl and extracted with EtOAc. The combined organic layer 

was dried with Na2SO4, filtered, concentrated under reduced pressure and purified by column 

chromatography (EtOAc : Hexane = 2:1 with gradient to 1:0) to afford products 34-36 with a 80% 

(white amorphous solid, 53 mg, 0.16 mmol), 65% (white amorphous solid, 47 mg, 0.13 mmol), and 

80% yield (white amorphous solid, 58 mg, 0.157 mmol), respectively. 

 

7-benzyl-1-(o-tolyl)-1H-purine-2,6(3H,7H)-dione (34).  

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): δ 2.07 (s, 3H), 5.46 (s, 2H), 7.15 (d, J=7.8 Hz, 

1H), 7.29-7.38 (m, 8H), 7.85 (s,1H), 9.87 (NH). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, +25 

°C): δ 17.4 (CH3), 50.5 (CH2), 107.8 (Cq), 127.7 (CH), 128.7 (CH), 129.1 (CH), 129.6 (CH), 129.75 

(CH), 130.3 (CH), 131.6 (CH), 136.1 (Cq), 137.6 (Cq), 137.8 (Cq), 143.4 (CH), 149.3 (Cq), 151.8 

(Cq), 156.2(Cq). HRMS(ESI-QTOF). Calcd. for C19H17N4O2
+ 333.1346. Found 333.1348. 

 

7-benzyl-1-(2-nitrophenyl)-1H-purine-2,6(3H,7H)-dione (35).  

Compound 35 was further purified by semipreparative HPLC on a Luna C18 column (10 μm, 250 x 

21.2 mm, 20 mL/min, ACN:H2O = 63:37 v/v). 

 1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): δ 5.42 (d, J= 15.2 Hz, 1H), 5.45 (d, J=15.2 Hz, 

1H), 7.32-7.38 (m, 5H), 7.52 (dd, J =7.9, 1.5 Hz, 1H), 7.69 (ddd, J=8.2, 7.6, 1.5 Hz, 1H), 7.84 (ddd, 

J=7.9, 7.6, 1.5 Hz, 1H), 7.9 (s, 1H), 8.16 (dd, J=8.2, 1.5 Hz, 1H), 9.52 (NH). 13C-NMR (150.8 MHz, 
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CD3CN, 118.3 ppm, +25 °C) : δ 50.6 (CH2), 107.6 (Cq), 126.2 (CH), 128.6 (CH), 129.2 (CH), 129.8 

(CH), 130.4 (Cq), 131.0 (CH), 133.3 (CH), 135.4 (CH), 137.5 (Cq), 144.0 (CH), 147.7 (Cq), 149.6 

(Cq), 151.4 (Cq), 155.8 (Cq). HRMS(ESI-QTOF). Calcd. for C18H14N5O4
+ 364.1040. Found 

364.1044. 

 

7-benzyl-1-(naphthalene-1-yl)-1H-purine-2,6(3H,7H)-dione (36). 

Compound 36 was further purified by semipreparative HPLC on a Luna C18 column (10 μm, 250 x 

21.2 mm, 20 mL/min, ACN:H2O = 90:10 v/v). 

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): δ 5.45 (d, J = 15.2 Hz, 1H), 5.47 (d, J = 15.2 Hz, 

1H), 7.31-7.38 (m, 5H), 7.45 (d, J=7.4 Hz, 1H), 7.49-7.51 (m, 1H), 7.55-7.58 (m, 1H), 7.61-7.63 (m, 

1H), 7.66 (d, J=8.2 Hz, 1H), 7.88 (s, 1H), 8.01 (dd, J=8.2, 2.4 Hz, 2H), 9.73 (NH). 13C-NMR (150.8 

MHz, CD3CN, 118.3 ppm, +25 °C) : δ 50.5 (CH2), 107.9 (Cq), 123.1 (CH), 126.7 (CH), 127.4 (CH), 

128.0 (CH), 128.3 (CH), 128.7 (CH), 129.1 (CH), 129.3 (CH), 129.8 (CH), 129.9 (CH), 131.7 (Cq), 

133.8 (Cq), 135.2 (Cq), 137.8 (Cq), 143.5 (CH), 149.5 (Cq), 152.1 (Cq), 156.7 (Cq). HRMS(ESI-

QTOF). Calcd. for C22H17N4O2
+ 369.1346. Found 369.1345 

 

General Procedure for the synthesis of compounds 37-39. 

Products 34-36 (0.1 mmol) were dissolved in 2.5 mL THF and t-BuOK (18 mg, 0.16 mmol) followed 

by MeI (d = 2.28 g/mL, 0.01 mL, 0.16 mmol) were added. The mixture was stirred under reflux 

conditions for 2h and after that, it was extracted with EtOAc. The combined organic layer was dried 

with Na2SO4, filtered and concentrated under reduced pressure to give the compounds 37-39 with 

98% (white amorphous solid, 34 mg, 0.098 mmol), 97% (white solid, 36.5 mg, 0.097 mmol), 98% 

yield (white amorphous solid, 37.5 mg, 0.098 mmol), respectively. 

 

7-benzyl-3-methyl-1-(o-tolyl)-1H-purine-2,6(3H,7H)-dione (37).  

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): δ 2.06 (s, 3H), 3.51 (s, 3H), 5.48 (s, 2H), 7.13 (d, 

J=7.8 Hz, 1H), 7.30-7.37 (m, 8H), 7.89 (s,1H). 13C-NMR (150.8 MHz, CD3CN, 118.3 ppm, +25 °C): 

δ 17.5 (CH3), 30.1 (CH3), 50.6 (CH2), 107.8 (Cq), 127.7 (CH), 128.8 (CH), 129.2 (CH), 129.6 (CH), 

129.8 (CH), 130.2 (CH), 131.6 (CH), 136.7 (Cq), 137.6 (Cq), 137.8 (Cq), 143.1 (CH), 151.0 (Cq), 

152.1 (Cq), 155.7(Cq). HRMS(ESI-QTOF). Calcd. for C20H19N4O2
+ 347.1503. Found 347.1507. 

The atropisomers of compound 37 were resolved by ChiralPak AD-H column (10 μm, 250 x 20 mm, 

20 mL/min, hexane:iPrOH = 80:20 v/v). 
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7-benzyl-3-methyl-1-(2-nitrophenyl)-1H-purine-2,6(3H,7H)-dione (38). 

m.p. 176.0-179.0 °C, 1H-NMR (600 MHz, CD3CN,1.96 ppm, +25 °C): δ 3.52 (s, 3H), 5.45 (d, J= 

15.4 Hz, 1H), 5.47 (d, J= 15.4 Hz, 1H), 7.32-7.38 (m, 5H), 7.49 (dd, J=8.0, 1.4 Hz, 1H), 7.70 (td, 

J=8.1, 1.4 Hz, 1H), 7.84(td, J=7.7, 1.5 Hz,1H), 7.93(s,1H), 8.16 (dd, J=8.2, 1.6 Hz, 1H). 13C-NMR 

(150.8 MHz, CD3CN, 118.3 ppm, +25 °C) : δ 30.2 (CH3), 50.8 (CH2), 107.7 (Cq), 126.2 (CH), 128.7 

(CH), 129.2 (CH), 129.8 (CH), 130.9 (Cq), 130.95 (CH), 133.2 (CH), 135.4 (CH), 137.5 (Cq), 143.7 

(CH), 147.7 (Cq), 151.2 (Cq), 151.9 (Cq), 155.3 (Cq). HRMS(ESI-QTOF). Calcd. for C19H16N5O4
+ 

378.1197. Found 378.1201.  

The atropisomers of compound 38 were resolved by Lux Cellulose 2 column (5 μm, 250 x 10 mm, 5 

mL/min, hexane:iPrOH = 50:50 v/v). 

 

7-benzyl-3-methyl-1-(naphthalene-1-yl)-1H-purine-2,6(3H,7H)-dione (39).  

1H-NMR (600 MHz, CD3CN, 1.96 ppm, +25 °C): δ 3.56 (s, CH3), 5.46 (d, J= 15.3 Hz, 1H), 5.49 (d, 

J= 15.3 Hz, 1H), 7.31-7.38 (m, 5H), 7.45 (d, J=7.4 Hz, 1H), 7.47-7.51 (m, 1H), 7.54-7.58 (m, 1H), 

7.61-7.64 (m, 1H), 7.65 (d, J=8.2 Hz, 1H), 7.94 (s, 1H), 8.01 (dd, J=8.2, 2.4 Hz, 2H). 13C-NMR 

(150.8 MHz, CD3CN, 118.3 ppm, +25 °C) : δ 30.2 (CH3), 50.6 (CH2), 108.0 (Cq), 123.2 (CH), 126.7 

(CH), 127.3 (CH), 127.9 (CH), 128.2 (CH), 128.7 (CH), 129.1 (CH), 129.3 (CH), 129.76 (CH), 129.8 

(CH), 131.6 (Cq), 134.3 (Cq), 135.2 (Cq), 137.8 (Cq), 143.3 (CH), 151.2 (Cq), 152.6 (Cq), 156.2 

(Cq). HRMS(ESI-QTOF). Calcd. for C23H19N4O2
+ 383.1503. Found 383.1504. 

The atropisomers of compound 39 were purified by ChiralPak AD-H column (10 μm, 250 x 20 mm, 

20 mL/min, hexane:iPrOH = 76:24 v/v). 
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7.4.3 Assignment of absolute configuration 

 

Figure 7.4.12 Top. Calculated ECD spectra for the four conformations with different dihedral angles and different benzyl 

disposition of compound 37-M using 4 different functionals and 6-311++G(2d,p) as basis set. Bottom: Experimental ECD 

spectra of 1° eluted CSP-HPLC, compared with calculated ECD sum spectra of the four conformations of compound 37 

using four different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 6-311++G(2d,p) as basis set. The 

calculated ECD spectra are shifted by 10 nm, 10 nm, 10 nm and 15 nm and multiplied by a factor of 0.035, 0.055, 0.065, 

0.055, respectively. 
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Figure 7.4.13 Experimental ECD spectra of 1° eluted CSP-HPLC, compared with calculated ECD sum spectra of the four 

conformations of compound 38-M using four different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 

6-311++G(2d,p) as basis set. The calculated ECD spectra are shifted by 10 nm, 10 nm, 12 nm and 16 nm and multiplied 

by a factor of 0.22, 0.21, 0.22, 0.23, respectively. 
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Figure 7.4.14 Top: Calculated ECD spectra for the four conformations with different dihedral angles and different p-OMe 

dispositions of compound 41a 1P using 4 different functionals and 6-311++G(2d,p) as basis set. Bottom: Experimental 

ECD spectra of 2° eluted CSP-HPLC, compared with calculated ECD sum spectra of the four conformations of compound 

41a 1P using 4 different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 6-311++G(2d,p) as basis set. 

The calculated ECD spectra are shifted by 10 nm, 10 nm, 10 nm and 18 nm and multiplied by a factor of 0.25, 0.2, 0.25, 

0.23, respectively. 
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Figure 7.4.15 Top: Calculated ECD spectra for the four conformations with different dihedral angles and different p-OMe 

dispositions of compound 41b using 4 different functionals and 6-311++G(2d,p) as basis set. Bottom: Experimental ECD 

spectra of 1° eluted HPLC, compared with calculated ECD sum spectra of the four conformations of compound 41b 3M 

using 4 different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 6-311++G(2d,p) as basis set. The 

calculated ECD spectra are shifted by 10 nm, 10 nm, 10 nm and 18 nm and multiplied by a factor of 0.26, 0.35, 0.2, 0.18, 

respectively. 
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Figure 7.4.16 Top: Calculated ECD spectra for the four conformations with different dihedral angles and different p-OMe 

dispositions of compound 42a using 4 different functionals and 6-311++G(2d,p) as basis set. Bottom: Experimental ECD 

spectra of 1° eluted CSP-HPLC, compared with calculated ECD sum spectra of the four conformations of compound 42a 

1P using 4 different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 6-311++G(2d,p) as basis set. The 

calculated ECD spectra are shifted by 10 nm, 10 nm, 10 nm and 15 nm and multiplied by a factor of 0.45, 0.5, 0.45, 0.8, 

respectively. 
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Figure 7.4.17 Top: Calculated ECD spectra for the four conformations with different dihedral angles and different p-OMe 

dispositions of compound 42b using 4 different functionals and 6-311++G(2d,p) as basis set. Bottom: Experimental ECD 

spectra of 1° eluted CSP-HPLC is compared with Calculated ECD sum spectra of the four conformations of compound 

42b 3M using 4 different functionals (CAM-B3LYP, ωB97XD, M06-2X, BH&HLYP) and 6-311++G(2d,p) as basis set. 

The calculated ECD spectra are shifted by 25 nm, 25 nm, 25 nm and 30 nm and multiplied by a factor of 1.8, 1.8, 1.2, 

1.6, respectively.
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7.5 Tetrasubstituted cyclopentadienones as suitable enantiopure ligands with 

axial chirality 

 

Figure 7.5.1 A) Left: 1H NMR methyl signals of the two diastereoisomers of compound 43d at different temperatures 

(600 MHz in C2D2Cl4). Right: line shape simulations obtained with the corresponding rate constants. B) Left: 1H NMR 

methyl signals of the two diastereoisomers of compound 43a at different temperatures (600 MHz in C2D2Cl4). Right: line 

shape simulations obtained with the corresponding rate constants. 

 

 

Figure 7.5.2 CSP-HPLC chromatogram of 43c recorded at + 25 °C. Chiralpak IA 250 x 4.6 mm eluent n-hexane/CH2Cl2, 

98/2 + 0.05% EtOH, 1.0 mL/min, UV detection at 280 nm. 
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Figure 7.5.3 Right: D-CSP-HPLC chromatogram of 43c recorded at different temperatures (Black solid line) and line 

shape simulation (red dotted line). Chiralpak IA 250 x 4.6 mm eluent n-hexane/CH2Cl2, 98/2 + 0.05% EtOH, 1.0 mL/min, 

UV detection at 280 nm. Left: CSP HPLC performed at -20 °C on 43c, all the four stereoisomers are detectable. 

 

7.5.1 Synthetic procedure  

 

General procedure for the synthesis of dithianes (47a-c)1 

An oven dried three necked round bottomed flask kept under nitrogen atmosphere, was charged with 

a solution of 1,3-dithiane (15.4 mmol, 1.85 g, 1 eq.) in 60 mL of anhydrous THF (0.26 M). The 

resultant solution was brought to -40 °C and 15 mL of n-BuLi (15.4 mmol, 9.6 mL, 1 eq., 1.6 M in 

n-hexane) was added dropwise to the solution and left to stir at this temperature for 2 hours. In a 
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separate two-necked flask flushed with N2 was dissolved the appropriate halide (15.4 mmol, 1 eq.) in 

dry THF (1.2 M). This solution was then added dropwise at -40 °C to the solution of the lithiate: the 

resultant deep yellow solution was allowed to return to room temperature in 2.5 hours. The raw 

mixture of the mono-substituted 1,3-dithiane was cooled again to -40 °C and 15 mL of n-BuLi (15.4 

mmol, 9.6 mL, 1 eq., 1.6 M in n-hexane) was added dropwise. The yellow solution became 

transparent, then turned from emerald to deep green, and left to stir at -40 °C for 2 hours. The second 

halide (15.4 mmol, 1 eq.) was diluted in THF (1.2 M) and added dropwise to the reaction at -40 °C. 

Then the mixture was allowed to return to ambient temperature overnight. Before working up the 

reaction, it was partially concentrated under reduced pressure and then quenched with a saturated 

solution of NH4Cl. The organic phase was separated, and the water phase was washed three times 

with diethyl ether. The combined organic phase was dried over MgSO4 and the solvent removed in 

vacuum. The crude 2,2-diarylmethylene-1,3-dithiane was then purified by crystallization, flash 

chromatography on silica gel or semi-preparative HPLC. 

 

2,2-bis(2-methylbenzyl)-1,3-dithiane (47a) 

Using the general procedure, the crude product was purified through a precipitation in n-hexane/Et2O 

9:1. The sticky solid was used without further purification for the next step of the synthesis (2.00 g, 

yield = 39.5%). A small pure sample was obtained by a silica gel chromatography column (petroleum 

ether: EtOAc, 8:2 gradient to 6:4) and used for the characterization. 1H NMR (600 MHz, CDCl3, +25 

°C, TMS);  1.85 (m, 2H), 2.29 (s, 6H), 2.82 (m, 4H), 3.27 (s, 4H), 7.12-7.17 (m, 6H), 7.47 (m, 2H). 

13C NMR (150.8 MHz, CDCl3, +25 °C, TMS);  20.7 (CH3), 24.1 (CH2), 26.7 (CH2), 42.3 (CH2), 

56.1 (Cq), 125.1 (CH), 126.9 (CH), 130.2 (CH), 131.9 (CH), 135.0 (Cq), 137.7 (Cq). 

 

2,2-bis(naphthalen-1-yl-methyl)-1,3-dithiane (47b). 

Using the general procedure, the crude product was purified through a precipitation in n-hexane/Et2O 

9:1 as a sticky solid (1.54 g, yield = 25%). 1H NMR (600 MHz, CDCl3, +25 °C, TMS);  1.77 (m, 

2H), 2.76 (m, 4H), 3.75 (s, 4H), 7.40-7.47 (m, 6H), 7.64 (d, J = 7.3 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 

7.82 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.5 Hz, 2H). 13C NMR (150.8 MHz, CDCl3, +25 °C, TMS);  

24.0 (CH2), 27.0 (CH2), 42.3 (CH2), 55.9 (Cq), 124.7 (CH), 124.9 (CH), 125.2 (CH), 125.6 (CH), 

127.8 (CH), 128.7 (CH), 129.9 (CH), 132.7 (Cq), 133.5 (Cq), 133.6 (Cq). 

 

2-(2-methylbenzyl)-2-(naphthalen-1-ylmethyl)-1,3-dithiane (47c) 



Chapter 7 – Experimental section 

169 

Using the general procedure, the crude product was partially purified through multiple precipitation 

(in n-hexane : EtOAc, 9:1). The crude mixture was used without further purification for the next step 

of the synthesis (sticky solid, 2.53 g, yield 45%). A small pure sample for the characterization was 

obtained by a semi-preparative HPLC purification (Phenomenex Luna C18, 10µm, 100 Å, 250 x 21.2 

mm, CH3CN/H2O, 90/10, 20 mL/min, 254 nm, tR = 14.23 min). 1H NMR (600 MHz, CDCl3, +25 °C, 

TMS);  1.82 (m, 2H), 2.29 (s, 3H), 2.83 (m, 4H), 3.30 (s, 2H), 3.75 (s, 2H), 7.13-7.19 (m, 3H), 7.43-

7.51 (m, 4H), 7.64 (d, J = 6.9 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.83 (m, 1H), 8.03 (m, 1H). 13C 

NMR (150.8 MHz, CDCl3, +25 °C, TMS);  20.8 (CH3), 24.0 (CH2), 26.9 (2CH2), 41.8 (CH2), 42.8 

(CH2), 56.0 (Cq), 124.6 (CH), 124.8 (CH), 125.22 (CH), 125.23 (CH), 125.6 (CH), 126.9 (CH), 127.7 

(CH), 128.7 (CH), 129.8 (CH), 130.3 (CH), 132.0 (CH), 132.7 (Cq), 133.5 (Cq), 133.6 (Cq), 135.0 

(Cq), 137.7 (Cq). 

 

General procedure for the deprotection of dithianes (44a-44c)2 

To a solution of the appropriate 2,2-diarylmethylene-1,3-dithiane (1.13 mmol, 1 eq.) in acetonitrile 

(107 mL) and H2O (5.4 mL) were added sodium bicarbonate (9.08 mmol, 0.762 g, 6.6 eq.) and iodine 

(4 mmol, 1.01 g, 2.9 eq.) at 0 °C. The reaction mixture was stirred for 1 hour and then quenched with 

a saturated solution of Na2S2O3. The aqueous layer was extracted twice with diethyl ether (50 mL). 

The combined organic layer was collected and dried over MgSO4. The crude was then purified by 

flash chromatography on silica gel or semi-preparative HPLC. 

 

1,3-di-o-tolylpropan-2-one (44a) 

Using the general procedure the product was purified by flash chromatography on silica gel 

(petroleum ether : Et2O, 9:1), as white solid (226 mg, yield = 84%). 1H NMR (600 MHz, CDCl3, +25 

°C, TMS);  2.17 (s, 6H), 3.73 (s, 4H), 7.07 (d, J = 7.3 Hz, 2H), 7.14-7.20 (m, 6H). 13C NMR (150.8 

MHz, CDCl3, +25 °C, TMS);  19.5 (2CH3), 47.3 (2CH2), 126.2 (2CH), 127.4 (2CH), 130.4 (2CH), 

130.5 (2CH), 132.9 (2Cq), 136.9 (2Cq), 205.6 (CO). 

 

1,3-di(naphthalen-1-yl)propan-2one (44b) 

Using the general procedure with longer (12 h) reaction time, the crude was pass through a plug of 

silica gel and the product was further purified by semi-preparative HPLC (Phenomenex Synergi 

Polar-RP, 4μm, 80 Å, 250 x 21.2 mm, CH3CN/H2O, 68/32, 20 mL/min, 254 nm, tR = 13.05 min) in 

54% yield as white solid (190 mg). 1H NMR (600 MHz, CDCl3, +25 °C, TMS);  4.14 (s, 4H), 7.29 

(d, J = 6.5 Hz, 2H), 7.39-7.43 (m, 4H), 7.47 (dd, J = 8.6 Hz, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 
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7.79 (d, J = 8.3 Hz, 2H), 7.86 (d, J = 8.6 Hz, 2H). 13C NMR (150.8 MHz, CDCl3, +25 °C, TMS);  

47.1 (2CH2), 123.9 (2CH), 125.5 (2CH), 125.8 (2CH), 126.4 (2CH), 128.1 (2CH), 128.5 (2CH), 128.7 

(2CH), 130.8 (2Cq), 132.2 (2Cq), 133.9 (2Cq), 206.4 (CO). 

 

1-(naphthalen-1-yl)-3-(o-tolyl)propan-2-one (44c) 

Using the general procedure, the crude was purified by flash chromatography on silica gel (petroleum 

ether: EtOAc, 8:2 gradient to 6:4). White solid (182 mg, yield = 59%). 1H NMR (600 MHz, CDCl3, 

+25 °C, TMS)  2.07 (s, 3H), 3.71 (s, 2H), 4.14 (s, 2H), 7.03 (d, J = 7.7 Hz, 1H), 7.10-7.18 (m, 3 H), 

7.31 (d, J = 6.9 Hz, 1H), 7.42 (dd, J = 6.9 Hz, J = 7.0 Hz, 1H), 7.45-7.50 (m, 2H), 7.79 (m, 2H), 7.86 

(m, 2H). 13C NMR (150.8 MHz, CDCl3, +25 °C, TMS)  19.5 (CH3), 46.9 (CH2) 47.4 (CH2), 123.8 

(CH), 125.5 (CH), 125.8 (CH), 126.1 (CH), 126.5 (CH), 127.3 (CH), 128.0 (CH), 128.4 (CH), 128.7 

(CH), 130.41 (CH), 130.43 (CH), 130.8 (Cq), 132.2 (Cq), 132.8 (Cq), 133.9 (Cq), 137.0 (Cq), 206.0 

(CO). 

 

2-((2-methylnaphthalen-1-yl)methyl)oxirane (46)3 

To an ice-cooled solution of 1-bromo-2-methylnaphthalene (16 mmol, 3.54 g, 1 eq.) in 130 mL of 

dry Et2O (0.12 M) a solution of n-BuLi (16 mmol, 10 mL, 1 eq., 1.6M in n-hexane) was added over 

7 minutes under N2 atmosphere. The reaction was stirred at -5 °C for 40 minutes and 2-

(chloromethyl)oxirane (16 mmol, 1.25 mL, 1 eq.) was added to the yellow solution. Stirring was 

continued for 90 minutes at -5 °C. The reaction was quenched with 150 mL of water, extracted with 

Et2O (3 x 70 mL), and the collected organic layers washed with brine (50 mL). The product was dried 

under vacuum evaporation and used as crude for the subsequent reaction. The crude product was 

dissolved in CH2Cl2 (200 mL), and to the solution was added KOH (3.41 mmol, 1.91 g), and 18-

crown-6 ether (0.98 mmol, 0.259 g). The reaction was stirred at room temperature overnight. 

Subsequent workup by filtration on a celite pad followed by evaporation of the solvent at low 

pressure. The product was purified by chromatography on silica gel (n-hexane:EtOAc, 8:2) as a 

yellow oil (2.57 g, overall yield = 81%). 1H NMR (600 MHz, CDCl3, +25 °C, TMS);  2.48 (dd, J = 

4.9 Hz, J = 5.2 Hz, 1H), 2.49 (s, 3H), 2,68 (dd, J = 4.9 Hz, J = 5.2 Hz, 1H), 3.20 (m, 1H), 4.31 (dd, J 

= 15.0 Hz, J = 4.9 Hz, 1H), 4.36 (dd, J = 15.0 Hz, J = 4.9 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 7.39 (dd, 

J = 8.2 Hz, J = 8.2 Hz, 1H), 7.47 (dd, J = 8.2 Hz, J = 8.2 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.77 (d, 

J = 7.9 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H). 13C NMR (150.8 MHz, CDCl3, +25 °C, TMS)  20.6 (CH3), 

30.5 (CH2), 46.9 (CH2), 51.7 (CH-O), 123.6 (CH), 124.6 (CH), 126.1 (CH), 126.9 (CH), 128.5 (CH), 

129.0 (CH), 130.0 (Cq), 132.4 (Cq), 132.7 (Cq), 134.4 (Cq). 
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General procedure (III) for the synthesis of 1,3 di-substituted alcohols (45d-e)4 

An oven dried double-necked round bottomed flask (50 mL) with internal stirring, was kept under 

nitrogen. The flask was charged with oven dried Mg turnings (5.125 mmol, 0.125 g, 2.05 eq.) and 

barely covered with dry diethyl ether (10 mL). The solution was stirred overnight in order to activate 

the Mg turnings. A catalytic amount of dibromoethane (0.25 mmol, 20 μL, 0.05 eq.) and iodine were 

added, the solution was refluxed until the brown colour disappear and then cooled to room 

temperature. The appropriate aryl bromide was added (5 mmol, 2 eq.) dropwise and the reaction was 

heated to reflux until most of the magnesium was consumed (1-2.5 hours). The aryl Grignard reagent 

so formed was cooled to room temperature and transferred into an oven dried three-necked round 

bottomed flask under nitrogen equipped with addition funnel, thermometer and septum. The solution 

was diluted with 10 mL of dry diethyl ether and cooled to -50 °C, then CuBr•S(CH3)2 (1.25 mmol, 

0.257 g, 0.5 eq.) was added to the mixture that was kept stirring for 2 hours at -50 °C. A solution in 

Et2O (0.33 M) of the epoxide 3 (2.5 mmol, 0.495 g, 1 eq.) was charged in the addition funnel and 

added dropwise at the mixture at -50 °C. The cooling bath was removed and the temperature was 

allowed to reach the room temperature in 1.5 hour. Subsequent work up with a saturated solution of 

NH4Cl allowed to remove the copper as tetra ammonium complex (blue aqueous solution). The crude 

product was extracted several times with ethyl acetate and purified by flash chromatography. 

 

1-(2-methylnaphthalen-1-yl)-3-(o-tolyl)propan-2-ol (45d) 

Using the general procedure the product was obtained as yellowish oil (660 mg, yield = 91%) by flash 

chromatography on silica gel (n-hexane : EtOAc, 8:2). 1H NMR (600 MHz, CDCl3, +25 °C, TMS); 

 2.23 (s, 3H), 2.51 (s, 3H), 2.94 (m, 2H), 3.33-3.38 (m, 2H), 4.20 (m, 1H), 7.12-7.16 (m, 3H), 7.22 

(m, 1H), 7.39 (dd, J = 8.4 Hz, J = 8.4 Hz, 1H), 7.43 (dd, J = 8.2 Hz, J = 8.0 Hz, 1H), 7.64 (d, J = 8.2 

Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H). 13C NMR (150.8 MHz, CDCl3, +25 °C, 

TMS);  19.5 (CH3), 20.8 (CH3), 35.7 (CH2), 41.1 (CH2), 72.7 (CH-OH), 123.7 (CH), 124.6 (CH), 

125.9 (CH), 126.0 (CH), 126.6 (CH), 126.8 (CH), 128.6 (CH), 129.2 (CH), 130.2 (CH), 130.5 (CH), 

131.9 (Cq), 132.6 (Cq), 132.7 (Cq), 134.6 (Cq), 136.5 (Cq), 136.8 (Cq). 

 

1-(2-methylnaphthalen-1-yl)-3-(p-tolyl)propan-2-ol (45e) 

Using the general procedure the product was was obtained as yellowish oil (572 mg, yield = 79%)  

by flash chromatography on silica gel (hexane : EtOAc, 8:2). 1H NMR (600 MHz, CDCl3, +25 °C, 

TMS);  1.59 (d, J = 8.2, OH), 2.32 (s, 3H), 2.51 (s, 3H), 2.86-2.92 (m, 2H), 3.28-3.35 (m, 2H), 4.18 
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(m, 1H), 7.12 (m, 4H), 7.30 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 8.3 Hz, J = 8.3 Hz, 1H), 7.44 (dd, J = 

8.5 Hz, J = 8.3 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H). 

13C NMR (150.8 MHz, CDCl3, +25 °C, TMS);  20.8 (CH3), 21.0 (CH3), 35.6 (CH2), 43.5 (CH2), 

73.6 (CH-OH), 123.8 (CH), 124.6 (CH), 125.9 (CH), 126.7 (CH), 128.6 (CH), 129.22 (2CH), 129.23 

(2CH), 129.3 (CH), 131.8 (Cq), 132.6 (Cq), 132.7 (Cq), 134.6 (Cq), 135.4 (Cq), 136.0 (Cq). 

 

General procedure (IV) for the oxidation of 1,3 di-substituted alcohols (44d-e) 

To a solution of the appropriate alcohol (45d-e, 2.25 mmol, 1 eq) in DCM (0.01 M), was added in 

one portion the Dess-Martin periodinane (3.93 eq, 1.667 g, 1.75 eq). The solution was allowed to stir 

at room temperature for 36 hours. The reaction was quenched with 40 mL of aqueous NaOH 1.3 M 

and extracted three times with DCM. The combined organic layers were collected, dried with MgSO4 

and the solvent was removed under reduced pressure.  

 

1-(2-methylnaphthalen-1-yl)-3-(o-tolyl)propan-2-one (44d) 

Using the general procedure IV, the product was purified by flash chromatography on silica gel (n-

hexane : EtOAc 9:1), as a white solid (337 mg, 52% yield). 1H NMR (400 MHz, CDCl3, +25 °C, 

TMS);  2.08 (s, 3H), 2.36 (s, 3H), 3.69 (s, 2H), 4.19 (s, 2H), 7.04 (m, 1H), 7.11-7.20 (m, 3 H), 7.32 

(d, J = 8.4 Hz, 1H), 7.38-7.45 (m, 2H), 7.66 (m, 1H), 7.70 (m, 1H), 7.80 (m, 1H). 13C NMR (100.56 

MHz, CDCl3, +25 °C, TMS);  19.5 (CH3), 20.5 (CH3), 42.9 (CH2), 47.2 (CH2), 123.2 (CH), 124.8 

(CH), 126.2 (CH), 126.5 (CH), 127.4 (CH), 127.6 (CH), 128.0 (Cq), 128.6 (CH), 129.0 (CH), 130.3 

(CH), 130.4 (CH), 132.4 (Cq), 132.6 (Cq), 132.8 (Cq), 134.7 (Cq), 136.9 (Cq), 205.8 (CO). 

 

1-(2-methylnaphthalen-1-yl)-3-(p-tolyl)propan-2-one (44e) 

Using the general procedure IV the product was purified by flash chromatography on silica gel (n-

hexane : EtOAc, 9:1) as a white solid (311 mg, 48% yield). 1H NMR (600 MHz, CDCl3, +25 °C)  = 

2.33 (s, 3H), 2.36 (s, 3H), 3.65 (s, 2H), 4.19 (s, 2H), 7.01 (m, 2H), 7.11 (m, 2H), 7.31 (d, J = 8.1 Hz, 

1H), 7.38-7.45 (m, 2H), 7.69 (m, 2H), 7.80 (m, 1H). 13C NMR (150.8 MHz, CDCl3, +25 °C, TMS); 

 20.6 (CH3), 21.1 (CH3), 42.8 (CH2), 48.7 (CH2), 123.2 (CH), 124.7 (CH), 126.4 (CH), 127.5 (CH), 

128.0 (Cq), 128.6 (CH), 129.1 (CH), 129.3 (2CH), 129.4 (2CH), 130.9 (Cq), 132.5 (Cq), 132.7 (Cq), 

134.8 (Cq), 136.7 (Cq), 206.2 (CO). 

 

General procedure for the synthesis of phencyclones derivatives (43a-e) 
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Phenanthrene-9,10-dione (0.741 mmol, 0.154 g, 1 eq.) and the appropriate ketone (0.741 mmol, 1 

eq., see ESI for the preparation of the ketones) were placed in a two-necked round-bottomed flask 

and dissolved with 15 mL of methanol. The solution was refluxed for 1 hour until the complete 

dissolution of the reagents. KOH (0.590 mmol, 0.033 g, 0.8 eq.) was separately dissolved in 6.0 mL 

of methanol and added dropwise to the reaction mixture. The mixture was allowed to reflux from 2 

to 24 hours. The mixture was cooled down to room temperature and then the crude was filtrated. The 

precipitate was eventually further purified with semi-preparative HPLC. 

 

1,3-di-o-tolyl-2H-cyclopenta[l]phenanthren-2one (43a) 

Using the general procedure, the precipitate was purified through a plug on silica gel (n-hexane : 

EtOAc, 95:5) and subsequent semi-preparative HPLC Phenomenex Synergi Polar-RP, (4μm, 250 x 

21.2 mm, CH3CN/H2O, 90/10, 20 mL/min, 254 nm, tR = 8.87 min) yielded 152 mg (50% yield) of a 

deep green solid. 1H NMR (syn 50% + anti 50% 600 MHz, CDCl3, +25 °C, TMS)  2.25 (s, syn+anti, 

6H), 6.91 (m, syn+anti, 2H), 7.13 (dd, syn+anti, J = 7.0 Hz, J = 7.0 Hz, 2H), 7.17-7.21 (m, syn+anti, 

2H), 7.23-7.31 (m, syn+anti, 8H), 7.81 (d, syn+anti, J = 7.80 Hz, 2H). 13C NMR (syn+anti, 150.8 

MHz, CDCl3, +25 °C)  = 20.19 (CH3), 20.25 (CH3), 123.1 (Cq), 123.3 (Cq), 124.16 (CH), 124.17 

(CH), 126.1 (CH), 126.2 (CH), 128.21 (CH), 128.26 (CH), 128.7 (2CH), 128.90 (CH), 128.97 (2Cq), 

128.98 (CH), 129.0 (CH), 129.8 (CH), 130.0 (CH), 130.4 (CH), 131.21 (CH), 131.24 (CH), 132.4 (Cq), 

132.5 (Cq), 133.13 (Cq), 133.14 (Cq), 137.3 (Cq), 137.4 (Cq), 147.86 (Cq), 147.94 (Cq), 200.72 (CO), 

200.77 (CO). HRMS (ESI-QTOF) Calcd. for C31H22O: 410.1671. Found: 410.1666. 

 

1,3-di(naphthalen-1-yl)-2H-cyclopenta[l]phenanthren-2one (43b) 

Using the general procedure the precipitate was purified through a plug on silica gel (n-hexane : 

EtOAc, 95:5) and subsequent semi-preparative HPLC (Phenomenex Kinetex C18, 5μm, 250 x 21.2 

mm, CH3CN/H2O, 90/10, 20 mL/min, 254nm, tR = 12.54 min) yielded 239 mg (67% yield) of a deep 

green solid. 1H NMR (52% : 48% anti+syn, 600 MHz, CDCl3, +25 °C, TMS);  6.72 (m, syn+anti, 

2H), 6.96 (dd, syn+anti, J = 8.1 Hz, J = 8.1 Hz, 2H), 7.21 (m, syn+anti, 2H), 7.41-7.50 (m, syn+anti, 

6H), 7.58 (m, syn+anti, 2H), 7.82 (d, syn+anti, J = 8.7 Hz, 2H), 7.91 (d, syn+anti, J = 7.9 Hz, 4H), 

7.96 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H). 13C NMR (syn+anti, 150.8 MHz, CDCl3, +25 °C, 

TMS)  121.6 (Cq), 122.1 (Cq), 124.2 (2CH), 125.7 (CH), 125.74 (CH), 125.94 (CH), 125.99 (CH), 

126.02 (CH), 126.1 (CH), 126.38 (CH), 126.40 (CH), 128.0 (CH), 128.44 (Cq), 128.47 (2CH), 128.52 

(CH), 128.61 (CH), 128.64 (CH), 128.65 (Cq), 128.68 (CH), 130.0 (CH), 130.2 (Cq), 130.4 (Cq), 

131.33 (CH), 131.35 (CH), 131.5 (Cq), 131.8 (Cq), 133.38 (Cq), 133.39 (Cq), 133.86 (Cq), 133.90 (Cq), 
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149.3 (2Cq), 200.7 (CO), 200.8 (CO). HRMS (ESI-QTOF) Calcd. for C34H22O: 482.1671. Found: 

482.1665. 

 

1-(naphthalen-1-yl)-3-(o-tolyl)-2H-cyclopenta[l]phenanthren-2-one (43c) 

Using the general procedure, the precipitate was purified through a plug on silica gel (n-hexane : 

EtOAc, 98:2) and subsequent semi-preparative HPLC (Phenomenex Kinetex C18, 5μm, 250 x 21.2 

mm, CH3CN/H2O, 90/10, 20 mL/min, 254 nm, tR = 14.00 min) yielded 40 mg (12% yield) of a deep 

green solid. 1H NMR (51% : 49% anti+syn, 600 MHz, CDCl3, +25 °C, TMS);  2.218 (s, 3H), 2.223 

(s, 3H), 6.60 (m, syn+anti, 2H), 6.83-6.89 (m, syn+anti, 4H), 7.06-7.25 (m, syn+anti, 14H), 7.30-

7.42 (m, syn+anti, 6H), 7.48 (m, syn+anti 2H), 7.71 (d, syn+anti, J = 8.2 Hz, 2H), 7.74 (d, syn+anti, 

J = 7.9 Hz, 2H), 7.79-7.87 (m, syn+anti, 6H). 13C NMR (syn+anti, 150.8 MHz, CDCl3, +25 °C, 

TMS);  20.28 (CH3), 20.34 (CH3), 121.5 (Cq), 121.7 (Cq), 123.3 (Cq), 123.7 (Cq), 124.10 (CH), 

124,12 (CH), 124.21 (CH), 124.23 (CH), 125.67 (CH), 125.72 (CH), 125.8 (CH), 125.97 (CH), 126.00 

(CH), 126.04 (CH), 126.1 (CH), 126.2 (CH), 126.3 (CH), 126.4 (CH), 128.0 (CH), 128.21 (CH), 

128.24 (CH), 128.3 (CH), 128.46 (CH), 128.47 (2CH), 128.60 (2CH), 128.61 (CH), 128.70 (CH), 128.72 

(CH), 128.92 (CH), 128.94 (Cq), 129.0 (Cq), 129.1 (CH), 129.8 (CH), 129.91 (CH), 129.93 (CH), 

130.2 (CH), 130.3 (Cq), 130.4 (CH), 130.5 (CH), 131.26 (2CH), 131.28 (CH), 131.3 (CH), 131.6 (Cq), 

131.7 (Cq), 132.3 (Cq), 132.5 (Cq), 133.22 (Cq), 133.23 (Cq), 133.28 (Cq), 133.30 (Cq), 133.8 (Cq), 

133.9 (Cq), 137.3 (Cq), 137.4 (Cq), 148.0 (Cq), 148.1 (Cq), 149.2 (2Cq), 200.7 (CO), 200.8 (CO). 

HRMS (ESI-QTOF) Calcd. for C34H22O: 446.1671. Found: 446.1666. 

 

1-(2-methylnaphthalen-1-yl)-3-(o-tolyl)-2H-cyclopenta[l]phenanthren-2-one (43d) 

Using the general procedure, the precipitate was purified through a plug on silica gel (gradient hexane 

to n-hexane : EtOAc, 95:5) and subsequent semi-preparative HPLC (Phenomenex Kinetex C18, 5μm, 

250 x 21.2 mm, CH3CN/H2O, 90/10, 20 mL/min, 254 nm, tR = 14.22 min) yielded 27 mg (8% yield) 

of a deep green solid. The assignment of the signals of the anti and syn diastereoisomer was obtained 

by NOE-NMR spectra. 

1H NMR (53% : 47%  anti+syn, 600 MHz, CDCl3, +25 °C, TMS);  2.30 (s, syn, 3H), 2.33 (s, anti, 

3H), 2.41 (s, syn, 3H), 2.43 (s, anti, 3H), 6.71 (m, syn+anti, 2H), 6.83 (m, syn+anti, 2H), 6.95 (m, 

syn+anti, 2H), 7.12-7.22 (m, syn+anti, 4H), 7.24-7.32 (m, syn+ anti, 10H), 7.37-7.44 (m, syn+anti, 

6H), 7.79-7.91 7.24-7.32 (m, syn+ anti, 10H).13C NMR (syn+anti, 150.8 MHz, CDCl3, +25 °C, 

TMS);  20.25 (CH3), 20.35 (CH3), 20.8 (2CH3) 121.6 (Cq), 121.7 (Cq), 123.8 (Cq), 123.9 (Cq), 124.0 

(2CH), 124.2 (2CH), 125.1 (CH), 125.17 (CH), 125.21 (CH), 125.3 (CH), 126.2 (2CH), 126.46 (CH), 
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126.47 (CH), 128.25 (CH), 128.27 (CH), 128.29 (CH), 128.31 (CH), 128.72 (CH), 128.74 (CH), 128.80 

(2CH), 128.83 (CH), 128.87 (CH), 128.88 (CH), 128.89 (CH), 129.04 (CH), 129.06 (CH), 129.08 (CH), 

129.10 (CH), 129.11 (CH), 129.15 (CH), 129.9 (CH), 130.0 (CH), 130.43 (CH), 130.45 (CH), 131.27 

(CH), 131.29 (CH), 131.3 (Cq), 132.2 (Cq), 132.31 (2Cq), 132.34 (Cq), 132.35 (Cq), 132.54 (Cq), 

132.55 (Cq), 133.01 (Cq), 133.02 (Cq), 133.15 (Cq), 133.18 (Cq), 135.1 (Cq), 135.2 (Cq), 137.2 (Cq), 

137.4 (Cq), 147.57 (Cq), 147.63 (Cq), 149.41 (Cq), 149.45 (Cq), 200.71 (CO), 200.73 (CO). HRMS 

(ESI-QTOF) Calcd. for C35H24O: 460.1827. Found: 460.1826. 

 

1-(2-methylnaphthalen-1-yl)-3-(p-tolyl)-2H-cyclopenta[l]phenanthren-2-one (43e) 

Using the general procedure, the precipitate was purified through a plug on silica gel (gradient n-

hexane to n-hexane: EtOAc, 95:5) and subsequent semi-preparative HPLC (Phenomenex Synergi 

Polar-RP, 4μm, 250 x 21.2 mm, CH3CN/H2O, 90/10, 20 mL/min, 254 nm, tR = 10.53 min) yielded 

17 mg (5% yield) of a deep green solid. 

1H NMR (600 MHz, CDCl3, +25 °C)  = 2.40 (s, 3H), 2.41 (s, 3H), 6.71 (dd, J = 7.8 Hz, J = 7.8 Hz, 

1H), 6.82 (d, J = 7.8 Hz, 1H), 6.99 (dd, J = 7.8 Hz, J = 7.8 Hz, 1H), 7.18 (dd, J = 8.0 Hz, J = 8.0 Hz, 

1H), 7.25 (m, 2H), 7.29 (dd, J = 7.3 Hz, J = 7.8 Hz, 1H), 7.34-7.44 (m, 5H), 7.71 (d, J = 7.9 Hz, 1H), 

7.79-7.89 (m, 5H).13C NMR (150.8 MHz, CDCl3, +25 °C)  = 20.8 (CH3), 21.4 (CH3), 121.1 (Cq), 

124.0 (CH), 124.1 (Cq), 124.4 (CH), 125.1 (CH), 125.4 (CH), 126.4 (Cq), 128.2 (CH), 128.22 (2CH), 

128.80 (CH), 128.83 (Cq), 128.9 (CH), 129.0 (CH), 129.1 (CH), 129.2 (Cq), 129.4 (2CH), 129.8 

(2CH), 131.2 (CH), 131.3 (CH), 132.29 (Cq), 132.30 (Cq), 133.2 (Cq), 133.3 (Cq), 135.2 (Cq), 138.1 

(Cq), 146.6 (Cq), 150.1 (Cq), 200.6 (CO). HRMS (ESI-QTOF) Calcd. for C35H24O: 460.1827. 

Found: 460.1829. 
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