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ABSTRACT

The aim of the research concerns inference methods for non-linear dynamical
systems. In particular, the focus is on a di�erential equation called Du�ng oscilla-
tor. This equation is suitable to model non-linear phenomena like jumps, hysteresis,
or subharmonics and it may lead to chaotic behaviour as control parameters vary.
Such behaviour have been observed in many di�erent real-world scenarios, as in
economics or biology.

Inference in the Du�ng process is performed with the unscented Kalman filter
(UKF) by casting the system in state space form. In the context of ordinary di�eren-
tial equations, the uncertainty of the UKF estimates for chaotic systems is quantified
by a simulation study. To overcome the limitations of the UKF when applied to the
Du�ng process, a new algorithm that matches Bayesian optimization (BO) and ap-
proximate Bayesian computation (ABC) within the UKF scheme is proposed. The
novelty consists in (i) optimizing the sigma points location bymeans ofmaximization
of the likelihood of observations with BO, and (ii) initialize the UKF with candidate
parameters coming from the ABC scheme. The proposed algorithm can outperform
the UKF in complex systems where the likelihood function is highly multi-modal.

Concerning stochastic di�erential equations, a massive simulation study is pre-
sented to evaluate the performance of the UKF for parameter estimation.

Finally, illustrations of the method with real data and further developments of
the research are discussed.
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SOMMARIO

La presente ricerca ha l’obiettivo di sviluppare metodi d’inferenza per sistemi
dinamici non lineari. In particolare, l’analisi è incentrata su una equazione di�eren-
ziale chiamata l’oscillatore di Du�ng. Tale equazione è utilizzata per modellare
diversi fenomeni non lineari, quali salti, isteresi o subarmoniche, e, in generale, può
mostrare comportamenti caotici al variare di parametri di controllo. Tali fenomeni
sono di�usi in diversi scenari reali, sia in economia sia in biologia.

L’inferenza nel processo di Du�ng è condotta tramite unscented Kalman fil-
ter (UKF) attraverso la riscrittura del sistema nella forma stato-spazio. Nel con-
testo di equazioni di�erenziali ordinarie, l’incertezza delle stime di UKF per sistemi
caotici è quantificato tramite uno studio di simulazione. Per superare le limitazioni di
UKF quando applicato al sistema di Du�ng, viene proposto un nuovo algoritmo che
unisce ottimizzazione bayesiana (BO) e approximate bayesian computation (ABC)
all’interno dello schema UKF. Le novità del metodo consistono in: (i) ottimizzazione
della posizione dei punti sigma tramite la massimizzazione della verosimiglianza delle
osservazioni e (ii) inizializzazione di UKF con valori provenienti dallo schema ABC.
L’algoritmo proposto può portare stime dei parametri migliori rispetto a UKF nel
caso di sistemi complessi dove la funzione di verosimiglianza è altamente multi-
modale.

Per l’analisi di equazioni di�erenziali stocastiche, viene presentato un cospicuo
studio di simulazione al fine di valutare i risultati del UKF per la stima dei parametri.

Infine, si illustra un’applicazione del metodo su dati reali e si discutono gli sviluppi
futuri della ricerca.

iii





ACKNOWLEDGEMENTS

This dissertation has materialized thanks to the contribution of many people to
whom I am enormously indebted and I have the pleasure of expressing my gratitude.

I gratefully acknowledge the persistent support and encouragement from Profes-
sor Dirk Husmeier. He provided constant academic guidance and he had a strong
influence on my scientific development. Dirk’s help was not limited to statistical
studies, but o�ered the best support in every aspect of my Ph.D. life.

Many thanks to Professor Alessandra Luati for her valuable comments on my
research. She gave me many insightful feedbacks, provided financial funds and she
is always enthusiastic in proposing new presentations of our work.

I thank the reviewers, Ernst Wit and Guido Sanguinetti, for helping me to im-
prove the research with their accurate remarks.

I am very grateful to Umberto Noè. He has been o�ering his generous help
since the beginning of my study in the UK. His patience was invaluable for me to
go through some tough months at University of Glasgow. It is my hope to continue
working together.

Sincere thanks tomany friendswithwhom I sharemore than just an academic re-
lationship: Elisa, Chiara, Francesco, Lorenzo, Ester, Francesca, Riccardo, and Maso.
They were vital in making my stay in Bologna enjoyable.

I wish to express my deep gratitude to the founder of the typographical workshop
“La tana della volpe” and his partner, not only for their editing suggestions, but
mostly for their endless, brilliant and courteous support.

Finally, I would like to thank my parents for helping me throughout all my
studies and for providing a home in which to complete my writing up.

Without the aid of these people, I am sure that I would have made many more
mistakes. All remaining errors are mine alone.

v





CONTENTS

Abstract i

Sommario iii

Acknowledgements v

1 Introduction 1

2 The Du�ng process 5
2.1 Non-linear dynamical systems . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Phase-space representation . . . . . . . . . . . . . . . . . . . 9

2.2 Qualitative analysis on systems described by the Du�ng oscillator . . 9
2.2.1 Periodic and non-periodic motion . . . . . . . . . . . . . . . 11
2.2.2 Non-linear phenomena arising from amplitude-frequency de-

pendence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Free Du�ng oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Critical points . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Existence of the trivial fixed point only . . . . . . . . . . . . . 26
2.3.3 Case when the non-trivial fixed points exist . . . . . . . . . . 28

2.4 Forced oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Disciplines influenced by the Du�ng equation . . . . . . . . . . . . 32

3 Inference for ordinary di�erential equations 37
3.1 State space representation . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Practical implementation of the KF . . . . . . . . . . . . . . . 43
3.2.2 Main disadvantage . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Parameter inference in the context of Kalman filtering . . . . . . . . 44

vii



viii CONTENTS

3.4 Kalman filter-based methods . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 The unscented transform . . . . . . . . . . . . . . . . . . . . 46
3.5.2 The UKF method . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Disadvantages of the UKF . . . . . . . . . . . . . . . . . . . 51

3.6 Sigma points optimization . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2 Discrete search . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Likelihood free inference . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.1 The ABC method . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.2 The ABC-SMC scheme . . . . . . . . . . . . . . . . . . . . . 64
3.7.3 Choice of summary statistics . . . . . . . . . . . . . . . . . . 66

3.8 Sequential ABC - UKF . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Simulation study 71
4.1 State space Du�ng system . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Dependence of UKF on noise, sample size and starting values . . . . 73
4.3 The UKF and sigma points optimization . . . . . . . . . . . . . . . . 75
4.4 Sequential ABC-UKF estimates . . . . . . . . . . . . . . . . . . . . . 77
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Inference for stochastic di�erential equations 85
5.1 Stochastic state space models . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Stochastic state models . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Stochastic integrals . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.3 Discrete stochastic state space models . . . . . . . . . . . . . 88
5.1.4 The Euler-Maruyama method . . . . . . . . . . . . . . . . . 89
5.1.5 The Euler-Maruyama scheme within the UKF framework . . 90
5.1.6 Joint state space representation . . . . . . . . . . . . . . . . . 91
5.1.7 Stochastic Du�ng system . . . . . . . . . . . . . . . . . . . . 92

5.2 Simulation study of SDE . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS ix

5.3 Augmented vs. Non-Augmented UKF . . . . . . . . . . . . . . . . . 95
5.3.1 Non-augmented unscented transform . . . . . . . . . . . . . 98
5.3.2 Augmented unscented transform . . . . . . . . . . . . . . . . 99
5.3.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Estimation of the state noise variance . . . . . . . . . . . . . . . . . . 102
5.5 Comparison between known and unknown state noise variance . . . 105
5.6 Comparison on an independent dataset . . . . . . . . . . . . . . . . . 106
5.7 Initialization of the UKF for SDEs . . . . . . . . . . . . . . . . . . . 111
5.8 Discussion on SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Changepoint detection method 115
6.1 Wavelets and Fourier series . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Wavelets definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Definition based on splines . . . . . . . . . . . . . . . . . . . 116
6.2.2 Definition based on filters . . . . . . . . . . . . . . . . . . . . 119

6.3 Characteristics and di�culties of wavelets . . . . . . . . . . . . . . . 119
6.4 Family wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1 Haar wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.2 Daubechies wavelets . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Changepoint detection strategy . . . . . . . . . . . . . . . . . . . . . 122

7 Real data analysis 125
7.1 The U.S. business cycle . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 Changepoints of wavelets variance . . . . . . . . . . . . . . . 127
7.1.2 Estimates for the business cycle . . . . . . . . . . . . . . . . . 131

7.2 Sunspots data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.1 Wavelets and solar cycles . . . . . . . . . . . . . . . . . . . . 134
7.2.2 Estimates for sunspot numbers . . . . . . . . . . . . . . . . . 136

8 Conclusions and outlook on future research 141
8.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.1.1 General framework . . . . . . . . . . . . . . . . . . . . . . . 141



x CONTENTS

8.1.2 Contribution for ODE inference . . . . . . . . . . . . . . . . 141
8.1.3 Contribution for SDE inference . . . . . . . . . . . . . . . . 143
8.1.4 Real data illustrations . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2.1 Simulation extensions . . . . . . . . . . . . . . . . . . . . . . 145
8.2.2 Model based changepoint detection method . . . . . . . . . . 146

Bibliography 147



1. INTRODUCTION

Di�erential equations are a powerful tool to describe dynamical processes: many
systems studied in biology, social sciences, engineering and economics are described
by ordinary or stochastic di�erential equations (ODEs or SDEs). Modelling ODEs
and SDEs requires to reconstruct the hidden signal behind noisy observations and
to estimate parameters that represent particular features of the system. Several algo-
rithms have been proposed to face these necessities.

In this dissertation, the focus is on a non-linear di�erential equation called Du�-
ing process. This equation bears the name of its detector and it has often been as-
sociated to the most known Van der Pol system. The Du�ng equation describes
many di�erent non-linear phenomena, as jumps, hysteresis, and bifurcations. These
behaviours are highly widespread in biological and economical processes and the
aim of this research is to use the Du�ng system to model data that shows non-linear
dynamics.

Therefore, the goal of the project is the development of inference schemes for the
Du�ng equation. Analyses, both quantitative and qualitative (i.e. geometric), for
the Du�ng system has been extensively carried out in the physical and engineering
literature, but so far the author is not aware of any statistical method to infer the
signal and parameters for such oscillator.

The Du�ng equation is described by a state space representation and a Kalman
filter based method, known as the unscented Kalman filter (UKF), is utilized to con-
duct inference. The UKF is a non-linear extension of the Kalman filter, based on the
unscented transform, which approximates Gaussian distributions on a deterministi-
cally chosen set of points, called in the literature as sigma points. In the evaluation
of the UKF performance in the context of ODEs, two limits are faced.

The first limitation concerns the sigma points location in the likelihood space.
Non-linear systems may show highly multi-modal likelihood: in this case the de-
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2 INTRODUCTION

terministic position of sigma points may result in a noticeably loss of accuracy in the
estimates. Such limit is overcome inserting a Bayesian optimization (BO) algorithm
inside the UKF steps that is able to understand the “best” sigma points location de-
pending on the likelihood space the UKF is dealing with. A comparison between
the performance of two acquisition functions (the expected improvement and the
upper confidence bound) is also discussed.

The second limit is related to the choice of the starting values. The UKF conver-
gence to the true parameters is highly a�ected by its initialization. Here, the class of
approximate Bayesian computation (ABC) method is considered. The idea behind
this approach is to find an approximate posterior distribution from which to pick
candidate parameters to initialize the UKF.

The new algorithmic method that couples the ABC (performed with a sequen-
tial Monte Carlo sampling scheme) within the UKF with optimized sigma points
according to the BO method is called Sequential ABC-UKF.

In the context of SDEs, the discussion focuses on numerical methods to approx-
imate stochastic integrals. In this case, the UKF is modified to include the Euler-
Maruyama approximation scheme to solve the SDE.

A large simulation study is developed, both for ODEs and SDEs.

Finally, two analyses for the U.S. gross domestic product (GDP) and the sunspot
numbers are discussed. Many real-world time series may hide di�erent generative
parameters of the process depending on time intervals. To locate in the time domain
the changes in these parameters, i.e. to identify the breakpoints in which the system
switches among hidden regimes, a changepoint detection method based on wavelets
is described. So far, the method is heuristic in the sense that it is a model-free scheme:
the development of a model-driven changepoint detection strategy is one of the
ongoing projects presented at the end of the thesis.

The dissertation is organized as follows. The Du�ng process and a qualita-
tive analysis on the non-linear phenomena that the system describes are presented
in Chapter 2. The remainder of the thesis concerns inference methods. Chapter
3 is a review of the UKF, BO and ABC, and the proposed algorithm Sequential
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ABC-UKF is discussed in the last Section. The simulation study for ODEs is shown
in Chapter 4, while Chapter 5 is dedicated to simulation studies for SDEs. The
changepoint detection method and the real data illustrations are in Chapters 6 and
7, respectively. Finally, conclusions and future research are discussed in Chapter 8.





2. THE DUFFING PROCESS

The aim of this Chapter is twofold. Initially, the main concepts for a quantitative
and qualitative analysis of dynamical systems are described. Then, the behaviour of
a non-linear second order di�erential equation called Du�ng equation is discussed. I
introduce the main mathematical tools developed in the literature to study the non-
linearity of the Du�ng system, but the reader is referred to more specialized books
for a comprehensive discussion (e.g. Stoker, 1950 and Kovacic and Brennan, 2011).
Here, the goal is to introduce non-linear phenomena.

Georg Du�ng (1861 - 1944) was an engineer and his research comes from his
personal practical experience of engineering systems. The most important Du�ng’s
publication is “Forced oscillations with variable natural frequency and their technical
significance” (Du�ng, 1918), a book in which he described his studies on the pen-
dulum and introduced a non-linear second order di�erential equation now bearing
his name.

Nowadays, in the physical and engineering literature, the term Du�ng oscillator
indicates any equation with a cubic sti�ness, regardless to the type of damping or ex-
citation. In this work, however, following the original definition of Du�ng’s equa-
tion, free or forced harmonic vibration of an oscillator with linear viscous damping
are studied.

The Du�ng oscillator is suitable to describe several non-linear phenomena. De-
pending on the di�erential equation parameters, local bifurcations can occur in the
system, arising from jump phenomena or sub-harmonics, and lead to chaotic re-
sponses (e.g. the period-doubling route to chaos). Bifurcations characterise a power
spectra with the presence of frequencies beside the fundamental one. In the time se-
ries literature, the existence of di�erent frequencies points out the presence of cycles
nested one inside the other (Ramsey, 1990).

The Du�ng equation sits alongside the most known Van der Pol equation (Ko-
vacic and Brennan, 2011). Both the systems have been studied in the same historical
period, and in the literature both equations are fundamental in non-linear dynamical
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6 THE DUFFING PROCESS

studies. In statistics, more attention has been devoted to the Van der Pol equation,
with respect to the applications to time series (see Ramsey, 1990, Tong, 1990 and
references therein) and parameter inference (Sitz et al., 2002). There is not a real
motivation for which the Du�ng system is less famous among statisticians. Some
author claimed its importance (Tong and Lim, 1980), but, up to now, I am not aware
of any comprehensive statistical discussion and inference scheme for non-linear phe-
nomena arising from the Du�ng process.

In this Chapter, Section 2.1 concerns the historical development of the theory of
non-linear oscillations and the qualitative analysis for di�erential equations. Then,
in Section 2.2, the non-linear phenomena that Du�ng’s equation models are de-
scribed. The Sections 2.3 and 2.4 highlight the behaviour of the system depending
on parameter values for, respectively, deterministic and stochastically excited vibra-
tions. Finally, Section 2.5 gives an idea of the scientific influence of the Du�ng’s
system.

2.1. Non-linear dynamical systems

The study of non-linear oscillations is vast, and it is behind the scope of this
section to give a detailed description of the mathematical tools for the analysis of dif-
ferential equations. In what follows, the focus is on the aspects related to Du�ng’s
work, while for a review on the historical development of non-linear dynamical sys-
tems the reader is referred to Holmes (2005) and Shaw and Balachandran (2008). An
outline on the methods to analyse dynamical systems, i.e. phase-space representa-
tion, is given in Section 2.1.2.

2.1.1. Historical perspective

The concept of non-linear vibrations have been known since Christiaan Huy-
gens invented the pendulum clock (Huygens, 1673); however, Du�ng was the one
to tackle the problem of non-linear oscillators in a systematic way (see the Intro-
duction in Kovacic and Brennan, 2011). The history started with a pendulum: in
1583, the 19-year-old Galileo timed the oscillation of a swinging chandelier, record-
ing one of the early registration of oscillations in the history. Galileo noticed that
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the frequency, that is the number of oscillations per unit of time, of the pendulum
was independent of the amplitude, defined as the maximum numerical value of the
vibration. Some years later, Huygens discovered that wide wings made the pen-
dulum inaccurate, observing that the natural period, which is the time taken to go
from one end to the other and return to the very beginning, was dependent upon
the amplitude of motion: the pendulum is inherently non-linear. The relation be-
tween the amplitude and the period, more commonly called amplitude-frequency de-
pendence, is a characteristic of non-linear oscillations. Huygens also found out that if
the pendulum varied its length during the oscillation, then the frequency of oscilla-
tion became independent of the amplitude: today one may say that he linearised a
non-linear system. Nevertheless, at that time, only rudimentary tools were available,
until Leonhard Euler wrote down the di�erential equation of motion of an oscillator
(Euler, 1750). Euler formally introduced the concept of non-dimensional driving fre-
quency Ω = ω/ωn, where ω is the natural frequency and ωn is the input frequency, i.e.
the frequency of an external excitation. Euler noted that the response becomes infi-
nite when Ω = 1; hence, he was the first to explain the phenomenon of resonance in
which an input force let oscillate another system with greater amplitude at specific
frequencies. A century later, Hermann Von Helmholtz and Baron Rayleigh pub-
lished their huge works on acoustics and vibrations (Helmholtz, 1885 and Rayleigh,
1896), closely linked with the technological (mainly mechanical and electrical) de-
velopment of the nineteenth century.

The generic form of a di�erential equation of interest at the time was the fol-
lowing

mẍ + ϕ(ẋ) + д(x) = F cosωnt , (2.1)

where x is the position of the oscillation at time t , ẍ = d2x/dt2 is the second derivative
of x with respect to time t (or the acceleration), and ẋ = dx/dt is the first derivative
of x , that is the velocity. The coe�cientm represents the mass of a body, andmẍ is
the inertia force, which is the resistance of an object to a change in its motion. The
function ϕ(·) depends on the velocity and it is called damping force. The latter quan-
tifies the decay of the oscillation: the greater the damping, the faster the vibration
reaches the state of rest. The term д(x) is a restoring force or spring force, that is a force
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that brings equation (2.1) toward equilibrium. The term F cosωnt is the external force
or excitation, and represents an input that perturbs the system. The amplitude F and
the input frequency ωn are fixed, i.e. they are not time-varying.

Let us imagine that a system is perturbed away from the equilibrium: the restor-
ing force directs the oscillation back to its original position. For example, a non-
swinging pendulum has all the forces in equilibrium at the bottom of the swing. If a
force puts the pendulum in motion, the gravity brings the pendulum back down to
the midpoint of the swing. In this case, the gravity can be seen as a restoring force.
Another example may be described by the action of a spring. A spring exerts a force
on an object proportional to the amount of deformation of the spring itself from
its equilibrium length. When the spring is pulled to a greater extent, the restoring
force let return the spring back to the initial equilibrium length.

Equation (2.1) may represent a dynamical system. This describes the time depen-
dence of motion of a point in a space; in other words, a dynamical system models
the displacement of a particle whose state varies over time.

In 1918 Du�ng took part in the discussion on di�erential equations based on
equation (2.1) by defining ϕ(ẋ) = cẋ and д(x) = αx + βx3, and around the same
time Balthasar Van der Pol developed the famous equation describing oscillations
generated by a triode valve (Van der Pol, 1920). The meaning of the parameters α ,
β , c, is discussed in the remainder of this Chapter. The Du�ng and the Van der
Pol equations reveal many phenomena, such as jumps, frequency entrainment, limit
cycles and amplitude-frequency dependence, that I will describe later.

In the development of the theory of non-linear oscillations, Henri Poincaré achieved
crucial results (Poincaré, 1881). He introduced the qualitative (or geometric) anal-
ysis of non-linear systems and the revolutionary abstract idea of limit cycle. A limit
cycle is a self-sustained oscillation and the first to identify this in practice was Alek-
sandr Aleksandrovich Andronov (Andronov and Khajkin, 1949). In 1929, Andronov
pointed out that self-excited oscillations could be found in many di�erent situations,
from the vibrating strings of a violin to chemical reactions, from valves with elec-
trodes to biological systems, etc. Andronov spent his entire life in the development
of phase space analysis, introducing topological objects called attractors or repellors.
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These latter, along with the main mathematical concepts of the studies of Poincaré
and Andronov, will be explained in the following Section.

2.1.2. Phase-space representation

A phase space of a dynamical system is a space in which all possible states are
represented. The evolution of the system through time is described by the path
in the 2D space, with coordinates (x , ẋ). In such a space, it is possible to identify
the points to which the system approaches as time t progresses independently of
starting conditions, with t being a parameter. The points where (x , ẋ) = (0, 0) are
called critical points. These do not depend on the initial states but exclusively on the
parameters of the system, that is they are intrinsic properties of a dynamical process.
Critical points can be defined as stables, i.e. the points where the system converges,
unstables, where the process diverges, or saddles, points inwhich themotion dynamics
is attracted first and then it moves away. A set of stable critical points is often called
an attractor, while a repellor in a set of unstable critical points.

A dynamical system may be analysed both in the time and phase-space domain
in the following way. Let us imagine to deal with a periodic oscillation. The curves
plotted in a phase-space correspond to the motion x : on the one hand, if x is periodic,
the corresponding x , ẋ-curve is closed. On the other hand, if x , ẋ-curve is closed,
the displacement and the velocity at time t are reached again after a certain time T ,
so that it is evident that the motion is periodic.

The critical points are classified depending on the eigenvalue of the system, as
Section 2.3.1 will show. In the following Section, a qualitative analysis is discussed.

2.2. Qualitative analysis on systems described by the Du�ng oscillator

Consider the displacement x at time t and a forceд applied to a spring. In a system
described by the Du�ng oscillator, the source of the non-linearity between x and
д is the sti�ness. The latter is the rigidity of an object in resisting to deformations
in response to an applied force. Therefore, the sti�ness is a function of the applied
force and the displacement resulting from the application of force. If the system is
symmetric, that is the sti�ness of a spring is the same in compression or in tension, the
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Figure 2.1: The motion x and the force applied to a spring given by equation (2.2). Here,
the non-linear spring has a sti�ness which is function of the displacement. Source: Figures
2.1 of Kovacic and Brennan (2011).

energy in one direction (e.g. in compression) is equivalent to the energy in another
direction (in tension). In this case, the restoring force can be approximated by a series
in x in which the exponents of x are odd integers (Kovacic and Brennan, 2011). If
the series is truncated after the first two terms, the force-deflection relationship is

д(x) = αx + βx3, α > 0, (2.2)

where α is the frequency at which the system oscillates and β is the coe�cient of the
sti�ness. If β > 0, the spring is called hard because it becomes sti�er with increasing
x . If the coe�cient β associated to the cubic term is negative, the spring is soft, i.e.
as more the displacement, as more the spring gets softer.

Equation (2.2) describes a non-linear restoring force, or non-linear change in
the potential energy, that tends to bring the system toward equilibrium.

Di�erentiating equation (2.2) gives dд(x)/dx = α + 3βx2: it can be seen that the
frequency α is independent of the x , while the term 3βx2 is function of displacement
and the source of non-linearity. Figure 2.1 depicts the motion and the force applied
to a spring.

Inserting equation (2.2) into (2.1) and settingm = 1, a di�erential equation with
a non-linear restoring force д is

ẍ + ϕ (ẋ) + (
αx + βx3

)
= F cosωnt . (2.3)
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When ϕ (ẋ) = cẋ , where c is a constant damping term, the above equation is called
the Du�ng equation:

ẍ + cẋ +
(
αx + βx3

)
= F cosωnt . (2.4)

To proceed further with the analysis of systems described by the Du�ng oscillator
(2.4), the case of undamped (since cẋ = 0) and free (F cosωnt = 0) oscillations is
considered first. Hence, the equation of motion for undamped and free vibrations is

ẍ = −
(
αx + βx3

)
. (2.5)

A closed form solution of equation (2.5) is available using elliptic integration (see
e.g. Salas, 2014 and Marinca and Herişanu, 2011), but in the following sections I
focus on two qualitative discussions. The first analysis mostly concerns the behaviour
of the motion, while the second explains non-linear phenomena that can arise in the
Du�ng oscillator.

2.2.1. Periodic and non-periodic motion

In this Section, the type of oscillations coming from (2.5) are analysed.
Integrating equation (2.5), the motion can be rewritten as∫

ẍdx = −

∫ (
αx + βx3

)
dx ,

ẋ2

2
= −

α

2
x2 −

β

4
x4 + h,

ẋ2 + αx2 + β
x4

2
= h = constant, (2.6)

where the constant h represents twice the total energy of the system. In the neigh-
bourhood of the origin, x = 0 and ẋ = 0 (for small value of displacement x), the term
βx4/2 can be neglected in comparison with αx2, and (2.6) has the appearance of an
ellipse. Hence, the constant h is small and positive and the closed curves represent-
ing the motion in the phase-space are elliptic near the origin. Setting the velocity to
zero in equation (2.6), the maximum displacement x max = A is merely the solution
of the second-order polynomial in x :

A2 =
−α +

√
α2 + 2βh
β

, (2.7)
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in which the positive sign of the radical is taken for both β > 0 (hard spring) and
β < 0 (soft spring) because the constant h and A2 should be small and positive. Since
the closed curves (2.6) are symmetric, the periodT of motion can be obtained in the
form

T = 4
∫ A

0

dx

ẋ
= 4

∫ A

0

dx√
h −

�
αx2 + βx4/2

� . (2.8)

Expression (2.8) is obtained after some mathematics starting from Newton’s law of
conservation of energy, see Stoker (1950) for a detailed derivation. The integral (2.8)
can be re-written by changing variable of integration in the following way. From
(2.6), if A2 is the root of a polynomial h − (αz + βz2/2) = 0, then

h −
(
αx + βx2/2

)
=
β

2
(
A2 − x2

) (
b2 + x2

)
, (2.9)

where
β

2
(
−b2 +A2

)
= −α , or βb2 = βA2 + 2α . (2.10)

Let replace x in (2.8) with a new integration variable θ :

x = A sinθ . (2.11)

Using (2.10) to eliminate the term b2, the integral (2.8) takes the form

T = 4
√

2
∫ π/2

0

dθ√
2α + βA2 + βA2 sin2 θ

. (2.12)

Equation (2.12) highlights the dependence between the period and the amplitude. The
non-linear relationship betweenT andA has a di�erent behaviour depending on the
sign of β .

In the case of hard spring, β > 0, the period of oscillation decreases (hence, the
frequency increases) for increasing amplitude. The vibration in equation (2.6) is
represented by a closed curve, and the motion is periodic, so that equation (2.12) is
valid under all circumstances.

If β < 0 (soft spring),T grows as far asA increases: the frequency of the oscillation
decreases with an increasing amplitude of motion. Equation (2.12) is meaningful



QUALITATIVE ANALYSIS ON SYSTEMS DESCRIBED BY THE DUFFING OSCILLATOR 13

only if A given by (2.7) is small. Indeed, the curves in (2.6) are closed ellipses in
a certain region of the phase-space only for small values of A. If the system has
decreasing frequencies and increasing amplitudes over time, it may enter in a non-
periodic regime represented by unstable focus or saddles in the phase-space.

Figure 2.2 sketches the relation between the amplitude and the circular fre-
quency ω = 2π/T in the cases of linear, soft and hard springs. The frequency-
amplitude plane is called response diagram. Setting β = 0, that is a linear spring force,
in equation (2.12), the period becomes T = 2π/

√
α , hence the frequency ω =

√
α

is the common tangent for all the curves. The amplitude is independent from the
frequency for a linear spring, while it increases or decreases according to the growth
or reduction of the frequency.

Figure 2.3 gives more insight of the behaviour of the oscillation depending on
the type of spring in the phase-space. In the left panel of Figure 2.3, the hard spring
case, the ellipses of equation (2.6) demonstrates the periodicity of the system. The
arrows in the curves indicate the direction of motion, i.e. the direction of (x , ẋ)with
increasing t . For β < 0, the features of the oscillation are more complicated. For ease
of analysis, let set ρ2 = −β . Hence, equation (2.6) can be written is the following
form

ẋ2 + αx2 − ρ2x
4

2
= h. (2.13)

For h > 0 and small x , the (2.13) represents ellipses around the origin (remember
that the term x4 is neglectable compared to x2). In this case, when x = 0, the velocity
takes a value ẋ0. The quadratic polynomial in x in the right hand side of (2.13) has
roots x1,2

x1,2 =
α ±

√
α2 − 2ρ2h

ρ2 . (2.14)

Since the discriminant ∆ = α2 − 2ρ2h is positive, the curves are ellipses that tend to
stretch, i.e. the values in which the curves cross the x axis increase, until ∆ approaches
zero. The bold line in Figure 2.3 represents the case where the discriminant equals to
zero. When α2 = 2ρ2h, or h = α2/2ρ2, the curve crosses the axis with the following
values: (i) if x = 0, the velocity is ẋ0 = α/ρ

√
2, (ii) if ẋ = 0, the position has roots

x1,2 = ±
√
α/ρ. For ẋ0 > α/ρ

√
2 and ∆ < 0, open curves described by the quadratic
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Figure 2.2: Amplitude-frequency dependence (here, the circular frequency ω = 2π/T ) for
linear (β = 0), hard (β > 0) and soft (β < 0) spring forces. When β = 0 in equation (2.12), the
frequency ω =

√
α is the common tangent to all the curves. The amplitude is independent of

the frequency in the linear case, whileA increases with increasing or decreasingω depending
on the sign of the coe�cient β . Source: Figure p. 22 of Stoker (1950).

polynomial in x arises. The points (±√α/ρ, 0) divide the space into three regions.
The first area is represented by the periodic motion around the origin (the ellipses),
the second is described by the open curves that do not cross the x axis but the ẋ

(when ẋ0 > α/ρ
√

2 and ∆ < 0), and the third is obtained for open curves that cross
the x axis and not the velocity axis.

The qualitative discussion described so far for the system (2.5) emphasizes that
the amplitude-frequency dependence is related to non-periodic and unstable motion. Phase-
space analysis highlights that three critical points exist. The origin is a centre, in the
sense that the system has a periodic motion, while the points (±√α/ρ, 0) are saddles.

2.2.2. Non-linear phenomena arising from amplitude-frequency
dependence

In the preceding Section, the oscillation (2.5) has been discussed using phase-
space analysis. Here, I show another qualitative study for the same motion suitable
for the representation of many di�erent non-linear phenomena.

In the evaluation of the free or forced oscillator (2.5), Du�ng explained the fol-
lowing iterative method of approximations. The present discussion is heuristic, and
the rigorous derivations can be found in Andronov and Khajkin (1949). Consider
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Figure 2.3: Phase-space for hard (β > 0) and soft (β < 0) spring forces. The axis are the
position and the velocity. The motion is periodic when β > 0. For β < 0, the behaviour of
the oscillation is more complex. In this case, the motion is periodic around the origin, but it
becomes unstable as the frequency α varies. The points (±√α/ρ, 0) are saddles and divide the
space into regions characterized by periodic or non-periodic oscillations. Source: Figure p.
23 of Stoker (1950).

the deterministically forced vibration

ẍ = −αx − βx3 + F cosωt , (2.15)

where F andω are real constants. If β = 0, the exact solution of (2.15) isA cosωt . For
small β , it is still possible to assume that A cosωt is a reasonable first approximation,
and this is inserted in the right-hand side of (2.15) to obtain a second approximation
x1:

ẍ1 = −
(
αA cosωt + βA3 cos3ωt

)
+ F cosωt . (2.16)

Observing the identity

cos3ωt =
3
4

cosωt +
1
4

cos 3ωt , (2.17)

equation (2.16) becomes

ẍ1 = −

(
αA cosωt + βA3

(
3
4

cosωt +
1
4

cos 3ωt
))
+ F cosωt

ẍ1 = −

(
αA +

3
4
βA3 − F

)
cosωt −

1
4
βA3 cos 3ωt . (2.18)
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Integrating (2.18) twice (and setting the integration constants to zero, since only
periodic solutions are of interest), the solution is

x1 =
1
ω2

(
αA +

3
4
βA3 − F

)
cosωt +

1
36

βA3

ω2 cos 3ωt . (2.19)

The iteration procedure based on reinserting successive approximation in the right-
hand side of (2.15) requires that the constants α , β , ω and F be all su�ciently small
in order to assure convergence. Figure 2.4 shows that for small β , the relationship
between the amplitude and the frequency should lie in the vicinity of the linear
oscillation. Thus, the successive iterations sketched above are good approximations
to solve (2.15) only for small |A|. When ω →

√
α , the amplitude |A| → ∞. This

phenomenon, that is the magnification of the displacement for certain values of the
driving frequency, is called of resonance. To let |A| remain small, the frequency ω
should held fixed and |A| becomes a function of it, but in this way it is quite impossible
to obtain the essential features of the oscillation. Hence, Du�ng took a bold step
(Tong, 1990). The coe�cient A1 = αA +

3
4βA

3 − F of cosωt in (2.19) is taken equal
to A, on the basis that if A cosωt is a truly first approximation, A1 should not di�er
much from A. Du�ng’s reasoning leads to

A =
1
ω2

(
αA +

3
4
βA3 − F

)
, (2.20)

ω2 = α +
3
4
βA2 −

F

A
. (2.21)

Equation (2.21) represents the basic amplitude-frequency relation and it is crucial for the
remainder of the discussion. The dependence stated in (2.21) is the analogous of the
period-amplitude relation of (2.12). The frequency ω is a function of A. Therefore,
the amplitude is prescribed in advance, and the frequency has to be determined. To
understand this procedure it is important to considerω as depending uponA. Indeed,
a significant point in (2.21) is themulti-value aspect of the relation: for certain frequen-
cies there are three corresponding values of A. The iteration procedure represented
in (2.20) may look like slightly unnatural since usually the frequency is prescribed
in advance and does not depend on the amplitude. However, the apparently rather
natural procedure of keep inserting approximate solutions in (2.15) could not yield
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all the possible set of curves in the response diagram and the multi-valued relation-
ship between A and ω. Du�ng’s prediction has been checked experimentally in a
variety of cases, with a good agreement between the theory and experimental results
(Tong, 1990).

In the case of free oscillation, the response relation is

ω2 = α +
3
4
βA2, (2.22)

and the exact result ω2 = α corresponds to the linear oscillator.
The left panel in Figure 2.5 shows the response curves for hard, soft and linear

springs. The non-linear sti�ness parameter has the e�ects to stretch the response
curve to the left or to the right with respect to the linear case, and so, for some ωs,
the amplitude A can assume three values.

When a damping term cẋ is added to the left-hand side of (2.15), the response
curves are similar to the (2.21) but closed in their top, since the role of the damping
is to decrease the amplitude (right panel of Figure 2.5).

These response curves predict several phenomena, such as jumps and subhar-
monics, that are described later.

Notice that, from (2.19), the solution takes the generic form x1 = P cosωt +
Q cos 3ωt . Thus, one may infer that a general solution of (2.15) involves all odd har-
monics: in fact this is the case (Stoker, 1950). Going further with the iteration proce-
dure, a second approximate solution has the form x2 = P cosωt+Q cos 3ωt+R cos 5ωt .
Hence, the amplitude A in equation (2.21) can also be interpreted as the first Fourier
coe�cient. Notice that the occurrence of harmonics besides the fundamental fre-
quency is a characteristic of non-linear dynamical systems.

JUMP PHENOMENA

The curves in Figure 2.5 lead to several conclusions. Let us consider an experi-
ment in which the amplitude F is held constant, and the frequency slowly varies. The
response of the amplitude is observed. Starting with the hard spring force, β > 0, the
initial frequency is ω at point 1 in Figure 2.6. The frequency decreases from point
1 to point 2 until point 3 is reached. At the same time, the amplitude increases with
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Figure 2.4: Response curves for varying strength of non-linear sti�ness parameter β . The
non-linear response diagrams betweenA andω represented by equation (2.21) can arise from
the linear response curve by bending the latter to the right (for β > 0) or to the left (for the
soft spring β < 0). The more the coe�cient β is far from zero, the more the system becomes
non-linear. Source: Figure 5.3 of Kovacic and Brennan (2011).

decreasing frequencies. A further decrease ofω from point 3 would let the amplitude
to abruptly jump from point 3 to point 4. Then, the value ofA slowly decreases from
point 4 to point 5. It is now clear that the term jump phenomenon indicates a dramatic
change of the steady-state behaviour due to the transition from one stable solution
to another stable solution as a control parameter varies. The same experiment can
be performed in the opposite direction, that is starting from point 5 and increasing
the frequency. The amplitude follows the increasing trajectory of points 5-4-6 and
suddenly shrinks to point 2 and slowly decreases afterwards. The jump phenomenon
in the soft spring case can be described in a similar way, but the jumps take place in
the reverse direction.

The jump phenomena in the direction of points 1-2-3-4 for β > 0 (or the one
of points 5-4-6-2 with β < 0) could be explained even in the absence of damping,
but the latter is essential to explain the jump from point 6 to 2 or from 3 to 4 in the
case, respectively, of hard and soft spring forces.
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Figure 2.5: Response diagrams for linear (β = 0), hard (β > 0) and soft (β < 0) spring
forces of equation (2.21). Notice that when ω approaches

√
α , the response becomes infinite

(|A|→ ∞), i.e. the phenomenon of resonance occurs. (a) Response curves without damping.
(b) Response curves when damping is present: the latter closes the top of the curves. The
common tangent for all the curves is the frequencyω =

√
α (see Figure 2.2) and the amplitude

of the input F . The di�erent curves represent di�erent values of the external amplitude
F1, F2, F3. Source: Figure pp. 88 and 92 of Stoker (1950).

Figure 2.6: Jump phenomena for hard and soft spring forces. Following the trajectory
1-2-3-4 (for β > 0) or the direction of points 5-4-6-2 (when β < 0), the amplitude abruptly
changes its value for, respectively, decreasing or increasing ω. Notice that the jumps in the
two directions happen at di�erent frequencies. Source: Figure p. 95 of Stoker (1950).

HYSTERESIS

So far, the frequency ω has been considered as a control parameter, being fixed
the input amplitude F . An alternative way to analyse the dynamics of the system
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is looking at the amplitude A as a function of F , while ω is constant. The response
curve of A for varying F is shown in Figure 2.7. As F increases up to value F2,
the amplitude A has a jump and then gradually grows. On the contrary, when F

decreases until point F1 is reached, the value of A dramatically shrinks. There are
three coexisting solutions for F1 < F < F2 and only one solution outside this region.
This phenomenon is called hysteresis.

Figure 2.7: Response curve showing the phenomenon of hysteresis. In this experiment the
frequency ω is held constant and the amplitude A jumps upwards when the input amplitude
F increases up to point F2. The A jumps down when F decreases until the value F1. In the
interval F1 < F < F2 three coexisting solutions exist. Source: Figure p. 95 of Stoker (1950).

SUBHARMONIC RESPONSE

Up to now, only harmonic solutions of (2.15) have been considered. However,
oscillations whose frequency is a fraction of the fundamental frequency are charac-
teristics of non-linear systems. The term subharmonic response is usually applied to
define these phenomena (Tong, 1990). The approximate solution (2.19) shows how
the (2.15) can be expressed in terms of Fourier series, that are now used to understand
the qualitative behaviour of subharmonics.

In this Section, I will not present in all generality the problem and the solutions
for many di�erent subharmonic responses. Rather, I treat the special case with the
subharmonic oscillation of order 1/3, and the analysis of higher harmonics can be
found in Kovacic and Brennan (2011) or Stoker (1950).



QUALITATIVE ANALYSIS ON SYSTEMS DESCRIBED BY THE DUFFING OSCILLATOR 21

For ease of discussion, the damping is neglected. Defining θ = ωt , the oscillation
(2.15) can be re-written as

ω2ẍ + αx + βx3 = F cosθ . (2.23)

A subharmonic of frequency 1/3 of the new variable θ can be developed in a Fourier
series of the form

x =
∞∑
n=1

an cos
nθ

3
+ bn sin

nθ

3
. (2.24)

On the assumption of small β , and remembering that the sine terms and even mul-
tiples of θ/3 in the cosines become zero, the general form of the solution in terms of
Fourier series is

x = A1/3 cos
θ

3
+A1 cosθ +A5/3 cos

5θ
3
+ . . . . (2.25)

Equation (2.25) can be substituted into (2.23), using some algebra manipulations and
the following identities

cos3 θ

3
=

3
4

cos
θ

3
+

1
4

cosθ ,

cos2 θ

3
cosθ =

1
4

cos
θ

3
+

1
2

cosθ + . . . ,

cos
θ

3
cos2 θ =

1
2

cos
θ

3
+ . . . ,

cos3 θ =
3
4

cosθ + . . . ,

cos2 θ

3
sinθ =

1
4

sin
θ

3
+

1
2

sinθ ,

cos
θ

3
sin2 θ =

1
2

cos
θ

3
+ . . . .

Hence, the following relations are obtained(
α −

ω2

9

)
A1/3 +

3
4
β

(
A3

1/3 +A
2
1/3A1 + 2A1/3A

2
1

)
= 0, (2.26)(

α − ω2
)
A1 +

1
4
β

(
A3

1/3 + 6A2
1/3A1 + 3A3

1

)
= F . (2.27)

The equations (2.26)-(2.27) are the analogous of equation (2.21) that was crucial for
the harmonic case, but here two harmonics are considered. As in the above iteration
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procedure, β is set to zero in (2.26) and (2.27). The first Fourier coe�cient A1 is
zero unless α − ω2/9 = 0; hence, A1 is non-zero only if ω = 3

√
α . For an arbitrary

value of A1 (when ω = 3
√
α ), the second Fourier coe�cient in (2.27) turns out to

be A1 = −F/8α . Thus, the amplitude associated to the subharmonic 1/3 has to be
prescribed in advance and held fixed, while the second amplitude follows as function
of A1/3. Since A1/3 , 0, equations (2.26)- (2.27) lead to

ω2 = 9α +
27
4
β

(
A2

1/3 +A1/3A1 + 2A2
1

)
,

−8αA1 = F +
(
ω2 − 9α

)
−

1
4
β

(
A3

1/3 + 6A2
1/3A1 + 3A3

1

)
,

and the elimination of ω2 is the last equation yields

ω2 = 9α +
27
4
β

(
A2

1/3 +A1/3A1 + 2A2
1

)
, (2.28)

−8αA1 = F −
1
4
β

(
A3

1/3 − 21A2
1/3A1 − 27A1/3A

2
1 − 51A3

1

)
. (2.29)

With A1/3 prescribed, β = 0, ω = 3
√
α and A1 = −F/8α = A, the following relations

represent the response curves in the subharmonic case:

ω2 = 9α +
27
4
β

(
A2

1/3 +A1/3A + 2A2
)
, (2.30)

A1 = A +
1
32

β

α

(
A3

1/3 − 21A2
1/3A − 27A1/3A

2 − 51A3
)
. (2.31)

The second relation (2.31) determines the value of the second Fourier coe�cient
for the subharmonic vibration as function of the first Fourier coe�cient. When
A1/3 = 0, the dependence (2.26) is satisfied and (2.27) is reduced to the relation for
the harmonic case (2.21). This means that the subharmonic oscillation is the result
of bifurcation from the harmonic solution. Bifurcations represent the changes in the
dynamical behaviour of an oscillation, leading to topological changes in the phase-
space. These changes involve either the birth and the destruction of attractors and
the change in their size or shape. The bifurcation occurs when

A1 = A −
51
32
βA3, (2.32)

with A = −F/8α .
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Figure 2.8 depicts the response curves when bifurcations arise. Equation (2.30)
is an ellipse or hyperbola in the plane ω-A1/3. The ω-A1 plane is similar to the
corresponding diagram in the harmonic case: if no subharmonics occur, relation
(2.31) is the same of (2.21), but in this case point B in Figure 2.8 represents the
chance that a bifurcation happen. Since the response curve in the ω-A1/3 space is
an hyperbola, the minimum (maximum) of ω when β > 0 (β < 0) is reached when
A1/3 = −A/2, and the value is

ω2 = 9
(
α +

21
16
βA2

)
. (2.33)

Hence, the bifurcation exists only when the frequency is less or greater than its
minimum or maximum:

ω < 3
√
α +

21
16
βA2, β < 0, (2.34)

ω > 3
√
α +

21
16
βA2, β > 0. (2.35)

Bifurcations and jump phenomena are highly related. The analysis developed so far
has highlighted that more than one solution satisfying system (2.15) can exist, i.e.
coexisting solutions may occur. The fixed points R and T in Figure 2.8 represents
two stable branch of solutions, while the point S correspond to a saddle point. The
latter divides the phase-space into two regions (Figure 2.9), each of them being a
basin of attraction of the stable points R and T .

In this Section, only the presence of one subharmonics has been discussed, but
other subharmonics or ultraharmonics can occur, leading the Du�ng equation to
become more and more complex. The qualitative change of bifurcation associated
to jump phenomena leads the system to chaotic behaviour.

2.3. Free Du�ng oscillator

In this Section, the e�ect of varying the parameter values of the Du�ng oscillator
is investigated. The deterministic Du�ng model is

ẍ + cẋ + αx + βx3 = 0, (2.36)
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Figure 2.8: Response diagrams for subharmonic oscillations for hard (β > 0) and soft
(β < 0) spring forces. The point B is the bifurcation point: here the subharmonic and
harmonic oscillations are identical. The dotted lines around B highlight the bifurcation
area: in this region, the amplitude A1 can follow two di�erent curves. The point R and T

correspond to stable branch solutions, while the point S is a saddle. Both points R and T are
coexisting solutions. Source: Figure p. 107 of Stoker (1950).

where, as previously stated, α is the natural frequency of the vibration, β is the mode
of the restoring force (hard or soft spring), and c is the damping term. The parame-
ters have the following e�ects. When α becomes negative, the system may diverge.
In the case of c < 0, self-excited oscillations arise. The parameter β associated to the
non-linear cubic sti�ness a�ects the existence of non-trivial, i.e. non-zero, critical
points and their stability.

2.3.1. Critical points

The critical points of equation (2.36) are evaluated as follows.
Equation (2.36) can be re-written in terms of state variables x1 = x , x2 = ẋ as

ẋ1 = x2 (2.37)

ẋ2 = −
(
cx2 + αx1 + βx

3
1

)
. (2.38)
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Figure 2.9: Phase-space for the frequency ω and the amplitude A1. The arrows depict
the direction of motion. The points R, T and S correspond to the ones of Figure 2.8. The
saddle S separates the phase-space in domains of attraction. Source: Figure 5.9 of Kovacic
and Brennan (2011).

In matrix form, equations (2.37)-(2.38) are

dx

dt
= G(x), (2.39)

where

x =


x1

x2


, G(x) =



д1(x1,x2)
д2(x1,x2)


, (2.40)

and
д1(x1,x2) = x2, д2(x1,x2) = −αx1 − cx2 − βx

3
1 . (2.41)

Fixing ẋ1 = ẋ2 = 0, gives the equilibrium equations

0 = x2st (2.42)

0 = −
(
cx2st + αx1st + βx

3
1st

)
, (2.43)

where x1st and x2st denotes the critical points. At x2st = 0,

αx1st + βx
3
1st = x1st

(
α + βx2

1st

)
= 0. (2.44)

Hence, the determinant of (2.44) depends on the sign of the product αβ . If αβ > 0,
only the trivial fixed point (x1, x2) = (0, 0) exists. In the case αβ < 0 there are two
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nontrivial fixed points in addition to the trivial one, that are (x1, x2) = (−√−α/β , 0),
and (x1, x2) = (√−α/β , 0).

The stability of these points is evaluated by computing the eigenvalues of the
system (2.40). The Jacobian J of G is

J =



0 1
−(α + 3βx2

1st ) − c


, (2.45)

and the respective characteristic equation is

λ2 + cλ + α + 3βx2
1st = 0. (2.46)

The roots of equation (2.46) are the eigenvalues λ1 and λ2 that determine the stability
of the critical points.

In what follows, I refer to positive (negative) linear sti�ness if α > 0 (α < 0),
positive or negative non-linear sti�ness when β > 0 or β < 0.

2.3.2. Existence of the trivial fixed point only

If αβ > 0, the non-trivial critical points do not exist and only the stability of
the solution (x1st ,x2st ) = (0, 0) has to be evaluated. In this case, the characteristic
equation becomes

λ2 + cλ + α = 0. (2.47)

If both α and β are positive, the damping c defines the kind of stability, while α
a�ects the magnitude of the eigenvalues and β does not a�ect neither the stability
nor the eigenvalues. Instead, if α and β are both negative, the trivial critical point is
a saddle, since the eigenvalues are one positive and one negative independently on
the value of c. Hence, the changes in c are crucial in the analysis of stability of the
trivial fixed point only if α > 0 and β > 0.

UNSTABLE FOCUS

When
√
α ≤ c < 0 the eigenvalues are complex conjugate with a positive real

part, and diverging oscillations are produced. The trivial fixed point is an unstable
focus, as shown in Figure 2.10. In this case, once c has been fixed, α represents the
speed at which the system diverges: as more the frequecy increases, as the more the
curves in the phase-space move away rapidly (Figure 2.11).
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Figure 2.10: Oscillation and phace space representation for an unstable focus (complex
conjugate eigenvalue with positive real part).

Figure 2.11: Unstable focus for di�erent values of α , fixed β and c..

STABLE FOCUS

Stable focus arises when 0 < c ≤
√
α : the eigenvalues are complex conjugate

with negative real part. The oscillation is damped; it approaches zero more slowly
with increasing α . (Figures 2.12 and 2.13).

CENTRE

The origin is a centre if c = 0. The eigenvalues are pure imaginary complex
conjugate, and the oscillations are self-sustained, as plotted in Figure 2.14.
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Figure 2.12: Oscillation and phace space representation in the case of stable focus (complex
conjugate eigenvalue with negative real part).

Figure 2.13: Stable focus in time and phase-space domain for di�erent values of α , fixed β
and c.

2.3.3. Case when the non-trivial fixed points exist

When αβ < 0, the non-trivial solutions (x1, x2) = (−√−α/β , 0), and (x1, x2) =
(√−α/β , 0) exist as well as the trivial fixed point. In this case, α > 0 and β < 0 or
viceversa.
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Figure 2.14: Oscillation and phase space representation for a centre (pure imaginary com-
plex conjugate eigenvalue).

POSITIVE α AND NEGATIVE β

The non-trivial fixed points are saddles, and the kind of stability of (x1 x2) = (0, 0)
depends on c, as in Section 2.3.2. The parameter β influences the number of zero-
crossings of the displacement. A small value of β let the oscillation to move away, so
that x diverges from zero (Figures 2.15 - 2.16).

Figure 2.15: Oscillation and phace space representation for a saddle.
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Figure 2.16: Time domain and phase-space portrait for di�erent values of β , and c and α
fixed.

NEGATIVE α AND POSITIVE β

This case is the opposite of the previous one: here, the trivial fixed point is a
saddle, while the stability of the non-trivial points depends on c.

2.4. Forced oscillation

The stochastic Du�ng process is defined as

ẍ + cẋ + αx + βx3 = σεεt (2.48)

where εt is a stationary, zero-mean Gaussian white noise with variance σ 2
ε .

In this Section, the stability of the stochastic di�erential equation (SDE) (2.48) is
analysed.

Equation (2.48) can be expressed in form of state variable, as previously done in
(2.37)-(2.38): x1 = x and x2 = ẋ ,

ẋ1 = x2, (2.49)

ẋ2 = −
(
cx2 + αx1 + βx

3
1

)
+ σεεt . (2.50)

Taking the increments of the state variables, the (2.48) can be expressed as a stochastic
di�erential equation in the first-order Itô form

dẋ1 = x2dt (2.51)

dẋ2 = −
(
cx2 + αx1 + βx

3
1

)
dt + σεdWt , (2.52)
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where dWt represents the increment of a Brownian motion.
The stability of the critical points of system (2.51)-(2.52) are estimated in sev-

eral ways in the literature. One of the possible strategies is to distinguish between
the critical points coming from the underlying behaviour of the SDE and the ones
arising from stochastic perturbations. Bifurcations in noisy systems may occur due
to topological (i.e. dynamical) changes in the phase-space trajectories (as the bi-
furcations described in Section 2.1.2) or as a result of phenomenological changes
associated with the probabilistic structure of the long term behaviour of the state
variables (Kumar et al., 2016). The first type of bifurcation can be analysed comput-
ing the Lyapunov exponents (LE) (see Wolf et al., 1985 and Thomsen, 2013), while
“stochastic” bifurcations can be evaluated through the Fokker-Planck equation (Ku-
mar and Narayanan, 2010).

The LE Λ gives the rate of divergence or convergence, respectively for Λ > 0
and Λ < 0, of trajectories in phase space. In general, for a system with N first-
order di�erential equations, exactly N LEs can be evaluated, with Λ1 ≥ Λ2 ≥ . . . ≥

ΛN . Thus, for system (2.51)-(2.52), two LEs are computed. Qualitative changes in
the nature of the Lyapunov exponents as the parameters of (2.51)-(2.52) vary are
indicative of bifurcations. Assuming that x0 is a stable solution for (2.51)-(2.52), a
small perturbation u to the solution x0 is governed by the linearised equation

u̇ = J (t)u, (2.53)

where the Jacobian J is evaluated at the solution x0. The Lyapunov exponents are
defined as

Λi = lim
t→∞

E
[
1
t

log
||u(t)||
||u(0)||

]
, (2.54)

where the set {u(t), t > 0} are the solution trajectories of linear di�erential equations
when (2.51)-(2.52) is linearised around a solution xt , and || · || denotes the Euclidean
norm. The largest Lyapunov exponent (LLE) indicates the stability of the dynamical
system: a change in the sign of the LLE reflects a bifurcation. The presence of noise
implies that the state space trajectories inherit the time-varying fluctuations of the
system and hence the Lyapunov exponents can only be interpreted in terms of the
long-term temporal mean (Kumar et al., 2016). The evaluation of the LEs is com-
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putationally expensive, since it requires to solve for ut coupled with (2.51)-(2.52).
This have required the development of several numerical algorithms, described in
Ramasubramanian and Sriram (2000) or Wolf et al. (1985).

Bifurcations due to changes in the probabilistic structure of the stationary joint
probability density function (PDF) of the state variables may occur in a stochastically
excited dynamical system. The joint PDF of the state variables represents a measure
of the time spent by a solution in an area of the phase-space and gives an indication
of the spatial extent of a stochastic attractor. The joint PDF does not explicitly take
into account the system dynamics and its time evolution is governed by the Fokker-
Planck (FP) equation:

∂p

∂t
= −x2

∂p

∂x1
−
∂

∂x2

(
αx1 + cx2 − βx

3
1

)
+
σ 2

2
∂2p

∂x2
2
. (2.55)

The computation of the FP equation is not straightforward due to discontinuity in
the joint PDF and these di�culties may be overcome using numerical methods as
described in Schenk-Hoppé (1996).

Figure 2.17 shows how, even for small variations of the level of variance, the
system undergoes through instability.

2.5. Disciplines influenced by the Du�ng equation

Du�ng’s original work is most devoted to the analysis of the pendulum. Some
decades later, many engineering systems have been described by the Du�ng’s equa-
tion, such as beam and magnet systems, isolators and electrical circuits. For a dis-
cussion on these systems, the reader may refers to Kovacic and Brennan (2011).
The attention of the scientific community on Du�ng’s equation started with James
Stoker, who wrote in 1950 a seminal book on non-linear vibrations (Stoker, 1950).
Following Stoker’s book, the Du�ng equation sat alongside the Van der Pol equa-
tion, one of the most known equations in non-linear vibrations. From 1970s, several
papers related to the Du�ng equation have been published, since in those years dig-
ital computers started to be used to solve di�erential equations. Figure 2.18 shows
a survey carried out via SCOPUS to record the number of papers with the word
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(a) (b) 

(c) (d) 

Figure 2.17: Variation of the dynamics of the stochastic Du�ng process for di�erent sizes
of standard deviation σε . (a) σε = 0.001. (b) σε = 0.5. (c) σε = 1.0. (d) σε = 2.0.

“Du�ng” in the title, abstract or keywords, demonstrating the increasing interest
by various communities. In 1976 Holmes and Rand (1976) published a paper on
bifurcations of the Du�ng’s equation and its application to the catastrophe theory,
while in 1980s Yoshisuke Ueda published his research on chaos (Ueda, 1979 and
Ueda, 1985). Ueda stated that the study of the cubic Du�ng’s oscillator has inspired
the discovery of chaotic behaviours.

In statistics and time series analysis, non-linear behaviours modelled by di�eren-
tial equations may be reproduced in terms of di�erence equations. However, math-
ematical explanations of complex phenomena in discrete time are not always easy
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to construct (Tong, 1990). The main e�orts in the reproduction of jump phenom-
ena, amplitude-frequency dependence or subharmonics in the time series literature
can be found in Tong and Lim (1980), Haggan and Ozaki (1981) and Ozaki (1981).
These authors mainly studied non-linear oscillations through time series models such
as Threshold Autoregressive (TAR). Figure 2.19 shows a simulation study of the
amplitude-frequency relation coming from autoregressive models.

Concerning real data analysis, several applications in biology or economics of
the non-linear phenomena described in Section 2.2 can be found. Ramsey (1990)
applied the Du�ng system to the reconstruction of the time series of the U.S. money
supply, while Ball (2009) and Blanchard and Summers (1986) modelled unemploy-
ment rates through hysteresis. In biology, Tong and Lim (1980) studied Canadian
lynx (the annual record of the number of the Canadian lynx trapped in the North-
West Canada for the period 1821–1934) and sunspots data with models arising from
the exploration of the Du�ng oscillator. The above mentioned time series are char-
acterized by asymmetric cycles with sharp and large peaks following relatively small
trough. These kind of features of time series need to be deepened and the analysis
of the Du�ng process can shed some light on still unexplored behaviours.

Figure 2.18: Publications with the word “Du�ng” in the title, abstract or keyword. (a)
Number of publications per years 1975-2009. (b) Percentage of publications per disciplines
in the period 1950-2009. Survey carried out by Elsevier Scopus TM updated 30 March
2010. Source: Figures 1.4 and 1.5 of Kovacic and Brennan (2011).
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Figure 2.19: Simulation study of an amplitude-frequency relation in the time series lit-
erature. The top panel shows that a high amplitude is associated to high frequency, while,
in the bottom panel, sharp peaks occur at small frequencies. Source: Figure 2.26 of Tong
(1990).





3. INFERENCE FOR ORDINARY DIFFERENTIAL EQUATIONS

This Chapter focuses on inference for ordinary di�erential equations (ODEs);
in particular, two approaches for signal and parameters estimation are discussed.
The first concerns Kalman-filter based methods, while the second is an approximate
Bayesian computation scheme.

SIGNAL EXTRACTION

A general approach to extract the signal from noisy time series that hide unob-
served components relies in a state space description.

A state space representation is a model that assumes that the observations (the
data) depend on a hidden component (the state). The dynamics of the process evolves
over time accordingly to a set of state space equations. A well established method
for inference in linear Gaussian state space models is the Kalman filter (Kalman,
1960). The Kalman filter (KF) is an algorithm to perform exact (non-approximated)
Bayesian filtering (inference) for linear systems with an additive white noise com-
ponent. The KF is based on an iterative procedure of prediction and update and it
requires the estimation of a Gaussian filter density; the latter represents the prob-
ability of the state given the previous observations. As Gaussian densities are fully
described by the first two moments, the estimation of the filtering density needs the
computation of the mean and the variance. As shown by Kalman and Bucy (1961),
the time evolution of the mean (often called estimation) and variance (estimation error)
of a Gaussian filter density can be expressed analytically. Hence, since everything is
Gaussian, the prediction-correction structure and the likelihood function of the KF
have a closed form solution. These properties let the KF yield unbiased and consistent
estimates, but for the signal reconstruction in linear models only. For the estimation
of parameters, even for linear systems, embodying the parameter dynamics in the
state space description leads to non-linear state space equations. In the case of non-
linear models, Dempster et al. (1979) and Cox (1964) warn about the direct use of
the KF.

37
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For inference in non-linear systems, several extensions of the KF have been pro-
posed, as the extended KF (EKF, see e.g. Maybeck, 1979 and Ljung, 1979) and the
unscented KF (UKF, for which the reader is referred to Julier and Uhlmann, 1997
and Julier and Uhlmann, 2004). Both EKF and UKF approximate the filter density
necessary in the KF steps by Gaussian distributions. The two methods di�er in the
strategy of the computation of the approximations. On the one hand, EKF linearises
the equations using a first or second order Taylor expansion and then applies the
standard KF procedure. Thus, the EKF truncates the state space functions up to the
second order moments and it requires the computation of derivatives. Such charac-
teristics may lead the EKF to perform unconsistent and computationally expensive
estimates. On the other hand, the UKF is based on the unscented transform (UT).
The UT is a non-linear transformation of a probability density function: the trans-
form takes a set of points from the density function and on these points evaluates a
Gaussian approximation. The latter is the basis for the KF recursion steps (i.e. the
time evolution of the filtering density). Some of the potentiality of the UKF are
explored in Sitz et al. (2002).

For estimation of chaotic dynamical systems, the UKF approach is superior than
EKF (Julier and Uhlmann, 2004). Indeed, the UKF, without involving derivatives,
is suitable to manage non di�erentiability (as in the determination of excitation re-
sponses in engineering problems), and implicit forms of non-linearities (in exam-
ple, in the analysis of artificial neural networks). Nevertheless, the UKF has two
main limits. First, if the initial values of the algorithm are chosen far from the true
unknown parameters, the convergence is not guaranteed. Second, the unscented
transform is subject to the location of a deterministically chosen set of points (called
sigma points). The position of sigma points, due to the complexity of the system,
may be sub-optimal and mislead the Gaussian approximations. Therefore, the start-
ing points of the iterative prediction-correction steps and the sigma points placement
have a crucial impact on the overall inference results.

The KF and UKF algebraic expressions, as well as the discussion on initialization
and sigma points position, are reviewed next.
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PARAMETER ESTIMATION

To infer parameters of complex systems, one has to account for the possibility
of mathematical intractability of real-word dynamics. In particular, as long as re-
alistic models are developed (e.g. agent-based models or unobserved genealogy in
population genetics), the likelihood functions are analytically unavailable or compu-
tationally costly. The class of approximate Bayesian computation (ABC), also called
likelihood-free technique, has been developed to avoid the likelihood evaluation. The
ABC method is a simulation-based procedure and in the last decade many e�orts
have been devolved to the development of this algorithm: the reviews of Beaumont
(2010), Hartig et al. (2011), and Marin et al. (2012) give an insight of the increasing
importance of this technique.

In a generic way, the ABC method produces random samples by means of a
simulation and quantifies the distance between simulated and original data. The
procedure can be briefly described as follows. A set of candidate parameters are picked
from a prior distribution and a sample set is simulated according to a model. Then,
the distance among simulated and original data is quantified depending on a distance
function. In the case of “vicinity” between sample sets, the candidate parameters
constitute a posterior distribution of parameter values.

Hence, the ABC approach crucially depends on the choice of a metric and on
statistics that faithfully reproduce the key features of a given sample. Unfortunately,
the quantification of a distance among datasets and the definition of the main char-
acteristics of data are not a trivial task. Below, a more detailed description of ABC-
based algorithms along with a review of distance functions are presented.

INFERRING BOTH SIGNAL AND PARAMETERS

After considering the advantages and limitations of filtering methods and like-
lihood free algorithms, my strategy is to estimate signal and parameters of a state
space model in the UKF framework with the novelty of using the ABC sampler
and the optimization of sigma points location within UKF. The aim is to provide
an algorithm that keeps safe the merits of the UKF and ABC and overcomes their
disadvantages. This method is called Sequential ABC-UKF.
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This Chapter is organized as follows. The mathematical description of state space
models in presented in Section 3.1. Reviews of the Kalman filtering and UKF are
in Sections 3.2 - 3.5, while the optimization problem is explained in Section 3.6. In
Section 3.7 the ABC method is described. The novel algorithm that matches ABC
within UKF is shown in Section 3.8.

3.1. State space representation

A state space model is described as

ẋ(t) = F (x(t),λ, ε(t)) , y(t) = H (x(t)) + η(t), (3.1)

where x(t) ∈ Rd is the latent state that evolves over time accordingly to the transition
function F , while y(t) ∈ RD is the observation at time t and H is the measurement
function that maps the state x(t) to the data y(t). The parameter vector is λ, embod-
ied into the transition function F . The system and observation noise, respectively,
ε(t) ∼ N (0, Σε) and η(t) ∼ N (0, Ση), are independently and identically Gaussian dis-
tributed over time. Both ε(t) and η(t) are mutually independent and independent
from x(t) and y(t) for t = 1, . . . ,T .

In a general setting, the function F of model (3.1) is non-linear and λ can be
a time-varying vector, but, for ease of notation, the time dependence is omitted.
The stochastic term ε(t) represents the rapid fluctuations of the hidden dynamics
so that the state x(t) becomes a random variable. The measurement noise, instead,
incorporates the distortions occurred during the observation process.

Since in real-world applications measurements have a finite time interval, the
time-continuous model (3.1) has to be discretized. The state space equations are
transformed into the di�erence equations

xt = f (xt−∆t ,λ, εt ) , yt = h (xt ) + ηt , (3.2)

where ∆t > 0 is the sampling time step and f and h are, respectively, the time-
discrete transition and observation functions. The xt−∆t and xt are the discretized
states, while yt are the measurements. The discrete process and observation noise
are represented by εt and ηt , respectively.



THE KALMAN FILTER 41

Equation (3.2) describes a discrete state space model. As in the continuous time, xt
and yt are random variables: they create a set of time-discrete stochastic processes
x = {x1,x2, . . . ,xt} and y = {y1,y2, . . . ,yt}, for t1 = 1, t2 = 2, . . . , tN = t . For
notational convenience, the time step is setted to ∆t = 1, unless otherwise specified.

The statistical properties of processes (3.1) and (3.2) are fully described by the
joint probability density pXY (X = x ,Y = y).

In this Chapter, as a deterministic autonomous system is considered, the process
noise is εt = 0. The transition function f is defined as

f (xt−∆t ,λ) = xt−∆t +

∫ t

t−∆t
(F (x(T ),λ)dT . (3.3)

Equation (3.3) is not analytically tractable and it has to be evaluated through numer-
ical approximation methods.

The stochastic version of models (3.1) and (3.2) are described in Chapter 5.

3.2. The Kalman filter

This Section describes the Kalman filter iterative scheme and the notation of Sitz
et al. (2002) is followed.

In the Kalman filter framework, the extraction of the signal from noisy time
series consists in the estimation of a time-varying filter density p(xt |y1:t ). Consider
the linear and Gaussian state space model:

xt = f xt−1 + εt , yt = hxt + ηt . (3.4)

The Kalman filter performs inference of model (3.4) by estimating the evolution over
time of the mean and the covariance of the states and observations in an unbiased
and consistent way (for the mathematical proof of consistency consider Kalman and
Bucy, 1961). The filteringmethod consists of a prediction and a correction step. The
prediction step predicts the observed space p(yt |y1:t−1) using the predictive distribution
p(xt |y1:t−1):

p (yt |y1:t−1) =
∫

p (yt |xt )p (xt |y1:t−1)dxt . (3.5)
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In other words, at each time step t , the mean of the filter density p(xt |y1:t ) is extrapo-
lated thanks to the information of prior observations. In order to obtain a prediction
for both the state and observation at the next time point, the KF computes the con-
ditional expectations:

x̂ (t |t − 1) =m (t |t − 1) = E [xt |y1:t−1] = E [f xt−1|y1:t−1] , (3.6)

ŷ (t |t − 1) =my (t |t − 1) = E [yt |y1:t−1] = E [hxt−1|y1:t−1] . (3.7)

These expectations, due to the linearity of the system, have a closed form solution.
The solution for the state is

m (t |t − 1) = E[f xt−1|y1:t ] = fE[xt−1|y1:t ] = fm(t − 1|t − 1), (3.8)

where x̂(t − 1|t − 1) =m(t − 1|t − 1) is the mean of the filtering density at time step
t − 1. The covariances are:

P(t |t − 1) = E[(xt −m(t |t − 1))(xt −m(t |t − 1))′ |y1:t ], (3.9)

Py(t |t − 1) = E[(yt −my(t |t − 1))(yt −my(t |t − 1))′ |y1:t ], (3.10)

Pxy(t |t − 1) = E[(xt −m(t |t − 1))(yt −my(t |t − 1))′ |y1:t ], (3.11)

where the symbol ′ denotes transposition. The correction step updates the prediction
and the estimation of the errors when a new observation arrives into the system.
Essentially, the KF updates the estimation of the filtering density p(xt |y1:t ) applying
the Bayes rule:

p(xt |y1:t ) ∝ p(yt |xt )p(xt |y1:t−1). (3.12)

Since model (3.4) is a Gaussian linear system, the posterior distribution p(xt |y1:t ) is a
Gaussian with the following posterior mean and precision (the proof can be found
in Theorem 4.4.1 of Murphy, 2012):

m(t |t) = P(t |t)hΣ−1
η yt + P(t |t)P−1(t |t − 1)m(t |t − 1), (3.13)

P(t |t)−1 = P−1(t |t − 1) + h′Σ−1
η h. (3.14)

The posterior precision, using the matrix inversion lemma (Corollary 4.3.1 of Mur-
phy, 2012), can be rewritten as

P(t |t) = P(t |t − 1) −KtPy(t |t − 1)K′t , (3.15)
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where Kt is the Kalman gain matrix, defined as

Kt = Pxy(t |t − 1)P−1
y (t |t − 1). (3.16)

The posterior mean, after some algebra manipulations described in Murphy (2012),
is given by

m(t |t) =m(t |t − 1) +Kt (yt −my(t |t − 1)). (3.17)

Looking at the updating equations (3.15) - (3.17), notice that the mean is the old
mean plus a correction factor, that is the Kalman gain times a measurement residual.
Hence, the Kalman gain weights the innovation yt −my(t |t − 1). Let us consider
the ratio P(t |t − 1)P−1

y (t |t − 1) that stresses the relation at time t between the prior
knowledge of the state (up to time t − 1), xt −m(t |t − 1), and the observation resid-
ual. The ratio decreases as far as the denominator is high or the numerator is small.
Since the di�erence between the state (the observations) and the meanm(t |t − 1) (or
my(t |t − 1)) represents the amount of noise in the prediction-correction steps, a high
denominator indicates noisy measurements, while a small numerator points out little
noise in the state prediction, thus a “strong” prior knowledge. In this case, a small
correction to the innovation is su�cient because the noise variance Pxy(t |t−1) is low.
On the contrary, a bigKt represents a bigger correction to the innovation, necessary
in the case of weak prior knowledge of the state or high measurement precision.

3.2.1. Practical implementation of the KF

There are two dominant computational costs in the Kalman filter: the matrix
inversion to compute the Kalman gain matrix, which takes O(|yt |3) time, and the
matrices multiplication to compute P(t |t − 1), which takes O(|xt |2) time. When the
latter cost dominates (e.g. robotic mapping), sometimes sparse approximations are
used (see Thrun et al., 2006). Instead, in the cases where |yt | � |xt |, the matrixKt can
be precomputed, since (surprisingly!) it does not depend on the actual observations
y1:t (an unusual property that is specific to linear Gaussian systems).

In practice, for reasons of numerical stability, more sophisticated implementa-
tions of the Kalman filter should be used. Further details can be found in various
books, such as Simon (2006) and Murphy (2012).
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3.2.2. Main disadvantage

The main limit of the KF concerns the choice of the starting values of the al-
gorithm. Indeed, if the method is initialized far from the true values, the Gaussian
distributions in the KF recursion steps may be a�ected by a high variance and a mean
not centered around the signal at time t . In such a case, the KF can result in a very
poor prediction. The initialization-dependence of the KF a�ects every algorithm
based on the prediction-correction procedure: this limit and the proposed solution
of this dissertation are discussed in Section 3.5.4.

3.3. Parameter inference in the context of Kalman filtering

Section 3.2 describes the KF steps to estimate the hidden signal xt . In analogy
with the KF estimation strategy, performing parameter inference means that the
vector λ has to considered a hidden state, with its own trajectory over t to be in-
ferred. If the parameters represent a hidden component as well as the signal, they
have to be included into the state function f of equation (3.2). The embodying of
ODE parameters into the state vector breaks the linear dynamics assumed in equa-
tion (3.4) among xt , xt−1 and yt . Indeed, the inclusion of parameters with di�erent
behaviours among the state and space equations violates the linearity assumption.
Figure 3.1 gives a simple representation of a state space model and the KF steps:
behind each measurement, a hidden component is considered. The linear dynam-
ics among unobserved variables over time, p(xt |xt−1), and the relationship between
xt and the observations, p(yt |xt ), is represented by arrows. The filtering density
p(xt |y1:t ) is used to make a prediction on the next point in the space. Once a new
measurement is available, the prediction is corrected in the update step.

To estimate the signal and parameters from model (3.2) in the case of non-linear
functions, approximate inference is necessary; approximate methods are reviewed
next, with emphasis on the UKF.

3.4. Kalman filter-based methods

The approximate inference algorithms discussed below approximate the poste-
rior distribution of the KF by a Gaussian. In general, if y = f (x), where x has a
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Figure 3.1: Illustration of a state space model within the KF scheme. Behind observations
yt there is a hidden component xt . As time goes on, a new measurement enters into the
system and corrects the predictions on the future state xt+1. The inclusion into the state xt of
the ODE parameters corrupts the linearity of the model. Source: re-editing of aWikipedia’s
figure on Bayesian filtering.

Gaussian distribution and f is a non-linear function, there are two main ways to
approximate p(y) by a Gaussian. The first is to use a first-order approximation of
f . The second is to use the exact f , but to project f (x) onto the space of Gaussians
(Murphy, 2012). The EKF is based on the first method of approximation, while the
UKF relies on the second one.

The EKF can be applied to non-linear Gaussian dynamical systems with di�er-
entiable state space functions. The idea is to linearise f and h about the previous
state estimate using a first order Taylor series expansion, and then apply the stan-
dard Kalman filter equations. The intuition behind the EKF approach is shown in
Figure 3.2, which shows what happens when one passes a Gaussian distribution p(x)
(on the bottom right panel), through a non-linear function y = f (x) (top right).
The resulting distribution is shown in the shaded gray area in the top left corner.
The best Gaussian approximation to this, computed from E[f (x)] and Var[f (x)], is
shown by the solid black line. The EKF approximates this Gaussian as follows: it
linearises the f function at the current mode, µ, and then passes the Gaussian dis-
tribution p(x) through this linearised function. In this example, the result is quite a
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good approximation to the first and second moments of p(y). However, there are
two cases when the EKF works poorly: (i) when the prior covariance is large and
(ii) when the function is highly non-linear near the current mean. In the first case
the prior distribution is broad, so the EKF sends a lot of probability mass through
di�erent parts of the function far from the mean, that is the point where the func-
tion has been linearised. In the second case, much information is lost cutting the f

around the mean; in this case, the very assumption of the EKF (i.e. the reliability
of the first-order Taylor series approximation) gets worse as one moves far from the
mean.

In both of these settings, the unscented Kalman filter is a better version of the
EKF (Julier andUhlmann, 1997). The key intuition behind theUKF is that it is easier
to approximate a Gaussian than to approximate a function (Murphy, 2012). In other
words, there is not a linear approximation to f , but a deterministically chosen set of
points, known as sigma points, pass through the function, and then a Gaussian is fitted
to the resulting transformed points. This scheme is called the unscented transform,
and it is sketched in Figure 3.3. The mathematical details are given below.

Basically, the UKF has two main merits. First, using the whole density of xt , the
UKF method does not truncate the functions of model (3.2) but the filter density to
its higher order moments. Second, due to the construction of a pre-defined set of
points, the UKF can fit the whole state density on a sample small in size that is not
computationally expensive. Consider that both the UKF and EKF perform O(d3)
operations per time step. Nevertheless the UKF is accurate to at least second order,
whereas the EKF is only a first order approximation.

3.5. Unscented Kalman Filter

In this Section, the unscented transform is explained first, and then the whole
UKF iterations are discussed.

3.5.1. The unscented transform

As stated above, the UT transforms the probability density function through
the set of sigma points. The sigma points are not drawn at random but they are
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Figure 3.2: Illustration of a non-linear transformations of a Gaussian. The prior p(x) is
shown on the bottom right. The function y = f (x) is on the top right. A non-linear
transform f (x) induces a complex distribution, while a linear function creates a Gaussian
distribution. The transformed distribution p(y) is shown in the top left. The dotted line is
the EKF approximation, the solid line is the best Gaussian approximation to p(y). Source:
Figure 3.4 of Thrun et al. (2006).

deterministically chosen so that they exhibit certain specific properties. In particular,
the sigma points are chosen so that their mean and covariance is the same of the state,
m(t |t − 1) and P(t |t − 1). In this way, high-order information about the distribution
can be captured with a fixed, small number of points (Julier and Uhlmann, 2004). A
symmetric set of 2d +1 points, χ (t −1|t −1), where d is the dimension of the system,
that satisfies the above conditions and lies in the d-th covariance contour is derived
in Julier and Uhlmann (2004).

In the Kalman filter-based technique, the sigma points location is parametrised
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by three scalar values θ = (αukf, βukf,kukf) and are given by

χ0 (t − 1|t − 1) =m (t − 1|t − 1) , (3.18)

χi (t − 1|t − 1) = {
m (t − 1|t − 1) + √(d + λukf)P:i

}d
i=1
, (3.19)

χi+d (t − 1|t − 1) = {
m (t − 1|t − 1) − √(d + λukf)P:i

}d
i=1
, (3.20)

for i = 1, . . . ,d, λukf = α
2
ukf(d + kukf) − d is a scaling parameter, P:i represents the i-th

column of matrix P .
UKF passes the sigma points through f and h to obtain two new sample sets,

χi (t |t − 1) = f (χi(t − 1|t − 1)) , (3.21)

ϒi (t |t − 1) = h (χi(t |t − 1)) . (3.22)

The means and covariances for the measurements, derived in Murphy (2012), are

my(t |t − 1) =
2d∑
i=0

w (i)
m ϒi(t |t − 1), (3.23)

Py(t |t − 1) =
2d∑
i=0

w (i)
c

�
ϒi(t |t − 1) −my(t |t − 1)� �

ϒi(t |t − 1) −my(t |t − 1)�′, (3.24)

where the weights w are given by

w (0)
m =

λukf

d + λukf
, (3.25)

w (0)
c =

λukf

d + λukf
+ (1 − α2

ukf + βukf), (3.26)

w (i)
m = w

(i)
c =

1
2(d + λukf) , for i = 1, . . . , 2d . (3.27)

3.5.2. The UKF method

The UKF uses the unscented transform twice, once to approximate passing the
system through model f , and once to approximate through the measurement model
h.
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Figure 3.3: An example of the unscented transform in two dimensions. Instead of con-
sidering all the dataset size, the unscented transform computes the mean and the covariance
only on the small sample of sigma points. Source: Figure 18.10 of Murphy (2012).

For the state estimation, the mean and the covariance are

m(t |t − 1) =
2d∑
i=0

w (i)
m χi(t |t − 1), (3.28)

P(t |t − 1) =
2d∑
i=0

w (i)
c (χi(t |t − 1) −m(t |t − 1)) (χi(t |t − 1) −m(t |t − 1))′. (3.29)

Finally, the covariance between state and measurement is straightforward

Pxy(t |t − 1) =
2d∑
i=0

w (i)
c (χi(t |t − 1) −m(t |t − 1)) �

ϒi(t |t − 1) −my(t |t − 1)�′. (3.30)

The set of equations (3.18) - (3.30) describes the unscented transform for the UKF.
Thus, the predictive distribution p(xt |y1:t−1) ≈ N (xt |m(t |t − 1),P(t |t − 1)) is approxi-
mated by the old belief state N (xt−1|m(t −1|t −1),P(t −1|t −1)), while the likelihood
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is p(yt |xt ) ≈ N (y(t |t − 1)|my(t |t − 1),P(t |t − 1)). The iterations of the UKF are based
on the recursion of the KF (see equations (3.15) - (3.17)). The marginal likelihood
of observations is defined as

p(y1:T |θ ) =
T∏
t=1

p(yt |y1:t−1, θ ) =
T∏
t=1

N (yt |m(t |t − 1), P(t |t − 1)), (3.31)

where the terms in the product are computed recursively as

p(yt |y1:t−1, θ ) ≈ N (yt |my(t |t −1),Py(t |t −1),θ )×N (xt |m(t |t −1),P(t |t −1),θ ). (3.32)

3.5.3. Parameter estimation

The method described in Sections 3.2 and 3.5.1 mainly concerns the signal ex-
traction of a dynamical process. To handle with parameter estimation, as suggested
in Sitz et al. (2002), the parameter vector is treated through the evolution equation

λt = λt−1. (3.33)

The parameter λ is constant in the state dynamics but it is updated at each measure-
ment step since the value at time t converges to the true values. As for the parameter
vector, to estimate the process and observation noise, the latter two are treated as
state variables. A joint state vector jt with the following time dynamics is defined

jt =

*.......
,

xt

λt

εt

ηt

+///////
-

=

*.......
,

f (xt−1,λt−1) + εt−1

λt−1

εt−1

ηt−1

+///////
-

= f j(jt−1), (3.34)

and measurement function

yt = h
j(jt ) = h(xt ) + hη(ηt ). (3.35)

If not stated otherwise, in the following additive and uncorrelated observation noise
is considered, such that hη(ηt ) is the identity function.
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3.5.4. Disadvantages of the UKF

As previously described, the unscented transform does not require the analytic
evaluation of derivatives (it is called a derivative free filter), making it simpler to im-
plement and more widely applicable than the EKF, at the price that it highly relies
on the sigma points position. Moreover, as discussed in Section 3.2.2, the UKF is
a�ected by the choice of the starting values of the algorithm. Both these UKF limits
are detailed below.

SIGMA POINTS LOCATION

The values of the sigma points parameter θ = (αukf, βukf,kukf) are heuristically set
by the algorithm. The default recommended values for the parameters are αukf = 1,
βukf = 0, kukf = 3 − d. Depending on the system, the pre-defined values of θ lead
the UKF to poor predictions. In the most extreme case, the UKF may estimate a
prediction density function with null variance. Such a case can be called sigma
points collapse and it is shown in Figure 3.4. The prior distribution is plotted in the
bottom panel; the function f (blue line) passes through the sigma points taken by the
prior distribution. In the case of “bad” assignment of sigma points, represented by
the red crosses, the approximation can not reproduce the true oscillation of the state
function and the resulting posterior distribution is a peaked Gaussian with a small
variance. If the sigma points are the green circles (this case may be called “good”
assignment), the function f is better approximated and the corresponding posterior
is shown in the left panel. Anytime collapse happens during the UKF training phase,
the marginal likelihood of observations p(yt |y1:t−1) becomes lower.

The strategy proposed here is to develop a learning algorithm to find θ so that
collapse becomes unlikely. This means that during the UKF iterations, the new
learned parameters have to maximise the marginal likelihood of measurements and
avoid its decrease. From a certain point a view, this approach implies that the UKF
is considered as a model, not merely as an approximated method. Hence, if the UKF
is a model, the researcher has to identify the underlying assumptions of the model
(i.e. the position of points in the space) and learn the parameter θ from training data
(Turner and Rasmussen, 2012).
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As Section 3.6 will describe, the optimization of the location of sigma points may
let inference di�cult due to the multi-modality of the likelihood.

INITIALIZATION OF THE UKF

As all the KF-based methods, the overall inference performance of the UKF and
its convergence may depend on the initialization of the algorithm. The research of
Sitz et al. (2002) has proved the wide applicability and the inference performances
of the UKF on several dynamical systems, but Giurghita and Husmeier (2016) have
shown that the results highly depend on the initialization of the method. Indeed,
the starting values of an algorithm reflect the researcher’s belief on the state of the
system. With real-world data, it may often happen to set an initialization far from
the true unknown parameters governing the hidden state. At the same time, even if a
comprehensive pre-inference analysis can be carried out to guess the dynamics of the
process, there is the need of a method which does not rely on “tuning” parameters
or hand-crafting of the algorithm before inference.

For such a reason, my strategy is to initialize the UKF with the posterior dis-
tribution approximation of the ABC algorithm. The ABC approach is presented in
Section 3.7; in order to obtain credible intervals of parameters, the ABC will work
as a prelude to the UKF estimation of the state space model.

3.6. Sigma points optimization

As stated in the previous Section, the sigma points collapse implies the decrease
of the likelihood of measurements. Hence, for a good sigma point assignment the
likelihood p(yt |y1:t−1) has to be maximised into the UKF steps.

Mathematically, the problem concerns with the research of a global optimizer,
or minimizer, of an unknown objective function L:

θ ∗ = argmax
θ∈Θ

L(θ ), (3.36)

where Θ ∈ Rd and θ is any arbitrary query point in the time domain. The black-box
function L is assumed to have no closed form but may be evaluated at point θ : this
evaluation produces noise-corrupted outputs y such that E[y|θ ] = L(θ ). In other
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Figure 3.4: An example of good and bad assignment of sigma points. The bottom panel
shows the true input distribution. The center panel shows the state function f (in blue) and
the sigma points for αukf = 1 (red crosses) and for αukf = 0.68 (green circles. This value comes
from a simulation study). The parameters βukf and kukf are fixed to default. Using the set of
sigma points given by the red crosses one gets a degenerate solution, while for the di�erent
set a near optimal approximation is reached. Source: Figure 1 of Turner and Rasmussen
(2012)

.

words, the function L can not be observed directly but only its noisy point-wise
observations y.

To solve problem (3.36), the following sequential search method is considered:
at the j-th iteration, the algorithm selects a location point in the parameter space θj
at which to query L and observe yj . After J queries, the final recommendation θ ∗

represents the best estimate of the optimizer.
In the case of sigma points location in the UKF framework, the objective (loss)

function is the negative log marginal likelihood of measurements

L(θ ) = − logp(y1:T |θ ) = −
T∑
t=1

logp(yt |y1:t−1, θ ). (3.37)

To find the parameter θ that minimizes equation (3.37), the problems of unavail-
ability of a closed-form solution and non-convexity and multi-modality of the L

function is faced.
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I focus on the implementation and comparison of three optimizing methods: the
loss function L(θ ) is minimized by using a discrete search method and Bayesian
optimisation (BO).

3.6.1. Bayesian optimization

Bayesian optimization is a sequential model-based approach to solve problem
(3.36). BO is able to take advantage of the full information provided by the his-
tory of the optimization to make the search of θ ∗ e�cient (Shahriari et al., 2016).
Basically, the BO method can be summarized by two main components: a proba-
bilistic surrogate model and a loss function. The first consists of a prior distribution
that captures the beliefs about the behaviour of the unknown objective L and an
observation model representing the data generating process; the second, the loss
function, describes how optimal a sequence of queries θj are. A simple description of
the algorithm may be as follows. A prior belief over the possible objective functions
is prescribed and then the expected loss function is minimized to select an optimal
sequence of queries. After observing the output of each query of L, the prior is
updated to produce a more informative posterior distribution over the space of ob-
jective functions. In other words, the BO model is sequentially refined as data are
observed via Bayesian posterior updating. Indeed, the Bayesian posterior represents
the updated beliefs, given the observed data, on the likely objective function to op-
timize. One problem with this minimum expected risk framework is that up to the
full evaluation budget, the true sequential risk is computationally intractable.

This intractability has led to the introduction of heuristics such as acquisition func-
tions, so that the problem of directly optimizing the computationally expensive loss
function is shifted to the maximization of the computationally cheaper acquisition
functions (Shahriari et al., 2016 give a comprehensive review of acquisition functions
such as Thompson sampling, probability of improvement, expected improvement,
upper confidence bound). Usually, these acquisition functions trade o� exploration
and exploitation: their optima are located where the uncertainty in the surrogate
model is large (exploration) and/or when the model prediction is high (exploita-
tion). BO algorithms selects the next query point by maximizing such acquisition
functions, which are analytically easier to evaluate or at least approximate than the
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original objective function. In other words, the acquisition function Aj : Θ → R

evaluates the utility of candidate points for the next evaluation ofLand leverage the
uncertainty in the posterior to guide exploration. The point θj+1 is selected by max-
imizing Aj , where j highlights the implicit dependence on the currently available
data, where “data” refers to previous locations (training dataset) where L has been
evaluated, and the corresponding noisy outputs. Figure 3.5 and Algorithm 1 sketch
the BO procedure. For an extensive review of Bayesian optimization, the reader
may see Shahriari et al. (2016) and Jones et al. (1998).

Figure 3.5: Illustration of the BO method over three iterations. Although the objective
functionL is plotted (dashed line), in real applications it is unknown. The solid black line is
the probabilistic model (the estimation of the loss) and the blue area represents the confidence
interval. The acquisition functions are the lower shaded plots. The more the objective takes
high values (exploitation) and the prediction uncertainty increases (exploration), the more
the acquisition function is high. Source: Fig.1 of Shahriari et al. (2016).
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METHOD OF OPTIMIZATION

Let us define the simulator as the state function of model (3.2). Standard ap-
proaches consist in emulating the simulator through a Gaussian process (GP) prior.
Here, the strategy is di�erent: the objective functionL itself is emulated. Following
the method of Rasmussen and Williams (2006), the emulator д of the loss is given
by a GP with constant mean function and Matérn kernel function k. Notice that
the covariance structure of the GP dictates the structure of the response function to
fit; in example, if one expects that the response function to model is periodic, the
researcher may find suitable the use of a periodic kernel. Here a stationary (shift in-
variant) kernel of theMatérn class is chosen. The latter kind of kernel is parametrized
by a smoothness parameter ν > 0, which indicates that the samples from the GP are
di�erentiable bν − 1c times. The most commonly used Matérn kernels (Shahriari et
al., 2016) have ν = {1/2, 3/2, 5/2, Sq-Exp}, where Sq-Exp is the Squared Expo-
nential kernel with smoothness ν → ∞. The use of the Squared Exponential kernel
would lead to infinitely-di�erentiable functions, which is an unrealistic assumption
in many scenarios. As in Snoek et al. (2012), I fix ν = 5/2, which leads to twice
di�erentiable sample paths.

Consider the following hierarchical Bayesian non-parametric regression model:

L|д,σ 2 ∼ N (д,σ 2I ) (3.38)

д(θ )|m,k ∼ GP(m(θ ),k(θ ,θ ′)), (3.39)

where θ , θ ′ ∈ Θ, L = [L(θ1), . . . ,L(θ J )]′, д = [д(θ1), . . . ,д(θ J )]′ and I assume that
m(θ ) = c, ∀θ ∈ Θ and the scalar c has to be estimated from data (this assumption is
equivalent to the standard literature approach of placing a zero-mean Gaussian prior
to zero-centred data). The GP parameters are estimated by maximum log marginal
likelihood.

At the initial point of the optimization scheme the observation variance σ 2 is
fixed. The model’s prediction and uncertainty in the objective function at the point



SIGMA POINTS OPTIMIZATION 57

θj are represented by, respectively, the mean and variance posterior:

µj(θ ) =m(θ ) + k(θ )′(k(θ ,θ ′) + σ 2I )−1(L−m) (3.40)

σ 2
j (θ ) = k(θ ,θ ) − k(θ )′(k(θ ,θ ′) + σ 2I )−1k(θ ), (3.41)

where k(θ ) is a vector of covariance terms between θ and θ1:j .
The starting point of the optimization scheme should think out an initial rep-

resentation of the objective function, obtained by conditioning the GP on a set of
design points in the parameter (input) space. To minimize the evaluation-costly L,
the e�cient global optimization (EGO) algorithm proposed by Jones et al. (1998) is
utilized, which iteratively selects the point with the highest expected improvement
over the incumbent minimum (best feasible solution known up to the j-th iteration).
The EGO has been extended to GPs by Huang et al. (2006), while its convergence
is established in the article of Vazquez and Bect (2007). Here, following Jones et
al. (1998), a space filling Latin Hypercube design, with 10 × d initial input points is
used.

In the framework of sigma points placement, the Bayesian optimisation algo-
rithm iteratively maintains a statistical emulator of the objective function L and
chooses the next “best” point θ = (αukf, βukf,kukf) by maximising an auxiliary ac-
quisition function derived from the current emulator. Given the GP at the current
iteration, L̂ ∼ GP(m, s), I compare the performance of the expected improvement
(EI) and the upper confidence bound (UCB) acquisition functions. Both acquisi-
tion functions balance exploitation, where the GP meanm(θ ) predicts a low function
value, and exploration where the GP predicts high uncertainty s2(θ ). The EI has
been first introduced by Mockus et al. (1978), while the convergence of the UCB
is proved in Srinivas et al. (2010). Even if the EI or UCB functions may be highly
multi-modal, they can be e�ciently optimized using multiple restarts of standard
state-of-the-art global optimization solvers (e.g. Perttunen et al., 1993), since the
costs for the computation of the acquisition functions are negligible to those re-
quired for the evaluation of the loss. Once the minimum of theA is reached at point
θ̄ , the objective function is computed at the next best candidate θ̄ obtaining the out-
put L̄=L(θ̄ ). Then, the new point (θ̄ , L̄) is added to the training dataset D and a
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new iteration starts by re-fitting the GP. The process is iterative until the maximum
budget number of function evaluations has been exceeded. The point (θj ,Lj) having
minimum observed objectiveLj =L(θj) is the output of the EGOminimizer ofL.

Result: Best optimizing point θ = argminθ∈ΘL(θ )

Define the acquisition function A;
for j = 1, . . . , J do

select new θj+1 by optimizing θj+1 = argmaxθ (A);
query the loss function to compute yj+1;
augment the training dataset Dj+1 = {Dj , (θj+1,yj+1)};
update the statistical model;

end

Algorithm 1: The Bayesian optimization procedure

Expected Improvement The improvement at the point θ is defined as

I (θ ) =



θ ; θ < θ̄

θ̄ ; θ ≥ θ̄
= max(Lmin − д(θ ), 0), (3.42)

where θ̄ is the incumbent solution at iteration j, д(θ ) ∼ N (m(θ ), s2(θ )) is the marginal
GP at point θ , Lmin = L(θmin) is the best function value known so far. In other
words, д(θ ) is the random variable that models the uncertainty about the function’s
value at θ and hence the improvement is a random variable itself. To obtain the
expected improvement, the integral to compute is

E [I (θ )] ≡ E [max(Lmin − д(θ ), 0)] =
∫

I (θ )д(θ |θj+1, I0)dθ , (3.43)

in which the GP is conditional to the next evaluation location θj+1 and to the all avail-
able information I0 (the data seen so far). Equation (3.43) means that the expected
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loss is the expected lowest value of the function after observing the next evaluation.
Following Jones et al. (1998) and applying some integration by parts, the right-hand
side of (3.43) is a Gaussian integral and can be expressed in closed form

EI(θ ) = (Lmin −m(θ ))Φ
(
Lmin −m(θ )

s(θ )
)
+ s(θ )ϕ

(
Lmin −m(θ )

s(θ )
)
, (3.44)

where Φ and ϕ denote the cumulative distribution function (CDF) and probability
density function (PDF) of a N(0, 1) random variable evaluated at θ . The weights
of the EI acquisition (3.44) are the probabilities of a successful objective function
evaluation. This allows us to account for failure in the evaluation ofLdue to matrix
singularities, and still optimise it when standard optimization algorithms would fail
to. The balance between exploration and exploitation of (3.44) is expressed by the
contribution Lmin − m(θ ) (that is higher when the prediction is smaller than the
incumbent minimum) and by s(θ ), which increases the acquisition function value as
far as the GP uncertainty is high at θ .

Upper Confidence Bound The UCB optimizes the maximum of a confidence
interval on the loss function value:

UCB(θ ) = E[L(θ )] + r√Var[L(θ )], (3.45)

where r is a constant which controls the exploration exploitation trade-o�. The
guiding principle behind the acquisition function (3.45) is to be optimistic in the face
of uncertainty (Shahriari et al., 2016). Using the upper confidence for every query
θ corresponds to e�ectively using a fixed probability best case scenario according to
the model. The optimizer based on (3.45) is implemented following the approach
of Turner and Rasmussen (2012). A simple comparison between the EI and UCB
acquisition functions is shown in Figure 3.6.

3.6.2. Discrete search

The Bayesian optimization method with a GP interpolation is compared with a
a discrete grid search scheme with a cubic spline interpolation. I create an interval of
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Figure 3.6: Illustration of the surrogate regression model (top panel) and the EI and UCB
acquisition functions (bottom panel). The true loss is the dashed line, while the solid line
represents the probabilistic regression model with the shaded region of confidence intervals.
The observations are the red crosses. The UCB acquisition function is more optimistic than
the EI. Source: Fig.5 of Shahriari et al. (2016).

θ in which the surface of the lossL is monitored. The functionL(θ ) is interpolated
with a cubic convolution taking as many knots as the size of the grid,

s3,j(θ ) =
3∑

i=0
aij(θ − θj)i , (3.46)

where the coe�cient aij are determined following the standard continuity condi-
tions listed in Bowman and Azzalini (1997). Finally, the maximum of the interpo-
lated function and the corresponding parameters are taken.

The grid search has the advantage that it is easier to implement than BO and it is
considered as a matter of comparison with the GP interpolation. Indeed, Bayesian
optimization may be more accurate in the evaluation of the behaviour of L(θ ) but
has higher computational costs.

3.7. Likelihood free inference

As more realistic and complex dynamical models are created, the likelihood sur-
faces of such models can be computationally intractable or too costly to evaluate.
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More recently, much literature has been devoted to the development of a simulation-
based technique known as ABC to infer posterior distributions in complicated sce-
narios (see the reviews of Beaumont, 2010, Sisson and Fan, 2011, Marin et al., 2012,
Hartig et al., 2011).

Essentially, the idea behind the ABC algorithm is that the evaluation of the like-
lihood is replaced by a comparison between observed and simulated data. Figure 3.7
shows a representation of the ABC intuition. An unknown process generates ob-
served data, summarized by a statistics S . At the same time, a stochastic simulation
gives rise to a simulated sample. The summary statistics S is calculated on simulated
data, and compared with the one of the observed dataset. If Sobs = Ssim, the stochastic
simulation is able to reproduce real data. If Sobs , Ssim, another simulation has to be
evaluated.

If data are discrete, it is possible to sample from the posterior density of the pa-
rameters without an explicit likelihood function evaluation and without any ap-
proximation. If data are continuous, the probability of exact matching between the
simulated data and the real sample is zero; hence, the method relies on approximate
parameter distributions. The posterior distribution from which the parameters are
drawn is the probability distribution that could have originated the observations.

In this Section, the theory underlying the ABC, its extensions and some di�cul-
ties are discussed.

Figure 3.7: Graphical representation of the idea behind the ABC method: observed and
simulated data are compared through summary statistics. Source: Figure 4 of Hartig et al.
(2011).
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3.7.1. The ABC method

Consider a vector of parameters λ, an observation set y0 and a modelM . In gen-
eral, given the prior distribution π (λ), the posterior distribution π (λ|y) ∝ l(y|λ)π (λ)
is evaluated approximating the likelihood l(y|λ) of λ for data y. A generic form of
the ABC rejection sampler is sketched in Algorithm 2. A tolerance is defined by ζ
and N parameter values, called particles are drawn from the prior π (λ). For each i-th
particle, a sample y∗ is simulated following model M . The simulated dataset is com-
pared with observed data y0 using a distance function D: if D(y∗,y0) ≤ ζ , it means
that the candidate parameter λ(i) can reproduce experimental data accordingly to
the level of agreement defined by the threshold ζ , and particle λ(i) is accepted.

Result: Posterior distribution π (λ|D(y∗,y0) ≤ ζ )

Define the threshold ζ ;
for i = 1, . . . ,N do

while D(y∗,y0) ≥ ζ do
sample λ(i) from the prior distribution π (λ);
simulate a dataset y∗ accordingly to model M(y|λ(i));

end
end

Algorithm 2: The ABC rejection sampler

The ABC outcome is a sample of parameters. For univariate or bivariate param-
eters, it is possible to visualize the distribution drawing an histogram (Hartig et al.,
2011). If the threshold is su�ciently small, the distribution

π (λ|D(y∗,y0) ≤ ζ ) (3.47)

is a good approximation for the posterior π (λ|y0). The threshold has to be fixed to a
small value in order to achieve a good approximation of the posterior, meaning that
a lot of computational time is required. Moreover, the acceptance rate is very low
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if the prior distribution is very di�erent from the ABC posterior approximation of
equation (3.47). To skip these problems, two main methods exist in the literature:
(i) the ABC based on Markov chain Monte Carlo (ABC-MCMC) and (ii) the ABC
in a Sequential Monte Carlo sampling scheme (ABC-SMC). Figure 3.8 highlights
the di�erence between the ABC, ABC-MCMC and ABC-SMC. Toni et al., 2009
and Beaumont, 2010 give a detailed review of ABC-MCMC; here the focus is on
the ABC-SMC.

Figure 3.8: Di�erences between ABC rejection sampler, ABC-MCMC and ABC-SMC.
The circles represent parameter combination within the algorithm. Red circles are rejected
parameters, where the rejection depends on the version of the ABC. Green circles are ac-
cepted parameters. In the rejection sampling (left panel), a particle is accepted on the basis
of the ABC posterior approximation (equation (3.47)). The MCMC sampler (central panel)
draws a new parameter value depending on the ratio between posterior approximations.
SMC (right panel) begins with a set of candidate parameters and accepts the particles ac-
cording to their weights. Source: Figure 7 of Hartig et al. (2011).

TheMCMC is a standard approach in Bayesianmethods that constructs aMarkov
chain of parameter values. At each time step, the parameter combination is chosen
by a random movement conditional on the distribution of parameters at the previ-
ous time. A parameter value is accepted in the chain conditional on the ratio of the
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posterior distribution approximations. The ABC-MCMC converges to the target
posterior distribution, with a time usually much shorter than the simple ABC rejec-
tion sampler. Despite this, the correlated nature of samples of the MCMC scheme,
together with the low acceptance rate of ABC, may result in very long chains with
the chance that the chain gets stuck in regions with a low probability for a long time.

The ABC-SMC, at least in part, avoids the limits of the ABC and ABC-MCMC.
Indeed, the ABC-SMC has two main features. First, it computes a weighted re-
sampling from the set of points already drawn; second, the tolerances decrease over
time. According to the weighted resampling, each point has a given weight (impor-
tance weight) that takes into account that the points are not picked from the prior.
Since the tolerance is smaller, the weighted set of points improves the approximation
to the posterior. In the next Section, the ABC-SMC is described in detail.

3.7.2. The ABC-SMC scheme

In the ABC-SMC procedure the posterior distribution is approximated sequen-
tially for t = 1, . . . ,T by constructing intermediate distributions that converge to
the posterior distribution (Toni et al., 2009). To perform the ABC-SMC, a toler-
ance schedule ζ1 > ζ2 > . . . > ζT is defined first. For the first parameter distribution,
t = 1, the ABC rejection sampler brings a first parameter population λ1. For the
other intermediate distributions, t > 1, N particles are sampled from the previous
population λt−1 according to a set of weights Wt . Each particle is perturbed ac-
cording to a kernel Kt , and a dataset y∗ is simulated through a model M(y|λ∗). The
ABC-SMC proceeds as described in Algorithm 3.

The SMC sampling scheme approximates the belief distribution using aweighted
set of particles. In other words, the algorithm samples from a proposal distribution
assigning importance weights to the particles: this method is called importance sampling
(Murphy, 2012). The importance weights are given by

W (∗i)
t = π (λ(i)t )/Kt (λ(i)t−1|λ(i)t ;τ 2

t ), (3.48)

where π (λ(i)t ) represents the approximated belief state and Kt (λ(i)t−1|λ(i)t ;τ 2
t ) is the pro-

posal distribution. The SMCcan fail after few steps if most of particles have negligible
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Result: Posterior distribution π (λ|D(y∗,y0) ≤ ζT )

Define ζ1, ζ2, . . . , ζT ;
for t = 1 do

for i = 1, . . . ,N do
while D(y∗,y0) ≥ ζ1 do

sample λ(i) from the prior distribution π (λ);
simulate a dataset y∗ accordingly to model M(y|λ(i));

end
end
Define τ 2

2 as twice the empirical variance of the population λ1;
SetW1 = 1/N ;

end
for t = 2, . . . ,T do

for i = 1, . . . ,N do
while D(y∗,y0) ≥ ζt do

sample λ(i,∗∗) from the previous population λt−1 with weightsWt−1;
perturb the particle λ(i,∗) ∼ Kt (λ|λ∗∗;τ 2

t );
simulate a dataset y∗ accordingly to model M(y|λ(i,∗)) ;
SetW (i)

t = π (λ(i)t )/∑N
j=1W

(j)
t−1Kt (λ(j)t−1|λ(j)t ;τ 2

t );
end

end
Normalize the weights;
Take τ 2

t+1 as twice the empirical variance of the population λt .
end

Algorithm 3: The ABC-SMC algorithm

weights. This event is called the degeneracy problem and occurs in high-dimensional
space (Murphy, 2012). The degree of degeneracy is quantified by the e�ective sam-
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ple size:

Ne� =
N

1 + Var(W (∗i)
t )
, (3.49)

whereW (∗i)
t for particle i is defined as in equation (3.48). Since the e�ective sample

size is not quantified, it is approximated by

N̂e� =
N

1 +
∑N

i=1(W (i)
t )2
. (3.50)

The idea is that if the variance of weights is large, the algorithm is wasting resources
in updating particles with negligible weight which do not add informations to the
posterior estimates. The problem is solved adding a resampling step. The resampling
step consists in monitoring the e�ective sample size of particles, according to equa-
tion (3.50), eliminating particles with a low weight and replicating the surviving
particles.

3.7.3. Choice of summary statistics

As presented in Sections 3.7 and 3.7.2, the ABC and its sophisticated versions,
both MCMC and SMC, are based on the choice of a metric D. The definition of a
suitable distance function between datasets is not trivial. Hence, the distance can be
based on summary statistics S(y0) and S(y∗), such that D(y∗,y0) = D∗(S(y∗), S(y0)),
where D∗ is a distance function defined on the summary statistics space.

The key challenge in ABC approaches relies both on the definition of a distance
function that quantifies the di�erence between the simulated and observed datasets
and on the choice of a summary statistic that best captures the key features of data
(Jones et al., 2015 show an interesting comparison between summary statistics and
distance functions).

Through summary statistics the dimensionality of the data is reduced. At the
same time, to avoid the risk of loss of information, the su�ciency of the statistic
should be tested with respect to the inferential task. One should consider that the
choice of summary statistics a�ects the inference scheme, and may bias the outcome
because of the relation among summary statistics and data (Beaumont, 2010). As
more and more summary statistics are used, they should be jointly su�cient for the
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likelihood. With many summary statistics, and the varying degrees of correlation to
each other and the parameters, the influence of any one on the outcome decreases.
Unfortunately, the increasing number of summary statistics rises the dimensionality
of the system as well. For complex model, a researcher may decide to use sum-
mary statistics that are only close to su�ciency. To a certain extent, the finding of
summary statistics close to su�ciency as possible depends on the experience and in-
tuition of the researcher. It may happen to work with a summary statistics without
a necessarily strong theory relating the statistics to parameters.

The choice of summary statistics is very crucial and definitely a�ects the ABC
posterior approximation, so that in this dissertation I do not completely rely on the
ABC method to infer the ODE parameters.

Result: Signal extraction and λ estimate

Define the starting value λ;
Define a suitable choice of summary statistics S(y0);
Step 1: run ABC-SMC scheme;
- Result: Posterior distribution π (λ|D(y∗,y0) ≤ ζT );
Step 2: run UKF where the starting value of λ is the median of the posterior
distribution of ABC-SMC;
- Result: Learn the sigma points location from the process;
Step 3: optimize sigma points placement;
- Result: Estimate of θ ;
Step 4: run UKF with optimized sigma points;

Algorithm 4: The Sequential ABC-UKF algorithm

3.8. Sequential ABC - UKF

Because of the ABC limitations discussed in Section 3.7.3 I do not perform the
ABC-SMC on λ, but I sample from the approximation (3.47) the starting values for
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Figure 3.9: An illustration of the Sequential ABC-UKF. Through the ABC-SMC, the
method obtains starting values to initialize the UKF from the distribution of equation (3.47),
and after the evaluation of the likelihood and the optimization of sigma points location, the
UKF estimates converge. The red circles are the initial values, while the green circle is the
true parameter vector.

UKF. Briefly recall that the UKF is a powerful method to infer parameters of a non-
linear system, but its convergence depends on the initialization and on the sigma
points placement.

The proposed strategy is to perform Bayesian filtering through the UKF where
the starting values come from the ABC-SMC and to learn the sigma point parameter
vector θ in the likelihood space. To boost UKF performance with respect to the
initialization, the UKF method is merged with the ABC-SMC scheme, and this
algorithm is called Sequential ABC-UKF. In such a way, the ABCworks as a prelude
to UKF training and the outcome is a domain in which the true parameter λ lies.

The Sequential ABC-UKF works as follows. The ABC-SMC is initialized with
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a Uniform prior with a large domain in which I guess the true parameters lie. The
ABC-SMC estimates a posterior distribution considered as a credible domain of pa-
rameters. From this distribution, the median value to initialize the UKF is taken.
The UKF runs twice. First, the UKF evaluates the marginal likelihood of obser-
vations p(yt |y1:t−1). As the unscented transform calculates the first two moments of
the measurements distribution with weights depending on the sigma points param-
eter θ (see Section 3.5), the likelihood function depends on the sigma set location.
The sigma points position is learnt as described in Section 3.6. Finally, the UKF is
performed with starting values coming from ABC-SMC and with optimized sigma
set. The proposed inference scheme solves the UKF limits and at the same time pre-
serves the properties of the filtering method. Algorithm 4 and Figure 3.9 illustrate
the Sequential ABC-UKF in a generic way and suggests how di�erent algorithms
can work together to gain a better knowledge of complex systems.





4. SIMULATION STUDY

Through a simulation study, the performance of the Sequential ABC-UKF dis-
cussed in Chapter 3 to learn the signal and the parameters of the non-linear Du�ng
oscillator is evaluated. The study is divided into three steps. First, the dependence
of the UKF on the signal to noise ratio (SNR), sample size and o�sets is quantified
(Section 4.2). Second, Section 4.3 concerns the evaluation of the impact of sigma
points optimization in the UKF scheme. Third, the improvement of the Sequential
ABC-UKF in the convergence to the true values is discussed in Section 4.4.

4.1. State space Du�ng system

The state space representation of the Du�ng ODE is

dx1t/dt = x2t , dx2t/dt = −
(
cx2t + αx1t + βx

3
1t

)
, (4.1)

where x1t and x2t are the position and the velocity, respectively, of the oscilla-
tion at time t and the parameters of interest are λ = (α , β , c)′. Data are simu-
lated with the ode23 MATLAB function, with stepsize of integration δt = 0.01 and
starting values for the numerical integration [1, 0]. To fix the stepsize δt = 0.01
several simulations have been performed, in order to assure that a lower stepsize
would not a�ect the accuracy of the ODE approximation. The true parameters are
λ = (α , β , c)′ = (1, 2, 0.1)′. The function f of model (3.2) is given by the numer-
ical solution of equation (4.1) and h is the identity function. Measurements yt are
obtained by sampling n data points from the first component, x1t , and adding obser-
vational noise ηt ∼ N (0,σ 2

η )with known variance. The time interval is t = 1, . . . , 20,
and the initial covariance of the system is set to 2I5, where I5 is the 5×5 identity ma-
trix. As previously discussed in Section 3.5.3, a joint state vector merges the true un-
known signal with the parameter vector as jt = [xt , λt ]′ = [(f (xt−1,λt−1)+εt ), λt−1]′,
and yt = h(jt ) + ηt . Recall that, in the deterministic case, εt = 0. Simulations are
coded in MATLAB, and the UKF is implemented in the EKF/UKF toolbox of Har-
tikainen et al. (2011). To avoid numerical instability of the Cholesky decomposition

71
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of the matrices in UKF training, the default inv function of the EKF/UKF toolbox is
substituted with the backslash operator. A jitter is added when necessary.

The measures of convergence are the following: the Euclidean norm for each
parameter before and after inference, the standardized Euclidean norm (SEN) in the
parameter space before and after the UKF training, the root mean square (RMS)
error, the parameter residual sum of squares (RSS), the average relative bias (ARB),
the Signal RSS and Solution RSS:

SEN before =

√√√(
α̂ (before) − α

α

)2

+ *
,

β̂ (before) − β
β

+
-

2

+

(
ĉ(before) − c

c

)2

, (4.2)

SEN after =

√√√(
α̂ (after) − α

α

)2

+ *
,

β̂ (after) − β
β

+
-

2

+

(
ĉ(after) − c

c

)2

; (4.3)

Parameter RSS =
(
α̂i − α

α

)2
+ *

,

β̂i − β

β
+
-

2

+

(
ĉi − c

c

)2
for i = 1, . . . ,n; (4.4)

Signal RSS =
n∑
i=1

(
ŷ(ukf )
i −yi

)2
; Solution RSS =

n∑
i=1

(
ŷ(ode)
i −yi

)2
; (4.5)

RMS =

√√
1
n

n∑
i=1

(
ŷ(ukf )
i −yi

)2
; (4.6)

ARB =
ŷ(ukf )
i −yi

yi
; ARB =

λ̂(ukf )
i − λi

λi
, (4.7)

where ŷ(ukf )
i and λ̂i = (α̂i , β̂i , ĉi) are, respectively, the signal and the parameter

estimates of the UKF for i = 1, . . . ,n. The ŷ(ode)
i is the numerical solution of the

ODE with estimated parameters λ̂ after the UKF training. Both the Signal RSS
and the Solution RSS in equation (4.5) are considered as a di�erential equation may
be reconstructed through a filter (that is the Kalman filtering idea) or from a set of
parameters (the ones estimated by the UKF). In my study, I investigate the precision
of filter reconstruction and the numerical approximation of the vibration given the
estimated parameters. This strategy enables to quantify the sensitivity of the system
to a slight change in the parameter settings.
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4.2. Dependence of UKF on noise, sample size and starting values

To investigate the behaviour of the Du�ng process and the UKF performance,
several scenarios have been simulated, varying the level of noise, quantified by the
SNR, SNR ∈ {30, 10, 1}, and the sample size, n ∈ {1000, 100, 50} (Pasetto et al.,
2017a).

The evaluation of the impact of initialization is carried out by considering dif-
ferent o�sets as starting values for the parameters. The o�sets are sampled randomly
from a Gaussian distribution in which the mean is defined by a percentage deviation
from the true parameter values and the variance is 10% of the mean. The final o�set
used to initialize the UKF is the average of the o�sets sampled from the Gaussian.
The results are averaged over 50 independent datasets.

Figures 4.1 - 4.5 show that the UKF successfully learns the parameters from the
noisy data, and that at the end of the filtering phase the true parameters always lie
within the predicted standard error around the estimate. This suggests that Bayesian
filtering o�ers a successful paradigm for inference in chaotic dynamical systems. The
prediction uncertainty depends on the sample size n, and the level of noise, quan-
tified by the SNR. As one would expect, the uncertainty increases with decreasing
n and decreasing SNR, i.e. as information in the data is lost, and this study allows a
quantification of this trend. The increase in uncertainty particularly a�ects the pa-
rameter β , which is associated with the nonlinear term and the source of the chaotic
behaviour.

Table 4.1 shows the e�ect of the initialization, measured in terms of the Eu-
clidean distance in parameter space. In the case of a small or medium percentage
deviation from the true parameters, respectively, o�set = 100% and o�set = 250%,
the distance between estimates and true values is consistently reduced in the filter-
ing process, and the posterior distance (after filtering) is always smaller than the prior
distance (before filtering). However, the posterior distance increases with the prior
distance, suggesting that a good initialisation will improve the inference results. In
the case of “bad” initialization, that is o�sets greater than 250%, the final estimates
of parameters are very poor, as depicted by the increasing RMS errors in Figure 4.6.
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(a) (b) (c) (d) 

Figure 4.1: UKF estimates for the deterministic Du�ng system with SNR = 31 and n =

1000. (a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d)
Estimate of parameter c.

(a) (b) (c) (d) 

Figure 4.2: UKF estimates for the deterministic Du�ng system with SNR = 10 and n =

1000. (a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d)
Estimate of parameter c.

(a) (b) (c) (d) 

Figure 4.3: UKF estimates for the deterministic Du�ng system with SNR = 1 and n =

1000. (a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d)
Estimate of parameter c.
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(a) (b) (c) (d) 

Figure 4.4: UKF estimates for the deterministic Du�ng system with SNR = 10 and n =

100. (a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d)
Estimate of parameter c.

(a) (b) (c) (d) 

Figure 4.5: UKF estimates for the deterministic Du�ng systemwith SNR = 10 andn = 50.
(a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d) Estimate of
parameter c.

4.3. The UKF and sigma points optimization

To test the optimization procedures presented in Chapter 3, Section 3.6, the
starting values are picked from a 400% o�set: the latter may be called a UKF “bad”
initialization. The likelihood of measurement of simulated data is shown in Figure
4.7. In every case, even with a small percentage deviation from the true values (i.e.
bottom panel of Figure 4.7), the likelihood surface is unstable and multi-modal. The
search of the absolute maximum of such a function is a tricky task, and Figure 4.7
demonstrates that gradient-based optimizer are not a wise choice.

In this study, the investigation concerns the necessity of a learning algorithm to
choose the “best” sigma set θ . Moreover, what follows compares three optimizing
methods with two acquisition functions in the BO scheme and the discrete grid
search with a cubic spline interpolation (Table 4.2).
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(c) 

(b) 

(a) 

Figure 4.6: Deterministic Du�ng system: RMS error of UKF estimates for di�erent sizes
of SNR, n and o�sets. (a) fixed n = 1, 000, o�set = 100%, and varying SNR; (b) fixed SNR =
10, o�set = 100% and varying n; (c) fixed SNR = 10 and n = 1, 000, varying o�sets. Results
are averaged over 50 independent datasets.

With respect to BO, the acquisition functions are optimized using the LH de-
sign, with the number of initial input points set to 10 × d. The GP is defined with
constant mean function and Matérn ν = 5/2 covariance function, which leads to
twice di�erentiable sample paths (Pasetto et al., 2017b). For the discrete grid, the
loss functionL(θ ) is interpolated with a cubic convolution taking as many points as
the size of the grid, and get the maximum of the interpolated function.

The results in Table 4.2 suggest that the optimization of the likelihood function



SEQUENTIAL ABC-UKF ESTIMATES 77

α β c

Before After Before After Before After

100% 1.00 0.36 2.04 1.20 0.10 0.02
150% 1.52 0.12 3.02 0.50 0.15 0.01
200% 2.03 0.23 3.90 0.94 0.21 0.02
250% 2.48 0.69 5.04 9.36 0.25 0.04
300% 2.72 1.01 6.00 9.62 0.32 0.99
400% 3.95 1.65 7.89 10.99 0.40 1.56

Table 4.1: Deterministic Du�ng system: impact of the initialization for di�erent o�sets
(as percentage deviation from the true parameter values) in term of Euclidean norm before
and after inference. Results are averaged above 50 independent datasets.

improves the poor outcome of the default sigma points location. All the methods
reach the aim, i.e. the final parameter estimates are closer to the true values than
the default UKF sigma points assignment in the case of “bad” initialization. The EI
acquisition function achieves the better performance compared to the othermethods,
since the UCB is a too optimistic acquisition function. Figures 4.8 and 4.9 show the
computational costs of the EI and UCB.

4.4. Sequential ABC-UKF estimates

Following the method described in Section 3.8 of Chapter 3, the ABC-SMC
inputs are defined as follows. The other steps of the Sequential ABC-UKF, i.e.
the UKF initialization, the data generating process and the optimization methods
settings, are the same of Sections 4.1 - 4.3. The number of particles is fixed to
N = 1, 000. The prior distribution for the parameters is a Uniform and the extremes
of the interval are the 400% deviation from the true values. To avoid instability, the
parameter β ∈ R+, and, hence, the left extreme value of the Uniform for β is trun-
cated at zero. The perturbation kernel is a Gaussian distribution centered at λ∗∗ and
with variance τ 2

t . The distance function is the Euclidean norm, while the thresholds
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(a) 

(b) 

(c) 

Figure 4.7: Deterministic Du�ng system: log-likelihood of measurements for di�erent
o�set. (a) High o�set (400% of deviation from the true values). (b) Medium o�set (250%
of deviation from the true values). (c) Low o�set (100% of deviation from the true values).
The white spaces are due to numerical instability when inverting the Kalman gain matrix.

are generated as linearly spaced vector in the summary statistics space.

Let us consider three summary statistics: (i) the Ratio of the Peaks (RP), which is
the ratio between the amplitude of the first peak and the amplitude of the last peak
of the oscillation, (ii) the dominant frequency (DF) of the fast Fourier transform
(FFT), and (iii) the number of zero crossings (ZC) of the signal. The choice of the
statistics relies on the characteristics of the three Du�ng parameters. The DF detects
the predominant frequency of oscillation, which is captured by α , while the RP is
more suitable to identify the damping term. The ZC statistics is evaluated to find
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Figure 4.8: Computational costs of EI and UCB acquisition functions.

Figure 4.9: Objective function evaluation and number of acquisition function computa-
tions. Comparison between EI and UCB.

β , which influences the stability of the trivial fixed points in the phace-space and,
so, the convergence to zero of the oscillation in the time domain, as pointed out in
Chapter 2.

The univariate and bivariate posterior distributions of the ABC-SMC are shown
in Figures 4.10 and 4.11. The ABC-SMC posterior distributions for α and c are
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(a) (b) (c) 

Figure 4.10: Deterministic Du�ng system: univariate first and posterior distributions of
parameters in the ABC-SMC scheme initialized with 400% o�set. (a) Estimate of parameter
α . (b) Estimate of parameter β . (c) Estimate of parameter c.

(a) (b) (c) 

Figure 4.11: Deterministic Du�ng system: bivariate posterior distributions of parameters
after ABC-SMC scheme with 400 % o�set. (a) Distribution of (α , β). (b) Distribution of
(c, β). (c) Distribution of (c, α).

peaked near their true values. The most di�cult parameter to infer is β , the term
associated to the chaotic behaviour. In order to obtain 1,000 particles per population
in the SMC intermediate distributions, the overall generating process consists of
about 500,000 particles and the final acceptance rate is 0.04. The number of e�ective
particles at the end of the intermediate distributions is the 95%of the original number
of particles. The median values of the posterior distributions of the ABC-SMC are
the starting values for the UKF.

Table 4.3 summarizes the inference achievements with the Sequential ABC-UKF
in the parameter space. The new method converges to the true values in the sense
that the true parameters lie in the estimated confidence interval (Figure 4.12). Com-
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(a) (b) 

(c) (d) 

Figure 4.12: Deterministic Du�ng system: Sequential ABC-UKF estimates in the time
domain. (a) Signal estimate. (b) Estimate of parameter α . (c) Estimate of parameter β . (d)
Estimate of parameter c.

pared with the default UKF, the Sequential ABC-UKF shows a massive improve-
ment: the first let increase the distance between the estimates and the true values of
239%, while the latter cuts the same distance of 6.65. The estimates of α and c at the
end of the filtering phase always lie within the predicted standard error around the
estimate. Instead, the value of β is more a�ected by uncertainty. Figure 4.13 shows
the RSS in functional and parameter space. The Signal RSS is low but not equal to
zero; indeed, from the top-left panel of Figure 4.12 it is noticeable that the signal
reconstruction is smooth and it reproduces the observation path, except for some
peaks in the measurements. The Solution RSS is higher than the Signal RSS, mean-
ing that inserting the final parameter estimates of the filtering phase in the ordinary
di�erential equation comes out in more jagged path.

As far as the comparison between optimizing methods is concerned, Table 4.3
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Norm in parameter space
Optimization method Before inference After inference
Default UKF 6.90 16.50
UKF with EI 6.90 3.60
UKF with UCB 6.90 4.43
UKF with Grid 6.90 4.09

Table 4.2: Deterministic Du�ng system: standardized Euclidean norm in the parameter
space before and after UKF filtering with 400% o�set. Comparison between default sigma
points location and optimizing methods.

Norm in parameter space
Method Before inference After inference
Default UKF 6.90 16.50
Sequential ABC-UKF with EI 6.90 0.25
Sequential ABC-UKF with UCB 6.90 0.27
Sequential ABC-UKF with Grid 6.90 0.26

Table 4.3: Deterministic Du�ng system: standardized Euclidean norm in the parameter
space before and after UKF filtering. Comparison between the default UKF and Sequential
ABC-UKF method with di�erent optimization schemes. Initialization is 400% o�set.

points out that there is little di�erence among them. Tables 4.2 and 4.3 highlight
that the discrepancies between optimization algorithm disappear as the UKF reaches
a good initialization. The EI acquisition function comes out to have the smallest
Euclidean distance in the parameter space but its predominance on the UCB and
discrete grid shrinks if compared with the results in Table 4.2. The evaluation of the
UKF filtering performance coupled with optimized sigma points location and with
respect to a thoughtful research of starting values brings out the conclusion that the
initialization is more determinant than sigma points placement to convergence to
the true parameters.
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Figure 4.13: Deterministic Du�ng system: RSS and ARB of Sequential ABC-UKF esti-
mates in functional and parameter space.

4.5. Discussion

In the previous Chapter, two approaches to the signal and parameter estimation
for ODEs have been presented, that are the filtering methods and the likelihood free
schemes. After the resume of the main concepts and statistical theories behind these
techniques, the Achille’s heel of each method was discussed and to overcome such
limits I proposed a new algorithm in the context of the Du�ng oscillator, called
Sequential ABC-UKF. I studied three optimization algorithms in a highly multi-
modal likelihood space and investigated their results in terms of inference within
the UKF framework.

The contribution to the methodology to deal with the estimation of chaotic
ODEs concerns a UKF-based method with the novelty of the ABC-SMC procedure
nested in it. The proposed algorithm is able to infer a credible domain in which the
true parameters of a system lie and then executes filtering methods to pursue con-
vergence.

The presented simulation study evaluates the UKF sensibility in terms of accu-
racy of inference depending on (i) the level of noise and sample size, (ii) the sigma
point position in the likelihood space, (iii) the starting values. Three methods of
optimization are compared in terms of improvement in the UKF results.
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However, the optimizing procedure is not as crucial as the initialization is. In-
deed, I tested the better performance the Sequential ABC-UKF has with respect to
the default UKF scheme, proving that the more the starting values go away from the
true values, the more UKF results are poor. A slight change in the starting values
a�ects the UKF more than the sigma points location and the method here proposed
encompasses the UKF limits.



5. INFERENCE FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic di�erential equations (SDEs) represent dynamical systems with a ran-
dom component. Stochastic perturbations lead to di�erent oscillatory behaviours;
thus, a unique solution for an SDE does not exist. In the remainder of this Chap-
ter, the term “signal” is used but it refers to one possible instantiation of the random
number seed.

Inference for stochastic processes is performedwith theUKF. The latter is slightly
modified to include into the filtering phase the approximate solution of the SDE.
For the evaluation of the transition function of the state model, intractable stochas-
tic integrals may occur when constructing high order integration schemes, like
the Runge-Kutta method of fourth order. In this case, only low order integration
method, as the Euler-Maruyama scheme, can be applied. The Euler-Maruyama nu-
merical solution is inserted into the UKF steps to solve the SDE for obtaining the
predictive density. The mathematics behind this method is fully explained in what
follows.

The presence of a random disturbance into the process a�ects the sigma set. To
include the e�ect of noise, the UKF implemented in the same way of the ODE case
should draw sigma points for the state and observations, and then redraw another
set when adding the process noise. A repeated evaluation of sigma points can be
risky, since, as already shown in Chapter 3, the default deterministic choice of sigma
points location may result in less accurate estimates. As will be discussed later on,
to avoid multiple computations of sigma points, the covariance matrix of the state is
augmented to account for the variance of the process noise. The “augmented” UKF
is used for all the following simulation studies.

The simulations presented below focus on three aspects. First, an evaluation of
the Euler-UKF method for inference in the stochastic Du�ng system is presented.
The algorithm is also compared on an independent dataset and on a new method
developed in the particle filtering literature. Second, the variance of the process noise
is estimated: this is a crucial step to move to real data applications where usually the

85
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level of noise is unknown.
The Chapter is organized as follows. Section 5.1 describes the UKF for SDEs.

Section 5.2 carries out a simulation study to compare the stochastic simulation setting
with the deterministic one of Chapter 4. A description of the augmented UKF and a
comparison with the non-augmented version is presented in Section 5.3, while the
estimation of the noise variance is discussed in Section 5.4. Comparisons between
two simulation settings and with an independent dataset are shown in Section 5.5
and Section 5.6, respectively. Section 5.7 presents a preliminary study to initialize
the UKF for SDEs. Finally, results are discussed in Section 5.8.

5.1. Stochastic state space models

5.1.1. Stochastic state models

Consider a stochastic di�erential equation of the form

dx(t) = F (x(t),λ)dt + σεdW (t), (5.1)

whereW (t) is aWiener process, x(t) ∈ Rd is the hidden state at time t , λ is a constant
parameter vector, F is a transition function and σε is the linear di�usion term. The
initial conditions are x(0) = x0 in the time interval 0 ≤ t ≤ T . If σε = 0 and x0 is
constant, equation (5.1) reduces to an ODE with dx(t) = F (x(t),λ)dt .

Occasionally, in some applications, non-mathematical papers may divide all the
terms of equation (5.1) by dt , obtaining the following

dx(t)/dt = F (x(t),λ) + σεε(t), (5.2)

where ε(t) = dW (t)/dt is the process noise, ε ∼ N
�
0,σ 2

ε

�
. Note that, since Brownian

motion is nowhere di�erentiable with probability 1, the ratio dW (t)/dt = ε(t) is not
mathematically meaningful. However, in the practical implementations of the UKF
described later, the term ε(t) is considered because it can be computed through the
Itô calculus.

Equation (5.1) can be written in integral forms like

x(t) = x0 +

∫ t

0
F (x(s),λ)ds +

∫ t

0
σεdW (s). (5.3)
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The second integral in the right-hand side of (5.3) is a stochastic integral, i.e. it is taken
with respect to the Brownian motion. This can be evaluated with the Itô calculus,
which is sketched in the next Section.

5.1.2. Stochastic integrals

Consider an interval [0,T ] to be partitioned into L equal subintervals of width
δt > 0, such that 0 < δt < 2δt < . . . < Lδt = T . In what follows, the term δt is called
the stepsize of integration.

Given a function h, the integral
∫ T

0 h(t)dt can be approximated by the Riemann
sum

L−1∑
j=0

h(tj)(tj+1 − tj), (5.4)

where the discrete time points tj = jδt are the steps of integration. The Riemann
integral may be defined as the limit of δt → 0 of sum (5.4).

By analogy with equation (5.4), the stochastic integral

∫ T

0
h(t)dW (t) (5.5)

is approximated by

L−1∑
j=0

h(tj) �
W (tj+1) −W (tj)� , (5.6)

where the function h is integrated with respect to the Brownian motion. The sum∑L−1
j=0 (W (tj+1) −W (tj)) in (5.6) is known as the Itô integral. When h(t) ≡W (t), in the
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limiting case δt → 0, this sum is

L−1∑
j=0

W (tj) �
W (tj+1) −W (tj)� =

L−1∑
j=0

(
W (tj)W (tj+1) −W (tj)2

)
=

L−1∑
j=0

(
W (tj)W (tj+1) −W (tj)2 +W (tj+1)2 −W (tj+1)2

)
=

1
2

L−1∑
j=0

(
W (tj+1)2 −W (tj)2 − �

W (tj+1) −W (tj)�2)
=

1
2

*.
,
W (T )2 −W (0)2 −

L−1∑
j=0

�
W (tj+1) −W (tj)�2+/

-
. (5.7)

The term
∑L−1

j=0
�
W (tj+1) −W (tj)�2 can be shown to have expected value T and vari-

anceO(δt) (Higham, 2001): for small δt , this random variable is close to the constant
T . In particular, when δt → 0, the distance between the computed sum (5.6) and
the limiting case (5.7), i.e. the Itô error, is∫ T

0
W (t)dW (t) = 1

2
W (T )2 − 1

2
T . (5.8)

The Itô calculus is crucial in the analysis of SDEs and in mathematical modelling.
Indeed, the SDE (5.3) can be evaluated only with the tools of stochastic calculus. The
underlying theory on Itô integrals and Brownianmotion is deepened inKaratzas and
Shreve (1991).

5.1.3. Discrete stochastic state space models

The measurement model is

y(t) = H (x(t)) + η(t), (5.9)

where y(t) ∈ RD are the observations, H is the measurement function and η(t) ∼
N (0,σ 2

η ) represents the observation noise. The noise assumptions are the same as
listed in Chapter 3, Section 3.1.

As previously discussed, since in real-world scenarios data are time-discrete, the
system (5.1) has to be discretized and then integrated over the sampling time inter-
val ∆t > 0. Remember from Chapter 3 that the di�erence equations for the state
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equation (5.1) and the space model (5.9) are

xt = f (xt−∆t ,λ, εt ) , yt = h (xt ) + ηt , (5.10)

where f and h are, respectively, the discrete transition and observation functions,
xt−∆t and xt are the discretized states variables. The measurements at sampling time
t are yt , while the time-discrete process noise and the observation disturbance are εt
and ηt .

Integrating the transition function of equation (5.10) gives

f (xt−∆t ,λ, εt ) = xt−∆t +

∫ t

t−∆t
(F (x(T ),λ) + ε(T ))dT . (5.11)

Intractable stochastic integrals may occur in the right-hand side of (5.11) when
using high order integration schemes like the Runge-Kutta method of fourth order.
Hence, to numerically integrate equation (5.11), only low order methods can be
applied, such as the Euler-Maruyama scheme (Sitz et al., 2002), which is briefly
described in the following.

5.1.4. The Euler-Maruyama method

The Euler-Maruyama method (the stochastic extension of the Euler method) is
a scheme for the approximate numerical solution of SDEs.

Consider the following general form of the SDE:

dx(t) = f (x(t))dt + д(x(t))dW (t), (5.12)

where the f and д are the drift and di�usion terms, respectively. The SDE (5.12)
has to be evaluated in an interval [0,T ], with initial conditions x(0) = x0.

Once the interval [0,T ] has been divided into subintervals like in Section 5.1.2,
the Euler-Maruyama approximation recursively defines

xj = xj−1 + f (xj−1)δt + д(xj−1) (W (jδt) −W ((j − 1)δt)) , j = 1, . . . ,L, (5.13)

where xj denotes the numerical approximation to x(j). To understand where equa-
tion (5.13) comes from, consider equation (5.3). In terms of the discrete small step-
size, δt , the integral (5.3) can be

xjδt = xδt(j−1) +
∫ jδt

δt(j−1)
f (xs ,λ)ds +

∫ jδt

δt(j−1)
σεdW (s). (5.14)
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Each of the three terms on the right-hand side of equation (5.13) approximates the
corresponding term of the right-hand side of (5.14).

5.1.5. The Euler-Maruyama scheme within the UKF framework

In order to obtain a reliable numerical approximation, the use of the Euler-
Maruyama scheme requires an integration step δt considerably smaller than the sam-
pling time interval ∆t . Therefore, several integration steps in the interval [t − ∆t , t]
are necessary to predict the statistics of the state function at time t . The type of
equations like (5.11) are called Langevin equations (Sitz et al., 2002), and the Euler-
Maruyama method in this case reads

xt−∆t+δt = xt−∆t + δtF (xt−∆t ,λ) +
√
δtεt−∆t . (5.15)

Let us highlight that the random variable xt−∆t is completely characterized by its
probability density. Looking at the evolution of this density, it is possible to predict
the state xt−∆t . The reconstruction of the time evolution of the density function can
be done using the respective discrete Fokker-Planck equation or through simulations
utilizing a discretization of the density by a finite and representative set of sample
�
xi,t−∆t

	
. The discrete density at time t − ∆t + δt is obtained by propagating the

following i-th sample

xi,t−∆t+δt = xi,t−∆t + δtF
�
xi,t−∆t ,λ

�
+
√
δtεi,t−∆t , (5.16)

where εi,t−∆t is the i-th sample of the stationary Gaussian white noise.
The sigma points for the state and process noise are, respectively,

{χi (t − ∆t |t − ∆t)}2d+1
i=1 , (5.17)

{Ei (t − ∆t |t − ∆t)}2d+1
i=1 . (5.18)

The set of points
�
xi,t−∆t

	
,

�
εi,t−∆t

	
and the sigma points in equations (5.17)-(5.18)

are chosen as described in Section 3.5.1 of Chapter 3. Thus, even when using the
sets

�
xi,t−∆t

	
and

�
εi,t−∆t

	
, only the information provided by the mean and covari-

ance of the full state density is considered during each integration step of the Euler-
Maruyama method. The numerical integration step over δt of equation (5.16) is
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performed by propagating the sigma points through the Euler-Maruyama scheme.
The latter is applied to the following SDE expressed in terms of sigma points

χi (t − ∆t + δt |t − ∆t) = f Euler (δt) (χi (t − ∆t |t − ∆t) ,λ, Ei (t − ∆t |t − ∆t)) , (5.19)

where f Euler (δt) is the state function of equation (5.16) but with respect to the sigma
points.

From the set of predicted sigma points {χi (t − ∆t + δt |t − ∆t)}2d+1
i=1 , the mean and

the covariance at time t−∆t+δt are computed accordingly to equations (3.28)-(3.29)
of Section 3.5.2 of Chapter 3. Then, these mean and covariance are used to construct
a new set of sigma points {χi (t − ∆t + δt |t − ∆t + δt)}2d+1

i=1 which is used for the next
Euler-Maruyama step performed at time t − ∆t + δt .

A stationary noise dynamics is assumed:

{Ei (t − ∆t + δt |t − ∆t)}2d+1
i=1 = {Ei (t − ∆t |t − ∆t)}2d+1

i=1 , i = 1, . . . ,d . (5.20)

Equation (5.20) indicates that the predictions for the sigma points that represent the
density of the process noise is constant over δt .

5.1.6. Joint state space representation

The dynamics of the parameter vector λ and the stationary measurement noise
η are considered within the Euler-Maruyama method in the UKF framework to
construct a joint state space representation like

*.......
,

χi (t − ∆t + δt |t − ∆t)
λi (t − ∆t + δt |t − ∆t)
Ei (t − ∆t + δt |t − ∆t)
ηi (t − ∆t + δt |t − ∆t)

+///////
-

=

=

*.......
,

f Euler (δt) (χi (t − ∆t |t − ∆t) ,λi (t − ∆t |t − ∆t) , Ei (t − ∆t |t − ∆t))
λi (t − ∆t |t − ∆t)
Ei (t − ∆t |t − ∆t)
ηi (t − ∆t |t − ∆t)

+///////
-

. (5.21)

The unscented transform is repeated over all subsequent integration steps in each
interval [t − ∆t , t], for t = 1, . . . ,T . At time t , a predicted mean and covariance for
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the joint state (5.21) is updated by observation yt , accordingly to equations (3.15)
and (3.17) of Section 3.2 in Chapter 3.

Compared with the UKF for ODEs, this version of the UKFmatching the Euler-
Maruyama scheme is computationally more expensive, since in each sampling time,
several integration steps have to be computed.

This method is used for simultaneous signal and parameter estimation for the
stochastic Du�ng system.

5.1.7. Stochastic Du�ng system

The stochastic Du�ng system is

ẍ + cẋ + αx + βx3 = σεεt , (5.22)

where the parameters of interest are α , the frequency of oscillation, β , the mode of
the restoring force, c, the damping term and σε , the process noise variance. Equation
(5.22) can be written in form of state space equations:

dx1t/dt = x2t , dx2t/dt = −
(
cx2t + αx1t + βx

3
1t

)
+ σεεt , (5.23)

where the second component dx2t/dt is driven stochastically by an uncorrelated
noise εt ∼ N (0,σ 2

ε ).
With respect to the Euler-Maruyama scheme within the UKF method described

above, the (5.23) reads

x1,t−∆t+δt = x1,t−∆t + δtx2,t−∆t , (5.24)

x2,t−∆t+δt = x2,t−∆t − δt
(
cx2,t−∆t + αx1,t−∆t + βx

3
1,t−∆t

)
+
√
δt(σεεt ). (5.25)

In the remainder of this Chapter, several simulation studies are presented for system
(5.23).

5.2. Simulation study of SDE

In what follows, the UKF method described in Section 5.1 is used to estimate the
signal and parameters of the SDE (5.23). Notice that, due to the stochasticity of the
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system, the term “signal” means one instantiations. Indeed, while for an ODE only
one solution exists (either in closed form or approximation), the SDEs, since they in-
corporate a stochastic element, have di�erent oscillations for di�erent random seeds.
Therefore, the simulated data are obtained through the Euler-Maruyama approx-
imation method with stepsize of integration δt = 0.001 and the default MATLAB
random number generator. The value of δt has been chosen after several trials.
On the one hand, as long as the stepsize grows, the Euler-Maruyama method gets
worse. This has been demonstrated taking as reference an ODE and setting to zero
the noise term in the SDE: if the ODE solver coincides with the Euler-Maruyama
method when σε = 0, than the Euler-Maruyama approximation is reliable. Hence,
the bigger the stepsize, the stronger the deviation with respect to the ODE. On the
other hand, small values of δt drive the computational costs in the UKF iterative
scheme. Setting δt = 0.001 is a compromise between the accuracy of the numerical
approximation and the expensive algorithmic steps. This choice also finds support in
the paper of Sitz et al. (2002), who use the same value for the analysis of the stochastic
Van der Pol system.

Measurements yt , for t = 1, . . . ,T = 20 and sample size n = 100, are generated
by corrupting the first component of the state, x1t , with independent and identically
distributed Gaussian noise of SNR = 10. The true parameters are α = 1, β = 2,
c = 0.1. In this simulation study, the process noise variance is known and generated
as a linearly spaced vector between 0.001 and 2. The value of σε = 0.001 is considered
a reference to quantify how the process noise a�ects the UKF estimates with respect
to a quasi-deterministic setting.

For ease of comparison, the starting values are defined as in Chapter 4: the o�sets
are a percentage deviation from the true values, and they are 100% (low o�set), 250%
(medium o�set), 400% (high o�set). The code is implemented inMATLABwith the
EKF/UKF toolbox of Hartikainen et al. (2011) for the computation of the UKF, but
the Euler-Maruyamamethod inside the UKF steps and the corrections for numerical
stability of matrices are hand-coded.

The UKF performance is evaluated with the average relative bias (ARB) and the
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root mean squared (RMS) errors, defined like in Chapter 4:

ARB(ukf) =
ŷ(ukf )
i −yi

yi
, (5.26)

ARB =
λ̂i − λi
λi
, (5.27)

RMS =

√√
1
n

n∑
i=1

(
λ̂ − λi

)2
, (5.28)

RMS(Signal-UKF) =

√√
1
n

n∑
i=1

(
ŷ(ukf )
i −yi

)2
, (5.29)

RMS(Signal-SDE) =

√√
1
n

n∑
i=1

(
ŷ(sde)
i −yi

)2
, (5.30)

where “Signal UKF” indicates the oscillation estimate of the UKF, ŷ(ukf )
i , and “Sig-

nal SDE” (ŷ(sde)
i ) refers to the signal reconstruction obtained when the final UKF

parameter estimates, λ̂i , are inserted back into the SDE. Since each SDE solution
varies stochastically, the approximation is computed 10 times, i.e. the SDE is nu-
merically solved 10 times from di�erent random seeds with the parameter estimates,
and then the ŷ(sde)

i is the average of 10 approximations. The UKF estimates are av-
eraged over 50 independent datasets.

The ARB is depicted in Figures 5.1-5.5, while Figures 5.6-5.10 show the RMS
of the simulations. As expected, the larger the system noise, the poorer the perfor-
mance. In particular, the tails of the boxplots point out that as far as the process noise
variance increases, the independent evaluations of the UKF on di�erent datasets are
more spread. Notice that in the deterministic case the most di�cult parameter to in-
fer was the non-linear sti�ness β . Here, instead, the damping term c is a�ected by a
higher RMS and seems more crucial to estimate than the other parameters. This can
be due to the fact that the process noise mostly a�ects the decay of the oscillation. In
Chapter 2 it has been heuristically shown that a slight change in the variance value
a�ects the stability of the trivial fixed point: the parameter governing this kind of
stability is precisely the damping term.
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The Signal-SDE has a poorer reconstruction (a bigger RMS) than the Signal-
UKF. The latter gets worse as the o�sets increases, while the Signal-SDE is con-
stantly farer from the reconstruction of the generated path independently on the
level of o�sets.

Figure 5.1: Average relative bias of UKF estimates for the stochastic Du�ng system with
SNR = 10, n = 100, σ 2

ε = 0.001.

Figure 5.2: Average relative bias of UKF estimates for the stochastic Du�ng system with
SNR = 10, n = 100, σ 2

ε = 0.5.

5.3. Augmented vs. Non-Augmented UKF

The simulation study presented in Section 5.2 has been carried out with the aug-
mented UKF. Essentially, the idea behind the “augmentation” of the UKF consists in
considering the covariance of the state along with the variance of the process noise
in a unique covariance matrix. In the context of ODEs, the state noise is εt = 0 and
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Figure 5.3: Average relative bias of UKF estimates for the stochastic Du�ng system with
SNR = 10, n = 100, σ 2

ε = 1.0.

Figure 5.4: Average relative bias of UKF estimates for the stochastic Du�ng system with
SNR = 10, n = 100, σ 2

ε = 1.5.

Figure 5.5: Average relative bias of UKF estimates for the stochastic Du�ng system with
SNR = 10, n = 100, σ 2

ε = 2.0.

there is no need to include its variance in the filtering steps, but when the process
disturbance exists, it has to be considered into the inference scheme.
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Figure 5.6: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100, σ 2

ε = 0.001.

Figure 5.7: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100, σ 2

ε = 0.5.

Figure 5.8: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100, σ 2

ε = 1.0.

The augmented UKF draws sigma set only once within a filtering recursion,
while the non-augmented UKF, i.e. the UKF computed exactly as in the ODE case,
has to redraw a new set of sigma points during the prediction phase to incorporate
the e�ect of additive process noise (Wu et al., 2005). As stated in Section 3.5.4 of
Chapter 3, the sigma points location in the likelihood space is so crucial that drawing
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Figure 5.9: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100, σ 2

ε = 1.5.

Figure 5.10: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100, σ 2

ε = 2.0.

twice the sigma set may lead to noticeable losses in accuracy.
In the mathematical description of the non-augmented and augmented UKF, a

general setting of equation (5.10) is considered, that is the process and observation
noise can be multivariate:

xt = f (xt−∆t ,λ, εt ) , yt = h (xt ) + ηt , (5.31)

where εt ∼ N (0, Σε) and ηt ∼ N (0, Ση). The pseudo-codes for the non-augmented
and augmented unscented transforms follow in the next Sections.

5.3.1. Non-augmented unscented transform

Step 1. The vector xt is approximated by 2d + 1 sigma points computed as
discussed in Section 3.5.1 of Chapter 3. For ease of description, the sigma set is
reported again:

χ0 (t − 1|t − 1) =m (t − 1|t − 1) , (5.32)
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χi (t − 1|t − 1) = {
m (t − 1|t − 1) + √(d + λukf)P:i

}d
i=1
, (5.33)

χi+d (t − 1|t − 1) = {
m (t − 1|t − 1) − √(d + λukf)P:i

}d
i=1
, (5.34)

for i = 1, . . . ,d, the scaling parameter is λukf = α
2
ukf(d + kukf) − d, and P:i represents

the i-th column of matrix P .
The weights associated to the sigma points are

w (0)
m =

λukf

d + λukf
, (5.35)

w (0)
c =

λukf

d + λukf
+ (1 − α2

ukf + βukf), (5.36)

w (i)
m = w

(i)
c =

1
2(d + λukf) , for i = 1, . . . , 2d . (5.37)

Step 2. Each sigma points is instantiated and yields the sets for the state and
observations:

χi (t |t − 1) = f (χi(t − 1|t − 1)) , (5.38)

ϒi (t |t − 1) = h (χi(t |t − 1)) . (5.39)

Step 3. The means and covariances for xt and yt are:

m(t |t − 1) =
2d∑
i=0

w (i)
m χi(t |t − 1), (5.40)

P(t |t − 1) =
2d∑
i=0

w (i)
c (χi(t |t − 1) −m(t |t − 1)) (χi(t |t − 1) −m(t |t − 1))′ + Σε , (5.41)

my(t |t − 1) =
2d∑
i=0

w (i)
m ϒi(t |t − 1), (5.42)

Py(t |t − 1) =
2d∑
i=0

w (i)
c

�
ϒi(t |t − 1) −my(t |t − 1)� �

ϒi(t |t − 1) −my(t |t − 1)�′ + Ση .

(5.43)

5.3.2. Augmented unscented transform

Augmenting the UKF means that (i) a new state covariance matrix is generated,
Pa which includes both P , and Σε , and (ii) the sigma points are computed in the space
of the new covariance P .
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The measurement model of equation (5.31) can be reformulated as

ya,t = ha
�
xa,t

�
, (5.44)

where the augmented vector xa,t is

xa,t = [xt ηt ]′ , (5.45)

and the non-linear function ha is defined as

ha
�
xa,t

�
= ha

�[xt ηt ]′� = h (xt ) + ηt . (5.46)

Step 1. Augment the mean vector as

ma(t |t − 1) = [m(t |t − 1) 0]′ . (5.47)

The augmented covariance is

Pa(t |t − 1) =


P(t |t − 1) 0
0 Σε


= (5.48)

=






P(t |t − 1)
0


; for i = 1, . . . ,d,



0
Σε


; i = d + 1, . . . , 2d,

(5.49)

Step 2. Since the sigma points are evaluated taking the i-th column of the co-
variance state matrix, as in equations (5.32)-(5.34), when the latter is augmented, it
follows that the set of sigma points has to be augmented as well. Hence, the aug-
mented set of sigma points has the form

χa,0 (t − 1|t − 1) =ma (t − 1|t − 1) , (5.50)

χa,i (t − 1|t − 1) =
{
ma (t − 1|t − 1) +

√
(d + λukf)Pa,:i

}d
i=1
, (5.51)

χa,i+d (t − 1|t − 1) =
{
ma (t − 1|t − 1) −

√
(d + λukf)Pa,:i

}d
i=1
. (5.52)



AUGMENTED VS. NON-AUGMENTED UKF 101

Substituting equations (5.49) into equations (5.50)-(5.52) yields

χa,0 (t − 1|t − 1) =


m (t − 1|t − 1)
0


, (5.53)

χa,i (t − 1|t − 1) =


{
m (t − 1|t − 1) + √(d + λukf)P:i

}d
i=1

0


, (5.54)

χa,i+d (t − 1|t − 1) =


{
m (t − 1|t − 1) − √(d + λukf)P:i

}d
i=1

0


, (5.55)

χa,i+2d (t − 1|t − 1) =


m (t − 1|t − 1)
{√(d + λukf) Σε

}d
i=1


, (5.56)

χa,i+2d (t − 1|t − 1) =


m (t − 1|t − 1)
−

{√(d + λukf) Σε
}d
i=1


, (5.57)

Step 3. Instantiate the points,

χa,i (t |t − 1) = f
�
χa,i(t − 1|t − 1)� , (5.58)

ϒa,i (t |t − 1) = ha �
χa,i(t |t − 1)� . (5.59)

Step 4. Compute the measurement mean

ma,y(t |t − 1) =
2d∑
i=0

w (i)
a,mϒa,i(t |t − 1), (5.60)

and the covariance:

Pa,y(t |t − 1) =
2d∑
i=0

w (i)
a,c

�
ϒa,i(t |t − 1) −ma,y(t |t − 1)� �

ϒa,i(t |t − 1) −ma,y(t |t − 1)�′,
(5.61)

where the weights w (i)
a,m and w (i)

a,c are the respective counterparts of weights (5.35)-
(5.37).
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5.3.3. Comparisons

Using the same simulation setting of Section 5.2, Figure 5.11 demonstrates the
poorer performance of the non-augmented UKF compared with the augmented
results of Section 5.2. With a low o�set and an intermediate variance noise, σ 2

ε = 1,
the parameter estimates in the non-augmented UKF considerably diverge from the
true values.

(a) (b) (c) 

Figure 5.11: Parameter estimates of the non-augmented UKF, σ 2
ε = 1 and 100% o�set. (a)

Estimates of α . (b) Estimates of β . (c) Estimates of c.

5.4. Estimation of the state noise variance

In this Section, with the same data generating process of Section 5.2, the process
noise variance σ 2

ε is estimated along with the SDE parameters. Therefore, the pa-
rameter vector is λ =

�
α , β, c,σ 2

ε

�′ and the dimension of the system grows to d = 6.
The observational noise is considered fixed η ∼ N (0,σ 2

η ) to maintain a SNR = 10.
Inferring the variance noise is crucial. In real world applications, the latter is

one of the generative parameter of a dynamical process and is unknown. Hence,
investigating if the UKF is able to infer σ 2

ε is important to move to the further step
of the analysis of a real case scenario.

Figure 5.12 and 5.13 show the ARB and the RMS for the variance noise estimates.
Since the ARB is the ratio between the di�erence among the estimates and the true
value divided by σ 2

ε , the left panel of Figure 5.12 is a�ected by numerical instability.
As far as the level of noise increases, the impact of the o�sets in more definitive.
In the case of low o�set, the bias is the same for every level of noise, while higher
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o�sets have the e�ect of increasing the uncertainty, in the sense that the estimates on
independent datasets do not result to a unique estimate. The RMS, instead, reflects
the same behaviour for every level of noise. The bigger the o�sets, the more spread
the results around the median estimate.

Figure 5.12: Average relative bias of the UKF estimation for several levels of the state noise
variance and di�erent o�sets, with SNR = 10, n = 100.

Figure 5.13: RMS of UKF estimates for several levels of the state noise variance and
di�erent o�sets, with SNR = 10, n = 100.

The convergence of the estimates in the time domain is represented in Figures
5.14-5.16. Even with increasing level of variance, the UKF converges to the true
values, but the uncertainty quantified by the confidence intervals increases. The
UKF is able to infer the variance of the process noise, and this result will be used in
the following real data applications.

The signal extraction is plotted in Figure 5.17. The Signal-UKF is more accurate
than the Signal-SDE. This has a poor performance as a consequence of the chaoticity.
Indeed, chaotic systems are highly sensitive to initial conditions and, even for a small
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(a) (b) (c) (d) 

Figure 5.14: UKF estimates for the state noise variance for low o�set. (a) σ 2
ε = 0.001. (b)

σ 2
ε = 1.0. (c) σ 2

ε = 1.5. (d) σ 2
ε = 2.0.

(a) (b) (c) (d) 

Figure 5.15: UKF estimates for the state noise variance for medium o�set. (a) σ 2
ε = 0.001.

(b) σ 2
ε = 1.0. (c) σ 2

ε = 1.5. (d) σ 2
ε = 2.0.

(a) (b) (c) (d) 

Figure 5.16: UKF estimates for the state noise variance for high o�set. (a) σ 2
ε = 0.001. (b)

σ 2
ε = 1.0. (c) σ 2

ε = 1.5. (d) σ 2
ε = 2.0.

mismatch of parameter values, the SDE undergoes di�erent behaviours. If the final
estimates λ̂ do not exactly match the true values, the motion reconstruction may
di�er from the measurements. In such a case, the filter rebuilding of the oscillatory
data is more precise since when a new observation enters into the algorithm, it is
able to reproduce, step-by-step, the whole underlying process.
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(a) (b) 

(c) (d) 

Figure 5.17: Comparison between the UKF filter and the SDE reconstruction. (a) σ 2
ε =

0.001. (b) σ 2
ε = 1.0. (c) σ 2

ε = 1.5. (d) σ 2
ε = 2.0.

5.5. Comparison between known and unknown state noise variance

The results of Section 5.2 and 5.4 are compared in Figures 5.18 - 5.22. In the
case of 100% o�set, the RMS errors between the two settings (known and unknown
state noise variance) coincide. In the case of a “bad” initialization, the RMS for α ,
β and c is higher for the unknown variance framework than for the known process
noise. Moreover, the distance between the two settings in terms of RMS increases
with growing variance value. In particular, the divergence is higher in the param-
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eter space than in the functional space. As already discussed (in Figure 5.17), the
extraction of the hidden signal is fairly accurate during the filtering steps even with
unknown process variance. Unknowing the variance a�ects more the UKF perfor-
mance in terms of parameter estimates than in terms of oscillation reconstruction.

(a) 

(b) 

(c) 

Figure 5.18: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100 and σ 2

ε = 0.001. (a) Low o�set (100% of deviation from the true values). (b)
Medium o�set (250% of deviation from the true values). (c) High o�set (400% of deviation
from the true values).

5.6. Comparison on an independent dataset

This Section questions if the choice of the UKF as a method to infer the param-
eters for SDEs is adequate through a comparison on an independent dataset and a
particle filter algorithm.

Consider a model for pharmacokinetics dynamics, that could be used to study the
Theophylline drug pharmacokinetics. This model has a long history in the literature
(e.g. Pinheiro and Bates, 1995 and Donnet and Samson, 2008), mostly in longitudi-
nal data with mixed-e�ects models, but here the mixed-e�ects are not considered.
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(a) 

(b) 

(c) 

Figure 5.19: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100 and σ 2

ε = 0.5. (a) Low o�set (100% of deviation from the true values). (b) Medium
o�set (250% of deviation from the true values). (c) High o�set (400% of deviation from the
true values).

Instead, a recent article of Picchini and Samson (2017) is the matter of comparison
and the same data generating process is used.

The SDE describing the dynamics of xt , that is the level of drug concentration
in blood at time t (hours), is

dxt =
(Dose · Ka · Ke

Cl
eKat − Kext

)
dt + σε

√
xtdWt , (5.62)

for t ≥ t0, where Dose is the known drug oral dose received by a subject, Ke is the
elimination rate constant, Ka is the absorption rate constant, Cl the clearance of the
drug and σε the intensity of the intrinsic stochastic noise.

For model (5.62), data are simulated at n = 100 equispaced sampling times where
the time interval is ∆t = 1: {t1, t2, . . . , t100} = {1, 2, . . . , 100}. The drug oral dose is
chosen to be 4 mg. After the administration of the drug, at t0 = 0, the concentration
first reaches xt0 = x0 = 8.
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(a) 

(b) 

(c) (c) 

(b) 

(a) 

Figure 5.20: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100 and σ 2

ε = 1.0. (a) Low o�set (100% of deviation from the true values). (b) Medium
o�set (250% of deviation from the true values). (c) High o�set (400% of deviation from the
true values).

The measurement model is linear:

yj = xj + ηj , (5.63)

where the ηj ∼ N (0,σ 2
η ) are independent and identically distributed over the sample

j = 1, . . . ,n. The parameter Ka is assumed known, and the parameters of interest are
λ =

(
Ke ,Cl ,σ

2
ε ,σ

2
η

)
.

Equation (5.62) has no closed-form solution, and data are simulated using the
Euler-Maruyama method with stepsize δt = 0.05 in the time interval [t0, 100]. The
Euler-Maruyama scheme is

xt+δt = xt +
(Dose · Ka · Ke

Cl
eKat − Kext

)
δt +

(
σε

√
δt · xt

)
Zt+δt , (5.64)

where the {Zt} are identically distributed and independent Gaussian N (0, 1). The
generated values from equation (5.64) are linearly interpolated at sampling time
{t1, t2, . . . , t100} to give x1:n. Finally, accordingly to model (5.63), a residual er-
ror η is added. Since the measurement errors are independent, the observations
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(a) 

(b) 

(c) (c) 

(b) 

(a) 

Figure 5.21: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100 and σ 2

ε = 1.5. (a) Low o�set (100% of deviation from the true values). (b) Medium
o�set (250% of deviation from the true values). (c) High o�set (400% of deviation from the
true values).

yj are conditionally independent given the latent process xt . The experiment is car-
ried out with 50 independent datasets of length n = 100 and the true parameters
�
Ke ,Ka,Cl ,σε,ση

�
= (0.05, 1.492, 0.04, 0.1, 0.1).

Picchini and Samson (2017) estimate model (5.62) with a new algorithm based
on a stochastic approximation expectation-maximization (SAEM) coupled with the
ABC scheme (SAEM-ABC). The authors look for a maximum likelihood estima-
tion of parameters with the expectation-maximization (EM) method to compute the
conditional expectation for the pair state-observation [x ,y]. Since the process xt is
stochastic, the EM is used in a stochastic approximation extension. The problem
consists in generating, conditionally on the current value of parameters λ during
the maximization step, an appropriate “proposal” for the state xt . The chosen path
for xt to feed SAEM with comes from the ABC-SMC inserted in the filtering phase.
Since this method shares some connections with signal processing and the UKF, it
is used to investigate the UKF performance with respect to another dataset. For the
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(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

Figure 5.22: RMS of UKF estimates for the stochastic Du�ng system with SNR = 10,
n = 100 and σ 2

ε = 2.0. (a) Low o�set (100% of deviation from the true values). (b) Medium
o�set (250% of deviation from the true values). (c) High o�set (400% of deviation from the
true values).

whole description of the SAEM-ABC, the reader is referred to Picchini and Samson
(2017).

Comparisons for the parameter estimates are in Table 5.1. The SAEM-ABC re-

Parameters True values UKF SAEM-ABC

Ke 0.05 0.058 [0.019, 0.097] 0.049
Cl 0.04 0.005 [0, 2.783] 0.045
σε 0.10 0.112 [0, 2.087] 0.710
ση 0.10 0.115 [0, 2.090] 0.030

Table 5.1: Comparison between the UKF and the SAEM-ABC algorithms for the phar-
macokinetics model (5.62). In square brackets the confidence intervals truncated at zero,
since the parameters can not reach negative values. The SAEM-ABC estimates come from
Picchini and Samson (2017) and they do not give confidence intervals.
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sults are closer to the true value for Cl , but the parameter Ke and the process and
measurements variances are estimated with precision with the UKF. Even if the
confidence intervals of parameters highlight uncertainty around the estimates, the
UKF coupled with the Euler-Maruyama method for SDE challenges another filter-
ing methods.

5.7. Initialization of the UKF for SDEs

In Chapter 3 the UKF limitation concerning the initialization has been exten-
sively discussed: the method proposed in Section 3.8 tries to overcome the problem
of the choice of the starting values for ODEs using the ABC-SMC scheme. The
simulation study of Chapter 4, Section 4.4 shows that the ABC-UKF outperforms
the UKF in the case of an initialization far from the true values.

Naturally, the ABC-SMC could be applied for SDEs as well. The only di�erence
from the ODE case may concern the dispersion of the approximate posterior distri-
butions of parameters. In other words, for SDEs, since a stochastic term perturbs the
oscillation, one can expect that the posterior approximations are not as peaked as for
the ODE system, that is these distributions could be flatter. Comparing the ABC-
SMC results for ODEs and SDEs should be of interest, but it is not yet developed.

The comparison carried out in this Section does not focus on the evaluation of
the ABC-SMC for SDEs and ODEs, but on the method to initialize the UKF, i.e.
the aim consists in finding an alternative strategy to choose the starting values of the
algorithm.

Themethod here proposed is based on successive reinsertions of the UKF param-
eter estimates in an iterative way. When the UKF is initialized with a high o�set (in
the preceding Sections, the deviation is fixed as 400%), the final parameter estimates
do not converge to the true values (from Chapter 4, the reader knows that these
estimates are far from the true parameters) but they can be reinserted in a succes-
sive UKF computation. The idea is that the final estimates become the new starting
points for another UKF evaluation: the UKF can be computed many times, and each
calculation starts with the final estimates of the preceding UKF. This strategy may
be called “Iterative UKF”.
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If λ̂fj denotes the final estimate of the parameter vector λ at the j-th UKF com-
putation, for j = 1, . . . , J , the initial values of the next j + 1 UKF are

λsj = λ̂
f
j , (5.65)

where λsj is the starting vector.

Simulations have been carried out for J = 50. At the first iteration, j = 1, the
location of sigma points is optimized with the BO scheme. For the successive itera-
tions, j = 2, . . . , 50, the optimization is not carried out because, as already shown in
Chapter 4, it highly improves the UKF performance but does not assure the conver-
gence to the true values. Furthermore, the BO drives consistently the computation
costs if iterated for every j = 2, . . . , J .

Preliminary results of the iterative UKF are shown in Figure 5.23.

The improvement is obtained up to the 13th iteration, but after the Iterative
UKF su�ers of numerical instability and reaches a steady solution which does not
match the true values. The source of the numerical problems happen when inverting
the Kalman gain matrix. Recall from Chapter 4 that I already modified the EKF/UKF
toolbox of Hartikainen et al. (2011) used for the UKF computation with the addition
of a jitter to invert the matrices. The numerical instability of the UKF is more
pronounced for the SDE system than for theODE (due to the random perturbations),
and, after a certain point, the jitter the MATLAB functions need to add is too high
and the method crashes.

This alternative strategy to initialize the UKF for SDEs has to be extended but it
may o�er new research topics to deal with the choice of the starting values.

5.8. Discussion on SDEs

The UKF performance in the context of SDEs has been analysed. To manage the
numerical approximation of the transition function, the Euler-Maruyama method
has been inserted into the UKF steps. The Euler-Maruyama schemes within the
UKF has been shown to give accurate estimates both in the signal reconstruction
and parameter estimates. Several levels of process noise variance has been evaluated
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Figure 5.23: Preliminary simulations of the Iterative UKF. The blue lines are the true
values and the red dotted lines represent the final estimates of each UKF computation.

and the UKF results to be a powerful method for inference for the stochastic Du�-
ing system. Moreover, the proposed inference scheme is able to estimate the process
noise variance; this is a crucial step to move further to real data analysis. The com-
parison between the settings of known and unknown state noise variance shows that
the RMS and the bias are higher and grows faster for the case of unknown variance.

The mathematical di�erence and comparisons between augmented and non-
augmented UKF have been described, concluding that the augmented version is
more accurate than the non-augmented UKF. To avoid the risk related to a double
drawing of sigma points, the augmented version should be preferred.

Finally, in the comparison on an independent dataset, the Euler-Maruyamamethod
coupled with the UKF demonstrates that it may challenge other inference schemes.





6. CHANGEPOINT DETECTION METHOD

In the preceding Chapters, inference methods for the Du�ng system have been
discussed through simulation studies. Before moving to real data applications of the
inference schemes presented so far, it should be worth to consider that the oscillatory
behaviour of a time series may vary over time, e.g. the frequency or the amplitude
can di�er from one period of time to another. The change in the nature of oscillation
can be attributed to an alteration of the generative parameters of the process. This
shift can mean that two or more hidden regimes may exist behind the observed data,
and each regime is characterized by di�erent parameter values. To investigate when
the hidden process switches to one regime to another, there is the need of a method
that locates the breakpoints in the generative parameter values in the time domain.

The changepoint detection strategy developed is heuristic in the sense that it is
model-free and based on wavelets analysis. Wavelets are a tool to decompose time
series and represent a signal through a finite-length wave. The approach discussed
below consists in finding the breakpoints in the parameters of the process when there
is a change in the variance of the wavelets.

This Chapter starts with an introduction to wavelet transforms and the main
di�erence between wavelets and the Fourier analysis (in Section 6.1), and Section
6.2 mathematically defines the wavelets transform. Characteristics and di�culties of
wavelets are discussed in Section 6.3 while some classes of wavelets are mentioned in
Section 6.4. The changepoint detection strategy used in real applications is presented
in Section 6.5.

6.1. Wavelets and Fourier series

Wavelets share some similarities with the Fourier series, but there are also impor-
tant points of di�erence. The idea behind both wavelets and the Fourier transform
consists by projecting a signal into a basis space. They di�er in the bases used.

The Fourier representation projects trigonometric functions into the signal, as-
suming stationarity over the whole time series. The Fourier analysis is defined in

115
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the L2(0, 2π ) space and the decomposition of the oscillation is achieved in the fre-
quency domain. All the frequencies of data are obtained by projecting the signal
into a sequence of series like

�
e−ιsω0

	
, (6.1)

where ι is the imaginary number, ω0 is the fundamental frequency and s is the scal-
ing. There are many excellent expositions in the literature of the Fourier analysis,
e.g. Percival and Walden (2006), to which the interested reader is recommended.

Wavelets are functions defined over Besov spaces, that is a complete quasinormed
space, and constitute bases for functions defined in such spaces. Each basis function
h (·) can be expressed as

h(t) = 1
√
s
h

(
t − k

s

)
, t = 1, . . . ,T , (6.2)

where k ∈ Z is the time domain index and s ∈ N is the scale at whichh (·) is evaluated.
Equation (6.2) means that a sequence of functions is constructed in the time domain:
the functions h (·) are doubly indexed by (i) location in time k and (ii) the scale. In
other words, each function is centred at k with a dilation of s. Therefore, the main
di�erence between the bases (6.1) and (6.2) concerns the domain: the former, i.e.
the Fourier transform, is in terms of frequency, while the latter, a wavelet basis, is
scaled in the time domain.

6.2. Wavelets definition

Wavelets can be defined as a sequence of filters, or as splines satisfying certain
properties: in what follows, both definitions are provided. However, only discrete
time wavelets are considered.

6.2.1. Definition based on splines

In terms of splines, father and mother wavelets should first be defined. Father
wavelets are used to represent the very long scale smooth component of the signal
and integrate to one. They generate the scaling coe�cients and act as a low pass
filter. Instead, mother wavelets represent deviations from the smooth components
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and integrate to zero. The latter generate di�erencing coe�cients and act as a high
pass filter.

Given a function Φ(·), and restricting the scale parameter s in equation (6.2) to
the dyadic scale 2j , for j = 1, . . . , J ∈ N, the corresponding father wavelet ΦJ ,k is

ΦJ ,k = 2−
J
2Φ

(
t − 2Jk

2J

)
, (6.3)∫

Φ(t)dt = 1. (6.4)

The respective mother wavelet, Ψj,k , is

Ψj,k = 2−
j
2Ψ

(
t − 2jk

2j

)
, (6.5)∫

Ψ(t)dt = 0. (6.6)

Given the basis functions of equations (6.3) and (6.5), a sequence of coe�cients that
represent the projections of the signal into the basis can be defined. The coe�cients
for the father wavelet at 2J , i.e. the maximal scale, are called “smooth coe�cients”
and are

s J ,k =

∫
f (t)ΦJ ,kdt . (6.7)

The detail coe�cients obtained from the mother wavelet are evaluated at all scales
j = 1, . . . , J and determined as

dj,k =

∫
f (t)Ψj,kdt . (6.8)

The function f (·) in equations (6.7)-(6.8) is a wavelet basis if it is an orthonormal basis
for L2 (Z) of the form

f (t) =
K∑

k=0
s J ,kΦJ ,k(t)+

K∑
k=0

d J ,kΨJ ,k(t)+ . . .+
K∑

k=0
dj,kΨj,k(t)+ . . .+

K∑
k=0

d1,kΨ1,k(t), (6.9)

where K is an even integer representing the number of vanishing moments. The latter
indicates the degree of the polynomial generated by the scaling function. A K-th
vanishing moment of a wavelet points out that a polynomial up to degree K − 1 is
passed through the mother wavelets. When the wavelet has K vanishing moments,
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the wavelet transform can be interpreted as a multiscale di�erential operator of order
K . This yields a relation between the di�erentiability of f and its wavelet transform
decay at fine scales (Ramsey, 2002). Indeed, this is equivalent to saying that the
first K derivatives of the Fourier transform of the wavelet filter all are zero when
evaluated at 0. The projection from the mother wavelet integrates to zero and the
polynomial component is captured by the father wavelet, i.e. the scaling function
alone can be used to represent functions. In other words, if the signal contains a
polynomial component, the appropriate number of vanishing moments decomposes
the time series giving insight of the characteristics of data.

In an alternative way, equation (6.9) can be re-written as

f (t) = S J + D J + D J−1 + . . . + Dj + . . . + D1, (6.10)

where

S J =
K∑

k=0
s J ,kΦJ ,k(t), (6.11)

Dj =

K∑
k=0

dj,kΨj,k(t), j = 1, . . . , J . (6.12)

To easily visualize the above description, let us imagine a sequence of topographical
maps: S J provides a smooth outline and higher levels of detail are given by each
Dj . The multiresolution analysis (MRA) of the signal is highlighted by the complete
derivation of function f (·) in equation (6.10). Naturally, one can obtain less detailed
representations of the signal examining Sj = S J +D J + . . .+Dj+1 or only Sj = S J +Dj+1.

The maximum number of coe�cients Dj is the nearest integer less than log2(n),
where n is the sample size.
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6.2.2. Definition based on filters

Wavelets can also be defined in terms of low and high pass filters. In this case,
the functions Φ(t) and Ψ(t) are defined, respectively, as

Φ(t) = √2
K∑

k=0
l(k)Φ(2t − k), (6.13)

Ψ(t) = √2
K∑

k=0
L(k)Φ(2t − k), (6.14)

where l(k) is a linear lowpass filter and L(k) is a linear highpass filter. Analogously,
the low and high pass filters can be derived from the father and mother wavelet like:

l(k) = 1
√

2

∫
Φ(t)Φ(2t − k)dt , (6.15)

L(k) = 1
√

2

∫
Ψ(t)Φ(2t − k)dt = (−1)kl(k). (6.16)

Following the approach of wavelets definition in terms of filters, it can be seen that
the low pass filter averages, the high pass filter di�erences (Ramsey, 2002). In the
signal processing research area, the filters l and L constitute filter banks, i.e. an array
of band-pass filters that separates the signal into multiple components, where each
one carries out a single frequency sub-band of the original vibration. The relation-
ship between wavelets and filter banks is developed by many authors, as Strang and
Nguyen (1996) or Percival andWalden (2006) and references therein. Several classes
of wavelets are created by specifying particular properties for the filter banks.

6.3. Characteristics and di�culties of wavelets

Wavelets may be characterized by the symmetry or the smoothness of the basis
functions. The choice of the kind of wavelet to use depends on the weights that one
places on various criteria. Hence, a researcher may choose the class of wavelets most
suitable to represent some properties of the function.

Symmetry of the function h (·) is one criterion and it is seldom satisfied (Ramsey,
2002). Symmetry of wavelets is useful to represent signals that exhibit local symme-
tries: the Haar wavelet, discussed below, is an example of this.
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Another important property is the smoothness of a wavelet basis. The degree
of smoothness is represented by the number of continuous derivatives of the basis
function.

However, the introduction of filter banks reveals the di�culty of dealing with
boundary conditions (Percival and Walden, 2006). To solve this problem several
approaches have been proposed in the literature. One solution consists by taking
advantage of any periodicity of the data and use polynomials with some regularities
that can capture the period at the end of the observed series. Another solution in-
volves the extension of data by means of a reflection and the assumption of periodic
boundaries.

6.4. Family wavelets

The wavelets transform described in Section 6.2 is known as discrete wavelet
transform (DWT). Some classes of DWTs are presented in what follows.

6.4.1. Haar wavelets

The Haar wavelet is the simplest possible wavelet, it is smooth and often used
in the representation of Poisson processes. The technical disadvantage of the Haar
wavelet is that it is not continuous, and therefore not di�erentiable. The mother
function of the Haar wavelet is described by

Ψ(t) =



1; 0 ≤ t < 1
2

−1; 1
2 ≤ t < 1

0; otherwise.
(6.17)

The Haar wavelet has several properties:

• Any continuous real function with compact support can be approximated uni-
formly by linear combinations of father wavelets Φ(t),Φ(2t),Φ(4t), . . . ,Φ(2nt).

• Any continuous real function on [0, 1] can be approximated uniformly on [0, 1]
by linear combinations of the constant function 1, Ψ(t),Ψ(2t),Ψ(4t), . . . ,Ψ(2nt).
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• Orthogonality of the form

1(√
2
) (n+n1)

∫
Ψ (2nt − k)Ψ (2n1t − k1)dt = δn,n1δk,k1, (6.18)

where δi,j represents the Kronecker delta.

Since the Haar wavelets has length of filters equals to two, the equations (6.15) and
(6.16) are

l(k) =
{

1
√

2
,

1
√

2

}
, (6.19)

L(k) =
{

1
√

2
,−

1
√

2

}
. (6.20)

6.4.2. Daubechies wavelets

The Daubechies (DB) wavelets generalize the Haar transform and constitute a
family of orthogonal wavelets characterized by a maximal number of vanishing mo-
ments for some given support. In this class of wavelets, the father wavelet generates
an orthogonal MRA.

The DB wavelets is constructed in order to satisfy some special properties, as

• Orthogonality.

• Each wavelet is compactly supported.

• The regularity of wavelets increases linearly with the support width.

However, since the DBwavelets are not defined in terms of scaling function, a closed
form expression for these wavelets does not exist.

These wavelets are neither symmetric nor anti-symmetric around any axis. In-
deed, satisfying symmetry conditions cannot go together with all other properties
of the Daubechies wavelets. To overcome this limit, the Symlet wavelets have been
proposed as a modified version of the DB with increased symmetry.

A part from DWTs, there are other generalizations that one could examine. The
maximum overlap discrete wavelet transform (MODWT) gains a resolution of the
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signal by losing the property of orthogonality. Furthermore, The MODWT is
translation invariant and the transform can be applied to datasets whose length is not
divisible by 2J (Ramsey, 2002). In the computation of wavelets of the next Chapter,
the MODWT is used.

6.5. Changepoint detection strategy

The strategy to detect the changepoints in the generative parameters of a process
is the following. The transforms belonging to the class of wavelets presented in
Section 6.4 are computed and a MRA is performed. The choice of the wavelets
to use is made on the basis of the maximum distance between the MRA and the
data. The Shannon entropy of the MRA is also evaluated, and the quantification
of how critical is this value will be discussed in the next Chapter depending on the
dataset. Once the type of wavelet transform is decided, the number of coe�cients
of the mother wavelets is fixed by calculating the contribution of each coe�cient on
the total variance of data. Finally, the changepoints in the variance of each wavelet
coe�cient gives an insight on where the breakpoints in the generative parameter of
the process happen.

Below, the pseudo-code of this heuristic strategy is presented.

Step 1. Goal: choose the kind of wavelet and the number of vanishing mo-
ments.

1. Compute several MODWTs;

2. Carry out a MRA for each wavelet;

3. Compare wavelets by evaluating the maximum distance between the MRA
reconstruction and the original data, keeping, at the same time, the smallest
value of the Shannon entropy.

Step 2. Goal: define the level of detail of the wavelet, i.e. the number of coef-
ficients of the mother wavelet.

1. Calculate the contribution of each level Dj into the total variance of the data;
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2. Eliminate the levels with the smallest contribution.

Step 3. Goal: find the changepoints in the variance of the wavelet transform.

1. Compute the variance changepoint in each wavelet level.

The computation is performed using the MATLAB Wavelet Toolbox, based on
the fast wavelet transform (FWT).





7. REAL DATA ANALYSIS

This Chapter presents results of the estimation methods discussed in the preced-
ingChapters for real world datasets. First, wavelets analysis to detect changing points
of the parameters is performed, according with the heuristic approach of Chapter
6. Then, the time series of the U.S. business cycle and the sunspot numbers are
modelled by the Du�ng equation and the inference is carried out with the UKF for
stochastic systems, as discussed in Chapter 5.

7.1. The U.S. business cycle

This application focuses on the quarterly growth rate of real gross domestic prod-
uct (GDP) for the U.S., available for the period 1957:2 – 2017:1 (the notation 1957:2
indicates the second quarter of the year 1957). The series and its autocovariance
function are plotted in Figure 7.1.

The left panel of Figure 7.1 shows two main oscillatory behaviours. The first
one starts from 1957 to the early 1980s, where the GDP growth rates are character-
ized by sharp volatility. The dynamicity of the business cycle is described by high
frequencies associated to sharp amplitudes. Instead, the second behaviour in the os-
cillation spans from the second half of the first decade of the second millennium to
nowadays. In this period, small frequencies match a reduction of the amplitudes.

Such features may lead to think about two regimes, i.e. hidden states, behind
the data: one described by high parameter values, and the other associated to lower
values.

The period from the second half of the 1980s to the late 2000s can be considered
as a transition period between the time of high volatility to the years of low growth of
the business cycle. The transition phase highlights a gradual decline in the volatility
of the business cycle fluctuations, and in the literature it is sometimes known as the
“great moderation” (Mojon, 2007).

Observing the business cycle quarterly percentage change, a researcher could
imagine that at least three changepoints (or regimes) in the parameter values exist.

125
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The first can be economically explained by the “economic boom”, the second may
correspond to the great moderation, and, finally the contemporary period could be
interpreted according to a new economic paradigm for a system with low volatility.

(a) (b) 

Figure 7.1: (a) U.S. GDP quarter over quarter percentage change from 1957:2 to 2017:1.
Data source: Thompson Reuters Datastream. (b) Autocovariance function of the U.S. GDP
time series.

Before moving to wavelet transforms, a descriptive analysis of the changes in
the data is performed through the computation of the RMS and standard deviation
(SD) statistics. These statistics, using Gaussian log-likelihood, are search criteria to
minimize the log weighted dispersion of data according to the maximum number of
changepoints allowed. Figure 7.2 depicts the dispersion of the observations versus the
number of breakpoints. In other words, if the number of changing points is allowed
to be no more than five, the dispersion of data is the smallest by fixing breaks in the
years indicated in the boxes of Figure 7.2. When four or five changing points are
admitted, the RMS statistic detects the years 1979, 1980, 1984 and 2009, while the
SD indicates 1983, 1984, 2008 and 2009.

Even if the dispersion reaches its minimum, the first three years shown by the
RMS, and the first and last couple of years of the SD are too close together to consider
all of them as breakpoints. Rather, these points may point out that a change, that is
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a shift from one hidden regime to another, happens in terms of variability around
the half of the 1980s and in 2008-2009. The di�erence in the volatility in the years
1979-1984 or 2008-2009 can be ascribed to an adjustment period in the economic
system following the switching of regime.

The 1984:2 is the year detected in each number of breakpoints allowed, both by
the RMS and the SD. In Figure 7.3 the GDP quarterly growth rate is plotted with
changing points corresponding to 1984:2 and 2009:1.

Figure 7.2: RMS and SD statistics to detect changepoints. The years in the boxes indicate
the changepoint detected.

7.1.1. Changepoints of wavelets variance

The wavelet transforms discussed in Chapter 6 (the Haar, the DB and the Sym-
lets) are compared on the U.S. GDP data to choose the number of vanishing mo-
ments. Figure 7.4 gives a graphical representation of the comparison.

In terms of maximum distance between the MRA and the original observations,
the Symlets and the DB transforms share the same behaviour until the 4th vanishing
moment. The Haar, instead, is a straight line: this transform is smooth and thus the
MRA based on the Haar is not reliable. Let us recall from Chapter 6 that the Haar
wavelets correspond to the DB with one vanishing moment, while the Symlets is a
version of the DB with increasing symmetry. Hence, when a MRA is carried out, at
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Figure 7.3: Changepoints of the parameter values in the data detected by the RMS and SD
statistics of Figure 7.2. The blue line is the U.S. GDP quarterly growth rate, the red lines
depict the changepoints corresponding to 1984:2 and 2009:1.

the first vanishing moments, the Haar, the DB and the Symlets are equivalent (that
is the starting point in panel (b) of Figure 7.4 is the same).

With respect to the entropy curves for increasing number of vanishing moments
(left panel of Figure 7.4), the Haar wavelets are characterized by greater entropy
with increasing vanishing moments. On the contrary, the entropy growth is less
pronounced for the DB and the Symlets transforms.

Considering that (i) theHaarwavelet shows a strong growing in the entropy level
and (ii) the Symlets is based on the DB transformwith more symmetry, but the latter
is not a requirement for the business cycle data (the observations are not symmetric),
the DB wavelet with two vanishing moments may be the most appropriate choice.
This choice also finds support in a similar analysis discussed in Gallegati and Semmler
(2014).

As previously stated in Chapter 6, the maximum number of wavelet coe�cients
depends on the sample size and is the nearest integer less than log2(n), where n is the
sample size. In this case, with the U.S. business cycle dataset, the maximum number
of wavelet coe�cients, the “levels” Dj in equation (6.12), is 7. The contribution of
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(b) (a) 

Figure 7.4: Comparison between wavelets to choose the number of vanishing moments.
(a) Comparison in terms of entropy. (b) Comparison in terms of maximum distance from
the MRA and the observations.

the 7 coe�cients in the total variance is shown in Figure 7.5. Since these data are
quarterly, the first scale captures variations between the 1st and the 3rd quarters, the
second scale between the 3rd and the 6th quarters, the third scale between the 8th
and the 16th quarters and so on. The bar plot highlights that cycles between the 1st
and the 12th quarters account for the largest variability in the GDP data.

However, since the sixth and the seventh wavelet coe�cients give a small con-
tribution to the overall decomposition of the series, they are eliminated. The break-
points in the variance of the wavelets are evaluated on the DB with two existing
moments (DB2) and 5 coe�cients.

The details, or the levels, of the DB2 wavelets are plotted in Figures 7.6 - 7.7.
The black straight lines indicate the variance changepoints that happen in the year
written in the boxes. The first three levels of decomposition of the DB wavelets,
which are the ones that most account for the all variability of data, put in evidence
that breakpoints are located between 1983-1986 and, from these years, a reduction
in the variance of the oscillation appears. The last two levels, that contribute less to
the total explanation of the variance, have changing points in the 1990 (Level 4) and
1982 and 2002 (Level 5).
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Figure 7.5: Contribution to the total variability of the data of theDBwavelet with two van-
ishing moments and 7 coe�cients (the maximum number allowed) of the mother wavelets.

Figure 7.6: First three level of details of the DB2 with five coe�cients. The black straight
lines indicate the changepoints in the variance of thewavelets that happen in the years written
in the boxes. Notice that these are the coe�cients that account for the most variability of
the data.
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Figure 7.7: Last two level of details of the DB2 with five coe�cients. The black straight
lines indicate the changepoints in the variance of thewavelets that happen in the years written
in the boxes. Notice that these are the coe�cients that do not show a strong contribution in
the decomposition of the variability of the data.

7.1.2. Estimates for the business cycle

Data are modelled according to equation (5.23) of Chapter 5. The estimation
with the UKF is carried out for three periods of time, that is, following the change-
point detection strategy in Section 7.1.1, three di�erent regimes are considered. The
first spans in the period 1957-1984, the second considers 1985-2008, and the third
is 2009-2017. The choice of the first breakpoint, the 1984, is made on the basis of
the wavelet transforms heuristic method. Furthermore, in the economic literature,
some authors identify the 1984 as the starting year of the great moderation (Stock
and Watson, 2002, Kim and Nelson, 1999, Blanchard and Simon, 2001).

The parameter estimates are shown in Table 7.1, while Figure 7.8 depicts the
signal reconstruction of the UKF.

The Du�ng process is able to reproduce the volatility of the time series and the
parameter estimates give an insight on the nature of the business cycle fluctuations.
The chaoticity of the system, represented by β , abruptly shrinks over the regimes,
meaning that the underlying complexity of the system is completely changing char-
acteristic. The parameter α describes the frequency of oscillation and highlights the



132 REAL DATA ANALYSIS

decreasing in the volatility from the economic boom to the great moderation period.
However, in the third regime, the one from 2009 to nowadays, the UKF estimates
a higher value of α with respect of the preceding periods. This growth of α can be
interpreted along with the value of c. Chapter 2 has shown that the kind of stability
of the trivial fixed point depends on the relation between α and c. In particular,
when c is bigger than α , the focus is unstable, while for c ≤ α a stable solution arises.
This interpretation is supported by the evidence that from 2010 the U.S. business
cycle seems to decay toward a system with small amplitudes since it oscillates among
values in the range [−0.5, 1].

Years α β c

1957-1984 29.45 87.25 38.46
1985-2008 19.94 21.38 22.68
2009-2017 40.53 3.89 10.45

Table 7.1: Parameter estimates for the U.S. GDP modelled by the Du�ng process and
estimated with the UKF method.

7.2. Sunspots data

Sunspots are areas of cooler zones protected by magnetic fields on the surface
of the Sun. Near the sunspot, hotter areas of the Sun react with the magnetic field
outside the sunspot and create a solar flare which project x-rays or energy particles
toward the Earth’s atmosphere in the form of a geomagnetic storm. Since it is still
debated if and how the sunspots a�ects the climate on the Earth, scientists and solar
observers are collecting an enormous amount of data on solar cycles to predict the
number of sunspots per cycle.

The analysis presented in this Section aims to model the well known time series
of the yearly sunspot numbers for the period 1700 - 1988 whose source is Tong
(1990). The sunspot cycle has been analysed in many di�erent textbook on time
series analysis which can provide testbeds for the present study. However, a con-
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Figure 7.8: Signal reconstruction of the UKF for the U.S. business cycle modelled by the
Du�ng process. The RSS for the 1st, 2nd and 3rd regime is, respectively, 5.41, 4.17 and
1.12.

tinuous updating of sunspot records is o�ered by the Sunspot Index and Long-term
Solar Observations (SILSO) Centre of the Royal Observatory of Brussels, Belgium,
and the next development of the current research will consider more recent data.

The solar cycle has roughly a 11-years period with asymmetric cycles charac-
terized by rising period shorter than the descending period. The sunspot numbers
are shown in Figure 7.9: the time series is evidently non-stationary and the main
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goal for scientists is the prediction of future sunspot numbers. The SILSO centre has
implemented many techniques to predict the nature of the solar cycle and, among
the other, also a Kalman-filter based method is included; for a review of the di�erent
methods used to deal with sunspot numbers, the reader is referred to Tong (1990)
and the SILSO web page.

This preliminary analysis does not predict the future sunspot number but aims
to discuss the modelling skills of the Du�ng process.

Figure 7.9: Annual mean of sunspot numbers from 1700 to 1988. Data source: Tong
(1990).

7.2.1. Wavelets and solar cycles

Rebuilding the heuristic approach of Chapter 6 for sunspot numbers, the DB and
Symlets wavelet transforms are compared in Figure 7.10. The DB7 has the lowest
entropy value, but it shows a bigger distance from the real signal in comparison
both to the same transform with less number of vanishing moments and the Symlets
wavelets. On the contrary, since the Sym4 has the smallest distance between the
MRA reconstruction and the observations, this is the wavelet chosen to detect the
changepoints in the nature of solar cycles.

The maximum number of coe�cients of the mother wavelets allowed for the
sunspots data is 8: the contribution of these coe�cients in the total variance of data
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(a) (b) 

Figure 7.10: Sunspot data: comparison between wavelets to choose the number of vanish-
ing moments. (a) Comparison in terms of entropy. (b) Comparison in terms of maximum
distance from the MRA and the observations.

is shown in Figure 7.11. The most explanatory coe�cient is the third, while the
others account less in the total variability of the time series and lead the conclusion
that three coe�cients could be su�cient in the computation of the Symlets wavelet
transform.

Figure 7.11: Contribution to the total variance of sunspot numbers of the data of the
Symlets wavelet with four vanishing moments and 8 coe�cients (the maximum number
allowed) of the mother wavelets.
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At the end of the heuristic procedure, the changepoints of the variance ofwavelets
indicate that the breakpoints, i.e. the changes in the nature of the solar cycle, occur
in the years 1776-1777, 1791-1800, 1837-1839 and 1962 (Figure 7.12). These years
are located in the sunspot numbers time series in Figure 7.13. The period 1800-
1837 has the smallest amplitudes of the oscillation while the very antecedent and
immediately following period show some of the highest values of the whole series.

The years depicted by the red lines in Figure 7.13 are considered the change-
points in the inference presented below.

Figure 7.12: The three level of details of the Sym4with 3 coe�cients. The red straight lines
indicate the changepoints in the variance of the wavelets that happen in the years written in
the boxes.

7.2.2. Estimates for sunspot numbers

The UKF signal and parameter estimates of sunspots data modelled by the Du�-
ing system are shown in Figure 7.14 and Table 7.2, respectively. The RSS of the
filter reconstruction: (i) for the first regime (1700-1771) is 0.98, (ii) for the years
1778-1791 is 1.71, (iii) in the period 1792-1837 is 4.14, (iv) in 1838-1962 is 4.37 and
finally (v) in 1963-1988 is 0.17.
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Figure 7.13: Changepoints of the parameter values for the sunspot data. The blue line is
the mean of sunspot numbers, the red lines depict the changepoints corresponding to the
years 1777, 1791, 1837, 1962.

Years α β c

1700-1777 39.50 −0.01 0.20
1776-1791 34.70 1.06 −0.08
1792-1837 40.61 0.58 0.25
1838-1962 42.10 −0.50 −0.18
1963-1988 40.75 0.37 −0.28

Table 7.2: Parameter estimates for the sunspot data modelled by the Du�ng process and
estimated with the UKF method.

At first glance, one could immediately notice that β and c alternate between
negative and positive values. The two regimes with the shorter time span, 1778-1791
and 1963-1988, share the feature of a negative damping term, while a negative β is
estimated for the regimes with the longest time interval. In the phase space analysis,
these parameter values indicate the existence of saddles which can arise both in the
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trivial and non-trivial fixed points and may lead to bifurcations. The next steps in the
analysis of sunspot numbers will focus on estimates for phase portraits, i.e. the phase
space depicted by the estimation of the position and the velocity of theDu�ngmodel
(the variables x1t and x2t of equation (5.23) of Chapter 5). Such study of attractors
and repellors in the sunspot numbers can give an alternative point of view and may
gain more insight into the solar cycles.
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Figure 7.14: Signal reconstruction of the UKF for the sunspot numbers modelled by the
Du�ng process.





8. CONCLUSIONS AND OUTLOOK ON FUTURE RESEARCH

This Chapter summarizes the dissertation, discusses the main findings and con-
tributions, points out limitations of the current work, and finally outlines directions
for future research.

8.1. Concluding remarks

8.1.1. General framework

This dissertation deals with inference methods for a di�erential equation called
the Du�ng system, both in the deterministic and stochastic case. The thesis fo-
cuses on the Du�ng equation, a process that describes many non-linear and chaotic
phenomena but real data modelling with such system is still quite unexplored.

The UKF is the main algorithm used to conduct parameter inference and signal
reconstruction for the Du�ng equation, but also other schemes have been inves-
tigated. The UKF is a non-linear version of the Kalman filter and it is based on
the unscented transform developed by Julier and Uhlmann (2004) that fits Gaussian
approximations on a set of points, known as sigma points.

After a comprehensive review of state space models, Kalman filter and Kalman
filter non-linear extensions, the discussion concentrates on the UKF limits, with
respect to the location of sigma points and the choice of the starting values of the
algorithm. In particular, themore theUKF is initialized far from the true parameters,
the more the UKF estimates lose accuracy, i.e. the method do not converge to the
true values.

8.1.2. Contribution for ODE inference

The first part of the study concerns inference techniques for the deterministic
Du�ng equation. Once the uncertainty of the UKF estimates has been quantified
and the UKF proved its inference power in the ODE context, its limitations are
overcome in the following way.

141
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To find a sigma points placement in the marginal likelihood space that let the
UKF to result in accurate estimates, the likelihood function has to be maximized.
Due to the chaoticity of the Du�ng system, the likelihood is highly multi-modal
and the search for its maximum is made with Bayesian optimization. BO is a se-
quential model based approach that allows to face the problems of non-convexity
and multi-modality of objective functions. The strategy to optimize the sigma set
location consists by developing the BO algorithm so that it can identify the under-
lying assumptions of the model (i.e. the position of points in the space) and learn
the sigma points placement from training data. The BO method returns a sigma
set used to compute the unscented transform into the UKF steps; this approach is
validated through a simulation study. In the context of the Du�ng equation, the
performance of the EI and the UCB acquisition functions is also compared. The
results in terms of convergence to the true values of the UKF with optimized sigma
points location are quantified by the Euclidean norm in functional and parameter
space. Optimizing the sigma points in the filtering phase consistently reduces the
Euclidean distance between the final estimates and the true values and the EI is the
acquisition function that gives the best convergence.

However, even if the BO strategy consents to get more precise estimates than
the deterministic sigma points assignment, the improvement gained with the BO
decreases with a “worse” UKF initialization. To overcome the limit related to the
choice of the starting values, the class of the ABC methods is used as a prelude for
the UKF inference. The ABC approach, also called likelihood free, has been chosen
thanks to its characteristic of avoiding the computation of the likelihood function by
means of comparison between observed and simulated data. The summary statistics
for the Du�ng equation utilized into the ABC, with a SMC sampling scheme, are
defined on the grounds of the phase space analysis. The idea behind the use of the
ABC coupled with the UKF consists by sampling from the approximate posterior
distributions of the ABC-SMC scheme the starting values for the UKF. The pro-
posed algorithm is called Sequential ABC-UKF and it outperforms the default UKF
giving a massive improvement in the signal reconstruction and parameter estimates.
The parameter most a�ected by uncertainty, quantified by the flatness of the ABC
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approximate posterior distribution, is β , the coe�cient associated to the cubic term
and the source of chaos in the system.

8.1.3. Contribution for SDE inference

The second part of the research focuses on the stochastic Du�ng system.
To allow the UKF to carry out parameter inference for stochastic processes, the

prediction steps of the algorithm should include a numerical integration method as
the Euler-Maruyama scheme to find an approximate solution of the transition func-
tion. A simulation study evaluates the UKF estimates when the Euler-Maruyama
integration method is inserted within the filtering phase for several sizes of the vari-
ance of the process noise.

The UKF associated with the Euler-Maruyama is able to infer the parameters.
Contrarily to the deterministic case, in the SDE context, the most di�cult parameter
to infer is the damping term c. This is due to a characteristic of the Du�ng system
discussed in the geometric analysis at the beginning of this dissertation. In the phase
space representation, it has been shown that the damping values drives the stability
of the fixed points and that an attractor may become a repellor if a small random
perturbation a�ects the system.

A successive simulation study compares the UKF results in the case of known and
unknown state noise variance in terms of RMS error. As one would expect, when
the variance of the process noise belongs to the parameter vector the UKF has to
estimate, the RMS error is higher and grows faster than the case of knowledge of
the variance.

To treat the UKF limits with respect to the sigma points assignment and the
initialization in the context of SDEs, a di�erent approach from the one used for
ODEs is taken in order to investigate other methods.

The sigma set is computed for the augmented and non-augmented versions of
the UKF and the two methods are compared. The addition of the process noise in
the state space model, indeed, requires a double computation of the sigma points,
one for the evaluation of the transition and measurement functions, and one for the
process noise: this is what the non-augmented UKF does. The augmented UKF,
instead, adds the noise to the covariance matrix (in other words, it augments the
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size of the matrices) to avoid a repeated calculation of sigma points. A simulation
study that will be extended in the near future shows the poor performance of the
non-augmented UKF even for a small size of process noise variance.

The search of an alternative strategy to the ABC-SMC prelude to deal with the
initialization of the UKF is presented in a preliminary study. The idea behind this
other approach, called Iterative UKF, consists in successive UKF evaluations by in-
serting the final estimates of one UKF as starting points of the next UKF. Until
now, this method su�ers of numerical instability of matrices but an improvement is
achieved for the first iterations.

Finally, the UKF performance in compared on a independent dataset simulated
by a model for pharmacokinetics dynamics. The UKF estimates are compared with
a new algorithmic methodology (SAEM-ABC) developed by Picchini and Samson
(2017). This comparison proves that the UKF coupled with the Euler-Maruyama
challenges alternative approaches for inference on SDEs.

8.1.4. Real data illustrations

The final part of the thesis concentrates on real data analysis.
Many time series may show di�erent behaviours depending on the period of

time the measurements are made; e.g., an oscillation in a certain time interval can
be described by some features that are not present in another interval. In example,
an economic time series can reduce its volatility after a period of time. Di�erent
characteristics of an oscillation may be ascribed by a change in the generative pa-
rameter values of the underlying process. In such a case, one could imagine that
hidden states, or regimes, exist behind the observed data and each regime is defined
by its own parameter values.

Modelling a time series that switches to one regime to another requires to locate
the breakpoints of parameters in time by using a changepoint detection method.

The changepoint strategy developed so far is heuristic in the sense that is model
free but based on wavelet transforms. In particular, the change in the variance of the
wavelets is used as an indicator of a regime shift.

The heuristic approach to identify the breakpoints is used in real data analysis.
Once the changing points are found, the Du�ng process is used for modelling two
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well-known time series, the U.S. GDP and the sunspot numbers data, that have
been extensively analysed in the literature and that could provide a benchmark for
the proposed model. The Du�ng equation is able to reconstruct the oscillation and
states its competitiveness as a new alternative approach for modelling non-linear
dynamical systems.

8.2. Future work

While this study has demonstrated the potentiality of the Du�ng process and the
UKF as inference method for ODEs and SDEs, many opportunities for extending
the scope of this dissertation remain. This Section presents some of these directions.

8.2.1. Simulation extensions

More simulations will be carried out to further discuss some topics which have
not been fully developed in the thesis. In particular, the following points are the near
future steps.

Geometric analysis of UKF estimates. The UKF convergence of estimates will
be evaluated in terms of stability of the fixed points by analysing if the estimated
position and velocity give back the same phase portrait of the simulated data.

Comprehensive comparison between augmented and non-augmented UKF.
In the context of SDEs, the comparison between augmented and non-augmented
UKF needs to be carried out in a more extensive manner by evaluating the results
for many di�erent values of the process noise variance.

Alternative strategy of initialization. An alternative strategy to initialize the
UKF can be developed with the use of gradient matching techniques, which are ap-
proximate methods that have recently gained much attention in the literature (see
e.g. Dondelinger et al., 2013 and Niu et al., 2016). The gradient matching scheme
aims to minimize the discrepancy between the slope of a data interpolant and the
derivatives predicted from the di�erential equations by using a surrogate cost func-
tion with Gaussian processes. Such a study will not only give an alternative method
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to find the starting values of the UKF but will also provide a comparison with the
ABC approach.

Critical issues on the choice of wavelets. For a more comprehensive validation
of the heuristic changepoint approach based on wavelets, more simulations are nec-
essary in order to quantify how the type of wavelets a�ects (i) the changepoints in
the variance of wavelets and (ii) the detection of breakpoints location in time of the
generative parameters of the process.

8.2.2. Model based changepoint detection method

A model-based approach to detect the changepoints in real time series will sub-
stitute the heuristic approach to gain more robust estimates.

Adams and MacKay (2007) have proposed a Bayesian online changepoint de-
tection strategy and more recently the study of Mavrogonatou and Vyshemirsky
(2016) extends this method by substituting the conjugate prior requirement with a
sequential importance sampling scheme.

The next step will aim to use a changepoint model based on the Du�ng equa-
tion. In other words, the Du�ng SDE will be used to model data and the tech-
nique proposed by Mavrogonatou and Vyshemirsky (2016) will be the method to
infer the chagepoints. In this way, when the Du�ng system models real datasets,
the researcher will be able to infer the SDE parameters along with the detection of
changepoints.

With a model based inquiry of breakpoints in the parameter values, the real data
analysis will be extended and will include comparisons with the already existing
literature.
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