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Abstract 

STRUCTURAL HEALTH MONITORING AND DAMAGE IDENTIFICATION 

USING MODAL FLEXIBILITY-BASED APPROACHES  

FROM OUTPUT-ONLY VIBRATION DATA 

Giacomo Bernagozzi 

 

An area of research in civil engineering that has received increasing attention in recent 

years concerns the application of vibration-based health monitoring and damage detection 

techniques on structures under ambient vibrations. The dissertation presents research 

investigations that were carried out in this field, by focusing mainly on building structures 

and on techniques that belong to a subclass of the modal flexibility (MF)-based 

methodologies for damage detection. According to these techniques, modal flexibility-

based models of structures are estimated from vibration tests, and then, by applying 

inspection loads to such models, structural deflections are determined and used for 

detecting damage. Three main problems are addressed in the thesis. 1) In modal testing 

and identification of real-life structures not all the modes can be usually identified. MF-

based deflections are thus estimated using incomplete modal models, leading to 

truncation effects. To address this problem, approaches are proposed to predict and reduce 

the truncation effects on MF-based deflections of building structures. 2) In the literature 

the damage detection methods based on MF-based deflections have been mainly 

developed for building structures that can be modeled as plane structures. In an attempt 

to extend these existing methodologies to more complex structures, research 

investigations were carried out on simple rectangular “box type” 3D building structures 

characterized by either plan-symmetric or plan-asymmetric configurations. 3) Modal 

flexibility can be only determined when mass-normalized mode shapes are available. 

However, such scaled mode shapes can not be directly estimated from output-only data. 

To address this problem, a MF-based approach for damage detection in building 

structures that can be applied directly on output-only data with minimal or no a-priori 

information on the masses is proposed. For all three analyzed problems, numerical 

simulations and experimental output-only vibration tests conducted on frame building 

structures were used to demonstrate the effectiveness of the proposed approaches. 
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Chapter 1  

Introduction 

 

 

 

 

This dissertation was developed in the field of Structural Health Monitoring (SHM). 

One of the most comprehensive definitions of the subject was provided in the editorial 

letter that opened the first volume of the international journal Structural Health 

Monitoring. According to the letter this definition is as follows: “Structural Health 

Monitoring (SHM) is the continuous or regular monitoring of the condition of a 

structure or system using built-in or autonomous sensory systems, and any resultant 

intervention to preserve structural integrity” [Chang, Prosser & Schulz, 2002].  

Structural Health Monitoring is a multidisciplinary field where both 

technological and scientific disciplines are involved. As evident in the above-

mentioned definition, any SHM strategy is based on the use of a system of sensors 

that is able to measure and collect experimental data on the structure. The recorded 

data are then analyzed to extract meaningful information about the structural systems 

that can be used to monitor and evaluate the condition of the structure over time. Over 

the last few decades the technologies and the techniques of SHM have been 

investigated and applied on different types of structural systems, including civil, 

mechanical, and aerospace structures.  

One of the main goals that can be pursued using a SHM strategy is to detect 

damage in structural systems. As reported in [Farrar & Worden, 2013], “damage can 

be defined as changes introduced into a system, either intentionally or unintentionally, 

that adversely affect the current or future performance of that system”. In addition to 
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the definition of damage, another definition is introduced herein to describe the 

general process of damage detection. As also reported in [Farrar & Worden, 2013], 

“failure occurs when the damage progresses to a point where the system can no longer 

perform its intended function”. The main objective of the damage detection techniques 

in SHM is thus to detect damage in structures at the earliest possible stages, so that 

adequate actions and interventions can be adopted to prevent the failure of the 

structural system.  

As evident from the definition of SHM reported in [Chang, Prosser & Schulz, 

2002], the SHM process includes not only the phases related to the data acquisition 

and the data analysis. An important part of the SHM process is related to the actions 

that are undertaken (on the basis of information/feedback obtained through the 

monitoring process) to preserve the health of the structure and to guarantee the safety 

of the structure during its whole life. Such interventions can be, for example, retrofit 

interventions to be adopted when the structure has experienced a relevant damage, or 

minor interventions to be executed on a regular basis (i.e. structural maintenance). It 

is clear that, in general, an SHM process can provide important information that can 

be used to support the decision-making about the interventions and to plan 

maintenance programs. These aspects can be though as a second general objective that 

can be pursued with the SHM strategies. The integration of the SHM strategies in the 

operation of planning maintenance programs is the main idea behind the so-called 

condition-based maintenance. When adopting such approach, two main advantages 

should be obtained using information obtained from the monitoring system: the costs 

of the intervention should be minimized, and the efficacy of the interventions should 

be maximized.  

There are several other objectives that can be pursued using SHM strategies. 

Among them, a third objective has to be mentioned. The techniques and the tools used 

in SHM can be also used to verify if the structural system has been constructed as 

designed. First of all, by adopting this strategy some actions can be undertaken in the 

cases in which discrepancies are present between the structure that was designed and 

the structure that was constructed. Secondly, this operation of comparing the 

constructed structure against the structure that was designed can lead to the definition 

of a realistic and refined model of the structure. This model might also be very useful 
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for the SHM purposes that have been already mentioned in the previous paragraphs 

(e.g. damage detection).  

Among the different objectives that can be pursued using SHM strategies, 

damage detection is the one that has received (and is currently receiving) most of the 

attention of researchers. This objective of SHM is also the one that is mainly addressed 

in the present dissertation. Before going further, it is also important to underline that 

the types of structures that are considered in the present thesis are civil structures.  

An important application of the SHM strategies in civil structures is related, 

for example, to the investigation and the verification of the condition of the structure 

after an extreme event, such as an earthquake. After this event some of the questions 

that usually arise are the following: is there damage in the structure? Is the structure 

safe and it can be reoccupied? As reported in [Farrar & Worden, 2013], there are 

currently no quantifiable and experimental-based methods that can provide a rapid 

response to such questions after a major earthquake has occurred. In this context, as 

also reported in [Farrar & Worden, 2013], it is expected that in the near future SHM 

strategies could play a fundamental role and could be used as a tool to integrate the 

current post-earthquake damage evaluation procedures based on visual inspection.  

For a general structural system and in addition to visual inspection, one way 

of detecting damage is to use Non-Destructive Evaluation (NDE) techniques based on 

the execution of localized experiments on the structures [Doebling et al., 1996; Farrar 

& Worden, 2013]. Such localized investigations can be performed on the structure by 

adopting, for example, the following technologies: ultrasonic testing, acoustic 

emission, magnetic field inspections, thermography, radiography, etc. However, 

referring to civil structures (especially large-scale structures), performing such 

localized experiments for NDE on the whole structures can be very time-consuming 

operations, which might also be associated to prohibitive costs. 

For the above-mentioned reasons, the need of having techniques that can be 

used to perform, according to the expressions adopted in [Farrar & Worden, 2013], a 

“quantitative”, “global”, and fast damage detection on the whole structures has 

emerged in recent years. To attain this objective many researches have been carried 

out (and are currently on going) to try to detect damage in structures by the analysis 
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of the vibration responses and the vibration characteristics of the structures. In the 

field of structural health monitoring, the methods and the techniques that adopt this 

strategy are indicated as vibration-based approaches for damage detection. Such 

approaches are the focus of the present dissertation.   

The techniques for vibration-based damage detection are valuable tools that 

can complement the traditional procedures based on visual inspection. Such 

techniques can be very useful, for example, in the following cases: 1) the case in which 

the damage may not be evident and observable using visual inspection (for example, 

if the damage is hidden inside the structure); 2) the case in which not all the parts of 

the structure are easily accessible. In general, as will be discussed later in this chapter, 

the vibration-based techniques can be used not only to detect the existence of the 

damage, but also to have an idea of the region of the structure that has experienced 

damage (this operation is usually referred to as damage localization). Obtaining such 

information on the location of the damage is an extremely useful achievement that can 

be used to perform in such damaged regions of the structure more refined analyses 

based, for example, on localized experiments of non-destructive evaluation.  

 

1.1 Vibration-based damage detection 

In vibration-based approaches for SHM and damage detection, the types of data that 

have to be monitored and recorded are vibration responses of the structures. The 

fundamental idea behind these approaches is that damage can induce modifications in 

the dynamic and mechanical characteristics of the structure. For example, a structure 

can experience a local reduction in the stiffness due to some unexpected loading 

conditions, and this modification (i.e. damage) might alter the vibration responses of 

the structure. All the vibration-based damage detection techniques thus aim to extract 

information on the dynamic and mechanical properties of the structures from the 

vibration measurements, and they also aim to detect eventual changes in such 

properties that can be associated to the presence of damage in the structure.  

Referring to civil structures (such as bridge or building structures) that are 

tested in-situ, obtaining measurements of the vibration responses of such structures is 

an operation that can be performed using sensors, such as accelerometric sensors 
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(piezoelectric or force-balance accelerometers). Referring to the type of excitations, 

it is in general convenient to measure the vibration responses of the structures 

associated with ambient inputs. In such case the structures are excited by natural 

excitations such as wind loads, traffic loads, or microtremors. In this kind of testing, 

as reported in [Brincker & Ventura, 2015], the measurements can be taken during the 

normal operating conditions of the structures without interrupting their functionality 

during the testing phases. It is evident that this type of vibration testing is an extremely 

convenient approach in the context of a vibration-based damage detection and SHM 

strategy. In fact, a monitoring system can be permanently installed on the structure, 

and then ambient vibration measurements can be recorded (for example, at regular 

intervals of time or continuously).  

As reported in [Farrar & Worden, 2013], it is implicit that in any damage 

detection strategy at least two different states of the structures have to be compared: 

one of the two states is assumed as the healthy or undamaged state (which is also 

indicated as baseline state or baseline condition); the other state is the state considered 

in the inspection stage, and it is the one that is potentially damaged. In general, if the 

results of the damage detection process show that the structural state in the inspection 

phase is similar to the baseline state, then the state related to the inspection phase is 

classified as healthy; otherwise, if any modifications that can be associated to the 

presence of damage are detected, then the state related to the inspection phase is 

classified as damaged.  

Due to the nature of the damage detection problem and as explained in the 

work by [Farrar & Worden, 2013], the process of damage detection can be seen as a 

pattern recognition problem. In fact, the problem described in previous paragraph can 

be seen as one of the simplest pattern recognition problems - i.e. performing a binary 

decision and classifying the system in the inspection phase as healthy or damaged. On 

the basis of this recently developed paradigm in SHM [Farrar & Worden, 2013], 

several techniques in vibration-based damage detection were borrowed from the field 

of statistical pattern recognition implemented with machine learning algorithms. This 

discipline is a well-established and mature discipline and, as reported in [Farrar & 

Worden, 2013], it has the main objective of associating generic data set with different 

and possible options of labels. This basically means that the approach aims at 
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classifying the data set. According to a generic machine learning process, at first the 

algorithm learns information about the system starting from an initial data set (which 

is called the training data set); then, data sets acquired in a later stage (which are called 

testing data sets) are analyzed and classified on the basis of the trained model and on 

the basis of information learned by the algorithm in the first phase.   

If one interprets the phase of data acquisition in a vibration-based damage 

detection strategy under the paradigm of the machine learning approaches, two 

different situations can be considered. In the first situation, the training data set can 

be composed by vibration data that is related both to the undamaged and to the 

damaged structures, and the association between the data and the two possible states 

is known. This situation is indicated in the context of machine learning as supervised 

learning mode [Farrar & Worden, 2013]. In the second situation, the training data set 

is composed by vibration data that is only related to the structure that is undamaged. 

This situation is indicated in the context of machine learning as unsupervised learning 

mode [Farrar & Worden, 2013]. 

As reported in [Farrar & Worden, 2013], unsupervised approaches in SHM are 

more convenient than supervised approaches. In fact, for the second approaches (i.e. 

the supervised approaches) data related to the damaged structure are needed to form 

the training data set. Such data might be available when the SHM strategies are applied 

to mechanical structures. For example, for a generic type of machine that is produced 

in series, historical data of previous failures that happened in one component of the 

machine may be available. On the contrary, when the monitoring process is applied 

on existing civil structures, it is in general not possible to have vibration data that are 

related to a damaged state at the beginning of the monitoring phase. Of course, one 

can not artificially induce damage in the structure to obtain such kind of data.  

Vibration-based damage detection strategies that, according to the 

interpretation of the process in the framework of machine learning, are developed 

using an unsupervised approach are the strategies that are considered in the present 

thesis. On one side, in fact, as reported in [Farrar & Worden, 2013], unsupervised 

approaches should be always considered for damage detection purposes whenever 
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possible; on the other side, these approaches are in general the only option that can be 

selected for civil structures.  

An overview of a generic vibration-based damage detection process based on 

the paradigm of the “unsupervised approaches” is reported in the flow chart presented 

in Fig. 1.1. This process is mainly composed of three parts: data acquisition, feature 

extraction, and feature discrimination.  

 

 

Figure 1.1. Overview of a generic vibration-based damage detection process. 

 

Referring to the process of data acquisition (i.e. the first part of the flow chart), 

vibration data of the structure are acquired at first in the state of the structure that is 

assumed as healthy (baseline state). These data are used to form the training data set. 

In a later stage during the inspection phase, new vibration data are acquired, and these 

data form the testing data set.  

The second part of the flow chart is defined as feature extraction, and it is 

related to the process of extracting the so-called damage sensitive features. According 

to the definition provided in [Farrar & Worden, 2013], “a damage sensitive feature 

(DSF) is some quantity extracted from the measured system response data that 

indicates the presence (or not) of damage in a structure”.   

The third part of the flow chart is defined as feature discrimination. This part 

is related to the process of comparing the DSFs obtained from the training data set 
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(baseline state) with the DSFs obtained from the testing data set. This part of the 

process has the objective of classifying the structure considered in the inspection stage 

as healthy or damaged. The comparison between the damage sensitive features related 

to the two different states is usually performed by defining a metric. As stated in 

[Farrar & Worden, 2013], a metric is a quantity that is able to measure the similarity 

or the difference between the DSFs. In practical applications, it is usually of interest 

to define metrics that are able to measure the departure of the DSFs in the possibly 

damaged state from the DSFs related to the baseline state.  

According to [Farrar & Worden, 2013], in the context of the unsupervised 

approaches for vibration-based damage detection, an important class of methods for 

feature discrimination are the methods that belong to the field of outlier analysis 

[Barnett & Lewis, 1994], as indicated in the statistics community. This field is also 

known as novelty or anomaly detection in the context of the machine learning 

community. The simplest way of adopting these techniques, which also give in general 

an indication of how these techniques work, is to construct a statistical model of the 

system using the data that is related to the baseline structure. Then, the features 

extracted from the testing data set are compared with respect to the above-mentioned 

statistical model, and any deviation, in a statistical sense, from the original model is 

considered as a structural modification that can be associated to the presence of 

damage.  

Detecting the existence of damage is not the sole achievement that can be 

obtained using a vibration-based damage detection strategy. The different 

achievement levels that can be obtained from the process were defined in the work by 

[Rytter, 1993], and subsequently revisited in the work by [Farrar & Worden, 2013]. 

These achievement levels were classified, as reported in Fig. 1.2, into five different 

levels. According to the first level the damage detection method gives an indication 

of the existence of damage in the structure. In the second level, the method gives 

information about the approximate and probable location of the damage on the 

structure. According to the third level the damage can be classified (i.e. the type of 

the damage can be determined). In the fourth level, the method can provide an estimate 

of the amount of damage that is present in the structure (i.e. damage quantification). 

Finally, the fifth level is related to the estimation of the residual life of the structure. 
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Figure 1.2. Achievement levels in damage assessment  

(defined in [Farrar & Worden, 2013]). 

 

As highlighted by [Farrar & Worden, 2013], an important aspect that has to be 

considered in the applications of vibration-based damage detection on real-life 

structures, especially civil structures, is that, during the monitoring phase, these 

structures can experience changing operational and environmental conditions. 

Referring to the latter, among the different variables that can be associated to changing 

environmental conditions, temperature is probably the one that is more relevant. 

Referring to the former, changing operational conditions can be associated to 

variations of the masses in the structure (that, for example, are due to the variations 

of the payloads). Changing operational and environmental conditions might affect in 

general the vibration responses of the structures, and it is thus important that such 

changes introduced into the system are not considered as modifications that are due 

to damage.  
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To conclude this section, it is important to underline that some axioms have been 

introduced in recent years in the field of Structural Health Monitoring (SHM). These 

fundamental axioms represent an important contribution for the definition of the 

subject, and they were presented in the works by [Worden et al., 2007; Farrar & 

Worden, 2013]. These axioms are as follows: 

Axiom I: “All materials have inherent flaws or defects”. 

Axiom II: “The assessment of damage requires a comparison between two system 

states”. 

Axiom III: “Identifying the existence and location of damage can be done in an 

unsupervised learning mode, but identifying the type of damage 

present and the damage severity can generally only be done in a 

supervised learning mode”. 

Axiom IVa: “Sensors cannot measure damage. Feature extraction through signal 

processing and statistical classification is necessary to convert 

sensor data into damage information”. 

Axiom IVb: “Without intelligent feature extraction, the more sensitive a 

measurement is to damage, the more sensitive it is to changing 

operational and environmental conditions”. 

Axiom V: “The length- and time-scales associated with damage initiation and 

evolution dictate the required properties of the SHM sensing 

system”. 

Axiom VI: “There is a trade-off between the sensitivity to damage of an algorithm 

and its noise rejection capability”. 

Axiom VII: “The size of damage that can be detected from changes in system 

dynamics is inversely proportional to the frequency range of 

excitation”. 

The methods for damage detection that are considered in the present dissertation will 

be analyzed and interpreted under the general framework for vibration-based SHM 

and damage detection that is based on these axioms. 
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1.2 An overview of the vibration-based damage detection techniques 

available in the literature 

As already mentioned in previous sections, the field related to the vibration-based 

structural health monitoring techniques applied for damage detection purposes is an 

extremely multidisciplinary field. In this context a large number of techniques can be 

applied, and in general several of such techniques were originally formulated in fields 

different from the field of SHM. For this reason, it is difficult to have a unique and 

exhaustive classification of all the techniques that can be employed in vibration-based 

damage detection. Moreover, the different techniques in general are related to one of 

the different phases of the damage detection process (e.g. extraction of the damage 

sensitive features, discrimination of such features etc.). The different techniques that 

are applied in the mentioned different phases can thus be combined together, and this 

leads to an exponential increase in the number of the different approaches that can be 

adopted.  

In the literature the vibration-based damage detection methods are in general 

classified depending on the quantities and the types of information that are extracted 

from the vibration data and considered as damage sensitive features (i.e. the second 

phase of the damage detection process, as reported in Fig. 1.1). It is worth noting that 

this phase of the process is also the one that in general has received (and it is currently 

receiving) most of the attention of the research carried out in this field [Farrar & 

Worden, 2013]. According to the work by [Farrar & Worden, 2013], where the 

techniques are classified as a function of the damage sensitive features, such 

techniques can be grouped into different classes. Examples of such classes are the 

following, and each class includes methods that are:  

1) based on signal statistics or features obtained using signal processing 

techniques 

2) based on modal properties and features derived from modal properties 

3) based on Finite Element Model (FEM) updating  

4) based on time series models 

5) other methods. 
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Another distinction can be made between the different techniques: it is possible to 

make a distinction between the non-model-based approaches and the model-based 

approaches [Alvin et al., 2003]. Methods that belong to the first type (i.e. the non-

model-based approaches) determine and detect eventual changes and structural 

modifications using directly the vibration response signals of the structure [Alvin et 

al., 2003]. Approaches that belong to the second type (i.e. the model-based 

approaches, which are also indicated in the literature as inverse modelling approaches 

[Farrar & Worden, 2013]) are based on the determination of a physics-based model of 

the structure starting from the measured vibration data [Alvin et al., 2003; Farrar & 

Worden, 2013]. 

The methods that are based on the calculation of statistical properties of the 

structural response signals or on the extraction through signal processing techniques 

of the damage sensitive features (i.e. first class of methods reported in the above 

mentioned bulleted list) belong to the non-model-based approaches. On the contrary, 

the methods based on the identification of the dynamic properties of the structures 

(which are usually defined in terms of the modal parameters, i.e. natural frequencies, 

modal damping ratios, and mode shapes) or on the use of model updating approaches 

to define an accurate finite element model of the structure (i.e. second and third classes 

of methods) belong to the model-based approaches. Finally, the methods based on 

time series models, which are individuated as the fourth class of methods and which 

are based on the estimation of the coefficients of autoregressive models from the 

measured time series, can also be classified as model-based techniques. However, as 

discussed in [Farrar & Worden, 2013], one drawback of such techniques is that it is 

difficult to assign a physical meaning to the above-mentioned coefficients and to the 

changes detected using such approaches.  

The general approach taken in this thesis is to consider damage detection 

techniques that are model-based and specifically physics-based techniques. In 

particular, as shown later in this section and in next section, the thesis focuses on 

techniques that are based on the extraction of the modal properties of the structures 

from vibration data and on the use of features derived from such modal properties to 

perform the damage detection. To adopt this model-based approach for damage 

detection, the techniques of the structural identification [Juang, 1994; Alvin et al., 
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2003], and specifically of the modal identification [Ewins, 2000; Brincker & Ventura, 

2015] are thus considered as part of the damage detection process. 

Structural identification, according to the definition proposed in [ASCE, 

2013], is “the process of creating and updating a physics-based model of a structure 

based on its dynamic measured response which will be used for assessment of 

structure’s health and performance”. It is evident from this definition that the main 

goal of structural identification is to obtain a physics-based model of the structure. In 

general, the process is carried out by identifying this model of the structure starting 

from the measurements of input and output vibration data (i.e. from the measurements 

of the inputs that excite the structure and from the responses of the structure to such 

excitations). In particular, the basic principle behind all the identification techniques 

is that the model of the structure identified from the data has to minimize the 

difference between the responses predicted by that model and the experimental 

vibration data. This basic principle is clearly evident in a second definition of 

structural identification that was formulated in the work by [Doebling et al., 2000] 

and that is presented herein: structural identification can be defined as "the parametric 

correlation of structural response characteristics predicted by a mathematical model 

with analogous quantities derived from experimental measurement” . It is worth 

noting that most of the approaches that are adopted in structural identification, 

especially the ones that work in time domain, belong to the more general field of 

system identification [Ljung, 1987; Soderstrom & Stoica, 2001; Guidorzi, 2003]. 

Structural identification can thus be considered as the application of the system 

identification to dynamic systems that are structural systems.  

Several structural identification methods were specifically formulated and 

developed with the objective of determining the dynamic modal properties of the 

structures (i.e. the modal parameters defined in terms of natural frequencies, modal 

damping ratios, and mode shapes). Such specific structural identification techniques 

are thus indicated as modal identification techniques. At this point it is important to 

underline one crucial aspect that is related to civil structures tested under ambient 

vibrations, for example, in the context of a vibration-based monitoring strategy. It is 

in general not possible to have reliable measurements of the natural inputs (e.g. wind 

loads, traffic loads, microtremors etc.) that excite the structure. In ambient vibration 
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tests it is possible in general to record only the structural responses of the structure.  

For this reason, one of the major issues that the modal identification techniques have 

to address when applied in such case is the fact that the calculations have to be 

performed starting from the structural vibration responses only and without the 

knowledge of the input excitations. This particular type of modal identification is thus 

indicated in the literature as output-only modal identification. In the last decades 

several research efforts have been dedicated to solving the output-only identification 

problem, and, nowadays, there exist robust techniques and algorithms that can be 

applied to estimate the modal parameters of a structure from output-only vibration 

data. It is worth noting that output-only modal identification (as well as structural 

identification) refers in general to the phase of processing the vibration data through 

adequate algorithms and techniques. This processing phase is only one phase of the 

different phases that are needed in the more general process of testing structures under 

ambient vibrations (which is the process that starts from the planning and the 

execution of the vibration test and ends with the determination of the dynamic 

properties of the structure). This way of testing structures has emerged in recent years 

as a mature discipline and engineering field, and it is indicated as Operational Modal 

Analysis (OMA) [Brincker & Ventura, 2015].  

In the modal-based approaches for damage detection, the modal parameters 

extracted from the data (or other features derived from the modal parameters) are 

considered as damage sensitive features and used to detect eventual structural 

modifications that can be associated to a damaged state. The fundamental principle 

behind the use of such approaches for damage detection, is that damage in structures 

can lead to modifications in the mechanical and energy dissipation characteristics of 

the structures [Farrar & Worden, 2013], and thus, the vibration responses of the 

structures and the related modal parameters are in general affected by such structural 

modifications. It is worth noting that modal parameters extracted from vibration data 

can also be used to update a finite element model (FEM) of the structure. This 

procedure is usually performed using optimization techniques able to minimize a cost 

function that evaluates the discrepancies between the parameters related to the 

analytical model and the analogous quantities estimated from the data. As already 
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mentioned in this section, such approaches can also be used for damage detection 

purposes.  

  

1.2.1 Modal-based and modal flexibility-based techniques for damage detection: 

a brief literature review 

A brief literature review of the main techniques and damage sensitive features that 

can be considered in modal-based damage detection is presented in this section. 

Advantages and disadvantages of the different approaches are discussed, and the 

methods that represent the focus of the present dissertation are introduced.  For an 

extensive and more comprehensive literature review of all the modal-based 

approaches in damage detection and of other methods that belong to classes different 

from the class of the modal-based approaches, the reader is referred to the literature 

reviews presented in the works by [Doebling et al., 1996; Sohn et al., 2003; Farrar & 

Worden, 2013] and to the comparative studies done by [Fan & Qiao, 2011; Sabatino 

& Ervin, 2015].  

In the first approaches that were developed for modal-based damage detection the 

basic modal properties of the structures (e.g. natural frequencies and mode shapes) were 

considered as damage sensitive features, and different criteria were investigated to 

quantify the differences on such quantities. If one assumes that damage can induce a 

reduction in the local stiffness of some parts of the structure, it is clear that eventual 

structural modifications induced by the damage can be detected by analyzing the shifts in 

the natural frequencies of the structure. Many researches have been carried out by 

applying this criterion and, as reported in [Farrar & Worden, 2013], one of the earliest 

applications of this approach was found in the work by [Cawley & Adams, 1979], 

where the frequency shifts were used to detect damage in composite materials . It is 

evident that this criterion, where a single scalar for each structural mode (i.e. the 

natural frequency) is considered as a damage indicator, can not be used in general to 

obtain an achievement level in damage assessment higher that the mere detection of 

the existence of damage [Farrar & Worden, 2013].  
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To overcome the above-mentioned limitation of the method based on natural 

frequencies, later approaches started to consider mode shapes as damage sensitive 

features. Mode shape vectors, in fact, are quantities that are defined with reference to 

the geometry of the structure, and thus they can be used theoretically for damage 

localization. Again, if one assumes that damage is associated to a local reduction in the 

structural stiffness, then the analysis of the changes in the components of the mode shape 

vectors can provide information about the localization of such damage (this approach is 

the so-called change-in-mode-shapes method). In addition to this criterion based on the 

evaluation of the changes in mode shapes components, other criteria were defined and 

investigated in an attempt to find more systematic ways for comparing the mode shape 

vectors.  

The Modal Assurance Criterion (MAC), for example, is a criterion that was 

formulated to evaluate the degree of correlation between mode shape vectors 

[Allemang & Brown, 1982]. Just after its definition, this criterion became very 

popular in modal identification and modal testing. Several applications, in fact, can 

be found in the literature were this criterion is used to compare analytical and 

experimental modal vectors for purposes of model validation and modal updating 

[Ewins, 2000]. In addition, the criterion was used in the context of vibration-based 

damage detection to compare mode shape vectors of the undamaged structure with the 

corresponding ones of the possibly damaged structure. As reported in [Farrar & 

Worden, 2013], one of the earliest applications of this damage detection approach was 

found in the work by [West, 1984], where damage in the body flap of a shuttle space 

orbiter was detected. It is worth noting, however, that since the Modal Assurance 

Criterion evaluates the degree of correlation between modal vectors, spatial 

information present in such vectors is compressed to a single scalar. Again, as already 

observed for the change-in-natural-frequency method, the MAC can be used in general 

only to detect the existence of damage in a structure (first achievement level according 

to [Rytter, 1993]).  

For the above-mentioned reason, other approaches were investigated and 

proposed in the literature to localize damage in structures using mode shapes vectors. 

For example, [Lieven and Ewins, 1988] proposed a modified version of the Modal 

Assurance Criterion (MAC) that is defined as Coordinate Modal Assurance Criterion 
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(CoMAC). In such modified version of the MAC, the degree of correlation is not 

evaluated between vectors that are mode shape vectors related to a single structural 

mode (as done in the MAC). In the CoMAC criterion the degree of correlation is 

evaluated between vectors that are composed by the components of the different mode 

shapes related to the same spatial location. Another approach was presented in the 

work by [Yuen, 1985], and this approach is based on the evaluation of the so-called 

Yuen function, which combines both mode shape vectors and natural frequencies. 

This function, in fact, evaluates the coordinate-by-coordinate difference between the 

modal vectors in the possibly damaged and undamaged states, but before performing 

such operation (which is very similar to the one adopted in the basic change-in-mode 

shape method) each modal vector is scalarly divided by the corresponding natural 

frequency. 

All the methods discussed so far (i.e. the methods that consider the basic modal 

properties as damage sensitive features) are affected by a general limitation. In fact, 

as observed in [Farrar & Worden, 2013], the low frequency modes of the structures 

(i.e. the first modes which are the modes that can be more easily identified in a 

vibration test) are quite insensitive to local damage in structures. For this reason, 

research efforts were spent to find features derived from basic modal properties that 

are more sensitive to local damage in structures. To reach such objective, more 

complex modal-based methods were developed. Example of such more complex 

methods, which are described in the following, are the ones based on the evaluation 

of the mode shape curvature, the modal strain energy, and the modal flexibility.  

The methods based on the evaluation of the mode shape curvature and the 

modal strain energy were both developed for structures that are mainly characterized 

by a flexural/bending behavior. The first approach was developed by [Pandey et al, 

1991], and, according to this method, the damage localization is performed by 

evaluating eventual variations in the second derivative (i.e. the curvature) of the mode 

shape profiles. This method is based on the premise that the curvature of mode shape 

profiles is more sensitive to damage than the displacement components of the mode 

shapes. In fact, the curvature of the displacement profile of a beam-like structure is 

proportional to the inverse of the flexural stiffness. Thus, in general , a reduction in 

the flexural stiffness of that structure lead to an increase in the curvature of the 
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displacement profile. The second approach (i.e. the one based on the evaluation of the 

modal strain energy) was presented and verified in the works by [Stubbs et al., 1992; 

Stubbs et al., 1995]. This method is based on the premise that when a structure 

experiences a damage (such as a local stiffness reduction), the distribution of the strain 

energy in the damaged state is altered with respect to the distribution of the strain 

energy in the undamaged state. According to the method, the modal strain energy is 

defined as the strain energy that is present in a structure when it deforms with the 

profile of one of the mode shapes. The damage localization is thus performed by the 

analysis of the variation of the modal strain energy in different regions of the structure.  

Most of the features and metrics presented so far use the individual modal 

parameters of a single structural mode to perform the damage detection. If one again 

interprets damage as a local reduction in the stiffness of the structure, this means that 

information related to damage (which in such case is a mechanical quantity) is 

decomposed into different contributions that are related to the different structural 

modes. Referring to this point it is important to underline that in general the identified 

modal parameters, in terms of natural frequencies and mode shapes, can be also used 

to obtain an estimate of the mechanical parameters of the structures, for example, the 

stiffness (or flexibility) coefficients of the different parts of the structure. This 

operation can be performed in modal identification if mass-normalized mode shapes 

of the structures are available, and it is based on the principle of cumulating the 

contribution of the different structural modes to estimate the stiffness (or flexibility) 

matrices of the structures. 

It is important to underline that in modal testing and identification of 

structures, and especially considering civil structures, not all the structural modes can 

be identified. Generally, only the first lower structural modes are identified. This 

means that modal information extracted from the test is in general incomplete, and 

thus the estimates of the stiffness (or flexibility) matrices of the structure derived from 

the test are approximated with respect to the corresponding true matrices. Several 

researches were carried out in the literature to solve the above-mentioned inverse 

problem on real structures. As already mentioned, the operation can be performed in 

two different ways: on one side, by estimating the stiffness matrix of the structure; on 

the other side, by estimating the flexibility matrix. As reported in the work related to 



Chapter 1 Introduction  

 

19 

 

the theory of incomplete modal models by [Berman & Flannelly, 1971], the 

contribution of the first lower modes in the flexibility matrix is higher with respect to 

the contribution of the same modes in the stiffness matrix. This principle was 

extensively analyzed and verified in the literature [Gao & Spencer, 2002; Duan et al., 

2005; Koo et al., 2010], and the conclusion drawn from all the studies is that 

estimating flexibility matrices from identified modal data is a preferable approach 

than estimating stiffness matrices. This is because in general accurate estimates of the 

flexibility matrix can be obtained using only the first lower modes. This principle is 

discussed more in detail in Chapter 3 of the dissertation, where it is shown how 

experimental flexibility matrices of structures can be estimated starting from vibration 

data and specifically from modal parameters. These matrices are usually indicated as 

modal flexibility matrices. 

Estimating modal flexibility matrices from vibration data is the main operation 

performed in all the modal flexibility (MF)-based methods for damage detection. Due 

to the above-mentioned property of the modal flexibility matrix, such methods have 

emerged as an important class of methods in vibration-based damage detection 

(VBDD), and they can be considered as the most advanced techniques in modal-based 

damage detection. A great advantage of all the modal flexibility-based approaches is 

that a model of the structure is estimated directly from the vibration data. This 

experimentally-derived model of the structure is the modal flexibility matrix, and it is 

an important source of information for damage detection purposes. In fact, as 

demonstrated in the work by [Zhao & DeWolf, 1999], where sensitivity studies were 

performed on mass-spring numerical models, the coefficients of the modal flexibility 

matrices are more sensitive to damage than the modal parameters individually (i.e. 

natural frequencies and components of the mode shapes). Moreover, since in the 

modal flexibility-based methods for damage detection an attempt is made to estimate 

the mechanical properties of the structure, such approaches are theoretically suitable 

to perform a quantification of the extent of damage (i.e. the fourth achievement level 

according to the classification formulated by [Rytter, 1993]). This achievement is, on 

the contrary, much more difficult to be obtained if the damage quantification is 

performed by considering the modal parameters individually.   
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The modal flexibility-based methods for vibration-based damage detection can be 

grouped into three main classes, where each class includes methods that are: 

1) based on the evaluation of the change-in-flexibility matrix  

2) based on a decomposition of the change-in-flexibility matrix  

3) based on the estimation of structural deflections from modal flexibility 

matrices 

4) other methods. 

One of the earliest approaches in modal flexibility-based damage detection is the so-

called change-in-flexibility method. This method was presented for the first time in 

the works by [Pandey & Biswas, 1994; Pandey & Biswas, 1995], and it is based on 

the estimation of the modal flexibility matrices of the structures both in the 

undamaged and in the damaged states. Then, these two matrices are subtracted to 

obtain the change-in-flexibility matrix, which is used as a metric to localize the 

damage. This operation is done by analyzing the components of the change-in-

flexibility matrix. The degree-of-freedom of the structure that is detected as the one 

closest to the damage location is the DOF that corresponds to the column of the 

change-in-flexibility matrix where the maximum variation is present. In the works by 

[Pandey and Biswas, 1994; Pandey and Biswas, 1995] the approach was verified on 

beam-like structures, considering both analytical and experimental analyses. The 

experimental verification was conducted on various wide-flange steel beams that were 

tested through an impact hammer. Saw cuts in the flange of such steel beams were 

created to artificially introduce damage in the structure.  

Two methods belong to the group of the modal flexibility-based methods that 

are based on a decomposition of the change-in-flexibility matrix. The first one is the 

Damage Locating Vector (DLV) method, which was proposed in the work by [Bernal, 

2002]. The method was formulated to localize damage in a generic structural system, 

and similarly to the method described in previous paragraph, it is based at first on the 

determination of the change-in-flexibility matrix. The basic idea behind the DLV 

method is to compute a set of load vectors that if applied to the structure induce a zero 

stress field in the elements of the structure that are damaged. On the basis of this 

analysis and due to the property of these load vectors, the damaged elements can be 
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identified. Such load vectors are obtained by computing the null space of the change 

in flexibility matrix, and this operation is performed numerically through a singular 

value decomposition of that matrix. The DLV approach was verified through 

numerical simulations performed on a truss structure [Bernal, 2002]. The analytical 

model of this truss structure was excited by white noise inputs, and the identification 

of the structural modes was performed using input-output modal identification 

techniques. This method, which was originally formulated to be applied starting from 

the results of the input-output modal identification, was also extended to the case of 

the output-only modal identification [Bernal, 2001; Bernal & Gunes, 2002]. This 

version of the method extended to the output-only case is termed Stochastic Damage 

Locating Vector (SDLV). Other techniques than can be applied with the same purpose 

(i.e. applying the DLV method using output-only vibration data) were also presented 

in the works by [Duan et al., 2005; Duan et al., 2007]. More details on these techniques 

formulated by [Bernal, 2001; Bernal & Gunes, 2002; Duan et al., 2005; Duan et al., 

2007] will be presented later in this chapter in the section related to the definition of 

the objectives of the thesis. 

Another method that is based on a decomposition of the change-in-flexibility 

matrix (i.e. the second group of modal flexibility-based methods reported in the 

above-mentioned bulleted list) was defined in the work by [Yang & Liu, 2009]. This 

method is based on the eigenparameter decomposition of the change in flexibility 

matrix, and it can be used both for damage localization and for damage quantification. In 

the work by [Yang & Liu, 2009], the validity of the methodology was demonstrated on 

three different structural systems using numerical simulations.  

The third group of modal flexibility-based methods reported in the above-

mentioned classification is composed by the methods based on the evaluation of 

structural deflections starting from experimental modal flexibility matrices. These 

deflections are thus indicated as modal flexibility-based deflections, and they are 

calculated by applying special loads termed “inspection loads” to models of structures 

identified through vibration tests (i.e. modal flexibility matrices). It is worth noting 

that such inspection loads are not real loads that are effectively applied to the 

structures. These loads are only introduced in the calculations related to the damage 

detection process.   
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Some of the earliest approaches related to the application of techniques based 

on the estimation of deflections from modal flexibility matrices can be found in the 

works by [Zhang, 1993; Zhang & Aktan, 1995; Zhang & Aktan, 1998]. As defined in 

such works, the uniform load (UL) surface is the deflection profile that can be 

calculated from experimentally-derived modal flexibility matrices by applying a 

uniform load at all the degree-of-freedoms of a structure. This load is defined as a 

vector composed by components that are all equal to one. As observed in the works 

by [Zhang, 1993; Zhang & Aktan, 1995; Zhang & Aktan, 1998], the uniform load 

deflection evaluated from modal flexibility is an important source of information in 

vibration-based structural identification and damage detection. In fact, the 

components of such deflection can be considered as damage-sensitive features, and 

eventual modifications of these features, when at least two structural states are 

compared, can be associated to structural damage, such as a stiffness reduction. A 

modified version of the uniform load surface method was also presented in the work 

by [Zhang & Aktan, 1995]. According to this modified version of the method, the 

second derivative (i.e. the curvature) of the uniform load surface is evaluated, and the 

values of the deflection curvature are considered as damage-sensitive-features for 

damage localization. This approach was verified by the authors by performing 

numerical simulations on a three-span bridge structure.   

It is worth noting that these methods based on the calculation of the uniform 

load deflections [Zhang, 1993; Zhang & Aktan, 1995; Zhang & Aktan, 1998] were 

introduced approximately at the same time in which the change-in flexibility method 

was presented [Pandey & Biswas, 1994; Pandey & Biswas, 1995]. These two methods 

have several similarities, and they are based on a similar formulation. The methods 

based on modal flexibility-based deflections in fact can be considered as methods that 

were directly derived from the methods based on modal flexibility matrices only. 

However, an important aspect related to the two methods and which shows the 

advantages of using structural deflections (instead of modal flexibility matrices in the 

damage detection process) has to be highlighted. As already mentioned, in vibration 

testing and modal identification of structures, especially civil structures, not all the 

modes can be identified. Then, the use of incomplete modal models [Berman & 

Flannelly, 1971] for assembling modal flexibility matrices leads to inevitable errors, 
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which are defined, according to [Zhang & Aktan, 1998], as flexibility truncation errors 

or modal truncation errors. These errors are thus generated by the fact that only a 

limited number of structural modes is considered in the calculations. The errors 

present in the modal flexibility matrices affect, of course, also the modal flexibility-

based deflections which are calculated from these matrices. The above-mentioned 

important aspect related to modal flexibility matrices and structural deflections is that, 

as demonstrated in the works by [Zhang, 1993; Zhang & Aktan, 1995; Zhang & Aktan, 

1998], the components of the uniform load deflections are in general less sensitive to 

modal truncation errors than the components of the modal flexibility matrices. In 

addition, as also shown in [Zhang & Aktan, 1998], the components of the uniform 

load deflections are also less sensitive to experimental errors than the components of 

the modal flexibility matrices. Such experimental errors are always present on features 

derived from an experimental test, and, referring to vibration tests, these errors are 

mainly due to the inevitable noise that is present in the measurements. Uncertainties 

thus affect the modal parameters of structures that are identified from the data, and 

these uncertainties on the modal parameters then propagate to modal flexibility 

matrices and modal flexibility-based deflections. These two above-mentioned 

properties of the uniform load deflections were demonstrated in the works by [Zhang, 

1993; Zhang & Aktan, 1995; Zhang & Aktan, 1998] using both numerical and 

experimental analyses on a three-span bridge structure. It is worth noting that this 

structure is the same structure that was used to verify the damage detection approach 

based on uniform load deflections [Zhang & Aktan, 1995].  

Several other applications where the uniform load deflections are used for the 

assessment of the condition of structures and for damage detection can be found in 

the literature. For example, in the work by [Catbas et al., 2006] uniform load 

deflections were employed to detect and localize damage in two real-life bridge 

structures. One of the two bridges was tested using traditional input-output testing, 

while the second bridge was tested under ambient vibrations. In another work by 

[Catbas et al., 2008] the two damage detection methodologies based, respectively, on 

the evaluation of the displacements of the uniform load deflections and the curvature 

of the uniform load deflections were compared using the experimental data of a 

laboratory bridge model. The authors showed that for beam-like structures the method 
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based on the evaluation of the curvature of the deflections can be advantageous in the 

cases in which changes due to damage are not detected using the displacements of the 

deflections. However, the authors also highlighted the fact that non-negligible 

numerical errors may be introduced in the calculations when the curvature of the 

deflections is evaluated.  

The method based on the evaluation of uniform load deflections [Zhang, 1993; 

Zhang & Aktan, 1995; Zhang & Aktan, 1998] was taken one step further in the work 

by [Koo et al., 2008]. In this last work a methodology for damage localization in 

beam-like structures was presented. The main difference between the approach based 

on uniform load deflections and the more recent approach proposed in [Koo et al., 

2008], is that in this last work a more rigorous procedure to map the changes in the 

modal flexibility-based deflections with the locations of the damage is adopted. The 

main idea behind the approach is that, by applying to the structures special loads 

termed Positive Bending Inspection Loads (PBIL), there exists an explicit relationship 

between the changes in the modal flexibility based-deflections and the damage (e.g. 

localized stiffness reductions in the structure). It is worth noting that such PBIL loads 

are not necessarily uniform loads, and they depend on the geometry of the bridge (for 

example, they depend on the number of the spans and on the boundary conditions of 

the bridge). The validity of the approach was demonstrated using both numerical 

simulations and experimental tests conducted on a two-span steel continuous beam.   

Recently, the damage detection approaches based on the evaluation of modal 

flexibility-based deflections have been also applied on building structures. In the work 

by [Koo et al., 2010] a method for output-only damage detection in shear building 

structures was presented. Then, in later works by the same authors [Koo et al., 2011; 

Sung et al., 2012] the method was improved further. According to this method, the 

modal flexibility-based deflections of a shear building structure are calculated by 

applying to the structure (i.e. to an experimentally-derived model of the structure 

based on the modal flexibility matrix) special loads, termed Positive Shear Inspection 

Loads (PSIL) [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012]. These loads are 

special loads that induce positive shear forces in each story of the shear building 

structure. As will be explained in detail in next section where the objectives of the 

thesis are outlined, this method is frequently mentioned through all the present 
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dissertation. For this reason and even if the proposed terminology was not used in the 

original work that introduced the method, this method is denoted in the present 

dissertation as PSIL method.  

It is worth noting that among the different positive shear inspection loads that 

can be chosen and applied to the shear building structure, in the works by [Koo et al., 

2010; Koo et al., 2011; Sung et al., 2012] it is suggested to use a uniform load. This 

is the same load adopted in the uniform load surface method [Zhang, 1993; Zhang & 

Aktan, 1995; Zhang & Aktan, 1998], which was on the contrary developed mainly for 

bridge structures. There exists, however, an important difference between the two 

approaches. According to the uniform load surface method, the components of the 

deflections are considered as damage-sensitive features. On the contrary, in the PSIL 

method, which was specifically developed for shear building structures, after 

computing the modal flexibility-based deflections, an additional operation has to be 

made in the calculations. In fact, the interstory drifts associated to such deflections 

are evaluated and considered as damage-sensitive features. Once the modal flexibility-

based interstory drifts of the structure have been evaluated both in the undamaged and 

in the possibly damaged states, these parameters can be used for the localization of 

damage. The method in fact is able to identify the stories of the structure that have 

been affected by damage (e.g. a story stiffness reduction). One important 

characteristic of the PSIL method is that this operation of feature discrimination 

(where the features are the interstory drifts) is performed using criteria that are taken 

from the field of outlier analysis (which are also known as techniques for novelty 

detection). As already mentioned, these novelty detection techniques are the most 

effective and simplest techniques that can be used for feature discrimination in the 

framework of a vibration-based damage detection strategy that is based, according to 

the machine learning interpretation [Farrar & Worden, 2013], on an unsupervised 

learning mode.  

The PSIL method was verified in the works by [Koo et al., 2010; Koo et al., 

2011; Sung et al., 2012] using both numerical simulations and experimental vibration 

tests on frame building structures. In the works by [Koo et al., 2010; Koo et al., 2011], 

a 5-story frame building structure tested using a shaking table is considered. In these 

tests the damage was simulated by substituting some columns of the frame structure 
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with other columns with a reduced cross-section. In the work by [Sung et al., 2012], 

a 5-story full-scale shear building tested using shaker excitations is considered and 

used to apply the PSIL method. In such case the damage was simulated by modifying 

the stiffness of a spring member that was positioned in the bracing system of one story 

of the structure.  

It is important to underline that the PSIL method was developed for shear 

building structures that can be modeled as plane structures. For this reason, the 

experimental verifications, performed using a laboratory frame building structure 

[Koo et al., 2010; Koo et al., 2011] or a full-scale shear building [Sung et al., 2012], 

were conducted by considering structures with a plan-symmetric configuration both 

in the pristine and in the damaged states. Moreover, the tests were performed using 

uniaxial excitations both in the shake table tests and in the shaker tests. In this way 

the structures were tested only in one prevalent direction, and 2D analyses were 

performed to estimate the modal flexibility matrices and the modal flexibility-based 

deflections of the structures in that direction. It is also worth noting that both in the 

shake table and shaker tests the structures were excited by white noise input signals. 

Then, these input excitations were not considered in the analyses, and the modal 

parameters of the structures were obtained using output-only modal identification 

techniques. This choice was done to mimic the situation that one has to analyze when 

real-structures are tested under ambient vibrations. As already mentioned, to assemble 

modal flexibility matrices mass-normalized mode shapes are required. However, one 

drawback in output-only modal identification is that mass-normalized mode shapes 

can not be directly obtained using output-only vibration data. In the works by [Koo et 

al., 2010; Koo et al., 2011; Sung et al., 2012] where the PSIL method is presented, the 

authors have used the system mass matrix of the structure to mass-normalize the mode 

shapes identified using the output-only modal identification. This mass matrix of the 

structure was thus estimated a-priori, and it is not a quantity that was derived from the 

data. These characteristics of the PSIL method (i.e. the fact that the method was 

developed for plane structures and the fact that an a-priori estimation of the mass 

matrix was used to normalize the mode shapes in output-only identification) are 

aspects that are particularly relevant in the present dissertation. These aspects will be 



Chapter 1 Introduction  

 

27 

 

specifically addressed later in this chapter in the Section 1.3 where the objectives of 

the thesis are outlined.  

As claimed by the authors in [Koo et al., 2010; Sung et al., 2012], one of the 

main advantages of the PSIL method is that for the considered structures (i.e. shear 

building structures) there exists an explicit relationship between damage (e.g. a story 

stiffness reduction) and the changes in the modal flexibility-based deflections that are 

used to localize the damage. This property makes the method very effective in 

localizing the damaged stories of shear building structures. To show the effectiveness 

of the PSIL method, the technique was compared with other modal-based damage 

detection techniques. As reported in [Koo et al., 2010; Sung et al., 2012], the PSIL 

method has shown better performances than both the method based on mode shape 

curvature [Pandey et al, 1991] and the method based on the modal strain energy 

[Stubbs et al., 1992; Stubbs et al., 1995] in the damage localization on shear building 

structures.  

A comparison between a technique that is almost equivalent to the PSIL 

method and other damage detection techniques is also shown in the work by [Zhang 

et al., 2013]. In this work the approach based on the evaluation of the modal 

flexibility-based deflections was used to detect and localize damage in a steel frame 

structure. The structure and the vibration data used in this work are benchmark studies 

for SHM and damage detection in building structures, which are known in the 

literature as IASC-ASCE benchmark studies [Dyke et al., 2003; Ventura et al., 2003; 

Dyke, 2011]. The mentioned benchmark structure was tested using various types of 

excitations (impact hammer, electrodynamic shaker, and ambient vibrations), and in 

the work by [Zhang et al., 2013] the impact hammer tests were analyzed. The damage 

detection was carried out by performing a 2D analysis and by estimating the uniform 

load deflections of the structure. Then, the interstory drifts of the structure were 

evaluated (which is the same approach adopted in the PSIL method). As shown by the 

results presented in [Zhang et al., 2013], the technique based on the evaluation of the 

interstory drifts has shown better performance than the method based on the 

evaluation of the curvature of the uniform load deflections [Zhang & Aktan, 1995] in 

the damage localization performed on the building structure.  
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As shown in the works by [Koo et al., 2011; Sung et al., 2012], the PSIL 

method can be used not only for damage localization, but also for damage 

quantification. This is an aspect that was not included in the first version of the PSIL 

method presented in [Koo et al., 2010]. A great advantage of the PSIL method is that 

the damage quantification (i.e. a quantification of the stiffness reduction that a story 

might have experienced as an effect of damage) can be carried out using simple 

algebraic operations on the interstory drifts calculated from the modal flexibility-

based deflections. As reported in [Koo et al., 2011], performing the damage 

quantification using the PSIL method is much more advantageous than using FEM 

updating procedures, which are traditionally used for damage quantification. On one 

side, in fact, the PSIL method does not require a FEM model of the structure. On the 

other side, the calculations that have to be performed using the PSIL method are much 

simpler than any finite element model updating procedure (which is based in general 

on the use of optimization techniques).  

 

1.3 Focus and objectives of the work 

The present dissertation focuses on the methods for vibration-based damage detection 

that are based on the determination of structural deflections starting from 

experimentally-derived modal flexibility-based models of structures subjected to 

vibration tests. As already mentioned in previous section and as graphically depicted 

in Fig. 1.3, these methods are a sub class of the modal flexibility-based methods for 

damage detection.  

 

Figure 1.3. Diagrammatic representation of the damage detection methods  

considered in the thesis. 
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Vibration-based techniques for structural identification and damage 

assessment have been investigated in the civil engineering community since the early 

1980s [Farrar & Worden, 2013]. However, as evident in the literature [Doebling et al., 

1996; Sohn et al., 2003; Farrar & Worden, 2013] and as explicitly reported in the 

works by [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012], the great majority of 

the damage detection studies were performed on bridge structures. Fewer studies were 

conducted on building structures. 

In light of this premise, the present dissertation focuses mainly on building 

structures and on the application of the modal flexibility-based techniques for damage 

detection on such structures. Referring to the structural identification, the thesis 

focuses especially on the application of the output-only modal identification 

techniques. These techniques are considered as a tool that is integrated in the damage 

detection process, and these techniques were selected because they can be specifically 

applied on the data of structures tested under ambient vibrations. Referring to the 

damage detection methods, the Positive Shear Inspection Load method [Koo et al., 

2010] for output-only damage detection in building structures is considered in the 

thesis as the reference method and the starting point for the development of most of 

the research investigations. As already mentioned in previous section, the PSIL 

method can be thought as an evolution of the uniform load surface (ULS) method 

[Zhang & Aktan, 1998], originally developed for bridge structures, to the case of 

building structures.  

Three main problems are considered in the dissertation. These problems have 

been defined and analyzed after having recognized potential research gaps in the 

literature.  Such research gaps were the starting points for most of the research 

investigations presented in this dissertation. The three problems and the research 

investigations that were undertaken to address these problems are presented in the 

following.  
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1.3.1 Problem and objective no. 1 

The first main problem considered in the thesis is related to the fact that modal 

flexibility matrices and thus modal flexibility-based deflections of real-life structures 

subjected to vibration tests are in general estimated using incomplete modal models. 

As already discussed in previous section, in fact, in modal testing and identification 

of civil structures not all the structural modes can be identified. This is especially true 

for structures tested under ambient vibrations. The input in such case has a wide 

frequency content, however, since the test is performed using exclusively natural 

excitations, some structural modes may not be excited, and they may not be identified 

[Brincker & Ventura, 2015]. In addition, in vibration testing of structures extracting 

the high-order modes is in general more difficult than extracting the low-order modes. 

As already mentioned in previous section, using a limited number of modes to 

assemble the modal flexibility matrices generates errors that are indicated as 

flexibility or modal truncation errors, and these errors also affect the modal flexibility-

based deflections. The study of these errors on modal flexibility matrices and related 

deflections is defined in the literature, according to [Zhang & Aktan, 1998], as modal 

truncation error analysis. This analysis aims to investigate how many modes need to 

be included in the calculations in order to obtain good estimates of the modal 

flexibility matrices and the modal flexibility-based deflections derived from 

experimental data. As discussed in previous paragraphs, the effect of the modal 

truncation errors is reduced by adopting the approach based on the estimation of modal 

flexibility matrices (instead of estimating stiffness matrices). Moreover, as 

demonstrated in the work by [Zhang & Aktan, 1998], the components of the uniform 

load deflections are less sensitive to modal truncation errors than the components of 

the modal flexibility matrices.  

The first main objective of the thesis is to continue the investigations in this 

area of research on the topic of modal truncation error analysis, by focusing on modal 

flexibility-based deflections of building structures. In particular, the objective is to 

study the truncation errors that are introduced when the modal flexibility-based 

deflections of the structures are calculated using a limited number of modes and by 

considering the case of generic inspection loads. In the literature, on the contrary, it 
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was found that these analyses have been performed mainly on modal flexibility-based 

deflections evaluated for a uniform load.  

The research investigations carried out on this topic were developed with two 

main purposes. On one side, an approach was proposed to predict the truncation 

effects expected on the modal flexibility-based deflections due to a generic inspection 

load. As shown in detail in Chapter 4 of the present dissertation, advantage of the 

proposed approach is that an indication of the expected truncation effects is obtained 

using only the subset of structural modes that are identified and included in the 

calculations of the truncated modal flexibility-based deflections. On the other side, 

inspection loads different from the uniform load were considered and applied on 

flexibility-based models of building structures with the aim of reducing the truncation 

errors on the modal flexibility-based deflections.  

 

1.3.2 Problem and objective no. 2 

As already mentioned in Section 1.2.1, the Positive Shear Inspection Load (PSIL) 

method for vibration-based damage detection in shear building structures was 

formulated for structures that can be modeled mainly as plane structures. The method, 

in fact, was verified and applied by the authors that presented the methodology 

through vibration tests on frame building structures with symmetric configurations 

(both in the pristine and in the damaged states). As already mentioned, these vibration 

tests were performed using uniaxial excitations in shaking table tests [Koo et al., 2010; 

Koo et al., 2011] or shaker tests [Sung et al., 2012]. Then, 2D analyses were performed 

to estimate the modal flexibility matrices and the modal flexibility-based deflections 

of the structures in the direction considered in the vibration tests. 

Of course, in practice one might have to deal with structures that are more 

complex than structures which can be modeled as plane structures. Real-life building 

structures can be characterized, for example, by a generic distribution of the stiffness 

and the mass of the different stories. Alternatively, even if the structure considered in 

the damage detection process as the pristine structure is plan symmetric, the structure 

can then experience a damage in a generic position of any story. The structure in the 
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damaged state can thus be a plan asymmetric structure, which can not be modeled as 

a plane structure. 

In light of this premise, it is clear that it is of interest to have a damage 

detection technique that can be applied on a 3D building structure. This represents the 

second main problem addressed in the thesis, and an attempt was made to extend the 

Positive Shear Inspection Load (PSIL) method so that it can be applied on structures 

that can not be modeled as plane structures. The research investigations carried out 

with reference to this problem were performed by considering simple rectangular “box 

type” 3D building structures [Brincker & Ventura, 2015]. In particular, ambient 

vibration tests were planned and then executed on a 3D steel frame structure to carry 

out the above-mentioned research investigations. The data of these ambient vibrations 

tests were used to localize and quantify single- and multiple- damage in the 3D steel 

frame structure, and such damaged conditions were created by imposing local stiffness 

reductions in the members of the structure.  

 

1.3.3 Problem and objective no. 3 

As already mentioned in Section 1.2.1, it is important to underline that modal 

flexibility can be estimated only when mass-normalized mode shapes are available. 

Mass-normalized mode shapes can be obtained from the data of forced vibration tests 

(using input-output modal identification techniques) when there exists at least one 

actuator-sensor pair [De Angelis et al., 2002], i.e. a driving-point measurement is 

acquired in the test [Farrar & Worden, 2013]. This means that the scaling factors on 

the mode shapes can be obtained from vibration data when in the experimental test 

setup the actuator and one sensor are located in the same position on the structure. On 

the contrary, when an operational modal analysis (i.e., an output-only modal 

identification) is performed starting, for example, from ambient vibration data of a 

structure (i.e. the case of interest for the present dissertation), only arbitrarily-scaled 

mode shapes can be obtained from the data. This is because no information about the 

exciting inputs are in general available in ambient vibration tests. As reported in 

[Duan et al., 2005], flexibility matrices are not readily available and can not be 

estimated directly from the vibration data when the output-only modal identification 
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is applied. This represents a drawback that is common to all the modal flexibility-

based approaches when applied in the important case of structures under ambient 

vibrations [Brincker & Ventura, 2015].  

Before discussing the third main objective of the thesis, a brief overview on how 

this modal scaling problem in output-only modal identification has been addressed in 

the literature is presented.  

The mass normalization of the mode shapes can be carried out in the framework 

of an ambient vibration test using the strategies that belong to the classes of the so 

called “mass change methods” [Parloo et al, 2003; Brincker & Andersen, 2003; Bernal, 

2004; Aenlle et al., 2010] and the “mass-stiffness change methods” [Khatibi et al., 

2012; Lopez-Aenlle et al., 2012]. According to these techniques, an ambient vibration 

test is performed at first on the original structure. Then, the test is repeated by applying 

modifications in the mass and/or in the stiffness of the structure. These modifications 

have to be known and quantified, and they represent a piece of information required 

to perform the mode shape scaling. These strategies are absolutely suitable to solve 

the problem of modal scaling in output-only identification. However, as reported in 

[Brincker & Ventura, 2015], it might be challenging in practice to apply such known 

mass/stiffness modifications on civil structures, especially large civil structures. 

Moreover, these strategies can be convenient strategies for the cases in which few 

ambient vibration tests have to be performed on the structure, while they might not be 

a practical solution to be applied in the context of ambient vibration monitoring for 

damage detection purposes.  

An alternative approach was presented in the work by [Aenlle & Brincker, 2013] 

where a FEM model is used to mass normalize the mode shapes derived from output-

only vibration tests. This last approach is similar to the strategy that was adopted in 

the work by [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012], where the Positive 

Shear Inspection Load (PSIL) method for output-only damage detection in building 

structures was presented. As already mentioned in Section 1.2.1, in the works by [Koo 

et al., 2010; Koo et al., 2011; Sung et al., 2012] the mass normalization of the mode 

shapes obtained from output-only modal identification was carried out using an a-

priori estimate of the system mass matrix.  
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In light of this premise, the third objective of the thesis is to propose, on the 

basis of the theory behind the PSIL method [Koo et al., 2010; Koo et al., 2011; Sung 

et al., 2012], a modal-flexibility based approach for output-only damage detection in 

building structures that can be applied with minimal or no a-priori information on the 

structural masses. This is thus an attempt to make the damage detection process based 

on modal flexibility-based deflections independent as much as possible from an a-

priori estimate of the mass matrix of the structure (required on the contrary in the 

PSIL method). 

A similar problem was investigated by some authors [Bernal, 2001; Bernal & 

Gunes, 2002; Duan et al., 2005; Duan et al., 2007] in the context of another damage 

detection method - i.e. the Damage Locating Vector (DLV) method [Bernal, 2002], 

which has been already described in Section 1.2.1. In the works by [Bernal, 2001; 

Bernal & Gunes, 2002; Duan et al., 2005; Duan et al., 2007] strategies to extend the 

DLV method, originally formulated to be applied in input-output identification, to the 

case of output-only identification were investigated.  

Two procedures that were presented in the works by [Bernal, 2001; Duan et 

al., 2005] represented the starting point for the research investigations that were 

carried out in the context of the third main problem considered in the thesis. The 

above-mentioned procedures can be used to obtain the distribution of the masses of a 

structure (i.e. a mass matrix proportional to the corresponding true mass matrix) 

starting from output-only vibration data and from the results of the output-only modal 

identification. Then, the proportional mass matrix can be used to assemble matrices 

that are proportional to the corresponding true flexibility matrices (such matrices are 

defined as proportional flexibility matrices). The proportional flexibility matrices are 

finally adopted (instead of the true flexibility matrices) to perform the damage 

detection using the Damage Locating Vector (DLV) method. These procedures, 

presented in the works by [Bernal, 2001; Duan et al., 2005] and originally formulated 

to be applied with the DLV method, were adapted and integrated into the framework 

of the Positive Shear Inspection Load method for damage detection in building 

structures, according to the approach proposed in the present dissertation.  
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1.4 Organization of the thesis 

In this first chapter an introduction to the topics of vibration-based structural health 

monitoring and damage detection is provided together with the description of the 

objectives of the thesis. To conclude this chapter, the organization of the thesis is 

presented. The organization of the thesis is also shown in the diagrammatic scheme 

reported in Fig. 1.4. 

The thesis is organized into two main parts. The first part concerns the 

presentation of the theoretical background, and it is composed by this first chapter, by 

the second chapter, and by the third chapter. The second chapter is an introduction to 

the topics of modal testing and modal identification. After discussing the motivations 

for which ambient vibration tests, instead of a traditional input/output forced vibration 

tests, can be more convenient ways for testing civil structures, an overview of the 

fundamental assumptions and principles in operational modal analysis (and output-

only modal identification) is presented. Then, a brief review of the different output-

only modal identification techniques that can be applied to estimate the modal 

parameters of structures tested under ambient vibrations is presented, and the output-

only modal identification techniques that are applied in thesis are introduced. The 

third chapter is dedicated to the description of the existing modal flexibility-based 

approaches that are considered in the thesis (i.e. state-of-the-art approaches). After 

introducing how the modal flexibility matrices and the modal flexibility-based 

deflections of structural systems can be estimated from vibration tests (and, 

specifically, from identified modal parameters), the chapter presents in detail the steps 

and the theory related to the Positive Shear Inspection Load (PSIL) method [Koo et 

al., 2010] for vibration-based damage detection in shear building structures.  

The second part of the thesis presents the research investigations that were 

carried out and the approaches that were developed to address the three main problems 

considered in the thesis (i.e. the problems discussed in Section 1.3). This second part 

of the thesis is composed by the fourth, the fifth, and the sixth chapters, which 

correspond, respectively, to the first, the second, and the third problems discussed in 

Section 1.3. The fourth chapter presents the research investigations carried out on the 

topic of truncation error analysis on modal flexibility-based deflections of building 
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structures. The fifth chapter presents the research investigations carried out in an 

attempt to extend the PSIL method, originally formulated for building structures that 

can be modeled as plane structures, to the case of more complex structures (by 

considering simple rectangular “box type” 3D buildings). The sixth chapter presents 

the modal flexibility-based approach that is proposed for detecting damage in building 

structures starting from output-only vibration data and with minimal or no a-priori 

information on the structural masses. 

Finally, the seventh chapter presents the conclusions drawn for each of the 

three main problems addressed in the thesis and the directions for future research. An 

appendix is also reported at the end of the thesis, and in this appendix a description of 

the main steps of the output-only modal identification techniques adopted in the thesis 

is provided. Moreover, in the appendix some numerical and experimental case studies 

where the output-only modal identification techniques were applied are presented.  

 

Figure 1.4. Diagrammatic representation of the organization of the thesis . 
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Chapter 2  

Modal testing and identification 

 

 

 

 

 

Modal analysis can be defined, according to [He & Fu, 2001], as “the process 

of determining the inherent dynamic characteristics of a system in forms of natural 

frequencies, damping factors and mode shapes, and using them to formulate a 

mathematical model for its dynamic behaviour”. This operation can be performed 

either starting from an analytical model of a structure or starting from vibration data 

acquired in an experimental test performed on a structure. The first type of modal 

analysis is usually referred to as an analytical modal analysis, while the second one is 

an experimental modal analysis. In this second type of modal analysis after performing 

a vibration test, the modal properties of the structure are estimated from the data using 

the techniques of the modal identification. It is worth noting that this second type of 

modal analysis is the one that is mainly considered in the present dissertation.  

In recent years a distinction has been made between two types of modal 

analysis that can be used for testing structures. The traditional or classical type of 

modal testing based on controlled input forces (where both the input forces and the 

output vibration responses are measured) is usually referred to as an Experimental 

Modal Analysis (EMA). On the contrary, the process of performing a vibration test 

and the subsequent modal identification process for a structure tested under 
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operational forces (by measuring only the output vibration responses) is indicated as 

Operational Modal Analysis (OMA). In this second type of modal analysis the 

structures are tested by measuring the responses due to ambient or natural excitations, 

and this is the type of testing that is mainly considered in the present dissertation.  

 

 

2.1 From Experimental Modal Analysis (EMA) to Operational Modal 

Analysis (OMA) of civil structures 

This section provides at first a very short introduction on the topic of 

Experimental Modal Analysis (EMA). Then, this section shows the motivations for 

which Operational Modal Analysis (OMA) tests, instead of traditional EMA tests, can 

be more convenient ways for testing civil structures, especially when large civil 

structures are considered [Cunha & Caetano, 2005; Brincker & Ventura, 2015].  

Experimental modal analysis, as already mentioned, is the traditional or 

classical way of testing structures based on controlled or artificial input forces. This 

way of testing is also indicated as forced vibration testing. However, applying forces 

to a structure for a certain period of time is not the only option that can be used to 

excite the structure. Motion in a structure can be induced, for example, by perturbing 

its original position of static equilibrium and by imposing an initial displacement or 

an initial velocity in one or more points of the structure. As reported in [Brincker & 

Ventura, 2015], in fact, when any type of artificial input or excitation is applied to the 

structure a forced vibration test is performed.  

Depending on the types of excitations that are applied, the modal testing 

techniques can be classified into different groups. As extensively described in the 

literature [Ewins, 2000; Brincker & Ventura, 2015], some of the most popular testing 

techniques that can be used to excite a structure using artificial inputs are the 

following:  

- Shaker tests 

In this type of testing, shakers are used to apply forces on the structure for a 

certain period of time. In shaker tests it is possible in general to measure the 
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input forces applied to the structure, by adopting criteria and procedures that 

depends on the specific excitation device that is used. Examples of such 

excitation devices are, for example, mechanical shakers, electromagnetic 

shakers, or hydraulic exciters.  

 

- Hammer tests 

In this type of testing an hammer is used to excite the structure, and the impact of 

the hammer generates a transient load. Typically, the excitation, in terms of the 

applied force, is measured using a load cell (i.e. a force transducer installed on the 

hammer). Since the impact of the hammer acts on the structure for a very short 

period of time and due to the impulse-momentum theorem, the operation of 

exciting the structure through the impact of an hammer means basically to impose 

an initial velocity to the structure. After the impact the structure vibrates under 

free vibrations until it returns to the initial static equilibrium. This type of testing 

is commonly adopted in the field of mechanical engineering, but it can be also 

applied on civil engineering structures. Of course, in this second case hammers 

with adequate characteristics and dimensions have to be adopted, depending on 

the size of the structure. However, this type of testing is in general not adequate 

for very large civil structures, as also discussed later in this section.  

 

- Step relaxation tests  

In this kind of testing, an initial temporary static deformation is imposed on the 

structure. The initial deflection can be imposed, for example, using a steel cable, 

and by measuring the applied static force using a load cell in the cable. 

Alternatively, a dead weight can be attached to the structure to impose the initial 

deflection. Then, the initial static load is suddenly removed, for example, by 

cutting the cable or by removing the dead weight. In this way the structure starts 

vibrating under free vibrations. The response of the structure can be recorded until 

the structure reaches the unperturbed static equilibrium (i.e. the original 

configuration that the structure had before the initial imposed deflection). The 

responses (for example, in terms of accelerations) of the structure under free 
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vibrations are the so-called free decays of the structure. These tests are also known 

in the literature as pull-back or quick-release tests [Brincker & Ventura, 2015], 

and they are often used for testing large civil structures.  

 

Just after having induced motion in the structure using, for example, one of the 

above-mentioned techniques, the structural responses are measured. In a vibration test 

this operation is typically performed using accelerometric sensors that are connected 

to a data acquisition system, and by measuring the responses, in terms of accelerations, 

of several points of the structure. There exists a wide variety of accelerometers that 

can be used to acquire dynamic response measurements. As extensively discussed in 

[Maia et al., 1997; Cunha & Caetano, 2005], the accelerometers can be classified into 

four different categories, depending on the specific physical mechanism on which the 

devices are based (i.e. piezoelectric, piezoresistive, capacitive, and force balance 

accelerometers). It is worth noting that, as reported in [Cunha & Caetano, 2005], most 

of the piezoelectric accelerometers are not suitable to measure responses in the range 

of the low frequencies (which is often the frequency range where the natural 

frequencies of large civil structures are contained). On the contrary, the other three 

types of accelerometers (i.e. piezoresistive, capacitive, and force balance 

accelerometers) are more suitable to measure responses in the low frequency range.  

After having acquired the vibration measurements (i.e. input forces and output 

response data), in experimental modal analysis the modal properties of the tested 

structures are extracted using modal identification techniques. Numerous well-

established modal identification techniques are available in the literature to perform 

this operation. Such techniques are classified and extensively described in the 

classical books on experimental modal analysis such as [Maia et al., 1997; Ewins, 

2000]. An overview and a description of the different modal analysis techniques is 

also reported in the review paper by [Cunha & Caetano, 2005]. In this section, only a 

few of the well-established modal identification techniques are mentioned. Moreover, 

the main criteria that can be used to classify and understand in broad terms how the 

different techniques work are reported herein.  
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The different modal identification techniques can be classified using the 

following criteria and as function of the following variables:  

- the domain where the analysis is performed (i.e. time domain or frequency 

domain). When the analysis is performed in frequency domain, the modal 

properties of the structures are typically extracted from the Frequency Response 

Functions (FRF). Such functions are estimated between each point of the structure 

where a response is acquired in the test and the location where the excitation is 

applied. Alternatively, if the analysis is performed in time domain, the extraction 

of the modal parameters is typically performed after estimating the Impulse 

Response Functions (IRF); 

- the number of modes that are obtained by a single modal extraction. On the basis 

of this criterion a distinction can be made between methods based on an SDOF 

formulation and methods based on an MDOF formulation; 

- the number of input and output signals that are processed simultaneously in the 

analysis. On the basis of this criterion a distinction can be made between the 

following types of methods: single-input single-output (SISO) methods, single-

input multiple-output (SIMO) methods, multiple-input multiple-output (MIMO) 

methods, multiple-input single-output (MISO) methods. It is worth noting that 

SIMO methods are also indicated in the literature as “global” methods, while 

MIMO methods are also indicated as “polyreference” methods.   

Referring to the methods that work in frequency domain, the earliest 

approaches that were developed are methods based on an SDOF formulation. Such 

methods are, for example, the Peak Picking method [Bishop & Gladwell, 1963] and 

the Maximum Frequency Spacing method [Kennedy & Pancu, 1947]. This last method 

is also known as Circle fit method [Ewins, 2000]. Other existing methods that work 

in frequency domain are based on an MDOF formulation. Examples of such methods 

are the Rational Fraction Polynomial (RFP) [Richardson & Formenti, 1982], and the 

Complex Exponential in frequency domain (CEFD) [Schmerr, 1982].  
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All the methods that work in time domain are in general based on an MDOF 

formulation. One of the earliest methods that was developed in time domain is the 

Complex Exponential (CE) method [Spitznogle & Quazi, 1970], which is a SISO 

method. Subsequently, more refined and complex versions of the CE method were 

developed (e.g. the SIMO or global version termed Least Square Complex 

Exponential (LSCE) [Brown et al., 1979], and the MIMO version termed Polyreference 

Complex Exponential (PRCE) [Vold & Rocklin, 1982]). Other methods that work in 

time domain are, for example, the Ibrahim Time Domain (ITD) [Ibrahim & Mikulcik, 

1973; Ibrahim & Mikulcik, 1977], which is a SIMO method, or the Eigensystem 

Realization Algorithm [Juang & Pappa, 1985; Juang, 1994], which is a MIMO 

method. The time-domain modal identification can be also performed using methods 

based on Auto-Regressive Moving-Average (ARMA) models [Gersch, 1970].  

It is worth noting that some of the above-mentioned traditional EMA methods 

(both related to time and frequency domains) will be discussed more in detail in 

Section 2.2.2 which, on the contrary, presents a brief literature review and the main 

characteristics of the Operational Modal Analysis (OMA) techniques that can be 

applied starting from output-only vibration data (i.e. ambient vibration data). As will 

be clarified in next sections, in fact, most of the output-only modal identification 

techniques were derived starting from the traditional input-output techniques.  

 To conclude this very short overview of the main principles and techniques in 

experimental modal analysis, a final remark must be made on the results that can be 

obtained from a modal test. Referring to this aspect, a five-level classification was 

formulated by the [Dynamic Testing Agency, 1993], and this classification is also 

reported in [Ewins, 2000]. In this classification each level corresponds to a type of 

modal testing characterized by a specific degree of complexity and for which certain 

achievements can be obtained. In particular, the levels are ordered from the first level 

to the fifth level: the higher the order of the level, the more complete is the 

experimental modal model that can be obtained from the test.  
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The classification mentioned in the previous paragraph is reported below [Ewins, 

2000], and the results that can be obtained according to the different levels are also 

schematically shown in Fig. 2.1.  

Level 0: “estimation of natural frequencies and damping factors; response levels 

measured at few points; very short test times.” 

Level 1: “estimation of natural frequencies and damping factors; mode shapes 

defined qualitatively rather than quantitatively.” 

Level 2: “measurements of all modal parameters suitable for tabulation and mode 

shape display, albeit un-normalised.” 

Level 3: “measurements of all modal parameters, including normalised mode 

shapes; full quality checks performed and model usable for model 

validation.” 

Level 4: “measurements of all modal parameters and residual effects for out-of-

range modes; full quality checks performed and model usable for all 

response-based applications, including modification, coupling and 

response predictions.” 

 

 

 

Figure 2.1. Achievement levels in modal testing (defined in [Ewins, 2000]).  
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Referring to civil engineering structures, the traditional way of testing 

structures (i.e. performing an experimental modal analysis using artificial and 

controlled excitations) tends nowadays to be replaced by the more innovative way of 

testing structures under operational forces (i.e. performing an operational modal 

analysis). The motivations behind this choice of performing OMA tests instead of 

EMA tests on civil structures are extensively reported in the works by [Cunha & 

Caetano, 2005; Brincker & Ventura, 2015], and they can be summarized as follows.  

On one side, there are several disadvantages and drawbacks that are connected 

to the execution of an EMA test on civil structures. First of all, using artificial 

excitations it is difficult in general to excite civil structures, especially large-scale 

civil structures, with sufficient energy and at the low frequencies (i.e. at the 

frequencies related to the first structural modes) [Cunha & Caetano, 2005]. Secondly, 

to perform an EMA vibration test of a civil structure the functionality of the structure 

has to be usually interrupted. It is worth noting that this drawback is not present, on 

the contrary, in OMA tests. As discussed later in next section, in fact, operational 

forces are the excitations that are used in OMA tests, and thus some of the operational 

forces may also derive from the actions connected to the use of the structure. Finally, 

in EMA testing applied on civil structures, damage can be induced on the structure if 

the artificial excitation is not controlled in a proper manner. This situation, as reported 

in [Brincker & Ventura, 2015], can occur, for example, when a large civil structure is 

tested using a hammer with a large mass (using a hammer with a large mass is the 

only option for many practical cases, and it is required to excite the structure with 

sufficient energy). If special care is not adopted in such situation, the hammer can 

cause local damage in the structure.  

On the other side, the possibility of performing OMA tests instead of EMA 

tests on civil structures is due to the developments that were gained in recent years in 

the technologies related to sensors and data acquisition systems [Cunha & Caetano, 

2005]. The developments in such technologies lead to the possibility of measuring the 

vibration responses of civil structures tested under ambient vibrations. In general, the 

responses of structures under ambient vibrations are much lower than the responses 

of structures that are tested using controlled forces. For example, as reported in 

[Brincker & Ventura, 2015], the acceleration responses of a structure tested under 
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ambient vibrations are typically of the order of 10-100 milli-g’s. This means that the 

sensors that are used for acquiring operational vibration measurements have to be 

characterized by a sensitivity that is in general much higher than the sensitivity of the 

sensors that are used in forced vibration tests.   

Before concluding this section, two other advantages of OMA tests applied on 

civil structures must be highlighted. The application of OMA testing techniques, 

especially for large complex structures, is an operation that is characterized in general 

by economic costs that are lower than the ones associated with traditional EMA testing 

techniques. In addition, the preparation of the testing setup in OMA tests on civil 

structures is an operation that is in general more rapid with respect to the 

corresponding operation executed in the context of traditional EMA tests [Brincker & 

Ventura, 2015].  

 

2.2 Operational Modal Analysis (OMA) 

Operational Modal Analysis (OMA), as reported in [Brincker & Ventura, 

2015], is the engineering field that aims to determine the modal properties of a 

dynamic system, assumed as linear and time-invariant, from vibration data of its 

normal operating responses. The OMA testing techniques can be applied in many 

areas and fields related to structural engineering [Brincker et al., 2003]. Among these 

different areas, the OMA techniques can be applied in civil engineering, for example 

on building structures that are tested under ambient vibrations.  

The first ambient vibration tests on building structures, as reported in [Brincker 

& Ventura, 2015], were performed by D.S. Carter in 1935. He performed several tests 

on building structures in California after that these structures were subjected to the 

Long Beach earthquake. Carter applied very basic OMA techniques to extract the 

natural modes of such building structures. It is worth noting, however, that in general 

(i.e. referring not only to building structures) operational modal analysis started to 

become a well-established field not until the early 1990s.   

In next sections, following closely the work by [Brincker & Ventura, 2015], a 

brief overview of the fundamental principles in operational modal analysis and a brief 

literature review of the main OMA identification techniques are presented.  
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2.2.1 OMA testing techniques: an overview of the fundamental assumptions and 

principles 

During normal operating conditions (i.e. the case of an OMA test) a civil structure, 

such as a building structure, is subjected to ambient vibrations that are induced by 

natural excitations. Examples of such natural excitations are the following: wind, 

traffic loads, microtremors from the ground, vibrations induced by occupants or 

machineries that are present in the structure, etc. [Brincker & Ventura, 2015]. It is in 

general not possible to measure such input excitations, and in an OMA test only the 

vibration responses of the structure due to such loads are measured. These measured 

data are then used to estimate the modal properties of the structure (i.e. natural 

frequencies, modal damping ratios, and mode shapes).  

As already mentioned, the input excitations are unmeasured. However, for a 

generic structure that is tested under ambient vibrations, the natural excitations tend 

to have in general the following characteristics [Brincker & Ventura, 2015]: 

- the natural excitations have approximately white noise characteristics. This means 

that the excitations are random, characterized by a wide frequency content, and 

the frequency spectrum of such excitations is approximately flat in a specific 

frequency range.  

- the natural excitations are multiple inputs that act simultaneously all over the 

structure.  

- the natural excitations tend to have stationary characteristics.  

It is important to underline that the quality of the results that can be obtained using 

the OMA testing and identification techniques depends in general on how much the 

input excitations tend to have the above-mentioned characteristics. This means that 

the best conditions (from an OMA point of view) to extract the modal properties of a 

structure starting from the vibration responses are the following: 

- all or at least most of the natural frequencies of the tested structure are contained 

in the frequency range of the input excitations. In this way, all the prevalent modes 

of the structure are excited. Moreover, since the natural excitation is characterized 
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by an approximately flat spectrum, the structural system is not excited at any 

specific or dominant frequency.  

- the vibrations responses are generated by multiple inputs that act all over the entire 

structure, and that are weakly- or un- correlated inputs at different spatial 

locations.  

- the vibrations responses are generated by inputs that are stationary.  

In the OMA process the unmeasured input signals are thus considered as white noise 

signals. Of course, this is an idealization, because in practice the inputs will never be 

exactly white noise signals with a perfectly flat spectrum. As reported in [Brincker & 

Ventura, 2015], the inputs that act as a load on the structure are in general colored 

(i.e. they do not have a perfectly flat spectrum). These inputs are in any case suitable 

exciting inputs which generate responses that can be used to perform the OMA 

analysis, because of the following interpretation (discussed in [Brincker & Ventura, 

2015]).  

The real inputs acting on the structural system (i.e. the colored loads) can be 

considered as the output of a virtual system (defined as a loading filter) which 

receives, as input, loads that have exactly white noise characteristics [Brincker & 

Ventura, 2015]. This concept is shown in Fig. 2.2. The virtual system (i.e. the loading 

filter) and the real system (i.e. the structural system) can then be considered together 

to form a combined system. This combined system, as shown in Fig. 2.2., receives, as 

input, white noise loads, and gives in output the measured responses. Under this 

interpretation, it is clear that, when OMA is applied starting from the measured 

structural responses by assuming that the unmeasured inputs are white noise signals, 

the identified quantities are the modal properties of the above-mentioned combined 

system (which is composed by the loading filter and the structural system). Referring 

to this interpretation, one important point is that, as demonstrated in [Ibrahim et al., 

1996] and as also reported in [Brincker & Ventura, 2015], including a loading filter 

in the system (identified in OMA) does not alter the modes of the true structural 

system. On one side, this means that the modes of the true structural system are 

contained in the set of the modes of the combined system that are identified from the 

data. On the other side, however, this means that the number of modes of the combined 
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system might be in general higher than the modes of the true system. In fact, additional 

modes might be introduced in the combined system due to the presence of the loading 

filter. In the OMA identification process, it is thus important to separate modes that 

might be related to the loading conditions from the natural modes of the structure (i.e. 

the true structural modes). Of course, in the OMA identification process, as well as in 

the EMA identification process, there are also computational not physical modes that 

are due to the presence of noise on the measurements. These modes must be separated 

from the natural modes of the structure, as well. 

 

Figure 2.2. Combined system identified in Operational Modal Analysis (OMA).  

In any OMA identification process, assumptions are made not only on the unmeasured 

natural excitations. Assumptions are also made on the structural system that is 

considered in the vibration test and on the measured vibration responses. On one side, 

as already mentioned at the beginning of this section, it is assumed that the considered 

dynamic system is linear and time invariant. On the other side, referring to the 

measured vibration responses, two main assumptions are made:  

- the vibration responses are stationary; 

- the distribution of the random responses of the structure is Gaussian and such 

responses have a zero mean.  

Referring to the first of the two above-mentioned assumptions and to guarantee that 

the vibration responses are stationary, it is important, as reported in [Brincker & 

Ventura, 2015], that the structure is time invariant. Of course, if the structure is not 

time invariant, then the responses will not be in general stationary. If the above-

mentioned assumption on the structural system is valid (i.e. the system is time 

invariant), it is clear that the responses are stationary if the natural excitations are 

stationary (which is an assumption that is made on the inputs).  
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Referring to the second of the two above-mentioned assumptions made on the 

responses, two observations, reported in [Brincker & Ventura, 2015], must be 

mentioned. Firstly, the condition of having response signals with a zero mean is in 

general something that can be guaranteed in any case by performing signal processing 

operations on the recorded data - for example, direct current (DC) offsets that might 

be present in the measurements can be removed by performing a detrending operation. 

This means that if the recorded signals have not a zero mean, this condition can be 

guaranteed in the data analysis. Secondly, the assumption of having random responses 

with a distribution that is approximately Gaussian is in general fulfilled for structures 

tested under ambient vibrations. In fact, as extensively shown in [Brincker & Ventura, 

2015], the random responses of a structure due to white noise inputs have a 

distribution that is approximately Gaussian independently from the distribution of 

applied random inputs1. In other words, this means that the applied loads might have 

a distribution which is non-Gaussian, but the random responses due to such loads have 

in general a Gaussian distribution.  

The process of a typical Operational Modal Analysis (OMA) test is mainly 

composed by the following phases2:  

(1) test planning and preparation of the test setup; 

(2) measurement of the structural responses using accelerometric sensors and 

a data acquisition system; 

(3) check of the quality of the acquired data; 

(4) data analysis based on signal processing; 

(5) application of the techniques of the output-only modal identification to 

extract the natural modes of the structure; 

(6) validation of the identified modal model.  

                                                 
1 This principle is justified by the central limit theorem, as shown in [Brincker & Ventura, 

2015].   

2 General concepts related to the phases from no. 1 to no. 4 are presented in this section, while 

an overview of the different OMA techniques that can be applied on the data (phase no. 5) 

are presented in Section 2.2.2. An overview of the main criteria that can be applied for modal 

validation (phase no. 6) is provided in Section A.3 of Appendix A (after presenting the steps 

of the OMA techniques that are applied in the thesis).    



Chapter 2                                                                               Modal testing and identification  

 

50 

 

One important aspect that must be discussed in the planning phase of an 

ambient vibration test is related to the position of the accelerometric sensors. In 

particular, the number, the location, and the orientation of the sensors have to be 

defined. In many practical cases the number of the sensors available for the test is 

lower than the number of the points (i.e. the DOFs) of the structure where one wants 

to take the measurements. Of course, in fact, the higher the number of the sensors, the 

higher the costs that are associated with the instrumentations. In such practical 

situations, the test can be performed using a limited number of sensors  by adopting 

the following strategy. The test can be performed using both reference and roving 

sensors: the reference sensors are sensors with a fixed position during the whole test, 

while the roving sensors are sensors that are moved throughout the structures during 

the test. This means that at first the ambient vibration measurements can be acquired 

for a first layout of the reference and the roving sensors (first data set). Then, the 

roving sensors are moved in locations that are different from the ones considered for 

acquiring the first data set, while the position of the reference sensors is unaltered. 

Using this new layout of the sensors, the test is repeated (second data set). This 

operation is repeated by obtaining several data sets until the measurements have been 

acquired for all the points (i.e. the DOFs) of the structure that are of interest for the 

test.  

The modal parameters that are characterized by a spatial location are the mode 

shapes. Thus, merging the results of the operational modal analysis (in terms of mode 

shape components) obtained from the different data sets is an operation that can be 

performed for ambient vibration tests executed using the above-mentioned strategy. 

In this way, even if the test is performed using a limited number of sensors, mode 

shapes with components defined at all the points considered in the different test setups 

can be obtained. This operation, of course, can be performed if the reference sensors 

are fixed during the whole test and if data from these sensors are available in all the 

data sets.   

For a building structure tested under ambient vibrations the sensors that are 

typically used are, for example, force balance accelerometers. As reported in [Cunha 

& Caetano, 2005], such sensors can be used to measure accelerations in the low 

frequency range (e.g. 0-50 Hz), and they are insensitive to high frequency vibrations. 
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It is clear that force balance accelerometers are sensors suitable for performing 

ambient vibration tests in civil engineering, since the natural frequencies of civil 

structures are typically in the above-mentioned low frequency range.  

A typical layout of the sensors for an ambient vibration test performed on a 

simple rectangular “box type” building structure is reported in Fig. 2.3. According to 

[Brincker & Ventura, 2015], the layout reported in Fig. 2.3 is the layout that one 

should adopt when the test is performed using as few sensors as possible. In particular, 

the green arrows reported in Fig. 2.3 are the reference sensors, while the red arrows 

are roving sensors. The minimum number of the sensors required in the test is thus 

equal to five, where two sensors are reference sensors while three sensors are roving 

sensors. According to [Brincker & Ventura, 2015], several observations can be made 

on the layout of the sensors reported in Fig. 2.3.  

First of all, referring to simple rectangular “box type” building structures  that 

are subjected to ambient vibration tests, only the horizontal displacements of the mode 

shapes are usually estimated, while the vertical modal displacements are usually 

neglected [Brincker & Ventura, 2015]. This explains why, according to the layout 

reported in Fig. 2.3, the acceleration response measurements are taken only in the 

horizontal direction. Moreover, under the assumption of having floors with a rigid-

body in-plane behavior, the disposition of the roving sensors reported in Fig. 2.3 (i.e. 

three sensors whose directions do not converge to a unique point) is a typical 

disposition that can be used to estimate mode shapes characterized by horizontal 

displacement components in the two prevalent directions and rotational components. 

The above-mentioned rotations are, of course, around the vertical axis and can be 

obtained starting from two modal displacements estimated in the same direction but 

in different corners of the structure.  

The second observation is that, as shown by the green arrows reported in Fig. 

2.3, it is convenient to have the reference sensors at the top story of the building. This 

choice related to the reference sensors is made to avoid positions that can be possible 

nodes of the mode shapes (e.g. positions at the intermediate stories of the building).  

A final observation on the layout reported in Fig. 2.3 is the following: if one 

wants to estimate the components of the mode shapes at all stories of the structure 
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using the layout reported in Fig. 2.3, the number of the required test setups (and thus 

the number of the data sets to be acquired) is equal to the number of the stories of the 

structure. In each setup the roving sensors (red arrows) are positioned on a different 

story of the structure. Of course, if the number of sensors that can be used in the test 

is higher than the number of sensors reported in Fig. 2.3 (i.e. more sensors are 

available), then the number of the required test setups can be lower. In general, the 

higher the number of the sensors, the lower the number of the test setups required to 

perform the OMA analysis.  

 

 

Figure 2.3. Typical OMA measurement plan in a building structure  

(green arrows: reference sensors; red arrows: roving sensors). 

 

When an OMA test is performed and ambient vibration measurements are 

recorded, two fundamental aspects must be considered. First of all, it is important to 

acquire enough data - i.e. response measurements with an adequate length of time 

(details and indications on the minimum length of time of the measurements will be 

provided later in this section). Secondly, it is important to acquire measurements 

characterized by a good quality. As extensively discussed in [Rainieri & Fabbrocino, 

2014; Brincker & Ventura, 2015], in fact, good results can be obtained in the 

estimation of the modal parameters of the structures only if the quality of the acquired 

data is satisfactory. Otherwise, if the quality of the data is not good enough, then 
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performing the modal extraction using any output-only identification technique will 

be a really complex task (which will provide in the majority of the cases to non-

satisfactory or erroneous results).   

The quality of the ambient vibration measurements can be checked by 

performing some operations on the acquired data. First of all, it is important to take a 

look at the acquired time histories to avoid problems that are typically related to wrong 

settings in the data acquisition system.  For example, one should check that the signals 

are not clipped or if there is excessive noise on the measurements. Secondly, one 

should check if eventual outliers are present in the recorded vibration data, such as 

spikes, dropouts, etc. This operation can be performed not only by visually inspecting 

the measurements, but also by computing some statistical parameters (such as the 

mean or the standard deviation of portions of the acquired signals). Finally, it is also 

possible to check the validity of the assumptions that are usually made in OMA on the 

vibration responses of the structures (as discussed in previous paragraphs). For 

example, one can check if the measured responses are signals characterized by 

approximately a Gaussian distribution3.  

In a typical OMA process after having acquired the vibration data, checked the 

quality of the data, and performed some signal processing operations on the data (for 

example, operations of detrending, decimation, filtering, etc.), the extraction of the 

modal properties is performed using the techniques of the output-only modal 

identification. There exist several and well-established techniques that can be used to 

extract the modal properties from output-only vibration data, and some of these 

techniques will be described in next section (where a brief literature review of the 

different OMA identification techniques is presented).  

The OMA identification analysis can be performed either in time domain or in 

frequency domain. When one performs the OMA identification in time domain, the 

analysis is usually performed by evaluating correlation functions starting from the 

measured time histories. On the contrary, when the analysis is performed in frequency 

                                                 
3 An example of analyses performed to check the quality of ambient vibration measurements 

will be presented in Chapter 5, where the OMA results of an ambient vibration test performed 

on a steel frame structure will be discussed.  
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domain, spectral density functions are in general estimated from the acquired response 

signals.  

The correlation function for a time signal 𝑥(𝑡) can be calculated as follows  

𝑅𝑥𝑥(𝜏) = 𝐸[ (𝑥(𝑡)  𝑥(𝑡 + 𝜏) ]     (2.1) 

where E [ ∙ ] is the operator used to indicate the expected value and the parameter 𝜏 is 

a time lag that is used to introduce a shift in the time history. This function evaluates 

how points of the signal 𝑥(𝑡) separated by the time lag 𝜏 are correlated. Since the 

correlation function reported in Eq. (2.1) is calculated between the signal 𝑥(𝑡) and the 

same signal shifted-in-time, this function is properly an auto-correlation function. On 

the contrary, when the correlation function is evaluated starting from two signals 𝑥(𝑡) 

and 𝑦(𝑡), it is properly a cross-correlation function and it is defined as follows 

𝑅𝑥𝑦(𝜏) = 𝐸[ (𝑥(𝑡)  𝑦(𝑡 + 𝜏) ]     (2.2) 

The spectral density function is the discrete Fourier transform of the correlation 

function. Thus, the auto and cross spectral density functions (usually indicated in the 

literature as 𝑆𝑥𝑥(𝑓) and 𝑆𝑥𝑦(𝑓), respectively) form with the auto and cross correlation 

functions (𝑅𝑥𝑥(𝜏) and 𝑅𝑥𝑦(𝜏), respectively), Fourier transform pairs.  

In the OMA identification process the correlation functions (or the spectral 

density functions) are evaluated between the different signals of the acquired vibration 

measurements.  Referring to the correlation functions, two important assumptions are 

made on these functions in OMA. First of all, when the correlation functions are 

evaluated from random response signals, it is assumed that all the information about 

the modal properties of the structures are extracted from these random signals and 

included in the correlation functions. As shown in [Brincker & Ventura, 2015], this 

property is a direct consequence of dealing with structural responses that are random 

signals with a zero mean and a Gaussian distribution. The second assumption is that 

it is possible to consider the correlation functions as the free decays of the structural 

system (where, as already mentioned, the free decay is the response of the structure 
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under free vibrations)4. This second assumption implies that all the classical EMA 

modal identification techniques that can be applied starting from free decays (or 

starting from impulse response functions) can be also used in the context of the output-

only modal identification starting from correlation functions. In the same way, it is 

clear that many traditional input-output identification methods based on the evaluation 

of frequency response functions can be converted to the output-only case and can be 

applied starting from spectral density functions [Brincker & Ventura, 2015].  

As already mentioned, when an OMA test is performed, it is important not only 

to acquire measurements characterized by a good data quality, it is also important to 

acquire enough data. In other words, it is necessary to obtain response measurements 

with an adequate length of time. In general, the longer are the recorded time histories, 

the better are the OMA results. However, in practical applications it is of course 

necessary to have a way for estimating the length of time of the measurements that 

should be considered in the test. According to [Brincker & Ventura, 2015], this 

required length of time of the measurements (indicated as 𝑇𝑡𝑜𝑡) can be determined as 

follows. To define the parameter 𝑇𝑡𝑜𝑡, one has to estimate at first the maximum 

correlation time that is present in the responses. This quantity is also defined as the 

memory time of the system (𝑇𝑚𝑒𝑚), and it is assumed that this quantity depends on 

the first mode of the structure (i.e. the mode that has the lowest natural frequency) 

[Brincker & Ventura, 2015]. As already mentioned, in OMA the correlation functions 

can be considered as free decays of the structure. Thus, in theory the autocorrelation 

function of the first modal coordinate5 is proportional to  

𝑅(𝜏) = 𝑒−𝜁1𝜔1𝜏 cos(𝜔𝑑,1𝑡)    (2.3) 

where 𝜁1, 𝜔1 are the modal damping ratio and the natural circular frequency of the 

first mode, while 𝜔𝑑,1 is the damped natural frequency of the first mode defined as 

                                                 
4 More details about this assumption, which is a fundamental assumption in OMA, are 

presented in the Appendix A where the Natural Excitation technique [James et al., 1993] is 

presented.   

5 Details on how to obtain correlation functions in modal coordinates are provided in Section 

A.2 of the Appendix A, where the main steps of the Frequency Domain Decomposition (FDD) 

method [Brincker, Zhang & Andersen, 2001] are presented.  
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𝜔𝑑,1 = 𝜔1√1 − 𝜁1
2. According to [Brincker & Ventura, 2015], the memory time of the 

system 𝑇𝑚𝑒𝑚 is the time lag 𝜏 for which  

𝜁1𝜔1𝑇𝑚𝑒𝑚 = 𝜋     (2.4) 

In particular, the memory time of the system 𝑇𝑚𝑒𝑚  has the following property: after 

a time lag equal to 𝑇𝑚𝑒𝑚 the autocorrelation function expressed by Eq. (2.3) is reduced 

to approximately 4% 6. Starting from Eq. (2.4), the memory time of the system 𝑇𝑚𝑒𝑚 

can be expressed as  

𝑇𝑚𝑒𝑚 =
1

2 𝜁1𝑓1 
     (2.5) 

where the natural frequency of the first mode 𝑓1 is introduced instead of the natural 

circular frequency 𝜔1 (with 𝜔1 = 2𝜋 𝑓1). Finally, according to [Brincker & Ventura, 

2015], to guarantee that accurate estimates of the correlation functions (or the spectral 

density functions) are obtained from the data, the minimum length of time of the 

measurements is considered as 20 times the memory time of the system 𝑇𝑚𝑒𝑚. The 

length of time of the measurements 𝑇𝑡𝑜𝑡 is thus  

𝑇𝑡𝑜𝑡 > 20 𝑇𝑚𝑒𝑚 =
10

 𝜁1 𝑓1 
    (2.6) 

This last equation expresses the minimum length of time required for acquiring 

ambient vibration measurements according to [Brincker & Ventura, 2015]. However, 

more conservative indications are prescribed in the “Guidelines for the Measurement 

of Vibrations and Evaluation of Their Effects on Buildings” [ANSI S2.47, 1990], as 

discussed in [Brincker & Ventura, 2015], as well. According to the indications 

reported in ANSI S2.47, the length of time of the measurements should be at least  

𝑇𝑡𝑜𝑡 >
200

 𝜁1 𝑓1 
     (2.7) 

To conclude this section, the two main drawbacks that characterize an OMA 

test are discussed. It is worth noting that these two drawbacks have been already 

mentioned in Chapter 1 to introduce the problems and the objectives that are mainly 

considered in the thesis.  

                                                 
6 This result can be explained by considering that the exponential function in Eq. (2.3) 

evaluated for  𝜏 = 0 is 𝑒0 = 1, while 𝑒−𝜋 is approximately equal to 0.04.  
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First of all, since in OMA the input excitations can not be measured, mass 

normalized mode shapes can not be estimated directly from the vibration response 

data of an ambient vibration test [Brincker & Ventura, 2015]. In other words, the 

modal model that can be estimated in OMA is not a scaled modal model. Referring to 

the achievement levels in modal testing, defined in the classification made by 

[Dynamic Testing Agency, 1993] and shown in Section 2.1, in OMA only the level 

no. 2 can be obtained. This limitation, however, can be overcome using additional 

modal scaling techniques [Parloo et al, 2003; Brincker & Andersen, 2003; Bernal, 

2004; Aenlle et al., 2010; Khatibi et al., 2012; Lopez-Aenlle et al., 2012], as already 

discussed in Section 1.3 of Chapter 1.  

The second main drawback in OMA is due to the fact that the test is performed 

using exclusively the ambient or natural excitations: even if the inputs in general tend 

to have some common characteristics (as discussed in this section), there are always 

sources of variability in the inputs, which can not be, of course, controlled. For this 

reason, in OMA some structural modes may not be adequately excited, and thus they 

might not be identified.  

It is worth noting that the two above-mentioned drawbacks are in general not 

present in EMA tests, which are based on controlled input excitations and where such 

inputs excitations are measured. In any case and as shown in the literature [Rainieri 

& Fabbrocino, 2014; Brincker & Ventura, 2015], if one compares advantages and 

disadvantages of EMA and OMA when applied to civil structures, the latter remains 

a more convenient way for performing vibration tests on such structures.  

 

2.2.2 OMA identification techniques: a brief literature review  

As already mentioned in previous section, there exist several well-established 

techniques for output-only modal identification that can be applied in OMA testing. 

In this section a brief literature review of the most efficient and popular OMA 

identification techniques is presented. For an extensive and more comprehensive 

literature review of all the OMA identification techniques and for more details about 

each technique, the reader is referred to the books published on the topic of operational 
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modal analysis by [Rainieri & Fabbrocino, 2014; Brincker & Ventura, 2015] and in 

the review papers by [Cunha & Caetano, 2005; Zhang, 2005; Masjedian & Keshmiri, 

2009]. 

The OMA analysis, as already mentioned, can be performed either in time 

domain or in frequency domain. Thus, the OMA techniques can be divided in two 

groups depending on the domain in which the calculations are performed (i.e. time or 

frequency domain). The first group of techniques (time domain techniques) deals with 

response time histories or correlation functions, while the second group (frequency 

domain techniques) deals with spectral density functions. The distinction between 

working in time domain or frequency domain seems to be immaterial if one considers 

that in general any signal can be represented either in time domain or in frequency 

domain [Rainieri & Fabbrocino, 2014]. Notwithstanding this observation, from a 

practical point of view there are some differences between the time domain and the 

frequency domain identification techniques, and these differences must be mentioned.   

The main advantage of frequency-domain methods is that dealing with spectral 

density functions is a natural way to obtain a decomposition and a separation of the 

different structural modes in the different frequency ranges. On the contrary, in time 

domain methods when considering either the response time histories or the correlation 

functions all the structural modes contribute to such signals at any time, and this 

represents one drawback of the time domain methods [Brincker & Ventura, 2015]. 

Time-domain methods, however, have the advantage that the data used for the 

identification (e.g. correlation functions) are characterized by minimum bias and 

minimum errors. On the contrary, this is, in general, not true for the frequency-domain 

methods where bias can be present in the estimated spectral density functions 

[Brincker & Ventura, 2015]. Typical errors that may occur in the transformation of 

signals from time to frequency domain (for example, errors due to leakage or aliasing 

effects etc.) are, of course, not present when one works directly in time domain.  

Referring to the OMA identification techniques, another distinction is between 

parametric and non-parametric methods. The main characteristic of the parametric 

methods is that a model is fitted into the data, while, on the contrary, this operation is 

not performed using the non-parametric methods. Thus, the parametric methods are 
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more complex methods with respect to the non-parametric methods [Rainieri & 

Fabbrocino, 2014]. It is worth noting that, in general, all the time domain methods are 

parametric methods, while frequency domain methods can be either non-parametric 

or parametric.  

 

2.2.2.1 Time-domain OMA techniques 

This section presents some of the most common OMA identification techniques that 

can be applied in time domain. A description of the main characteristics of each 

technique is provided.  

▪ Modal identification using AR and ARMA models 

In the field of system identification [Ljung, 1987; Soderstrom & Stoica, 2001; 

Guidorzi, 2003], Auto Regressive (AR) models belong to the general class of the 

models that adopt an input-output representation to describe the dynamics of the 

system. This representation is one of the simplest ways to describe a dynamic system7, 

and it is theoretically the most suitable type of model that can be used for system 

identification from input/output data. The specific characteristic of AR models is, 

however, that they do not consider any observable inputs, and thus they are generally 

used to model time series [Guidorzi, 2003]. In the context of OMA, the identification 

using AR models can be performed by estimating at first the correlation functions, 

and then by determining the autoregressive coefficients that describe the dynamics of 

the system.  

Auto Regressive Moving Average (ARMA) models represent a more refined 

and complex version of the AR models. In addition to the autoregressive (AR) part of 

the model (which describes the dynamics of the system), in ARMA models a moving 

average (MA) is also introduced and used to model the noise [Rainieri & Fabbrocino, 

2014]. In the context of OMA, the identification using ARMA models can be 

                                                 
7 An alterative and different representation of a dynamic system is, for example, the input -

state-representation, or state-space representation, which will be introduced later in this 

section where other time-domain OMA techniques are described (e.g. Eigensystem 

Realization Algorithm or Stochastic Subspace Identification). 
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performed directly using the response vibration measurements. This represents one 

difference with respect to the technique based on AR models, where, on the contrary 

and as already mentioned, it is necessary to estimate the correlation functions from 

the recorded data. It is worth noting, however, that methods based on ARMA models 

require in general a very long calculation time, and, when applying these methods, a 

nonlinear optimization problem has to be solved. This implies that possible problems, 

such as convergence problems, may arise in the calculations. Due to these drawbacks, 

these techniques based on ARMA models are not commonly used in the field of 

operational modal analysis [Rainieri & Fabbrocino, 2014; Brincker & Ventura, 2015].  

 

▪ Ibrahim Time Domain (ITD) method 

The Ibrahim Time Domain [Ibrahim & Mikulcik, 1973; Ibrahim & Mikulcik, 1977] is 

a method that was originally formulated in the context of the traditional or classical 

modal identification and that can be applied starting from free decays. Then, the 

technique was combined with the Random Decrement (RD) technique, originally 

developed at NASA by [Cole, 1973], to extend the methodology to the case of output-

only modal identification, as shown in the work by [Ibrahim, 1977].  

In OMA the Random Decrement technique can be considered as a pre-

processing technique. As reported in [Brincker & Ventura, 2015], the RD technique 

is a fast and simple way for estimating correlation functions, using an approach that 

is alternative to the direct estimation method based on the definition of the correlation 

functions. The functions estimated using the RD technique are properly indicated as 

random decrement functions, and the technique is able to transform stochastic signals 

(such ambient vibration response measurements) into deterministic signals with a 

decaying sinusoidal trend. The operation of removing the stochastic components in 

the signals is performed through an averaging process between different portions of 

the original signal. These segments are selected by imposing some triggering 

conditions, which are used to determine the initial points of the segments used in the 

averaging process. It is worth mentioning that applications of the RD technique in 

OMA are presented in the works by [Asmussen et al., 1998; Rodrigues & Brincker, 

2005].  
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▪ Eigensystem Realization Algorithm (ERA)  

The Eigensystem Realization Algorithm (ERA) is a modal identification technique that 

was presented for the first time in the work by [Juang & Pappa, 1985] and that is 

extensively described in other later works [Juang, 1994; Juang & Phan, 2001].  

It is important to underline that the ERA method has a theoretical formulation 

that was developed in the framework of the system and control theory. The method 

adopts an input-state-output representation to model the dynamics of the structural 

system (which is also known in the literature as state space model). State space models 

are widely used in system and control theory, and they have the advantage that are 

capable of controlling complex systems in a computationally efficient way [De 

Schutter, 2000]. One of the main theoretical developments that contributed to the 

definition of the ERA method [Juang & Pappa, 1985] are the studies that were 

performed by [Ho & Kalman, 1966] in the field of the system realization theory and, 

specifically, on the concept of the minimal realization of linear time-invariant 

systems. On the basis of the above-mentioned work, the ERA technique was then 

formulated to solve structural system identification problems and, specifically, to 

determine the dynamic properties of the structures (i.e. to perform a modal 

identification).  

 In its original formulation the Eigensystem Realization Algorithm (ERA) is 

based on the identification of a state space model of a structure, assumed as linear and 

time-invariant, starting from experimental measurements of the free decays of the 

structure. The modal parameters of the structure are then determined by performing 

an eigenvalue analysis starting from the state space model identified from the data. 

The ERA method can be also applied starting from input/output vibration 

measurements. In such case, for example, the impulse response functions are 

estimated at first from the input/output data, and then the ERA method is applied. For 

the input-output case, it is worth mentioning that an alternative approach is to integrate 

the ERA method with the Observer Kalman Filter Identification (OKID) technique8 

[Juang et al., 1993; Juang, 1994]. 

                                                 
8 This input/output procedure based on the integration between the ERA method and the 

OKID technique was also extended to the case of output only identification, and it is indicated 

as Output-Only Observer Kalman Filter Identification (O3KID) [Vicario et al., 2015]. 
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 The Eigensystem Realization Algorithm (ERA) was applied starting from 

output-only vibration measurements in the work of [James et al., 1993], where the 

Natural Excitation technique (NExT) was presented. According to this technique, the 

correlation functions are estimated at first (using the direct estimation method based 

on the definition of the correlation functions). Then, according to the NExT technique, 

the ERA method is applied starting from the correlation functions and assuming such 

functions as free decays9. As reported in [Brincker & Ventura, 2015], the work by 

[James et al., 1993] provided a very important contribution since such work is one of 

the first attempt to justify (both from the theoretical point of view and in the 

applications) the use of correlation functions instead of free decays. This concept, as 

already mentioned in previous section, is one of the main assumptions in OMA 

[Brincker & Ventura, 2015].  

It is worth mentioning that other techniques (different from the direct 

estimation method) can be applied to estimate the correlation functions, and thus these 

techniques can be also used to complement the Eigensystem Realization Algorithm 

(ERA) in the output-only case. One of these techniques has been already mentioned 

in this section, and it is the Random Decrement technique. Alternatively, instead of 

using the direct method to compute the correlation functions, the spectral density 

functions can be estimated at first, and then the correlation functions in time domain 

can be determined through an inverse Fast Fourier Transform (FFT) of the spectral 

density functions estimated in frequency domain. However, as reported in [Brincker 

& Ventura, 2015], using the direct estimation method to obtain the correlation 

functions should always be considered as the preferable option. The other techniques 

for estimating correlation functions should be taken into account only in the cases in 

which, for example, it is necessary to minimize the time of the calculations.  

 

                                                 
 
9 It is worth noting that in the literature the NExT technique was not applied exclusively using 

the ERA method, but also using other traditional time-domain modal identification techniques 

(all these approaches are indicated in the literature as NExT-type procedures [Rainieri & 

Fabbrocino, 2014]). For this reason, in the present dissertation the approach based on the use 

of the NExT technique and the ERA method is also indicated as the NExT-ERA approach.   
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▪ Stochastic Subspace Identification (SSI) methods 

The Stochastic Subspace Identification (SSI) methods represent another class of time 

domain methods that can be applied in OMA.  These subspace-based methods for 

system identification were presented in the work of [Van Overschee and De Moor, 

1996], and then they were adopted and applied in the field of modal identification 

[Peeters et al., 1995; Peeters & De Roeck, 1999]. Similarly to the ERA method, these 

techniques are based on concepts related to the system and control theory.  

In OMA two different versions of the Stochastic Subspace Identification (SSI) 

method can be adopted: the covariance-driven SSI and the data-driven SSI. The 

covariance-driven SSI (which is also known as correlation-driven SSI) is a method 

that can be applied starting from correlation functions estimated from the response 

measurements. It is worth noting that the covariance-driven SSI is almost equivalent 

to the Eigensystem Realization Algorithm (ERA) applied starting from correlation 

functions (according to the NExT technique). The data-driven SSI, on the contrary, is 

a method that can be applied directly starting from the vibration response 

measurements, without the need to perform a preliminary and separate operation to 

estimate the correlation functions. In the data-driven SSI, in fact, the operation of 

calculating the correlation functions is an operation that is integrated and performed 

implicitly in the steps of the algorithm. As reported in [Rainieri & Fabbrocino, 2014], 

the results, in terms of the modal parameter estimates, that can be obtained using the 

covariance-driven SSI or the data-driven SSI are characterized by similar accuracy.  

 

2.2.2.2 Frequency-domain OMA techniques 

This section presents a description of some of the most common OMA identification 

techniques that can be applied in frequency domain.  

▪ Basic Frequency Domain (BFD) method 

One of the earliest frequency domain approaches is the Basic Frequency Domain 

(BFD) method. This method is also known as “classical frequency-domain approach”, 

as reported in [Brincker & Ventura, 2015], or “peak picking” method, as reported in 
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[Rainieri & Fabbrocino, 2014]. The BFD method can be considered as one of the 

simplest OMA approaches. The method, in fact, is very similar to the peak picking 

technique available in traditional modal analysis and applied on frequency response 

functions. In the case of output only data, the peak picking technique is applied on the 

auto and cross spectral density functions computed from the response measurements. 

The method can be applied if lightly damped structures are considered and if the 

modes of such structures are well separated. As reported in [Brincker & Ventura, 

2015], one practical implementation of the BFD method was developed by [Felber, 

1993], and then this implementation was used to analyze the data of OMA tests 

performed on civil engineering structures. 

 

▪ Frequency Domain Decomposition (FDD) method 

The Frequency Domain Decomposition (FDD) method [Brincker, Zhang & Andersen, 

2001] can be considered as an extension of the Basic Frequency Domain (BFD) 

method. Similarly to the BFD method, the FDD method is a non-parametric approach. 

However, the FDD method is a method that is more complex than the BDF method, 

and, in particular, the FDD method overcome some of the limitations of the BDF 

method. Two important characteristics of the FDD method are the following: the 

method is able to analyze cases with closely spaced modes, and the method is easy to 

be implemented. 

According to the steps of the FDD method, at first the auto and cross spectral 

density functions are evaluated for all the response measurements (i.e. for all the 

channels). Such spectral density functions are assembled in the so-called spectral 

density matrix, and then a singular value decomposition is performed on such matrix. 

One important feature of the FDD method is that plotting the singular values 

(computed from the SVD of the spectral density matrix) as a function of the frequency 

is a convenient way to analyze simultaneously all the information related to the 

different measurements [Brincker & Ventura, 2015]. It is worth noting that the FDD 

method is similar to the traditional modal analysis approach based on the Complex 

Modal Indicator Function (CMIF) [Shih et al., 1988]. This last approach is based on 

a singular value decomposition of the frequency response function (FRF) matrix.  
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The FDD method can be used to identify natural frequencies and mode shapes. 

On the contrary, it is not possible to have estimates of the modal damping ratios usign 

the FDD method. To overcome this shortcoming, an improved version of the 

technique - i.e. the Enhanced Frequency Domain Decomposition (EFDD) - was 

developed [Brincker, Ventura & Andersen, 2001]. This improved version of the FDD 

method is also able to provide estimates of the modal damping ratios.  

 

2.3 Output-only modal identification techniques adopted in the thesis 

and applications 

The output-only modal identification techniques that are adopted in the thesis are the 

Eigensystem Realization Algorithm (ERA) [Juang & Pappa, 1985; Juang, 1994], 

applied in the output-only case according to the Natural Excitation technique (NExT) 

[James et al., 1993], and the Frequency Domain Decomposition (FDD) [Brincker, 

Zhang & Andersen, 2001]. Such techniques were used as a tool for extracting the modal 

parameters of the structures considered in the thesis. The modal parameters identified 

from vibration responses were then used to estimate the modal flexibility of the 

considered structures, according to the general modal flexibility-based approach that 

is presented in next chapter (i.e. Chapter 3).  

The description of the main steps and the analytical formulation of the two 

well-known OMA techniques that are applied in the thesis are reported in Appendix 

A. In particular, in Section A.1 the main steps of the Eigensystem Realization 

Algorithm (ERA) applied according to the Natural Excitation technique (NExT) are 

presented, while the main steps of the Frequency Domain Decomposition (FDD) 

method are shown in Section A.2. In the remainder of Appendix A, some numerical 

and experimental case studies are presented, and in these case studies the two above-

mentioned output-only modal identification techniques were applied.  
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Chapter 3 

Modal flexibility and modal flexibility-based 

deflections for structural identification and 

damage detection  

 

 

 

 

This chapter introduces the theory behind the modal flexibility-based techniques for 

structural identification and damage detection that represented the starting point for 

most of the research investigations presented in the thesis. These modal flexibility-

based techniques are the Uniform Load Surface method [Zhang, 1993; Zhang & 

Aktan, 1995; Zhang & Aktan, 1998] and the Positive Shear Inspection Load method 

[Koo et al., 2010; Koo et al, 2011; Sung et al., 2012]. As already mentioned in Chapter 

1, the first approach was developed mainly for bridge structures, while the second 

approach was specifically developed for building structures.  

In the first part of the chapter, the general procedure that can be adopted to 

estimate modal flexibility matrices of MDOF structural systems from vibration data 

is outlined. Then, it is shown how structural deflections can be computed from the 

modal flexibility matrices.  These two operations are present both in the Uniform Load 

Surface method and in the Positive Shear Inspection Load method. In the final part of 

the chapter the theory behind the Positive Shear Inspection Load method for vibration-

based damage detection in building structures is presented.  
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3.1 Estimation of modal flexibility matrices from vibration data 

In this section it is shown how the modal flexibility matrix of an MDOF structural 

system can be estimated starting from vibration data. To derive the analytical 

expressions needed to perform this operation, the continuous-time second-order 

equation of motion of a generic n-DOF damped structure under free vibrations is 

considered 

𝐌 �̈�(t)  +  𝓒 �̇�(t)  +  𝐊 𝐱(t)  =   𝟎    (3.1) 

where x(t)n×1 is the displacement vector and Mn×n, 𝓒n×n, Kn×n are the mass, damping 

and stiffness matrices, respectively. As reported in [Alvin et al., 2003], the undamped 

portion of this equation of motion can be decoupled if the equation is expressed in the 

modal space. This operation can be done by substituting the displacement vector x(t) 

in Eq. (3.1) with the following expression  

𝐱(t) =  𝚽  𝒒(𝑡)    (3.2) 

where  𝒒(𝑡) are the displacements expressed in modal coordinates and 𝚽 𝑛×𝑛 is a 

matrix that contains mass-orthogonal and mass-normalized real mode shapes. This 

matrix is derived from the generalized eigenvalue problem associated with the 

undamped portion of the system  

 𝐊 𝚽 =   𝐌 𝚽 𝚲     (3.3) 

where 𝚲 𝑛×𝑛 is the spectral matrix associated to the above-mentioned eigenvalue 

problem. By substituting Eq. (3.2) into Eq. (3.1), the following expression can be 

derived  

𝐌 𝚽 �̈�(t) +  𝓒 𝚽 �̇�(t) +  𝐊 𝚽 𝒒(t)  =   𝟎   (3.4) 

Then, by pre-multiplying Eq. (3.4) by the term 𝚽𝐓, the following equation is obtained  

�̈�(t) + 𝚯 �̇�(t) +  𝚲  𝒒(t)  =   0     (3.5) 

with  

𝚽𝐓 𝐌 𝚽 = 𝐈    (3.6) 

𝚽𝐓 𝐊 𝚽 =  𝚲      (3.7) 

𝚽𝐓 𝓒 𝚽 =  𝚯    (3.8) 
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In these last equations 𝐈𝑛×𝑛 is the identity matrix and 𝚲𝑛×𝑛 is a matrix that contains 

the square of the natural circular frequencies ωi
2 of the structure on the main diagonal 

- i.e. 𝚲 = diag{ ωi
2} for i = 1 … n.  

It is worth noting that, for a generic system with a generic damping behavior, 

only the undamped portion of the system can be decoupled using the above-mentioned 

modal transformation. In fact, only the matrices 𝐈𝑛×𝑛 and 𝚲𝑛×𝑛 are diagonal matrices, 

while the matrix 𝚯 is not necessarily diagonal. Only if the damping behavior of the 

system can be modeled using a proportional damping model (for example, a Rayleigh 

damping model such that 𝓒 =  α 𝐌 +  β 𝐊  where α, β are scalar quantities, or a more 

general model such that 𝓒 =  ∑αi 𝐌
−1 𝐊i  where αi is scalar quantity) [Alvin et al., 

2003], then the second order equation of motion can be completely decoupled and the 

matrix 𝚯 is also diagonal  

𝚽𝐓 𝓒 𝚽 =  𝚯 =  diag{2 ζi ωi}   with i = 1,…, n   (3.9) 

In this last equation the term ζi is the modal damping ratio related to the generic i-th 

mode of the structure. It is worth noting, however, that, as shown later in this section, 

having the knowledge of the modal damping ratios related to the modes of the 

structure is not necessary for the estimation of the modal flexibility matrix.  

By reformulating Eq. (3.7), the stiffness matrix of an undamped or classically-

damped MDOF structure can be expressed as a function of the natural frequencies and 

the mass-normalized real mode shapes 

𝑲 = 𝚽−𝑇 𝚲 𝚽−1    (3.10) 

The flexibility matrix F of the structure is the inverse of the stiffness matrix, thus the 

flexibility matrix can be expressed in terms of the modal parameters using the 

following equation  

𝑭 =  𝚽 𝚲−1 𝚽𝑇    (3.11) 

which is derived by inverting both sides of Eq. (3.10).  

If the modal parameters (in terms of natural frequencies and mass-normalized 

mode shapes) of a structure are extracted using modal identification techniques from 

the data of a vibration test, theoretically both Eq. (3.10) and Eq. (3.11) can be used to 
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obtain, respectively, an estimate of the stiffness matrix or the flexibility matrix of the 

structure. From a practical point of view, however, there exists, an important 

difference between performing the above-mentioned operations by considering the 

stiffness matrix or the flexibility matrix, as extensively described in the literature 

[Berman & Flannelly, 1971; Duan et al., 2005; Koo et al., 2010]. To show this 

important aspect, let us explicitly introduce the terms ωi
2, i.e. the square of the natural 

circular frequency related to the i-th mode, in Eqs. (3.10, 3.11) 

𝑲 = 𝚽−𝑇   [

\

ωi
2

\

] 𝚽−1   (3.12) 

𝑭 =  𝚽 [

\
1

ωi
2

\

] 𝚽𝑇    (3.13) 

It is evident in Eqs. (3.12, 3.13) that while in the stiffness matrix the influence of the 

i-th mode depends on the term ωi
2, in the flexibility matrix the influence of the i-th 

mode depends on the term 
1

ωi
2. This property related to the above-mentioned equations 

plays an important role in the choice of one formulation or the other when dealing 

with a vibration test. In fact, from a vibration test the first lower modes are generally 

identified, while it is more difficult to extract the high-order modes. Of course, the 

first modes of the structure are characterized by the lower values of the natural 

frequencies. This means that the contribution of the lower modes in the flexibility 

matrix is higher with respect to the contribution of the same modes in the stiffness 

matrix [Berman & Flannelly, 1971]. This result was also shown in the work by [Gao 

& Spencer, 2002], where numerical simulations were performed on a 40 DOFs planar 

truss using eigenvalue analyses.  

In light of this premise, it is clear that estimating flexibility matrices from 

identified modal parameters is a more convenient approach than estimating stiffness 

matrices. When this advantageous operation is performed, the flexibility matrix is 

usually indicated as modal flexibility matrix [Zhang & Aktan, 1998]. The modal 

flexibility matrix has also the advantage that it can be easily assembled using a limited 

number of modes. In fact, Eq. (3.13), which is expressed in terms of all the modal 
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parameters of the structure (i.e. both the matrices 𝚽 and 𝚲 have dimensions equal to 

n × n), can be reformulated in terms of truncated matrices, as follows  

𝑭𝒓 = 𝚽𝒓 𝚲𝒓
−1 𝚽𝒓

𝑇    (3.14) 

where r is the number of the modes included in the calculation with r ≤ n, 𝚽𝒓 𝑛×𝑟 is a 

modal matrix formed by r columns and each column contains a mass-normalized mode 

shape vector,  𝚲𝒓 𝑟×𝑟 is a diagonal spectral matrix which contains the square of the 

first r natural circular frequencies ωi
2 on the main diagonal, i=1…r is the mode index, 

and n is the number of the DOFs. It is worth noting that dealing with a limited number 

of modes (thus dealing with modal and spectral matrices that have reduced dimensions 

with respect to the corresponding matrices assembled using all the modal parameters) 

is an operation that can be easily handled in the equation of the modal flexibility 

matrix (3.14). On the contrary, if one uses a limited number of modes to assemble the 

stiffness matrix (according to Eq. 3.10), then pseudo-inverse operations have to be 

performed to deal with the mode shape matrix assembled using r modes, which is a 

rectangular matrix. This matrix, in fact, needs to be inverted according to the equation 

of the stiffness matrix expressed as a function of the modal parameters (Eq. 3.10).  

The equation of the modal flexibility matrix (Eq. 3.14) can be expressed in terms 

of the individual components of the mode shapes 𝜙𝑗,𝑖 - with j =1 … n (DOF index) 

and i = 1… r (mode index) - and the natural circular frequencies 𝜔𝑖 as follows  

𝑭𝒓 =

[
 
 
 
 
 
 
 ∑

𝜙𝑛,𝑖
2

𝜔𝑖
2

𝑟
𝑖=1 ∑

𝜙𝑛,𝑖𝜙𝑛−1,𝑖

𝜔𝑖
2

𝑟
𝑖=1 ⋯ ⋯ ∑

𝜙𝑛,𝑖𝜙1,𝑖

𝜔𝑖
2

𝑟
𝑖=1

∑
𝜙𝑛−1,𝑖𝜙𝑛,𝑖

𝜔𝑖
2

𝑟
𝑖=1 ∑

𝜙𝑛−1,𝑖
2

𝜔𝑖
2

𝑟
𝑖=1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱

∑
𝜙1,𝑖𝜙𝑛,𝑖

𝜔𝑖
2

𝑟
𝑖=1 ⋯ ⋯ ∑

𝜙1,𝑖
2

𝜔𝑖
2

𝑟
𝑖=1 ]

 
 
 
 
 
 
 

 (3.15) 

where each component of the matrix 𝑭𝒓 is   

𝑓𝑗,𝑘 = ∑
𝜙𝑗,𝑖 𝜙𝑘,𝑖

𝜔𝑖
2

𝑟
𝑖=1      with j,k = 1…n   (3.16) 

It is evident from this formulation that the flexibility matrix 𝑭𝒓 is assembled using the 

contributions of the different modes, and these contributions are summed together for 

i = 1 ... r.  



Chapter 3                                                                          Modal flexibility-based approaches 

 

72 

 

If all the modes are considered (i.e. r=n) and if we assume to be in the ideal case 

in which we are dealing with exact modal parameters (for example, the modal 

identification is applied on noiseless vibration data), then the static flexibility matrix 

𝑭𝒏 is obtained using Eq. (3.14), where the subscript n indicates that all the modes are 

considered. On the contrary, if r < n the components of the modal flexibility matrix 

are approximated with respect to the corresponding exact components of the static 

flexibility matrix [Berman & Flannelly, 1971]. As reported in [Doebling et al., 1996], 

the difference between the two terms (i.e. the modal flexibility obtained using a 

limited number of modes and the static flexibility) is indicated in the literature as 

residual flexibility. This last term is related to the contribution of the modes that are 

not included in the calculations. Moreover, according to [Zhang & Aktan, 1998] and 

as anticipated in Chapter 1, the errors that are introduced when computing the modal 

flexibility matrix using a limited number of modes are indicated in the literature as 

modal truncation errors. As shown later in this chapter, these modal truncation errors 

also affect the deflections that are calculated from the modal flexibility matrices, and 

this is an aspect that will be addressed specifically in Chapter 4. Referring to the modal 

truncation errors, it is worth noting that in general accurate estimates of the modal 

flexibility matrices can be obtained using the first lower modes of the structures. In 

any case, as discussed in this section, the modal truncation errors introduced in the 

computation of the modal flexibility matrix using a limited number of modes are lower 

than the modal truncation errors introduced in the evaluation of the stiffness matrix 

using the same subset of structural modes.  

The modal flexibility matrix has some interesting properties that are 

summarized herein according to the more extensive description presented in [Zhang 

& Aktan, 1998]. First of all, each term in the summation that is present in Eq. (3.16) 

– i.e. the expression of a generic component in the modal flexibility matrix – is 

independent from the global sign of the i-th mode shape (i.e. it does not change if the 

mode shape is multiplied by -1). This is because the contribution of the i-th mode to 

the component of the flexibility matrix located in the position ( j,k) contains the 

product 𝜙𝑗,𝑖 ×  𝜙𝑘,𝑖, where 𝜙𝑗,𝑖 , 𝜙𝑘,𝑖 are, respectively, the j-th and the k-th components 

of the i-th mode shape vector. The second property of the modal flexibility matrix, 

which derives directly from the first property, is that only the diagonal components of 
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the matrix are always positive quantities. This is evident in Eq. (3.15) where each i-

th contribution to the diagonal components of the matrix contains the square of one 

mode shape component at the numerator and the square of the natural circular 

frequency at the denominator. A third property, reported in the work by [Zhang & 

Aktan, 1998], is that the lower modes have a major contribution in the modal 

flexibility than the higher modes (this property has been already discussed in this 

section and derives from the fact that each term in the summation present in Eq. 3.16 

has the square of the natural circular frequency 𝜔𝑖
2 at the denominator).  

A final remark, reported in the work by [Zhang & Aktan, 1998] referring to 

the properties of the modal flexibility matrices, is that particular care should be taken 

when assembling these matrices in case of structures with closely spaced modes. This 

is a common situation that can be encountered in practice (for example, when a 

building structure, characterized by a symmetric plan and similar values of the story 

stiffness in the two prevalent directions, is tested). Dealing with closely spaced modes 

in modal identification is a problem that in general can be reasonably handled if a 

multiple input test (which, as discussed in Chapter 2, is generally the case for 

structures tested under ambient vibrations) and suitable modal identification 

techniques are considered. One of the techniques that are suitable to deal with closely 

space modes is, for example, the Frequency Domain Decomposition (FDD) [Brincker 

& Ventura, 2015], as discussed in Chapter 2. However, as described in [Brincker & 

Aenlle, 2015; Brincker, 2015], the case of closely spaced modes inherits some relevant 

properties from the theoretical case of the repeated eigenvalues in structural dynamics 

(i.e. the case in which a structure, described through an analytical model, has two 

natural frequencies that are identical). One of these properties is that, according to the 

dynamic characteristic equations of an undamped system, the orthogonality relation 

between two modes characterized by the same eigenfrequencies is not assured 

[Brincker & Aenlle, 2015; Brincker, 2015]. A similar property may thus be related to 

identified closely spaced modes, and issues may arise if modes characterized by such 

property are employed to calculate the modal flexibility matrix using Eq. (3.14). In 

fact, dealing with mode shapes that are orthogonal with respect to the mass matrix of 

the structure is one of the assumptions that are made (as shown in this section) to 

derive the equations of the stiffness/flexibility matrices expressed as a function of the 
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modal parameters of the structure (starting from the general equation of motion of a 

damped system under free vibrations). With reference to the problem of assembling 

modal flexibility matrices in the case of closely spaces modes it is worth noting, 

however, that there exist examples in the literature where the modal flexibilities were 

adequately estimated in these special situations. One of these examples is reported in 

work by [Hogue et al., 1991], where a reinforced concrete bridge was subjected to 

vibration tests: the bridge was excited by the impact of a weight that was dropped on 

the bridge deck. In this experimental case study, the modal flexibility coefficients of 

the bridge structure were adequately estimated even in presence of several closely 

spaced modes. 

 

3.2 Estimation of modal flexibility-based deflections from vibration 

data 

Once the modal flexibility matrix of a generic structure has been estimated from 

vibration data, such matrix can be considered as an experimentally-derived model of 

the structure and used to calculate the deflection of the structure due to a generic 

applied load. This deflection is indicated in the literature as a modal flexibility-based 

deflection. This operation of estimating modal flexibility-based deflections has to be 

performed according to both the Uniform Load Surface method [Zhang, 1993; Zhang 

& Aktan, 1995; Zhang & Aktan, 1998] and the Positive Shear Inspection Load method 

[Koo et al., 2010; Koo et al, 2011; Sung et al., 2012] for damage detection. According 

to these methods, the applied loads are indicated as “inspection loads” because the 

resulting deflections are considered as important sources of information to evaluate 

the condition of the structure. It is worth noting that, as already mentioned in Chapter 

1, the inspection loads are loads that are not effectively acting on the real structure 

that was tested. These loads are applied only in a second phase related exclusively to 

the data analysis and that is different from the testing phase, as evident in Fig. 3.1.  
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Figure 3.1. Estimation of modal flexibility-based deflections from vibration data 

 

The deflection of a generic MDOF structure due to a generic load p n×1 can be 

determined starting from the modal flexibility matrix 𝑭𝒓 assembled using r modes 

(Eq. 3.14) as follows 

𝒙𝒑,𝒓 = 𝑭𝒓 𝒑     (3.17) 

where 𝒑 = [𝑝𝑛   𝑝𝑛−1  …   𝑝1]
𝑇 is a generic inspection load. Considering that the modal 

flexibility matrix can be expressed in terms of the modal parameters as shown in Eq. 

(3.15), each displacement components of the deflection can be expressed as follows 

𝑥𝑝,𝑟,𝑗 = ∑
𝜙𝑗,𝑖

𝜔𝑖
2 (𝜙𝑛,𝑖𝑝𝑛 + 𝜙𝑛−1,𝑖𝑝𝑛−1 + ⋯+ 𝜙1,𝑖𝑝1)

𝑟
𝑖=1   (3.18) 

According to the Uniform Load Surface method for vibration-based damage detection 

[Zhang & Aktan, 1998], a uniform load (UL) 𝒖 = [1   1  …    1]𝑇 is selected as the 

inspection load. This inspection load is characterized by unit values that act as a load 

at each DOF of the structure. It is worth noting that adopting a uniform load as the 

inspection load is a choice that should also be made according to the Positive Shear 

Inspection Load method [Koo et al., 2010] for damage detection in building structures 

(as shown in Section 3.3).  

In light of this premise, the deflection of an MDOF structure calculated starting 

from the modal flexibility matrix 𝑭𝒓 and due to a uniform load 𝒖 (i.e. the uniform load 

surface according to [Zhang & Aktan, 1998]) is expressed as 

𝒙𝒖,𝒓 = 𝑭𝒓 𝒖     (3.19) 

where the j-th component of the deflection vector 𝒙𝒖,𝒓 is 

𝑥𝑢,𝑟,𝑗 = ∑
𝜙𝑗,𝑖

𝜔𝑖
2 (𝜙𝑛,𝑖 + 𝜙𝑛−1,𝑖 + ⋯+ 𝜙1,𝑖) 

𝑟
𝑖=1 = ∑

𝜙𝑗,𝑖  ∑ 𝜙𝑘,𝑖
𝑛
𝑘=1

𝜔𝑖
2  𝑟

𝑖=1   (3.20) 
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As reported in [Zhang & Aktan, 1998], some interesting observations can be 

formulated on the uniform load deflection. First of all, the contribution of a single 

mode in Eq. (3.20) does not depend on the global sign of the mode shape (i.e. it does 

not change if the mode shape is multiplied by -1). This is a propriety that was already 

observed for the contribution of each single mode in each component of the modal 

flexibility matrix (Eq. 3.16). However, if one compares Eq. (3.16) and Eq. (3.20), an 

important difference is evident between the two equations. The generic mode shape 

component  𝜙𝑘,𝑖 present in Eq. (3.16), which is related to the modal flexibility, is 

substituted in Eq. (3.20), which is related to the uniform load modal flexibility-based 

deflection, by the term ∑ 𝜙𝑘,𝑖
𝑛
𝑘=1 . For the sake of convenience and by introducing a 

different notation with respect to the original one presented in [Zhang & Aktan, 1998], 

the term ∑ 𝜙𝑘,𝑖
𝑛
𝑘=1  present in Eq. (3.20) is indicated herein as 𝑠𝑖, and Eq. (3.20) is 

reformulated as  

𝑥𝑢,𝑟,𝑗 = ∑
𝜙𝑗,𝑖 

𝜔𝑖
2  𝑠𝑖

𝑟
𝑖=1      (3.21) 

According to [Zhang & Aktan, 1998], the term 𝑠𝑖 is the summation of all the 

coefficients of the i-th mode shape, and it can be considered as the contribution of that 

mode. In general, higher values of the term 𝑠𝑖 are obtained for the lower modes of the 

structure. For this reason, by considering an increasing number of modes included in 

the calculation, the convergence of each component of the UL deflection to the exact 

solution (i.e. the deflection calculated starting from the theoretical static flexibility 

matrix) is more rapid with respect to each component of the modal flexibility matrix. 

As already mentioned, this is due to the presence in Eq. (3.21) of the term 𝑠𝑖 =

∑ 𝜙𝑘,𝑖
𝑛
𝑘=1  and implies that the components of the uniform load deflections are less 

sensitive to modal truncation errors than the components of the modal flexibility 

matrices. This property was shown in the work by [Zhang & Aktan, 1998] through 

numerical analyses performed both on a 10 DOF mass-spring model and on a FEM 

model of a bridge structure.  

According to [Zhang & Aktan, 1998], a third property related to the 

components of the UL deflection is that such components are less sensitive to 

experimental errors than the components of the modal flexibility matrix. For example, 

experimental errors can be due to uncertainties that affect the mode shape components 
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estimated from vibration measurements, which are, in turn, affected by inevitable 

noise. The above-mentioned property derives from the fact that the operation of 

double summation present in Eq. (3.20) acts as a way of averaging random errors that 

affect the components of the mode shapes. This double summation effect is, on the 

contrary, not present in the equation of the generic component of the modal flexibility 

matrix (Eq. 3.16).  

These properties of the uniform load deflection, formulated by [Zhang & 

Aktan, 1998] in the framework of the uniform load surface method, highlight some of 

the advantages of considering the modal flexibility-based deflections, instead of the 

modal flexibility matrices, as sources of information for structural identification and 

damage detection purposes. Estimating the deflections of structures starting from 

modal flexibility matrices also represents the core of the calculations that have to be 

performed according to the Positive Shear Inspection Load method [Koo et al., 2010] 

for damage detection in building structures. This method is presented in detail in next 

section.  

 

3.3 Damage detection using modal flexibility-based deflections due to 

Positive Shear Inspection Loads (PSIL): a state-of-the-art approach  

This section presents the method that was recently developed for the detection 

of damage in building structures tested under ambient vibrations. The method was 

firstly presented in the work by [Koo et al., 2010]. Then, further improvements of the 

technique were presented in later works [Koo et al., 2011; Sung et al., 2012]. As 

shown in this section, the method is based on the estimation of the modal flexibility-

based deflections of building structures. These deflections are calculated from 

experimentally-derived modal flexibility matrices of the structures by applying 

special loads termed Positive Shear Inspection Loads (PSIL). As already mentioned 

in Chapter 1 and for the sake of brevity, the method is denoted in the present 

dissertation as PSIL method (even if this terminology was not used in the work by 

[Koo et al., 2010] to indicate the approach). According to the methodology, the 

operation of estimating modal flexibility-based deflections has to be done at first using 
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the vibration data of the structure assumed as the pristine or undamaged structure (i.e. 

the baseline state). Then, the same operation is repeated using the data obtained from 

the structure in the inspection stage (i.e. the possibly damaged state). Eventual 

changes in such deflections are used to localize and quantify damage in the structure. 

The types of damage the PSIL method can deal with are mainly reductions in the 

stiffness of one or more stories of building structures.  

The PSIL method was formulated with reference mainly to building structures 

that can be modeled as plane shear-type building structures. A practical example of 

such structures is a frame building structure characterized by horizontal elements (e.g. 

beams) which can be supposed as infinitely stiff in comparison to the vertical elements 

(e.g. columns), as shown in Fig. 3.2. The equations and the analytical formulation of 

the method were thus obtained starting from a shear-type model of a building 

structure.  

According to [Koo et al., 2010], the method can be applied if horizontal 

acceleration measurements are available at all the stories of the structure that is tested 

under ambient vibrations (Fig. 3.2a). As already mentioned, the method was 

formulated for structures that can be modeled as plane shear buildings, which are 

structures characterized by a number of the degree-of-freedoms (DOFs) that is equal 

to the number of the stories. Since we are dealing with a plane structure, at least one 

measurement of horizontal accelerations is required at each story. Of course, all the 

measurements have to be acquired in the same direction of the structure, which is the 

direction that is considered in the 2D analysis. In addition, it is evident that according 

to the methodology there is a one-to-one correspondence between the number of the 

DOFs of the idealized model of the structure and the number of the measurements.  
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Figure 3.2. Shear building structures: a) location of the sensors; b) application of a uniform 

load as the Positive Shear Inspection Load (PSIL). 

 

In the experimental applications that were performed by the authors that 

proposed the methodology [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012], it is 

assumed that, not only the acceleration measurements, but also the sensors are 

available at all the stories of the structure. Referring to this point, it is worth noting, 

however, that having sensors at all the stories is not the only option that can be adopted 

to obtain acceleration measurements at all the stories. In fact, as discussed in Chapter 

2, one option that is alternative to the case of having sensors at all the stories is to 

acquire multiple data sets of the ambient vibration measurements by adopting both 

reference and roving sensors (i.e. fixed and moving sensors) [Brincker & Ventura, 

2015]. In this last case, the number of the sensors needed to apply the damage 

detection approach can thus be lower than the number of the stories of the structure.  

The main steps of the PSIL damage detection methodology (as shown in Fig. 

3.3) are presented herein. Then, in the second part of this section the analytical and 

rigorous demonstration of the validity of the approach for shear building structures, 

as formulated in the work by [Koo et al., 2010], is provided. As evident in the flow 

chart of Fig. 3.3, the main part of the calculations follows two different paths. On one 

side, the calculations are performed for the structure that is assumed as the pristine or 

undamaged structure (path on the left-hand side in Fig. 3.3, where B stands for 

baseline state). On the other side, the calculations are performed for the possibly 
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damaged structure that is considered in the inspection stage (path on the right-hand 

side in Fig. 3.3, where I denotes the state related to the inspection stage).  

 

 

Figure 3.3. Flow chart of the Positive Shear Inspection Load (PSIL) method for damage 

detection in building structures. 

 

The methodology is applied starting from the response measurements of the 

building structure tested under ambient vibrations. These vibration data are divided 

into two groups: the first data set is related to the undamaged structure (acquired in 

the baseline state), while the second group is related to the possibly damaged structure 

(acquired in the inspection stage). As reported in Fig. 3.3, the data set are indicated as 

the training and the testing data sets, according to the terminology used in the pattern 

recognition framework for SHM [Farrar & Worden, 2013]. It is worth noting that this 

alternative terminology was not used by the authors that proposed the methodology. 

The alternative terminology is adopted in the present dissertation because an attempt 

is made to interpret and discuss the validity of the PSIL method in the framework of 

the general theory for vibration-based damage detection (and the related fundamental 

axioms for SHM, as reported in Chapter 1) recently presented in the important work 

of [Farrar & Worden, 2013].  
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In the first step of the methodology any output-only modal identification 

technique can be applied to estimate the modal parameters of the structure starting 

from the recorded ambient vibration data. In the second step modal flexibility matrices 

of the structures are assembled. As already mentioned in Section 3.1, to perform this 

operation mass-normalized mode shapes are required. However, in output-only modal 

identification only arbitrarily-scaled mode shapes can be obtained. The modal masses 

are in fact not directly available in OMA because, as reported in [Brincker & Ventura, 

2015], the input forces are not measured, and thus it is not possible to have a 

relationship between the input forces and the structural responses (which is, on the 

contrary, available in classical experimental modal analysis). The mass normalization 

of the mode shapes in output-only modal identification can be carried out using the 

methods that belong to the class of the “mass change methods” [Parloo et al, 2003; 

Brincker & Andersen, 2003; Bernal, 2004; Aenlle et al., 2010]. The mass changes that 

have to be applied on the structure, according to such techniques, have to be adequate 

for the considered structure, and these changes have to be quantified and known. 

However, as already discussed in Chapter 1, it migth be challenging in pract ice to 

apply to the structure such mass modifications. The use of the added mass methods is 

indicated as a possible strategy to perform the mass normalization of the mode shapes 

in the work related to the PSIL method [Koo et al., 2010]. However, an alternative 

option is suggested in the work of [Koo et al., 2010] and used in this work to carry 

out the numerical and experimental analyses related to the verification of the 

approach: the system mass matrix of the shear building structure is estimated a-priori, 

and then this estimated mass matrix of the structure is used to mass normalize the 

mode shapes [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012]. 

In light of this premise, the modal flexibility matrix 𝑭𝒓 𝑛 × 𝑛  of the building 

structure, according to the PSIL method, can be assembled from identified modes as 

follows 

𝑭𝒓 = 𝚿𝒓 𝜦𝒓
−1(𝚿𝒓

𝑇 𝐌 𝚿𝒓)
−1 𝚿𝒓

𝑇    (3.22) 

where 𝚿𝒓 𝑛×𝑟 is the arbitrarily-scaled mode shape matrix, 𝜦𝒓 𝑟×𝑟 
 is a matrix with the 

square of the natural circular frequencies ω i
2 on the main diagonal, 𝑴𝑛×𝑛 is the mass 

matrix of the structure that is estimated a-priori (which is a diagonal matrix for a plane 
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shear building), n is the total number of the DOFs of the structure (i.e. the number of 

the stories for a plane shear building), and r is the number of the modes included in 

the calculations. As already discussed in Section 3.1, not all the modes of the structure 

can be identified in practice, and thus the modal flexibility matrices are usually 

assembled using a limited number of modes (i.e. r ≤ n). 

It is worth noting that Eq. (3.22), expressed in terms of arbitrarily-scaled mode 

shapes, is equivalent to Eq. (3.14), which is expressed in terms of mass-normalized 

mode shapes. In fact, the modal mass 𝜇𝑖 related to the i-th mode is  

𝜇𝑖 = 𝝍𝒊
𝑇 𝐌 𝝍𝒊    (3.23) 

where 𝝍𝒊 is the arbitrarily-scaled mode shape vector related to the i-th mode. The 

relationship between this vector and the corresponding mass-normalized mode shape 

vector 𝝓𝒊 is  

𝝓𝒊 =
1

√𝜇𝑖
 𝝍𝒊     (3.24) 

The above-mentioned operation of modal scaling is implicitly performed in Eq. (3.22), 

where the operation of the mass normalization of the arbitrarily-scaled mode shapes 

is expressed using a matrix formulation.  

In the third step of the methodology, the modal flexibility-based deflections of 

the structure are computed. As already shown in Eq. (3.17), this operation is 

performed by multiplying the modal flexibility matrix 𝑭𝒓 by an inspection load 𝒑𝑛×1 

– i.e. 𝒙𝒓 = 𝑭𝒓 𝒑. According to [Koo et al., 2010], the applied inspection load is defined 

as a Positive Shear Inspection Load (PSIL). As suggested by the acronym, this PSIL 

is a load that induces positive shear forces in each story of the structure [Koo et al., 

2010]. Considering loads with such characteristics is required to correctly apply the 

damage detection methodology (as also demonstrated later in Section 3.3.1.2). In the 

original work that proposed the PSIL method [Koo et al., 2010], it is suggested to 

consider a uniform load vector 𝒑 = [1   1  …    1]𝑇 as the positive shear inspection load 

(Fig. 3.2b). It is worth noting that this load is the same load that is applied to evaluate 

the modal flexibility-based deflections according to the Uniform Load Surface method 

[Zhang & Aktan, 1998]. However, it is important to underline that, as shown 
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analytically in Section 3.3.1.2, in the PSIL method selecting a uniform load as the 

inspection load is not the only option that can be considered. 

In the fourth step of the methodology, the interstory drifts of the building 

structure are calculated starting from the modal flexibility-based deflections. The j-th 

modal flexibility-based interstory drift 𝑑𝑟,𝑗 can be evaluated as follows 

𝑑𝑟,𝑗 = {
𝑥𝑟,𝑗 − 𝑥 𝑟,𝑗−1  𝑓𝑜𝑟 𝑗 = 2. . 𝑛

𝑥𝑟,𝑗         𝑓𝑜𝑟 𝑗 = 1
   (3.25) 

All the calculations related to the PSIL method described so far (i.e. performing 

the output-only modal identification and then estimating the modal flexibility 

matrices, the modal flexibility-based deflections, and the interstory drifts) have to be 

performed both for the undamaged and for the possibly damaged structures. The 

modal flexibility-based interstory drifts of the structure are in fact considered as 

damage-sensitive features (DSFs), and they are used both for the localization and the 

quantification of eventual damage present in the shear building structure.  

The localization of the damaged stories (i.e. stories where, for example, a 

reduction of the story stiffness has occurred as an effect of the damage) can be 

performed by analyzing the changes in the modal flexibility-based interstory drifts. 

As indicated in [Koo et al., 2010], a story in a shear building can be classified as 

damaged (i.e. the damage can be localized) if  

Δ𝑑𝑗 = 𝑑𝐼,𝑗 − 𝑑𝐵,𝑗 > 0          under a PSIL load  (3.26) 

where 𝑑𝐵,𝑗 and 𝑑𝐼,𝑗 are, respectively, the interstory drifts estimated for the structure in 

the baseline state and for the structure related to the inspection stage. On the contrary, 

if a story in a shear building structure is undamaged then the damage-induced MF-

based interstory drifts is theoretically equal to zero – i.e.  

Δ𝑑𝑗 = 𝑑𝐼,𝑗 − 𝑑𝐵,𝑗 = 0          under a PSIL load  (3.27) 

It is worth noting that the above-mentioned relationship is valid (i.e. Δ𝑑𝑗 for an 

undamaged story is equal to zero) in the ideal case in which there are no uncertainties 

on the considered damage sensitive features and in the ideal case in which such 

quantities are estimated using all the modes of the structure. Referring to this last 

point, of course, in practice the modal flexibility matrices and the quantities derived 



Chapter 3                                                                          Modal flexibility-based approaches 

 

84 

 

from these matrices are estimated using a limited number of modes, and thus 

inevitable approximations are introduced in the calculations. In any case, the modal 

flexibility matrices used for damage detection purposes are usually assembled using 

the same number of the identified modes (i.e. rI = rB = r). Under this assumption and 

for the sake of convenience, the subscript r is omitted in Eqs. (3.26, 3.27). It is worth 

noting that in the present thesis this choice made on the notation is adopted in all the 

equations where a parameter related to an undamaged structure is compared with the 

one related to a possibly damaged structure.  

Of course, the modal flexibility-based interstory drifts estimated from 

experimental data are affected by uncertainties. On one side, in fact, the uncertainties 

that affect the identified modal parameters propagate to the modal flexibility matrices 

and the related derivatives (i.e. deflections and interstory drifts). On the other side, 

additional uncertainties might be introduced in the calculations because the mass 

matrix of the structure (used to normalize the mode shapes) is estimated a-priori. To 

deal with the uncertainties that affect the DSFs (i.e. the interstory drifts), the 

localization of eventual damaged stories is performed, according to [Koo et al., 2010] 

using a statistical approach. A basic premise in the considered approach is that the 

amount of the recorded vibration data related to the undamaged structure is larger than 

the data related to the inspection phase (this is a strategy commonly adopted in the 

majority of the vibration-based damage detection techniques). In this way, the training 

data set can be subdivided in different portions, and each of these portions of the data 

is used to extract a damage sensitive feature. According to [Koo et al., 2010], an index 

𝑧𝑗 is then adopted to perform the damage localization. This index is defined as follows 

𝑧𝑗 = 
𝑑𝐼,𝑗  −  �̅�𝐵,𝑗

𝑠(𝑑𝐵,𝑗)
     (3.28) 

where �̅�𝑗,𝐵 and 𝑠(𝑑𝐵,𝑗) are, respectively, the sample mean and the sample standard 

deviation of the interstory drifts 𝑑𝐵,𝑗,𝑖 calculated for the baseline state using the 

training data set (for i = 1…p where p = no. of DSFs extracted from the training data 

set), and 𝑑𝐼,𝑗 is the interstory drift estimated in the inspection phase using the testing 

data set. Under the simplified assumption that the variable zj is normally distributed, 
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the j-th story of the structure is labelled as damaged if the following statistical test is 

satisfied  

zj > zTH     (3.29) 

where zTH is a threshold value for the z index. On the contrary, the j-th story of the 

structure is considered as undamaged if  

zj ≤ zTH     (3.30) 

The value of the threshold zTH is a user choice, and for example, as suggested in [Koo 

et al., 2010; Koo et al., 2011], zTH = 2.5 can be selected. This threshold is used to 

obtain a quantification of the minimum difference, between the mean of the interstory 

drifts in the baseline state and the drift in the state related to the inspection phase, that 

is required to classify a story as damaged. In particular, according to the formulation 

of the z index and under the simplified assumption that z j is approximately normally 

distributed, this minimum difference is quantified as a multiple of the standard 

deviation of the drifts in the baseline state. The number of standard deviations 

considered to quantify this minimum difference is indicated by the value of the 

selected threshold.  

Once a story is identified as damaged using the z index test (Eqs. 3.28, 3.29), 

the PSIL method can be also used to quantify such damage. This operation can be 

done by evaluating the damage severity αs, as defined in [Sung et al., 2012; Koo et 

al., 2011]. This parameter is a relative index (0 ≤ αs < 1) that quantifies the relative 

portion of the story stiffness that is lost due to the damage. The damage severity α s 

for the j-th story is expressed as 

𝛼𝑠,𝑗 =
𝑑𝐼,𝑗 −  �̅�𝐵,𝑗

𝑑𝐼,𝑗
     (3.31) 

The parameter 𝛼𝑠,𝑗 is theoretically equal to zero if the story is not damaged, while it 

is equal to one if the story is completely damaged [Sung et al., 2012; Koo et al, 2011]. 

Of course, both the two situations are ideal cases. On one side, the damage severity 

has to be calculated only when the story has already been identified as damaged usign 

the z index. For this reason, the damage severity will never be zero. On the other side, 

having a damage severity equal to one implies that all the story stiffness is lost due to 

the damage, and of course this is only a theoretical case.  
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3.3.1 Theory behind the PSIL method 

3.3.1.1 General relationship between damage and modal flexibility-based deflections 

This section presents the analytical formulation that is needed to show the validity of 

the PSIL method and of all the calculations discussed in previous section. This 

analytical formulation is summarized herein following the original and more extensive 

formulation that was presented in [Koo et al., 2010]. According to [Koo et al., 2010], 

the problem is formulated at first for a generic MDOF structural system, and then in 

a second stage the equations are expressed specifically for a shear building structure. 

The objective of the first part is to derive the general expression of the so-called 

damage-induced deflection [Koo et al., 2010]. In other words, the objective is to 

derive an analytical relationship between damage (which can be present in structures 

as a stiffness reduction) and the changes in the modal flexibility-based deflections.  

The formulation is derived considering stiffness and flexibility matrices of a 

generic structure that are exact analytical models (i.e. they are not matrices assembled 

from experimentally-derived modal parameters). Let us consider an undamaged 

structure (i.e. a structure in the baseline state) characterized by a stiffness matrix 𝑲𝑩. 

The relationship between the deflection 𝒙𝑩 and the generic load 𝒑 is as follows 

𝑲𝑩 𝒙𝑩 = 𝒑     (3.32) 

A similar relationship can be expressed for the structure considered in the inspection 

stage of the damage detection process, assuming that this structure is damaged  

𝑲𝑰 𝒙𝑰 = 𝒑     (3.33) 

where 𝑲𝑰 is the stiffness matrix of the damaged structure. The damage is here modeled 

as a reduction in the stiffness matrix of the baseline structure equal to ∆𝑲, according 

to the following equation 

𝑲𝑰 = 𝑲𝑩 − ∆𝑲    (3.34) 

In light of this premise, the relationship between the deflection of the undamaged 

structure and the one of the damaged structure is as follows 

𝒙𝑰 = 𝒙𝑩 + ∆𝒙    (3.35) 
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where the term ∆𝒙, according to [Koo et al., 2010], is defined as the damage-induced 

deflection. By introducing Eqs. (3.34, 3.35) in Eq. (3.33), this last equation can be 

thus reformulated as  

(𝑲𝑩 − ∆𝑲 ) (𝒙𝑩 + ∆𝒙) = 𝒑    (3.36) 

Then, by subtracting Eq. (3.32) from Eq. (3.36) the general expression of the damage-

induced deflection can be obtained  

∆𝒙 =  (𝑲𝑩 − ∆𝑲 )−1 ∆𝑲 𝒙𝑩 = 𝑭𝑰  ∆𝑲 𝒙𝑩   (3.37) 

The damage-induced deflection is the difference between the deflections in the 

damaged and in the undamaged states, and it is in general a non-zero vector because 

it is assumed that a stiffness modification is present between the two structural states. 

According to [Koo et al., 2010], it can be recognized that the term 

(𝑲𝑩 − ∆𝑲 )−1 is equal to the flexibility matrix of the damaged structure 𝑭𝑰. 

Moreover, according to the interpretation provided in [Koo et al., 2010], the term 

∆𝑲 𝒙𝑩 that is present in Eq. (3.37) can be considered as a load, and it is indicated as 

∆𝒑 where 

 ∆𝒑 = ∆𝑲 𝒙𝑩      (3.38) 

In this way, by substituting Eq. (3.38) in Eq. (3.37), this last equation becomes 

∆𝒙 =  𝑭𝑰 ∆𝒑       (3.39) 

The term ∆𝒑 is a load different from the original inspection load 𝒑. As evident in Eq. 

(3.39) and as defined in [Koo et al., 2010], this load ∆𝒑 is such that if applied to the 

damaged structure, it produces the damage-induced deflection ∆𝒙. As reported in [Koo 

et al., 2010], this force is indicated as the “lost resisting force by the damage”.  

 

3.3.1.2 Damage-induced deflection for a shear building structure 

According to the formulation presented in [Koo et al., 2010], the relationships defined 

for a generic MDOF structure in previous section are then specified for a shear 

building structure. In particular, by considering a shear building which experiences 

damage (modeled as a proportional reduction in the story stiffness of one story) , the 

objective is to evaluate at first the expression of the term ∆𝒑 (i.e. the “lost resisting 
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force by the damage” according to Eq. 3.38). Then, the second objective is to evaluate 

for such structure the values and the characteristics of the damage-induced deflection 

∆𝒙 (according to Eq. 3.39). It is worth noting that the analytical formulation adopted 

in this section to express the model of a shear building structure is slightly different 

with respect to the one adopted in [Koo et al., 2010]. However, using this different 

formulation does not substantially alter the approach and the theory behind the PSIL 

method.  

Let us consider a plane shear building structure composed by n stories and 

modeled with n DOFs. The model of such structure can be defined in terms of the 

stiffness matrix 𝑲𝑛 ×𝑛 and the mass matrix 𝑴𝑛 ×𝑛  

𝑲 =

[
 
 
 
 
 
 
 
 

𝑘𝑛 −𝑘𝑛 0 ⋯ ⋯ ⋯ ⋯ 0

−𝑘𝑛 𝑘𝑛 + 𝑘𝑛−1 ⋱ 0 ⋮

0 ⋱ ⋱ ⋱ 0 ⋮
⋮ 0 ⋱ 𝑘𝑗+1 + 𝑘𝑗 −𝑘𝑗 0 ⋮

⋮ 0 −𝑘𝑗 𝑘𝑗 + 𝑘𝑗−1 ⋱ 0 ⋮

⋮ 0 ⋱ ⋱ ⋱ 0
⋮ 0 ⋱ 𝑘3 + 𝑘2 −𝑘2

0 ⋯ ⋯ ⋯ ⋯ 0 −𝑘2 𝑘2 + 𝑘1]
 
 
 
 
 
 
 
 

 (3.40) 

𝑴 =

[
 
 
 
 
𝑚𝑛 0 ⋯ ⋯ 0
0 ⋱ 0 ⋱ ⋮
⋮ 0 𝑚𝑗 0 ⋮

⋮ ⋱ 0 ⋱ 0
0 ⋯ ⋯ 0 𝑚1]

 
 
 
 

    (3.41) 

where kj is the story stiffness of the j-th story and mj is the mass of the j-th DOF with 

j = 1 … n. In the same way, the flexibility matrix 𝑭𝑛 ×𝑛 of the shear building structure 

can be defined in terms of the j-th interstory flexibility 𝑓𝑗 as follows 

𝑭 =

[
 
 
 
 
 
𝑓𝑛 + ⋯+ 𝑓𝑗 + ⋯+ 𝑓1 ⋯ 𝑓𝑗 + ⋯+ 𝑓1 ⋮ 𝑓1

⋯ ⋱ ⋮ ⋮ 𝑓1
𝑓𝑗 + ⋯+ 𝑓1 ⋯ 𝑓𝑗 + ⋯+ 𝑓1 ⋮ 𝑓1

⋯ ⋯ ⋯ ⋱ 𝑓1
𝑓1 𝑓1 𝑓1 𝑓1 𝑓1]

 
 
 
 
 

   (3.42) 

The model of the shear building structure is then specified for the undamaged and the 

damaged states, where the damaged structure is characterized by a proportional 

reduction in the story stiffness of the k-th story. According to the notation used in 

previous section, the stiffness matrix of the undamaged structure is 𝑲𝑩, while the 
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stiffness matrix of the damaged structure is 𝑲𝑰. For a shear building structure, the 

change-in-stiffness matrix ∆𝑲 can be expressed as follows 

∆𝑲 =

[
 
 
 
 
 
 
 
0 ⋯ 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋮ ⋮
0 ⋯ 0 ⋯ ⋯ ⋮
⋮ 𝛼𝑠,𝑘  𝑘𝐵,𝑗 −𝛼𝑠,𝑘  𝑘𝐵,𝑗 ⋮ ⋮

⋮ ⋮ −𝛼𝑠,𝑘 𝑘𝐵,𝑗 𝛼𝑠,𝑘  𝑘𝐵,𝑗 ⋮

⋮ ⋯ ⋯ 0 ⋯ 0
⋮ ⋮ ⋮
0 ⋯ ⋯ ⋯ ⋯ 0 ⋯ 0]

 
 
 
 
 
 
 

  (3.43) 

where 𝛼𝑠,𝑘 is a damage index (0 < 𝛼𝑠,𝑘 < 1) that is used to model the reduction in the 

story stiffness at the k-th story.  

The change-in-stiffness matrix can be used to evaluate the “lost resisting force 

by the damage” (i.e. the term ∆𝒑, according to Eq. 3.38) for the shear building. In 

addition to the term ∆𝑲, the other term that is present in Eq. (3.38) is the modal 

flexibility-based deflection of the structure in the undamaged state 𝒙𝑩 . This deflection 

can be evaluated for a generic load 𝒑 as 

 𝒙𝑩 = 𝑭𝑩 𝒑     (3.44) 

where 𝑭𝑩 is the flexibility matrix of the shear building in the undamaged state. It is 

worth noting that at this point no assumptions are made on the values assumed by the 

loads included in the vector 𝒑. By substituting Eqs. (3.43, 3.44) in Eq. (3.38) the “lost 

resisting force by the damage” for the shear building can be evaluated as follows 

∆𝒑 =

[
 
 
 
 
 
 
 
0 ⋯ 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋮ ⋮
0 ⋯ 0 ⋯ ⋯ ⋮
⋮ 𝛼𝑠,𝑘  𝑘𝐵,𝑗 −𝛼𝑠,𝑘 𝑘𝐵,𝑗 ⋮ ⋮

⋮ ⋮ −𝛼𝑠,𝑘  𝑘𝐵,𝑗 𝛼𝑠,𝑘  𝑘𝐵,𝑗 ⋮

⋮ ⋯ ⋯ 0 ⋯ 0
⋮ ⋮ ⋮
0 ⋯ ⋯ ⋯ ⋯ 0 ⋯ 0]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 

𝑥𝐵,𝑛

⋮
⋮

𝑥𝐵,𝑘

𝑥𝐵,𝑘−1

⋮
⋮

𝑥𝐵,1 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0
⋮
0

∆𝑝𝑘

−∆𝑝𝑘

0
⋮
0 ]

 
 
 
 
 
 
 

   (3.45) 

where the term ∆𝑝𝑘 is  

∆𝑝𝑘 = 𝛼𝑠,𝑘 𝑘𝐵,𝑗 ( 𝑥𝐵,𝑘 − 𝑥𝐵,𝑘−1)      (3.46) 

According to [Koo et al., 2010] and as indicated in Eq. (3.39), this force ∆𝒑 is the 

force that if applied to the damaged structure produces the damage-induced deflection 
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∆𝒙. As observed in the work by [Koo et al., 2010], for a shear building structure this 

force acts only at the damaged story (i.e. at the k-th story in such case) and it is a self-

equilibrated force. These characteristics of the force ∆𝒑 are also depicted in Fig. 3.4c, 

which shows a graphical exemplification of the basic principle that is behind the 

theory of the PSIL method and its related damage detection strategy.  

For a shear building structure, it is thus evident that the damage-induced 

deflection occurs only at the damaged story. This result can be obtained by 

substituting the force ∆𝒑 obtained for a shear building (i.e. Eq. 3.45) in Eq. (3.39). 

The resulting damage-induced deflection ∆𝒙  is reported in Fig. 3.4d: the deflection 

is characterized by an inter-story deflection at the k-th story (which is the damaged 

story), while the inter-story deflection at the other stories (i.e. undamaged stories) is 

equal to zero.  

 

 

Figure 3.4. Exemplification of the damage detection process based on the PSIL method: a) 

PSIL applied on the undamaged structure; b) PSIL load applied on the damaged structure; 

c) load Δpk that applied on the damaged structure produces the damage-induced deflection; 

d) damage-induced deflection. 
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Under the interpretation provided in [Koo et al., 2010] and summarized in this 

section, it is clear how the PSIL method for damage detection works. As reported in 

[Koo et al., 2010; Sung et al., 2012], the above-mentioned feature of the method (i.e. 

the fact that the damage-induced inter-story deflection occurs only at the damaged 

stories and not at the undamaged stories) plays a key role in the damage localization. 

It is thus evident the reason for which damage in shear buildings can be localized by 

analyzing the variations of the modal flexibility-based interstory drifts between the 

undamaged and the possibly damaged states (according to the criteria reported in 

Section 3.3 and Eqs. 3.28, 3.31). In fact, as shown analytically in this section, there 

exists an explicit relationship between damage (modeled as a proportional story 

stiffness reduction) and the damage sensitive features (i.e. the interstory drifts). This 

principle is a central pillar of the PSIL method [Koo et al., 2010].  

As reported in [Koo et al., 2010], an important observation must be made on 

the applied inspection load 𝒑. If one analyzes the term ∆𝑝𝑘 (which produces the 

damage-induced deflection) using Eq. (3.46), it is clear that this term depends on the 

term 𝛼𝑠,𝑘 𝑘𝐵,𝑗 (which is non-zero if there is damage in the structure, as assumed) and 

the term ( 𝑥𝐵,𝑘 − 𝑥𝐵,𝑘−1). This last term is the interstory drift 𝑑𝐵,𝑘 of the undamaged 

structure at the k-th story, which of course is non-zero if the story shear Vk at the k-th 

story of the structure generated by the applied inspection load 𝒑 is non-zero. On the 

basis of these observations and to guarantee that for any position in the structure of 

the damage the force ∆𝒑 is a non-zero vector, it is important to impose a condition on 

the applied inspection load 𝒑. As reported in [Koo et al., 2010], the applied inspection 

load has to be a Positive Shear Inspection Load (PSIL), which is defined as a load that 

produces a positive shear force in each story of the shear building structure. If this 

requirement is not guaranteed (e.g. the shear force produced by the inspection load 𝒑 

at the k-th story is zero), then the term ∆𝑝𝑘 present in the force vector ∆𝒑 is zero even 

if the k-th story is damaged. This of course implies that also the damage-induced 

deflection at the k-th story is zero (even if the k-th story is damaged), and thus the 

damage in such case is not detectable.  

As reported in [Koo et al., 2010], different loads can be selected as the PSIL 

inspection load 𝒑. One of the simplest options, can be, for example, a load with a unit 
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value only at the top floor of the shear building structure. However, the authors that 

proposed the PSIL method suggest considering a uniform load as the PSIL load – i.e. 

a load  𝒑 = [1   1  …    1]𝑇 (as already discussed in Section 3.3). In fact, as reported in 

[Koo et al., 2010], a uniform load can be a better choice than a load with a unit value 

only at the top floor, for example, for the case in which the sensor located at the top 

floor is corrupted by an amount of noise that is higher than the other sensors. In such 

case the column that corresponds to the top DOF of the structure in the flexibility 

matrix might be affected by higher uncertainties. Then, when the load with a unit 

value only at the top floor is applied, such uncertainties propagates directly to the 

modal flexibility-based deflection. On the contrary, by applying a uniform load the 

uncertainties related to one column of the flexibility matrix can be averaged in the 

calculations and thus reduced when the modal flexibility-based deflection is 

evaluated. This observation, reported in [Koo et al., 2010], is in agreement with the 

observation formulated by [Zhang & Aktan, 1998] and that was already discussed in 

Section 3.2. According to [Zhang & Aktan, 1998], in fact the components of the 

uniform load deflection are in general less sensitive to experimental errors than the 

components of the modal flexibility matrix.  

 In this final part of the section, the validity of the expression that can be used 

to quantify the amount of damage present in one story of the structure (i.e. the damage 

severity 𝛼𝑠,𝑗 presented in Eq. 3.31 and Section 3.3) is demonstrated. This 

demonstration is performed using the analytical formulation developed in this section 

for a shear building structure.  

 Let us consider the expression of the damage-induced deflection (Eq. 3.39) by 

specifying all the terms for a shear building structure. Moreover, let us consider again 

that the structure is damaged only at the k-th story, and thus the damage-induced 

deflection occurs only at that story. By considering only the k-th story, Eq. (3.39) can 

be reformulated as follows 

( 𝑥𝐼,𝑘 − 𝑥𝐼,𝑘−1) − ( 𝑥𝐵,𝑘 − 𝑥𝐵,𝑘−1) = 𝑓𝐼,𝑘 ∆𝑝𝑘    (3.47) 

Then, Eq. (3.46) is substituted in Eq. (3.47), and all the terms in Eq. (3.47) that are 

the difference between the k-th and (k - 1)-th components of the deflections (both in 
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the undamaged and in the damaged states) are substituted by the corresponding 

interstory drifts. Eq. (3.47) can thus be reformulated as  

𝑑𝐼,𝑘 − 𝑑𝐵,𝑘 = 𝑓𝐼,𝑘 𝛼𝑠,𝑘 𝑘𝐵,𝑗 𝑑𝐵,𝑘     (3.48) 

According to the PSIL method [Koo et al., 2010], the inspection load 𝒑 is applied both 

to the undamaged and the damaged structures. For this reason, the shear force that this 

load induces at the k-th story in both two structures is equal. In light of this premise, 

it is clear that the following relationship is valid 

𝑘𝐵,𝑗 𝑑𝐵,𝑘 = 𝑘𝐼,𝑗  𝑑𝐼,𝑘      (3.49) 

From Eq. (3.49) the term 𝑘𝐵,𝑗 can be derived and then substituted in Eq. (3.48). By 

performing this operation both the flexibility and the stiffness coefficients present in 

Eq. (3.48) cancel out, and the equation can be reformulated as follows 

𝑑𝐼,𝑘 − 𝑑𝐵,𝑘 = 𝛼𝑠,𝑘 𝑑𝐼,𝑘     (3.50) 

From this last equation the parameter 𝛼𝑠,𝑘 can be derived, and the same expression of 

the damage severity that is reported in Section 3.3 (Eq. 3.31) is obtained. It is worth 

noting that the only difference between Eq. (3.31) and Eq. (3.50) is the following: in 

the equation that has to be applied in the experimental case (i.e. Eq. 3.31) the modal 

flexibility-based interstory drift related to the baseline state is the mean value of the 

different estimates of the drifts that are obtained from the training data set.  

 

3.3.2 Additional comments with respect to the original formulation of the PSIL 

method presented by Koo et al. [2010] 

Some additional comments and considerations that are not reported in the original 

formulation of the Positive Shear Inspection Load method proposed by [Koo et al., 

2010; Koo et al., 2011; Sung et al., 2012] are presented in this section. Firstly, the 

PSIL technique is analyzed under the general framework for vibration-based damage 

detection that has been theorized by [Farrar & Worden, 2013] and that is based on the 

axioms for SHM presented in Chapter 1. Then, some analytical investigations that 

were performed on the basis of the theory behind the original formulation of the PSIL 

method will be presented.   
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As shown in Section 3.3, according to the PSIL method a statistical test based 

on the evaluation of the z index (Eq. 3.28) is performed to localize the damaged stories 

in shear building structures. This statistical test based on the z index is one of the basic 

approaches that can be adopted in the field of univariate outlier analysis [Barnett & 

Lewis, 1994]. As already mentioned in Chapter 1, adopting these techniques, which 

are also known as novelty detection techniques, is the most convenient way for 

performing a feature discrimination in the framework of a vibration-based damage 

detection strategy that is based, according to the machine learning interpretation 

[Farrar & Worden, 2013], on an unsupervised learning mode. The Positive Shear 

Inspection Load method can be thus considered as a method that adopts a damage 

detection strategy that is based on an unsupervised learning mode. In fact, only 

vibration data related to the undamaged structure have to be available to form the 

training data set.   

Let us consider the III axiom for SHM reported in [Worden et al., 2007] by 

focusing on the following part of this axiom “Identifying the location of damage can 

be done in an unsupervised learning mode”. By considering the PSIL method as a 

strategy based on an unsupervised learning mode, it is clear that the fact that according 

to the PSIL method damage can be localized using the statistical test based on the z 

index is in agreement with the above-mentioned part of the III axiom.   

The III axiom for SHM [Worden et al., 2007] also states that “identifying the 

damage severity can generally only be done in a supervised learning mode.”. This 

second part of the axiom seems not to be in agreement with the principles and the 

theory behind the PSIL method (according to the PSIL method in fact the modal 

flexibility-based interstory drifts of shear building structures are used for the 

estimation of the damage severity - Eq. 3.31). This contradiction is, however, only 

apparent. In the PSIL method the damage quantification is performed only after that 

the damage has been already localized (i.e. a story in a structure has been already 

labelled as damaged). In fact, the equation to evaluate the damage severity (Eq. 3.31) 

can be correctly applied only if it is known that the modal flexibility-based interstory 

drift in the inspection phase is associated to a story that is classified as damaged. In 

other words, this means that, when the damage quantification is performed, the 

structure (and the related data set) in the inspection phase is already classified as 
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damaged, and this is the same information that one has before performing the analysis 

in the supervised approaches (where, differently from the considered PSIL method, 

vibration data related to the damaged states are also present in the training data set). 

In light of this interpretation, there is no contradiction between the part of the III 

axiom that refers to the damage quantification [Worden et al., 2007] and the PSIL 

method.  

In the work by [Sung et al., 2012], as already mentioned in Chapter 1, damage 

was detected using the PSIL method on a 5-story full-scale shear building. This 

structure was tested using shaker excitations, and a stiffness reduction was imposed 

at the first story of the structure (by modifying the stiffness of a spring member that 

was positioned in the bracing system). In the above-mentioned work and referring to 

the above-mentioned structure, the authors provided an estimate of the minimum 

amount of damage (i.e. the minimum interstory stiffness reduction) that can be 

detected using the Positive Shear Inspection Load method. For the considered 

structure and the considered story (the first one) the minimum value of the damage 

severity (defined according to the PSIL method) is approximately 0.05 (i.e. 5%). The 

procedure used to obtain the estimate of the minimum damage severity that can be 

detected using the PSIL method [Sung et al., 2012] is here reported, to show an 

important property of the method. 

The formula of the z index related to the generic j-th story of the shear building 

structure (Eq. 3.28) can be reformulated to express the interstory drift in the inspection 

phase as follows 

𝑑𝐼,𝑗,𝑚𝑖𝑛   = �̅�𝐵,𝑗 +  𝑠(𝑑𝐵,𝑗) 𝑧
𝑇𝐻    (3.51) 

where the value of the threshold for the z index 𝑧𝑇𝐻  (e.g. 𝑧𝑇𝐻 = 2.5 according to [Sung 

et al., 2012]) is introduced. The term 𝑑𝐼,𝑗,𝑚𝑖𝑛 is the minimum drift for which the j-th 

story of the shear building is classified as damaged. This value depends on the mean 

of the interstory drifts in the undamaged state (�̅�𝐵,𝑗), the dispersion (i.e. the standard 

deviation 𝑠(𝑑𝐵,𝑗)) related to such quantities affected by uncertainties, and the value 

of the threshold 𝑧𝑇𝐻. The value of the drift in the inspection phase expressed by Eq. 

(3.51) can then be substituted in the equation of the damage severity (Eq. 3.31) 
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𝛼𝑠,𝑗,𝑚𝑖𝑛 =
𝑑𝐼,𝑗,𝑚𝑖𝑛 −  �̅�𝐵,𝑗

𝑑𝐼,𝑗,𝑚𝑖𝑛
     (3.52) 

According to [Sung et al., 2012], the quantity 𝛼𝑠,𝑗,𝑚𝑖𝑛 is the minimum value of the 

damage severity that can be detected using the PSIL method at the j-th story of the 

structure. Some observations can be formulated on Eqs. (3.51, 3.52) to derive a 

general property of the PSIL technique. The higher the uncertainties on the interstory 

drifts related to the baseline state, the higher the dispersion 𝑠(𝑑𝐵,𝑗) on such 

parameters. On the contrary, it can be assumed that the mean value of these interstory 

drifts is not altered and does not depend on the uncertainties related to such 

parameters. In this situation, it is clear that if the dispersion on the interstory drifts in 

the baseline state increases, then higher values of the minimum damage severity that 

can be detected using the PSIL method are obtained. This property of the PSIL method 

is strictly related to the concept expressed by the VI axiom for SHM formulated by 

[Worden et al., 2007]. This axiom is as follows: “There is a trade-off between the 

sensitivity to damage of an algorithm and its noise rejection capability .”. It is worth 

noting that, as reported in [Farrar & Worden, 2013], all the methods that adopt outlier 

analysis or novelty detection techniques (thus including the PSIL method) are 

characterized by the property expressed by the VI axiom for SHM.  

In the work by [Koo et al., 2010] the general expression of the damage-induced 

deflection (Eqs. 3.37, 3.39) is derived (as shown in Section 3.3.1.1). In particular, 

according to the interpretation formulated by [Koo et al., 2010], a relationship was 

found between the damage-induced deflection ∆𝒙 and the so-called “lost resisting 

force by the damage” ∆𝒑.  In this section, this analytical formulation is developed 

further to show how the damage-induced deflection can be also related to the change-

in-flexibility matrix ∆𝑭. This property can be easily shown, as follows. Eq. (3.17) is 

evaluated both for the undamaged and the possibly damaged structures, and then the 

two equations are substituted in Eq. (3.35). In this way, the damage-induced deflection 

can be expressed as  

∆𝒙 =  𝒙𝑰 − 𝒙𝑩 = (𝑭𝑰 − 𝑭𝑩)  𝒑 =  ∆𝑭 𝒑   (3.53) 

where ∆𝑭 is the change-in-flexibility matrix.  



Chapter 3                                                                          Modal flexibility-based approaches 

 

97 

 

This formulation can be also derived starting from the original equation of the 

damage-induced deflection proposed by [Koo et al., 2010]. To perform this operation, 

let us consider one general relationship that is valid for the stiffness and flexibility 

matrices of both the undamaged and the damaged structures. This formulation was 

found in the work by [Yang & Liu, 2009] where, as already discussed in Chapter 1, a 

damage detection method based on an eigenparameter decomposition of the change-

in-flexibility matrix is presented. The relationship found in the work by [Yang & Liu, 

2009] is the following  

𝑭𝑩 𝑲𝑩 = 𝑭𝑰 𝑲𝑰     (3.54) 

Of course, since the stiffness matrix is the inverse of the flexibility matrix, both sides 

of Eq. (3.54) are equal to the identity matrix I. According to [Yang & Liu, 2009], the 

following two general expressions that relate the stiffness/flexibility matrices in the 

undamaged and in the damaged states can be considered 

𝑲𝑩 = 𝑲𝑰 + ∆𝑲    (3.55) 

𝑭𝑰 = 𝑭𝑩 + ∆𝑭    (3.56) 

If the two above-mentioned expressions are substituted in Eq. (3.54), then according 

to [Yang & Liu, 2009], the following expression is obtained 

∆𝑭 𝑲𝑰 = 𝑭𝑩 ∆𝑲     (3.57) 

It can be recognized that the term on the right-hand side of Eq. (3.57) is similar to the 

term that is present in the expression of the damage-induced deflection formulated by 

[Koo et al., 2010] – i.e. Eq. (3.37). However, in Eq. (3.57) the undamaged flexibility 

matrix 𝑭𝑩 is considered, while the damaged flexibility matrix 𝑭𝑰 is present in Eq. 

(3.37).  

For the purpose of carrying on the passages of the proposed analytical 

formulation, it is shown, however, that an equation alternative to the one obtained by 

[Yang & Liu, 2009] (Eq. 3.57) can be derived. According to the proposed analytical 

formulation, Eqs. (3.55, 3.56) can be reformulated as follows 

𝑲𝑰 = 𝑲𝑩 − ∆𝑲    (3.58) 

𝑭𝑩 = 𝑭𝑰 − ∆𝑭    (3.59) 
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If the two above-mentioned expressions are substituted in Eq. (3.54), then the 

following expression can be obtained 

∆𝑭 𝑲𝑩 = 𝑭𝑰 ∆𝑲     (3.60) 

At this point it can be recognized that the term on the right-hand side of Eq. (3.60) is 

also present in the expression of the damage-induced deflections formulated by [Koo 

et al., 2010] – Eq. (3.37). By considering the general expression of the deflection in 

the undamaged state 𝒙𝑩 = 𝑭𝑩 𝒑, Eq. (3.37) can be reformulated as follows 

∆𝒙 =  𝑭𝑰  ∆𝑲 𝑭𝑩 𝒑    (3.61) 

Finally, Eq. (3.60), which was derived by reinterpreting the original relationship 

proposed in [Yang & Liu, 2009], can be substituted into Eq. (3.61) to obtain the 

relationship between the damage-induced deflection and the change-in-flexibility 

matrix 

∆𝒙 =  ∆𝑭  𝒑     (3.62) 

In this way, the above-mentioned relationship is derived starting directly from the 

original formulation that was proposed in the work by [Koo et al., 2010] – Eq. (3.37). 

According to the proposed interpretation, the damage-induced deflection can thus be 

seen as the matrix product between the change-in-flexibility matrix and the inspection 

load vector.  

 This final part of the section presents an analytical representation that is 

alternative with respect to the formulation adopted in the work by [Koo et al., 2010] 

to calculate the modal flexibility-based interstory drifts and the damage-induced 

interstory drifts of shear building structures. In the work by [Koo et al., 2010], these 

operations are expressed using an index notation and by considering the interstory 

drifts of each story of the structure (Eqs. 3.25, 3.26). However, these operations can 

also be expressed using a vector representation, as described herein. This alternative 

formulation will be adopted in the damage detection approach that is proposed in 

Chapter 6. 

According to the proposed representation, the modal flexibility-based 

interstory drifts of a shear building structure can be collected in a vector indicated as 
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𝒅𝑛 × 1. This vector can be obtained starting from the modal flexibility-based deflection 

𝒙 of the shear building structure using the following equation 

𝒅 = 𝑻 𝒙     (3.63) 

where 𝑻n×n is a transformation matrix defined as follows 

𝑻 =

[
 
 
 
 
1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ ⋯ 0 1 ]

 
 
 
 

    (3.64) 

It is worth noting that in the vector 𝒅 the modal flexibility-based interstory drifts are 

ordered from the top story of the building structure to the bottom story, and the matrix 

𝑻 was assembled accordingly. Eq. (3.63) can be considered as a matrix representation 

that is alternative with respect to Eq. (3.25), reported in the work by [Koo et al., 2010]. 

In the same way, the equivalent vector representation of Eq. (3.26), reported in the 

work by [Koo et al., 2010], is 

𝚫𝒅 = 𝒅𝑰 − 𝒅𝑩     (3.65) 

where the vector 𝚫𝒅 can be considered as the vector of the damage-induced modal 

flexibility-based interstory drifts of the structure. By substituting Eq. (3.17) in Eq. 

(3.63) and then by substituting Eq. (3.63), evaluated both for the undamaged and for 

the possibly damaged structures, in Eq. (3.65), the vector of the damage-induced 

interstory drifts can be expressed as  

𝚫𝒅 = 𝑻 (𝑭𝑰 − 𝑭𝑩) 𝒑 = 𝑻 ∆𝑭 𝒑   (3.66) 

In this way, it is shown that the vector of the damage-induced modal flexibility-based 

interstory drifts of a shear building structure can be expressed as a function of the 

change-in-flexibility matrix ∆𝑭. As already mentioned, these matrix representations 

(which do not substantially alter the original formulation of the PSIL method) will be 

adopted in the formulation of the damage detection approach that is proposed in 

Chapter 6.  
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Chapter 4 

Truncation error analysis on modal 

flexibility-based deflections  

 

 

 

 

 

This chapter presents the research investigations that were carried out on the topic of 

modal truncation error analysis by considering the truncation errors on the modal 

flexibility-based deflections1. As reported in the Section 1.3 of Chapter 1 where the 

objectives of the thesis are introduced, this problem represents the first main problem 

that was considered in the thesis (indicated as “problem no. 1”).  

 At the beginning of the chapter in Section 4.1 (an introductory section), it is 

shown how the problem of modal truncation error analysis has been addressed in the 

literature (by considering the truncation errors both on modal flexibility matrices and 

on modal flexibility-based deflections due to a uniform inspection load). Then, in the 

first part of the chapter, an approach is proposed to have an indication of the truncation 

effects that are expected on the modal flexibility-based deflections of building 

structures calculated by applying a generic inspection load. As shown in detail in 

                                                 
1 Some of the contents of this chapter are presented in a paper co-authored with Dr. Landi 

and Prof. Diotallevi that is published in the journal Engineering Structures.  

 

Bernagozzi G, Landi L, Diotallevi PP. Truncation error analysis on modal flexibility-based 

deflections: application to mass regular and irregular structures. Engineering Structures, 

2017; 142 (1): 192–210. DOI: 10.1016/j.engstruct.2017.03.057 
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Section 4.2 where this approach is presented, one of the main advantages of the 

proposed approach is that the prediction of the expected truncation effects is obtained 

using only the subset of the structural modes that are identified and included in the 

calculations of the truncated modal flexibility-based deflections. The validation of the 

proposed approach was carried out, as shown in Section 4.3, using both numerical 

simulations and experimental data of a steel frame structure that was tested under 

ambient vibrations.  

In the second part of the chapter (i.e. in Section 4.4), inspection loads different 

from the uniform load were taken into account. Among the different loads that were 

considered, one load was selected and applied on flexibility-based models of building 

structures with the aim of reducing the truncation errors on the modal flexibility-based 

deflections. 

 

4.1 Modal Truncation Error Analysis (TEA) in the literature 

Truncation error analysis, according to [Zhang & Aktan, 1998], is the study of the 

errors that are introduced when the modal flexibility matrices or the modal flexibility-

based deflections of a generic MDOF structure are evaluated using a limited number 

of structural modes, instead of all the modes. Referring to modal flexibility-based 

deflections, it is worth noting that the truncation error analyses presented in the work 

by [Zhang & Aktan, 1998] are focused on structural deflections calculated by applying 

to the structure a uniform load. This choice was presumably made because the 

truncation error studies performed by [Zhang & Aktan, 1998] were done in the 

framework of the uniform load surface method for vibration-based damage detection.  

Truncation error analysis aims to investigate how many modes need to be 

included in the calculations in order to obtain good estimates of the modal flexibility 

matrices and the modal flexibility-based deflections derived from experimental data. 

This analysis is commonly adopted in pretest design using analytical or numerical 

models. In the context of an experimental or operational modal analysis, these studies 

can be used for example to determine the frequency range that has to be investigated 

during the vibration test. In this way by selecting the adequate frequency range that 

has to be tested, a subset of structural modes, predetermined using the truncation 
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analysis and that leads to negligible truncation errors on the modal flexibility matrices, 

should be theoretically identified from the vibration data. As reported in [Brincker & 

Ventura, 2015], in any procedure of operation modal analysis the frequency range that 

is investigated is related to the minimum and maximum frequencies that are measured. 

Selecting the maximum frequency is often the most challenging choice. In particular, 

the sampling frequency that is selected for acquiring the data is the parameter that is 

related, according to the Nyquist theorem, to the maximum frequency that can be 

investigated during the test. Of course, this choice of the maximum frequency to be 

measured in the test depends on the maximum natural frequency related to the 

structural modes that are of interest.  

As indicated in the work by [Zhang & Aktan, 1998], there exist three main 

approaches that can be adopted to perform a truncation error analysis on modal 

flexibility matrices and modal flexibility-based deflections:  

1) the first approach is to consider a number of modes such that the cumulative 

mass participation factor of the structure is higher than a selected threshold; 

2) the second approach is to directly compare the components of the modal 

flexibility matrices assembled using a limited number of modes (i.e. the 

truncated matrices) with the components of the exact matrices;  

3) the third approach is equal to the second approach, but the components of the 

uniform load deflections are considered instead of the components of the 

modal flexibility matrices.  

In the work by [Zhang & Aktan, 1998] a series of analyses were performed using the 

second and the third approaches by considering a 10 DOF mass-spring model and a 

FEM model of a three-span bridge. As already mentioned in Chapter 3, the authors 

demonstrated that the components of the uniform load deflections are less sensitive to 

modal truncation errors than the components of the modal flexibility matrices. It is 

worth noting that the first approach proposed by [Zhang & Aktan, 1998] (i.e. the one 

based on the evaluation of the cumulative mass participation factor) was not applied 

in the numerical analyses presented by the authors.  

Since the general objective that is pursued in this chapter is to study the 

truncation errors on the modal flexibility-based deflections, the first and the third 
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approaches proposed by [Zhang & Aktan, 1998] are analyzed in detail, while the 

second approach is not considered.  

According to the first approach proposed by [Zhang & Aktan, 1998], the 

analysis of the truncation errors introduced on modal flexibility matrices and uniform 

load deflections (assembled using a limited number of modes equal to r with r < n) 

can be performed by evaluating the cumulative mass participation factor (MPF) of the 

structure 𝜇𝑟 = ∑ 𝜇(𝑖)
𝑟
𝑖=1  for the considered r modes. This cumulative mass 

participation factor can be then compared against a selected threshold (for example, a 

threshold value equal to 90%). It is worth noting that, according to the notation used 

in the other chapters of the thesis, n is the number of the DOFs of a generic MDOF 

structure and this parameter is also equal to the total number of the modes of the 

structure.  

If a structure with a diagonal mass matrix and mass-normalized mode shapes 

are considered, the mass participation factor related to the i-th mode of the structure 

can be evaluated as  

𝜇(𝑖) =
Γ𝑖

2

𝚪𝑇 𝚪
     (4.1) 

where Γ𝑖 = ∑ 𝑚𝑗𝜙𝑗,𝑖
𝑛
𝑗=1  is the modal participation factor related to the i-th mode of the 

structure. In addition, in this case it is worth noting that the denominator of Eq. (4 .1) 

is 𝚪𝑇 𝚪 = 𝑚𝑡𝑜𝑡 = ∑ 𝑚𝑗
𝑛
𝑗=1 , where 𝑚𝑡𝑜𝑡 is the total mass of the structure and 𝑚𝑗 is the 

mass related to the j-th DOF. 

According to the third approach proposed by [Zhang & Aktan, 1998], the 

truncation error analysis on modal flexibility-based deflections can be performed by 

directly comparing the truncated components of such deflections with the true 

components assembled using all the structural modes. The relative error on the j-th 

displacement component of the modal flexibility-based deflection due to the uniform 

load and assembled using r modes can be evaluated as  

𝑥,𝑢,𝑟
𝑗

=
𝑥𝑢,𝑟,𝑗 − 𝑥𝑢,𝑛,𝑗

𝑥𝑢,𝑛,𝑗
     (4.2) 

where, according to the formulation presented in Chapter 3, 𝑥𝑢,𝑛,𝑗 is the exact 

displacement computed from the static flexibility matrix 𝑭𝒏 and 𝑥𝑢,𝑟,𝑗 is the truncated 
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displacement computed from the modal flexibility matrix 𝑭𝒓. It is worth noting that 

there exists an important difference between the first and the third approaches for 

truncation error analysis. In the third approach the relative error is computed by 

comparing the truncated and the exact solutions, where the exact solution can be 

considered as the solution obtained using all the modes of the structure. On the 

contrary, the evaluation of the cumulative mass participation factor (according to the 

first approach) is performed by considering only the subset of structural modes 

included in the calculation of the truncated deflections, and thus in this truncation 

error approach having the knowledge of all the modes of the structure is not required.  

As shown in next section, the approach for truncation error analysis presented 

in this thesis can be considered as an extension and a generalization of the first 

approach proposed by [Zhang & Aktan, 1998]. However, in the numerical and 

experimental truncation error analyses presented in this chapter, the third criterion 

proposed in the work by [Zhang & Aktan, 1998] was also be applied. Moreover, this 

third criterion was also developed further with the objective of defining criteria that 

are able to quantify the truncation errors expected on the whole modal flexibility-

based deflections using a unique single parameter (i.e. a parameter that is related to 

the whole deflection and not to the single components of the deflection). To attain this 

objective, the root-mean-square (RMS) criterion can be applied to all the single-DOF 

truncation errors 𝑥,𝑢,𝑟
𝑗

 as follows 

𝑥,𝑢,𝑟
𝑅𝑀𝑆 = √

1

𝑛
 ∑ 𝑥,𝑢,𝑟

𝑗 2
𝑛
𝑗=1     (4.3) 

or, alternatively, the maximum of the single-DOF truncation errors on the modal 

flexibility-based deflection, in terms of absolute values, can be evaluated as  

𝑥,𝑢,𝑟
𝑀𝐴𝑋 = max|𝑥,𝑢,𝑟

𝑗
|     (4.4) 

It is worth noting that the criteria expressed by Eqs. (4.2, 4.3, and 4.4) are adopted in 

the present chapter of the dissertation to evaluate the truncation errors on modal 

flexibility-based deflections that are calculated for loads with generic distributions. 

These criteria are not applied only on deflections due to uniform loads as done, on the 

contrary, in the work by [Zhang & Aktan, 1998].  
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4.2 Proposed approach for modal TEA using the Load Participation 

Factor  

In this section an approach for truncation error analysis that is applicable on modal 

flexibility-based deflections of structural systems subjected to a generic load is 

presented. As shown in this section, this approach is based on the definition of a 

parameter that quantifies the relative contribution of each mode to the modal 

flexibility-based deflection. This proposed parameter is termed load participation 

factor (LPF).  

The load participation factor is specifically developed for modal flexibility-

based deflections that are evaluated for a generic load, since, differently from the mass 

participation factor, the proposed load participation factor depends not only on the 

mode shapes and the masses of the structure. The load participation factor depends 

also on the applied load. These considerations will be clarified by the analytical 

formulation presented in this section.  

In any case, similarly to the mass participation factor, the proposed approach 

based on load participation factor does not imply a direct comparison between the 

truncated and the exact components of the modal flexibility-based deflections. To 

apply the two approaches (based, respectively, on the proposed load participation 

factor and on the mass participation factor proposed by [Zhang & Aktan, 1998]), in 

fact, only the knowledge of the subset of structural modes that are included in the 

truncated solution is required. Due to this important property of the proposed 

approach, and as will be clarified later in this chapter, the approach based on load 

participation factor was developed and can be used to obtain an a-priori indication of 

the truncation effects expected on the modal flexibility-based deflections.  

 The proposed approach based on load participation factor, which is valid for 

modal flexibility-based deflections due to a generic load, was investigated when the 

preliminary observation that follows was recognized. Let us consider the expression 

of each component of the uniform load deflection that was already presented in 

Chapter 3  

𝑥𝑢,𝑟,𝑗 = ∑
𝜙𝑗,𝑖  ∑ 𝜙𝑘,𝑖

𝑛
𝑘=1

𝜔𝑖
2  𝑟

𝑖=1 = ∑
𝜙𝑗,𝑖 

𝜔𝑖
2  𝑠𝑖

𝑟
𝑖=1    (4.5) 
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On the one side, in this equation each term related to the i-th mode depends on the 

modal contribution 𝑠𝑖, which, as already discussed in Chapter 3, is the summation of 

the components of the i-th mode shape (i.e. 𝑠𝑖 = ∑ 𝜙𝑘,𝑖
𝑛
𝑘=1  ). On the other side, the 

truncation error approach based on the cumulative mass participation factor (i.e. the 

first approach proposed by [Zhang & Aktan, 1998]) involves the participation factor 

Γ𝑖, which is a term where both the structural masses and the mode shape components 

are included (i.e. Γ𝑖 = ∑ 𝑚𝑗𝜙𝑗,𝑖
𝑛
𝑗=1 ).  

As already discussed in Chapter 3, the deflection 𝒙𝒑,𝒓 of a generic MDOF 

structure due to a generic load 𝒑 can be determined starting from the modal flexibility 

matrix 𝑭𝒓 assembled using r modes as follows 

𝒙𝒑,𝒓 = 𝑭𝒓 𝒑     (4.6) 

Before going further, it should be mentioned that the approach for truncation error 

analysis presented in this chapter was formulated with reference mainly to plane 

structures and by considering the modal flexibility-based deflections of these 

structures in one prevalent direction (which is the direction of the applied load). The 

j-th component of the deflection is expressed as 

𝑥𝑝,𝑟,𝑗 = ∑
𝜙𝑗,𝑖

𝜔𝑖
2 (∑ 𝑝𝑘 𝜙𝑘,𝑖

𝑛
𝑘=1 )𝑟

𝑖=1 = ∑
𝜙𝑗,𝑖

𝜔𝑖
2 𝑐𝑝,𝑖

𝑟
𝑖=1   (4.7) 

where the term 𝑐𝑝,𝑖 = ∑ 𝑝𝑘 𝜙𝑘,𝑖
𝑛
𝑘=1  is introduced. This term 𝑐𝑝,𝑖 can be interpreted as 

the work done by the external load 𝒑 for the modal displacements of the i-th mode 

shape 𝝓𝒊. It is clear by comparing Eq. (4.7) with Eq. (4.5) that if, instead of a generic 

load 𝒑, the uniform load 𝒖 = [1   1  …    1]𝑇 is considered, than the term 𝑐𝑝,𝑖 becomes 

equal to 𝑠𝑖.  

If one considers Eq. (4.6), it is evident that all the errors that affect the modal 

flexibility-based deflection are due to the presence of the truncated modal flexibility 

matrix 𝑭𝒓, while no truncation errors are of course present in the load term 𝒑. In light 

of this premise, a manipulation of Eq. (4.6) is performed, and this operation represents 

a fundamental step for the derivation of the proposed approach for truncation error 

analysis. In fact, the expression for computing the modal flexibility-based deflection 
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using r modes – i.e. Eq. (4.6) – can be reformulated by considering the static flexibility 

matrix 𝑭𝒏 and an r-mode equivalent load 𝒑𝒓
 such that  

𝒙𝒑,𝒓 = 𝑭𝒏 𝒑𝒓     (4.8) 

In this way, all the truncation errors are included in the load 𝒑𝒓 and not in the 

flexibility matrix, which in such case is the exact flexibility matrix.  The r-mode 

equivalent load 𝒑𝒓 is thus defined as the load that applied to the exact flexibility matrix 

𝑭𝒏 produces the truncated modal flexibility-based deflection 𝒙𝒑,𝒓. This is the same 

deflection that can be obtained using the truncated flexibility matrix 𝑭𝒓  and the 

generic load 𝒑. By comparing the terms on the right-hand side in Eqs. (4.6) and (4.8), 

the r-mode equivalent load can be obtained as follows 

𝒑𝒓 = 𝑭𝒏 −1𝑭𝒓 𝒑    (4.9) 

At this point it is important to remember that the modal flexibility matrix is assembled 

using the contribution of each single mode 𝑭(𝒊) where 𝑭(𝒊) = 𝝓𝒊  
1

𝜔𝑖
2  𝝓𝒊

𝑇. This means that 

the modal flexibility matrix can be expressed as 𝑭𝒓 = ∑ 𝑭(𝒊)
𝑟
𝑖=1 .  

By adopting the same approach, the r-mode equivalent load can be expressed as 

𝒑𝒓 = ∑ 𝒑(𝒊)
𝑟
𝑖=1 , where 𝒑(𝒊) is a single-mode equivalent load defined as 

𝒑(𝒊) = 𝑭𝒏
−1𝑭(𝒊) 𝒑    (4.10) 

The objective is then to simplify the expression of the single-mode equivalent load 𝒑(𝒊) 

in order to express this load as a function of the modal parameters of the structure. To 

perform this operation the fundamental equation that was presented in Chapter 3 and that 

can be used to assemble modal flexibility matrices starting from mass normalized mode 

shapes and natural frequencies of the structures is considered – i.e.  

𝑭𝒓 = 𝚽𝒓 𝚲𝒓
−1 𝚽𝒓

𝑇    (4.11) 

Substituting Eq. (4.11) evaluated for r=n in place of 𝑭𝒏 in Eq. (4.10) and substituting Eq. 

(4.11) evaluated for the i-th mode only – i.e. 𝑭(𝒊) = 𝝓𝒊  
1

𝜔𝑖
2  𝝓𝒊

𝑇 – in Eq. (4.10), the single-

mode equivalent load can be reformulated as follows  

𝒑(𝒊) = 𝚽𝒏
−𝑇𝚲𝚽𝒏

−1𝝓𝒊  
1

𝜔𝑖
2  𝝓𝒊

𝑇 𝒑   (4.12) 
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Some of the matrix operations that are reported in Eq. (4.12) can be simplified as follows. 

First of all, due to the orthogonality relationships of the mode shapes with respect to the 

mass matrix – i.e. 𝚽𝒏
𝑇𝑴 𝚽𝒏 = 𝑰 , where 𝑴 𝑛×𝑛 is the mass matrix and 𝑰 𝑛×𝑛 is the identity 

matrix – the following relationships are valid 

𝚽𝒏
−𝑇 = 𝑴𝚽𝒏     (4.13) 

𝚽𝒏
−1 = 𝚽𝒏

𝑇𝑴      (4.14) 

These two equations are substituted in Eq. (4.12), which can be reformulated as  

𝒑(𝒊) = 𝑴𝚽𝒏 𝚲 𝚽𝒏
𝑇𝑴 𝝓𝒊  

1

𝜔𝑖
2  𝝓𝒊

𝑇 𝒑    (4.15) 

Other operations can be performed in Eq. (4.15) to simplify the equation. Again, due 

to the orthogonality relationships of the mode shapes with respect to the mass matrix 

the following relationship is valid 

𝚽𝒏
𝑇𝑴 𝝓𝒊 = 𝒉𝒊     (4.16) 

where the 𝒉𝒊 is a n × 1 vector defined as  

𝒉𝒊 =

[
 
 
 
 
 
 
0
⋮
0
1𝑖

0
⋮
0 ]

 
 
 
 
 
 

     (4.17) 

The vector 𝒉𝒊 is a vector with all zero except for a value equal to one at the position 

of the vector that is equal to i, where i is the mode index related to the single-mode 

equivalent load 𝒑(𝒊). By substituting Eq. (4.16) into Eq. (4.15), this last equation can 

be reformulated as  

𝒑(𝒊) = 𝑴𝚽𝒏 𝚲 𝒉𝒊
1

𝜔𝑖
2  𝝓𝒊

𝑇 𝒑     (4.18) 

Then, by analyzing the term 𝚲 𝒉𝒊
1

𝜔𝑖
2 included in Eq. (4.18), it can be recognized that 

for any value of the mode index i, the contribution to the single-mode equivalent load 

𝒑(𝒊) of the natural frequencies of the structure is zero. This is because such natural 

frequencies cancel out, as evident in the following relationship  
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𝚲 𝒉𝒊
1

𝜔𝑖
2 = 𝒉𝒊     (4.19) 

By substituting Eq. (4.19) into Eq. (4.18) this last equation can be reformulated as  

𝒑(𝒊) = 𝑴𝚽𝒏 𝒉𝒊 𝝓𝒊
𝑇 𝒑      (4.20) 

Then, by analyzing the term 𝚽𝒏 𝒉𝒊  included in Eq. (4.20), another simplification can 

be performed – i.e.  

𝚽𝒏 𝒉𝒊 = 𝝓𝒊     (4.21) 

By substituting Eq. (4.21) into Eq. (4.20), this last equation can be finally 

reformulated as  

𝒑(𝒊) = 𝑴 𝝓𝒊 𝝓𝒊
𝑇 𝒑       (4.22) 

The final result is that the single-mode equivalent load 𝒑(𝒊) is independent from the 

natural circular frequency 𝜔𝑖, and it depends only on the mass matrix 𝑴, the i-th mode 

shape 𝝓𝒊, and the applied load 𝒑.  

By considering structures with a diagonal mass matrix and by introducing an 

index notation instead of a matrix formulation, each element of the modal load vector 

𝒑(𝒊) is expressed as 

𝑝(𝑖),𝑗 = 𝑚𝑗𝜙𝑗,𝑖(∑ 𝑝𝑘 𝜙𝑘,𝑖
𝑛
𝑘=1 ) =  𝑚𝑗𝜙𝑗,𝑖𝑐𝑝,𝑖   (4.23) 

At this point, according to the proposed approach for truncation error analysis, it is of 

interest to quantify the contribution of each mode to the modal flexibility-based 

deflection due to a generic load. This operation is done using the single-mode 

equivalent load 𝒑(𝒊) and using an approach that is based on the same concept that is 

used traditionally in structural dynamics to obtain the mass participation factor of a 

generic mode of the structure.  

According to the proposed approach, the contribution of each mode to the 

deflection is evaluated as the summation of all the components of the single-mode 

equivalent load 𝒑(𝒊), and then this summation is divided (i.e. normalized) by the 

summation of all the components of the applied load 𝒑. Such contribution of each 

mode to the deflection is termed load participation factor (LPF). The load participation 
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factor (LPF) – i.e. the normalized modal contribution of each mode in the modal 

decomposition of the applied load 𝒑 – is thus expressed as 

𝜒𝑝,(𝑖) =
𝑝(𝑖),𝑇𝑂𝑇

𝑝𝑇𝑂𝑇
 =

𝑐𝑝,𝑖 Γ𝑖

𝒄𝒑
𝑇 𝚪

    (4.24) 

where 𝑝𝑇𝑂𝑇 = ∑ 𝑝𝑗
𝑛
𝑗=1  is the summation of all the components of the assumed load 𝒑 

and 𝑝(𝑖),𝑇𝑂𝑇 = ∑ 𝑝(𝑖),𝑗
𝑛
𝑗=1  is the summation of all the components of the single-mode 

equivalent load 𝒑(𝒊). Due to Eq. (4.23), this last term is also expressed as  

𝑝(𝑖),𝑇𝑂𝑇  =  ∑ 𝑚𝑗𝜙𝑗,𝑖𝑐𝑝,𝑖
𝑛
𝑗=1 = 𝑐𝑝,𝑖  ∑ 𝑚𝑗𝜙𝑗,𝑖

𝑛
𝑗=1 = 𝑐𝑝,𝑖 Γ𝑖  (4.25) 

Moreover, it can be demonstrated that the total load 𝑝𝑇𝑂𝑇 – i.e. the sum of the 

components of the applied load 𝒑 – is the scalar product between the vectors 𝒄𝒑 and 

𝚪, which contain the terms 𝑐𝑝,𝑖 and Γ𝑖 respectively – i.e.  

𝑝𝑇𝑂𝑇 = 𝒄𝒑
𝑇 𝚪     (4.26) 

The validity of Eq. (4.26) can be demonstrated as follows. First of all, let us analyze the 

two terms 𝒄𝒑 and 𝚪. The vector 𝒄𝒑, which contains the scalar products between the load 

𝒑 and each mode shape, and the vector 𝚪, which contains the modal participation factors, 

can be expressed as 

𝒄𝒑
𝑇 = 𝒑𝑇𝚽𝒏     (4.27) 

𝚪 =  𝚽𝒏
𝑇𝑴 𝑰     (4.28) 

where I n×1 is a vector of all ones. Using Eqs. (4.27, 4.28), the scalar product between 

𝒄𝒑 and 𝚪 can be thus expressed as  

𝒄𝒑
𝑇 𝚪 =  𝒑𝑇𝚽𝒏 𝚽𝒏

𝑇𝑴 𝑰 =  𝒑𝑇𝑰 =  𝑝𝑇𝑂𝑇   (4.29) 

where the expression 𝚽𝒏 𝚽𝒏
𝑇 = 𝑴−1 is valid due to the fact that mass normalized mode 

shapes are considered. As evident in Eq. (4.29), the scalar product between the vectors 𝒄𝒑 

and 𝚪 is thus equal to the total load.  

By substituting Eqs. (4.25, 4.26) into Eq. (4.24), the load participation factor can 

be reformulated as follows 

𝜒𝑝,(𝑖) =
𝑐𝑝,𝑖 Γ𝑖

𝒄𝒑
𝑇 𝚪

     (4.30) 
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It is worth noting that this last formulation of the proposed load participation factor has a 

structure that is very similar with the respect to the structure of Eq. (4.1) which is used to 

calculate the mass participation factor.  

As described in previous section, the mass participation factors of the single 

modes are cumulated in order to evaluate the cumulative mass participation factor. By 

adopting a similar concept, the cumulative load participation factor can be defined. This 

cumulative load participation factor is the contribution of the first r modes in the modal 

decomposition of the applied load 𝒑 and is defined as  

𝜒𝑝,𝑟 =
𝑝𝑟,𝑇𝑂𝑇

𝑝𝑇𝑂𝑇
= ∑ 𝜒𝑝,(𝑖)

𝑟
𝑖=1  =

∑ 𝑐𝑝,𝑖 Γ𝑖
𝑟
𝑖=1

𝒄𝒑
𝑇 𝚪

   (4.31) 

where 𝑝𝑟,𝑇𝑂𝑇 = ∑ 𝑝𝑟,𝑗
𝑛
𝑗=1 = ∑ 𝑝(𝑖),𝑇𝑂𝑇

𝑟
𝑖=1  is the summation of all the components of 

the r-mode equivalent load 𝒑𝒓.  

Two important observations must be formulated on the proposed cumulative 

load participation factor. First of all, according to Eq. (4.8), implicit in the definition 

of the r-mode equivalent load is the concept that all the truncation errors are included 

in that load. For this reason, it is expected that the proposed cumulative LPF, evaluated 

for the first r modes and starting from the r-mode equivalent load, is also related to 

the contribution of such modes to the modal flexibility-based deflection. The second 

observation is that if all the modes are included when the cumulative load participation 

factor is determined (i.e. r = n), then the cumulative LPF becomes 𝜒𝑝,𝑟 = 1.  

In light of this premise and according to the proposed approach, it is clear that 

the overall truncation error that occurs on the whole modal flexibility-based deflection 

(evaluated using the first r modes) can be related to the cumulative LPF of the modes 

(from r+1 to n) that are not included in the calculation. This last contribution can be 

evaluated as follows 

�̅�𝑝,𝑟 = 1 − 𝜒𝑝,𝑟    (4.32) 

which is an expression derived from the above-mentioned property related to the 

cumulative LPF evaluated for all the structural modes (i.e. 𝜒𝑝,𝑛 = 1 for r = n). It is 

important to underline that using such approach, the contribution of the missing modes 
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(from r+1 to n) is determined using only the modes (from 1 to r) that are used to 

assemble the truncated deflection.  

Two additional modifications of Eq. (4.32) have to be introduced to derive the 

final expression of the cumulative LPF that has to be used according to the proposed 

approach for truncation error analysis.  

First of all, it is important to underline the following general principle that is 

valid for any problem where an approximated solution is considered instead of the 

exact one. If the missing contribution to a target solution is positive, the related 

truncation error is necessarily negative (and vice versa). Thus, according to the 

proposed approach the overall truncation error on the whole modal flexibility-based 

deflection can be related to the term 𝜒𝑝,𝑟 − 1, computed from Eq. (4.32) by changing 

the sign of �̅�𝑝,𝑟.   

Secondly, as already mentioned in this section, the objective of the proposed 

approach is to define a parameter that can be used to obtain an a-priori indication of 

the truncation effects expected on the whole modal flexibility-based deflections, when 

such deflections are evaluated using only the first r structural modes. As shown in 

Section 4.1 and if the target solution is known (i.e. the deflection obtained using all 

the modes is known), the calculation of such overall truncation error on the deflection 

can be done using the RMS criterion or by evaluating the maximum of the single-DOF 

truncation errors (in terms of absolute values), according to Eqs. (4.3) and (4.4). 

According to these criteria, the truncation errors on the deflection are quantities that 

are always positive. On the contrary, the term 𝜒𝑝,𝑟 − 1, derived using the approach 

presented in this section, can assume both positive and negative values. To obtain a 

parameter that quantifies the truncation errors on the deflections and that assumes 

values that are always positive, the above-mentioned term can be properly considered 

with the absolute value, i.e. |𝜒𝑝,𝑟 − 1|.  
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4.2.1 Derivation of analytical expressions for TEA on modal flexibility-based 

deflections of shear building structures 

In this section the problem of evaluating the truncation errors that affect the modal 

flexibility-based deflections is specifically addressed for shear building structures. In 

particular, analytical expressions that can be used to determine the modal truncation 

errors on the modal flexibility-based interstory drifts of shear building structures are 

presented. These analytical expressions are valid for a generic load applied to the 

shear building structure. It is worth noting that these types of structures have been 

already introduced in Chapter 3 where the Positive Shear Inspection Load (PSIL) 

method for vibration-based damage detection was presented.  

The derivation of the above-mentioned analytical expressions was done by 

considering two different strategies for the evaluation of the modal flexibility-based 

interstory drifts of shear building structures. According to the first strategy, the 

formulation presented in previous section for the evaluation of modal flexibility-based 

deflections of a generic plane MDOF structure is specified for a shear building 

structure. According to the second strategy, the interstory drifts are derived starting 

from the dynamic characteristic equations of an undamped MDOF structural system, 

expressed in terms of the flexibility matrix, and taking advantage of the special 

topology of the flexibility matrix of a shear building structure.  

The first strategy for the derivation of the modal flexibility-based interstory 

drifts is considered herein. Referring to an n-story building structure modeled as an 

n-DOF shear-type system, if 𝒙𝒑,𝒓 is the modal flexibility-based displacement profile 

due to a generic load 𝒑 and computed using r modes, the vector of the interstory drifts 

𝒅𝒑,𝒓 can be calculated, as already discussed in Chapter 3, as  

𝑑𝑝,𝑟,𝑗 = {
𝑥𝑝,𝑟,𝑗 − 𝑥𝑝,𝑟,𝑗−1      for j=2…n

    𝑥𝑝,𝑟,𝑗                 for   j=1
     (4.33)                 

The expression of the modal flexibility-based displacement 𝑥𝑝,𝑟,𝑗 that, according to 

Eq. (4.7), was presented for a generic plane MDOF structure, is of course also valid 

for a shear building structure and can be modified using Eq. (4.33) to obtain the 

expression of the interstory drifts. In this way, the j-th modal flexibility-based 

interstory drift calculated using r modes is expressed as 
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𝑑𝑝,𝑟,𝑗 = ∑
Δ𝜙𝑗,𝑖

𝜔𝑖
2 (∑ 𝑝𝑘 𝜙𝑘,𝑖

𝑛
𝑘=1 )𝑟

𝑖=1 = ∑
Δ𝜙𝑗,𝑖

𝜔𝑖
2 𝑐𝑝,𝑖

𝑟
𝑖=1    (4.34) 

where Δ𝜙𝑗,𝑖 is defined as follows 

Δ𝜙𝑗,𝑖 = {
𝜙𝑗,𝑖 − 𝜙𝑗−1,𝑖       for j=2…n

  𝜙𝑗,𝑖                 for   j=1
    (4.35)  

An additional notation, which will be useful later in this section, is introduced in Eq. 

(4.34). Each term related to the i-th mode in the summation of Eq. (4.34) is indicated 

as 𝑑𝑝,(𝑖),𝑗 – i.e.  

𝑑𝑝,(𝑖),𝑗 = 
Δ𝜙𝑗,𝑖

𝜔𝑖
2 𝑐𝑝,𝑖     (4.36) 

This last equation is the contribution of the single i-th mode to the modal flexibility-

based interstory drift of the j-th story.  

Then, the second strategy for the derivation of the interstory drifts of shear 

building structures is considered. As already mentioned, this second approach starts from 

the dynamic characteristic equations of an undamped MDOF structural system, expressed 

in terms of the flexibility matrix, and takes advantage of the special structure of the 

flexibility matrix for a shear building structure. Before proceeding with the description of 

the analytical formulation, it is worth noting that this formulation is basically the dual of 

the formulation that was presented in the work by [Wang et al., 2007]. This work, where 

the problem was formulated with reference to the dynamic characteristic equations of an 

undamped MDOF structural system expressed in terms of the stiffness matrix, was the 

starting point for the development of the formulation presented in this section.  

The dynamic characteristic equations of an undamped MDOF structural 

system, which in the first section of Chapter 3 was expressed in terms of the stiffness 

and the mass matrices, is here reformulated using the flexibility matrix 𝑭 and the mass 

matrix 𝑴. These equations are expressed as 

𝑭 𝑴 𝝓𝒊= 
1

𝜔𝑖
2  𝝓𝒊    (4.37) 

By considering the flexibility matrix of a plane shear building model, as already 

defined in Chapter 3 and in which the j-th interstory flexibility is 𝑓𝑗, and by 

considering a diagonal mass matrix, Eq. (4.37) can be specified as follows 
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[
 
 
 
 
 
𝑓𝑛 + ⋯+ 𝑓𝑗 + ⋯+ 𝑓1 ⋯ 𝑓𝑗 + ⋯+ 𝑓1 ⋮ 𝑓1

⋯ ⋱ ⋮ ⋮ 𝑓1
𝑓𝑗 + ⋯+ 𝑓1 ⋯ 𝑓𝑗 + ⋯+ 𝑓1 ⋮ 𝑓1

⋯ ⋯ ⋯ ⋱ 𝑓1
𝑓1 𝑓1 𝑓1 𝑓1 𝑓1]

 
 
 
 
 

 

[
 
 
 
 
𝑚𝑛 0 ⋯ ⋯ 0
0 ⋱ 0 ⋱ ⋮
⋮ 0 𝑚𝑗 0 ⋮

⋮ ⋱ 0 ⋱ 0
0 ⋯ ⋯ 0 𝑚1]

 
 
 
 

 

(

 
 

𝜙𝑛,𝑖

⋮
𝜙𝑗,𝑖

⋮
𝜙1,𝑖)

 
 

=
1

𝜔𝑖
2

(

 
 

𝜙𝑛,𝑖

⋮
𝜙𝑗,𝑖

⋮
𝜙1,𝑖)

 
 

      (4.38) 

Due to the special structure of the flexibility matrix for a shear building structure, the 

flexibility coefficients can be expressed in terms of the modal parameters and the 

structural masses. As evident in Eq. (4.38), in fact, the last row of the flexibility matrix 

of a shear building contains only the coefficient 𝑓1, which is the flexibility coefficient 

of the first story of the shear building. This means that the coefficient 𝑓1 can be derived 

directly from the last equation of the above-mentioned system of equations, as follows  

𝑓1
(𝑖)

=
𝜙1,𝑖

𝜔𝑖
2  

1

∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=1

     (4.39) 

Moreover, as also evident in Eq. (4.38), there is another important characteristic of 

the matrix 𝑭 that must be considered and that derives directly from the special 

topology of the flexibility matrix for a shear building structure. In this matrix, each j-

th row contains all the flexibility coefficients that are present in the (j-1)-th row (i.e. 

the coefficients 𝑓1 … 𝑓𝑗−1 present in the row just below the j-th row) plus the 

coefficient 𝑓𝑗. This means that starting from the expression of the coefficient 𝑓1 (Eq. 

4.39) all the other flexibility coefficients for j = 2 … n can be derived as follows  

𝑓𝑗
(𝑖)

=
𝜙𝑗,𝑖−𝜙𝑗−1,𝑖

𝜔𝑖
2   

1

∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=𝑗

    (4.40) 

The j-th flexibility coefficient of a shear building structure can thus be expressed in 

terms of the modal parameters of the i-th mode only and the structural masses as  

𝑓𝑗
(𝑖)

=
Δ𝜙𝑗,𝑖

𝜔𝑖
2  

1

∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=𝑗

    (4.41) 

where Δ𝜙𝑗,𝑖 is defined according to Eq. (4.35). The formulation expressed by Eq. 

(4.41) is valid using the modal parameters of any mode i and for any normalization of 

the mode shape. The notation with the superscript (i) adopted in Eqs. (4.39, 4.40, 4.41) 

indicates that the exact flexibility coefficient 𝑓𝑗
(𝑖)

 is expressed in terms of the i-th 

mode only. Here the term “exact” is introduced to indicate that this quantity is not 
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affected by modal truncation errors, even if the calculations are performed using only 

one structural mode2.  

To derive the interstory drifts using the second strategy, as mentioned in 

previous paragraphs, it is important to remember that the j-th interstory drift of a shear 

building structure due to the application of a generic load p can be evaluated as  

𝑑𝑝,𝑗 = 𝑓𝑗  𝑉𝑗       (4.42) 

where Vj is the external shear-force at the j-th interstory and fj is the static flexibility 

coefficient of the j-th interstory. If Eq. (4.41) is substituted into Eq. (4.42), the j-th 

interstory drift can be evaluated as 

𝑑𝑝,𝑗
(𝑖) = 𝑓𝑗

(𝑖)
 𝑉𝑗 = 

Δ𝜙𝑗,𝑖

𝜔𝑖
2

𝑉𝑗

∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=𝑗

= 
Δ𝜙𝑗,𝑖

𝜔𝑖
2

𝑉𝑗

𝑔
𝑖
𝑗,𝑈𝑃   (4.43) 

where again the notation with the superscript (i) is introduced to indicate that the 

interstory drift is exact (i.e. non- truncated) and expressed as a function of the i-th 

mode only. It is worth noting that the term 𝑔𝑖
𝑗,𝑈𝑃

= ∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=𝑗  is also introduced in 

Eq. (4.43) to simply the notation in the equation. This term is defined as the portion 

of the participation factor Γ𝑖 extended only to the DOFs of the shear building structure 

that are above the selected j-th story.  

Two different strategies have been described so far to evaluate the modal 

flexibility-based interstory drifts of shear building structures. In the first strategy 

modal flexibility matrices were assembled using a number of modes equal to r, and 

the interstory drifts related to the modal flexibility-based deflections were evaluated. 

This strategy provides a solution that is a truncated solution and depends on the 

number of the considered modes. The second strategy takes advantage of the topology 

                                                 
2 A general observation must be made on the approach discussed in the text to obtain the flexibility 

coefficients of shear building structures (i.e. the approach expressed by Eq. 4.41). This approach 

is used in this section to derive the analytical expressions for evaluating the truncation errors on 

the modal flexibility-based interstory drifts of shear building structures. This approach, however, 

is not used in the thesis to estimate, starting from vibration data, the flexibility coefficients (or 

flexibility matrices) of building structures, because implicit in the above-mentioned approach is 

the operation of forcing the flexibility matrix to have the topology of the matrix related to a shear-

type system. In the thesis the estimation, starting from vibration data, of flexibility matrices of 

building structures is performed using the formulation valid for any type of structural system (see 

Section 3.1), which is the same approach adopted in the Uniform Load Surface method [Zhang 

& Aktan, 1998] and in the Positive Shear Inspection Load method [Koo et al., 2010]. 
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of the flexibility matrix for shear building structures, and an exact solution (which is 

not affected by modal truncation errors) is obtained for the interstory drifts (which are 

expressed as a function of the modal parameters of one structural mode).  

The basic idea used to derive analytical expressions that can be adopted for the 

evaluation of the modal truncation errors that affect the modal flexibility-based 

interstory drifts of shear buildings is to compare the two above-mentioned solutions 

(i.e. the truncated and the exact solutions). The derivation of such analytical 

expressions was done as follows. At first, the contributions of the different modes to 

the modal flexibility-based interstory drifts of the shear building structure were 

derived. Then, the analytical expression for evaluating the related truncation errors 

was determined.  

The relative contribution 𝛼𝑑,𝑝,(𝑖)
𝑗

 of the i-th mode in the estimation of the j-th 

modal flexibility-based interstory drift is the ratio between the truncated solution 

𝑑𝑝,(𝑖),𝑗 computed using the i-th mode (Eq. 4.36) and the exact solution 𝑑𝑝,𝑗
(𝑖)

 expressed 

in terms of the i-th mode only (Eq. 4.43)  

𝛼𝑑,𝑝,(𝑖)
𝑗

=
𝑑𝑝,(𝑖),𝑗

𝑑𝑝,𝑗
(𝑖) =  

Δ𝜙𝑗,𝑖

𝜔𝑖
2  𝑐𝑝,𝑖

Δ𝜙𝑗,𝑖

𝜔𝑖
2  

𝑉𝑗

𝑔
𝑖
𝑗,𝑈𝑃

=
𝑐𝑝,𝑖 𝑔𝑖

𝑗,𝑈𝑃

𝑉𝑗
   (4.44) 

As evident in Eq. (4.44), the terms Δ𝜙𝑗,𝑖 and 𝜔𝑖
2 are present both in the truncated 

solution 𝑑𝑝,(𝑖),𝑗 and in the exact solution 𝑑𝑝,𝑗
(𝑖)

. This means that these terms present both 

at the numerator and at the denominator of Eq. (4.44) cancel out.  

Instead of considering the contribution of a single mode to the j-th modal 

flexibility-based interstory drift, the relative contribution of the first r modes can be 

expressed as  

𝛼𝑑,𝑝,𝑟
𝑗

= ∑ 𝛼𝑑,𝑝,(𝑖)
𝑗𝑟

𝑖=1 =
∑ 𝑐𝑝,𝑖 𝑔𝑖

𝑗,𝑈𝑃𝑟
𝑖=1

𝑉𝑗
    (4.45) 

which is the sum from 1 to r of the contribution of the single modes 𝛼𝑑,𝑝,(𝑖)
𝑗

.  

As already discussed in previous section, where the approach valid for a 

generic MDOF structure was presented, if all the modes are included in the evaluation 
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of the j-th modal flexibility based interstory drift (i.e. r = n), the exact solution is 

derived. This means that the relative contribution of these n modes is 𝛼𝑑,𝑝,𝑛
𝑗

=  1. 

Using this last property, if the first r modes are known, the relative contribution to the 

j-th interstory drift of the missing (n - r) modes, which is indicated as �̅�𝑑,𝑝,𝑟
𝑗

, can be 

computed as �̅�𝑑,𝑝,𝑟
𝑗

= 1 − 𝛼𝑑,𝑝,𝑟
𝑗

.  

At this point it is important to introduce the general principle already discussed 

in previous section with reference to any problem where an approximated solution is 

considered (instead of the exact one). This principle is as follows: if the missing 

contribution to a target solution is positive, the related truncation error is necessarily 

negative (and vice versa). Due to this general principle, the truncation error 𝑑,𝑝,𝑟
𝑗

 on 

the j-th modal flexibility-based interstory drift can be evaluated by changing the sign 

of �̅�𝑑,𝑝,𝑟
𝑗

, which is the expression of the relative contribution to the drift of the missing 

(n - r) modes. The analytical expression that can be used to calculate the modal 

truncation error that affects the j-th modal flexibility-based interstory drift of a shear 

building subjected to a generic load is thus 

𝑑,𝑝,𝑟
𝑗

= 𝛼𝑑,𝑝,𝑟
𝑗

− 1 =  
∑ 𝑐𝑝,𝑖 𝑔𝑖

𝑗,𝑈𝑃𝑟
𝑖=1

𝑉𝑗
− 1   (4.46) 

The analysis of this expression (for the evaluation of the truncation errors) when 

applied to the first (i.e. the lower) story of a shear building structure is a special case 

that deserves further investigations. In particular, two observations can be formulated 

about the formula expressed by Eq. (4.46) when applied for j=1 (i.e. when is applied 

to evaluate the truncation error that affects the first interstory drift of the structure). It 

is worth noting that, of course, for a building structure the interstory drift of the first 

story is equal to the absolute displacement of the first story, and thus the following 

observations are also valid for the first DOF displacement. 

Firstly, the term 𝑔𝑖
𝑗,𝑈𝑃

= ∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=𝑗  present in Eq. (4.46) evaluated for j=1 

(𝑔𝑖
1,𝑈𝑃

) is equal to the participation factor Γ𝑖. Secondly, the story shear induced by the 

external load vector p at the first story of the shear building structure is equal to the 

sum of all the loads applied at each story of the structure. This implies that 𝑉1 =

𝑝𝑇𝑂𝑇 = 𝒄𝒑
𝑇 𝚪, according to Eq. (4.26).  
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Starting from these two observations and as shown in the following, a 

relationship was found between the analytical expression in Eq. (4.46) evaluated for 

the special case of the first interstory drift (or first DOF displacement) of the shear 

building and the approach based on the load participation factor presented in previous 

section (and derived starting from the expression of the modal flexibility-based 

deflections of a generic MDOF structure). In fact, the relative contribution 𝛼𝑑,𝑝,(𝑖)
1  of 

the i-th mode to the first interstory drift of a shear building structure is equal to the 

proposed load participation factor 𝜒𝑝,(𝑖) (Eq. 4.24). Similarly, the contribution of the 

first r modes 𝛼𝑑,𝑝,𝑟
1  to the same interstory drift is equal to the cumulative load 

participation factor 𝜒𝑝,𝑟 (Eq. 4.31). This is clear if Eq. (4.45) is evaluated for j=1 and 

by considering that, according to the two above-mentioned observations, the term 

𝑔𝑖
1,𝑈𝑃 = Γ𝑖 and the term 𝑉1 = 𝑝𝑇𝑂𝑇 = 𝒄𝒑

𝑇 𝚪. 

For these reasons and due to Eq. (4.46), the truncation error on the first MF-

based interstory drift (evaluated using r modes) of a shear building structure can be 

expressed as  

𝑑,𝑝,𝑟
1 = 𝛼𝑑,𝑝,𝑟

1 − 1 = 𝜒𝑝,𝑟 − 1    (4.47) 

This truncation error 𝑑,𝑝,𝑟
1 , which is of course equal to the error 𝑥,𝑝,𝑟

1  related to the 

first DOF displacement of the structure, is thus explicitly related to the cumulative 

load participation factor of the modes that are not included in the calculation. Finally, 

if the error evaluated using Eq. (4.47) is considered in terms of the absolute value, 

then the same parameter that was obtained at the end of previous section is derived – 

i.e. |𝜒𝑝,𝑟 − 1|.  

The findings of this section can thus be summarized as follows. At first, the 

analytical expression for evaluating the truncation errors on the interstory drifts 

computed from modal flexibility-based deflections due to a generic load applied to 

shear building structures was derived. Then, for the special case of the displacement 

related to the first DOF (i.e. the lowest one) of shear building structures the same 

expression for truncation error analysis that was proposed according to the approach 

presented in previous section was analytically derived. The approach presented in 
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previous section was derived, on the contrary, starting from the expression of the 

modal flexibility-based deflections of a generic MDOF structure.  

One important observation must be made referring to the displacement of the 

first DOF of a shear building structure. If the modal flexibility-based deflection of the 

shear building structure is evaluated, for example, for a generic positive shear 

inspection load (as defined in Chapter 3 in the section that presents the PSIL method 

for damage detection), the displacement of the first DOF is, in general, the lowest one 

among the displacements of all the DOFs. For this reason and as shown by the 

numerical and experimental analyses presented in the next sections of this chapter, the 

modal truncation effects have a significant impact on the displacement of this DOF.  

 

4.3 Verification of the proposed approach for TEA based on Load 

Participation Factor 

This section presents the numerical and experimental analyses that were carried out 

to verify the approach for truncation error analysis based on the evaluation of the Load 

Participation Factor (LPF) and proposed in Section 4.2 of the present chapter.  

The strategy adopted for the verification of the proposed approach is the 

following. On one side, the load participation factors χp,r are calculated, according to 

Eq. (4.31), for the structural modes that are included in the computation of the 

truncated modal flexibility-based deflections, and then the terms |χp,r -1| are 

considered as a-priori indications of the truncation effects expected on such 

deflections. On the other side, the percent truncation errors on the modally truncated 

deflections are calculated using the third approach proposed in the work by [Zhang & 

Aktan, 1998] (Eq. 4.2) and the related criteria proposed in Section 4.1 for the 

evaluation of the overall truncation error that affect the whole deflection (i.e. the 

criteria based on the calculation of the RMS error and the maximum error - Eqs. 

4.3,4.4). It is worth noting that, as already mentioned, these last approaches (i.e. Eqs. 

4.2,4.3,4.4) are based on a comparison between the truncated and the non-truncated 

deflections. For this reason, the truncation errors calculated using such approaches 
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represent reference solutions that are used for the verification of the proposed 

approach based on load participation factor. 

The analyses were performed on modal flexibility-based deflections calculated 

both using numerical simulations on structural models and for an experimental 

vibration test. In the first case, the analyses were performed on discrete models of 

plane frame building structures, which can be reduced to systems of lumped masses 

and springs. In the second case, a steel frame structure tested under ambient vibrations 

was considered. This structure and the related vibration data are benchmark studies 

for SHM and damage detection, which, as already mentioned in Chapter 1, are known 

in the literature as IASC-ASCE benchmark studies [Dyke et al., 2003; Ventura et al., 

2003; Dyke, 2011].  

 

4.3.1 Numerical verification of the LPF-based approach 

A six-story reinforced concrete (RC) plane frame building modeled as a shear building 

structure (Fig. 4.1) was considered in the numerical analyses performed to verify the 

approach for truncation error study based on the LPF. This frame is constituted by 

three spans, and four columns with a rectangular section of 0.5×0.5 m are located at 

each story. The elastic modulus of the concrete is E = 3×1010 N/m2. The beams of the 

structure are supposed to be infinitely stiff in comparison to the columns, and the 

stiffness of each story is equal to kj=2.29×105 kN/m for j=1 … n with n =6. The 

stiffness matrix of the structure is as follows  

 

𝑲 =

[
 
 
 
 
 

𝑘6 −𝑘6 0 ⋯ ⋯ 0

−𝑘6 𝑘6 + 𝑘5 −𝑘5 ⋱ ⋮
0 −𝑘5 𝑘5 + 𝑘4 −𝑘4 ⋱ ⋮
⋮ ⋱ −𝑘4 𝑘4 + 𝑘3 −𝑘3 0

⋮ ⋱ −𝑘3 𝑘3 + 𝑘2 −𝑘2

0 ⋯ ⋯ 0 −𝑘2 𝑘2 + 𝑘1]
 
 
 
 
 

  (4.48) 
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Figure 4.1. Six-story plane frame building (dimensions in m) (a)  

and shear building model (b) [Bernagozzi et al., 2017a]. 

 

Parametric studies were conducted on undamped models of the shear building 

structure to consider several structural configurations characterized by different 

distributions of both the structural masses and the loads applied for the evaluation of 

the modal flexibility-based deflections. The reason for choosing these parameters as 

variables in the parametric studies is that, as shown in Eq. (4.24), the proposed load 

participation factor depends both on the masses and on the loads.  

The strategy adopted to perform the parametric studies on the shear building 

structure is based on Monte Carlo simulations. As reported in Fig. 4.2a, the mass of 

the j-th story of the shear building structure is equal to mj = δj mref where mref = 100 

kN s2/m, and the generic force applied at each DOF to compute the deflection is pj = 

βj pref where pref = 100 kN. The mass matrix of the structure and the applied loads are 

thus defined as follows  

𝑴 =

[
 
 
 
 
 
 
𝛿6 𝑚𝑟𝑒𝑓 0 ⋯ ⋯ ⋯ 0

0 𝛿5 𝑚𝑟𝑒𝑓 ⋱ ⋮

⋮ ⋱ 𝛿4 𝑚𝑟𝑒𝑓 ⋱ ⋮

⋮ ⋱ 𝛿3 𝑚𝑟𝑒𝑓 ⋱ ⋮

⋮ ⋱ 𝛿2 𝑚𝑟𝑒𝑓 0

0 ⋯ ⋯ ⋯ 0 𝛿1 𝑚𝑟𝑒𝑓]
 
 
 
 
 
 

   (4.49) 
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𝒑 = [𝛽6𝑝𝑟𝑒𝑓     𝛽5𝑝𝑟𝑒𝑓     𝛽4𝑝𝑟𝑒𝑓      𝛽3𝑝𝑟𝑒𝑓     𝛽2𝑝𝑟𝑒𝑓     𝛽1𝑝𝑟𝑒𝑓]
𝑇
  (4.50) 

In the Monte Carlo simulation both the coefficients δj, which are the story mass ratios, 

and the coefficients βj, which are the single-DOF load ratios, are considered as random 

variables. For each run of the simulation, these parameters are generated using the 

pseudo-random integer generator (i.e. using the Matlab command “randi” 

[MATLAB]), and they are uniformly distributed in the range from 1 to 5.  

Two observations must be made on the distributions of the loads and the 

structural masses considered in the simulation. First of all, referring to the loads, it is 

worth mentioning that all the random loads generated in the Monte Carlo simulation 

are loads that induce positive shear forces at all the stories of the shear building 

structure. In fact, the values of the loads are always positive, and they were applied 

only in one direction, as evident in Fig. 4.2a. This basically means that all the story 

shears have the same sign. As already defined in Chapter 3, where the PSIL method 

for damage detection [Koo et al., 2010] was presented, the loads adopted in the Monte 

Carlo simulation presented herein can be considered as Positive Shear Inspection 

Loads (PSIL). In the work by [Koo et al., 2010], the authors suggest using a uniform 

load as the positive shear inspection load. However, the objective of the present 

chapter, where the damage detection is not directly involved, is to verify the proposed 

approach for truncation error study based on LPF, thus random distributions of these 

positive shear inspection loads were considered. Loads that are not PSIL loads were 

not considered in the analyses since such loads are not usually considered in the 

procedures of vibration-based condition assessment and damage detection for building 

structures.  

Referring to the structural masses of the shear building model and as already 

mentioned, the random distributions of the masses are characterized by story mass 

ratios that are in the range from 1 to 5. Such distributions correspond in some cases 

to realistic situations, in other cases to more rare structural configurations. In any case, 

such distributions were considered in the truncation error study to have a complete 

insight of the tendencies of the results.  
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Figure 4.2. Numerical simulation on a shear building structure: random variables considered 

in the Monte Carlo simulation (a) flow chart of the analysis (b)  [Bernagozzi et al., 2017a] 

 

The calculations performed in each run of the Monte Carlo simulation are outlined in 

the flow chart reported in Fig. 4.2b, and these calculations can be summarized 

according to the following steps. In the first step, the mass matrix of the structure is 

assembled using the coefficients δj generated using the pseudo-random integer 

generator. This mass matrix M and the stiffness matrix K (this last matrix is fixed in 

all the simulations) form the undamped model of the shear building. In the second 

step, an eigenvector analysis is performed on this undamped M K numerical model of 

the structure to compute natural frequencies and mode shapes (such mode shapes are 

then normalized using the mass matrix of the structure). In the third step, one PSIL 

load p with a distribution defined by the random coefficients βj is generated. At this 

point, as reported in Fig. 4.2b, the calculations follow two different paths. On one 

side, the load participation factors of the different modes (for i = 1… r) and the 

cumulative LPF of the first r modes are calculated using Eqs. (4.24) and (4.31), 

respectively. This is the red path highlighted in Fig. 4.2b, and it is worth mentioning, 

again, that to perform this operation only the subset of r modes (with r < n) is 

considered. On the other side, as shown in Fig. 4.2b, the modal flexibility matrix is 

assembled using r modes and the truncated MF-based deflection is calculated by 

applying the load p. The displacements of this truncated deflection are compared with 
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the true displacements of the exact deflection obtained for r = n. The truncation errors 

at each DOF are calculated using Eq. (4.2) and the overall truncation errors are 

calculated using Eqs. (4.3,4.4). In each run of the Monte Carlo simulation, to have a 

complete insight of the tendencies of the results, the calculations are performed 

considering all the possible subsets of structural modes to be included in the 

computation of the truncated deflection. This means that the parameter r assumes all 

the values from 1 to n - 1. Of course, the case r = n is not considered in the Monte 

Carlo simulation since in such case there are no truncation errors.   

An example of the modal flexibility-based deflections calculated by applying 

a load vector β pref - where β = [ 1 3 1 3 1 1]T - to the shear building structure 

characterized by a mass distribution δ mref - where δ = [3 1 3 1 1 1] T - is shown in 

Fig. 4.3a. Each deflection is calculated for a different subset of included modes (for r 

= 1 … n). It is evident that, as expected, the displacement profile obtained for r=1 

shows the major discrepancies with respect to the true deflection obtained for r=6. As 

shown in Fig. 4.3b and especially for r=1 and r=2, the maximum values of the percent 

truncation errors, in terms of absolute values, occur at the first DOF of the structure 

(j=1). As already mentioned in previous section, the first DOF of a shear building 

structure is the one that is affected in general by significant truncation effects on the 

modal flexibility-based deflection due to a positive shear inspection load. As also 

shown in Fig. 4.3b, if higher modes are included (e.g. for r ≥ 3), the truncation errors 

along the height of the building are almost of the same order.  
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Figure 4.3. MF-based deflections of the shear building structure with a generic distribution 

of the masses and for a generic load: (a) displacements;  

(b) truncation errors [Bernagozzi et al., 2017a]. 

 

 

The Monte Carlo method was applied by performing 500 runs of the procedure 

outlined in Fig. 4.2b. At the end of all the simulations, the cumulative load 

participation factors (which represent the prediction of the truncation effects) and the 

truncation errors (which represent the reference solutions) were compared by means 

of correlation analysis. This analysis was performed by calculating the correlation 

coefficient and by evaluating the linear regression between the two different data sets 

that are compared. According to the first approach for truncation error analysis 

mentioned in the work by [Zhang & Aktan, 1998] and in addition to the calculations 

reported in Fig. 4.2b, the cumulative mass participation factors 𝜇𝑟 were also 

determined and compared with respect to the truncation errors.  
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The results of the correlation analysis performed at the end of the Monte Carlo 

simulation are presented in Fig. 4.4 for the case r=1 - i.e. when only the first mode is 

considered in the calculation of the truncated deflections. Results obtained for all the 

subsets of modes included in the calculations (i.e. for r = 1 … n) will be discussed 

later in this section. In particular, in the scatter plots on the left-hand side of Fig. 4.4 

the truncation errors and the terms |χp,r - 1| (i.e. the cumulative load participation 

factors of the modes not included in the calculation of the truncated deflections, 

derived from the LPFs of the included modes) are reported on the y-axis and the x-

axis, respectively. On the contrary, the factors |𝜇𝑟 - 1| (i.e. the cumulative mass 

participation factors of the modes not included in the calculations of the truncated 

deflections) are compared with the truncation errors in the scatter plots on the right-

hand side of Fig. 4.4. It is worth noting that Figs. 4.4a, 4.4b, Figs. 4.4c, 4.4d, and Figs. 

4.4e, 4.4f refer to the first DOF errors, the maximum errors, and the root-mean-square 

errors, respectively (which are evaluated using Eqs. 4.2, 4.3 and 4.4, respectively).  
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Figure 4.4. Correlation analysis on the truncation errors of the shear building structure for r 

= 1: correlation with the proposed Load Participation Factor (a, c, e); correlation with the 

Mass Participation Factor (b, d, f) [Bernagozzi et al., 2017a] 
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First of all, an important observation must be made on the results presented in Fig. 

4.4. Referring to the load participation factors and as shown in Figs 4.4a, 4.4c, and 

4.4e, very high values of the correlation coefficients ρ were found between the 

cumulative LPFs of the modes not included in the calculations (i.e. the terms |χp,r - 1| 

) and the truncation errors. On the contrary, as evident in Figs 4.4b, 4.4d, and 4.4f, 

referring to the mass participation factors and for the considered structural cases 

characterized by random distributions of both the masses and the applied loads, there 

is no correlation between the cumulative mass participation factors of the modes not 

included in the calculations (i.e. the terms |𝜇𝑟 - 1|) and the truncation errors. The 

correlation coefficients reported in Figs 4.4b, 4.4d, and 4.4f are, in fact, very close to 

zero.  

Referring to the load participation factors, the following observations can be 

made on the results presented on the left-hand side of Fig. 4.4, where the LPFs are 

compared with the truncation errors evaluated using different criteria (i.e. first DOF 

errors, the maximum errors, and the root-mean-square errors).  

As evident in Fig. 4.4a, there is an exact relationship between the truncation 

errors related to the first DOF displacement of the shear building structure and the 

term |χp,r - 1| based on the LPF. In fact, the correlation coefficient is ρ=1. In addition, 

the linear regression that passes through the origin has a slope sl = 100 (or equivalent 

to 1 if relative errors are considered instead of percent errors).  This result confirms 

the findings that were described in Section 4.2.1. In this last section, in fact, the 

analytical expression that can be used to evaluate the truncation errors on the modal 

flexibility-based interstory drifts of shear buildings is derived. Then, it is also shown 

that if the first story is considered (a special case), the expression for the evaluation 

of the error on the interstory drift (which is equal to the first DOF displacement) 

becomes equal to the expression adopted in the proposed approach for truncation error 

analysis based on LPFs (i.e. the expression |χp,r - 1|).  

In Figs. 4.4c, 4.4e the proposed load participation factors are compared with 

the overall truncation errors evaluated on the whole modal flexibility-based 

deflections. As evident in Fig. 4.4c, by comparing the maximum errors with the LPFs, 

it is evident that, differently from the case of the first DOF errors, an exact linear 
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relationship is not present anymore. However, a very high correlation (i.e. ρ=0.99) 

was found between the maximum errors and the LPFs calculated for the 500 

simulations performed on the considered shear building structure. In addition, the 

slope of the linear regression is also equal to 100 (Fig. 4.4c). This result suggests that 

the proposed load participation factors can be used to predict the maximum truncation 

errors expected on the modal flexibility-based deflections of shear buildings due to 

positive shear inspection loads. This result will be confirmed and discussed more in 

detail in next section, which deals with the experimental verification of the approach.  

The root-mean-square errors are compared with the LPFs in Fig. 4.4e, and a 

correlation coefficient equal to 0.96 was found in this case. This means that the 

proposed load participation factors are also correlated with the truncation errors 

averaged for the whole deflection using the RMS criterion. However, the slope of the 

linear regression obtained in such case is remarkably lower than the slope of the linear 

regression obtained in the previous case where the maximum truncation errors were 

considered (Fig. 4.4c). The RMS errors are, of course, lower than the maximum errors.  

The results presented in Fig. 4.4 were obtained for the case r=1. However, all 

the observations on the correlation between the LPFs and the truncation errors 

formulated in the case r=1 are also confirmed if higher modes are included in the 

calculation of the modal flexibility-based deflections. This is shown by the results of 

the same analyses performed by considering all the possible subsets of modes included 

in the calculations (i.e. for r = 1 … n -1 ). These results are shown in Figs. 4.5, 4.6, 

and 4.7 where the LPFs are compared with the first DOF errors, the maximum errors, 

and the root-mean-square errors, respectively.  
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Figure 4.5. Correlation analysis between the 1st DOF truncation errors and the proposed 

Load Participation Factor: r =1, 2, 3, 4, 5 (shear building model). 

 

Figure 4.6. Correlation analysis between the maximum truncation errors and the proposed 

Load Participation Factor: r =1, 2, 3, 4, 5 (shear building model) 
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Figure 4.7. Correlation analysis between the RMS truncation errors and the proposed Load 

Participation Factor: r =1, 2, 3, 4, 5 (shear building model) 

 

Of course, as evident in Figs. 4.5, 4.6, and 4.7, the higher the number of the modes 

included in the calculation of the modal flexibility-based deflections (i.e. the higher 

the parameter r), the lower the truncations errors. 
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adopted in the experimental verification of the proposed LPF-based approach will be 

discussed more in detail later in this section.  

The ambient vibration data used in the truncation error analysis presented in 

this section belong to experimental phase (i.e. phase II) of the benchmark studies for 

vibration-based damage detection that were sponsored by the IASC-ASCE Task 

Group for Structural Health Monitoring [Dyke et al., 2003; Ventura et al., 2003; Dyke, 

2011]3. The data related to these tests were made available for the research community 

[Dyke, 2011]. The tests of these benchmark studies were performed on a one-third 

scale, four-story, two-bay by two-bay steel frame structure located at the Earthquake 

Engineering Research Laboratory of the University of British Columbia, Vancouver, 

Canada. The tests were performed on August 4–7, 2002, using three types of 

excitations (i.e. impact hammer, electrodynamic shaker, and ambient vibrations). A 

simplified representation of the geometry of the structure is reported in Fig. 4.8. As 

already mentioned, these benchmark studies were performed for damage detection 

purposes. For this reason, the structure was tested at first in its original configuration 

(which is assumed as the undamaged configuration). Then, the structure was tested 

again by considering other configurations where damage was artificially introduced 

(for example, by introducing in the structure some local reductions of the stiffness). 

As schematically represented in Fig. 4.8a, diagonal wall braces are present in the bays 

of the structure, and in the damaged configurations of the benchmark study some 

braces of the structure were removed. Alternatively, the damage configurations were 

created by loosening the bolts of some beam-column connections [Dyke et al., 2003]. 

As already mentioned, the damage detection is not involved in the truncation 

error analyses presented in this chapter, thus only one structural configuration among 

the different ones that were tested in the benchmark study was selected. This 

configuration is the first of the tested configurations (i.e. the original fully braced 

structure, also indicated as the undamaged structure). Moreover, it is also worth noting 

that, among the different types of tests executed in the benchmark study,  only the 

ambient vibration data were considered in the present analyses.  

                                                 
3 The work done by the IASC-ASCE Task Group on the benchmark studies for Structural Health 

Monitoring [Dyke et al., 2003; Ventura et al., 2003; Dyke, 2011] is gratefully acknowledged. 
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Figure 4.8. IASC-ASCE benchmark structure: (a) 3D view with accelerometer locations 

(dimensions in m); (b) plan view [Bernagozzi et al., 2017a]. 

 

In the ambient vibration test performed on the steel frame structure, fifteen force-

balance acceleration sensors, schematically represented in Fig. 4.8a, were used to 

collect the responses of the structure due to the ambient excitations. As reported in 

[Dyke, 2011], the measurements have a length of time of 300 s and a sampling 

frequency of 200 Hz.  

As reported in Section 4.2, the proposed approach for truncation error analysis 

by load participation factors has been formulated with reference mainly to plane 

structures and by considering the modal flexibility-based deflections of such 

structures in one prevalent direction. As demonstrated by the following observations, 

the experimental case study that was selected is suitable for the verification of this 

proposed approach.  

Among the different configurations that were tested in the benchmark study, 

the one that was considered for the experimental verification of the proposed approach 

is characterized by a plan-symmetric distribution of the story stiffness at each level. 

Another relevant information about the geometry of the structure is the following: 

during the ambient vibration test, as reported in [Dyke et al., 2003], four steel plates 

a) 

b) 
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were positioned at each level of the structure to make the mass distribution of the 

structure reasonably realistic (these four steel plates are schematically shown in Fig. 

4.8b). These four steel plates were positioned in a configuration that is slightly plan-

asymmetric since the plates aligned to the west-east direction were shifted towards 

north direction. However, the coupling effects on the structural modes induced by this 

disposition of the masses are very small, as shown in the work by [Ching & Beck, 

2004] where the results of the modal identification applied on the data of the 

experimental benchmark study are shown. Under the simplified assumption of 

neglecting the mentioned small coupling effects, the steel frame structure can thus be 

considered as a suitable case study for the verification of the LPF-based approach, 

which, as already mentioned, is proposed for structures that can be modeled as plane 

structures.  

Two prevalent directions characterize the benchmark structure, and the 

structure is composed by columns and beams that have double T sections (B100×9 

and S75×11, respectively) [Dyke et al., 2003]. As shown in Fig. 4.8b and according 

to the orientation of the column sections, the x axis is the weak direction of the 

structure, while the y axis is the strong direction. Moreover, if one compares the 

structural rigidities of the columns and the beams in both directions, it can be observed 

that a simplified modeling, such as a 4-DOF shear-type modeling, is much more valid 

for the weak direction (i.e. the x direction) of the structure with respect to the strong 

direction (i.e. the y direction). The steel frame structure in the weak or x direction has 

thus a structural behavior that is similar to the behavior of the structure that was 

considered in the numerical analysis presented in previous section (i.e. the 6-story 

shear building structure). For the above-mentioned reasons, a 2D analysis was 

performed on the steel frame structure tested under ambient vibrations by considering 

only the weak or x direction of the structure (Fig. 4.8b). The ambient vibration 

measurements provided in the benchmark study, as already mentioned, were acquired 

using fifteen acceleration sensors. However, in the present study only the data 

acquired with the sensors located in the center of the structure and aligned to the x 

direction (i.e. the sensors A14-x, A11-x, A8-x, A5-x, A2-x reported in Fig. 4.8a) were 

analyzed and used to estimate the modal flexibility of the structure in the weak or x 

direction.  
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The calculations that were performed to verify the proposed truncation error 

approach (based on load participation factor) using the ambient vibration data of the 

benchmark structure are reported in the flow chart presented in Fig. 4.9. The different 

steps that were considered are the following.  

 

 

Figure 4.9. Verification of the approach starting from experimental data:  

random variables considered in the Monte Carlo simulation (a)  

flow chart of the analysis (b) (adapted from [Bernagozzi et al., 2017a]) 

 

In the first step, the ambient vibration data were analyzed using an output-only 

modal identification technique to obtain the modal parameters of the benchmark 

structure. In particular, the Natural Excitation technique [James et al., 1993] combined 

with the Eigensystem Realization Algorithm [Juang & Pappa, 1985], which as already 

discussed in Chapter 2 is a time-domain identification algorithm, was applied.  Natural 

frequencies, modal damping ratios, and mode shapes of the first four modes of the 

structure in the considered direction (i.e. x direction) are reported in Table 4.1, where 

the mode shapes are normalized to a maximum value of unity. It is worth noting that 

for this experimental case study, these four modes represent all the principal modes 

that characterize the dynamic behavior of the structure in the considered direction. In 

fact, as already mentioned, the structure in the weak direction (i.e. x direction) can be 

reasonably modeled as 4-DOF shear building structure. As discussed later in this 
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section referring to the other steps of the calculations, the fact that all the principal 

modes of the structure in the considered direction were identified is a fundamental 

aspect for the verification of the LPF-based approach using experimental data.  

 

Mode i 

Natural 

frequency 

f
i
 (Hz) 

Modal 

damping ratio 

ζi (%) 

Mode shape components 𝜓j,i  

for each DOF j 

𝜓4,i 𝜓3,i 𝜓2,i 𝜓1,i 

I 

II 

III 

IV 
 

7.49 

19.89 

25.31 

28.21 
 

0.77 

0.54 

0.26 

0.23 
 

1.000 0.838 0.630 0.418 

-0.989 -0.052 1.000 0.964 

0.453 -0.610 -0.272 1.000 

0.532 -0.991 1.000 -0.954 

Table 4.1. Modal parameters of the IASC-ASCE benchmark structure (undamaged 

configuration) identified from ambient vibration data of the acceleration sensors in x direction 

[Bernagozzi et al., 2017a] 

 

Then, the system mass matrix of the benchmark structure was estimated on the basis 

of the information available about the experimental test [Dyke et al., 2003; Dyke, 

2011], and it was used to obtain mass-normalized mode shapes (which are, in turn, 

required to assemble the modal flexibility matrices). This matrix is composed by the 

masses that participate to the translational motion of the structure in the weak (or x) 

direction, and it is as follows 

𝑴 = [

𝑚4 0 0 0
0 𝑚3 0 0
0 0 𝑚2 0
0 0 0 𝑚1

]    (4.51) 

where m4 = 1583.27 kg and m3 = m2 = m1 = 2079.24 kg. It is worth noting, that as 

already discussed in Chapter 3, this simple modal scaling approach (adopted in the 

present analysis) is the same approach that was adopted in the work by [Koo et al., 

2010] where the Positive Shear Inspection Load method for output-only damage 

detection was presented.  

 In a second step, the parametric study based on the Monte Carlo method 

(already applied to the numerical model of the 6-story shear building structure) was 
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also carried out in this experimental case study related to the benchmark structure. It 

is worth mentioning that the first two steps of the procedure applied to the numerical 

model of the shear building structure, as described in previous section and outlined in 

Fig. 4.2b (i.e. assembling an undamped model of the structure with random 

distributions of the masses and computing the modal parameters using eigenvector 

analysis) are substituted in this experimental case study by the application of the 

output-only modal identification algorithm (i.e. NExT-ERA) on the ambient vibration 

data (Fig. 4.9b). There is one important difference between the strategy adopted for 

the verification of the LPF-based approach through the numerical model and the 

verification on the real structure. Referring to the former, when the Monte Carlo 

method was applied on the numerical model the eigenvalue analysis was repeated for 

each configuration characterized by a different distribution of the structural masses. 

On the contrary, in the experimental case study the masses of the structure are fixed 

(i.e. the structural masses considered in the calculations are the real masses of the 

structure), and the modal parameters were identified only once from the ambient 

vibration data. In any case, in the experimental case study in each run of the Monte 

Carlo method the positive shear inspection loads applied to calculate the modal 

flexibility-based deflections are varied, and they have different distributions (Fig. 

4.9a). They are, in fact, assembled using the same strategy applied on the shear 

building model (i.e. by generating through the pseudo-random integer generator 

[MATLAB] random coefficients βj in the range from 1 to 5).  

As already done in the analysis related to the numerical model, when the Monte 

Carlo method was applied in the experimental case study the calculations were 

performed following two different strategies (i.e. the two paths shown in Fig. 4.9b). 

On one side, the cumulative load participation factor of the first r modes of the 

structure was calculated using Eq. (4.31), which as already mentioned represents the 

prediction of the truncation effects expected on the modal flexibility-based deflection 

assembled using such r modes. On the other side, the modal flexibility matrices of the 

benchmark structure in x direction and the modal flexibility-based deflections due to 

the PSIL load with a random distribution were calculated considering both a subset of 

identified modes (i.e. for r = 1 … n - 1) and all the modes (i.e. r = n = 4). In particular, 

the deflection obtained by including all the structural modes in the calculations was 
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considered as the “exact” or target deflection. The term “exact” is used in such case 

to indicate a quantity that is not affected by modal truncation effects (of course, there 

are in any case uncertainties on the deflection that derive from the identification 

process applied on real noisy vibration data). Finally, the percent truncation errors 

were determined by comparing the target deflection (r=n=4) and the truncated 

deflections (r = 1,2, and 3) using Eqs. (4.2, 4.3, 4.4).  

An example of the structural deflections of the benchmark structure obtained 

by applying a load vector β pref - where β = [ 1 3 1 3] T and pref = 10 kN - is reported 

in Fig. 4.10a. It is worth noting that for the applied positive shear inspection load the 

maximum errors on the single components of the modal flexibility-based deflections 

occur at the first lower DOF of the structure for all the analyzed cases r=1, r=2, and 

r=3 (as evident in Fig. 4.10b). This result confirms the findings that were obtained 

from the simulation performed on the numerical model.  

 

 

Figure 4.10. MF-based deflections of the IASC-ASCE benchmark structure for a generic 

load – 2D analysis in x direction: (a) displacements;  

(b) truncation errors [Bernagozzi et al., 2017a]. 
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As already done in the numerical simulation performed on the shear building model,  

500 runs of the Monte Carlo method were also carried out by considering the 

experimental model of the benchmark structure. Then, at the end of the calculations 

the cumulative load participation factors of the modes not included in the computation 

of the truncated modal flexibility-based deflections (assumed as the predictions of the 

truncation effects) and the truncation errors (assumed as the reference solutions) were 

compared using the correlation analysis. As already done in Section 4.3.1, this 

analysis is based on the evaluation of the correlation coefficient and the linear 

regression between the two data sets that are compared.  

The results of the correlation analysis are presented in Figs. 4.11, 4.12, and 

4.13, where the cumulative load participation factors are compared with the 1st DOF 

errors, the maximum errors, and the root-mean-square errors, respectively. Each 

figure shows the results obtained for a number of included modes equal to r=1 (Figs. 

4.11a, 4.12a, 4.13a), r=2 (Figs. 4.11b, 4.12b, 4.13b), and r=3 (Figs. 4.11c, 4.12c, 

4.13c). 

 

 
Figure 4.11. Correlation analysis between the 1st DOF truncation errors of the IASC-ASCE 

benchmark structure and the proposed Load Participation Factor: (a) r=1; (b) r=2; (c) r=3. 
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Figure 4.12. Correlation analysis between the maximum truncation errors of the IASC-

ASCE benchmark structure and the proposed Load Participation Factor:  

(a) r=1; (b) r=2; (c) r=3 [Bernagozzi et al., 2017a]. 

 

 

Figure 4.13. Correlation analysis between the RMS truncation errors of the IASC-ASCE 

benchmark structure and the proposed Load Participation Factor:  

(a) r=1; (b) r=2; (c) r=3 [Bernagozzi et al., 2017a]. 
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shear building structure. This exact relationship was verified through the numerical 

simulation performed in previous section, as evident in Figs. 4.4a and 4.5. In the 

experimental case study, on the contrary, an exact relationship between the two terms 

was not found (as evident in Fig. 4.11 the points are not exactly aligned to the bisection 

of the plot). However, this effect obtained in the experimental case study is expected 

and can be justified by the following two observations. On one side, in fact, the modal 

parameters related to the experimental case study are affected by inevitable 

uncertainties that derive from the fact that the modal identification is applied on real 

noisy vibration data. On the other side, some modeling assumptions have been made 

on the analyzed benchmark structure - i.e. 1) a simplified shear-type modeling for the 

structure in the considered x direction was assumed; 2) a 2D analysis was performed 

under the assumption of neglecting the small coupling effects induced on the structural 

modes by the mass distribution of the structure which is slightly plan-asymmetric. As 

shown by the good agreement between the numerical and the experimental results 

these assumptions can be considered as valid, but of course some modelling 

approximations are inevitably introduced.  

Referring to the results related to the maximum and the RMS truncation errors 

(Fig. 4.12, 4.13), high values of the correlation coefficients ρ were obtained between 

the cumulative load participation factors and these truncation errors, as already found 

in the numerical simulation performed on the plane shear building.  Considering the 

correlation between the LPFs and the maximum errors (Fig. 4.12), the slopes of the 

linear regression for the different cases r=1,2,3 were found to be similar to the values 

obtained for the shear building analytical model with maximum differences of 

approximately 10% (which is the same results obtained in the experimental case study 

in the correlation between the 1st DOF errors and the LPFs). Considering the RMS 

errors (Fig. 4.13), the slopes of the linear regression for r=1,2,3 are remarkably lower 

than the ones related to the maximum errors, as already found and discussed for the 

analytical shear building model.  

 Finally, it is worth noting that in this section (related to the experimental case 

study), and differently from the previous section, the correlation analysis between the 

truncation errors and the cumulative mass participation factors (first approach for 

truncation error analysis mentioned in the work by [Zhang & Aktan, 1998]) is not 
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presented. However, one observation can be made on the relationship between the 

mass participation factors and the truncation errors in the context of the experimental 

case study. The fundamental point behind the observation is that the masses of the 

benchmark structure are fixed, and in each run of the Monte Carlo method applied on 

the experimental model only the loads are varied. For this reason, the cumulative mass 

participation factors of the structure are fixed for all the calculations that were 

performed. On the contrary, the truncation errors depend also on the applied load, and, 

as evident from the results presented in this section, different values of the errors were 

obtained for the different runs of the Monte Carlo method. In light of this premise, it 

is clear that a positive correlation can not be found between one parameter that is fixed 

(i.e. the cumulative mass participation factor) and another parameter that is varied (i.e. 

the truncation error).   

The results obtained by analyzing the experimental case study (i.e. IASC-ASCE 

benchmark structure) have thus confirmed the outcomes that were found through 

numerical simulations on the analytical models of a 6-story plane shear building 

structure. The following two observations can be formulated to summarize the main 

findings of the analyses performed on the two building structures.   

Firstly, the approach based on the evaluation of the load participation factors 

is able to provide an estimate of the maximum truncation errors expected on modal 

flexibility-based deflections of shear building structures that are evaluated using a 

limited number of structural modes and by applying to the structure positive shear 

inspection loads with arbitrary distributions. The main advantage of the approach is 

that the prediction of the error is obtained using only information about the structural 

modes included in the computation of the truncated deflections.  

Secondly, the results showed that the root-mean-square (RMS) errors are in 

general lower than the maximum errors, but these RMS errors are also correlated with 

the proposed load participation factors. Thus, if two different structural cases are 

considered (e.g. two structures with different mass distributions but the same stiffness 

distribution and/or two different loading conditions), the load participation factors can 

be used to predict which is the case with the higher RMS truncation error, expected 

on the deflection. 
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4.4 Reduction of the truncation errors on modal flexibility-based 

deflections 

The second part of this chapter presents the research investigations that were carried 

out in an attempt to reduce the truncation errors that affect the modal flexibility-based 

deflections calculated by applying a uniform load to shear building structures. As 

demonstrated by the analyses presented in this section, in fact, these truncation errors 

on the uniform load deflections can not be in general considered as negligible 

especially for structures with mass irregularities. The uniform load was considered 

because, as already mentioned in Chapter 3, this load is the inspection load that is 

generally applied in the procedures of vibration-based damage detection and condition 

assessment based on modal flexibility-based deflections (e.g. the Uniform Load 

Surface method [Zhang & Aktan, 1998] and the Positive Shear Inspection Load 

method [Koo et al., 2010]).  

 The objective of this second part of the chapter is thus different from the 

objective related to the first part. In previous sections, in fact, the objective was to 

obtain an a-priori indication of the truncation effects expected on the modal 

flexibility-based deflections. In this second part the truncation errors that affect the 

uniform load (UL) deflections are evaluated, and an alternative strategy to compute 

the modal flexibility-based deflections is investigated to obtain truncation errors on 

such deflections that are lower than the ones of the UL deflections. This alternative 

strategy implies the application of inspection loads that are different from the uniform 

load. As discussed later in this section, among the different alternative loads that were 

considered in the initial phase of the research, interesting results were obtained by 

applying a load that is proportional to the mass distribution of the structure to evaluate 

the modal flexibility-based deflections. This load is indicated in the present thesis as 

mass proportional load (MPL).  

This second part of the chapter is thus dedicated, at first, to the definition of 

the above-mentioned mass proportional load and to the discussion of the special 

properties of such load. Then, numerical analyses performed on a shear building 

structure are presented. The mass proportional load is compared with the uniform 

load, by evaluating the corresponding truncation errors on modal flexibility-based 
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deflections and modal flexibility-based interstory drifts of building structures 

characterized by mass irregularities. 

 

4.4.1 Definition of the Mass Proportional Load (MPL) 

In the initial phase of the research inspection loads that are proportional to one mode 

shape of the structure were taken into account, and the application of such loads to 

modal flexibility-based models of structures was investigated analytically. However, 

such types of loads were not considered suitable and convenient loads to be applied 

in the procedures of structural identification and condition assessment that are based 

on the evaluation of modal flexibility-based deflections. To justify the above-

mentioned observation let us consider the following ideal case.   

A structure characterized by a diagonal mass matrix (for example, a plane shear 

building structure) is considered, and the modal flexibility-based deflection of such 

structure is evaluated by applying a vector load that is defined as follows 

𝒑 = 𝑎 𝑴 𝝓𝒊     (4.52) 

where 𝑴 is the mass matrix of the structure, 𝝓𝒊 is the i-th mass normalized mode 

shape, and 𝑎 is a scalar that represents a constant acceleration equal to one. If the load 

expressed in Eq. (4.52) is substituted in Eq. (4.6), the modal flexibility-based 

deflection of the structure due to such load can be obtained 

𝒙𝒑,𝒓 = 𝑎  𝑭𝒓 𝑴 𝝓𝒊     (4.53) 

Some operations can be performed in Eq. (4.53) to simplify the terms that are present 

in such equation. Eq. (4.11) can be substituted in Eq. (4.53), and this last equation can 

be reformulated as  

𝒙𝒑,𝒓 = 𝑎  𝚽𝒓 𝚲𝒓
−1 𝚽𝒓

𝑇 𝑴 𝝓𝒊     (4.54) 

Due to the orthogonality relationships of the mode shapes with respect to the mass 

matrix the following relationship is valid 

𝚽𝒓
𝑇𝑴 𝝓𝒊 = 𝒉𝒊     (4.55) 

where the 𝒉𝒊 is a r × 1 vector defined as  
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𝒉𝒊 =

[
 
 
 
 
 
 
0
⋮
0
1𝑖

0
⋮
0 ]

 
 
 
 
 
 

     (4.56) 

The vector 𝒉𝒊 is a vector with all zero except for a value equal to one at the position 

of the vector that is equal to i, where i is the mode index related to mode that was 

considered in the equation of the applied inspection load (i.e. Eq. 4.52). By 

substituting Eq. (4.55) into Eq. (4.53), this last equation can be reformulated as 

follows 

𝒙𝒑,𝒓 = 𝑎  𝚽𝒓 𝚲𝒓
−1 𝒉𝒊     (4.57) 

As already mentioned in Chapter 3 where the expression of the modal flexibility 

matrix was firstly introduced, the matrix 𝚲𝒓  is a 𝑟 × 𝑟 matrix which contains the 

square of the first r natural circular frequencies ωi
2 of the structure on the main 

diagonal. It is thus clear that the following relationship is valid  

𝚲𝒓
−1 𝒉𝒊 = 𝒒𝒊     (4.58) 

where the 𝒒𝒊 is a r × 1 vector defined as  

𝒒𝒊 =

[
 
 
 
 
 
 
 

0
⋮
0

(
1

𝜔𝑖
2)𝑖

0
⋮
0 ]

 
 
 
 
 
 
 

     (4.59) 

The vector 𝒒𝒊 is a vector with all zero except for a value equal to 1
𝜔𝑖

2⁄  at the position 

of the vector that is equal to i. By substituting Eq. (4.58) into Eq. (4.57), this last 

equation can be reformulated as follows 

𝒙𝒑,𝒓 = 𝑎  𝚽𝒓 𝒒𝒊     (4.60) 

Then, by performing the matrix product between the n × r truncated mode shape 

matrix 𝚽𝒓 and the vector 𝒒𝒊, the final expression of the modal flexibility-based 

deflection due to the load defined in Eq. (4.52) can be obtained 
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𝒙𝒑,𝒓 = 𝑎  
1

𝜔𝑖
2  𝝓𝒊     (4.61) 

where 𝝓𝒊 is the vector of the i-th mass normalized mode shape. This mode shape is 

the same mode shape that was considered in the equation of the applied inspection 

load (i.e. Eq. 4.52). As evident in Eq. (4.61), the deflection is proportional to the 

considered mode shape (the vectors of the two quantities are in fact related by scalar 

quantities). Thus, for a structure with a diagonal mass matrix, if a load where each 

component is the product between the mass of each DOF and each DOF component 

of one mode shape (Eq. 4.52) is considered, then the modal flexibility-based 

deflection evaluated for such load is proportional to that mode shape.  

A similar result is obtained by applying a load that is proportional to one mode 

shape vector (in such case the values of the masses are not included in the load). If 

one repeats the above-mentioned calculations for such load, then the modal 

orthogonality relationships of the mode shapes with respect to the mass matrix can 

not be used to simplify the expression of the modal flexibility-based deflection (as 

done, on the contrary, in previous paragraphs). In any case, it is evident that if a load 

proportional to one mode shape vector is applied, then the contribution of that mode 

to the modal flexibility-based deflection will be dominating and the resulting 

deflection will be in general approximately proportional to that mode shape.  

In light of the above-mentioned analytical investigations, inspection loads that 

are proportional to the mode shapes of the structure were not considered as convenient 

loads to be applied in the procedures of structural identification and condition 

assessment that are based on the evaluation of modal flexibility-based deflections. 

Such loads, in fact, strongly increase the contribution of the mode (selected to 

assemble the inspection load) in the modal flexibility-based deflection. This 

characteristic is not in agreement with the general principle that is behind any modal 

flexibility-based approach – i.e. the contributions of the different structural modes are 

cumulated to obtain the best achievable estimate of the flexibility of the structure (and 

this principle is also valid, of course, if one considers the modal flexibility-based 

deflections instead of the modal flexibility matrices). Considering the contribution of 

the different structural modes instead of only one single mode is, for example, one of 

the motivations for which, as already discussed in Chapter 1, in modal-based damage 



Chapter 4                                                     Truncation error analysis on MF-based deflections 

 

149 

 

detection the modal flexibility-based approaches are in general preferred with respect 

to the approaches based on the modal properties of single-modes.  

A final observation can be made on the inspection loads that are proportional 

to the mode shapes by considering the specific case of plane shear building structures. 

Except when considering the first mode of a shear building, a load that is proportional 

to a mode shape might not be a positive shear inspection load.  

After having examined the properties of loads that are proportional to the mode 

shapes of the structure, another strategy was investigated to estimate the modal 

flexibility-based deflections. According to this second strategy, a load that is 

proportional to the mass distribution of the structure is selected as the inspection load, 

and the modal flexibility-based deflections are evaluated for this mass proportional 

load (MPL). For structures characterized by a diagonal mass matrix (for example, a 

plane shear building structure), the mass proportional load, indicated as 𝒑𝒎, can be 

expressed as 

𝒑𝒎 = 𝑴 𝒂     (4.62) 

where 𝑴 is the mass matrix of the structure and 𝒂 is a unitary acceleration vector with 

constant term 𝑎 assumed equal to one.  

If the mass proportional load defined in Eq. (4.62) is substituted into the 

expression of the modal flexibility-based deflection of a generic MDOF structure due 

to a generic load (Eq. 4.6), the deflection of the structure due to the mass proportional 

load evaluated using the first r modes is  

𝒙𝒎,𝒓 = 𝑭𝒓 𝒑
𝒎      (4.63) 

and each component of the deflection vector is 

𝑥𝑚,𝑟,𝑗 =  𝑎 ∑
𝜙𝑗,𝑖

𝜔𝑖
2 (∑ 𝑚𝑘 𝜙𝑘,𝑖

𝑛
𝑘=1 )𝑟

𝑖=1 =  𝑎 ∑
𝜙𝑗,𝑖

𝜔𝑖
2 Γ𝑖

𝑟
𝑖=1    (4.64) 

This last equation can be derived if the general equation of each component of the 

deflection (Eq. 4.7) is evaluated for the mass proportional load. By comparing Eq. 

(4.64) and Eq. (4.7), it is also evident that, by considering a mass proportional load, 

the term 𝑐𝑝,𝑖 = ∑ 𝑝𝑘 𝜙𝑘,𝑖
𝑛
𝑘=1 , present in Eq. (4.7), is substituted in Eq. (4.64) by a 

constant term 𝑎 (which is equal to one) and by the modal participation factor Γ𝑖 =
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∑ 𝑚𝑘 𝜙𝑘,𝑖
𝑛
𝑘=1 . This property is valid because, as already mentioned, mass-normalized 

mode shapes are considered.  

One important observation must be made on the relationship between the mass 

proportional load and the approach for truncation errors analysis based on the load 

participation factor that is proposed in the first part of this chapter. In fact, if a mass 

proportional load is considered, then the approach based on the load participation 

factor is equivalent to the approach based on the mass participation factor that was 

mentioned in the work by [Zhang & Aktan, 1998]. This is evident if the load 

participation factor (LPF) related to the i-th mode (Eq. 4.24) is evaluated by 

considering a mass proportional load (MPL). In such case the quantity that is obtained 

is termed mass proportional load participation factor (MPL-PF) and is defined as 

follows 

𝜒𝑚,(𝑖) = 
𝑐𝑚,𝑖 Γ𝑖

𝒄𝒎
𝑇  𝚪

=
Γ𝑖

2

𝚪𝑇 𝚪
= 𝜇(𝑖)    (4.65) 

Due to the fact that, as already mentioned, the term 𝑐𝑝,𝑖 evaluated for the mass 

proportional load is equivalent to the modal participation factor Γ𝑖 and as evident in Eq. 

(4.65), this mass proportional load participation factor 𝜒𝑚,(𝑖) is equal to the mass 

participation factor 𝜇(𝑖) (Eq. 4.1).  

In the same way, if the cumulative load participation factor (Eq. 4.31) is calculated 

for the mass proportional load (i.e. a quantity that is termed cumulative MPL-PF), then 

the cumulative mass participation factor of the first r modes (𝜇𝑟) is obtained  

𝜒𝑚,𝑟 = ∑ 𝜒𝑚,(𝑖)
𝑟
𝑖=1  =

∑ 𝑐𝑚,𝑖 Γ𝑖
𝑟
𝑖=1

𝒄𝒎
𝑇  𝚪

=
∑ Γ𝑖

2𝑟
𝑖=1

𝚪𝑇 𝚪
= ∑ 𝜇(𝑖)

𝑟
𝑖=1 = 𝜇𝑟 (4.66) 

Two observations can be formulated on the mass proportional load participation factor. 

As evident in Eq. (4.65), the MPL-PF 𝜒𝑚,(𝑖) is a quantity that is always positive. This 

means that, for all the possible values of r, the cumulative MPL-PF 𝜒𝑚,𝑟 is always in the 

following range: 0 ≤ 𝜒𝑚,𝑟 ≤ 1. Of course, these properties are the same properties valid 

for the mass participation factor and the cumulative mass participation factor. It is worth 

noting, however, that these conditions are not always fulfilled for generic loads, including 

the uniform load (as shown later in the numerical analyses). 
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A second observation can be formulated by considering the specific case of the 

shear building structures. According to Eq. (4.47), it was shown in Section 4.2.1 that 

the truncation errors on the first DOF displacement of a shear building due to a generic 

load is explicitly related to the cumulative load participation factor 𝜒𝑝,𝑟. In this 

section, it is also shown that when considering a mass proportional load, the proposed 

cumulative load participation factor is equal to the cumulative mass participation 

factor 𝜇𝑟. From these two properties, a third property can be derived: for the specific 

case of a shear building structure and by considering its first DOF displacement of the 

modal flexibility-based deflections due to a mass proportional load, the truncation 

errors are explicitly related to the cumulative mass participation factors. Moreover, 

referring to the application of a mass proportional load on a plane shear building, it is 

worth noting that this load is implicitly a positive shear inspection load (as defined in 

the work by [Koo et al., 2010]). 

As already mentioned at the beginning of this section, the mass proportional 

load is investigated and applied as an alternative to the uniform load. However, if one 

evaluates the structural deflections due to such two loads, in general the displacements 

that are obtained in the two cases are not of the same order of magnitudes. This is 

evident because the mass proportional load is a vector composed by the masses of the 

structure, while the uniform load, as defined in the work by [Zhang & Aktan, 1998], 

is a vector whose components are equal to one. In order to make these two loads more 

comparable, a scaled version of the uniform load can be considered. This modified 

uniform load is defined as 𝒑𝒖 = 𝑚∗ 𝒂, where 𝑚∗ =
1

𝑛
∑ 𝑚𝑗

𝑛
𝑗=1  is the average mass of 

the MDOF structure. By adopting this load, each j-th modal flexibility-based 

displacement is equal to Eq. (4.5) scaled by the factor 𝑎 𝑚∗, where 𝑎  is a unitary 

acceleration.  

To conclude this section, the expression of the load participation factor 

specified for a uniform load is reported, and this expression will be adopted in the 

numerical analysis presented in next section. The load participation factor (Eq. 4.24) 

evaluated for the uniform load and for the i-th mode is termed uniform load 

participation factor (UL-PF) and is defined as follows  

𝜒𝑢,(𝑖) = 
𝑐𝑢,𝑖 Γ𝑖

𝒄𝒖
𝑻  𝚪

=
s𝑖 Γ𝑖

𝐬𝑻 𝚪
     (4.67) 
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Two observations can be formulated on this last equation. First of all, since in general the 

load participation factor is a quantity that represents the normalized contribution of one 

mode to the modal flexibility-based deflection, the uniform load participation factor is 

independent from any scaling operation that is performed on the uniform load. Secondly, 

it can be proven, using a demonstration very similar to the one shown in Section 4.2 to 

prove Eq. (4.26), that if mass normalized mode shapes are considered, then the following 

relationship is valid: 𝐬𝑻 𝚪 = 𝑛, where n is the total number of the DOFs of the structure.  

In the same way, the cumulative load participation factor (Eq. 4.31) can be 

evaluated for the uniform load and for the first r modes to obtain a quantity (termed 

cumulative UL-PF) that is defined as follows 

𝜒𝑢,𝑟 = ∑ 𝜒𝑢,(𝑖)
𝑟
𝑖=1  =

∑ 𝑐𝑢,𝑖 Γ𝑖
𝑟
𝑖=1

𝒄𝒖
𝑇 𝚪

=
∑ s𝑖 Γ𝑖

𝑟
𝑖=1

𝐬𝑻 𝚪
   (4.68) 

 

4.4.2 Numerical analyses on structures with mass irregularities: comparison 

between the mass proportional and the uniform loads 

In the present section, the numerical analyses that were carried out to compare the 

truncation errors on the modal flexibility-based deflections calculated by applying the 

mass proportional load with those of the uniform load are presented.  

These numerical analyses were performed on the same shear building structure 

that was used in Section 4.3.1 to verify the proposed approach for truncation error 

analysis based on the load participation factor. As already mentioned, this structure is 

a six-story reinforced concrete (RC) plane frame building modeled as a shear building 

structure (Fig. 4.1), which is characterized by a uniform distribution of the story 

stiffness (the story stiffness is equal to kj=2.29×105 kN/m for each story).  

To perform the truncation error analysis presented in this section and to 

compare the results obtained for the mass proportional and the uniform loads, various 

structural configurations of the shear building characterized by different and irregular 

distributions of the story masses were considered. The distributions of the structural 

masses considered in the present analysis are similar to the ones analyzed in Section 

4.3.1. Thus, configurations characterized by both moderate and strong mass 
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irregularities were considered also in the present analysis to have a complete insight 

of the tendencies of the results. It is worth noting, however, that while in Section 4.3.1 

random distributions of the structural masses were considered in the Monte Carlo 

simulation, in the present analysis the distributions of the structural masses were 

chosen at the beginning of the calculations and they are not generated randomly. In 

particular, twelve configurations with irregular distributions of the masses were 

considered, and they are reported from case 1 to case 12 in Table 4.2. In this table, the 

mass distributions are expressed in terms of the story mass ratios, and the coefficient 

γ can assume the following values: 1, 2, 3, 4, 5. This coefficient γ was used to impose 

increasing amounts of mass irregularities on the analyzed structural configurations, 

and each increased mass at the j-th DOF of the structure is mj = γ mref, where, as 

already defined in Section 4.3.1, mref = 100 kN s2/m. It is worth noting that, of course, 

if the building structure has a uniform distribution of the story masses, the mass 

proportional load is a uniform load. This particular case is obtained when the 

coefficient γ is equal to one.  

 

 

j-th DOF 1 2 3 4 5 6 7 8 9 10 11 12 

6  1 1 1 1 1  1 1 1  1 

5 1  1 1 1 1 1  1 1 1  

4 1 1  1 1 1  1  1  1 

3 1 1 1  1 1 1  1  1  

2 1 1 1 1  1 1 1  1  1 

1 1 1 1 1 1  1 1 1  1  

Table 4.2.  Structural configurations of the shear building structure expressed in terms of the 

story mass ratios ( =1,2,3,4,5) [Bernagozzi et al., 2017a] 
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Figure 4.14. Flow chart of the analysis carried out to compare the mass proportional load 

and the uniform load by evaluating the corresponding  

truncation errors (adapted from [Bernagozzi et al., 2017a]) 

 

The calculations that were performed to compare the mass proportional load and the 

uniform load (by evaluating the corresponding truncation errors) are reported in the 

flow chart of Fig. 4.14. At first, for each structural configuration (reported in Table 

4.2) an undamped numerical model of the shear building structure was assembled. 

The stiffness matrix K of the structure is defined by Eq. (4.48), mentioned in Section 

4.3.1. The mass matrix is defined by Eq. (4.49), but the coefficient δj reported in this 

equation are substituted by the coefficients reported in the columns of Table 4.2 for 

the different structural configurations. Then, an analytical modal analysis was 

performed on the structural model, and the modal flexibility matrices were assembled 

using all the possible subsets of modes included in the calculations (i.e. r = 1 … n, 

where n = 6 for the considered structure). Then, the deflection profiles of the structure 

were calculated by applying both the mass proportional load and the scaled version of 

the uniform load, as defined in Section 4.4.1. As already done in Section 4.3.1, the 

deflections evaluated for a number of modes equal to r = n were considered as the 

exact or target deflections and were used to calculate the errors that affect the 
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truncated deflections (evaluated for r = 1 … n - 1). Both for the mass proportional 

load and the uniform load, the relative truncation errors on the components of the 

modal flexibility-based deflections were evaluated by applying Eq. (4.2). The mass 

proportional load and the uniform load were also compared in terms of the overall 

truncation errors that affect the whole deflections. To perform this operation, the 

overall truncation error was evaluated as the root-mean-square value of the errors 

related to the single components of the deflections (Eq. 4.3).   

 The analysis of the shear building structure with the different distributions of 

the structural masses reported in Table 4.2 can be considered as a parametric study, 

where the main variables are the position (i.e. the DOF) of the structure were the mass 

irregularity is imposed and the amount of the mass irregularity. This last parameter, 

as already mentioned, is defined by the coefficient γ which assumes the following 

values 1-2-3-4-5. Referring to the DOFs where the mass irregularities were imposed 

and as evident in Table 4.2, both single and multiple locations were considered. In 

fact, from configurations 1 to 6 the coefficient γ is applied on one DOF, from 

configurations 7 to 10 the coefficient γ is present on two DOFs, and finally for 

configurations 11 and 12 the coefficient γ is applied on three DOFs. In each of these 

three groups of the configurations, the positions where the mass irregularities are 

imposed using the coefficient γ are varied, trying to consider as much combinations 

as possible.  

 The results of this parametric study are presented in this section using the 

following strategy. At first, the results are shown for one structural configuration (i.e. 

configuration 7, as described in Table 4.2) with a mass irregularity that is imposed by 

selecting =3. Then, the results of the analyses performed on the same structural 

configuration (i.e. configuration 7) are presented by considering increasing amounts 

of the mass irregularities (i.e. for  = 1, 2, 3, 4, 5). Finally, the results of the analyses 

are presented for all the structural configurations from 1 to 12 of the shear building 

structure and for a fixed mass irregularity (which is imposed again by selecting =3). 

The results of the truncation error study performed on configuration 7 and by 

considering a mass irregularity that is imposed as =3 are presented in Figs. 4.15, 

4.16, and 4.17. In particular, Fig. 4.15 shows the modal flexibility-based deflections 
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of the structure (configuration 7) calculated by applying both the mass proportional 

load and the uniform load and by considering all the possible subsets of included 

modes – as indicated by the parameter r, which is varied from 1 to 6. The deflections 

evaluated using the uniform load are reported in Fig. 4.15a, while the deflections 

evaluated using the mass proportional load are reported in Fig. 4.15b. As evident, in 

Fig. 4.15a the uniform load deflection obtained using only the first mode (i.e. r=1) 

shows the major discrepancies with respect to the other deflections and with respect 

to the exact solution obtained for r=6. On the contrary, the deflections due to the mass 

proportional load (reported in Fig. 4.15b) are almost overlapped. These qualitative 

and preliminary observations are confirmed by the analysis of the modal truncation 

errors. The percent error on each component of the truncated modal flexibility-based 

deflection was evaluated with respect to the target solution (r=n) and the outcomes 

are reported in terms of absolute values in Fig. 4.16. In particular, Fig. 4.16a shows 

the truncation errors related to the uniform load, while Fig. 4.16b shows the errors 

related to the mass proportional load. First of all, it is worth noting that, as expected 

and as already discussed in previous section, for both the two loads the displacements 

of the first DOF of the structure are affected by the maximum truncation errors. The 

second and more important observation that can be formulated on the results is the 

following: the truncation errors on the deflections calculated using the mass 

proportional load (Fig. 4.16b) are lower than the uniform load errors (Fig. 4.16a). For 

instance, considering the displacement of the first DOF (j=1) and including only the 

first mode in the calculations (i.e. r=1) the errors are 21.1% and 9.8% for the uniform 

load and the mass proportional load, respectively. For the same DOF and including 

the first two modes in the calculations (i.e. r=2) the truncation error related to the 

application of the uniform load is 12.1%, while the error related to the mass 

proportional load is 5.3%.  
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Figure 4.15. Modal flexibility-based deflections of the shear building structure (case 7; 

γ=3): (a) uniform load; (b) mass proportional load 

       

Figure 4.16. Truncation errors on the displacements of the shear building structure (case 7; 

γ=3): (a) uniform load; (b) mass proportional load [Bernagozzi et al., 2017a] 
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The values of the truncation errors related to the uniform and the mass proportional 

loads that are shown in Fig. 4.16 by highlighting the trend of such errors as a function 

of the DOFs of the structure are also plotted in Fig. 4.17 using a different strategy. In 

this last figure, the errors are plotted for each DOF separately, and the trends of the 

truncation errors are presented as a function of the number of the modes included in 

the calculations (i.e. the parameter r). One observation that can be formulated is that, 

as expected, the higher the number of the included modes, the lower the single-DOF 

truncation error for both the uniform and the mass proportional loads. However, as 

already discussed referring to Fig. 4.16, the results show that the errors related to the 

mass proportional load are lower than the ones related to the uniform load for the 

majority of the DOFs and the values of the parameter r, with only two exceptions (i.e. 

the 5th DOF for r=1 and the 3rd DOF for r=3). As already mentioned, both for the 

uniform load and the mass proportional load the errors decrease if higher values of 

the parameter r are considered. However, it can be observed that these decreasing 

trends of the errors related to the mass proportional load are more regular than the 

ones related to the uniform load, as evident for example in Fig. 4.17b for j=5.   

 

Figure 4.17. Truncation errors on the j-th DOF displacement of the shear building structure 

(case 7; γ=3) – comparison between the UL and the MPL  [Bernagozzi et al., 2017a] 
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The results of the truncation error study performed on configuration 7 of the 

shear building structure and by considering increasing amounts of mass irregularities 

(i.e. γ =1, 2, 3, 4, 5) are presented in Figs. 4.18, 4.19, and 4.20. For such configurations 

characterized by increasing amounts of mass irregularities, an estimation of the 

overall truncation errors on the whole modal flexibility-based deflections was carried 

out by evaluating the root-mean-square error of the errors related to the single-DOFs. 

The results are reported in Fig. 4.18 by plotting the RMS errors as a function of the 

different number of included modes (parameter r reported on the x axis) and by 

comparing the uniform load (Fig. 4.18a) with the mass proportional load (Fig. 4.18b). 

Each of the different curves reported in the figure is related to one value of the 

parameter γ, which is used to model the amount of the mass irregularity. The results 

show that the RMS errors related to the mass proportional load (Fig. 4.18b) are lower 

than or equal to the errors related to the uniform load (Fig. 4.18a) for all the analyzed 

cases. For example, by including only the first mode in the calculation of the 

deflections (i.e. for r=1) and for a value of the coefficient γ equal to 3, the RMS error 

related to the uniform load is equal to 11.4%, while the RMS error related to the mass 

proportional load is 5.1%. It is worth noting that, of course, when the building 

structure has a uniform distribution of the story masses (i.e. when the coefficient γ is 

equal to one), the results obtained by applying the uniform load are equal to the ones 

related to the mass proportional load. 
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Figure 4.18. RMS truncation errors on the displacements of the shear building structure 

(case 7) for different mass irregularities: (a) uniform load;  

(b) mass proportional load  [Bernagozzi et al., 2017a] 
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in the analyses. The results show that an increase in the coefficient  lead to an increase 

in the parameter m*|si|, especially for the high-order modes (i.e. the 3rd and the 5th 

modes). On the contrary, the modifications induced by the mass variations on the 

participation factors |Γ𝑖| of all the high-order modes are lower than the previous case. 

This means that for these configurations characterized by mass irregularities, the 

contribution of the high-order modes of the structure to the uniform load deflection is 

higher than the contribution of the same modes to the mass proportional load 

deflections. This implies, in turn, that when the modal flexibility-based deflections 

are evaluated without including in the calculations such high-order modes, the 

truncation errors on the uniform load deflections are higher than the errors on the mass 

proportional load deflections.  

 

 

Figure 4.19. Single-mode participation factors of the shear building structure (case 7) for 

different mass irregularities: (a) m* |si| ; (b) |Γi|     [Bernagozzi et al., 2017a] 
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representation used in Fig. 4.18 (for the RMS truncation errors), in Fig. 4.20 the load 

participation factors are plotted as a function of the different number of included 

modes (parameter r reported on the x axis) and each of the curves reported in Fig. 

4.20 is related to one value of the parameter γ, which is used to model the amount of 

the mass irregularity.  

One observation can be formulated on the values of the load participation 

factors obtained in the analyses (for the uniform and the mass proportional loads) to 

confirm the general properties that were discussed in Section 4.4.1. An asymptotic 

convergence to one of the cumulative mass proportional load-participation factors 

(cumulative MPL-PFs) for increasing values of r can be noticed in Fig. 4.20b. This 

means that, as already discussed, the cumulative MPL-PFs (which are equal to the 

mass participation factors) are always in the range from 0 to 1 for each value assumed 

by the parameter r. On the contrary, the cumulative uniform load-participation factors 

(cumulative UL-PFs) can assume values greater than one if they are evaluated using 

a limited number of modes (i.e. for r < n). This is shown, for example, in Fig. 4.20a 

where the cumulative UL-PFs evaluated for r=4 is equal to 1.004.  

In addition, according to the LPF-based approach for truncation error analysis 

proposed in Section 4.2, the cumulative load participation factors (Fig. 4.20) related 

to one specific load (uniform or mass proportional load) can be compared with the 

respective RMS truncation errors (Fig. 4.18). By performing this comparison, the 

following observation is evident: by considering the structures with different mass 

irregularities (γ=1,2,3,4,5), if the cumulative load participation factors decrease, the 

RMS truncation errors increase (and vice versa). This is especially evident when 

considering the results obtained for the lower values of the parameter r (e.g. r=1,2 for 

the uniform load and r=1 for the mass proportional load). It is worth mentioning that 

the load participation factors reported in Fig. 4.20 (evaluated for the uniform and the 

mass proportional loads) are the cumulative LPFs of the modes included in the 

calculation of the truncated deflections. If, instead, these cumulative LPFs are 

evaluated for the modes not included in the computation of the truncated deflections, 

then a positive correlation between the errors and the cumulative LPFs is obtained. 

The trends of the cumulative load participations factors and the truncation errors 

obtained in this section for the specific cases of the UL and the MPL loads are thus in 
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agreement with the LPF-based approach for truncation error analysis proposed for a 

generic load in Section 4.2.  

 

 

Figure 4.20. Cumulative load participation factors of the shear building structure (case 7) 

for different mass irregularities: (a) uniform load;  

(b) mass proportional load [Bernagozzi et al., 2017a]. 

 

The results of the truncation error analysis performed for all the structural 
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load and by considering the twelve configurations of the shear building structure 

reported in Table 4.2 (from 1 to 12) for a fixed mass irregularity (i.e. selecting =3). 

The results for each configuration are reported in each row of Table 4.3. On the 

contrary, each column of the table refers to calculations performed using a different 

subset of modes included in the evaluation of the deflections (i.e. each column refers 
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different numbers of the imposed mass variations.  
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As shown in Table 4.3, in the 80% of the 72 analyzed cases (i.e. 12 

configurations × 6 values of the parameter r) the mass proportional load provides RMS 

truncation errors that are lower than or equal to the errors related to the uniform load. 

Moreover, it is worth noting that for the analyzed configurations of the shear building 

structure, the errors related to the mass proportional load monotonically decrease if 

higher values of r are considered. On the contrary, this trend is not always evident for 

the uniform load.  

Referring to the results obtained by including only the first mode of the 

structure in the calculations (i.e. r=1), it is evident in the table that the mass 

proportional load provides truncation errors that are lower than the errors related to 

the uniform load if the mass increments are applied at the upper DOFs of the shear 

building structure. This result was in fact obtained for the cases from 1 to 3 in the 

group of structures characterized by one imposed mass increment, for the cases 7 and 

8 in the group of structures characterized by two imposed mass increments, and for 

the case 11 in the group of structures characterized by three imposed mass increments. 

In the other cases, where the mass modifications are applied at the lower DOFs of the 

structure, and again referring to results obtained using only the first mode (i.e. r=1), 

the uniform load provides truncation errors that are lower than the ones related to the 

mass proportional load. This result obtained in general for all the configurations when 

only the first mode is considered can be explained as follows: for a shear building 

structure the components of the first mode shape are higher at the upper DOFs, and 

this distribution is relevant in the determination of the cumulative load participation 

factor evaluated for the first mode (r=1). For the analyses presented in this section, 

the general expression of the load participation factor has to be specifically evaluated 

for the uniform and the mass proportional loads (Eqs. 4.66, 4.68, respectively). When 

evaluating such expressions for the first mode (r=1), the terms 𝑠1 and Γ1 are of course 

strongly dependent on the distribution of the components of the first mode shape, and, 

as already shown in this section, these terms in turn affect the truncation errors.  

By considering in Table 4.3 the results obtained for higher values of the 

parameter r (i.e. by including more modes than the first one in the calculations)  and 

especially for multiple variations of the masses (i.e. cases from 7 to 12), it is evident 

that the RMS truncation errors are reduced by applying the mass proportional load 
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instead of the uniform load. In the few cases where this reduction is not present, the 

errors related to the mass proportional load and the uniform load are comparable.  

 

 

Case Load p 
RMS truncation errors on displacements   x,p,r

RMS (%) 

r=1 r=2 r=3 r=4 r=5 r=6 

1 
UL 13.73 1.43 1.12 0.15 0.12 0.00 

MPL 6.90 1.72 0.58 0.20 0.05 0.00 

2 
UL 10.66 1.76 0.56 0.74 0.01 

 

0.00 

MPL 5.84 1.31 0.77 0.32 0.08 

 

0.00 

3 
UL 7.30 5.45 0.45 0.34 0.36 

 

0.00 

MPL 4.82 2.16 0.67 0.14 0.13 

 

0.00 

4 
UL 4.21 4.68 0.86 0.11 0.11 

 

0.00 

MPL 4.48 2.13 0.37 0.28 0.02 

 

0.00 

5 
UL 2.00 2.17 2.34 0.68 0.08 

 

0.00 

MPL 5.96 1.14 0.93 0.15 0.01 

 

0.00 

6 
UL 3.25 1.13 0.45 0.16 0.05 

 

0.00 

MPL 9.41 1.05 0.13 0.03 0.01 

 

0.00 

7 
UL 11.41 5.82 0.82 0.54 0.37 

 

0.00 

MPL 5.11 2.42 0.55 0.15 0.10 

 

0.00 

8 
UL 7.30 4.56 0.74 0.75 0.09 

 

0.00 

MPL 4.66 1.70 0.40 0.24 0.22 

 

0.00 

9 
UL 3.81 3.14 2.12 1.47 0.36 

 

0.00 

MPL 5.13 0.99 0.79 0.21 0.01 

 

0.00 

10 
UL 2.06 2.55 0.90 0.94 0.12 

 

0.00 

MPL 6.99 2.29 0.09 0.07 0.00 

 

0.00 

11 
UL 8.13 2.60 2.22 1.39 1.19 

 

0.00 

MPL 5.97 1.33 0.66 0.27 0.07 

 

0.00 

12 
UL 5.43 1.99 1.10 0.92 0.96 

 

0.00 

MPL 7.18 2.13 0.07 0.06 0.02 

 

0.00 

Table 4.3.  RMS truncation errors on the displacements of the shear building structure – 

different structural configurations with a fixed mass irregularity ( = 3) [Bernagozzi et al., 

2017a] 
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Until this point of the section, the truncation error analyses and the comparison 

between the mass proportional load and the uniform load have been discussed by 

considering the errors that affect the displacement components of modal flexibility-

based deflections of shear building structures. For such structures, however, it is also 

of interest to evaluate the truncation errors that affect the interstory drifts calculated 

from the modal flexibility-based deflections. According to the Positive Shear 

Inspection Load method for output-only vibration-based damage detection [Koo et al., 

2010] and as extensively discussed in Chapter 3, the modal flexibility-based interstory 

drifts of shear building structures are, in fact, important parameters that can be used 

to detect and localize eventual damage in such structures (i.e. these parameters are 

considered as damage sensitive features). By considering that in general the evaluation 

of the modal flexibility-based interstory drifts from an experimental vibration test on 

a real structure is performed using a limited number of structural modes, it is evident 

that reducing the modal truncation effects on such parameters is a desirable result.  

To attain this objective and in addition to the previous analyses related to the 

displacement components of the deflections, the truncation error analyses performed 

on the shear building to compare the mass proportional load with the uniform load 

were also executed by considering the errors that affect the modal flexibility-based 

interstory drifts. These analyses on the interstory drifts were performed by considering 

the same structural configurations with mass irregularities that were analyzed in the 

previous study on the displacement components (i.e. the twelve configurations 

described in Table 4.2 for different values of the parameter γ, with γ =1, 2, 3, 4, 5).  

Referring to the calculations reported in the flow chart of Fig. 4.14, few 

additional steps were performed to evaluate the truncation errors on the modal 

flexibility-based interstory drifts. The interstory drifts were evaluated starting from 

the modal flexibility-based deflections of the shear building assembled using all the 

possible subsets of included modes (r = 1 … n). Then, the interstory drifts evaluated 

for a number of modes equal to r = n were considered as the exact (or target) solutions 

and were used to calculate the errors that affect the truncated interstory drifts 

(evaluated for r = 1 … n - 1). To obtain the relative truncation errors on the interstory 

drifts, Eq. (4.2) was applied by considering in such equation the drifts instead of the 
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displacement components. Then, the root-mean-square value of the errors on the drifts 

related to the different stories of the structure was calculated.  

The results of the truncation error study performed on the modal flexibility-

based interstory drifts are presented using the same strategy adopted for the truncation 

error study performed on the displacement components of the deflections. This means 

that, again, the structural configuration no. 7 (Table 4.2) characterized by a mass 

irregularity that is imposed by selecting =3 is considered at first. Then, the same 

structural configuration (i.e. configuration 7) is used to show the results obtained for 

increasing amounts of the mass irregularities (i.e. for  = 1, 2, 3, 4, 5). Finally, the 

results related to all the structural configurations from 1 to 12 of the shear building 

structure characterized by a fixed mass irregularity (i.e. for =3) are discussed.  

The modal flexibility-based interstory drifts evaluated for configuration 7 and 

by considering a mass irregularity that is imposed with =3 are presented in Fig. 4.21. 

In particular, the drifts evaluated using the uniform load and the mass proportional 

load are reported in Fig. 4.21a, 4.21b, respectively. In both figures the results are 

shown for the different values assumed by the parameter r (i.e. the number of included 

modes). For each value of the parameter r, the drifts related to the different stories of 

the structure are points represented by the same marker and connected by linear 

segments to create the curves reported in the figure. First of all, it is worth noting that, 

referring to the uniform load (Fig. 4.21a) and to the exact or non-truncated solution 

(obtained using a number of modes equal to r = n = 6), the interstory drifts increase 

linearly from the upper to the lower stories of the structure. This trend is expected 

since the structure is characterized by a uniform distribution of the story stiffness, and 

the shear-force induced on the structure by the uniform load increases linearly from 

the upper to the lower stories of the building. In Fig. 4.21a it is also evident that the 

profiles of the interstory drifts obtained using a uniform load and calculated using 

only the first mode or only the first two modes (i.e. r=1 or r=2) show the major 

discrepancies with respect to the exact solution (r = n = 6). On the contrary, all the 

profiles of the interstory drifts obtained using a mass proportional load and evaluated 

using the different subsets of included modes (with r < n) are close to the exact 

solution obtained for r = n = 6, as evident in Fig. 4.21b.  
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The percent truncation errors on the truncated values of the modal flexibility-

based interstory drifts of each story of the structure were evaluated with respect to the 

target solutions (obtained for r=n) and the results are reported, in terms of absolute 

values, in Fig. 4.22. In particular, the truncation errors related to the uniform load and 

the mass proportional load are shown in Fig. 4.22a, 4.22b respectively. The results 

obtained using both the uniform load and the mass proportional load show that the 

errors on the interstory drifts are higher at the upper stories of the shear building 

structure. This is due to the fact that, for the considered structural configuration, the 

interstory drifts at the upper stories are lower than the drifts evaluated at the bottom 

of the structure. The modal truncation effects have thus a significant impact on the 

modal flexibility-based interstory drifts at the upper stories of the structure. As also 

shown in Fig. 4.22, the modal truncation errors on the drifts calculated by applying 

the mass proportional load are in general lower than the errors on the drifts evaluated 

using the uniform load. This is evident by considering the profiles of the interstory 

drifts evaluated for the cases r = 1,2,3,4, and especially by considering the drifts 

related to the upper stories of the structure.  

 

   (a) UL      (b) MPL 

 

Figure 4.21. Interstory drifts evaluated on modal flexibility-based deflections of the shear 

building structure (case 7; γ=3): (a) uniform load; (b) mass proportional load  
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   (a) UL               (b) MPL 

 

Figure 4.22. Truncation errors on the interstory drifts of the shear building structure (case 7; 

γ=3): (a) uniform load; (b) mass proportional load. 

 

The root-mean-square (RMS) truncation errors on the interstory drifts 

evaluated for configuration 7 of the shear building structure and by considering 

increasing amounts of mass irregularities (i.e. γ =1, 2, 3, 4, 5) are presented in Fig. 

4.23. By adopting the same representation used in Fig. 4.18 (which is, on the contrary, 

related to the RMS errors on the displacement components), the RMS errors on the 

interstory drifts are plotted as a function of the parameter r (reported on the x axis) 

and by comparing the uniform load (Fig. 4.23a) with the mass proportional load (Fig. 

4.23b). Each of the different curves reported in the figure is related to one value of 

the parameter γ (i.e. to a different amount of the mass irregularity). Fig. 4.23 shows 

that, for all the analyzed cases, the RMS errors on the interstory drifts evaluated using 

the mass proportional load (Fig. 4.23b) are lower than or equal to the errors related to 

the uniform load (Fig. 4.23a). This is evident if one considers the curve of the RMS 

errors obtained for γ = 1 as a reference curve to compare the two graphs (as already 

mentioned, for γ = 1 a uniform mass distribution is considered, thus the errors related 

to the mass proportional load are equal to the errors related to the uniform load). Using 

this strategy, it is evident in Fig. 4.23 that all the RMS errors related to the uniform 
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load and obtained for values of the coefficient γ higher than one are located above the 

curve γ =1 (Fig. 4.23a). On the contrary, all the RMS errors related to the mass 

proportional load and obtained for values of the coefficient γ higher than one are 

located below the curve γ =1.  

   (a) UL           (b) MPL 

 

Figure 4.23. RMS truncation errors on the interstory drifts of the shear building structure 

(case 7) for different mass irregularities: (a) uniform load; (b) mass proportional load 
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proportional load are lower than the errors related to the uniform load if the mass 

increments are applied at the upper DOFs of the shear building. On the contrary, when 

the mass increments are applied at the lower DOFs of the structure, and again 

considering only the first mode (i.e. r=1), the truncation errors related to the uniform 

load are lower than the ones related to the mass proportional load. The same results 

were also found by analyzing the RMS truncation errors on the drifts evaluated using 

only the first mode (i.e. r=1), as shown in the third column of Table 4.4. Referring to 

the interstory drifts, the above-mentioned observations are valid for all the 

configurations, except for configuration 12 (i.e. a configuration characterized by mass 

irregularities applied at the lower stories of the structure) for which the errors related 

to the uniform and the mass proportional loads are comparable. Moreover, referring 

again to the analyses on the displacement components of the deflections (Table 4.3) 

and by considering the RMS truncation errors obtained for higher values of the 

parameter r (i.e. for r > 1), it was found that the errors related to the mass proportional 

load are in general lower than the errors related to the uniform load. This result was 

obtained also for the RMS truncation errors related to the modal flexibility-based 

interstory drifts, as shown in Table 4.4.  
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Case Load p 
RMS truncation errors on interstory drifts   d,p,r

RMS (%) 

r=1 r=2 r=3 r=4 r=5 r=6 

1 
UL 60.58 5.98 7.73 0.86 1.05 

 
0.00 

MPL 12.31 3.68 1.57 0.74 0.31 

 
0.00 

2 
UL 27.82 24.29 7.87 3.64 0.04 

 
0.00 

MPL 11.60 4.59 5.28 1.07 0.38 

 
0.00 

3 
UL 17.31 23.49 5.81 5.46 1.51 

 
0.00 

MPL 12.57 9.61 1.79 0.94 0.52 

 
0.00 

4 
UL 10.66 9.18 11.15 2.54 2.30 

 
0.00 

MPL 16.28 4.90 2.76 0.84 0.62 

 
0.00 

5 
UL 5.74 6.20 4.42 7.08 1.50 

 
0.00 

MPL 22.04 3.74 2.15 2.29 0.12 

 
0.00 

6 
UL 12.26 4.29 3.29 1.65 0.67 

 
0.00 

MPL 24.67 7.39 1.40 0.37 0.10 

 
0.00 

7 
UL 40.06 15.91 14.11 10.88 1.52 

 
0.00 

MPL 11.44 4.52 1.20 0.83 0.37 

 
0.00 

8 
UL 20.74 21.72 9.71 9.48 0.27 

 
0.00 

MPL 13.30 3.45 5.85 0.74 0.58 

 
0.00 

9 
UL 16.43 18.20 7.03 6.91 9.43 

 
0.00 

MPL 17.07 5.73 1.45 1.49 0.52 

 
0.00 

10 
UL 10.64 8.52 6.67 4.12 2.90 

 
0.00 

MPL 22.10 11.73 0.81 0.42 0.04 

 
0.00 

11 
UL 33.84 11.56 13.24 10.40 12.26 

 
0.00 

MPL 15.57 4.88 1.11 1.18 0.58 

 
0.00 

12 
UL 19.69 20.63 18.34 8.46 8.04 

 
0.00 

MPL 17.79 7.25 0.85 0.33 0.24 

 
0.00 

Table 4.4.  RMS truncation errors on the interstory drifts of the shear building structure – 

different structural configurations with a fixed mass irregularity (γ = 3) . 
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Chapter 5 

Damage detection on 3D building structures 

using modal flexibility (MF) based 

deflections  

 

 

This chapter presents the research investigations that were carried out in an attempt 

to extend the Positive Shear Inspection Load (PSIL) method for damage detection 

[Koo et al., 2010; Koo et al., 2011; Sung et al., 2012], which as shown in Chapter 3 

was originally formulated to be applied on building structures that can be modeled as 

plane structures, to the case of more complex building structures1. As already 

mentioned in Section 1.3 of Chapter 1 (where the objectives of the thesis are outlined), 

this problem represents the second main problem that is addressed in the thesis.  

 As already discussed in Chapter 1, the authors that proposed the Positive Shear 

Inspection Load (PSIL) method verified the methodology by performing vibration 

tests on frame building structures with symmetric configurations (both in the pristine 

and in the damaged states). These vibration tests were performed using uniaxial 

                                                 
1 Some of the contents presented in the first part of this chapter (Section 5.1) are published 

in a paper co-authored with Prof. Ventura, Dr. Allahdadian, Dr. Kaya, Dr. Landi, and Prof. 

Diotallevi. This paper is published in the journal Procedia Engineering, and it was also 

presented at the X International conference on Structural Dynamics – EURODYN, 2017, 

Rome (Italy), 10-13 Sept. 2017. 

Bernagozzi G, Ventura CE, Allahdadian S, Kaya Y, Landi L, Diotallevi PP. Application of 

modal flexibility-based deflections for damage diagnosis of a steel frame structure. In: 

Vestroni F, Gattulli V, Romeo F (editors), Procedia Engineering, X International Conference 

on Structural Dynamics, EURODYN 2017. Volume 199, Pages 2026-2033. DOI: 

10.1016/j.proeng.2017.09.468 
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excitations in shaking table tests [Koo et al., 2010; Koo et al., 2011] or shaker tests 

[Sung et al., 2012]. The types of structures that are considered in this chapter are 

simple rectangular “box type” 3D building structures, characterized either by plan-

symmetric configurations or by plan-asymmetric configurations. Modifications are 

introduced in the original formulation of the Positive Shear Inspection Load (PSIL) 

method to deal with such structures. It is worth noting that in the present chapter and 

for the sake of brevity, these structures will be indicated as 3D building structures. As 

already mentioned in Chapter 1, it is of interest for practical applications to have a 

damage detection technique that can be applied on 3D building structures. On one 

side, in fact, real-life building structures can be characterized, for example, by a 

generic distribution of the stiffness and the mass of the different stories. On the other 

side, even if the structure considered in the damage detection process as the 

undamaged structure is plan symmetric (i.e. the structure can be theoretically modeled 

as a plane structure), the structure can then experience damage (e.g. a stiffness 

reduction) in a generic position. In general, the damaged structure can thus be a plan 

asymmetric structure, which can not be modeled as a plane structure. 

Experimental tests were planned and performed to investigate the above-mentioned 

damage detection problem (i.e. the problem of dealing with 3D building structures). In 

particular, a steel frame structure was tested under ambient vibrations by considering 

various structural configurations with imposed stiffness reductions. These stiffness 

reductions were imposed in generic positions of the considered 3D structure to obtain 

structural configurations that are characterized by either plan-symmetric or plan-

asymmetric distributions of the story stiffness. This structure is located at the Earthquake 

Engineering Research Facility of the University of British Columbia (Vancouver, 

Canada), and the tests were performed in September 20162.  

                                                 
2 The ambient vibration tests were performed in September 2016 during a study and research 

period that the writer spent at the University of British Columbia (Vancouver, Canada) under 

the supervision of Prof. Carlos Ventura. The writer had the opportunity to be included into 

an experimental research program that was on going at that time and that was carried out by 

other members of the research group of Prof. Ventura. The writer would like to thank Prof. 

Ventura for his guidance during the study period, his suggestions, and for the above-

mentioned great opportunity. Moreover, the writer would like to thank Dr. Saeid 

Allahadadian (which was the reference person for the above-mentioned experimental 

program) for his collaboration and for his great support. The writer would also like to thank 

Dr. Yuxin Pan for his assistance during the tests. 
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Some observations must be made on the experimental tests that were performed to 

apply the Positive Shear Inspection Load method on a 3D building structure and, in 

general, on the analyses presented in this chapter. First of all, the structure that was 

considered in the experimental tests is the same structure that was tested on August 2002 

by the IASC-ASCE Task Group in the context of the benchmark studies for Structural 

Health Monitoring [Dyke et al., 2003; Ventura et al., 2003; Dyke, 2011] (see Chapter 4). 

Secondly, as already mentioned in Chapter 1, the application of a technique 

which is almost equivalent to the PSIL method on the data of the above-mentioned 

IASC-ASCE benchmark studies for SHM was found in the work by [Zhang et al., 

2013]. In this last work a technique based on the estimation of modal flexibility-based 

deflections, which as already mentioned is almost equivalent to the PSIL method for 

damage detection, is thus applied on a 3D building structure. There are, however, 

some differences between the work by [Zhang et al., 2013] and the analyses presented 

in this chapter that must be highlighted: 

(1) in the work by [Zhang et al., 2013] the analyses on the 3D building structure 

were performed by estimating (from the vibration data) modal flexibility matrices that 

describe the behavior of the structure only in one direction, and by repeating the 

analyses for the two prevalent directions of the structure. Differently from the above-

mentioned work, in the present chapter the calculations are performed on modal 

flexibility matrices that describe the behavior of the whole 3D structure (by 

considering simultaneously the behavior of the structure in the two prevalent 

directions and the torsional behavior).  

 (2) in the work by [Zhang et al., 2013] the analyses were performed to localize 

the damage on the 3D building structure. In the present chapter the calculations are 

carried out not only to the step of the damage localization but also to the step of the 

quantification of the damage (adopting criteria that are similar to the ones adopted in 

the original formulation of the PSIL method [Koo et al., 2010]).  

(3) as already mentioned in Chapter 1, the tests performed by the IASC-ASCE 

Task Group in August 2002 on the steel frame structure were executed using different 

types of excitations (shaker, impact hammer, and ambient vibrations). The damage 

detection analyses reported in the work by [Zhang et al., 2013] were carried out using 
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the data of the impact hammer tests executed in the context of the benchmark studies 

for SHM and using an input-output modal identification technique. Differently from 

the above-mentioned work, in the present chapter the calculations are performed 

starting from ambient vibration data and using an output-only modal identification 

technique (ambient vibrations, in fact, are the excitations considered in the 

experimental tests performed on the structure in September 2016).  

 

5.1 Application of the PSIL method to “box type” 3D building 

structures 

5.1.1 Methodology and analytical formulation 

This section presents the methodology and the analytical formulation that was adopted 

to apply the Positive Shear Inspection Load method for damage detection on a 3D 

building structure that was tested under ambient vibrations. In particular, the 

methodology presented in this section was formulated starting from the original 

formulation of the Positive Shear Inspection Load (PSIL) method. The original 

formulation of the method was adapted and extended to deal with 3D building 

structures.  

As already mentioned, the types of structures that are considered in this chapter 

are simple rectangular “box type” 3D building structures, and the methodology 

presented in this section can be applied under two main assumptions: 1) the n-story 

building structure can be reasonably modeled as a 3n-DOF shear-type 3D building 

structure, and each floor of the building structure has a rigid-body in-plane behavior; 

2) an estimate of the system mass matrix of the structure is available. It is worth noting 

that this last assumption is the same assumption that is made in the original 

formulation of the PSIL method [Koo et al., 2010].  

In the original formulation of the PSIL method, as shown in Chapter 3, 

acceleration measurements have to be available at all the stories of the structure. This  

requirement has to be also guaranteed in the methodology presented in this section. 

Of course, since the investigated approach is an attempt to generalize the original 

method from the case of plane building structures to 3D building structures, more 

acceleration measurements are needed for each story of the structure. 
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Referring to simple rectangular “box type” 3D building structures and as 

already mentioned in Chapter 2, only the two horizontal displacements and the 

rotations (around the vertical axis) of the mode shapes of the building are usually 

estimated when these structures are subjected to ambient vibration tests, while the 

vertical modal displacements are usually neglected [Brincker & Ventura, 2015]. 

Under the assumption of having floors with a rigid-body in-plane behavior, this 

operation can be performed by considering at least three measurements of horizontal 

accelerations (in different directions and locations) at each floor of the building 

structure. In this way, the dynamic behavior of the structure can be captured by 

estimating mode shape vectors that are characterized by horizontal components in two 

directions and rotational components (Fig. 5.1).  

According to typical measurement plans for simple rectangular “box type” 

buildings, the sensors can be located in the corners (or in general on the perimeter) of 

each floor of the building. To obtain measurements at all the stories of the building, 

if one performs the ambient vibration test by acquiring only one data set, the number 

of the sensors should be equal to three times the number of the stories. However, as 

already mentioned in Chapter 2, in case of ambient vibrations multiple data sets can 

be also acquired by adopting both reference and roving sensors [Brincker & Ventura, 

2015] (i.e. fixed and moving sensors). In this last situation, the number of the sensors 

can thus be lower than three times the number of the stories. 

 

Figure 5.1. Schematic overview of a “box type” 3D building structure  

with a generic sensor layout. 
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The steps that were performed to apply the Positive Shear Inspection Load method for 

damage detection on a 3D building structure tested under ambient vibrations are the 

following:  

1)  Ambient vibration tests were performed on the 3D building structure, and 

the measurements of the output acceleration responses due to ambient inputs were 

acquired both for the undamaged and the possibly damaged structural configurations. 

A detailed description of the considered structural configurations and of the 

experimental test setup will be presented in next section. The acquired data were then 

analyzed according to the other steps described in this section. Before going further, 

it is worth noting that the calculations described at the steps from no. 2 to no. 5 were 

performed on the data related to both the undamaged and the possibly damaged 

structural configurations.  

2) An operation modal analysis technique was applied on the recorded ambient 

vibration data to obtain the modal parameters of the structure (for the analyses 

presented in this chapter the Enhanced Frequency Domain Decomposition method 

[Brincker, Ventura & Andersen, 2001] was applied, as shown in next sections). After 

having extracted the modal parameters using the OMA technique, the components of 

the mode shapes were defined with reference to the geometric center of each story of 

the 3D building structure. It is worth noting that for the considered structures (i.e. 

simple rectangular “box type” 3D building structures) the geometric center of the 

structure can be in general assumed as the center of mass of the structure. The 

components of the mode shapes were collected in 3n × 1 vectors defined as follows 

𝝍𝒊 = (

{𝝍𝒙,𝒊}

{𝝍𝒚,𝒊}

{𝝍𝜽,𝒊}

)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 
 

𝜓𝑥,𝑖,𝑛

⋮
𝜓𝑥,𝑖,1

𝜓𝑦,𝑖,𝑛

⋮
𝜓𝑦,𝑖,1

𝜓𝜃,𝑖,𝑛

⋮
𝜓𝜃,𝑖,1)

 
 
 
 
 
 
 
 
 

    (5.1) 
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where n is the number of the stories of the 3D building structure. In the mode shape 

vector reported in Eq. (5.1) there are n components that are related to the x direction, 

n components that are related to the y direction, and n components that are rotational 

components of the mode shape (Fig. 5.1). 

3) Starting from the identified modal parameters of the structure (i.e. natural 

frequencies and mode shapes), the modal flexibility matrices 𝑭𝒓 of the 3D building 

structure were assembled as follows 

𝑭𝒓 3𝑛 ×3𝑛 = 𝚿𝒓 𝜦𝒓
−1(𝚿𝒓

𝑇 𝐌 𝚿𝒓)
−1 𝚿𝒓

𝑇    (5.2) 

where 𝚿𝒓 3𝑛×𝑟 is the arbitrarily-scaled mode shape matrix, 𝜦𝒓 𝑟×𝑟 
 is a matrix with the 

square of the natural circular frequencies ωi
2 on the main diagonal, 𝑴3𝑛×3𝑛 is the mass 

matrix of the structure, and r is the number of the modes included in the calculations. 

As already mentioned, the mass matrix of the structure was estimated a-priori and 

used to normalize the mode shapes extracted from the data using the output-only 

modal identification (this strategy is the same strategy adopted in the original 

formulation of the PSIL method [Koo et al., 2010]).  

4) The operation of evaluating the modal flexibility-based deflections of the 

3D building structure was performed by considering two different and separate 

analyses, one for each of the two prevalent directions of the structure (i.e. the x 

direction and the y direction, Fig. 5.2). In the first of the two above-mentioned 

analyses, inspection loads were applied in the x direction of the structure, then in the 

other analysis inspection loads were applied in the y direction. The inspection loads 

that were adopted are indicated as 𝒑𝒙 and 𝒑𝒚, and these loads are defined as follows  

𝒑𝒙 = (

{𝟏}
{𝟎}

{𝟎}
)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

1
⋮
1

0
⋮
0

0
⋮
0 )

 
 
 
 
 
 
 
 

               ;           𝒑𝒚 = (

{𝟎}
{𝟏}

{𝟎}
)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

0
⋮
0

1
⋮
1

0
⋮
0 )

 
 
 
 
 
 
 
 

  (5.3) 
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It is worth noting that such loads 𝒑𝒙 and 𝒑𝒚 can be considered as uniform loads that 

are applied in the x and the y directions of the structure, respectively. The modal 

flexibility-based deflections of the structure due to the loads 𝒑𝒙 and 𝒑𝒚 were then 

calculated as follows 

𝒙𝒙 = 𝑭𝒓 𝒑𝒙        (5.4) 

𝒙𝒚 = 𝑭𝒓 𝒑𝒚        (5.5) 

where 𝒙𝒙 and 𝒙𝒚 are 3n × 1 vectors that contain the components of the modal 

flexibility-based deflections. It is worth noting that, according to the adopted 

formulation, the components of the MF-based deflections were evaluated with 

reference to the geometric center of the structure (similarly to the components of the 

mode shapes). 

 

 

Figure 5.2. Application of PSIL loads in the prevalent directions of a “box type” 3D 

building structure: a) PSIL load in y direction; b) PSIL load in x direction. 

 

5) After having evaluated the modal flexibility-based deflections of the 

structure due to the inspection loads in the x and the y directions, the interstory drifts 

were calculated by considering, respectively, the components of the deflections in the 

x and the y directions 

𝒅𝒙 = 𝑻𝒙 𝒙𝒙        (5.6) 

𝒅𝒚 = 𝑻𝒚 𝒙𝒚        (5.7) 
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where 𝒅𝒙 and 𝒅𝒚 are n × 1 vectors of the interstory drifts. The vector 𝒅𝒙 (or 𝒅𝒚) 

contains the interstory drifts related to the deflection of the structure due to the 

inspection load 𝒑𝒙 (or 𝒑𝒚), and such interstory drifts are evaluated in the geometric 

centre of the structure in x (or y) direction. The matrices 𝑻𝒙 and 𝑻𝒚 are two n × 3n 

transformation matrices defined as follows  

𝑻𝒙 = [ 𝑻 𝟎 𝟎] =

[
 
 
 
 

 

1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ ⋯ 0 1

 

0 ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0

 

0 ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0]

 
 
 
 

      (5.8) 

𝑻𝒚 = [ 𝟎 𝑻 𝟎] =

[
 
 
 
 

 

0 ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0

1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ ⋯ 0 1

 

0 ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0]

 
 
 
 

     (5.9) 

where T is the n × n transformation matrix already defined in Chapter 3 

𝑻 =

[
 
 
 
 
1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ ⋯ 0 1 ]

 
 
 
 

    (5.10) 

6) As already mentioned, the calculations described in the steps from no. 2 to 

no. 5 were performed both for the undamaged and the possibly damaged structures. 

Then, the vectors of the interstory drifts 𝒅𝒙 and 𝒅𝒚 were used to localize and quantity 

the damage by adopting the same criteria of the original formulation of the Positive 

Shear Inspection Load method (i.e. the z-index for damage localization and the 

damage severity αs for damage quantification). These two criteria have been already 

described in Chapter 3, where the original formulation of the PSIL method is 

presented by considering a plane shear building structure.  

Referring to the generic j-th story of the 3D building structure, two values of 

the z index were thus evaluated. One was evaluated starting from the interstory drifts 

contained in the vector 𝒅𝒙, the other was evaluated using the interstory drifts 

contained in the vector 𝒅𝒚. Of course, to evaluate the z index the interstory drifts 

related to the possibly damaged structure (inspection phase) were compared with 

respect to the drifts related to the undamaged structure (baseline state)  
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𝑧𝑥,𝑗 = 
𝑑𝐼,𝑥,𝑗  −  �̅�𝐵,𝑥,𝑗

𝑠(𝑑𝐵,𝑥,𝑗)
     (5.11) 

𝑧𝑦,𝑗 = 
𝑑𝐼,𝑦,𝑗  −  �̅�𝐵,𝑦,𝑗

𝑠(𝑑𝐵,𝑦,𝑗)
     (5.12) 

According to the original formulation of the PSIL method described in Chapter 3, the 

values of the z index related to the x or the y directions were compared with respect 

to the threshold value (zTH). For each story of the 3D building structure two statistical 

tests were thus performed to classify the story as healthy or damaged and to identify 

which prevalent direction of the structure has been affected by the damage (i.e. the x 

direction, the y direction, or both). It is worth mentioning that for the analyses 

presented in this chapter a slight modification was introduced in the original procedure 

used for performing the statistical z-index test according to the PSIL method. As 

discussed and suggested in [Koo et al., 2010; Sung et al., 2012], the value of the 

threshold is a user choice, and a threshold zTH = 2.5 was selected in the above-

mentioned works. However, as also suggested in [Koo et al., 2010], higher values of 

the z-index threshold decrease the probability of detecting false positives. On the 

contrary, lower values of the threshold decrease the probability of detecting false 

negatives. In general, there is thus always a trade off in the detection of false positives 

and false negatives. With reference to the mentioned indications, a threshold equal to 

zTH = 3 was considered in the analyses presented in this chapter.  

In the same way, two values of the damage severity αs were evaluated for the 

generic j-th story of the 3D building structure. Again, the damage severity in x 

direction was evaluated starting from the interstory drifts contained in the vector 𝒅𝒙, 

while the damage severity in y direction was evaluated using the interstory drifts 

contained in the vector 𝒅𝒚 

𝛼𝑠,𝑥,𝑗 =
𝑑𝐼,𝑥,𝑗 −  �̅�𝐵,𝑥,𝑗

𝑑𝐼,𝑥,𝑗
    (5.13) 

𝛼𝑠,𝑦,𝑗 =
𝑑𝐼,𝑦,𝑗 −  �̅�𝐵,𝑦,𝑗

𝑑𝐼,𝑦,𝑗
    (5.14) 

A general observation on the calculations presented in this section is the 

following. The equations of the original formulation of the Positive Shear Inspection 

Load method were modified in an attempt to have an approach that can deal with a 
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3D shear building structure characterized by 3n DOFs (instead of a plane shear 

building structure characterized by n DOFs). The equations presented in this section 

can be considered as the multidimensional version of the original equations of the 

PSIL method, but substantial modifications were not introduced in the approach. In 

fact, the inspection loads considered in this section are basically the same inspection 

loads applied in the original formulation of the PSIL method (i.e. translational uniform 

loads). The only differences between the two approaches are the following: (1) in this 

section modal flexibility matrices with dimensions 3n × 3n are considered instead of 

matrices with dimensions n × n (i.e. the ones considered in the original PSIL method); 

(2) two separate analyses are performed by considering the two prevalent directions 

of the 3D building structure (instead of considering only one direction, according to 

the original PSIL method). Of course, if the structure has a plan-symmetric 

configuration and can be modeled as a plane structure, the methodology presented in 

this section is theoretically equivalent to the original formulation of the PSIL method.  

 

5.1.2 Experimental application on a 3D steel frame structure tested under 

ambient vibrations  

5.1.2.1 Description of the ambient vibration tests 

The damage detection methodology that is outlined in previous section was applied 

on a steel frame structure that was tested under ambient vibrations. The structure is 

located outside the Earthquake Engineering Research Facility (EERF) of the 

University of British Columbia (UBC), Vancouver, Canada, and the ambient vibration 

tests were performed in September 2016.  As already mentioned at the beginning of 

this chapter, this structure is the same structure that was tested by the IASC-ASCE 

Task Group for Structural Health Monitoring [Dyke et al., 2003; Ventura et al., 2003; 

Dyke, 2011] in August 2002 using different types of excitations (including ambient 

vibrations). This means that the structure considered in this chapter to perform the 

damage detection analysis is basically the same structure that has been already 

considered in Chapter 4 to verify the proposed approach for modal truncation error 
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analysis (this verification was, in fact, conducted using the data of the above-

mentioned benchmark study).  

This section presents a description of the geometry of the structure and the 

description of the ambient vibration tests that were performed in September 2016. It 

is worth noting that this section presents a description of the geometry of the structure 

that is more detailed with respect to the description provided in Chapter 4. In Chapter 

4, in fact, only a brief description of the structure is reported, and this description was 

formulated on the basis of the information that was made available to the community 

by the IASC-ASCE Task Group for SHM [Dyke et al., 2011]. On the contrary, the 

description of the structure reported in this chapter and related to the tests performed 

in September 2016 was outlined on the basis of a geometric survey that was performed 

on the structure. Other information about the geometry of the structure was taken from 

the following references [Dyke et al., 2001; Kharrazi & Ventura, 2001; Ventura et al., 

2003; Turek & Ventura, 2005]. Some differences between the structure that was tested 

in August 2002 by the IASC-ASCE Task Group for SHM and the structure that was 

tested in September 2016 are also highlighted in this section. Of course, the two tests 

were performed using different experimental setups.  

A photo of the steel frame structure used in this chapter to perform the damage 

detection analysis is reported in Fig 5.3. The structure is a one-third scale four-story 

two-bay by two-bay structure. The interstory height of the building is equal to 0.9 m, 

and the bay width is 1.25 m (as reported in the structural drawings reported in Fig. 

5.4).  

The members of the frame are hot rolled grade 300W steel with a nominal yield 

stress equal to 300 MPa. The dimensions of the cross sections of the structural 

members are reported in Fig. 5.5 and in Table 5.1. The columns and the beams of the 

structure are double T sections (B100×9 and S75×11, respectively). Some floor braces 

are also positioned at each floor of the structure (Fig. 5.4a), and these elements are 

characterized by box sections (HSS 51×51×6.4). It is worth noting that the principal 

directions of the structure can be defined with reference to the orientation of  the 

column sections (as reported in Fig. 5.4a): the X axis is aligned to the weak direction 

of the frame (West-East direction), while the Y axis is aligned to the strong direction 
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of the structure (North-South direction). All the members of the frame are connected 

using bolted connections, and the bolts of the structure are A325 high strength bolts 

for structural steel joints. 

 

 

Figure 5.3. Steel frame structure (EERF laboratory, UBC) [Bernagozzi et al., 2017 b] 
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a) b) 

Figure 5.4. Geometry of the steel frame structure: a) plan view; b) lateral view of the 

south face  

 

As shown in Fig. 5.4b, diagonal wall braces are present in each bay of the 

structure. These elements can be easily removed, and this is a characteristic that makes 

the structure absolutely suitable for performing a damage detection analysis. In the 

experimental tests, in fact, damaged configurations were created by removing one or 

more diagonal elements from the wall bracing system of the structure (in other words, 

stiffness reductions were thus imposed on the structure). A detailed description of all 

the configurations that were tested is provided later in this section. The wall bracing 

system of the structure is composed as follows: in the portion of the structure that can 

be identified by considering a generic story and a generic bay two threaded tie-rods 

with a diameter equal to 12.5 mm are present. Such elements are pre-tensioned 

elements, and in the experimental test the tie-rods were put in tension using an 

adjustable-click-type torque wrench (whose head width is equal to ¾ inches): the 

tightening torque selected to close the bolts positioned between the wall braces and 

the rest of the structure was 22.5 N m (equal to 200 LB IN). 
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Four steel plates are located at each level of the structure (as reported in Fig. 

5.4a), and these plates are positioned on the structure to make the floor masses 

reasonably realistic.  At the top floor (i.e. the 4th floor) the mass of each plate is equal 

to 342 kg and the dimensions of each plate are 1,5 × 0,65 × 0,045 m; at the other floors 

(i.e. 1st, 2nd, and 3rd floor) the mass of each plate is equal to 454 kg with dimensions 

equal to 1,5 × 0,65 × 0,06 m. Two C-shaped profiles are positioned beneath each plate 

to fix the plate to the frame. As evident in Fig. 5.4, the plates aligned to the north-

south direction are positioned in a symmetric configuration, while the plates aligned 

to west-east direction were shifted towards south direction. It is worth noting that the 

structure that was tested in September 2016 is different from the structure that was 

tested in August 2002 in the context of the IASC ASCE benchmark studies for SHM. 

In fact, in the tests that were performed by the IASC ASCE Task Group for SHM the 

plates of the steel frame structure aligned to the west-east direction were shifted 

towards north direction [Dyke et al., 2003]. 

 

Figure 5.5. Cross sections of the members of the steel frame structure 

Element Characteristics  

Columns B100×9   (mm  ×  kg/m) b = 100  mm             

 h = 95 mm  

 sf = 4.76  mm 

 sa = 3.2 mm 

mass     9 kg/m    

Floor braces     HSS 51×51×6.4  (mm × mm × mm) b = 51  mm              

 s = 6.35    mm 

 mass    8 kg/m 

Beams     S75×11    (mm  ×  kg/m) b = 64   mm              

 h = 76  mm   

 sf = 6.6  mm 

 sa = 8.9  mm 

 mass    11 kg/m    

Wall braces (two threaded steel rods)  d = 12.5   mm  

Table 5.1. Characteristics of the members of the steel frame structure (referred to the cross 

sections shown in Fig. 5.5) 
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The description of the experimental test setup used in the ambient vibration 

tests performed on the steel frame structure is reported herein. A dynamic monitoring 

system with 15 channels of acceleration sensors was installed on the steel frame 

structure and was used to collect the responses of the structure under ambient 

vibrations. Information about the instrumentations used during the ambient vibration 

tests was collected in the laboratory and from the following reference [Turek & 

Ventura, 2002]. The sensors are force balance accelerometers, and two types of 

sensors were used: Kinemetrics FBA-11, which is a uniaxial accelerometer, and 

Kinemetrics EPI sensor (model FBA ES-T), which is a triaxial accelerometer 

[Kinemetrics]. These two sensors are indicated as sensor types a) and b), respectively, 

and they are reported in Fig. 5.7. Both sensors have a full-scale range equal to ± 0.5 g 

and a sensitivity equal to 5 V/g; other specifications of the sensors are reported in 

Table 5.2. Three acceleration sensors were positioned on each floor of the structure 

(in the middle of the south, the west, and the north sides, respectively). The position 

and the orientation of the sensors are indicated by the arrows reported in Fig. 5.6. It 

is worth noting that the locations of the sensors adopted in the ambient vibration tests 

performed in September 2016 are different from the locations of the sensors adopted 

in the tests that were performed in August 2002 in the context of the IASC ASCE 

benchmark studies for SHM (as described in Chapter 4).  

The ambient vibration measurements were acquired using a custom-built data 

acquisition system, which is composed by commercially available products (Fig. 5.8). 

The main component of the system is the IO Tech DAQ Book/216 [Measurement 

Computing], which includes an analog-to-digital converter (ADC) with a 16-bit 

resolution. The data acquisition system is also integrated with some DBK expansion 

cards [Measurement Computing]: four DBK18 cards, which are 4-channel low-pass 

filter and amplifier cards, and one DBK13 card, which is 16-channel programmable 

low- and high- gain analog input card. In the tests the DBK18 expansion cards were 

used by selecting an amplification gain equal to 10. The software for data acquisition 

used in the test is Dasy Lab version 11.0 [DASYLab; Measurement Computing].  
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Figure 5.6.  Layout of the sensors used in the ambient vibration tests:  

a) 3D view; b) plan view 

          

Figure 5.7. Acceleration sensors (EERF laboratory, UBC): type a); type b) 

  Sensor Type (a) Sensor Type (b) 

Full scale range ± 0.5 g ± 0.5 g 

Sensitivity 5 V/g 5 V/g 

Dynamic range ~ 135 dB+ 155 dB+ 

Frequency range 0.01 Hz to 50 Hz DC – 200 Hz 

Noise level 
2.5 μV  

(0.01 Hz to 50 Hz) 
10

-15

 g
2

/Hz (PSD)  

(0.06 Hz to 50 Hz) 

Table 5.2. Main specifications of the acceleration sensors (source: [Kinemetrics]) 

a) 

b) 

 a)  b) 
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Figure 5.8.  Custom-built data acquisition system (EERF laboratory, UBC) 

 

As already mentioned, the ambient vibration tests were performed on the steel 

frame structure for damage detection purposes. Thus, at first the structure in the 

original configuration was tested by acquiring ambient vibration data using the 

dynamic monitoring system. This configuration is also indicated as the fully braced 

structure or configuration C1, and it is considered as the undamaged structure in the 

damage detection process. Then, modifications were introduced on the structure, and 

the ambient vibration tests were repeated. As already mentioned in this section, the 

damaged configurations were created by removing one or more diagonal braces from 

the wall bracing system of the structure. In other words, stiffness reductions were 

imposed on the structure by removing the diagonal braces. The total number of the 

damaged configurations that were tested is equal to twenty, and such configurations 

are indicated as configurations C2, C3, … C21. The ambient vibration measurements 

were acquired with a sampling frequency equal to 1000 Hz. The length of time of the 

measurements was approximately 3 hours for the fully braced or undamaged structure 

(i.e. configuration C1) and approximately 30 minutes for each damaged configuration 

(i.e. configurations from C2 to C21). It is worth mentioning that the length of time of 

the measurements for the damaged configurations (i.e. 30 minutes) is the length of 

time that approximately can be determined using the criterion suggested by the 

“Guidelines for the Measurement of Vibrations and Evaluation of Their Effects on 

Buildings” [ANSI S2.47, 1990]. This criterion has been already described in Section 

2.2.1 of Chapter 2, and it was applied by assuming that the considered steel frame 
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structure has a first structural mode that is characterized approximately by a natural 

frequency equal to 10 Hz and a modal damping ratio equal to 1%. The estimates of 

such modal parameters were performed before the execution of the ambient vibration 

tests.  

The description of all the structural configurations that were tested (from 

configuration C1 to configuration C21) is reported in Table 5.3. Information about the 

diagonal braces that were removed for each configuration and with respect to the 

original structure is reported in the table. In particular, the indication of the diagonal 

braces that were removed is provided using acronyms that include the following 

information: the story where the brace is removed (from the first to the fourth story); 

the bay where the brace is removed (using the nomenclature of the bays of the 

structure that is reported in Fig. 5.9 and that was defined according to the orientation 

of the structure); the number of the braces removed in the selected story and in the 

selected bay of the structure (i.e. one or two rods removed). With reference to this last 

point, it is worth mentioning again that, as schematically reported in Fig. 5.9, two tie-

rods are present in the portion of the original structure that can be identified by 

considering a generic story and a generic bay. The acronyms reported in Table 5.3 are 

thus composed as: “story – bay – no. of braces removed”.  

 

           

Figure 5.9.  Schematic plan-view with the nomenclature adopted for each bay of the 

structure. Adapted from [Bernagozzi et al., 2017 b]. 
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Configurations Braces removed 
Type (S: sym. 

/ A: asym.) 

C1 * none S 

C2 1-SW-2; 1-SE-2 A 

C3 C2   +   1-NW-2; 1-NE-2 S 

C4 all braces removed at the first story S 

C5 C2   +   1-WS-2; 1-WN-2 A 

C6 C2   +   1-NW-1; 1-NE-1 A 

C7 1-SE-2 A 

C8 1-SW-1; 1-SE-1 A 

C9 3-WS-1; 3-WN-1 A 

C10 4 -WS-1; 4-WN-1; 2-SW-1; 2-SE-1 A 

C11 4-WS-1; 4-WN-1; 2-WN-1; 2-WS-1 A 

C12 half braces removed on the west side A 

C13 half braces removed at the first story S 

C14 3-SE-2; 3-SW-2 A 

C15 C14   +   2-WS-2; 2-WN-2 A 

C16 2-WS-2; 2-WN-2 A 

C17 * 2-WS-1; 2-NW-1; 2-ES-1; 2-SW-1 S 

C18 * C17   +   2-WN-1; 2-NE-1; 2-EN-1; 2-SE-1 S 

C19 * C18   +   2-WS-1; 2-NW-1; 2-ES-1; 2-SW-1 S 

C20 * C19   +   2-WN-1; 2-NE-1; 2-EN-1; 2-SE-1 S 

C21 2-SW-2; 2-SE-2; 2-WS-1; 2-WN-1; 2-NW-1;2-NE-1 A 
* progressive damage test  

Table 5.3 Structural configurations considered in the ambient vibration tests. Adapted from 

[Bernagozzi et al., 2017 b] 

 

The tested configurations include both single- and multiple- damage states. In 

other words, the stiffness reductions were imposed on the steel frame structure in one 

story or in more than one story. In addition, configurations with either a plan-

symmetric or a plan-asymmetric distribution of the story stiffness at the damaged 

levels were considered (as indicated in the last column of Table 5.3). For example, 

configurations C17, C18, C19 and C20 have a plan-symmetric distribution of the 

stiffness of each story, and these configurations were tested consecutively and by 

progressively increasing the stiffness reductions imposed on the 2nd story. As shown 

in Fig. 5.10, in fact, these configurations were created by progressively increasing the 

number of the braces that were removed in both directions of the structure. It is worth 
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noting that in the present chapter the configurations C1, C17, C18, C19, and C20 

(considered in this order) are also indicated as configurations that belong to a 

“progressive damage test”. 

 
Figure 5.10. Progressive damage test: symmetric configurations with braces removed only 

at the 2nd story of the structure 

An example of a damaged configuration with a plan-asymmetric distribution 

of the story stiffness is reported in Figure 5.11. In this configuration two tie-rods were 

removed at the first story and on the south face of the structure. It is worth noting that 

in such case the stiffness reduction was imposed only in the weak direction of the 

structure (i.e. the x or west-east direction). Other configurations are characterized by 

a distribution of the stiffness at the damaged level that is strongly asymmetric. For 

example, in configuration C2 four rods were removed at the first story and on the 

south face of the structure (as indicated in Table 5.3). 

 

Figure 5.11. Examples of configurations considered in the ambient vibration tests:                

a) conf. C1 (undamaged); b) conf. C8 (damaged) 
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5.1.2.2  Results of the operational modal analysis  

The quality of the recorded ambient vibration data was checked just after the data 

acquisition using the criteria that are suggested in [Brincker & Ventura, 2015] (some 

of these criteria have been already introduced in Section 2.2.1 of Chapter 2). This 

check of the data quality3 was performed with the objective of evaluating if the 

recorded signals (i.e. random responses of the structure due to the natural excitations) 

are signals with an approximately Gaussian distribution. In particular, in the analysis 

the probability density functions and some statistical parameters of the recorded 

signals were evaluated. One of the considered statistical parameters is the so-called 

kurtosis. By considering a generic signal 𝑥(𝑡), the kurtosis is the fourth statistical 

moment of the signal, and it is defined as follows 

𝛾 =
𝐸[ (𝑥(𝑡)− 𝜇)4 ]

𝜎4      (5.15) 

where 𝜇 and 𝜎 are the mean and the standard deviation of the signal and E [ ∙ ] is the 

operator used to indicate the expected value. The kurtosis of a random signal with 

Gaussian distribution is theoretically equal to 3. According to the criteria suggested 

in [Brincker & Ventura, 2015] to check the data quality, the kurtosis was calculated 

on portions of the ambient vibration measurements (i.e. windows of the signals) that 

have a length of time equal to the memory time of the structure. For the considered 

steel frame structure, the memory time of the structure was estimated as 𝑇𝑚𝑒𝑚 = 5 s. 

This parameter was calculated using the expression of the memory time that has been 

already defined in Section 2.2.1 of Chapter 2, and by assuming, again, that the first 

mode of the structure is characterized approximately by a natural frequency equal to 

10 Hz and a modal damping ratio equal to 1%. 

An example of the results of the analysis performed to check the quality of the 

data is reported in Figs. 5.12 and 5.13. In particular, the results are shown for a signal 

recorded in the test performed on the undamaged structure and recorded using channel 

3 (i.e. an accelerometer positioned at the top story and aligned to the weak direction 

of the structure, as shown in Fig. 5.6). The acquired ambient vibration data are 

                                                 
3 The check of the data quality was executed by developing a Matlab [MATLAB] code that uses 

some external functions of the OMA toolbox available in [Brincker & Ventura, 2015]. 
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approximately in the range ± (1-2) mg, as shown in Fig. 5.12a. The values assumed 

by the kurtosis evaluated on portions of the signal with a length of time of 5 s are 

reported in Fig. 5.12b. As shown in this figure, the kurtosis evaluated on the ambient 

vibration signal is, on average, approximately close to 3, which is the theoretical value 

of the kurtosis that is obtained if a signal with an exact Gaussian distribution is 

considered. The probability density function (PDF) and the cumulative distribution 

function (CDF) of the selected signal (obtained using channel 3) are reported in Fig. 

5.13. As shown in the figure, these functions are very similar to the functions that can 

be obtained if a signal with an exact Gaussian distribution is considered.  

 

Figure 5.12. Data quality check on the raw measurements – conf. C1 channel 3:  

a) time history; b) kurtosis 

 

Figure 5.13. Data quality check on the raw measurements – conf. C1 channel 3: 

a) probability density function (PDF); b) cumulative distribution function (CDF)  
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Before applying the output-only modal identification, the signals related to the ambient 

vibration measurements were decimated in the frequency range 0-50 Hz and detrended 

(i.e., any linear trend eventually present in the signals was removed to force the signals 

to have a zero mean). Moreover, the data recorded for the fully braced structure (C1) 

were segmented into non-overlapping data segments with a length of time of 30 

minutes each.  

The operational modal analysis4 (i.e. the output-only modal identification) was 

performed on the ambient vibration data using the Enhanced Frequency Domain 

Decomposition method [Brincker, Zhang & Andersen, 2001; Brincker, Ventura & 

Andersen, 2001], which, as already discussed in Chapter 2, is one of the most common 

OMA techniques among the techniques that work in frequency domain. According to 

the EFDD method, the spectral density functions were estimated starting from the 

ambient vibration data. Then, a singular value decomposition was performed on the 

matrix of the spectral density functions estimated for all the measured channels.  Two 

auto spectral density (ASD) functions estimated from the measurements are reported, for 

example, in Fig. 5.14. Such ASD functions are related to channels 9 and 3 and to the test 

performed on the undamaged structure (configuration C1). An example of a plot of the 

singular values (SV) computed from the cross spectral density (CSD) matrix is reported 

in Fig. 5.15. Again, the results shown in this last figure are related to the data recorded 

for the configuration C1, and two observations can be formulated on the plot of the 

singular values. First of all, it can be argued that the test was characterized by multiple 

inputs. This is because, as shown in Fig. 5.15, there are peaks not only in the curve of 

the first singular values, but also in the curves related to the other singular values. In 

general, it can be observed in the figure that at least the first three singular values raise 

above the noise level. Secondly, there is a good signal-to-noise ratio at least in the 

first half of the analyzed frequency band (i.e. in the range 0-25 Hz). As shown in the 

plot reported in Fig. 5.15, in this frequency range there are some clear peaks. 

According to [Brincker & Ventura, 2015], a measure of the signal-to-noise ratio can 

                                                 
4 The modal extraction was performed using the EFDD method implemented in ARTeMIS 

software [ARTeMIS]. As a complementary tool for the analyses, a Matlab code [Matlab] that 

implements the FDD method was also developed and adopted. 
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be, in fact, obtained as the distance between the maximum values of the peaks in the 

singular value plot and the singular values that are related to the noise level.  

 

Figure 5.14. Auto spectral densities (ASD) related to channels 9 and 3 – conf. C1. 

 

 

 

Figure 5.15. Singular values (SV) computed from the cross spectral density (CSD) matrix – 

conf. C1 
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According to the EFDD method, the structural modes were manually identified 

by analyzing the peaks in the plot of the singular values computed from the spectral 

density matrix. In general, by analyzing the ambient vibration data related to the different 

structural configurations that were tested (i.e. configurations from C1 to C21) it was 

possible to identify, on average and for each structural configuration, from eight to ten 

peaks that can be associated to structural modes. For example, referring to the results 

obtained for configuration 1, ten peaks that can be associated to structural modes were 

found in the plot of the singular values (shown in Fig. 5.15). The modal parameters, in 

terms of natural frequencies and modal damping ratios, of the ten modes that were 

identified for configuration 1 are reported in Table 5.4. However, only the first five 

modes of the structure were considered for assembling the modal flexibility matrices 

and for carrying out the damage detection analysis according to the steps described in 

Section 5.1.1. The high-order modes were, on the contrary, not included in the 

calculations, and this operation was done for all the tested configurations.  

It is important to mention that the choice of considering only the first five low-

order modes of the structure was motivated by two main reasons. First of all, for all 

the tested configurations the high-order modes are characterized by very high values 

of the Modal Complexity Factor (MCF). For example, referring to the results obtained 

for configuration 1, the values of the modal complexity factor are reported for each 

mode in the last column of Table 5.4. The modal complexity factor is an index that can 

be used for modal validation, and the analytical formulation of such index is described 

in detail in Section A.3 of Appendix A. The MCF index is evaluated on each complex-

value identified mode shape, and theoretically it is equal to zero if the considered 

mode shape is associated to a structure that is proportionally damped (in such case, 

the real and the imaginary parts of the identified mode shape are proportional). 

However, as reported in [Brincker & Ventura, 2015], even if the structure has a 

proportionally damped behavior, some complexity can be present in the identified 

mode shapes due to the random errors that always occur in the identification process5. 

Referring to the steel frame structure that was tested under ambient vibrations, a 

proportional damping model can be considered in general as a reasonable model that 

                                                 
5 This point is more extensively discussed in Section A.3 of Appendix A. 
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describes the behavior of the structure. Thus, in light of this assumption, the values of 

the modal complexity factor related to the identified modes suggest that the higher 

modes are affected by more uncertainties than the lower ones.  

Secondly, the choice of considering only the first five low-order modes in the 

damage detection analysis was also done to have the guarantee that modes which are of 

the same type are included in the modal flexibility matrices estimated for all the tested 

configurations. In particular, for all the configurations the following modes of the steel 

frame structure were considered: the two first longitudinal modes, the torsional mode, 

and the two second longitudinal modes. For all the tested configurations, such modes 

are the first five peaks that can be found in the singular value plots. Referring to the 

results obtained for configuration 1, these five modes are highlighted by the arrows 

reported in the plot of the singular values shown in Fig. 5.15. As evident in the figure, 

such modes are related to the highest peaks in the singular value plot.  

 

Mode  

no. 
Type of mode shape 

Configuration C1 

Frequency  

fi  [Hz] 

Damping  

ζi  (%) 

Modal complexity 

factor  (MCFi)  (%) 

1 1° mode – longitudinal (XY) 7.62 0.65 6.46 

2 1° mode – longitudinal (XY) 8.04 0.72 4.35 

3 1° mode – torsional (T) 15.53 0.22 19.98 

4 2° mode – longitudinal (XY) 21.46 0.27 38.12 

5 2° mode – longitudinal (XY) 22.05 0.23 39.33 

6 3° mode – longitudinal (XY) 27.16 0.28 51.88 

7 3° mode – longitudinal (XY) 29.07 0.30 62.24 

8 2° mode – torsional (T) 31.27 0.27 75.80 

9 4° mode – longitudinal (X) 33.33 0.21 48.79 

10 3° mode – torsional (T) 35.05 0.21 85.13 

 
Table 5.4 Modal parameters identified using the EFDD method for configuration C1 (fully-

braced or undamaged structure). Adapted from [Bernagozzi et al., 2017 b] 

 

The mode shapes that were identified using the EFDD method have, of course, 

components that are defined at the sensor locations. A transformation was then applied 
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on the identified mode shapes to obtain mode shapes whose components are defined 

with respect to the geometric center of the structure. This transformation was 

performed using the following equations 

𝜓𝑖,𝑥,𝐶,𝑗 = 
𝜓𝑖,𝑥,𝑁,𝑗 + 𝜓𝑖,𝑥,𝑆,𝑗

2
    (5.16) 

𝜓𝑖,𝜃,𝐶,𝑗 = 
𝜓𝑖,𝑥,𝑆,𝑗− 𝜓𝑖,𝑥,𝑁,𝑗 

2 𝑎
    (5.17) 

𝜓𝑖,𝑦,𝐶,𝑗 = 𝜓𝑖,𝑦,𝑊,𝑗 + 𝜓𝑖,𝜃,𝐶,𝑗 𝑎    (5.18) 

where 𝜓𝑖,𝑥,𝑁,𝑗 , 𝜓𝑖,𝑥,𝑆,𝑗 , and 𝜓𝑖,𝑦,𝑊,𝑗 are the components of the i-th mode shape 

identified at the j-th story and at the sensor locations (i.e. at the positions of the sensors 

located on the north, south, and west face of the structure, respectively, as shown in 

Fig. 5.6). On the contrary, the terms present in Eqs. (5.16, 5.17, and 5.18) 𝜓𝑖,𝑥,𝐶,𝑗, 

𝜓𝑖,𝑦,𝐶,𝑗, and 𝜓𝑖,𝜃,𝐶,𝑗 are the components of the i-th mode shape defined with respect to 

the geometric center of the structure (Fig. 5.16). The letter 𝑎 is used to indicate the 

width of each bay of the structure. The above-mentioned equations are valid under the 

simplified assumption of considering that each floor of the 3D building structure has 

a rigid-body in-plane behavior. Moreover, the amplitudes of the components of the 

identified mode shapes are small with respect to the dimensions of the structure. In 

such situation negligible errors are obtained using the following approximation 

sin𝜓𝑖,𝜃,𝐶,𝑗 ≈ 𝜓𝑖,𝜃,𝐶,𝑗 , as implicitly assumed in Eq. (5.17).  

The mode shapes obtained by performing a modal identification on one portion 

of the ambient vibration data recorded for configuration C1 (i.e. the undamaged 

structure) are reported in Table 5.5. The components of the mode shapes reported in 

this table are expressed with reference to the geometric center of the structure. It is 

worth noting that each longitudinal mode (i.e. all the modes except mode no. 3, which 

is a torsional mode) has components in x direction that are of the same order of 

magnitude of the components in y direction. This means that the modal displacements 

of the mode shapes associated to the longitudinal modes of the undamaged structure 

are approximately aligned to the diagonals of the plan of the structure (in other words, 

the modal displacements are not aligned to the x or the y directions).  
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Figure 5.16. Schematic plan-view with indication of the coordinates used to define the mode 

shapes in the geometric center of the structure. 

 

 

DOF 
Mode shape components ψi,C, DOF 

Mode #1 Mode #2 Mode #3 Mode #4 Mode #5 

x4 0.395 0.395 0.028 0.395 -0.378 

x3 0.332 0.325 0.022 0.050 -0.029 

x2 0.236 0.241 0.023 -0.309 0.312 

x1 0.131 0.121 0.012 -0.311 0.283 

      

y4 -0.385 0.406 -0.009 -0.343 -0.363 

y3 -0.332 0.332 0.004 -0.022 0.011 

y2 -0.228 0.247 -0.001 0.320 0.361 

y1 -0.137 0.144 0.012 0.396 0.438 

      

θ4 0.005 -0.015 0.300 0.017 0.007 

θ3 0.002 -0.010 0.263 -0.011 -0.050 

θ2 -0.003 -0.001 0.205 -0.049 -0.076 

θ1 0.004 -0.005 0.108 -0.051 -0.084 

Table 5.5 Mode shape components for configuration C1 (defined in the geometric center of the 

structure) 
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The natural frequencies of the structural configurations that were considered in the 

progressive damage test are reported in Table 5.6 (i.e. configurations C1, C17, C18, 

C19, and C20). As shown in the table, a progressive decrease of the natural 

frequencies related to the different configurations can be observed, especially for the 

first three structural modes.  

 

                Natural frequency  fi  [Hz] 

Mode no. C1 C17 C18 C19 C20 

1 7.62 6.98 6.58 6.04 4.92 

2 8.04 7.20 6.87 6.53 6.08 

3 15.53 14.44 12.74 11.28 9.14 

4 21.46 21.31 21.32 21.35 21.37 

5 22.05 21.91 21.89 21.87 21.79 

Table 5.6. Natural frequencies related to the configurations of the progressive damage test 

 

5.1.2.3  Results of the damage localization and quantification 

This section presents the results of the analyses that were carried out to localize and 

quantify the damage in the steel frame structure using the procedure that is outlined 

in Section 5.1.1. According to the above-mentioned procedure, after having performed 

the ambient vibration tests and the operational modal analysis (steps no. 1 and no. 2), 

the modal flexibility matrices of the 3D building structure were assembled (step no. 

3). To perform this operation and as already mentioned in Section 5.1.1, the system 

mass matrix of the structure was estimated a-priori and used to normalize the mode 

shapes that were identified using the output-only modal identification technique. This 

strategy for assembling modal flexibility matrices from output-only vibration data is 

the same strategy that was adopted in the original formulation of the PSIL method 

[Koo et al., 2010]. 

The mass matrix that was used to normalize the identified mode shapes is the 

mass matrix of a 3n-DOF lumped-mass model of the structure (where n=4, i.e. the 

number of the stories). This mass matrix of the structure was generated using the 

“Acceleration Responses Generation Program for the Benchmark Problem of the 
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ASCE Task Group on Structural Health Monitoring”, which is a MATLAB-based 

finite element analysis code that was made available by the IASC-ASCE Task Group 

[Johnson et al., 2004]. This code is able to generate the model and the acceleration 

responses of a structure that is similar to the steel frame structure that is located at the 

EERF laboratory of the University of British Columbia (Vancouver). The program 

was created before the execution of the experimental tests performed on the structure 

in August 2002 by the IASC-ASCE Task Group. It is worth noting, in fact, that these 

tests represent the experimental phase II of the studies conducted by the mentioned 

task group. In phase I, on the contrary, analytical studies were performed by the IASC-

ASCE Task Group, and such studies were executed using the MATLAB code provided 

by [Johnson et al., 2004]. In the program two different models of the benchmark 

structure can be considered: a 12-DOF shear building model, where each floor of the 

structure is a rigid body and the degrees of freedom are the two translations and the 

rotation of each story; a 120-DOF model, which is a more complex model of the 

structure and which is not a shear-type model. The first of the two above-mentioned 

models was considered in the present analysis and was used to generate a 12 × 12 

diagonal mass matrix M of the steel frame structure. The components of the diagonal 

of such matrix are reported in the following vector 

𝒎12 ×1 = [𝑚𝑥,4  𝑚𝑥,3  𝑚𝑥,2   𝑚𝑥,1     𝑚𝑦,4   𝑚𝑦,3  𝑚𝑦,2  𝑚𝑦,1    𝐽𝜃,4   𝐽𝜃,3   𝐽𝜃,2  𝐽𝜃,1 ]
𝑇
   (5.19) 

where 𝑚𝑥,4 = 𝑚𝑦,4 =1583.27 kg,  𝑚𝑥,3 = 𝑚𝑥,2 = 𝑚𝑥,1 = 𝑚𝑦,3 = 𝑚𝑦,2 = 𝑚𝑦,1 = 

2079.24 kg, 𝐽𝜃,4 =1823.66 kg m2, and 𝐽𝜃,3 = 𝐽𝜃,2 = 𝐽𝜃,1 = 2403.02 kg m2.  

 It is worth noting that some modifications were applied to the original FEM 

model provided by [Johnson et al., 2004] to obtain a mass matrix that can describe the 

mass distribution of the structure that was tested in September 2016 (i.e. the above-

mentioned mass matrix M). Similarly to the real structure located at the University of 

British Columbia, the structure modeled using the original FEM code by [Johnson et 

al., 2004] has four plates added at each floor. In the model of this original FEM code 

the values of the masses of the plates related to the first, second, third, and four floors 

are, respectively, 800 kg, 600 kg, 600 kg, and 400 kg. Such values of the plate masses 

were substituted with the values of the plate masses related to the structure that was 

tested in September 2016. As already mentioned in Section 5.1.2.1, such values of the 
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masses of the plates are 454 kg, 454 kg, 454 kg, and 342 kg (for the first, second, 

third, and four floors, respectively). Moreover, in the original FEM model by [Johnson 

et al., 2004], the diagonal wall braces of the structure are L-shape profiles. In the 

modified version of the FEM model used in the present analysis to generate the mass 

matrix of the structure, such elements were substituted with the elements that are 

present in the structure that was tested in September 2016 (i.e. diagonal wall braces 

that are tie-rods).  

The mass matrix considered in the analysis is a diagonal matrix. This means 

that the calculations were performed under the simplified assumption of neglecting 

the small eccentricity that is present in the distribution of the masses of the tested steel 

frame structure. In fact, as already mentioned in Section 5.1.2.1, the plates positioned 

at each floor of the structure and aligned to the west-east direction were shifted 

towards south direction. Referring to Fig. 5.4, the distances between the center of 

mass of the two floor plates aligned to the west-east direction and the geometric center 

of the structure are approximately 0.8 m and 0.5 m (for the plates located in the south-

west bay and the north-east bay, respectively). If one performs a simple calculation 

using these distances and the values of the plate masses, the distance along the y 

direction between the geometric center and the center of mass of the whole structure 

can be estimated approximately as 0.06 m. This value of the eccentricity related to the 

center of mass of the structure is small with respect to the dimension of the structure 

(i.e. 2.5 m). Under the simplified assumption of neglecting this small eccentricity of 

the center of mass of the structure, the calculations were performed using a diagonal 

mass matrix.  

After having assembled the modal flexibility matrices of the structure, the 

modal flexibility-based deflections and interstory drifts were computed according to 

the steps that are outlined in Section 5.1.1. In particular, as already mentioned in 

Section 5.1.1, two separate analyses were performed to evaluate the MF-based 

deflections of the structure due to the uniform inspection loads 𝒑𝒙 and 𝒑𝒚 applied in 

the X and the Y directions, respectively (Eq. 5.3). The damage localization and the 

damage quantification were then performed by evaluating the z-indices (Eqs. 5.11, 

5.12) and the parameters of the damage severity (Eqs. 5.13, 5.14) starting from the 

modal flexibility-based interstory drifts of the structure. The procedure was applied 
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for each damaged configuration that was tested. This means that all the structural 

configurations from C2 to C21 were compared with respect to the configuration 

assumed as the baseline structure (i.e. configuration C1).  

The results of the damage localization are presented in Fig. 5.18 for one 

damaged configuration. In particular, the results are presented in this figure for 

configuration C13, which is compared against configuration C1 (undamaged). As 

shown in Fig. 5.17, to create configuration C13 eight tie-rods were removed at the 

first story of the original structure. In particular, two tie-rods were removed from each 

side of the structure, and the stiffness reductions were imposed both in the weak 

direction of the structure (x direction) and in the strong direction (i.e. y direction). 

The configuration C13 is thus a configuration characterized by a plan-symmetric 

distribution of the story stiffness at all the stories (including the damaged story). 

According to the observations formulated at the end of Section 5.1.1, this means that 

the results of the damage localization obtained for such configuration C13 are 

basically the same results that can be obtained by applying the original formulation of 

the PSIL method (which, as already mentioned, was developed for plane structures).  

 

 

Figure 5.17. Examples of configurations considered in the ambient vibration tests:  

a) conf. C1 (undamaged); b) conf. C13 (damaged) 
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The components in X direction of the modal flexibility-based deflections of 

the structure due to the inspection load 𝒑𝒙 are reported in Fig. 5.18a both for the 

undamaged configuration C1 (blue continuous line) and the damaged configuration 

C13 (red dashed line), while the components in Y direction of the modal flexibility-

based deflections of the structure due to the inspection load 𝒑𝒚 are reported in Fig. 

5.18b. The interstory drifts related to the two above-mentioned deflections are 

reported in Fig. 5.18c, 5.18d, which are related to the X and the Y directions, 

respectively. As shown in these figures, variations of the interstory drifts between the 

undamaged and the possibly damaged states are present only at the first story (which, 

as already mentioned, is the damaged story). Moreover, these variations are present 

in the results of the analyses both in the X and the Y directions, as also shown in Fig. 

5.18e where such variations are plotted (i.e. the damage-induced interstory drifts 

related both to the X and the Y directions). As already mentioned, in fact, in 

configuration C13 the braces were removed both in the weak and in the strong 

direction of the structure. The results of the z-index tests are reported in Fig. 5.18f. 

As evident in this figure, the damage detection procedure correctly localizes the 

damage that was imposed at the first story and both in the X and the Y directions of 

the structure.  
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Figure 5.18. Damage localization on configuration C13: (a) deflections in X direction due to 

load 𝒑𝒙; (b) deflections in Y direction due to load 𝒑𝒚; (c) interstory drifts in X direction due to 

load 𝒑𝒙; (d) interstory drifts in Y direction due to load 𝒑𝒚; (e) damage-induced interstory drifts; 

(f) z-index tests. 

The results of the damage localization are also presented for configuration C8 

(damaged), which is compared against configuration C1 (undamaged) in Fig. 5.19. To 

create configuration C8 two tie-rods were removed at the first story and from the south 

face of the original structure (as shown in Fig. 5.11). In this way, the stiffness 
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reduction was imposed on the weak direction of the structure (i.e. the x direction), and 

this configuration is thus characterized by a plan-asymmetric distribution of the story 

stiffness at the damaged story. Fig. 5.19 (related to configuration C8) shows the results 

of the same analyses that are presented in Fig. 5.18 for configuration C13. As evident 

in Fig. 5.19f, the z-index tests performed for configuration C8 correctly localize the 

damage that was imposed at the first story and in the X direction of the structure.  

 

 

 
Figure 5.19. Damage localization on configuration C8: (a) deflections in X direction due to load 

𝒑𝒙; (b) deflections in Y direction due to load 𝒑𝒚; (c) interstory drifts in X direction due to load 

𝒑𝒙; (d) interstory drifts in Y direction due to load 𝒑𝒚; (e) damage-induced interstory drifts; (f) z-

index tests. Adapted from [Bernagozzi et al., 2017 b] 
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The results of the damage localization are presented herein for all the 

configurations that were tested (i.e. configurations from C2 to C21). In particular, the 

values of the z-index are reported in Table 5.7 for each direction of the structure (i.e. 

X or Y direction) and for each story (from the 1st to the 4th story). The values of the 

z-index were compared against the threshold zTH = 3 (as defined in Section 5.1.1) to 

evaluate if the structure, in the considered direction and at the selected story, is 

damaged or not. At the end, the effectiveness of the procedure used for damage 

localization was evaluated by comparing the outcomes of the z-index tests with the 

expected outcomes. Such expected outcomes were defined on the basis of the 

knowledge of the positions of the braces that were removed in the different 

configurations (i.e. the knowledge of the story and the direction of the structure that 

have been affected by the damage). The number of cases that were falsely detected is 

reported in the last two columns of Table 5.7, where a distinction is made between 

false positives and false negatives. A false positive damage indication is an indication 

of damage when the damage is not present, while a false negative damage indication 

means that there is no indication of damage when, on the contrary, damage is present 

[Farrar & Worden, 2013].  
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Conf. Dir. z-index FP* FN* 
z4 z3 z2 z1 

C2 x 0.90 0.15 2.36 58.66 0 0 

y -2.59 -3.42 -3.33 -0.74 0 0 

C3 x -0.21 -2.69 3.96 140.41 1 0 

y -0.89 -1.14 -0.94 -0.49 0 0 

C4 x -3.14 -6.42 1.42 136.04 0 0 

y -4.96 -4.48 -0.71 81.69 0 0 

C5 x 0.57 1.36 1.86 64.81 0 0 

y -7.70 -5.79 -7.31 41.80 0 0 

C6 x 0.70 0.08 3.15 85.61 1 0 

y -0.10 -0.82 -0.38 1.39 0 0 

C7 x 0.13 0.00 0.78 13.12 0 0 

y 0.56 0.09 -0.43 0.90 0 0 

C8 x 0.29 0.39 1.19 20.81 0 0 

y 0.47 0.52 0.08 1.08 0 0 

C9 x 1.51 1.38 1.23 1.37 0 0 

y -0.25 7.16 -0.58 -1.19 0 0 

C10 x 0.81 1.27 17.11 0.77 0 0 

y 5.58 2.60 0.52 0.79 0 0 

C11 x 1.86 1.58 1.78 2.08 0 0 

y 0.98 -0.36 12.81 -5.40 0 1 

C12 x -2.11 -2.33 -1.87 -3.36 0 0 

y -1.80 5.95 10.32 8.20 0 1 

C13 x -0.11 -0.94 0.82 38.56 0 0 

y 2.01 2.56 1.20 25.42 0 0 

C14 x 3.88 37.54 2.84 2.72 1 0 

y 3.98 -0.02 2.83 3.32 2 0 

C15 x 2.95 35.79 2.21 1.02 0 0 

y -5.19 -5.73 32.03 -7.47 0 0 

C16 x 1.72 1.27 2.05 1.60 0 0 

y -6.70 -3.37 30.86 -6.55 0 0 

C17 x 3.36 3.58 13.06 5.12 3 0 

y 2.00 2.79 6.31 2.52 0 0 

C18 x 1.41 1.98 32.58 1.87 0 0 

y 0.09 2.87 16.30 2.95 0 0 

C19 x -0.15 1.56 57.18 0.02 0 0 

y -0.38 3.68 28.45 3.71 2 0 

C20 x -0.88 3.68 128.21 -0.02 1 0 

y -2.27 4.31 47.95 4.20 2 0 

C21 x 2.45 5.05 81.34 4.68 2 0 

y 2.30 5.24 9.77 4.49 2 0 
* FP = false positive; FN = false negative 

Table 5.7  Damage localization using the z-index tests (results for all the tested 

configurations). [Bernagozzi et al., 2017 b] 
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The total number of false positives and false negatives obtained using the 

modal flexibility-based methodology for damage localization is equal to 19. This 

number was compared to the total number of the z-index tests performed for damage 

localization. This last number is equal to t = 160 and was calculated as follows  

𝑡 =  𝑐 × 𝑛 × 𝑑     (5.20) 

where c is the total number of the analyzed damaged configurations (i.e. c = 20), n is 

the number of the stories of the steel frame structure (i.e. n = 4), and d is the number 

of the analyzed directions (i.e. d = 2, since the analyses were performed in the X and 

the Y directions). By comparing the total number of false positives and false negatives 

(i.e. 19) against the total number of the z-index tests (i.e. 160), the failure rate in 

damage localization can be evaluated and it is equal to 11.87 %. A success rate of 88.13 

% was thus obtained in the damage localization when the procedure outlined in 

Section 5.1.1 was applied on the tested configurations.  

If one considers the cases that were falsely detected, it is evident from Table 

5.7 that most of these cases are false positives (i.e. 17 cases). In such cases, the 

statistical z-index test fails in the classification of the story as undamaged (i.e. there 

is an indication of damage when the damage is not present in the story). By analyzing 

the results reported in Table 5.7, it can be observed that the values of the z-index 

obtained for the false positive cases are, in general, slightly higher than the selected 

threshold. On the contrary, the values of the z-index that are related to the localization 

of a story that is effectively damaged are, in general, remarkably higher than the 

threshold. For example, this is evident in Table 5.7 if the configuration C3 and the z-

index values related to the X direction are considered: z1 =140.41 is the value of the 

z-index that correctly localizes the damage imposed at the first story and in the x 

direction, while z2 = 3.96 represents a false positive case.  
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False negative results in the damage localization were obtained in two cases.  

These two cases were obtained for configurations C11 and C12 in the localization of 

a damage that, for both configurations, was imposed at the fourth story of the structure 

in the strong or Y direction. These errors in the localization of the damage could be 

due to modal truncation errors6 that are introduced on the modal flexibility-based 

interstory drifts when only a limited number of modes is included in the calculations. 

This is the case for the present analysis, since, as already mentioned in the previous 

paragraphs of this section, only the first five modes of the structure were included in 

the calculation of the damage sensitive features, while the higher modes affected by 

more uncertainties were excluded. Referring to this point, it is evident that the higher 

the number of modes included in the computation of the modal flexibility matrices 

and the MF-based deflections, the closer these estimated quantities are with respect to 

the static or target values. However, it is also clear that if the higher modes are affected 

by significant uncertainties and are included in the analysis, then these uncertainties 

are also introduced on the modal flexibility matrices and on the deflections.  

The quantification of the damage was then carried out for the different 

configurations and, specifically, for each story that is labelled as damaged by the z-

index test. The operation of quantifying the damage was performed by evaluating the 

damage severity index, and, as already done in the damage localization, the analyses 

were performed separately for the X and the Y directions (i.e. the weak and the strong 

directions of the structure).  

Referring to the damage quantification, it is of interest to consider at first the 

results of the progressive damage test (i.e. configurations C17, C18, C19, and C20). 

As shown in Fig. 5.10, these configurations were tested by progressively increasing 

the number of the braces that were removed at the 2nd story. Moreover, these 

configurations are characterized by a plan-symmetric distribution of the story stiffness 

at all the stories (including the damaged story). This means that the results of the 

damage quantification obtained for the configurations C17, C18, C19, and C20 are 

basically the same results that can be obtained by applying the original formulation of 

                                                 
6 A discussion on the effect of the modal truncation errors on the damage sensitive features and 

the metrics used in damage detection is presented also in Section 6.4.2.2. of Chapter 6. 
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the PSIL method. The modal flexibility-based deflections and the interstory drifts 

evaluated in the two prevalent directions of the structure for these damaged 

configurations and for the undamaged configuration C1 are reported in Fig. 5.20. The 

red dashed lines reported in Fig. 5.20a, 5.20b, 5.20c, 5.20d and considered from the 

left-hand side to the right-hand side of the figure correspond to the configurations 

C17, C18, C19, and C20, respectively. By considering the results presented in Fig. 

5.20c, 5.20d (i.e. the interstory drifts related to the analyses in the X and the Y 

directions, respectively), it is evident that the higher the number of the braces removed 

at the 2nd story of the structure, the higher the interstory drifts related to that story. On 

the contrary, the interstory drifts related to the other stories are in general not affected 

by the damage. In other words, the stiffness reductions imposed at the 2nd story both 

in the X and the Y directions do not substantially alter the interstory drifts of the 

original structure at the 1st, the 3rd, and the 4th stories. The damage severity indices 

related to the analyses performed in the X and the Y directions (αs,x and αs,y) were 

evaluated for the configurations C17, C18, C19, and C20 starting from the values of 

the interstory drifts that were obtained at the 2nd story of the structure. The results are 

shown in Fig. 5.21. This figure shows that the higher the number of the braces 

removed at the 2nd story of the structure, the higher the damage severity index both 

for the X and the Y directions.  
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Figure 5.20. Progressive damage test on plan-symmetric configurations: (a) deflections in X 

direction due to load 𝒑𝒙; (b) deflections in Y direction due to load 𝒑𝒚; (c) interstory drifts in X 

direction due to load 𝒑𝒙; (d) interstory drifts in Y direction due to load 𝒑𝒚. Adapted from 

[Bernagozzi et al., 2017 b]. 
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Figure 5.21. Damage quantification for the progressive damage test (plan-symmetric 

configurations) - damage severity evaluated at the 2nd story of the structure. Adapted from 

[Bernagozzi et al., 2017 b]. 

 

Some observations can be formulated on the values of the damage severity that 

were obtained for the structural configurations considered in the progressive damage 

test. As already mentioned in Chapter 3, the damage severity index quantifies the 

relative portion of the story stiffness that is lost due to the damage. This index, in fact, 

is a relative index in the range 0 ≤ αs < 1.  

If one considers the configuration C20 (which is the last configuration shown 

in Fig. 5.10), the following result is obtained: by removing all the sixteen braces from 

one story of the structure (i.e. the 2nd story in such case), the damage severity is 

approximately equal to 0.65 and 0.8 for the y direction and the x direction, 

respectively (i.e. the strong and the weak direction of the structure). In other words, 

this means that by performing this operation (i.e. removing all the braces in one story) 

the 65% and the 80% of the story stiffness (in the y and x directions) of the original 

structure is lost. By analyzing these values of the damage severity, it is clear that most 

of the contribution to the story stiffness of the structure is due to the diagonal wall 

braces, which as already mentioned in Section 5.1.2.1, are pre-tensioned elements. 

The contribution of all the diagonal braces to the story stiffness is thus much higher 

than the contribution of the columns of the structure.  

A second observation can be formulated by comparing the values of the 

damage severity that were obtained by performing the analyses in the X direction or 



Chapter 5                                                            Damage detection on 3D building structures 

 

216 

 

in the Y direction. For each configuration (i.e. C17, C18, C19, or C20), two different 

values of the damage severity were obtained in the two directions, and the damage 

severity in x direction is higher than the damage severity in y direction. This result 

was obtained by removing the same number of braces in the x and the y directions of 

the structure (i.e. for each direction two, four, six, and eight braces were removed for 

the configurations C17, C18, C19, and C20, respectively). This result is expected and 

can be explained as follows. The columns of the structure are double T sections, and 

thus the contribution to the story stiffness of the columns is different in the two 

directions. In the y direction (i.e. the strong direction according to the orientation of 

the column sections) the columns have a relative contribution to the story stiffness 

that is higher then the contribution of the columns in the x direction (i.e. the weak 

direction). This explains the fact that, by removing the same number of braces in the 

two directions, higher values of the damage severity were obtained in the x direction 

(with respect to the y direction).  

A final comment must be done on the values of the damage severity that were 

obtained from the experimental test. The damaged configurations are characterized by 

amounts of damage (i.e. stiffness reductions imposed on the original structure) that 

correspond in some cases to realistic situations, while other cases can be more rare in 

practical situations. In any case, configurations that are characterized by very high 

values of the damage severity (for example, configurations with completely unbraced 

stories, such as configuration C20) were considered to have a complete insight of the 

tendencies of the damage quantification results.  

As already mentioned, the diagonal wall braces have a very high contribution 

to the story stiffness, and such braces are present at all the stories of the structure. Of 

course, the contribution of the columns to the story stiffness might be slightly different 

if one takes into account the different stories. For example, it is expected that the 

contributions of the columns to the story stiffness at the second and the third stories 

are very similar. While it is expected that slightly different contributions are present 

at the fourth and the first stories (on one side because the fourth story is the top story 

of the structure, on the other side because at the first story the structure is connected 

to a grid of beams positioned at the base of the structure). In any case, since the 

contribution of the diagonal braces to the story stiffness is dominating with respect to 
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the contribution of the columns (especially for the weak direction of the structure), it 

is expected that the above-mentioned differences in the contributions of the columns 

(to the story stiffness) at the different stories are small. It is thus expected that similar 

values of the damage severity are obtained for configurations characterized by the 

same number of braces removed in a generic story even if this generic story is different 

for the mentioned configurations. For example, it is expected that the damage severity 

obtained for a configuration that is completely unbraced at the 2nd story is similar to 

the damage severity for a configuration that is completely unbraced at the 3 rd story.  

This last observation is confirmed by the results presented in Fig. 5.22, where, 

for all the tested configurations, the damage severity indices are plotted against the 

number of the braces removed in one story of the structure, without considering at 

which story the braces were removed. In particular, the results presented in Fig. 5.22a, 

5.22b are related to the analyses performed in the X and the Y directions, respectively. 

One important aspect that must be highlighted is the following. The blue points in Fig. 

5.22 are related to damaged configurations with a plan-symmetric distribution of the 

story stiffness at all the stories (including the damaged stories). On the contrary, the 

red points in Fig. 5.22 are related to damaged configurations with a plan-asymmetric 

distribution of the story stiffness at the damaged stories (of course, at the undamaged 

stories of the damaged configurations the distribution of the story stiffness is equal to 

the one of the original structure and thus is plan symmetric).  

As already mentioned in Section 5.1.1, the results that are obtained using the 

considered damage detection procedure on structures with a plan-symmetric 

distribution of the stiffness at all the stories are basically the same results that can be 

obtained by applying the original formulation of the PSIL method (which was 

developed for plane structures). On the basis of this premise, the values of the damage 

severity obtained from the experimental test for configurations with a plan-symmetric 

distribution of the story stiffness (i.e. blue points in Fig. 5.22) can be considered as 

the true (or target) values of the damage severity (obtained for a certain number of 

braces removed and for a certain direction).   

If one considers the results presented in Fig. 5.22 and considers a certain 

number of braces removed, it is evident that the red points (related to plan-asymmetric 
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configurations) are, in general, located above the blue points, which are related to 

plan-symmetric configurations. By considering the blue points as the target values of 

the damage severity, it is clear that the damage severity is slightly overestimated when 

configurations with a plan-asymmetric distribution of the story stiffness at the 

damaged stories are considered. For example, referring to Fig. 5.22a (i.e. x direction) 

and considering the case in which four braces were removed in the weak direction of 

the structure, the damage severity obtained when such braces were removed by 

creating a plan-symmetric configuration is approximately equal to 0.5. On the 

contrary, the damage severity obtained when four braces were removed in the x 

direction of the structure by creating a plan-asymmetric configuration is 

approximately equal to 0.6.  

A final observation can be formulated on the results presented in Fig. 5.22. 

Referring to the blue points, a sort of an approximately proportional trend can be 

observed between the damage severity αs and the number of braces that were removed 

(both for the X and the Y directions). On the contrary, the reds points tend, in general, 

to be not aligned with this proportional trend.  

 

Figure 5.22. Damage quantification (results plotted for all the tested configurations): (a) 

damage severity in X direction; (b) damage severity in Y direction. Adapted from 

[Bernagozzi et al., 2017 b]. 
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From the results of the analyses performed using the damage detection 

procedure outlined in Section 5.1.1 on the data of a steel frame structure that was 

tested under ambient vibrations (by considering structural configurations 

characterized by either plan-symmetric or plan-asymmetric distributions of the story 

stiffness), the following partial conclusions can be drawn. For the considered steel 

frame structure very good results were obtained in the localization of the damaged 

stories (the success rate in damage localization is, in fact, very high). Referring to the 

damage quantification, the damage severity is slightly overestimated when 

configurations with a plan-asymmetric distribution of the story stiffness at the 

damaged stories are considered.  

 

5.2 An attempt to extend the PSIL method to account for plan-

asymmetry in “box type” 3D building structures  

The results presented in previous section have highlighted the necessity of 

modifying and improving the damage detection procedure that has been applied on a 

“box type” 3D building structure tested under ambient vibrations. The main purpose 

is to correct the slight overestimations that were obtained in the damage quantification 

for the configurations considered in the experimental test that are characterized by a 

plan-asymmetric distribution of the story stiffness at the damage stories. The research 

investigations that were carried out in an attempt to attain this objective are described 

in this section.  

 

5.2.1 Analytical formulation 

The types of structures that are considered in this section (similarly to Section 5.1.1) 

are simple rectangular “box type” n-story 3D building structures that can be modeled 

as 3n-DOF shear-type building structures. However, for the sake of simplicity, in the 

present section the analytical formulation is developed, at first, by considering models 

of 1-story shear-type 3D building structures. Then, the analytical formulation 

developed for the 1-story shear building structures will be applied to each story of the 
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n-story shear building structures, and thus the analytical formulation is generalized to 

the case of such n story structures (Fig. 5.23).  

 

Figure 5.23. Building models: a) n-story shear-type building model; b) 1-story shear-type 

building model; c) plan view of the structure. 

 

The stiffness matrix of a 1-story shear-type 3D building structure (i.e. a structure that 

can be modeled using 3 DOFs) can be in general expressed as follows 

𝑲 =  [

𝑘𝑥 0 −𝑘𝑥𝑒𝑦

0 𝑘𝑦 𝑘𝑦 𝑒𝑥

−𝑘𝑥𝑒𝑦 𝑘𝑦 𝑒𝑥 𝑘𝜃 + 𝑘𝑥𝑒𝑦
2 + 𝑘𝑦 𝑒𝑥

2

]    (5.21) 

where 𝑘𝑥, 𝑘𝑦, and 𝑘𝜃 are, respectively, the uncoupled stiffness of the structure in x-, 

y-, and 𝜃 directions [Wang et al., 2013]. The parameters 𝑒𝑥 and 𝑒𝑦 represent the 

distance (projected on the x and the y axes, respectively) between the generic center 

of rigidity (i.e. the center of stiffness CK) and the geometric center of the structure 

(GC). Such parameters 𝑒𝑥 and 𝑒𝑦 are indicated in this section as the eccentricities in 

x and y directions, respectively. It is worth noting, that, as already mentioned in 

Section 5.1.1, for the considered structures (i.e. simple rectangular “box type” 3D 

building structures) the geometric center of the structure can be assumed as the center 

of mass (CM) of the structure.  
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Using a formulation similar to the one adopted in Eq. (5.21), the flexibility 

matrix of a 1-story shear-type 3D building structure can be expressed as follows 

𝑭 = [

𝑓𝑥 + 𝑓𝜃𝑒𝑦
2 −𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝜃𝑒𝑦

−𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝑦 + 𝑓𝜃𝑒𝑥
2 −𝑓𝜃𝑒𝑥

𝑓𝜃𝑒𝑦 −𝑓𝜃𝑒𝑥 𝑓𝜃

]   (5.22) 

where 𝑓𝑥, 𝑓𝑦, and 𝑓𝜃 are, respectively, the uncoupled flexibility of the structure in x-, 

y-, and 𝜃 directions.  

The simple models of a 1-story shear building structure expressed by Eqs. 

(5.21, 5.22) are used in this section to show the main reason for which the approach 

adopted in Section 5.1 can provide results in the damage quantification (i.e. values of 

the damage severity) that are theoretically not correct when structures with a plan-

asymmetric distribution of the story stiffness are considered. These simple models are 

also used to derive a possible strategy that can be used to correct the results of the 

damage quantification for such structures (for example, to correct the slight 

overestimations that were obtained, as shown in Section 5.1.2.3, in the values of the 

damage severity related to the plan-asymmetric configurations).  

Thus, let us consider such simple models of 1-story shear building structures, 

and let us evaluate the deflections (i.e. the two displacements in x and y directions 

and the rotation of the structure) by applying inspection loads. For example, an 

inspection load applied only in x direction can be considered. For the considered 

structure such load is defined as follows  

𝒑 = [
1
0
0
]     (5.23) 

The deflection of the structure can be evaluated by multiplying the flexibility matrix 

(Eq. 5.22) and the inspection load (Eq. 5.23)  

𝒙 = 𝑭 𝒑 = 1 × [

𝑓𝑥 + 𝑓𝜃𝑒𝑦
2

− (𝑓𝜃𝑒𝑥𝑒𝑦)

𝑓𝜃𝑒𝑦

]    (5.24) 
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Then, the considered analytical models are specified for structures that are undamaged 

or damaged7. Let us consider a structure that is undamaged, and that is characterized 

by a plan-symmetric distribution of the story stiffness. In such case the eccentricities 

𝑒𝑥,𝐵 and 𝑒𝑦,𝐵 are equal to zero. The deflection of such undamaged structure due to the 

inspection load applied in x direction (Eq. 5.23) is thus 

𝒙𝑩,𝒔𝒚𝒎 = 1 × [
𝑓𝑥,𝐵

0
0

]     (5.25) 

Then, a structure that is damaged is considered and, specifically, two different 

configurations of such structure are taken into account. In the first configuration the 

damaged structure has a plan-symmetric distribution of the story stiffness (i.e. 𝑒𝑥,𝐼 =

0 and 𝑒𝑦,𝐼 = 0), and the deflection due to inspection load in x direction is  

𝒙𝑰,𝒔𝒚𝒎 = 1 × [
𝑓𝑥,𝐼

0
0

]     (5.26) 

In the second configuration the damaged structure has the same value of the uncoupled 

stiffness 𝑘𝑥,𝐼 (or flexibility 𝑓𝑥,𝐼) in x direction but it is characterized by a plan-

asymmetric distribution of the story stiffness. For example, the center of stiffness is 

in a position for which 𝑒𝑦,𝐼 ≠ 0 and 𝑒𝑥,𝐼 = 0. In such case the deflection of the structure 

due to the inspection load applied in x direction is 

𝒙𝑰,𝒂𝒔𝒚𝒎 = 1 × [

𝑓𝑥,𝐼 + 𝑓𝜃,𝐼 𝑒𝑦,𝐼
2

0
𝑓𝜃,𝐼 𝑒𝑦,𝐼

]    (5.27) 

The first components of the vectors reported in Eqs. (5.25, 5.26, and 5.27) are the 

displacements of the structure in x direction. It is trivial that, since the considered 

structures are 1-story shear buildings, the displacements in x or y directions are thus 

the drifts of the single story of the structures. These displacements can thus be used 

to evaluate the damage severity according to the criteria reported in Section 5.1.1. 

                                                 
7 The undamaged and damaged structures are indicated, according to the notation used in the rest 

of the thesis, with the subscript B and I, respectively. Such subscripts stand for “baseline” state 

and “inspection” stage. 
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If hypothetically the damage severity in x direction is evaluated for the two 

above-mentioned configurations of the damaged structure (i.e. the plan-symmetric and 

the plan-asymmetric configurations) the following result is obtained. The damage 

severity evaluated for the damaged structure with a plan-symmetric configuration is  

𝛼𝑠,𝑥,𝑠𝑦𝑚 =
1  × (𝑓𝑥,𝐼  −  𝑓𝑥,𝐵)

1  ∙  𝑓𝑥,𝐼
     (5.28) 

On the contrary, the damage severity evaluated for the damaged structure with a plan-

asymmetric configuration is  

𝛼𝑠,𝑥,𝑎𝑠𝑦𝑚 =
1  × (𝑓𝑥,𝐼  +𝑓𝜃,𝐼 𝑒𝑦,𝐼

2  −  𝑓𝑥,𝐵)

1  ×  (𝑓𝑥,𝐼 +𝑓𝜃,𝐼 𝑒𝑦,𝐼
2 ) 

   (5.29) 

As evident in Eqs. (5.28, 5.29), the values of the damage severity evaluated for the 

damaged structure in the two configurations are different. In fact, in Eq. (5.29) there 

is an additional contribution (with respect to Eq. 5.28) that is represented by the term 

𝑓𝜃,𝐼 𝑒𝑦,𝐼
2 .  

At this point it is important to consider again that in this chapter an attempt is 

made to extend the Positive Shear Inspection Load method [Koo et al., 2010], 

originally formulated for structures that can be modeled as plane structures, to the 

case of structures with a generic distribution of the story stiffness. The general 

objective that should guide the development of the extended approach is thus to 

obtain, using the damage severity parameters (related to the x and y directions of the 

structure), information about the reductions in the uncoupled story stiffness (related, 

respectively, to the x and y directions) that the structure has experienced due to the 

damage. It is clear that for the analytical models of the two configurations of the 

damaged structure considered in this section it is desirable to obtain the same damage 

severity in x direction. This is because it has been assumed that the two configurations 

of the damaged structure are characterized by the same uncoupled stiffness 𝑘𝑥,𝐼 (or 

flexibility 𝑓𝑥,𝐼) in x direction. In light of this premise, the expression of the damage 

severity related to the plan-asymmetric structure (Eq. 5.29) can not be considered as 

a correct way for quantifying the damage.  

An important observation that can be formulated if one compares the 

deflections obtained for the two damaged configurations of the 1-story building 
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structure (i.e. Eqs. 5.26, 5.27, respectively) is the following. The deflection of the 

damaged structure with a plan-asymmetric configuration is characterized by a story 

rotation induced by the inspection load applied in x direction (Eq. 5.23). On the 

contrary, in the deflection related to the structure with a plan-symmetric configuration 

the story rotation is equal to zero. On the basis of this observation, the strategy adopted 

in an attempt to achieve a correct quantification of the damage (i.e. a correct 

evaluation of the damage severity) was developed by investigating the applicability 

of inspection loads that are able to make the story rotation of the structure equal to 

zero, even if the considered story is characterized by a plan-asymmetric distribution 

of the story stiffness. This problem was analyzed again by considering the simple 

analytical model of the 1-story shear building structure.  

For a generic 1-story shear-type 3D building structure with a generic 

distribution of the story stiffness (either plan-symmetric or plan-asymmetric), the load 

that applied to the structure induces, for example, a deflection characterized by a 

unitary translation in x direction  

𝒙 = [
1
0
0
]     (5.30) 

can be evaluated as follows 

�̅�𝒙 = 𝑲 𝒙 = [

𝑘𝑥 0 −𝑘𝑥𝑒𝑦

0 𝑘𝑦 𝑘𝑦 𝑒𝑥

−𝑘𝑥𝑒𝑦 𝑘𝑦 𝑒𝑥 𝑘𝜃 + 𝑘𝑥𝑒𝑦
2 + 𝑘𝑦 𝑒𝑥

2

] [
1
0
0
] = 𝑘𝑥 [

1
0

− 1 ∙ 𝑒𝑦

]  (5.31) 

This load is basically the first column of the stiffness matrix K of the structure. In 

order to define an inspection load that is independent as much as possible from 

parameters that are structure-dependent, let us consider a scaled version of the load 

reported in Eq. (5.31). This scaled version of the load is independent from the value 

of the uncoupled stiffness in x direction, and it has the component related to the x 

direction that is equal to one  

𝒑𝒙
∗ = [

1
0

− 1 ∙ 𝑒𝑦

]    (5.32) 
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The load 𝒑𝒙
∗  has thus the following property: if this load is applied to the 1-story shear 

building structure, this load does not induce a story rotation. To check this property, 

the flexibility matrix of the structure (Eq. 5.22) can be multiplied by the load 𝒑𝒙
∗  (Eq. 

5.32)  

𝒙 = 𝑭 𝒑𝒙
∗ = [

𝑓𝑥 + 𝑓𝜃𝑒𝑦
2 −𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝜃𝑒𝑦

−𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝑦 + 𝑓𝜃𝑒𝑥
2 −𝑓𝜃𝑒𝑥

𝑓𝜃𝑒𝑦 −𝑓𝜃𝑒𝑥 𝑓𝜃

] [

1
0

− 1 ∙ 𝑒𝑦

] = 1 × [
𝑓𝑥
0
0
]  (5.33) 

As shown in Eq. (5.33), the deflection of the structure due to the load 𝒑𝒙
∗  has only one 

non-zero component in x direction. Moreover, such component is basically the 

uncoupled flexibility of the structure in x direction (this is because the load 𝒑𝒙
∗  has 

been normalized in a way that the first component is equal to one).  

Thus, by considering the hypothetical case in which the flexibility matrix of 

the structure has been estimated from a vibration test, the above-mentioned load can 

be a good candidate to be applied as an inspection load for the purpose of dealing with 

a generic (either plan-symmetric of plan-asymmetric) building structure. It is worth 

noting that the formulation that is derived herein for a 1-story shear building structure 

can be easily generalized to the case of an n-story building structure, as done later in 

this section.   

In the same way, by considering again the analytical model of the 1-story shear 

building structure, the hypothetical inspection load that should be applied for 

performing the analysis in the y direction is defined as follows 

𝒑𝒚
∗ = [

0
1

 1 ∙ 𝑒𝑥

]     (5.34) 

If such load is applied to the structure, the resulting deflection has only one non-zero 

component in y direction, and such component is basically the uncoupled flexibility 

of the structure in y direction. The following calculations show the above-mentioned 

property 

𝒙 = 𝑭 𝒑𝒚
∗ = [

𝑓𝑥 + 𝑓𝜃𝑒𝑦
2 −𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝜃𝑒𝑦

−𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝑦 + 𝑓𝜃𝑒𝑥
2 −𝑓𝜃𝑒𝑥

𝑓𝜃𝑒𝑦 −𝑓𝜃𝑒𝑥 𝑓𝜃

] [
0
1

 1 ∙ 𝑒𝑥

] = 1 × [
0
𝑓𝑦
0

]   (5.35) 
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The approach of adopting inspection loads that have the form of the ones 

derived in this section using the simple 1-story building model (Eqs. 5.32, 5.34) can 

be, of course, applied in practical situations (when one has to deal with modal 

flexibility matrices assembled from a vibration test) only if the values of the 

eccentricities of the structure can be estimated from the data of the experimental test. 

In other words, the position of the center of stiffness of each story of the structure has 

to be known to assemble the considered inspection loads. 

Performing some specific operations on the modal flexibility matrices (for 

example, estimated from the vibration test) is a possible way to obtain the values of 

the eccentricities of the building structures8. The theoretical formulation of this 

approach is shown herein considering again the analytical model of the 1-story shear 

building structure. Then, the approach will be extended to deal with an n-story shear 

building structure.  

Let us consider the deflection of the 1-story shear building structure obtained 

by applying a load that consists only of a unitary torque (i.e. a moment of torsion equal 

to one). This deflection can be evaluated as follows 

𝒙 = 𝑭 𝒑𝜽 = [

𝑓𝑥 + 𝑓𝜃𝑒𝑦
2 −𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝜃𝑒𝑦

−𝑓𝜃𝑒𝑥𝑒𝑦 𝑓𝑦 + 𝑓𝜃𝑒𝑥
2 −𝑓𝜃𝑒𝑥

𝑓𝜃𝑒𝑦 −𝑓𝜃𝑒𝑥 𝑓𝜃

] [
0
0
 1 

] = 1 × [

𝑓𝜃𝑒𝑦

−𝑓𝜃𝑒𝑥

𝑓𝜃

]  (5.36) 

If one analyzes the components of the deflection reported in Eq. (5.36), it can 

recognize that the ratios between each displacement (in the x or y direction) and the 

story rotation are equal to the values of the eccentricity 𝑒𝑥 and 𝑒𝑦.  

This simple example suggests that, in theory, if one has assembled a modal 

flexibility matrix of a building structure (for example, from the data of a vibration 

test), then the deflection of the structure due to a load that has the form of the one 

considered in Eq. (5.36) contains information about the eccentricities of the structure.  

Referring again to the model of the 1-story shear building, if the flexibility 

matrix 𝑭 is known (or at least an estimate of such matrix is known) then the 

eccentricities 𝑒𝑥 and 𝑒𝑦 can be obtained as follows 

                                                 
8 This problem was also investigated in the work by [Bernal & Gunes, 2004]. 
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[
𝑢
v
 𝜃 

] = 𝑭 [
0
0
 1 

]     (5.37) 

where the displacements in x-, y-, and 𝜃 directions are here indicated, for the sake of 

convenience, as u, v, and 𝜃, respectively. The eccentricities in x and y directions are, 

respectively  

𝑒𝑥 = −
𝑣

𝜃
     (5.38) 

𝑒𝑦 =
𝑢

𝜃
      (5.39) 

The fundamental equations of the analytical formulation presented until this 

point of the section for a 1-story 3D shear building structure are now extended to the 

case of an n-story 3D shear building structure and then used to integrate the damage 

detection procedure defined in previous section (i.e. Section 5.1.1) and that have been 

applied on the data of the ambient vibrations tests performed on the steel frame 

structure. This integrated version of the procedure is defined in an attempt to have a 

method that can provide a correct quantification of the damage severity for structures 

characterized by a plan-asymmetric distribution of the story stiffness.  

In the integrated version of the damage detection procedure the first three steps 

already defined in Section 5.1.1 are unaltered. These first three steps are the following: 

1) execution of the ambient vibration test; 2) estimation of the modal parameters of 

the structure using any output-only modal identification technique; 3) estimation of 

the modal flexibility matrix of the 3D building structure.  

Then, differently from the procedure outlined in Section 5.1.1, an additional 

step is introduced in the integrated version of the methodology. This step is indicated 

as step no. 3b, and it is the step related to the estimation of the position of the center 

of stiffness (i.e. the values of the eccentricities) for each story of the building structure. 

This operation is performed by applying to the structure (i.e. to the experimentally-

derived modal flexibility-based model of the structure estimated using Eq. 5.2) a load 

defined as follows  
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𝒑𝜽 = (

{𝟎}
{𝟎}
{𝟏}

)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

0
⋮
0

0
⋮
0

1
⋮
1 )

 
 
 
 
 
 
 
 

                      (5.40) 

This load 𝒑𝜽 consists of moments of torsion with unitary values that are applied at all 

the stories. In other words, this load can be considered as a uniform load applied in 

the direction 𝜃. The modal flexibility-based deflection of the structure due to such 

load 𝒑𝜽 can be calculated as follows 

𝒙𝜽 = 𝑭𝒓 𝒑𝜽        (5.41) 

where 𝒙𝜽 is a 3n × 1 vector that contains the components of the modal flexibility-

based deflection. For the sake of convenience and clarity, in the present formulation 

the components of the vector 𝒙𝜽 are indicated as  

𝒙𝜽 = (

{𝒖}
{𝒗}
{𝜽}

)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

𝑢𝑛

⋮
𝑢1

𝑣𝑛

⋮
𝑣1

𝜃𝑛

⋮
𝜃1)

 
 
 
 
 
 
 
 

            (5.42) 

The values of the eccentricities (in x and y directions) can then be estimated for each 

story of the structure as follows 

𝑒𝑥,𝑗 = {
        −  

𝑣𝑗  − 𝑣𝑗−1

𝜃𝑗 − 𝜃𝑗−1
                    𝑓𝑜𝑟 𝑗 = 2…  𝑛

      − 
𝑣𝑗

𝜃𝑗
                        𝑓𝑜𝑟 𝑗 = 1

   (5.43) 
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𝑒𝑦,𝑗 = {
          

𝑢𝑗  − 𝑢𝑗−1

𝜃𝑗 − 𝜃𝑗−1
                    𝑓𝑜𝑟 𝑗 = 2…  𝑛

 
𝑢𝑗

𝜃𝑗
                           𝑓𝑜𝑟 𝑗 = 1

   (5.44) 

Such values of the eccentricities are then used to define the inspection loads. Similarly 

to the procedure outlined in Section 5.1.1, the inspection loads are applied in the x 

and the y directions of the structure to perform two separate analyses. However, the 

inspection loads that are presented at the fourth step of Section 5.1.1 (i.e. the loads 

reported in Eqs. 5.3) are substituted, according to the improved procedure, with 

inspection loads that have the same form of the inspection loads that have been derived 

in this section for the 1-story shear building structure (i.e. Eqs. 5.32, 5.34). In the 

improved procedure the inspection loads are defined as follows 

𝒑𝒙
∗ = (

{𝟏}
{𝟎}

{𝑴𝒛,𝒙}
)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

1
⋮
1

0
⋮
0

𝑀𝑧,𝑥,𝑛

⋮
𝑀𝑧,𝑥,1)

 
 
 
 
 
 
 
 

     ;   𝒑𝒚
∗ = (

{𝟎}
{𝟏}

{𝑴𝒛,𝒚}
)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 
 

0
⋮
0

1
⋮
1

𝑀𝑧,𝑦,𝑛

⋮
𝑀𝑧,𝑦,1)

 
 
 
 
 
 
 
 
 

      (5.45) 

where Mz,x,j and Mz,y,j  (for j = 1 … n) are moments of torsion applied at the j-th story 

of the structure that are defined as 

𝑀𝑧,𝑥,𝑗 = {
 − 1 ∙    𝑒𝑦,𝑗                                         𝑓𝑜𝑟 𝑗 = 𝑛

−((𝑛 − 𝑗 + 1) 𝑒𝑦,𝑗 − (𝑛 − 𝑗) 𝑒𝑦,𝑗+1)        𝑓𝑜𝑟 𝑗 = 1… (𝑛 − 1)
   (5.46) 

𝑀𝑧,𝑦,𝑗 = {
   1 ∙  𝑒𝑥,𝑗                                                𝑓𝑜𝑟 𝑗 = 𝑛

(𝑛 − 𝑗 + 1) 𝑒𝑥,𝑗 − (𝑛 − 𝑗) 𝑒𝑥,𝑗+1                  𝑓𝑜𝑟 𝑗 = 1… (𝑛 − 1)
   (5.47) 

Differently from the case of the 1-story shear building, some coefficients that multiply 

the values of the eccentricities are introduced in the expressions of the moments of 

torsion Mz,x,j and Mz,y,j related to the n-story building structure. Such coefficients 

depend on the story shear that is induced in each story of the shear building structure 

by the translational uniform load (in x and y directions, respectively). The modal 
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flexibility-based deflections of the structure are then evaluated for the inspection loads 

reported in Eq. (5.45) 

𝒙𝒙 = 𝑭𝒓 𝒑𝒙
∗         (5.48) 

𝒙𝒚 = 𝑭𝒓 𝒑𝒚
∗         (5.49) 

and, then, the vectors of the interstory drifts of the structure are determined using the 

criterion that has been already defined in the step no. 5 in Section 5.1.1 (i.e. using 

Eqs. 5.6, 5.7).  

Similarly to the procedure outlined in Section 5.1.1, all the steps from no. 1 to 

no. 5 (including in such case the step no. 3b) have to be performed both for the 

undamaged and the possibly damaged structures. Finally, to conclude the description 

of the integrated version of the damage detection procedure outlined in this section, 

the step no. 6, which have been already defined in Section 5.1.1, can be applied. In 

particular, for the purposes of the analyses presented in this section the damage 

severity related to the x and y directions of the structure will be evaluated using Eqs. 

(5.13, 5.14).  

To conclude this section, the main difference between the approach presented 

in this section and the approach presented in Section 5.1.1 is summarized. In Section 

5.1.1 the inspection loads have only translational components which are equal to one 

(Eq. 5.3). On the contrary, the inspection loads considered in the present section 

include, in addition to the translational uniform components, torsional components 

(i.e., moments of torsion) that depend on the values of the eccentricities (Eq. 5.45). It 

is important to underline again that, when the modal flexibility-based deflections are 

evaluated, such moments of torsion should in theory avoid relative rotations between 

the stories of the structure. 

In next sections the results obtained in the damage quantification using the two 

different types of inspection loads are compared, and the loads are indicated using the 

following terminology. The inspection loads defined in this section are indicated with 

the acronym “UL+M” (i.e. uniform load + moments of torsion), while the inspection 

loads that are defined in Section 5.1.1 are indicated as “UL” loads. A schematic 

exemplification of the two different types of inspection loads is reported in Fig. 5.24. 
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In Fig. 5.24a an example of a “UL+M” load applied to the building structure in the y 

direction is reported, while Fig. 5.24b shows an example of a “UL” load applied to 

the structure in y direction.  

 

Figure 5.24. Inspection loads applied to the building structure in y direction:  

a) UL+M load (Eq. 5.45); b) UL load (Eq. 5.3)  

 

5.2.2 Verification using a numerical model of a 4-story building structure  

In this section the analytical formulation of the damage detection procedure presented 

in previous section (i.e. Section 5.2.1) is tested and verified on a numerical model of 

a 4-story building structure. The numerical model of this building structure was 

created using the MATLAB-based finite element analysis code that was made 

available by the IASC-ASCE Task Group [Johnson et al., 2004]. This code has been 

already described in Section 5.1.2.3, and, as already mentioned in that section, is able 

to generate a model of a structure that is similar to the steel frame structure that is 

located at the EERF laboratory of the University of British Columbia (Vancouver)9. 

The model created using this code is thus a model of a 4-story 3D building structure 

that is similar to the one that was tested under ambient vibrations, as described in 

previous sections of this chapter.  

                                                 
9 As already mentioned in Section 5.1.2.3, the program provided by [Johnson et al., 2004] was 

used in the context of the analytical studies (phase I) performed by the IASC-ASCE Task Group. 
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Three important observations have to be formulated on the numerical model 

that was considered in the analyses presented in this section. Firstly, as already 

mentioned in Section 5.1.2.3, in the program provided by [Johnson et al., 2004] two 

different models of the benchmark structure can be considered (i.e. a 12-DOF shear 

building model or a more complex 120-DOF model). To perform the analyses 

presented in this section the 12-DOF shear building model was considered. Secondly, 

it is important to mention that the code developed by [Johnson et al., 2004] can be 

used to create user-defined damaged configurations of the structure. This operation 

can be performed in the program using a graphic user interface where one can specify 

the elements (for example, wall braces of the structure) that want to remove from the 

model. The program was thus used to create both undamaged and damaged 

configurations of the structure. Thirdly, for performing the analyses presented in this 

section the original version of the program provided by [Johnson et al., 2004] was 

used. Modifications in the parameters that define the characteristics of the structure 

were not applied to the program10.  

The model considered in the present section has thus the same geometry and 

the same structural elements of the structure that was tested under ambient vibrations. 

Referring to the structural elements, the only difference between the numerical model 

and the real structure is that in the numerical model L-shape profiles (L 25×25×3) are 

present in the wall bracing system (instead of tie rods). Referring to the structural 

masses, the numerical model considered in the present section is characterized by a 

plan-symmetric distribution of the masses. In particular, in the numerical model 

provided by [Johnson et al., 2004] the structure has four plates that are added at each 

floor (similarly to the real structure). In the model the values of the masses of the 

plates related to the first, second, third, and four floors are, respectively, 800 kg, 600 

kg, 600 kg, and 400 kg. 

The program provided by [Johnson et al., 2004] was thus used to create 12-

DOF shear-type models of a 4-story building structure similar to the one that was 

tested under ambient vibrations. In particular, the program was used to create the 

                                                 
10 This operation was done, on the contrary, in the context of the experimental analyses, as 

described in Section 5.1.2.3, to obtain an estimate of the mass matrix of the structure tested under 

ambient vibrations. 
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models related to three different configurations of the structure. In the first 

configuration the structure is fully braced (i.e. the L-shape profiles are present in each 

bay and in each story of the structure). This configuration represents the undamaged 

structure (configuration U reported in Fig. 5.25a). The second and the third 

configurations are, on the contrary, damaged configurations, and these configurations 

are indicated as configurations D1 and D2, respectively. Both configurations D1 and 

D2 were created by removing braces at the first story of the structure. Moreover, both 

the two configurations are characterized by the same number of braces removed in the 

two main directions of the structure (i.e., two braces are removed from the model at 

first story in x direction, and two braces are removed at the same story in y direction). 

However, in configuration D1 the braces were removed by creating a plan-symmetric 

distribution of the story stiffness at the damaged level (Fig. 5.25b), while in 

configuration D2 the braces were removed by creating a plan-asymmetric distribution 

of the story stiffness at the damaged level (Fig. 5.25c). The two considered damaged 

configurations were thus specifically created to test the proposed approach (Section 

5.2.1) based on inspection loads that should be able to deal with plan-asymmetric 

configurations and to provide a correct estimate of the damage severity for such 

structures.   

 

 

Figure 5.25. Configurations of the building structure generated using the FE code by 

[Johnson et al., 2004]: a) configuration U; b) configuration D1; c) configuration D2. 
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For each of the three considered configurations (Fig. 5.25), the FE code 

provided by [Johnson et al., 2004] was used to define an undamped model of the 

structure. This model consists of stiffness and mass matrices, which are both 12 × 12 

matrices. Such matrices were used to perform an eigenvalue analysis to define the 

modes of the structural configurations (defined in terms of natural frequencies and 

mode shapes). The first nine natural frequencies of the three considered 12-DOF 

models are reported in Table 5.8. The mode shapes are defined with respect to the 

geometric center of the structure (which is also the center of mass), and these mode 

shapes were normalized using the mass matrix of the structure. Then, the mass-

normalized mode shapes and the natural circular frequencies of the first nine structural 

modes were used to assemble the modal flexibility matrices related to the three 

different structural configurations. It is worth mentioning that the analyses presented 

in this section were carried out using modal flexibility matrices assembled after 

performing an eigenvalue analysis on the numerical models and by considering a 

subset of the modal parameters. The modal flexibility matrices are thus not affected 

by uncertainties (differently from modal flexibility matrices estimated, for example, 

from vibration data)11. This simple approach was used to test the validity of the 

analytical formulation related to the damage detection procedure outlined in Section 

5.2.1. On the contrary, the application of the procedure on the experimental data of 

the ambient vibration tests performed on the steel frame structure (described in 

Section 5.1.2.1) is presented in next section. It is worth noting that the simple 

approach of verifying the analytical formulation of the methodology using “exact” 

modal flexibility matrices is an approach that was adopted (before verifying the 

procedure using experimental data) also in the work by [Koo et al., 2010], where the 

original formulation of the Positive Shear Inspection Load method was presented.  

 

 

 

                                                 
11 A possible strategy to introduce uncertainties on the modal flexibility matrices assembled after 

performing an eigenvalue analysis on a numerical model is discussed and adopted in the damage 

detection analyses presented in Chapter 6.  
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Mode no. 
Natural frequency  fi  [Hz] 

Conf. U Conf. D1 Conf. D2 

1 9.41 8.34 7.78 

2 11.79 11.02 10.67 

3 16.38 14.73 14.62 

4 25.54 23.64 23.56 

5 32.01 30.53 30.31 

6 38.66 37.95 37.70 

7 44.64 41.63 42.03 

8 48.01 47.85 47.90 

9 48.44 47.91 48.01 

Table 5.8. Natural frequencies related to the configurations of the building structure 

generated using the FE code by [Johnson et al., 2004]. 

 

After having assembled the modal flexibility matrices of the three structural 

configurations, the procedure outlined in Section 5.2.1 for estimating the positions of 

the centers of stiffness (i.e. the values of the eccentricities) was applied. According to 

the procedure, the deflections of the three different structures were evaluated using 

Eq. (5.41) and by applying the load 𝒑𝜽, which is a load that consists of unitary 

moments of torsion at all the stories (Eq. 5.40). Then, starting from the components 

of such deflections, the values of the eccentricities were determined using Eqs. (5.43, 

5.44). Values of the eccentricities approximately equal to zero were obtained at all the 

stories both for the undamaged configuration U and the damaged configuration D1. 

Such configurations, in fact, are both characterized by a plan-symmetric distribution 

of the story stiffness at all the stories (including the damaged story in configuration 

D1). For configuration D2 the values of the eccentricities are approximately equal to 

zero at the undamaged stories (2nd, 3rd, and 4th stories) and different from zero at the 

first story, where the damage has been imposed in a plan-asymmetric configuration.  

The positions of the centers of stiffness related to the first story are reported in 

the plan view of the structure presented in Fig. 5.26 for the different configurations. 

In particular, in each figure the center of stiffness related to the undamaged 

configuration is plotted together with the center of stiffness related to the damaged 
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configuration (in other words, Fig. 5.26a is related to configurations U and D1, while 

Fig. 5.26b is related to configurations U and D2). As evident in Fig. 5.26a, the centers 

of stiffness are positioned in the geometric center of the structure both for 

configurations U and D1. On the contrary, in Fig, 5.26b the center of stiffness is in 

the origin for configuration U and then moves towards east-north direction when the 

configuration D2 is considered. This is expected since in configuration D2 the wall 

braces were removed on the south and the west faces of the structure.  

As reported in the work by [Wang et al., 2013], where a damage detection 

methodology not based on the modal flexibility-based approach was applied on the 

experimental data of the IASC-ASCE benchmark studies (phase II), the centers of 

stiffness related to the undamaged and the damaged structures give useful indications 

for the localization in the plan of the structure of the region that most probably has 

experienced major damage. Referring to Fig. 5.26b, the region that most probably has 

experienced the damage can be individuated by the segment that connects the two 

centers of stiffness (related to the undamaged and the damaged structures, 

respectively). Of course, this region is located on the opposite side with respect to the 

center of stiffness related to the damaged structure. By considering the interpretation 

proposed by [Wang et al., 2013], it is clear, referring to the results shown in Fig. 5.26b, 

that if the center of stiffness moves towards east-north direction, one can suppose that 

the region of the structure that most probably has experienced major damage is located 

approximately in the south-west corner.  
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Figure 5.26. Positions of the centers of stiffness for the undamaged configuration (black 

marker) and the damaged configuration (red marker) - analytical model: a) U vs D1 (1st 

story); b) U vs D2 (1st story). 

 

The values of the eccentricities determined from the modal flexibility matrices 

were then used to assemble the “UL+M” inspection loads defined in Eq. (5.45) (i.e. 

the inspection loads, that include, in addition to translational uniform loads, the 

moments of torsion that depend on the values of the eccentricities). The “UL+M” 

inspection loads were then applied to the modal flexibility-based models of the 

considered configurations (U, D1, D2) by performing, according to the general 

approach presented in this chapter, two different analyses. One inspection load 𝒑𝒙
∗  is 

applied in x direction (Eq. 5.48), while the other inspection load 𝒑𝒚
∗  is applied in y 

direction (Eq. 5.49). Starting from each deflection, the interstory drifts of the structure 

were evaluated in the direction of the corresponding applied load (using Eqs. 5.6, 5.7). 

The above-mentioned calculations were performed not only using the “UL+M” 

inspection loads, but also using the “UL” loads (Eq. 5.3), and at the end the results 

obtained using the two types of loads were compared.  

The damage-induced interstory drifts that were obtained when the plan-

asymmetric damaged configuration D2 was compared against the undamaged 

configuration U are reported in Fig. 5.27. In particular, in such figure the results of 

the analyses performed using the UL inspection loads are compared with the results 

a) b) 
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obtained using the UL+M inspection loads. Fig. 5.27a is related to the analysis in x 

direction, while Fig. 5.27b is related to the analysis in y direction. As evident in Fig. 

5.27, using either the UL+M loads or the UL loads and for both the two directions, 

the damage-induced interstory drifts are non-zero at the first story. This is expected 

since in configuration D2 the stiffness reductions were applied at the first story (by 

removing braces in the two directions). This means that, in general, both the two loads 

can provide useful information for the damage localization (in terms of the story and 

the direction where the damage was applied). However, the values of the damage-

induced interstory drifts at the first story obtained using the UL+M inspection loads 

are different from the damage-induced interstory drifts obtained using the UL 

inspection loads. This is evident both for the analysis performed in x direction and for 

the analysis performed in y direction. These differences obtained in the damage-

induced interstory drifts using the two loads have a direct implication on the values 

of the damage severity, as shown in next paragraph. According to Eqs. 5.13, 5.14, in 

fact, the parameter used for evaluating the damage severity is basically the ratio 

between the damage-induced interstory drift and the drift related to the damaged 

structure.   

 

 

Figure 5.27. Damage-induced interstory drifts - configuration U vs D2 (analytical model) – 

comparison between the UL load and the UL+M load: a) x direction; b) y direction. 
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The results of the quantification of the damage (i.e. the evaluation of the 

damage severity parameters αs,x and αs,y) are reported in Fig. 5.28 for the two damaged 

configurations D1 and D2. Again, the results obtained by applying the UL+M 

inspection loads are compared with the results obtained using the UL inspection loads. 

For configuration D2 (plan-asymmetric) the damage severity in x direction obtained 

using the UL inspection load is αs,x = 0.45, while the value of the damage severity 

obtained using the UL+M inspection load is αs,x = 0.35. Referring to the same 

configuration, the damage severity in y direction obtained using the UL inspection 

load is αs,y = 0.29, while the value of the damage severity obtained using the UL+M 

inspection load is αs,y = 0.22. In general, for the considered plan-asymmetric 

configuration (D2) the damage severities (in both directions) obtained using the 

UL+M inspection loads are thus lower than the corresponding ones obtained using the 

UL inspection loads. However, the important result that must be highlighted is that 

(both in the x and the y directions) the damage severities calculated using the UL+M 

inspection loads for the plan-asymmetric configuration (D2) are equal to the damage 

severities obtained for the plan-symmetric configuration (D1) using the same 

inspection loads. As already mentioned in this section, the configurations D1 and D2 

were created by removing the same number of braces at the first story and in both 

directions, but the former has plan-symmetric distribution of the story stiffness, while 

the latter has a plan-asymmetric distribution of the story stiffness. Obtaining the same 

values of the damage severity is thus the result that is desirable for the two 

configurations.  

The above-mentioned result obtained by performing a simple numerical 

analysis on models of a shear building structure confirms that, when a structure with 

a plan-asymmetric distribution of the story stiffness at the damaged story is 

considered, the UL+M inspection loads (applied instead of the UL inspection loads) 

can lead to the correct values of the damage severity. Of course, when the structure is 

plan-symmetric, the damage severity obtained using the UL+M inspection load is 

equal to the damage severity obtained using the UL load (as shown in Fig. 5.28 for 

configuration D1). In such case, in fact, the moments of torsion present in the UL+M 

inspection load are equal to zero, and this load is equal to the UL load.  
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Figure 5.28. Damage severity evaluated on the analytical model - comparison between the 

UL load and the UL+M load for configurations D1 (plan-symmetric) and D2 (plan-

asymmetric): a) x direction; b) y direction. 

 

5.2.3 Application to the 3D steel frame structure tested under ambient vibrations  

In this section the results of the application of the damage quantification procedure 

based on the so-called “UL+M” inspection loads to some of the structural 

configurations of the steel frame structure tested under ambient vibrations are 

presented and discussed. In particular, the results of the procedure based on the 

“UL+M” inspection loads (Section 5.2.1) are compared with the results of the 

procedure based on the “UL” inspection loads (Section 5.1.1). As already mentioned 

in Section 5.1.2.1, the above-mentioned steel frame structure is located at the EERF 

laboratory of the University of British Columbia (Vancouver) and the ambient 

vibration tests were performed in September 2016. 

As shown in previous sections of this chapter, the measured responses of the 

structure under ambient vibrations were analyzed by means of an output-only modal 

identification technique (i.e. the Enhanced Frequency Domain Decomposition method 

[Brincker, Zhang & Andersen, 2001; Brincker, Ventura & Andersen, 2001]). Identified 
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natural frequencies and mode shapes normalized with respect to the mass matrix 12 of 

the structure were used to assemble the modal flexibility matrices. 

The procedure for estimating the position of the centers of stiffness at the 

different stories of the steel frame structure (step no. 3b described in Section 5.2.1) 

was then applied starting from the experimentally-derived modal flexibility matrices 

of the structure. However, when this methodology, whose theoretical formulation is 

shown in Section 5.2.1 and whose validity has been demonstrated in Section 5.2.2 

using a numerical model, was applied on the modal flexibility matrices of the steel 

frame structure tested under ambient vibrations, results that were considered, on the 

basis of engineering judgment, as not accurate were obtained. For example, the centers 

of stiffness that were obtained for the undamaged configuration C1 (which is a 

configuration with a plan-symmetric distribution of the story stiffness at all the stories, 

see Table 5.3) are located at not negligible distances with respect to the geometric 

center of the structure (which is, in theory, the center of stiffness for this 

configuration). In other cases, for some structural configurations with a plan-

asymmetric distribution of the story stiffness, the centers of stiffness (estimated using 

the procedure described at the step 3b of Section 5.2.1) are located in positions that 

were judged as unreliable positions (for example, in some cases the centers of stiffness 

are located outside of the structural plan of the building, which is a result that is clearly 

not accurate). 

One of the main motivations for which the above-mentioned not accurate 

results were obtained in the estimation of the centers of stiffness might be related to 

the fact that the modal flexibility matrices were assembled using only a limited 

number of structural modes. As already mentioned in Section 5.1.2.2, in fact, such 

matrices were assembled by considering only the first five modes of the 4-story steel 

frame structure, and such matrices are thus affected by modal truncation errors. 

Similar observations on this problem are also reported in the work by [Bernal & 

Gunes, 2004]. In this work the authors performed numerical analyses for damage 

detection purposes in the context of the analytical phase (phase I) of the IASC-ASCE 

                                                 
12 The description of how the mass matrix of the steel frame structure was determined is reported 

in Section 5.1.2.3. 
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benchmark studies. The structure considered in the work by [Bernal & Gunes, 2004], 

using a numerical model, is thus similar to the building structure that is considered in 

this chapter. In particular, the authors applied the Damage Locating Vector (DLV) 

method for damage localization purposes, while for damage quantification purposes 

the stiffness coefficients and the centers of stiffness of the building structure were 

estimated from modal flexibility matrices assembled from vibration data. In the 

above-mentioned work based on numerical analyses the authors were able to estimate 

accurately the positions of the centers of stiffness of the structure. However, in the 

work it is also reported that the approach may be difficult to be applied and scaled to 

field conditions (i.e. for ambient vibration tests on real-life structures) because the 

effects of the modal truncation errors might not allow to obtain accurate estimates of 

physical parameters of the structures such as the positions of the centers of stiffness 

[Bernal & Gunes, 2004]. 

In an attempt to reduce the modal truncation errors on the modal flexibility 

matrices, which in general negatively affect the accuracy of the procedure for 

estimating the centers of stiffness, these matrices were also assembled by including 

the high-order modes of the steel frame structure. Such high-order modes were 

excluded at the beginning of the analyses because, by evaluating the values of the 

Modal Complexity Factors (MCF) associated to the identified modes (see Table 5.4 

for conf. C1 and discussion in Section 5.1.2.2), such modes were considered as 

affected by uncertainties that are higher than the ones associated with the low-order 

modes. However, the results obtained in the determination of the centers of stiffness 

by considering modal flexibility matrices that include also the high-order modes are 

even worse than the case of considering only the low-order modes. This effect might 

be due to the fact that, even if the truncation errors are reduced when considering the 

high-order modes, the uncertainties on such high-order modes negatively affect the 

accuracy of the procedure for estimating the centers of stiffness, as well.  

An alternative procedure for obtaining the positions of the centers of stiffness 

of the steel frame structure from modal flexibility matrices was investigated. As 

shown later in this section, this procedure, even if it is based on some simplifying 

assumptions and even if represents an approximated approach for the considered steel 

frame structure, showed that it is a suitable approach to investigate the behavior and 
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the condition of the structure at least in one direction (i.e. in the weak or x direction 

of the steel frame structure). In particular, this procedure can be applied on 

configurations of the considered steel frame structure that have the following two 

characteristics: 1) the configuration is characterized by a generic (either plan-

symmetric or plan-asymmetric) distribution of the story stiffness with respect to the x 

axis (weak direction); 2) the configuration is characterized by a plan-symmetric 

distribution of the story stiffness with respect to the y axis (strong direction).  

For configurations that have the above-mentioned characteristics the 

approximated procedure was thus used to determine the positions of the centers of 

stiffness and the related values of the eccentricity along the y direction starting from 

modal flexibility matrices estimated from the ambient vibration data. In particular, the 

approximated procedure was applied instead of the exact procedure described in 

Section 5.2.1, which, on the contrary, provided not accurate results when applied in 

the experimental case study. Then, according to the procedure outlined in Section 

5.2.1, such values of the eccentricity along the y direction were used to assemble the 

UL+M inspection loads 𝒑𝒙
∗ . These loads applied in the weak or x direction of the 

structure were used to investigate the condition of the structure and to quantify the 

damage in that direction. At the end, the results of the analyses performed in the weak 

or x direction for quantifying the damage using the UL+M inspection loads were 

compared with the same results obtained by applying the UL inspection loads.  

To demonstrate the applicability on the steel frame structure of the 

approximated approach for evaluating the positions of the centers of stiffness and to 

compare the results of the UL+M and the UL inspection loads, three structural 

configurations of the steel frame structure tested under ambient vibrations were 

considered (Fig. 5.29). According to the description and the nomenclature of all the 

tested configurations provided in Section 5.1.2.1 and in Table 5.3, these three 

configurations are configurations C1, C2, and C13. As already mentioned in Section 

5.1.2.1, configuration C1 is the fully braced structure that is assumed as the 

undamaged configuration. On the contrary, configurations C13 and C2 are damaged 

configurations. These two damaged configurations were selected because they have 

the following characteristics. Both in configurations C13 and C2 the braces were 

removed at the first story of the structure, and, as shown in Fig. 5.29b, 5.29c, these 
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configurations are characterized by the same number of braces removed in the weak 

or x direction (i.e. four tie rods removed in the x direction). However, in configuration 

C13 the braces were removed by creating a plan-symmetric distribution of the story 

stiffness with respect to the x axis (weak direction), while in configuration C2 the 

braces were removed by creating a plan-asymmetric distribution of the story stiffness 

with respect to the x axis. As already done in Section 5.2.2 where numerical analyses 

are presented, these two configurations were thus specifically selected because the 

application of UL+M inspection loads on such two configurations (i.e. C13 and C2) 

should, in theory, provide the same amount of damage severity in the x direction.  

Finally, it is worth mentioning that these configurations are characterized by a 

distribution of the story stiffness for all the stories that is plan-symmetric with respect 

to the y axis (strong direction). As shown later in this section, this is a requirement 

that is necessary for applying the approximated approach for estimating the positions 

of the centers of stiffness.  

 

 

Figure 5.29. Configurations of the steel frame structure tested under ambient vibrations 

analyzed in this section: a) undamaged conf. C1; b) damaged conf. C13;  

c) damaged conf. C2. 

 

The approximated approach, used for estimating the positions of the centers of 

stiffness of the three considered configurations (Fig. 5.29), was developed by 

investigating at first the static behavior of a very simple model of a 2-DOF system. 

Then, later in this section it will be shown how this approximated and simplified 
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approach can be applied on the 4-story steel frame structure (specifically, for each 

story of that structure).  

Let us assume to have a very simple 2-DOF system that is composed by two 

generic structural elements located at a certain distance (as shown in Fig. 5.30). These 

two elements resist to lateral forces only in z direction (i.e. the contribution, in term 

of stiffness, of the two elements is only in z direction - Fig. 5.30a). The stiffness of 

the element located on the left-hand side is indicated as kL, while the stiffness of the 

element located on the right-hand side is kR. It is assumed that these two elements are 

linked by a rigid connection, and these two elements thus form a 2-DOF system that 

can be described, for example, by one translation in z direction and one rotation at the 

origin13. Finally, let us assume that kL > kR, and thus the center of stiffness of the 

system (CK) is located on the left-hand side of the origin of the system (0) at a distance 

that is measured by the variable e (i.e. the eccentricity). 

 

 

Figure 5.30. Model of a 2-DOF system: a) geometry; b) application of a unitary 

translational load. 

 

This simple 2-DOF system has the interesting property that follows. The 

position of the center of stiffness can be univocally determined starting from the 

knowledge of the displacements of the two elements of the system due to a unitary 

                                                 
13 The system can also be thought of as composed by two springs that are connected by a rigid 

element. 
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load applied in the origin and in z direction (Fig. 5.30b). Of course, the eccentricity 

can be also estimated starting from the displacements of the two elements due to a 

unitary rotation applied to the system (i.e. the approach valid for a more general class 

of structural systems, as shown in Section 5.2.1). However, the 2-DOF system is 

specifically considered herein to investigate an approach that is alternative with 

respect to the one shown in Section 5.2.1.  

Using simple static equilibrium considerations, the displacements of the two 

elements of the 2-DOF system due to a unitary load applied in the origin and in z 

direction are as follows 

𝑧𝐿 =
1

2 𝑘𝐿
        (5.50) 

𝑧𝑅 =
1

2 𝑘𝑅
      (5.51) 

where 𝑧𝐿, 𝑧𝑅 are the displacements of the elements on the left-hand side and the right-

hand side, respectively. As evident in Eqs. (5.50, 5.51), the displacements are 

inversely proportional to the values of the stiffness.  

The position of the center of stiffness of the considered simple 2-DOF system 

can be evaluated using the following expression  

𝑒 =
−𝑘𝐿 𝑎+ 𝑘𝑅 𝑎 

𝑘𝐿+ 𝑘𝑅 
     (5.52) 

where 𝑎 is the distance between each structural element and the origin of the system 

(Fig. 5.30). Then, by substituting Eqs. (5.50, 5.51) into Eq. (5.52) the eccentricity can 

be expressed as a function of the displacements of the two elements of the system due 

to a unit load applied in the geometric center of the system  

𝑒 = 𝑎 
𝑧𝐿− 𝑧𝑅  

𝑧𝐿+ 𝑧𝑅 
      (5.53) 

The approximated procedure, used for estimating the positions of the centers 

of stiffness of the three considered configurations of the steel frame structure (reported 

in Fig. 5.29), is based on the principle for which the mechanical behavior of each story 

of the structure in the weak or x direction can be modeled through the 2-DOF system 

described in previous paragraphs. This very simplified approach can be considered as 

a valid approach due to the three assumptions and observations on the characteristics 
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of the structure that are discussed in next paragraphs. Then, later in this section the 

analytical formulation of this approximated approach will be presented.  

Firstly, it is assumed, as already done since the beginning of this chapter, that 

the steel frame structure can be modeled approximately as a shear-type building 

structure14. This is a fundamental assumption for which the behavior of each story can 

be analyzed separately from the other stories, for example using the model of the 2-

DOF system.  

Secondly, for the considered configurations of the steel frame structure the 

response due to inspection loads applied in the geometric center of the structure and 

in the x direction is approximately uncoupled with respect to the response of the 

structure due to inspection loads applied in the geometric center and in the y direction. 

The considered configurations, in fact, are characterized by a generic (either plan-

symmetric or plan-asymmetric) distribution of the story stiffness with respect to the x 

axis (weak direction) and by a plan-symmetric distribution of the story stiffness with 

respect to the y axis (strong direction).  

Thirdly, the two external frames of the structure in the weak or x direction 

provide most of the lateral stiffness of the structure in that direction, while the 

contribution to the lateral stiffness in x direction of the internal frame is very low. 

Differently from the external frames, in the internal frames of the structure there are, 

in fact, no bracing elements, and, as already discussed in Section 5.1.2.3, the 

contribution to the story stiffness of the braces is much higher than the contribution 

of the columns. Thus, under the simplifying assumption of neglecting the contribution 

of the internal frame in x direction, the behavior of each story of the structure in x 

direction was analyzed using the model of the simple 2-DOF system analyzed in 

previous paragraphs. In this simple 2-DOF model, in fact, the elements that provide a 

contribution to the lateral stiffness are concentrated in two points diametrically 

opposed with respect to the geometric center of the system (similarly to the two 

external frames of the steel frame structure).  

                                                 
14 This assumption is also made in the work by [Bernal & Gunes, 2004], which, as already 

mentioned, deals with the benchmark steel frame structure.   
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A general observation must be made on the approximated and simplified 

approach of modeling the behavior of each story of the steel frame structure using the 

model of the simple 2-DOF system. This approximated criterion applied by 

considering the weak or x direction of the structure is much more valid than the same 

criterion applied by considering the strong or y direction. In other words, if 

configurations that are plan-asymmetric with respect to the y direction and plan-

symmetric in x direction are considered, then the approximated approach based on the 

2-DOF system leads in general to results (in terms of the positions of the centers of 

stiffness) that are less accurate than the ones obtained for the configurations 

considered in this section (which are, on the contrary, configurations that can be either 

plan-asymmetric or plan-symmetric with respect to the x direction and that are plan-

symmetric in y direction). These last statements can be explained and justified as 

follows. As also reported in the work by [Bernal & Gunes, 2004], both in the x and y 

directions the two external frames of the benchmark steel frame structure resist to 

most of the lateral forces in the two directions, respectively. However, it is clear that, 

due to the different orientation of the cross sections of the columns in the two 

directions (as shown in Fig. 5.29), the above-mentioned characteristic of the structure, 

discussed also in the work by [Bernal & Gunes, 2004], is more valid for the x direction 

(weak direction) with respect to the y direction (strong direction).  

The positions of the centers of stiffness (i.e. the values of the eccentricity in y 

direction) of the three configurations of the steel frame structure considered in this 

section (Fig. 5.29), were determined as follows. After having estimated the modal 

flexibility matrices from the ambient vibration data, the modal flexibility-based 

deflections of such configurations due to a translational uniform load (UL) applied in 

x direction were determined. As already shown in Section 5.1.1, such deflections can 

be obtained using the following expression 

𝒙𝒙 = 𝑭𝒓 𝒑𝒙        (5.54) 

where the UL load in x direction is  
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𝒑𝒙 = (

{𝟏}
{𝟎}
{𝟎}

)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

1
⋮
1

0
⋮
0

0
⋮
0 )

 
 
 
 
 
 
 
 

                      (5.55) 

It is worth noting that, for the sake of convenience and clarity, the components of the 

vector 𝒙𝒙 are indicated with the following notation  

𝒙𝒙 = (

{𝒖}
{𝒗}
{𝜽}

)

3𝑛𝑥1

=

(

 
 
 
 
 
 
 
 

𝑢𝑛

⋮
𝑢1

𝑣𝑛

⋮
𝑣1

𝜃𝑛

⋮
𝜃1)

 
 
 
 
 
 
 
 

            (5.56) 

Then, starting from the components reported in Eq. (5.56), which are defined with 

respect to the geometric center of the structure, the displacements of the modal 

flexibility-based deflections were evaluated in the x direction and for the external 

frames of the structure that are aligned to that direction (i.e. the frames on the south 

and the north sides of the structure). According to the coordinate reference system 

reported in Fig. 5.16 and under the simplified assumption of considering each floor of 

the structure with a rigid-body in-plane behavior, such displacements were calculated 

as follows  

𝑢𝑆,𝑗 = 𝑢𝑗 + 𝜃𝑗   𝑎       (5.57) 

𝑢𝑁,𝑗 = 𝑢𝑗 − 𝜃𝑗   𝑎       (5.58) 

where 𝑢𝑆,𝑗 and 𝑢𝑁,𝑗 are, respectively, the displacements (in x direction and at the j-th 

story) of the south and the north frame of the structure, 𝑎 is the bay width of the 
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structure, and j = 1… n. The interstory drifts related to the two external frames were 

then evaluated as follows 

𝑑𝑆,𝑗 = {
𝑢𝑆,𝑗 − 𝑢𝑆,𝑗−1      for j=2…n

      𝑢𝑆,𝑗                 for   j=1
      (5.59)                 

𝑑𝑁,𝑗 = {
𝑢𝑁,𝑗 − 𝑢𝑁,𝑗−1      for j=2…n

      𝑢𝑁,𝑗                  for   j=1
     (5.60) 

where 𝑑𝑆,𝑗 and 𝑑𝑁,𝑗 are the interstory drifts of the modal flexibility-based deflection 

due to the inspection load px evaluated for the south and the north frames, respectively. 

Finally, the value of the eccentricity in y direction for the generic j-th story of the 

structure was estimated as follows 

 𝑒𝑦,𝑗 =  𝑎   
𝑑𝑆,𝑗  − 𝑑𝑁,𝑗  

 𝑑𝑆,𝑗+ 𝑑𝑁,𝑗  
           (5.61) 

This equation has the same structure of the equation derived for the simple 2-DOF 

system to obtain the eccentricity (Eq. 5.53). However, in Eq. (5.53) the displacements 

of the two elements that form the 2-DOF system are considered, while in such case 

Eq. (5.61) is applied for each story of the 4-story steel frame structure using the values 

of the modal flexibility-based interstory drifts related to the external frames.  

Fig. 5.31 shows the positions of the centers of stiffness related to the first story 

of the structural configurations C1, C13, and C2. The positions of such centers of 

stiffness were defined by evaluating the values of the eccentricity in y direction 

according to the approximated approach shown in this section and using Eq. (5.61). 

Similarly to Fig. 5.26, the center of stiffness related to the undamaged configuration 

is plotted together with the center of stiffness related to a damaged configuration in 

each graph reported in Fig. 5.31. In other words, the centers of stiffness of 

configurations C1 and C13 are reported in Fig. 5.31a, while Fig. 5.31b is related to 

configurations C1 and C2. The centers of stiffness at the first story are positioned in 

the geometric center of the structure for the two plan-symmetric configurations C1 

and C13 (Fig. 5.31a). On the contrary, the center of stiffness at the first story for 

configuration C2 is shifted, with respect to the origin, towards the north direction (Fig. 

5.31b). This is expected since in configuration C2 the bracing elements were removed 

on the south face of the structure. Referring to the other stories (i.e. 2nd, 3rd, and 4th 
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stories) of the three structural configurations (i.e. C1, C13, and C2), values of the 

eccentricity in y direction approximately equal to zero were obtained.  

 

 

Figure 5.31. Positions of the centers of stiffness estimated using the approximated approach 

for the undamaged configuration (black marker) and the damaged configuration (red 

marker) – eccentricities in y direction: a) C1 vs C13 (1st story); b) C1 vs C2 (1st story). 

 

The values of the eccentricities, even if estimated from the modal flexibility matrices 

using the alternative and approximated approach adopted in this section, were used to 

assemble the UL+M inspection loads to be applied in the weak or x direction of the 

structure (Eq. 5.45). The UL+M inspection loads related to the x direction were then 

applied to the modal flexibility-based models of the considered structural 

configurations (C1, C13, and C2), and the deflections were evaluated using Eq. (5.48). 

Finally, starting from each modal flexibility-based deflection due to the UL+M load, 

the interstory drifts of the structure were estimated in the geometric center of the 

structure and in x direction (i.e. the direction of the applied load) using Eq. (5.6). 

These calculations were also performed by adopting UL inspection loads in x direction 

(Eq. 5.3), to compare the results obtained using such loads with the results obtained 

using the UL+M inspection loads.  

The differences between the interstory drifts obtained for the plan-asymmetric 

damaged configuration C2 and the interstory drifts related to the undamaged 

configuration C1 (i.e. the damage-induced interstory drifts) are reported in Fig. 5.32. 

a) b) 
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In particular, in such figure the results of the analysis performed using the UL+M 

inspection load in x direction are compared with results obtained using the UL 

inspection load in x direction. As evident in Fig. 5.32, using either the UL+M load or 

the UL load values of the damage-induced interstory drifts remarkably different from 

zero occur only at the first story (this information represents useful information for 

the damage localization). This story, in fact, is the story of configuration C2 where 

the wall braces were removed (i.e. where the stiffness reductions were imposed). 

However, the value of the damage-induced interstory drift at the first story obtained 

using the UL inspection load is different from the one obtained using the UL+M 

inspection load. This is the same result that was obtained in Section 5.2.2 where 

numerical analyses were performed on a model of a structure similar to the one 

considered in the experimental test. As already discussed in that section, obtaining 

differences in the damage-induced interstory drifts evaluated using the two loads 

implies in general that also different values of the damage severity are obtained using 

the UL+M load or the UL load. 

 

 

Figure 5.32. Damage-induced interstory drifts – configuration C1 vs C2 – comparison 

between the UL load and the UL+M load in x direction. 
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The results obtained in the quantification of the damage by evaluating the damage 

severity in x direction (αs,x) are reported in Fig. 5.33 for the two damaged 

configurations C13 and C2. Similarly to Fig. 5.32, the results obtained by applying 

the UL inspection load in x direction are compared with the results obtained using the 

UL+M inspection load defined for the same direction. Referring to configuration C2, 

which is a configuration with a plan-asymmetric distribution of the story stiffness at 

the damaged level, the damage severity in x direction obtained using the UL 

inspection load is αs,x = 0.62, while the value of the damage severity obtained using 

the UL+M inspection load is lower and it is equal to αs,x = 0.53. For configuration 

C13, which is a configuration with a plan-symmetric distribution of the story stiffness 

at the damaged level, the damage severity in x direction obtained using the UL load 

is, as expected, equal to the damage severity obtained using the UL+M load (i .e. αs,x 

= 0.52). The important result that is observed is the following. When the UL load is 

applied, the damage severity obtained for the plan-asymmetric configuration (C2) is 

different from the damage severity obtained for the plan-symmetric configuration 

(C13). On the contrary, when considering the UL+M load, the damage severity for 

configuration C2 is very similar to the damage severity obtained for configuration 

C13. The last result is the correct result that should be obtained in the damage 

quantification process applied on the two configurations, since, as already mentioned 

in this section, the configurations C13 and C2 were created by removing the same 

number of braces (i.e. four tie-rods) in the weak or x direction of the structure and at 

the first story. The only difference between the two configurations is that in 

configuration C13 the braces were removed by creating a plan-symmetric distribution 

of the story stiffness at the damaged level, while in configuration C2 the braces were 

removed by creating a plan-asymmetric distribution of the story stiffness.  

The above-mentioned result obtained for the steel frame structure tested under 

ambient vibrations confirms the findings of the numerical analyses performed on a 

model of a structure similar to the one considered in the experimental test. In the 

experimental case study, in fact, even if the positions of the centers of stiffness were 

estimated from the modal flexibility matrices using an approximated and simplified 

approach that is valid for some configurations of the steel frame structure with certain 

characteristics, the UL+M inspection load has provided damage quantification results 
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that are more consistent than the results obtained using the UL inspection load. For 

example, by considering a configuration characterized by a plan-asymmetric 

distribution of the story stiffness at the damage level, the UL+M inspection load is 

able to correct the slight overestimation that is obtained when, on the contrary, the 

damage severity of such plan-asymmetric configuration is evaluated using the UL 

inspection load.  

 

 

Figure 5.33. Damage severity in x direction - comparison between the UL load and the 

UL+M load for configurations C13 (plan-symmetric) and C2 (plan-asymmetric). 
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Chapter 6 

Damage detection using proportional MF-

based deflections with minimal or no a-priori 

information on the structural masses   

 

 

 

 

In this chapter of the thesis a modal-flexibility based approach for output-only damage 

detection in building structures that can be applied with minimal or no a-priori 

information on the structural masses is presented and discussed1. The research 

investigations on this topic and the development of this proposed approach were 

performed after identifying a research gap that, as already discussed in Chapter 1, is 

indicated as the “third problem” considered in the thesis, and that is related to the 

Positive Shear Inspection Load method for damage detection. This research gap and 

the approach that is proposed as a possible strategy to address the problem can be 

summarized as follows.  

As shown in Chapter 3, modal flexibility matrices can be assembled only when 

mass-normalized mode shapes are available. However, starting from ambient 

vibration data and applying the techniques of operational modal analysis (or output-

                                                 
1 Some of the contents of this chapter (i.e. the contents of this chapter related to the integration 

of the procedure defined by Bernal [2001] into the proposed methodology for damage 

detection) are presented in a paper co-authored with Dr. Suparno Mukhopadhyay, Prof. 

Raimondo Betti, Dr. Luca Landi, and Prof. Pier Paolo Diotallevi that was submitted to the 

journal Engineering Structures and it is currently under review. 
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only modal identification), only arbitrarily-scaled mode shapes can be obtained. It is 

thus clear that for the case of ambient vibrations, modal flexibility matrices can not 

be estimated using only the results of the modal identification (i.e. natural frequencies 

and arbitrarily-scaled mode shapes of the structure).  In the work by [Koo et al., 2010; 

Koo et al., 2011; Sung et al., 2012], where the formulation of the Positive Shear 

Inspection Load (PSIL) method for output-only damage detection in building 

structures is presented, the mass normalization of identified mode shapes was carried 

out using an a-priori estimate of the system mass matrix. 

In the literature, however, there exist techniques that were developed to obtain 

the flexibility matrices in the context of an output only vibration test and that do not 

require an a-priori estimate of the mass matrix of the structure. These techniques, as 

already mentioned in Chapter 1, are presented in the works by [Bernal, 2001; Bernal 

& Gunes, 2002; Duan et al., 2005; Duan et al., 2007] and were developed in the 

context of another damage detection method, which is the Damage Locating Vector 

(DLV) method [Bernal, 2002]. When such techniques are applied together with the 

DLV method, the damage detection is carried out using only the output vibration 

responses of the structures and by estimating flexibility matrices (termed proportional 

flexibility matrices or PFMs) that are proportional to the corresponding true flexibility 

matrices. Detecting damage using the proportional flexibility matrices (instead of the 

true flexibility matrices) is an operation that is possible because in damage detection 

are not of interest the values assumed by the components of the flexibility matrices 

but the variations of such components. It is thus clear that, as indicated in [Bernal, 

2001], mapping changes in flexibility (which might be due to the damage) can be done 

both considering the true flexibility matrices or the proportional flexibility matrices. 

The approach proposed in this chapter was developed on the basis of the theory 

behind the PSIL method [Koo et al., 2010], and it is an attempt to make the damage 

detection process based on the modal flexibility-based deflections independent as 

much as possible from an a-priori estimate of the mass matrix of the structure, as 

required on the contrary in the PSIL method. According to the proposed approach, 

two techniques defined, respectively, in the work by [Bernal, 2001] and in the work 

by [Duan et al., 2005] are integrated in the framework of the PSIL method for damage 

detection in building structures. Such techniques are used to obtain proportional 



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

257 

 

flexibility matrices from output-only data, and then, according to the proposed 

approach, modal flexibility-based deflections that are proportional to the 

corresponding true deflections can be estimated. Such proportional modal flexibility-

based deflections can be used to detect the existence of damage in building structures, 

and, in this way, the calculations are performed using output-only vibration data 

without the need to estimate a-priori the mass matrix of the structure.  

The chapter is organized as follows. Section 6.1 is an introductory section that 

presents the original formulation of the two Proportional Flexibility Matrix (PFM) 

techniques that were defined, respectively, in the work by [Bernal, 2001]  and in the 

work by [Duan et al., 2005]. Then, Sections 6.2 and 6.3 are dedicated to the description 

of the proposed modal flexibility-based approach for output-only damage detection 

with minimal or no a-priori information on the structural masses. In Section 6.2 it is 

shown at first how the two above-mentioned PFM techniques can be integrated in the 

proposed approach, and then the steps for the estimation of proportional modal 

flexibility-based deflections of building structures are outlined. In Section 6.3, two 

indices that can be evaluated starting from the proportional MF-based deflections of 

shear building structures and that can be used for damage detection are presented. 

Finally, Section 6.4 is dedicated to the verification of the proposed damage detection 

approach. This verification was conducted using both numerical simulations on shear 

building structures and the data of experimental vibration tests performed on a steel 

frame structure.  

 

6.1 Estimation of Proportional Flexibility Matrices (PFM) in the 

literature  

In recent years some researches have been dedicated to solving the problem of modal 

scaling in output-only identification with the specific purpose of obtaining modal 

flexibility matrices directly from output-only vibration data.  

For example, the Damage Locating Vector method [Bernal, 2002], which, as 

already mentioned in Chapter 1, is a damage detection method based on a 

decomposition of the change-in-flexibility matrix, was originally formulated to be 

applied starting from input-output vibration data. Then, the method has been extended 
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and enhanced so that it can be applied in the output-only case using the approaches 

proposed in the works by [Bernal, 2001; Bernal & Gunes, 2002; Duan et al., 2005; 

Duan et al., 2007].  

One characteristic of all these approaches is that they do not aim to find the 

correct way of scaling the mode shapes used to assemble the flexibility matrices (i.e. 

to obtain mode shapes normalized to the mass matrix of the structure). These 

approaches aim to normalize the mode shapes in a consistent manner and to use such 

normalized mode shapes to assemble flexibility matrices that are proportional to the 

corresponding real flexibility matrices. Thus, these approaches, which, for the sake of 

convenience, are indicated in the present dissertation as Proportional Flexibility 

Matrix (PFM) techniques according to the terminology used in [Duan et al., 2005; 

Duan et al., 2007], do not require that the mass matrix of the structure is known. The 

general strategy adopted in the PFM techniques is to estimate directly from the 

vibration data a mass matrix that is proportional to the corresponding true mass matrix 

(indicated as Proportional Mass Matrix - PMM).  

For example, according to the procedure defined in the work by [Bernal, 2001] 

and as shown later in this section, this operation, is performed starting from 

arbitrarily-scaled mode shapes (identified from output-only vibration data) and using 

the equations that are offered by the modal orthogonality relationships of the mode 

shapes with respect to the mass matrix of the structure. Then, the proportional mass 

matrix is used to normalize the mode shapes, which are, in turn, adopted to obtain the 

proportional flexibility matrix.  

A proportional flexibility matrix 𝑭𝒓
∗  is a matrix that differs from the true 

flexibility matrix 𝑭𝒓 by a scalar multiplier αf 

𝑭𝒓
∗ = 𝛼𝑓 𝑭𝒓     (6.1) 

In Eq. (6.1) the proportional flexibility matrix 𝑭𝒓
∗  is indicated using a star as a 

superscript, and in this way, it is distinguishable from the flexibility matrix 𝑭𝒓. It is 

worth noting that this notation (i.e. using a star as a superscript) is adopted in this 

chapter to denote all the parameters that are proportional to the corresponding true 

values (e.g. proportional flexibility matrices, proportional mass matrices, proportional 

modal flexibility-based deflections etc.).  
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 As already mentioned and according to the approach proposed in this chapter, 

two PFM techniques defined, respectively, in the work by [Bernal, 2001] and in the 

work by [Duan et al., 2005] are considered and integrated in the framework of the 

PSIL method. The main steps and the analytical formulation related to these two 

techniques are presented in the next two sections. Then, in Section 6.1.3 of this chapter 

some important aspects that have to be considered when the proportional flexibility 

matrices (PFM) are used for damage detection purposes will be presented.  

 

6.1.1  Bernal’s [2001] procedure  

In this section, the procedure defined in the work by [Bernal, 2001] to assemble 

proportional flexibility matrices (PFM) from output-only vibration data is presented. 

The procedure is developed for a generic n-DOF structure and assumes that the 

components of the experimental mode shapes are available at all the DOFs of the 

structure with a significant translational inertia. The vectors of the mode shapes have 

thus to be spatially complete, while, on the contrary, not all the modes of the structure 

are required to apply the procedure. There is, however, a minimum number of modes 

required to apply the procedure defined by Bernal [2001], and this is an aspect that is 

discussed at the end of this section.  

The first step of the procedure is to obtain a proportional mass matrix (PMM) 

of the structure, and this operation is performed using the equations related to the 

modal orthogonality relationships of the mode shapes with respect to the mass matrix. 

These relationships can be expressed as follows 

𝚿𝐫
𝑇 𝐌 𝚿𝐫 = 𝐌𝛍    (6.2) 

where M n × n is the mass matrix of the structure, which is assumed diagonal, 𝚿𝑛 × 𝑟 is the 

arbitrarily-scaled mode shape matrix composed by mode shape vectors related to the first 

r modes, and 𝐌𝛍 𝑟 × 𝑟 is a diagonal matrix which contains the modal masses 𝜇𝑖 related to 

each of the considered r modes. Eq. (6.2) can be specified as follows by highlighting all 

the different terms present in the equation 

[

⋯ ⋯ ⋯ ⋯ ⋯
𝜓𝑛𝑖 ⋯ 𝜓𝑗𝑖 ⋯ 𝜓1𝑖

⋯ ⋯ ⋯ ⋯ ⋯
]

[
 
 
 
 
𝑚𝑛 0 ⋯ ⋯ 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝑚𝑗 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 𝑚1]

 
 
 
 

[
 
 
 
 
   ⋮ 𝜓𝑛𝑘 ⋮  
   ⋮ ⋮  ⋮  
  ⋮ 𝜓𝑗𝑘 ⋮  

  ⋮ ⋮ ⋮  
  ⋮ 𝜓1𝑘 ⋮  ]

 
 
 
 

=

[
 
 
 
 
𝜇1 0 ⋯ ⋯ 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝜇𝑖 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 𝜇𝑟]

 
 
 
 

   (6.3) 
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with j = 1 … n and i, k = 1 … r. By re-arranging the equations related to the off-diagonal 

terms in the modal mass matrix (e.g. the equations related to the zeros in the upper 

triangular part of the matrix 𝐌𝛍), the orthogonality relationships can be expressed as  

𝑬 𝐦 = 𝟎     (6.4) 

where 𝑬𝑟 (𝑟 −1)

2
×𝑛

  is a rectangular matrix formed by mode shape components and 𝐦𝑛×1 is 

a vector formed by the diagonal values of the mass matrix M. The terms contained in Eq. 

(6.4) can be specified as 

 [

⋯ ⋯ ⋯ ⋯ ⋯
𝜓𝑛𝑖𝜓𝑛𝑘 ⋯ 𝜓𝑗𝑖𝜓𝑗𝑘 ⋯ 𝜓1𝑖𝜓1𝑘

⋯ ⋯ ⋯ ⋯ ⋯
](

𝑚𝑛

…
𝑚1

) = (
0
…
0
)                 (6.5) 

where 𝜓𝑗𝑖 , 𝜓𝑗𝑘 are the j-th components of the i-th and the k-th mode shapes, respectively. 

Each element of one row of E is composed by multiplying one component of the i-th 

mode with the corresponding one of the mode k (with i ≠ k). Alternatively, in a more 

compact notation Eq. (6.5) can be expressed as  

∑ 𝜓𝑗𝑖𝜓𝑗𝑘
𝑛
𝑗=1  𝑚𝑗 = 0                    ∀ 𝑖, 𝑘 ∈ [1, … , 𝑟], 𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑘            (6.6) 

where again 𝜓𝑗𝑖 , 𝜓𝑗𝑘 are the j-th components of the i-th and the k-th mode shapes, 

respectively, and 𝑚𝑗 is the generic component of the diagonal of the mass matrix. 

The system described through Eqs. (6.4, 6.5, 6.6) can be assembled using 

identified mode shapes and can be solved to obtain an estimate from the experimental 

data (and specifically from experimental mode shapes) of the vector m.  

If the exact values of the mode shape components are considered in Eq. 6.4 

(assuming, for example, that the identification is performed on noiseless data, which is 

an ideal case), the vector m belongs to the null space or kernel of the matrix E. Since in 

general any vector that belongs to the kernel of a matrix is defined to within a scalar 

multiplier, the relationship between the vector 𝐦 and the kernel of the matrix E (indicated 

as ker 𝑬) can be expressed as follows 

𝐦 =
1

𝛼𝑚
   ker 𝑬    (6.7) 

where 𝛼𝑚 is an arbitrary scalar. By assembling the matrix E using experimental mode 

shapes, a vector m* proportional to the vector 𝐦 (i.e. proportional to the diagonal values 

of the mass matrix M) can thus be determined as the null space of E. It is worth noting 
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that this vector m* is a vector that describes the distribution of the masses of the structure, 

while, of course, in Eq. (6.7) the constant 𝛼𝑚 is undetermined. 

As reported in [Bernal, 2001], the approach can be applied if a sufficient 

number of modes is considered – i.e. if the following condition is fulfilled 

𝑟 (𝑟 − 1) ≥ 2(𝑛 − 1)     (6.8) 

where, as already mentioned, r is the number of the identified modes which are included 

in Eq. (6.4) and n is the number of the DOFs of the structure. The condition expressed by 

Eq. (6.8) and the assumption of dealing with structural systems with a diagonal mass 

matrix guarantee that a unique solution is obtained by solving Eq. (6.4) and when 

estimating the mass proportional vector m*. In fact, if exact components of the mode 

shapes are considered, in the above-mentioned situation (i.e. the condition expressed by 

Eq. 6.8 is fulfilled and the system has a diagonal mass matrix) the dimension of the null 

space or kernel of the matrix E is equal to one (i.e. the rank deficiency of E is equal to 

one). In such case a unique solution is obtained by solving Eq. (6.4).  

The problem of dealing with mode shape components that are affected by 

uncertainties and the specific technique that has been adopted in the approach proposed 

in this chapter to obtain the mass proportional vector m* is discussed later in Section 

6.2.1.1.  Of course, in such situation (i.e. when the components of the matrix E are affected 

by uncertainties) the kernel of the matrix E is always empty, and thus a numerical solution 

has to be adopted to have an estimate of the vector m*.  

After having estimated the vector m*, the proportional mass matrix M* of the 

structure can be assembled and used to compute the normalized mode shapes and the 

proportional flexibility matrix [Bernal, 2001]. The proportional flexibility matrix 

𝑭𝒓 𝑛 × 𝑛
∗  of the structure can be assembled from the arbitrarily-scaled mode shapes, the 

natural frequencies, and the proportional mass matrix as follows 

𝑭𝒓
∗ = 𝚿𝒓 𝜦𝒓

−1(𝚿𝒓
𝑇 𝐌∗ 𝚿𝒓)

−1 𝚿𝒓
𝑇    (6.9) 

It is worth noting that this equation is similar to the equation that has been already 

presented in Chapter 3 referring to the procedure used to estimate the modal flexibility 

matrix of the structure according to the Positive Shear Inspection Load method. There is, 

however, an important difference between the two equations. One of the terms present in 
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the equation reported in Chapter 3 is the mass matrix of the structure, while in Eq. (6.9) 

presented in this chapter the calculations are performed starting from the proportional 

mass matrix 𝐌∗.  

 

6.1.2   Duan et al.’s [2005] procedure 

As already mentioned, there exists in the literature another technique that can 

be used to extract the proportional flexibility matrix from output-only vibration data. 

This technique is presented in the work by [Duan et al., 2005]. The procedure 

proposed by Duan et al. [2005], similarly to the procedure defined by Bernal et al. 

[2001], was developed for a generic n-DOF structure and assumes that the vectors of 

the mode shapes are spatially complete. On the contrary, not all the modes of the 

structure are required to apply the procedure.  

In the procedure developed by Duan et al. [2005] the problem of constructing 

the proportional flexibility matrix of a structure from output-only vibration data is 

solved by defining a second structure (termed “dummy structure”), which is not equal 

to the real physical structure but has a well-defined relationship with the real structure. 

The passages outlined in the work by Duan et al. [2005] to define the characteristics 

of the dummy structure and to justify the choice of considering in the approach this 

dummy structure are summarized herein. Let us consider at first the equation of the 

flexibility matrix of the real structure  

𝑭𝒓 = ∑
𝝓𝑖 𝝓𝑖

𝑇

𝜔𝑖
2

𝑟
𝑖=1        (6.10) 

where 𝝓𝑖 and 𝜔𝑖 are, respectively, the i-th mass normalized mode shape and the i-th 

natural circular frequency of the real structure. As already mentioned in Chapter 3, 

the relationship between any mass normalized mode shape vector 𝝓𝒊 and the 

corresponding arbitrarily-scaled mode shape vector  𝝍𝒊 is  

𝝓𝒊 =
1

√𝜇𝑖
 𝝍𝒊     (6.11) 

where 𝜇𝑖 is the i-th modal mass. By substituting Eq. (6.11) in Eq. (6.10), the flexibility 

matrix expressed in terms of the arbitrarily-scaled mode shapes is  
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𝑭𝒓 = ∑
𝝍𝑖 𝝍𝑖

𝑇

𝜇𝑖 𝜔𝑖
2

𝑟
𝑖=1        (6.12) 

At this point the concept of the dummy structure, as defined in [Duan et al., 2005], is 

introduced. According to the approach proposed in [Duan et al., 2005], a term 𝜔𝑖,𝐷 

(which as shown later in this section is the natural circular frequency of the dummy 

structure) is introduced 

 𝜔𝑖,𝐷 = √𝜇𝑖  𝜔𝑖       (6.13) 

On the basis of this last equation (Eq. 6.13), the expression of the flexibility matrix of 

the real structure assembled using arbitrarily-scaled mode shapes (Eq. 6.12) can be 

reformulated as  

𝑭𝒓 = ∑
𝝍𝑖 𝝍𝑖

𝑇

 𝜔𝑖,𝐷
2

𝑟
𝑖=1        (6.14) 

Eq. (6.10) can be compared with Eq. (6.14) by considering that using both equations 

the same flexibility matrices are obtained. From this comparison the following 

observations can be formulated. All the quantities in the first equation (Eq. 6.10) are 

related to the real structure and the equation contains mode shapes that are normalized 

with respect to the mass matrix of the real structure. On the contrary, Eq. (6.14) can 

be considered as an expression related to a structure (i.e. the dummy structure) that 

has the same stiffness/flexibility matrix of the real structure but a mass matrix 

different from the mass matrix of real structure. In fact, the arbitrarily-scaled mode 

shapes of the real structure that are present in Eq. (6.14) can be considered as mode 

shape vectors that are normalized with respect to the mass matrix of the dummy 

structure (of course, by considering in Eq. 6.14 the terms 𝜔𝑖,𝐷 as the natural circular 

frequencies of the dummy structure, which are modified with respect to the natural 

circular frequencies of the real structure according to Eq. 6.13).  

As discussed in [Duan et al., 2005], two different structures (i.e. the real and 

the dummy structures) are thus considered. The properties of such structures can be 

summarized as follows. These structures have the same stiffness/flexibility matrix and 

the same mode shapes, while they have different mass matrices and different natural 

frequencies. However, both the mass matrix and the natural frequencies of the dummy 

structure can be related to the corresponding quantities of the real structure.  
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The main idea behind the approach is that, as already mentioned, the mass 

matrix of the dummy structure is defined in a way that the arbitrarily-scaled mode 

shapes of the real structure are mass orthogonal and mass normalized with respect to 

such mass matrix of the dummy structure. This important point can be expressed using 

an analytical formulation as follows  

𝚿𝐫
𝑇 𝐌𝐃 𝚿𝐫 = 𝑰    (6.15) 

where 𝐌𝐃 𝑛 ×𝑛 is the mass matrix of the dummy structure, 𝚿𝑛 × 𝑟 is the arbitrarily-

scaled mode shape matrix composed by mode shape vectors related to the first r modes 

(which are equal for the real and the dummy structures), and 𝑰𝑟 × 𝑟 is the identity 

matrix. According to [Duan et al., 2005], Eq. (6.15) can be solved to obtain the mass 

matrix 𝐌𝐃 of the dummy structure. This mass matrix can be assumed symmetric and 

contains n (n − 1)/2  unknows, while the number of the linear equations available in 

Eq. (6.15) is r (r − 1)/2. The system can thus be solved if r = n (i.e. if all the structural 

modes of the structure are included in the calculations). However, for a truncated set 

of mode shapes (i.e. for r < n) and according to [Duan et al., 2005], a least-square 

solution can be obtained by means of the Moore-Penrose inverse operation. The mass 

matrix 𝐌𝐃 of the dummy structure can thus be derived as follows  

 𝐌𝐃 = (𝚿𝐫
𝑇)+ 𝑰 𝚿𝐫

+          (6.16) 

where the symbol + denotes the pseudo-inverse operation.  

Of course, the use of the Moore-Penrose inverse operation leads to inevitable 

approximations in the calculations. This is true especially if the calculations are 

performed using a very limited number of structural modes (i.e. using only the first 

modes of the structure). However, differently from the procedure defined by Bernal 

[2001], in the procedure by Duan et al. [2005] there is not a condition that imposes a 

minimum number of modes required to perform the calculations. This is an important 

aspect that was considered for the development of the approach proposed in this 

chapter (as shown in later sections).  

As shown in [Duan et al., 2005], after determining the mass matrix of the 

dummy structure, the second fundamental step of the procedure is to relate the mass 

matrix of the dummy structure MD and the mass matrix of the real structure M. This 
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operation is done by considering the dynamic characteristic equations of the two 

undamped structures (i.e. the real and the dummy structures).  

These dynamic characteristic equations for the real and the dummy structures 

are, respectively 

𝐊 𝝍𝑖  = 𝜔𝑖
2  𝐌 𝝍𝑖     (6.17) 

𝐊 𝝍𝑖  = 𝜔𝑖,𝐷
2   𝐌𝐃 𝝍𝑖     (6.18) 

where K is the stiffness matrix, which is equal for the two structures. By comparing 

the two equations (Eqs. 6.17, 6.18) and by considering the relationship between the 

natural frequencies of the real and dummy structures (Eq. 6.13), the mass matrix of 

the dummy structure MD and the mass matrix of the real structure M can be related 

according to the following equation [Duan et al., 2005] 

(𝐌𝐃 −
1

𝜇𝑖
 𝑴)𝝍𝑖 = 𝟎     (6.19) 

where 𝝍𝑖 and 𝐌𝐃 are known quantities, while 𝜇𝑖 and M are unknowns to be calculated.  

According to [Duan et al., 2005], the mass matrix of the real structure can be 

assumed as diagonal, and under this assumption the problem expressed in Eq. (6.19) 

is characterized by n equations and n+1 unknows. Notwithstanding the fact that the 

number of unknowns is higher than the number of equations, in the paper by Duan et 

al. [2005] it is shown that Eq. (6.19) can be solved to obtain the minimum amount of 

information required to assemble the proportional flexibility matrix of the structure – 

i.e. the ratios between each modal mass 𝜇𝑖 and the first modal mass 𝜇1 of the structure. 

This operation is performed by normalizing the mass matrix of the real 

structure in a way that a designated element of the diagonal of the matrix is equal to 

one. This normalized mass matrix �̅� can be defined as  

𝑴 =
1

𝑐
 �̅�     (6.20) 

where c is a constant value. Then, Eq. (6.20) is substituted in Eq. (6.19), and Eq. (6.19) 

is reformulated as  

(𝐌𝐃 −
1

𝜂𝑖
 �̅�)𝝍𝑖 = 𝟎     (6.21) 
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where the term 𝜂𝑖 is defined as  

𝜂𝑖 = 𝑐 𝜇𝑖     (6.22) 

Using the above-mentioned normalization on the mass matrix of the structure, Eq. 

(6.21) is composed by n equations and n unknows. Thus, for each modal vector 𝝍𝑖 a 

unique solution can be determined by calculating the parameter 𝜂𝑖 and the components 

of the matrix �̅� that are unknown. As already mentioned, this last matrix is a 

proportional mass matrix with a designated element of the main diagonal that is equal 

to one.  

Then, the ratio 𝛾𝑖 between each modal mass 𝜇𝑖 and the first modal mass 𝜇1 of 

the real structure can be obtained as follows 

𝛾𝑖 =
𝜂𝑖

𝜂1
=

𝜇𝑖

𝜇1
     (6.23) 

As already mentioned, the equation that was considered before performing the 

normalization of the mass matrix (i.e. Eq. 6.19) is characterized by n equations and 

n+1 unknows. Thus, using the above-mentioned strategy only the ratios between each 

modal mass 𝜇𝑖 and the first modal mass 𝜇1 can be determined, and the first modal 

mass of the structure is undetermined. 

These ratios 𝛾𝑖 between the modal masses are then used to assemble the 

proportional flexibility matrix 𝑭𝒓
∗   (or PFM). In fact, by introducing Eq. (6.23) into 

Eq. (6.12), the flexibility matrix of the structure can be expressed as  

𝑭𝒓 =
1

𝜇1
∑

𝝍𝑖 𝝍𝑖
𝑇

𝛾𝑖 𝜔𝑖
2

𝑟
𝑖=1 =

1

𝜇1
 𝑭𝒓

∗        (6.24) 

where the proportional flexibility matrix is  

𝑭𝒓
∗ = ∑

𝝍𝑖 𝝍𝑖
𝑇

𝛾𝑖 𝜔𝑖
2

𝑟
𝑖=1     (6.25) 

This proportional flexibility matrix 𝑭𝒓
∗  differs from the real flexibility 𝑭𝒓 to within a 

scalar unknown multiplier, which is theoretically equal to the first modal mass of the 

structure [Duan et al., 2005]. In other words, according to the approach proposed by 

Duan et al. [2005] the coefficient 𝛼𝑓 reported in Eq. (6.1) is equal to 𝜇1.  
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6.1.3   Compatibility of the unknown scaling factors related to the PFMs in the 

damage detection methods based on changes in flexibility  

One important aspect that has to be considered when applying the techniques 

proposed in the works by Bernal [2001] and Duan et al. [2005] to estimate the 

proportional flexibility matrices and when using such matrices for damage detection 

is the following. The proportional flexibility matrices in the undamaged and in the 

possibly damaged states have to be scaled in a consistent manner to perform the 

damage detection. As discussed in [Bernal, 2001] and as shown in this section, in fact, 

the two matrices in the undamaged and in the possibly damaged states have to be 

scaled with respect to the true flexibility matrices by a common scaling factor.   

In such condition the scaling factors on the proportional flexibility matrix are 

comparable.  

 This important aspect can be investigated by remembering that the 

Proportional Flexibility Matrix (PFM) techniques [Bernal, 2001; Duan et al. 2005] 

were developed to be integrated in the framework of the Damage Locating Vector 

(DLV) approach [Bernal, 2002]. In particular, the techniques were used to extend the 

DLV methodology, originally developed to be applied in the context of an input-

output identification, to the output-only case. As already mentioned in Chapter 1, the 

Damage Locating Vector method is a modal flexibility-based method that is based on 

a decomposition of the change-in-flexibility matrix. It is thus clear that evaluating the 

change-in-flexibility matrix is one of the steps of the Damage Locating Vector 

method. The Positive Shear Inspection Load is also a method that can be considered 

as a method based on the evaluation of the change-in-flexibility matrix. This is 

because, as shown by the analytical formulation presented in Section 3.3.2 of Chapter 

3, there is a direct relationship between the damage-induced deflection and the 

change-in-flexibility matrix. For this reason, the problem of the compatibility of the 

scaling factors on the PFMs that was discussed in the works by [Bernal, 2001; Duan 

et al. 2005] referring to the change-in-flexibility matrix, which has to be calculated 

according to the Damage Locating Vector method, is an important aspect that has to 

be considered also in the approach presented in this chapter, which was developed on 

the basis of the Positive Shear Inspection Load method.  
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The change-in-flexibility matrix can be evaluated starting from the true modal 

flexibility matrices as follows 

∆𝑭 = 𝑭𝑰 − 𝑭𝑩     (6.26) 

where 𝑭𝑩 and 𝑭𝑰 are the flexibility matrices assembled in the original or baseline state 

and in the inspection phase, respectively. These matrices are usually assembled using 

the same number of identified modes (i.e. rI = rB = r). Under this assumption and for 

the sake of convenience the subscript r has been omitted in Eq. (6.26).    

According to [Bernal, 2001; Duan et al. 2005] and when the proportional 

flexibility matrices are estimated using the procedures defined in Sections 6.1, the 

change-in-flexibility matrix is evaluated as  

𝚫𝑭∗ = 𝑭𝑰
∗ − 𝑭𝑩

∗     (6.27) 

which is properly a “proportional change-in-flexibility”.  

 By evaluating Eq. (6.1) both for the structure in the baseline state and for the 

structure in the inspection phase, and by substituting such equations in Eq. (6.27), the 

proportional change-in-flexibility matrix can be reformulated as  

𝚫𝑭∗ = 𝛼𝑓,𝐼 𝑭𝑰 − 𝛼𝑓,𝐵 𝑭𝑩     (6.28) 

where the scalar multipliers related to the two states are indicated as 𝛼𝑓,𝐼 and 𝛼𝑓,𝐵. At 

this point the problem that must be addressed is to ensure that the PFMs both for the 

undamaged and the possibly damaged structures are adequately scaled [Bernal, 2001; 

Duan et al. 2005]. In fact, it is evident in Eq. (6.28) that only if the proportional 

flexibility matrices of the undamaged and the possibly damaged structures differ from 

the true flexibilities by the same scalar (i.e. 𝛼𝑓,𝐼 = 𝛼𝑓,𝐵 = 𝛼𝑓), then also the change-

in-flexibility ∆𝑭∗ is proportional to the real ∆𝑭, i.e.  

𝚫𝑭∗ = 𝛼𝑓 (𝑭𝑰 − 𝑭𝑩) =  𝛼𝑓 ∆𝑭   (6.29) 

In this way (i.e. by ensuring the compatibility of the scaling factors) changes in 

flexibility that can be due to the damage can be detected using the proportional 

flexibility matrices instead of the true flexibility matrices.  

According to the procedure defined by Bernal [2001], if the structural masses 

are unchanged before and after damage, the use of the same proportional mass matrix 
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to normalize the mode shapes in the undamaged and the possibly damaged states 

implies that the compatibility of the scaling factors related to the PFMs is fulfilled.  

According to the procedure defined by Duan et al. [2005], the proportional 

flexibility matrix theoretically differs from the true flexibility matrix by a scaling 

factor that is equal to the first modal mass. It is thus clear that using this method when 

comparing the proportional flexibility matrices for damage detection purposes, some 

additional scaling operations must be applied to the estimated matrices (even in the 

case in which the masses of the structure are unchanged before and after damage). A 

possible damage (such a stiffness reduction) can lead to a change in the mode shapes 

of the structure and thus a change in the first modal mass. Moreover, in the work by 

Duan et al. [2005] the general case in which the structural masses can change before 

and after damage is considered. As indicated in [Duan et al., 2005], the compatibility 

of the scalar multipliers related to the undamaged and the possibly damaged states can 

be guaranteed if there exists in the mass matrix of the structure at least one element 

that is unchanged before and after damage.  

The problem of detecting damage when the mass of the original structure is 

different from the mass of the possibly damaged structure has been investigated also 

in other researches [Figueiredo et al., 2009; Mei & Gül, 2015; Villalpando et al., 

2016], where the damage detection was not carried out using modal flexibility-based 

approaches. Such mass modifications can be present in structures that experience 

changing operational conditions (for example, due to the variability of the payloads) 

[Farrar & Worden, 2013]. These effects are always present in civil structures, such as 

bridges or building structures. The resulting mass changes are in general not related 

to a damaged state, but they affect the dynamics of the system (e.g. the modal 

properties). It is thus important to ensure that the indices used for damage detection 

are not sensitive to such changes [Farrar & Worden, 2013].  

In this chapter and specifically in later sections, where numerical and 

experimental analyses will be presented, the damage detection process will be carried 

out by considering both the situation in which the masses of the structure are 

unchanged before and after damage and the situation in which mass variations are 

present between the two structural states. 
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6.2 Proposed approach for the estimation of the proportional MF-

based deflections in building structures 

The damage detection method described in Chapter 3 (i.e. the Positive Shear 

Inspection Load method) is based on the estimation of modal flexibility-based 

deflections and interstory drifts of shear building structures. The interstory drifts are 

considered as damage sensitive features (DSFs), and the methodology was verified 

starting from output-only vibration data and by assuming the system mass matrix of 

the structure as known [Koo et al., 2010; Koo et al., 2011; Sung et al., 2012]. On the 

contrary, the two procedures developed by [Bernal, 2001; Duan et al. 2005] (described 

in previous sections of this chapter) are able to extract proportional mass matrices and 

proportional flexibility matrices of the structures from output-only vibration data.  

The damage detection approach proposed in this chapter aims to integrate the 

Proportional Flexibility Matrix techniques into the framework of the damage detection 

methodology based on modal flexibility-based deflections (i.e. the framework of the 

Positive Shear Inspection Load method). It is worth noting that, according to the 

original formulation of the PSIL method, the approach proposed in this chapter is 

developed by considering plane shear building structures.  

The integration of the PFM techniques into the framework of the Positive Shear 

Inspection Load (PSIL) method is theoretically possible because the assumptions 

made in the PFM techniques are compatible with the ones related to the PSIL method. 

Firstly, in the two PFM procedures the mass matrix of the structure is assumed to be 

diagonal, and under this assumption a mass matrix that is proportional to the true mass 

matrix can be obtained. Dealing with a diagonal mass matrix is also the case of the 

Positive Shear Inspection Load method, which has been developed for plane shear 

building structures. Secondly, both the two PFM techniques can be applied using a 

limited number of structural modes, while modal vectors that are spatially complete 

are considered. These last two assumptions are the same assumptions that are made in 

the works by Koo et al. [2010, 2011] and Sung at al. [2012] where the Positive Shear 

Inspection Load method is presented.  

One important aspect that must be underlined and justified about the proposed 

approach is that both the two PFM techniques (defined by Bernal [2001] and Duan et 
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al. [2005]) are integrated in the framework of the PSIL method. The reason for this 

choice is evident if one considers the main characteristics and differences between the 

two PFM techniques. When dealing with exact modal parameters (for example, the 

modal identification is performed ideally on noiseless data) and considering a limited 

number of modes, the approach by Bernal [2001] leads to an exact solution (i.e. an 

exact proportional mass matrix and an exact proportional flexibility matrix are 

obtained). However, to apply the PFM procedure proposed by Bernal [2001] the 

condition expressed by Eq. (6.8) has to be fulfilled. This condition, as already 

mentioned, fixes a minimum number of modes that have to be identified and 

considered to apply the procedure. On the contrary, if the condition expressed by Eq. 

(6.8) is not fulfilled, the approach proposed by Bernal [2001] can not be applied. In 

other words, this means that if exact modal parameters are considered, an exact 

solution is obtained for any subset of modes that satisfies the condition expressed by 

Eq. (6.8). 

Referring to the technique proposed by Duan et al. [2005], if the exact values 

of the mode shape components are considered, this procedure provides an exact 

solution only if all the modes are included in the calculation (i.e. r=n). If a limited 

number of modes is considered, the approach by Duan et al. [2005] provides an 

approximated solution in the estimation of the proportional mass matrix. This is due 

to the fact that pseudo inverse operations are performed on the truncated mode shape 

matrices reported in Eqs. (6.15, 6.16). However, the authors of the work [Duan et al., 

2005] do not mention any condition that imposes a minimum number of modes that 

have to be considered to apply the procedure. Thus, the technique can be theoretically 

applied for any subset of r modes included in the calculations.  

In light of these premises, it is clear that a convenient approach, which is the 

approach adopted in the damage detection methodology proposed in this chapter, is 

the following: apply the PFM technique defined by Bernal [2001] if the condition 

expressed by Eq. (6.8) is fulfilled (i.e. apply the procedure by Bernal whenever 

possible); apply the PFM technique defined by Duan et al. [2005] in all the cases in 

which the procedure by Bernal [2001] is not applicable (i.e. if the above-mentioned 

condition expressed by Eq. 6.8 is not fulfilled).  



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

272 

 

In the attempt to combine the two techniques in a unified framework, another 

important aspect must be considered and addressed. As already mentioned, if the two 

techniques are applied considering noiseless data and all the structural modes, both 

techniques provide an exact proportional mass matrix (and thus an exact proportional 

flexibility matrix). However, as evident in Section 6.1, the two techniques adopt 

different strategies to assemble the proportional flexibility matrices. In the procedure 

defined by Bernal [2001] the proportional mass matrix is used to normalize the mode 

shapes as shown in Eq. (6.9). On the contrary, in the procedure defined by Duan et al. 

[2005] the ratios between each modal mass of the structure and the first modal mass 

are included in the expression of the proportional flexibility matrix, as shown in Eq. 

(6.25). Consequently, even when applied considering noiseless data and all the 

structural modes, the scalar multipliers on the proportional flexibility matrices 

obtained using the two techniques are not the same. This problem related to the scaling 

factors on the proportional flexibility matrices (unknown in output-only 

identification) in an important aspect that is addressed later in this section.  

According to the proposed approach, the first objective is thus to define 

modified implementations of the two PFM procedures [Bernal, 2001; Duan et al., 

2005] and to find a way for which both the two procedures can be integrated into the 

framework of the PSIL method. This is an aspect that is addressed in next section (i.e. 

Section 6.2.1). Then, the two techniques will be integrated into a procedure that is 

able to obtain proportional modal flexibility-based deflections of shear building 

structures from output-only vibration data. The steps of this proposed procedure are 

presented in Section 6.2.2.   

 

6.2.1   Implementation of the PFM techniques in a unified framework 

6.2.1.1   Implementation of Bernal’s [2001] procedure 

In the proposed methodology, the proportional mass matrix estimated from the data is 

used to normalize the mode shapes that are considered to assemble the proportional 

flexibility matrix. This is the same approach that is adopted in the procedure defined 

by Bernal [2001]. This means that basically the procedure by Bernal [2001] is kept 

unaltered in the proposed approach, while modifications are introduced in the 
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procedure defined by Duan et al. [2005] to make the results obtained using this 

approach comparable with respect to the results of the procedure by Bernal [2001].  

 The procedure defined in [Bernal, 2001] is, however, complemented by 

defining some steps that, according to the proposed approach, should be a continuation 

of the calculations presented in Section 6.1.1. First of all, the numerical technique that 

is used in the present chapter to estimate the mass proportional vector m* and to solve 

Eq. (6.4) when the data are affected by uncertainties is presented. Secondly, referring 

to the structures that are considered in the original formulation of the PSIL method 

(i.e. plane shear buildings) an approach is proposed to provide a physical 

interpretation on the value assumed by the missing scaling factors on the proportional 

flexibility matrices. This approach implies that the mass proportional vector m* 

estimated using the procedure by Bernal [2001] is normalized in a certain way, as 

shown later in this section.  

Of course, when the modal identification is applied on real data, the identified 

modal parameters are always affected by uncertainties. This means that if Eq. (6.4) is 

solved in the experimental case, the mode shape components present in such equation 

will be always affected by uncertainties. To deal with such uncertainties and to obtain 

an estimate of the mass distribution of the structure (i.e. the vector m*) using the 

procedure defined by Bernal [2001], a singular value decomposition (SVD) of the 

matrix E – Eq. (6.4) – is considered in the analyses presented in this chapter  

𝑬 =  𝑼 𝚺 𝑽𝑻    (6.30) 

The vector 𝒎∗ is then determined as the singular vector of the right-hand-side 

eigenvector matrix V which is associated to the smallest singular value of E. It is 

worth noting that, due to the property of the singular value decomposition, the singular 

vectors contained in the matrices 𝑼 and 𝑽 are orthonormal vectors. These vectors have 

a 2-norm2 equal to one, and thus the vector 𝒎∗ estimated using such approach has a 

                                                 
2 If a generic vector is indicated with the letter v, its 2-norm is defined as follows 

‖𝐯 ‖2 = √∑ 𝑣𝑗
2𝑛

𝑗=1       

where n is the dimension of the vector v. 
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2-norm equal to one, as well. This is an important aspect because the normalization 

of the vector 𝒎∗ plays a fundamental role in the proposed approach, as discussed in 

the following.  

Before presenting how the mass proportional vector 𝒎∗ is normalized, 

according to the proposed approach, some observations must be presented on the 

relationship between the scaling factors on the proportional flexibility matrices and 

the scaling factors on the proportional mass matrices. In general, by applying the PFM 

procedure defined by Bernal [2001] and as shown in Section 6.1.1, a proportional 

mass matrix M* can be estimated from output-only vibration data. Using the same 

notation adopted in Eq. (6.7), the scaling factor (unknown in output-only 

identification) between the proportional mass matrix and the true mass matrix is 

indicated as 𝛼𝑚. The relationship between the two matrices can thus be expressed as 

follows 

𝑴∗ = 𝛼𝑚 𝑴      (6.31) 

By substituting Eq. (6.31) in Eq. (6.9), Eq. (6.9) can be reformulated as  

𝑭𝒓
∗ = 𝚿𝒓 𝜦𝒓

−1(𝚿𝒓
𝑇 𝛼𝑚 𝐌 𝚿𝒓)

−1 𝚿𝒓
𝑇    (6.32) 

At this point the expression of the true flexibility matrix, that was defined in Chapter 

3, is considered  

𝑭𝒓 = 𝚿𝒓 𝜦𝒓
−1(𝚿𝒓

𝑇 𝐌 𝚿𝒓)
−1 𝚿𝒓

𝑇    (6.33) 

By comparing Eq. (6.33) with Eq. (6.32) and by considering that 𝛼𝑚 is a scalar, then 

the relationship between the proportional and the true flexibility matrices is  

𝑭𝒓
∗ =

1

𝛼𝑚
 𝑭𝒓      (6.34) 

Finally, by comparing Eq. (6.34) with Eq. (6.1), it turns out that the scaling factor on 

the proportional mass matrix is the inverse with respect to the scaling factor on the 

proportional flexibility matrix 

𝛼𝑓 =
1

𝛼𝑚
      (6.35) 

This in an important point, because the scaling factor on the proportional mass 

matrix can be controlled or modified adopting different normalizations on the mass 
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proportional vector 𝒎∗, and this operation then has an implication on the scaling factor 

on the proportional flexibility matrix. By adopting this strategy and according to the 

proposed approach, the scaling factor 𝛼𝑓 on the proportional flexibility matrices of the 

structures considered in the present chapter (i.e. plane shear buildings with a diagonal 

mass matrix) is imposed as equal to the total mass of the structure. The analytical 

passages used to show this important characteristic of the approach are the following.  

The scaling factor 𝛼𝑓 on the proportional flexibility matrices of structures with 

a diagonal mass matrix can be expressed as the ratio between the 1-norm of the vector 

𝒎 and the 1-norm of the vector 𝒎∗  

 𝛼𝑓 =
‖𝒎‖𝟏

‖𝒎∗‖𝟏
     (6.36) 

where ‖ ∙ ‖1 is the 1-norm of a generic vector. If the generic vector is indicated with 

the letter v, its 1-norm is defined as  

‖𝐯 ‖1 = ∑ |𝑣𝑗|
𝑛
𝑗=1     (6.37) 

where n is the dimension of the vector v. 

This formulation is derived firstly by substituting in Eq. (6.31) the diagonal 

mass matrices 𝑴 and 𝑴∗ with the 1-norm of the vectors 𝒎 and 𝒎∗, respectively. Then, 

this modified version of Eq. (6.31) is substituted into Eq. (6.35). Of course, the 

operation is valid only if structures with a diagonal mass matrix are considered.  

Among the different norms that can be chosen and applied on the mass 

proportional vectors 𝒎 and 𝒎∗ to define the scaling factor 𝛼𝑓, this definition adopted 

in Eq. (6.36) and which uses the 1-norm of the mass proportional vectors was selected 

due to its practical applicability. In fact, for the structures considered in the present 

chapter, which are structures with a diagonal mass matrix, the term ‖𝒎‖𝟏 is the total 

mass of the structure 𝑚𝑡𝑜𝑡 = ∑ 𝑚𝑗
𝑛
𝑗=1 . Of course, the masses of the stories of the 

structure are always positive quantities, and thus the total mass can be evaluated as 

the 1-norm of the vector 𝒎 (which is the vector formed by the diagonal components 

of the mass matrix).  

The main idea behind the proposed approach is the following: if the mass 

proportional vector 𝒎∗ estimated using the PFM technique (in such case the PFM 
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technique proposed by Bernal [2001]) is scaled in a way that its 1-norm is equal to 

one (i.e. ‖𝒎∗‖𝟏 = 1), then, according to Eq. (6.36), the scaling factor on the 

proportional flexibility matrix is theoretically equal to the total mass of the structure 

𝛼𝑓 = ‖𝒎‖𝟏 = 𝑚𝑡𝑜𝑡     (6.38) 

In this way a physical interpretation is provided on the scaling factor of the 

proportional flexibility matrix which is unknown in output-only identification and 

damage detection.  According to the proposed approach, the mass proportional vector 

estimated by performing a singular value decomposition of the matrix E (Eq. 6.30), is 

thus normalized in a way that its 1-norm is equal to one (i.e. ‖𝒎∗‖𝟏 = 1).  

 

6.2.1.2   Implementation of Duan et al.’s [2005] procedure  

As already mentioned, in the approach proposed in this chapter the strategy adopted 

in the procedure by Bernal [2001] to assemble the proportional flexibility matrices 

(PFMs) is considered.  On the contrary, a different strategy used to assemble the PFMs 

is considered in the procedure by Duan et al. [2005]. To make the technique defined 

by Duan et al. [2005] applicable in the framework of a unified strategy to assemble 

the proportional flexibility matrices, some modifications of the original procedure 

defined by Duan et al. [2005] are proposed and are presented in this section. In any 

case, the proposed implementation of the procedure by Duan et al. [2005] does not 

substantially alter the fundamental equations of the original methodology.  The main 

goal that the proposed implementation aims to achieve is to modify the scaling factors 

on the proportional mass matrices and the proportional flexibility matrices that are 

obtained using the procedure by Duan et al. [2005].  

According to the original formulation of the procedure defined in the work by 

[Duan et al., 2005], the mass matrix of the dummy structure MD can be obtained by 

solving Eq. (6.15). Moreover, the relationship between the mass matrix of the dummy 

structure and the true mass matrix is expressed by Eq. (6.19). According the proposed 

implementation, this equation can be specified for the first structural mode (i.e. by 

considering the first mode shape 𝝍1 and the first modal mass) as follows 

(𝐌𝐃 −
1

𝜇1
 𝑴)𝝍1 = 𝟎    (6.39) 
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The choice of considering the first mode of the structure is done because of two main 

reasons: firstly, of course, if a limited number of modes is extracted from the data, it 

is assumed that at least the first mode is identified; secondly, it is assumed that, among 

the different modes, the first mode shape is presumably affected by uncertainties that 

are lower than the ones associated with the other modes.  

As discussed in Section 6.1.2, the first modal mass is theoretically the scalar 

multiplier on the proportional flexibility matrices obtained according to the procedure 

by [Duan et al., 2005]. By having in mind this property and by considering both the 

definition of the proportional mass matrix (Eq. 6.31) and the relationship between the 

scaling factors on the proportional mass and flexibility matrices (Eq. 6.35), it can be 

recognized that a proportional mass matrix M* can be introduced in Eq. (6.39).   

𝐌𝐃 𝝍1 = 𝐌∗ 𝝍1    (6.40) 

This proportional mass matrix M* has the property that if used to assemble the 

proportional mass matrices using the strategy adopted by Bernal [2001] (Eq. 6.9) (i.e. 

by normalizing the mode shapes included in the PFM with respect to the PMM, which 

is the strategy considered in the proposed approach), then the scaling factor on the 

PFM is equal to 𝛼𝑓 = 𝜇1. This value of the scaling factor is the value that can be 

obtained using the original approach by Duan, which on the contrary adopts a different 

strategy to assemble the PFMs, as shown in Section 6.1.2.  

In Eq. (6.40) there are n equations and n unknowns, and thus Eq. (6.40) can be 

solved to obtain the proportional mass matrix M*. Of course, the scalar multiplier 𝛼𝑚 

on the proportional mass matrix is undetermined. It is worth noting that by performing 

a matrix/vector manipulation in Eq. (6.40) an explicit formula can also be obtained to 

derive the vector m* (which is formed by the diagonal components of the proportional 

mass matrix). If one considers the terms on the right-hand side of Eq. (6.40), the 

unknowns are contained in the diagonal matrix M* while the vector 𝝍1 is known. 

However, these two mentioned elements can be rearranged by introducing the vector 

m* unknown (in place of the vector 𝝍1) and a diagonal matrix 𝚿𝑑(𝝍1) that has the first 

modal vector on the main diagonal (in place of the matrix M*). Eq. (6.40) can thus be 

reformulated as  

𝐌𝐃 𝝍1 = 𝚿𝑑(𝝍1) 𝒎
∗    (6.41) 
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and then the system can be solved to obtain the mass proportional vector 𝒎∗ as follows 

𝒎∗ = 𝚿𝑑(𝝍1)
−1  𝐌𝐃  𝝍1     (6.42) 

The vector obtained using Eq. (6.42) is arbitrarily scaled. However, according to the 

proposed approach, this mass proportional vector 𝒎∗ is normalized in a way that its 

1-norm is equal to one (i.e. ‖𝒎∗‖𝟏 = 1). This is the same operation that was applied 

at the end of the procedure described in the previous section. The normalized vector 

𝒎∗ is used to form the proportional mass matrix M*, which is then used to normalize 

the mode shapes and to estimate the proportional flexibility matrices using the same 

strategy adopted in the PFM procedure by Bernal [2001] – i.e. Eq. (6.9).  

In the modified implementation of the procedure by Duan et al. [2005], the 

theoretical unknown scaling factor on the proportional flexibility matrices, which is 

equal to the first modal mass according to the original procedure proposed by Duan 

et al. [2005], is equal to the total mass of the structure (i.e. the same theoretical scaling 

factor that is obtained using the implementation of the procedure by Bernal [2001] 

described in previous section). 

Referring to the procedure by Duan et al. [2005] and as already mentioned in 

Section 6.2, some approximations are introduced when the mass matrix of the dummy 

structure is calculated using a limited number of modes. This is because pseudo 

inverse operations are performed on the truncated mode shape matrices (as shown in 

Eq. 6.16). Thus, using the proposed normalization of the mass proportional vector 𝒎∗, 

the unknow scaling factor is theoretically equal to the total mass of the structure if all 

the modes are considered in the determination of the dummy mass matrix. If a limited 

number of modes is considered in the calculations than approximations are inevitably 

introduced, as shown in the numerical and experimental analyses presented in this 

chapter. Of course, using the proposed approach the unknow scaling factor is exactly 

equal to the total mass of the structure also if exact mode shapes components are 

considered. In fact, both in the PFM technique defined by Duan et al. [2005] and in 

the PFM technique by Bernal [2001], the uncertainties that affect the mode shapes 

components lead to inevitable uncertainties that affects also the mass proportional 

vector 𝒎∗.  
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6.2.2   Steps for the estimation of the proportional MF-based deflections 

In previous sections it has been shown how the two PFM techniques proposed 

respectively by Bernal [2001] and Duan et al. [2005] can be implemented in a unified 

framework. While, as already mentioned, the final objective of the approach proposed 

in this chapter is to integrate such techniques into a damage detection methodology 

that is developed on the basis of the theory behind the Positive Shear Inspection Load 

method.  

By integrating the PFM techniques into the PSIL method, the fundamental 

operation that is performed according to the proposed approach is to estimate 

deflections of shear building structures that are proportional to the corresponding true 

modal flexibility-based deflections. These proportional modal flexibility-based 

deflections are then used for damage detection (according to the criterion that will be 

discussed in Section 6.3).  

This section describes the approach that is proposed for the estimation of 

proportional modal flexibility-based deflections and interstory drifts of shear building 

structures from output-only vibration data. The steps that have to be done according 

to the proposed approach are summarized in the flow chart reported in Fig. 6.1. Before 

presenting in detail each step, it is worth noting that the implementation of the PFM 

techniques (discussed in previous sections) are included into this flow chart (i.e. steps 

no. 2 and 3).  
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Figure 6.1. Flow chart of the procedure adopted to estimate proportional modal flexibility-

based deflections of shear building structures 

 

The steps that, according to the proposed approach, have to performed to estimate 

proportional modal flexibility-based deflections and interstory drifts of shear building 

structures are the following: 

1. Apply any output-only modal identification technique to extract the modal 

parameters of the n-DOF structure from output-only vibration data; 

 

2. Use arbitrarily-scaled mode shapes to apply the proposed implementation of 

the PFM techniques originally defined by Bernal [2001] and Duan et al. 

[2005] to obtain the distribution of the masses of the structure, which is 

defined by the mass proportional vector 𝒎∗. As already mentioned, according 

to the proposed approach, the choice of using one or the other PFM technique 

depends on the number of structural modes that have been identified (i.e. the 

parameter r). Specifically, the choice is done by evaluating if the condition 

expressed by Eq. (6.8) is fulfilled or not. This condition is here reported again 

for the sake of clarity, and the criterion related to the choice of one or the 

other approach is the following:  
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- Apply the proposed implementation of the procedure originally 

formulated by Bernal [2001] if   𝑟 (𝑟 − 1) ≥ 2(𝑛 − 1) 

- Apply the proposed implementation of the procedure originally 

formulated by Duan et al. [2005] if   𝑟 (𝑟 − 1) < 2(𝑛 − 1) 

Both procedures (according to the proposed implementation) provide an 

estimate of the vector of the mass distribution 𝒎∗, and according to the 

proposed approach, this vector is then normalized in a way that that its 1-

norm is equal to one – i.e. ‖𝒎∗‖𝟏 = 1. By adopting this normalization on the 

vector 𝒎∗, as shown in previous sections, the unknown scaling factor on the 

proportional flexibility matrices is theoretically the total mass of the structure. 

The normalized vector 𝒎∗ is used to assemble the proportional mass matrix   

𝐌∗. 

 

3. Use the identified arbitrarily-scaled mode shapes, the identified natural 

frequencies, and the proportional mass matrix 𝐌∗ (obtained at step no. 2) to 

estimate the proportional flexibility matrix 𝑭𝒓 𝑛 × 𝑛
∗  of the shear building 

structure as follows  

𝑭𝒓
∗ = 𝚿𝒓 𝜦𝒓

−1(𝚿𝒓
𝑇 𝐌∗ 𝚿𝒓)

−1 𝚿𝒓
𝑇    (6.43) 

The estimation of the modal flexibility matrix is performed using the strategy 

proposed by Bernal [2001], which is also the strategy adopted in the proposed 

implementation of the procedure originally formulated by Duan et al. [2005], 

as shown in Section 6.2.1.2.  

 

4. Calculate the proportional modal flexibility-based deflection 𝒙𝑛 × 1
∗  of the 

shear building by applying the Positive Shear Inspection Load (PSIL) p  

𝒙∗ = 𝑭𝒓
∗  𝒑     (6.44) 

where the vector  𝒑𝑛 × 1 is a uniform load vector 𝒑 = [1   1  …    1]𝑇. This is 

the same load that is adopted in the original work that proposed the PSIL 

method for damage detection in building structures [Koo et al., 2010] (as 

discussed in Chapter 3).  
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5. Calculate the vector of the proportional modal flexibility-based interstory 

drifts 𝒅𝑛 × 1
∗  starting from the modal flexibility-based deflection of the shear 

building structure using the following equation 

𝒅∗ = 𝑻 𝒙∗    (6.45) 

where 𝑻𝑛×𝑛 is a transformation matrix defined as follows 

𝑻 =

[
 
 
 
 
1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ ⋯ 0 1 ]

 
 
 
 

   (6.46) 

It is worth noting that in the vector 𝒅∗ the interstory drifts are ordered from 

the top story of the structure to the bottom story, and the matrix 𝑻 was 

assembled accordingly. The vector of the proportional MF-based 

interstory drifts is assumed as the damage sensitive feature (DSF), as 

shown in Section 6.3.  

 

By performing the above-mentioned steps proportional modal flexibility-based 

deflections and vectors of proportional modal flexibility-based interstory drifts of 

shear building structures can be calculated. It is clear that the scaling factors on such 

quantities, as well as the scaling factors on the proportional flexibility matrices, are 

undetermined when the procedure is applied starting from output-only modal 

identification.  

Moreover, the scaling factor between the proportional flexibility matrices and 

the flexibility matrices is kept unaltered when the flexibility coefficients are combined 

to obtain the structural deflections. This means that the scaling factor between the 

proportional and the true flexibility matrices is the same scaling factor that is present 

between the proportional and the true deflections. This an important property that 

allows the integration of the PFM techniques in the framework of the PSIL method, 

and that can be easily shown as follows.  

By post-multiplying both sides of Eq. (6.1) by the PSIL load p, the term on the 

right-hand side is the true modal flexibility-based deflection 𝒙, while the term on the 
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left-hand side is the proportional modal flexibility-based deflection 𝒙∗ (according to 

Eq. 6.44). The relationship between the proportional MF-based deflection and the MF-

based deflection is thus  

𝒙∗ = 𝛼𝑓 𝒙     (6.47) 

Moreover, it can be shown that the operation of evaluating the proportional MF-based 

interstory drifts of the structure is an operation that does not alter the scaling factor 

that relates proportional and true deflections. By pre-multiplying both sides of Eq. 

(6.47) by the transformation matrix T, the term on the right-hand side is the vector of 

the modal flexibility-based interstory drifts 𝒅, while the term on the left-hand side is 

the vector of the proportional modal flexibility-based interstory drifts 𝒅∗ (according 

to Eq. 6.45). The relationship between the two vectors is 

𝒅∗ = 𝛼𝑓 𝒅     (6.48) 

It is evident that the scaling factor on the proportional modal flexibility-based 

deflections and on the vectors of proportional MF-based interstory drifts is equal to 

the scaling factor on the proportional flexibility matrices (in the remainder of the 

chapter this scaling factor is indicated with the symbol 𝛼). Moreover, according to Eq. 

(6.38), it was shown in previous sections that if the proportional vector  𝒎∗ (estimated 

using the PFM techniques) is scaled in a way that ‖𝒎∗‖𝟏 = 1, then, the scaling factor 

on the proportional flexibility matrices is theoretically equal to the total mass of the 

structure. The final property that derives from the two above-mentioned observations 

is that, adopting the proposed normalization of the mass proportional vector and the 

proportional mass matrix, the scaling factor on the proportional modal flexibility-

based deflections of shear building structures is theoretically equal to the total mass 

of the structure (i.e. 𝛼 = ‖𝒎‖𝟏 = 𝑚𝑡𝑜𝑡).  

 

6.3   Damage detection in building structures using proportional modal 

flexibility-based deflections 

In this section the proportional modal flexibility-based deflections, obtained 

according to the procedure defined in previous sections, are employed for damage 
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detection purposes using an approach that is developed on the basis of the theory 

behind the Positive Shear Inspection Load (PSIL) method.  

According to the original formulation of the PSIL method [Koo et al., 2010; 

Koo et al., 2011; Sung et al., 2012] and as shown in Chapter 3, the modal flexibility-

based interstory drifts of each story of a shear building are considered as the damage 

sensitive features, and used to evaluate if such story is damage or not (which is an 

operation that leads to the localization of the damage).  

On the contrary, according to the approach proposed in this chapter, the vectors 

of the proportional MF-based interstory drifts of the structure are considered as the 

damage sensitive features, and they are used to detect the existence of the damage in 

the whole shear building structure. This means that, according to the different 

achievement levels in damage detection that are defined in [Farrar & Worden, 2013], 

in the proposed approach a level one of achievement was selected (i.e. detecting the 

existence of the damage, instead of localizing the damage, as done on the contrary in 

the original formulation of the PSIL method).  

The choice is motivated by the fact that, differently from the original PSIL 

method, in the proposed approach the distribution of the masses is estimated directly 

from the vibration data and the calculations are performed with minimal or no a-priori 

information about the masses of the structures. These operations may introduce 

additional uncertainties in the damage detection process and thus a level one of 

achievement was selected3.  

 

6.3.1   Compatibility of the scalar multipliers related to proportional modal 

flexibility-based deflections 

 Referring to the original formulation of the PSIL method, it was shown in 

Chapter 3 that there exists an explicit relationship between the vector of the damage-

                                                 
3 Investigations on the potential use of the proposed approach (based on the estimation of 

proportional modal flexibility-based deflections of shear buildings and applicable with 

minimal or no a-priori information on the masses) for damage localization may be the object 

of future developments of the research, as discussed in Chapter 7.  
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induced deflection of the shear building structure ∆𝒙 and the change-in-flexibility 

matrix ∆𝑭 

∆𝒙 = 𝒙𝑰 − 𝒙𝑩 = (𝑭𝑰 − 𝑭𝑩) 𝒑 =  ∆𝑭  𝒑   (6.49) 

Moreover, according to the PSIL method the damage sensitive features are the 

modal flexibility-based interstory drifts of the structure, and the variations of these 

interstory drifts are used to localize the damage. In Chapter 3 it was also shown that 

there exists an explicit relationship between the vector of the damage-induced 

interstory drifts 𝚫𝒅 of the shear building structure and the change-in-flexibility matrix 

∆𝑭 

𝚫𝒅 = 𝒅𝑰 − 𝒅𝑩 = 𝑻 (𝑭𝑰 − 𝑭𝑩) 𝒑 = 𝑻 ∆𝑭 𝒑   (6.50) 

In the present chapter, proportional modal flexibility-based deflections and vectors of 

proportional MF-based interstory drifts are considered instead of the real quantities 

since the calculations are performed from output-only vibration data using the 

Proportional Flexibility Matrix techniques [Bernal, 2001; Duan et al., 2005]. The 

vector of the proportional damage-induced interstory drifts 𝚫𝒅∗, i.e. the vector 

difference between the vectors of the proportional MF-based interstory drifts related 

to the possibly damaged and the undamaged structures, can be thus expressed as  

𝚫𝒅∗ = 𝒅𝑰
∗ − 𝒅𝑩

∗             (6.51) 

The previous equation (Eq. 6.51) is reformulated using the following operations: Eq. 

(6.44) is substituted in Eq. (6.45), and then Eq. (6.45) evaluated both for the 

undamaged and the possibly damaged structures is substituted in Eq. (6.51).  

𝚫𝒅∗  = 𝑻 (𝑭𝑰
∗ − 𝑭𝑩

∗ ) 𝒑 = 𝑻 ∆𝑭∗ 𝒑          (6.52) 

The vector of the proportional damage-induced interstory drifts is thus expressed as a 

function of the matrix ∆𝑭∗. It is evident from this formulation that the core of the 

calculations is to evaluate the change-in-flexibility matrix ∆𝑭∗, and then some 

algebraic operations are performed on this matrix (i.e. multiplying the change-in-

flexibility matrix by an inspection load p, which is a uniform vector of all ones, and 

then transforming the vector of the deflection to the vector of the interstory drifts 

using the transformation matrix T).  



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

286 

 

 As already discussed in Section 6.1.3, when the change-in-flexibility matrix is 

evaluated using proportional flexibility matrices instead of the true flexibility 

matrices, it is important to ensure the compatibility between the scaling factors related 

to such proportional quantities.  

In light of these premises, it is clear that if the vector of the damage-induced 

interstory drifts is evaluated by considering proportional quantities instead of true 

values (i.e. using the vector of proportional MF-based interstory drifts instead of the 

true vector of MF-based interstory drifts), then the problem of ensuring the 

compatibility on the scalar multipliers related to the proportional quantities is a 

problem that has to be addresses also in this case (where vectors of interstory drifts 

are considered instead of modal flexibility matrices).  

The vectors of the proportional MF-based interstory drifts related to the 

baseline and the possibly damaged states (𝒅𝑰
∗ and 𝒅𝑩

∗ ) are calculated using the 

procedure proposed in Section 6.2.2, and they can be related with the corresponding 

true quantities as expressed by Eq. (6.48). This equation can be evaluated both for the 

baseline and the possibly damaged states and then substituted in Eq. (6.51) 

𝚫𝒅∗ = 𝛼𝐼 𝒅𝑰 − 𝛼𝐵 𝒅𝑩           (6.53) 

As shown in Section 6.2.2 and according to the proposed approach related to 

the normalization of the mass proportional vectors 𝒎∗, the scaling factor on the 

vectors of the proportional MF-based interstory drifts is theoretically equal to the total 

mass of the structure. In general, the two scaling factors 𝛼𝐵 and 𝛼𝐼 can thus be 

different (𝛼𝐵 ≠ 𝛼𝐼) in the case in which mass variations are present before and after 

damage. However, it is clear that the vector of the proportional damage-induced 

interstory drifts 𝚫𝒅∗ can be appropriately evaluated only if the compatibility between 

the scaling factors is guaranteed (i.e. some scaling operations are performed to ensure 

that 𝛼𝐵 = 𝛼𝐼 =  𝛼). In such case the vector of the proportional damage-induced 

interstory drifts differs from the vector of the true damage-induced interstory drifts to 

within a unique scalar 𝛼 

𝚫𝒅∗ = 𝛼 (𝒅𝑰 − 𝒅𝑩) =  𝛼 𝚫𝒅    (6.54) 

According to the approach proposed in this chapter, the compatibility between 

the scaling factors on the vectors 𝒅𝑰
∗ and 𝒅𝑩

∗  is guaranteed by performing an additional 



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

287 

 

scaling operation on the vector of the proportional modal flexibility-based interstory 

drifts related to the possibly damage state 𝒅𝑰
∗. This operation is done by correcting Eq. 

(6.52), and by evaluating the vector of the proportional damage-induced interstory 

drifts as follows 

𝚫𝒅∗ =
1

𝑤
 𝒅𝑰

∗  − 𝒅𝑩
∗ = 𝛼𝐵 (𝒅𝑰 − 𝒅𝑩) =  𝛼𝐵 𝚫𝒅  (6.55) 

where the parameter w is defined as   

𝑤 =
‖𝒎𝑰‖1

‖𝒎𝑩‖1
= 

𝑚𝐼,𝑡𝑜𝑡

𝑚𝐵,𝑡𝑜𝑡
    (6.56) 

In this last equation ‖𝒎𝑰‖1 is the total mass of the possibly damaged structure, and 

‖𝒎𝑩‖1 is the total mass of the undamaged structure. The parameter w is thus indicated 

in the present chapter as “total-mass-ratio”. By performing this additional scaling 

operation on the vector 𝒅𝑰
∗, the scaling factor in the possibly damaged state is imposed 

as equal to 𝛼𝐵 = ‖𝒎𝑩‖1, which is the scaling factor related to the structure in the 

baseline condition. In this way, the compatibility between the scaling factors on the 

vectors of the proportional MF-based interstory drifts is guaranteed – i.e. the scaling 

factors in the baseline and in the possibly damaged states are the same. It is worth 

noting that having the knowledge of the ratio w means basically to know the eventual 

relative modification of the total mass of the structure between the undamaged and 

the possibly damaged states.  

 

6.3.2  Proposed indices for damage detection using proportional MF-based 

deflections 

According to the proposed approach and as already mentioned in previous 

sections, the vectors of the interstory drifts evaluated from the proportional modal 

flexibility-based deflections of shear building structures are considered as damage 

sensitive features (DSFs). In this section two damage indices that can be calculated 

starting from these damage sensitive features and that can be used for detecting the 

existence of damage in shear building structures are presented and discussed. 

As shown in detail in this section, the first index is based on the evaluation of 

the Mahalanobis distance [Barnett & Lewis, 1994] between the vectors assumed as 
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DSFs, while the second proposed index is based on the evaluation of the degree of 

correlation between the vectors of the proportional modal flexibility-based interstory 

drifts. It is important to underline that the application of both two indices was 

investigated in the present dissertation because such indices are characterized by two 

different strategies for evaluating the differences or the similarities between the 

vectors assumed as damage sensitive features. In other words, the two indices can be 

considered as two completely different metrics that can be used to perform the damage 

detection.  

As shown later in this section, the fundamental difference between the two 

indices is the following. Referring to the first index (Mahalanobis distance), the core 

of the calculations related to this proposed index is the evaluation of the vector of the 

proportional damage-induced interstory drifts 𝚫𝒅∗, and this means that, as shown in 

previous section, when applying this index particular care should be taken to ensure 

that the scalar multipliers on the damage sensitive features (DSFs) are comparable.  

On the contrary, the second index is based on the evaluation of the degree of 

correlation between the vectors assumed as the DSFs. This means that a completely 

different strategy is adopted in this second index to compare the damage sensitive 

features, and the main advantage of the proposed second index is that, as demonstrated 

in the following, it is not sensitive to the scaling factors on the vectors of the 

proportional modal flexibility-based interstory drifts.  

 

6.3.2.1   Damage index based on Mahalanobis distance 

The damage index that is presented in this section is based on the evaluation of the 

Mahalanobis distance (MD) [Barnett & Lewis, 1994] between the vectors that are 

assumed as the damage sensitive features. 

In the original formulation of the Positive Shear Inspection Load method [Koo 

et al., 2010], an index zj is considered and used to perform a statistical test for the 

localization of the damaged stories in shear building structures using the modal 

flexibility-based interstory drifts. This statistical test based on a z-score is a widely 

used criterion in the field of univariate outlier analysis [Barnett & Lewis, 1994; Farrar 

& Worden, 2013]. As already discussed in Chapter 3, this index 𝑧𝑗 is defined as   
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𝑧𝑗 = 
𝑑𝑗,𝐼  −  �̅�𝑗,𝐵

𝑠(𝑑𝐵,𝑗)
     (6.57) 

where �̅�𝑗,𝐵 and 𝑠(𝑑𝑗,𝐵) are, respectively, the sample mean and the sample standard 

deviation of the interstory drifts 𝑑𝑗,𝐵,𝑖 of the j-th story of the structure calculated for 

the baseline state (for i = 1…p), and 𝑑𝑗,𝐼 is the interstory drift estimated in the 

inspection phase. 

The index proposed in this section is the multi-dimensional counterpart of the 

z-score that is considered in the original formulation of the PSIL method. This multi-

dimensional criterion is based on the calculation of the Mahalanobis distance (MD) 

between the vectors of the proportional modal flexibility-based interstory drifts – i.e. 

the DSFs. Evaluating Mahalanobis distance and then performing a statistical test is a 

widely used criterion in the field of multivariate outlier analysis [Barnett & Lewis, 

1994]. The criterion has been also used in the context of structural damage detection 

by considering damage sensitive features different from the ones adopted in the 

present chapter [Worden et al., 2000; Farrar & Worden, 2013; Balsamo & Betti, 2015; 

Ubertini et al., 2016].  

The Mahalanobis distance evaluated between the DSFs extracted for the 

baseline state and for the state related to the inspection phase is defined as  

𝑀𝐷𝑖𝑑
∗ = √(𝒅𝑰,𝒘

∗ − �̅�𝑩
∗  )

𝑻
 𝑺𝑩

∗  −𝟏  ( 𝒅𝑰,𝒘
∗ − �̅�𝑩

∗  )  (6.58) 

where �̅�𝑩
∗  and  𝑺𝐵

∗  are, respectively, the sample mean vector and the unbiased sample 

covariance matrix of the vectors of the proportional modal flexibility-based interstory 

drifts 𝒅𝑩,𝒊
∗  (where i = 1 … p) calculated for the baseline state and using the training 

data set; 𝒅𝑰,𝒘
∗  represents the potential outlier, and it is defined as  

 𝒅𝑰,𝒘
∗ =

1

𝑤
 𝒅𝑰

∗     (6.59) 

i.e. 𝒅𝑰,𝒘
∗  is the vector of the interstory drifts extracted from the testing data set  𝒅𝑰

∗ that 

is normalized and scaled by the factor 1/w, using the criterion defined in Section 6.3.1.  

The number of DSFs related to the baseline state is equal to p. Each DSF is a 

vector of proportional MF-based interstory drifts which is calculated starting from the 

vibration data related to the training data set and through the approach defined in 
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Section 6.2.2. To evaluate the proposed index (Eq. 6.58) it is assumed that p is large 

enough so that adequate estimates of the true (and unknown) mean vector and 

covariance matrix of the interstory drift vectors are obtained using the sample 

counterparts. This requirement is important especially for the sample covariance 

matrix which needs to be numerically inverted in the formula of the index 𝑀𝐷𝑖𝑑
∗  (Eq. 

6.58). If a sufficient number of DSFs is not considered, then the covariance matrix 

may be ill-conditioned, and problems may arise in the computation of the inverse 

matrix [Balsamo & Betti, 2015].  

 Several observations can be formulated on the proposed index. First of all, let 

us consider the differences between the proposed index based on Mahalanobis 

distance and the z-index that is adopted in the original formulation of the PSIL 

methods. The first main difference is that in the latter the true interstory drifts of the 

shear building structure are considered, while in the former (i.e. the proposed 

approach) the calculations are performed using the proportional modal flexibility-

based interstory drifts. This is because in the proposed approach the Proportional 

Modal Flexibility techniques are integrated in the calculations. Moreover, both the 

two indices (Mahalanobis distance and z-index) are scalar quantities. However, the 

second important difference between the two indices is the following: the z index is 

evaluated for each story of the structure by considering the interstory drifts related to 

that story in the possibly damaged and in the undamaged states; on the contrary, in 

the approach based on Mahalanobis distance the calculations are performed on vectors 

that are formed by all the proportional MF-based interstory drifts of the structure. In 

this way, a parameter that quantifies for the whole structure eventual changes in the 

vectors of the proportional MF-based interstory drifts (when comparing the 

undamaged and the possibly damaged states) is obtained.  

The second observation is that if the covariance matrix present in the equation 

of Mahalanobis distance (Eq. 6.58) is assumed equal to the identity matrix (i.e. 𝑺𝑩
∗ =

𝑰 ), then the proposed index is equivalent to the calculation of the Euclidean distance 

(𝐸𝐷𝑖𝑑
∗ ) between the vectors of the proportional MF-based interstory drifts related to 

the undamaged and the possibly damaged states. This concept can be exemplified 

using the following equation  
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𝐸𝐷𝑖𝑑
∗ = √( 𝒅𝑰,𝒘

∗ − 𝒅𝑩
∗ )

𝑻
  (𝒅𝑰,𝒘

∗ − 𝒅𝑩
∗  ) = ‖𝚫𝒅∗‖𝟐   (6.60) 

where 𝚫𝒅∗ = 𝒅𝑰,𝒘
∗ − 𝒅𝑩

∗ .  

By comparing Eq. (6.60) and Eq. (6.58), it is clear that, as reported in [Balsamo 

& Betti, 2015], the Mahalanobis distance can be interpreted as an Euclidean distance 

where the components of the feature vectors (i.e. the components of 𝚫𝒅∗ in this 

specific case) are weighted by the covariance matrix. In Eq. (6.60) it is also 

highlighted that this operation of evaluating the Euclidean distance is equivalent to 

the calculation of the 2-norm of the vector of the proportional damage-induced 

interstory drifts 𝚫𝒅∗.  

The third observation is that the total mass ratio w (present in Eq. 6.58 and 

defined in Section 6.3.1) is the sole parameter that has to be known a-priori to perform 

the damage detection using the index based on Mahalanobis distance and starting from 

output-only vibration data. The vectors of the proportional MF-based interstory drifts, 

in fact, are evaluated using the procedure outlined in Section 6.2.2, without any a-

priori information on the structural masses. Then, the ratio w is required to guarantee 

that the scaling factors on the vectors related to the undamaged and the possibly 

damaged states are comparable. Of course, if the masses of the structure are 

unchanged before and after damage, the ratio w is equal to one. However, imposing w 

=1 is an a-priori information that has to be known, as well.  

To classify the structure considered in the inspection phase as damaged or 

undamaged a discordancy test has to be performed. This test implies the comparison 

of the value of Mahalanobis distance obtained using Eq. (6.58) against a threshold 

value, which is indicated as 𝑀𝐷𝑖𝑑
∗ 𝑇𝐻

. Then, the structure in the inspection phase is 

considered as damaged if 𝑀𝐷𝑖𝑑
∗ > 𝑀𝐷𝑖𝑑

∗ 𝑇𝐻
, while the structure in the inspection phase 

is considered as undamaged if 𝑀𝐷𝑖𝑑
∗ ≤ 𝑀𝐷𝑖𝑑

∗ 𝑇𝐻
 .   

The evaluation of the threshold value when considering the types of metrics 

shown in this section is a problem that in the literature has been addressed by 

considering the Mahalanobis-squared distance. However, it is clear that, as shown 

later in this section, the value of the threshold for the Mahalanobis distance (which is 

the metric used in the proposed approach) can then be easily determined.  
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As reported in [Farrar & Worden, 2013] and under the assumption that the 

feature vectors used in the calculation of Mahalanobis-squared distance follow a 

multivariate normal distribution, the threshold value for Mahalanobis-squared 

distance can be obtained in terms of the chi-squared-statistic. In fact, under the 

assumption of having data that are multivariate normal distributed, the Mahalanobis-

squared distance evaluated for a large number of n-dimensional feature vectors tends 

to follow approximately a χ2 distribution with n degrees of freedom. The threshold 

can thus be theoretically determined using this statistical distribution (for example , 

considering the k-th percentile of a χ2 distribution with n degrees of freedom, where 

the value of k is in the range 95-99) [Farrar & Worden, 2013; Balsamo & Betti, 2015].  

However, as also suggested in [Farrar & Worden, 2013], an option that is 

preferable to obtain the threshold for Mahalanobis-squared distance is to have a 

numerical method that can be used to obtain the value of the threshold. This method 

is described in the works by [Worden et al., 2000; Farrar & Worden, 2013], where 

metrics based on Mahalanobis-squared distance were applied on damage sensitive 

features different from the ones considered in the present chapter. The approach 

defined by [Worden et al., 2000; Farrar & Worden, 2013] is the approach that has 

been adopted in the analyses presented in this chapter for the calculation of the 

threshold related to the proposed index based on Mahalanobis distance (Eq. 6.58). 

The method is based on a Monte Carlo simulation: the threshold is calculated 

as a function of the dimension of the feature vectors (n) and the number of the feature 

vectors (p), and the calculations are performed on feature vectors composed by 

normally-distributed random numbers. The threshold value is thus not calculated from 

the training data set used for the damage detection, but it is calculated from the random 

numbers generated in the Monte Carlo simulation.  

The main steps of the procedure, reported in [Farrar & Worden, 2013], that is 

able to calculate numerically the threshold for Mahalanobis-squared distance are 

summarized herein:  

1. At first a p × n matrix X is assembled. The components of such matrix are 

numbers that are randomly generated from a univariate normal distribution with 

a zero mean and a standard deviation equal to one. The mean vector �̅� and the 
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covariance matrix 𝑺 of the feature vectors that are represented by each row of 

the matrix X are calculated. These feature vectors (i.e. each row of X) are 

indicated as 𝒙(𝑖) for i = 1 .. p. 

2. The Mahalanobis-squared distance is calculated between each row 𝒙(𝑖) of the 

matrix X and the whole data set (by considering in the calculation the mean 

vector �̅� and the covariance matrix 𝑺 calculated at step 1) 

𝑀𝐷2(𝑖) = (𝒙(𝑖) − �̅� )  𝑺 −𝟏  ( 𝒙(𝑖) − �̅� )𝑻  (6.61) 

The maximum value of the Mahalanobis-square distance 𝑀𝐷2(𝑖) obtained for 

the different vectors 𝒙(𝑖) is stored. It is worth noting that each vector 𝒙(𝑖) is 

included in the calculation of the mean vector �̅� and the covariance matrix 𝑺. 

This means that inclusive measures of the Mahalanobis-squared distance are 

calculated. 

3. The steps from 1 to 2 are repeated for a number of trials that is at least equal to 

1000, and at the end the maximum value of the Mahalanobis-squared distance 

obtained for each trial is collected in a vector t. 

4. The critical value is obtained as the k-th percentile of the values contained in 

the vector t (i.e. the maximum values of the Mahalanobis-squared distance 

obtained for the different trials). The value of k is typically selected as 95 or 99 

[Farrar & Worden, 2013], and k = 99 was selected for the analyses presented in 

this chapter. 

5. The value obtained at step 4 represents an inclusive threshold (Tinc), and in order 

to obtain an exclusive threshold (Texc), the following formula can be adopted  

𝑇𝑒𝑥𝑐 =
(𝑝−1) (𝑝+1)2𝑇𝑖𝑛𝑐

𝑝 (𝑝2−(𝑝+1) 𝑇𝑖𝑛𝑐)
    (6.62) 

As already mentioned, the procedure described in [Farrar & Worden, 2013] 

was developed to obtain the threshold for the Mahalanobis-square distance, while the 

proposed index (Eq. 6.58) is based on the evaluation of the Mahalanobis distance 

between the damage sensitive features. A final step, which is not reported in [Farrar 
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& Worden, 2013] and that is needed to calculate the threshold value for the proposed 

index based on Mahalanobis distance is the following  

𝑀𝐷𝑖𝑑
∗ 𝑇𝐻

= √𝑇𝑒𝑥𝑐    (6.63)  

It is worth noting that step no. 5 of the procedure described by [Farrar & Worden, 

2013] is a step that is required because the Mahalanobis distance (Eq. 6.58) evaluated 

on the feature vectors considered in the proposed approach (i.e. the vectors of the 

proportional modal flexibility-based interstory drifts) is calculated as an exclusive 

measure. On the contrary, in the numerical procedure proposed by [Farrar & Worden, 

2013] and as already mentioned at step no. 2 inclusive measures are considered. 

Referring to Eq. (6.58), evaluating Mahalanobis distance as an exclusive measure 

means that the feature vector 𝒅𝑰,𝒘
∗  is not included in the data set used to calculate the 

mean vector �̅�𝑩
∗  and the unbiased covariance matrix 𝑺𝐵

∗ . As observed in [Farrar & 

Worden, 2013], in fact, in structural health monitoring and damage detection the 

potential outlier (i.e. 𝒅𝑰,𝒘
∗  in this case) is in general always known beforehand, and 

thus it is not meaningful to include this potential outlier in the calculation of the 

statistics related to the baseline state (i.e. the mean vector �̅�𝑩
∗  and the unbiased 

covariance matrix 𝑺𝐵
∗ ).  

 

6.3.2.2    Damage index based on Modal Assurance Criterion  

In this section another index that can be adopted for damage detection on shear building 

structures using the vectors of the proportional modal flexibility-based interstory drifts as 

damage sensitive features is presented. This index was derived starting from the definition 

of the Modal Assurance Criterion (MAC) [Allemang & Brown, 1982].  

As already mentioned in Chapter 1, the Modal Assurance Criterion is a criterion 

that, in the original formulation, is used to evaluate the degree of correlation or similarity 

between mode shape vectors. The criterion can be used to compare analytical and 

experimental modal vectors for model validation and updating [Ewins, 2000], or to 

compare mode shapes of the undamaged structure and mode shapes in the possibly 

damaged structure in the context of vibration-based damage detection [Farrar & Worden, 

2013]. The Modal Assurance Criterion is defined as 
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                𝑀𝐴𝐶 =
(𝝍𝒊

𝑻  𝝍𝒋)
2

(𝝍𝒊
𝑻 𝝍𝒊) (𝝍𝒋

𝑻  𝝍𝒋)
                                (6.64) 

where 𝝍𝒊 and 𝝍𝒋 are experimental or analytical mode shapes related to the i-th mode and 

the j-th mode. The parameter is evaluated by considering modes related to any mode index 

i, j ∈ [1 … r], where r is the total number of the considered modes. The value of the MAC 

matrix is in the range 0 ≤ MAC ≤ 1, and in case of a good correlation between the two 

considered mode shapes the value of the MAC is close to one. As reported in [Farrar & 

Worden, 2013], the type of metric used in the Modal Assurance Criterion can be applied 

to compare not only mode shape vectors. This metric can be applied to compare any 

feature vector considered in the context of vibration-based damage detection as damage 

sensitive feature (DSF).  

The index that is proposed in this section has the same formulation of the Modal 

Assurance Criterion developed for mode shape vectors, and it is adopted to evaluate the 

degree of correlation between the vectors of the proportional modal flexibility-based 

interstory drifts (which are assumed, as already mentioned, as DSFs). The proposed index 

is termed Modal Assurance Criterion on interstory drifts (𝑀𝐴𝐶𝑖𝑑
∗ ), and it is defined as 

follows 

𝑀𝐴𝐶𝑖𝑑
∗ =

(𝒅𝑰
∗𝑻

  𝒅𝑩
∗ )

2

(𝒅𝑰
∗𝑻

 𝒅𝑰
∗) (𝒅𝑩

∗ 𝑻
  𝒅𝑩

∗ )
    (6.65) 

The correlation is performed between vectors of proportional modal flexibility-based 

interstory drifts evaluated for the structural state considered in the inspection phase 𝒅𝑰
∗ 

and for the baseline state 𝒅𝑩
∗ . Such vectors are calculated using the procedure described 

in Section 6.2.2.   

 To show some important properties of the index 𝑀𝐴𝐶𝑖𝑑
∗ , the Modal Assurance 

Criterion evaluated on the true vectors of MF-based interstory drifts (instead of the 

proportional vectors) has to be considered. This index is defined as  

 𝑀𝐴𝐶𝑖𝑑 =
( 𝒅𝑰

𝑻 𝒅𝑩)
2

( 𝒅𝑰
𝑻  𝒅𝑰) (𝒅𝑩

𝑻   𝒅𝑩)
    (6.66) 

where 𝒅𝑰 and 𝒅𝑩 are the true vectors of MF-based interstory drifts related to the 

inspection phase and to the baseline state, respectively. If the proportional vectors of 
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interstory drifts present in Eq. (6.65) are substituted by the corresponding true vectors 

using Eq. (6.48), Eq. (6.65) can be reformulated as follows 

𝑀𝐴𝐶𝑖𝑑
∗ =

(𝛼𝐼  𝛼𝐵     𝒅𝑰
𝑻 𝒅𝑩)

2

(𝛼𝐼
2    𝒅𝑰

𝑻  𝒅𝑰) (𝛼𝐵
2      𝒅𝑩

𝑻   𝒅𝑩)
= 

( 𝒅𝑰
𝑻 𝒅𝑩)

2

( 𝒅𝑰
𝑻  𝒅𝑰) (𝒅𝑩

𝑻   𝒅𝑩)
= 𝑀𝐴𝐶𝑖𝑑      ∀ 𝛼𝐵, 𝛼𝐼  (6.67) 

It is evident in Eq. (6.67) that the 𝑀𝐴𝐶𝑖𝑑
∗   evaluated on the vectors of the proportional 

interstory drifts is equal to the 𝑀𝐴𝐶𝑖𝑑 evaluated on the vectors of the true interstory 

drifts independently from the values assumed by the scalar multipliers 𝛼𝐼 , 𝛼𝐵, which 

are related to the two states involved in the damage detection process. In fact, as 

evident in Eq. (6.67), for any value of the scaling factors 𝛼𝐼 , 𝛼𝐵, these factors cancel 

out. 

The values assumed by the 𝑀𝐴𝐶𝑖𝑑
∗  are in the range 0 ≤ 𝑀𝐴𝐶𝑖𝑑

∗  ≤ 1 (similarly to 

the original MAC). If the structure considered in the inspection phase is undamaged, 

then the value of the 𝑀𝐴𝐶𝑖𝑑
∗  is theoretically equal to 1, which means that there is a 

perfect correlation between the vectors assumed as damage sensitive features. The 

parameter 𝑀𝐴𝐶𝑖𝑑
∗  assumes values that are lower than one if there are changes in the 

vectors of the proportional modal flexibility-based interstory drifts, and such changes 

can be in general associated to a damaged state. Of course, having a value of the 

𝑀𝐴𝐶𝑖𝑑
∗  equal to 1 for a structure in the inspection phase that is undamaged is a 

theoretical result that is obtained if exact modal parameters and all the structural 

modes (i.e. r=n) are considered when the proportional modal flexibility matrices are 

assembled. Dealing with damage sensitive features affected by uncertainties and with 

a limited number of modes is considered in the numerical and experimental analyses, 

presented in next sections.  

The first observation that can be formulated on the proposed index derives 

from the fact that, as shown in the Eq. (6.67), the 𝑀𝐴𝐶𝑖𝑑
∗  is independent from the scalar 

multipliers 𝛼𝐵 , 𝛼𝐼 related to the vectors of the proportional MF-based interstory 

drifts. The operation of ensuring the compatibility of such scalar factors, as described 

in Section 6.3.1, and which is based on a-priori information on the relationship 

between the structural masses in the undamaged and in the possibly damaged states 

(i.e. the parameter w “total-mass-ratio”) is thus not required. For this reason, it is clear 

that according to the proposed approach for output-only damage detection, where the 
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distribution of the masses of the structures is extracted directly from the vibration data 

and specifically from arbitrarily-scaled mode shape vectors, the proposed index 

𝑀𝐴𝐶𝑖𝑑
∗  can be calculated without any a-priori information on the structural masses. 

This property will be also demonstrated in the numerical and experimental analyses 

presented in this section, and it is one of the main advantages of the proposed index. 

The proposed index 𝑀𝐴𝐶𝑖𝑑
∗   is thus a modal flexibility-based index that can be adopted 

for damage detection using exclusively output-only vibration data. 

  A second observation that can be formulated on the proposed index is the 

following. Due to the formulation of the 𝑀𝐴𝐶𝑖𝑑
∗  which is based on evaluating the 

degree of correlation between the vectors assumed as damage sensitive features, this 

index is suitable for the detection of the existence of localized damage in the building 

structures. On the contrary, in the ideal case in which the damage pattern is uniformly 

distributed along the height of the shear building, for example in the case in which all 

the stories of the structure are characterized by the same interstory stiffness reduction, 

the 𝑀𝐴𝐶𝑖𝑑
∗  is theoretically insensitive to such type of damage. This means that, in this 

particular case, the correlation between the vectors of the modal flexibility-based 

interstory drifts (either the true or the proportional vectors of the interstory drifts) is 

equal to one even if the structure is damaged.  

This property can be shown analytically by considering the parameter that, 

according to the original formulation of the PSIL method [Koo et al., 2010] and as 

discussed in Chapter 3, is indicated as the damage severity. This parameter evaluated 

for the j-th story is as follows 

𝛼𝑠,𝑗 =
𝑑𝑗,𝐼−𝑑𝑗,𝐵

𝑑𝑗,𝐼
         (6.68) 

Eq. (6.68) can then be reformulated as  

𝑑𝑗,𝐵 = 𝑑𝑗,𝐼 ( 1 − 𝛼𝑠,𝑗)        (6.69) 

If the damage severity is uniform along the height of the building (i.e. each story is 

characterized by the same stiffness reduction that is due to the damage) then 𝛼𝑠,𝑗 = 𝛼𝑠 

for each story. This means that Eq. (6.69) can be reformulated in a vector 

representation as follows  

𝒅𝑩 = 𝒅𝑰 ( 1 − 𝛼𝑠)        (6.70) 
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When considering the above-mentioned particular situation, the vector of the drifts in 

the undamaged and in the possibly damaged states are collinear vectors, as shown in 

Eq. (6.70), and thus the correlation between such vectors is equal to one for each value 

assumed by the damage severity 𝛼𝑠.  

In light of these premises, it is clear that the damage that is detectable using 

the proposed index 𝑀𝐴𝐶𝑖𝑑
∗  can be either a single- or multiple- damage, but 

theoretically a uniform stiffness reduction in all the stories of the shear building 

structure is not detectable. This limitation is however not so restrictive as it may 

appear, since in general having a uniform damage is not a common situation in 

practice. On the contrary, damage in structures is in general localized. Finally, it is 

worth noting that the traditional Modal Assurance Criterion index evaluated on mode 

shape vectors is also affected by the same limitation. In fact, a uniform stiffness 

reduction in all the stories of a shear building structure does not theoretically alter the 

mode shapes, and thus the traditional Modal Assurance Criterion is not sensitive to a 

damage pattern that is uniformly distributed along the height of the building, as well.  

 Two modifications have to be applied to the proposed index 𝑀𝐴𝐶𝑖𝑑
∗  to obtain 

an index that can be useful in practical applications. These two modifications derive 

from the following two considerations.   

First of all, the metrics used for damage detection aim in general to measure 

the departure of the damage sensitive features extracted in the testing or inspection 

phase from the DSFs obtained in the training phase (or baseline state). It is thus of 

interest to have metrics that are zero or very close to zero if the structure related to 

the inspection phase is undamaged, and metrics that become different from zero in 

presence of some structural modifications that can be associated to a damaged state. 

Referring to this point, the index reported in Eq. (6.65) is based, on the contrary, on 

the determination of the similarity between the DSFs. For this reason, it is more 

convenient to consider as the damage index the error in the 𝑀𝐴𝐶𝑖𝑑
∗

  with respect to 1 

instead of the 𝑀𝐴𝐶𝑖𝑑
∗ . This metric is indicated as 𝑒𝑀𝐴𝐶𝑖𝑑

∗ .  

Secondly, it is trivial that uncertainties affect the damage sensitive features 

(i.e. the vectors of proportional MF-based interstory drifts) extracted from real 

vibration data. To deal with such uncertainties it is assumed that, as already done to 
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derive the index based on Mahalanobis distance, the number of the damage sensitive 

features that have to be estimated for the baseline state and considered in the 

calculations is equal to p. These DSFs are the vectors of the proportional MF-based 

interstory drifts 𝒅𝑩,𝒊
∗  calculated using the training data set (where i = 1 … p), and then 

the mean vector �̅�𝑩
∗  of such damage sensitive features is considered in the evaluation 

of the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗ .  

In light of these two observations and starting from Eq. (6.65), the final 

expression of the index that is proposed in this section – i.e. the error on the 𝑀𝐴𝐶𝑖𝑑
∗  – 

is as follows  

𝑒𝑀𝐴𝐶𝑖𝑑
∗ = 1 −  𝑀𝐴𝐶𝑖𝑑

∗ = 1 − 
(𝒅𝑰

∗𝑻
  �̅�𝑩

∗ )
2

(𝒅𝑰
∗𝑻

 𝒅𝑰
∗) (�̅�𝑩

∗ 𝑻
  �̅�𝑩

∗ )
   (6.71) 

To label the structure considered in the inspection phase as damaged or undamaged, 

a statistical test has to be performed on the values of 𝑒𝑀𝐴𝐶𝑖𝑑
∗  calculated from the 

vibration data. Of course, to perform this statistical test a threshold value for 𝑒𝑀𝐴𝐶𝑖𝑑
∗  

is required. Differently from the index defined in Section 6.3.2.1 (i.e. Mahalanobis 

distance) where a statistical model was assumed, it is not assumed to have a statistical 

model behind the calculations related to the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗ . For this reason, the 

threshold for 𝑒𝑀𝐴𝐶𝑖𝑑
∗  is calculated empirically using the training data set. This 

represents one difference with respect to the index based on Mahalanobis distance 

where, on the contrary, the threshold is determined independently from the training 

data set.  

To calculate the threshold for the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  the approach presented in 

[Balsamo & Betti, 2015], which was developed by considering damage sensitive 

features different from the ones considered in the present dissertation and a damage 

index different from the one presented in this section, was considered. The approach 

presented in [Balsamo & Betti, 2015] was adapted and adjusted so that it can be 

applied on the proposed index 𝑒𝑀𝐴𝐶𝑖𝑑
∗ .  
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The threshold for the damage index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  is calculated through the following 

steps: 

1. At first, the value of the metric is evaluated for the generic i-th feature vector 

𝒅𝑩,𝒊
∗  extracted from the training data set  

𝑒𝑀𝐴𝐶𝑖𝑑
∗ (𝒅𝑩,𝒊

∗ ) = 1 −
(𝒅𝑩,𝒊

∗ 𝑻
    �̅�𝑩,(𝒊)

∗ )
𝟐

(𝒅𝑩,𝒊
∗ 𝑻

   𝒅𝑩,𝒊
∗ )(   �̅�𝑩,(𝒊)

∗ 𝑻
    �̅�𝑩,(𝒊)

∗ )
       for i = 1 … p (6.72) 

where �̅�𝑩,(𝒊)
∗  is the mean vector of all the feature vectors related to the baseline 

state excluding the i-th sample 𝒅𝑩,𝒊
∗ . It is worth noting that the evaluation of 

the metric 𝑒𝑀𝐴𝐶𝑖𝑑
∗ (𝒅𝑩,𝒊

∗ ) in the procedure to determine the threshold is thus 

performed by considering an exclusive measure of the departure of  𝒅𝑩,𝒊
∗  from 

�̅�𝑩,(𝒊)
∗ . Considering an exclusive measure is the same strategy that is 

considered in the evaluation of the damage index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  and, as already 

discussed in Section 6.3.2.1, is the strategy adopted for the majority of the 

metrics that are considered in damage detection. 

2. The step no. 1 is repeated for each DSF extracted from the training data set 

(i.e. for i = 1 … p) and in each case the value of 𝑒𝑀𝐴𝐶𝑖𝑑
∗ (𝒅𝑩,𝒊

∗ ) is stored. 

3. The threshold for the damage index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  (which is indicated as 𝑒𝑀𝐴𝐶𝑖𝑑

∗ 𝑇𝐻
) 

is obtained as the k-th percentile of the values of 𝑒𝑀𝐴𝐶𝑖𝑑
∗ (𝒅𝑩,𝒊

∗ ) calculated for 

i = 1 … p. The value of k is typically selected in the range from 95 to 99 

[Balsamo & Betti, 2015], and k = 99 was considered for the analyses presented 

in this chapter.  

At the end, the statistical test is performed to label the structure considered in the 

inspection phase as damaged or undamaged: the structure in the inspection phase is 

considered as damaged if 𝑒𝑀𝐴𝐶𝑖𝑑
∗ > 𝑒𝑀𝐴𝐶𝑖𝑑

∗ 𝑇𝐻
, while the structure in the inspection 

phase is considered as undamaged if 𝑒𝑀𝐴𝐶𝑖𝑑
∗ ≤ 𝑒𝑀𝐴𝐶𝑖𝑑

∗ 𝑇𝐻
. 
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6.4 Verification of the proposed approach for damage detection using 

proportional MF-based deflections 

The proposed approach for output-only damage detection in shear building structures, 

which is based on the estimation of proportional MF-based deflections and which is 

applicable with minimal or no a-priori information on the structural masses, was 

verified using both numerical simulations and experimental vibration data. In next 

section, the validity of the methodology is demonstrated using a numerical model of 

a shear building structure, while the experimental verification is presented in Section 

6.4.2.  

Both the numerical and the experimental verifications were conducted 

considering two different cases: in the first case, the masses of the structure are 

unchanged before and after damage; in the second case, mass variations are present 

between the two states involved in the damage detection process. As already 

mentioned, such mass variations can be present in real-life structures that experience 

changing operational conditions [Farrar & Worden, 2013]. Moreover, as shown in 

previous sections and according to the proposed approach, there is a relationship 

between the total mass of the structure and the unknown scaling factors on the 

proportional MF-based deflections. The choice of considering the above-mentioned 

second case, in which there are mass variations between the two states involved in the 

damage detection, was thus made specifically to test the methodology in the case in 

which the scaling factors related to the undamaged and the possibly damaged states 

are varied and theoretically not comparable.  

 

6.4.1 Numerical verification 

6.4.1.1  First numerical analysis: damage detection without mass variations 

The structure used in the numerical verification is a 6-story shear-type frame building 

structure that can be modeled using 6 DOFs (Fig. 6.2), and this structure is similar to 

the structure that was used for the analyses presented in Chapter 4. The structure 

considered in the present section is characterized by a generic mass distribution, and 

the floor masses are: m6 = 50 kN s2/m, m5 = m4 = m2 = 100 kN s2/m and m3 = m1 = 
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150 kN s2/m. The interstory stiffness of each story of the structure is equal to kj = 2.29 

× 105 kN/m. Such parameters were used to define the diagonal mass matrix Mref and 

the stiffness matrix Kref of the structure. Moreover, it is assumed that the system is 

classically damped with a modal damping ratio equal to ζ i = 0.01 for all the modes. 

Such values of the modal damping ratios and the undamped modes of the structure 

(obtained by performing an eigenvalue analysis using the matrices Mref and Kref ) were 

used to assemble the damping matrix of the structure as follows  

𝑪𝒓𝒆𝒇 = 𝚽−𝑇 𝚯 𝚽−1    (6.73) 

where 𝚯 =  diag{2 ζi  i} with i = 1,…, n [Alvin et al., 2003].  

In this way, a second-order analytical model of the structure was obtained, by 

defining the mass, stiffness and damping matrices. This model represents the original 

or baseline structure for damage detection purposes. This second order model is then 

transformed to a first order state space model [De Angelis et al., 2002], according to 

the formulation that is presented in Section A.1.1 of Appendix A. This first order state 

space model of the structure was used for the simulation of the vibration data, i.e. for 

the generation of the training data set that is used in the damage detection process, 

and the calculations were performed using the Matlab command “lsim” [Matlab].  

 

 

Figure 6.2. Six story shear-type frame building structure 
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The structure was excited by white noise inputs at all the degrees of freedom 

to mimic the excitations that can be present in real structures that are tested under 

ambient vibrations. The white noise inputs considered in the analysis have a duration 

of 1000 s, and the sampling frequency is assumed as fs = 100 Hz. The vibration 

responses of the structure due to such inputs were obtained, and white noise was added 

on the data to model the measurement noise that is present on real data. The Root-

Mean-Square (RMS) amplitude of the added noise is equal to the 5% of the RMS 

amplitude of the response signals.  

The calculations described in the previous paragraph were repeated for a 

number of times equal to p = 30 to obtain the vibration response data that are 

considered as the training data set in the numerical simulation of the damage detection 

process. It is worth noting that the input signals were not included in the training data 

set since the proposed methodology works in output-only conditions.  

Then, structural configurations that represent testing configurations (i.e. 

possibly damaged structures) were considered, and these configurations are described 

in Table 6.1. In this table, the first three configurations (U1a, U2a, U3a) are equal to 

the structure used for the simulation of the training data set and are thus indicated as 

undamaged configurations. The configurations from D1a to D4a were obtained by 

imposing interstory stiffness reductions on the undamaged model of the structure (as 

described in the table), and these configurations from D1a to D4a are thus indicated 

as damaged configurations. It is worth noting that all the testing configurations 

considered in this section and reported in Table 6.1 have the same mass distribution 

of the baseline structure. This means that, referring to the considered configurations, 

the masses of the structure are unchanged before and after damage.   

The simulation of the vibration responses due to the white noise inputs was 

repeated for each of the configurations that are reported in Table 6.1, to obtain the 

testing data set. In this case only one simulation of the vibration responses due to 

white noise inputs with a duration of 1000 s was performed for each testing 

configuration.  
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Configurations State Description 

U1a, U2a, U3a Undamaged Baseline condition 

D1a Damaged 15% stiffness reduction at 2nd story 

D2a Damaged 15% stiffness reduction at 3rd story 

D3a Damaged 30% stiffness reduction at 2nd story 

D4a Damaged 30% stiffness reduction at 3rd story 

Table 6.1. Testing configurations with description of damage scenarios (numerical 

simulation) 

 

The vibration response data that were generated in the numerical simulation 

and that represent the training and the testing data set were used to extract the 

proportional modal flexibility-based deflections of the structure, according to the 

steps that are outlined in Section 6.2.2. Then, the damage sensitive features (i.e. the 

vectors of the proportional modal flexibility-based interstory drifts) obtained for the 

testing configurations were compared with the DSFs related to the baseline structure 

using the damage indices proposed in Section 6.3.2 (i.e. the index based on 

Mahalanobis distance and the error on the MAC*
id). 

The output-only modal identification was applied on the structural responses, 

both for the training and the testing data set, using the Natural Excitation technique 

(NExT) [James et al., 1993] combined with the Eigensystem Realization Algorithm 

(ERA) [Juang & Pappa, 1985]. Six modes were identified for each structural 

configuration but only the first four modes of the structure were considered in the 

calculations related to the proposed damage detection approach. This means that both 

for the baseline state and for the state related to the possibly damaged structure the 

number of modes included in the calculations is rB = rI = r=4. The choice of 

considering a limited number of modes mimics the situation that can be obtained in 

practical applications, where usually not all the modes of real-life structures can be 

identified. The results, in terms of natural frequencies and mode shapes (normalized 

to a maximum value of unity), of the output-only modal identification executed usign 

the NExT-ERA algorithm, are reported in Table 6.2 for an undamaged configuration 

and for a damaged configuration. On the left-hand side of the table the results are 

presented for configuration U1a (undamaged), while on the right-hand side of Table 

6.2 the results are presented for configuration D3a (damaged). If one compares the 

natural frequencies related to these two configurations, a reduction in the frequencies 
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of the damaged configuration can be observed with respect to the frequencies of the 

undamaged configuration, as expected.  

 

 Undamaged (U1a)  Damaged (D3a) 

Mode 1st  2nd  3rd  4th   1st  2nd  3rd  4th  

          

fi [Hz] 1.90 5.41 8.15 11.32  1.79 5.39 7.91 10.84 

          

ψji 1.00 1.00 0.78 1.00  1.00 1.00 1.00 1.00 

 0.97 0.75 0.33 -0.11  0.97 0.75 0.47 -0.01 

 0.88 0.12 -0.49 -0.98  0.89 0.12 -0.58 -1.00 

 0.73 -0.57 -0.76 0.31  0.76 -0.57 -0.99 0.04 

 0.52 -0.83 0.28 0.57  0.57 -0.83 0.19 0.96 

 0.27 -0.66 1.00 -0.43  0.25 -0.61 1.59 -0.50 

Table 6.2.  Identified modal parameters for configurations U1a and D3a (numerical 

simulation) 

 

The arbitrarily-scaled mode shapes obtained from the output-only modal 

identification were then used to apply the proposed implementation of the 

Proportional Flexibility Matrix techniques originally formulated by Bernal [2001] and 

Duan et al. [2005]. In the remainder of the chapter these techniques will be indicated, 

for the sake of simplicity, as the PFM procedures defined by Bernal [2001] and Duan 

et al. [2005]. However, it goes without saying that in the present chapter all the 

analyses were performed using the proposed implementation of these techniques, as 

described in Section 6.2.1. In particular, both the two techniques were applied on two 

different subsets of structural modes. On one side, the identified mode shapes related 

to the modes from the 1st to the 4th were used to apply the PFM technique defined by 

Bernal [2001]. It is worth noting that, according to the condition expressed by Eq. 

(6.8), a limited number of modes equal to r = 4 represents the minimum number of 

modes that can be considered for the application of the PFM procedure defined by 

Bernal [2001]. This is evident if Eq. (6.8) is evaluated by considering r = 4 and n = 6.  

On the other side, the identified mode shapes related to the modes from the 1st to the 

3rd were used to apply the PFM technique defined by Duan et al. [2005]. Of course, 

in such case (r = 3) and as evident if Eq. (6.8) is evaluated by considering r = 3 and n 

= 6, the PFM technique proposed by Bernal [2001] can not be applied.  
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In the analyses, and according to the proposed approach, the mass proportional 

vectors 𝒎∗ estimated using both the procedures by Bernal [2001] and Duan et al. 

[2005], were normalized in a way that the 1-norm of such vectors is equal to one. 

Then, the proportional mass matrices were used to mass normalize the mode shapes 

and to assemble the proportional flexibility matrices. Starting from the PFMs and 

according to the steps defined in Section 6.2.2, the proportional MF-based deflections 

due to a uniform inspection load were calculated, and then the vectors of the 

proportional MF-based interstory drifts, which are assumed as damage sensitive 

features, were computed.  

Before performing the damage detection, some statistical properties related to 

the vectors of the proportional modal flexibility-based interstory drifts estimated for 

the baseline state and using the training data set were evaluated. Two statistical checks 

were made to evaluate if the statistical assumptions, which were discussed in Section 

6.3.2.1 referring to the application of the proposed damage index based on 

Mahalanobis distance, are fulfilled for the damage sensitive features considered in the 

analysis presented in this section. The threshold value for the index based on 

Mahalanobis distance is, in fact, calculated using the procedure originally formulated 

by [Worden et al., 2000; Farrar & Worden, 2013]. This procedure assumes that the 

feature vectors extracted from the measured data are characterized by a multivariate 

normal distribution4, and, under this assumption, the calculation of the threshold value 

is not executed from these feature vectors but using vectors composed by normally 

distributed random numbers.  The results of the two statistical checks are presented 

herein referring to the proportional interstory drifts obtained using the first four 

structural modes (r=4) and the PFM procedure by Bernal [2001] (however, similar 

results can be obtained using a number of modes r=3 and the procedure by Duan et al. 

[2005]).  

 

 

                                                 
4 I would like to thank Dr. Suparno Mukhopadhyay for his constructive comments and 

suggestions on this point.  



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

307 

 

The first statistical check was made on the single components of the vectors of 

the proportional modal flexibility-based interstory drifts estimated using the training 

data set (i.e. on the drifts related to each story of the structure) to check if the 

distribution of such quantities is normal.  The calculations were performed using the 

Matlab command “normplot” [Matlab], and the results, in terms of normal probability 

plots, are shown in Fig. 6.3. This command makes a correlation between the quantiles 

of the sample data considered in the analysis (in such case the proportional MF-based 

interstory drifts) and the quantiles of a normal distribution. As reported in the figure, 

the drifts related to each story are sorted in ascending order and plotted on the x-axis, 

while the y-axis represents the quantiles of the normal distribution that have been 

converted into the corresponding values of the probability (it is worth noting that the 

scaling on the y-axis is not linear). The command makes also a reference line that 

passes through the first and third quartiles of the sample data. This line can be used to 

evaluate the linearity of the plot (i.e. to evaluate if the distribution of the sample data 

is normal). As shown in Fig. 6.3, the points in each plot are in general aligned to the 

line that have been fitted into the data. This means that the considered sample data 

can be reasonably assumed as normally distributed.  
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Figure 6.3. Normal probability plots of the proportional MF-based interstory drifts obtained 

from the training data set (for each story j = 1 … 6) 

 

A second statistical check was performed by evaluating the Mahalanobis-

squared distance between each feature vector (i.e. vector of proportional MF-based 

interstory drifts) calculated from the training data set and the whole set of the feature 

vectors related to the training data set. As already mentioned in Section 6.3.2.1, under 

the assumption that the feature vectors used in the calculation of Mahalanobis-squared 

distance follow a multivariate normal distribution, the values of Mahalanobis-squared 

distance tend to follow approximately a χ2 distribution. By ideally inverting this 

statement, it is clear that if the values of Mahalanobis-squared distance tend to follow 
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a χ2 distribution, then it can be concluded that the distribution of the data considered 

in the calculations is multivariate normal.  

The Mahalanobis-squared distance was evaluated for each damage sensitive 

feature extracted from to the training data set by applying a modified version of the 

damage index based on Mahalanobis distance presented in Eq. (6.58). This modified 

version of Eq. (6.58) is as follows  

𝑀𝐷𝑖
2 𝑖𝑑

∗ = (𝒅𝑩,𝒊
∗ − �̅�𝑩

∗  )
𝑻
 𝑺𝑩

∗  −𝟏  ( 𝒅𝑩,𝒊
∗ − �̅�𝑩

∗  )  (6.74) 

In this modified version of Eq. (6.58), the vector 𝒅𝑰,𝒘
∗  (related to the inspection phase) 

is substituted by the vector 𝒅𝑩,𝒊
∗  which is related to the baseline state. Moreover, the 

Mahalanobis-squared distance was evaluated as the square of the Mahalanobis 

distance. By evaluating Eq. (6.74) for i = 1 … p, p values of Mahalanobis-squared 

distance were thus determined. Probability density estimation was then carried out for 

such sample data (i.e. for the values of Mahalanobis-squared distance) using the 

Matlab command “ksdensity” [Matlab]. The estimated probability density function 

(PDF) is compared in Fig. 6.4a with the probability density function of a χ2 

distribution with 6 degrees of freedom. The number of the DOFs in the χ2 distribution 

was selected as equal to 6 because the dimension of the considered feature vectors 

(i.e. the vectors of the proportional MF-based interstory drifts) is equal to 6 (in fact, 

n=6 where n is the number of the DOFs/stories of the considered shear building 

structure). As evident in Fig. 6.4a, the plots of the probability density function 

estimated from the values of Mahalanobis-squared distance and the probability 

density function of the χ2 distribution are almost overlapped.  

This good match between the two distributions was also assessed by making a 

comparison between the quantiles related to the two probability density functions. In 

particular, the values of the quantiles related to these two probability density functions 

(i.e. the PDF estimated from the values of Mahalanobis-squared distance and the PDF 

of the χ2 distribution) were evaluated for each order αq where αq assumes the following 

values αq = 0.01, 0.02, … 1 (i.e. for 100 values in the range from 0 to 1). The values 

of the quantiles related to Mahalanobis-squared distance are plotted on the y-axis in 

Fig. 6.4b, while the values of the quantiles related to the χ2 distribution are plotted on 

the x-axis. As evident in the figure, the resulting points are almost aligned on the 
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bisection of the plot, which is the red dashed line reported in Fig. 6.4b. This means 

that a good correlation was found between the quantiles of the distribution estimated 

from the values of Mahalanobis-squared distance and the quantiles of the χ2 

distribution.  

 

 

Figure 6.4. Comparison between the distribution of the Mahalanobis-squared distance 

obtained using the training data set and the χ2 distribution: a) probability density functions; 

b) quantile-quantile plot. 

 

In the numerical simulation presented in this section the damage detection was 

carried out by calculating for each testing configuration reported in Table 6.1 the two 

damage indices proposed in Section 6.3.2 – i.e. the index based on Mahalanobis 

distance and the error on the 𝑀𝐴𝐶𝑖𝑑
∗ . It is worth noting again that in this numerical 

simulation the masses of the structure are unchanged before and after damage, and 

thus the first index based on Mahalanobis distance (𝑀𝐷𝑖𝑑
∗ ) was calculated by assuming 

in Eq. (6.58) a total-mass-ratio w=1 (as defined in Eq. 6.56). On the contrary, the 

𝑒𝑀𝐴𝐶𝑖𝑑
∗  was calculated without any a-priori information on the structural masses (and 

on their relationship between the undamaged and the possibly damaged states) .  
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The results of the damage detection carried out using a number of modes 

included in the calculations equal to r=4 and by applying the PFM procedure by Bernal 

[2001] are reported in Fig. 6.5, where the horizontal red lines represent the threshold 

values for the two damage indices calculated as outlined in Section 6.3.2. As shown 

in the figure, both indices are able detect and label the configurations from D1a to 

D4a as damaged, while the values of both the 𝑀𝐷𝑖𝑑
∗  and the 𝑒𝑀𝐴𝐶𝑖𝑑

∗  for the 

configurations U1a, U2a, U3a are below the thresholds. These configurations are thus 

classified as undamaged. The same results were obtained when the damage detection 

was carried out using a number of modes included in the calculations equal to r = 3 

and by applying the PFM procedure by Duan et al. [2005], as shown in Fig. 6.6.  

 

 

Figure 6.5. Damage detection (Bernal’s PFM ; r = 4): a) Mahalanobis distance;  

b) error on MAC*
id 
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Figure 6.6. Damage detection (Duan’s PFM ; r = 3): a) Mahalanobis distance;  

b) error on MAC*
id 

 

6.4.1.2  Second numerical analysis: damage detection with mass variations 

This section deals with the problem of detecting damage in the general case in which 

the masses of the structure related to the baseline state can be different from the 

masses of the structure related to the inspection phase. As shown in previous section 

and according to the proposed approach, the theoretical scaling factor on the vectors 
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obtained from the procedure described in Section 6.2.2 and Fig. 6.1, are characterized 

by different scaling factors. 

To consider several configurations related to the inspection stage that are 
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different variations of the masses with respect to the original structure, the numerical 

analyses presented in this section were performed using a Monte Carlo simulation. 
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The structure considered in this simulation is the same structure used in previous 

section – i.e. a 6-story shear building structure.  

In the Monte Carlo simulation the modal parameters used to assemble the 

proportional flexibility matrices were not obtained through a modal identification on 

the simulated vibration data (as done in previous section). The modal parameters in 

the Monte Carlo simulation were computed from an eigenvalue analysis on the 

numerical model of the structure, and random variables were added on the modal 

parameters to mimic the uncertainties that can derive from the identification process 

applied on real noisy data. This approach for modeling the uncertainties on the modal 

parameters has been adopted in other works related to both structural identification 

[Mukhopadhyay et al., 2012, Aenlle & Brincker, 2013] and damage detection [Fan & 

Qiao, 2011; Yan & Ren, 2014; Yang & Mosalam, 2016].  

The natural circular frequencies  ̂𝑖 and mode shapes �̂�𝑗𝑖  affected by 

uncertainties were obtained as follows  

 ̂𝑖 =  𝑖 (1 + 𝛾
𝜔
 𝜀𝜔)      (6.75) 

�̂�𝑗𝑖   = 𝜓
𝑗𝑖
 (1 +  𝛾

𝜙
 𝜀𝜙)     (6.76) 

where 𝜀𝜔, 𝜀𝜙 are random variables extracted from a normal distribution with a zero mean 

and a standard deviation equal to one, and 𝛾𝜔, 𝛾𝜙 are coefficients that are related to the 

amount of uncertainties that are added on the exact natural circular frequencies ( 𝑖) and 

mode shape components (𝜓𝑗𝑖  ), respectively. The values of the coefficients were selected 

as 𝛾𝜔 = 0.1% and 𝛾𝜙 = 1%. It is worth noting that in this section the superscript ̂  is used 

to indicate quantities that are affected by uncertainties. For example, this symbol is used 

to distinguish modal parameters affected by uncertainties (  ̂𝑖 , �̂�𝑗𝑖   ) from exact modal 

parameters (  𝑖 , 𝜓𝑗𝑖   ) obtained using an eigenvalue analysis on the undamped model of 

the structure. By adopting the above-mentioned criteria to model the uncertainties on the 

modal parameters (i.e. by adding random variables with a normal distribution on the 

modal parameters to model the uncertainties, instead of performing a modal identification 

on simulated vibration data) a large number of structural configurations were considered 

in the Monte Carlo simulation, as shown later in this section, without having high 

computational efforts in the algorithm that was implemented in Matlab [Matlab].  
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The calculations that are performed in each run of the Monte Carlo simulation 

are reported in the flow chart of Fig. 6.7. The procedure described in this flow chart 

is able to define one damage sensitive feature, i.e. one vector of the proportional modal 

flexibility-based interstory drifts. The procedure was thus adopted at first to the define 

the damage sensitive features related to the structure that is assumed as the original 

structure (to mimic the results that can be obtained from the training data set), and 

then it was repeated for the possibly damaged structural configurations related to the 

inspection phase (to mimic the results that can be obtained from the testing data set) .  

 

 

Figure 6.7. Flow chart used in the Monte Carlo simulation to obtain the DSFs 

 

The following steps were performed to define one damage sensitive feature 

related to the baseline structure, according to the procedure outlined in Fig. 6.7. In the 

1st step, an analytical second-order undamped model of the structure was assembled, 

where the mass matrix is MB = Mref and the stiffness matrix is KB  = Kref  (as defined 

in previous section). In the 2nd step, the modal parameters of the structure were 

computed through an eigenvalue analysis on the undamped model assembled in the 
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1st step. Then, the random variables 𝜀𝜔, 𝜀𝜙  were generated using the MATLAB 

command “randn” [Matlab], and the modal parameters affected by uncertainties were 

computed using Eqs. (6.75, 6.76) (3rd step). It is worth noting that these first three 

steps of the flow chart adopted in the Monte Carlo simulation generate modal 

parameters of the structure that are affected by uncertainties. These three steps thus 

mimic the results that can be obtained by applying an output-only modal identification 

algorithm on real vibration data. The steps from the 4th to the 7th can then be adopted 

to complete the flow chart presented in Fig. 6.7 and to obtain one damage sensitive 

feature (i.e. one vector of the proportional MF-based interstory drifts 𝒅∗). It is worth 

noting that these steps from the 4th to the 7th of the flow chart used in the Monte Carlo 

simulation (Fig. 6.7) are equivalent to the steps from the 2nd to the 5th of the procedure 

shown in Section 6.2.2 and Fig. 6.1 proposed to estimate the proportional modal 

flexibility-based deflections starting from real vibration data. According to these 

steps, the proportional mass matrix (PMM) is estimated from arbitrarily-scaled mode 

shapes using the proposed implementation of one of the two PFM procedures 

originally defined by Bernal [2001] and Duan et al. [2005]. Then, the proportional 

flexibility matrix (PFM) is assembled, and subsequently the proportional MF-based 

deflection and the vectors of proportional MF-based interstory drifts are calculated.  

In the Monte Carlo simulation to deal with the uncertainties that affect the 

modal parameters (and all the quantities that are obtained from the modal parameters) 

and to obtain a sufficient number of damage sensitive features related to the original 

or baseline structure, the calculations described in Fig. 6.7 were repeated for a number 

of times equal to p (where p is assumed equal to 30 in the simulation). It is worth 

noting that in each of these p runs of the Monte Carlo simulation executed for the 

baseline structure both the stiffness matrix and the mass matrix assumed at the 

beginning of the simulation (1st step in Fig. 6.7) are fixed.  

The flow chart presented in Fig. 6.7 was also used to consider structural 

configurations that are testing configurations (i.e. related to the inspection phase of 

the damage detection process) and used for the generation of the damage sensitive 

features related to such structural configurations. The structures considered in the 

inspection phase can be either undamaged or damaged. Moreover, such structures are 

also characterized by mass variations with respect to the structure that is considered 
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as the original or baseline structural configuration. Referring to the inspection phase, 

the number of testing configurations that were considered is equal to 200. This means 

that the Monte Carlo simulation executed through the steps of the flow chat reported 

in Fig. 6.7 was repeated for a number of times equal to 200. Each of these runs of the 

Monte Carlo simulation creates one sample of the damage sensitive features in the 

inspection phase and each run is related to a different structural configuration.  

The 200 runs of the Monte Carlo simulation related to the inspection phase 

were performed by considering two groups of structures (indicated as group A and 

group B):  

- Group A: the structures that belong to group A are undamaged configurations 

and for these structures the stiffness matrix is equal to the stiffness matrix of 

the original or baseline structure KI = Kref. This first group of structural 

configurations (group A) corresponds to the first half of the 200 Monte Carlo 

simulations (simulations from 1 to 100).  

- Group B: the structures that belong to group B are damaged configurations. 

For these structures and starting from the original baseline model, a 30% 

reduction of the interstory stiffness was applied at the third story. The stiffness 

matrix KI of these structures was derived by modifying the original matrix 

Kref and by imposing the above-mentioned stiffness reduction. This second 

group of structural configurations (group B) corresponds to the second half of 

the 200 Monte Carlo simulations (simulations from 101 to 200).  

 

As already mentioned, the structures related to the inspection phase are 

characterized by mass variations with respect to the structure that is considered as the 

original or baseline structural configuration. In the Monte Carlo simulation the mass 

matrices related to the structures considered in the inspection phase are thus 

characterized by variations with respect to the mass matrix assumed for the baseline 

state. For each run of the Monte Carlo simulation (i.e. for all the configurations from 

0 to 200, and thus both for group A and group B) the mass matrix of the structure is 

𝑴𝑰 =  𝜷 𝑴𝒓𝒆𝒇 where 𝜷𝑛 × 𝑛 is a diagonal matrix, and each element 𝛽𝑗,𝑗 of the main 
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diagonal of such matrix is a random variable extracted from a normal distribution with 

a mean equal to one and a standard deviation σ = 0.2.  

The calculations performed for the structural configurations considered in the 

inspection phase were thus performed using the flow chart of Fig. 6.7, and each run 

of the Monte Carlo simulation was executed starting from an analytical undamped 

model of the structure formed by the stiffness matrix KI and the mass matrix 𝑴𝑰, as 

described in the previous paragraphs.  

As shown in Fig. 6.7, the Monte Carlo simulation can be performed for any 

subset of modes of the structure, which is in such case a 6-story shear building 

structure. However, as already done in Section 6.4.1.1, the analyses are presented in 

this section by considering two specific subsets of structural modes (i.e. two different 

cases). At first, the calculations were performed for the case r = 4 (i.e. the first four 

modes of the 6-story shear building structure were considered) by applying the PFM 

technique defined by Bernal [2001]. Then, the calculations were repeated for the case 

r = 3 (i.e. the first three modes of the 6-story shear building structure were considered) 

by applying the PFM technique defined by Duan et al. [2005]. As already mentioned 

in Section 6.4.1.1, for the selected structure the case r = 4 represents the minimum 

number of modes that can be considered to apply the PFM procedure defined by 

Bernal [2001].  

In the calculations described in this section and performed using a simulation 

approach the analytical models of the considered structural configurations are, of 

course, known. For this reason, the Monte Carlo simulation was used not only to 

obtain the final results of the damage detection process, but also to check the 

intermediate steps of the damage detection process based on modal flexibility-based 

deflections of shear buildings. In particular, the main goal was to evaluate if the 

proportional quantities that are estimated according to the procedures described in the 

flow chart of Fig. 6.7 (for example, mass proportional vectors and vectors of 

proportional MF-based deflections) are accurate and effectively proportional to the 

corresponding true and scaled quantities (which are known in the simulation 

approach). The mode shape components, which are used to extract the distribution of 

the structural masses according to the PFM techniques, are affected in fact by 
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uncertainties, and thus the proportional mass matrices obtained from the data are 

affected by uncertainties as well. These uncertainties then propagate to proportional 

flexibility matrices and its derivatives (i.e. structural deflections and vectors of MF-

based interstory drifts).  

To check if the mass proportional vectors and the vectors of the proportional 

MF-based interstory drifts estimated in the calculations are effectively proportional 

with respect to the corresponding true vectors, one geometrical property of collinear 

vectors is considered. This geometric property is as follows: the cosine of the angle 

between two collinear vectors (i.e. two vectors that differ by a scalar multiplier) is 

equal to one. This property can be derived from the definition of the scalar product 

between two generic vectors a and b 

𝒂 ∘ 𝒃 =  ‖𝒂‖2 ‖𝒃‖2 𝑐𝑜𝑠 𝜃    (6.77) 

where the symbol ∘ denotes the operator of the scalar product and ‖ ∙ ‖2 is the 2-norm 

of a generic vector. By reformulating Eq. (6.77) and by expressing the scalar product 

using a vector notation, the cosine of the angle between the two vectors can be 

expressed as  

𝑐𝑜𝑠 𝜃 =
𝒂𝑻 𝒃

‖𝒂‖2 ‖𝒃‖2
      (6.78) 

It is clear that if the two vectors are collinear (i.e. 𝒂 = 𝑐 𝒃, where c is an arbitrary 

constant), then the cosine of the angle between the two vectors is equal to one.  

In the analyses, the cosine of the angle between the vectors related to the mass 

distribution was evaluated as follows 

cos 𝜃𝑚 =
𝒎𝑻 �̂�∗

‖𝒎‖2 ‖�̂�∗‖2
     (6.79) 

where �̂�∗ is the mass proportional vector estimated using the proposed 

implementation of the two PFM procedures originally defined by Bernal [2001] and 

Duan et al. [2005], and 𝒎 is the true mass vector (i.e. the diagonal of the mass matrix, 

known in the simulation). If the two vectors are proportional, the cosine of the angle 

should be approximately equal to one.  

The same calculation presented in Eq. (6.79) was performed also for the 

vectors of the modal flexibility-based interstory drifts  
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cos 𝜃𝑑 =
𝒅𝑻 �̂�∗

‖𝒅‖2 ‖�̂�∗‖
2

     (6.80) 

where �̂�∗ is the vector of the proportional MF-based interstory drifts affected by 

uncertainties and estimated using the steps reported in Fig. 6.7, and 𝒅 is the vector of 

the true interstory drifts calculated by assembling modal flexibility matrices using 

exact modal parameters and an exact mass matrix (which are quantities that are all 

known in the simulation). Of course, the two vectors of the interstory drifts (�̂�∗ and 𝒅 

) present in Eq. (6.80) were determined using the same number of modes included in 

the calculation of the modal flexibility matrices. In this way, eventual discrepancies 

between the two vectors (which may lead to values of the cosine of the angle that are 

lower than one) are only due to uncertainties that affect the vector �̂�∗. These eventual 

discrepancies are, on the contrary, not due to modal truncation errors that would have 

been introduced by evaluating �̂�∗ and 𝒅 using a different number of modes to assemble 

the modal flexibility matrices.  

The results of the above-mentioned calculations are shown in Fig. 6.8, where 

the check of the collinearity between proportional and true vectors is shown, for 

example, by considering the structures that belong to group A (i.e. the testing 

configurations that are undamaged and related to the simulations from 0 to 100, as 

defined in this section). The cosine of the angle between the mass vectors and the 

vectors of the MF-based interstory drifts were calculated using Eqs. (6.79, 6.80), 

respectively. Fig. 6.8a shows the results obtained for the case r = 4 by applying the 

PFM technique defined by Bernal [2001], while Fig. 6.8b shows the results obtained 

for the case r = 3 by applying the PFM technique defined by Duan et al. [2005].  

Referring to the case r = 4 (Bernal’s PFM) and as shown in the Fig. 6.8a, values 

of the cosine of the angle that are very close to one were obtained both for the mass 

vectors and for the vectors of the MF-based interstory drifts. On the contrary, referring 

to the case r = 3 (Duan’s PFM) and as shown in Fig. 6.8b, the values of the cosine of 

the angle between the mass vectors are lower than the corresponding values obtained 

for the case r = 4 (Bernal’s PFM). This means that the mass proportional vectors 

estimated using the procedure defined by Duan et al. [2005] for the case r = 3 are 

characterized by uncertainties that are higher than the uncertainties that affect the 
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mass proportional vectors estimated using the procedure defined by Bernal [2001] for 

the case r = 4. This result is expected and can be explained by the two following 

motivations: first of all, it is trivial that the calculations related to the case r = 3 are 

performed using a number of modes that is lower than the number of modes 

considered in the case r = 4; secondly, more uncertainties are in general expected in 

the mass proportional vectors obtained using the procedure by Duan et al. [2005] 

because, as already discussed, pseudo inverse operations are performed on the 

truncated mode shape matrices reported in Eqs. (6.15, 6.16) to have an estimate of the 

mass matrix of the dummy structure. Of course, when applying pseudo inverse 

operations in the procedure by Duan et al. [2005] an approximated solution is 

obtained. These operations are not present, on the contrary, in the procedure by 

Bernal. In any case, the uncertainties that were obtained on the mass proportional 

vectors estimated using the procedure by Duan et al. [2005] seem not to have a great 

impact on the vectors of the proportional MF-based interstory drifts. As shown in Fig. 

6.8b, in fact, the values of the cosine of the angle obtained for the vectors of the MF-

based interstory drifts are very close to one. The results obtained for the interstory 

drifts vectors in the case r = 3 by applying the PFM procedure by Duan et al. [2005] 

are thus very similar to the results obtained for the same quantities in the case r = 4 

by applying the PFM procedure by Bernal [2001].  
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Figure 6.8. Check of the collinearity between true and proportional vectors. Calculation of 

the cosine of the angle between: mass vectors using Eq. (36), interstory drifts vectors using 

Eq. (37). Results for group A. (a) r = 4, Bernal’s PFM; (b) r = 3, Duan’s PFM. 

 

According to the approach proposed in Section 6.2.2 for the estimation of the 

vectors of the proportional MF-based interstory drifts of shear buildings, the scaling 

factor on such quantities is theoretically equal to the total mass of the structure. This 

result is obtained by normalizing the mass proportional vector estimated using the 

PFM techniques in a way that its 1-norm is equal to one. Of course, when dealing with 

both modal parameters and mass proportional vectors that are affected by 

uncertainties, inevitable discrepancies are present between the theoretical scaling 

factor and the scaling factor that is effectively related to the vectors of the proportional 

MF-based interstory drifts of shear buildings. To address this problem, a second 

analysis was executed in the Monte Carlo simulation to check the accuracy related to 

the damage sensitive features (before performing the damage detection process).  
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In the analyses the theoretical scaling factor, known in the simulation, was 

evaluated using Eq. (6.38), and it is indicated as 𝛼𝑡𝑟𝑢𝑒 (this factor is the total mass of 

the structure). The scaling factor 𝛼𝑡𝑟𝑢𝑒 was compared with respect to the scaling factor 

that is effectively related to the vectors of the proportional MF-based interstory drifts 

�̂�∗ (which are affected by uncertainties). This last scaling factor is indicated as 

�̂�𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒, and it is calculated as follows 

�̂�𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
‖�̂�∗‖

1

‖𝒅‖1
      (6.81) 

where 𝒅 is the vector of the true interstory drifts, known in the simulation, and �̂�∗ is 

the vector of the proportional MF-based interstory drifts affected by uncertainties and 

estimated using the steps of the flow chart reported in Fig. 6.7. As already done in Eq. 

(6.80), the two interstory drift vectors were calculated using the same number of 

modes (i.e. r = 4 or r = 3 in this simulation).  

As already done in Fig. 6.8 (where the degree of collinearity between 

proportional and true vectors was checked), the results of the comparison between the 

true and the effective scaling factors are presented by considering the structures that 

belong to group A (i.e. the testing configurations that are undamaged and related to 

the simulations from 0 to 100). The results of this comparison are presented in Fig. 

6.9, where the parameters 𝛼𝑡𝑟𝑢𝑒 and �̂�𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 are reported on the x-axis and the y-

axis, respectively. In particular, Fig. 6.9a shows the results obtained for the case r = 

4 by applying the PFM technique defined by Bernal [2001], while Fig. 6.9b shows the 

results obtained for the case r = 3 by applying the PFM technique defined by Duan et 

al. [2005]. In general, for both cases and as shown in the figure, the points of this 

correlation analysis are positioned on the bisection of the plot, and this means that the 

effective scaling factors on the proportional MF-based interstory drifts estimated 

using Eq. (6.81) are close to the true scaling factors (i.e. the values of the total mass 

of the structure). The only difference between Figs. 6.9a and 6.9b is that the points 

obtained for the case r = 4 using the procedure by Bernal [2001] (Fig. 6.9a) are in 

general slightly closer to the bisection of the plot than the points obtained in the case 

r = 3 using the procedure by Duan et al. [2005] (Fig. 6.9b).  
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Figure 6.9. Correlation analysis between the true and the effective scaling factors . Results 

for group A. (a) r = 4, Bernal’s PFM; (b) r = 3, Duan’s PFM. 

 

The results of the damage detection analyses carried out on the 6-story shear 

building structure using the Monte Carlo simulation are presented herein. The damage 

indices proposed in Section 6.3.2 (i.e. the index based on Mahalanobis distance and 

the error on the MACid) were calculated to compare the damage sensitive features 

obtained for the baseline structure with the damage sensitive features obtained for 

each of the 200 structural configurations that are considered in the inspection phase.  

As already mentioned, the structures considered in this simulation as possibly 

damaged structures (inspection phase) have a distribution of the masses that is 

different with respect to the mass distribution of the baseline structure. This means 

that, according to the proposed approach and using the procedure outlined in Section 

6.2.2, the scaling factors on the DSFs (i.e. the vectors of proportional MF-based 

interstory drifts) related to the possibly damaged structures are different from the 

scaling factors related to the same quantities in the baseline condition. However, as 

shown in Section 6.3.1, the scaling factors on the damage sensitive features related to 

the undamaged and the possibly damaged states can be made comparable by 

performing an additional scaling operation on one DSF (for example, the DSF related 

to the inspection phase). As already mentioned in Section 6.3.1, this operation can be 

done if the ratio between the total mass of the structure in the two states  involved in 
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the damage detection process is known a-priori (i.e. if the parameter w defined in Eq. 

6.56 is known).  

To demonstrate the validity of the proposed approach and the effectiveness of 

the two proposed damage indices, in the simulation presented herein the damage 

detection process was carried out by considering two different situations. The first 

situation is an attempt to make the scaling factors on the proportional MF-based 

interstory drifts related to the undamaged and the possibly damaged states 

comparable. This attempt was made by considering the total-mass-ratio w as known, 

and this situation is indicated as “DSFs scaled by total-mass-ratio w”. In the second 

case, the damage detection was carried out using DSFs that are characterized by their 

original scaling factors (and thus different scaling factors were obtained between the 

undamaged and the possibly damage states). This second situation is indicated as 

“DSFs with original scaling”, and the calculations were performed without any a-

priori information on the structural masses.  

The results of the damage detection carried out on the 6-story shear building 

structure by considering a number of modes equal to r = 4 and by applying the PFM 

procedure proposed by Bernal [2001] are reported in Fig. 6.10. In particular, the 

results obtained in the first situation (i.e. “DSFs scaled by total-mass-ratio w”) are 

presented on the left-hand side of the figure (Fig. 6.10a, 6.10c, 6.10e), while the 

results related to the second situation (i.e. “DSFs with original scaling”) are reported 

on the right-hand side of the figure (Fig. 6.10b, 6.10d, 6.10f). In Fig. 6.10a, 6.10b the 

scaling factors related to the DSFs used to calculate the damage indices for the 200 

structural configurations considered in the inspection phase are reported. Such scaling 

factors are known in the simulation approach. As shown in Fig. 6.10a, the scaling 

factors have been made comparable using the additional scaling operation based on 

the total-mass-ratio w. Of course, as also evident in Fig. 6.10a the scaling factors in 

the inspection phase are not exactly equal to the scaling factor related to the baseline 

state (which is a constant value). This effect is due to the fact that the effective scaling 

factors on the vectors of the proportional MF-based interstory drifts are reported in 

the figure (not the theoretical scaling factors), and the effective scaling factors are 

affected by uncertainties, as well as the damage sensitive features. On the contrary, as 
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shown in Fig. 6.10b, in the second situation the scaling factors on the DSFs are not 

comparable.  

 

 

 

Figure 6.10. Damage detection for the case r = 4 using Bernal’s PFM. Analyzed situations: 

a),c),e) DSFs scaled by the total-mass-ratio w;  b),d),f) DSFs with original scaling. 

Parameters: a,b) scaling factors; c,d) Mahalanobis distance; e,f) error on MAC id 
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The results obtained using the damage index based on Mahalanobis distance 

are presented in Fig. 6.10c, 6.10d. To obtain the results presented in Fig. 6.10c the 

proposed formulation of the index 𝑀𝐷𝑖𝑑
∗  was applied (i.e. Eq. 6.58) and the total-mass-

ratio w is assumed to be known (first situation “DSFs scaled by ratio w”). As shown 

in Fig. 6.10c, the damage index based on Mahalanobis distance is able to identify and 

separate the group of structures that are damaged (group B, configurations related to 

the simulations from #101 to #200) from the group that is undamaged (group A, 

configurations related to the simulations from #0 to #100). To obtain the results 

presented in Fig. 6.10d the Mahalanobis distance was calculated using Eq. (6.58) but 

forcing the ratio w to be equal to one (even if this parameter is in theory different from 

one). In this way, the additional scaling operation is not applied on the DSFs (second 

situation “DSFs with original scaling”), and the DSFs related to the undamaged and 

the possibly damaged states are not adequately scaled (as shown in Fig. 6.10b). In this 

last case the index based on Mahalanobis distance is not able to perform correctly the 

damage detection process (as shown in the Fig. 6.10d).  

The results obtained using the error in the Modal Assurance Criterion 

evaluated on the vectors of the proportional MF-based interstory drifts (𝑒𝑀𝐴𝐶𝑖𝑑
∗ ) are 

presented in Fig. 6.10e, 6.10f. In particular, the results presented in Fig. 6.10f were 

obtained by applying the proposed formulation of 𝑒𝑀𝐴𝐶𝑖𝑑
∗  (i.e. Eq. 6.71). In this 

proposed formulation it is not necessary to perform the additional scaling operation 

on the DSFs using the ratio w (second situation “DSFs with original scaling”). On the 

contrary, the results presented in Fig. 6.10e are related to the first situation (“DSFs 

scaled by ratio w”) and were obtained by considering a modified version of the 

proposed damage index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  (i.e. Eq. 6.71). In this modified version of the index 

the scaled version of the DSF in the inspection phase 𝒅𝑰,𝒘
∗  (defined in Section 6.3.1) 

was considered instead of the vector 𝒅𝑰
∗. As shown in Fig. 6.10e, 6.10f, the 𝑒𝑀𝐴𝐶𝑖𝑑

∗
 is 

able to separate the group of undamaged structures (group A, simulations from #0 to 

#100) from the group of damaged structures (group B, simulations from #101 to #200) 

both when the scaling factors are comparable (Fig. 6.10e) and when they are not 

comparable (Fig. 6.10f). Moreover, the same values of 𝑒𝑀𝐴𝐶𝑖𝑑
∗  were obtained in the 

two situations, and this confirms that this parameter, which is based on the evaluation 
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of the degree of correlation between the DSFs, is not sensitive to the scaling factors 

on the vectors of the proportional MF-based interstory drifts.  

The results of the damage detection carried out for the different configurations 

of the shear building structure by considering a number of modes equal to r = 3 and 

by applying the PFM procedure proposed by Duan et al. [2005] are reported in Fig. 

6.11. This figure has the same format and presents the same type of results that are 

shown in Fig. 6.10 – i.e. the results on the left-hand side are related to the first situation 

“DSFs scaled by ratio w” (Fig. 6.11a, 6.11c, 6.11e), and the results on the right-hand 

side are related to the second situation “DSFs with original scaling” (Fig. 6.11b, 6.11d, 

6.11f). In general, the results obtained for the case r = 3 by applying the PFM 

technique by Duan et al. [2005] (Fig. 6.11) are similar to the results obtained for the 

case r = 4 by applying the PFM technique by Bernal [2001] (Fig. 6.10). There are, 

however, some differences between the results obtained in the two cases that must be 

discussed. First of all, if one compares Fig. 6.11a and Fig. 6.10a it is clear that, 

referring to the first situation (“DSFs scaled by ratio w”), the discrepancies between 

the scaling factors in the inspection phase and the scaling factors in the baseline state 

obtained for r = 3 using the Duan’s PFM are higher than the discrepancies between 

the same quantities obtained for r = 4 using the Bernal’s PFM. A general observation 

on the above-mentioned result is the following. As already shown by the previous 

analyses presented in this section (Figs. 6.8, 6.9), the uncertainties on the proportional 

mass vectors and the effective scaling factors obtained for the case r = 3 using the 

Duan’s PFM are higher than the ones obtained on the same quantities for the case r = 

4 using the Bernal’s PFM. In light of this consideration, it is clear that better results 

are obtained in the latter case (with respect to the former case) when one tries to 

retrieve and guarantee the compatibility between the scaling factors, related to the two 

states involved in the damage detection, using the additional scaling operation based 

on the total-mass-ratio w.  
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Figure 6.11. Damage detection for the case r = 3 using Duan’s PFM. Analyzed situations: 

a),c),e) DSFs scaled by the total-mass-ratio w;  b),d),f) DSFs with original scaling. 

Parameters: a,b) scaling factors; c,d) Mahalanobis distance; e,f) error on MAC id. 
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Referring to the case r = 3 (Duan’s PFM), the discrepancies that were obtained 

between the scaling factors in the undamaged and in the possibly damage states (even 

if the scaling operation based on the ratio w is applied - Fig. 6.11a) affect the results 

of the damage index based on Mahalanobis distance. For the present simulation and 

as shown in Fig. 6.11c, this index evaluated in the situation “DSFs scaled by ratio w” 

is in general able to separate the first group of undamaged structures (group A) from 

the second group of damaged structures (group B). However, if one compares Fig. 

6.11c (r = 3) and Fig. 6.10c (r = 4), it is clear that the number of false positives 

obtained in the results of the index based on Mahalanobis distance calculated using 

the Duan’s PFM (r = 3) is higher than the number of false positives obtained in the 

results of the same index evaluated using the PFM procedure by Bernal (r = 4).  

The other results presented in Fig. 6.11 (i.e. Fig. 6.11d, 6.11e, 6.11f) and 

related to the case r = 3 (Duan’s PFM) confirm the findings that have been already 

discussed for the corresponding plots presented in Fig. 6.10 and related to the case r 

= 4 (Bernal’s PFM).  

 

6.4.2   Experimental verification 

In this section the experimental verification of the modal flexibility-based approach 

proposed in this chapter for detecting damage in building structures using minimal or 

no a-priori information on the structural masses is presented. Vibration tests were 

performed on a steel frame structure to verify the proposed damage detection 

approach. This first part of the chapter describes the structure and the experimental 

setup that were considered in the tests. Then, in next sections the tested structural 

configurations and the experimental results of two different damage detection tests 

will be presented. The first test was planned to perform the damage detection in the 

case in which the structural masses are unchanged before and after damage; in the 

second test, structural configurations that are characterized both by stiffness 

reductions and mass modifications with respect to the baseline structure were 

considered. 
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The structure that was considered in the vibration tests is located at the 

Carleton Laboratory of Columbia University, New York, USA5, and it is a one sixth 

scale four-story one-bay by one-bay frame structure (Figs. 6.12, 6.13). This frame 

structure is characterized by the following dimensions: the inter-story height is equal 

to 533 mm, and the dimensions of the floor plates are 610 × 457 × 12.7 mm. Four 

columns are located at each story of the structure, and such columns have rectangular 

cross sections with dimensions 50.8 × 9.5 mm. As evident in Figs. 6.12, 6.13, the 

structure is diagonally braced in the north-south direction, while it is unbraced in the 

west-east direction. The diagonal braces have rectangular cross sections with 

dimensions 50.8 × 6.4 mm. All the members of the structure are A36 steel, and they 

are connected using bolted connections.  

Two prevalent directions can be easily identified to characterize the 

mechanical and the dynamic behavior of the structure: the north-south direction (i.e. 

x direction) is the strong direction of the structure, while the west-east direction (i.e. 

z direction) is the weak direction of the structure. This characteristic of the structure 

is evident for two main reasons. On one side, the diagonal braces are present only in 

the bays of the structure that are aligned to the north-south direction (i.e. the strong 

direction). On the other side, the rectangular cross-sections of the columns (with 

dimensions 50.8 × 9.5 mm) are oriented in a way that their longest side is aligned to 

the north-south direction of the structure (i.e. the strong direction).  

                                                 
5 The vibration tests were performed during a study and research period that the writer spent 

at Columbia University, New York, USA under the supervision of Prof. Raimondo Betti. The 

vibration tests were performed by the writer with the assistance of Prof. Betti. The writer 

would like to thank Prof. Betti for his guidance during the study period, for his suggestions, 

and for his great support during the vibration tests. The writer would also like to thank all the 

other people that provided their assistance during the vibration tests performed at the Carleton 

Laboratory of Columbia University (NY), especially Adrian Brügger and Matthew Sloane.  
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Figure 6.12. Four story steel frame structure used for the experimental verification 

(Carleton Laboratory, Columbia University). 

 

Figure 6.13. Geometry of the steel frame structure (dimensions in m) and location of the 

accelerometric sensors. 

West 

East 
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In the planning phase of the vibration tests different ways for exciting the 

structure were considered. After examining the different options that were available 

in the laboratory, it was decided to excite the structure using an impact hammer. 

Performing hammer tests is a rapid way of testing structures, and using such type of 

excitation several vibration tests were performed on the structure in a relatively 

limited amount of time. Before presenting the experimental test setup, one important 

aspect must be clarified. When performing impact hammer tests both the input forces 

and the output vibration responses are in general available. On the contrary, the 

approach presented in this chapter of the thesis was developed for detecting damage 

in structures starting from output-only vibration measurements. In this last situation, 

in fact, it is not possible to obtain information on the modal masses of the structure, 

and only arbitrarily-scaled mode shapes can be identified. For this reason, the 

following approach was adopted in the experimental verification of the proposed 

approach. The structure was excited by the impact of the hammer, and both the input 

force, produced by the hammer, and the structural responses, in terms of floor 

accelerations, were measured. Then, in the damage detection process only the output 

vibration responses of the structure were considered (i.e. the input was not included 

in the training and testing data sets used for the damage detection). In this way, it was 

not possible to have from the vibration data information on the modal masses of the 

structure, and the Proportional Flexibility Matrix techniques [Bernal, 2001; Duan et 

al. 2005] were applied on arbitrarily-scaled mode shapes.  

The hammer that was used in the tests is a sledgehammer model PCB 086B50 

[PCB Piezotronics], which is able to measure the input force that is applied in the 

impact. This hammer has a measurement range of ± 22240 N and a sensitivity equal 

to 0.23 mV/N. Moreover, this hammer can be used by considering two different types 

of the tips positioned in the head of the instrument (a soft tip or a hard tip). After 

having evaluated how the hammer with one or the other tip excites the structure, all 

the tests were performed using a soft tip.  

The vibration responses of the structure due to the impact of the hammer were 

measured using eight accelerometers. In particular, two different types of 

accelerometers were used in the tests: four accelerometers are Crossbow CXL04LP3 

[Crossbow Technology] and they are triaxial accelerometers with a measurement 
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range of ± 4g and a sensitivity of 500 mV/g (Fig. 6.14a); four accelerometers are PCB 

353B34 [PCB Piezotronics] and they are uniaxial accelerometers with a measurement 

range of ± 50g and a sensitivity equal to 100 mV/g (Fig. 6.14b).  The four 

accelerometers that belong to the first group (i.e. triaxial accelerometers) were 

positioned at the intersection between the columns located in the north-west corner of 

the structure (position B in Fig. 6.13) and each floor plate. These accelerometers are 

indicated as sensors A1-A2-A3-A4. The four accelerometers that belong to the second 

group of accelerometers (i.e. uniaxial accelerometers) are indicated as sensors A9-

A10-A11-A12 and they were positioned on the west-south columns (position A in Fig. 

6.13).  

 

     

Figure 6.14. Accelerometers used in the vibration test (Carleton Laboratory, Columbia 

University): a) triaxial accelerometer positioned on north-west columns; b) uniaxial 

accelerometer positioned on west-south columns. 

 

All the sensors were connected to a data acquisition system that was controlled 

by an application that was developed in the computer software LabVIEW 2014 

[LabVIEW]. Thirteen channels were used in the data acquisition system: one channel 

was used to measure the input signal (i.e. the input force) produced by the hammer, 

and twelve channels were used to measure the signals from the accelerometers. The 

channels that were connected to the accelerometers of a generic floor of the structure 

are schematically represented in the plan view of Fig. 6.13. In particular, three 

channels were used to measure the accelerations of each floor of the structure: one 

channel was used to measure the accelerations in the west-east direction (i.e. z 

  a)   b) 
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direction) near the column located at the west-south corner of the structure (position 

A); two channels were used to measure the accelerations near the west-north column 

(position B) in the west-east and north-south directions, respectively.  

The structure was tested in different configurations, and examples of these 

configurations are reported in Fig. 6.15. The types of structural modifications that 

were applied on the frame during the vibration tests are described herein, while a 

detailed description of all the configurations that were tested in the two series of tests 

that were performed for damaged detection purposes will be presented in next section.  

Several vibration tests were performed on the structure in the original 

configuration (Fig. 6.15a). As shown later in this section, this configuration will be 

considered as the undamaged structure. Other tests were performed on structural 

configurations characterized by reductions (with respect to the original structure) in 

the interstory stiffness, and these configurations will be considered as damaged 

configurations (Fig. 6.15b).  To obtain such configurations, one or more columns of 

the frame structure were replaced with other columns with reduced cross-sections. 

The dimensions of the cross-sections of the columns introduced in these damaged 

configurations are 50.8 × 7 mm, while, as already mentioned, the dimensions of the 

cross sections of the columns in the original structure are 50.8 × 9.5 mm. Replacing 

one column with another one with a reduced cross-section results in imposing 

approximately a 15% reduction in the inter-story stiffness of one story of the structure. 

If, for example, as shown in Fig. 6.15b, two columns are replaced with other columns 

with reduced cross-sections, then approximately a 30% reduction is imposed on the 

inter-story stiffness. Of course, when one column of the structure is replaced with 

another column, the bolts of the connections located near that column have to be 

opened and then positioned again on the structure with the replaced column. After 

each structural modification that implied the substitution of the columns, the bolts 

were closed using an adjustable-click-type torque wrench. This instrument was used 

to close the bolts with a tightening torque of 81.35 N m (equivalent to 60 ft lb), and 

the tightening torque was maintained fixed during all the tests. Using this procedure 

all the tested configurations have bolts that theoretically work with the same tension.  
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The structure was also tested with added masses (Fig 6.15c). The increase in 

the floor masses was created by positioning on the structure some metallic bricks 

which were connected to the plates of the frame through metallic clamps. The masses 

that were added on the structure in different configurations, as shown in next sections, 

are the following: two bricks with dimensions 20 × 14 × 5 cm and one brick with 

dimensions 23 × 16.5 × 5 cm. The weight of each of the first two bricks is 12.7 kg 

(including the weight of the clamp), while the weight of the third brick is 16.3 kg 

(including the weight of the clamp).   

 

Figure 6.15. Examples of tested configurations (Carleton Laboratory, Columbia University): 

a) original structure; b) modified structure with an imposed inter-story stiffness reduction; 

c) modified structure with added masses. 

 

The damage detection approach proposed in this chapter was developed for 

plane shear building structures, which are the structures that are considered in the 

work by [Koo et al., 2010] where the original formulation of the Positive Shear 
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Inspection Load was presented. For this reason, in the experimental verification the 

frame structure was tested only in one direction. In particular, the frame was tested in 

the west-east direction, which, as already mentioned, is the weak direction of the 

structure. All the vibration tests were performed by hitting the structure through the 

hammer at the fourth story in the geometric center of the floor (which is also the center 

of mass and the center of stiffness). The point of the impact is indicated with the letter 

X in the schematic drawings of the structure reported in Fig. 6.13, and it is also 

indicated by the arrow in Fig. 6.16. The choice of hitting the structure at the fourth 

floor was done to avoid locations that can be possible nodes of the mode shapes of the 

structure in the weak direction (impact locations at the intermediate stories of the 

structure were thus not considered in the tests). Moreover, the choice of considering 

the geometric center of the floor as the impact location was done to minimize the 

torsional effects and to test the structure only in one direction, which is the weak 

direction.  

 

 

Figure 6.16. North face of the structure with indication of the impact location  

(Carleton Laboratory, Columbia University) 
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All the measurements were acquired by considering a sampling frequency equal to 

1000 Hz. For each vibration measurement that was recorded using the data acquisition 

system, the structure was excited by five hits of the hammer. An example of the data 

acquired for a vibration test performed on the original structure is reported in Fig. 

6.17.  

a)

 

b)

 

Figure 6.17. Vibration measurements acquired for the original structure: a) input force; 

b) vibration responses measured through channel A12z. 

 

As already mentioned, the damage detection analyses on the experimental data 

were performed using only the output vibration responses of the structure. However, 

during the tests and just after the data acquisition the Frequency Response Functions 

(FRF) were evaluated using both the input force and the output responses. This 

operation was done to check the data quality and to check that the structural modes 

were adequately excited. Examples of drive point Frequency Response Functions 

(FRFs) are reported in Fig. 6.18, together with the related coherence function. The 

functions reported in this figure were evaluated for a vibration test performed on the 
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original structure and for five hits of the hammer. The drive point FRFs were evaluated 

by considering the input force and the output response measured through channel 

A12z (which is positioned at the top story). First of all, clear peaks that can be 

associated to structural modes are evident in the plot of the magnitude of the FRFs. 

This means that the structure was adequately excited by the hammer in the considered 

frequency range (i.e. 0-50 Hz). Moreover, the FRFs obtained for each of the five 

different hits of the hammer are almost overlapped, as shown in Fig 6.18. This good 

agreement between the five FRFs is also confirmed by the values of the coherence 

function, which are in general close to one. Only some drops in the values of the 

coherence function were obtained at the frequencies related to the antiresonances. 

 

 

Figure 6.18. Drive point Frequency Response Functions (FRFs): a) magnitude of FRFs; 

b) coherence function. 

 

6.4.2.1 First experimental test: damage detection without mass variations 

This section presents the structural configurations and the results of a first 

experimental test performed on the steel frame structure for damage detection 

purposes. This test was planned to apply the damage detection methodology in the 

case in which the structural masses are unchanged before and after damage.  

  a) 

  b) 
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In this first experimental test, the structure was tested at first in the original 

configuration, which is assumed as the baseline condition for the damage detection 

process. To obtain the training data set, 30 vibration tests were performed on the 

structure in the baseline condition (i.e. six different vibration measurements were 

acquired, where five hits of the hammer compose each measurement). Then, the 

structure was tested again to obtain the testing data set related to the inspection phase 

of the damage detection process. Seven structural configurations were considered and 

tested to obtain the testing data set, and these configurations are reported in Table 6.3. 

The first three configurations (U1c-U3c) are equal to the original structure (i.e. these 

configurations are undamaged). The last four configurations are damaged 

configurations (D1c-D4c) and were obtained by replacing one or more columns of the 

structure with other columns with reduced cross-sections. For each configuration 

reported in Table 6.3 one vibration measurement was acquired (as already mentioned, 

each measurement is composed by five hits of the hammer).  

 

Configurations State Description 

U1c, U2c, U3c Undamaged Baseline condition 

D1c Damaged 15% stiffness reduction at 3rd story 

D2c Damaged 30% stiffness reduction at 3rd story 

D3c Damaged D2c + 15% stiffness reduction at 2nd story 

D4c Damaged D2c + 30% stiffness reduction at 2nd story 

Table 6.3. Testing configurations related to the first experimental test  

 

In the damage detection analyses, as already mentioned, the input force 

produced by the hammer was not considered, and only the output acceleration 

responses of the structure were taken into account. Moreover, in the analyses only the 

eight channels that measured the accelerations in the west-east direction were 

considered and used to estimate the proportional flexibility matrices and the 

proportional modal flexibility-based deflections of the different configurations in the 

weak direction of the structure. According to Fig. 6.13 the channels considered in the 

analyses are A4z, A3x, A2z, A1z and A12z, A11z, A10z, A9z. Performing a 2D 

analysis is considered as a valid approach since the structure is characterized by a 

plan-symmetric distribution of both the story stiffness and the structural masses at 
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each floor. Moreover, due to the presence of the diagonal braces only in the x direction 

and due to the orientation of the column sections (Fig. 6.13), the structure is 

characterized by structural modes that are well separated in the two main directions. 

The structure both in the original configuration and in all the testing configurations is 

characterized by the above-mentioned dynamic behavior. It is worth noting that only 

the configurations D1c and D3c are characterized by a distribution of the story 

stiffness that is slightly plan-asymmetric at the damaged stories (i.e. the stories where 

the stiffness reductions were imposed). These two configurations were in fact created 

by substituting only one column (i.e. the column in position C - Fig. 6.13) with another 

column with a reduced cross section at the damaged stories. These two configurations 

are thus different from configurations D2c and D4c, which were, on the contrary, 

created by substituting two original columns with other two columns with reduced 

cross sections (configurations D2c and D4c are perfectly symmetric configurations, 

where the damaged columns were introduced in positions C, D - Fig. 6.13). The 

coupling effects on the structural modes related to configurations D1c and D3c are, 

however, very small. Under the simplified assumption of neglecting the mentioned 

small coupling effects, the configurations D1c and D3c were also considered in the 

2D analyses that were carried out to verify the damage detection approach proposed 

for plane structures.  

The acceleration responses of the structure due to the impact of the hammer 

can be considered as free decay signals, and they were used to perform an output-only 

modal identification of the structure through the Eigensystem Realization Algorithm 

(ERA) [Juang & Pappa, 1985]. Considering the data from the eight channels in the 

west-east direction (i.e. the weak direction of the structure) and using the Eigensystem 

Realization Algorithm, four structural modes were identified. If one assumes that the 

behavior of the structure in the weak direction can be described through a simplified 

modeling, such as a 4-DOF shear-type modeling, then it is clear that in such case all 

the prevalent longitudinal modes of the structure in the considered direction were 

identified. The components of the mode shapes were identified using the Eigensystem 

Realization Algorithm at the sensor locations (i.e. the positions indicated with the 

letters A, B in Fig. 6.13). Then, under the simplifying assumption of considering each 

floor of the structure with a rigid-body in-plane behavior, the components of the mode 
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shapes in the direction considered in the test and in the geometric center of the 

structure were determined (the obtained mode shapes are thus characterized by four 

components). The results of the modal identification, in terms of natural frequencies 

and mode shape components (normalized to a maximum value equal to unit), are 

reported, for example, for the configurations U1c and D4c in Table 6.4.  

 

 Undamaged (U1c)   Damaged (D4c) 

Mode 1st 2nd 3rd 4th  1st 2nd 3rd 4th 

          

fi [Hz] 3.77 11.23 18.32 26.05  3.46 10.83 17.24 22.48 

          

ψji 1.00 1.00 0.72 0.30  1.00 1.00 0.78 0.38 

 0.84 -0.12 -0.93 -0.67  0.86 -0.06 -0.90 -0.77 

 0.61 -0.77 0.01 1.00  0.61 -0.92 -0.03 1.00 

 0.30 -0.66 1.00 -0.86  0.25 -0.70 1.00 -0.96 

Table 6.4.  Identified modal parameters for configurations U1c and D4c (first experimental 

test) 

 

Starting from the identified modal parameters (i.e. natural frequencies and 

arbitrarily-scaled mode shapes), the calculations were performed according to the 

steps defined in Section 6.2.2 to obtain the vectors of the proportional MF-based 

interstory drifts. Then, the damage detection was carried out by calculating the 

damage indices proposed in Section 6.3.2 (i.e. the index based on Mahalanobis 

distance and the error on the MACid).  

The results of the damage detection are presented at first for the cases in which 

the PFM technique by Bernal [2001] was applied. In these cases, the calculations were 

performed by considering a number of modes equal to both r = 3 and r = 4. The case 

r = 3 represents the minimum number of modes that has to be considered for the 

application of the PFM procedure defined by Bernal. This is evident if Eq. (6.8) is 

evaluated for r = 3 and n = 4. For a number of modes that is lower than r = 3 (i.e. r = 

2,1) the PFM procedure by Bernal can not be applied. It is worth noting that the case 

r = 4 means that all the prevalent longitudinal modes of the structure in the considered 

direction were included in the calculations. The values of the damage index based on 

Mahalanobis distance evaluated for the different configurations described in Table 6.3 
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are reported in Fig. 6.19. As already done in the numerical analyses presented in 

Section 6.4.1.1, this index was calculated by considering in Eq. (6.58) a total-mass-

ratio w=1 (Eq. 6.56). This is because in the first experimental test the masses of the 

structure are unchanged before and after damage. The results obtained using the error 

on the MACid are reported in Fig. 6.20, and this index was calculated, on the contrary, 

without any a-priori information on the structural masses. As shown in Figs. 6.19 and 

6.20, both the two indices are able to classify as damaged the configurations that are 

characterized by stiffness reductions with respect to the structure in the baseline state 

(i.e. D1c-D4c) both for the cases r = 4 and r = 3. On the contrary, the damage indices 

related to the configurations that are equal to the baseline state (i.e. U1c-U3c) are 

below the thresholds both using the index 𝑀𝐷𝑖𝑑
∗  and the index 𝑒𝑀𝐴𝐶𝑖𝑑

∗  and both for r 

= 4 and r = 3. These configurations are correctly classified as undamaged.  

 

 
Figure 6.19. Damage detection using Mahalanobis distance (first experimental test - 

Bernal’s PFM): a) r = 4; b) r = 3. 
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Figure 6.20. Damage detection using the error on MACid (first experimental test –  

Bernal’s PFM): a) r = 4; b) r = 3. 

 

The results of the damage detection are now presented for the cases in which 

the PFM procedure by Duan et al. [2005] was applied. It is worth noting that, referring 

to the experimental test, the results of the damage detection using the Duan’s PFM are 

presented for all the possible subsets of modes of the structure (i.e. for r = 4,3,2,1, 

where r is the number of modes included in the calculations). This means that, using 

the data of the experimental test, the procedure by Duan et al. [2005] was also adopted 

in the cases r = 3,4. These last two cases, as shown in previous paragraphs, are cases 

where the procedure by Bernal [2001] can be applied and this procedure is the 

preferred option. The reason for performing the analyses using the Duan’s PFM 

technique also in the cases r = 3,4 will be clarified in next section, where the results 

of the first test (in which the masses are unchanged before and after damage) will be 

compared with the results of the second test (in which mass variations are present 

between the undamaged and the possibly damaged states).  

Referring to the first experimental test and considering the Duan’s PFM 

technique in the calculations, the results of the damage detection using the index based 

on Mahalanobis distance are reported in Fig. 6.21, while the results obtained using the 

error on the MACid are reported in Fig. 6.22. As shown in Figs. 6.21 and 6.22, for this 

experimental test (where the masses are unchanged before and after damage) both 
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indices evaluated using the Duan’s PFM and for all the possible subsets of modes 

included in the calculations (i.e. r = 4,3,2,1) are able to separate the group of structures 

that are undamaged (i.e. U1c-U3c) from the group of structures that are damaged (i.e. 

D1c-D4c). This means that for the considered structure and for the considered 

configurations (which are all characterized by the same structural masses) the results 

of the damage detection obtained using the proposed approach with the PFM 

procedure by Duan et al. [2005] do not depend in general on the number of modes 

included in the calculations. This is an important observation that will be considered 

also in next section.  

 

  

Figure 6.21. Damage detection using Mahalanobis distance (first experimental test -  

Duan’s PFM): a) r = 4; b) r = 3; c) r = 2; d) r = 1. 
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Figure 6.22. Damage detection using the error on MACid (first experimental test –  

Duan’s PFM): a) r = 4; b) r = 3; c) r = 2; d) r = 1. 
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inspection phase) considered in the second test are different from the configurations 

related to the first test. In fact, the majority of the testing configurations in the second 

test are characterized by mass modifications with respect to the structural 

configuration that is assumed as the baseline state. Of course, similarly to the first 

experimental test, some of the testing configurations in the second test are also 

characterized by stiffness modifications with respect to the baseline structure. The 

second experimental test was thus planned and executed to apply the proposed damage 

detection approach in the case in which the masses of the structure are varied before 

and after damage.  

Similarly to the first test, the training data set was obtained by performing 30 

vibration tests on the original or baseline structure using the hammer. Then, the frame 

was tested again, and sixteen configurations were considered as possibly damaged 

structures. These configurations are described in Tables 6.5, 6.6. It is worth 

mentioning that Table 6.5 describes the structural configurations in terms of the 

stiffness distribution, while Table 6.6 describes the structural configurations in terms 

of the mass distribution. According to Table 6.5, the first eight configurations (U0, 

U1, U2, U3, U4, U5, U6, U7) are undamaged configurations. For such configurations 

the stiffness of each story is equal to the corresponding story stiffness in the structure 

assumed as the baseline state. The remaining eight configurations (D0, D1, D2, D3, 

D4, D5, D6, D7) are damaged configurations. These configurations were obtained by 

replacing two columns at the third story of the structure with other two columns with 

reduced cross sections (referring to Fig. 6.13, these columns are in positions C, D). 

As already mentioned, this modification is approximately equivalent to the operation 

of reducing by 30% the story stiffness of the original structure at the third story.  

 

Configurations State Description 

U0, U1, U2, U3, U4, U5, U6, U7 Undamaged No stiffness reductions 

   

D0, D1, D2, D3, D4, D5, D6, D7 Damaged 30% stiffness reduction at 3rd story 

Table 6.5.  Testing configurations related to the second experimental test . 
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Conf. U0*,D0* U1,D1 U2,D2 U3,D3 U4,D4 U5,D5 U6,D6 U7,D7 

m4 34.52 59.92 34.52 34.52 34.52 59.92 34.52 34.52 

m3 42.82 42.82 68.22 42.82 42.82 42.82 68.22 84.52 

m2 42.82 42.82 42.82 68.22 42.82 59.12 42.82 42.82 

m1 42.82 42.82 42.82 42.82 68.22 42.82 59.12 42.82 

mTOT 162.98 188.38 188.38 188.38 188.38 204.68 204.68 204.68 
* configuration with a mass distribution equal to the one of the structure used to obtain the training 

data set 

Table 6.6.  Distribution of the structural masses [kg] related to the testing configurations 

considered in the second experimental test. 

 

Each configuration indicated by a different number in the acronym (i.e. 

0,1,2,3,4,5,6,7) is characterized by a different distribution of the structural masses, as 

described in Table 6.6. The configurations U0 and D0 have the same mass distribution 

of the structure assumed as the baseline structure, while the other configurations were 

tested with additional masses. As already mentioned in Section 6.4.2, the increase in 

the structural masses was created by adding on the structure some metallic bricks. It 

is important to underline that, for all the tested configurations, the added masses were 

positioned on the different floors of the structure in a configuration that is plan-

symmetric with respect to the z direction (Fig. 6.13). This direction is the weak 

direction of the structure and the direction considered in the vibration tests. The 

masses of each story of the structure were measured and determined in the laboratory, 

and these story masses are reported in Table 6.6 to describe the configurations that 

were tested. Of course, in the calculations for damage detection the values of the floor 

masses were assumed as unknown, and the mass distributions were extracted from the 

data using the proposed implementation of the PFM procedures originally defined by 

Bernal [2001] and Duan et al. [2005]. It is worth noting that the majority of the tested 

configurations are characterized by additional masses with respect to the original 

structure. Therefore, the scaling factors on the vectors of the proportional MF-based 

interstory drifts related to the inspection phase (theoretically equal to the total mass 

of the structure, according to the approach proposed for the estimation of the 

proportional deflections) are in general different from the scaling factors on the 

damage sensitive features related to the baseline state. The scenario analyzed in this 



Chapter 6                  Damage detection with minimal or no a-priori information on the masses 

348 

 

second experimental test is thus similar to the scenario that was analyzed in Section 

6.4.1.2 using the numerical model of a shear building structure and the Monte Carlo 

simulation. The values of the total mass for the testing configurations considered in 

the second experimental test are reported in the last row of Table 6.6.  

As already done for the first experimental test, the vectors of the proportional 

MF-based interstory drifts were calculated using the procedure described in Section 

6.2.2. The damage indices proposed in Section 6.3.2 (i.e. the index based on 

Mahalanobis distance and the error on the MACid) were then calculated for each 

configuration that is described in Tables 6.5, 6.6. 

The results of the output-only damage detection are presented at first for the 

cases in which the PFM technique by Bernal [2001] was applied. As already done in 

the analyses related to the first experimental test, the proposed approach and the 

Bernal’s PFM technique were applied for a number of modes included in the 

calculations equal to r = 3 and r = 4 (where again the case r = 3 represents the 

minimum number of modes that has to be considered to apply the Bernal’s PFM 

technique, while in the case r = 4 all the prevalent longitudinal modes of the structure 

in the direction considered in the analyses were taken into account).  

The results obtained by calculating the damage index based on Mahalanobis 

distance (using the PFM procedure by Bernal) are presented in Fig. 6.23. In this figure, 

the bar plot on the left-hand side is related to the results obtained for the case r = 4 

(Fig. 6.23a), while the bar plot reported on the right-hand side is related to calculations 

performed using a number of modes r = 3 (Fig. 6.23b). The damage index based on 

Mahalanobis distance was calculated using Eq. (6.58). It is worth noting that 

according to the proposed approach the relationship between the masses in the 

undamaged and in the possibly damaged states has to be known to apply the index 

based on Mahalanobis distance. According to Eq. (6.58), the calculations were thus 

performed using the total-mass-ratio w (minimal a-priori information) to scale the 

vectors of the proportional MF-based interstory drifts related to the inspection phase. 

By performing this operation, the scaling factors on the DSFs related to the 

undamaged and the possibly damaged states (which are initially different because the 

masses are varied before and after damage in this experimental test) were made 
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comparable. Otherwise, if this operation is not performed the index based on 

Mahalanobis distance can not be correctly applied, as already demonstrated in the 

numerical analysis based on Monte Carlo simulation presented in Section 6.4.1.2. As 

evident in Fig. 6.23, the damage index based on Mahalanobis distance is able to 

separate the group of the undamaged structures (U0-U7) from the group of the 

damaged structures (D0-D7) both considering a number of modes r = 4 (Fig. 6.23a) 

and r = 3 (Fig. 6.23b). It is worth noting that, referring to the case r = 3 (i.e. when 

considering a limited number of modes), some false positive results were obtained. 

This is evident in Fig. 6.23b where, referring to some configurations that were tested 

with added masses and that are undamaged, the values of the damage index based on 

Mahalanobis distance are slightly higher than the threshold (indicated by the red line 

in the bar plot). In any case, the values of the index obtained for such false positives 

are remarkably lower than the values of the index obtained for the damaged 

configurations, as shown in Fig. 6.23b.  

The results obtained by calculating the error on the Modal Assurance Criterion 

applied on the vectors of proportional MF-based interstory drifts (using the PFM 

procedure by Bernal) are presented in Fig. 6.24. Again, in this figure, the bar plot on 

the left-hand side is related to the results obtained for the case r = 4 (Fig. 6.24a), while 

the bar plot reported on the right-hand side is related to calculations performed using 

a number of modes r = 3 (Fig. 6.24b). Both for the cases r = 4 and r = 3, the 𝑒𝑀𝐴𝐶𝑖𝑑
∗  

is able to identify and separate the group of configurations that are damaged (D0-D7) 

from the undamaged configurations (U0-U7). This result was obtained by calculating 

the 𝑒𝑀𝐴𝐶𝑖𝑑
∗  according to the formulation presented in Section 6.3.2.2, and the 

calculations were performed without any a-priori information on the structural masses 

and without any information on the relationship between the masses in the undamaged 

and the possibly damaged states. It is worth noting that two false positive results were 

obtained using 𝑒𝑀𝐴𝐶𝑖𝑑
∗  for the case r = 3 (Fig. 6.24b) – i.e. for configurations U3 and 

U5. The values of 𝑒𝑀𝐴𝐶𝑖𝑑
∗  related to configurations U3 and U5 calculated for r = 3 

are, however, very close to the threshold, and they are remarkably lower than the 

values of 𝑒𝑀𝐴𝐶𝑖𝑑
∗  obtained for the damaged configurations. The results obtained using 

the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  (calculated for the cases r =4,3 using the Bernal’s PFM technique 

– Fig. 6.24) can be compared with the corresponding results obtained using the index 
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based on Mahalanobis distance (6.23). For the case r = 4 (i.e. using all the modes in 

the calculations) no false positives were obtained both for the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  (Fig. 

6.24a) and the index based on Mahalanobis distance (6.23a). For the case r = 3 (i.e. 

using a limited number of modes in the calculations), the number of the false positives 

obtained using the error on the 𝑀𝐴𝐶𝑖𝑑
∗  (Fig. 6.24b) is lower than the number of the 

false positives obtained using the index based on Mahalanobis distance (Fig. 6.23b).  

 
Figure 6.23. Damage detection using Mahalanobis distance (second experimental test - 

Bernal’s PFM): a) r = 4; b) r = 3. 

  
Figure 6.24. Damage detection using the error on MAC id (second experimental test - 

Bernal’s PFM): a) r = 4; b) r = 3. 
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The results of the damage detection for the cases in which the PFM procedure 

by Duan et al. [2005] was applied are presented herein. It is worth noting that, 

referring to the second experimental test characterized by mass variations before and 

after damage and as already done for the first test, the damage detection using the 

Duan’s PFM technique was performed for all the possible subsets of structural modes 

of the steel frame structure (i.e. for r = 4,3,2,1, where r is the number of modes 

included in the calculations).  

The results obtained using the damage index based on Mahalanobis distance 

(and the Duan’s PFM technique) are reported in Fig. 6.25, where each plot is related 

to a different case (r = 4, r = 3, r = 2, or r = 1). The evaluation of the damage index 

based on Mahalanobis distance was performed using the additional scaling operation 

on the DSFs that is based on the knowledge of the total-mass-ratio w (according to 

Eq. 6.58). This was done in an attempt to guarantee the compatibility between the 

scaling factors on the vectors of the proportional MF-based interstory drifts related to 

the undamaged and the possibly damaged states. As shown in Fig. 6.25, a separation 

between the undamaged configurations (U0-U7) and the damaged configurations (D0-

D7) is evident only when all the modes of the structure are considered (i.e. for r = 4, 

Fig. 6.25a). In Fig. 6.25a, in fact, all the configurations from D0 to D7 are classified 

as damaged, and only one false positive result was obtained (i.e. the damage index 

related to configuration U4 is slightly higher than the threshold value). On the 

contrary, referring to the cases in which the calculations were performed using a 

limited number of modes (i.e. cases r = 3,2,1 reported in Fig. 6.25b, 6.25c, and 6.25d, 

respectively) there is not a clear separation between the undamaged and the damaged 

configurations. A possible interpretation on the results that were obtained in such 

cases will be provided later in this section after presenting the results of the damage 

detection using the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗ . At this point the results obtained for the cases r = 

4,3 using the Duan’s PFM technique can be compared with the corresponding results 

obtained using the Bernal’s PFM technique. For the case r = 4 no false positives were 

obtained using the index MDid and the Bernal’s PFM technique (Fig. 6.23a), while 

only one false positive was obtained using the Duan’s PFM technique (Fig. 6.25a). 

For the case r = 4 thus similar results were obtained using either one technique or the 

other. On the contrary, for r = 3 clear benefits are evident when considering the 
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Bernal’s PFM technique (Fig. 6.23b) instead of the Duan’s PFM procedure (Fig. 

6.25b).   

 

 

 

Figure 6.25. Damage detection using Mahalanobis distance (second experimental test - 

Duan’s PFM): a) r = 4; b) r = 3; c) r = 2; d) r = 1. 
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The results of the damage detection performed using the damage index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  

and by considering the Duan’s PFM technique are reported in Fig. 6.26 (for the 

different cases r = 4, r = 3, r = 2, or r = 1). According to the proposed approach, the 

index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  was calculated without any a-priori information on the structural 

masses. As shown in Fig. 6.26, the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  is able to clearly separate the 

undamaged and the damaged configurations when all the structural modes of the steel 

frame structure are considered (i.e. for r = 4, Fig. 6.26a), and good results were also 

obtained using a number of modes equal to r = 3 (Fig. 6.26b). Then by considering 

the cases r = 2 and r = 1 (Fig. 6.26c, 6.26d, respectively), it is clear that reducing the 

number of modes included in the calculations the separation between the undamaged 

and the damaged configurations tends to be lost. It is worth noting, however, that for 

the case r = 2 all the damage indices evaluated for the damaged configurations (D0-

D7) are higher than the indices related to the undamaged configurations (U0-U7). On 

the contrary, this is not true for the case r = 1 (Fig. 6.26d) where some values of the 

index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  related to undamaged configurations are equal or higher than some 

values of the index related to damaged configurations. A possible interpretation on 

the above-mentioned results that were obtained for the cases r = 2,1 will be provided 

in next paragraphs. At this point the results obtained using the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  and the 

Duan’s PFM technique for the cases r = 4,3 can be compared with corresponding 

results obtained with the Bernal’s PFM technique. For r = 4 very similar results were 

obtained using the two PFM techniques (as shown in Fig. 6.24a and Fig. 6.26a). For 

r = 3 the number of false positives obtained using the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  and the Bernal’s 

PFM technique (Fig. 6.24b) are lower than the ones obtained with the Duan’s PFM 

technique (Fig. 6.26b). Finally, the results obtained using the index 𝑒𝑀𝐴𝐶𝑖𝑑
∗  and the 

Duan’s PFM technique for the cases r = 2,1 (which are cases where the Bernal’s PFM 

technique can not be applied) can be compared with corresponding results obtained 

using the index based on Mahalanobis distance. For the case r = 2, the separation 

between the undamaged and the damaged configurations is more clear using the index 

𝑒𝑀𝐴𝐶𝑖𝑑
∗ , as evident if one compares Fig. 6.26c with Fig. 6.25c. On the contrary, for 

the case r = 1 the separation between the two groups of structural configurations 

(undamaged and damaged) is not evident using both indices.  
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Figure 6.26. Damage detection using the error on MACid (second experimental test –  

Duan’s PFM): a) r = 4; b) r = 3; c) r = 2; d) r = 1. 
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with the Duan’s PFM technique are comparable with the corresponding results 

obtained with the Bernal’s PFM technique. When a limited number of modes is 

considered and both the two PFM’s techniques can be applied, better results were 

obtained using the Bernal’s PFM technique instead of the Duan’s PFM procedure (this 

observation is evident especially for the damage index based on Mahalanobis 

distance). For the cases in which the procedure by Duan et al. [2005] is the only option 

that can be applied (i.e. when the condition expressed by Eq. 6.8 is not fulfilled 

because a very limited number of modes is considered, and thus the PFM technique 

by Bernal [2001] can not be applied) a clear separation between the undamaged and 

the damaged configurations was not found by evaluating both damage indices (𝑀𝐷𝑖𝑑
∗  

and 𝑒𝑀𝐴𝐶𝑖𝑑
∗ ) for this experimental test with mass variations. It is important to 

underline that this last result was obtained in the second experimental test where mass 

variations are present between the undamaged and the possibly damaged structures. 

This result was not found, on the contrary, in the first experimental test where the 

structural masses are unchanged before and after damage. As shown in Section 

6.4.2.1, in fact, both the two damage indices evaluated using the Duan’s PFM 

technique on the data of the first experimental test provided a correct identification of 

the damaged configurations for all the different cases (r = 4,3,2,1) characterized by 

different subsets of modes included in the calculations (Figs. 6.21 and 6.22). The 

differences that were obtained in the results related to the two experimental tests  can 

be explained by considering the two following effects.  

The first effect is related to the fact that, as already mentioned in Section 6.2.1, 

an approximated estimate of the proportional mass matrix (PMM) is obtained when 

the Duan’s PFM technique is applied on a truncated set of modal parameters (i.e. using 

a limited number of structural modes). In general, the lower the value of the parameter 

r, the higher the approximations that are introduced on the estimated PMM. This is 

because, as already discussed in Section 6.2.1, according to the Duan’s PFM 

procedure pseudo inverse operations are performed on truncated mode shape matrices 

to obtain the mass matrix of the dummy structure. Then, it has to be considered that 

having approximations in the proportional mass matrix estimated from the data (which 

is used to normalize the mode shapes that are included in the calculations of the modal 

flexibility matrices) leads to the following effect. The higher the approximations on 
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the proportional mass matrix, the higher the approximations introduced on the 

effective scaling factors related to the vectors of the proportional MF-based interstory 

drifts (i.e. the damage sensitive features). This means that both for the undamaged and 

the possibly damaged structures the effective scaling factors are approximated with 

respect to the theoretical scaling factors (which, according to the proposed approach, 

are equal to the total mass of the structure). Of course, the procedure adopted to 

guarantee the compatibility between the scaling factors related to the DSFs in the two 

states involved in the damage detection process (i.e. performing an additional scaling 

operation on the DSFs using the total-mass-ratio w) works adequately if the 

approximations on the effective scaling factors are low. Otherwise, if higher 

approximations affect the effective scaling factors on the DSFs, then problems may 

arise when the procedure to ensure the compatibility of such scaling factors is applied. 

It is considered that this effect is the main reason for which a clear separation between 

the undamaged and the damaged configurations of the second experimental test (with 

mass variations) was not found using the damage index based on Mahalanobis 

distance and the Duan’s PFM technique in the cases characterized by a limited number 

of modes (i.e. the cases r = 3,2,1, shown in Fig. 6.25).   

A second effect must be considered to interpret and understand the results 

obtained for the second experimental test (with mass variations before and after 

damage). Of course, the problem described in the previous paragraph (i.e. the problem 

related to the compatibility of the scaling factors on the DSFs) does not affect the 

results obtained using the index eMACid. As already shown both in the analytical 

formulation and in the numerical analyses, this index in fact is not sensitive to the 

scaling factors on the DSFs. However, both the index based on Mahalanobis distance 

and the index based on the evaluation of the error in the MACid are subjected to the 

effects of the modal (or flexibility) truncation errors when the calculations are 

performed using a limited number of modes (i.e. for r < n, where n is the total number 

of DOFs of the MDOF structure). This is because, by considering two structures (one 

undamaged and one that is potentially damaged) any damage metric evaluated in the 

modal flexibility-based approach by considering a number of structural modes equal 

to r (with r < n) can be in general different from the same metric evaluated using all 

the structural modes (i.e. r = n). The difference between the metric evaluated for r < 
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n and the metric evaluated for r = n can be considered as a modal truncation error on 

the damage metric. The modal truncation effects on the damage metrics are, of course, 

related to the modal truncation errors that were discussed in Chapter 4. However, one 

important difference between the truncation effects considered in Chapter 4 and the 

ones related to this chapter must be highlighted. In Chapter 4 the truncation errors 

were evaluated on quantities obtained in the modal flexibility approach (e.g. MF-

based deflections and interstory drifts) that are related to a single structural state (as 

shown in Chapter 4, the errors were evaluated between a truncated solution obtained 

for r < n and the exact solution – i.e. r = n). When considering, on the contrary, the 

damage metrics the modal truncation effects are generated by the fact that the metric 

is computed considering two structural states and two damage sensitive features, and 

each DSF represents a truncated solution calculated using a limited number of modes.  

This premise on the modal truncation errors related to the damage metrics can 

be used to interpret the results obtained for the two experimental tests using the index 

eMACid and considering all the possible subsets of modes included in the calculations 

r = 3,2,1 (when the Duan’s PFM technique was applied). The effects of the modal 

truncation errors on the considered damage index are clearly evident in Fig. 6.26, 

where the results of the damage detection performed on the data of the second 

experimental test (characterized by mass variations before and after damage) are 

presented. As evident in the figure, the effects of the modal truncation errors increase 

by considering lower values of the parameter r, and for the case r = 1 the separation 

between the undamaged and the damaged configurations is lost.  On the contrary, as 

shown in Fig. 6.22, the modal truncation effects on the damage metric are much less 

evident in the results of eMACid obtained for the first experimental test (where the 

masses of the structure are unchanged before and after damage). In such case, the 

values of the damage index obtained for r = 3,2,1 are similar to the corresponding 

values obtained for the case r = 4, and using the damage index the undamaged 

configurations can be clearly distinguished from the damaged ones for any value of 

the parameter r. The modal truncation errors have thus negatively affected the 

considered damage metric only in the case in which there are mass variations before 

and after damage.  
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One final observation on the truncation errors related to the damaged metrics 

must be made to conclude this section. Of course, modal truncation effects are also 

present in the damage detection results obtained using the proposed approach and the 

Bernal’s PFM technique on the data of the second experimental test. However, the 

Bernal’s PFM technique can only be applied when a sufficient number of modes is 

considered (i.e. when the condition expressed by Eq. 6.8 is fulfilled), and thus in such 

case the effects of the modal truncation errors are relatively low.  
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Chapter 7 

Conclusions  

 

 

 

The present dissertation has been developed in the area of research that deals with the 

application of the vibration-based structural health monitoring and damage detection 

techniques on civil structures. Such techniques can be conveniently applied on civil 

structures that are tested, for example, under ambient vibrations and during their 

normal operating conditions. The types of structures that have been considered in the 

thesis are mainly building structures. This choice was done since the number of the 

damage detection studies that have been carried out in the literature for such structures 

is lower than the number of studies related to other structures, such as bridge structures 

[Koo et al., 2010].   

Modal flexibility (MF)-based approaches for damage detection are the 

methods that have been considered in the dissertation. Specifically, the thesis has 

focused on a subclass of such modal flexibility (MF)-based methods where the main 

operation that has to be performed in the damage detection process is to determine the 

modal flexibility-based deflections of the structures. Such deflections are calculated 

starting from modal flexibility-models of the structures estimated from vibration tests 

and by applying loads that are termed “inspection loads”. The modal flexibility-based 

deflections are considered as important sources of information for detecting and 

localizing damage. 



Chapter 7                                                                                                              Conclusions 

360 

 

The Uniform Load Surface method [Zhang, 1993; Zhang & Aktan, 1995; 

Zhang & Aktan, 1998] and the method proposed by [Koo et al., 2010; Koo et al., 2011; 

Sung et al., 2012], which in the present thesis is referred to as Positive Shear 

Inspection Load (PSIL) method, are the modal flexibility-based methods that 

represent the theoretical background for the dissertation. The first approach was 

applied mainly on bridge structures. On the contrary, the second method was 

specifically developed for building structures, and the thesis has thus focused mainly 

on this second method. The fundamental characteristics of the PSIL method, 

extensively described in Chapters 1 and 3, are briefly summarized herein. a) The 

method is formulated for building structures that can be modeled as shear building 

structures. b) The modal flexibility-based deflections of the building structures have 

to be calculated by applying special loads termed Positive Shear Inspection Loads 

(PSIL). Such loads are loads that induce positive shear forces in all the stories of the 

shear building structure [Koo et al., 2010], and, among all the potential PSIL loads, 

the authors suggest using a uniform load as the inspection load (which is the same 

load adopted in the Uniform Load Surface method [Zhang & Aktan, 1998]). c) The 

parameters considered as damage sensitive features in the PSIL method are the 

interstory drifts computed from the modal flexibility-based deflections.  

The dissertation has focused on three main problems, which have been defined 

and analyzed after having recognized potential research gaps in the literature. 

Research investigations have been carried out and approaches have been proposed in 

an attempt to address the three above-mentioned problems. The main conclusions 

drawn for each of the three analyzed problems are reported in the following.  

 

7.1 Conclusions on the three main problems analyzed in the thesis  

7.1.1 Problem no. 1: Truncation error analysis on modal flexibility-based 

deflections 

The first problem, considered in the thesis, has concerned the study of the truncation 

errors that are introduced on modal flexibility-based deflections of building structures 

when such deflections are estimated using only a subset of structural modes.  Having 
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the necessity of dealing with a limited number of modes is, in fact, a common situation 

that occurs in practical applications of modal testing on real-life structures. Referring 

to the topic of truncation errors analysis on modal flexibility-based deflections, the 

research investigations were carried out in the thesis to attain two general purposes: 

predicting or reducing the truncation effects on the modal flexibility-based deflections 

of building structures.  

 

Prediction of the modal truncation effects   

In the thesis an approach for truncation error analysis has been proposed to have an 

indication of the truncation effects expected on the modal flexibility-based deflections 

of building structures evaluated for inspection loads with generic distributions. The 

definition of an index termed load participation factor (LPF) is the fundamental aspect 

that characterizes the proposed approach. In particular, the approach was investigated 

to continue the research presented in the work by [Zhang & Aktan, 1998], where 

truncation error studies were performed on structural deflections evaluated for a 

uniform inspection load and where a criterion based on mass participation factor 

(MPF) is reported.   

The index defined as load participation factor (LPF) represents basically the 

relative contribution of each mode of the considered structure to the modal flexibility-

based deflection. The expression of the load participation factor was deduced 

analytically by performing simple algebraic and matrix operations on the relationships 

between the modal flexibility matrices, the vectors of the modal flexibility-based 

deflections, and the vectors of the applied loads (as shown in Section 4.2). According 

to the expression of the load participation factor, this index evaluated for one mode 

depends on the mode shape of that mode, on the load applied to evaluate the 

deflection, and on the distribution of the structural masses.  

The main idea behind the proposed approach is that by calculating the 

contribution (i.e. the cumulative load participation factor) of the modes included in 

the truncated deflection, the relative contribution of the missing modes (i.e. the modes 

not included in the calculations) can be then determined. This is done by considering 

the simple principle for which the sum of the two contributions related, respectively, 
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to the modes included in the calculations and to the missing modes is equal to one. 

Finally, the cumulative load participation factor of the modes not included in the 

truncated deflection can be used to obtain an a-priori indication of the truncation 

effects expected on the modal flexibility-based deflection.  

The proposed approach for truncation error analysis based on the load 

participation factor was verified using both numerical analyses and an experimental 

case study. Referring to the former, the analyses were conducted on numerical models 

of plane shear building structures, and a Monte Carlo simulation was adopted to 

consider in the analyses several structural cases where both the masses of the structure 

and the applied inspection loads are characterized by generic distributions. The 

truncation errors were computed by directly comparing truncated and non-truncated 

deflections using different criteria (e.g. single-DOF errors, maximum or root-mean-

square values related to the errors in the single components of the deflections). On the 

contrary, according to the proposed approach, the load participation factors were 

computed only for the modes used for calculating the truncated deflection (i.e. a 

limited subset of modes). The results showed that the proposed load participation 

factors are highly correlated with the truncation errors on the modal flexibility-based 

deflections. On the contrary, for the considered structural cases no correlations were 

found between the truncation errors and the mass participation factors.  

The above-mentioned result does not imply that the approach reported in the 

work by [Zhang & Aktan, 1998] and based on the mass participation factor is not 

correct. The important point that must be highlighted is that in the study presented in 

this dissertation a more general situation than the one presumably analyzed by [Zhang 

& Aktan, 1998] has been taken into account. Here the observation is made in 

hypothetical terms because, as already mentioned in Chapter 4, the criterion based on 

mass participation factor is mentioned in the work by [Zhang & Aktan, 1998] but it is 

not applied in the numerical analyses performed by the authors. For example, if one 

considers a structure with a uniform mass distribution (such as a simple bridge 

structure with a uniform cross section, as the one considered in [Zhang & Aktan, 

1998]) and the deflections due to a uniform load, then the criterion based on mass 

participation factor is perfectly suitable for performing the truncation error study. 

However, in a more general case in which the distribution of the masses of the 



Chapter 7                                                                                                              Conclusions 

363 

 

structure is different from the distribution of the applied load, then one should refer 

to the load participation factor to perform the truncation error study, instead of the 

mass participation factor. The load participation factor, in fact, is an index for which 

the contribution related to the applied load and the contribution related to the 

structural masses are clearly separated and identifiable (as evident if one analyzes the 

analytical formulation of the LPF index, see Section 4.2). This is, of course, not true 

for the mass participation factor which depends exclusively on the structural masses 

and does not depend on the load that is applied to calculate the modal flexibility-based 

deflection. Referring to the topic of truncation error study on modal flexibility-based 

deflections, the proposed criterion based on load participation factor can thus be seen 

as a generalization of the criterion based on mass participation factor [Zhang & Aktan, 

1998].  

An important feature of the investigated LPF-based approach was found when 

the criterion has been applied in the numerical analyses. When considering plane shear 

building structures and the modal flexibility-based deflections of such structures due 

to positive shear inspection loads with random distributions, the LPF-based approach 

can be used not only to have an indication of the amount of the truncation effects 

expected on the modal flexibility-based deflections. The approach can be also used to 

have a quantitative measure (i.e. an a-priori estimate) of the maximum value of the 

single-DOF truncation errors expected on the deflections. Referring to this point, it is 

worth noting that adopting an index that has to be evaluated for each structural mode 

to obtain such a-priori estimate of the truncation errors is an aspect that was not 

considered in the work by [Zhang & Aktan, 1998]. In fact, the criterion based on mass 

participation factor is suggested by [Zhang & Aktan, 1998] only to have an indication 

of the amount of the modal truncation effects. 

The property of the load participation factor mentioned in previous paragraph 

can be explained as follows. As shown in Chapter 4, the load participation factor was 

developed at first by considering the general expression of the modal flexibility matrix 

of a generic structural system with a diagonal mass matrix (Section 4.2). Then, after 

having derived the analytical expressions for calculating the truncation errors on the 

modal flexibility-based interstory drifts of shear building structures (Section 4.2.1), it 

was found that the expression of the truncation error related to the lower DOF of the 



Chapter 7                                                                                                              Conclusions 

364 

 

structure is equivalent to the expression of the load participation factor. As shown in 

the analyses presented in Chapter 4, when considering plane shear building structures 

and the modal flexibility-based deflections of such structures due to positive shear 

inspection loads, the truncation errors have a significant impact on the displacement 

of the lower DOF. In other words, in most of the cases the maximum value of the 

truncation errors on the single components of the deflections occur at the first DOF, 

and thus the load participation factor can be used to obtain a prediction of such 

maximum error. The validity of the LPF-based approach and of the use of such 

approach to predict the maximum truncation errors on the modal flexibility-based 

deflections of shear building structures was also confirmed using the data of an 

ambient vibration test that was performed on a steel frame structure1.  

As a final remark, it should be mentioned that the LPF-based approach 

proposed for truncation error analysis on modal flexibility-based deflections has been 

applied in the thesis on building structures that can be modeled as plane shear building 

structures. In future studies, this approach can be applied, for example, on more 

complex building structures. Moreover, the application of the LPF-based approach to 

other types of structures may be also considered in the future.  

 

Reduction of the modal truncation effects  

Referring to the topic of truncation error analysis, research investigations were also 

carried out in an attempt to reduce the truncation errors on the modal flexibility-based 

deflections of plane shear building structures evaluated for a uniform inspection load. 

As shown by the numerical analyses presented in Chapter 4, such truncation errors 

can not be in general considered as negligible especially for structures with mass 

irregularities. The attempt to reduce the above-mentioned truncation errors was 

pursued by considering inspection loads different from the uniform load.  

As discussed in Section 4.4.1, among the different alternative loads that were 

taken into account in the initial phase of the research, a load that is proportional to the 

                                                 
1 The considered data belong to the experimental phase of the benchmark studies for 

vibration-based damage detection that were sponsored by the IASC-ASCE Task Group for 

Structural Health Monitoring [Dyke et al., 2003; Ventura et al., 2003; Dyke, 2011].  
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mass distribution of the structure showed interesting results. In the thesis this load is 

referred to as mass proportional load (MPL), and it has a special property. If the 

proposed approach for truncation error analysis based on load participation factor 

(LPF) is applied by considering a mass proportional load, then the expression of the 

load participation factor is equal to the expression of the mass participation factor 

(MPF). As already mentioned in previous section, this last index is the one adopted in 

the criterion for truncation error analysis mentioned in the work by [Zhang & Aktan, 

1998].  

In the numerical analyses presented in Section 4.4.2, various configurations of 

models of plane shear building structures with increasing amounts of mass 

irregularities were considered, and the truncation errors on the components of the 

deflections due to the mass proportional load (MPL) were compared with the errors 

on the deflections due to the uniform load (UL). The analyses were also performed by 

comparing the truncation errors on the interstory drifts related to such modal 

flexibility-based deflections. Referring to both the two types of truncation errors (i.e. 

the errors on the components of the modal flexibility-based deflections and the errors 

on the interstory drifts), the results showed that for the large majority of the analyzed 

configurations, the truncation errors due to the mass proportional load are lower 

compared to those related to the uniform load. In the few cases where the result was 

not found, the errors related to the two loads were comparable.  

The results of the comparison between the mass proportional load and the 

uniform load suggest that in principle in real-life applications of structural 

identification and damage detection for structures with mass irregularities, a mass 

proportional load might be considered as an alternative to the uniform load, with the 

aim of reducing the truncation errors on the modal flexibility-based deflections. In the 

analyses performed in the present dissertation, however, the application of a mass 

proportional load in the damage detection procedures based on modal flexibility-based 

deflections has not been considered and investigated because some inherent 

limitations related to such potential approach have been recognized.  

For example, in the thesis one case where the effects of the modal truncation 

errors have affected the results of the damage detection for structures with mass 
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irregularities has been shown in Section 6.4.2.2 of Chapter 6. For the considered steel 

frame structure and only in the experimental test where mass variations are present 

before and after damage, the modal flexibility-based indices for damage detection 

evaluated for a very limited number of the modes have been negatively affected by 

modal truncation errors. In such case, one might question whether the use of a mass 

proportional load (MPL) as the inspection load would have reduced the effects of the 

modal truncation errors on the damage metrics. This potential approach was 

considered but not applied because of the following limitation of the mass 

proportional load. A mass proportional load is a potential inspection load that is 

system dependent. Thus, in the general case in which mass variations are present 

before and after damage, the potential mass proportional inspection loads are different 

for the two states involved in the damage detection process. However, a basic 

assumption in the original formulation of the Positive Shear Inspection Load (PSIL) 

method [Koo et al., 2010] for damage detection is that the same inspection load (for 

example, a uniform load) has to be applied both to the undamaged and to the possibly 

damaged structures. This requirement, as shown in Chapter 3, guarantees that for shear 

building structures eventual changes in the modal flexibility-based deflections can be 

associated to the presence and the location of the damage. On the contrary, if the 

inspection loads are varied for the two states involved in the damage detection process, 

changes in the modal flexibility-based deflections might be due not only to eventual 

damage present in the structure, but also due to the variations in the loads. This is, of 

course, an undesirable situation that might lead to misleading results in the damage 

detection process.  

 

7.1.2  Problem no. 2: Damage detection on 3D building structures using modal 

flexibility (MF) based deflections 

In the context of the second main problem considered in the thesis, research investigations 

were carried out in an attempt to extend the Positive Shear Inspection Load (PSIL) 

method for damage detection [Koo et al., 2010], originally formulated to be applied on 

building structures that can be modeled as plane structures, to the case of more complex 

building structures. These research investigations were carried out by considering simple 
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rectangular “box type” 3D building structures, characterized by either plan-symmetric or 

plan-asymmetric distributions of the story stiffness.  

At first, the original formulation of the Positive Shear Inspection Load method 

was modified to define an approach that can be applied on 3D shear building structures, 

instead of plane shear building structures. According to the investigated methodology, 

modal flexibility matrices of 3D building structures are estimated from ambient vibration 

measurements. Then, the modal flexibility-based deflections of the considered building 

structure are evaluated by performing two separate analyses and by applying inspection 

loads in the two prevalent directions of the considered structure (which, as already 

mentioned, is a simple rectangular “box type” structure). The considered inspection loads 

are translational uniform loads (UL) applied in one or in the other direction of the building 

structure, and they are thus the same type of loads applied in the original formulation of 

the PSIL method. The components of the modal flexibility-based deflections related to 

one or the other direction of the structure are used for damage localization and 

quantification using the same criteria of the original formulation of the PSIL method.  

The above-mentioned methodology was applied on a one-third scale four-story 

steel frame structure that was tested under ambient vibrations. One of the main 

characteristics of the structure is the presence of diagonal wall braces (i.e. tie-rods) in 

each bay and at each story of that structure, and these elements can be easily removed to 

impose reductions in the story stiffness. The experimental tests were thus planned and 

performed for damage detection purposes, and the diagonal wall braces were removed 

from the structure in different structural configurations to simulate damaged conditions. 

The diagonal wall braces were removed in generic positions of the considered steel frame 

structure (i.e., at different stories and in different directions of the structure). Moreover, 

structural configurations that are characterized by either plan-symmetric or plan-

asymmetric distributions of the story stiffness at the damaged levels were considered. The 

results of the analyses performed using the modified version of the Positive Shear 

Inspection Load method showed that the damage can be localized by identifying the 

stories and the directions where the stiffness reductions have been applied. The 

effectiveness of the methodology was also evaluated by analyzing the results obtained for 

all the structural configurations that were tested, and a high success rate in damage 

localization was attained. Referring to the damage quantification, the results showed that 
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the amount of damage estimated for each damaged story and for a certain direction of the 

structure (using the damage severity index) is slightly overestimated when configurations 

with plan-asymmetric distributions of the story stiffness at the damaged stories are 

considered. This result was observed when the damage severity obtained for a plan-

asymmetric configuration with a certain number of braces removed in one direction was 

compared with the damage severity obtained for a plan-symmetric configuration with the 

same number of braces removed in the same direction. In particular, in the comparison 

the result obtained for the plan-symmetric configuration was considered as the target 

value of the damage severity since in such case (i.e. when considering a plan-symmetric 

structure) the adopted methodology is basically equivalent to the original formulation of 

the PSIL method.  

To correct the slight overestimations that were obtained in the damage 

quantification for the plan-asymmetric configurations, an attempt was made to develop 

an improved version of the damage detection methodology applicable on simple 

rectangular “box type” 3D building structures. In this improved version of the 

methodology the vectors of the applied inspection loads (indicated as “UL+M” loads) 

include not only translational components with unitary values applied in the prevalent 

directions of the structure (similarly to the uniform loads “UL”), but also torsional 

components (i.e., moments of torsion). Such moments of torsion are specifically 

introduced in the “UL+M” inspection loads to avoid relative rotations between the stories 

in the modal flexibility-based deflections of the structures, and they can be determined 

after having estimated the centers of stiffness of each story of the structure. This last 

operation, as also shown in the work by [Bernal & Gunes, 2004], is an operation that can 

be performed using information contained in the modal flexibility matrices estimated for 

the building structure. The improved version of the methodology was applied by 

performing numerical analyses on a model of a structure that is similar to the one 

considered in the ambient vibration tests. For structural configurations of that model 

characterized by a generic plan-asymmetric distribution of the story stiffness at the 

damaged story, the results showed that the methodology based on “UL+M” inspection 

loads can provide estimates of the damage severity that are more accurate than the ones 

obtained using the “UL” inspection loads.   
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The improved methodology based on “UL+M” inspection loads was also applied 

on the experimental data of the steel frame structure tested under ambient vibrations. In 

such case, however, the procedure for estimating the centers of stiffness of each story of 

the structure (successfully applied, on the contrary, in the numerical analyses) provided 

not accurate results.  This drawback, as discussed in Section 5.2.3, is most likely due to 

the modal truncation effects and the uncertainties that affect the modal flexibility matrices 

of the considered structure tested under ambient vibrations. Notwithstanding this 

drawback, the improved damage detection methodology based on “UL+M” inspection 

loads was applied, in any case, on the data of the ambient vibration tests by adopting an 

approximated and simplified approach to estimate the positions of the centers of stiffness 

of the structure from the modal flexibility matrices. This approximated approach is valid 

under certain simplifying assumptions and only for some configurations of the steel frame 

structure with certain characteristics (as shown in Section 5.2.3). For such configurations 

characterized by a plan-asymmetric distribution of the story stiffness at the damaged 

level, the results showed that the improved procedure based on “UL+M” inspection loads 

can correct the slight overestimations that are obtained, on the contrary, in the damage 

quantification when the “UL” inspection loads are applied.  

As a final remark, it should be mentioned that the research investigations related 

to the second problem analyzed in the thesis were carried out for simple rectangular “box 

type” 3D building structures by assuming that the geometric center of such structures is 

also the center of mass. Moreover, both in the experimental and in the numerical analyses 

the considered structural configurations have a plan-asymmetric distribution of the story 

stiffness only at the damaged levels. In other words, at the undamaged stories of the 

damaged configurations and at all the stories of the undamaged configurations, the 

considered structures are characterized by a plan-symmetric distribution of the story 

stiffness. Analyses for damage localization (and, eventually, for the more challenging 

problem of the damage quantification) on more complex structures may be considered in 

the future. Such more complex structures can be, for example, generic 3D building 

structures with generic positions of the centers of mass and the centers of stiffness both 

in the undamaged and in the damaged configurations.  
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7.1.3  Problem no. 3: Damage detection using proportional MF-based deflections 

with minimal or no a-priori information on the structural masses 

In the context of the third main problem considered in the thesis, a modal flexibility-

based approach for output-only damage detection in building structures that can be 

applied with minimal or no a-priori information about the masses of the structures has 

been investigated. This proposed approach has been developed on the basis of the 

theory behind the Positive Shear Inspection Load method [Koo et al., 2010; Koo et 

al., 2011; Sung et al., 2012]. In particular, the proposed approach has been 

investigated because in the above-mentioned works, where the original formulation 

of the PSIL method is presented, the mass normalization of the mode shapes obtained 

from output-only modal identification was carried out using an a-priori estimate of 

the system mass matrix. The proposed approach is thus an attempt to make the output-

only damage detection process based on modal flexibility-based deflections 

independent as much as possible from an a-priori estimate of the mass matrix of the 

building structure.  

The problem of obtaining modal flexibility matrices directly from output-only 

vibration data was also investigated and solved by some authors [Bernal, 2001; Bernal 

& Gunes, 2002; Duan et al., 2005; Duan et al., 2007] in the context of another damage 

detection method - i.e. the Damage Locating Vector (DLV) method [Bernal, 2002]. In 

particular, two procedures were defined, respectively, in the works by [Bernal, 2001; 

Duan et al., 2005] to extract the distribution of the structural masses (i.e. a 

proportional mass matrix) and to assemble proportional flexibility matrices from 

output-only vibration data. These two procedures, originally formulated for the DLV 

method and indicated in the present thesis as Proportional Flexibility Matrix (PFM) 

techniques, were adapted and integrated into the framework of the proposed approach 

for damage detection. As discussed in Chapter 6, both the two PFM techniques were 

considered because, according to the proposed approach, the choice of using one or 

the other technique depends on the number of structural modes that are identified from 

the vibration test. Theoretically, if a limited number of modes is considered the 
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procedure by Bernal [2001] is more accurate than the procedure by Duan et al. [2005]2. 

However, the procedure by Bernal [2001] can be applied only if a certain minimum 

number of modes is considered, while the procedure by Duan et al. [2005] can be 

theoretically applied using any subset of modes. The approach adopted in the proposed 

damage detection methodology is thus to use the procedure by Bernal [2001] if 

applicable, otherwise the procedure by Duan et al. [2005] is considered. Moreover, 

since the two techniques adopt different strategies to assemble the proportional 

flexibility matrices, the following approach was considered in the proposed 

methodology. To assemble the proportional flexibility matrices the strategy used in 

the procedure by Bernal [2001] was considered (this procedure is unaltered with 

respect to the original formulation). On the contrary, a modified implementation of 

the procedure by Duan et al. [2005] (which, in any case, does not substantially alter 

the fundamental equations of the original procedure) was adopted in the proposed 

approach to have a unified strategy to assemble the proportional flexibility matrices.  

The main steps of the approach proposed for output-only damage detection in 

building structures that can be modeled as plane shear building structures are briefly 

summarized herein. The PFM techniques [Bernal, 2001; Duan et al., 2005] are used 

to estimate proportional flexibility matrices of the building structures from output-

only vibration data. Then, uniform inspection loads are applied to calculate modal 

flexibility-based deflections that are proportional with respect to the corresponding 

true and scaled deflections. Starting from these proportional modal flexibility-based 

deflections vectors that contain the interstory drifts3 of the structures are determined, 

and such vectors are considered as damage sensitive features (DSFs). Finally, to detect 

the existence of damage in shear building structures, two damage indices have been 

investigated and proposed. In particular, both the two indices were considered because 

such indices are characterized by two different criteria to evaluate the differences or 

                                                 
2 This is because in the procedure by Duan et al. [2005] pseudo-inverse operations are 

performed on truncated mode shape matrices, while this operation, which inevitably 

introduces approximations, is not present in the procedure by Bernal [2001]. The statement  

reported in the text is also confirmed by the results of numerical analyses shown in Chapter 

6.  

3 Considering the interstory drifts of shear building structures as damage sensitive features is 

an operation that is also performed in the original formulation of the Positive Shear Inspection 

Load (PSIL) method [Koo et al., 2010].   
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the similarities between the vectors assumed as damage sensitive features. The first 

index is based on the evaluation of the Mahalanobis distance (MD) between the 

vectors assumed as damage sensitive features. The second index (indicated in the 

thesis as 𝑀𝐴𝐶𝑖𝑑
∗ ) is based on the evaluation of the degree of correlation between the 

vectors assumed as DSFs. This damage index has the same formulation of the Modal 

Assurance Criterion [Allemang & Brown, 1982], which is traditionally applied on 

mode shape vectors, but, according to the proposed approach, the criterion is applied 

on vectors of proportional MF-based interstory drifts. 

One important aspect that should be mentioned is the fact that, as shown in 

Section 6.2, the procedure proposed to estimate the proportional modal flexibility-

based deflections was also developed with the objective of providing a physical 

interpretation on the value assumed by the scaling factor between the proportional and 

the true deflections. This scaling factor is, of course, undetermined since the 

calculation of the proportional deflections is performed from output-only vibration 

data without any a-priori information on the mass matrix of the structure. However, 

for the considered structures (i.e. shear buildings with a diagonal mass matrix), it has 

been shown in Chapter 6 that using an appropriate normalization on the proportional 

mass matrix estimated from the data using the PFM technique, the missing scaling 

factor on the proportional deflections is theoretically equal to the total mass of the 

structure.  

The effectiveness of the proposed approach and of the two damage indices has 

been evaluated considering both simulations on a numerical model of a 6-story shear-

type frame structure and experimental vibration tests conducted on a 4-story steel 

frame structure. In both cases, damaged configurations were created by imposing 

stiffness reductions at one or more stories of the structure. Moreover, both in the 

numerical and in the experimental validation, the approach has been tested in two 

different situations: firstly, the case in which the masses of the structure are unchanged 

before and after damage was considered; secondly, the case in which mass variations 

are present between the two structural states involved in the damage detection process 

was analyzed. Such mass variations mimic changing operational conditions that the 

structures can experience in practice [Farrar & Worden, 2013] and structural 

modifications that are not related to a damaged state. In particular, this second case 
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(where the structural masses are varied before and after damage) was analyzed to test 

the proposed approach and the two damage indices in the general case in which the 

unknown scaling factors on the vectors of the proportional MF-based interstory drifts 

(related to the undamaged and to the possibly damaged states) are theoretically 

different.   

The results of the numerical and experimental analyses have demonstrated the 

effectiveness of the two proposed damage indices. Moreover, the analyses have 

confirmed the main difference between the two indices. According to the proposed 

approach, the first index based on the Mahalanobis distance (MD) can be applied if 

the ratio between the total mass of the structure in the undamaged and in the possibly 

damaged states is known. This is the sole parameter that has to be known a-priori to 

perform the damage detection using this index and starting from output-only vibration 

data. The parameter is required to guarantee the compatibility of the scaling factors 

related to the damage sensitive features. On the contrary, the second index 𝑀𝐴𝐶𝑖𝑑
∗  (i.e. 

the one based on the evaluation of the degree of correlation between the DSFs) is not 

sensitive to the scaling factors on the vectors of the proportional MF-based interstory 

drifts. Due to this property, this second index can be calculated not only by estimating 

the distribution of the masses of the structure from the data - using the procedures 

defined by Bernal [2001] and Duan et al. [2005] - but also without the need of an 

additional parameter (known a-priori) that provides information on the relationship 

between the structural masses in the two states involved in the damage detection 

process (as required, on the contrary, in the calculations related to the first index based 

on Mahalanobis distance).  

In the framework of the proposed approach for output-only damage detection, 

the second index 𝑀𝐴𝐶𝑖𝑑
∗  has thus shown more promising results than the index based 

on Mahalanobis distance. The index 𝑀𝐴𝐶𝑖𝑑
∗ , in fact, is a modal flexibility-based index 

that can be calculated starting from the results of any output-only modal identification 

technique, in terms of natural frequencies and arbitrarily-scaled mode shapes, and 

without any a-priori information on the masses of the building structure. In other 

words, the proposed approach when used with the second index 𝑀𝐴𝐶𝑖𝑑
∗ , is a modal 

flexibility-based approach for damage detection applicable starting from output-only 

vibration response data of building structures that is completely data-driven.  
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As a final remark on the third problem considered in the thesis, it is important 

to mention that the original formulation of the Positive Shear Inspection Load (PSIL) 

method [Koo et al., 2010] was developed for localizing (or quantifying) the damage 

in building structures. On the contrary, the proposed approach has focused on 

detecting the existence of the damage. This choice was made to start developing a 

modal flexibility-based approach applicable from output-only vibration data with 

minimal or no a-priori information about the masses of the structures that aims to 

reach an achievement (i.e. detecting the existence of damage) that is simpler than other 

more complex achievements (such as damage localization or damage quantification). 

To continue the investigations related to the third problem analyzed in the thesis, a 

natural next step is thus to extend the proposed modal flexibility-based approach so 

that it can be used to localize (or eventually quantify) damage in building structures. 

Preliminary thoughts on such more complex problem suggest that proportional modal 

flexibility-based deflections of shear building structures calculated by estimating the 

distribution of the structural masses directly from the data can be employed for 

damage localization and quantification. In particular, in the general case in which the 

masses of the structure are varied before and after damage, it is expected that a correct 

localization (or quantification) of the damage can be obtained by adapting the criteria 

of the original PSIL method applicable on true/scaled deflections to the case of the 

proportional deflections and if a parameter that defines the relationship between the 

masses in the two structural states is known a-priori (for example, the ratio between 

the total mass of the structure in the undamaged and in the possibly damaged states, 

as adopted in the thesis for evaluating the damage index based on Mahalanobis 

distance). Referring on the contrary to the scenario considered in the thesis when 

evaluating the index 𝑀𝐴𝐶𝑖𝑑
∗  for damage detection (i.e. mass variations can be present 

before and after damage, but such variations are unknown and the calculations are 

performed without any a-priori information on the masses), it is presumed that 

localizing and quantifying damage may be much more complex tasks.  
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7.2 Concluding remarks and directions for future research  

The main conclusions and potential directions for future research related to each of 

the three main problems considered in the thesis have been discussed in previous 

sections. This section presents some concluding remarks common to all the three 

analyzed problems and discusses potential directions for future research that derive 

mainly from the limitations of the research carried out in the dissertation.  

First of all, the general problem of vibration-based damage assessment in 

building structures has been considered both in the second and the third problems 

analyzed in the thesis and, specifically, using the following strategy. Referring to the 

second problem, the modal flexibility-based approach for damage assessment starting 

from output-only vibration measurements has been investigated by considering “box 

type” 3D building structures and by assuming that an a-priori estimate of the system 

mass matrix of the structure is available. On the contrary, in the context of the third 

problem, the modal flexibility-based approach for output-only damage assessment has 

been developed by considering building structures that can be modeled as plane 

structures and information on the structural masses are extracted directly from the 

vibration data (specifically, from mode shape vectors). A natural next step for future 

research may be to combine the second and the third problems in an attempt to develop 

an approach for vibration-based damage assessment (based on the evaluation of modal 

flexibility-based deflections due to inspection loads) that can be applied on “box type” 

3D building structures and with minimal or no a-priori information on the structural 

masses.   

Secondly, in all the modal flexibility-based approaches investigated in the 

thesis it is assumed that vibration measurements are available at all the stories of the 

building structure (and, specifically, at all the prevalent DOFs of the structure). This 

is an assumption that is also made in the original formulation of the Positive Shear 

Inspection Load method [Koo et al., 2010]. As shown in several passages of the thesis, 

obtaining vibration measurements at all the stories of the building structure is not 

necessarily related to the requirement of having sensors simultaneously at all the 

stories. For example, as discussed in Sections 2.2.1 and 5.1.1 of the thesis, in ambient 

vibration tests on building structures multiple data sets can be acquired using both 
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reference and roving sensors, and in such case the number of the sensors to be used in 

the test can be lower than the number of the DOFs to be measured. However, 

performing this operation on medium- and high- rise building structures may be time 

consuming or may increase the cost of the experimental test, and in many practical 

cases having measurements available at all the stories of the structure is a condition 

that is seldom satisfied. Thus, the situation of dealing with measurements available at 

a limited number of stories of the building structure should be considered in the future. 

As suggested in the work by [Bernal & Gunes, 2004], model updating approaches can 

be conveniently applied in such case, and, of course, one can use directly information 

contained in the updated model to perform the damage detection. An alternative 

potential approach that is based on the general idea adopted in the thesis (i.e. trying 

to use as much information as possible derived from the experimental test) is the 

following. After having defined a reliable model of the structure (for example, using 

model updating, if needed), modal expansion techniques, such as the ones described 

in [Brincker & Ventura, 2015], can be used to expand experimental mode shapes 

defined only at the measured DOFs. In this way, mode shapes defined at all the 

prevalent DOFs of the building structure can be obtained, and such mode shapes may 

be considered for assembling modal flexibility matrices and for estimating modal 

flexibility-based deflections of the structure. 
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Appendix A  

Output-only modal identification techniques 

adopted in the thesis and applications 

 

 

This appendix presents the main steps of the two output-only modal identification 

techniques that are applied in the present dissertation. These two techniques are the 

Eigensystem Realization Algorithm (ERA) [Juang & Pappa, 1985], applied in the 

output-only case according to the Natural Excitation technique (NExT) [James et al., 

1993], and the Frequency Domain Decomposition (FDD) [Brincker, Zhang & 

Andersen, 2001]. The first method (i.e. the NExT procedure based on ERA) is a time 

domain identification method, while the second technique works in frequency domain. 

In the final part of this appendix some numerical and experimental case studies are 

also presented, and in these case studies the two above-mentioned output-only modal 

identification techniques were applied. 

 

 A.1 Eigensystem Realization Algorithm (ERA) 

As already mentioned in Chapter 2, the Eigensystem Realization Algorithm (ERA) is 

a time-domain modal identification method that was developed in the framework of 

the system and control theory. In these fields the systems are generally and 

conveniently modeled using a state space formulation (in other words, state space 

models are adopted). For this reason, before presenting the steps of the ERA 

identification method (Section A.1.2), it is shown (in next section) how the 
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fundamental equation of motion of a generic multi-degree-of-freedom (MDOF) 

structural system [Clough, 1975; Chopra, 2000] can be transformed into the equivalent 

state space formulation [Juang, 1994; Alvin et al., 2003].  

 

A.1.1 Dynamics of an MDOF structure in the state space formulation 

The continuous-time second-order equation of motion of an n-DOF damped structure 

under forced excitations is expressed as 

M v̈(t) + 𝓒 v̇(t) + K v(t) = B̂  u(t)                                      (A.1) 

where v(t)n×1 is the displacement vector, u(t)i×1 is the input force vector, B̂n×i is the 

input-state influence matrix, i is the number of the inputs, and Mn×n, 𝓒n×n, Kn×n are the 

mass, damping and stiffness matrices, respectively. It is worth noting that the notation 

used in this appendix for quantities like displacements and forces is different from the 

notation used in previous chapters of the thesis. The notation adopted in this appendix 

follows the original formulation presented in the works of [Juang, 1994; Alvin et al., 

2003]. 

To obtain a state space model of the structural system, it is introduced, in 

addition to Eq. (A.1), an observation or output transform equation, which is defined 

as follows 

y(t) = Ξa v̈(t) + Ξv v̇(t) + Ξd v(t)                                    (A.2) 

where y(t)o×1 is the observation vector, o is the number of the outputs, and Ξa, Ξv, Ξd 

are the o×n state-output influence matrices which relate the accelerations, velocities, 

and displacements of some DOFs of the structure with the measured outputs contained 

in the vector y(t). A physical displacement-velocity (PDV) model [Alvin et al., 2003] 

is considered to define the so-called state vector x(t)  

x(t) = [
v(t)

v̇(t)
]

2n×1

                                               (A.3) 

which is a 2n×1 vector. Using this vector, the state space representation of the 

structural system can be then derived, and this representation is formed by the two 

first-order matrix differential equations that follows 
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{
ẋ(t) =  A x(t)+ B u(t)

y(t) =  C x(t)+ D u(t)
                                           (A.4) 

This last equation (Eq. A.4) is obtained by appropriately modifying both Eqs. (A.1, 

A.2) and by introducing the state vector x(t). In particular, the relationships between 

the terms present in Eq. (A.4) and the terms present in Eqs. (A.1, A.2) are the 

following 

A = [
0 I

-M -1 K -M -1𝓒
]

2n×2n

       (A.5) 

B = [
0

 M -1 B̂ 
]

2n×i

        (A.6) 

C = [Ξd - Ξa M
 -1 K       Ξv - Ξa M

 -1𝓒 ]o×2n      (A.7) 

D = [Ξa M -1 B̂ ]
o×i

             (A.8) 

According to the terminology used for a generic state space model (Eq. A.4), A is the 

dynamic system matrix, B is the input influence matrix, C is the output influence 

matrix, and D is the direct-transmission or feed-through matrix. One of the advantages 

of the first-order state space formulation when used to represent the dynamics of 

structural systems is that the formulation is more suitable, with respect to the second-

order formulation, to deal with structures characterized by a generic damping (for 

example, non-proportional or non-classical damping). In addition, a great advantage 

of the state space formulation, when applied to any dynamic system, is that all the 

dynamics is embedded into the system matrix A [Alvin et al., 2003].  

The solution x(t) of the equation of motion in the state space form is as follows  

x(t) = e A (t - t0) x(t0) + ∫ e A (t - τ) B u(τ) dτ
t

t0
                                   (A.9) 

where x(t0) is the initial state of the system at time t = t0 and where the matrix 

exponential approach is adopted1.  

                                                 
1 The matrix exponential for a generic square matrix W is defined as follows 

e W = ∑
1

𝑘!

∞

𝑘=0

𝑾𝑘 
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The discrete-time representation of the continuous-time state space model can be 

obtained by substituting the sampled time t0 = k ∆t  and t = (k+1) ∆t  in the solution of 

the equation of motion (Eq. A.9) and in the second equation of the system described 

in Eq. A.4 

{
x[(k+1) ∆t] = e A ∆t x(k ∆t) + ∫ e A [(k+1) ∆t - τ] B u(τ) dτ

(k+1) ∆t

k ∆t

y(k ∆t) =  C x(k ∆t) + D u(k ∆t)
                (A.10) 

Then, a change of the integration variable σ = (k+1) ∆t - τ is introduced in Eq. (A.10), 

and, according to the steps presented in [Juang, 1994], the discrete-time first-order 

matrix difference equation of the state space system is obtained 

{
xk+1=  Ad xk+ Bd uk

y
k
=  C xk+ D uk

                                        (A.11) 

where the discrete form of the dynamic system matrix Ad and the input influence 

matrix Bd are, respectively   

Ad = e A ∆t                                 (A.12) 

         Bd = ∫ e A σ B dσ
∆t

0
                                     (A.13) 

It is worth noting that the matrices C and D are not indicated with the subscript d 

(which is used to denote “discrete-time”) because these matrices are equal both for 

the discrete- and the continuous- time systems.  

For a generic initial state x0 and for a generic input uk applied to the system, 

both the state and the response of the system at a generic instant of time can be 

determined using the discrete-time state space model presented in Eq. (A.11). In 

particular, as shown in [Juang, 1994; Juang & Phan, 2001], the state of the system at 

the generic time t = k ∆t is expressed by the following equation 

xk =Ad
 k x0  + ∑ Ad

 h-1Bd uk-h
k
h=1                                  (A.14) 

In a similar way, the output response of the system at the generic time t = k ∆t is 

expressed by the following equation 

y
k
 = C Ad

 k x0  + ∑ C Ad
 h-1Bd  uk-h

k
h=1  + D uk                          (A.15) 
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Among the different inputs that can be applied to the structural system, one that is of 

particular relevance, both in the theory and for practical applications, is the unit pulse 

input [Juang & Phan, 2001]. In particular, the response of the system can be evaluated 

by considering a zero initial condition x0 = 0 and by applying a unit pulse at the 

generic j-th input. In such case the input sequence is defined as  

u0=

[
 
 
 
 
 
 
0
⋮
0
1𝑗

0
⋮
0 ]

 
 
 
 
 
 

𝑖 ×1

                                              (A.16) 

u1= u2=…= uk = {𝟎}𝑖 ×1                                   (A.17) 

with k = 1, 2... and where the vector u0 is a vector of all zeros except for a unit value 

at the j-th position that corresponds to the j-th input of the system. If the response of 

the structure is evaluated for such input sequence, a sequence of response vectors 

y
0
, y

1
, y

2
 ... y

𝑘
 is obtained (each vector has dimensions o×1). This operation can be 

performed by considering input sequences where each sequence is characterized by a 

unit pulse for a different input (i.e. for j= 1 … i). The responses of the system that are 

obtained can be then assembled into pulse response matrices Y0, Y1, Y2, …. Yk which 

have dimensions o×i. As shown in [Juang, 1994; Juang & Phan, 2001], it can be 

demonstrated that the sequence of such pulse response matrices is as follows 

Y0= D                                           (A.18) 

 Yk= C Ad
  k-1 Bd                                          (A.19) 

with k = 1, 2... . The sequence of such o×i matrices is also known in the literature as 

the sequence of the system Markov parameters.   

As shown in Eqs. (A.18, A.19), the matrices that describe the state space model 

of the structural system are included implicitly into the sequence of the Markov 

parameters [Juang & Phan, 2001]. This suggests that if the Markov parameters for a 

generic system are known, they can be used to identify the discrete-time state space 

model of that system (Eq. A.11). In other words, they can be used to determine the 

four matrices Ad, Bd, C, and D [Juang, 1994]. In particular, as shown in Eq. (A.18), 
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the matrix D is directly related to the first Markov parameter, thus only the matrices 

Ad, Bd, and C have to be determined. Obtaining four matrices starting from the Markov 

parameters that satisfies the system described in Eq. A.11 is an operation that is 

usually referred to as the operation of obtaining a realization of the system [Ho & 

Kalman, 1966].  

 A general observation must be made on the realization problems and on their 

relationship with the identification problems. In a realization problem it is assumed to 

deal with quantities (for example, input/output sequences or pulse response 

sequences) that are generated by a model (such as the one expressed by Eq. A.11), 

and thus such quantities are not affected by errors and noise. On the contrary, in an 

identification problem one has usually to deal with experimental data (for example, 

measurements of input forces and output responses) that are affected by errors and 

noise. In the identification problem the characteristics of the system have to be 

determined starting from the measured data. However, the technique adopted in the 

context of a system realization problem can also be adapted to the context of a system 

identification problem. This, in fact, is the main idea that is behind the Eigensystem 

Realization Algorithm (ERA), which is an algorithm that was developed for structural 

system identification and, specifically, for modal identification.  

 

A.1.2   Steps of the Eigensystem Realization Algorithm (ERA) 

The Eigensystem Realization Algorithm (ERA) [Juang & Pappa, 1985] can be applied 

starting from the pulse response-histories (i.e. the Markov parameters) of a structural 

system. Such quantities may have been measured directly during a free-decay 

vibration test or may have been computed starting from experimental vibration 

measurements of input forces and output responses. It is worth noting that this section 

presents the original formulation of the ERA method (i.e. the version of the 

methodology that can be applied in the context of a traditional vibration test). On the 

contrary, next section explains how the methodology can be applied in the context of 

an output-only vibration test.  
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Let us assume that the discrete sequence of the pulse responses is assembled 

into matrices Y(k) with dimensions o×i and for k = 0,1,2 … As already mentioned, i 

is the number of the inputs and o is the number of the outputs of the structural system. 

In the first step of the ERA method these pulse response matrices are arranged in the 

so-called block Hankel matrix2 as follows 

 H (k)
or× is

=  

[
 
 
 
 

Y(k+1) Y(k+2) Y(k+3) … Y(k+s+1)

Y(k+2) Y(k+3) … … Y(k+s+2)

Y(k+3) … … … …

… … … … …

Y(k+r+1) Y(k+r+2) … … Y(k+r+s+1)]
 
 
 
 

              (A.20) 

where k refers to the sampled time and r,s are the row and column indices, 

respectively, of the single block or submatrix Y(k). When the Hankel matrix is 

assembled according to [Juang & Phan, 2001], it is important to guarantee that the 

following condition is fulfilled: ( s × i )  ≥  ( r × o ).  

At first, Eq. (A.20) is evaluated for k = 0, and the block Hankel matrix H (0) 

is obtained. It is worth noting that the first Markov parameter Y (0) is not included in 

the matrix H (0). The block Hankel matrix H (0) is then processed through a singular 

value decomposition (SVD) as follows 

H (0) = R Σ S
T
                                           (A.21) 

where the matrices R and S are formed by columns that are orthonormal vectors, and 

the matrix is a rectangular matrix  

  = [
Σn* 0

0 0
]                                           (A.22) 

In Eq. (A.22), the matrix Σn* is a diagonal matrix with elements in a monotonically 

decreasing order, and the parameter n* is theoretically the true order of the system (i.e. 

the theoretical dimension of the state space model that describes the system). Due to 

the fact that theoretically only one portion of the matrix reported in Eq. (A.22) is non-

zero, the block Hankel matrix H(0) can be also expressed as follows  

                                                 
2 A Hankel matrix is a matrix where each secondary diagonal (i.e. each skew diagonal) has 

constant values. A block Hankel matrix is a matrix where the above-mentioned rule is valid 

if block (or submatrices) are considered instead of the single components of the matrix. This 

characteristic of the block Hankel matrix is evident in Eq. (A.20). 



Appendix A Output-only modal identification techniques adopted in the thesis 

384 

 

H (0) = Rn* Σn* Sn*
T
      where      Rn*

T
Rn*= In*= Sn*

T
Sn*                   (A.23) 

where the matrices  Rn* and  Sn* are matrices formed by the first n* columns of the 

matrices R and S, respectively [Juang & Phan, 2001].  

As already mentioned, n* is the theoretical true order of the system, and it can 

be determined according to Eq. (A.22) using the SVD if the Markov parameters used 

to assemble the block Hankel matrix are exact (i.e. not affected by errors and 

generated by a state space model of order n*). Of course, when the procedure is applied 

by considering a real structure and starting from experimental data (affected by noise), 

it is much more difficult to determine the order of the system (this is a common 

drawback in any identification problem). In such case, the matrix H (0) will be in 

general full rank. In practical applications it is appropriate, however, to consider 

values of the parameter n* such that the diagonal elements present in Eq. (A.22) but 

not included in Eq. (A.23) are very small. It is worth noting that in the ideal unnoisy 

case if a structural system characterized by n DOFs is considered (for example, the 

one discussed in Section A.1.1), then the parameter n* should be theoretically equal 

to 2n (i.e. the dimension of the state space model that describes an n-DOF structural 

system).  

Then, Eq. (A.20) is evaluated for k = 1, and the shifted block Hankel matrix H 

(1) is assembled. Finally, to identify the matrices Ad, Bd, C, and D that describe the 

state space model of the considered structural system the following equations are 

applied3  

         Ad = Σn*
-1/2 Rn*

T
H(1) Sn* Σn*

-1/2                                  (A.24)                  

        Bd = the first i columns of Σn*
1/2

Sn*
T
                                (A.25) 

C = the first o rows of Rn* Σn*
1/2                                   (A.26) 

                        D = Y(0)                                         (A.27) 

As reported in [Juang, 1994], when considering data that is not affected by excessive 

noise, the order of the system n* can be taken as the true order of the structural system. 

                                                 
3 A rigorous mathematical proof of Eqs. (A.24, A.25, A.26, A.27) can be found in the work 

by [Juang, 1994]. 
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Thus, the matrices Ad, Bd, C, and D can be considered as a minimal realization. It is 

important to underline that the matrices Ad, Bd, and C depend on the coordinates used 

in the identified state space model [Juang & Phan, 2001]. However, one important 

property of a minimal realization, which is relevant especially in the context of a 

modal identification problem, is the following: if a realization is minimal, its 

eigenvalues and eigenvectors do not depend on the coordinates that are adopted in the 

state space model [Juang, 1994]. 

In light of this premise, the identified modal parameters of the structure can be 

determined using the following steps. First of all, the eigenvalue problem associated 

to the discrete system matrix Ad has to be solved 

Ad 𝝌s,i= λd,i 𝝌s,i                                              (A.28) 

where  λd,i, 𝝌s,i are complex eigenvalues (i.e. the poles) and complex eigenvectors, 

respectively, of the discrete-time system in the state space coordinates. The former 

are collected in the spectral diagonal matrix Λd = diag{λd,i } for  𝑖 = 1 …𝑛∗, while the 

latter form the modal matrix 𝚾s = [𝝌s,1 , … , 𝝌s,j , … , 𝝌s,n*].  Then, the eigenvalues λi 

related to the continuous-time system matrix A can be obtained using the following 

equation 

λi = 
ln( λd,i)

∆t
= 𝜎𝑖  ± 𝑗 𝜔𝐷,𝑖                                   (A.29) 

where 𝜎𝑖 and 𝜔𝐷,𝑖 are the real and imaginary parts of the complex eigenvalue λi and j 

is the imaginary unit. In Eq. (A.29) it is also highlighted and assumed that the 

identified poles occur in complex conjugate pairs. This is true for the structural 

systems that are considered in the present dissertation, which are underdamped 

structural systems. The necessity of applying the transformation reported in Eq. (A.29) 

is justified by the fact that the matrix Ad and the matrix A are related through the 

matrix exponential function (as shown in Eq. A.12).  

The eigenvectors contained in the matrix 𝚾s are not estimates of the mode 

shapes of the structure at sensor locations [Brincker & Ventura, 2015], because the 

realization is expressed in the state space coordinates (which are not the physical 

coordinates). It is thus necessary to introduce a transformation to obtain the mode 
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shapes at sensor locations. The complex value mode shapes defined at sensor locations 

can be obtained as  

Cm = C  𝚾s                                         (A.30) 

where C is the identified output matrix of the state space model. The matrix Cm 

contains the complex value mode shapes defined at sensor locations, and, for the sake 

of convenience, it is also indicated in the present appendix as the matrix 𝚾. The matrix 

Cm = 𝚾 = [ … ,𝕽(𝛘𝑖) ± 𝑗 𝕴(𝛘𝑖), … ]  is an o × n* matrix, and each complex value mode 

shape 𝛘𝑖 of the structure is reported in one column of such matrix. It is worth noting 

that the transformation reported in Eq. (A.30) is a transformation of the output matrix 

from the state space to the modal coordinates. In fact, the superscript m has been 

introduced in Eq. (A.30) to indicate that modal coordinates are adopted. According to 

[Juang, 1994; Alvin et al., 2003], the identified continuous-time state space model, 

expressed in modal coordinates, of the structural system is as follows  

{
�̇�m= Λ  xm+ Bm u

y = Cm xm+𝑫 𝒖
                                           (A.31) 

where Λ is the spectral diagonal matrix Λ = diag{λi } for  𝑖 = 1…𝑛∗ , Bm = 𝚾s
- 1

B is 

the input matrix in modal coordinates and B is the continuous-time transform of the 

discrete-time matrix Bd obtained using ERA, and, as already mentioned, Cm = 𝚾 is the 

output matrix in modal coordinates (i.e. the matrix of the damped mode shapes of the 

structure). 

At this point, the continuous-time complex eigenvalues and the complex mode 

shapes of the damped structure have been obtained. According to [Alvin et al., 2003] 

and under the assumption of considering the identified structure as proportionally 

damped, the complex or damped modes can be related to the real or normal modes. 

Under this assumption, the normal modes of the structure can thus be estimated 

starting from the modes identified usign the ERA algorithm. The natural circular 

frequency ωi of the undamped system and the modal damping ratio ζi for the generic 

mode i can be obtained as follows  

𝜔𝑖 = √𝜎𝑖
2 + 𝜔𝐷,𝑖

2                                               (A.32) 

ζi= - 
𝜎𝑖

𝜔𝑖
                                                      (A.33) 
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starting from the complex eigenvalues of the damped system. To obtain an estimate 

of the real mode shapes from complex mode shapes, the Standard technique (ST) 

[Imregun & Ewins, 1993; Alvin et al., 2003] can be applied. According to the 

technique, the complex mode shape 𝛘𝑖 of the i-th mode is interpreted as a vector which 

is characterized by a magnitude χ̅𝑖,𝑗 and a phase α𝑖,𝑗 at each j-th component  

χ̅𝑖,𝑗  =  √𝕽(χ𝑖,𝑗) 2 + 𝕴(χ𝑖,𝑗) 2                                    (A.34) 

αij = atan (
𝕴(χ𝑖,𝑗) 

𝕽(χ𝑖,𝑗) 
)                                          (A.35) 

According to [Alvin et al., 2003], if the structural modes are almost proportionally 

damped, the phase angles are clustered around the value α0,𝑖 ±
𝜋

2
, where α0,𝑖  is an 

arbitrary angle that depends on the scaling of the modes. The technique assumes that 

the mode shape components are purely in phase. According to the Standard technique, 

in fact, the difference between the effective phase values of the mode shapes and the 

theoretical value (α0,𝑖  ±
𝜋

2
), which is valid in the ideal case of a proportionally damped 

system, are neglected. The component 𝜓ij of the undamped real-value mode shape can 

be estimated using the following equation [Alvin et al., 2003] 

𝜓ij =  χ̅𝑖,𝑗   sgn (j)                                           (A.36) 

where sgn (j) is a sign function that assumes the values ±1 and depends on the location 

of the j-th component of the mode shape.  

 One important aspect that has to be considered in modal identification, 

especially when a parametric method in time domain is applied (for example, the ERA 

method), is the fact that not all the poles of the identified model correspond necessarily 

to structural modes. In general, some of the poles of the identified model will be 

related to structural modes, while, on the contrary, other poles will not be physical. 

The modes associated to these non-physical poles are generated by the presence of 

noise and uncertainties on the measurements and are indicated as noise or 

computational modes. It is thus important in modal identification to separate the true 

structural modes from the noise modes. To perform this operation, one of the most 

common approaches in time-domain modal identification is to use the technique of 
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the so-called stabilization diagram. According to this technique, the modal 

identification is performed by considering different and increasing values of the order 

of the identified model. Referring to the case of the ERA method and to the 

calculations described in this section, this means to perform and repeat the 

identification for increasing values of the parameter n*. For each identified model, all 

the poles are estimated and considered, and the corresponding modal parameters are 

determined (natural frequencies, modal damping ratios, and mode shapes). Then, the 

modal parameters related to models with a different order are compared with each 

other to determine which are the poles that are stable and approximately independent 

from the order of the model. In general, in fact, the modal parameters that are 

associated to a true structural mode are approximately independent from the order of 

the model. On the contrary, the above-mentioned property is not valid for noise 

modes. This simple principle is thus adopted to distinguish the structural modes from 

the noise modes.4 

When the ERA method is applied, another strategy (alternative or 

complementary to the stabilization diagram) can be adopted to distinguish between 

the true modes and the noise modes. In particular, two modal indices can be adopted 

for this purpose, as shown in [Juang, 1994]. To derive such indices, let us consider, 

according to [Juang, 1994], the identified discrete-time state space model, expressed 

in modal coordinates, of the structural system  

{
𝒙𝑘+1

m = 𝜦𝒅   𝒙𝑘
m+ 𝑩𝒅

m 𝒖𝒌

𝒚𝒌 = Cm  𝒙𝑘
m + 𝑫 𝒖𝒌

                                       (A.37) 

where 𝜦𝒅 is the spectral diagonal matrix 𝜦𝒅 = diag{λd,i } for  𝑖 = 1…𝑛∗ , 𝑩𝒅
m = 𝚾s

- 1
Bd 

is the discrete-time input matrix in modal coordinates, and, as already mentioned, 

Cm = 𝚾 is the output matrix in modal coordinates. It is worth noting that the model 

expressed in Eq. (A.37) is equivalent to the model expressed by Eq. (A.31) with the 

only difference that the latter is formulated for the continuous-time case.  

The sequence of the identified Markov parameters, which do not depend on 

the adopted coordinates, can be expressed as a function of the system matrix, the input 

                                                 
4 An extensive description of the technique based on the stabilization diagram can be found 

in [Rainieri & Fabbrocino, 2014; Brincker & Ventura, 2015]. 
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influence matrix, and the output influence matrix expressed in the modal space as 

follows 

𝒀𝑘= Cm𝜦𝒅
𝑘−1𝑩𝒅

m = ∑ c𝑖 λd,i
k  - 1

 b i  
n*
i=1     (A.38) 

where c𝑖  is the i-th column of the output matrix in modal coordinates (i.e. Cm), b i  is 

the i-th row of the discrete-time input matrix in modal coordinates (i.e. 𝑩𝒅
m), λd,i is 

the i-th complex eigenvalue of the discrete state space matrix (i.e. Ad), and k = 1 ... p 

with a number of Markov parameters equal to p. As evident in Eq. (A.38), each modal 

coordinate has a sequence of Markov parameters  

[c𝑖 bi
 c𝑖 λd,ibi c𝑖 λd,i

2
bi … c𝑖 λd,i

p-2
bi]   (A.39) 

According to [Juang, 1994], the following sequence can be defined  

q̂
i
 = [bi λd,ibi λd,i

2
bi … λd,i

p-2
bi]                               (A.40) 

This sequence is the so-called Modal Amplitude time history for the i-th mode. This 

sequence represents the contribution, expressed as a time history, of the i-th mode to 

the sequence of the identified Markov parameters.  

On the basis of this premise, the two above-mentioned modal indices can be 

defined. The first modal index is the so-called Modal Amplitude Coherence (MAmC) 

[Juang, 1994]. This index is defined as the coherence function between the Modal 

Amplitude time history q̂
i
 (Eq. A.40) and the same time history q̅

i
 obtained directly 

from the experimental data (by performing a decomposition of the block Hankel 

matrix H(0), as shown in [Juang, 1994]). The MAmC index is thus expressed as 

follows 

MAmCi= 
|q̅

i
 q̂

i

*|

(|q̅
i
 q̅

i
 *||q̂

i
 q̂

i

*|)
1

2⁄
                                       (A.41) 

where  * stands for transpose and complex conjugate. The second modal index is the 

so-called Mode Singular Value (MSV), which is defined for the generic i-th mode as 

follows 

MSVi=√|c𝑖 | (1+|λ̂d,i|+ |λ̂d,i
2
| +…+ |λ̂d,i

p-2
| )|bi|                      (A.42) 
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This index determines the relative contribution of each identified mode to the 

sequence of the identified Markov parameters of the system (i.e. the “identified model 

pulse response history” [Juang, 1994]). In general, both the two above-mentioned 

indices (MAmC and MSV) evaluated for a true structural mode are higher than the 

corresponding indices obtained for a noise mode. These two indices can thus be used 

to distinguish the true structural modes from the noise modes.  

A schematic representation of the main steps that can be applied in a modal 

identification process based on the Eigensystem Realization Algorithm (ERA) are 

reported in Fig. A.1.  

 

 

Figure A.1. Main steps of the modal identification process based on Eigensystem 

Realization Algorithm (ERA) 

 

A.1.3 Natural Excitation technique (NExT) 

In this section it is shown how the Eigensystem Realization Algorithm (ERA), 

originally developed to work starting from experimentally-derived free decays of 

structures, can be adopted as an output-only modal identification technique and 

applied, for example, on ambient vibration data. One of the earliest works where the 

ERA method was applied starting from output-only vibration data is the work of 

[James et al., 1993], where the Natural Excitation technique (NExT) was presented.  

According to the NExT technique, the first operation that has to be performed 

on the measured vibration responses is to estimate the correlation functions. Then, 

such functions are assumed as the free decays of the structure and used to apply the 
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ERA method. Adopting this approach is a valid approach because of the following 

property of the correlation functions, which is demonstrated in the work of [James et 

al., 1993]. The correlation functions evaluated starting from the responses of a 

structural system due to random white noise inputs can be expressed as a summation 

of decaying sinusoids. In particular, each of these decaying sinusoids is characterized 

by a damped natural frequency and a damping ratio that are equal to the corresponding 

quantities related to one of the structural modes [James et al., 1993]. Due to this 

property the correlation functions can thus be considered as free vibration responses.  

 To show how the ERA method can be applied starting from output-only 

vibration data, let us assume that we have recorded the acceleration response 

measurements of a generic structure from a number of channels equal to o. Among 

these different channels of accelerations, one is selected as a reference channel and 

used to calculate the cross-correlation functions. Such cross-correlation functions are 

evaluated between each channel and the reference channel. As suggested in [Caicedo, 

2011], in the selection of the reference channel it is important to choose a channel 

whose signal amplitudes are higher with respect to the other channels and with a low 

noise-to-signal ratio. Moreover, it is important to avoid channels that are related to 

nodal points (i.e. positions where a generic identified mode shape of the structure has 

components that are approximately equal to zero).  

The cross-correlation function 𝑅𝑗(𝑘) between the generic j-th channel of 

accelerations 𝑦𝑗(𝑙)  and the reference one 𝑦𝑅(𝑙 + 𝑘) is thus evaluated. This cross-

correlation function can be calculated, for example, using the direct procedure as 

follows  

𝑅𝑗(𝑘) =
1

𝐿−𝑘
 ∑ 𝑦𝑗(𝑙) 𝑦𝑅(𝑙 + 𝑘)𝐿−𝑘

𝑙=1                                   (A.43) 

This last equation is expressed in discrete-time, and the terms present in Eq. (A.43) 

are the following: L is the total number of sampled points, the parameter k in the 

discrete-time formulation corresponds to a time lag 𝜏 = 𝑘 ∆𝑡 in the corresponding 

continuous-time formulation, where ∆𝑡 is the time step. In the same way, in the 

discrete-time formulation the notation 𝑦𝑗(𝑙) corresponds to the notation 𝑦𝑗(𝑡)  in the 

continuous-time formulation, where 𝑡 = 𝑙 ∆𝑡.  
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The cross-correlation functions are evaluated for the different channels of 

accelerations (for j = 1 … o and using Eq. A.43). Then, for each value of k (i.e. the 

index used to define the time lag) the cross-correlation functions are assembled in 

matrices 𝑹(𝑘) with dimension o × 1. Such matrices are the quantities that are 

processed using the Eigensystem Realization Algorithm (ERA). In fact, the matrices 

𝑹(𝑘) can be used to assemble the block Hankel matrix (Eq. A.20), instead of using 

the pulse response histories or Markov parameters - which are, according to the 

notation used in previous section, contained in the matrices 𝒀(𝑘).  

Then, according to the steps outlined in previous section the Eigensystem 

Realization Algorithm (ERA) can be applied to identify a model of the structure. 

There is, however, one important difference between applying ERA using input-

output data and using output-only data that must be mentioned. When ERA is applied 

using input-output data, the realization consists in the determination of the matrices 

Ad, Bd, C, and D (which are the matrices that describe the deterministic model reported 

in Eq. A.11). On the contrary, when ERA is applied using output-only data, the system 

matrix Ad and the output influence matrix C have to be determined (using Eqs. A.24, 

A.26, respectively) [Caicedo, 2011] to identify a stochastic state space model, where 

the input is considered as a zero-mean stationary white noise process. After having 

identified the matrices Ad and C, the modal parameters of the structure (i.e. natural 

frequencies, modal damping ratios, and arbitrarily scaled mode shapes) can be 

estimated using the criteria described in previous section (Eqs. A.32, A.33, A.36). 

However, Eqs. (A.25, A.27) related to the original formulation of the ERA method 

can be still applied when the method is adopted in the output-only case starting from 

the output correlations (according to NExT), to identify two matrices indicated herein 

as Gd and 𝑹(0). These matrices substitute, respectively, the matrices Bd and D = Y(0) 

obtained in the original formulation of the ERA method. This operation can be 

considered as a valid approach because, by transposing to the context of the ERA 

method the interpretation and the property related to the stochastic identification 

problem discussed in [Van Overschee and De Moor, 1996], the output correlations 

(i.e. the output covariances for signals with a zero mean) can be considered as the 

Markov parameters of a deterministic linear time-invariant system formed by the 

matrices Ad, Gd, C, and 𝑹(0). Under this interpretation all the steps of the ERA method 
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presented in previous section, including the approach of evaluating the indices of the 

Modal Amplitude Coherence (MAmC) and the Mode Singular Value (MSV), can thus 

be transposed to the output-only case and applied starting from the output correlations. 

An example in the literature where the criterion of the original formulation of the ERA 

method based on the evaluation of the MAmC index is extended to the output-only 

case and applied in numerical simulations on structures loaded by white noise is 

reported in the work of [Zhang et al., 2001].  

The validity of the approach that considers the correlation functions instead of 

the free decays of the structure can be also demonstrated, as done in the works of 

[Caicedo et al., 2004; Caicedo, 2011], by showing that the correlation functions satisfy 

the equation of motion of a damped MDOF system under free vibrations. The main 

steps of the above-mentioned proof, reported in [Caicedo et al., 2004], are summarized 

herein.  

Let us consider the equation of motion of a generic MDOF structural system 

under forced vibrations  

 𝐌 �̈�(t)  +  𝓒 �̇�(t)  +  𝐊 𝐱(t)  =   𝐟(t)                            (A.44) 

If we assume that both the input forces and the response quantities are stationary 

random processes, Eq. (A.44) can be rewritten as follows  

𝐌 �̈�(t)  +  𝓒 �̇�(t)  +  𝐊 𝐗(t)  =  𝐅(t)                           (A.45) 

where 𝐗(t), �̇�(t), �̈�(t), 𝐅(t) are the vectors of the stochastic processes related, 

respectively, to displacements, velocities, accelerations and forces. Eq. (A.45) is then 

reformulated by post multiplying both sides of the equation through a scalar response 

process Xi(t + τ), where τ is the time lag  

𝐌 �̈�(t) Xi(t + τ)  +  𝓒 �̇�(t) Xi(t + τ)  +  𝐊 𝐗(t) Xi(t + τ)  =  𝐅(t) Xi(t + τ)   (A.46) 

Then, the expected value of both sides of Eq. (A.46) is evaluated  

𝐌 E[�̈�(t) Xi(t + τ)] + 𝓒 E[�̇�(t) Xi(t + τ)] + 𝐊 E[𝐗(t) Xi(t + τ)] = E[𝐅(t) Xi(t + τ)]  (A.47) 

Under the assumption that the excitation has white noise characteristics, it is possible 

to recognize that the input F(t) is uncorrelated with the response Xi(t + τ) for τ > 0, 
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and thus E[𝐅(t) Xi(t + τ)] = 𝟎. Moreover, according to the definition of the 

correlation function that has been already mentioned in Chapter 2, the vectors of 

correlation functions 𝐑�̈� Xi
(τ), 𝐑�̇� Xi

(τ), and 𝐑𝐗 Xi
(τ) are introduced in Eq. (A.47), 

which is reformulated as follows 

𝐌 𝐑�̈� Xi
(τ) +  𝓒 𝐑�̇� Xi

(τ)  +  𝐊 𝐑𝐗 Xi
(τ)  =  𝟎      (A.48) 

The expression reported in Eq. (A.48) can then be reformulated by considering one 

property of the processes that can be assumed as stationary. As discussed in [Caicedo 

et al., 2004] and as shown more in detail in [Bendat & Piersol, 2000], by considering 

two stationary processes A(t) and B(t) the following property is valid  

𝐑A(𝑚) B
(τ) =  𝐑(𝑚)

A B(τ)     (A.49) 

where A(𝑚) denotes the m-th derivative of A(t) with respect to the variable t (i.e. time) 

and 𝐑(𝑚)
A B denotes the m-th derivative of 𝐑A B with respect to the variable τ (i.e. the 

time lag). By applying the property expressed in Eq. (A.49) on the quantities reported 

in Eq. (A.48), this last equation can be reformulated as follows 

𝐌 �̈�𝐗 Xi
(τ) +  𝓒 �̇�𝐗 Xi

(τ)  +  𝐊 𝐑𝐗 Xi
(τ)  =  𝟎  (A.50) 

Eq. (A.50) shows that the correlation functions evaluated starting from the 

displacements of the structure, which are assumed as stationary random processes, 

satisfy the equation of motion of the damped free vibrations of the system [Caicedo 

et al., 2004]. The same result, as also discussed in [Caicedo et al., 2004] and as shown 

more in detail in [Beck et al., 1994], is obtained if the correlation functions are 

evaluated starting from acceleration signals, which are stationary random processes, 

i.e.   

𝐌 �̈��̈� Ẍi
(τ) +  𝓒 �̇��̈� Ẍi

(τ)  +  𝐊 𝐑�̈� Ẍi
(τ)  =  𝟎  (A.51) 

When dealing with ambient vibrations and when applying the techniques of 

the Operational Modal Analysis (OMA), as shown in Chapter 2, it is assumed that the 

measured responses have approximately the characteristics of stationary random 

processes. On the basis of this assumption and by considering the analytical 

formulation shown at the end of this section, it is more evident the reason for which 

the correlation functions evaluated from ambient vibration measurements of a generic 
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structure can be interpreted as the free decays of that structure. This is the main idea 

that is behind the Natural Excitation technique (NExT), and, more generally as already 

mentioned in Chapter 2, is one of the fundamental aspects in OMA [Brincker & 

Ventura, 2015].  

 

A.2 Frequency Domain Decomposition (FDD) 

In this section the main steps of the Frequency Domain Decomposition method 

[Brincker, Zhang & Andersen, 2001] are briefly described, following closely the 

formulation presented in [Brincker & Ventura, 2015].  

As already mentioned in Chapter 2, the main operation that has to be done 

according to the FDD method, it to perform a singular value decomposition of the 

spectral density matrix estimated from the response measurements (i.e. the output-

only vibration data). The validity of the approach can be easily explained through the 

following steps, which are more extensively discussed in [Brincker & Ventura, 2015].  

Let us consider a vector of measured responses 𝒚(𝑡) = {𝑦1(𝑡),… , 𝑦𝑜(𝑡)}
𝑇 with 

dimensions o × 1, where o is the number of the responses. The matrix 𝑹𝑦(𝜏) of the 

cross-correlation functions evaluated among all the measured responses can be 

calculated as follows 

𝑹𝑦(𝜏) = 𝐸 [𝒚(𝑡) 𝒚(𝑡 + 𝜏)𝑇]                          (A.52) 

The measured responses can be related to the time histories expressed in modal 

coordinates using the normal modes  

𝒚(𝑡) = 𝚿 𝒒(𝑡)                             (A.53) 

where 𝚿 = [𝝍𝟏, 𝝍𝟐, … . ] is the mode shape matrix, which contains each modal vector 

𝝍𝒊, and 𝒒(𝑡) = {𝑞1(𝑡), … , 𝑞𝑜(𝑡)}
𝑇 is the vector of the time histories expressed in 

modal coordinates. By substituting Eq. (A.53) in Eq. (A.52), the matrix of the cross-

correlation functions can be reformulated as  

𝑹𝑦(𝜏) = 𝚿 𝐸 [𝒒(𝑡) 𝒒(𝑡 + 𝜏)𝑇]𝚿𝐓 = 𝚿 𝑹𝑞(𝜏)𝚿
𝐓                  (A.54) 
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where 𝑹𝑞(𝜏) is the matrix of the cross-correlation functions evaluated on the time 

histories expressed in modal coordinates. According to [Brincker & Ventura, 2015], 

if one takes the Fourier transform of both sides of Eq. (A.54), this equation can be 

reformulated in the frequency domain 

𝑮𝑦(𝑓) = 𝚿 𝑮𝑞(𝑓)𝚿𝐓                            (A.55) 

where 𝑮𝑦(𝑓) and 𝑮𝑞(𝑓) are, respectively, the Spectral Density (SD) matrices of the 

measured responses and of the time histories expressed in modal coordinates. Under 

the assumption that the responses in modal coordinates are uncorrelated, both the 

correlation and the spectral density matrices of such responses are diagonal matrices. 

Thus, under this assumption Eq. (A.55) can be reformulated as follows 

𝑮𝑦(𝑓) = 𝚿  [𝑔𝑛
2(𝑓)] 𝚿𝐇                             (A.56) 

where the terms 𝑔𝑛
2(𝑓) are the diagonal elements of the matrix 𝑮𝑞(𝑓) (i.e. these terms 

are the values of the auto spectral density functions). Moreover, the Hermitian 

operator (  ∙  𝐇) is introduced in Eq. (A.56) instead of the transpose operator (  ∙  𝐓) 

because in general the spectral density matrix is an Hermitian matrix5 and the mode 

shapes have components that are complex values [Brincker & Ventura, 2015].  

In light of the above-mentioned formulation, it is evident that performing a 

Singular Value Decomposition (SVD) of the spectral density matrix evaluated from 

the ambient vibration measurements can be a convenient approach to obtain a 

decomposition of such matrix similar to the one reported in Eq. (A.56). According to 

the FDD method, the spectral density matrix estimated from the vibration data is thus 

processed through the SVD as follows 

𝑮𝑦(𝑓) = 𝑼 𝑺 𝑼𝑯  = 𝑼 [𝑠𝑛
2] 𝑼𝑯                 (A.57) 

where the diagonal values of the matrix S and the columns of the matrix U are 

interpreted, respectively, as the auto spectral densities of the time histories expressed 

in modal coordinates and the mode shapes of the structure. Of course, as extensively 

discussed in [Brincker & Ventura, 2015], the decomposition presented in Eq. (A.57) 

                                                 
5 A Hermitian matrix is a square matrix whose components are complex numbers and that is 

equal to its own conjugate transpose matrix. 
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is not exactly equivalent to the decomposition that is reported in Eq. (A.56). This 

means that the results obtained using the FDD method are in general approximated 

solutions. Notwithstanding the fact that approximated solutions are provided by the 

methodology, the results, in terms of modal parameters, that can be obtained by 

applying the FDD method are accurate, as extensively demonstrated in the literature 

through a comparison between the FDD and other OMA techniques [Brincker & 

Ventura, 2015].  

According to the FDD method [Brincker, Zhang & Andersen, 2001], the 

structural modes can be determined through the analysis of the singular values 

computed from the SVD of the spectral density matrix. According to the method, such 

singular values are conveniently plotted as a function of the frequency, and, among 

the different singular values related to a certain frequency, one has in general to 

consider the first singular value (i.e., the highest singular value). The value of the 

frequency that corresponds to a peak in the plot of the first singular values is 

considered as the natural frequency related to an identified structural mode. While, 

the mode shape of such identified mode is estimated as the singular vector that 

corresponds to the first singular value found at the above-mentioned peak in the plot. 

The mode shapes estimated using the FDD method are complex-value mode shapes 

and are related to damped modes. Then, the mode shapes associated to the normal 

modes of the structure can be obtained using the Standard technique [Alvin et al., 

2003] (using the procedure that has been already presented in Section A.1.2).  

As already mentioned in Chapter 2, by using the basic version of the FDD 

method, it is not possible to have an estimate of the modal damping ratios. Moreover, 

the values of the natural frequencies of the structure that can be estimated using the 

basic version of the FDD are conditioned by the frequency resolution of the spectral 

density functions.  

To overcome these shortcomings, an improved version of the method was 

presented in [Brincker, Ventura & Andersen, 2001]. The method is indicated as the 

Enhanced Frequency Domain Decomposition (EFDD). The method is able to identify 

the auto spectral density functions of the single-degree-of-freedom (SDOF) systems 

that correspond to each of the structural modes. Each SDOF spectral density function 
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is composed by singular values that are located near a peak in the singular value plot 

and that are associated to similar singular vectors [Rainieri & Fabbrocino, 2014]. 

According to the EFDD method, each SDOF-equivalent spectral density function is 

transformed from the frequency domain to the time domain using an inverse Fourier 

transform. In this way, a correlation function associated to each SDOF equivalent 

system and to each structural mode is obtained. Starting from these estimated SDOF-

equivalent correlation functions the natural frequencies and the modal damping ratios 

of the considered structural modes are determined.  

 

A.3 Modal validation  

Modal validation is the operation of checking the results (i.e. the modal parameters, 

in terms of natural frequencies, mode shapes, and modal damping ratios) that have 

been estimated from a vibration test using the techniques of the modal identification. 

In this operation the engineering judgement can play a major role. In the majority of 

the cases, for example, it is possible to have an idea of the values of the natural 

frequencies expected for the structure, or to evaluate if the values of the identified 

modal damping ratios are reasonable values. Moreover, just animating and observing 

an identified mode shape is also a good way to understand if the related mode is a 

structural mode or not. 

There are, however, some specific techniques that can be adopted in the stage of 

the modal validation of any modal identification process. In particular, two of the most 

common indices used for modal validation are described in this section. These indices 

are the Modal Phase Collinearity (MPC) and the Modal Assurance Criterion (MAC), 

and they are both evaluated on identified mode shapes.  

The Modal Phase Collinearity (MPC) [Alvin et al., 2003] is a modal index that 

evaluates the linear dependence between the real and the imaginary parts of complex-

value (or damped) mode shapes. This index is defined as follows 

𝑀𝑃𝐶𝑖 =
(𝑆𝑥𝑥−𝑆𝑦𝑦)

2
+4 𝑆𝑥𝑦

2

(𝑆𝑥𝑥+𝑆𝑦𝑦)
2                                           (A.58) 

where the terms Sxx, Syy, and Sxy are respectively 
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𝑆𝑥𝑥 = 𝕽(𝛘𝒊) 
T  𝕽(𝛘𝒊)     (A.59) 

𝑆𝑦𝑦 = 𝕴(𝛘𝒊) 
T  𝕴(𝛘𝒊)     (A.60) 

𝑆𝑥𝑦 = 𝕽(𝛘𝒊) 
T  𝕴(𝛘𝒊)     (A.61) 

and 𝛘𝒊 is the vector of the i-th complex-value identified mode shape. The Modal Phase 

Collinearity (MPC) is also closely related to the Modal Complexity Factor (MCF), 

which is a modal index defined as follows 

𝑀𝐶𝐹𝑖 = 1 −  𝑀𝑃𝐶𝑖     (A.62) 

The values of both the MPC index and the MCF index are in the range from 0 to 1. In 

particular, the MPC is one or very close to one (i.e. the MCF is zero or very close to 

zero), if the considered mode shapes are related to a structure that is proportionally 

(or classically) damped. In such case, the real and the imaginary parts of the identified 

mode shapes are approximately proportional. This is a result that is in general 

expected for most of the civil structures that are subjected to a vibration modal test. 

For such structures, in fact, a proportional damping model is considered in general as 

a reasonable model. However, when the modal identification techniques are applied 

on vibration data of real structures (including civil structures), it is not unusual to 

identify modes that are characterized by a certain degree of complexity (i.e. the MPC 

for some of the mode shapes is not close to one, or, equivalently, the MCF is not close 

to zero). In such cases, the resulting modal complexity can be due to the two following 

effects. On one side, a non-proportional damping behavior can effectively characterize 

the structure. On the other side, the structure might have a proportionally damped 

behavior, but complex mode shapes are estimated due to the random errors that always 

occur in the identification process [Brincker & Ventura, 2015] or due to a low quality 

of the response measurements (for example, in case of low values of the signal-to-

noise ratio) [Rainieri & Fabbrocino, 2014]. If one expects to deal with a 

proportionally-damped structure, these indices (i.e. the MPC and the MCF) can be 

thus considered as indicators of the quality of the mode shape estimates and indicators 

of the quality of the modal identification process.  

The second index that can be used in the stage of the modal validation is the Modal 

Assurance Criterion (MAC) [Allemang & Brown, 1982]. As already mentioned in 
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Chapter 6, the Modal Assurance Criterion is a criterion that is used to evaluate the degree 

of correlation or similarity between mode shape vectors, and it is defined as follows 

                𝑀𝐴𝐶 =
(𝝍𝑨,𝒊

𝑻  𝝍𝑩,𝒋)
2

(𝝍𝑨,𝒊
𝑻 𝝍𝑨,𝒊) (𝝍𝑩,𝒋

𝑻  𝝍𝑩,𝒋)
                                       (A.63) 

where 𝝍𝑨,𝒊 and 𝝍𝑩,𝒋 are mode shapes related to the i-th mode of the modal model “A” 

and the j-th mode of the modal model “B”, respectively. As already mentioned in 

Chapter 6, the MAC can be evaluated for mode shapes related to any mode index i, j 

∈ [1 … r], where r is the total number of the considered modes, and the value of the 

MAC is in the range 0 ≤ MAC ≤ 1. In case of a good correlation between the two 

considered mode shapes the value of the MAC is close to one. 

In the stage of the modal validation the MAC index can be mainly adopted in 

two different ways. First of all, the MAC can be calculated by considering a modal 

model obtained through a modal identification technique and by comparing this modal 

model with itself (i.e., the modal models “A” and “B” reported in Eq. A.63 are the 

same). In such case, the MAC is indicated in the literature as “auto MAC”, and it has 

in general the following properties: when the mode indices are the same (i.e. i = j), a 

value of the auto MAC equal to one is obtained (i.e., each mode shape has, of course, 

a perfect correlation with itself); on the contrary, it is expected that the values of the 

auto MAC calculated for 𝑖 ≠ 𝑗 are approximately equal to zero. This last property 

derives from the fact that different mode shapes are mutually orthogonal, for example, 

with respect to the mass matrix of the structure. This also means that the degree of 

correlation between different mode shapes of the same structure is in general very 

low.  

The Modal Assurance Criterion can be also adopted to compare mode shapes 

related to two different modal models, and, in such case, it is indicated in the literature 

as “cross MAC”. For example, the mode shapes identified through a certain modal 

identification technique (modal model “A”) can be compared with the mode shapes 

obtained using a different modal identification technique (modal model “B”). In such 

situation, it is expected that the results obtained using the two different modal 

identification techniques are similar. This means that it is expected to have values of 
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the cross MAC that are close to one if the mode indices are equal (i.e. i = j), and values 

of the cross MAC that are close to zero if the mode indices are different (i.e. 𝑖 ≠ 𝑗).  

It is worth noting that the cross MAC can be also used to compare the 

experimental mode shapes identified through a modal identification technique (modal 

model “A”) with the corresponding eigenvectors that derive from an analytical or a 

FEM model (modal model “B”). In the same way, for example, the natural frequencies 

obtained from the experimental test can be compared with respect to the natural 

frequencies calculated from the analytical or FEM model. In general, such operations 

can not be considered as part of the modal validation process when the modal 

identification is applied on real vibration data. However, such operations can be 

conveniently applied when the modal identification is performed on vibration data 

obtained through numerical simulations.  
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A.4 Applications of output-only modal identification 

This section presents a numerical case study (see Section A.4.1) and an experimental 

case study (see Section A.4.2) where the output-only modal identification techniques 

described in previous sections were applied. Both in the numerical and in the 

experimental case studies the analyses were performed starting from the output 

vibration responses of frame building structures.  

 

A.4.1 Output-only modal identification applied on simulated vibration data   

This section6 presents the application of the output-only modal identification 

on the simulated vibration responses of a numerical model of a frame building 

structure. Applying a modal identification technique in the framework of a simulation 

approach means basically that the exact modal properties of the considered structural 

system are known, and thus these properties can be compared with the modal 

parameters extracted from the simulated vibration data through the modal 

identification technique. As reported in [Brincker & Ventura, 2015], the possibility of 

doing this comparison (between the exact and the identified modal properties) makes 

the simulation approach an important tool for investigating the accuracy and the 

reliability of the modal identification technique. In the analyses presented in this 

section the considered output-only modal identification technique is the Natural 

Excitation technique (NExT) [James et al., 1993] combined with the Eigensystem 

Realization Algorithm (ERA) [Juang & Pappa, 1985]. The application performed 

using a simulation approach and presented in this section thus aims to investigate the 

effectiveness and the accuracy of the adopted implementation of the NExT-ERA 

                                                 
6 Some of the contents of this section are presented in the conference papers co-authored with Dr. 

Landi and Prof. Diotallevi, published in the following conference proceedings: 

Landi L., Bernagozzi G., Diotallevi P.P., Operational modal analysis of a plan-asymmetric RC 

frame structure subjected to a simulated random ground motion along different directions. 

Proceedings of the XVI conference "L'Ingegneria sismica in Italia" ANIDIS 2015, L’Aquila, Italy, 

September 13-17, 2015. 

Bernagozzi G., Landi L., Diotallevi P.P., On the application of output-only modal identification 

to base excited frame structures. Proceedings of the 16th World Conference on Earthquake 

Engineering (WCEE), Chile, January 9-13, 2017. 
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method7. It is worth noting that this technique and the related implementation have 

been also used a tool for extracting the modal properties of the structural systems in 

the analyses related to some of the modal flexibility-based approaches that are 

presented in other chapters of the thesis. 

The numerical model that is considered in the present section is the model of a 

reinforced concrete (RC) building structure (Fig. A.2). The structure is a three story one-

bay by one-bay frame building structure, and it is characterized by a bay width equal to 6 

m and an interstory height equal to 3.2 m (as shown in Fig. A.2).  Moreover, the elastic 

modulus of the concrete is equal to 20000 N/mm2 and the mass of each story of the 

structure is equal to 43200 kg. Four columns with a rectangular cross section are present 

at each story of the structure. In particular, at each floor three columns have a rectangular 

cross section of 30×40 cm, while the column located in the point where the origin of the 

coordinate reference system is positioned has a rectangular cross section of 40×50 cm 

(Fig. A.2b). The structure is thus characterized by a plan-asymmetric distribution of the 

story stiffness. The center of stiffness of a generic story of the structure is indicated in 

Fig. A.2b with the letter C, while the center of mass is indicated with the letter G. It is 

worth noting that for the considered structure, which is a simple rectangular “box type” 

building structure, it was made the simplified assumption of considering the center of 

mass as located in the geometric center of the floor plan.  

 

 

                                                 
7 The computations related to the application of the NExT-ERA method were performed in 

the Matlab programming system [Matlab]. 
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Figure A.2. Frame structure: a) 3D view with simulated layout of the sensors;  

b) plan view. Adapted from [Landi et al., 2015] 

 

The numerical model considered in the analyses is a shear-type model that is 

characterized by nine DOFs. It is assumed that the beams of the structure are infinitely 

stiff in comparison to the columns and that each floor of the structure has a rigid-body 

in-plane behavior. The numerical model was created by defining the mass and the 

stiffness matrices of the building structure (such matrices have dimensions 9 × 9). Then, 

this undamped model of the structure was used to perform an eigenvector analysis, and 

the natural frequencies and the mode shapes of the structure were determined. The natural 

frequencies of the structure are reported in Table A.2 (which is shown later in this section 

together with the modal parameters extracted through the output-only modal 

identification), while the mode shapes related to the analytical model of the structure are 

reported in Fig. A.3. As shown in this figure, each mode shape can be easily associated 

to a predominant direction (for example, to the direction related to the y-axis, to the 

direction related to the x-axis, or to the direction that corresponds to the rotations 

around the z-axis). 

 

a) 

b) 
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Figure A.3. Plan view of the analytical mode shapes of the structure [Landi et al., 2015] 

 

Referring to the numerical model of the structure, it was also assumed that the 

modal damping ratio related to each mode of the structure is equal to ζi = 0.05, and the 

vibration responses of the structure were determined by applying a white noise input at 

the base of the structure. This white noise input used in the simulation has a duration of 

500 s, and it was applied in the direction that is orthogonal with respect to the segment 

that connects the center of mass and the center of stiffness of each story of the structure 

(i.e. the segment that connects the points G and C in Fig. A.2b). It is worth noting that the 

input used in this simulation (i.e. a single input) is not the ideal type of input that one 

expects to have when considering real-life structures that are tested under ambient 

vibrations (where, as already mentioned in Chapter 2, multiple inputs in general act 

simultaneously on the structure). In the present simulation, however, this simplified 
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approach of exciting the structure using the considered white noise input was in any case 

suitable to excite all the modes of the building structure (which, as already mentioned, is 

a plan-asymmetric frame building structure). The vibration responses due to the applied 

input were determined at all the DOFs of the structure, and, specifically, in the points and 

in the directions that are highlighted in Fig. A.2a. This figure shows the layout of the 

hypothetical sensors that have been used to collect the vibration responses of the structure. 

After having determined the vibration responses of the structure, white noise signals 

were added on the data to model measurement noise that can be present on real 

vibration data. The Root-Mean-Square (RMS) amplitude of the added noise is equal 

to the 10% of the RMS amplitude of the response signals.  

The simulated vibration responses of the considered building structure were 

adopted to perform the output-only modal identification using the Natural Excitation 

technique (NExT) [James et al., 1993] combined with the Eigensystem Realization 

Algorithm (ERA) [Juang & Pappa, 1985] (Section A.1). According to the NExT 

method, outlined in Section A.1.3, the correlation functions were evaluated between all 

the vibration responses of the structure and the response associated to a reference channel. 

In particular, in the analysis channel A7 was selected as the reference channel. As shown 

in Fig. A.2a, this channel is assumed in the numerical simulation as the channel that 

measures the response of the structure at the top story (i.e. the third story) and in the x 

direction. After having determined the correlation functions, the ERA method was 

applied. In the analysis the dimension of the state space model that has to be identified 

was selected as equal to four times the number of the expected structural modes, 

according to the indication reported in [Caicedo, 2011]. For the considered building 

structure, which is modeled as a 9-DOF structural system, the number of the expected 

structural modes is equal to nine, and, thus, the dimension of the state space model was 

selected as equal to thirty-six. Using the output-only version of the ERA method, as 

described in Sections A.1.2 and A.1.3, the system matrix Ad of the identified stochastic 

state space model was determined. Then, an eigenvalue analysis was performed on the 

identified system matrix, and thirty-six poles of the model were obtained.  

The selection of the structural modes, among all the poles that were estimated 

using the modal identification technique, was performed, by evaluating the indices of the 

Modal Amplitude Coherence (MAmC) and the Mode Singular Value (MSV) (described 
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in Section A.1.2 and extended to the output-only case as discussed in Section A.1.3). Such 

indices were evaluated for each of the modes identified using the ERA method and by 

considering a dimension of the state space model equal to thirty-six, and the results are 

reported in Table A.1. In this table, the identified modes are ordered with respect to the 

Mode Singular Value (MSV), from the largest to the smallest ones. Moreover, since, as 

already mentioned in Section A.1.2, when an underdamped structure is considered, the 

identified poles occur in complex conjugate pairs, in the table the results are shown by 

selecting only one mode among the two modes that form each complex conjugate pair. 

The selection of the structural modes was then performed through the analysis of the 

values of the Modal Amplitude Coherence (MAmC). The first nine modes that are 

associated to the highest values of the modal amplitude coherence are highlighted in 

Table A.1, and, as shown later in this section through a comparison between the 

identified and the analytical modes, they correspond to the nine structural modes of 

the considered building structure.  

 

Frequency (Hz) Damping Ratio 
Mode Singular 

Value (MSV) 

Modal Amplitude 

Coherence (MAmC) 

2.66a 0.050 1.000 0.997 

2.06a 0.043 0.746 0.989 

5.70a 0.049 0.375 0.987 

7.42a 0.052 0.301 0.995 

4.32a 0.042 0.296 0.997 

9.85 0.711 0.169 0.876 

8.29a 0.063 0.147 0.999 

3.63 0.124 0.145 0.600 

10.61a 0.048 0.120 0.974 

12.71 0.145 0.120 0.646 

11.18 0.092 0.118 0.964 

12.22a 0.055 0.103 0.971 

6.54 0.061 0.098 0.389 

15.50 0.051 0.054 0.566 

17.61a 0.066 0.048 0.999 

18.36 0.029 0.043 0.310 

21.38 0.025 0.042 0.703 

24.02 0.021 0.016 0.375 
a : identified structural mode 

Table A.1. Modes identified using the NExT-ERA method. Adapted  

from [Bernagozzi et al., 2017c]. 
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After having identified the structural modes of the considered building structure, 

some of the criteria for modal validation that have been described in Section A.3 were 

applied. First of all, the modal complexity associated to the complex-value mode shapes 

of the identified structural modes was determined by evaluating the index of the Modal 

Phase Collinearity (MPC). All the identified structural modes and, especially, the first 

structural modes are characterized by values of the modal phase collinearity that are 

approximately close to one. This result is expected since in the present numerical 

simulation the model of the building structure is proportionally damped. The polar plots 

of the complex-value mode shapes related to the first four identified structural modes are 

reported in Fig. A.4, and in such figure the values of the modal phase collinearity are also 

reported. It is worth noting that among the first four modes, the third mode (M3-), which 

is a torsional mode, shows an amount of modal complexity that is higher with respect to 

the other modes (for which, on the contrary, the amount of the modal complexity is 

practically equal to zero, as shown by the values of the MPC index). This effect, of course, 

is not related to the dynamics of the structure, but it is only due to the presence of noise 

on the vibration data and due to the uncertainties that derive from the identification 

process.  

 

             M1-y                                 M2-x                                    M3-ϕ                                     M4-y 

       MPC1=0.999                     MPC2=1.000                         MPC3=0.878                       MPC4=1.000 

 

Figure A.4. Polar plots of identified complex-value mode shapes [Bernagozzi et al., 2017c]. 

 

The Modal Assurance Criterion (MAC) was also evaluated by comparing each 

identified mode shape of the structure with respect to all the other identified mode shapes 

(according to the description of the modal validation approach based on the MAC 

provided in Section A.3, in such case the auto MAC values associated to the identified 

mode shapes were determined). In particular, the MAC criterion was applied on the mode 
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shapes of the real (or normal) modes of the structure, which were obtained starting from 

the complex (or damped) identified modes using the Standard Technique [Alvin et al., 

2003] (described in Section A.1.2). A graphical representation of the matrix that contains 

the values of the auto MAC is reported in Fig. A.5. As expected and as already discussed 

in Section A.3, the diagonal elements of this matrix are equal to one, because each mode 

is, of course, perfectly correlated with itself. On the contrary, small values (i.e. values that 

are approximately close to zero) were obtained in the off-diagonal components of the auto 

MAC matrix. As already discussed in Section A.3, it is expected that the degree of 

correlation between the different mode shapes is very low, and thus the above-mentioned 

result suggests that the identified modal model is consistent.  

 

                    

Figure A.5. Matrix of the auto MAC: identified structural modes  

compared with each other. Adapted from [Bernagozzi et al., 2017c].  

 

Finally, to conclude the analyses performed in the framework of the numerical 

simulation, the identified modal parameters were compared with the true modal 

parameters related to the analytical model of the structure. The results are reported in 

Table A.2, where the natural frequencies and the modal damping ratios of the 

structural modes identified using the NExT-ERA method are compared with respect 

to the natural frequencies and the modal damping ratios of the analytical model. 

Moreover, in the last column of the table the values of the Modal Assurance Criterion 

evaluated between the identified and the analytical mode shapes are reported (as 

discussed in Section A.3 these values are termed cross MAC). It is worth noting that 

such values of the cross MAC reported in the last column of Table A.2 correspond to the 
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diagonal components of the cross MAC matrix evaluated between the identified and the 

analytical mode shapes (a graphical representation of this cross MAC matrix is 

reported in Fig. A.6). Referring to the natural frequencies, as shown in Table A.2, a very 

good agreement was found between the identified and the analytical natural frequencies 

of the structure. A good agreement was also found between the identified and the 

analytical mode shapes of the structure. This statement is supported by the fact that the 

values of the cross MAC reported in Table A.2 are close to one, especially for the first 

structural modes. Referring to the modal damping ratios, it is evident in Table A.2 that 

the discrepancies between the identified and the analytical values of the damping are in 

general higher than the discrepancies present between the identified and the analytical 

natural frequencies. In any case, the identified modal damping ratios are not far from the 

value of the damping ζi = 0.05, which was assumed as the value of the modal damping 

ratio related to each structural mode in the numerical model.  

 

               

Structural 

mode 

Natural frequency (Hz) Modal Damping Ratio Cross 

MACii (/) Identified Analytical Identified Analytical 

M1-y 2.06 2.05 0.045 0.05 1.000 

M2-x 2.66 2.63 0.050 0.05 0.997 

M3-ϕ 4.32 4.34 0.042 0.05 0.999 

M4-y 5.70 5.75 0.049 0.05 0.993 

M5-x 7.42 7.38 0.052 0.05 0.990 

M6-y 8.29 8.30 0.063 0.05 0.885 

M7-x 10.61 10.66 0.048 0.05 0.968 

M8-ϕ 12.22 12.15 0.055 0.05 0.850 

M9-ϕ 17.61 17.56 0.066 0.05 0.664 

 

Table A.2. Comparison between identified and analytical modal parameters. Adapted  

from [Bernagozzi et al., 2017c].  
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Figure A.6. Matrix of the cross MAC: comparison between identified modes and analytical 

modes. Adapted from [Bernagozzi et al., 2017c].  

 

A.4.2  Output-only modal identification applied on real vibration data  

This section8 presents the application of the output-only modal identification on the 

experimental vibration data of an Operational Modal Analysis (OMA) test that was 

performed on a steel frame structure. As reported in [Brincker & Ventura, 2015], when 

dealing with experimental data, a convenient approach to perform the OMA identification 

is to apply both frequency and time domain techniques, trying to validate the 

identification process by comparing the results obtained in the two domains. Following 

the above-mentioned indication reported in [Brincker & Ventura, 2015], in the analysis 

presented in this section the output-only modal identification was performed using both 

the Enhanced Frequency Domain Decomposition (EFDD) [Brincker, Zhang & Andersen, 

2001; Brincker, Ventura & Andersen, 2001] and the Eigensystem Realization Algorithm 

[Juang & Pappa, 1985] combined with the Natural Excitation technique [James et al., 

1993] (NExT-ERA). As already mentioned in Chapter 2 and in previous sections of this 

                                                 
8 Some of the contents of this section are presented in a conference paper co-authored with Prof. 

Ventura, Dr. Kaya, Dr. Landi, and Prof. Diotallevi, published in the following conference 

proceedings: 

 

Bernagozzi G, Ventura CE, Kaya Y, Landi L, Diotallevi PP, Comparison of OMA techniques and 

effect of added masses on the modal properties of a small steel frame. Proceedings of the 7th 

International Operational Modal Analysis Conference (IOMAC), Ingolstadt, Germany, 10-12 

May 2017.  
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appendix, the former (i.e. the EFDD method) is a frequency domain technique, while the 

latter (i.e. the NExT-ERA method) is a technique that works in time domain. At the end, 

the modal parameters obtained using the two above-mentioned techniques were 

compared. 

The structure that was considered in the Operational Modal Analysis (OMA) test 

9 is a scaled steel frame structure (Fig. A.7) that is located in the laboratory of the 

Polytechnic School of Engineering in Gijón (Spain). The structure is a two-story, 1-bay-

by-1-bay frame, and it is characterized by the following dimensions: each floor has 

dimensions equal to 0.42 m × 0.28 m, and the height of the structure is 1 m (as shown in 

Fig. A.7b where a schematic representation of the geometry of the frame structure is 

reported). The structure is composed by four columns that have hollow rectangular cross 

sections with dimensions equal to 20 mm × 15 mm and a thickness equal to 1.5 mm. The 

steel plates that create the two floors of the structure have a thickness equal to 5 mm. The 

structure is plan-symmetric with respect to two prevalent directions, and due to the 

orientation of the cross sections of the columns (Fig. A.7b) the weak direction of the 

structure is the Y direction, while the strong direction of the frame is the X direction.   

 

                                                 
9 The vibration test was performed on May 11, 2015 during the pre-conference Operational 

Modal Analysis course held by Prof. Carlos Ventura and Prof. Svend Gade at the 6-th 

International Modal Analysis Conference (IOMAC) in Gijon, Spain. The test was executed 

by the participants of the mentioned OMA course (which was attended by the writer). The 

writer would like to thank Prof. Ventura and Prof. Gade for their assistance during the test. 

The writer would also like to thank Prof. Manuel López Aenlle and Dr. Pelayo Fernández 

Fernández for their support in the execution of the vibration test. Finally, the writer gratefully 

acknowledges the collaboration of all the participants of the OMA course that were involved 

in the OMA test (especially the collaboration of Oscar Ramírez and Guillermo Fernandez‐
Lorenzo). 
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Figure A.7. Tested steel frame structure: a) photo (Polytechnic School of Engineering, 

Gijón); b) geometry. Adapted from [Bernagozzi et al., 2017d]. 

 

The structure was excited by artificial inputs that aim to simulate the type of 

inputs that acts on real-life structures that are tested under ambient vibrations (i.e. 

random, multiple, and uncorrelated inputs at different spatial locations). In particular, 

the structure was tested in the laboratory under human-hand-induced vibrations. In 

other words, during the operational modal analysis test the structure was excited by 

the inputs produced by several people that randomly, continuously, and lightly hit the 

structure in different spatial locations using the hands. Due to the type of the applied 

inputs, the test should be thus a suitable case study for the application of the OMA 

identification techniques. Only the output vibration responses of the structure due to 

the applied random inputs were recorded during the test using piezoelectric uniaxial 

accelerometers (Fig. A.8a). The sensors used in the test are PCB Model 333B32 [PCB 

Piezotronics], which are characterized by a sensitivity equal to 100 mV/g and a 

measurement range equal to ±50g. The vibration responses of the structure were 

recorded with a sampling frequency equal to 200 Hz, and the length of time of the 

measurements was approximately 10 minutes. In the test eight sensors were installed 

on the structure, but only the measurements obtained from six sensors were considered 

in the data analysis (i.e. the measurements obtained from three sensors for each story 

  a)   b) 
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of the structure). The locations and the orientations of these six sensors (i.e. uniaxial 

accelerometers) are shown in Fig. A.8b. 

         

Figure A.8. Test setup: a) accelerometric sensors; b) schematic layout of the channels  

used in the data analysis (Polytechnic School of Engineering,  

Gijón). Adapted from [Bernagozzi et al., 2017d]. 

The output-only modal identification was performed at first using the 

Enhanced Frequency Domain Decomposition (EFDD) method 10 [Brincker, Zhang & 

Andersen, 2001; Brincker, Ventura & Andersen, 2001], using the steps that are 

described in Section A.2. According to the EFDD method, the spectral density functions 

were estimated starting from the measured vibration responses of the steel frame structure 

(i.e. the data acquired using the six channels reported in Fig. A.8b), and then a singular 

value decomposition was performed on the matrix of the spectral density functions. 

An example of the Auto Spectral Density (ASD) functions estimated from the 

measurements is shown in Fig. A.9, where the ASD functions evaluated for the signals 

acquired using channel 4 and channel 5 are reported. These two channels were used 

in the test to measure the accelerations at the second story of the structure near the 

column indicated with the letter A in Fig. A.8b, but channel 4 is oriented in X direction 

                                                 
10 The EFDD method implemented in ARTeMIS software [ARTeMIS] was adopted, and as a 

complementary tool for performing the analyses in frequency domain, a Matlab code [Matlab] 

that implements the FDD method was also developed and used. 

  a)   b) 
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(i.e. the strong direction of the frame) while channel 5 is oriented in Y direction (i.e. 

the weak direction). The plot of the singular values computed from the matrix of the 

spectral density functions is reported in Fig. A.10. First of all, if one considers the 

first singular values (black line reported in Fig. A.10), it is evident that, in the analyzed 

frequency range (from 0 to 100 Hz), there are some clear peaks that can be associated 

to structural modes. Moreover, it is worth noting that some peaks are also present in 

the plots of the other singular values (reported as gray lines in Fig. A.10). According 

to [Brincker & Ventura, 2015], this characteristic of the plot of the singular values can 

be considered as an indication of the fact that the vibration test has been effectively 

performed by applying a multiple input excitation. According to the EFDD method, 

the structural modes were manually identified by analyzing the peaks in the plot of 

the first singular values, and six structural modes were identified. The peaks in the 

plot of the singular values associated to these six structural modes are highlighted in 

Fig. A.10, and the peaks correspond, respectively, to the following structural modes: 

- first longitudinal mode in weak direction (1Y)  

- first longitudinal mode in strong direction (1X) 

- first torsional mode (1T) 

- second longitudinal mode in weak direction (2Y) 

- second longitudinal mode in strong direction (2X) 

- second torsional mode (2T).  

                    

Figure A.9. Magnitude of the auto spectral density functions related to  

channels 4, 5. Adapted from [Bernagozzi et al., 2017d].  
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Figure A.10. Singular values computed from spectral density functions. Adapted  

from [Bernagozzi et al., 2017d]. 

 

The natural frequencies and the modal damping ratios of the steel frame structure 

identified using the EFDD method are reported in Table A.3, while the identified mode 

shapes of the structure are reported in Fig. A.11. Of course, the components of the mode 

shapes were identified at the sensor locations, and then to create the graphical 

representation of the identified mode shapes shown in Fig. A.11, it was made the 

simplifying assumption of considering each floor of the structure as a rigid body. The 

output-only modal identification was also applied in time domain using the 

Eigensystem Realization Algorithm (ERA) [Juang & Pappa, 1985] combined with the 

Natural Excitation technique (NExT) [James et al., 1993]. According to the steps 

reported in Sections 6.1.2 and 6.1.3, the correlation functions were estimated starting 

from the measured vibration responses of the steel frame structure (NExT procedure), 

and then the ERA method was applied 11. The natural frequencies and the modal 

damping ratios related to the six prevalent modes of the structure identified using the 

NExT-ERA method are reported in Table A.3, while the identified mode shapes are 

reported in Fig. A.12. In Table A.3 the modal parameters identified using the EFDD 

method (in terms of natural frequencies, modal damping ratios, and mode shapes) are 

                                                 
11 The computations related to the application of the NExT-ERA method were performed in 

the Matlab programming system [Matlab]. 
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thus compared with the modal parameters identified using the NExT-ERA method. It 

is worth noting that, while the natural frequencies and the modal damping ratios are 

directly compared in Table A.3, the mode shapes identified using the EFDD method 

were compared with the mode shapes identified using the NExT-ERA method through 

the Modal Assurance Criterion (i.e. the cross MAC, as described in Section A.3). The 

values of the cross MAC obtained for the six modes identified using the two OMA 

techniques are reported in the last column of Table A.3. Referring to the natural 

frequencies of the structure, a very good agreement was found between the frequencies 

identified using the EFDD method and the corresponding frequencies identified using the 

NExT-ERA method. Moreover, all the values of the cross MAC evaluated on the 

identified mode shapes are close to one (as shown in Table A.3), and thus a very good 

agreement was also found between the two OMA techniques in the estimation of the 

mode shapes of the structure. Referring to the modal damping ratios, a good agreement 

between the two OMA identification techniques was observed, especially for the first 

two structural modes. 

 

Mode 

number 

Mode  

type 

Natural frequency [Hz] 

[Hz] 

Modal damping ratio (%) 

[%] 

Cross MAC 

EFDD    NExT-ERA EFDD   NExT-ERA  

1 1Y 9.20 9.10 1.65 1.68 0.999 

2 1X 11.00 11.04 1.51 1.41 0.988 

3 1T 22.34 22.60 1.67 0.91 0.994 

4 2Y 38.76 38.78 0.69 0.66 0.989 

5 2X 48.95 49.00 0.60 0.27 0.967 

6 2T 74.75 74.51 0.57 0.37 0.999 

Table A.3. Identified modal parameters – comparison between the EFDD method and the 

NExT-ERA method. Adapted from [Bernagozzi et al., 2017d].  
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Figure A.11. Plan view of the mode shapes identified using the EFDD method. 

 

 

Figure A.12. Plan view of the mode shapes identified using the NExT-ERA method. Adapted 

from [Bernagozzi et al., 2017d]. 
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