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Introduction

In order to study the mechanisms of heavy ion reactions the main goal

is to classify collisions according to some global features; allowing for the

identification and the characterization of the source(s). The topology of

each collision is, to a large extent, related both to the impact parameter

of the collision and to a partial or total transformation of the available

centre-of-mass kinetic energy of the relative motion between the two

partners of the collisions into disordered motion (heat). This dissipation

process is governed by several important ingredients. One of them is the

relative velocity between the initial partners of the reaction vAA. The

corresponding reduced relative wavelength associated with a nucleon-

nucleon collision then reads

λ

2π
=

h

2πmvAA

where m is the nucleon mass. According to equation 2, the following

values (in the case of symmetrical systems) of λ/2π = 6.5, 2.1, 0.67, 0.24

fm are obtained for 1, 10, 100, 1000 AMeV beam energies, respectively.

These values have to be compared with the mean nucleon-nucleon

distance in a nucleus (typically 2 fm). If λ/2π exceeds this distance, a

collective behaviour of nucleons during the collision is expected. In other

words, mean field (one-body) effects overcome nucleon-nucleon collisions

(two body) effects. The situation will be reversed if λ/2π is smaller than

the mean nucleon-nucleon distance. According to this criterion, it turns

out that mean field effects are expected to be dominant in the low-energy

region (below 15 AMeV).
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In general, in the low-energy part the main de-excitation patterns are

evaporation [1, 2, 3, 4], decay by giant resonances [5, 6, 7, 8, 9], the

production of evaporation residues and fission. The evaporation process

is associated with the “chaotic” thermal motion of the nucleons at the

nuclear surface. The correlation between thermal energy and temperature

provides information on the heat capacity of hot nuclei. The evolution of

the so-called level density parameter a = A/K (where A being the mass

number and K is a parameter which for low energy has an empirical value

of about 8 MeV) reflects the various transitions occurring inside the nuclei

as the temperature increases. Small collective motions such as giant

resonances can be studied at finite temperature and their characteristic

decay properties have been established as a function of excitation energy.

In contrast, fission is a large amplitude collective motion. The evolution

of its probability with excitation energy reveals the typical times needed

to strongly deform a nucleus. It depends on the corresponding nuclear

matter viscosity and its dependence on temperature. At low bombarding

energy, i.e. when the nucleus-nucleus relative velocity vAA is less than

the Fermi velocity vF (≈ 0.3c), nucleon-nucleon collisions are strongly

inhibited by the fact that few final states are available in the exit channel.

In this case, energy dissipation occurs mainly because the nucleons of

the projectile are retained inside the target (and vice versa) by the

corresponding attractive potential, giving rise to one-body dissipation.

An increase in the incident energy induces the opening of the available

phase space for outgoing nucleons, which leads to some decrease in Pauli

blocking effects. In turn, in the limit of relativistic incident energies,

dissipation occurs mainly through nucleon-nucleon collisions (two body

dissipation).

Another important quantity is the available energy per nucleon, i.e. the

maximum excitation energy which can be brought into the system. An

incident energy of 30 AMeV, for example, corresponds to an available

energy close to the total binding energy for symmetrical nucleus-nucleus
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collisions. In other words, the low incident energy domain (below 15

AMeV) will correspond to moderate excitation of final products but much

higher excitation can be reached at intermediate or large incident energy.

Finally, as already stated, the values of vAA are smaller than the velocity

associated with pion production threshold in nucleon-nucleon collisions,

which corresponds in vacuum to an energy of 290 AMeV. This confirms

again that, in the intermediate energy domain, nucleon excited states will

have a negligible influence.

In the low energy domain (E < 15 AMeV) the reaction mechanism

is mainly governed by the long range of nuclear force, with prevailing

deep inelastic collisions and binary reactions. In this region of energies

(Coulomb barrier region and below) the reaction mechanisms may be

classified according to the impact parameter b or the orbital angular

momentum l. Elastic scattering is observed for impact parameters

exceeding bmax = Rt + Rp values (or the corresponding angular

momentum lmax which corresponds to grazing collisions. Slightly below

bmax, quasi-elastic and transfer reactions are observed in which the

projectile and target kinematical properties are only slightly perturbed.

They mainly reflect the external orbit properties of the interacting nuclei.

Dissipative collisions, also called deep inelastic collisions (DIC), and

possibly fusion, are observed for more central collisions. They are clear

signatures of mean-field effects leading to a collective behaviour of the

involved nuclei. In the DIC case, projectile and target nuclei are strongly

slowed down due to nuclear matter friction. For a short time they form a

“quasi-molecular” state before reseparation. During this step nuclei may

exchange nucleons. The corresponding lifetime may be estimated from

the rotation angle of the di-nuclear system before the decay. The fusion

corresponds to the most central collisions. The angular momentum that

separates the fusion and the DIC regions is called the critical angular

momentum.

The physical scenario becomes very different with respect to the previous
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one if we consider the heavy-ion collisions in the relativistic energy range

(0.2 - 1 AGeV). At these energies the dissipation process is dominated

by hadronic cascades because the wavelength associated with nucleon-

nucleon collisions is shorter than the nucleon size. The corresponding

relative velocity between a nucleons of the projectile and target is

also much larger than the Fermi velocity vF . For these of the two

reasons, collisions can be safely described by geometrical concepts leading

to the so-called participant-spectator picture: nucleons which do not

belong to the overlapping zone of the two incoming nuclei do not suffer

hard nucleon-nucleon collisions and constitute the spectators while the

other ones are the participants. The physics of the participants has

been studied for a long time with the first generation of 4π detectors

[10, 11, 12, 13, 14]. The corresponding deposited energies per nucleon

are far beyond the nuclear binding energies.

Now, we focus on the Fermi energy domain, typically between 15 and

100 AMeV (the domain between low and relativistic energies). It is a

transition region in which both one body and two-body behaviours are

observed and strongly compete.

In the Fermi energy range, the energy dissipated in a nucleus cannot

excite intrinsic states of the nucleon. Thus, the whole energy is available

to heat the matter. However, part of the energy is also used to

excite collective degrees of freedom associated with deformation, rotation

and/or compression. The energy stored in a given mode depends on

the typical timescale for the excitation of this mode and also on the

initial conditions, i.e. the entrance channel characteristics. For instance,

the amount of rotational motion reflects both the entrance orbital

angular momentum and the shapes of the interacting nuclei. Indeed,

the deformation of outgoing partners in binary dissipative reactions is

related both to the geometry (impact parameter) and to nuclear matter

viscosity as is already the case at lower energy (the outgoing fragments

in a DIC are released as deformed objects).
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The Fermi energy range appears to be a very interesting energy region

in which pieces of nuclear matter are heat and compressed in a broad

range of temperatures and densities. Consequently, a large variety of

physical processes are expected to play a role. For example in peripheral

and mid-central collisions binary collisions are present, where a quasi-

projectile (QP) and a quasi-target (QT) are produced in the collision.

If the decay chain is complicated or long, the final products are quite

different from the original QP and QT nuclei. Conversely, if it is simple

or short, the QP and QT residues still resemble the initial projectile and

target nuclei and there is an extra particle emission in between the two

sources: this is a first hint for the formation of intermediate structures

like the neck-like ones. Indeed, in the overlap region of the two incoming

nuclei, a highly dense and hot piece of nuclear matter is produced,

which, in some circumstances, may become an independent third source

of emission of smallest fragments. In the analysis of experimental data, a

clear alignment of the three fragments is observed when one of them has

a size of the order of the volume of the overlap zone (see [15]).

The physical scenario in the central collisions and in the Fermi energy

domain it is quite important to be studied because from an experimental

point of view it is possible to observe (at energy beam of few tens

AMeV) the production of a relatively large number of fragments with

intermediate mass. In this contest we can speak of multifragmentation

phenomena ([16],[17]). The multifragmentation is one of the most

important topics in nuclear physics . In this regime it is possible to

study the behaviour of the nuclear matter under extreme conditions of

temperature and density. The nuclei in their ground state behave like

Fermi liquids, and at high excitation energy can be decomposed in a vapor

of light particles and clusters (as the Van Der Waals equation of state). It

is therefore interesting to study a possible phase transition in the nuclear

bulk. The expected associated phase-transition constitutes indeed one

of the most intriguing topics of nuclear physics with the study of the
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equation of state of the nuclear matter at high density and temperature.

Several signals of a phase change have been found, like a plateau in

the caloric curve ([18],[19]), a sudden onset of multifragmentation and

collective expansion, an increased probability for equal sized fragments

possibly reminiscent of a spinodal decomposition ([20]), an abnormal

enhancement of partial energy fluctuations tentatively associated to a

negative branch of the heat capacity ([21]), a bimodal distribution of

exclusive observables hinting phase coexistence ([22]), universal scaling

laws both for the heaviest fragment and for the droplet distribution

([23],[24]).

In this work, we will focus on the new methods which can be used

to perform a centrality sorting of the events. The knowledge of the

impact parameter b, defined as the distance between the straight-line

trajectories of the centers of the two nuclei before their interaction,

would be important at least to discriminate central, semi-peripheral and

peripheral collisions. Unfortunately from an experimental point of view

it is impossible to measure directly the values of the impact parameter.

The most common technique to estimate the values of b, based on one-

dimensional analysis, is to find a correlation between physical observables

and the impact parameter b.

Since 1990s, there were developed new approaches in the framework of

the Neural Networks (NN) (see [25],[26],[27],[28]). In these works, for

the first time, the Neural Networks have been used, alternatively to

traditional methods, described briefly before, to backtrace the values of

the impact parameter. The first step in this direction has been made

using the NN by David et al. [27]. They have obtained, using simulated

197Au +197 Au events only, an improvement by a factor of 4 in the

determination of the impact parameter compared to more conventional

methods in central collisions. In fact, the NN allows one to lower the

standard deviation between the known impact parameter of “theoretical

data” and the impact parameter derived from the observables by a factor
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of 4 as compared to the use of one observable only. In other words, in

the NN analysis it is possible to use at the same time, more observables

with respect to traditional methods. In the work of David et al. the

observables that have been used are the total multiplicity of protons,

the largest fragment observed in each collision and the energy ratio in

the center of mass system defined by
∑

(p2
t /2m)/

∑
(p2

z/2m). Where pt

and pz are the impulse along the perpendicular axis of the beam and

along the beam axis, respectively. The most recent work using the NN

to determine the value of the impact parameter belongs to F. Haddad et

al. [25], where, for the first time, they have applied the NN on the real

experimental events for the reaction 40Ca +40 Ca at 35 AMeV. Before

the application on the experimental data they have trained and checked

the NN on the events produced by two different type of nuclear reaction

models: a dynamical transport model QMD [29] coupled with GEMINI

[30] and an event generator based on a statistical model EUGENE [31].

The observables used in this analysis have been: the charged particle

multiplicity, the perpendicular momentum and the energy ratio. The

results obtained on the events generated by the two models show that,

for all energies, the NN gives the lowest deviation between the values

of the impact parameter of “theoretical data” (by the models) and the

impact parameter derived from the observables. The NN always allows an

improvement of around 25% compared to the others traditional methods.

For the real experimental data the results obtained from David et al.

tends to indicate that the NN can be a valuable tool in data analysis.

The results obtained in these works were encouraging and lead towards

more specific analysis. For these reasons we wanted to continue in this

way using a new and different approach based on a classifier known as

Support Vector Machine (SVM). This method allows to backtrace the

values of b through a particular multidimensional analysis in the large

field of the pattern recognition techniques.

This analysis consists mainly of two different steps. Similarly to the
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methods based on NN. In the first one, known as the training phase,

SVM learns how to discriminate between peripheral, semi-peripheral and

central reactions. These samples are taken from a large number of events

generated for different values of b with dynamical models such as Classical

Molecular Dynamics (CMD) and Heavy Ion Phase-Space Exploration

(HIPSE). In the second step, known as the test phase, what has been

learned is tested on new events generated by the same models. Our

tests demonstrate that, following this approach, central, semi-peripheral

and peripheral reactions can be correctly classified for about 85% of the

cases.

Our goal is to discriminate objects that belong to different classes, by

means of the knowledge of several observable characteristics of each event,

i.e, features. Classes are represented by nuclear reactions arising from

different values of the impact parameter b. A pattern is a pair of variables

{x, y}, where x is a collection of observations or features and y is the label

that represents the class to which the event belongs.

In the first chapter we will describe the ideas that are the basis of the

Pattern Recognition Analysis and of the SVM algorithms.

In the second step we will shortly the main indicate characteristics of the

two physical models used and their differences.

In the third chapter we will give a description of the Principal

Components Analysis (PCA) technique, which is the most powerful way

to select different classes in the experimental data In the fourth and

fifth chapter we will give the different classification results obtained with

SVM classifier applied respectively on the CMD model and the HIPSE

model data for the nuclear reaction: 58Ni+48 Ca at 25AMev. Which has

been measured by the NUCL-EX group with the CHIMERA apparatus

at the INFN “Laboratori Nazionali del SUD” in Catania. After having

checked the reliability of classification of SVM on the two models, we

have compared the SVM classification results on CMD events with the

results obtained by the one-dimensional analysis using the total charged

8



multiplicity and the PCA analysis.

In the last chapter we will show the main characteristics of the

experimental device CHIMERA with a brief description of the procedures

of control for the data acquisition. Finally, we apply the classification task

on the experimental data obtained with CHIMERA in July 2003.
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Chapter 1

Pattern Recognition and
Support Vector Machine
Algorithms

1.1 Basic concepts of Pattern Analysis

An overview of pattern classification will be given in this Chapter, with

particular emphasis on a specific classifier - known as Support Vector

Machine (SVM) - which will be used intensively in the rest of this work.

1.1.1 The act of learning: overview

In humans the act of learning is namely the process of gaining knowledge

or skill in something by experience. Common and apparently simple

human processes as recognizing a landscape, understanding spoken

words, reading handwritten characters or identifying an object by

touching it, they all belie the act of learning. In fact, the condition for a

landscape to be recognized, spoken words to be understood, handwritten

characters to be read and objects to be identified, is that the human brain

has been previously trained in order to do that, namely it has learnt how

to do that. This is why it is necessary to admire a landscape several

times before recognizing it from a slightly different view, or to hear an

unknown foreign word more than once before becoming familiar with it.

From the examples discussed above, it is evident that the act of learning
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plays a crucial role in all those processes requiring the solution of a pattern

recognition task, thus all those processes in which the human brain is

required to take an action based on the class of the data it has acquired.

For example, hearing a voice and deciding whether it is a male or a

female voice, reading a handwritten character and deciding whether it is

an A or a B, touching an object and guessing its temperature, those are

typical pattern recognition problems. Notice that this kind of processes

represents almost the totality of the processes a human being has to deal

with. Finding them a solution has been crucial for humans to survive.

For that reason, highly sophisticated neural and cognitive systems have

been evolved for such tasks over the past tens of millions of years. The

scheme used by the human brain to address pattern recognition tasks is

based on two separate phases, namely a training phase and a test phase.

In the training phase the human brain gets experienced by dealing with

patterns taken from the same population, as landscapes, spoken words,

handwritten characters. Then, in the test phase, it applies to patterns of

the same population - but previously unseen - what it has learnt during

the training phase. In this sense, admiring a known landscape several

times - trying to identify its characteristics - represents the training phase,

whereas recognizing it from a slightly different view represents the test

phase.

As regards machines, the act of learning refers to artificial intelligences

- for instance computer programs - which are able to recursively

change their own internal structures in response to input patterns in

such a manner that their performance in recognizing previously unseen

patterns improves. In this context, machine learning is an area of

artificial intelligence concerned with the development of techniques which

allow machines to learn how to solve pattern recognition problems,

whereas learning machines are automate which solve pattern recognition

problems. In a similar way to what happens for the human brain, the

solution of a pattern recognition problem initially involves the collection
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of the data set of training patterns. The learning machine structure is

then adapted so as to create a mapping from the input patterns to its

output values, such that the latter approximate the attended values as

closely as possible over the whole training patterns. The recognition

performance of the trained learning machine is then evaluated on a data

set of test patterns, namely patterns which were not part of the training

data set, but which were taken from the same population.

The success of machine learning - since 1960s up to nowadays - is twofold.

First, it is evident that implementing learning processes by using

machines is fundamental in order to automatically address pattern

recognition problems which - due to their complexity - are almost

impossible for a human brain to solve. For example, challenging pattern

recognition tasks as speech recognition, fingerprint identification, optical

character recognition, DNA sequence identification, video surveillance -

and much more - can be easily and automatically addressed by means of

learning machines. Second, by trying to give answers and explanations

to the numerous questions and doubts arising when implementing such

automatic learning systems, a deeper understanding of the processes

governing human learning is gained. In the fact, many techniques in

machine learning derive from the efforts gone in order to make more

precise the theories of human learning through computational models.

At the same time, it seems likely also that the concepts being explored

by researchers in machine learning may illuminate certain aspects of

biological learning.

Before proceeding, it is well worth specifying in more detail the

significance of pattern recognition problems from a more technical

perspective, (see [32]). As already discussed, all those problems requiring

a human or an artificial intelligence to take an action based on the

data acquired, are formally defined as pattern recognition problems.

That family of problems can be further divided into families of sub

- problems. That most common and important ones are pattern
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classification problems, regression problems and time - series prediction

problems.

Pattern classification problems are those in which the learner is required

to learn how to separate the input patterns into two or more classes.

A typical pattern classification problem could require - for example

- a human brain or a learning machine to separate into classes the

handwritten As and Bs taken from a data set of handwritten characters.

When the problem do not require to associate the class of membership

to an input pattern, but rather to associate a continuous value, a

regression problem is faced. A typical regression problem could require

a human brain or a learning machine to associate an age to input

patterns represented by pictures of human faces. Finally, time - series

prediction problems, in which a learning machine is trained to predict the

(n + 1)th sample in a time series from the previous n sample, is a special

case of a regression problem but which assumes that the underlying

data generator is stationary, namely its statistical properties are time-

independent. In this work, the whole attention will be concentrated on

pattern classification, which is actually the most common type of pattern

recognition problem.

One of the most important characteristic of learning machines is that

they are not programmed by using some a priori knowledge on the

probability structure of the data set considered, they are rather trained

by being repeatedly shown large numbers of examples for the problem

under consideration. In a sense, they learn directly from the data how

to separate the different existing classes. This approach determines some

important peculiarities of learning machines. First, they are particularly

suited for complex classification problems whose solution is difficult to

specify a priori. Second, after being trained, they are able to classify data

previously not encountered. This is often referred to as the generalization

ability of learning machines. Finally, since they learn directly from

data, then the effective classification solution can be constructed far
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more quickly than using traditional approaches entirely reliant on a deep

knowledge and experience in the particular field to which data refer. In

order to stress the importance of an approach purely based on learning

from data - in particular when a dynamical model of what is happening

behind the scenes does not exist or whenever the underlying dynamics

is too complicated - let us mention one enlightening example borrowed

from ([33]):

“When a human writer decides to write a letter, for example the letter

A, the actual outcome is the result of a series of complicated processes

which cannot be modeled comprehensively in their entirety.

The intensity of the lines depends on chemical properties of ink and

paper, their shape on the friction between pencil and paper, on the

dynamics of the writer’s joints and on motor programmes initiated in

the brain, these in turn are based on what the writer has learnt at

school. The chain could be continued ad infinitum.”

It is evident that, in such a situation, it is nearly impossible to address

a classification task which is required to separate different handwritten

characters - such as for example As and Bs - by modeling the way in

which they are written by hand. For this reason, an approach purely

based on learning from data is probably the most appropriate solution.

Nevertheless, some approaches in which the probability structure

underlying the classes of the data set is known perfectly - or at most

its general form - do exist. For example, as described in [34], Bayesian

decision theory is a fundamental statistical approach to the problem

is posed in probabilistic terms and that all the relevant probability

values are known. In particular, it is based on quantifying the trade

offs between various classification decisions using the probability and

the costs that accompany such decisions. Unfortunately, for the most

part of the applications, the probabilistic structure of the problem is
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unknown. At most, only some vague and general knowledge about the

situation, together with a number of training data representative of the

patterns to classify, do exist. The problem is then to find some way to

use this information in order to design the classifier. One approach is to

use the training patterns for estimating the unknown probabilities and

probability densities and to use the resulting estimates as if they were

the true values. Let us quote a further example borrowed from ([46]):

“Suppose, for example, that some temporal sequences of detailed

observations of double star systems were given and that the problem is

to predict whether, eventually, one of the stars will collapse into a black

hole. Given a small set of observations of different double star systems,

including target values indicating the eventual outcome, an approach

purely based on learning from data would probably have difficulties

extracting the desired dependency. A physicist, on the other hand,

would infer the star masses from the spectra’s periodicity and Doppler

shifts, and use the theory of general relativity to predict the eventual

fate of the stars.”

In this example - differently from the previous one - modeling the stars

collapsing into black holes is probably more straightforward, owing to the

deep knowledge of those phenomena. For that reason, here it could be

more appropriate and effective to address the classification task with a

modeling approach rather than with an approach purely based on learning

from data.

In this work of thesis, how we said in the beginning of this chapter,

we will use for our analysis the new classifier that belongs to the class

of pattern classification problems, known as Support Vector Machine

(SVM), in which we need to discriminate between different classes of

events in nucleus - nucleus collisions.

Such discrimination is done on the base of the knowledge of the value of

impact parameter b for each event. As we will see more precisely in the
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next chapters and as we have said in the introduction the our goal is to

divide the nuclear events collisions in classes of centrality. The division

of events in classes on homogeneity is very important in nuclear reactions

analysis data, because the physical scenario is very different for example

if the nuclear collisions belongs to the class of central events or the class

of peripheral events.

The approach to machine learning has changed in the last years, since

more attention is now focused on the alternatives of neural networks.

Statistical learning theory is nowadays more popular and attractive for

researchers than in the early 1960s. In addition, it now plays a more

active role rather than covering only the theoretical and formal aspects

of machine learning. In fact, after the completion of the general analysis

of learning processes, the research in the area of the synthesis of optimal

algorithms, which posses the highest level of generalization ability for

any number of observations, was started. Thus, in the last decade,

many ideas have appeared in the machine learning community deeply

inspired by statistical learning theory. On the contrary to previous

ideas of developing learning algorithms inspired by the biological learning

process, the new ideas were inspired by attempts to minimize theoretical

bounds on the error rate obtained as a results of formal analysis of

the learning processes. These ideas - often contradicting the biological

paradigm - result in algorithms having nice mathematical properties (such

as uniqueness of the solution, simple method of treating a large number

of examples, independence of dimensionality of the input space) and

excellent performance. In particular, they outperform the state-of-the-

art solutions obtained by the old methods.

SVM is one of the shining peaks among the many learning algorithms

deeply inspired by statistical learning theory and appeared in the machine

learning community in the last decades. Nowadays, the Support Vector

Machine algorithm is used in many research fields to solve different

pattern recognition problems, for example, medical imaging diagnosis
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[35],[36],[37], volcanic eruption forecasting [38], and much more [39],[40].

The main goal of a SVM analysis is to obtain a meaningful separation of

events in class of similarity [41]. This is obtained by following a protocol,

1. the most meaningful features of the events provided by a model are

recognized;

2. a sub-sample of model events is divided in classes;

3. the classes produced by the steps 1 and 2 are analyzed by SVM,

which “learns” the links among features and classes;

4. the events not used for the learning stage (2 and 3) are analyzed by

SVM which will provide the best separation of these events in class

of similarity according to what it was learned during the training

stage.

5. Checks are made to estimate the accuracy of the analysis 4.

In the next paragraphs of this chapter we will do a more detailed

mathematical description that is the basis of the pattern recognition and

SVM algorithms.

1.2 Mathematical formalization of the

Pattern Recognition concepts

Pattern analysis deals with the problem of (automatically) detecting and

characterising relations in data. Most statistical and machine learning

methods of pattern analysis assume that the data are in vectorial form

and that the relations can be expressed as classification rules, regression

functions, or cluster structures; these approaches often go under the

general heading of “statistical pattern recognition” [43].

By patterns we understand any relations, regularities or structure

inherent in some source of data. By detecting significant patterns in
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the available data, a system can expect to make predictions about

new data coming from the same source. In this sense the system has

acquired generalisation power by “learning” something about the source

generating the data.

1.2.1 Data

By data we mean the output of any observation, measurement or

recording apparatus. This therefore includes images in digital format;

vectors describing the state of a physical system; sequences of DNA;

pieces of text; time series; records of commercial transactions, etc. By

knowledge we mean something more abstract, at the level of relations

between data and patterns within the data. Such knowledge enable us to

make predictions about the source of data or draw inferences about the

relationships inherent in the data. By exploiting the knowledge extracted

from a sample of data, they are often capable of adapting themselves to

infer a solution to such tasks. We will call this alternative approach to

software design the learning methodology. It is also referred to as the data

driven approach that gives rise to precise specifications of the required

algorithms.

The range of problems that have been shown to be amenable to the

learning methodology has grown very rapidly in recent years. Examples

include text categorization; email filtering; gene detection; protein

homology detection; web retrieval; image classification, etc. These tasks

are very hard or in some cases impossible to solve using a standard

approach, but have all been shown to be tractable with the learning

methodology.

In general, the field of pattern analysis studies systems that use the

learning methodology to research patterns in data. The patterns

that are sought include many different types such as classification,

regression, cluster analysis (sometimes referred together as statistical

pattern recognition), feature extraction, grammatical inference and
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parsing (sometimes referred to as syntactical pattern recognition).

1.2.2 Patterns

If we imagine a dataset containing thousands of observations of planetary

positions in the solar system, for example daily records of the positions

of each of the nine planets, it is obvious that the position of the planet

on a given day is not independent of the position of the same planet in

the previous days: it can actually be predicted rather accurately on the

basis of the knowledge of these positions. The dataset therefore contains

a certain amount of redundancy, information that can be reconstructed

from part of the data, and hence is not strictly necessary. In such cases

the dataset is called redundant : simple laws can be extracted from the

data and used to reconstruct the position of each planet on each day. the

rules that govern the position of the planets are known as Kepler’s laws.

Kepler’s laws can be viewed as an early example of pattern analysis, or

data-driven analysis. By assuming that the laws are invariant, they can

be used to make predictions about the outcome of future observations.

The laws correspond to regularities present in the planetary data and by

inference therefore in the planetary motion itself. They state that the

planets move in ellipses with the sun at one focus; that equal areas are

swept in equal times by the line joining the planet to the sun; and that

the period P and the average distance D from the sun are related by the

equation P 3 = D2 for each planet.

From Table 1.1 we can observe two potential proprieties of redundant

datasets: on one hand they are compressible since we could construct the

table from just one column with the help of Kepler’s third law, while on

the other hand they are predictable since we can, for example, infer from

the law the distances of newly discovered planets once we have measured

their period. The predictive power is a direct consequence of the presence

of the possibly hidden relations in the data. These relations indeed enable

us to predict and therefore manipulate new data more effectively.
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Planets D P D2 P 3

Mercury 0.24 0.39 0.058 0.059
Venus 0.62 0.72 0.38 0.39
Earth 1.00 1.00 1.00 1.00
Mars 1.88 1.53 3.53 3.58

Jupiter 11.90 5.31 142.00 141.00
Saturn 29.30 9.55 870.00 871.00

Table 1.1: An example of a pattern in data: the quantity D2/P 3 remains
invariant for all the planets. This means that we could compress the data
by simply listing one column or that we can predict one of the values for
new previously unknown planets, as happened with the discovery of the
outer planets.

Typically we anticipate predicting one feature as a function of the

remaining features: for example the distance as a function of the period.

To be able to do this, the relation must be invertible, so that the desired

feature can be expressed as a function of the other values. Indeed we

will seek relations that have such an explicit form whenever this is our

intention. Other more general relations can also exist within data, and

it detected and they can be exploited. For example, if we find a general

relation that is expressed as an invariant function f that satisfies

f(x) = 0 (1.1)

where x is a data item, we can use it to identify novel or faulty data

items for which the relation fails, i.e. is for which f(x) 6= 0. In such case

it is, however, harder to realise the potential for compressibility since it

would require us to define a lower-dimensional coordinate system on the

manifold defined by equation 1.1. Kepler’s laws are accurate and hold for

all planets of a given solar system. We refer to such relations as exact.

It is clear that we cannot hope to find an exact prediction in cases where

there will be factors beyond those available to the system, which may be

prove crucial. Learning systems have succeeded in finding some relations.

We can specify the relation that holds for much of the data and then

simply add a list of exceptions cases. Provided the description of the
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relation is succinct and there are not too many exceptions, this will result

in a reduction in the size of the dataset. Since the relation holds with

a certain probability we will have a good chance that the prediction will

be fulfilled. We will call relations that hold with a certain statistical

probability.

Typically we may hope that the expected error in the prediction will be

small, or that with high probability the true value will be within a certain

margin of the prediction, but our search for patterns must necessarily

seek an approximate relation. One could claim that Kepler’s laws are

approximate because they fail to take general relativity into account. In

this case of interest to learning systems, however, the approximation will

be much looser than those affecting Kepler’s laws. Relations that involve

some inaccuracy in the values accepted are known as approximate. For

approximate relations we can still talk of prediction, though we must

qualify the accuracy of the estimate and quite possibly probability with

which it applies.

Patterns can be deterministic relations like Kepler’s laws. As indicated

above other relations are approximate or only hold with a certain

probability. We are interested in situation where exact laws, especially

the ones that can be described as simply as Keplero’s, may not exist. For

this reason we will understand a pattern to be any relation present in the

data, whether it be exact, approximate or statistical.

We can also express the pattern described by Kepler’s third law in this

form

f(D,P ) = D2 − P 3 = 0.

Alternatively

g(D,P ) = 2 log D − 3 log P = 0.

Similarly, if we have a function g that for each data item (x,y) predicts

some output values y as a function of the input features x, we can express
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the pattern in the form

f(x,y) = L(g(x),y) = 0,

where L : Y × Y → R+ is so-called loss function that measures the

disagreement between its two arguments giving 0 as output if and only

if the two arguments are the same.

Definition 1.1 A general exact pattern for a data source is a non-trivial

function f that satisfies

f(x) = 0

for all the data, x, that can arise from the source.

The definition only covers exact patterns. We first consider the relaxation

required to cover the case of approximate patterns. Taking the example of

a function g that predicts the values y as a function of the input features

x for a data item (x,y), if we cannot expect to obtain an exact equality

between g(x) and y, we use the loss function L to measure the amount

of mismatch. This can be done by allowing the function to output 0

when the two arguments are similar, but not necessarily identical, or by

allowing the function f to output small, non zero positive values. We

will adopt the second approach since when combined with probabilistic

pattern it gives a distinct and useful notion of probabilistic matching.

Definition 1.2 A general approximate pattern for a data source is a

non-trivial function f that satisfies

f(x) ≈ 0

for all the data, x, that can arise from the source.

Now, we consider statistical patterns. In this case there is a probability

distribution that generates the data. In many cases the individual data
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items can be assumed to be generate independently and identically,a case

often referred to as independently and identically distributed or (i.i.d.).

We use the symbol E to denote the expectation of some quantity under

distribution.

Definition 1.3 A general statistical pattern for a data source generated

i.i.d. according to a distribution D is a non-trivial non-negative function

f that satisfies

EDf(x) = EXf(x) ≈ 0.

If the distribution does not satisfy the i.i.d. requirement this is usually

as result of dependencies between data items generated in sequence or

because of slow changes in the underlying distribution.

1.2.3 Pattern analysis algorithms

Definition 1.4 A Pattern analysis algorithm takes as input a finite set

of examples from the source of data to be analysed. Its output is either

an indication that no patterns were detectable in the data, or a positive

pattern function f that the algorithm asserts satisfies

Ef(x) ≈ 0,

where the expectation is with respect to the data generated by the source.

We refer to input data examples as the training instances, the training

examples or the training data and to the pattern function f as the

hypothesis returned by the algorithm. The value of the expectation is

known as the generalisation error.

Identifying patterns in a finite set of data presents very different and

distinctive challenges. We will identify key features that a pattern

analysis algorithm will be required to exhibit before we will consider

it to be effective.
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Computational efficiency. Pattern analysis algorithms must be able

to handle very large datasets. Hence, it is not sufficient for an algorithm

to work well on small toy examples; we require that its performance

should scale to large datasets. The study of the computational complexity

or scalability of algorithms identifies efficient algorithms as those whose

resource requirements scale polynomially with the size of the input. This

means that we can bound the number of steps and memory that the

algorithm requires as a polynomial function of the size of the dataset

and other relevant parameters such as the number of features, accuracy

required, etc.

Robustness. The second challenge that an effective pattern analysis

algorithm must address is the fact that in real-life applications data is

often corrupted by noise. By noise we mean that the values of the features

for individual data items may be affected by measurement inaccuracies,

for example through human error. This is closely related to the notion

of approximate patterns discussed above, since even if the underlying

relation is exact, once noise has been introduced it will necessarily become

approximate and quite possibly statistical. It requires that the algorithms

will be able to handle noisy data and identify approximate patterns. They

should therefore tolerate a small amount of noise in the sense that it will

not affect their output too much. An algorithm with this property it is

called robust.

Statistical stability. The third property is perhaps the most

fundamental, namely that the patterns the algorithm identifies really are

genuine patterns of the data source and not just an accidental relation

occurring in the finite training set. We can view this property as the

statistical robustness of the output in the sense that if we rerun the

algorithm on a new sample from the same source it should identify

a similar pattern. Hence, the output of the algorithm should not be
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sensitive to the particular dataset, just to the underlying source of the

data. For this reason we will describe an algorithm with this property as

statistically stable.

1.2.4 Common pattern analysis tasks

When discussing what constitutes a pattern in data, we draw attention

to the fact that the aim of pattern analysis is to predict one feature of

the data as a function of the vales of the other features. It is therefore to

be expected that many pattern analysis tasks isolate one features that it

is their intention to predict. Hence, the training data comes in the form

(x, y),

where y is the value of the feature that the system aims to predict, and

x is a vector containing the vales of the remaining features. The vector x

is known as the input, while y is referred to as the target output or label.

Supervised tasks. The pattern analysis tasks that have this form are

referred to as supervised, since each input has an associated label. For

this type of task a pattern is sought in the form

f(x, y) = L(y, g(x)),

where g is referred to as the prediction function and L is known as a loss

function. Since it measures the discrepancy between the output of the

prediction function and the correct value y, we may expect the loss to be

close to zero when a pattern is detected. When new data are presented

the target output is not available and the pattern function is used to

predict the value of y for the given input x using the function g(x). The

prediction of f(x, y) = 0 implies a small the discrepancy between the

values g(x) and y.

Different supervised pattern analysis tasks are distinguished by the type

of the feature y that we aim to predict. Binary classification, referring
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to the case to the case where y ∈ {−1, 1}, is used to indicate that the

input vector belongs to a chosen category (y = +1), or not (y = −1).

In this case we use the so-called discrete loss function that give back 1 if

its two arguments are different and 0 if they are equal. In this case the

generalisation error is the probability that a random test is misclassified.

If the training data are labeled as belonging to one of N classes and the

system must learn to assign new data points to their class, then y is

chosen from the set {1, 2, .., N} and the task is referred to as multiclass

classification. Regression refers to the case of supervised pattern analysis

in which the unknown feature is real-valued, i.e. y ∈ R.

Other types of pattern analysis are the semisupervised tasks and the

unsupervised tasks. In this work we used only the supervised methods.

Now we introduce some of the basic notation. We denote the input space

by X and for supervised tasks use Y to denote the target output domain.

The space X is often a subset of Rn. Note that if X is a vector space,

the input vectors are given as column vectors. If we wish to form a row

vector for an instance x, we can take the transpose x′. For a supervised

task the training set is usually denoted by

S = {(x1, y1), ....., (xl, yl)} ⊆ (X × Y )l.

1.3 Kernel methods

The strategy adopted is to embed the data into a space where the patterns

can be discovered as linear relations. It is already possible to stress four

main ingredients of kernel methods:

1. data items are embedded into a vector space called the feature

space;

2. linear relations are sought among the data items in the feature

space;

3. the algorithms are implemented in such a way that the coordinates
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Figure 1.1: The function φ embeds the data into a feature space where
the nonlinear pattern now appears linear. The kernel computes inner
products in the feature space directly from inputs.

of the embedded points are not needed, only their pairwise inner

products;

4. the pairwise inner products can be computed efficiently directly

from the original data items using a kernel function.

This steps are illustrated in Fig.1.1.

1.3.1 Linear regression in a feature space

Consider the problem of finding a homogeneous real-valued linear

function

g(x) = 〈w, x〉 = w′x =
n∑

i=1

wixi,

best interpolating a given training set S = {(x1, y1), ....., (xl, yl)} of points

xi in X ⊆ Rn with corresponding labels yi in Y ⊆ R. Here, we use the

notation x = (x1, x2, ..., xn) for the n-dimensional input vectors, while w′

denotes the transpose of the vector w ∈ Rn. This is naturally one of the

simplest relationship one might find in the source X×Y , namely a linear

27



Figure 1.2: A one-dimensional linear regression problem.

function g of the features x matching the corresponding label y, creating

a pattern function that should be approximately equal to zero

f((x, y)) = |y − g(x)| = |y − 〈w, x〉| ≈ 0.

This task is also known as linear interpolation. Geometrically it

corresponds to fitting a hyperplane through the given n-dimensional

points. The Fig.1.2 shows an example for n = 1.

In the exact case when the data have been generated in the form (x, g(x)),

where g(x) = 〈w, x〉 and there are exactly l = n linearly independent

points, it is possible to find the parameters w by solving the system of

linear equations

Xw = y,

where we have used X to denote the matrix whose rows are the row

vectors x′

1, ...x
′

l and y to denote the vector (y1, ..., yl)
′. If there are less

points than dimensions, there are several possible w exactly describing

the data, and a criterion is needed to chose between them. In this

situation the best choice is the vector w with the smallest norm. If there

are more points than dimensions and there is noise in the generation
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process, then we should not expect there to be an exact pattern, so

that an approximation criterion is needed. In this situation we will

select the pattern with the smallest error. The distance shown as ξ

in Fig.1.2 is the error of the linear function on the particular training

sample, ξ = (y − g(x)). This value is the output of the putative pattern

function

f((x, y)) = |y − g(x)| = |ξ| .

We would like to find a function where all these training errors are small.

The sum of the squares of these errors is the most commonly chosen

measure of the collective discrepancy between the training data and a

particular function

L(g, S) = L(w, S) =
l∑

i=1

(yi − g(xi))
2 =

l∑

i=1

ξ2
i =

l∑

i=1

L(g, (xi, yi)),

where we have used the same notation L(g, (xi, yi)) = ξ2
i to denote the

squared error or loss of g on example (xi, yi) and L(f, S) to denote the

collective loss of a function f on training set S. The learning problem now

becomes the choise of vector w ∈ W which minimizes the collective loss.

This is a well-studied problem that is applied in almost all the disciplines.

It was introduced by Gauss and is known as least squares approximation.

Using the notation above, the vector of output discrepancies can be

written as

ξ = y − Xw.

Hence, the loss function can be written as

L(w, S) = ||ξ||2 = (y − Xw)′(y − Xw). (1.2)

Note that we again use X′ to denote the transpose of X. We can seek

the optimal w by taking the derivatives of the loss with respect to the

parameters w and setting them equal to zero

∂L(w, S)

∂w
= −X′(y − Xw) + (y − Xw)′(−X) =
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= −X′y + X′Xw − y′X + (Xw)′X =

= −X′y + X′Xw − X′y + X′Xw ⇒
∂L(w, S)

∂w
= −2X′y + 2X′Xw = 0 ,

where we took into account that (y′X)′ = X′y. We have obtained the

so-called “normal equations”

2X′Xw = X′y ⇒ w = (X′X)−1X′y. (1.3)
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1.3.2 Ridge regression: primal and dual

Notice in equation (1.3) that if the inverse of X′X exists, we can express

w in the following way

w = (X′X)−1X′y = X′X(X′X)−2X′y = X′α (1.4)

making it a linear combination of the training points, w =
∑l

i=1 αixi.

If X′X is singular, the pseudo-inverse can be used. The goal is to find w

that satisfies the equation (1.3) with minimal norm. Alternatively we can

trade off the size of the norm against the loss. This is the approach known

as ridge regression, in others terms, it means that there are situations

where exactly fitting the data may not be possible.

Ridge regression corresponds to solve the optimisation

min
w

Lλ(w, S) = min
w

λ||w||2 +
l∑

i=1

(yi − g(xi))
2, (1.5)

where λ is a positive number that defines the relative trade-off between

norm and loss and hence controls the degree of regularisation. The

learning problem reduces to solve an optimisation problem over Rn.

Taking the derivative of the cost function with respect to the parameters

we obtain the equations

X′Xw + λw = (X′X + λIn)w = X′y (1.6)

where In is the n×n identity matrix. In this case the matrix (X′X + λIn)

is always invertible if λ > 0, so that the solution is given by

w = (X′X + λIn)−1X′y (1.7)

Solving this equation for w involves solving a system of linear equations

with n unknowns and n equation. The complexity of this task is O(n3).

The resulting prediction function is given by

g(x) = 〈w,x〉 = y′X(X′X + λIn)−1x
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The equation (1.7) computes the weight vector explicitly and is known

as the primal solution or primal representation.

Alternatively, we can rewrite equation (1.6) in terms of w and we obtain

λ−1X′(y − Xw) = X′α

showing that once again w can be written as a linear combination of the

training points, w =
∑l

i=1 αixi with α = λ−1(y − Xw). Hence, we have

α = λ−1(y − Xw)

⇒ λα = (y − XX′α)

⇒ (XX′ + λIn)α = y

⇒ α = (G + λIn)−1y , (1.8)

where G = XX′ or, component-wise, Gij = 〈xi,xj〉 . Solving for α

involves solving l linear equations with l unknowns, a task of complexity

O(l3). The resulting prediction function is given by

g(x) = 〈w,x〉 =

〈
l∑

i=1

αixi,x

〉

=
l∑

i=1

αi 〈xi,x〉 = y′(G + λIl)
−1k,

where ki = 〈xi,x〉. The equation (1.8) gives the solution as a linear

combination of a training examples and is known as the dual solution or

dual representation.

The crucial observation about the dual solution of equation (1.8) is that

the information from the training examples is given by the inner products

between pairs of training points in the matrix G = XX′. Similarly,

the information about a novel example x required by the predictive

function is just the inner products between the training points and the

new example x. The matrix G is referred to as the Gram matrix. The

Gram matrix and the matrix (G + λIl) have dimensions l × l. If the

dimension n of the feature space is larger than the number l of the training

examples, it becomes more efficient to solve equation (1.8) rather than

the primal equation (1.7) involving the matrix (X′X + λIn) of dimension
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n × n. Evaluation of the predictive function in this setting is, however,

always more costly since the primal involves O(n) operations, while the

complexity of the dual is O(nl).

1.3.3 Kernel for nonlinear feature mappings

The ridge regression method addresses the problem of identifying linear

relationship between one selected variable and the remaining features,

where the relation is assumed to be functional. The resulting predictive

function can be used to estimate the value of the selected variable given

the values of the other features. Often, however, the relations that are

sought are nonlinear, i.e. the selected variable can only be accurately

estimated as a nonlinear function of the remaining features. Following

the overall strategy on the remaining features of the data into a new

feature space in such a way that the sought relations can be represented

in a linear form and hence the ridge regression algorithm described above

will be able to detect them.

We will consider an embedding map

ϕ : x ∈ Rn → ϕ(x) ∈ F ⊆ RN .

The choice of the map ϕ aims to convert the nonlinear relations into

linear ones. Hence, the map reflects our expectations about the relation

y = g(x) to be learned. The effect of ϕ is to recode our dataset S as

Ŝ = {(ϕ(x1), y1), ..., (ϕ(xl), yl)}. We can now proceed as above looking

for a relation of the form

f((x, y)) = |y − g(x)| = |y − 〈w, ϕ(x)〉 | = |ξ|.

Although the primal method could be used, problems will arise if N is

very large making the solution of the N×N system of equation (1.7) very

expensive in terms of time machine. If, on the other hand, we consider the

dual solution, we have shown that all the information the algorithm needs

is the inner products between data points 〈ϕ(x), ϕ(z)〉 in the feature space
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F . In particular the predictive function g(x) = y′(G + λIn)−1k involves

the Gram matrix G = XX′ with entries

Gij = 〈ϕ(xi), ϕ(xj)〉 , (1.9)

where the rows of X are now the feature vectors ϕ(x1)
′, ..., ϕ(xl)

′, and

the vector k contains the values

ki = 〈ϕ(xi), ϕ(x)〉 . (1.10)

When the value of N is very large, it is worth taking advantage of the

dual solution to avoid solving the large N × N system. Making the

optimistic assumption that the complexity of evaluating ϕ is O(n), the

complexity of evaluating the inner products of equation (1.9) and (1.10)

is still O(n) making the overall complexity of computing the vector α

equal to O(l3 + l2N), while that of evaluating g on a new example is

O(lN).

We have seen that in the dual solution we make use of inner products in

the feature space. In the above analysis we assumed that the complexity

of evaluating each inner product was proportional to the dimension of

the feature space. The inner products can, however, sometimes be

computed more efficiently as a direct function of the input features,

without explicitly computing the mapping ϕ. In other words the feature-

vector representation step can be by-passed. A function that performs

this direct computation is know as a kernel function.

Definition 1.5 (Kernel function) A kernel is a function k that for all

x,z ∈ X satisfies

k(x, z) = 〈ϕ(x), ϕ(z)〉,

where ϕ is a mapping from X to an (inner product) feature space F

ϕ : x → ϕ(x) ∈ F.
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Figure 1.3: A kernel function performs a non-linear mapping of the
feature vector onto a high-dimensional space that is hidden from inputs
or the outputs.

Let’s take an example to better understand the previous concept:

consider a two-dimensional input space (see left part of Fig. 1.3) X ⊆ Rn

together with the feature map

ϕ : x = (x1, x2) → ϕ(x) = (x2
1,
√

2x1x2, x
2
2) ∈ F = R3.

The space of linear functions in F would then be

g(x) = w11x
2
1 + w22x

2
2 + w12

√
2x1x2.

The feature map takes the data from a two-dimensional space and it

makes a mapping of the data into a three-dimensional space (see right

part of Fig. 1.3). The composition of the feature map with the inner

product in the feature space can be evaluated as follows

〈ϕ(x), ϕ(z)〉 =
〈
(x2

1,
√

2x1x2, x
2
2), (z

2
1 ,
√

2z1z2, z
2
2)
〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= 〈x, z〉2 .

Hence, the function

k(x, z) = 〈x, z〉2
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is a kernel function and F its corresponding feature space. This means

that we can compute the inner product between the projections of

two points into the feature space without explicitly evaluating their

coordinates.

1.3.4 Kernel matrix

Given a set of vectors, S = {x1, ...,xl} the Gram matrix is defined as the

l × l matrix G whose entries are Gij = 〈xi,xj〉. If we are using a kernel

function k to evaluate the inner products in a feature space with feature

map ϕ the associated Gram matrix has entries

Gij = 〈ϕ(xi), ϕ(xj)〉 = k(xi,xj).

In this case the matrix is often referred to as the kernel matrix. We will

use a standard notation for displaying kernel matricies as:

K 1 2 ... l

1 k(x1,x1) k(x1,x2) ... k(x1,xl)
2 k(x2,x1) k(x2,x2) ... k(x2,xl)
. . . . .
. . . . .
. . . . .
l k(xl,x1) k(xl,x2) ... k(xl,xl)

where the symbol K in the top left corner indicates that the table

represents a kernel matrix. The Gram matrix has already been shown

to play an important role in the dual form of some learning algorithms.

The matrix is symmetric since Gij = Gji, that is G′ = G. Furthermore,

it contains all the information needed to compute the pairwise distances

within the data set as shown above. In the Gram matrix there is of course

some information that is lost when compared with the original set of

vectors. For example the matrix loses information about the orientation

of the original data set with respect to the origin, since the matrix of inner

products is invariant for rotations about the origin. All the information
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Figure 1.4: The stages involved in the application of kernel methods.

the pattern analysis algorithms can glean about the training data and

chosen feature space is contained in the kernel matrix together with any

labeling information.

In this sense we can view the matrix as an information bottleneck that

must transmit enough information about the data for the algorithm to

be able to perform its task.

Now, we can summarize all the previous concepts commenting the Fig.1.4.

It shows the stages involved in the implementation of kernel pattern

analysis. The data is processed using a kernel to create a kernel matrix,

which in turn is processed by a pattern analysis algorithm to produce a

pattern function. This function is used to process unseen examples.

1.4 Support Vector Machines

Out of the wide variety of classifiers that has been made available by

research on classification and learning theory, we have decided to rely on

Support Vector Machines (SVM). The main advantages of SVM for our

purpose are the fact that they do not require a large training set and that

they offer an easy way to control the complexity of the decision surface

through the choice of the kernel function.

SVM classifiers constitute a wide research topic, a complete discussion of

which lies beyond the scope of the present thesis. Extensive tutorials can

be found in [44] and [46]; the “classical” reference [45] provides a concise

37



introduction. A presentation of the theory underlying SVM can be found

in [41], [43].

In the next Section we provide a quick, concise overview of the principles

of SVM classifiers, based on the sources quoted above.

1.4.1 Classifiers and training

Following a standard notation, we describe a two-class classifier on an

N -dimensional (real) feature space RN as a family of functions

{fα : α ∈ Λ}, fα : RN → {±1}. (1.11)

This notation expresses the fact that a given classifier (e.g. a linear

discriminants) can implement a certain type of decision functions fα

(e.g. hyperplanes). Which of these functions actually is implemented

depends on a set of tunable parameters represented by the index α (e.g.

the weights of the connections). The training process has the purpose of

selecting a suitable value for α in the allowed parameter range specified

by Λ. The values ±1 are conventionally selected to indicate the two

classes, also called “accept” (+1) and the “reject” (-1) class.

Training is performed on a set of training examples for two classes,

(x1, y1), (x2, y2), ..., (xl, yl), (1.12)

where xi is a vector in RN and yi ∈ {±1} is its corresponding label. We

assume that each training example is drawn from a distribution P (x, y).

The aim of the training process is to identify the set of parameters α that

minimises the expectation under P of a suitable loss function L(fα(x), y)

expressing the cost of a misclassification:

EP (L) =
∫
L(fα(x), y)dP (x, y). (1.13)

This formulation is quite general, as it takes into account the fact that

the two possible types of error, i.e. False Acceptance and False Rejection,

will in principle have different costs depending on the application. It is
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here convenient to restrict ourselves to the case in which the two types of

errors are equally undesirable. In this case, training the classifier amounts

to minimizing the expected number of errors under P , a quantity that is

known as the risk :

R(α) =
∫ 1

2
|fα(x) − y|dP (x, y). (1.14)

The resulting training algorithm, and indeed the classifier that we will

be inclined to use, depends at this point on the type of assumptions

that we are willing to make about the distribution function P (x, y). If,

for instance, there are reasons to believe that the distributions P (x, +1)

and P (x,−1) are Gaussians the optimal solution, i.e. Nearest Neighbour

classifiers, is provided, by Bayesian decision theory. In the case that no

parametric model is available for P , Equation (1.14) can be minimised

only by resorting to some induction principle.

The most direct and simple approach consist in minimising the empirical

risk

Remp(α) =
1

l

l∑

i=1

1

2
|fα(x) − y|, (1.15)

which represents the fraction of errors over the points of the training

set. However, this is do not guaranteed to produce a good generalisation

ability if the number of training examples is small with respect to the

“capacity” of the classifier, intended as some measure of complexity of

the decision functions it can generate (e.g. the number of adjustable

parameters or the number of neurons in a Neural Network). This loss

of generalisation ability due to an “oversized” classifier is known as

over-fitting. Although a number of regularization techniques has been

devised to overcome this problem [47], they often find their place only

as afterthoughts in traditional Neural Network approaches. One of the

basic ideas of the Statistical Learning Theory developed by V. Vapnik

and co.workers consists in incorporating the control of the complexity

of the classifier in the induction principle, which is accomplished by the

Structural Risk Minimisation principle.
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1.4.2 Structural Risk Minimisation

The Structural Risk Minimisation induction principle is based on an

upper bound on the risk which is independent the probability distribution

P (x, y). For the learning problem stated above, for any α ∈ Λ and l > h,

the following inequality holds [41] with probability 1 − η:

R(α) ≤ Remp(α) + ϕ

(
h

l
,
log(η)

l

)

. (1.16)

The confidence term ϕ is defined as

ϕ

(
h

l
,
log(η)

l

)

=

√
h(log 2l

h
+ 1) − log η

4

l
. (1.17)

The parameter h is called the Vapnik-Cervonenkis (VC) dimension of the

family of functions {fα}; l is the size of training set.

The VC dimension is a measure of the capacity of the family of functions,

in a sense that will presently be specified. Given a set of l points in

RN , we consider all the possible 2l assignments of each of these points

to the “accept” and “reject” classes. Now, if for each such assignment

there exists a decision function fᾱ respecting the division among the two

classes, we say that the set of points is shattered by the set of functions.

The VC dimension of the set of functions {fα} is defined as the maximum

number of points that it can shatter. Note that for a set of functions to

have VC dimension l it is sufficient that it will shatter one particular set

of l points.

The probabilistic bound (1.16) is far from being tight. Indeed, there exist

classifiers (such as KNN classifier) that have an infinite VC dimension

but in practice have a good generalisation ability. Nevertheless, the

bound does indicate that, in order to obtain a good generalisation ability,

one should be able to control both the empirical risk Remp(α) and the

complexity of the classifier as measured by h({fα : α ∈ Λ}). The

empirical risk depends on the particular decision function chosen and

can be minimised by appropriately tuning the parameter set α. The

VC dimension depends on the set of decision surfaces available to the
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classifier, which can be controlled by restricting the choice of α to a subset

of Λ. In particular, one can construct a series of classifier of increasing

complexity by introducing the series of nested sets Sk = {fα|α ∈ Λk}, so

that

S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ... (1.18)

and therefore

h1 ≤ h2 ≤ ... ≤ hn ≤ ... . (1.19)

For a given set of training data (x1, y1), (x2, y2), ..., (xl, yl) the Structural

Risk Minimisation principle chooses the function fαn
in the subset Sn for

which the right end side of the risk bound (1.16) is minimal. That is to

say that a balance is struck between the search for good approximation

of the data and the complexity of the family of functions used for such

approximation.
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1.4.3 Linear Support Vector Machines

Suppose we are dealing with a linearly separable set of observations

(x1, y1), (x2, y2), ..., (xl, yl),

meaning that there exists an (oriented) hyperplane

f(x) = w · x + b = 0 (1.20)

such that f(xi) > 0 if and only if yi = +1. We can define the Optimal

Separating Hyperplane (OSH) as the one which has the maximal distance

dmax from the closest example. This requirement alone only defines f(x)

in Equation (1.20) up to a multiplicative factor. In order to remove this

ambiguity, we define a canonical form for the OSH by rescaling w and b

so that ||w|| = 1/dmax. It follows that

{
w · xi + b ≥ +1 if yi = +1,
w · xi + b ≤ −1 if yi = −1

(1.21)

and that the projections of the closest examples from the two classes

along the direction of w are at least 2/||w|| apart (Fig.1.5). Support

Vector Machines assign data to the “accept” (+1) or “reject” (-1) classes

based on the (canonical) Optimal Hyperplane decision function f(x) ≥ 0.

From a practical point of view, the Optimal Separating Hyperplane can

be determined by minimising the functional

τ(w) =
1

2
||w||2 (1.22)

subject to the constraints (1.21). This is a convex optimisation problem.

A convenient way of accounting for the inequality constraints consists of

introducing a Lagrangian

L(w, b, α) = τ(w) −
l∑

i=1

αi[yi(w · xi + b) − 1], (1.23)

where the αi are non-negative multipliers. The solution of the

constrained optimisation problem then corresponds to the saddle point
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Figure 1.5: A linear Support Vector Machine classifier in R2 (separable
case). Training examples for the (-1) and (+1) classes are represented
as circles and squares respectively. Filled symbols denote the support
vectors. The thick line represents the Optimal Separating Hyperplane.
The dash-dotted lines are examples of suboptimal separating hyperplanes
that do not maximise the margin.

that maximises (1.23) with respect to the αi and minimises it with respect

to w and b. The conditions on the partial derivatives at the saddle point:

∂L(w, b, α)

∂w
= 0,

∂L(w, b, α)

∂b
= 0 (1.24)

lead to two equalities

l∑

i=1

αiyi = 0 (1.25)

and

w =
l∑

i=1

αiyixi. (1.26)
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The normal vector to the OSH therefore is a linear combination of the

training examples (note that while the solution of the convex problem is

unique, the coefficients αi do not need to be unique, since the training

vectors are not constrained to be linearly independent). The Kuhn-

Tucker conditions [48, 49] guarantee that, at saddle point, the following

relation holds:

αi[yi(w · xi + b) − 1] = 0, i = 1, ..., l. (1.27)

Therefore, the non-zero multipliers αi correspond to training examples

for which the equality sign applies in the constraints (1.21). Such

training examples are called the Support Vectors and will be indicated as

sj, j = 1, ..., n. The equation of the Optimal Separating Hyperplane

(1.20) can therefore be rewritten explicitly in terms of the Support

Vectors, leading to the following expression for the decision function:

f(x) =
n∑

j=1

αjyjsj · x + b ≥ 0 (1.28)

The training examples xi other than the Support Vectors do not appear

in this expression. They automatically satisfy the constraints (1.21) and

the solution would be unaffected if they were removed from the training

set.

1.4.4 SVM and Structural Risk Minimisation

The relation between the Structural Risk Minimisation induction

principle and Support Vector Machine classifiers is clarified by the

following bound on the VC dimension of classifiers whose decision

functions are hyperplanes in RN .

Let R be the radius of the smallest ball BR in RN containing the training

examples x1,x2, ...,xl, and we consider two samples x1 and x2 from

different class with (w · x1) + b = 1 and (w · x2) + b = −1, respectively.

Then the margin is given by the distance of these two points, measured
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perpendicularly to the hyperplane,
(

w

||w|| · (x1 − x2)

)

=
2

||w|| .

The result linking the VC-dimension of the class of separating

hyperplanes to the margin or the length of the weight vector w

respectively is given by the following inequalities [41]:

h ≤ A2R2 + 1 and ||w||2 ≤ A (1.29)

Thus, if we bound the margin of a function class from below, say by

2
A
, we can control its VC-dimension. By maximising the margin, i.e.

minimising ||w||, we therefore minimise the confidence term in the risk

bound Equation (1.16). So far, we have made the assumption that the

data are linearly separable, i.e. Remp = 0; this condition will be lifted in

the following Section.

1.4.5 Soft margin hyperplanes

In the case that no hyperplane decision function exists that correctly

separates the vectors of the training set, an Optimal Separating

Hyperplane can still be found by making allowance for a few classification

errors.

From the formal point of view, this is accomplished by introducing a set

of l slack variables ξi ≥ 0 and by rewriting the bounds in Equation (1.21)

in the following way:
{

w · xi + b ≥ +1 − ξi if yi = +1,
w · xi + b ≤ −1 + ξi if yi = −1 .

(1.30)

The number of classification errors can be controlled by modifying the

objective function for the minimisation:

τ ′(w) =
1

2
||w||2 + C

l∑

i=1

ξi (1.31)

which is minimised subject to the new constraints. The solution is the

same as in the separable case, the only difference being the existence of
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Figure 1.6: A linear Support Vector Machine classifier in R2 (non-
separable case). Training examples for the (-1) and (+1) classes are
represented as circles and squares respectively. the thick, slanted line
represents the Optimal Separating Hyperplane. The hatched circle and
square constitute two classification errors. Note how ξi ≈ 1, while ξ2 > 2.

an upper bound on the coefficients αi: we now have 0 ≤ αi ≤ C. In

intuitive terms, this means that no training vector is allowed to modify

the solution “too much”.

The term
∑l

i=1 ξi represents an upper bound on the number of

classification errors, that is on the empirical risk Remp in the risk bound

(1.16). However, the sum of the ξi can significantly exceed the number

of classification errors if many of the slack variables have large values

(Fig.1.6). For this reason, Support Vector Machines only implement the

Structural Risk Minimisation principle approximately. A study of the
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dependence of the solution on the constant C, which sets the balance

between the control of the VC dimension (maximisation the margin) and

the minimisation of classification errors, can be found in [50]. However,

from the practical point of view, classification errors can be quite rare

when the number l of training examples is very small as compared with

the dimensionality N of the vector space.

1.4.6 The nonlinear case

Support Vector Machine classifiers can afford more complex (nonlinear)

decision function by re-mapping input vectors to a higher dimensional

space in which classification is performed using the Optimal Separating

Hyperplane decision function. The SVM optimisation problem only

involves the dot products among the training vectors xi (see Equations

1.22, 1.23 and 1.26). Therefore, the function ϕ : RN → H that maps the

vectors xi onto the new space (a Hilbert space, in general case) does not

need to be given explicitly. One only needs to specify the dot product

of any two image vectors ϕ(x) and ϕ(y) in H through a kernel function

K defined over C ×C, where C is a compact subset of RN that includes

the training and test vectors:

〈ϕ(x), ϕ(y)〉 := K(x,y). (1.32)

In order for this definition to be well-posed, K must satisfy the conditions

of Mercer’s theorem of Functional Analysis [51]. More specifically,

K(x,y) must be symmetric and continuous over C × C. Furthermore,

the integral operator over L2(C)

(Kf)(y) =
∫

C
K(x,y)f(x)dx (1.33)

must be positive, meaning that
∫

C×C
K(x,y)f(x)f(y)dxdy ≥ 0 (1.34)

for all f ∈ L2(C).

When these conditions are met, it is possible to find a map ϕ of the input
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vectors onto a suitable Hilbert space H such that (1.32) defines a scalar

product in H.

In this case, the dual Lagrangian to be solved is:

min LD =
1

2

N∑

i,j

αiαjyiyjK(xi, xj) −
N∑

i=1

αi (1.35)

αi ≥ 0, i = 1, ...., N

N∑

i=1

αiyi = 0.

The Optimal Separating Hyperplane in H can be written in terms of

the input vectors in RN , giving the following expression for the decision

function:

f(x) =
n∑

j=1

αjyjK(sj,x) + b ≥ 0. (1.36)

This is the exact analogue of Equation (1.28), but for the fact that the

dot product sj · x in RN , has been substituted by the value K(sj,x) of

the kernel functions. Since the kernel function is in general nonlinear,

the decision surface f(x) = 0 is also nonlinear. Common choices for K

are the family of kernel functions [52, 53]

Kd(x,y) = (γx · y + r)d, (1.37)

that lead to polynomial classifiers, and the Gaussian kernel

K(x,y) = exp

(

−||x − y||2
σ2

)

. (1.38)

1.5 Recursive Features Elimination (RFE)

SVM - Recursive Features Elimination is a general method for eliminating

features responsible of small changes in the classifier’s cost function. In
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the specific case of non-linear SVM, the cost function to minimize is that

discussed in eq. (1.35) or more compactly:

J =
1

2
αTHα − αT1 (1.39)

where H is the matrix with elements yiyjK(xi, xj) and 1 is an one-

dimensional vector of ones. In order to compute the change in the cost

function by removing the feature f , one has to compute the matrix H(−f)

where the notation (−f) means that the feature f has been removed. The

variation in the cost function J is thus:

δJ =
1

2
αTHα − 1

2
αTH(−f)α. (1.40)

The feature corresponding to the smallest δJ(f) is then removed, SVM

is trained once again with the new smaller set of features, and finally

tested. The procedure can thus be iterated (feature after feature) until a

reasonable small number of features survives or the performances of the

classifier start to degrade.

We present below an outline of the algorithm in the linear case, using

SVM-train.

Algorithm SVM-RFE:

Inputs:

Training examples

X0 = [x1,x2, ...xk, ...xl]
T

Class labels

y = [y1, y2, ...yk, ..., yl]
T

Initialize:

Subset of surviving features

s = [1, 2, ...n]

Feature ranked list

r = []

Repeat until s = []
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Restrict training examples to good feature indices

X = X0(:, s)

Train the classifier

α = SV M − train(X,y)

Compute the weight vector of dimension length(s)

w =
∑

k αkykxk

Compute the ranking criteria

ci = (wi)
2, for all i

Find the feature with smallest ranking criterion

f = argmin(c)

Update feature ranked list

r = [s(f), r]

Eliminate the feature with smallest ranking criterion

s = s(1 : f − 1, f + 1 : length(s))

Output:

Feature ranked list r.

In this case (linear case), the kernel function is K(xh,xk) = xh · xk and

αT Hα = ‖w‖2. The variation of the cost function becomes δJ = 1
2
(wi)

2.

Computationally, the non-linear kernel version of SVM-RFE is a little

more expansive than the linear version. However, the change in matrix H

must be computed for support vectors only, which makes it affordable for

small numbers of support vectors. Additionally, parts of the calculation

such as the dot products xh · xk between support vectors can be cached.

This algorithm can be generalized to remove more than one feature per

step for speed reasons.
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Chapter 2

Classical Molecular Dynamic
(CMD) and Heavy Ion
Phase-Space Exploration
(HIPSE) models

Computer simulation methods have become a very powerful tool to

attack the many - body problem in nuclear physics. Although the

theoretical description of complex systems in the framework of statistical

physics is rather well developed and the experimental techniques for

detailed microscopic information are rather sophisticated, it is often

only possible to study specific aspects of those systems in great detail

via the simulation. On the other hand, simulations need specific input

parameters that characterize the system in question, and which come

either from theoretical considerations or are provided by experimental

data. Having characterized a physical system in terms of model

parameters, simulations are often used both to solve theoretical problems

beyond certain approximations and to provide a hint to experimentalists

for further investigations.

In the case of big experimental facilities it is even often required to prove

the potential outcome of an experiment by computer simulations. In that

way one can say that the field of computer simulations has developed into

a very important branch of science, which on the one hand helps theorists

51



and experimentalists to go beyond their inherent limitations and on the

other hand is a scientific field on its own.

The “traditional” simulation methods for many-body system can be

divided into two classes of stochastic and deterministic simulations, which

are largely covered by the Monte Carlo (MC) method and the molecular

dynamics (MD) method, respectively. Monte Carlo simulations probe the

configuration space by trial moves of particles. By contrast, MD methods

are governed by the system’s Hamiltonian and consequently Hamilton’s

equations of motion

ṗi = −∂H

∂qi

, q̇i =
∂H

∂pi

(2.1)

are integrated to move particles to new positions and to get new velocities

at these new positions. This is advantage of MD simulations with respect

to MC, since not only the configuration space probed but the whole

phase space which gives additional information about the dynamics of

the system. Both methods are complementary in nature but they lead

to the same averages of static quantities, given that the system under

consideration is ergodic and the same statistical ensemble is used.

Although there are different methods to obtain information about

complex systems, particle simulations always require a model for the

interaction between system constituents. This model has to be tested

against experimental results, i.e. it should reproduce or approximate

experimental findings like distribution functions or phase diagrams, and

theoretical constraints, i.e. it should obey certain fundamental or limiting

laws like energy conservation.

How we have seen in the previous chapter the Support Vector Machine

algorithm needs of a training phase where the SVM “learns” to

discriminate between different classes of events. Therefore for the

learning phase we have used two different types of nuclear models: The

Classical Molecular Dynamic (CMD) [54] and the Heavy Ion Phase-Space

Exploration model (HIPSE) [55]. This last one has been used for two
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main motivations: the first one is that the SVM algorithm is an adaptive

process, therefore it needs to check the capacity of classification of SVM

on different datasets that come from different types of nuclear model, the

second one is that the HIPSE is a nuclear model that takes into account

both the dynamical and statistical effects. In this chapter we will do a

brief description of these theoretical models.

2.1 Classical Molecular Dynamic model

In this model the main ingredients for a program are basically threefold:

1. As already mentioned, a model for the interaction among system

constituents (in this case nucleons) is needed. It is assumed that the

nucleons interact only pairwise. This assumption greatly reduces

the computational effort and the work to implement the model into

the program.

2. An integrator is needed, which propagates particle positions and

velocities from time t to t + δt. It is a finite difference scheme

which moves trajectories discretely in time. The time step δt has

properly to be chosen to guarantee stability of the integrator, i.e.

there should be no drift in the system’s energy.

3. A statistical ensemble has to be chosen, where thermodynamic

quantities like pressure, temperature or the number of nucleons are

controlled. The natural choice of an ensemble in MD simulations

is the micro-canonical ensemble, since the system’s Hamiltonian

without external potentials is a conserved quantity.
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2.1.1 Model for nucleons interaction

A system is completely determined through its Hamiltonian H = H0+H1,

where H0 is the internal part of the Hamiltonian, given as

H0 =
N∑

i=1

p2
i

2mi

+
N∑

i<j

u(ri, rj) + ... (2.2)

where p is the momentum, m the mass of the particles and u is pair-

body interaction potentials. H1 is an external part, which can include

time dependent effects or external sources for a force, i.e. the Coulomb

field.

In our case, the elementary interaction is chosen such as to give similar

properties of nuclei in their ground state, i.e. sizes, etc. Particles interact

through a two-body potential repulsive at short distances and attractive

at larger distances and purely repulsive for identical particles. This is

done to mimic somehow the Pauli principle; for instance, two identical

particles that we can call protons if they are charged (p) or neutrons (n) if

they are not, cannot make a bound state. The CMD model assumes that

the equation of state (EOS) for infinite nuclear matter is very similar to

the one of a Van der Waals gas. Nevertheless it should be kept in mind

that the ground state in this model is a crystal. By solving this kind of

model we can keep track of all positions and momenta as a function of

time, and thus we can investigate correlations of all order at all time.

The two-body potential is expressed explicitly by these relations:

Vnp(r) = Vr[exp(−µrr)/r − exp(−µrrc)/rc]

−Va[exp(−µar)/r − exp(−µara)/ra],

Vnn(r) = Vpp(r) = V0[exp(−µ0r)/r − exp(−µ0rc)/rc]. (2.3)

where rc = 5.4 fm is a cut-off radius that is introduced as limit beyond

of which mutual interactions between particles are neglected. Vnp is the

potential acting between a neutron and a proton, and Vnn and Vpp are the

potential acting between two identical nucleons. The first is attractive at

large r and repulsive at small r, while the latter is purely repulsive.
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2.1.2 The Integrator

For a given potential model which characterizes the physical system, it

is the integrator which is responsible for the accuracy of the simulation

results. If the integrator would work without any error the simulation

would provide exact model results within the errors occurring due to a

finite number representation. However, any finite difference integrator is

naturally an approximation for a system developing continuously in time.

The requirements for the integrator are therefore to be

• accurate, in the sense that it approximates the true trajectory very

well (this may be checked with simple model systems for which

analytical solutions exist)

• stable, in the sense that it conserves energy and that small

perturbation do not lead instabilities

• robust, in the sense that it allows for large time steps in order to

propagate the system efficiently through phase space.

In the following we will show the most common integrators based on

Taylor expansions, in CMD model the classical Hamilton’s equation of

motion are solved using the Taylor method at order O[(δt)3].

The simplest and most straight forward way to construct an integrator is

by expanding the position and velocities in a Taylor series. For a small

enough time step δt the expansion gives

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 +

1

6
b(t)δt3 + ... (2.4)

v(t + δt) = v(t) + a(t)δt +
1

2
b(t)δt2 +

1

6
c(t)δt3 + ... (2.5)

where a,b, c are the 2nd, 3rd and 4th time derivate of the coordinates.

In the same way the expansion may be performed for δt → −δt, which

gives

r(t − δt) = r(t) − v(t)δt +
1

2
a(t)δt2 − 1

6
b(t)δt3 ± ... (2.6)
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v(t − δt) = v(t) − a(t)δt +
1

2
b(t)δt2 − 1

6
c(t)δt3 ± ... (2.7)

Adding up Eqs. 2.4, 2.6 and Eqs. 2.5, 2.7 gives for the new positions and

velocities

r(t + δt) = 2r(t) − r(t − δt) + a(t)δt2 + O(δt4) (2.8)

v(t + δt) = 2v(t) − v(t − δt) + b(t)δt2 + O(δt4). (2.9)

A method whose truncation varies as δt(n+1) is called and n-th order

method. Eqs. 2.8, 2.9 are therefore of 3rd order. The drawback of Eq.

2.9 is, however, that it requires the 3rd derivative of the coordinates with

respect with to time which is not routinely calculated in CMD simulations

and thus introduces some additional computational and storage overhead.

To overcome this drawback one can simply subtract Eq.2.6 from Eq. 2.4,

giving the central difference scheme for the velocity

v(t) =
1

2δt
(r(t + δt) − r(t − δt)) + O(δt3). (2.10)

This is, however, one order less in accuracy than Eq. 2.9 and also provides

velocities at timestep t, not at t+δt. Since this information is not required

by Eq. 2.8 to calculate accurately the positions, one may take Eq. 2.10 as

an estimate for the velocities from which the kinetic energy of the system

is calculated.

From the point of view of storage requirements, Eq. 2.8,2.9 are not

optimal, since information is required form positions not only at time

t but also at time t − δt. An equivalent algorithm, which stores only

information from one timestep is the so called velocity Verlet algorithm,

which reads

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 (2.11)

v(t + δt) = v(t) +
1

2
δt(a(t) + a(t + δt)) (2.12)
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This scheme, however, requires the knowledge of the accelerations, a, at

time step t + δt.

One may therefore decompose Eq. 2.12 into two steps. First calculate

v(t + δt/2) = v(t) +
1

2
δta(t) (2.13)

then compute the actual forces on the particles at time t + δt and finish

the velocity calculation with

v(t + δt) = v(t + δt/2) +
1

2
a(t + δt)δt. (2.14)

At this point the kinetic energy may be calculated without a time delay

of δt, as it was in Eq.2.10.

2.1.3 The Microcanonical Ensemble for CMD

In CMD simulations it is possible to realize different types of

thermodynamics ensembles which are characterized by the control of

certain thermodynamics quantities.

The microcanonical ensemble may be considered as natural ensemble

for molecular dynamic simulations (as it is the canonical ensemble

for Monte Carlo simulations). If no time dependent external forces

are considered, the system’s Hamiltonian is constant, implying that

the system’s dynamics evolves on a constant energy surface. The

corresponding probability density in phase space is therefore given by

ρ(q,p) = δ(H(q,p) − E) (2.15)

In a computer simulation this theoretical condition is generally violated,

due to limited accuracy in integrating the equations of motion and due

to errors resulting from a limited precision of number representation.

The simplest extension to the microcanonical ensemble is the canonical

one, where the number of particles, the volume and temperature are

fixed to prescribed values. The temperature T is, in contrast to N and V,

an intensive parameter. The extensive counterpart would be the kinetic
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energy of the system.

In our CMD simulations the energy and momentum are well conserved.

The nucleus is initialized in its ground state by using the frictional cooling

method [56]. In other hand, it means that for to find the ground state of

the system only, we add a viscosity and a Lagrangian force to ṗi = −∂H
∂qi

:

ṗi = −∂H

∂qi

− µq̇i − kqi. (2.16)

The second term is a completely artificial one-body viscosity term

designed to dissipate energy with time, so that the system relaxes to

a state of lowest energy. µ is taken to be ≈ 115 MeV/fm.

The third term is derived from the constraint which requires that 〈r2〉
have a given value. The corresponding Lagrangian potential, 1

2
k
∑

i r
2
i , is

not to be included in H for the purpose of calculating the energy. This

Lagrangian oscillator potential was used to compress the system in order

to determine the compressibility constant k.

It was also found to be essential to use a small but finite k in order to

confine the system until it was nearly cold; then k was set equal to zero

for the final relaxation.

The nuclear ground states for projectiles and targets, which can be

calculated from the model, contain (at least) two-fold continuous

degeneracies. The first is with respect to orientation of the individual

nucleons. The second is with respect to the orientations of the momenta

of the individual nucleons. Each of these sets of vectors may be rotated

independently as a solid body or inverted without affecting the energy.

The solid body rotations can be effected simply in terms of the Eulero

angles,

0 ≤ α ≤ 2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π,

where these are the angles for sequential rotations about the laboratory-

fixed axes (say) x, y, z. In a collision calculation, it is necessary to

average over initial conditions. For that purpose, one uses the uniform

58



random variables α, β and γ. Beginning with a standard ground state

configuration, then, one generates the starting configuration from a

random orientation of the nucleon coordinates and an independent

random orientation of the momenta.

Afterward, it is excited at a temperature T giving a Maxwellian velocity

distribution to its nucleons by means of a Metropolis sampling [57].

We have studied the reaction 58Ni +48 Ca, investigated at 25 AMeV

beam incident energy by NUCL-EX collaboration, at superconducting

cyclotron of the Laboratori Nazionali del Sud in Catania with the

CHIMERA apparatus.

The events generated by CMD for an impact parameter in the range

[0.5 − 10] fm where analyzed with SVM before and after applying a

software filter, which simulates the experimental response of each simple

module of the apparatus.

2.2 Heavy-Ion Phase-Space Exploration

model

One of the most difficult issues in the study of the heavy ions collisions

around the Fermi energy domain ( say between 20 and 100 AMeV). is

related to the fact that this energy region is a transition region indeed one

has to deal with a mean-field dominated dynamics (much below the Fermi

energy) and a high-energy regime where individual nucleonic degrees of

freedom and associated two-body effects become predominant [58]. This

competition between mean-field effects and in-medium nucleon-nucleon

interactions is a long-standing problem in heavy ion reactions around the

Fermi energy and has led to two classes of models. The first one starts

from the mean field and extends this latter to account perturbatively

for the residual two-body interaction, while in the second model class,

the two body interaction is treated exactly and mean-field effects play a

secondary role. Intra-nuclear collision and molecular dynamics models
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are the prototypes of this second class. For heavy-ion collisions, it

has been shown that the transition between mean-field and nucleon-

nucleon degrees of freedom is smooth and both should be accounted

for at the same time to properly reproduce experimental data. Special

attention should thus be paid to the interplay between preequilibrium

and postequilibrium effects. In microscopic models, this can hardly be

achieved because of the difficulty in properly defining excitation energies

or thermal equilibrium conditions.

The Heavy-Ion Phase-Space Exploration model is a dynamical model to

account for light as well as massive cluster emission during the reaction.

This model naturally accounts for the transition between nucleonic and

mean-field effects. It properly connects the preequilibrium stage with

the deexcitation phase, introducing the important notion of phase-space

exploration during the reaction. The price to pay in order to solve the

problem discussed above is to disregard some microscopic effects and to

work at a more phenomenological level. The problem very often arises

from the fact that there are strong dynamical effects taking place at least

in the first instants of the reaction. Let us take multifragmentation,

defined as the emission in a very short time scale of several species of

atomic number larger than 2 [59] as compared to other decay mechanisms

such as the formation of heavy residues or fission. Such a phenomenon

is expected to be the ideal tool to study the transition from a liquidlike

state (nuclei at normal density) toward a gaslike state associated with

the vaporization of the system. The quest for the signals of a nuclear

phase transition of the liquid-gas type has led to rather sophisticated

analysis. Such recent experimental analysis based on nuclear calorimetry

have claimed evidence for a liquid-gas phase transition through the study

of various signals. Some of these analyses make extensive use of the

thermal multifragmentation statistical models to prove the existence of

thermal equilibrium. There are however some uncertainties in using

statistical models. This is due to the lack of knowledge of dynamical
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effects, in particular, of the fast early processes which could lead to

the formation of equilibrated systems. In particular, the phase space

explored during the collision is expected to be sensitive to the initial

conditions of the reaction. Such a point is addressed in microscopic

transport models. These models provide a suitable framework for

the description of nuclear collisions at intermediate energies and are

able to describe dynamical effects. Unfortunately, although nucleon-

nucleon collisions are included, one could not determine if the system

has reached a complete thermal equilibrium. Moreover, there is not a

direct link in such approaches between the outputs of the simulations

and the thermodynamical properties of the excited species produced in

the reaction. As a consequence, these models do not give unambiguously

important quantities required for statistical model calculations. For

instance, internal excitation energies of the created fragments cannot be

easily obtained in current microscopic calculations.

The HIPSE model has been developed to find a link between the two

extreme approaches, describe above, namely the statistical approach

based on the reduction of the reaction to a few important parameters

and the microscopic approach based on the transport theory.

2.2.1 Main characteristics of the HIPSE model

This model consists in three main steps. In the first step, namely

approaching phase, the two partners (Projectile and Target) of the

reactions are at maximum overlap. This phase is considered by solving

the classical equation of motion of the two partners in their mutual

interaction potential. The state of the system is described by the many-

body wave function |Ψ(t)〉 at a given time. The natural generalization of

equation Qvalue = M(AP , ZP )+M(AT , ZT )−M(A,Z) consists in defining

the potential at a given time using:

V ∗(t) = 〈H(t)〉 − 〈H〉
∞

= 〈H(t)〉 − M(AT , ZT ) − M(AP , ZP ) (2.17)
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where H is the many-body Hamiltonian and 〈H(t)〉 = 〈Ψ(t) |H|Ψ(t)〉
while 〈H(t)〉

∞
corresponds to the expectation value at infinite distance.

The difficulty met in microscopic theories is that the potential part of the

energy does not separate from the possible internal excitation or from the

kinetic part in the collective space. The interaction potential V (t) thus

differs from V ∗(t) and cannot be accessed directly. The difficulty can be

removed in two limiting approximations:

• in the frozen density approximation, it is supposed that the

collision is sufficiently fast so that the internal degrees of freedom do

not have time to “reorganize” themselves. In that case, the concept

of di-nuclear system persists even in the limit of overlapping target

and projectile densities. It thus neglects the Pauli principle as well

as the saturation properties. The frozen density approximation

limit is expected to be valid for high energy collision.

• the adiabatic approximation limit assumes in an opposite way

that internal degrees of freedom reorganize much faster than the

collective degrees of freedom. In that case, the notion of two

separate densities looses its meaning and one should treat instead

a single entity that undergoes a transition from large deformation

toward a compact shape.

The interaction potential obtained either from microscopic or

macroscopic theories generally uses one of the two approximations. One

should however keep in mind that once the target and projectile come

into contact, it is normally not possible to distinguish nucleons of the

projectile from nucleons of the target, at least due to the fermionic nature

of nucleons. It is however reasonable to assume that a memory of the

entrance channel is kept during some time and that we can still (at least

during the time of the neck formation) distinguish a target like or a

projectile like nucleus. The “true” interaction potential will thus be in-

between the two limiting cases.
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For a given beam energy EB, a classical two-body dynamics during

the phase of approach of the collision is assumed. Noting VAT AP
(r =

|rT − rP |) the interaction potential between the target and the projectile,

we consider the evolution associated with the Hamiltonian E0 = p2/2µ+

VAT AP
(r). E0 = [AT /(AT + AP )] EB is the available energy in the

center of mass while p is the relative momentum and µ = mT mP /M

is the reduced mass with mT and mP the target and projectile mass,

respectively. The concept of nuclear potential is rather unambiguously

defined when the two nuclei are well separated. Then it uses the

proximity potential when the relevant observable is reduced to the

minimal geometric information on the two nuclei in interaction (i.e. their

nuclear radius only).

In order to derive the macroscopic theories, one should first consider the

semi-classical version of (2.17):

V (t) =
∫

d3rǫ(ρ(t)) −
∫

d3rǫ(ρT ) −
∫

d3rǫ(ρP ) (2.18)

where ǫ(ρ(t)) is the energy functional which depends on the one-body

density ρ(t) and on the effective nucleon-nucleon interaction. In the

sudden limit, the single-particle degrees of freedom are frozen. The total

density at time t writes in terms of the density of the target ρT and of

projectile ρP in their ground state as: ρ(x, t) = ρT (x − rT (t)) + ρP (x −
rP (t)) where rT (t) and rP (t) are the target and projectile center of mass,

respectively. Reporting this expression in equation (2.18), we end with

the doubly folded potential for V (r)

V (r) =
∫

d3xd3yρT (rT (t) − x)ν(|x − y|)ρP (y − rP (t)) (2.19)

where the interaction ν may contain any effective force in addition to the

coulomb energy.

The expression (2.19) can be integrated in the case of spherical

leptodermous systems, leading to a simple expression for the potential
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[60, 61]:

Vprox(r) = e2ZT ZP

r2
+ 4π

CT CP

CT + CP

Φ(ξ) (2.20)

where CT and CP are the half density radii of the two nuclei. In

this expression, the function Φ(ξ) is a function that measures the

interaction energy between two parrallel surface separated by a distance

ξ = r − CT − CP . The proximity potential is not well suited for small

relative distance r ≤ RT +RP , where RT and RP are radii of, respectively,

the target and the projectile. In this case, there is thus a need for another

prescription defining nuclear potential between two strongly overlapping

nuclei.

Such a potential is to a large extent unknown and should normally depend

on different parameters describing the configurations of the system:

shape, internal excitation energy, as well as the initial relative energy

of the two partners [62]. At very hight relative energy, neglecting the

influence of two-body collisions, we do expect that the internal degrees

of freedom have no time to reorganize and that the system has a strong

memory of the initial conditions. In view of these points, we do not expect

a unique potential. As the beam energy increases, the internal degrees

of freedom have less time to reorganize and the potential is expected to

be sharper. The possible energy dependence of the potential has been

included in a phenomenological way. In the following, we use a simple

approximation for the construction of the potential. First, it is assumed

that VAT AP
depends on r uniquely even for small relative distances. In

order to obtain the potential for r < RT +RP , we interpolate the potential

between r = 0 and r = RT − RP using a third-order polynomial and

assuming continuity of the derivative of the potential at each point. The

value retained at r = 0 is conveniently expressed as

V (r = 0) = αaV
Froz
AT AP

(r = 0) (2.21)

where αa is a parameter to be fixed by comparison with experimental

data. V Froz
AT AP

(r = 0) is the energy of the system assuming that the
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two densities of the system overlap completely in the frozen density

approximation.

The second step in the model is the partition formation phase which

corresponds to the rearrangement of the nucleons into several clusters

and light particles (hereafter called the partition) according to the impact

parameter of the reaction. The partition is built following coalescence

rules in momentum and position spaces. The main consequence of this

approximation is that the characteristics of the species produced in highly

fragmented collisions will exhibit kinetic energy and angular distributions

keeping a strong memory of the entrance channel.

The last phase is the exit channel and after-burner phase up to the

detectors: the partition is propagated taking into account explicitly

reaggregation effects due to the strong nuclear and Coulomb interactions

among the various species of the partition. Since these latter are produced

in excited states, secondary decays are taken into account by means of

an evaporation code.
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Chapter 3

Principal Component
Analysis (PCA)

3.1 Basic concepts of PCA

PCA is one of the multivariate methods of analysis and has been used

widely with large multidimensional data sets. The use of PCA allows

the number of variables in a multivariate data set to be reduced, whilst

retaining as much as possible the information present in the data set.

This reduction is achieved by taking p variables X1, X2, ..., Xp and

finding the combinations of these to produce principal components (PCs)

PC1, PC2, ..., PCp, which are uncorrelated because they represent the

eigenvectors of the covariance matrix. The lack of correlation is a useful

property as it means that the PCs are measuring different “dimensions” in

the data. PCs are ordered so that PC1 exhibits the greatest amount of the

information, PC2 exhibits the second greatest amount of the information,

PC3 exhibits the third greatest amount of the information, and so on.

That is var(PC1) ≥ var(PC2) ≥ var(PC3 ≥ ... ≥ var(PCP ), where

var(PCi) expresses the variance of PCi in the data set being considered.

V ar(PCi) is also called the eigenvalue of PCi. When using PCA, it is

hoped that the eigenvalues of most of the PCs will be so low as to be

virtually negligible. When this is the case, the information in the data set

can be adequately described by means of a few PCs where the eigenvalues

are not negligible. Accordingly, some degree of economy is accomplished
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as the information in the original number of variables (X variables) can

be described using a smaller number of new variables (PCs).

3.2 PCA analysis technique

The analysis is performed on a data set of p variables (X1, X2, ..., Xp)

for n events. From this data set, a corresponding squared covariance

or correlation matrix can be calculated. For the covariance matrix the

following equation can be used:

cov(Xj, Xk) =

∑n
i=1(Xij − X̄j)(Xik − X̄k)

n

where

X̄j =

∑n
i=1 Xij

n
, and j, k = 1, 2, ..., p.

The covariance matrix S then has the following form:





s11 s12 s13... s1p

s21 s22 s23... s2p

S = . . . .

. . . .

sp1 sp2 sp3... spp





where sjk (j 6= k) is the covariance of variables Xj and Xk and the

diagonal element sjj is the variance of variable Xj.

The covariance matrix is used when the variables are measured on

comparable scales. However, when variables have different units or

widely different scales, as in the current study, a correlation matrix where

variables are standardized should be used.

The first principal component (PC1) is then a linear combination of the

original variables X1, X2, ..., Xp:

PC1 = a11X1 + a12X2 + a13X3 + ... + a1pXp =
p∑

j=1

aijXj
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where a11, a12, ..., a1p are the coefficients assigned to the original p

variables for PC1 and these coefficients are subject to the condition

a2
11 + a2

12 + a2
13 + ... + a2

1p = 1

Similarly, the second principal component:

PC2 = a12X1 + a22X2 + a23X3 + ... + a2pXp

and its coefficients:

a2
21 + a2

22 + a2
23 + ...a2

2p = 1.

PC2 and PC1 are uncorrelated. The third component PC3 can be

expressed in similar way. There can be up to p principal components

if there are p variables.

Other important properties of eigenvectors or PCs are:

• Eigenvectors can only be found for square matrices.

• Not all square matrices have eigenvectors, however a correlation (or

covariance) matrix will always have eigenvectors (the same number

as there are variables).

• Length does not affect whether a vector is a particular eigenvector,

direction does.

• Eigenvectors and eigenvalues always come in pairs.

Any correlation between the dependent variable (outcome) and the PCs

is captured by means of a regression model. The regression step can be

done after the creation of the PCs and removal of some PCs that are

believed to be not related or of little importance to the effects under

study.

In PCA, the number of components extracted is equal to the number

of variables being analysed. However, the components are chosen in

sequence as the best descriptors of the data. In general, the last few
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components do not account for much of the variance, and therefore can

be ignored.

To better explain the previous concepts and to summarize, we can

say that the event-variables in Principal Components Analysis [63]

contain all the information (so called principal variables) since they

are linear combinations of primary variables. Hence, the projection of

the event-variable matrix on the plane (respectively space) defined by

2 (respectively 3) principal variables allows a global visualization of the

features of the whole set of events.

The event-variable matrix X (n events, p variables) is equivalent to

n point cloud (representing the events) plunged in a p dimensional

space (Hilbert space). This space is connected to a normed reference

frame, each vector of which is associated with a primary variable. The

coordinates of the points in this reference frame are equal to the values

taken by the variables for the corresponding events. The directions of

the axes are chosen in such a way that the cosines of their relative angles

are equal to the correlation coefficients connecting the two corresponding

primary variables. In the following, we will deal with the shape of the

cloud in the variable space. In order to handle comparable magnitudes

and to get rid of the problem of units, each variable is first centered and

reduced:

(∀i ∈ [1, n]), (∀j ∈ [1, p]), (xcr
ij =

xij − mj

σj

) (3.1)

The cosine of the angle between any two axes is equal to the

correlation coefficient of the two corresponding variables. Hence, if

two variables are linearly correlated, their axes are superimposed. In

this space, each event is represented by a point whose coordinates are

equal to the values taken by the corresponding primary variables. The

experimental data or the events generated by a model form a cloud. The

covariance matrix of the global variables is built and diagonalized, to

obtain the eigenvalues and the associated eigenvectors. The eigenvalues
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Figure 3.1: First(∆1), second(∆2) and third (∆3) principal axes of a cloud
in dimension p = 3.

give the statistical information carried by the associated eigenvectors.

When eigenvectors, linear combinations of the observable axes, are

ordered with respect to the information they yield, principal components

are defined. In the space defined by principal components, events having

the same features (i.e., similar values of global variables) are grouped

together, so defining in a natural way and without any previous selection,

event classes. To better understand the previous concepts about PCA

analysis we report below an example with the classical mechanical

analogy.

3.3 Mechanical analogy

In three dimensions (p = 3), this cloud can be assimilated to a set of

points having the same mass m (Fig. 3.1). Its centre of gravity g is

localized at the origin. g(g1, g2, g3) is the point with respect to which the

inertia is minimum:

(∀j ∈ [1, 3]),



 ∂

∂gj

n∑

i=1

m

(
xij − mj

σj

− gj

)2

= 0
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Figure 3.2: Decomposition of the total inertia.

(∀j ∈ [1, 3]), (gj = 0).

The inertia of this solid (set of points) is equivalent to that of its inertia

ellipsoid whose principal axes are the three eigenvectors of its inertia

tensor. The square roots of the corresponding eigenvalues give the length

of each principal axis. The first principal axis is the one around which the

inertia of the solid is minimum, the second one is the axis perpendicular

to the first one around which the inertia is minimum, while the third is

perpendicular to the first ones.

The sum of the inertia Iproj∆, of the point cloud projected on an axis ∆

passing by the centre of gravity, and of the inertia I∆, of the cloud with

respect to this axis, is always equal to the inertia with respect to g (Fig.

3.2):

Ig =
n∑

i=1

md2
gi =

n∑

i=1

md2
∆i +

n∑

i=1

mx2
∆i

= I∆ + Iproj∆ (3.2)

The first principal axis is thus the axis on which the inertia of the

projected cloud is maximum (Iproj∆ maximum when I∆ minimum, see
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Eq. (3.2)). In statistics, the projected inertia measures the quantity of

information provided by a specified axis.

For example, if all the events were projected on the same point on a given

axis (null projected inertia), then the knowledge of the projection of a

given event on this axis will give no information about the event. The

sum of the projected inertiae on the three principal axes is equal to the

inertia with respect to g : Ig =
∑3

j=1 Iproj∆j
.

It is often more significant to give the proportion of inertia projected on

the axis: Iproj∆/Ig.

The eigenvalue is equal to the inertia projected on the axis defined by

eigenvector. All the properties defined above in the case p = 3 remain

true irrespective of the number of variables. It can be noticed that there

is an absolute identity between the notions of mean value and centre of

gravity as well as between the notions of variance and inertia in the case

when the mass of each point is equal to 1/n.

In conclusion the Principal Components Analysis is a tool which is well

suited for the first steps of the analysis of an experiment in nuclear

physics, when one wishes to have a global vision of the observables. It

allows for example the exploration of the multidimensional cloud of events

to extract different classes. PCA permits also the handling of variables

preserving as well as possible the input information.

In this work we have applied the PCA on the events generated with CMD

model to discriminate between central, semi-peripheral and peripheral

collisions.

72



Chapter 4

SVM analysis on CMD and
HIPSE events.

In this chapter we will show the first results of SVM analysis on the events

that were generated by CMD and HIPSE model.

The events generated by CMD and HIPSE for an impact parameter in

the range 0.5÷10 fm were analyzed with SVM before and after applying a

software filter, which simulates the experimental response of each module

of the apparatus.

4.1 Global Variables

A basic global variable is the event charged particle multiplicity

(Nc). The multiplicity represents the number of particles emitted in

each event and could be related to the violence of the collision (centrality

of the collision). From the experimental point o view the total detected

multiplicity depends on the angular coverage of the apparatus and don

the kind of detectors of the apparatus. For the CHIMERA apparatus,

described in chapter 6, a first estimation of the total charged particle

multiplicity can be obtained by taking into account that particles stopped

in the silicon detectors give ToF and Si signals, particles that punch

through the silicon detectors give a Si and CsI(Tl) signals, and fast light

charged particles, which don’t produce a signal in the Si detectors, are
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detected by the CsI(Tl) scintillators and identified by means of the fast-

slow components. This “estimated” multiplicity Ntot, has the advantage

that it can be easily built online (during the measurements).

Another global variable that characterizes the events is the charge

distribution of the reaction products i.e. the relative yield of the

different charges emitted in the reaction. The charge distribution can

give qualitative information on the reaction mechanism.

An important quantity, related to the charge of the fragments, is the

sum of the detected charges (ZTOT ), which gives information on the

efficiency of the apparatus. In fact, as the sum of the charges in the

entrance channel is known (ZTOT = ZProjectile + ZTarget), it is interesting

to study the response of the apparatus with respect to the collection of

the emitted charged particles, i.e. to the reconstruction of the event. In

general, global variables reflect the efficiency of the apparatus so that

particles with an energy lower than the detector thresholds or emitted in

an angular polar range not in the apparatus geometrical acceptance (in

our case is 1◦ ≤ ϑ ≤ 30◦), cannot be included in the considered global

variables (multiplicity, total charge, etc). Even though CHIMERA covers

94% of the total solid angle and shows very low detection thresholds not

all the particles emitted in an event are detected.

Another particle multiplicity can be constructed taking into account only

the intermediate mass fragments (IMF), i.e. fragments with a charge

Z ≥ 3.

A further global variable that can be built in order to get information

on the centrality of the collision is the transverse energy. This is

defined as the kinetic energy calculated considering only the component

of the velocity perpendicular to the beam axis. The sharing of the

incident kinetic energy of the projectiles in a perpendicular direction is

frequently interpreted as an indication of the centrality, or dissipation,

of the collision. In fact, the more central is the collision, the higher the

transverse energy, inducing to define the transverse energy as an indicator
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of the loss of the entrance channel memory. In addition, for low values,

the transverse energy can be considered a linear function of the impact

parameter, thus allowing an impact parameter selection.

The total transverse energy is thus defined as

ETrans =
Ntot∑

i=1

(~pi · ~k)2

2mi

=
Ntot∑

i=1

Eisin
2θi (4.1)

where pi, mi, Ei represent respectively the momentum, the mass and the

kinetic energy of a reaction product, θi the emission polar angle and ki

the beam direction. The sum is extended to all products emitted in each

event.

The knowledge of the values of the charge of the particles and its

multiplicity for each event allows to construct other observables that are

correlated with the centrality of the reaction, such as, i.e. 0th, 1st, and 2nd

moments of the charge distribution

MK =

∑Nc
i=1 ZK

i

Zbig

(4.2)

where into the sum the contribution of the charge of the biggest fragment

(Zbig) is not included. The moment of the second order for example

provide us to measure the magnitude of fluctuations around the average

value. Greater fluctuations were founded for central collisions rather than

for peripheral collisions.

The total impulse along the beam axis (qz) and the velocity of the

biggest fragments (VZbig) are other observables that are correlated with

the impact parameter. For example qz, in the central collisions, has

values around the velocity of the center of mass of the system, while for

peripheral collisions qz is approximately close the velocity of the beam.

In this way also the velocity of the biggest fragment (VZbig) could be a

good observable to discriminate the centrality of the reaction.
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4.2 Observables in CMD and HIPSE

analysis

For each event generated by CMD and HIPSE, some global observables

are chosen as features, i.e., the charge particle multiplicity (Nc), the

transverse energy (Et), the charge of the biggest fragment (Zbig),

the number of intermediate mass fragments with Z ≥ 3 Nimf , the

0th, 1st, and 2nd moments of the charge distribution (M0,M1,M2), the

total parallel momentum along the beam axis (qz), the total charge (Ztot)

and the velocity of the biggest fragment (V Zbig). The structure of the

output events of the two models is shown in Tab. 4.1. For each event,

a filter which simulates the experimental apparatus is also used and, as

in the experimental case, only the events with Nc ≥ 2 are selected for

subsequent analysis. The dataset is divided in three different classes of

events: central collisions (CEN) from 0.5 fm up to 3.5 fm, semi-peripheral

collisions (SEM) from 4 fm up to 6.5 fm, and peripheral collisions (PER)

from 7 fm up to 10 fm. Of course these sharp intervals are largely

arbitrary, but we have used the same ones for all the data and predictions

in this work. The experimental filter consists mainly on an angular filter

in order to simulate the position of the detectors and in a energy filter in

order to have the upper and lower limit in the detection thresholds.

The total nucleus-nucleus cross section is well approximated by the

geometrical cross-section. As a result, the total reaction cross section can

be calculated from the radii of heavy ions, namely, as σg = π(Rt + Rp)
2,

where Rt and Rp are the equivalent hard-sphere radii of the target and

projectile nuclei, respectively.

Therefore, (without the filter application) the event distribution

generated by CMD and HIPSE follows a triangular distribution.

The total dataset generated with CMD consists of 109930 events and,

since only the events with Nc ≥ 2 have been taken into account, the

total number of events for the analysis is 63571. 14656 events with b
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Impact Par. Features

b Nc Et Zbig Nimf M0 M1 M2 qz Ztot VZbig

Table 4.1: Generic structure of the data output of CMD and HIPSE for
the reaction 58Ni +48 Ca at 25 AMeV.

between 0.5 and 3.5 fm are labelled as CEN events, 32412 events with b

between 4.0 and 6.5 fm as SEM events, and 16503 events with b between

7.0 and 10.0 fm as PER events. For the HIPSE model we generated for

the first class 14646 events, for the second class 32236 events and for the

third class 17521 events, respectively CEN, SEM, PER (Nc ≥ 2).

The classification accuracy is defined as the number of objects

correctly classified over the total number of objects.

We have performed several tests on model events in order to understand if

the learning phase was an adaptable process. The two models indeed show

very different characteristics in the nuclear collisions simulation since

they have different structure of the interaction potential. In addition,

we would like to understand which is the best SVM classifier between the

polynomial kernel with degree 1 (SVM-1), with degree 2 (SVM-2) and

with degree 3 (SVM-3).

We started by experimenting with linear and quadratic classification but

the best global accuracy has been obtained for the SVM-3 and in the

following all the results refer to this classification.

We used four different approaches: first, we applied SVM-3 on CMD

data, using some of these data for the training phase (50% of the total

dataset for each class, i.e., 7323 events for central collisions, 16206 for

semi-peripheral and 8251 for peripheral) and the remaining part in the

test phase. SVM is then trained over the training set and tested over the

test set. A polynomial kernel with d = 3 γ = 1 r = 0 is used (see Eq.

1.37). In this case we obtained, with a separation in 3-classes, a global

accuracy of about 90% (see Fig. 4.1).

In the second case we applied the classifier on HIPSE model data (for
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Class predicted by SVM
for filtered CMD events

CEN SEM PER

CEN 91.9% 8.1% 0.0%

Actual Class SEM 3.1% 90.9% 6.0%

PER 0.0% 13.7% 86.3%

Table 4.2: SVM classification: confusion matrix for filtered CMD events.

Class predicted by SVM
for filtered HIPSE events

CEN SEM PER

CEN 85.2% 14.7% 0.0%

Actual Class SEM 12.0% 77.4% 10.6%

PER 0.0% 16.0% 84.0%

Table 4.3: SVM classification: confusion matrix for filtered HIPSE events.

Class predicted by SVM
for filtered CMD and HIPSE

events (Learning on CMD and
test on HIPSE events).

CEN SEM PER

CEN 46.3% 53.7% 0.0%

Actual Class SEM 8.6% 82.3% 9.0%

PER 0.0% 25.6% 74.2%

Table 4.4: SVM classification: confusion matrix for filtered CMD and
HIPSE events. Learning on CMD and test on HIPSE events.
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Figure 4.1: Classification of b in three different classes through the CMD
model. Global accuracy of about 90%.
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Figure 4.2: Classification of b in three different classes through the HIPSE
model. Global accuracy of about 81%.

the training phase we used the 50% of the data for each class) in the

same way as CMD and we had a global accuracy of 80.9% (see Fig. 4.2),

slightly less than CMD. This could depend on the different structure of

the interaction potential in the two models.

We have also developed the learning phase of SVM-3 on CMD data,

by using all the dataset available, testing the results on HIPSE data

obtaining a global accuracy of about 72% (see Fig. 4.3).
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Figure 4.3: Classification of b in three different classes. Learning on
CMD and test on HIPSE data. Global accuracy of about 72%.

Class predicted by SVM
for filtered HIPSE and CMD

events (Learning on HIPSE and
test on CMD events).

CEN SEM PER

CEN 95.3% 4.7% 0.0%

Actual Class SEM 22.9% 67.1% 10.0%

PER 0.0% 15.0% 84.4%

Table 4.5: SVM classification: confusion matrix for filtered HIPSE and
CMD events. Learning on HIPSE and test on CMD events.

The last result for this first attempt has been obtained using for the

learning phase all the dataset available of HIPSE, and testing the results

on CMD data output, obtaining a global accuracy of about 78% (see Fig.

4.4).

For more details, the correspondence between the class predicted by SVM

and the actual one is reported separately for each single class in the

confusion matrix. In table 4.2 it is shown the confusion matrix for the
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Figure 4.4: Classification of b in three different classes. Learning on
HIPSE and test on CMD data. Global accuracy of about 78%.

first case shown in Fig. 4.1. By looking at the first row, it emerges that

the actual CEN events are correctly classified as CEN events up to 91.9%

of the times, whereas they are misclassified as SEM events up to 8.1%

of the times. Similary, the actual SEM events are correctly classified as

SEM events up to 90.9% of the times, whereas they are misclassified as

CEN events up to 3.1% of the time and as PER events up to 6.0% of

the times. Finally, the actual PER events are correctly classified as PER

events up to 86.3% of the times, whereas they are misclassified as SEM

events up to 13.7% of the times. In the same way, we show in tables (4.3),

(4.4), (4.5) the confusion matrix for the three remaining cases described

above.

In conclusions, we can say that, in this first approach, the pattern

recognition analysis is a good and new techniques to extract the impact

parameter value from the CMD (HIPSE) model data by using many

features at the same time. With respect to traditional methods, this

technique also works well when used to discriminate central collisions.
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Indeed, if we analyze the first class for each case taken into account in

this work, we can see that central collisions are correctly classified with an

accuracy of about 90%. Only in the case shown in table (4.4) we have a

low classification accuracy for the first class of about 47%. Furthermore,

by means of the training phase that is an adaptable process, it will be

possible to apply it to the experimental data measured by NUCL-EX

collaboration. This part of analysis is discussed in the paragraph 6.3.
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Chapter 5

Comparison between the
SVM results and b̂ and PCA
techniques on CMD events.

The second part of our work is described in this and next chapter.

Since we have previously shown that the classification procedure works

better with CMD predictions, we will neglect in the following the results

obtained through HIPSE predictions. In the next section we show the

results obtained with the Recursive Features Elimination analysis (see

section 1.5) on the CMD events. This procedure is very important to

understand which are the features that are more correlated with the

impact parameter.

5.1 Results of the SVM-RFE method

applied to CMD filtered events

To evaluate the relevance of each feature in the classification problem

discussed so far, SVM-RFE is applied. To this purpose, SVM is first

trained with the whole bunch of 10 features, achieving 90% of global

accuracy. Here, the transverse energy Et turns out to be the feature

responsible for the lowest variation in the classifier’s cost function J (see

Eq. 1.40), thus the less important in the solution of the classification
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Figure 5.1: SVM-RFE applied to CMD events

problem. SVM is therefore trained over the training set with a bunch of

just 9 features (i.e., all but Et), then tested over the test set where it

achieves 89.1% of global accuracy. Here, the feature responsible for the

lowest change in classifier’s cost function J is the total charge Ztot. SVM

is thus trained once again over the training set with a bunch of just 8

features (i.e., all but Et and Ztot), then tested over the test set where it

reaches 88.4% of global accuracy. The procedure goes on in a similar way

eliminating recursively Zbig, Nc, qz, M0, V Zbig, M1, M2, and Nimf ,

see Fig. 5.1. From the results of SVM-RFE it is possible to see that the

whole amount of the features taken into account are important to classify

the classes because each observable gives non-negligible contribution to

the global accuracy of classification (see Fig. 5.1).
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5.2 Classification of CMD events by b

estimator

As already pointed out the impact parameter represents the distance

between the center of the target nucleus and the flight axis of the

projectile nucleus. Since projectile and target cannot be detected before

the collision, an evaluation from the final state is necessary to classify

the events by the impact parameter. We report here the results obtained

by evaluating the impact parameter through only one observable i.e. the

charged particle multiplicity. Indeed one of the experimental methods

often used to classify the centrality of the impact considers exclusively

the correlation between a single observable and the “violence” of the

collision. The most used variable is the total multiplicity of charged

particles in an event. In other terms, the impact parameter is estimated

by means of the following estimate function:

b̂ =
b(X)

bmax

=

√∫
∞

X

dP (Y )

dY
dY , (5.1)

where P is the distribution of the observable (in this case the multiplicity

Nc) proportional to the cross-section and bmax is the maximum impact

parameter of the considered reaction.

The more central the collision occurs, the more “violent” it is, and

more outgoing particles are produced. In average, a decreasing impact

parameter leads to an increase of the charged particle multiplicity

(Nc) (see Fig. 5.2). Thus, central collisions correspond to the

highest multiplicity ones. The events with the highest multiplicity

correspond approximately to selecting collisions with small values of

impact parameter. The mean value of the multiplicity in the final state,

strongly correlated with the impact parameter b, decreases monotonously

as a function of b.
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Figure 5.2: Behavior of the multiplicity as a function of the impact
parameter b as calculated within the CMD.

5.2.1 Results of the estimator of b̂ applied to CMD
events

The global accuracy reached over the test set using the estimated value

b̂ = b/bmax approach is of about 61.4% whereas the related confusion

matrix is reported in Tab. 5.1. To have an idea on the accuracy of the

SVM and b̂ approaches in the evaluation of physical quantities associated

to the collision, the charge distribution is a meaningful example.

The charge distribution of each event is given by the occurrences per

Class predicted
by estimated value

of b̂ = b/bmax for
CMD with filter

CEN SEM PER

CEN 58.5% 41.3% 0.1%

Actual Class SEM 0.7% 43.2% 56.0%

PER 0.0% 0.0% 100%

Table 5.1: Estimate value of b̂ = b/bmax classification for filtered CMD
events: confusion matrix.

event of the different atomic numbers Z = 1, 2, ..., etc., for the whole
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amount of fragments produced during the collision. Taking as reference

the charge distribution of the actual CEN, SEM, and PER events

separately, the charge distribution of the SVM-classified and estimate

function of b - classified CEN, SEM, and PER events are compared in

Fig.5.3. By summing up the total number of counts for each different

charge distribution, it turns out that the sum for the actual CEN events

is 7156, for the actual SEM events 16212, and for the actual PER events

8253. As far as the correctly SVM-classified events are concerned the sum

for the events classified as CEN events is 6590, for the events classified as

SEM events is 14654, and for the events classified as PER events is 7123.

The events correctly estimated by the value of these sums are 4193, 7004

and 8248, respectively.

Looking both at the global accuracies and confusion matrices reported

Class predicted
by estimated value

of b̂ = b/bmax for
CMD without filter

CEN SEM PER

CEN 75.6% 9.0% 15.2%

Actual Class SEM 2.8% 80.0% 16.5%

PER 0.0% 3.2% 96.7%

Table 5.2: Estimate value of b̂ = b/bmax classification for unfiltered CMD
events: confusion matrix.

Class predicted by SVM
for CMD without filter

CEN SEM PER

CEN 84.7% 15.3% 0.0%

Actual Class SEM 10% 80.4% 9.6%

PER 0.0% 3.0% 97%

Table 5.3: SVM classification: confusion matrix for CMD without filter.

in the tables (4.2), (5.3), (5.1), (5.2) for the CMD filtered and unfiltered

87



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CMD with filter

Z (Charge of the ions)

N
(Z

)

 

 

CMD Distribution
SVM Distribution
Distribution by estimated value of b/bmax

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CMD with filter

Z (Charge of the ions)

N
(Z

)

 

 
CMD Distribution
SVM Distribution
Distribution by estimated value of b/bmax

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

CMD with filter

Z (Charge of the ions)

N
(Z

)

 

 
CMD Distribution
SVM Distribution
Distribution by estimated value of b/bmax

Figure 5.3: SVM versus estimated value of b̂ = b/bmax classification on
CMD filtered events: charge distribution of CEN events (upper part),
SEM events (middle) and PER events (lower part). The number of ions
has been normalized on the total number of ions products.

events, SVM achieves better results than the method based on the total

multiplicity. As it has been shown in the Fig. 5.3, the SVM charge

distribution has the same behaviour of the distribution generated by

CMD model.

5.3 Classification of CMD events by PCA

analysis

As pointed out in chapter 3, the goal of PCA is to condense information

onto a minimum number of variables which are linear combinations of

primary variables. Hence, the projection of the event-variable matrix

on the plane (respectively space) defined by 2 (respectively 3) principal

variables allows a global visualization of the features of the whole set

of events. We analyzed through the PCA the same observables that are

used in SVM and b̂ analysis. The events are plugged into a n-dimensional
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Figure 5.4: Scatter plot of the CMD filtered events in the plane PCA1-
PCA2.

Hilbert space, where each axis of the basis corresponds to an observable

variable. As in SVM and b̂ analysis, each variable X is firstly standardized

(centered and reduced), i.e., replaced by X
′

= (X−〈X〉+2σ(X))/4σ(X),

where 〈X〉 is the mean value of X and σ(X) its standard deviation. The

cosine of the angle between any two axes is equal to the correlation

coefficient of the two corresponding variables. Hence, if two variables

are linearly correlated, their axes are superimposed. In this space, each

event is represented by a point whose coordinates are equal to the values

taken by the corresponding primary variables. The experimental events

form a cloud. The covariance matrix of the global variables is built and

diagonalized, to obtain the eigenvalues and the associated eigenvectors.

The eigenvalues give the statistical information carried by the associated

eigenvectors. When eigenvectors, linear combinations of the observable

axes, are ordered with respect to the information they yield, principal

components are defined. In the space defined by principal components,
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events having the same features (i.e., similar values of global variables) are

grouped together, so defining in a model-independent way and without

any previous selection, event classes. We found that about 90% of the

original information contained in global observables is retained by the

first three principal components. In particular, the percentage of the

information carried by PCA1, PCA1+PCA2 and PCA1+PCA2+PCA3

is 73%, 84% and 90%, respectively. Therefore, we analyzed CMD events

in the 3-dimensional space defined by the three principal components,

where the CMD events exhaust most of the information. In Fig. 5.4

we show the measured events projected on the PCA1-PCA2 plane. The

impact parameter (not used in the PCA) was then used to check the

sorting of events by the principal components and thus the capability of

PCA to provide information on the centrality of the reaction was tested.

5.3.1 Results of PCA analysis

In Fig. 5.5 we show the correlation between PCA1 and the impact

parameter, after (top panel) and before (bottom panel) the software

replica of the apparatus. In both cases the correlation is nearly linear.

First, we have checked the linearity versus b to understand if the PCA1

was a good observable to discriminate class of events and then we used

the PCA1 to obtain the value of the impact parameter in the same way

used for b̂. In other words, we have applied the estimate function (eq.

5.1) of b using the PCA1 in place of the total multiplicity. In this way, we

have obtained the confusions matrix for CMD events without and with

the filter of the apparatus.

Through the PCA analysis we have obtained a global accuracy of

about 64.8%, as shown in Tab. 5.4, for the CMD filtered events. For the

central collisions, the events estimated correctly are about 67.1%. The

PCA analysis achieves better results than b̂ for the central events (see Tab.

5.1 and Tab. 5.4), but also in this case the SVM classification appears the

best method with respect to PCA analysis and b̂ method. Only in CMD
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Class predicted
by estimated value

of b for CMD with filter
in PCA analysis

CEN SEM PER

CEN 67.1% 32.8% 0.0%

Actual Class SEM 0.2% 47.4% 52.3%

PER 0.0% 2.8% 97.1%

Table 5.4: Estimate value of b classification in PCA analysis for filtered
CMD events : confusion matrix.

Class predicted
by estimated value

of b for CMD without filter
in PCA analysis

CEN SEM PER

CEN 85.6% 1.9% 12.4%

Actual Class SEM 1.3% 80% 18.6%

PER 0.0% 2.4% 97.5%

Table 5.5: Estimate value of b classification in PCA analysis for unfiltered
CMD events: confusion matrix.
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Figure 5.5: Average value of the impact parameter b± its standard
deviation in bins of PCA1. Top (bottom) panel corresponds to CMD
events after (before) the filter. The red line is the linear fit of the
correlation between b and PCA1.

events without filter SVM and PCA analysis achieve approximately the

same results, as it is possible to see in Tab. 5.3 and Tab. 5.5, respectively.
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Chapter 6

SVM applied on the
experimental data measured
by CHIMERA apparatus for
the reaction 58Ni +

48 Ca.

6.1 CHIMERA apparatus

CHIMERA apparatus [70] is a 4π multi-element detector array designed

to study nuclear multifragmentation in heavy ion collisions in the Fermi

energy domain (20AMeV < E/A < 100AMeV ). The detector is

composed of 1192 telescopes arranged in a cylindrical geometry around

the beam axis, covering the polar laboratory angles between 1◦ and 176◦.

Each telescope is composed by a silicon detector, as first step, and a

cesium iodide thallium activated scintillation detector. The apparatus

consists of 35 rings. The forward 18 rings are assembled in 9 wheels

covering the polar laboratory angles between 1◦ and 30◦. Each wheel is

divided in the azimuthal angle into 16, 24, 32, 40 or 48 trapezoidal cells,

depending on its polar coordinate. The telescopes are placed at variable

distances from the target in a range between 350 cm, for the telescopes

belonging to the first ring (1◦), and 100 cm, for the eighteenth ring’s

telescopes placed at 30◦. The remaining 17 rings, covering the angular

range 30◦-176◦, are assembled in a sphere 40 cm in radius; 15 rings are

segmented into 32 cells, while the more backward rings are divided into
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Figure 6.1: CHIMERA mechanical structure.

16 and 8 cells. Considering the beam entrance and outgoing holes, the

frames of the detectors and of the target, an average laboratory solid

angle coverage of about 94% can be obtained

CHIMERA, as most of other experimental devices for charged particles,

does not measure neutrons. The features characterizing the events are

estimated from masses charges, laboratory kinetic energies and detection

angles of charged ejectiles.

6.1.1 Detection techniques

An elementary detection module of CHIMERA consists of a silicon

detector followed by a CsI(TI) crystal, coupled to a photodiode. The

thickness of silicon detectors ranges from 260µm to 300µm, except for

the first wheel where 220 µm silicon detectors have been mounted. The

thickness of the crystals varies from 12 cm to 3 cm, with the increasing

polar angle, in order to stop the more energetic particles in the whole
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dynamical range.

The shape and dimensions of CHIMERA apparatus enable to exploit

a systematic Time of Flight (TOF) technique using as stop the Radio

Frequency (RF) signal delivered by Super Conductor Cyclotron (SCC)

and as start the signal generated by silicon detectors.

TOF technique allows mass identification of the fragments stopped in

the first stage of telescopes and velocity measurements for all detected

fragments. In fact, for particles stopped in the Silicon detector,

experimental quantities, such as velocity, kinetic energy, polar and

azimuthal angles are measured, and mass measurements can be extracted.

Moreover, for particles stopped in the second step of the telescope,

∆E − E technique can be used for charge and mass identification. An

energy threshold, ranging from 6 MeV/nucleon (7Li) to 12 MeV/nucleon

(16O), calculated imposing that the particle passes through 280µm silicon

detectors, is obtained. The features of the detection system, as obtained

in the first campaign of experiments, will be described in the next

paragraph.

6.1.2 Silicon detectors

The first step of CHIMERA telescopes is constituted by a 280µm (average

value) silicon detector obtained by the planar technology. This technique

allows to have well defined detector thickness, very sharp active zones,

extremely thin (500 Å) and homogeneous junction thickness.

In order to ensure a good electrical contact the front and rear faces of the

silicon slice are covered by a 300 Å Aluminium foil. Although this feature

slightly worsens the energy resolution, due to the introduction of a dead

layer, the rise time becomes nearly independent of the impact point of

the detected particles giving better overall timing performances.

The resistivity of the detectors ranges between 3000 and 5000 Ωcm, while

their capacitance varies from 500 to 2200 pF.
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Figure 6.2: A schematic view of the two PAD silicon detector.

In order to minimize the dead layer of silicon detectors and to

maximize the detection solid angle, the active zones of the internal and

external detectors of each wheel are extracted from a single 6 inch silicon

slice. They are realized on a trapezoidal shape bulk, implanting two

windows separated by 300µm on the common n+ contact. A schematic

view of the two PAD detector is shown in Fig. 6.2. A 500µm dead

layer coming from passivation along the external border of the detectors

contains a guard ring which surrounds the two pads at distance of 50µm

from the edges of the active area. A 50µm wide aluminium strip is

deposited on the passivated zone in order to electrically connect the

smaller pad. The silicon bulk is glued along the larger basis of the

trapezoid to a PCB support which houses four contacts: two for the

connections of the two pads, one for guard ring connection and one for

the n+ common contact. The PCB support is used also to connect attach

the detector to the mechanical structure, reducing the dead detection

zones only to the passivated area. The guard ring has the property to
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restrict the electric field inside the detector, avoiding the effect caused by

a non-complete depletion of the zone close to the border [64].

The two-pad design can be applied only to the detectors belonging to

the first nine wheels. In fact, in order to minimize the shadow zone on

the other detectors, the detectors of the sphere present a single active

trapezoidal zone. The corners house the signals for the active zone, the

guard ring and the ground contact, and they are used to fix the detector

to the support box.

6.1.3 CsI(TI) detectors

The second step of the CHIMERA telescopes consists of a CsI(TI)

crystal. The density of this crystal (4.51 g/cm3) allows full absorption

of light charged particles over a short distance, in comparison to other

scintillation detectors (2 − 4g/cm3).

The shape of the crystal is a truncated pyramid with a trapezoidal base.

The dimensions of the front surface are the same of the silicon detectors.

The backward surface of CsI(TI) are bigger than the front one, depending

on the thickness of the crystal.

RING Theta Thickness(cm) Eproton
max (MeV )

1-16 1◦-24◦ 12 190
17-18 24◦-30◦ 10 160
19-22 30◦-62◦ 8 140
23-25 62◦-86◦ 6 120
26-28 86◦-110◦ 5 95
29-32 110◦-142◦ 4 95
33-35 142◦-176◦ 3 90

Table 6.1: CsI(TI) thickness for different rings; Eproton
max represents the

maximum energy of a proton stopped in the detector at 1.5-2 cm before
the photodiode (in order to assure an energy measurement independent
of the particle impact point.

The thickness of the crystals, chosen considering the requirement to
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Figure 6.3: Integration of the Fast and Slow components of a CsI(TI)
detectors. a) the two gates method; b) one common gate method.

stop the most penetrating particles like protons, is shown in Tab. 6.1 for

each ring. The front and back faces of the crystal are polished while the

sides are sanded. The front surface is covered with a 2µm reflecting foil

of aluminised Mylar, while the other sides (lateral and rear) are wrapped

in a 150µm thick Teflon layer and coated with a 50µm thick aluminum

foil in order to optimise the light collection throughout the crystals.

The light output of CsI(TI) is characterized by a combination of two

exponential functions with different time constants:

L(t) = L1 exp(−t/τ1) + L2 exp(−t/τ2)

where L(t) is the light pulse amplitude at time t and L1 and L2 are the

light amplitudes for the fast and slow components, which have decay time

constants 0.4 ≤ τ1 ≤ 0.7 µs and τ2 ≈ 3.2µs respectively [65]. The fast

and slow components depend, in a different way, on the ionization density

and, therefore, on the mass, charge and energy of the detected particle.

This dependence permits particle discrimination by pulse shape analysis.

The used discrimination technique consists of a two gates method [66]

adapted for photodiode readout [67]. The L(t) amplitude, integrated by

the photodiode, passes throughout the amplifier that forms the signal

with a time constant of about 1 ÷ 2 µs. The information relative to the
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fast component L1 is thus maintained unchanged, while the information

relative to the slow component L2, characterized by a longer time than

the amplifier formation time, is cut off and influences mainly the tail of

the signal.

Integrating two different parts of the signal produced by the CsI(TI)

amplifier, by means of two gates, as shown in Fig. 6.3 , it is possible

to obtain two signals proportional to the fast and slow components. An

isotopic identification is then achieved by plotting the fast versus the

slow integrated component. The isotopic discrimination works for light

charged particles with charge Z ≤ 3 as the dependence of the CsI(TI)

components from the ionization density saturates for Z = 4. In order to

work with a common gate integration system and to avoid introducing

additional delays, the amplifier output signal is splitted: one signal is

stretched when it reaches its maximum amplitude while the other remains

unchanged. It is, thus, possible to use a single common gate (Fig. 6.3

b)) of 3µs that integrates the tail of the signal, proportional to the slow

component, and a part of the stretched signal, proportional to the fast

component.

The isotopic identification threshold, obtained by triggering the gates

with the time signal of the CsI(TI), for Z = 1, allowing separation

of protons, deuterons and tritons, range from 20 to 25 MeV, while a

discrimination between Z = 1 and Z = 2 particles is obtained for proton

energies higher than 10 MeV. The use of Radio Frequency as reference

time has produced several advantages. One of them is to grossly reduce

the identification thresholds, which resulted of the order of 20 MeV, for

the purpose of clearly separating p, d, t, and of 4-5 MeV proton equivalent

to separate Z=1 and Z=2. In addition, an identification threshold lower

than 2 MeV proton equivalent has been obtained to discriminate charged

particles from γ-rays. Considering the large size of the crystals used

in CHIMERA, these results, obtained under beam conditions, are rather

good as compared with the best ones reported in literature [68, 69]. In any
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Figure 6.4: Graphics interface to check the acquisition data on-line for
each telescope.

case, the low energy particles that do not exceed the energy thresholds

for CsI(TI) identification will be identified by ∆E − E method.

6.2 Experimental measures by CHIMERA

apparatus

The CHIMERA apparatus described above has been used in the first six

months of the year 2003, for many experiments. In this section we will

describe briefly the procedures performed during the measurements in

order to check the data acquired.

6.2.1 Control procedures of the data acquisition

The control of the data acquired has been performed on-line by the single

spectra and the 2-dimensional correlation matrix between data of the
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same event. For each telescope one graphics interface has been built in

which 8 spectra at the same time are shown, allowing the monitoring of

all detectors.

As it is possible to see, for example, in Fig. 6.4 there are four single

spectra:

• Low-gain signal of the Si;

• Hight-gain signal of the Si;

• Fast-component of the CsI;

• Slow-component of the CsI

and four 2-dimensional matrix:

• Fast-slow matrix of the CsI

• matrix Si low-gain versus fast-component of the CsI;

• matrix Si hight-gain versus fast-component of the CsI;

• matrix Si low gain versus time of flight.

Through this graphics interface it is also possible to have a good

control on-line of the multiplicity of the fragments products event-by-

event. In Fig. 6.5 the spectra of the total multiplicity for event is shown.

The multiplicity corresponds to the number of detectors in coincidence.

The detectors take into account in this case are the silicon detectors. In

figure 6.5 the spectra of multiplicity obtained with a trigger of multiplicity

greater or equal than two, is shown, in other words, it means that at least

two telescope must be affected at the same time by the fragments of the

reaction.
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Figure 6.5: Graphics interface to check the total multiplicity of the
fragments products event-by-event.

6.3 Classification of experimental events:

SVM versus estimator of b̂.

With the purpose of exploring the performances of the SVM analysis on

real data, 79785 experimental events are analyzed. The experimental

data have been measured with Chimera device in July 2003.

SVM is then trained over the whole amount of 63571 CMD events using

the best configuration with a polynomial kernel with d = 3, γ = 1, r = 0

and considering the complete set of features. The charge distribution

of the experimental events classified by SVM and estimate function of b

as CEN, SEM, and PER, respectively are compared, in Fig. 6.6. The

sum for the experimental events classified by SVM as CEN events is

4934, for those classified as SEM events is 58136, and for those classified

as PER events is 16715. For the estimated value of b̂ = b/bmax events

these sums are 6703, 26435, and 46647, respectively. On the upper panel

of the Fig. 6.6, for the most central collisions events selected by SVM

and by b̂, it is possible to see the emission of many light-particles and
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fragments which may be interpreted as the coexistence of the liquid and

gas phases (multifragmentation regime), while for the events selected by

the estimated value of the impact parameter it is possible to see also the

presence of quasi-projectile residue. It can depend on the fact that the b̂

method produces more errors than SVM in the classification task. As the

values of impact parameter become larger, the involved excitation energy

is limited and the decay corresponds to light-particles evaporation leading

to a quasi-projectile residue (liquid nuclear matter), as it is shown in Fig.

6.6 for peripheral collisions.
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Figure 6.6: SVM versus estimated value of b̂ = b/bmax classification on
experimental data: charge distribution of CEN events (upper part), SEM
events (half part) and PER events (lower part). The number of ions has
been normalized on the total number of ions products.
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Chapter 7

Conclusions

In this work we have applied a new technique for the analysis of

nucleus-nucleus collisions data. This method allows to classify the

data corresponding to impact parameter intervals through a particular

multidimensional analysis based on a Support Vector Machine classifier.

The SVM algorithm consists of two main steps. In the first one, known as

the training phase, SVM learns how to discriminate between peripheral,

semi-peripheral and central reactions through the knowledge of samples

that are taken from a large number of events generated by a model. In

this work we have used Classical Molecular Dynamics (CMD) and Heavy

Ion Phase-Space Exploration (HIPSE) models. In the training phase

the values of the impact parameter are well known. In the second one,

known as the test phase, what has been learned is tested on new events

generated by the same models. In the first part of this work we have

checked the SVM classifier results on the CMD and HIPSE events in

order to understand if the SVM algorithm is an adaptable process. The

performances showed that, even though the two models are very different

in terms of interaction potential, the SVM provides us an acceptable

global accuracy for each test. In other terms, the learning phase has

a good capacity of adaptability also in the test phase on the events

coming from different models. The SVM distribution of CMD events

shows a good agreement with the original CMD ion charge distribution.

Looking at both the global accuracies and confusion matrices reported
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in chapter 5, SVM achieves better results than the estimate function for

the impact parameter b̂ and the estimate value of b by PCA analysis.

This SVM technique works well, in particular, when used to discriminate

central collisions. Indeed, central collisions are correctly classified with an

accuracy of about 92% as shown in Fig. 5.3. In addition, the Recursive

Feature Elimination (RFE) technique allows us to extract the observables

more correlated to the impact parameter and to quantify the contribution

of each observable to the classification process of the classes. As shown

in Fig. 5.1, it is possible to see that the most important contribution

for the classification process is given by the number of intermediate

mass fragments (Nimf). It is important to stress that each observable

is important to discriminate between different classes because the global

accuracy of classification increases with the number of the features taken

into account. On the basis of these results, we can assert that the SVM

analysis proposed is a good and new approach to extract the impact

parameter value from the CMD model data by using many features at

the same time. By means of the training phase which is an adaptable

process, we have applied the SVM classifier also to the experimental

data measured in the framework of the NUCL-EX collaboration. In this

second part of the work we have performed the learning phase of SVM

on the total amount of CMD events and then we have extracted the

classes for the experimental data. We have compared these results with

the same distibutions obtained by the estimated function b̂. As shown

in Fig. 6.6, for the central collisions the charge distribution obtained

with the estimate function contains also non-central binary events with

a quasi-projectile residue while in the SVM distribution this is not the

case. In conclusion the SVM classifier succeds to select events more

homogeneous. It is important to stress that this new technique of analysis

is model dependent, whereas the other two methods are indipendent from

any model.

Further work on this subject is needed in order to understand if this
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method could be widely used or should be some limitation in the

applicability.
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