
AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 

Department of Electric, Electronic and Information Engineering "Guglielmo Marconi" (DEI) 

 
 

 

DOTTORATO DI RICERCA IN 
 

Ingegneria Biomedica, Elettrica e dei Sistemi (IBES) 

 
Ciclo 30 

 
Settore Concorsuale: 09/G1-AUTOMATICA 

 

Settore Scientifico Disciplinare:ING-INF/04-AUTOMATICA 

 

 
 

Doubly-Fed Induction Machines: 
Model, Control and Applications 

 
 

 
Presentata da:  

Ahmad Hashemi 
 
 

 
 
                     Coordinatore Dottorato                    Supervisore 
 

                Prof. Daniele Vigo         Prof. Andrea Tilli 
 

 
 

  

 

 

 

Esame finale anno 2018 



Abstract

In our modern world, renewable energy resources far outweigh the classic fossil fuels

or nuclear power in several terms of benefits, i.e. environmentally friendly, secu-

rity, economically, and availability factors. With the current growing rate, it is

estimated that they soon overtake fossil fuels in the energy market, as well. Wind

Energy Conversion Systems are the fastest grown units among renewables within

the recent years. Due to large penetration of wind units in the nowadays power

systems, some specific regulations have been issued through modern national grid

codes to manage their technical commitments. Low Voltage Ride Through (LVRT),

as one of the most important requirements, asks wind units to ride through some

predefined grid low voltage conditions in terms of amplitude reduction and time

duration, mainly caused by different types of balanced and/or unbalanced power

network faults.

Doubly-Fed Induction Generators (DFIGs) as the most popular machines among

the current driven wind turbines, are electrically connected to the grid through a

three-phase winding placed at the stator, while rotor is electromagnetically con-

nected to the stator. Hence, a sudden reduction of the voltage profile, will trigger

large current/flux oscillations in the machine, may hit the physical limits and as a

consequence, violate the grid codes.

The main topic of this thesis is modeling and control of a DFIG-based wind turbine

system in order to substantiate the LVRT requirements without imposing any ad-

ditional hardware to the installed components. In order to achieve this objective,

system/control theory tools are applied to investigate the effects of grid faults on

DFIG dynamics, and design proper control-based countermeasures. More specif-

ically, taking advantage from analyzing the internal dynamics of DFIG, various

feedforward-feedback controllers have been designed to deal with line faults hav-

ing increasing complexity. A crucial role in such approach is played by a suitable

state reference trajectory design, based on the feature of the DFIG internal dynam-

ics. Such kind of method has been applied to deal with the mechanical dynamics, as

well. Numerical realistic simulations validate the benefits of the proposed controller,

in crucially improving the machine response under severe grid faults.
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Introduction

Global installed renewable generation capacity has been consistently increasing in

the last years, reaching a total of 1,985 GW at the end of 2015 [1]. Among renew-

ables, wind power has been the fastest growing energy source, exponentially going

from 6.1 GW in 1996 to 282.6 GW in 2012, and it is predicted to reach 760 GW by

2020 with the current trend [2].

Doubly-Fed Induction Machine (DFIM) is a widely used technology for modern

Wind Energy Conversion Systems (WECS), thanks to high efficiency, improved

power quality, and low cost properties [3]. Indeed, more than 50% of the currently

installed WECSs use this class of electrical machines [4]. In this application frame-

work, it is usually referred to as Doubly-Fed Induction Generator, DFIG connected

to variable speed, fixed frequency Wind Turbines (WTs). In the typical scheme for

power generation systems with DFIG, the stator windings are directly connected to

the grid, while the wound-rotor is fed, by means of slip rings, with voltage provided

by a controlled power electronic converter (so-called Rotor Side Converter, RSC).

The main advantage of this configuration is that RSC has to manage only a fraction

of the generator power (around 30%, but depending on slip value), scaling with the

slip percentage [5, 6], thus RSC has about one third of the size, cost and losses of a

conventional variable-speed drive. Moreover, four quadrant power operation can be

achieved [7, 8] also thanks to the controlled boost converter adopted as Grid Side

Converter (GSC), whose main task is to keep the DC-link capacitor voltage within

a prescribed range, by exchanging undistorted active power with the line.

The DFIG control algorithm plays a crucial role for wind turbines performance en-

hancement. While standard techniques, defined for any electric drive with an Active

Front End, are available for GSC [9], controlling the rotor side via the RSC, requires

more sophisticated strategies. In this respect, several control solutions are available,

in order to decouple active and reactive power generation control. In the framework

of standard vector control [10], different variants have been proposed, depending on

the orientation of the considered synchronously-rotating reference frame, and the

control algorithm . In [11, 12], torque and reactive power regulations are achieved

by high-gain PI controllers designed to steer the rotor currents. In order to define

suitable references, Stator Flux Oriented (SFO) reference frame is considered. In
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[13], state feedback linearization has been exploited assuming rotor current-fed ma-

chine, and an additional first-order dynamics in the control loop. The controller

design is performed in the Rotor Flux Oriented (RFO) frame. Recently, in [14],

input-output feedback linearization has been applied considering the rotor voltage-

fed machine, and exploiting its differential flatness properties.

According to the mentioned high penetration of renewables in the recent years,

making WECSs critical sources of nowadays power networks, specific national Grid

Codes have been issued, demanding such systems to comply with strict technical

qualifications in order to improve safety, reliability, and stability of the power sys-

tem network [15, 16, 17, 18, 19]. On of the most challenging specifications in this

way, regards the Low Voltage Ride Through (LVRT) feature which is the ability

of remain connected to the grid under some predefined classes of voltage dips with

providing some ancillary services, such as reactive current support. The magnitude

and time duration asked by LVRT regulation depends on the dip structure at the

Point of Common Coupling (PCC) and the approximate time taken by the system

to recover the pre-fault condition. As instances, German E.ON Netz regulations

asks for riding through 85% voltage drop lasting for 625ms, while American FERC

accounts for 100% drop for 150ms [16],[17].

Voltage dips are are considered as very critical perturbations for DFIG. Indeed, such

events, usually due to distant line short-circuits, decrease the amount of the power

which can be transmitted to the line, upsetting the generating and delivering energy

balance of the wind turbine (there would exist a surplus of the power generated by

DFIG with respect to what can be transferred to the grid). Owing to the current

limits, the voltage of the DC-link capacitor C is usually affected by this imbalance,

and a sudden reduction in the DFIG torque is needed to prevent overvoltage. Fur-

thermore, since the stator windings are directly connected to the three-phase grid

and rotor is electromagnetically coupled to the stator, DFIG is extremely sensitive

to grid voltage variations. To explain more, each line voltage variation during the

grid fault, as a disturbance, triggers high oscillations in fluxes, and currents of the

both stator and rotor windings. Usually, this phenomenon also makes standard con-

trollers give large voltage commands on RSC (in particular for asymmetrical dips

[20], [21]), hitting the saturation constraints and possibly leading to converter over-

currents. Finally, all of these electrical transients will affect the torque command

and the actual torque of the DFIG, this can trigger mechanical dynamics of the gen-

erator and its prime mover, as well, if relevant mechanical resonances characterize

the driveline.

Therefore, under the fault condition, as a straightforward solution, RSC should be

disconnected to prevent the mentioned damages. This is the most frequent ap-

proach, currently adopted at WECSs by means of installed crowbar protections,
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which short-circuits the rotor winding through some active resistors within the volt-

age dips. However, crowbar system not only compels extra cost, but it impairs

DFIG’s controllability hindering LVRT capabilities. In addition, triggering crow-

bar intervention makes the generator to absorb large reactive power from the grid.

This worsens line voltage degradation, instead of supporting the network by reactive

component injection as asked in Grid Codes [22].

Many solutions have been suggested in recent literature to cope with such problems.

A popular strategy is based on demagnetizing current reference [23], i.e. rotor cur-

rents set points are modified during the dip, to oppose the components arising in

the stator flux; in [24], [25], and [26], virtual resistor, variable structure and hystere-

sis current controller are respectively exploited for such purpose. In [27] the rotor

current reference is switched onto the stator current measurements, while in [28] the

reference switch is performed on the rotor flux linkage, scaling it down when a fault

is detected, in order to limit rotor current oscillations. In [29], a nonlinear controller

as a combination of a PI and Lyapunov based auxiliary control is proposed to sta-

bilize the DFIG dynamics and improve post-fault behavior, through rotor control

voltage. In [30], [31] feedforward transient compensation terms are proposed to be

added during the fault in order to reduce the system sensitivity to the line volt-

age disturbance. In [32] and [33] the focus is mainly put onto the energy surplus

problem (by converting the mentioned imbalanced power into the kinetic energy of

WT through the speed increase command), and enhancement of the reactive power

support, respectively. In [34], a protection hardware for in-grid DFIG based on

superconducting fault current limiter (STCL) connected in series with the DFIG

rotor winding, is proposed to absorb the extra energy of the stator to prevent the

semiconductor devices from overvoltage. During the grid fault, an Energy Storage

Device (ESD) is exploited in [35], for DC-link voltage regulation, while GSC connec-

tion is reconfigured to be paralleled with RSC, providing an alternative path for the

rotor current. During line faults, in [36], rotor current is controlled to track stator

current in a certain scale, in order to achieve LVRT capability and comply with the

constraint of converter’s maximum output voltage.

Despite the large literature, in my opinion, a clear assessment of the problem is still

needed. In particular, most of the attention has been paid to deal with the above-

mentioned power surplus due to the impossibility to transfer significant active power

to the grid, when a voltage dip is taking place. In contrast, no clear analysis (at least

form a system theory viewpoint) is given for what concerns the effects of voltage dip

on the DFIG electromagnetic dynamics and control solutions to cope with. More-

over, to the best of my knowledge, the control-based methods presented in literature

can deal only with mild sags, particularly when comes to asymmetrical voltage dips

[37]. Therefore, combination with some auxiliary dedicated hardware is commonly
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adopted to prevent system tripping under severe faults (see [34], [38], [39] for recent

proposals exploiting innovative auxiliary hardware).

In this context, the main contribution of this thesis is to deeply analyze the dip ef-

fects on DFIG dynamics. This is the first step which leads to the controller design.

A novel control strategy for DFIG (i.e. acting on RSC) is proposed that is capable

of achieving full LVRT features, without additional hardware requirements (with

respect to what needed for normal operation), not only for three-phase symmetri-

cal faults but even in case of very harsh unbalanced line voltage dips, usually not

covered by the control-based solutions presented in literature (neither in simulation

tests, to the best of my knowledge).

To this aim, advanced control theory tools are exploited, first for a clear analysis

of the line voltage disturbance effects, then to design a suitable mixed feedforward-

feedback solution, based on the analysis results and explicitly accounting for the

system’s constraints. Control objectives for the considered class of systems are typ-

ically specified in terms of torque and reactive power at the stator side, which are

suitably mapped into the corresponding (stator or rotor) current references.

In this thesis, first, assuming stator/rotor currents as the output variables to be

controlled, the corresponding Brunovsky forms [40] of the system dynamics are de-

rived, in order to clearly analyze the zero dynamics, driven by the line voltage

and the stator/rotor current references. Then, for each form, the corresponding

zero dynamics is particularly studied to design state trajectories suitably, in order

to prevent unpleasant oscillatory behavior of the zero dynamics. In this thesis, a

mixed feedforward-feedback control solution is proposed. The state reference tra-

jectories obtained by the analytical solutions of zero dynamics are used to generate

feedforward compensations and design a state feedback part to effectively push the

real variables toward the reference ones. The feedback part, taking advantage of the

results in [41] in combination with saturated control techniques, allows to further

tame oscillations, while dealing with rotor voltage limits. More specifically, since to

obtain full LVRT capability the first task is avoiding overcurrent in RSC, the satu-

rated feedback controller is designed to minimize transients on rotor currents. On

the way of dealing with severe balanced and unbalanced voltage dips, the removal of

the effects of natural DFIG dynamics in state reference generation, combined with

the properties of Sylvester equations, is a key step in the path to achieve robustness

to very harsh dips. Another issue in dealing with line faults concerns the detection

and reconstruction of the faulty voltage profile. As it will be clarified later, this

is crucial to compute proper oscillation-free zero dynamics trajectories (for which

line voltage is an input). To this aim, in this thesis, nonlinear state observers are

proposed, which outperform standard delayed-signal cancellation, particularly un-

der unbalanced faults. A particular attention is also put to the WT mechanical
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oscillations under the faulty conditions, in this thesis. In order to suppress the me-

chanical vibration in the drive train, a High Bandwidth Feedback (HBF) controller

is conventionally adopted, designed based on the pole placement approach utilizing

the linearized model of WT. Since the HBF controller should be turned off within

the voltage dip, WT speed will consequently arise. After the dip clearance which

may take several hundreds of ms, the swelled WT speed should be brought back

to the pre-fault steady-state condition in the minimum time and smooth enough

trajectory, without violating the generator torque constraints. As another contri-

bution, in this thesis, an optimization problem is formulated and solved in order to

substantiate all above mentioned goals. To avoid large computational burden in the

online condition, the optimization problem is solved for several reasonable boundary

conditions offline and a lookup table and interpolation among the solutions is ex-

ploited online to design the suitable trajectory for the WT speed after-dip recovery.

At the final chapter of the thesis, as another important contribution, a precise an-

alytical mapping solution from the mentioned original torque and reactive power

at the stator side to the corresponding reference rotor currents, is proposed. This

mapping solution is also performed during the fault, tracking the decreasing torque

profile and the required reactive power/current to support the grid. Simulation

results with and without the proposed mapping solution bolds its effectiveness in

improving the system performance under voltage dips i.e. the accurate original ref-

erence tracking by the system response.

This thesis is structured as follows. In Ch. 1, DFIG model is elaborated starting

from three-phase ABC model. After a brief description of two-axes stationary ref-

erence frame, finally synchronously rotating reference frame is selected as the most

suitable framework for explaining the dynamics of the machine. In this way, state

space equations in the Stator Voltage Oriented reference frame is detailed for two

different sets of the output state variables. As regards Wind Turbine, similar to

other works in the literature [42], [43], [44] a standard two mass model, conven-

tionally exploited for the WECSs studies, is adopted to capture the WT crucial

mechanical behavior. Ch. 2 is allocated to broach the details of LVRT capability

for DFIG WT system asked by modern grid codes. In this way, first power system

short circuits leading to voltage perturbations are categorized and explained in two

main sections of balanced and unbalanced dips. Two well-known national grid codes

examples for LVRT regulations are mentioned and the corresponding requirements

of ride through and reactive power support under the voltage dips are illustrated in

the suitable diagrams. After mentioning the negative effects on the system caused

by voltage dips, the basic treatment, conventionally applied in the current installed

WECSs and it’s consequent side effects are explained.

The details of the DFIG control under harsh balanced voltage dips is discussed in

xi



Ch.3. For this purpose, first general objectives and constraints are reported. Then,

the Brunovsky (Normal) forms of the system dynamics are generated assuming two

different sets of outputs, namely stator and rotor currents. On the way of trajectory

planning, corresponding zero dynamics ODE are solved analytically in two ways:

exploiting Sylvester equation and integrating by parts. After that, the effect of the

line voltage disturbances are analyzed by considering the zero dynamics with re-

spect to the rotor currents and by studying the system behavior, when a standard

feedback linearizing controller is imposed, using the rotor currents as outputs. In

the following, first, the previously-designed reference trajectory is employed in an

open-loop controller. Then, a feedforward-feedback control strategy is proposed re-

lying on modern saturated control techniques to deal with control voltage limits; in

addition, an LMI-constrained convex optimization problem is defined to minimize

the oscillations under voltage dips. Simulations are provided in all of the previous

Sections in order to show the results provided by the different solutions highlighting

the problems of feedback linearizing control and the superior performance of the

feedforward-feedback solution.

In Ch.4 which is dedicated to DFIG control under unbalanced dips, after a short

introduction, the key ideas for the control strategy is mentioned by recalling the

zero dynamics analysis. In the following of this chapter unbalanced voltage dip

characterization is carried out, recalling the asymmetric fault effect on the line volt-

ages, which will be exploited to consider a suitable model to be used for control

purposes. Then, the proposed control scheme is presented, showing how to design

natural-modes-free zero dynamics trajectory under unbalancement, using Sylvester

equations, and completing it with LMI-based saturated state feedback design. Line

voltage observers and the fault detection method playing vital roles in the unbal-

anced condition, are explained in details. The approach is validated via detailed

simulations. First, comparisons with a recent solution (based solely on control),

presented in [28], are discussed. Then, a harsher asymmetric fault case is considered

to further motivate and highlight the features of the proposed method. A short

conclusion ends the chapter with some final considerations.

Wind turbine control and corresponding mechanical issues are underscored in Ch.

5. In this chapter, WT mechanical and aerodynamics models presented in Ch.1 is

exploited for control purposes. The twofold control problem combining the basic

HBF objective based on pole placement and the after-dip recovery management is

formulated. In the following, first it is shown the system unstable behavior after the

line fault, if just standard state feedback configuration is used. Then, the proposed

trajectory planning is presented in detail. Finally, simulation results, validating

the proposed control strategy, are provided and discussed. Particular attention will

be paid to parametric uncertainties, which could affect the model based trajectory

xii



planning. The chapter ends with some final remarks.

Ch.6 is organized to be a framework for the complete benchmark of the studied

system under faulty conditions. DFIG and WT models detailed in Ch.1 are utilized

again. After considering control objectives and system physical limits, the RSC

control proposed in detail in the Ch.3 is briefly recalled and adopted here (start-

ing from known unspecified rotor currents set-points, oscillation-free zero dynamics

trajectory are deduced, the corresponding feedforward terms are computed and sat-

urated linear state feedback law, minimizing oscillation under dips is utilized as

feedback part). As the main contribution of this chapter, the analytical approach

for obtaining rotor current references from original torque and stator reactive cur-

rent is elaborated, based on the previously obtained oscillation-free zero dynamics

trajectories. Numerical simulation results, for a 0.5MW DFIG-based WT, to vali-

date the proposed strategy.

The final inspections and remarks are presented in Ch.7 as well as the outlines of

the future plans for this study accomplishment.
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Chapter 1

Modeling

1.1 Introduction

As we know, the base step of each control process, is to acquire a precise enough

dynamic model of the purpose machine with respect to the control objectives. A

dynamic model to be considered precise enough must take into account all the

important dynamic behaviors of the machine in both steady-state and transient

conditions. Moreover, the model should be able to show reasonable reaction to each

arbitrary time variation of the control inputs supplying the machine through power

electronics converters. In this chapter, such a pre-described models valid for any

instantaneous variations under both steady-state and transient operations, will be

recalled for DFIG and Wind Turbine machines. Then the so-called Maximum Power

Point Tracking algorithm for absorbing the maximum available power from the wind

energy is discussed.

1.2 DFIG Model

In this section, after recalling the basic three-phase ABC model of DFIG, in the way

of simplification, first the two-axes stationary reference frame called α− β model is

explained, then the synchronously rotating reference frame conventionally used for

the DFIG WT system control is discussed.

1.2.1 ABC Reference Frame

The cross-sectional view of the considered DFIG is shown in Fig. 1.1. A two-pole

machine (np = 1) with symmetrically distributed three-phase windings (equal re-

sistances, magnetizing and leakage inductances for all the three phases) for both

stator and rotor is considered. The phases are displaced by 120 electrical degrees

1



Chapter 1. MODELING
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Figure 1.1: A cross-sectional view of the considered DFIG.

from each other in the both three-phase windings, and each rotor phase leads it’s

corresponding stator phase by phase angle θr. Rotor is rotating with the speed

ωr = dθr
dt

in counter-clockwise direction. For sake of simplicity, in developing the

ABC model, some other hypotheses are considered as detailed below :

1. Sinusoidal distribution of the electromagnetic force around the stator winding

in order to cancel the harmonic components.

2. A constant air-gap is assumed in order to have constant mutual inductances

among different phases of stator/rotor windings, and the mutual inductance

between stator and rotor depends on the angular position θr.

3. Cross − saturation effect and Skin effect are neglected when the former is

changing the resistances and leakage inductances due to frequency increase

and latter is the coupling between two perpendicular axes.

4. Core iron losses are neglected.

Now applying Kirchhoff and Faraday laws, for the stator phases A, B, and C we

can write:

2



1.2. DFIG Model

uA = RSiA +
dφA

dt

uB = RSiB +
dφB

dt

uC = RSiC +
dφC

dt

(1.1)

and in the same way for rotor we have:

ua = RRia +
dφa

dt

ub = RRib +
dφb

dt

uc = RRic +
dφc

dt

(1.2)

when uA,B,C/ua,b,c, iA,B,C/ia,b,c, φA,B,C/φa,b,c, andRS/RR are respectively stator/rotor

voltages, currents, fluxes, and resistances. Taking advantage of the assumptions

above, the self inductance of the stator phases are constant and equal, since the flux

path for all the three phases are equal. The same reason implies for the mutual

inductances among the stator phases (constant and equal). For the rotor windings,

the self inductances are constant and equal as well, while the mutual one depend on

the rotor position. Therefore, the stator and rotor flux relations can be expressed

in the following equations (1.3) and (1.4) [45]:
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(1.4)

1.2.2 Two-axes Stationary Reference Frame

As can be seen from the equations (1.3) and (1.4), the inductance matrix depends

on the rotor position, thus it is also time dependent. In order to obtain a dynamic

model with constant inductance matrices which imposes less complexity and compu-

tation/simulation times, two-axes stationary reference frame commonly called α−β

is introduced. This frame consists of two stationary orthogonal axes α and β either

fixed on the stator or rotor which are indicated respectively by xα, xβ and xx, xy

variables. The Fig. 1.2 shows the schematic diagram of the α − β and x − y sta-

tionary reference frames whose α, and x axes are respectively fixed on the stator

3
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α 

θ 

β 

x
y

ˆ    A

ˆ    B

ˆ    C

ˆ    a
ˆ    b

ˆ    c

r

Figure 1.2: Stator (α− β) and rotor (x− y) two-axis reference frames.

phase A and rotor phase a of the three-phase systems. By projecting the three-

phase quantities onto two stationary axes, the following transformation matrix can

be obtained [45]:

T3→2 = k

[

1 −1
2

−1
2

0
√
3
2

−
√
3
2

]

(1.5)

inversing the matrix (1.5), we have:

T2→3 =
2

2k






1 0

−1
2

√
3
2

−1
2

−
√
3
2




 (1.6)

Using the transformation matrices in (1.6), and (1.5), we can easily switch from

Cartesian three-phase system to it’s equivalent α−β and x− y stationary reference

frames and vice versa as the following equations show:

[

xα

xβ

]

= T3→2






xA

xB

xC




 ,






xA

xB

xC




 = T2→3

[

xα

xβ

]

(1.7)

[

xx

xy

]

= T3→2






xa

xb

xc




 ,






xa

xb

xc




 = T2→3

[

xx

xy

]

(1.8)

So by expressing the general DFIG model in terms of the two-phase α−β and x−y

stationary reference frames, we will obtain:

uα = RSiα +
dφα

dt

uβ = RSiβ +
dφβ

dt

(1.9)
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α 

β 

x

y

u

v

θ r

θ 0

Figure 1.3: (u− v) two-axis reference frame.

and for the rotor:

ux = RRix +
dφx

dt

uy = RRiy +
dφy

dt

(1.10)

Thus, the expression of flows in two-phase references will be:
[

φα

φβ

]

= L1

[

iα

iβ

]

+ Lme
Jθr

[

ix

iy

]

(1.11)

, [

φx

φy

]

= L2

[

ix

iy

]

+ Lme
−Jθr

[

iα

iβ

]

(1.12)

where L1 =
3LS

2
, L2 =

3LR

2
, Lm = 3LM

2
, and eJθ indicates the rotation matrix for an

angle θ on the plane as:

eJθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

(1.13)

1.2.3 Synchronously Rotating Reference Frame

In the equations (1.9), (1.10) the two-axes stator and rotor quantities were referring

to different reference systems. Now the dynamic model of DFIG by expressing

stator and rotor windings relative to an unique Cartesian reference system u − v

is discussed. This system is rotating by a generic angle θ0 with respect to stator

reference α − β, see Fig. . By indicating with the script 1 and 2 respectively for

stator and rotor windings, we have [45]:
[

x1u

x1v

]

= e−Jθ0

[

xα

xβ

]

, or

[

xα

xβ

]

= eJθ0

[

x1u

x1v

]

(1.14)
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[

x2u

x2v

]

= e−J(θ0−θr)

[

xx

xy

]

, or

[

xx

xy

]

= eJ(θ0−θr)

[

x2u

x2v

]

(1.15)

Therefore, the model expressed in this frame will be:
[

u1u

u1v

]

= Rs

[

i1u

i1v

]

+

[

φ̇1u

φ̇1v

]

+

[

0 −ω0

ω0 0

][

φ1u

φ1v

]

(1.16)

[

u2u

u2v

]

= RR

[

i2u

i2v

]

+

[

φ̇2u

φ̇2v

]

+

[

0 −(ω0 − ωr)

(ω0 − ωr) 0

][

φ2u

φ2v

]

(1.17)

[

φ1u

φ1v

]

= L1

[

i1u

i1v

]

+ Lm

[

i2u

i2v

]

(1.18)

[

φ2u

φ2v

]

= L2

[

i2u

i2v

]

+ Lm

[

i1u

i1v

]

(1.19)

also for electromagnetic torque, we can write:

Tm =
2np

3k2
Lm

[

i1u i1v

]

J

[

i2u

i2v

]

(1.20)

where ω0 = θ̇0.

The electric model of DFIG is a fourth-order system, to be expressed in state space

form ẋ = f(x, u), four independent state variables should be selected. Generally, a

set of stator/rotor currents and fluxes is selected.

Therefore, under above-mentioned standard hypotheses the electromagnetic dy-

namic model of DFIG in the Stator Voltage Oriented (SVO) (u− v) reference frame

can be expressed as the two following representations, which will be respectively

referred as i1 − φ2 and i2 − φ1 models in this thesis. In particular, in SVO (u − v)

reference frame, u-axis is aligned to the stator voltage vector which corresponds to

the line voltage one, owing to the typical connection of DFIG.

i1 − φ2 Model

Choosing the stator currents i1u, i1v and the rotor fluxes φ2u, φ2v as the state vari-

ables, the DFIM dynamics in the previously mentioned SVO reference frame read

as:

i̇1u = −γ1i1u + ω0i1v + α2β1φ2u + β1ωrφ2v +
U

σ1
− β1u2u

i̇1v = −ω0i1u − γ1i1v − β1ωrφ2u + α2β1φ2v − β1u2v

φ̇2u = −α2φ2u + (ω0 − ωr)φ2v + α2Lmi1u + u2u

φ̇2v = −(ω0 − ωr)φ2u − α2φ2v + α2Lmi1v + u2v

Tm = η1(φ2ui1v − φ2vi1u)

(1.21)
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1.3. Wind Turbine Model

where U is the line voltage amplitude (since stator windings are directly connected

to the grid), ω0 is the line angular frequency, and ωr is the rotor angular speed

multiplied by the number of pole pairs n. The system control inputs are the rotor

voltages u2u, u2v, while Tm in the last equation is the electromagnetic torque. To

compact notation, the following positive parameters have been defined:

σ1 = L1

(

1− L2
m

L1L2

)

, β1 =
Lm

σ1L2

, α2 = −R2

L2

,

γ1 =

(
R1

σ1
+ α2β1Lm

)

, η1 =
3nLm

2L2

(1.22)

the nomenclature of the electrical parameters appearing in the equation above is

reported in Tab. A.1, in the Appendix.

i2 − φ1 Model

Alternatively, if we select the rotor currents i2u, i2v and stator fluxes φ1u, φ1v as the

state variables, the DFIM dynamic model becomes:

i̇2u = −γ2i2u + (ω0 − ωr)i2v + β2α1φ1u − β2ωrφ1v − β2U +
1

σ2
u2u

i̇2v = −(ω0 − ωr)i2u − γ2i2v + β2ωrφ1u + β2α1φ1v +
1

σ2
u2v

φ̇1u = −α1φ1u + ω0φ1v + α1Lmi2u + U

φ̇1v = −ω0φ1u − α1φ1v + α1Lmi2v

Tm = η2(φ1vi2u − φ1ui2v)

(1.23)

with the following positive parameters:

σ2 = L2

(

1− L2
m

L1L2

)

, β2 =
Lm

σ2L1

, α1 = −R1

L1

,

γ2 =

(
R2

σ2

+ α1β2Lm

)

, η2 =
3nLm

2L1

(1.24)

and the electrical coefficients of (1.24) reported in Tab. A.1.

Note that representations (1.21)-(1.23) are easily convertible into any another by

means of the equations (1.18), and (1.19).

1.3 Wind Turbine Model

In this thesis, a standard two-mass model [46], illustrated in Fig.1.4, is considered

in order to analyze and control Wind Turbine (WT) mechanical system. The cor-
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Gear Box

Wind Turbine
Generator

Tw

Tg

ω t ω g

nT g
ω g

DS

KS

Jt

Jg

n:1

Figure 1.4: Standard two-mass wind turbine model with gearbox.

responding dynamics is represented as:

θ̇d =
ωg

n
− ωt

ω̇t =
1

Jt

(

Tw(ωt, β, Vw) +Ksθd +Ds

(ωg

n
− ωt

))

ω̇g =
1

Jg

(

−Ks
θd
n

− Ds

n

(ωg

n
− ωt

)

− Tg

)

(1.25)

Where θd = θt − θg
n
is the drive-train low speed shaft torsional displacement, ωt and

ωg are turbine and generator angular speeds, respectively. Jt and Jg are the turbine

and generator inertias, while n is the coefficient of the gearbox connecting the high

speed shaft (assumed perfectly rigid) and the low speed shaft. Also, Ds and Ks are

the low speed shaft damping and stiffness coefficients, respectively.

The generator and aerodynamic torques are denoted with Tg and Tw, where the

latter depend on the turbine speed, the wind speed Vw and the blade pitch angle β

as [47]:

Tw(ωt, β, Vw) =
1

2

ρπR3
wV

2
wCP (λ, β)

λ
(1.26)

with the blade tip speed ratio λ:

λ =
ωtRw

Vw

(1.27)

where ρ is the air density, Rw the blades radius and λ is the so-called tip speed ratio.

CP is the power coefficient that, beside depending on the specific blade characteristic,

for standard horizontal axis WT, can be approximated as [48]:

CP = 0.22

(
116

λi
− 0.4β − 5

)

e
−12.5

λi (1.28)

where:

λi =
1

1
λ+0.08β

− 0.035
β3+1

(1.29)

As regards the WT control, in the following chapters, Maximum Power Point Track-

ing (MPPT) and Pitch Control as the two standard methods for optimizing the

power extracted from the wind energy, will be shortly discussed. The latter is also

utilized for preventing over rated power production in high wind rates.
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Chapter 2

Low Voltage Ride Through and

Voltage Dips Definition

2.1 Introduction

This chapter explains Low Voltage Ride Through (LVRT) capability for Wind En-

ergy Conversion Systems (WECSs), requested by modern national grid codes. By

definition, LVRT asks WECSs to remain connected to the power grid while some

classes of faults take place, categorized based on voltage reduction and fault dura-

tion. Under voltage dips, another aspect of LVRT must be complied with WECSs

is to supply reactive power to the network in order to help sustaining the volt-

age profile. Voltage dips disturb the generation and transmission power balance of

WECSs by reducing dramatically the power can be transmitted to the grid. More-

over, as it will be detailed in the next parts, voltage dips jeopardize the DFIG-based

Wind Turbine (WT) system by triggering large electrical (stator/rotor current/flux)

and mechanical oscillations beyond the system physical limits. There exists some

standard classifications of the power system short-circuits leading to different style

voltage drops. In the following, one of these fault classifications will be briefly ex-

plained, and the LVRT regulations determined by a few famous national grid codes

will be presented. In the last part, voltage dip drawbacks and the classic remedy

for the DFIG WT system will be briefly discussed.

2.2 Types of Voltage Dips

A voltage dip is a fleeting decline (from 0.5 to 30 cycles) in the grid voltage profile

stemming from different short-circuit faults in the network or due to starting of

heavy inductive loads. A typical power system voltage dip consists of three stages

where the voltage is falling, stabilizing, and recovering as shown in the Fig. 2.1.
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Figure 2.1: A typical voltage dip of the power system.

At the falling stage, the voltage profile drops to a certain level i.e. 0.15p.u. in few

tens of milliseconds (e.g. 30ms), conventionally called 85% voltage drop. The fallen

profile may stabilize there within a period of several cycles equal to few hundreds

of milliseconds (e.g. 200ms). When the fault’s origin is removed, the system starts

recovering to it’s pre-fault situation within a time dependent on the system structure

(specially the control strategy) within a time differing from a few milliseconds to

even several thousands od milliseconds.

The most common classification for the mentioned faults is dividing them into two

symmetrical (balanced) and asymmetrical (unbalanced) sections. The former is a

short-circuit leading to identically equal reductions in all the three phases, while

the latter imposes different changes in terms of amplitude or/and phase angle in

each phase. When a fault takes place, the magnitude and phase angle jump at

a specific location, depends on the several factors including the fault type, the

distance from the fault origin, the network impedance, the power system equipments

nearby installed (e.g. the transformers type connections delta, wye, etc.). The

most common balanced fault in the power system is single-phase to- ground fault

(SPGF), where the voltage drops in one phase, while the other two phases remain

unchanged. The most conventional reason of SPGF is lightning strike at the power

transmission area. Phase-to-phase (PPF) is another frequent unbalanced fault which

imposes amplitude reduction and phase angle delay in two faulty phases, while the

third phase remains fixed. Although the occurrence rate for balanced faults i.e.

three-phase short-circuit is a bit lower, but the resulting drawbacks are much more

severe compared with their unbalance counterpart. From power system statistical

viewpoints, the three-phase faults happen in results of large induction motors start

ups, transformers energizing, and lightning-based short circuits, ice, tree, animal, or

wind touches.

Another way for categorizing the mentioned fault is to use ABC classification,

including one balance, and six different unbalanced faults as shown in Fig. In this

classification, the positive- and negative-source impedances are supposed equal. The
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Type A

Type B Type C Type D

Type E Type F Type G

Figure 2.2: ABC classification of the power system’s short-circuits.

mentioned balanced three-phase fault is titled type A here, while SPGF and PPF

are called type B, and C respectively. As can be seen in Fig.2.2, two out of three

phases experience voltage drops with an associated phase-angle-jump. The type D

is dedicated to a PPF through a delta-wye transformer, or two SPGFs within two

delta-wye transformers. In this type, all the three phases face voltage reduction plus

phase-angle-jumps for two faulty ones. The next one, type E stems from a phase-to-

phase-to-ground fault (PPGF), in which one phase remains unchanged and the other

two phases drop in magnitude only. The type F results from a PPGF happening

through a delta-wye transformer, while finally type G is a type F fault occurring

through two delta-wye transformers. As depicted in the Fig., in both cases drops

for all the three phases, but in term of phase-angle-jump, one phase is safe and the

other two phases face respectively lag and lead jumps for F and G.

2.3 LVRT Definitions by National Grid Codes

In several countries, the WECSs’ share of total energy capacity has exponentially

increased within recent years. The United States has led the world by generating

around 140.9TWh wind-power electricity in 2012, followed by China, Spain, and

Germany by respectively 118.1TWh, 49.1TWh, and 46.0TWh productions. These

large penetration of wind-power units in the national power system, has motivated

several countries to establish some national grid codes and regulations for managing

the WECSs’ commitments. As mentioned before, one of the most vital regulations

11
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Figure 2.3: The general voltage profile required by LVRT national grid codes.

is LVRT, urging the wind-power units to ride through within voltage dips, whose

severity is defined in terms of magnitude drop percentage and fault time duration.

Fig. 2.3 shows the general voltage profile presented in the different national grid

codes to define LVRT voltage regulation. In this cure, AreaA specifies the ride

through zone, where the wind-power unit must stay online supplying the power

network by reactive power, while they are allowed to disconnect when the occurred

fault is deep or/and long enough as illustrated as AreaB.

Fig.2.4 shows four different LVRT national grid codes. German E.ONNetz is a

pioneer institution in Europe, requiring LVRT for the minimum voltage 0.15p.u.

and time duration 625ms, while the complete recovery time is around 1.5s. For

American FERC, as another good instance, WECSs must abide even harsher faults

while the voltage profile may drop to identical zero within around 150ms, and the

system rehabilitates the pre-fault condition along almost 3s. As can be seen in

the Fig., in the Italian and Danish grid codes the voltage profile faces around 80%

decline and reaches back to 0.75p.u. approximately in 700ms. Another aspect of

LVRT regulation, as mentioned before, is reactive power support of the power grid

under faulty condition which is commonly presented as the machine’s (here DFIG)

reactive component of the stator current. As Fig.2.5 depicts, the DFIG’s stator

current reactive component must remain higher than 0.9p.u. along the fault duration.

This reactive power injection insures the local power network’s reliability under the

voltage reduction.
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Figure 2.4: National grid code examples for LVRT voltage regulation.
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Figure 2.5: The general reactive power required by LVRT national grid codes.
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2.4 Voltage Dip Drawbacks and Classic Remedy

Under SV O synchronously rotating reference frame (u− v) and in the steady-state

operating condition, the u-component of the DFIG’s stator voltage is constant, while

the v-component is identically zero. This situation is also preserved under the faulty

condition, for some types of voltage dips like SPGF. The equation (2.1) illustrates

the active power relation in the afore-mentioned reference frame.

P =
3

2
(Uuiiu + Uvii1v) (2.1)

The active power dependency to the component Uu is clear. Thus, as mentioned

before, under the voltage dip, the active power which can be transmitted to the grid

is severely constrained. This leads to an active power mismatch, since the produc-

tion would overtake the consumption under the voltage fault. The power mismatch

itself could cause a high over-voltage in the DC − Link due to the converter’s cur-

rent constraints. A straightforward solution for the power mismatch is reducing the

generator’s torque as well when the voltage dip occurrence is detected by suitable

adopted observers. The second important drawback caused by voltage dip is high

sensitivity of DFIG to such kind of perturbations. The main reason behind this is

that the stator winding of DFIG is directly connected to the power grid. As will

be discussed deeply in the following chapters, from the control viewpoints, it can

be proved that the stator voltage of DFIG inters its internal dynamic system as an

exogenous perturbation. Thus, an abrupt reduction under the voltage dip, leads

directly to the stator flux and current oscillations, resulting in corresponding rotor

oscillations as well, since it is electromagnetically connected to the stator. These

large oscillations if are not smartly controlled, can hit the system’s physical limits

like power-electronic converters’ current constraint. As we know, modern power-

electronic components are all equipped with over-current protection units trapping

them in the risky conditions. But this trap mode should be prevented to hold the

system alive based on the LVRT regulations. The conventional remedy for under-dip

oscillations is installing a crowbar protection, as a physical static resistance short-

circuiting the rotor winding along with the voltage fault. In this way, the harmful

effects of the mentioned oscillations is avoided in the rotor part whose components

are more vulnerable compared with the stator’s. But, we should pay a big price for

the protections in two terms: a) it imposes an additional hardware to the system

which is not cheap at all. b) short-circuiting the rotor winding means hindering the

LVRT performance since we have actually sacrificed the system controllability func-

tion by excluding the Rotor-Side Converter (RSC). Put aside this another negative

point that we are dissipating energy in the static resistors by each crowbar connec-

tion. These mentioned drawbacks motivated researchers to investigate alternative
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cheaper solutions.
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Chapter 3

DFIG Control under Balanced

Dips

3.1 Introduction

As mentioned before in Introduction, DFIG is a wound-rotor machine, where both

stator and rotor windings can be fed independently. The typical connection scheme

of power generation systems with DFIG is shown in Fig. 3.1. In the modern wind

turbines, control theory plays a vital role to substantiate superior dynamic and

steady-state performance of DFIG. As a matter of fact, while the GSC can be

controlled by applying standard techniques defined for any electric drive with an

Active Front End [9], the control problem related to DFIG, steered through the RSC,

is rather peculiar and involved in the electric drives field. Many control solutions

have been proposed for such kind of machine, in order to achieve decoupled control

of the active and reactive power generated at stator side. As mentioned before,

nowadays, in order to be integrated to the power system, wind generation units

should comply with Low Voltage Ride Through (LVRT) regulations requested by

the grid codes [18], [19]. The main drawbacks of voltage dips as severe disturbances

for DFIG, were discussed in the Introduction and previous chapter, which are briefly

recalled as the following points:

1. surplus power happened due to reduction of the transmission rate from the

wind generation unit to the power grid.

2. each line voltage variation during the grid fault, as a disturbance, triggers

high oscillations in fluxes, and currents of the both stator and rotor windings

(because the stator is directly connected to the three-phase grid and rotor is

electromagnetically coupled to the stator).

16



3.1. Introduction

3. voltage perturbation also makes standard controllers give large voltage com-

mands on RSC, hitting the saturation constraints and possibly leading to

converter overcurrents.

4. all of these electrical transients will affect the torque command and the actual

torque of the DFIG, this can trigger mechanical dynamics of the generator

and its prime mover, as well, if relevant mechanical resonances characterize

the driveline.

Many solutions are suggested in literature in order to solve the mentioned sur-

plus power issue, to face the voltage disturbance on DFIG and to prevent damages

to the power converter (both RSC and GSC) during the dip. As mentioned be-

fore, using crowbars to short-circuit the rotor winding during the fault is the most

widely used remedy in the currently installed wind turbines. But, crowbar solu-

tion not only imposes an extra cost to the system, but also hinders the LVRT

compliance of DFIM for the temporary uncontrollability of the system caused by

short-circuiting the rotor windings. Therefore, other solutions have been proposed.

As mentioned in the Introduction, despite the large literature on LVRT and DFIM,

they have mostly focused on the above-mentioned power surplus and no enough

analysis is given for what concerns the effects of voltage dip on the DFIG electro-

magnetic dynamics and control solutions to cope with. In this chapter, a control

solution for DFIG (i.e. acting on the RSC) is proposed to tame effectively the con-

sequences of symmetrical three-phase voltage dips (as the most severe type of the

power system’s short-circuits) and achieve full LVRT capability, potentially avoid-

ing the crowbar use. As mentioned, DFIG’s general control objectives are usually

presented as known reference torque and reactive power at the stator side which

should be translated into the corresponding reference stator/rotor currents. In this

chapter, stator/rotor currents are assumed as output variables in order to derive
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Figure 3.1: Typical connection scheme of power generation system with DFIG.
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the corresponding Brunovsky forms of the system dynamics. Then, to avoid un-

pleasant oscillatory behavior of the internal dynamics, the zero dynamics are deeply

analyzed and suitable trajectories are designed. After that, in purpose of having a

clear analysis for the effects of the line perturbation on the system, a standard feed-

back linearizing control is adopted assuming the rotor currents as output variables

(since the rotor output form gives an asymptotically stable zero dynamics, versus

a marginally stable one for the stator output form). It will be shown in the first

set of simulations that system equipped with such kind of controller is not able to

damp oscillations neither to solve the control voltage saturation problem. Hence, a

mixed feedforward-feedback control solution is proposed. The feedforward part is

designed exploiting the above-mentioned oscillation-free rotor-based reference state

trajectories. The feedback part is a state feedback taking advantage of the results

in [41]. It exploits saturated control techniques to deal with voltage limits and to

reduce the rotor current oscillations under symmetrical three-phase voltage dip, as

the most significant constraints to deal with, since they could lead to RSC over-

current. Simulations are provided in order to substantiate the theoretical results,

considering a 0.5MW DFIM.

Some preliminary results have been reported in [49]. In that paper, just a partial

analysis of the voltage dip effects has been carried out and no modern saturated

control techniques have been exploited for dealing with RSC voltage limits. A com-

prehensive version of this chapter is published in [50]. The reminder of this chapter is

organized as follows. In Section 3.2, the general objectives and some physical limits

are explained. In Section 3.3, the Brunovsky (Normal) forms of the system dynamics

are generated assuming two different sets of outputs, namely stator and rotor cur-

rents. Then, on the way of trajectory planning, corresponding zero dynamics ODE

are solved analytically in two ways: exploiting Sylvester equation and integrating

by parts. In Section 3.4, the effect of the line voltage disturbances are analyzed by

considering the zero dynamics with respect to the rotor currents and by studying the

system behavior, when a standard feedback linearizing controller is imposed, using

the rotor currents as outputs. In Section 3.5, first, the previously-designed reference

trajectory is employed in an open-loop controller. Then, a feedforward-feedback

control strategy is proposed relying on modern saturated control techniques to deal

with control voltage limits; in addition, an LMI-constrained convex optimization

problem is defined to minimize the oscillations under voltage dips. Simulations are

provided in all of the previous Sections in order to show the results provided by

the different solutions highlighting the problems of standard approach of Section 3.4

and the superior performance of the feedforward-feedback solution of Section 3.5.

Some final remarks on the presented solution and future developments are drawn in

Section 3.6.
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3.2 Objectives and Constraints

The stator-side torque and reactive power are a pair of reference values which are

commonly used for stating the the control objectives of DFIG. The torque relation

is repeated here to remind in the last equations of (1.21), (1.23) in the Chapter.1:

Tm = η1(φ2ui1v − φ2vi1u) = η2(φ1vi2u − φ1ui2v). (3.1)

and reactive power Q is given by:

Q = −3

2
Ui1v = −3

2
U

[
φ1v − Lmi2v

L1

]

. (3.2)

From the control viewpoints, these reference values should be translated to the corre-

sponding reference stator/rotor currents or into the reference pairs: stator currents

and rotor fluxes or stator fluxes and rotor currents, according to the representa-

tions given in the first chapter. Since we have two reference trajectories and four

state variables, infinite solutions are available for such translation. But, on the other

hand, there are some physical limits should be taken into account in determining the

state variables trajectories. The following items are the most important constraints:

1. Rotor current limits, because of the maximum rating of the RSC power elec-

tronic switches.

2. Flux saturation limits, addressing the magnetic core saturations.

3. Bounded control inputs, i.e. rotor voltages, again due to the RSC power

electronics limitations.

Moreover, as the system has only two control inputs, clearly the evolution of the

four state variables cannot be set arbitrarily. In other words, some dependencies will

take place according to the system relative degree with respect to control inputs,

and the form of the corresponding internal dynamics.

Finally, as mentioned before, to ensure the graceful performance, DFIG must com-

ply with the LVRT modern grid regulations. So, the reference trajectories should

be designed in adaption with the grid voltage perturbations. It will be detailed

later that the above-mentioned constraints are completely related to the voltage

disturbance, hence it is the most importance issue. To clarify more, a good perfor-

mance under the faulty voltage conditions means to make DFIG remain connected

to the grid, preventing boundaries’ violations by the machine signals, according to

the modern grid codes. Operationally speaking, since we have two reference signals

as electromagnetic torque and reactive power at the stator side, versus four state

variables, two out of the four states are considered known, and the other two will be
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designed. Therefore, instead of the mentioned stator-side references torque (T ∗
m) and

reactive power (Q∗), a pair of known references for stator or rotor currents (depend-

ing on the considered state-space model) will be assumed. Then, the corresponding

rotor or stator fluxes trajectories will be designed, taking into account all the above-

mentioned issues and constraints. In the next chapters, we will discuss in details an

exact translation of the mentioned original reference signals to the DFIG’s reference

rotor currents, considering assuming reference signals belonging to some classes of

functions (e.g. piecewise linear, quadratic and so forth). Hence, from now on, the

desired T ∗
m and Q∗ will be substituted with their equivalent known stator or rotor

current references. Moreover, the stator or rotor current references will be assumed

arbitrarily smooth and with known derivatives of any order, according to control

requests. All in all, according to standard DFIG setups and regarding the available

measurements and parameters, the machine parameters are assumed known, ωr and

the corresponding rotor angle are assumed measurable, the stator and rotor currents

and the line voltages are assumed available from sensor readings, as well. Moreover,

whatever state representation can be retrieved by means of the machine parameters,

and stator and rotor current measurements. Therefore, full state measurement can

be assumed available for feedback.

3.3 Brunovsky Forms and Trajectory Planning

According to what mentioned in the Section above, known references are assumed

for two out of the four state variables of the DFIG model. Here, the stator or

rotor currents trajectories are assumed as such known signals. Thus, for the models

(1.21), (1.23), with respectively stator or rotor currents outputs, the corresponding

Brunovsky forms [40] will be analyzed. This Section is devoted to this purpose

which is crucial for planing suitable trajectories for the remainder state components

(rotor and stator fluxes in the considered representations), but also to highlight the

properties of the corresponding zero dynamics, which will be profitably exploited

later on, for designing the proposed control strategy.

3.3.1 Normal Brunowsky form with respect to Output Sta-

tor Currents

If stator currents i1u, i1v are considered as the outputs to be controlled for system

(1.21), then the respective Brunowsky form can be obtained applying the following

change of coordinates:

z1u = i1u + β1φ2u , z1v = i1v + β1φ2v (3.3)
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indeed, it can be verified that the dynamics in (1.21), expressed in the new variables

(i1u, i1v, z2u, z2v), read as:

i̇1u = −γ1i1u + (ω0 − ωr)i1v + α2z1u + ωrz1v +
U

σ1
− β1u2u

i̇1v = −γ1i1v − (ω0 − ωr)i1u + α2z1v − ωrz1u − β1u2v

ż1u = −R1

σ1
i1u + ω0z1v +

U

σ1

ż1v = −R1

σ1

i1v − ω0z1u.

(3.4)

Now, defining the current errors ĩ1u = i1u−i∗1u, ĩ1v = i1v−i∗1v, with respect to known

references i∗1u, i
∗
1v, it is easy to see that, under perfect tracking (null ĩ1u, ĩ1v), the

corresponding zero dynamics are:

ż1u = −R1

σ1
i∗1u + ω0z1v +

U

σ1

ż1v = −R1

σ1

i∗1v − ω0z1u.

(3.5)

The above-mentioned ODE presents an LTI, second-order, neutrally stable dynam-

ics exhibiting oscillatory behavior with natural pulsation ω0. Hence, given stator

current trajectories, there exists an infinite set of non converging internal dynam-

ics trajectories ensuring perfect output tracking. It is worth noting that the line

voltage U enters the dynamics (3.5) as an exogenous input. Therefore, any pertur-

bation such as voltage sags or swells to the grid point the stator is connected to,

would excite the system (3.5) un-damped modes causing permanent oscillations in

the internal variables, and the control inputs, as well. But the positive news is that,

among infinite the solutions of (3.5), it is possible to find at least one “oscillations

free” trajectory, even under line voltage variations. This elaboration will be deeply

carried out, in the following, adopting two different methods to analytically solve

(3.5).

3.3.2 Normal Brunowsky form with respect to Output Ro-

tor Currents

It is easily clear that the system (1.23) is already in the shape of the Brunowsky

canonical form with respect to outputs i2u, i2v, when stator fluxes are the internal

variables. In order to keep consistent notation to the previous paragraph, we define:

z2u = φ1u , z2v = φ1v (3.6)

then, by defining the current errors ĩ2u = i2u − i∗2u, ĩ2v = i2v − i∗2v, with respect to

references i∗2u, i
∗
2v, and assuming perfect tracking (null ĩ2u, ĩ2v), the corresponding
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zero dynamics are:

ż2u = −α1z2u + ω0z2v + α1Lmi
∗
2u + U

ż2v = −ω0z2u − α1z2v + α1Lmi
∗
2v

(3.7)

denoting a second order LTI system which is asymptotically stable, due to the

damping terms −α1. Thus, in the i2 − φ1 framework, the system is minimum phase

with respect to output i2u, i2v. Consequently, for given rotor current references, z2u,

z2v asymptotically converge to the corresponding unique solution of (3.7). Despite

its asymptotic stability, also system (3.7) exhibits oscillatory modes at frequency

ω0 which can be triggered by line voltage faults, since U directly affects dynamics

(3.7) as well as (3.5). In view of these considerations, also in this case, a thoughtful

analysis of the solutions of (3.7) would be beneficial to directly select the steady-state

solution, as a desired trajectory for the internal dynamics. In this way, oscillations

caused by the transient response of (3.7) would be avoided. Again, this statements

and procedures will be clarified in the following paragraphs devoted to the analytical

solution of (3.5)-(3.7).

3.3.3 Explicit solutions of the zero dynamics

The zero dynamics (3.5) is marginally stable, while that in (3.7) is asymptotically

stable. Despite this important difference, they are both highly oscillatory. As a

matter of fact, DFIGs are designed in order to have very low resistances, then α1 is

usually much smaller than ω0 in (3.7), leading to poorly damped oscillations, similar

to the permanent ones of (3.5). Reasonably, both the oscillations in (3.5) and the

ones in (3.7), can lead to problems in complying with constraints mentioned in Sec-

tion 3.2, while stator or rotor currents perfect tracking is pursued. Therefore, it looks

profitable to search for oscillation-free trajectories for both of the above-mentioned

zero dynamics, depending on the inputs (i∗1u,i
∗
1v,U

∗) and (i∗2u,i
∗
2v,U), respectively.

In this respect, two approaches are presented taking advantage of LTI behavior of

both of the zero dynamics. In the first one, Sylvester equation is exploited assuming

inputs which are generated by finite integrator chains. In the second one, by parts

integration is exploited to extend the previous result to any arbitrary C∞ input, and

to highlight the oscillatory component of the response that needs to be removed,

along with the contribution of each input derivative.

Solution based on Sylvester Equation

Equations (3.5) (3.7) show a similar structure which can be compactly represented

as:

żi(t) = Aizi(t) +Biui(t), i = 1, 2 (3.8)
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where index i = 1 refers to i1−φ2 representation, then z1 = [z1u z1v]
T , and by (3.5),

we have

A1 =

[

0 ω0

−ω0 0

]

, B1 =

[

−R1

σ1
0 1

σ1

0 −R1

σ1
0

]

, u1(t) =






i1u(t)

i1v(t)

U(t)




 (3.9)

while index i = 2 is referred to the i2 − φ1 representation, with z2 = [z2u z2v]
T and

A2 =

[

−α1 ω0

−ω0 −α1

]

, B2 =

[

α1Lm 0 1

0 α1Lm 0

]

, u2(t) =






i2u(t)

i2v(t)

U(t)




 . (3.10)

Now, assuming inputs vectors ui such that u
(j)
i = 0, for j > n, where x(j) denotes

the jth time derivative of x, we can think these class of signals to be generated by

the ensuing exosystems :

ui(t) = Γ wi(t), ẇi(t) = Swi(t), i = 1, 2 (3.11)

where

w1(t) = [i1u(t) i̇1u(t) . . . i
(n)
1u (t) i1v(t) i̇1v(t) . . . i

(n)
1v (t) U(t) U̇(t) . . . U (n)(t)]T

w2(t) = [i2u(t) i̇2u(t) . . . i
(n)
2u (t) i2v(t) i̇2v(t) . . . i

(n)
2v (t) U(t) U̇(t) . . . U (n)(t)]T

(3.12)

and

Γ = blkdiag(Γj),with j = 1, 2, 3 and Γj ∈ R
1×(n+1) =

[

1 0 . . . 0
]

∀j

S = blkdiag(Sj),with j = 1, 2, 3 and Sj ∈ R
(n+1)×(n+1) =











0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 . . . . . . 1 0

0 . . . . . . . . . 0











∀j.

(3.13)

As a result of the previous definitions and assumptions, the steady-state forced

response of systems (3.5), (3.7), under the class of inputs generated by dynamics

in (3.11), can be expressed as zi(t) = Πiwi(t), where matrices Πi are given by the

solution of the ensuing Sylvester equations:

Πi S = AiΠ+Bi Γ, i = 1, 2. (3.14)

Since matrices Ai and S have separated spectra1 for both the considered cases, there

exists a unique solution for Πi, which can be analytically derived applying recently

proposed methods in the related literature [51].

1also referred as non-resonance condition
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By Parts Integrating Solution

The solution of the previous Subsection is restricted to input generated by finite

integrator chains with known order n. Now, a generic C∞ input is considered.

Thanks to LTI property of internal dynamics (3.5) and (3.7), the states ziu(t), ziv(t)

(again i = 1 is used for i1−φ2, and i = 2 for i2−φ1 representations) can be explicitly

expressed as:
[

ziu(t)

ziv(t)

]

=

[

ziu(0)

ziv(0)

]

eAit +

∫ t

0
eAi(t−τ)fi(τ)dτ (3.15)

with

f1(t) =
1

σ1

[

−R1i1u(t) + U(t)

−R1i1v(t)

]

, A1 =

[

0 ω0

−ω0 0

]

(3.16)

f2(t) =

[

α1Lmi2u(t) + U(t)

α1Lmi2v(t)

]

, A2 =

[

−α1 ω0

−ω0 −α1

]

. (3.17)

Integrating (3.15) by parts, we obtain:
[

ziu(t)

ziv(t)

]

=

([

ziu(0)

ziv(0)

]

+ A−1
i fi(0)

)

eAit −A−1
i fi(t) + A−1

i

∫ t

0

eAi(t−τ)f
(1)
i (τ)dτ

(3.18)

and, integrating by parts again,
[

ziu(t)

ziv(t)

]

=

([

ziu(0)

ziv(0)

]

+ A−1
i fi(0) + A−2

i f
(1)
i (0)

)

eAit +
(

−A−1
i fi(t)−A−2

i f
(1)
i (t)

)

+

+ A−3
i

∫ t

0

eAi(t−τ)f
(2)
i (τ)dτ

(3.19)

keeping to apply the procedure iteratively yields:
[

ziu(t)

ziv(t)

]

=

([

ziu(0)

ziv(0)

]

+

∞∑

k=0

A
−(k+1)
i f

(k)
i (0)

)

eAit −
( ∞∑

k=0

A
−(k+1)
i f

(k)
i (t)

)

. (3.20)

Looking at (3.20), it can be noted how the oscillatory part, given by the zero dy-

namics free response combined with the transient part of the forced response, can

be canceled out by means of the following selection of the initial conditions z∗iu(0),

z∗iv(0): [

z∗iu(0)

z∗iv(0)

]

= −
∞∑

k=0

A
−(k+1)
i f

(k)
i (0). (3.21)

Equivalently, we can state that an internal dynamics trajectory (z∗iu,z
∗
iv) avoiding

oscillations, is given by the remainder, not oscillatory terms of (3.20) obtained re-

placing ziu(0), ziv(0) with z∗iu(0), z
∗
iv(0) as in (3.21), namely:

[

z∗iu(t)

z∗iu(t)

]

=

∞∑

k=0

A
−(k+1)
i f

(k)
i (t) (3.22)
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If f
(k)
i (t) is assumed to be identically null for each k > n, the relation (3.22) recov-

ers exactly the result derived in Subsection 3.3.3 by means of Sylvester equations.

Therefore, (3.22) can be effectively adopted to represent analytically the oscillation-

free trajectories, zi(t) = Πiwi(t), for any input having an arbitrarily large number

of non null derivatives2.

In view of these considerations, in order to operatively exploit (3.22), it looks reason-

able to approximate the current references and the line voltage U with signals which

are assumed bounded, Cn−1 and with piece-wise constant n-th derivatives (i.e. the

higher order derivatives are assumed null along time, except for the isolated points

where jumps in n-th derivatives of the inputs are taking place). For the sake of sim-

plicity, without loss of generality, in the reminder of this chapter, bounded, C0 and

piece-wise linear signals will be adopted to represent current references and line volt-

age3. Therefore, the following oscillation-free trajectories can be derived, exploiting

(3.22), for the zero dynamics of the i1−φ2, and i2−φ1 model representations, where

stator and rotor currents are assumed as outputs, respectively:

z∗1u(t) = − R1

σ1ω0
i∗1v −

R1

σ1ω2
0

i̇∗1u +
U̇

σ1ω2
0

z∗1v(t) = − U

σ1ω0
+

R1

σ1ω0
i∗1u −

R1

σ1ω2
0

i̇∗1v

(3.23)

z∗2u(t) =
α2
1Lm

M
i∗2u +

α1ω0Lm

M
i∗2v +

α1

M
U − Nα1Lm

M2
i̇∗2u −

2α2
1ω0Lm

M2
i̇∗2v −

N

M2
U̇

z∗2v(t) = −α1ω0Lm

M
i∗2u +

α2
1Lm

M
i∗2v −

ω0

M
U +

2α2
1ω0Lm

M2
i̇∗2u −

Nα1Lm

M2
i̇∗2v +

2α1ω0

M2
U̇

(3.24)

where M = α2
1 + ω2

0 and N = α2
1 − ω2

0. It is worth noting that, in order to compute

the above trajectories U̇ is needed. In practice, it can be estimated by suitable

line voltage observers [52], since it is not the main focus of the work, this issue is

not elaborated here. In summary, in this Section, we illustrated how to build the

trajectories for the full state (starting from given references for just two out of four

states) preventing the oscillations characterizing the DFIM dynamics, even under

line voltage fluctuations (since U and its derivatives are explicitly accounted). This

result is expected to be profitable to deal with objectives and constraints reported in

2the case of C∞ inputs with infinite non-null derivatives could be operatively managed only un-

der some conditions guaranteeing convergence and explicit computability of the infinite summation

in (3.22). In addition, the result above provides useful insights on how the derivatives of different

orders of the inputs (i.e. stator or rotor currents and line voltage) are affecting the zero-dynamics

oscillation-free trajectories. In fact, by (3.16), (3.17), (3.22), it can be noted how the kth order

current and line voltage derivatives are weighted with a factor (1/ω0)
k+1, which rapidly vanishes

for increasing order k (since the line angular frequency is ω0 = 2π50rad/s or ω0 = 2π60rad/s)
3clearly, the considered smoothness properties for the current references are also consistent with

the relative degree of the system, in order to enable the possibility to achieve perfect tracking
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Section 3.2. In particular, to manage correctly the rotor control voltage saturation

and to avoid rotor overcurrents and violations of magnetic flux saturation limits.

In this respect, it it crucial noting that, whenever an arbitrary jump occurs in the

piece-wise constant derivatives of current references or line voltage, the oscillation-

free trajectories defined in (3.23) and (3.24), will have a jump, as well, but directly

in the state variables (z1u, z1v) or (z2u, z2v). Clearly, this observation applies in the

same way to the general case of any input fi(t) in (3.22) having null derivatives

for any order larger than a given one. Therefore, structurally, no even C0 blending

can be imposed between the oscillation-free zero dynamics trajectories correspond-

ing to two subsequent stretches of current references and line voltage signals, even

if they are characterized by an arbitrarily smooth blending (i.e. a Cn−1 blending

with a given jump in the n-th derivative and arbitrarily large n). Hence, whenever

an arbitrary derivative change occurs in the current references or in the line volt-

age, oscillations in the zero dynamics and/or errors in the reference tracking can

unavoidably arise, whatever the adopted controller is, and regardless of how large

the order of the changed derivatives is, because no smoothness in the oscillation-free

zero dynamics trajectories can be guaranteed4. However, even if, structurally, any

controller cannot guarantee perfect tracking along with no oscillations in the zero

dynamics, amplitudes of arising tracking errors and/or zero dynamics oscillations

will be shaped by the features of the adopted controller. Therefore, even if the pro-

posed oscillation-free trajectories can be reasonably expected to help in dealing with

the control objective and constraints, the role of the adopted feedback controller will

be crucial, as well. In the previous Section, it has been shown that the internal zero

dynamics for the rotor currents (selected as output variables) are asymptotically

stable, while for the stator currents, just non-converging, marginally stable zero dy-

namics have been obtained. Therefore, it seems profitable to arrange a feedback

linearizing control considering rotor currents as controlled outputs. This would al-

low to naturally deal with rotor current constraints mentioned in item (1) of the list

in Section 3.2. While, as concerns the internal variables (stator fluxes), thanks to

the minimum phase property, it is not necessary to take care about them explicitly,

as the steady state bounded (for bounded references) and not oscillating trajecto-

ries computed in (3.24) of Section 3.3 will be asymptotically reached. Therefore,

according to the considerations in the end of Section 3.3, it can be underlined that

the feedback linearizing control will react to steps in the first derivative of the rotor

4these considerations are carried out assuming arbitrary and fixed changes in one of the deriva-

tives of current references and line voltage; clearly, if some of such derivatives’ jumps can be

adjusted, resetting or, at least, reduction of the jumps in the oscillation-free zero dynamics can

be possible (in particular, for reduction purposes, shifting the changing to higher order derivatives

can be profitable owing to the lower effect of such terms in (3.22), as previously discussed).
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current references or in the line voltage using the rotor control voltage to preserve

null tracking error, while poorly damped oscillations in the zero dynamics will take

place.

Actually, all of these considerations hold true only in terms of unconstrained stabi-

lization. Indeed, here we show how the aforementioned good theoretical properties

are completely lost when line voltage perturbations, along with states and control

inputs limitation stemming from the machine physical bounds, are considered. First,

a standard feedback linearizing control solution is formulated disregarding the con-

straints, then it is tested via numerical simulations of a benchmark DFIM under

realistic grid faults.

3.4 Feedback linearizing control definition

The DFIM control problem described in Section 3.2 can be briefly formulated as

follows: ensure asymptotic rotor current references tracking, and boundedness of all

the internal signals, also in face of line voltage perturbations.

Looking at the system dynamics (1.23), and recalling (3.6), the following state feed-

back, input-output linearizing control law can be used to guarantee asymptotic

tracking of (bounded) arbitrary C0 and piece-wise linear current references i∗2u, i
∗
2v

with known first order time derivatives i̇∗2u, i̇
∗
2v:

u2u =σ2

(

γ2i
∗
2u + i̇∗2u − (ω0 − ωr)i

∗
2v − β2α1z2u + β2ωrz2v + β2U + v2u

)

u2v =σ2

(

(ω0 − ωr)i
∗
2u + γ2i

∗
2v + i̇∗2v − β2ωrz2u − β2α1z2v + v2v

)

.

(3.25)

According to what stated at the end of Section 3.2, the machine parameters, line

voltage amplitude and angular frequency, stator fluxes and rotor currents, speed

and position, have been used to implement the law above. Variables v2u, v2v denote

auxiliary output feedback terms to be possibly used for tuning the convergence rate

and endow the controller with robustness against parametric uncertainties and mea-

surements errors. Note that, despite stator fluxes are typically not directly available

from measurements, while stator currents are usually acquired, still z2u, z2v can be

retrieved by expressing φ1u, φ1v as a function of the stator and rotor currents [53]

obtaining the relations: z2u = L1i1u + Lmi2u, z2v = L1i1v + Lmi2v.

By the analysis carried out in Section 3.3, we know the corresponding zero dynamics

are given by the asymptotically stable LTI system (3.7). Thus, from a theoretical

viewpoint, the feedback linearizing strategy (3.25) solves the output tracking prob-

lem, as, for limited current references, the solutions of (3.7), and in turn the stator

fluxes and the control inputs u2u, u2v are always bounded. However, as mentioned in
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Figure 3.2: Schematic diagram of the feedback linearizing controller.

Subsection 3.3.2, under line voltage faults, the oscillatory modes of the zero dynam-

ics (3.7) would be triggered. As a result, oscillations would also arise in the control

inputs (rotor voltages). Theoretically, this is not an issue, as these oscillations will

asymptotically vanish in view of the system minimum phase property. However, un-

der severe grid faults, the machine physical limits are likely to be reached/violated

and, if not properly handled, make the DFIM disconnected for protection (e.g. over-

current at rotor side). Thus, the system would fail to properly ride thorough line

voltage off-nominal conditions, impairing its reliability and availability.

In next Subsection, the aforementioned considerations will be substantiated by

means of significant simulations.

3.4.1 Simulations results with state feedback linearizing con-

trol strategy

The control law (3.25) (whose block scheme is reported in Fig. 3.2) has been applied

to a 0.5MW 50 Hz DFIG characterized by the parameters reported in Tab. A.1.

Machine operation as a generator has been simulated, under constant rotational

speed equal to 150rad/s, that corresponds to ωr = 300rad/s, since the considered

DFIG has 2 pole pairs. A three-phase symmetric fault, causing voltage drop in

the grid, has been reproduced to underscore its sensitivity to such kind of events.

As shown in Fig. 2.1 in the previous chapter, a typical power systems voltage dip

consists of three different stages: voltage falling, voltage stabilizing, and voltage

recovering [33]. In the following simulations tests, such shape is approximated by a
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Figure 3.3: Transient results for the studied system equipped with standard feed-

back linearizing controller at 85% line voltage dip. (a) Stator voltage.

(b) First derivative of the stator voltage. (c) Reference torque. (d)

Stator-side reference reactive power.
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Figure 3.4: Transient results for the studied system equipped with standard feed-

back linearizing controller at 85% line voltage dip. (a) Rotor u-

component control voltage. (b) Rotor v-component control voltage.

29



Chapter 3. DFIG CONTROL UNDER BALANCED DIPS

1.5 2 2.5 3
-1.6

-1.2

-0.8

-0.4

0

(a) time [s]

i∗ 2
u
[k
A
]

1.5 2 2.5 3
-0.8

-0.4

0

0.4

0.8

(b) time [s]

i∗ 2
v
[k
A
]

1.5 2 2.5 3
-1.6

-1.2

-0.8

-0.4

0

(c) time [s]

i 2
u
[k
A
]

1.5 2 2.5 3
-0.8

-0.4

0

0.4

0.8

(d) time [s]
i 2

v
[k
A
]

Figure 3.5: Transient results for the studied system equipped with standard feed-

back linearizing controller at 85% line voltage dip. (a) Rotor u-

component reference current. (b) Rotor v-component reference current.

(c) Rotor u-component current. (d) Rotor v-component current.
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Figure 3.6: Transient results for the studied system equipped with standard feed-

back linearizing controller at 85% line voltage dip. (a) Zero dynamics
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tor magnetic flux) v-component reference. (c) Zero dynamics (stator
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Figure 3.7: Transient results for the studied system equipped with saturated stan-

dard feedback linearizing controller under 85% line voltage dip. (a) Ro-

tor u-component control voltage. (b) Rotor v-component control volt-

age. (c) Rotor u-component current. (d) Rotor v-component current.

(e) Zero dynamics (stator magnetic flux) u-component. (f) Zero dynam-
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trapezoid emulating a 85% voltage amplitude reduction with respect to the nominal

value, lasting 180ms, with 10ms for both falling and recovering stages. To a certain

extent, this approximation represent real voltage sag profiles closely enough to asses

the system behavior and the controller performance in low line voltage conditions.

Under nominal conditions, reference values corresponding to constant torque T ∗
m =

1kNm and null reactive power Q∗ = 0, and the respective rotor current references

i∗2u, i
∗
2v have been set. When the voltage sag occurs, the references are changed as

follows: T ∗
m is reduced according to the dip shape, while Q∗ is increased in order

to inject capacitive reactive power into the mains, as required for generators under

low line voltage conditions in order to sustain the grid voltage [18], [16] (see Figs.3.7

(c)-(d), (h)-(g)). Obviously, i∗2u, i
∗
2v are moved accordingly. For what concerns the

terms v2u, v2v, the following PI regulators have been implemented:

v2u = kĩid + λĩq − y2u, ẏ2u = −kii ĩ2u + λ
R1

σ1
ĩ2v

v2v = kĩiq − λĩd − y2v, ẏ2v = −kiĩi2v − λ
R1

σ1
ĩ2u

(3.26)

with λ = kiiω
−1
0 and ki, kii arbitrary positive gains. The values selected for the

simulations are ki = 300, kii = 5458, and λ = 17.37.

Simulation results for an ideal unconstrained DFIM are reported in Figs. 3.3-3.6.

Rotor currents tracking is always ensured, also under the voltage sag occurring at

t = 2sec. (see Figs. 3.5), and the internal variables naturally tend to converge to

the steady-state solutions z∗2u, z
∗
2v derived in (3.24) (see Figs. 3.6). However, large

oscillations arise in the rotor voltages (Figs. 3.4), which make the control effort to

exceed, by far, the rated value reported in Tab. A.1 (265VRMS line voltage, which

corresponds5 to 216.3Vpeak phase voltage)

When such constraints are enforced by means of saturation nonlinearity for both

rotor voltages u2u, u2v, the performance of the feedback linearization approach are

significantly impaired, as shown in Fig. 3.7. As expected, during the dip, the control

input saturation bounds are hit (see Fig. 3.7 (a)-(b)). In turn, the current tracking

is lost during the grid perturbation, and a high current spikes (as portrayed in Figs.

3.7 (c)-(d)) arises, exceeding the rated value reported in Tab. A.1 (780ARMS which

corresponds to 1103Apeak). Then, even if current errors are steered back to zero,

when nominal conditions are restored, on a real system, the DFIM would have been

switched off, disconnected, or some protection mechanism (e.g. a crowbar) would

have been triggered to protect it from overcurrent during the dip. Even if under less

harsh faults the rotor currents could be kept within the ratings, still large oscillations

would affect the torque as well, possibly exciting the mechanical resonance of what

connected to the rotor. Similar reasoning applies for the stator fluxes (Figs. 3.7

5note that all the values are reported to stator-side both in Tab.A.1 and in simulations
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(e)-(f)), which, despite tending to recover constant steady-state values, thank to the

minimum phase property, have considerable oscillations during the dip.

In the above tests, a symmetric voltage dip has been simulated by a piece-wise linear

profile, hence the oscillations in the internal dynamics look mainly related to the

steps in the first order derivative of such variable. Actual voltage dips can have no

sudden jump in the first derivative, but, according to application oriented literature

they have very sharp and abrupt changes, as well, and even more involved shape as

shown in Fig.2.1, therefore the presented results are representative of what can be

expected in a real plant. Due to the issues illustrated above, DFIM control cannot

be cast as a standard output tracking problem, solved by feedback linearization.

Control input saturation has to be considered explicitly and countermeasures need

to be taken to dampen rotor currents oscillations along with the internal variables,

under line voltage perturbations in order to preserve a graceful behavior of the

DFIM.

In this respect, the next Section is devoted to present a novel control strategy

based on suitable zero dynamics trajectory planning, derived from the oscillation-

free trajectories defined in Section 3.3, and saturated state feedback design.

3.5 Proposed feedforward-feedback control solu-

tion

In the previous Section, based on the simulation results, we have shown how the

feedback linearizing control approach, while reasonable from a general control view-

point, cannot be used when practical line faulty voltage scenarios, and DFIM phys-

ical limitations are considered. Indeed, the control effort is put solely on keeping

rotor current perfect tracking neglecting rotor fluxes and voltages oscillations. The

latter has been shown to possibly exeed the RSC voltage rating. Moreover, if the

RSC voltage saturation is enforced abruptly in the feedback linearizing controller,

overcurrents are generated6. Thus, according to the mentioned physical constraints

for the state variables of the system in Section 3.2, the control effort should be

shared and balanced somehow to take care of the both state-variable groups of

stator and rotor. Therefore, in this Section, by proposing a feedforward-feedback

control strategy relying on the analysis of the zero dynamics solutions carried out in

Subsection3.3.3, we want to regulate all the state variables not only to ensure output

tracking under nominal working conditions, but also to satisfy all the corresponding

constraints (avoiding excessive oscillation in the system internal states dynamics as

6in simulations of Fig.3.7, no antiwindup mechanism was adopted for the PI used in (3.26), but

this is not the cause of excessive rotor current spikes
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well as output state variables), under line voltage perturbations. A pure open-loop

solution, based on the zero dynamics analysis carried out in Section 3.3 is shown

first, then it is combined with a state feedback part specifically devoted to limit

oscillations under voltage dips, and to explicitly handle control input saturation

nonlinearity.

3.5.1 Feedforward control based on zero dynamics trajecto-

ries planning

Here, the main idea is to improve the system response under line voltage dips, by

exploiting, for control purposes, the oscillation-free internal dynamics trajectories,

computed in Subsection 3.3.3, as reference trajectories, planned according to the

rotor current references. To this aim, the following open-loop control law is proposed:

u2u = σ2

(
γ2i

∗
2u − (ω0 − ωr)i

∗
2v − α1β2z

∗
2u + β2ωrz

∗
2v + β2U + i̇∗2u

)

u2v = σ2

(
γ2i

∗
2v + (ω0 − ωr)i

∗
2u − α1β2z

∗
2v − β2ωrz

∗
2u + i̇∗2v

) (3.27)

with z∗2u, z
∗
2v defined according to (3.24). Taking advantage of the DFIM inherent

properties, as highlighted in [41], global asymptotic tracking can be shown to be

ensured by the controller (3.27). A sketch of the proof for this result is elaborated

in the following.

Proof Replacing (3.27) into (1.23), recalling (3.6), and defining z̃2u = z2u − z∗2u,

z̃2v = z2v − z∗2v, the following error dynamics are obtained:

˙̃z2u = −α1z̃2u + ω0z̃2v + α1Lmĩ2u

˙̃z2v = −α1z̃2v − ω0z̃2u + α1Lmĩ2v

˙̃i2u = −γ2ĩ2u + α1β2z̃2u − β2ωrz̃2v

˙̃i2v = −γ2ĩ2v + α1β2z̃2v + β2ωrz̃2u.

(3.28)

Now, by defining the following Lyapunov candidate

V =
1

2

[

z̃22u + z̃22v + 2η(z̃2uĩ2u + z̃2v ĩ2v) +
η

β2

(̃i22u + ĩ22v)

]

the corresponding time derivative along the system (3.28) is:

V̇ = −α1(1− ηβ2)(z̃
2
2u + z̃22v) + (α1Lm − ηγ1)(z̃2uĩ2u + z̃2v ĩ2v)−

η

β2

R2

σ2
(̃i22uĩ

2
2v).

Then, it can be verified that there exists η < 1
β2

which makes V positive definite and

V̇ < 0. Therefore, the origin is a globally asymptotically stable equilibrium point

for the system (3.28).
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Clearly, the above result is instrumental to deal effectively with bounded, C0, piece-

wise linear rotor current references and line voltage, since for any stretch of the

references and the line voltage with constant derivatives, the system is going to

converge toward the desired output trajectory, combined with the corresponding

oscillation free internal dynamics trajectory.

3.5.2 Simulation results with open-loop control based on

zero dynamics trajectories planning

The open-loop approach based on zero dynamics trajectory planning has been tested

under the same simulation scenarios introduced in Section 3.4. The results are shown

in Figs.3.8 and 3.9 . As expected, according to the discussion reported at the end of

Section 3.3, during the line fault, oscillations in all the state variables are triggered,

due to the lack of smoothness U , i∗2u i∗2v, all with discontinuous first time derivatives

which, by (3.7), are directly reflected into jumps in z∗2u, z
∗
2v trajectories (see Figs. 3.9

(a)-(b)). Looking at Figs. 3.8 (c),(d), it can be seen how considerable oscillations,

still overcoming the rated peak values (at least for the u component) in Tab. A.1,

arise in the rotor currents. On the other hand, looking at stator flux waveforms in

Figs. 3.9 (a)-(b), and comparing with those in Figs. 3.6 (a)-(b), it can be noticed

a strong reduction in the oscillations amplitude. Therefore, the open-loop solution,

based on suitable zero dynamics trajectories, accomplish the task of distributing the

oscillations among all the four state variables, rather then taking care only of the

outputs, while letting the internal signals completely free to move. Furthermore,

the resulting control input are, as expected, free from oscillations, and within the

saturation bounds (see Figs. 3.8 (a)-(b)). Then, it looks profitable to build on

such positive features, joining some additional terms to the to the feedforward in

(3.27), with the purpose of curtailing the states oscillations (in particular the rotor

currents), given the limited control effort. To this end, in the following a saturated

state feedback will be proposed, casting its design for oscillations minimization into

a convex optimization problem.

3.5.3 LMI-based saturated state feedback design

In order to improve the performance of the proposed controller under voltage sags,

the control law (3.27) is modified as:

u2u = σ2

(
γ2i

∗
2u − (ω0 − ωr)i

∗
2v − α1β2z

∗
2u + β2ωrz

∗
2v + β2U + i̇∗2u

)

︸ ︷︷ ︸

u2uff

+vu

u2v = σ2

(
γ2i

∗
2v + (ω0 − ωr)i

∗
2u − α1β2z

∗
2v − β2ωrz

∗
2u + i̇∗2v

)

︸ ︷︷ ︸

u2vff

+vv
(3.29)
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Figure 3.8: Transient results for the studied system equipped with open-loop current

controller, based on zero dynamics trajectory planning at 85% line volt-

age dip. (a) Rotor u-component control voltage. (b) Rotor v-component

control voltage. (c) Rotor u-component current. (d) Rotor v-component

current.

with vu, vv two state feedback terms to be defined in order to dampen oscillations and

comply with the system physical saturations. In this respect, a static linear feedback

law will be sought, and the corresponding constraints, given by the RSC limits, will

be accounted considering a decentralized vector saturation function, i.e. a vector of

scalar symmetric saturations. The reason for such choice of the feedback structure

is to keep a reasonable complexity (also in terms of computational burden) for the

overall controller. Furthermore, in case of linear laws, an optimal design procedure

(with respect to the required specifications), directly accounting for saturation, can

be carried out by formulating a convex optimization problem with LMI constraints.

These constraints can be efficiently (in polynomial time) solved with reliable, low

complexity numerical algorithms. Finally, beside some degree of conservatism added

by such assumption, it is possible to obtain relevant results satisfying the desired

objectives. All these features will be clarified in the ensuing discussion, as well as

in the next Subsection, where the design method, and simulation results concerning

the considered DFIM control problem are respectively reported.

Bearing in mind the previous reasoning, the form for the saturated feedback control

is:

v = σ(p) =

[

sat(pu)

sat(pv)

]

, p = Kx̃ (3.30)
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Figure 3.9: Transient results for the studied system equipped with open-loop cur-

rent controller, based on zero dynamics trajectory planning at 85% line

voltage dip. (a) Zero dynamics (stator magnetic flux) u-component ref-

erence. (b) Zero dynamics (stator magnetic flux) v-component reference.

(c) Zero dynamics (stator magnetic flux) u-component. (d) Zero dynam-

ics (stator magnetic flux) v-component.

where:

x̃ = [z̃2u z̃2v ĩ2u ĩ2v]
T , v = [vu vv]

T , and sat(pj) = (sgn(pj))(min {vjmax, |pj|)}), j =

u, v. The bounds for vu, vv clearly depend on the machine maximum rotor voltages

u2umax, u2vmax, stemming from RSC rated voltage and the control effort which is

devoted to the feedforward terms u2uff , u2vff underscored in (3.29). The latter is

in general varying with the operating conditions. However, assuming some previ-

ous knowledge about the system possible trajectories, a safe constant margin can

be preserved for terms u2uff , u2vff , and, as a consequence, define constant limits

vjmax = u2jmax − u2jffmax, j = u, v.

The error dynamics under the controller defined by (3.29) and (3.30), can be ex-

pressed as:

˙̃x = F (t)x̃+Gσ(Kx̃), with

F (t) =








−α1 ω0 α1Lm 0

−ω0 −α1 0 α1Lm

α1β2 −β2ωr(t) −γ2 ω0 − ωr(t)

β2ωr(t) α1β2 ωr(t)− ω0 −γ2







, G =








0 0

0 0

− 1
σ2

0

0 − 1
σ2







.
(3.31)

In the following, the main goal is to design the state-feedback matrix K in order to

bound, as much as possible, the oscillations induced during voltage dips owing to
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Figure 3.10: Schematic diagram of the proposed feedforward-feedback control solu-

tion.

the discontinuities in the zero dynamics reference trajectories z∗2u, z
∗
2v (as discussed

in Subsection 3.3.3).

This objective has to be achieved for all the rotor speed values belonging to the

machine nominal range, and explicitly handling constraints on the feedback control

effort (accounted via the saturation function σ(·) in (3.31)). In this respect, a robust

solution with respect to rotor speed variation will be sought considering the following

inclusion F (t) ∈ co {Fmin, Fmax}, where Fmin, Fmax denote the matrix F in (3.31)

evaluated at the speed nominal range extreme values ωrmin, ωrmax, respectively,

while co indicates the convex hull of the matrices between braces. Then, system

(3.31), can be represented by the following differential inclusion:

˙̃x ∈ co {Fmin, Fmax} x̃+Gσ(Kx̃). (3.32)

The next step is to manage the saturation nonlinearity. In this respect, several

approaches have been proposed in the literature. Here, we exploit the following

property (Lemma 7.3.2 in [54]), extending the classical multivariable circle criterion

and vertex analysis [55] representations

σ(Kx̃) ∈ co
{
DiKx̃+D−

i h(x), i ∈ [1, 4]
}
,

∀ h(x) = [hu hv]
T : |hj(x)| ≤ vjmax, j = u, v

(3.33)

where Di ∈ R
2×2 are diagonal matrices with 1 or 0 as diagonal elements, and D−

i =

I − Di, while h(x) is a generic auxiliary feedback function. Roughly speaking,
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h(x) can be seen as an additional degree of freedom to be exploited for describing

the saturation function less conservatively, and as a consequence, obtaining sharper

results for the original system. Restricting also this component to static linear laws,

i.e. h(x) = Hx, and using (3.33), we can represent system (3.32) with the ensuing

polytopic linear differential inclusion (PLDI)

˙̃x ∈ co
{
Fkx̃+G(DiKx̃+D−

i Hx̃), k = {min,max}, i ∈ [1, 4]
}
,

∀ x̃ such that |Hjx̃| ≤ vjmax, j = u, v.
(3.34)

Now, the problem of limiting the system oscillations during voltage dips by means

of saturated state feedback can be expressed as follows:

Assuming that, as soon as the derivative discontinuities related to the voltage dip

take place, the state error x̃ jumps inside a known, bounded set X0, design a state

feedback matrix K, which, under input saturation constraints (3.30), minimizes the

error variables peak value ‖x̃‖.
Clearly, minimizing ‖x̃‖ implies minimizing the oscillations of the system variables,

as references i∗2u,i
∗
2v z∗2u, z∗2v are designed such that no oscillating components at

ω0 arise. For what regards X0, an estimate can be obtained considering the worst

case voltage dip scenario, and the corresponding time derivatives value, which cause

a step variation in references z∗2u, z∗2v, along with conservative margins for rotor

currents tracking errors ĩ2u, ĩ2v.

A natural choice to evaluate (and shape, as far as state feedback design is concerned)

the transient performance of PLDI like (3.34) is by means of invariant ellipsoid,

related to level sets of quadratic Lyapunov functions [56] [57]. Here, we adopt such

approach to derive a convex optimization formulation, solving the aforementioned

problem. For the sake of brevity, the main result is reported, sketching only the

crucial points of the strategy, we refer to [56], [57] for technical details and proofs.

In brief, the key idea is to search for the feedback matrixK, the auxiliary oneH , and

the corresponding quadratic Lyapunov function V = x̃TP x̃, providing the smallest

contractively invariant unit ellipsoid E(P ) :=
{
x̃ : x̃TP ˜̃x ≤ 1

}
enclosing the set X0.

This would automatically give an outer bound for the norm of x̃, as well as the

optimal feedback law. To this aim, it can be verified that the following optimization
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Chapter 3. DFIG CONTROL UNDER BALANCED DIPS

problem [56],

min
P=PT>0,δ>0,K,H

δ, subject to

[

P I

I δI

]

≥ 0

F T
k P + PFk + PGDiK ++PGD−

i H +KTDiG
TP +HTD−

i G
TP < 0,

k = {min,max}, i ∈ [1, 4]
[

P HT
j

Hj v2jmax

]

≥ 0,where Hj , j = u, v, denotes the rows of H, X0 ⊆ E(P )

(3.35)

yields an upper bound of ‖x̃‖ as the square root of the optimal value δ∗. The optimal

K∗ defines the feedback gains required to attain such bound, while the optimal vari-

able P ∗ defines the smallest forward contractively invariant ellipsoid including X0.

Finally, evaluating the maximum/minimum values over the ellipsoid E(P ∗) allows

to compute bounds for specific components of x̃, e.g. the rotor currents errors.

The first constraint expresses (by Schur complement) the fact that, if E(P ) is in-

variant and contains X0, then ‖x̃‖2 ≤ maxξ̃∈E(P ) ξ̃
T ξ̃. The second set of constraints

enforces the forward contractively invariant property of E(P ) for the PLDI (3.34),

and, in turn, for the original error system. Finally, the third set of constraints en-

sures the inclusion of the invariant ellipsoid in the region where the PLDI description

(3.34) holds true (i.e. for x̃ : |Hjx̃| ≤ vjmax, j = u, v), and the inclusion of the set X0

in the invariant ellipsoid. Problem (3.35) is not convex due to bilinear constraints in

the variables K, P , and H . Moreover, the set inclusion X0 ⊆ E(P ) has to be trans-

formed into an LMI condition. If the set X0 is convex, this can be easily obtained.

Thus, in the following, it will be assumed an ellipsoidal set E(R) :=
{
x̃ : x̃TRx̃ ≤ 1

}
,

with the matrix R depending on the bounds on x̃ during voltage dips. In this case,

the set inclusion E(R) ⊆ E(P ) can be expressed as P − R ≤ 0. Then, defining

Q = P−1, Y = KQ, Z = HQ, by simple computations, problem (3.35) can be

equivalently cast into the following eigenvalue problem [58]

min
Q=QT>0,δ>0,Y,Z

δ, subject to

Q− δI ≥ 0

QF T
k + FkQ +GDiY +GD−

i Z + Y TDiG
T + ZTD−

i G
T < 0,

k = {min,max}, i ∈ [1, 4]
[

Q ZT
j

Zj v2jmax

]

≥ 0 j = u, v, Q− R−1 ≥ 0.

(3.36)

Beside providing less conservative results with respect to traditional absolute stabil-

ity tools, description (3.34) allows to draw only local results, as it holds only inside
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3.5. Proposed feedforward-feedback control solution

the linear region of the auxiliary law Hx̃ (i.e. for x̃ : |Hjx̃| ≤ vjmax). However, the

resulting domain of convergence can be evaluated by means of similar LMI-based

techniques. In fact, given the gain matrix K∗, stemming from the solution of prob-

lem (3.36), and assuming a quadratic Lyapunov candidate V1 = x̃TQ−1
1 x̃, a bound

on the system convergence domain, under the saturated law v = σ(Kx̃), can be

evaluated by solving the following problem

min
Q1=QT

1
>0,γ>0,Z1

γ, subject to

[

Q1 I

I γR1

]

≥0

Q1F
T
k + FkQ1 +GDiK

∗Q1 +GD−
i Z1 +Q1K

∗TDiG
T + ZT

1 D
−
i G

T < 0,

k = {min,max}, i ∈ [1, 4]
[

Q1 ZT
1j

Z1j v2jmax

]

≥ 0 j = u, v.

(3.37)

where the scalar objective function and the first constraints comes from the choice

of an ellipsoidal shape reference set XR1 = {x̃ : x̃TR1x̃} to evaluate the domain

of attraction size, and the corresponding condition (1/
√
γ)XR1 ⊂ E(Q−1

1 ), ensuring

there exists a Lyapunov candidate unit level set including the reference set scaled by

1/
√
γ. Thus, minimizing γ corresponds to maximize the volume of the unit ellipsoid

E(Q−1
1 ) with respect to a predefined shape given by R1 (see [54] ch. 7 for further

details). The LMIs in the second and third lines of (3.37) require E(Q−1
1 ) to be a

forward contractively invariant set for system (3.31), and inclusion of such ellipsoid

(estimating the domain of attraction) in the linear region of an auxiliary feedback

law H1x̃, with H1 = Z1Q
−1
1 , according to the PLDI description (3.34).

If the results (3.37) are not satisfying with the gain matrix coming from (3.36), or

some guarantees on the domain of attraction want to be ensured while computing

K, then the the problems (3.36), (3.37) can be suitably combined by collecting all

their constraints and weighting both γ and δ in a single cost function. The previous

discussion has been focused on linear and static state feedback, and considering

perfectly known machine parameters. If some reasonable bounds are known for

parameters uncertain values, then the same approach can be carried out, extending

the differential inclusion, to represent such variations, identically to what has been

done for the rotor speed ωr. If it is not the case, and to ensure the controller with

more generic robustness properties, integral dynamics can be added to the feedback

structure, without significantly modifying the design procedure. In this respect, the

original error dynamics can be augmented with integral terms, then a saturated

linear law including integral gains can be tuned with the same methods presented

before.
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Chapter 3. DFIG CONTROL UNDER BALANCED DIPS

3.5.4 Simulations results with the proposed feedforward-

feedback control solution

A controller in the form (3.29), with saturated feedback terms vu, vv designed ac-

cording to the LMI-based procedure outlined in the previous paragraph (see Fig.3.10

for the block scheme of the overall control topology), has been applied to the con-

sidered benchmark DFIM, under the same faulty line voltage conditions reported in

Subsections 3.4.1, 3.5.2. The following parameters have been considered to numer-

ically solve problem (3.36): vjmax = u2jmax/2, j = u, v, ωr(t) ∈ [0.7ωnom, 1.3ωnom],

with ωnom = 2π50rad/s representing the synchronous speed of the 50Hz machine.

In order to represent the set of initial conditions for x̃ R = diag(z̃−2
2u , z̃

−2
2v , ĩ

−2
2u , ĩ

−2
2u ),

where z̃2u = 0.25Wb, z̃2v = 0.85Wb, ĩ2u = 100A, ĩ2v = 100A have been conserva-

tively set according to the estimated jumps in z∗2u, z
∗
2v and the current tracking error

during the voltage sag. The results of the optimization problem with such data are

K∗ =

[

187.6 −240.4 1.582 −0.004

240.3 187.6 0.001 1.582

]

,

H∗ = 1× 10−3

[

−1.319 0.570 1.093 −0.008

0.0008 0.0013 −0.008 1.093

]

,

P ∗ =








4.12 5× 10−6 5.8× 10−3 1.6× 10−5

5× 10−6 4.12 1.6× 10−5 5.8× 10−3

5.8× 10−3 1.6× 10−5 5× 10−6 1.7× 10−10

1.6× 10−5 5.8× 10−5 1.7× 10−10 5× 10−5







, δ∗ = 1.723× 105.

With the bound ‖x̃‖ ≤
√
δ∗, and the matrix P ∗ above, it is possible to provide the

following estimates of the rotor currents maximum errors |̃i2u|, |̃i2v| ≤ 416A.

The corresponding simulations performance are reported in Fig. 3.11. The benefits

in limiting the rotor currents oscillations can be clearly noticed in Fig. 3.11 (c)-(d),

which underscores how the oscillations are sharply reduced with respect to results

of both the saturated feedback linearization, and the open-loop control with zero

dynamics trajectory planning. Indeed, the oscillations amplitude is within the max-

imum limits provided in Tab. A.1, and not far from the bound estimated above,

confirming that, despite some conservative steps (LDI representation and saturation

nonlinearity description), the technique discussed in the previous Subsection can be

profitably exploited for realistic applications.

Note that the additional feedback action causes the control inputs to hit the as-

sumed bounds multiple times during the grid fault (Figs. 3.11 (a)-(b)), however,

since saturation is explicitly considered in carrying out the state feedback design,

a graceful behavior of the system is maintained, differently from what observed for
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Figure 3.11: Transient results for the studied system equipped with the proposed

feedforward-feedback cotnrol strategy at 85% line voltage dip. (a) Ro-

tor u-component control voltage. (b) Rotor v-component control volt-

age. (c) Rotor u-component current. (d) Rotor v-component current.

(e) Zero dynamics (stator magnetic flux) u-component . (f) Zero dy-

namics (stator magnetic flux) v-component.

the feedback linearizing approach7.

Compared to the feedforward control solution, the stator fluxes oscillations are

slightly higher, and last longer. Anyway, this is an acceptable trade off to keep

the rotor current properly bounded, thus preventing the DFIG to be disconnected

from the grid due to RSC overcurrent alarms, or to trigger dangerous resonant

phenomena in the rotor shaft.

7It is worth noting that, due to some conservatism in the feedback part saturation bounds (half

of the control effort is constantly preserved for the feedforward terms), the available rotor voltage

range is not fully exploited (see Figs 3.11 (a)-(b)). However, the system performance under the

line faults are significantly improved, keeping all the variables within the nominal range
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3.6 Conclusion

In this chapter, the marginally/asymptotically stable internal zero dynamics of the

studied system is studied by means of the Brunovsky forms of the system dynamics.

Then, in order to find oscillation-free internal dynamics trajectories under the volt-

age dip disturbance, the corresponding ODEs are analytically solved in two different

solutions (Sylvester and integration by parts). In the following, the system equipped

with feedback linearizing controller faces a severe voltage dip in order to check the

effects of the large line voltage variations on the studied system. The large oscil-

lations of rotor fluxes/currents seen in simulation results proved that the feedback

linearizing control approach is not the ideal solution for the under-dip condition.

Therefore, a mixed feedforward-feedback control solution relying on modern satu-

rated control techniques is proposed. The attained oscillation-free trajectory with

respect to asymptotically stable internal dynamics is utilized as feedforward and a

full-state feedback consisting of the zero dynamics and rotor currents is exploited in

order to endow the closed loop system with the good tracking and limit compliance.

The efficiently damped transient oscillations is validated by the simulation results

This ensures not only a good torque and reactive power tracking, but also the avoid-

ance of magnetic saturations during the grid faults. Furthermore, by keeping the

rotor control voltage command inside the corresponding physical bounds, the risk

of RSC over-current, during the dip, is surely avoided and the LVRT performance

of the faulty system is achieved.

44



Chapter 4

DFIG Control under Unbalanced

Dips

4.1 Introduction

Doubly-Fed Induction Machine (DFIM) is widely used for modern Wind Energy

Conversion Systems (WECS) [3]. In this application framework, it is usually re-

ferred to as Doubly-Fed Induction Generator, DFIG. The typical scheme for power

generation systems with DFIG was shown in Fig. 3.1; the stator windings are di-

rectly connected to the grid, while the wound-rotor is fed, by means of slip rings,

with voltage provided by a controlled power electronic converter (so-called Rotor

Side Converter, RSC). The main advantage of this configuration is that RSC has to

manage only a fraction of the generator power, scaling with the slip percentage [5, 6],

thus leading to profitable reduced rating/cost of RSC components. Moreover, four

quadrant power operation can be achieved [7, 8] also thanks to the controlled boost

converter adopted as Grid Side Converter (GSC), whose main task is to keep the

DC-link capacitor (C in Fig. 3.1) voltage within a prescribed range, by exchanging

undistorted active power with the line.

Several solutions are available, in order to decouple active and reactive power gen-

eration control. In the framework of standard vector control [10], different variants

have been proposed, depending on the orientation of the considered synchronously-

rotating reference frame, and the control algorithm [11, 12, 13, 14].

In the last years, due to the high penetration of renewables, many countries issued

specific Grid Codes [15], [16], [17], requiring wind generation units to comply with

strict technical requirements, in order to be safely integrated in the power network.

A challenging specification regards the Low Voltage Ride Through (LVRT) property,

i.e. the ability to remain connected to the grid under voltage dips, while provid-

ing some ancillary services, such as reactive current support. As mentioned before,
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voltage dips are very critical disturbances for DFIG. Indeed, such events, owing

to current limits, reduce the amount of power which can be injected into the line,

impairing the wind turbine energy balance (DFIG would generate a power surplus

w.r.t. what can be transferred to the grid). Therefore, a sudden reduction in the

DFIG torque is usually needed to prevent overvoltage in the DC-link capacitor. Fur-

thermore, in the last chapter, DFIG’s high sensitivity to grid low voltage faults was

analyzed by presenting the corresponding zero dynamics in which the grid/stator

voltage (since the stator windings are directly connected to grid) enters the dynam-

ics as an exogenous input. As illustrated in simulations of the previous chapter,

the line variation caused by the grid fault triggers high oscillations in currents and

fluxes of both stator and rotor windings. Usually, in particular for asymmetrical

dips [20], [21], this phenomenon also makes standard controllers give large voltage

commands on RSC, hitting saturation constraints and possibly leading to converter

overcurrents.

Many solutions have been suggested in recent literature to cope with such issues.

Except the standard crowbar protection, as the classic remedy, a popular strategy

is based on demagnetizing current reference [23], i.e. rotor currents set points are

modified during the dip, to oppose the components arising in the stator flux; in [24],

[25], and [26], virtual resistor, variable structure and hysteresis current controller

are respectively exploited for such purpose. In [27] the rotor current reference is

switched onto the stator current measurements, while in [28] the reference switch is

performed on the rotor flux linkage, scaling it down when a fault is detected, in order

to limit rotor current oscillations. In [29], a nonlinear PI-like controller is proposed

to stabilize the DFIG dynamics and improve post-fault behavior, while [30], [31]

propose feedforward transient compensation terms, added during fault to reduce

the system sensitivity to the line voltage disturbance. However, the control-based

methods presented in literature can deal only with mild unbalanced sags [37]. There-

fore, combination with some auxiliary dedicated hardware is commonly adopted to

prevent system tripping under severe asymmetric faults (see [34], [38], [39] for recent

proposals exploiting innovative auxiliary hardware).

In this context, the main contribution of this chapter is to propose a novel con-

trol strategy for DFIG (i.e. acting on RSC) that is capable of achieving full LVRT

features, without additional hardware requirements (w.r.t. what needed for normal

operation), even in case of very hard unbalanced line faults, usually not covered

by the control-based solutions presented in literature (neither in simulation tests,

to the best of our knowledge). To this aim, advanced control theory tools are ex-

ploited, first for a clear analysis of the line voltage disturbance effects, then to design

a suitable mixed feedforward-feedback solution, based on the analysis results and

explicitly accounting for the system’s constraints.
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Control objectives for the considered class of systems are typically specified in terms

of torque and reactive power at the stator side. As will be discussed in the last chap-

ter in details, these original references are suitably mapped into the corresponding

(stator or rotor) current references. Here, assuming rotor currents as the output

variables to be controlled, the Brunovsky form [40] of the system dynamics is uti-

lized, in order to clearly analyze the zero dynamics, driven by the line voltage and

the rotor current references. Such analysis is exploited to design suitable state ref-

erence trajectories, based on Sylvester equations and line voltage observation. Even

in case of severe symmetrical or unsymmetrical dips, these reference trajectories are

free from unpleasant oscillations, related to the poorly-damped oscillatory natural

dynamics shown by DFIG in synchronous reference frames (these dynamics turn

into a set of almost-pure integrators in a stator stationary frame). The removal of

the effects of natural DFIG dynamics in state reference generation, combined with

the properties of Sylvester equations, is a key step in the path to achieve robust-

ness to very harsh dips. Indeed, this approach encompasses and extends the basic

demagnetization methods, in order to deal with severe unsymmetrical and generic

voltage dips. The state reference trajectories thus obtained are used to generate

feedforward compensations and design a state feedback part to effectively push the

real variables toward the reference ones. The feedback part, taking advantage of the

results in [41] in combination with saturated control techniques, allows to further

tame oscillations, while dealing with rotor voltage limits, similar to what presented

in the last chapter. More specifically, since to obtain full LVRT capability the first

task is avoiding overcurrent in RSC, the saturated feedback controller is designed

to minimize transients on rotor currents. Finally, a line voltage reconstruction and

dip detection unit is designed, based on state observers theory. This unit is crucial,

in order to reliably and robustly provide such information to the controller.

This chapter whose contents is according to [59] is organized as follows. In Section

4.2, the general objectives are reported, and the system zero dynamics are briefly re-

called, introducing the key ideas for the control strategy. In Section 4.3, unbalanced

voltage dip characterization is carried out, recalling the asymmetric fault effect on

the line voltages, which will be exploited to consider a suitable model to be used for

control purposes. In Section 4.4 the proposed control scheme is presented, showing

how to design natural-modes-free zero dynamics trajectory, using Sylvester equa-

tions, also under unbalancement, building the corresponding feedforward action,

and completing it with LMI-based saturated state feedback design. Line voltage

observers and the fault detection method are also introduced. The approach is val-

idated in Section 4.5, via detailed simulations. First, comparisons with a recent

solution (based solely on control), presented in [28], are discussed. Then, a harsher

asymmetric fault case is considered to further motivate and highlight the features of
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the proposed method. Section 4.6 ends the chapter with some final considerations.

4.2 Basic Idea for Control

In this Section, the DFIG dynamics are recalled, and the key system features are

introduced, along with the main idea for the control solution. The elaboration will

be carried out considering Stator Voltage Oriented (SVO) reference frame, which is

a quite standard choice allowing to easily formulate and decouple control objectives

[6], [11]. Actually, as it will be detailed later on, an estimated angular position will

be used to generate the SVO frame; in nominal condition such angle will be aligned

with the line one while, during dips, the projection along time of the pre-fault line

behavior will be used, in order not to make the controller sense the line angle jumps

and fluctuations during faults. In such rotating frame, it is highlighted how DFIG

shows poorly damped oscillatory modes, directly affected by line voltage perturba-

tions. If not properly handled, these can lead to rotor voltage saturation and, as a

consequence, overcurrents due to a controllability loss.

Starting from the general modeling given in [6] Ch. 13, the above-mentioned charac-

teristics can be underscored by converting the standard model into the Brunowsky/normal

form, selecting the rotor currents as controlled outputs1. Thus, the following DFIG

electromagnetic dynamics, are considered:

i̇2u = −γ2i2u + (ωL − ωr)i2v + β2α1z2u − β2ωrz2v − β2u1u + u2u

σ2

i̇2v = −(ωL − ωr)i2u − γ2i2v + β2ωrz2u + β2α1z2v − β2u1v +
u2v

σ2

ż2u = −α1z2u + ωLz2v + α1Lmi2u + u1u

ż2v = −ωLz2u − α1z2v + α1Lmi2v + u1v

Tm = η2(z2vi2u − z2ui2v)

(4.1)

where (i2u, i2v), (u1u, u1v) are the rotor current and line voltage components in the

SVO frame, rotating synchronously at the line frequency ωL. Note that since u1u is

aligned with the voltage vector amplitude, in the steady-state condition u1v is null,

while under the unbalanced faulty scenarios it may take different values (depending

on the dip shape). ωr is the rotor electrical speed, and the other parameters have

been defined as (1.24) in Ch. 1.

The electrical coefficients appearing in the definitions above are reported in Tab.

A.2. Numerical values are referred to a 1.5MW , 50Hz DFIM which will be used for

the solution validation and comparison with the LVRT method in [28], where the

same machine has been taken as case study. Like the previous chapters, (z2u, z2v)

1This choice is quite natural, since rotor side converter is the most sensitive device to be

protected under line faults. Furthermore, wind turbines control goals (torque and reactive power)

are commonly mapped into rotor current references.

48



4.2. Basic Idea for Control

denote the internal dynamics variables, which, for the given selection, coincide with

the stator fluxes, and Tm is the electromagnetic torque. Now, exactly similar to

what we did in Subsection. 3.3.2 in the previous chapter, defining the current errors

ĩ2u = i2u − i∗2u, ĩ2v = i2v − i∗2v w.r.t. references i∗2u, i∗2v, the corresponding zero

dynamics (i.e. for ĩ2u = ĩ2v = 0) are:

ż2u = −α1z2u + ωLz2v + α1Lmi∗2u + u1u

ż2v = −ωLz2u − α1z2v + α1Lmi∗2v + u1v.
(4.2)

The ODEs above, similar to 3.7 in 3 (the difference is that here we have also the

u1v component due to unbalanced framework) define a LTI system which, given

the typical machine parameters values (low α1), shows lightly damped oscillatory

modes, which can be triggered by perturbations in the line voltage, entering directly

in (4.2) as input. However, recalling standard system theory results, the response of

a (marginally or asymptotically) stable system is the composition of a (vanishing)

transient response, related to initial condition and inputs, and a steady state re-

sponse, again depending on initial state and inputs (or, under some conditions, just

inputs). Such considerations can be exploited to remove the terms related to the

oscillatory modes of the system zero dynamics response, by finding a natural-modes-

free trajectory, which is consistent with the inputs (line voltage and rotor current

references). In this case, zero dynamics are given by a (poorly damped, asymptoti-

cally stable) LTI system then, by applying superposition principle, we can express its

solution as the summation of: a free transient response (related only to initial state,

assuming null inputs, and vanishing due to asymptotic stability, according to the

system eigenvalues), a forced transient response (related only to inputs, assuming

null initial condition, and evolving according to inputs and system eigenvalues, but

vanishing) and a forced steady state part (depending only on inputs and not on the

system modes). Whenever inputs can be described by linear exosystems (e.g. inte-

grator for constants, oscillator for sinusoids), the forced steady state response can be

obtained by solving Sylvester equations [40]. The forced steady state response is an

admissible trajectory for the zero dynamics subsystem, since it is always possible to

select a suitable initial condition such that the free and forced transient parts cancel

each other out. In addition, the forced steady state response of (4.2) is free from the

natural oscillatory modes at −α1 ± jωL, hence such trajectory can be reasonably

expected to prevent troubles with voltage saturation and overcurrent.

Bearing in mind these reasoning, the main idea for controlling DFIG under dips is

the following: having the inputs (u1u, u1v) and (i∗2u, i
∗
2v) trajectories, compute the

corresponding forced steady state response, and steer the system toward such tra-

jectories by means of a suitable feedforward-feedback controller. This idea will be

elaborated in Section 4.4, after presenting dip characteristics in Section 4.3.
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4.3 Unbalanced Dip Characteristics

As mentioned before, a typical power system voltage dip consists of three differ-

ent stages: falling, stabilizing, and recovering [33], as illustrated in Fig.4.1 (a). As

detailed in Section 2.2 of Ch. 2, two broad classes of faults can be outlined: in

symmetrical/balanced dips conventionally called type A, all the three phases are

affected in an identical way by the fault, thus only a variation in the line volt-

age vector amplitude occurs. While, asymmetrical/unbalanced dips involve only

some phases, introducing, in the SVO framework, negative sequence components,

i.e. counter-rotating harmonics at double the line frequency [60]. Among the sev-

eral kind of asymmetrical dips we defined in Section 2.2, the single phase-to-ground

fault (SPGF) is the most frequent one [61]. However, since there is usually a star-

delta-connected transformer between the grid and the wind turbine, the fault type

at the DFIG terminal may differ from what happens upstream [62]. For instance, a

single-phase grid voltage dip will be converted to a two-phase dip at the terminal of

DFIG [63].

In this chapter, three different dip types will be considered. First, a 70% symmetric

dip type A, and a 90% SPGF type B, will be used for comparison with the ap-

proach presented in [28]. As for that work, a step-wise falling and recovering stages

have been assumed, while the flat part lasts 200ms. Then, a severe two-phase-to-

ground fault type E, lasting 625ms has been considered. In this respect, phases b, c

experience 100%, and 85% drop, 2 w.r.t. their nominal values, respectively, while

phase a is kept unchanged (see Fig.4.1-(b)). To reproduce the profile of a realistic

unbalanced voltage sag, the faulty voltages are passed trough a pair of linear fil-

ters. In particular, a second order filter with natural frequency at 393Hz is placed

downstream the faulty phases, in order to emulate line resonance phenomena [64].

To this aim, a rather low damping coefficient, equal to 0.3 has been selected. In

addition, a filter acting on the amplitude of the faulty voltages, has been used, with

the goal to approximate the effects of the electromechanical devices acting on the

grid. Thus, a pair of complex conjugate poles with natural frequency 7Hz, with a

damping coefficient equal to 0.1 has been placed. However, to avoid smoothing the

dip falling and recovering stages with such a slow bandwidth, a fast pole at 5KHz,

and a couple of resonant zeros with natural frequency at 6Hz and damping coeffi-

cient equal to 0.1, have been added to the filter transfer function. This way, a fast

decay is ensured and, at the same time, an oscillating tail at 7Hz, approximating

the electromechanical devices response, is obtained. Finally, such devices can have

multiple connections/disconnections during a fault, particularly at the beginning

2To comply with the fact that, in the real life, it rarely happens to have equal short-circuit

impedances for different phases, we have considered different dip amplitudes for the phases b, c.
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Figure 4.1: Characteristics of the line voltage under the considered two-phase-to-

ground unbalanced dip lasting for 625ms. (a) Typical voltage dip of

power system. (b) Line voltage a, b, c components. (c) SVO framework

u-component. (d) SVO framework v-component.

and the end. To emulate also such situation, step-wise “bounces” decreasing and

increasing (back to the nominal value) the amplitude have been implemented up-

stream the 7Hz filter.

The overall effects of the mentioned dip emulation are shown in Fig. 4.1 (b). It

can be noted how, due to the filtering effects, the shape approximate the typical dip

illustrated in Fig. 4.1 (a), actually worsening the transients with overshoots, and

the aforementioned amplitude bounces. Accordingly, similar effects can be seen in

Figs. 4.11:(c)-(d), for both components of the stator voltage in the SVO framework.

In addition, a 2ωL component, related to negative sequences, arises and persists also

during the steady-state condition during the flat part of the fault.

Bearing in mind all these considerations, for the control design (later discussed in

Subsection 4.4.4), beside the DC components, the faulty voltage profile model will

include also 2ωL sinusoidal components, to account for unbalanced conditions. Fur-

thermore, a non standard fault detection unit is proposed, to robustly cope with

harsh faults as the one presented in this Section.

4.4 Control Solution

In this Section the proposed control structure is elaborated: given rotor current

references (their generation will be specified later on) and assuming line voltage
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description as in Section 4.3, the first step is to generate the forced state trajec-

tory for the zero dynamics (4.2). Then, suitable feedforward and state feedback

actions are designed, ensuring asymptotic state (zero dynamics and rotor currents)

references tracking, and preventing overcurrent and harmful effects of control inputs

saturation.

4.4.1 Generation of zero dynamics forced steady state re-

sponse

In order to compute the steady state forced part of (4.2) piecewise constant reference

rotor currents are assumed (such choice will be motivated later on in this Section)

while, for what concerns the line voltage, constant and counter-rotating sinusoidal

component at 2ωL, in the SVO u − v frame, will be considered, according to the

analysis in Section 4.3. Therefore, defining v = [i∗2u i∗2v u1u u1v]
T , we can represent

the zero dynamics inputs by the following linear exosystem





i̇∗2u
i̇∗2v
ẇ




 =

[

ΩI 0

0 Ωw

]

︸ ︷︷ ︸

Ω






i∗2u
i∗2v
w




 , v = Γ[i∗2u i∗2vw

T ]T

Γ = blkdiag(1, 1,Γw), ΩI = 02×2, Ωw = blkdiag(02×2, S)

(4.3)

with Γw =

[

1 0 1 0

0 1 0 1

]

, S =

[

0 2ωL

−2ωL 0

]

. Then, recalling the reasoning in

Section 4.2, the forced steady state response of system (4.1), corresponding to the

class of inputs described by (4.3), can be obtained by solving, for Π, the following

Sylvester equation

Π Ω = AΠ+BΓ (4.4)

where A =

[

−α1 ωL

−ωL −α1

]

, B =

[

α1Lm 0 1 0

0 α1Lm 0 1

]

. Thus, natural-modes-free

trajectories for dynamics (4.2) can be computed as

[zFSS
2u zFSS

2v ]T = Π[i∗2u i∗2v wT ]T . (4.5)

Eq. (4.4) can be uniquely solved whenever matrices A and Ω have separated spec-

tra, that is inputs u have no components at system (4.2) resonance frequency ωL.

According to the discussion in Section 4.3, this condition is verified also under un-

balanced dips.

Generation of references (4.5) requires the line voltage to be split in its constant and

sinusoidal components (collected in vector w). Being the pair (Ωw,Γw) observable,

this information can be retrieved by means of a state observer, defined as

˙̂w = Ωwŵ + L(u1 − Γwŵ), with u1 = [u1u u1v] (4.6)
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where ŵ is the state estimate and, by tuning matrix L, the poles/bandwidth of the

observer can be arbitrary imposed, so that fast reconstruction of the line voltage

signal components can be achieved under line faults.

4.4.2 Observer for line angle reconstruction in nominal and

faulty condition

The steady state solution (4.5) and observer (4.6) are designed in a rotating refer-

ence frame, u− v, which, as anticipated at the beginning of Section 4.2, is supposed

to be aligned with the line voltage angle, in nominal conditions, and with its ideal

forward projection along time, in faulty conditions. Such reference frame must be

generated as well.

The basic idea, is to use another observer scheme to track the line angle, referred as

θL, in healthy conditions, by exploiting measurement feedback, while, during dips,

the feedback correction will be removed, obtaining the forward projection by pure

integration of its model equations. The basic observer structure will be considered

first, then the mechanism to smoothly switch between the above mentioned condi-

tions will be specified.

A PLL-like polar coordinates observer topology, first presented in [65], is exploited.

The reason for choosing this unconventional voltage reconstruction architecture is

that it shows strong robustness against measurements perturbations and negative

sequence components, arising in asymmetric sags as shown in Section 4.3. The main

idea is to perform estimation in a generic rotating reference frame, but imposing es-

timates dynamics equivalent to what they would be in a frame aligned with the line

voltage vector, then to “truly” align the observer by means of suitable correction

terms. For brevity here the final observer structure, reported also in Fig. 4.2, is

recalled (we refer the interested reader to see [65] for details)

˙̂u1u = k2ũ1u, û1v = 0, ˙̄̂ωL =
1

γ
û1uũ1v

ω̂L =
k1
û1u

ũ1v + ˆ̄ωL,
˙̂
θL = ω̂L

(4.7)

estimates are denoted with accentˆ), with errors ũ1u = u1u−û1u, ũ1v = u1v−û1v, with

signals u1û, u1v̂ coming from three-phase measurements expressed in the observer

frame, rotating with θ̂L, via Clarke+Park transformation (denoted as T (θ̂L) in Fig.

4.2). Finally, k1, k2, γ are arbitrary positive gains to be exploited for tuning.

Despite the observer provides full line voltage information (estimated quantities are

denoted with accentˆ), only the angular position θ̂L will be exploited to build the

considered u − v reference frame, then to implement observer (4.6), trajectories

(4.5) and the control scheme which will be defined later. Whenever a dip occurs,
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Figure 4.2: Schematic structure of the polar coordinates line observer.

forward projection of the nominal line angle evolution is obtained by switching off

the feedback part in (4.7), i.e. zeroing all the right terms except for
˙̂
θL equation.

Being the grid faults commonly short (the duration is less then 1 sec.), the open

loop forward projection of the estimated angle during the dip is not expected to

drift much from the healthy line phase. Thus no issues for the controller should

arise. In addition, at the fault clearance, observer feedback should be restored in

order to recover the alignment.

The dip detection/clearance mechanism is arranged by using a finite state machine

and two observers having the structure in eq. (4.7): a Low Bandwidth Observer

(LBO), which is used to provide the u− v reference frame angle, and an additional

High Bandwidth Observer (HBO), which is exploited for robust and reliable dip

events and clearance detection. Clearly, the LBO is tuned to have a slow response

to line voltage variations, while the HBO will be much faster. The adopted finite

state machine is shown in Fig. 4.3, where estimates provided by the HBO are

denoted with subscript F .

In the initialization phase (INIT), both the observers will lock in, after a suitable

transient. This part is not deeply detailed, since it will be part of the WECS start up

procedure. Once initialization has ended, NOMINAL state becomes the active one.

As soon as a dip takes place, a large estimation error will arise in the LBO because

of its low bandwidth; this is used as a residual to trigger fault detection (with a

certain time hysteresis t̄), and remove adaptation in the LBO, which will operate

in open loop throughout the entire dip, while the HBO is kept on (see NOMINAL

to FAULTY state transition in Fig. 4.3). At the dip clearance, the HBO’s voltage

estimates will be back to constant values “close enough” (ûuF > greater than 80%
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Figure 4.3: Scheme of Dip occurrence/clearance detection logic built on the HBO,

LBO polar coordinate observers estimates.

of standard line amplitude Un) to the nominal one. Such condition is exploited to

restore the slow observer feedback and re-align the reference frame with the healthy

line (see FAULTY to RECOVERY transition in Fig. 4.3), possibly tuning the LBO

gains in order to make re-alignment faster. Finally, when the LBO estimation error is

within a given threshold, the logic scheme comes back to the nominal state. Instead,

if a fault takes place during the LBO recovery stage, it is detected by monitoring

the HBO estimates, which, given the observer fast response, will quickly track line

changes, drifting away from the nominal values. In this case, the system is switched

back to the faulty scenarios before the re-alignment is completed, disconnecting the

LBO feedback again and using the last estimates of the LBO to integrate the angular

position (see RECOVERY to FAULTY transition in Fig. 4.3).

4.4.3 Rotor currents reference generation

The last piece of information to compute trajectories in (4.5), is to define rotor cur-

rent references (i∗2u, i
∗
2v). As mentioned in the Introduction, common wind turbine

control goals are stated as electromagnetic torque and stator reactive current set-

points. Therefore, a suitable mapping to rotor currents has to be established.

Typically, torque T ∗
m and stator reactive current i∗1v references are slowly varying

w.r.t DFIG electromagnetic dynamics, then, from a mathematical view point, we

perform the mapping assuming such signals as constant (or piecewise constant).

Therefore, rotor current references can be computed using the following expressions

for torque and reactive current T ∗
m = η2(z

∗
2vi

∗
2u − z∗2ui

∗
2v), i

∗
1v =

z∗2v−Lmi∗2v
L1

. Both T ∗
m

and i∗1v depend not only from rotor currents, but also from the zero dynamics (stator

fluxes in the considered case) as well. However, we can replace the zero-dynamics

variable references (z∗2u, z
∗
2v) with trajectories in (4.5), as, by virtue of the system

properties, discussed in Subsection 4.4.1, we expect the zero dynamics to converge
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on these solutions. Forced steady state response in (4.5) itself depends on rotor cur-

rents and line voltage components. In this way, a system depending only on rotor

current references and known terms (ŵ from (4.6) is used in place of w in (4.5)) is

obtained and can be easily solved.

Actually, along asymmetric dips, oscillatory components of the line voltage would

lead to oscillating zero dynamics according to (4.5)3. As a consequence, to obtain

constant T ∗
m and i∗1v under steady-state oscillatory zero dynamics, oscillating ref-

erences (i∗2u, i
∗
2v) would be produced, violating the hypothesis made to build the

exosystem (4.3). To avoid such inconsistency, (i∗2, i
∗
2v) are computed considering,

for the zero dynamics, the forced steady state response related to just the constant

components of the line voltage, and clearly (i∗2u, i
∗
2v). In other words, z∗2u, z

∗
2v for

T ∗
m, i∗1v are computed as in (4.5), but using only the first two components (u − v

integrators) of the (estimated) vector w, and cutting Π accordingly to its first four

columns. The equations obtained by this procedure are reported below

T ∗
m =

η2((ωLα1Lm(i∗2
2u+i∗2

2v)−(ωLŵ1+α1ŵ2)i∗2u+(α1ŵ1+ωLŵ2)i∗2v)

α12+ω2
L

i∗1v =
−ωLα1Lmi∗

2u+Lm(α2
1
−1)i∗

2v−ωLŵ1+α1ŵ2

L1(α2
1
+ω2

L
)

(4.8)

where ŵ1, ŵ2 denote the estimated constant line voltage u − v components, re-

spectively obtained by (4.6). This way, constant rotor current references can be

obtained. Clearly, the reminder oscillatory part of the zero dynamics, which has

been neglected in (4.8), will lead to some oscillations in the actual torque and reac-

tive current signals. However, their average values will be identical to the desired

constant references.

4.4.4 Feedforward-feedback controller design

Having defined methods for generating natural-modes-free zero dynamics trajecto-

ries, and current references suitable for torque and reactive current regulation, a

control strategy, ensuring asymptotic tracking of these set-points, is needed. To this

purpose, a feedforward-feedback structure is exploited, based on the previous anal-

ysis and reference generation strategy for what concerns feedforward terms, while

a saturated state feedback part will be designed to further minimize oscillations,

particularly for rotor currents, under line faults, and accounting for rotor voltage

limits.

Starting with the feedforward part, by (4.1), to track references (i∗2u, i
∗
2v), (z

∗
2u, z

∗
2v),

defined according to (4.8) and (4.5) respectively, the following open-loop law can be

3Clearly this are steady-state forced oscillations, not related to system (4.2) natural modes, but

forced by the 2ωL counter-rotating terms given by unbalancement.
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designed

u2uff = σ2 (γ2i
∗
2u − (ωL − ωr)i

∗
2v − α1β2z

∗
2u + β2ωrz

∗
2v + β2u1u)

u2vff = σ2 (γ2i
∗
2v + (ωL − ωr)i

∗
2u − α1β2z

∗
2v − β2ωrz

∗
2u + β2u1v) .

(4.9)

Taking advantage of the DFIG inherent properties, global asymptotic tracking can

be shown to be ensured by the pure feedforward controller above (very similar ar-

guments to what in [41] can be used for proving such result, thus, for brevity, we

refer to that work for details). This result is instrumental for achieving rotor cur-

rent tracking, and natural-modes-free internal dynamics, for stretches of piecewise

constant references, and line voltage behavior complying with description (4.3). As

remarked in Section 4.3, these conditions holds only in the flat part of the dip, while

during transients, spurious harmonic contents, not captured either by (4.3) nor (4.6),

arise in the voltage. Similarly, not constant current references will be generated as

a consequence of the torque and reactive current reference variations. As a result,

solution (4.5) will not be exact and, in turn, some oscillations will be triggered.

In order to deal with such issue, and provide the controller with robustness as well,

controller (4.9) is modified as:

u2u = u2uff + ξu, u2u = u2vff + ξv (4.10)

with ξu, ξv state feedback terms to be designed in order to dampen oscillations and

comply with the RSC actuation limits. In this respect, the following saturated linear

law is defined

ξ = σ(p) =

[

sat(pu)

sat(pv)

]

, p = Kx̃a (4.11)

with x̃a = [x̃T χ̃T ]T , x̃ =
[
z̃2u z̃2v ĩ2u ĩ2v

]T
, and χ̃ =

[ ∫

ĩ2u
︸ ︷︷ ︸

χ̃u

∫

ĩ2v
︸ ︷︷ ︸

χ̃v

]T

integral

terms on rotor currents, providing some robustness against parametric uncertainties.

While ξ = [ξu ξv]
T and sat(pj) = (sgn(pj))(min {ξjmax, |pj|)}), j = u, v. Bounds

for ξu, ξv clearly depend on the machine maximum rotor voltages u2umax, u2vmax,

stemming from RSC rated values and the control effort required by the feedfor-

ward terms. The latter vary with the operating conditions. However, assuming

some a-priori knowledge about the system set of trajectories, safe constant margins

u2jffmax, j = u, v can be preserved for u2uff , u2vff , and then define constant limits

ξjmax = u2jmax − u2jffmax, j = u, v, accordingly.
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Applying controller (6.7)-(4.11), yields

˙̃xa = F (t)x̃a +Gσ(Kx̃a), with G =

[

0 0 − 1
σ2

0 0 0

0 0 0 − 1
σ2

0 0

]T

F (t) =













−α1 ωL α1Lm 0 0 0

−ωL −α1 0 α1Lm 0 0

α1β2 −β2ωr(t) −γ2 ωL − ωr(t) 0 0

β2ωr(t) α1β2 ωr(t)− ωL −γ2 0 0

0 0 1 0 0 0

0 0 0 1 0 0













.

(4.12)

System above is time-varying due to rotor speed ωr, and nonlinear due to control

inputs saturation. The inclusion F (t) ∈ co {Fmin, Fmax} can be used to handle the

first issue, where Fmin, Fmax are evaluations of F at the rotor speed range extreme

values ωrmin, ωrmax, respectively, while co denotes the convex hull of the matrices

between braces. For what regards saturation, exploiting Lemma 7.3.2 in [54], the

following inclusion can be derived

σ(Kx̃a) ∈ co
{
DiKx̃a +D−

i H(x̃a), i ∈ [1, 4]
}

∀ Hx̃a = [hu hv]
T : |Hjx̃a)| ≤ ξjmax, j = u, v

(4.13)

where Di are diagonal matrices with 1 or 0 as entries, and D−
i = I − Di, while H

is an auxiliary feedback which is exploited as a degree of freedom for representing

saturation function less conservatively w.r.t. standard absolute stability and vertex

analysis methods. Combining these descriptions, the nonlinear system (6.8) can

be analyzed (with some conservatism) by means of the following Polytopic Linear

Differential Inclusion (PLDI)

˙̃xa ∈ co{Fkx̃a +G(DiKx̃a +D−
i Hx̃a)}, k = {min,max},

i ∈ [1, 4], ∀ x̃a such that |Hjx̃a| ≤ vjmax, j = u, v.
(4.14)

Now, the problem of limiting oscillations during voltage dips via saturated state

feedback (4.11) can be seen as finding a gain matrix K so that the peak value

‖x̃‖ = ‖Cx̃a‖, with C = [I4 04×2], is minimized. It is worth to point out that,

despite the output matrix C weights all the components of x̃ in the same way, given

the different scales of rotor currents and stator fluxes, the peak error values of the

former will be penalized more. As it will be shown in Section 4.5, this allows to keep

the rotor currents within the physical bounds, also under very harsh unbalanced line

faults.

In addition, we assume that oscillations triggered during at dip occurence, makes x̃a

to ”jump” inside a known bounded set X0 (an estimate of this set can be obtained
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considering a worst case scenario).

All that being given, after some computation following the approach presented in

[57], the matrix K minimizing oscillations can be computed solving the following

convex, LMI-constrained, optimization problem

min
Q=QT>0,δ>0,Y,Z

δ, subject to

CTQC ≤ δI4

QF T
k + FkQ+GDiY +GD−

i Z + Y TDiG
T + ZTD−

i G
T < 0

[

Q ZT
j

Zj v2jmax

]

≥ 0 j = u, v, Q− R−1 ≥ 0.

(4.15)

with Y = KQ, Z = HQ, while Q, R are positive definite symmetric matrices defin-

ing invariant ellipsoids containing x̃a trajectories and the set X0, respectively.

In brief, the first constraint expresses (by Schur complement) the fact that trajecto-

ries starting in X0 have a peak bound ‖x̃‖ ≤
√
δ, guaranteed by an invariant ellipsoid

defined by matrix Q. The second set of constraints enforces system asymptotic sta-

bility inside the aforementioned ellipsoid, while constraints in the third row, ensures

the invariant ellipsoid lies in the region where (4.14) holds true, and it includes the

ellipsoid defining/approximating set X0.

The optimal state feedback, giving minimal peak δ∗ for error variables x̃ can be

retrieved by the solution of (6.9) as K∗ = Y ∗Q∗−1.

Note that problem (6.9) can be solved offline, assuming a worst case scenario for x̃a

initial conditions. Along with fixed bounds ξjmax for the feedback components, this

makes the solution suboptimal w.r.t. what could be obtained with on-line optimal

control (such has MPC). However, low computational burden is required, making its

implementation easy, and sustainable for standard embedded computational plat-

forms used for the considered applications. In addition, as it will be shown in Section

4.5, satisfying LVRT performance can be ensured, indicating a not critical loss in

optimality. The block scheme of the proposed solution, combining all the units de-

signed in this Section is summarized in Fig. 4.4.

Again, it is worth to remark the role natural modes free flux references generation

(by eq. 4.4), which enter the feedforward part. Combined with the optimally tuned

feedback part, this allows to avoid rotor overcurrent, also under hard unbalanced

faults, thus keeping the system connected, but also improving state reference track-

ing, and thus LVRT performance. In turn, also the variables T and i1v will exhibit

a smooth behavior; torque reduction during the dip will not induce relevant me-

chanical stress on the wind turbine, and accurate reactive current injection, close

to i∗1v, can be ensured. Such features are assessed in the next Section via extensive

numerical simulations.
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Figure 4.4: Overall block scheme of the proposed RSC control unit.
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Figure 4.5: Results of the studied system under a 70% symmetrical fault, left col-

umn, plots (a)-(b), and under asymmetrical 90% single phase dip, right

column plots (c)-(d).

(a)-(c): Stator voltages. (b)-(d): Rotor voltages.
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Figure 4.6: Results of the studied system under a 70% symmetrical fault, left col-

umn, plots (a)-(b), and under asymmetrical 90% single phase dip, right

column plots (c)-(d).

(a)-(c): Stator currents. (b)-(d): Rotor currents.
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Figure 4.7: Stator-side active and reactive powers of the studied system under a

70% symmetrical fault, left column, and under asymmetrical 90% single

phase dip, right column.
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Figure 4.8: Results of the studied system under a 70% symmetrical fault, left col-

umn, plots (a)-(b), and under asymmetrical 90% single phase dip, right

column plots (c)-(d).

(a)-(c): Electromagnetic torque. (b)-(d): Rotor angular speed.
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Figure 4.9: Performance of delayed signal cancellation angle reconstruction method,

under the considered unbalanced dip. (a) comparison between the pro-

posed open-loop angle forward projection (blue) and delayed signal can-

cellation estimate (red). (b) rotor currents obtained with delayed signal

cancellation reconstruction, and the proposed control solution.
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4.5 Simulation Results

In order to assess the performance of the proposed control solution, a 50Hz 1.5MW

DFIG, characterized by the parameters reported in Tab.A.2, has been considered

as case study. A controller in the form (6.7), with saturated feedback terms ξu,

ξv, tuned according to the LMI-based procedure, outlined in the previous Sec-

tion, has been designed. A discrete time version both of the controller, given by

eq. (4.9)-(6.7)-(4.11), and the observers in (4.6), (4.7), has been implemented, us-

ing standard backwar Euler discretization method. In addition, a switching RSC

driven by a 2.5kHz PWM technique has been considered. The discretization sam-

pling time has been set equal to the PWM carrier period. The following param-

eters have been considered to solve problem (6.9): ξjmax = u2jmax/2, j = u, v,

ωr(t) ∈ [0.7ωnom, 1.3ωnom], with ωnom = 2π50rad/s the synchronous speed of the

50Hz machine. In order to represent the set of initial conditions for x̃a R =

diag(z̃−2
2u , z̃

−2
2v , ĩ

−2
2u , ĩ

−2
2u , χ̃

−2
2u , χ̃

−2
2v ), where z̃2u = 0.3Wb, z̃2v = 0.93Wb, ĩ2u = 200A,

ĩ2v = 200A, χ̃2u = 20As, χ̃2v = 20As have been conservatively set according to

the estimated tracking error jumps during the dip described in Fig. 4.1. The re-

sulting feedback matrix is K∗ =

[

419.9 −58.7 2.7 −0.017 1.67 0.018

99.8 184.9 −0.067 1.93 −0.004 0.016

]

.

For what concerns the polar coordinate observers (4.7), the following gains have

been set, LBO: k1 = 9.5, k2 = 2, γ = 3850; HBO: k1F = 150, k2F = 15,

γF = 1500, which, according to tuning rules in [65], correspond to bandwidth equal

to 9Hz and 300Hz, respectively. For observer (4.6), the following output injec-

tion matrix has been chosen L =

[

−628.3 0 −89.9 13.3

0 −628.3 −13.3 −89.9

]T

, providing a

bandwidth of 70Hz. Finally, the parameters used in the finite state machine are

k̄ = 15V, k̄1 = 15V, t̄ = 2s, t̄1 = 5ms, t̄2 = 20ms.

With these settings, several numerical tests have been carried out. First, compar-

isons with a significant, recently proposed method in [28], relying only on control to

sustain also asymmetrical dips have been performed. To this aim, the same machine

parameters (reported in Tab. A.2), operating conditions (mechanical power, torque,

rotor speed), and fault scenarios have been replicated. The machine is made to op-

erate in generator mode, with an input mechanical power equal to 67% of its rated

value, and keeping a speed equal to 120% of the nominal value. Then, at 0.1s a grid

fault lasting 200ms is emulated. As mentioned in Section 4.3, two dips have been

considered as in [28]; a 70% symmetric sag, and a 90% single-phase fault. When

the dip is detected the torque reference is decreased to zero, however, differently

from what in [28], no waiting time after the dip clearance detection is applied to

bring back the reference to the previous value. Furthermore, the amount of stator
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Chapter 4. DFIG CONTROL UNDER UNBALANCED DIPS

reactive current (required to sustain the grid voltage by injecting capacitive power

in the mains [15], [16]), is set according to the sag depth (estimated via the HBO),

independently from other controller parameters. In contrast, in [28] the stator re-

active current/power is related to a controller constant (called “tracking gain”) set

to reduce the machine rotor flux during the fault, thus combination other reactive

power support strategies could be needed.

The simulation results corresponding to the two aforementioned scenarios are shown

in Figs. 4.5-4.8. Starting with the symmetric dip case, shown in the left column,

and comparing it with Fig. 7(a) in [28], it can be seen how, while both the methods

ensure rotor currents to stay below the critical value of 2 p.u.4, much smaller oscil-

lations are ensured with the proposed technique. Indeed, the peak rotor currents

value during the fault does not exceed 1 p.u. (see Fig. 4.6 (a)). Stator currents (in

Fig. 4.6 (a)) are limited as well, while voltage saturation occurs, particularly at the

beginning and the end of the dip (see Fig. 4.5 (b)), but, thanks to the proposed LMI-

based tuning, it is correctly handled ensuring a suitable machine behavior. Also the

stator active and reactive power, portrayed in plot 4.6 (f), exhibit a smooth profile.

It is further to note the spike in the reactive term during the dip recovery stage.

This phenomenon is due to the sudden increase in the line voltage, which cannot

be instantaneously detected, nor perfectly tracked by the observer (4.6). Then, the

reactive current reference is reduced with a delay w.r.t. the line voltage recovery,

resulting in a temporary reactive power increase. As concerns torque (Fig. 4.8 (a)),

a decreasing oscillation at ωL can be seen during the sag. Such ripple is higher

w.r.t. the one in [28], however, it does not affect the generator speed (in Fig. 4.8

(b)), which increases less than in [28] due to the prompt restore of the torque im-

mediately after the fault. The reason for such oscillations lies in the feedback terms

design, which, putting most of the (saturated) effort in avoiding rotor overcurrent,

lets the stator variables (fluxes and currents) to slowly converge to the steady state

references (computed in Subsection 4.4.1).

Similar reasoning applies for the single phase fault shown in the right column of Figs.

4.5-4.8. Again, comparing rotor currents with results in Fig. 9 of [28], a considerable

improvement can be noted. In addition, the steady state sinusoidal regime is re-

stored much faster after the dip clearance. The key point for achieving such results is

the trajectories planning (4.5), and the corresponding feedforward terms in (4.9). In

fact, this solution goes beyond a simple reduction of the machine flux, by managing

explicitly the counter rotating components, related to asymmetrical faults, thanks

to the design of natural oscillation-free (DC-free in three phase stationary frame)

zero dynamics trajectories. Again, slightly higher oscillations are present on torque

4Typically the RSC electronics is sized to withstand peak currents up to double the rated

machine value for small time periods.
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signal, this time at 2ωL and settling to a constant amplitude throughout the whole

dip (see Fig. 4.8 (c)). The permanent oscillation around the reference is due to the

approximated mapping, remarked at the end of Subsection 4.4.3, while transient

response stems from the aforementioned feedback design. The effects of such tuning

are underscored also by the stator currents waveforms during the unbalanced fault

(Fig. 4.6 (c)). A slowly vanishing DC component arises in the stator currents, while

rotor ones do not have such shape. Again, this is the consequence of the control

choice to keep the rotor currents tightly close to their references, while letting the

unbalancement (natural modes oscillations in the SVO frame) to affect more the,

less critical, stator variables. Later on it will be shown how such strategy is crucial

to prevent rotor overcurrent under challenging faults like the one described in Fig.

4.1.

Another important feature which allows the presented approach to cope with harsh

dips is the detection and line angle reconstruction based on the state machine and

the observers discussed in Subsection 4.4.2. To motivate the need for such structure

combined to our control solution, a standard, quite popular angle reconstruction

method for LVRT (adopted in ([28],[27]), based on the so called delayed signal can-

cellation [66], has been used under the fault portrayed in Fig. 4.1. The obtained

results are reported in Fig. 4.9. It is clear how, if the positive sequence angle es-

timated by delayed signal cancellation is used in place of the open-loop integration

(from the last not faulty point of the PLL observer), the controller performance

are lost, as highlighted in the rotor currents signals in Fig. 4.9 (b). Indeed, dur-

ing the harsh transients, with overshoots and bounces, a non sinusoidal line regime

arises, impairing the key assumption of the delayed signal cancellation reconstruc-

tion method. As a result, the estimated angle shows oscillatory behavior with abrupt

jumps (see Fig. 4.9 (a)).

Instead, if the proposed dip detection and voltage estimation scheme is used to feed

the controller, a more graceful behavior, compliant with the system current limits,

is obtained, as proved by results in Fig. 4.10. Rotor currents (in Fig. 4.10 (d)) are

still well below 2 p.u. (less then 1.5 p.u.). Due to the harsher nature off the fault,

more control effort w.r.t. the unbalanced case in Fig. 4.5 is required to tame the

rotor currents, and saturation occurs more frequently throughout the entire dip (see

Fig. 4.10 (e)). The line estimate and dip detection mechanism are clarified by Figs.

4.10 (m), (n). In plot (m), it is highlighted how the dip is detected by LBO, lead-

ing to a permanent estimation error during the dip, due to disabling the observer

adaptation. Differently, in plot (n), the HBO is kept operating, estimating the line

also during the fault, and allowing the dip clearance detection. Note that, while the

line amplitude bounces and overshoot are sensed by the HBO, the logic defined in

scheme 4.3 prevents the LBO reconnection during the fault, allowing to restore this
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Figure 4.10: Results of the studied system under the considered two-phase unbal-

anced fault. (a) Faulty stator voltage (b) Electromagnetic torque. (c)

Stator currents. (d) Rotor currents. (e) Rotor voltages. (f) Stator ac-

tive (blue) and reactive (red) power. (g) Stator fluxes. (h) Rotor speed.

(m) Stator voltage u-component (red) and LBO estimate (blue). (n)

Estimated stator voltage u-component by HBO.
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Figure 4.11: Results of the studied system under the considered two-phase unbal-

anced fault, signals in the u − v SVO framework. (a) Stator current

u-component. (b) Stator currents v-component reference (red) and

measured (blue). (c) Zero dynamics (stator flux) u-component ref-

erence (red), and measured (blue). (d) Zero dynamics v-component

reference (red) and measured (blue). (e) Rotor currents u-component

reference (red) and measured (blue). (f) Rotor currents v-component

reference (red) and measured (blue) (g) Rotor voltage u-component.

(h) Rotor voltage v-component.
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observer only after the actual dip clearance. Even in this case 2ωL oscillations are

present on torque and power signals (see Figs. 4.10 (b) and (f)). Here, the effect of

“pushing” the unbalancement onto the stator variables is even more evident w.r.t.

the (milder) asymmetric fault of Figs. 4.5-4.8. Indeed, looking at stator currents and

fluxes in Figs. 4.10 (c), (g) respectively, it can be noted how a DC component arises

at the beginning of the dip, and tends to decrease with a quite slow rate (mostly

given by constant α1 for the fluxes). In order to further clarify the behavior of the

presented solution, signal in the SVO u−v frame have been reported, along with the

respective references, in Fig. 4.11. It is clear how the control favors rotor currents

(Fig. 4.11 (e), (f)) which track the references quite closely, with limited oscillations.

Instead, the stator fluxes convergence to the natural-modes-free references is slower

(see Figs. 4.11 (c), (d)). Stator currents in Figs. 4.11 (a), (b) also have larger

oscillations w.r.t. the rotor ones. As mentioned, this is a necessary trade-off for

making the system to survive challenging faults with the limited control authority

given by the RSC voltage limitation.

To further validate the proposed solution, the same test as in Figs. 4.10, 4.11 has

been repeated, considering noisy measurements and parametric uncertainties. In

this respect, zero-mean white Gaussian noises with standard deviation equal to 3%

of nominal values, have been added to the measured signals. Furthermore, stator

and rotor resistance values have been increased by 75%, while inductances L1, L2,

Lm have been decreased by 30%. Fig.4.12 shows the corresponding results. Despite

some slight fluctuations due to noisy measurements, particularly in the control ac-

tion (see Figs. 4.12 (g)-(h)), the control objectives, fulfilled in the previous tests, are

again substantiated. It is further to remark that rotor currents asymptotic tracking

is ensured in spite of parametric mismatch, thanks to the feedback integral terms.

4.6 Conclusions

In this chapter, the challenging problem of endowing doubly-fed machines with

LVRT property under sever asymmetric voltage dip has been tackled by means of

advanced system theory and control tools. A careful system analysis has allowed to

define natural-modes-free trajectories for the system internal dynamics, which are

directly affected by line faults. Building on this result, a suitable feedforward action

has been designed, and completed with a saturated state feedback part, providing

additional oscillations damping and robustness. In addition, a dip detection scheme,

based on suitable line observers, has been designed. This strategy has been tested via

realistic numerical simulations, and proved to be capable of handling harsh unbal-

anced line faults, not considered before in the literature. Such characteristics make

it a promising solution for achieving LVRT in DFIG-based wind energy systems,
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Figure 4.12: Results of the studied system under the considered two-phase unbal-

anced fault with noisy measurements and machine parameters uncer-

tainties. Signals in the u − v SVO framework. (a) Stator current u-

component. (b) Stator currents v-component reference (red) and mea-

sured (blue). (c) Zero dynamics (stator flux) u-component reference

(red), and measured (blue). (d) Zero dynamics v-component reference

(red) and measured (blue). (e) Rotor currents u-component reference

(red) and measured (blue). (f) Rotor currents v-component reference

(red) and measured (blue) (g) Rotor voltage u-component. (h) Rotor

voltage v-component.
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with minimal (ideally null) help of auxiliary protection hardware.
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Chapter 5

Trajectory Design for after-dip

Restore in Wind Turbines

5.1 Introduction

As outlined in the previous chapters, the global cumulative installed wind capacity

has been exponentially increasing for the past two decades, reaching 430 GW at

the end of 2015 [67]. Such trend is due to both an augmentation in the number of

installed wind energy conversion systems (WECSs) and in their power size, making

wind turbines (WTs) critical sources for modern power grids. As a result, more

demanding regulations about the operation of such systems have been issued, re-

quiring, in turn, sophisticated control methods in order to be met.

In this respect, beside the standard goal to keep the WECS working within some

power, generator torque, and speed limits, extracting the maximum power from the

wind whenever possible (i.e. up to the rated power of the electric generator drive),

two crucial aspects need to be tackled: I) Dealing with line voltage dips, II) Sup-

pressing mechanical vibrations.

As regards the first goal, it was explained that given the aforementioned pervasive

penetration of WECS into nowadays power networks, national grid codes and regu-

lations have been updated and specifically tailored to such systems, demanding the

so called Low Voltage Ride Through (LVRT) capability (see [68], [69] and references

therein for a comprehensive overview of international regulations specifications). As

discussed in the Ch.2, the main negative effects of voltage dips on WECSs were

the surplus generated power (compared with the delivered one) and the large os-

cillations triggered by the voltage perturbation in the DFIG’s internal dynamics.

Several solutions have been proposed in the literature to tackle the aforementioned

problems from the electrical viewpoint, and endow WECSs with LVRT property. In

[32], [31], and [35] some of them are reported.
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For what concerns vibrations in the turbine mechanical structure, owing to large

loads and dimensions of nowadays turbines, they cause relevant fatigue stresses

which significantly shorten the system lifetime, and, in some cases, can lead to dam-

ages [47]. Therefore, a proper damping of mechanics oscillatory modes need to be

guaranteed. To this aim, advanced control strategies have been proposed, mainly fo-

cusing on the drivetrain torsional vibrations, which, owing to rather low frequency,

lightly damped, resonant modes, are the most critical ones [42]. A popular ap-

proach is based on linearization around the working point/trajectory and exploit

advanced gain scheduling methods [70], [71], [43]. In [44] a nonlinear state feedback

speed controller has been proposed, with filters on the reference and control input

(the generator torque) to prevent the drive train resonant mode excitation, while

in [72] a nonlinear model predictive controller has been used. Regardless of the

specific solution, in general, a High-Bandwidth-Feedback control (referred as HBF,

for brevity) is needed for a strong damping injection, minimizing the drive train

torsional oscillations. Such feedback controller has to act on the generator torque,

which can be changed with the required bandwidth. Indeed, while nowadays tur-

bines are typically equipped with variable pitch blades, this control knob cannot be

used for damping injection, since it is subject to strict rate of change limits, due to

the large blade inertia and low bandwidth of the actuation system.

Actually, mechanical vibration suppression is affected by voltage dip management.

As mentioned before, generator torque has to be removed (or highly reduced) during

the line voltage sags, since there is no room for a reliable power exchange with the

grid (voltage amplitude is close to zero and highly fluctuating). Therefore the high

bandwidth controller need to be quickly turned off during the fault. Consequently,

turbine speed will increase and some oscillations will arise in the drivetrain. These

phenomena are usually disregarded in the state feedback design because the turbine

inertia and the fault duration are assumed to be respectively large and short enough

(tens of milliseconds) to give just a minor change in the WT state with respect

to the pre fault condition. Then, after the dip clearance, the feedback controller,

devoted to drivetrain strong damping, is just turned on again, assuming it can re-

cover smoothly the nominal steady state condition. Actually, in practice, it can take

seconds before the line voltage is restored and stabilized within its nominal range

[73], as it is acknowledged by some grid codes [16]. Since it is reasonable to switch

on the state feedback controller only when the line has been safely restored, i.e. at

the very end of dip profile, the system can end up in a status which is quite far

from the pre-fault working point. This fact, combined with the abrupt turn on of

a high bandwidth feedback algorithm, can lead to torque saturations, and, in turn

bad behavior in the turbine speed, and drivetrain state. Taking the cue from this

considerations, it is necessary to formulate and solve a new control problem in order
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to preserve the HBF controller also after the dip clearance and, at the same time,

prevent bad system behavior, and torque saturation. Such control problem can be

outlined as: just after the voltage dip, restore the original steady-state condition in

minimum time, without violating torque limits and triggering oscillations. There

exist powerful techniques, to cope with this kind problem, in particular, Model Pre-

dictive Control (MPC) has become the standard modern framework to approach

constrained optimal control [74]. However, MPC is computationally heavy in its

standard formulation, as it requires the on-line solution of constrained optimization

problem. If explicit MPC [75] can be applied, then the bottleneck can be the mem-

ory usage.

Bearing in mind these considerations, in this chapter, we propose a different solution,

specifically tailored to the WT application, with the following purposes: to have a

very ”low footprint” in terms of computational time and memory usage at run time,

and to be easily joined as an add-on for the HBF controller. Such solution is based

on a state trajectory design that, accounting for the system structural property and

physical limits, ensure a suitable reference smoothness and a minimum recovery

time to the nominal steady state after the dip. The optimization problem naturally

stemming from minimum time requirement is solved offline for different boundary

conditions after the dip clearance, and a low-size lookup table and interpolation are

used on-line to get the trajectory corresponding to general post fault scenarios. This

ensures low complexity at run time, and easy combination with state feedback, since

the reference trajectory can be used to generate feedforward actions, and feed the

HBF controller, which in this work is based on pretty standard linearization and

pole placement techniques.

Similar to other works in the literature [42], [43], [44] a two-mass model is adopted

to capture the WT crucial mechanical behavior. The WT mechanical and aerody-

namics models which will be used for control purposes, were detailed in Section 1.3

of the first chapter. The substance of this chapter, published in [76] is structured as

follows: In Section 5.2 the twofold control problem combining the basic HBF objec-

tive based on pole placement and the after-dip recovery management is formulated.

In Section 5.3, first it is shown the system unstable behavior after the line fault, if

just standard state feedback configuration is used. Then, the proposed trajectory

planning is presented in detail. Finally, simulation results, validating the proposed

control strategy, are provided and discussed in Section 5.4. Particular attention will

be paid to parametric uncertainties, which could affect the model based trajectory

planning. Section 5.5 ends the chapter with some final remarks.
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5.2 Problem Statement and Objectives

As mentioned before, recent grid codes specify LVRT capability for WECSs, de-

manding the system to remain connected to the grid for classes of faults charac-

terized in terms of voltage reduction and duration. German E.ON Netz regulation

requiring WT to ride through 85% voltage shortage lasting 625ms [77], and Amer-

ican FERC asking to face a 100% voltage drop lasting for a maximum of 9 cycles

(around 150ms) [31], were two examples detailed in the Ch.2. However, the restor-

ing of grid voltage nominal value, usually lasts longer (around 1s [73]). From a

power exchange perspective, it is profitable to limit the generator power injection,

i.e. keeping the torque low, until the fault effects have completely vanished, and

the grid is back to a stable condition. Therefore, in this chapter a worst case 100%

voltage drop, completely cleared after 1s will be considered for the controller design.

In this context, the control objectives can be summarized as:

1. Assuming full state information, establish a HBF controller, based on lin-

earization about the current working point and standard pole placement, to

impose fast enough real poles, suppressing torsional oscillations, and ensuring

safe performance of the drivetrain to increase the WT life time.

2. Whenever a grid fault occurs, guarantee the minimum time after-dip recovery,

preserving HBF controller, without violating torque constraints.

Although both generator torque Tg and pitch angle β can be used to control modern

variable speed variable pitch turbines, the natural control input to achieve the goals

above is Tg, since it can be changed with a high bandwidth compliant with the

oscillations damping requirement. On the other hand, blade pitching requires many

seconds due to the actuation slow dynamics and the blade size. Thus, it is common

to exploit β only for off-nominal or emergence conditions, including an external

feedback loop to ensure reliable and safe turbine operation in any case. Owing to

space constraint the outer control loop design will not be elaborated, focusing on

objectives 1)-2).

As control design guideline, the idea is to start from standard feedback solutions for

objective 1), then add a sort of plug-in unit devoted to objective 2). An additional

requirement is to keep the plug-in unit as light as possible both from computational

burden and memory footprint viewpoints. In this way, the control algorithm can

be easily implemented in medium-end embedded system. For this reason, possible

solutions based on dynamic programming and MPC are avoided, since they would

enforce heavy computational/memory burden.
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5.3 Proposed Control Strategy

The key novel part of the proposed solution is to fulfill objective 2), defined in Sec-

tion 5.2, by plugging a suitable trajectory planning in the system equipped with

the a standard HBF control based on pole placement. Such trajectory planning has

to: ensure feasibility of the reference according to the system structural properties,

comply with the generator torque bound, guarantee a minimum time profile towards

the steady-state pre-fault condition. The last (minimal time) specification implies

an optimization problem has to be solved. Thus, to keep the on-line complexity

low, the trajectory has to be defined offline. However, the system state at the fault

clearance point, which clearly would be the starting point of the state reference,

depends on the dip nature and cannot be fully known in advance. Similar reasoning

holds for the final point of the reference trajectory, which, being the optimal power

point, clearly depends on the current wind speed. To manage this issue, a set of

suitable trajectories, corresponding to some anticipated reasonable initial states and

wind speed values, is computed offline. Then, in order to generate trajectories for

the actual after fault conditions, interpolation among the offline computed set can

be used at run time. Indeed, it will be shown later how some features of the system

can be exploited to preserves feasibility, i.e. the interpolated signals do not cause

any torque saturation.

In the following, the HBF state feedback controller is designed first, then the tra-

jectory planning is presented.

5.3.1 State Feedback Controller

In order to deal with objective 1) in Section 5.2 a simple linear state feedback

solution is considered. To this aim, system (1.25) can be linearized about its steady

state defined by:

θ∗dss =
Tw(ω∗

tss,β,Vw)

Ks
,

ω∗

gss

n
= ω∗

tss = ωt−opt(Vw), T
∗
gss =

Ksθ∗dss
n

. (5.1)

Clearly ωt−opt varies with the current wind speed, however, a set of working condi-

tions can be considered and gain-scheduling techniques can be applied to adapt the

state feedback law to the actual system conditions.1 Now, defining the error signals

θ̃d = θd − θ∗dss, ω̃t = ωt − ω∗
tss, ω̃g = ωg − ω∗

gss, and augmenting the system with the

integral term ω̃tI =
∫
ωt−ω∗

tss, in order to provide some robustness and ensuring the

optimal turbine speed is reached in face of parametric uncertainties, the augmented

1From a practical viewpoint state feedback matrix could be stored in a lookup table and inter-

polation can be used similarly to what mentioned for the trajectory planning.
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system linearized error dynamics can be expressed as
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whereK∗
w = ∂Tw

∂ωt
|ω∗

tss,Vw,β and ∆Tg = Tg−T ∗
gss. Then, a state feedback law ∆Tg = Kx̃

can be designed for the system above, ensuring the closed loop state matrix A+BK

is Hurwitz and with real eigenvalues providing the required bandwidth to steer

the system towards the desired equilibrium, and strongly damp vibrations in the

drivetrain2.

5.3.2 Trajectory Planning

Before presenting the trajectory planning, its necessity is proven by showing some

simulations, applying the above-considered standard feedback controller which is

switched off during the fault to reset the torque command, and restored right after

the dip clearance. The HBF controller has been applied to a 0.5MW variable speed

horizontal axis WT characterized by the parameters reported in Tab. A.3, leading

to a resonance frequency of about 1Hz. A constant wind speed Vw = 10m/s is

emulated, for which the considered turbine can extract the maximum wind energy

without torque/power saturation, thus with no pitching (β = 0). For this nominal

condition, the state feedback matrix K = [−0.047 − 0.256− 0.0008− 2.619]× 1010

has been designed according to what presented in Subsection 5.3.1, placing the

linearized system poles at [−5 − 6 − 7 − 9]Hz (i.e. at least five times faster w.r.t.

the drivetrain resonant frequency). With the system at the corresponding optimal

equilibrium (with ωt−opt = 3.329 rad/s) a symmetric fault type A according to

ABC classification detailed in Section 2.2, causing voltage drop in the grid, has

been reproduced, to evaluate the performance of the controller against such kind of

events. In Fig. 2.1 a typical power systems voltage dip was portrayed, consisting

of three different stages: falling, stabilizing, and recovering [33]. In the simulation

tests, a 100% voltage amplitude reduction has been emulated, with 20ms for falling

and 1.02s for the stabilizing and recovering stages.

Fig. 5.1 show results under the aforementioned state feedback control law, saturated

as |T ∗
g + Kx̃| ≤ Tgmax = 2Tgnom (rated value Tgnom is reported in Tab. A.3) in

2 Clearly, the electrical dynamics bandwidth of the controlled generator has to be considered in

setting the above poles, since the Tg command has to be effectively tracked by the actual generator

torque.
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order to comply with generator torque limits. As expected (see Section 5.1), at

the end of the dip (lasting from t = 5s to 6.02s), when the HBF controller is

switched on again, a large generator torque, beyond the system limit, is requested,

therefore heavy saturation occurs (see Fig. 5.1(c)). As a consequence all the turbine

states experience large unstable oscillations, as shown in Figs. 5.1 (a),(b),(d). This

behavior gives evidence of the need for suitable countermeasures to explicitly handle

after fault recovery under control input limitations.

As introduced at the beginning of this Section, the main idea is to design a suitable

state reference trajectory, ensuring the system is steered back to the optimal steady

state point in minimum time and with no torque constraint violation. In this respect,

a feedforward term, based on the defined reference, will be joined (summed) to the

HBF controller to achieve tracking of the trajectory.

The first step for state trajectory design is a suitable elaboration of system (1.25).

To this aim, following a systems theory based approach, the ensuing procedure will

be carried out:

• Considering the turbine speed as the controlled output variable (complying

with the mentioned objectives), model (1.25) will be represented in standard

normal form [40]. This allow to highlight, the “smoothness level” a state tra-

jectory needs to have to be feasible for the system. By functional controllabil-

ity arguments, we define smoothness level as the number of finite derivatives

which is needed for a trajectory to be feasible, according to the given sys-

tem dynamics and assuming a possibly discontinuous, arbitrarily large, but

bounded input (in this case the generator torque);

• With the results of the item above at hand, the torque command which is

needed to steer the system along a given feasible trajectory can be computed

by left-inverting the system in normal form.

Starting with the first point, it is easy to verify that system (1.25) has relative degree

two from input Tg to output ωt. Then, selecting turbine speed and its derivative as

states, and leaving θd unchanged to complete the new state vector, the considered

system normal form can be written as (5.3).
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Figure 5.1: Results for the studied system equipped with the constrained HBF con-

troller under 100% line voltage dip lasting for 1s with 10m/s wind speed.

(a) Turbine speed (solid) and reference (dashed). (b) Generator speed

(solid) and reference (dashed). (c) Generator torque (solid) and satu-

ration limits (dashed). (d) Low speed shaft displacement (solid), and

reference (dashed).

Given the relative degree of the system, the minimum smoothness level for a feasible

trajectory has to be set accordingly to 2. Indeed, looking at (5.3) it is clear how, as

Tg directly affect ω̈t, the speed reference must have finite second order time derivative

if tracking with a bounded torque has to be ensured.

However, it is further to notice that system (1.25) relative degree depends on the

damping coefficient Ds, which is physically related to mechanical friction. Ideally,

Ds should be null and, in this case, it can be verified how the system relative degree

increases to 3, and so does the minimum smoothness level requested for a feasible

trajectory. In practice, friction is usually quite small and uncertain, then, from now

on, a smoothness level 3 will be adopted for trajectory design, even if the model in

(5.3) with Ds 6= 0 will be considered. This choice guarantees a smooth behavior of

the system even for very small friction coefficients3, and allow to exploit an additional

degree of freedom (the reference second order derivative) in the problem, as it will

be clarified in the following.

In the light of these considerations, among all the possible choices, polynomials are

3It can be verified that, given a generic trajectory with smoothness degree of 3, and the corre-

sponding torque command, computed with the relative degree 2 model, for Ds → 0, converge to

the one computed with the relative degree 3 model, having Ds = 0. Owing to space limits, this

analysis is not reported.
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selected as trajectory candidates, due to their “easy-to-manage structure”. In fact,

to build a speed trajectory connecting two arbitrary points with smoothness level

3, a fifth order polynomial, with 6 tunable coefficients can be used, as illustrated in

the following

ω∗
t = a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + a5t
5

ω̇∗
t = a1 + 2a2t+ 3a3t

2 + 4a3t
3 + 5a4t

4

ω̈∗
t = 2a2 + 6a3t+ 12a4t

2 + 20a5t
3.

(5.4)

Coefficients ai, i = 0, . . . , 5 can then be selected to design a speed reference recov-

ering the turbine optimal working point, starting from the condition after the dip,

in minimum time and complying with the generator torque limitations. This point

will be further elaborated in next paragraph, by posing a constrained optimization

problem.

To this aim, it is profitable to explicitly express the torque command required to

track a feasible trajectory. As mentioned this can be easily obtained by inverting

system (5.3), i.e.

T ∗
g = −Jt

n
ω̇∗
t +

Tw(ω∗

t ,Vw,β)

n
− nJgω̇

∗
t +

nJg
Ds

K∗
wω̇

∗
t+

+ nJgKs

Ds

(
Jtω̇∗

t−Ksθ∗d−Tw(ω∗

t ,Vw,β)

Ds

)

− nJgJt
Ds

ω̈∗
t

(5.5)

with K∗
w = ∂Tw

∂ωt
|ω∗

t ,Vw,β, while the zero dynamic reference trajectory θ∗d can be ob-

tained integrating the third ODE in (5.3), that is by solving4

θ̇∗d =
Jtω̇

∗
t −Ksθ

∗
d − Tw(ω

∗
t , Vw, β)

Ds

. (5.6)

In this way the torque constraint can be straightforwardly expressed as a function

of the speed reference trajectories and its derivatives. Furthermore, T ∗
g in (5.5) can

be used as a feedforward action to ensure tracking of the time varying trajectory,

replacing the steady-state value defined in (5.1). Similarly ω∗
t and θ∗d can be used

to feed the state feedback part, along with a time varying reference for the original

state ωg which, by (1.25) can be expressed as ω∗
g = n

(

ω∗
t + θ̇∗d

)

.

5.3.3 Optimization Problem

Having set the general structure of the trajectory as (5.4), and the corresponding

feedforward torque command and state trajectories (for Ds 6= 0), it remains to

be defined an optimization problem, aimed at minimizing the time to recover the

original speed (and state) after the dip is cleared. Minimization has to be performed

under the following constraints:

4It is worth noting that, in (5.6), as Ds → 0, by Singular Perturbation arguments, it results

θd → 1

Ks

(Jtω̇
∗

t − Tw(ω
∗

t , Vw, β)), which is the result of the model with Ds = 0 and relative degree

equal to 3.
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1. Initial state: Assumed to be known by measuring the turbine state, just after

the dip clearance;

2. Final state: The desired trajectory must lead to the pre-fault (assuming the

average wind speed has not changed during the fault, otherwise the corre-

sponding optimal value can be set) optimal speed ωt−opt(Vw) in the steady

state condition ω̇t−opt = 0, ω̈t−opt = 0, in order to guarantee the system settle-

ment at the final point;

3. Torque constraint: The generator torque needed to achieve tracking, has to be

inside the bounds along the entire trajectory.

Clearly, the initial and final states constraints can be explicated only at run-time,

as they depend on the particular dip realization and current wind speed. Here this

issue is neglected and assuming the initial and final conditions are given, the basic

optimization strategy is formulated. In the next paragraph it will be shown how to

exploit the basic problem solution to arrange an offline management of the a-priori

unknown initial and final conditions. As regards the feasible generator torque bound,

as usual the feedforward term in (5.5) will be considered for computing the control

effort corresponding to the reference design. Thus, 10% margin is saved w.r.t. the

limit Tgmax, in order to leave room for the state feedback action and compensation

of parametric uncertainties.

Bearing in mind these considerations, the optimization problem is defined as fol-

lows. Assuming known initial points of ωt, ω̇t, and final points of ωt, ω̇t and ω̈t,

while letting the initial value of ω̈t as a free decision variable, minimize the time tf

to move from initial to final point with a fifth order polynomial turbine speed shape,

satisfying the generator torque constraints.

Note that the initial value for ω̇t can be retrieved from the turbine original state

variables ωt, ωm, θd (assumed known from measurements), and dynamics (5.6).

Now, recalling the reasoning of Subsection 5.3.2, the following mathematical formu-

lation is provided

min
tf ,ω̈t(0),a0,a1,a2,a3,a4,a5

tf , subject to

ω∗
t (0) = ωt(0) = a0, ω̇

∗
t (0) = ω̇t(0) = a1, ω̈t(0) = 2a2

a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f = ω∗

t (tf) = ωt−opt

a1 + 2a2tf + 3a3t
2
f + 4a3t

3
f + 5a4t

4
f = ω̇∗

t (tf ) = ω̇t−opt = 0

2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f = ω̈∗

t (tf) = ω̈t−opt = 0

− 0.9Tgmax ≤ T ∗
g (t) ≤ 0.9Tgmax∀t ∈ [0, tf ]

with T ∗
g as in (5.5) and θ∗d given by (5.6)

(5.7)
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The first set of equalities in (5.7) expresses the initial and final point constraint

according to the polynomial trajectory structure defined in (5.4). The initial time

has been set to zero for the sake of simplicity and without loss of generality. The

last two constraints express the torque bound and the shaft torsional displacement

as a function of turbine speed reference and its derivatives, according to model

(5.3). By the problem structure (eight decision variable and six algebraic equality

constraints) it can be verified that there are two degrees of freedom to be exploited

for time minimization, the time interval tf itself, and the initial value of the turbine

speed second derivative ω̈∗
t (0), or, equivalently, coefficient a2. Still the problem

is nonlinear and non convex due to the products between a2 and tf and torque

expression (5.5). However, given the limited number of true decision variables, it

can be effectively solved numerically by fmincon, given in Matlab framework.

5.3.4 Offline Solution of the Proposed Optimization Prob-

lem

As stated before, we need to take into account the fact that, while the model data are

a-priori known, even if with some uncertainty, the initial and final states are available

only at runtime, the first one will mainly depend on the particular dip realization,

while the second will stem from the current wind speed, giving the optimal turbine

speed for MPPT. Thus, in principle, the trajectory planning should be executed at

run time, right after the dip clearance. However, this would require a considerable

computational effort to solve problem (5.7) on-line. To avoid this drawback, the

key idea is to solve the problem offline for a meaningful set of boundary conditions,

then use suitable interpolation to define the run-time state reference from the offline

trajectories.

In order to reduce the dimensions of the boundary conditions to be considered,

as a first step, the dependency on the final state is removed by reformulating the

dynamics (5.3) in terms of displacement with respect the final state. In particular,

knowing the average wind speed Vw, just after the dip clearance, i.e. at t = 0,

and assuming it constant in the following seconds, the final state corresponding to

MPPT optimal turbine speed can be computed. Namely, defining ωt−opt(Vw) as

the turbine speed giving the maximum power for a given average wind velocity5,

Vw, and Tw−opt(Vw) as the corresponding torque, the final state for the trajectory

design will be ωt(tf ) = ωt−opt(Vw), ω̇t(tf) = 0, θd(tf) = −Tw−opt(Vw)/Ks. Therefore,

introducing ω̄t = ωt − ωt−opt(Vw), ˙̄ωt = ω̇t, θ̄d = θd + Tw−opt(Vw)/Ks, dynamics (5.3)

can be rewritten as in (5.8), and the optimal problem (5.7) can be reformulated by

replacing ωt and its derivatives with ω̄t and its derivatives, leading to a fixed end

5A pitch angle β = 0 is assumed from now on, without loss of generality.
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condition equal to zero for any wind speed.
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Actually, the new optimization problem in displacement coordinates w.r.t. the final

state is not completely independent of the absolute final state, because of the non-

linear terms in (5.8). Nevertheless, the following effective linear approximations can

be adopted:
∂Tw

∂ωt
|ωt,Vw,β ≈ KwM = max

Vw

|∂Tw

∂ωt
|ωt−opt(Vw),Vw

Tw(wt, Vw)− Tw−opt(Vw) ≈ KwM ω̄t

(5.9)

Hence, the resulting optimization problem is fully independent of the final condition,

and with linear torque bound stemming from (5.8), (5.9). However, a meaningful

set of initial conditions (reformulated as displacements w.r.t. final state) need to

be defined for computing off-line solutions. To this purpose, an admissible range

for the initial condition of the three state components ω̄t, ω̄g = ωg − nωt−opt(Vw),

θ̄d need to be defined. Starting from the shaft torsional displacement, a reason-

able choice is to select [θ̄dmin, θ̄dmax] =
[

−1.5nTgnom

Ks
, 1.5nTgnom

Ks

]

, that is a consid-

erable variation related to the steady-state angular displacement corresponding to

the generator nominal torque. For what concerns the turbine and generator an-

gular speed the intervals [ω̄t−min, ω̄t−max] = [0.7∆ωt − ∆ωo, 1.3∆ωt + ∆ωo], and

[ω̄g−min, ω̄g−max] = [nω̄t−min, nω̄t−max]. Where ∆ωt is defined as the speed variations

(increases) corresponding to setting Tg to zero and assuming a constant wind torque

Tw−opt(VwM), with VwM the maximum admissible wind speed, to push the turbine

for the entire nominal line fault defined in Section 5.2. This is an approximated worst

case scenario (Tw actually decreases when ωt > ωt−opt) allowing to easily compute

the speed variations from dynamics (1.25). Then a ±30% change of such variation

is considered to construct the angular speeds ranges, in order to deal with lighter

and harsher real dips. In addition, ∆ωo takes into account the speed variations due

to conversion of the spring potential energy stored in the drivetrain with an initial

torsion equal to θ̄dmax.

All that being given, it has to be defined how many points to consider within the

specified states intervals. A suitable trade-off between memory request and perfor-

mance has to be sought; obviously considering a fine grid of points allows to reduce
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the optimality gap of interpolation w.r.t. on-line optimization, on the other hand a

large number of points (then offline computed trajectories) implies a larger look up

table which has to be stored on board of the turbine control hardware. In this work,

a good compromise has been found by taking five points for each state variable, as

it will be assessed in next Section simulation tests. However, the main issue is to

guarantee that interpolation of offline trajectories provides feasible solutions, that is

the corresponding torque command is inside the admissible bounds. Linearity of the

constraints in the optimization problem obtained by applying (5.9) in (5.8) can be

effectively exploited for such issue. Indeed, by linearity, the feasibility is ensured for

any reference obtained by convex combination of the offline computed trajectories,

that is for any initial condition belonging to the convex hull of the considered state

range. As a result, feasibility is preserved no matter what grid granularity is chosen.

Then, grid resolution can be tuned only for obtaining interpolated solutions which

are not too suboptimal w.r.t. the on-line results.

In addition, it is worth noting that, beside the initial state points defined above, one

additional point can be introduced, the one characterized by ω̄t(0) = 0, ω̄g(0) = 0

and θ̄d(0) = 0. Clearly for such point the optimal trajectory will be identically null.

Then, this can be easily exploited to generate interpolated trajectories for any initial

condition characterized by ω̄t(0) < ω̄t−min or ω̄g(0) < nω̄t−min.

5.4 Simulation Results

To assess the quality of the proposed solution, the considered benchmark WT,

equipped with the proposed controller, combining the HBF controller and a feed-

forward term depending on the fifth order polynomial speed reference design as in

(5.5) has been tested under the same wind speed and faulty line voltage conditions

reported in Subsection 5.3.2.

Fig. 5.2 shows results corresponding to the on-line optimization solution, tailored to

the system conditions after the simulated dip, which for the sake of completeness,

are here reported: ωt(tdip−end) = 3.62rad/s, ωg(tdip−end = 362.8rad/s, θd(tdip−end) =

−0.07rad. Using such values as initial conditions to solve problem (5.7) yields

tf = 2.51s, ω̈∗
t (0) = 0.058rad/s3, and a0 = 3.62, a1 = −0.0234, a2 = 0.029, a3 =

−0.194, a4 = 0.11, a5 = −0.017. As illustrated in Fig.5.2 (a), the trajectory is

perfectly tracked, and steers the WT to the optimal steady-state condition in short

time, while keeping generator torque within constraints (see Fig.5.2 (b)). Looking at

the torque and generator speed waveforms in Fig. 5.2 (b), (c) respectively, it seems

discontinuity in the first derivative arises at the trajectory end point. Actually, the

required smoothness is preserved also around that points, only the final decrease to

steady state is fast, and cannot be clearly observed at the current plot time scale.

83



Chapter 5. TRAJECTORY DESIGN FOR AFTER-DIP RESTORE IN WIND TURBINES

4 6 8 10 12
3.3
3.4
3.5
3.6
3.7

(a) time [s]

(s
)
ω
t,
(d
)
ω
∗ t
[r
ad

/s
]

4 6 8 10 12
320
335
350
365
380

(b) time [s]

(s
)
ω
g
,
(d
)
ω
∗ g
[r
ad

/s
]

4 6 8 10 12
-2.4
-1.2

0
1.2
2.4

(c) time [s]

(s
)
T
g
,
(d
)
T
g
m
a
x
[k
N
.m

]

4 6 8 10 12
-0.2
-0.1

0
0.1
0.2

(d) time [s]

(s
)
θ d
,
(d
)
θ∗ d

[r
ad

]

Figure 5.2: Transient results for the studied system equipped with the suboptimal

trajectory planning obtained by interpolation from a look up table at

100% line voltage dip lasting for 1s with nominal wind speed (10m/s).

(a) Turbine speed (solid) and reference (dashed). (b) Generator speed

(solid) and reference (dashed). (c) Generator torque (solid) and satu-

ration limits (dashed). (d) Low speed shaft displacement (solid), and

reference (dashed).
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To validate the interpolation strategy of offline trajectories, obtained according

to the procedure described in Subsection 5.3.4, a look up table has been built

containing the optimization results corresponding to the sets [ω̄t−min, ω̄t−max] =

[0.04, 0.61]rad/s, [ω̄g−min, ω̄g−max] = [4, 61]rad/s, [θ̄d−min, θ̄d−max] = [−0.1, 0.1]rad.

These ranges have been computed according to the guidelines outlined in Subsec-

tion 5.3.4. Each range has been equally spaced into five different points for offline

computation. Fig. 5.3 shows the corresponding simulation results, with interpola-

tion strategy used to deal with the same scenario reported before. The trajectory

parameters obtained by interpolation are: tf = 3.24s, ω̈∗
t (0) = 0.06rad/s3, and,

as a consequence a0 = 3.62, a1 = −0.023, a2 = 0.03, a3 = −0.09, a4 = 0.049,

a5 = −0.005. By this values, and looking at Figs. 5.3 (a),(b),(d), it can be noted

how the performance, in terms recovery time minimality, are not too far for what

can be obtained with an on-line optimization. In addition, thanks to the conserva-

tive linearization of inequality constraints (5.5), torque feasibility is preserved, as

underscored by Fig. 5.3 (c). It is further to remark that, to obtain a feasible trajec-

tory, the zero dynamics reference θ∗d, has been generated on-line by (5.6) using the

actual value of Tw, instead of the interpolation of trajectories based on bound (5.9).

Being the integration of a first order ODE, this does not add significant complexity

to the control unit.

Finally, to investigate robustness of the proposed approach against relevant para-

metric uncertainties, several simulation tests have been carried out, focusing in

particular on friction coefficient Ds and shaft stiffness Ks variations, as these pa-

rameters are typically roughly known in practice. Owing to space limits, results for

one scenario are reported in Fig. 5.4, corresponding to Ds reduced to one third and

Ks to 80% w.r.t. the values reported in Tab. A.3, which have been used for control

design. It can be noted how the integral action of the HBF ensures the optimal

turbine speed is reached (Fig. 5.4 (a)), despite a static error on θd (Fig. 5.4 (d)),

due to the mismatch in Ks. Indeed, thanks to the margin left for the HBF sta-

bilizing and damping action, and the conservative torque bounds linearization, the

after dip recovery is smooth (even if, clearly, perfect tracking cannot be achieved),

and saturation limits are not hit (see Fig. 5.4 (c)), despite the relevant parametric

uncertainty.

5.5 Conclusion

In this chapter a simple, low complexity control solution has been presented for

what concerns the post grid fault recovery of wind turbines. In this respect, a

standard high bandwidth state feedback controller, devoted to achieve WT nominal

objectives, such as speed tracking and damping injection to tame shaft mechanical
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Figure 5.3: Transient results for the studied system equipped with the suboptimal

trajectory planning obtained by interpolation from a look up table at

100% line voltage dip lasting for 1s with nominal wind speed (10m/s).

(a) Turbine speed (solid) and reference (dashed). (b) Generator speed

(solid) and reference (dashed). (c) Generator torque (solid) and satu-

ration limits (dashed). (d) Low speed shaft displacement (solid), and

reference (dashed).
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Figure 5.4: Transient results for the studied system,equipped with the trajectory

planning obtained by interpolation from a look up table at 100% line

voltage dip lasting for 1s with nominal wind speed (10m/s). −20% and

−66.7% variations w.r.t. nominal values have been implemented for Ks

and Ds, respectively. (a) Turbine speed (solid) and reference (dashed).

(b) Generator speed (solid) and reference (dashed). (c) Generator torque

(solid) and saturation limits (dashed). (d) Low speed shaft displacement

(solid), and reference (dashed).
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vibrations, has been joined to a suitable reference trajectory planning. By functional

controllability arguments and optimization, it has been shown how to design such

unit to guarantee a smooth, minimum time, and feasible transition back to the

turbine optimal equilibrium after the fault has been cleared. Such performance

cannot be achieved with standard linear filters applied to smooth the transients.

Exploiting insights from the system properties, optimization has been shifted offline

in order to preserve low complexity of the run time control algorithm. Simulations

show promising performance, making the solution a potential alternative to more

complex and computationally heavy frameworks such has dynamic programming

and model predictive control.

In future works, on-line filters as the ones of [78] can be considered, even if their usage

is not straightforward in the presented framework, without introducing relevant

conservatisms.

88



Chapter 6

Improved Trajectory Tracking and

LVRT Performance in DFIG-based

Wind Turbines

6.1 Introduction

As mentioned before, DFIG is one of the most popular technologies for wind energy

applications. Indeed, more than 50% of the currently installed Wind Energy Con-

version Systems (WECSs) use this class of electrical machines [4]. Fig.6.1 shows the

configuration of a complete benchmark of a DFIG-based Wind Turbine (WT) sys-

tem, in which stator is connected directly to grid, while rotor is fed by back-to-back

Grid/Rotor Side Converters (GSC/RSC) allowing bidirectional power flow between

the grid and generator rotor side. This topology allows WT variable speed control,

with RSC managing a fraction (around 30%, but depending on slip value) of the

overall generation system power. Thus, RSC has about one third of the size, cost

and losses of a conventional variable-speed drive. It was outlined before that among

the regulations issued within the national grid codes, LVRT capability achievement

for a predefined set of possible grid faults, is one of the most critical requirements.

In this way, well-known American FERC and German E.ON Netz regulations were

exemplified as the base LVRT requirements should be taken into account in con-

trol design. For the voltage dip drawbacks detailed in Ch.2, the most conventional

remedy crowbar protection was checked and it’s corresponding side effects, as well

[27, 32, 79, 22].

To overcome these drawbacks, and endow WECSs with LVRT property, several

strategies have been proposed in the literature [32, 80, 35, 36]. The main contribution

of this chapter to such literature is to limit electromagnetic signals oscillations by

the pure control solution detailed in Ch.3 in combination with a suitably accurate
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tracking of torque and reactive current references throughout the voltage dip.

In this way, improved LVRT performance can be achieved, also for severe faults,

with no additional protection hardware.

The solution is mainly focused on rotor-side control, which is the knob to be used

to obtain the aforementioned properties. In this context, the framework of field-

oriented control (see [13], [11] for applications to DFIG control in nominal scenar-

ios) will serve as the base to design advanced strategies to deal with line faults. For

what regards grid side control, the goal is to regulate the DC-link voltage, briefly

presented here and well-stated in the literature [9]. In this chapter, both RSC

and GSC controls will be implemented and considered, along with power electronic

converters non-idealities, WT and gearbox mechanics, and Maximum Power Point

Tracking (MPPT) algorithm, for validation on a complete WECS benchmark via

detailed simulations. In this context, a feedforward-feedback RSC control unit, first

presented in [50] and detailed in Ch.3 is exploited, assuming rotor currents as the

controlled output variables. As stated before, the feedforward terms are based on

suitable oscillation-free state references which, in turn, are derived from a thoughtful

analysis of the system internal dynamics behavior under line voltage sags. Also the

feedback part designed according to modern saturated control techniques (details

in Ch.3) is utilized again to endow the controller with some robustness, to improve

convergence towards the desired state trajectories, and to further limit oscillations

under faults. Relying on such unit, an additional, novel key point presented here is

an exact, analytical method to convert torque and stator reactive current references

(the typical variables of interest for DFIG-based WT) into the corresponding rotor

currents references. This improves tracking under line faults, with clear benefits on

the system overall behavior under line dips.

 

DFIG

U ω0
, i

1

i*1vT*

i
1

i
2

i2

AC

ACDC

DC

GSCRSC

ig

Slip Rings

Power
Grid

RSC

Control

GSC

Control

u PWMgu PWM2,

C

ωg

ωt

WT
Control

β 

Tw
Tg

vdc

vdc
* i*1v

ig

Voltage 
Dip

Lg

ωg

Vw

iosior

Rg

Figure 6.1: General configuration of the studied DFIG WT system.
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6.2. Control Strategy

The outlines of this chapter which is according to what we have presented in [81],

is structured as follows. In Section 6.2, control objectives and system physical lim-

its are presented. In this way, the Subsection 6.2.3 is devoted to RSC Control in

which the first two parts are dedicated to recalling the trajectory planning and state

feedback designs, which are detailed in Ch.3. Then, in the last part, the analytical

approach for obtaining rotor current references from torque and stator reactive cur-

rent is elaborated, based on the previously obtained oscillation-free zero dynamics

trajectories. Finally, a brief remark of grid side control is given in the Subsection

6.2.3.

Numerical simulation results, obtained using Matlab/Simulink environment, are pre-

sented in Section 6.3 for a 0.5MW DFIG-based WT, to validate the proposed strat-

egy. Some final remarks on the presented solution are discussed in Section 6.4.

6.2 Control Strategy

Here the control strategy, devoted to make DFIG-based wind turbine to cope with

severe voltage faults, is elaborated. First, Maximum Power Point Tracking (MPPT)

and pitch control of the WT is briefly explained. As mentioned in the Introduction,

the focus is put on rotor-side control, which is crucial to achieve proper genera-

tor performance. Then, grid side control which is handled by means of standard

solutions detailed in literature, is briefly recalled.

6.2.1 MPPT and Pitch Control

Extracting the maximum wind power is the main goal in the turbine control process.

If the blade characteristic is accurately known, then the turbine reference speed

maximizing the power captured from the wind can be easily computed as ωt−opt =
λoptVw

Rw
, where, λopt is the value maximizing the coefficient CP for an optimized pitch

angle β1opt (usually β1opt = 0), which can be easily derived by equations similar to

(1.28). Otherwise, the optimal speed reference can be retrieved by Maximum Power

Point Tracking (MPPT) algorithms [82] [83]. In this thesis, the blade aerodynamics

is assumed known.

Whenever generator power/torque saturation is hit (in case of strong wind), then the

torque reference is frozen to the saturation value and the turbine speed is regulated

by the pitch system [33].

The blade pitch angle control is designed to maximize the power extraction of the

wind as well as to prevent over rated power production in high wind conditions. In
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Figure 6.2: Standard two-mass wind turbine model with gearbox.

this thesis, the pitch servo is modeled as:

dβ

dt
=

1

Tβ
(βref − β) (6.1)

The pitch control block is illustrated in Fig. 6.2. When the generator speed in-

creases, the pitch control will be activated to tune the pitch angle in such a way

that the turbine power gets restricted inside the rated values.

6.2.2 Rotor Side Control

As elaborated before, DFIG’s objectives are usually formulated in terms of torque,

and stator-side reactive current reference values1. The corresponding equations are

recalled as follows:

Tm = η2(φ1vi2u − φ1ui2v). (6.2)

Q = −3

2
Ui1v = −3

2
U

[
φ1v − Lmi2v

L1

]

. (6.3)

Hence, the last equation gives:

i1v =
φ1v − Lmi2v

L1
. (6.4)

References on such variables need to be mapped into corresponding trajectories for

the state variables in (1.23), namely rotor currents and stator fluxes. It was also

mentioned that in principle, there are infinite possibilities, as two trajectories must

be converted into four state variables references. However, only two control inputs

are available, thus the state evolution cannot be arbitrarily imposed 2. In addition,

the ensuing constraints, stemming from the machine physical limits, have to be ac-

counted for: rotor current limits, given by RSC power switches ratings, flux linkage

bounds (due to magnetic core saturation), and rotor voltages limitation, again re-

lated to RSC power electronics sizing.

1Tipically, Grid Codes specify LVRT reactive power support capability in terms of capacitive

stator current requirements [33].
2Some dependencies arise, related to the system relative degree with respect to control inputs,

and the form of the corresponding internal dynamics.
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Beside such nominal operation goals, a “graceful behavior” has to be guaranteed

under grid faults, limiting oscillations, particularly for rotor currents, and ensuring

a proper tracking of Tg and i1v set points. To keep the oscillations small, state ref-

erences should be suitably adapted to line voltage disturbances. This will be shown

to be crucial for preventing DFIG’s disconnection during voltage dips. Clearly, a

proper control unit, has to be designed for tracking the aforementioned references.

Here, the problem is tackled as follows: first known rotor current references, related

to torque and reactive power set points, are assumed to design stator flux trajecto-

ries meeting objectives and constraints mentioned before. Based on such references

suitable feedforward control actions are generated. Then, a state feedback unit is

combined to these in order to provide robustness, and further minimize oscillations

under faults, accounting for bounds on control inputs (rotor voltages).

To achieve improved tracking under voltage dips, in 6.2.2, a method to perform

exact mapping from the original torque and reactive power references (assumed to

belong to specific class of functions) to rotor current set points is elaborated. In

Section 6.3, it will be shown how such procedure allows to achieve better torque

accuracy, particularly when abrupt decrease due to line dips is required, making it

a not negligible part of the overall proposed solution.

Trajectory Planning and Feedforward Action Generation

As mentioned above, here known rotor currents references (i∗2u, i
∗
2v) are assumed.

Then, it remains to determine suitable trajectories (φ∗
1u, φ

∗
1v) for stator fluxes, whose

dynamics in (1.23), can be recognized as the system internal ones [40]. Assuming

perfect rotor currents tracking, the corresponding zero dynamics, w.r.t. current

outputs, of system (1.23) reads as the equations (3.7). In the Subsection 3.3.1, it

was explained that for conventionally small α1, the asymptotically stable LTI system

(3.5) shows poorly damped oscillatory modes at −α1 ± jω0. Moreover, the voltage

perturbations enters the dynamics as exogenous input. Hence, the highe sensitivity

of DFIG to voltage dip disturbances can be concluded. Then, in order to get rid of

the solutions with the national oscillations, through the analytical solution of the

mentioned ODEs, the forced steady-state response under inputs (i∗2u, i
∗
2v, U) were

smartly selected. To operatively exploit the analytical solution (3.20), assumptions

on the class of input functions need to be made, in order to bound the number of their

not null time derivatives. In the remainder of this chapter, current references and

the line voltage U will be assumed bounded piece-wise linear signals, i.e. derivatives

from second order on will be assumed null. Details about the kind of torque and

reactive power signals which can be generated with this approximation are given in

paragraph 6.2.2. Summarizing all these reasoning detailed in 3.3.1, the stator flux
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references are selected as:

z∗2u(t) = K1ui
∗
2u +K2ui

∗
2v +K3uU +K4ui̇

∗
2u +K5ui̇

∗
2v +K6uU̇ ,

z∗2v(t) = K1vi
∗
2u +K2vi

∗
2v +K3vU +K4v i̇

∗
2u +K5v i̇

∗
2v +K6vU̇

(6.5)

where all the ”K-coefficients”, depending on system parameters, are reported in

Tab. A.4 in the Appendix. To compute trajectories above, U̇ is needed. For this

purpose, and to estimate the line angle for the u− v frame, a suitable observer will

be adopted3. Finally, based on (6.5), and known current references, the ensuing

feedforward control terms are defined

u2uff = σ2

(
γ2i

∗
2u − (ω0 − ωg)i

∗
2v − α1β2z

∗
2u + β2ωgz

∗
2v + β2U + i̇∗2u

)
,

u2vff = σ2

(
γ2i

∗
2v + (ω0 − ωr)i

∗
2u − α1β2z

∗
2v − β2ωgz

∗
2u + i̇∗2v

)
.

(6.6)

Beside the open loop law above, it can be proved to provide global asymptotic

stability, in order to achieve robustness against parametric uncertainties, and further

tame oscillations during faults, a feedback term needs to be designed. This part is

specified in the next paragraph.

State Feedback Design

In Subsection 3.5.3, it was explained that in order to enrich the transient perfor-

mance of the studied system under voltage dip conditions, the feedforward control

designed based on zero dynamics trajectory planning, was modified as a closed-loop

controller by adding a saturated linear feedback law in the following form:

u2u = u2uff + vu, u2v = u2vff + vv
[

vu

vv

]

︸ ︷︷ ︸

v

= σ(p) =

[

sat(pu)

sat(pv)

]

, p = Kx̃a
(6.7)

where a saturated linear feedback law v on the augmented (with integral terms

on currents) state error x̃a =

[

φ̃1u φ̃1v ĩ2u ĩ2v
︸ ︷︷ ︸

x̃

∫

ĩ2u

∫

ĩ2v
︸ ︷︷ ︸

χ̃

]T

, needs to be tuned to

further limit oscillations during dips. Bounds on v can be determined as vjmax =

u2jmax − u2jffmax, j = u, v where u2jmax are given by RSC ratings and u2jffmax by

upper bounds on the feedforward effort in some worst case scenarios.

By some computations, using (6.6)-(6.7) and (1.23), state feedback design can be

performed on the following linear, input-saturated error dynamics:

˙̃xa = F (t)x̃a +Gσ(Kx̃a), with x̃ = Cx̃a. (6.8)

3Details are not reported here for brevity, the interested reader is referred to [52].
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where F (t) is related to the right autonomous side of (1.23) depending on the

time-varying rotor speed ωg(t). Then, by means of modern saturated feedback

design techniques and differential inclusion arguments to deal with time-varying

systems, matrix K satisfying the aforementioned goals can be obtained by solving

the following optimization problem (see [50] for details):

min
Q=QT>0,δ>0,Y,Z

δ, subject to

CTQC ≤ δInx̃

QF T
k + FkQ +GDiY +GD−

i Z + Y TDiG
T + ZTD−

i G
T < 0,

k = {min,max}, i ∈ [1, 4]
[

Q ZT
j

Zj v2jmax

]

≥ 0 j = u, v, Q− R−1 ≥ 0.

(6.9)

and recovering K as K = Y Q−1.

Reference Mapping for Improved Tracking

As mentioned, beside keeping the oscillations limited, for LVRT it is important to

precisely track the varying torque and capacitive current under line faults. How-

ever, rotor currents are typically steered by means of RSC control. In this part, a

precise mapping from the original torque and reactive current references into the

corresponding currents references (i∗2u, i
∗
2v) is designed and analytically solved, tak-

ing into account the zero dynamics solutions obtained for the desired oscillation-free

trajectories in (6.5). The rationale behind this approach is the following: improved

tracking cannot be achieved without a suitable planning of the system zero dynamics,

otherwise high flux oscillations would arise inducing core saturation and downgrad-

ing the system behavior4. Therefore, the zero dynamics reference planning has to be

preserved. To improve tracking results w.r.t. what in [50] (and commonly applied in

the literature), first-order time derivatives of all the signals involved are considered

leading to a non trivial system of nonlinear equations which is analytically solved.

Starting with torque, assuming a known reference T ∗
g (provided from the MPPT

solution recalled in 6.2.1), by the last equation of (1.23), we can write:

T ∗
g = η2(z

∗
2vi

∗
2u − z∗2ui

∗
2v)

Ṫ ∗
g = η2(ż

∗
2vi

∗
2u + z∗2v i̇

∗
2u − ż∗2ui

∗
2v − z∗2u i̇

∗
2v).

(6.10)

Now, the desired stator flux trajectories obtained in (6.5), and their first-order time

derivatives can be replaced in (6.10) to express the torque set point and its derivative

4See [50] where an example with standard feedback linearisation control is reported to under-

score this fact.
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only as a function of the rotor current references, and line voltage U . Recalling the

hypothesis of piecewise linear rotor currents made to derive references (6.5), and

assuming the same for U (corresponding to a trapezoidal dip shape approximation)

leads to:
ż∗2u = K1u i̇

∗
2u +K2u i̇

∗
2v +K3uU̇ ,

ż∗2v = K∗
1v i̇

∗
2u +K2v i̇

∗
2v +K3vU̇ .

(6.11)

Substituting the expressions above, as well as the zero dynamics trajectories from

(6.5), into (6.10), the equations describing the torque reference and its derivative

based on rotor currents, stator voltage, and their first-order derivatives read as:

− T

η2
+ (K3vU +K6vU̇)i∗2u − (K3uU +K6uU̇)i∗2v +K1vi

∗
2u

2+

+ (K2v −K1u)i
∗
2ui

∗
2v −K2ui

∗
2v

2 +K4vi
∗
2u i̇

∗
2u −K5ui

∗
2v i̇

∗
2v+

−K4ui̇
∗
2ui

∗
2v +K5v i̇

∗
2vi

∗
2u = 0

(6.12)

− Ṫ

η2
+ 2K1v i̇

∗
2ui

∗
2u − 2K2ui̇

∗
2vi

∗
2v + (K2v −K1u)i̇

∗
2ui

∗
2v +K3vU̇ i∗2u+

+ (K2v −K1u)i̇
∗
2vi

∗
2u + (K5v −K4u)i̇

∗
2u i̇

∗
2v +K4v(i̇

∗
2u)

2+

+ (K3vU +K6vU̇)i̇∗2u −K3uU̇ i∗2v − (K3uU +K6uU̇)i̇∗2v−
+K5u(i̇

∗
2v)

2 = 0.

(6.13)

Similar reasoning can be made for what concerns the mapping reactive stator current

reference i∗1v, which, recalling (6.4), can be written as: i∗1v =
z∗2v − Lmi

∗
2v

L1
. Again,

substituting z∗2v according to (6.5), the intended equation for i∗1v is attained as:

−L1i
∗
1v +K3vU +K6vU̇ +K1vi

∗
2u + (K2v − Lm)i

∗
2v+

+K4v i̇
∗
2u +K5v i̇

∗
2v = 0.

(6.14)

Deriving (6.14), the equation expressing i̇∗1v in terms of the unknowns i∗i2u, i
∗
2v, i̇

∗
2u, i̇

∗
2v

is easily obtained:

−L1 i̇
∗
1v +K3vU̇ +K1v i̇

∗
2u + (K2v − Lm)i̇

∗
2v = 0. (6.15)

From the algebraic viewpoint, we have obtained a system of four equations, includ-

ing two second-order non-linear (6.12), (6.13), and two linear ones (6.14), (6.15),

relating the known variables (original references) [T ∗
g , Ṫ

∗
g , i

∗
1v, i̇

∗
1v], with the set of

four unknown variables [i∗2u, i
∗
2v, i̇

∗
2u, i̇

∗
2v] also via the known parameters [U, U̇ ]. In

terms of the class of torque and reactive current signals which can be obtained by

the equations above, it can be shown5 that, assuming piecewise linear rotor cur-

rents, piecewise quadratic functions can be obtained for what concerns torque, due

5Owing to space constraints the mathematical details are omitted.
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to the nonlinear nature of eqs. (6.12), (6.13). While piecewise linear function can

be clearly achieved for what concerns i∗1v. This degree of freedom is sufficient to

generate the typical references arising in DFIG-based WT control application.

For what concerns the system of equations solution, the following simple proce-

dure can be carried out: first, i̇∗2u, i̇
∗
2v in the non-linear equations (6.12), (6.13) are

replaced by the solutions (parametrized in i∗2u, i
∗
2v), of the linear equations (6.14),

(6.15). This way, the torque equation and its first-order derivative are expressed as

quadratic functions of the rotor currents references. This equations can be manip-

ulated with standard procedure6 to obtain a fourth-order equation in one variable

(e.g. i∗2v), defining a Quartic Function, whose roots can be expressed in closed-form

in terms of its coefficients. Obviously, the other variables can be retrieved substitut-

ing back such roots in the equations. From an engineering view point, we are clearly

interested in real valued solutions (the nature of solutions depends on the value that

the coefficients assume at a given instant). In case, there are more than one, the

one providing the minimum Euclidean norm for the rotor current reference vector

is selected. This choice stems from quite obvious energy efficiency considerations:

the less the currents the lower the power dissipation by Joule effect is, and also the

RSC electronics would be less stressed.

It is further to remark that the proposed mapping solution, beside being exact (for

the class of references mentioned before), can be efficiently implemented online, for

each set of the original references T ∗
g and i∗1v, and parameters U , U̇ . Indeed, be-

ing a closed-form solution, no iterative procedure is needed and the computational

burden is reduced to the evaluation of a function providing the roots in terms of

the current coefficients, and the best solution selection, according to the criterion

explained above.

6.2.3 Grid Side Control

The controlled boost converter adopted as Grid Side Converter (GSC) in the back-

to-back PWM driven scheme shown in Fig.6.1, enables DFIG to work in both super

and sub synchronous modes. In super-sync, both rotor and stator windings deliver

power to network, while in sub-sync mode, rotor intakes and stator delivers power

from/to network [7, 8]. The main goal of the grid side control is to keep the DC-link

voltage on the capacitor C inside a prescribed range by exchanging just undistorted

active power with the line grid, regardless the magnitude and direction of the rotor

power [7]. Using the SVO framework, two independent control loops for active (u-

axis) and reactive powers (v-axis) flowing between RSC and GSC can be obtained.

6E.g. combining the equations to eliminate the square terms in one of the two variables, solving

for it, and replacing the roots in one of the two original equation.
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The equation describing the dynamic behavior of the DC-link is expressed as:

C
dVdc

dt
= ios − ior (6.16)

where ios and ior are the DC-link currents of the GSC and RSC, respectively (see Fig.

6.1). Ignoring the power electronic losses, by some basic equations, it can be shown

that ios is proportional to the u-axis current of GSC notated as ig in the Fig. 6.1,

and ior is related to the reactive power of GSC. Again by some simple equations, it

is shown that the DC-link voltage is proportional to the u-axis of ig. In this chapter,

a standard regular asymmetric-sampling, current-regulated PWM converter is used

with the parameters reported in Tab. A.5 in the Appendix. For sake of brevity, the

control details i.e. the standard inner/outer current loops and the corresponding PI

regulators as well as the cascade scheme of the active power loop, widely discussed

in literature, is not repeated here. Hence, the interested readers are referred to [32]

and [7].

6.3 Simulation Results

To validate the proposed strategy, a 0.5MW DFIG-based WT system has been

considered. Mechanical model parameters are reported in Tab. A.3, while the

DFIG coefficients are reported in Tab. A.1. A PWM-driven back-to-back switch-

ing converter, providing GSC and RSC functionalities has been emulated as well,

with parameters of Tab. A.5. For RSC, a discrete time version of controller

(6.7), with saturated feedback terms vu, vv designed according to the LMI-based

procedure outlined in 6.2.2, has been implemented, with sampling time equal to

the PWM period. The following parameters have been considered to numerically

solve problem (6.9): vjmax = u2jmax/2, j = u, v, ωg(t) ∈ [0.7ωnom, 1.3ωnom], with

ωnom = 2π50rad/s representing the synchronous speed of the machine. Initial con-

ditions for x̃a have been assumed to belong to a unit ellipsoid defined by R =

diag(z̃−2
2u , z̃

−2
2v , ĩ

−2
2u , ĩ

−2
2u , χ̃

−2
2u , χ̃

−2
2v ), where z̃2u = 0.25Wb, z̃2v = 0.85Wb, ĩ2u = 100A,

ĩ2v = 100A, χ̃2u = 10As, χ̃2v = 10As have been conservatively set according to track-

ing steps during the voltage sag. The resulting feedback matrix, obtained by solving

(6.9) with these data is K =

[

116.5 −112.8 0.491 −0.001 1.67 0.0005

191.4 49.14 −0.008 0.679 −0.00016 1.57

]

.

While for the GSC, standard decoupled d − q control loops have been applied [7].

Similarly, a discrete version of the observer in [52] has been implemented to get in-

formation about U , U̇ . A symmetric three-phase short-circuit fault at the PCC (as

shown in Fig. 6.1) causing a 100% stator voltage drop lasting for 150ms, has been

emulated, while system operates in the steady-state condition corresponding to nom-

inal 10m/s and high 13m/s wind speed (the latter requiring pitching). In nominal
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condition, the reference torque corresponding to the maximum power point defined

in Section 6.2.1, or the generator rated value in case of high wind speed, is consid-

ered, while null capacitive current is set. When the voltage sag is detected (via the

line observer), the references are changed as follows: T ∗
g is reduced according to the

dip depth, while i∗1v is increased to comply with the grid codes requirements asking

to keep it above 90% of the rated value to sustain the grid voltage [16], [84]. Before

showing the behavior of the system scenarios, we compare, under the aforemen-

tioned dip, the proposed mapping solution, with a steady-state mapping approach,

which assumes constant rotor currents 7. Results are portrayed in Fig. 6.3 for the

steady-state simplified mapping, and 6.4 for the proposed mapping. The torque and

reactive current signals constructed by means of the mapping solutions are denoted

with the accent .̂ By Fig. 6.3, it is clear how ignoring the first-order derivatives of

the rotor currents in the zero dynamics calculations, results in a large u-axis stator

flux trajectory (ẑ∗2u), beyond the machine physical limits (see Fig. 6.3 (g)). As a

consequence, large and inconsistent translated reference torque T̂ ∗
g is obtained (see

Fig. 6.3 (b)). Hence, the steady-state mapping is not suited for dealing with harsh

line faults. Instead, as confirmed by plots in Fig.6.4, references computed with the

mapping solution presented in 6.2.2, accurately track the desired torque and capac-

itive stator current. As can be seen in Fig.6.4 (e), in contrast to the steady-state

mapping, ẑ∗2u is reasonably inside the machine’s physical constraints and the cor-

responding torque reference T̂ ∗
g computed through the mapped signals (see Fig.6.4

(a)), matches perfectly the desired torque reference T ∗
g (see Fig.6.3 (a)). Therefore,

the importance of the proposed improved mapping solution is underscored. Thus, in

the following simulations, the proposed mapping is used to evaluate the overall sys-

tem response to the voltage dip. Fig.6.5 illustrates results for the system operating

with 10m/s wind speed, while facing the above-introduced grid fault. The oscilla-

tions of all the state variables are generally well below the system limits (provided

in Tab. A.1), as highlighted in Figs. 6.5 (a)-(f)). Fleeting spikes arise in the rotor

current u-component (due to the slight delay in dip detection via the observer), still

they are inside the peak bound for RSC electronics8. Moreover, they quickly vanish

to the desired references, as well as the other state variables. Note that the feedback

action causes saturation of the control inputs multiple times during the dip (Fig. 6.5

(g)), however, since saturation is explicitly considered in designing the state feed-

back part, a graceful behavior of the system is maintained 9. Accurate tracking of

7In this case, coefficients K4u, K5u, K4v, K5v in (6.5) are set to zero, and rotor currents are

computed solving a standard second-order quadratic equation.
8 Usually two times the rotor current nominal value.
9It is worth noting that, due to some conservatism in the feedback part saturation bounds (half

of the control effort is constantly preserved for the feedforward terms), the available rotor voltage

range is not fully exploited.
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Figure 6.3: Translated references by simplified mapping solution for the system un-

der 100% voltage dip lasting for 150ms.

the electromagnetic torque and reactive current references is achieved thanks to the

proposed mapping. The improved mapping also has positive effects in smoothing

the system transient and the residual oscillations at the dip start, which are related

to the fact that the actual dip shape does not perfectly fit the trapezoidal approxi-

mation adopted for calculating references in (6.5) and feedforward terms (6.6).

Fig. 6.5-(p) shows how also the mechanical part of the WT exhibit a smooth, non

oscillatory behavior thanks to the adopted RSC control. Indeed, the turbine speed

smoothly increases within the fault, (due to the torque reduction), then it converges

back to the optimal pre-fault speed, avoiding excitation of the shaft resonance modes.

Indeed, the frequency of residual generator torque oscillations is much higher than
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ẑ∗ 2
v
[W

b
]

Figure 6.4: Translated references by proposed mapping solution for the system un-

der 100% voltage dip lasting for 150ms.
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Figure 6.5: Results of the system with the proposed mapping solution and control

strategy, at normal wind speed (10m/s) under 100% symmetrical voltage

dip lasting for 150ms.
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Figure 6.6: Results of the system with the proposed mapping solution and control

strategy, at high wind speed (13m/s) under 100% symmetrical voltage

dip lasting for 150ms. (a) Generator torque. (b) Stator reactive current.

the drive-train resonant frequency. For what regards the grid side, as a result of the

fast and proper response of the RSC to the dip, the standard GSC control keeps

the transient oscillations of the DC-link voltage (Vdc) sufficiently damped, and the

peak value at 1220V (see Fig. 6.5 (p)), inside the +15% safety margins, w.r.t.

nominal operation value, typically kept when sizing the DC-bus capacitor [33, 80].

This confirms that the proposed approach can be profitably exploited for realistic

applications.

Figs.6.6-6.8 depicts the results obtained under the previous test conditions, but for

high wind speed (13m/s). Also in this case, the system response to the grid fault,

ensures the LVRT capability. Similar to the previous test, the currents/fluxes oscil-

lations are efficiently suppressed and proper torque, capacitive current tracking is

achieved. At this wind speed, generator power saturation is hit, thus pitch control

(a standard PI has been used) is activated (see Fig. 6.8 (d)) keeping the speed at

110% of the synchronous value10. During the dip, turbine speed increases as a con-

sequence of torque reduction and the pitch actuation rate limitation, however, the

generator speed is kept below the 130% synchronous speed (Fig. 6.8 (a)). Also in

this scenario, after the dip clearance, the DFIG and WT speeds, turn back smoothly

to the rated values (see Fig. 6.8 (a)-(b)).

6.4 Conclusion

In this chapter, LVRT with improved tracking under grid faults has been achieved

for a full benchmark of a WECS including wind turbine, DFIG, and both rotor

and grid side power electronic converters. The crucial methodological elements to

obtain these performance are an advanced RSC control strategy, minimizing oscil-

lations throughout the voltage dip, and a not trivial mapping relation between the

10For energy efficiency, to keep power bounded to generator nominal value, a little overspeed is

allowed during pitching, so that the generator torque can be reduced [32].
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Figure 6.7: Results of the system with the proposed mapping solution and control

strategy, at high wind speed (13m/s) under 100% symmetrical voltage

dip lasting for 150ms. (a)-(b) Rotor currents. (c)-(d) Zero dynamics

(stator fluxes). (e)-(f) Rotor command voltages.
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Figure 6.8: Results of the system with the proposed mapping solution and control

strategy, at high wind speed (13m/s) under 100% symmetrical voltage

dip lasting for 150ms. (a) Generator angular speed. (b) Turbine angular

speed. (c) DC-link voltage. (d) Pitch angle.

DFIG-based WT standard output variables (generator torque and capacitive stator

currents during faults) and the rotor currents which are directly steered by the RSC.

Validation via realistic numerical tests show promising results, confirming that the

strategy can handle harsh grid faults without the intervention of additional pro-

tection hardware, thus reducing system cost and fully guaranteeing LVRT features

as specified in recent Grid Codes. Despite the methodological sophistication, the

overall control algorithm and mapping strategy are easy-to-implement on embed-

ded computational platforms, as no heavy computation (e.g. optimization, iterative

algorithms) is required on-line.
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Chapter 7

Conclusions

This thesis focused on Low Voltage Ride Through capability of DFIG-based Wind

Turbine system. In this way, a precise reliable modeling was firstly taken into

account. Starting from the three-phase abc model of DFIG, and briefly describ-

ing it’s two-axes stationary model, the synchronously-rotating Stator Voltage Ori-

ented reference frame was finally selected for DFIG modeling elaboration, while

the standard two-mass model for WT was considered. In the next pace, the most

frequent power system voltage dips were introduced and classified into two main

balanced/symmetric and unbalance/asymmetric sections. Then their consequent

drawbacks on DFIG WT system and the classic remedy as crowbar protection was

described. In the following, the necessity of adopting advanced control strategies to

provide the requirements asked by modern national grid codes in order to substan-

tiate the LVRT capability, was outlined.

After recognizing the goal, in the next chapters, control solutions suitably planned

for the corresponding threats were discussed. Two conventional balanced three-

phase and unbalanced single-phase to ground voltage dips were considered. Study-

ing the DFIG’s internal dynamics is a key solution for control design in this thesis.

Assuming rotor currents as the output variables to be controlled, the Brunovsky

form of the system dynamics was utilized, in order to clearly analyze the zero dy-

namics, driven by the line voltage and the rotor current references. In the light of

analytical solutions for the zero dynamics ODEs based on by part integration and

Sylvester equations, smart selection of initial internal states, made the way of having

oscillation-free response and consequently smooth enough reference trajectory de-

sign for internal dynamics. This trajectory was the base of feedforward action plan

in a closed loop control scheme whose state feedback part was designed according

to saturated control techniques to further limit the unpleasant oscillations related

to the poorly-damped oscillatory natural dynamics. To do this, an LMI-constrained

convex optimization problem was defined to minimize the oscillations under voltage
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dips.

After ensuring the graceful performance of DFIG under both severe balanced and

unbalanced voltage sags proved by realistic simulation tests, the mechanical vibra-

tion of the WT was under study. It was shown that the increased generator speed

due to the usual torque decline strategy under the voltage dip, needs to be smoothly

returned to it’s pre-fault steady-state condition by smart control strategies, other-

wise leads to generator torque limit violation and undamped mechanical oscillations

in the drive train. An offline optimization problem solved for different boundary con-

ditions after the dip clearance and a low-size lookup table and interpolation were

used on-line to get the smooth minimum-time trajectory corresponding to general

post fault scenarios. This control strategy was also suitable enough to be easily

joined as an add-on into the conventional High Pass Filter controller.

The last chapter was dedicated to install a full benchmark of the DFIG WT system

including both RSC and GSC controllers, and PWM-driven back-to-back switching

converters. Meanwhile, a precise mapping system converting the DFIG’s conven-

tional references of torque and stator-side reactive current into the corresponding

reference rotor currents was elaborated and analytically solved. The simulation re-

sults proved the effectiveness of the mapping system in accurate reference tracking

achievement.

From all above-mentioned parts, it can be briefly concluded that the main contribu-

tion of this thesis is full LVRT capability achievement for DFIG WT system relying

on pure control solutions and avoid imposing any additional hardware to the system.

This aspect makes our solution suitable enough for equipping the currently installed

systems with LVRT capability only by adopting some add-on control parts.

In the future, connecting the DFIG WT system into the power network through

compensated transmission lines will accomplish its comprehensive study. As re-

gards the compensation level, the consequent Sub-Synchronous Control Interaction

(SSSI) should be also taken into account in control design procedure. In the corre-

sponding literature, eigenvalue analysis based on linearized system has usually been

exploited in order to obtain the participation factor of each state variable for sub-

synchronous unstable modes and the sensitivity of system to all the proportional

and integral parameters of RSC and GSC controllers[85].
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Appendix A

System Parameters

The tables below give the parameters of the studied system:

Table A.1: DFIG parameters reported to the stator-side, tested under balanced volt-

age dips.

DFIG rated power [MW ] 0.5

DFIG rated torque Tg [Nm] 1000

DFIG rated RMS voltage [V] 380

DFIG rated RMS current [A] 760

RSC rated RMS voltage [V] 265

RSC rated RMS current [A] 780

Stator resistance R1 [Ω] 0.0073

Stator inductance L1 [H] 0.0126

Rotor resistance R2 [Ω] 0.0073

Rotor inductance L2 [H] 0.01255

Mutual inductance Lm [H] 0.01218

Number of pole pairs np 2

DFIG inertia Jg = 2Hg [kgm2] 4.5

108



Table A.2: DFIG parameters reported to the stator-side, tested under unbalanced

voltage dips.

DFIG nominal power [MVA] 1.67

System frequency [Hz] 50

DFIG rated stator voltage [V] 690

DFIG rated stator current [A] 1105

DFIG rated rotor current [A] 476

Number of pole pairs n 2

Stator/Rotor turn ratio 1 : 3

Stator resistance R1 [p.u.] 0.007

Stator inductance L1 [p.u.] 3.071

Rotor resistance R2 [p.u.] 0.009

Rotor inductance L2 [p.u.] 3.056

Mutual inductance Lm [p.u.] 2.9

Rotational inertia constant H [s] 4.5

Table A.3: Wind turbine parameters.

Turbine rated power [MW ] 0.5

Generator rated torque Tgnom [Nm] 1000

Turbine inertia Jt = 2Ht [kgm2] 2.70 × 105

Generator inertia Jg [kgm2] 4.5

Shaft stiffness coefficient Ks [Nm/rad] 13700

Shaft damping coefficient Ds [Nm/rad/s] 275

Gearbox coefficient n 100

Blades radius Rw [m] 19

Air density ρ [kg/m3] 1.225

Table A.4: Zero dynamics trajectories’ coefficients.

K1u =
α
2
1
Lm

M
K2u =

α1ω0Lm

M
K3u = −

ω0

M

K4u = −
Nα1Lm

M2
K5u = −

2α
2
1
ω0Lm

M2
K6u = −

N

M2

K1v = −

α1ω0Lm

M
K2v =

α
2
1
Lm

M
K3v = −

ω0

M

K4v =
2α

2
1
ω0Lm

M2
K5v = −

Nα1Lm

M2
K6v =

2α1ω0

M2

M = α2

1
+ ω2

0
N = α2

1
− ω2

0
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Chapter A. SYSTEM PARAMETERS

Table A.5: Converters’ parameters.

DC-link capacitor C [F ] 0.06

DC-link rated voltage Vdc [V ] 1200

Resistance of the grid side inductor Rg [Ω] 0.866× 10−3

Inductance of the grid side inductor Lg [H] 0.0866

PWM switching frequency [Hz] 2.5× 103
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