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Abstract 

 

Consumer demand for minimally processed, and ready-to-eat foods with a reduced content of 

synthetic preservatives has stimulated the research of alternative preservation strategies. 

Essential oils (EOs) or their components represent one of the most promising natural feasible 

alternatives to improve food safety, shelf-life and quality. Although their antimicrobial properties 

are well documented few and fragmented are the information about their mechanisms of action, 

cellular targets and on the stress response strategies of microorganisms after the exposure to such 

compounds. In this framework, the main aim of the PhD project was to investigate on the effects 

of one hour exposure to sublethal concentrations of selected natural antimicrobials, such as citral, 

carvacrol, (E)-2-hexenal and thyme EO, on the food-borne pathogens Listeria monocytogenes Scott 

A and Escherichia coli K12 MG1655. The action mechanisms of the natural antimicrobials and the 

cellular targets were studied through multiple approaches able to give information on cell 

morphological, physiological, tracriptome and proteome changes. In particular, the transcriptome 

of L. monocytogenes Scott A was studied  by RT-qPCR on a pool of gene representative of different 

metabolisms: energetic, ferric uptake, stress response, gene transcription, cell division, virulence, 

motility, while the proteome effects were determined by bi‐dimensional electrophoresis (2DE). By 

contrast, the transcriptome changes on Escherichia coli K12 MG1655 were evaluated using the 

microarray technology. In addition, for both the  microbial strains the effects on the membrane 

fatty acid profiles were studied using GC/MS approach while single cell responses to the one hour 

exposure to natural antimicrobials of the whole populations were studied by flow cytometry. 

Finally the antimicrobial effect of (E)-2-hexenal, in combination with high pressure 

homogenization or traditional thermal treatments was verified in a real food system, i.e. apple 

juice, deliberately inoculated with spoilage and pathogenic microorganisms including pathogens 

Listeria monocytogenes Scott A and Escherichia coli K12 MG1655.  

The results obtained allowed to define for each strain and each antimicrobial the cell targets and 

the response mechanism, respectively.  The use of the different multi-parametric approaches 

provided useful information on citral, carvacrol, (E)-2-hexenal and thyme EO action mechanisms 

on microbial cell targets as well as to elucidate the behavior and the stress response strategies 

used by  Listeria monocytogenes Scott A and  Escherichia coli K12 MG1655 after the one hour 

exposure to such natural antimicrobials. The validation in apple juice allowed to understand the 



7 
 

real potential of one of the antimicrobials (chosen on the basis of its sensory compatibility with 

the food matrix) to improve food safety and shelf life. The data obtained can speed up the 

explotation at industrial level of natural antimicrobials as alternative food preservatives. 
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Essential oils 

 

Essential oils (EOs), in agreement with the European Pharmacopoeia, are defined as: ‘Odorous 

products, usually of complex compositions, obtained from a botanically defined plant raw material 

by steam distillation, dry distillation, or a suitable mechanical process without heating’ (EDQM, 

2008). All plants are able to produce volatile compounds, but the production of essential oils 

belongs only to specific plant families. Produced as secondary metabolites, they are ubiquitously 

distributed in the whole plant and for this reason they can be extracted and isolated from 

different organs like roots, stems, seeds, flowers, buds, leaves, wood, twigs, fruits or bark (Franz 

and Novak, 2009). EOs are involved in different physico-chemical processes like cell to cell 

communication, pollination, defense against insects, herbivores and volatiles. Until now,  about 

3000 EOs are known, of which about 300 have a commercial interest, especially for 

pharmaceutical, agricultural, food, health, cosmetics and perfumes. They are generally recognized 

as safe (GRAS) by different international food authorities such as EFSA, FDA and FSCJ (Newberne 

et al., 2000;Patrignani et al., 2015).  

 

1.1  Extraction of Essential Oils 

EOs are usually extracted from plants through several different methods, including steam 

(Perineau et al., 1992;Reverchon and Senatore, 1992;Babu and Kaul, 2005;Masango, 2005), hydro-

distillation (Perineau et al., 1992;Golmakani and Rezaei, 2008) or also, solvent extraction (Areias et 

al., 2000;Pizzale et al., 2002;Koşar et al., 2005) and  in the last years, supercritical carbon dioxide 

(Hawthorne et al., 1993; Jimenez-Carmona et al., 1999; Senorans et al., 2000;Deng et al., 2005; 

Gironi and Maschietti, 2008). The method of extraction depends on the use of the oil. For 

pharmaceutical and food purposes, the extraction by steam distillation is preferred, whereas for 

other uses extraction with lipophilic solvents or supercritical carbon dioxide is favored. The 

extraction method is one of the main factor that determines the quality of EOs. Inappropriate 

extraction procedure can lead to the damage or alter the action of chemical signature of essential 

oil (Tongnuanchan and Benjakul, 2014). 
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1.2  Chemistry of Essential Oils 

Essential oils (EOs) are complex natural mixtures which can contain about 20–60 components at 

different concentrations. They are characterized by two or three major components at fairly high 

concentrations (20–70%) that mainly contribute to the essential oil biological properties (Bakkali 

et al., 2008). For example, the major components of Origanum compactum  are thymol (27%) and 

carvacrol (30%), while linalool is the major component (68%) of the Coriandrum sativum.  

Cinnamomum camphora essential oil is mainly characterized by 1,8-cineole (50%), while- menthol 

(59%) and menthone (19%) are the main components of Mentha piperita. Essential oil 

components belong to three different low molecular weight groups (Betts, 2001; Bowles, 

2003;Pichersky et al., 2006):  

 

• terpenes; 

• terpenoids; 

• aromatic compounds. 

 

1.2.1 Terpenes 

Concerning EOs, terpenes represent the most important group of natural products. They are 

defined as chemicals composed by isoprene (2-methylbutadiene) units, formed by a unidirectional 

coupling process named head-to-tail coupling. The branched end of the chain is referred to as the 

head of the molecule while the other is the tail. Although isoprene back bone is easily recognized 

in the molecular terpenoid structure, it is not an intermediate in the biosynthesis. Terpenoid bio-

synthesis starts with the mevalonic acid, which is made from three molecules of acetyl CoA.  After 

the phosphorylation, followed by elimination of the tertiary alcohol and concomitant 

decarboxylation of the adjacent acid group, mevalonic acid is converted into the isopentenyl 

pyrophosphate (IPP). The head-to-tail coupling of two 5-carbon units of IPP gives a 10-carbon unit, 

geranyl pyrophosphate, and further additions of isopentenyl pyrophosphate lead to 15-, 20-, 25-, 

and so on carbon units backbone. Secondary enzymatic redox reaction of the skeleton attributes 

specific and heterogeneous  functional properties to terpenes. On the base of the number of 

isoprenil units (and carbon atoms), terpenes are classified as: 

 

• Hemiterpenoids (C5) 
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• Monoterpenes (10C); 

• Sesquiterpenes (15C); 

• Diterpenoids (20C); 

• Triterpenoids (30C); 

• Tetraterpenoids (40C); 

 

Only hemiterpenoids, monoterpenes, and sesquiterpenes are sufficiently volatile to be 

components of EOs. Monoterpenes are the most representative molecules constituting 90% of the 

EOs and allow a great variety of structures, like: alcohols, aldehydes, ketones, esters, ethers, 

peroxides, phenols (Bakkali et al., 2008). Examples of terpenes include cymene (p-cymene), 

limonene, terpinene, citral (mix of two isomers of the same aldehyde geranal and neral) (Figure 1). 

 

 

Figure 1: Chemical structure of some hemiterpenes (E)-2-hexenal and monoterpenes cymene, limonene, terpinene and citral (both 

isomeric forms). 

 

When the terpene molecule is optically active, the racemic form is the most frequently 

encountered, for example (±)-citronellol is widespread, but the form (+) is characteristic of 

Eucalyptus citriodora, while the form (-) is common to the rose and geranium EOs (Bakkali et al., 
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2008). In some cases, the biosynthesis process is stereochemical selective and plants accumulate 

only one specific enantiomer: (+)-α-pinene from Pinus palustris, (-)-β-pinene from Pinus caribaea, 

(-)-linalol from coriander, (+)-linalol from some camphor trees (Bakkali et al., 2008). The 

sesquiterpenes are formed from the assembly of three isoprene units (C15). The extension of the 

chain inc reases the number of cyclisation which allows a great variety of structures (Figure 2). This 

also results in a lower volatility and enhanced boiling point than monoterpenoids. Therefore, few 

of them (in percentage) contribute to the odor of EOs, but those that do often have low-odor 

thresholds and contribute significantly as endnotes. They are also important as fixatives for more 

volatile components (Sell, 2015). 

 

Figure 2: Examples of acyclic (farnesene), monocyclic (humulene), bicyclic (caryophyllene) and tricyclic (longifolene) sesquiterpenes. 

 

1.2.2 Terpenoids 

 

Terpenoids are terpenes that undergo to biochemical modifications via enzymes that add oxygen 

molecules and move or remove methyl groups (Caballero et al., 2003). Depending on their 

chemical modifications, they are subdivided into alcohols, esters, aldehydes, ketones, ethers, 
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phenols, and epoxides. Examples of terpenoids are thymol, carvacrol, linalool, citronellal, 

piperitone, menthol, and geraniol (Figure 3). 

 

Figure 3: Chemical structure of some selected terpenoids. 

 

1.2.3 Aromatic compounds 

Derived from phenylpropane, the aromatic compounds occur less frequently than the terpenes. 

Their biosynthetic pathways are generally separated in plats but in some cases they coexist  with 

one major pathway taking over. An example is represented by the cinnamon EOs with the 

aromatic compound cinnamaldehyde as major and the terpene eugenol as the minor constituent 

(Bakkali et al., 2008). 

 

1.3  Essential oil  antimicrobial properties 

Essential oil (EO) antimicrobial properties against pathogenic microorganisms are related to their 

physiochemical features (Dorman and Deans, 2000;Delaquis et al., 2002a). Their antimicrobial 

properties have been studied by several authors (Juven et al., 1994; Basilico and Basilico, 1999; 
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Lambert et al., 2001; Patrignani et al., 2015;Siroli et al., 2015). Although aromatic compounds are 

structurally heterogeneous, they possess similar physical properties. The physic-chemical 

properties able to affect the antimicrobial activity of EOs are the solubility and volatility. The 

solubility of these molecules is strictly related to the length of the carbon atom chain. As the 

number of carbon atoms rises, the solubility in polar solvent decreases while the solubility in 

apolar solvent increases. For linear aldehydes, the water solubility decreases with the increasing of 

the length of the carbon chain. The same relation can be applied for 1 to 9 carbon atom alcohols, 

methyl-esters and ketones. Lipophilicity is important for the biological activity of volatile organic 

compounds. In fact, the solubility in fats enables to volatile molecules, to permeate in cytoplasmic 

membranes and the waxy cuticle. Volatility, described as the tendency of the molecules to pass 

from the liquid phase to the vapor one, is described by the partition coefficient expressed as the 

ratio at equilibrium and constant temperature between the amount of volatile compound 

dissolved in one milliliter of air and the amount dissolved in one milliliter of water. This relation is 

valid only for pure aqueous solutions below the saturation point. Volatility in water  is higher for 

ketones, esters and aldehydes compared to alcohols. Addition of other solutes such as salts or 

sugars considerably changes the volatility. Under the same conditions of  temperature and 

concentration, the vapor pressure of a solute depends on the water activity of the system and on 

the concentration and nature of the other solutes (Guerzoni et al., 1994). The compounds in the 

gaseous phase accumulate rapidly in the cytoplasmic membranes of cells acceptor than they do if 

solubilized in the carrier. Reached the cytoplasm there are not physiological differences between 

volatile and non-volatile compounds (Guerzoni et al., 1994). 

EOs and their constituents have large differences in the antimicrobial activities. The most used 

tests to assess EOs ability to injury microbial cells are the disk diffusion (Farag et al., 1989;Cimanga 

et al., 2002; Packiyasothy and Kyle, 2002; Wilkinson et al., 2003;Burt, 2004;Bakkali et al., 

2008;Faleiro, 2011), agar wells method (Dorman and Deans, 2000), agar dilution (Hammer et al., 

1999) and the broth dilution one (Lambert et al., 2001;Delaquis et al., 2002b;Smith-Palmer et al., 

2002;Ultee et al., 2002;Burt, 2004). In broth dilution studies, the end point is determined using 

photometric methods (optical density) and the total viable count (Burt, 2004). Information about 

the antimicrobial activity are also obtained using scanning electron microscopy (SEM), for the 

evaluation of cell wall and membrane morphological changes (Lambert et al., 2001;Burt and 

Reinders, 2003), and time-kill trials for the kinetical evaluation of antimicrobial properties (Tassou 

et al., 1995;Ultee et al., 2002). Although different techniques can be applied for the study of EO 
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antimicrobial properties, there is not a standardization (Burt, 2004). In fact, the antimicrobial 

activity is affected by some factors such as the method used to extract the EO from plant material, 

the volume of inoculum, growth phase, culture medium used, pH of the media and incubation 

time and temperature (Burt, 2004;Lanciotti et al., 2004). Moreover, a solvent has to be used to 

vehicular the EOs and dissolve them in a water solution and for this purpose several solvents have 

been used: ethanol, methanol, Tween-20, Tween-80, acetone in combination with Tween-80, 

polyethylene glycol, propylene glycol, n-hexane, dimethyl sulfoxide and agar (Burt, 2004). The 

solvent used as carrier for EOs strongly affects the antimicrobial activity (Burt, 2004). Despite 

many Authors have highlighted the antimicrobial properties of EOs and their components in the 

past  (Holley and Patel, 2005), their mechanisms of action and their cellular targets are not fully 

understood (Nazzaro et al., 2013). In fact, the high heterogeneity of the chemicals compounds 

present in the EOs makes difficult  to define a univocal mechanism of action and targets in the 

microbial cells. Consequently, the chemical structure of the individual compounds present in the 

EOs affects their precise mode of action and their antibacterial activity (Viuda-Martos et al., 

2008;Picone et al., 2013). However, many studies indicate the cell membrane as the primary 

target of bioactive aromatic compounds (Burt, 2004) causing different effects on the cells 

physiology.  

 

Figure 4: Locations and mechanisms in the bacterial cell thought to be sites of action for EO components(Burt, 2004): degradation of 

the cell wall (Helander et al., 1998); damage to cytoplasmic membrane (Sikkema et al., 1994;Ultee et al., 2000;Ultee et al., 2002); 

damage to membrane proteins (Juven et al., 1994;Ultee et al., 1999); leakage of cell contents (Cox et al., 1998;Gustafson et al., 

1998;Helander et al., 1998;Lambert et al., 2001); coagulation of cytoplasm (Gustafson et al., 1998) and depletion of the proton 

motive force (Ultee et al., 1999;Ultee et al., 2000;Ultee et al., 2002). 
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As shown in Figure 4, the damages to the cell wall and in the membranes may lead to loss of 

macromolecules up to cell lysis. In particular, the loss of specific ions (Cox et al., 1998;Gustafson et 

al., 1998; Helander et al., 1998; Lambert et al., 2001), due to the action of the aromatic molecules 

on the cell membrane, has dramatic effects on the proton motive force, by decreasing the content 

of intracellular ATP (Ultee et al., 1999;Ultee et al., 2000;Ultee et al., 2002). Viuda-Martos et al., 

(2008) suggested that components of the EOs cross the cell membrane, interacting with the 

enzymes and proteins of the membrane, so producing a flux of protons towards the cell exterior 

which induces changes in the cells and, ultimately, their death. In addition EOs can also coagulate 

the cytoplasm (Gustafson et al., 1998;Picone et al., 2013) and cause damage to lipids and proteins 

(Juven et al., 1994;Ultee et al., 1999). Cristani et al., 2007 reported that the antimicrobial activity 

of terpenes is related to their ability to affect not only permeability but also other functions of cell 

membranes. These compounds might cross the cell membranes, penetrating into the interior of 

the cell and interacting with critical intracellular sites. 

The antimicrobial properties of EOs is mainly attributed to their lipophilic constituents. Different 

aromatic compounds of EOs such as, cyclic monoterpenes are characterized by a high 

hydrophobicity allowing them to have a good partition coefficient in the lipids promoting their 

diffusion among the cytoplasmic lipidic bilayer (Patrignani et al., 2015). As described from 

different authors cyclic monoterpenes increase in fluidity and permeability of the membrane, 

which leads to an inhibition of membrane enzymes (Nazzaro et al., 2013) and ultimately to the cell 

membrane disruption (Lanciotti et al., 2004; Holley and Patel, 2005; Viuda-Martos et al., 

2008;Liolios et al., 2009;Nazzaro et al., 2013).  

The antimicrobial properties of many EOs also appears to be connected with the presence of 

phenolic compounds. Various studies, concerning oregano species have shown that their oils 

possess strong antimicrobial activity; this activity could be attributed to their high percentage of 

phenolic compounds and, specifically, carvacrol, thymol, p-cymene and their precursor c-

terpinene (Liolios et al., 2009). 

 

1.4  Applicative potential of essential oils and their components 

Despite the strong antimicrobial activity against food-borne pathogens and spoilage 

microorganisms shown by EOs (Tassou et al., 2000;Oussalah et al., 2007), their practical 
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application in food industry  is currently limited due to their strong impact and changes they cause 

in food products (Gutierrez et al., 2009). Moreover, the limited use is due to i) the variability of the 

composition of EOs (due to the geographic origin, agricultural techniques, season, methods of 

extraction, etc.) able to influence their effective overall antimicrobial activity (Burt, 2004); ii) the 

interaction of bioactive molecules with the food matrix (in particular with proteins, lipids, starch, 

etc.) limiting the contact of these molecules with the microbial cells, thereby reducing the effects 

on cell viability (Gutierrez et al., 2009); iii) the lack of knowledge of the interaction between 

technological and composition parameters and their activity; iv)  the lack of knowledge of the 

mechanisms by which these molecules exert their antimicrobial activity. In fact, their use in food 

industry can not disregard from the knowledge of their mechanisms of action. In this perspective, 

the main aim of my PhD thesis will we to elucidate some of these mechanisms for L. 

monocytogenes and E.coli when exposed to some natural antimicrobial compounds and EOs, in 

order to favour a possible application in foods.  

Among EOs and natural antimicrobials, the most investigated are citral, hexanal, E-2-hexenal, 

oregano and thyme essential oils, due to their potential applications as natural antimicrobials in 

minimally processed fruits and vegetables and beverages. 

 

1.4.1 Citral  

A wide literature shows the great potentilas antimicrobials in model and food systems of EOs 

deriving from citrus fruit peels (Espina et al., 2011;Settanni et al., 2012). In particular, citral (3,7-

dimethyl-2-7-octadienal), is an acyclic unsaturated monoterpene aldehyde found naturally in the 

volatile oils of citrus fruits, lemongrass, and other herbs and spices. It consists of a mixture of two 

isomers, geranial and neral, and is used for flavouring citrus-based beverages. Its antimicrobial 

properties and pleasant fruity scent could make citral a suitable antimicrobial ingredient for wider 

use in the food industry (Somolinos et al., 2008) (Figure 5).  
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Figure 5: Chemical structure of some citral (both isomeric forms) 

Citral its commonly founded in leaves and fruits of several plant species including myrtle trees, 

lemons, limes, lemongrass, oranges and bergamots. Because its use does not present risk to the 

health of the consumer (Burt, 2004), it is consider as a generally recognized as safe (GRAS) additive 

from different international food authority like Food and Drug Administration and European Food 

Safety Authority. For this reason is commonly used in food industries as flavor and taste enhancer 

of citrus-based beverages and products (Somogyi, 1996;Ress et al., 2003;Lalko and Api, 2008). The 

citral mechanism of growth inhibition, cell injury and inactivation is not fully understood. In 

general, due their hydrophobic nature, the plasma membrane is the primary site of toxic action of 

terpenes (Burt, 2004;Hyldgaard et al., 2012).Consisting to this hypothesis several author observed 

damage and permeabilization of the cell membrane after the exposure to citral on different 

microorganisms (Uribe et al., 1985;Williams and Barry, 1991;Cox et al., 1998;Prashar et al., 

2003;Inoue et al., 2004;Somolinos et al., 2008;Park et al., 2009;Somolinos et al., 2010). As a result 

of the cell membrane disruption the leakage of specific ions has dramatic effects on proton motive 

force, the intracellular ATP content and the overall activity of microbial cells (Poolman et al., 

1987;Sikkema et al., 1994;Helander et al., 1998;Lanciotti et al., 2004;Turina et al., 2006). Citral and 

citron EO, at concentration compatibles with sensorial features of fruits, were able to significantly 

prolong the shelf-life of the fruit based salads in syrup (Belletti et al., 2007), and the stability of 

fruit based soft drink (Belletti et al., 2007). 

 

1.4.2 Carvacrol 

Carvacrol, or cymophenol, is a monoterpenoid phenol, naturally occurring in the essential oil 

fraction of oregano and thyme (Figure 6).  
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Figure 6: Chemical structure of carvacrol 

The antimicrobial properties of carvacrol are related to its physio-chemical features. Carvacrol is a 

short hydroxylated aromatic compound able to interact with the cytoplasm membrane 

phospholipids and cell membrane embedded enzymes, increasing the cell membrane permeability 

and fluidity (Nikaido and Vaara, 1985;Nikaido, 1994). Different authors proposed that microbial 

species change their membrane fatty acid composition as a stress mechanism adaptation to 

carvacrol exposure (Ultee et al., 2000;Lambert et al., 2001; Di Pasqua et al., 2006, 2007). This 

hypothesis has been confirmed by monitoring the efflux of H+, K+, carboxyfluorescein, and ATP, 

and the influx of nucleic acid stains (Helander et al., 1998; Ultee et al., 1999; Lambert et al., 2001; 

Xu et al., 2008). Carvacrol hydroxyl functional group has been proposed as a transmembrane 

carrier of monovalent cations across the membrane, carrying H+ into the cell cytoplasm and 

transporting K+ back out (Ultee et al., 1999;Ben Arfa et al., 2006), resulting in a loss of the cell 

membrane potential. Cell membrane potential is fundamental for the cellular metabolic activity 

especially for the intracellular pH homeostasis and ATP synthesis. Carvacrol has been also 

proposed to interact with membrane, periplasmic and intracellular proteins (Juven et al., 1994). 

Only few information are available about this topic and one example of direct interaction between 

carvacrol and membrane components is reported by the Gill and Holley’s study. In this study, 

carvacrol interaction with membrane components was evaluated by monitoring the cellular 

ATPase activity (Gill and Holley, 2006). The grow of Escherichia coli cells in presence of carvacrol 

increased the expression of the GroEL chaperon complex, indicating that protein folding was 

affected. Furthermore, it inhibited the synthesis of flagellin (Burt et al., 2007) causing a decrease in 

motility as carvacrol concentration increased. In this case, carvacrol disrupted the membrane 

potential and thereby the proton motive force needed to drive flagellar movement (Gabel and 

Berg, 2003; Burt et al., 2007; Xu et al., 2008). 
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1.4.3 (E)-2-hexenal 

(E)-2-hexenal (trans-2-hexenal) is an α-β-unsaturated aldehyde (Figure 7), produced by throughout 

the lipoxygenase pathway, that have a protective action towards microbial proliferation in 

wounded areas (Casey et al., 1999). 

 

Figure 7: Chemical structure of (E)-2-hexenal 

 In addition, (E)-2-hexenal has been demonstrated to possess a significant antimicrobial activity 

against several microfungal, gram-positive and gram-negative bacterial strains (Gardini et al., 

1997; Kubo et al., 2004; Lanciotti et al., 2004; Patrignani et al., 2008; Patrignani et al., 2015; Siroli 

et al., 2015). The antimicrobial properties of 2-(E)-hexenal are strictly related to its chemical 

structure. This aldehyde is reported to act as a surfactant. Due to the interaction with the 

microbial cell membrane bilayer, 2-(E)-hexenal permeates by passive diffusion across the plasma 

membrane. Once inside cells, the aldehyde group reacts with biologically important nucleophilic 

groups (Kubo and Fujita, 2001). This aldehyde moiety is known to react with sulphydryl groups 

mainly by 1,4-additions under physiological conditions (Kubo and Fujita, 2001). Sulphydryl groups 

in proteins and lower-molecular-weight compounds such as glutathione are known to play a key 

role in living cells. The mechanisms of antimicrobial action of other aldehydes, such as 

glutaraldehyde and ortho-phthalaldehyde, are likely to involve interaction with the cytoplasmic 

membrane and increase in its permeability  (Ramos-Nino et al., 1998; Simons et al., 2000; 

Tsuchiya, 2001). 

 

1.4.4 Thyme essential oil 

Thyme species (Lamiaceae) are well known aromatic herbs used not only as spice but also as 

treatment of different diseases (Jamali et al., 2012). Thymus vulgaris has been applied for different 

indications such as dry cough, bronchitis, and digestive problems (Grosso et al., 2010;Tsai et al., 

2011). Thyme essential oil contains thymol, carvacrol, p-cymene, γ-terpinene, and linalool (Figure 

8), where the thymol and carvacrol are present in relatively high percentage, up to 41.6% and 
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7.9%, respectively (Grosso et al., 2010;Aazza et al., 2011;Asbaghian et al., 2011). Thymol and 

carvacrol are considered to be major responsible of the antimicrobial features of thyme oil (Jamali 

et al., 2012). Thymol is structurally related to carvacrol (Figure 8), having the hydroxyl group at a 

different position on the phenolic ring. Although the primary mode of antibacterial action of 

thymol is not fully known, it involves outer and inner membrane disruption, and interaction with 

membrane proteins and intracellular targets (Sikkema et al., 1994; Bakkali et al., 2008; Xu et al., 

2008; Hyldgaard et al., 2012). The thymol interaction with the cell membrane has been 

documented by the loss of membrane potential, cellular uptake of ethidium bromide, and leakage 

of ATP and potassium ions of microbial cell exposed to lethal and sublethal thymol concentrations 

(Helander et al., 1998; Lambert et al., 2001; Walsh et al., 2003; Xu et al., 2008). Although the 

protective properties of lipopolysaccharide (LPS) against thymol had been confirmed using 

random transposon-insertion mutants, treatment of E. coli cells with thymol caused release of LPS 

and disruption of the outer membrane (Helander et al., 1998;Shapira and Mimran, 2007). The 

outer membrane disruption could not be prevented by addition of magnesium, suggesting that 

thymol did not disrupt the membrane by chelating cations (Helander et al., 1998). Thymol 

integrates at the polar head-group region of a lipid bilayer causing alterations to the cell 

membrane, which at low concentrations induce adaptational changes in the membrane lipid 

profile in order to compensate for thymol’s fluidifying effects and to maintain the membrane 

function and structure (Turina et al., 2006;Di Pasqua et al., 2007). In addition to interacting with 

membrane phospholipids, different authors have documented thymol’s interaction with 

membrane proteins and intracellular targets. Interaction with membrane proteins was supported 

by Di Pasqua et al. (2010) who exposed Salmonella enterica to sub-lethal concentrations of 

thymol, and observed accumulation of misfolded outer membrane proteins and up-regulation of 

genes involved in synthesis of outer membrane proteins and chaperonins. Thymol also impaired 

the citrate metabolic pathway and affected many enzymes directly or indirectly involved in the 

synthesis of ATP (Di Pasqua et al., 2010).  
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Figure 8: major constituents of Thyme spp. essential oil.  
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Listeria monocytogenes  

 

2.1 Taxonomy, morphology and main characteristics 

 

Listeria monocytogenes (originally named Bacterium monocytogenes) is a Firmicutes, Gram-

positive, non-spore forming, facultative anaerobic, catalase positive and oxidase negative rod 

shaped bacterium, first described in 1926 in United Kingdom, as a cause of infection with 

monocytosis in laboratory rodents (Murray et al., 1926). Due the low percentage of 

guanine/cytosine bases genome, L. monocytogenes is strictly related to Bacillus, Staphylococcus, 

Streptococcus and Clostridium species (Wilkinson and Jones, 1977;Roccourt et al., 1982;Fersu and 

Jones, 1988;Collins et al., 1991;Hartford and Sneath, 1993;Glaser et al., 2001) and for this reason it 

belongs to Bacilli class and Bacillales order. Although originally described as monotypic genus 

containing only L. monocytogenes sensu lato, now the Listeria genus comprises six species: Listeria 

grayi (Larsen and Seeliger, 1966), Listeria innocua (Seeliger, 1981), Listeria ivanovii (Seeliger et al., 

1984), Listeria monocytogenes (Seeliger et al., 1984), Listeria seeligeri (Rocourt and Grimont, 1983) 

and Listeria welshimeri (Rocourt and Grimont, 1983). Only L. monocytogenes sensu stricto and L. 

ivanovii are pathogens: the first for humans and the second for ungulates (Santagada et al., 2004). 

On the base of serological reactions of somatic (O-factor) and flagellar (H-factor) antigens with 

specific antisera, Listeria species are classified into different serotypes. L. monocytogenes includes 

the serovars 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, and 7 (Wagner and McLauchlin, 2008). 

Molecular techniques allowed to dive L. monocytogenes serotypes into three different lineages:  

 

1. Lineage I contains serovars 1/2a, 1/2c, 3a, and 3c; and lineage III contains serovars 4a and 

4c; 

1. Lineage II contains serovars 1/2a, 1/2c, 3a, and 3c; 

2. Lineage III contains serovars 4a and 4c; 

Lineage III can be further divided into three subgroups on the base of the rhamnose assimilation 

and virulence: 

1. Subgroup IIIA is made up of typical rhamnose-positive avirulent serovar 4a and 

virulent serovar 4c strains;  
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2. Subgroup IIIB is made up of atypical rhamnose-negative virulent non-4a and non-4c 

strains, some of which may be related to serovar 7; 

3. Subgroup IIIC is made up of atypical rhamnose-negative virulent serovar 4c strains. 

 

Cells form regular, short rods, 0.4–0.5 by 1–2 μm with parallel sides and blunt ends and usually 

occur singly or in short chains or arranged in V and Y forms (Rocourt and Buchrieser, 2007); in 

older or rough cultures, filaments of 6 μm in length may develop. A tumbling motility characterizes 

Listeria monocytogenes as the result of the production of a peritrichous flagellum when cultured 

between 20 to 25°C but not at 37°C. The metabolism is aerobic and facultatively anaerobic. 

Growth occurs between pH 5.2 and 9 and between 0 and 45°C; optimal growth occurs between 30 

and 37°C. Cytochromes are produced and homofermentative anaerobic catabolism of glucose 

results in production of L(+)– lactic acid, acetic acid, and other end products. Acid but no gas is 

produced from other sugars When cultured on artificial media, like Brain Heart Infusion agar, 

Listeria monocytogenes form nonpigmented colonies after 24–48 h with a diameter between 0.5–

1.5, rounded, translucent, low convex with a smooth surface and entire margin, and with a 

crystalline central appearance. After 3-7 days colonies became larger (3–5 mm in diameter), and 

have a more opaque appearance; sometimes, rough colonial forms may develop with a sunken 

center (Wagner and McLauchlin, 2008). 

 

2.2  Listeriosis 

 

Until 1980s, human listeriosis remained a relatively obscure disease attracting limited attention, 

although large outbreaks of considerable morbidity and mortality but of unknown transmission 

occurred. Listeriosis occurs in various animals, including humans, and most often affects the 

uterus at pregnancy, the central nervous system, or the bloodstream. Human listeriosis are, in 

almost the cases, due to L. monocytogenes (McLauchlin, 1997) and the most susceptible 

populations are pregnant womens, immunocompromised subjects and elders. Although infection 

can be treated successfully with antibiotics, the human infection has a mortality of 20–40% (Farber 

and Peterkin, 1991). The principal contamination route is represented by the consumption of 

contaminated food. L. monocytogenes can be found in a wide variety of raw and processed foods 

like fish, vegetables, beef and pork meats, milk and dairy products. Also ready to eat (RTE) foods 

and minimally processed foods have been associated to cases of listeriosis. In fact, in general, they 
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are subjected to mild treatment and held at refrigeration or chilled temperature for long time. Due 

to its psycrotrophic nature, to the ability to survive to high NaCl concentration and low pH, L. 

monocytogenes represents a species able to adapt its-self to different conditions (Buchanan et al., 

2017). 

As showed from different authors  L. monocytogenes strains are widely distributed in food 

processing environments (TOMPKIN, 2002;Carpentier and Cerf, 2011;FERREIRA et al., 2014). 

Different are the contamination sources: raw products,  materials, equipment and the movement 

of  people. Listeria is also able to persist due to ineffective cleaning and sanitation, poor design or 

condition of food equipment or environment or insufficient controls of movement of people or 

equipment (Carpentier and Cerf, 2011). Improved control measures starting in the 1990s have 

greatly reduced the incidence of L. monocytogenes in many food categories, particularly in meats 

and meat products, but listeriosis still represents a severe cause of food-borne illness. In the 2013 

as reported from the European Food Safety Authority (EFSA), 1763 human cases of listeriosis were 

confirmed in 27 member states with an increase of the 8.6% compared to 2012 and a mortality 

rate of the 15.6 % (European Food Safety et al., 2015). In the same year, five UE member states 

also reported seven food-borne listeriosis outbreak. Implicated Food vehicles were: mixed salad (1 

case), meat product (1), pig meat (1) and crustaceans, shellfish and mollusks (3) (European Food 

Safety et al., 2015). The new rules in Europe, defined by the EC directive 2073/2005, can allow the 

presence of L. monocytogenes (100 CFU in 5 sample units) in ready-to-eat foods placed on the 

market at the end of their shelf-life in relation to the category of use, and the physio-chemical 

features of food (European Commission, 2005). Generally for foods dedicated to  babies, pregnant 

women, immune depressed people, or food characterized by high pH and water activity, L. 

monocytogenes must be  absent in 25 g of products. On the other hand, for foods not able to 

support the growth of L. monocytogenes, this pathogenic species can be present at 100 CFU/g of 

products at the end of the shelf-life (European Commission, 2005). Foods not supporting the 

growth of L. monocytogenes can be those having  pH <4.4, Aw <0.920 or combination of pH <5  

and aw< 0.940, or product with a shelf-life shorter than 5 days. However, not all food regulators 

have taken this approach, and the United States has had zero tolerance of any L. monocytogenes 

in a processed food since the 1980s.In Italy, at the end of 1990 (DM 15.12.1990, listeriosis has 

been included in the list of nationally notifiable diseases. The minimal infective dose for listeriosis 

is hard to be defined and vary considerably between individuals. In general, the consumption of 

food with levels below 100 colony-forming units (CFUs) per gram is associated very low listeriosis 
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risk (Wagner and McLauchlin, 2008). The world health organization defined the DL50 for human 

Listeriosis in of 1.9 * 106  CFU.  In the majority of the cases, in foods an average contamination 

level of 102–106 CFUs/mL/g is associated with an infection (Dawson et al., 2006). 

 

2.3 Stress survival strategies 

 

The ability of L. monocytogenes to survive to different adverse environmental conditions and 

stresses encountered both in its natural environment and subsequently within the host and it is at 

the base of its pathogenicity (Stack et al., 2008).  

During the foods industrial processing, many factors may affect the L. monocytogenes growth 

including traditional (e.g. heat, low temperatures, high salt content, low or alkaline pH, chemical 

additives) and novel (e.g. HHP, HPH, ionizing radiation, PEF, MAP…) food preservation techniques, 

but also competition and metabolites produced by other microorganisms (microbial antagonism). 

The ability of L. monocytogenes to withstand severe environmental stresses depends on its 

efficient stress response mechanisms. Although, environmental stresses are different, the 

response mechanisms passthrough the regulation of the alternatives RNA polymerase sigma 

factor. One of the most important sigma factor is σB (encoded by the sigB gene). Mutation induced 

in the sigB gene lead a lower acid and osmotic stress resistence. Another transcription regulator 

gene strictly related to the stress response is prfA . PrfA transcription activator protein is involved 

in the response to several environmental factor including temperature, pH and have a key role in 

the Listeria monocytogenes virulence mechanism  (see chapter 2.4 Virulence). 

Four are the mayor stresses encountered by L. monocytogenes during its life cycle: 

 

• Heat stress; 

• Cold stress; 

• Acid stress; 

• Osmotic stress 

 

2.3.1  Heat stress response 

Exposure to temperatures above the range for normal cell growth leads to progressive loss of 

bacterial viability. L. monocytogenes is exposed to lethal or sublethal heat stress in food 
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processing environment as the result of thermic treatments for preserving foods (i.e., blanching, 

pasteurization, and sterilization). Many factors can influence the thermo-tolerance of L. 

monocytogenes and are related to the age of the culture, growth conditions and the properties of 

food matrixes in term of salt content, water activity, acidity, presence of inhibitor (Doyle et al., 

2001) Listeria monocytogenes has evolved specific mechanisms to resist and survive to the heat 

stresses generally defined as heat shock response. That kind of response is a highly conserved 

defense mechanism characterized by the transiently induced over-expression, biosynthesis and 

accumulation of heat shock proteins (Hsps) (Yura and Nakahigashi, 1999). Heat shock proteins are 

mainly divided into two different groups: adenosine triphosphate (ATP)-dependent proteases 

(ATPases) and molecular chaperones. The exposure to heat stresses may provoke the 

denaturation of the cellular proteins compromising their biological function. Misfolded proteins 

have a collapsed structure and may aggregate forming precipitates. The denaturation is associated 

with the exposure on the protein surface of hydrophobic residues of proteins become damaged 

and that are normally inside the protein structure. Chaperones bind hydrophobic residues and 

attempt to refold these proteins while proteases degrade those denatured proteins unable to 

adopt their native conformation (Georgopoulos and Welch, 1993;Gottesman, 1996).  The mayor 

proteins involved in the heat stress responses of L. monocytogenes are the chaperonins GroES, 

GroEL, DnaK, DnaJ, and HtrA, Clp and  complex.  GroEL is one of the most conserved proteins in 

nature (Zeilstra-Ryalls et al., 1991) and with GroES act to maintain the intracellular protein stability 

under adverse environmental conditions (Hendrick and Hartl, 1993). The chaperone function of 

DnaK has been well characterized (Craig et al., 1993). Exposure to sublethal heat shock stresses 

induces the expression of both GroEL and DnaK. (Bunning et al., 1990;Gahan et al., 2001). The 

GroESL complex and DnaK proteins are induced also after the exposure to other environmental 

stresses such as low pH, high salt and ethanol indicating a protective role in the general stress 

response (Hill et al., 2002). Clp (caseinolytic protease) protein complexes play a critical role in 

energy-dependent proteolysis . The Clp complex is composed of a proteolytic subunit, ClpP, which 

associates with a Clp ATPase. Clp ATPases are ubiquitous among prokaryotes and eukaryotes and 

are members of the highly conserved Clp/Hsp100 family of proteases, whose function is to 

regulate ATP-dependent proteolysis and also play a role as molecular chaperones involved in 

protein folding and assembly. HtrA (hiGh-temperature requirement) is the best characterized 

protein of the High Temperature Requirement cluster encoding a serine protease (Foucaud-

Scheunemann and Poquet, 2003). The protein acts both as a protease in the degradation of 
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unfolded proteins and as molecular chaperone in the refolding of proteins (Foucaud-

Scheunemann and Poquet, 2003).  

 

2.3.2  Cold stress response 

Listeria are psychrophilic organisms highly adapted to low temperatures (2–4 °C) and the  survival 

occurs also at temperatures below 0°C, representing an issue for the food industry. Listeria 

monocytogenes have the ability to adapt the cell membrane fluidity to the adverse environmental 

conditions modulating the membrane fatty acids composition to preserve the proper solute 

exchanges (Gandhi and Chikindas, 2007). The lipidic cell membrane composition of L. 

monocytogenes is characterized (over 90%) by odd-numbered branched-chain fatty acids (BCFAs) 

like heptadecanoic (C17:0) and pentadecanoic in its iso and anteiso forms (C15:0 iso, C15:0 ante) 

acids. The BCFAs are synthetized from alpha-keto acids precursors like isoleucine,  leucine, valine 

by the Alpha- keto acid dehydrogenase (BKD) complex. The relative abundance of these branched 

fatty acids shift with the growth temperature. As showed by (Beales, 2004), when L. 

monocytogenes is cultured at 7 °C, the membrane concentrations of branched pentadecanoic 

acids (C15:0 ante)  rise, while the concentration heptadecanoic acid decrease. The lower carbon-

carbon interaction between neighboring C15:0 acid chains reduce the overall cytoplasmic 

membrane viscosity taking back the membrane fluidity to the optimum degree.  

Moreover, a change from C15:0 iso to C15:0 ante was observed when L. monocytogenes was 

grown at 5°C (Annous et al., 1997). 

The L. monocytogenes cold stress response is also mediated by specific pathway shared with the 

heat shock response (GroESL and ClpPB) and in the osmoadaptation processes (see osmotic stress 

response). 

 

2.3.3  Acid stress response 

Acid exposure and stresses represent one of the most frequently adverse environmental condition 

encountered by microorganisms and they can be defined as the combined biological effects of low 

pH and weak (organic) acids present in the environment (Stack et al., 2008). Acidification is a 

common strategy used to preserve foods, and it is achieved by fermentative processes or by direct 

addition of organic preservatives acids like citric, ascorbic, and lactic acid. Weak organic acid in the 

protonated form are able to pass thought the cell wall and cytoplasmic membrane. Inside the cell 

due the higher cytoplasmic pH, they dissociate releasing a proton and leading to acidification of 
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the cytoplasm causing a cytotoxic effect (Bearson et al., 1997). Like the majority of food-borne 

pathogens, L. monocytogenes is a neutrophile with an optimum of growth between pH 6 – 7 (Yura 

and Nakahigashi, 1999). The ability of L. monocytogenes to keep regular cytoplasmic pH (pHi), 

despite variation of the external pH, is fundamental to its survival and a prerequisite for infection 

(Stack et al., 2008). To preserve pH homeostasis, L. monocytogenes has developed different acid 

tolerance response (ATR) systems. During the ATR response the organism produce acid shock 

proteins (ASPs) which are also involved in the virulence. Different authors (Foster and Hall, 

1991;Kroll and Patchett, 1992;Foster et al., 1994;O'driscoll et al., 1997) showed a correlation 

between the acid tolerance response and the Listeria monocytogenes pathogenic ability. Another 

acid stress resistance strategy is represented by glutamate decarboxylase (GAD) and the arginine 

deiminase (ADI) systems. Glutamate decarboxylase enzyme irreversibly decarboxylates a 

extracellular glutamate sourced molecule producing γ-aminobutyrate (GABA). The reaction 

consumes one intracellular proton mitigating the proton excesses as the result of acid hostile 

environment. Glutamate: GABA antiporter subsequently exchange the GABA produced in this 

pathway with is a extracellular molecule of glutamate causing an alkalization of the environment 

due the lower acidity of GABA (Stack et al., 2008). Arginine deaminase complex is formed by  three 

proteins: arginine deiminase (ADI), catabolic ornithine carbamoyltransferase (cOTCase), and 

carbamate kinase (CK). In 2006, (Ryan, 2006) characterized in L. monocytogenes the ADI systems 

and demonstrated its role for this system tor the growth and survival in acidic conditions. This 

detoxification pathway is less effective compared to the Glutamate - γ-aminobutyrate system. The 

ADI complex provokes the intracellular accumulation of NH3 as the result of the arginine 

deamination to ornithine. Ammonia may react with free cytoplasmic protons forming NH4
+ ions 

and increasing the pHi and maintaining pH homeostasis (Ryan, 2006).  Also the energetic 

metabolism is involved in the acid stress resistance. The F0F1ATPase, known as ATPsyntase 

complex or ATPase pump, couples ATP synthesis/hydrolysis with a transmembrane proton 

translocation. This enzyme can maintain intracellular pH homeostasis. The complex normally 

synthetizes, in aerobic condition, ATP depleting the proton motive force (PMF). When cytoplasm 

becomes acid, ATPsyntase is able to alkalinize the intracellular pH inverting the process. By the 

ATP hydrolysis the complex pump outside the cell protons restoring the proton motive force. 

Although the Listeria F0F1ATPase has been demonstrated have a role in the acid-tolerance 

response the response to these stresses is not dependent on the activity of this complex. 
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2.3.4  Osmotic stress response 

The maintenance of intracellular osmotic pressure is critical for the survival in osmotic stress 

conditions. Osmotic stress can be defined as the increase or decrease in the osmotic strength of 

the environment of an organism (Csonka, 1989;Csonka and Hanson, 1991) as a result of low water 

activity caused by dehydration or high amounts of osmotically active compounds. Internal osmotic 

pressure, normally is higher than that of the surrounding medium generating cell turgor which is 

fundamental for cell extension, growth, and division. The ability of bacteria to adapt to osmotic 

stress is called osmoadaptation. In Listeria monocytogenes this process involves both changes in 

the physiological cell properties (presence of osmotically active solutes in the cytoplasm) and in 

the gene expression profiles (Hill et al., 2002) allowing to survive in presence of high salt 

concentrations, making the control of this pathogen in foods difficult. One of the mechanism at 

the base of Listeria osmoadaptation is represented by the cytoplasmic accumulation of K+ as 

potassium glutamate. This provokes the rise of the inner cell concentrations of small organic 

compounds like glycine, glycine betaine, proline, proline betaine, acetylcarnithine, carnitine, γ-

butyrobetaine, and 3-dimethylsulphoniopropionate, that function as osmoprotectants, with 

glycine   (Patchett et al., 1992). These molecules are characterized by a high solubility and are 

unable to cross the membrane without active transport systems. In L. monocytogenes the uptake 

of glycine betaine and carnitine is well characterized and mediated by the transporters: BetL, Gbu 

(for glycine betaine) and OpuC (carnitine transporter) (Ko and Smith, 1999;Fraser et al., 

2000;Sleator et al., 2003). 

As describled by (Sleator et al., 2003), L. monocytogens mutants with a betL reduced activity, are 

not able to survive in elevated osmolarity environments. Another mechanism used by Listeria to 

combat osmotic stress, is represented by the expression of osmotic stress response proteins like 

RelA (Okada et al., 2002), Ctc (Gardan et al., 2003a;Gardan et al., 2003b), KdpE (Brøndsted et al., 

2003), ProBA (Sleator et al., 2001),and BtlA (Begley et al., 2003). 

relA, is the gene encoding a (p)ppGpp synthetase. (p)ppGpp is stress-response-related factor and it 

is considered an activator of the osmotic stress response (Okada et al., 2002). Ctc is a osmotic 

stress protein in L. monocytogenes belonging to the L25 family of ribosomal proteins and has been 

shown to facilitate growth in minimal media under conditions of high osmolarity. KdpE forms in 

combination with kdpD, kdpE, and orfX, a transcriptional response factor, active to prevent 

plasmolysis and restore turgor pressure. (Kallipolitis and Ingmer, 2001;Sleator et al., 

2001;Brøndsted et al., 2003). 
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ProBA, is a protein involved in proline biosynthesis. The role of proline as an osmolyte protector 

has previously been described. As showed by (Begley et al., 2003), in presence of elevated 

osmolarity (7%), L. monocytogenes has been shown the activation of the BtlA protein, a bile 

tolerance locus which play a role in also in the osmotic stress response.  

 

2.4  Virulence  

 

The Listeria monocytogenes virulence is close related with the stress response. The stress 

adaptation to adverse environmental condition represents the evolutionary advantage that allows 

Listeria to infect and survive inside mammalian cells. Not surprisingly many protein involved in the 

stress response are also involved in the virulence like the transcriptional promoter pfrA. The 

Listeria monocytogenes pathogenic ability involve the activation of specific genes called 

pathogenic islands. This gene cluster is mainly regulated by prfA protein. Following ingestion of 

contaminated foods, Listeria monocytogenes strains enter through the cells in Peyer’s patches 

through either macrophage or epithelial cells. The process is mediated by two proteins InlA, 

required to invade epithelial cells and  InlB, a, is involved in hepatocyte invasion (Gregory et al., 

1997) and the extracellular invasion protein p60. InlA and InlB are two acid-surface proteins 

characterized by a C-terminal ends rich leucine tandem. These sequences represent an 

internalization signal recognized the mammalian cell E-cadherin receptor. After the internalization 

process Listeria becomes trapped inside vacuoles. The release from vacuoles is mediated by the 

listeriolysin pore-forming protein encoded by hlyA gene. Reached the cytoplasm  Listeria cells 

immediately start the duplication process with a generation time, depending on the strain of 

about 20-40 minutes. The intracellular growth of Listeria is stimulated by the oligopeptide binding 

protein OppA (Borezee et al., 2000) and also by p60 invasion protein. After the primary infection 

Listeria is capable to infect surrounding cells without leaving the cells. The process involves the 

actA gene product and Listeria starts to produce form one cellular pole actin-like filaments. The 

formation of actin tails propels bacteria towards cell plasma membrane results in formation of a 

protrusion into the neighboring cells and the formation of single cell vacuoles after the invasion. 

Vacuoles are now disrupted again by the activity of listeriolysin in synergy with a phospholipase C 

class protein PclB. The entire process occurs in about 5 hours. 
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Escherichia coli 

 

3.1  Taxonomy, morphology and main characteristics 

 

The genus Escherichia (named in honor after its discoverer Theodor Escherich) is a large Gram-

negative, rod-shaped, motile, non-spore-forming bacilli (known as ing bacilli (tive, rod-shaped, 

motileProteobacteria phylum. Six species are comprise in the genus Escherichia, i.e., Escherichia 

albertii, Escherichia coli, Escherichia fergusonii, Escherichia hermannii, Escherichia marmotae, and 

Escherichia vulneris, (Kaper et al., 2004;Liu et al., 2014). Among reported species, E. coli represents 

the predominant facultative anaerobe in the gastrointestinal tract of warm-blooded animals, 

including humans, and it has been linked to nutrition due its role in the food breakdown and as a 

source of vitamin K. Although its benefit to the human health, some specific strains are pathogen 

and have developed the ability to colonize mucosal surface of intestine and of the urinary tract 

(Kaper et al., 2004).  The pathogenic potential is related to specific virulence genes and their 

combination which determine the E. coli intestinal and extra-intestinal pathotypes. The intestinal 

E. coli strains are classified in: enterotoxigenic (ETEC), enteropathogenic (EPEC), 

enterohemorrhagic (EHEC), enteroaggregative (EAEC), Shiga-toxin-producing 

enteroaggregative(STEAEC), enteroinvasive (EIEC), diffusely adhering (DAEC), cell detaching 

(CDEC), necrotoxic (NTEC), and adherent invasive (AIEC) (Makobe et al., 2012;Lozer et al., 2013). 

Three pathotypes are responsible of extraintestinal infections: septicemia-causing E. coli (SCEC), 

neonatal-meningitis-causing E. coli (NMEC), and uropathogenic E. coli (UPEC) (Kaper et al., 2004). 

Serological analysis of surface antigens allowed to differentiate up to 200 serogroups, on the base 

of specific combinations of O and H antigens (e.g., O157:H7). Recently Escherichia coli strains were 

also classified on the base of genetic information into six different phylogenetic groups: A 

(saprophyte), B1, B2 (pathogen), C, D (pathogen), E and Shighella (Touchon et al., 2009). Although 

its close phylogenetic relationship, Shigella has continually been treated as a separate genus. 

Escherichia coli appears as a rod-shaped bacterium of about 0.6 μm in diameter and 2 μm in 

length. Cells are also characterized by fimbriae and flagella. Due a chemoheterotroph metabolism 

using a large variety of sugars or amino acids, E. coli grows rapidly in nutrient riched broths. 

Although only few stains have a single auxotrophic requirement such as thiamin, the growth of 

many strains may be inhibited by the presence of single amino acids such as serine, valine, or 
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cysteine (Liu, 2017). E. coli tolerates temperature between 8°C and 48°C and grows optimally at 

39°C. The bacterium survives between pH 6.0 and 8.0 (even if there are some strains able to 

survive to pH5 in relation to the food composition) , but is unable to grow in media containing 

>0.65 M NaCl. In response to changes in the osmotic pressure of the medium, E. coli increases its 

concentration of ions, especially K+ and glutamate (Liu, 2017). 

 

3.2  Stress survival strategies 

 

E. coli withstand in adverse environmental condition is related to the stress response mechanisms. 

During its life cycles, E.coli is exposed to different stresses like weak acids, starvation, high 

osmolarity, and high or low temperature (Lange and Hengge-Aronis, 1994;Buchanan, 1997). As 

previously described for Listeria monocytogenes, Escherichia coli response to adverse conditions 

and environments largely relies on transcriptional reprogramming via activated by the alternative 

sigma factors. One of the most important alternative sigma factor is RpoS (also named σ38) (Amato 

et al., 2013) and its activation is associated with the general stress response mechanisms involving 

the expression of more than 35 genes. Stress response mechanisms also involve sigma factor σ32 

and σ24. The mayor stresses encountered by E. coli during its life cycle are: 

 

• Heat stress; 

• Cold stress; 

• Acid stress; 

• Osmotic stress 

 

3.2.1  Heat stress response 

When E. coli is exposed to lethal or sublethal thermal stress conditions, the withstand is allowed 

by the transiently induced biosynthesis and accumulation of over 30 heat shock proteins (HSPs) 

(Chung et al., 2006;Nonaka et al., 2006). This stress response is mainly mediated by  σ32. In E. coli, 

during the heat stress response, transcription initiation is regulated largely by σ32 alternative 

factor and as previously described for L. monocytogenes the mayor protein involved in the heat 

stress responses are the chaperonins DnaK, DnaJ, GroEL, GroES, ClpB and the protease Lon, ClpP, 

FstH (see chapter 2.3.1 ). The exposure to heat stress induces the modulation of some regulator 

genes, such as mlc, arcA, pflA and ldhA and adhE (Ye et al., 2012). The activation of mlc is followed 
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by the down-regulation of glucose uptake, while the up-regulation of arcA is associated with a 

reduce activity of the TCA cycle and glyoxylate pathway. Thermal shock also induce the up-

regulation of PflA , ldhA and the down regulation of AdhE. As a consequence, the formate and 

lactate yield increased, while the ethanol yield decreased (Hasan and Shimizu, 2008). 

 

3.2.2  Cold stress response 

The cold climate Escherichia coli adaptation involve modifications of the membrane fluidity 

(Russell et al., 1990) and the maintenance of the structural integrity of proteins and ribosomes 

complexes (Jaenicke, 1991;Berry and Foegeding, 1997).  When the temperature decreases, E. coli 

changes the membrane lipid composition in order to maintain the proper fluidity that allows an 

optimal nutrient exchanges with the environment. At low temperature in E. coli, the concentration 

of unsaturated cis-vaccenic acid (C18:1) rises, while the concentration of the saturated palmitic 

acid (C16:0) decreases. The reduced interaction among the neighboring fatty acids chains due to 

the stereochemical properties of the unsaturated chains led to an increased membrane fluidity 

(Garwin and Cronan, 1980). The cold adaptation requires also the activation of specific gene 

products formally named cold shock proteins (CSPs). These proteins are involved in large variety of 

fundamental cell function  transcription, translation, mRNA degradation, protein synthesis, and 

recombination in E. coli  (Jones and Inouye, 1994;1996;Jiang et al., 1997;Graumann and Marahiel, 

1998). One of the most conserved cold shock protein  between non-pathogenic and pathogenic 

E.coli strains is the CspA. This protein is induced at low temperature and act as a s a e and act a 

CspA destabilize secondary mRNA structure preventing the RNase digestion (Jiang et al., 1997). 

 

3.2.3  Acid stress response 

Acid stress can be defined as the combined effect of environmental protons and weak organic 

acids (Zhao et al., 1993;Miller and Kaspar, 1994). Escherichia coli Enteroinvasive, 

enteropathogenic, and enterohaemorrhagic strains are more acid tolerant than nonpathogenic 

strains such as E. coli K12 (Gorden and Small, 1993). The development of acid tolerance is strictly 

related to cell physiological properties and can involve pH-dependent, pH-independent or a 

combination of both types of systems (Lin et al., 1995). In all E. coli, two pH-dependent 

mechanisms were described: one induced in the log phase and another activated in stationary 

growth phase (Small et al., 1994). 
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During the log phase, the exposure to low pH value provokes the cytoplasmic accumulation of 

many compounds like glucose, glutamate, aspartate, FeCl3, KCl, and L-proline, phosphate and 

cAMP (Goodson and Rowbury, 1989;Foster, 2000). The acid stress response during the stationary 

phase is mediated by glutamate decarboxylase and the arginine deiminase complexes. Three acid 

resistance (AR) systems have been identified in all E. coli (Lin et al., 1995;Bearson et al., 

1997;Audia et al., 2001): AR1, AR2 and AR3. The acid resistance system 1 is an oxidoreductive 

complex, while AR2 (glutamate decarboxylase) and AR3 (arginine decarboxylase) are fermentative 

complex and their activation depends on medium used for the growth (Audia et al., 2001). The 

oxidative system is dependent upon σs  and it not require amino acids for the proton depletion 

after the exposure to acid stress (Lin et al., 1995). As described for Listeria monocytogenes ( see 

chapter 2.3.3 ) the amino acid decarboxylation systems involving the AR2 and AR3 complex 

appeared to act as inducible pH homeostasis systems, and play an important role in the 

maintenance of the cytoplasmic pHi . The pH-independent response to acid environment pass 

thought changes in the  cell membrane composition. As reported by (Brown et al., 1997;Jordan et 

al., 1999), the exposure to acid increases the bioaccumulation in the cytoplasmic cell membrane of 

phospholipids containing membrane-stabilizing cyclopropane fatty acids. 

 

3.2.4  Osmotic stress response 

Increased osmotic pressure has been used to control the growth of food spoilage and pathogenic 

bacteria by desiccation or addition of high amounts of osmotically active compounds, which result 

in a decreased water activity (Chung et al., 2006). The maintenance of intracellular osmotic 

pressure is critical for the survival in osmotic stress conditions. When the osmotic pressure in the 

surrounding environment increases, cells activate osmoregulation systems to prevent shrinkage 

and eventual plasmolysis.  

In E. coli the osmoadaptation induces the expression of Postexponential protein (Pex) and heat 

shock proteins HPSs (Christman et al., 1985;Jenkins et al., 1988;Schultz et al., 1988;Jenkins et al., 

1990). Pex proteins are intracellular sensors (Rowbury, 1997) and their expression, which occurs in 

a large variety of environmental stress conditions, results in an increased resistance to heat, 

oxidation, and osmotic pressure. As described for L. monocytogenes , osmoregulation ( see 

chapter 2.3.4  is achieved by the uptake form the environment or bio-synthesis of different 

osmoprotectants solutes like: trehalose, proline, glycine, betaine and carnitine (Pichereau et al., 
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2000). When exposed to osmotic stre ss, E. coli accumulates betaine and proline under via two 

specific transport systems ProU and ProP (Booth et al., 1994;Csonka and Epstein, 1996). 

 

3.3  Stress response and virulence 

 

The pathogenic ability of different enteropathogenic E. coli strains is strictly related with their 

response mechanisms to the adverse growth condition (Benjamin et al., 1991;Fang et al., 

1992;Garcia-del Portillo et al., 1993;Gahan and Hill, 1999). The virulence of E. coli O157:H7 

depends on its ability to resist to the acid environment of the gastrointestinal tract (Benjamin 

(Benjamin and Datta, 1995;Tuttle et al., 1999;Law, 2000;Smith, 2003). As reported from many 

authors, sub-lethal stress conditions can influence the Stx toxin production.  After the exposure to 

cold environments or heat and acid shocks, E. coli O157:H7 showed during the recovery an 

enhanced Stx toxin production. 

Leenanon et al., (2003) highlighted, using RT-qPCR and ELISA assays, an increased expression of 

the stx-II gene during the exposure to acid stress without an increase of the Stx toxin. However, 

the growth in acid environments stimulated the expression of the virulence eaeA and hlyA genes 

(Chung et al., 2006). The first encode for the  attaching and effacing protein and the second for the 

hemolysin. A similar effect on the Stx toxin regulation was observed by Yuk and Marshall, (2003) 

after the exposure of E. coli O157:H7 at high temperature. Heat adaptation induced a intracellular 

reduction of the Stx toxin concentration. However, the secretion of the protein was higher. E. coli 

proteins associated with thermotolerance HSPs contributed also to the bacterial macrophage 

survival (Delaney et al., 1993). 
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General Objectives  

 

Consumer demand for minimally processed and ready-to-eat foods, with a reduced content of 

synthetic preservatives, has stimulated the research toward alternative preservation strategies. 

Essential oils (EOs) or their components represent one of the most promising natural feasible 

alternatives to improve food safety, shelf-life and quality. Recognized as safe (GRAS) from 

international food authorities, they are traditionally used in food industry as flavor and taste 

enhancers (Newberne et al., 2000). Moreover, a wide literature documents their application as 

natural preservatives also in different food matrices such as meat (Fratianni et al., 2010; Barbosa 

et al., 2015; Radha krishnan et al., 2015), dairy products (Amatiste et al., 2014; Ehsani et al., 2016; 

Ben Jemaa et al., 2017), minimally processed fruits and vegetables (Patrignani et al., 2015; Siroli et 

al., 2015b, c) and beverages (Kiskó and Roller, 2005; Chueca et al., 2016). Among the natural 

antimicrobials, thyme EO, and some components of citrus and officinal EOs, such as citral, 

carvacrol, and (E)-2-hexenal, are very promising alternatives to traditional preservatives (Ivanovic 

et al., 2012). In fact, they are widely reported to be able to improve safety and shelf-life of several 

foods also when used at concentrations lower than their bactericidal ones and compatible with 

the product sensory properties (Lanciotti et al., 1999; Gardini et al., 2002; Lanciotti et al., 2003; 

Lanciotti et al., 2004; Belletti et al., 2008; Siroli et al., 2014; Zanini et al., 2014a; Zanini et al., 

2014b; Patrignani et al., 2015; Silva-Angulo et al., 2015; Siroli et al., 2015). However, although their 

antimicrobial properties are well documented, their practical application is currently limited due 

to the strong impact and changes they cause in food products (Gutierrez, Barry-Ryan, & Bourke, 

2008). Moreover, the limited use is due to i) the variability of the composition of EOs (due to the 

geographic origin, agricultural techniques, season, methods of extraction, etc.) able to influence 

their effective overall antimicrobial activity (Patrignani et al., 2015); ii) the interaction of bioactive 

molecules with the food matrix (in particular with proteins, lipids, starch, etc.) limiting the contact 

of these molecules with the microbial cells, thereby reducing the effects on cell viability (Gutierrez 

et al., 2008); iii) the lack of knowledge of the interaction between technological and composition 

parameters and their activity; iv) the lack of knowledge of the mechanisms by which these 

molecules exert their antimicrobial activity. 

In fact,  few and fragmented are the information about their mechanisms of action, their cellular 

targets and on the stress response strategies that microorganisms take in place after the exposure 

to such compounds (Burt, 2004; Hyldgaard et al., 2012; Patrignani et al., 2015). Although cell 
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membrane, energetic metabolism and cytoplasm coagulation are regarded as the main target of 

EOs and their components, few are the information of the gene and transcriptome modifications 

induced by a short term exposure to natural antimicrobials such as citral, carvacrol, (E)-2-hexenal 

and thyme essential oil in food-borne microorganisms. In addition, also the information on the 

contribute of each cell, within a population, to the microbial resistance  are not fully understood. 

The heterogeneity in microbial population resistance to different stresses  is reported to occur as a 

monomodal Gaussian with a narrow or broad distribution, or as a multimodal distribution 

comprising subpopulations of similar or vastly different numbers of individuals (Dhar and 

McKinney, 2007). For these reasons, an holist approach should be considered for the evaluation 

microbial cell responses and  mechanisms of action of EOs (Caccioni et al., 1997). In fact, the 

detailed knowledge of the action mechanisms of citral, carvacrol, (E)-2-hexenal and thyme EO and 

the microbial stress response is mandatory for their implementation at industrial level as 

innovative preservation strategies even when they are used sublethal concentrations in 

combination with other food preserving non-thermal strategies. The implementation processes 

should be also related to the food matrices and production processes. 

In this framework, the main aim of the PhD project was to investigate the effects of one hour 

exposure to sublethal concentrations of selected natural antimicrobials such as citral, carvacrol, 

(E)-2-hexenal and thyme EO on the food-borne pathogens Listeria monocytogenes Scott A and 

Escherichia coli K12 MG1655 using multiple approaches. In particular, the effects of the natural 

antimicrobials and the stress response were evaluated using molecular approaches in order to 

highlights the shifts on the transcriptome and proteome. For Listeria monocytogenes Scott A, the 

effects of the exposure to natural antimicrobials on the transcriptome was studied  by RT-qPCR on 

a pool of gene representative of different metabolisms: energetic, ferric uptake, stress response, 

gene transcription, cell division, virulence, motility, while the proteome effects were determined 

by bi‐dimensional electrophoresis (2DE). The transcriptome changes of Escherichia coli K12 

MG1655 were evaluated using the microarray technology. In addition, for both the selected 

microbial strains, the effects of the natural antimicrobials on the membrane fatty acid profiles  and 

the single cell responses to of the whole populations were studied using GC/MS approach and the 

flow cytometry, respectively. 

Finally the effect of (E)-2-hexenal, in combination with high pressure homogenization or 

traditional thermal treatments, was evaluated on the safety, shelf-life and quality of apple juices 

inoculated with different food-borne pathogens and spoilage agents.  
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Gene expression responses of Listeria monocytogenes 

Scott A exposed to sub-lethal concentrations of natural 

antimicrobials  

 

Introduction  

Microbial cells have adopted proficient defence systems to survive a variety of physicochemical 

adverse conditions and to face to environmental stresses. The modulation mechanisms are 

different depending on the species, the strains and the physiological state of the cells (Patrignani 

et al., 2008;Picone et al., 2013;Patrignani et al., 2015) and regard a wide spectra of metabolic 

pathways such as a perturbance of the cell wall, membrane, pH and intra-cytoplasmic 

environment, DNA injuries as well as to ATP production, protein synthesis, and quorum sensing 

(Faleiro, 2011;Siroli et al., 2015a). The persistence of L. monocytogenes strains in food-related 

environments suggests niche adaptation of these strains and therefore constitutes a major risk to 

consumer health and results in economic losses for the food producers (Cabrita et al., 2015). The 

ability of L. monocytogenes to grow in a wide spectrum of environments depends on its 

metabolism and to its responses to environmental stress (Dutta et al., 2013). One of the main 

characteristics of L. monocytogenes is the heat resistance and also the resistance to refrigeration 

temperatures (between 0 and 4°C). In fact, L. monocytogenes is able to grow in refrigerated foods 

such as lettuce (Koseki and Isobe, 2005) and other ready to eat products (Dutta et al., 2013;Siroli 

et al., 2015c) and generally its growth is not affected by the modified atmospheres applied for 

fresh-cut vegetables and fruits (Thomas et al., 1999;Castillejo Rodrıǵuez et al., 2000). Moreover, L. 

monocytogenes is able to activate protection strategies to different stressing conditions commonly 

applied in food processing and storage (Gomes Neto et al., 2015). One of the emerging strategies 

proposed to prevent the presence and the growth of L. monocytogenes in food products, is the 

use of natural antimicrobial compounds such as essential oils (EOs) or their components alone or 

in combination with other mild hurdles (Kamdem et al., 2011;Ngang et al., 2014). In addition, the 

consumer demand for foods with no or few chemical preservatives, has created a market demand 

for natural, non-thermal and feasible technologies for ensuring the microbial safety of foods 

(Sivakumar and Bautista-Baños, 2014). EOs and every pure compound extracted from EOs have a 

specific action and specific target in the microbial cells  (Viuda-Martos et al., 2008;Picone et al., 
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2013). Their activity depends from their stereo-chemical properties (Helander et al., 1998) and 

their interaction or synergies with the matrix components (Picone et al., 2013;Siroli et al., 2015a). 

The use of citral (a mixture of monoterpene aldehydes: genial and neral) and citron EO at different 

concentrations demonstrated their synergic activity against spoilage and pathogenic 

microorganisms in fruit salads avoiding the undesirable effects attributable to the cytotoxicity of 

pure citral (Belletti et al., 2008). Moreover, some EOs, such as rosemary, thyme and oregano and 

some components of essential oils, like carvacrol, thymol, citral, hexanal and (E)-2-hexenal, are 

promising natural alternatives to traditional preservatives, since their antimicrobial activity is well 

documented both in model and real foods (Ivanovic et al., 2012;Patrignani et al., 2015;Siroli et al., 

2015b;Siroli et al., 2015c). The presence of thyme and rosemary EOs implied a reduction in the 

population of L. monocytogenes (about 2 log UFC/g) in Sous Vide cook-chill beef (Gouveia et al., 

2016) the combination of moderate heat, carvacrol and thymol (Guevara et al., 2015) or curcuma 

(Ngang et al., 2014) explicated a synergistic effect leading to inactivation kinetics values three or 

four times lower than when using heat alone, also in pineapple juice (Ngang et al., 2014). Exposure 

to sub-lethal concentration of natural antimicrobials outlined effects on the cell wall components 

and energy metabolism. A common characteristic of these compounds is their hydrophobic 

nature. Microbial cells accumulate these natural antimicrobials into the cytoplasmic membrane, 

where they can elicit several toxic effects that may eventually lead to cell death (Burt, 2004). In 

particular, in L. monocytogenes the grown in presence of sub-lethal concentrations of oregano EO, 

thyme EO, thymol, carvacrol and citral increased the unsaturated level of fatty acids in the 

cytoplasmic cell membrane (Dowd et al., 2011). Moreover, the exposure with four different 

concentrations of carvacrol in Escherichia coli 555 afflicted the energy metabolism, proton motive 

force and glucose accumulation in cells (Picone et al., 2013). These mechanisms were also 

confirmed by the response of Salmonella enterica ser. Thompson MCV1 to sub-lethal 

concentration of thymol. After thymol exposure Salmonella enterica cells become more sensitive 

to oxidative and osmotic stress due the decompensation in ATP synthesis and outer membrane 

channel system TolC (Di Pasqua et al., 2006). In this framework, the aim of this study was to 

evaluate the gene expression mechanisms, by RT-qPCR, of L. monocytogenes Scott A exposed for 1 

hour to different sub-lethal concentrations of (E)-2-hexenal, citral carvacrol and thyme EOs in 

order to evaluate the effects of the antimicrobials on some genes involved in cell division, cell wall 

synthesis, membrane function, transcriptional regulation, nucleotide and protein synthesis, 

metabolism, and cell motility. L. monocytogenes Scott A was selected because this strain possess 
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one or more virulence determinants that make able to cause systemic infection following 

inoculation via the gastro-intestinal (Czuprynski et al., 2002). The comprehension of the response 

mechanisms of food pathogens strains exposed to EO molecules is a fundamental step for the up-

scale of the use of those compounds as natural preservatives directly in the food processing 

(Faleiro, 2011). 

 

Material and methods 

 

Natural antimicrobials  

Citral, carvacrol and (E)-2-hexenal were obtained from Sigma-Aldrich (Milano, Italy), while thyme 

EO was purchased from Flora s.r.l. (Pisa, Italy). Natural antimicrobials stock solutions were diluted 

in absolute ethanol (Sigma-Aldrich, Milano, Italy) and stored at 4°C until use and for up to a 

month. 

 

Bacterial strain 

L. monocytogenes Scott A belongs to the Department of Agricultural and Food Sciences DISTAL), 

University of Bologna and stored at -80°C. Before the experiments culture was cultured in brain 

heart infusion (BHI) broth (Thermo-fisher, Milano, Italy) at 37°C for 24 h. Before the experiment, L. 

monocytogenes was preliminarily grown in BHI broth incubated at 37°C for 24 h. 

 

Exposure to natural antimicrobials 

For each exposure assay, 250 mL of fresh BHI broth was inoculated with 2.5 mL of L. 

monocytogens Scott A and incubated at 37°C (4 log CFU/mL). The growth was monitored by the 

optical density (OD) at λ=600 nm (Spectrophotometer Jenway, Staffordshire, United Kingdom). 

Reached the middle of the exponential growth phase (OD=0.4, λ=600 nm) cells were exposed to 

citral, carvacrol, (E)-2-hexenal, thyme EO and 1% absolute ethanol as control. Two hundred µL of 

natural antimicrobial stock solutions were added to 20 mL of liquid cultures in order to obtain the 

concentrations reported in Table. Exposure regarded the 1/5, 1/3 and 1/2 of the minimal 

inhibition concentration (MIC) calculated for L. monocytogenes Scott A (Table) (Siroli et al., 2015a). 
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Cultures were incubated for 1 h at 37°C. All the exposure trials were performed in triplicate. After 

the treatments 3 aliquots of 1 mL of liquid culture were harvested. Each sample was added of an 

equal volume of RNA protect Bacteria Reagent (Qiagen Inc., Ontario, Canada) incubated at room 

temperature for 5 minutes and centrifuged for 7 minutes at 12000 rpm. Supernatants were 

discarded and cell pellets were stored at -80°C. 

Table 1: Natural antimicrobials treatment concentration respectively as 1/5, 1/3 and 1/2 the minimally inhibitory concentration 

MIC 

value 

citral 

(mg/L) 

carvacrol 

(mg/L) 

(E)-2-hexenal 

(mg/L) 

thyme EO 

(mg/L) 

1/5 50 20 150 40 

1/3 85 35 250 70 

1/2 125 50 400 100 

 

Total RNA isolation and purification 

RNA was extracted using the SV Total RNA Isolation System (Promega, Wisconsin, USA). The yield 

and the purity of each extraction was determined by measuring the ABS at 260 nm and the 

260/280 nm ratio using a BioDrop µLITE (BioDrop, Milan Italy). The yields were about 15 ng/µL for 

all the samples and only samples with a ratio 260/280 nm above 1.9 were used for the reverse 

transcription reaction. 

 

cDNA first strand synthesis   

The reverse transcription into cDNA was performed according to Serrazanetti et al., 2015. Before 

real time assays, samples were properly diluted in DNAse/RNAse free water (Promega, Wisconsin, 

USA) to reach a final concentration of 5 ng/µL. 

 

Reverse Transcription quantitative PCR (RT-qPCR) 

The best reaction conditions for each primer stets, were investigated by end point PCRs using 

genomic DNA as a template. Different MgCl2 final concentrations (2.00, 3.00, 4.00 mM) and 

annealing temperatures (AT) were tested. Amplification quality was verified by gel electrophoresis 
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using 1.5% agarose gels. Results are reported in the Table. RT-qPCRs were performed using a Rotor 

gene 6000 thermal cycler (Corbett Life Science, Mortlake, Australia). The list of genes and their 

function is reported in Table. The RT-PCR reaction mixture (25 µL) included 5 ng of cDNA, 12.5 µL 

of SYBR Premix Ex Taq II (TaKaRa Bio Inc., Japan), 0.5 µM of each primer and 6.5 µL DNAse/RNAse 

free water (Promega, Wisconsin, USA). Each reaction was performed in triplicate. For each gene, a 

threshold line and quantitative cycle (Cq) were determined using the Rotor-Gene series software 

(Qiagen Inc., Ontario, Canada). Genomic DNA standard curves (5 points of dilutions) for each of 

the target genes were included in each assay to account for differences in the amplification 

efficiencies (E) and to serve as a positive control points according to the model defined by . The E 

value for each primer pair is reported in Table. 

 

Relative gene expression analysis 

The relative gene expressions (RGEs) were determined according to the MIQE guidelines (Bustin et 

al., 2009) using the mathematical model proposed and reviewed by Pfaffl, 2012. Reference genes 

(RGs) were chosen from a pool of candidate genes: ccpA (catabolite control protein A), rpoB (DNA-

directed RNA polymerase subunit beta), tufA (transcription elongation factor Tu) and 16S-rRNA 

(Lane, 1991) by the evaluation of different statistical parameters, using the BestKeeper© tool 

program (Pfaffl et al., 2004;Tasara and Stephan, 2007). 

 

Statistical analysis 

Three independent replicates were performed for all experiments. Means were compared using 

one way-ANOVA in order to assess the significance of the results obtained and the levels of gene 

over- and under- expression using the R software (R Core Development Team, 2017). Differences 

with p<0.05 were considered as statistically significant. Concerning the evaluation of relative gene 

expression levels: the overexpression was decided on the basis of the significance (p<0.05) of the 

differences with the untreated cells as major than 1.10 RGE, as well as the under expression was 

considered lower than 0.90. 
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Table 2: . RT-qPCR oligonucleotide primers used in this study. 

  Gene Forward primer (5’>3’) Reverse primer (5’>3’) Protein/function Reference 

Reaction efficiency 

E 

MgCl2 

mM 

Annealing temperature  

°C 

C
el

l d
iv

is
io

n
/D

N
A

 r
e

p
re

ss
io

n
 a

n
d

 m
o

d
u

la
ti

o
n

 

ftsE AGGCTAAAGAGCCCACACAA TCTTCGACGGGAGAAAATTG 

Cell division ATP-binding 

protein FtsE 

(Bowman et al., 2008) 2.13 4 56.3 

ftsZ CAATGAAAGAAGCGGTGGAT ATTCCCATAAGGGCAGAACC Cell division protein FtsZ (Bowman et al., 2008) 2.03 4 56.3 

hup GCAGCGAAAGCAGTAGAAGC AAGCGCTTTACCAGGTTTGA DNA-binding protein HU (Bowman et al., 2008) 1.88 3 57.3 

En
er

gy
  

M
e

ta
b

o
lis

m
 

opuCA ACATCGATAAAGGAGAATTTGTTTGTT CGTTTTCCCACAACCACTTGGACCG 

 

Glycine betaine/carnitine/choline transport  

ATP-binding protein OpuCA 

(Sue et al., 2004) 2.05 4 57.2 

pdhD AACAGGATCTCGTCCAATCG CTGGACCACCCTCAAGGATA 

 

Dihydrolipoyl dehydrogenase 

(Dihydrolipoamide dehydrogenase) 

(Bowman et al., 2008) 1.90 2 58.3 

pgm TTGGCATGATGTGGACTTGT TCAAGCGCCAAGATTTATGA Phosphoglycerate mutase (Bowman et al., 2008) 2.14 2 54.2 

R
N

A
 a

n
d

 p
ro

te
in

 s
yn

te
si

s 

fusA GTGAAACCCATGAAGGTGCT TGCATCTAGAACCGCAACAG Translation elongation factor G (Bowman et al., 2008) 2.13 2 57.3 

rpoC CCGTATGCAAGGGGTAGAAA TAGCTTCACGGTTGGCTTCT DNA-directed RNA polymerase subunit beta' (Bowman et al., 2008) 2.20 2 57.3 
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  Gene Forward primer (5’>3’) Reverse primer (5’>3’) Protein/function Reference 

Reaction 

efficiency 

E 

MgCl2 

mM 

Annealing temperature  

°C 

St
re

ss
  

R
es

p
o

n
se

 

cspL CGCAGAAAAAGGATTTGGTT TGAACGTTAGCTGCTTGAGG Cold shock-like protein CspLA (Bowman et al., 2008) 2.20 2 55.2 

fri TTACTAGCAATCGGCGGAAG CATTGTCGCCTTCTTTGTCA Non-heme iron-binding ferritin (Bowman et al., 2008) 2.15 2 56.3 

gadB AATACCTTGCCCATGCAGTC AGTGGATATGCGGGAACTTG Glutamate decarboxylase (Bowman et al., 2008) 2.12 2 57.3 

lmo0669 TCAAGCTATCAAGGCGCTAATAAA CCGACCAATTCCGGAGTCT 

Lmo0669 protein 

putative oxidoreductase 

(Sue et al., 2004) 2.11 3 58.2 

rpoE GGGAGCGTCTTGTTCAATTT CCAAGCTCTTCCACGATTTC 

DNA-directed RNA  

polymerase subunit delta 

(Bowman et al., 2008) 2.19 3 58 

V
ir

u
le

n
ce

 a
n

d
 

M
o

ti
lit

y 

bsh GGCCTTAGTATGGCAGGACTCA CTCATTGTCCTTACCTTCTGCAAA Bile salt hydrolase (Sue et al., 2004) 2.15 2 60.7 

flaA CGTGAACAATCAATCCATCG ACATTTGCGGTGTTTGGTTT Flagellin (Bowman et al., 2008) 2.15 2 54.2 



 66 

inlA GGTCTCACAAACAGATCTAGACCAAGT TCAAGTATTCCACTCCATCGATAGATT Internalin-A (Sue et al., 2004) 2.11 3 64.6 
R

e
fe

re
n

ce
  

ge
n

e 
te

st
e

d
 

16S rRNA CCTACGGGAGGCAGCAG GTATTACCGCGGCTGCTG - (Lane, 1991) 2.01 

  

ccpA GGAGCCGTTGATATGGAAAA ATTTCATTTCGCGATTGACC Catabolite control protein A (Bowman et al., 2008) 2.18 3 54.2 

rpoB TGTAAAATATGGACGGCATCGT GCTGTTTGAATCTCAATTAAGTTTGG DNA-directed RNA polymerase subunit beta (Sue et al., 2004) 2.17 2 57.5 

tufA TGGCGATGACATTCCTGTAA CTGGCATCATGAATGGTTTG Elongation factor Tu (Bowman et al., 2008) 2.92 2 55.3 
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Results 

 

Growth kinetics of L. monocytogenes Scott A in relation to different sub-lethal concentrations of 

natural antimicrobials  

L. monocytogenes Scott A was subjected to different sub-lethal concentrations of carvacrol, citral, 

(E)-2-hexenal and thyme EO in order to comprehend the response in terms of growth kinetics also 

in relation to their concentrations. In particular, the concentrations used corresponded to 1/2, 1/3 

and 1/5 of the MIC, previously assessed by (Siroli, Patrignani, Gardini, et al., 2015). In this study, 

the effects of the antimicrobials were determined on the basis of growth dynamics of L. 

monocytogenes exposed to the selected substance when OD = 0.4 (λ=600 nm) was reached in BHI 

medium. In figures 1a, 1b, 1c and 1d the growth curves, obtained by spectrophotometer 

absorbance, were reported on the basis of the molecule added as antimicrobials. In general, the 

exposition of L. monocytogenes Scott A cells to the different antimicrobials resulted both in a 

reduction of the curve slope and of the maximum OD levels reached in the presence of different 

antimicrobials tested (figures 1a, 1b, 1c and 1d). Regarding the exposition of the cells to 1% of 

ethanol, no differences were outlined compared to the control. The growth inhibition was 

dependent on the natural antimicrobial employed and on its concentration, with the exception of 

citral and carvacrol exposition. In fact, in the presence of these latter molecules, independently to 

their concentrations, the growth of L. monocytogenes was always retarded. By contrast, the 

presence of (E)-2-hexenal and thyme EO implied a growth response related to their 

concentrations. In particular, thyme EO added at 70 and 100 mg/L (1/3 and 1/2 of the MIC 

respectively) entailed a clear inhibition of the growth of L. monocytogenes. Also, the results 

obtained by plate counting confirmed this behaviour (data not shown). 
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Figure 1: growth curves of L. monocytogenes Scott A in optimal condition (BHI, 37 °C) and after the exposition to ethanol (1%) or the 

natural antimicrobials (1/2, 1/3 and 1/5 of the MIC): 1a) citral; 1b) carvacrol; 1c) (E)-2-hexenal; 1d) thyme EO. The exposition, for all 

the samples, started at the mid of the exponential phase (OD=0.4, λ = 600 nm), at the point indicated by the arrow. 

 

Selection of the most suitable reference genes: reference gene comparison by BestKeeper© 

Software 

The expression stability of four potential reference genes (ccpA, rpoB, ftsZ and 16S rRNA), in L. 

monocytogenes both in optimal growth condition and when exposed to 13 different stress 

conditions, was assessed according by BestKeeper© tool programme (Pfaffl et al., 2004) (data not 

shown). ccpA, codifying for catabolite control protein A, was selected as reference gene on the 

basis of its correlation and stability in the tested exposure conditions (data not shown). On the 

basis of the same parameters, also rpoB, codifying for the DNA-directed RNA polymerase subunit 

beta, was selected. In particular, in the sub-lethal stress condition imposed by natural 

antimicrobial exposition, the stability of the reference genes is ranked in the following order: 

ccpA>rpoB>ftsZ>16S rRNA. 

 

Relative gene expression of L. monocytogenes strain Scott A exposed to sub-lethal 

concentrations of natural antimicrobials on the basis of different metabolism pathways 

To assess the direct effect of sub-lethal concentrations of natural antimicrobials, citral, carvacrol, 

(E)-2-hexenal and thyme EO the relative level expression of the genes selected was analysed by 

RT-qPCR. In particular, the target genes selected (Table 2) are involved in pathways related to 
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different biological functions such as energetic metabolism, stress response, cell division, virulence 

and motility. Some of those belong to the alternative sigma factor involved both in the stress 

response (opuCA and lmo0669) and in the virulence mechanisms such as inlA (Sue, Fink, 

Wiedmann, Boor, & Kathryn Boor, 2004). The genes were sub-grouped on the basis of the 

metabolic pathways considered in order to pinpoint the role of the antimicrobial compounds 

utilised in relation also to their concentrations. It was observed that L. monocytogenes Scott A 

exhibited differential gene expression in relation to the molecule used as antimicrobial, while, in 

some cases, these differences are related to their concentration. Citral and carvacrol showed the 

same mechanism of action as well as (E)-2-hexenal and thyme EO giving raise the same gene 

response patterns. With respect to the exposition of L. monocytogenes to ethanol 1%, the 

presence of the natural antimicrobials tested induced changes mainly correlated (p<0.05) with the 

energy metabolism, the stress response, the cell division and DNA synthesis and repair. 

In the figures 2a, 2b, 2c and 2d the results regarding the relative gene expression of L. 

monocytogenes exposed to ethanol at 1% and to different sub-lethal concentrations of citral, 

carvacrol, (E)-2-hexenal and thyme EO are reported. It is important to outline that the same 

results were obtained also using rpoB as RG (supplementary data, table S4). The citral addition, 

when the cells of L. monocytogenes reached an OD = 0.4 (λ=600 nm), implied the modification of 

the expression of the genes involved in energy metabolisms (figure 2a), stress response (figure 

2b), cell division/DNA repression and modulation (figure 2c) and virulence and motility (figure 2d). 

In fact, the presence of citral, independently on its concentration, caused the under expression of: 

pdhD (figure 2a), a dihydrolipoyl dehydrogenase (also known as dihydrolipoamide dehydrogenase) 

involved in the Krebs cycle; hup (figure 2c), a gene involved in the prevention of the DNA 

denaturation under extreme environmental conditions; and flaA, flagellar motility genes (figure 

2d). In particular, the hup gene was repressed in all the conditions tested, with the exception of 

ethanol 1%. In the presence of (E)-2-hexenal and thyme EO, hup was strongly under expressed 

confirming that those conditions implied a reduction of the treated cells to repair the eventual 

DNA damage created by exposure to the molecules added as antimicrobials. The expression of 

cspL gene (figure 2b) increased, in particular when citral was added at 50 mg/L, corresponding to 

the 1/5 of the MIC. This treatment also induced the overexpression of rpoE (figure 2b), while the 

other concentrations didn’t imply significant modifications of the expression of this gene 

belonging to the extra-cytoplasmatic sigma factor. An opposite behaviour was outlined by 

lmo0669 (putative oxidoreductase) that was under expressed (figure 2b). In this case, it is possible 
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to underline how the concentration of 50 mg/L for citral can be considered a threshold 

concentration able to activate specific response in L. monocytogenes Scott A. Carvacrol exposition 

implied the same trend of gene expression described for citral, but in this case a threshold 

concentration for specific response levels, was not evidenced. Energy metabolism, general stress 

response and cell division were mainly affected by (E)-2-hexenal and thyme EO (figures 2a, 2b and 

2c respectively). It is interesting to outline how (E)-2-hexenal and thyme EO implied a strong under 

expression of pdhD and pgm (figure 2a), involved in glycolysis, of rpoE and lmo0669 (figure 2b), 

involved in the general stress response, and of ftsE, hup and fusA involved in the cell division and 

in DNA modulation and repression under environmental stress conditions (figure 2c). On the 

contrary, rpoC (DNA-directed RNA polymerase subunit beta) was overexpressed in the presence of 

(E)-2-hexenal, mainly at 150 and 400 mg/L, and thyme EO, at 40 and 70 mg/L (figure 2c). Also, 

gadB was minimally over expressed in the presence of (E)-2-hexenal (figure 2b). bsh gene, 

encoding the principal bile-resistance mechanism of L. monocytogenes, was significantly 

overexpressed (at different levels) in all the condition tested, in particular, when citral was added 

at 50 mg/L (figure 2d). As in part described before, the expression of pdhD was affected when the 

cells of L. monocytogenes were exposed to sub-lethal concentrations of ethanol, citral, carvacrol, 

(E)-2-hexenal and thyme EO (in all the conditions tested the relative gene expression of pdhD was 

always under 0.9), and contemporary also the expression of pgm was repressed in the presence of 

(E)-2-hexenal and thyme EO (figure 2a). Concerning the genes opuCA, probably responsible for 

energy coupling to the transport system and also involved in the osmoprotection and 

cryoprotection of the cells (figure 2a), fri, involved in the DNA protection of L. monocytogenes with 

respect to oxidative stress (figure 2b), ftsZ, coding for an essential cell division protein that forms a 

contractile ring structure (Z ring) at the future cell division site (figure 2c), and inlA, that mediates 

the entry of L. monocytogenes into cells, no modification have been detected in their expression in 

all the conditions tested.  
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Figure 2: Relative gene ex pression (rge) of the genes involved in the energy metabolism (2a), stress response (2b), in cell division, 

DNA repression and modulation (2c) and virulence and motility (2d) calculated with the untreated sample as a control and samples 

exposed to ethanol (1%), citral, carvacrol, (E)-2-hexenal and thyme EO at 1/2, 1/3 and 1/5 of the MIC. The gene products are as 

follows: opuCA, Glycine betaine/carnitine/choline transport ATP-binding protein OpuCA; pdhD, Dihydrolipoyl dehydrogenase 

(Dihydrolipoamide dehydrogenase); pgm, Phosphoglycerate mutase; fri, Non-heme iron-binding ferritin; gadB, Glutamate 

decarboxylase; cspL, Cold shock-like protein CspLA; rpoE DNA-directed RNA polymerase subunit delta; lmo0669, Lmo0669 protein 

putative oxidoreductase; ftsE, Cell division ATP-binding protein FtsE; ftsZ, Cell division protein FtsZ; hup, DNA-binding protein HU; 

rpoC, DNA-directed RNA polymerase subunit beta'; fusA,  translation elongation factor G;  bsh, Bile salt hydrolase; flaA, Flagellin; 

inlA, Internalin-A. Error bars indicate standard deviations of the means for the three experiments. 

 

Discussion 

 

In this study, the generic response of L. monocytogenes Scott A to different natural antimicrobials 

(citral, carvacrol, (E)-2-hexenal and thyme EO), used at different sub-lethal concentrations (1/2, 

1/3 and 1/5 of the MIC), was explored to determine how this microorganism reacts and can 

develop resistance mechanisms and to evaluate their potential use as natural preservatives in 

food industry. Unexpectedly, on the basis of the first tests developed in order to select the most 

suitable reference gene for the conditions analysed, ccpA evidenced the best features (data not 

shown). These data are not in agreement with previous studies in which this gene can modify its 

expression in dependence on the environment, particularly at low temperatures (Wouters et al., 
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2000;Duché et al., 2002;Cacace et al., 2010). In fact, usually 16S rRNA is commonly used as the 

best reference gene when L. monocytogenes is exposed to different stress conditions (Tasara & 

Stephan, 2007). On the other hand, different reference genes are reported for L. monocytogenes 

depending on the stress applied and on the tested environmental conditions (McGann et al., 

2007;Werbrouck et al., 2007). The data obtained showed shared response mechanisms of L. 

monocytogenes Scott A to sub-lethal concentrations of citral and carvacrol and of thyme EO and 

(E)-2-hexenal outlining how the unsaturated aldehydes citral and (E)-2-hexenal, characterised by a 

common chemical structure, gave raise to completely different gene expression patterns. This 

common behaviour demonstrated as the specific responses in the microbial cells depends not only 

to the chemical structure but also to their MIC, to their activity and to the absolute volume of the 

antimicrobials added to the cells. In particular, the bactericidal or bacteriostatic effects of the 

tested compounds were evidenced by the response in the cell load after the exposition in the first 

60 minutes and over the further incubation (figures 1a, 1b, 1c and 1d). The results reported in 

figure 2a, evidenced how pdhD was under expressed, while pgm was under expressed only in the 

presence of (E)-2-hexenal and thyme EO. These data evidenced the unbalance in the glycolysis 

pathway of L. monocytogenes in the presence of sub-lethal concentration of (E)-2-hexenal and 

thyme EO. These modifications outlined as, in the sub-lethal conditions tested, glycolysis has an 

important role in keeping up a minimal level of catabolic mechanism. The under-expression of 

pgm, after 30 min and the over expression of pdhD after 60 min of exposition to sub-lethal 

stresses in L. monocytogenes was previously described in the presence of increasing 

concentrations of NaCl (Duché et al., 2002). The phosphoglycerate mutase (pgm) is involved in the 

step 3 of the sub-pathway that synthesizes pyruvate from D-glyceraldehyde 3-phosphatethis, and 

the second one (pdhD) is a pyruvate dehydrogenase that converts pyruvate to acetyl-coenzyme A, 

ethanol, lactate, or other small molecules. Their behaviour, in the presence of the antimicrobials 

assessed and, in particular, their repression in the presence of (E)-2-hexenal and thyme EO, 

suggests an hypothetical shift in the metabolism of L. monocytogenes Scott A from the oxidation 

to fermentation. The same metabolic switch was evidenced in L. monocytogenes in response to 

extracellular pH changes (Nilsson et al., 2013), in which a clear energy generation shift towards 

fermentation in the presence of alkaline environment was demonstrated in particular by the over 

expression of the same genes (pgm and pdhD). The proteins codified by pdhD and pgm were 

overexpressed also at 4°C (Cacace et al., 2010). Otherwise, it is known that bacterial metabolism is 

a complex network of interacting pathways, and negative effects on one pathway often lead to 
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compensatory adjustments in other pathways (a form of homeostasis), according to different 

mechanisms depending on the kind of stress and time of exposure (Goh et al., 2002). 

Consequently, different stresses can generate the same general metabolic switch (from respiration 

to fermentation) thought different coordinate changes in gene expression and rate of 

transcription demonstrating how L. monocytogenes is able to differently modulate its energy 

generation source in response to different growth conditions (Lungu et al., 2009). The exposure to 

the natural antimicrobials considered can also influence L. monocytogenes pathogenicity, as 

demonstrated by bile salt hydrolase (bsh) over-expression in most of the tested conditions. In fact, 

in the presence of ethanol, citral, carvacrol and minimally (E)-2-hexenal the expression of bsh, 

involved in the virulence and motility responses, increased. In particular, L. monocytogenes 

responded with the over expression of cspL and bsh to citral and carvacrol exposition. The gene 

cspL is involved in the cold shock stress response and can be activated also in the presence of 

other types of stresses such as HHP (Bowman et al., 2008). Bile salt hydrolase (bsh) is usually 

overexpressed, by L. monocytogenes, when subjected to bile salt stress in order to resist to the 

gastrointestinal tract adverse conditions and their bactericidal effect (Begley et al., 2010;Dowd et 

al., 2011). Bile tolerance is generally drive by many genes (btlB, sigB, pva, prfA and btlA) but the 

deletion of bsh implied a 2-fold reduction in the MIC of bile (Dowd et al., 2011).  Another 

interesting result regarded the evidence of a threshold concentration for the activation of a repair 

response in the presence of citral 50 mg L-1. In particular, a higher expression of cspL and rpoC was 

evidenced. Moreover, the conditions in which the cells were exposed to (E)-2-hexenal and thyme 

EO interfered negatively with the response to L. monocytogenes in terms to DNA protection, 

stabilization and prevention of its denaturation, with the translocation step during the translation 

elongation and with the cells division by the strong under expression of hup, fusA and ftsE, 

respectively (figure 2c). In optimal conditions the histone like proteins, in this case codified by hup, 

can be involved in the control of gene expression (Mekalanos, 1992). In the presence of the sub-

lethal stresses induced by (E)-2-hexenal and thyme EO, hup was under expressed, showing a clear 

effect in the control of the cells biochemical mechanisms and in cells division (also fusA and ftsE 

were under-expressed). On the contrary, the expression of the proteins codified by fusA and ftsE 

were increased in the presence of cold adaptation of L. monocytogenes (Cacace et al., 2010). 

Glutamate decarboxylase (gadB) was lightly overexpressed only in the presence of (E)-2-hexenal. 

This gene is co-transcribed in tandem with an upstream gene, gadC, which encodes a potential 

glutamate/γ-aminobutyrate antiporter. Expression of this transcript (gadB and gadC), in L. 
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monocytogenes, is up-regulated in response to mild acid stress (Dowd et al., 2011). In fact, it is 

involved in the cell pH homeostasis, converting glutamate to γ-aminobutyrate (GABA). 

Consequently is also involved in the glutamate-dependent acid resistance in gastric fluid (Feehily 

et al., 2013). This assumption can suggest a minimal activation of the acidic stress response in the 

presence of (E)-2-hexenal. Moreover, the GABA obtained by the decarboxylation of glutamate, can 

be metabolised and converted to succinate. Hypothetically this pathway can compensate the 

incomplete tricarboxylic acid (TCA) cycle of L. monocytogenes (Feehily et al., 2013). 

 

Conclusions 

 

The results showed that citral and carvacrol when used at sub-lethal concentrations induce in L. 

monocytogenes Scott A an overexpression cspL and bsh genes. Citral at 50 mg/L represent a 

threshold concentration, able to maximize the expression of cspL and bsh. (E)-2-hexenal and 

thyme EO created a clear unbalance in the energy metabolism determining a shift from respiration 

to fermentation, under-expressing pgm and pdhD involved in glycolysis. Moreover, (E)-2-hexenal 

and thyme EO inhibited the expression of the genes involved in the stress response, in proteins 

synthesis and in DNA protection and repair after environmental shock. These data keep the 

attention on the need to choose the concentrations over the MIC to avoid the activation of 

virulence factors, such as bile salt hydrolase (bsh). However, since the natural antimicrobials used 

as a marked effect on the sensory properties of food, due to their low sensory threshold, their 

application at industrial level, as antimicrobials, requires the identification of combined strategies 

able to deactivate or under express also the virulence genes. This knowledge is fundamental to 

comprehend how those antimicrobials can be used in a conscious way applied in the food system 

in order to avoid L. monocytogenes resistance mechanisms.  
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Response mechanisms of Escherichia coli to citral, 

carvacrol, (E)-2-hexenal and thyme essential oil. 

 

Introduction 

Essential oils (EOs) are aromatic and volatile compounds extracted from whole plants as well as 

from plant material such as flowers, roots, leaves, seeds, peel, fruits and wood (Hyldgaard et al., 

2012). These molecules are produced by plants as secondary metabolites for defense purposes 

and some of the EOs are well known for their antimicrobial properties (Tajkarimi et al., 2010). The 

historical use of EOs was in medicine, perfumery, cosmetics, and they are also added to foods as 

part of spices or herbs. Generally, EOs contain 20–60 constituents at different concentrations. EOs 

are characterized by two or three major components at fairly high concentrations (20–70%) 

compared to other compounds present in trace amounts (Burt, 2004;Bakkali et al., 2008). In vitro 

studies showed that thyme EOs possess antimicrobial activity against a broad spectrum of Gram-

negative or Gram-positive bacteria as well as yeasts and moulds (Burt, 2004;Solomakos et al., 

2008). Carvacrol is, in addition to thymol, one of the main components of thyme and oregano EOs; 

it is a phenolic monoterpenoid with a strong antimicrobial activity against a wide range of 

pathogenic microorganisms (Bagamboula et al., 2004;Oussalah et al., 2007) and fungi (Kordali et 

al., 2008). Aldehydes such as (E)-2-hexenal and citral, which are components of the aroma of many 

fruits and vegetables, are characterized by a strong antimicrobial activity both in model and food 

systems (Lanciotti et al., 2004). In particular, antimicrobial action against bacteria, yeasts and 

moulds in different conditions has already been demonstrated for citral (3,7-dimethyl-2-7-

octadienal), which naturally occurs in citrus EOs. It is an acyclic α,β-unsaturated monoterpene 

aldehyde that exists as the two isomers geranial and neral (Belletti et al., 2008;Leite et al., 2014). 

In addition, some essential oils appear to exhibit particular medicinal properties that have been 

claimed to cure some organ dysfunctions or systemic disorders. EOs and some of their 

components are generally recognized as safe (GRAS) by the FDA and EFSA (Moreira et al., 

2005;FDA, 2014).   

EOs are used in the food industry as flavoring agents since many years. Because of the 

antimicrobial properties of some of the EOs (Cosentino et al., 2003), their application as food 

preservatives is very promising particularly in minimally processed fruits and vegetables (Siroli et 
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al., 2014;Siroli et al., 2015b), meat products (Jayasena and Jo, 2013), beverages (Patrignani et al., 

2013) and dairy products (Lucera et al., 2012). However, their use as preservatives in traditional 

foods requires a deeper knowledge about the microorganisms they can target, their interaction 

with food matrix components and their modes of action. In fact, the mechanisms of action of most 

EOs are not or not fully understood (Hyldgaard et al., 2012;Picone et al., 2013) 

Given their structural differences and the presence of different functional groups, the mechanism 

of the antibacterial activity of the various EO components will most likely not be the same and 

there may be several specific targets in the cell (Burt, 2004). Generally, it is accepted that EOs and 

their active molecules can lead to degradation of the cell wall, damage of the cytoplasmic 

membrane and membrane proteins, leakage of cellular contents, coagulation of cytoplasm, 

depletion of the proton motive force, or more general perturbation of energy metabolism (Burt, 

2004;Picone et al., 2013). Evaluating the effect of carvacrol on the Escherichia coli 555 

metabolome using 1H-NMR spectroscopy, Picone et al. (2013) showed a shift from respiration 

toward fermentation as the concentration of carvacrol increased due the decrease of fumarate, 

succinate and citrate present in the respiratory pathway of E. coli. 

In order to promoting the use EOs and their components in the food industry it is necessary to 

better understand which stress responses are induced by the addition of these natural 

antimicrobials to pathogenic and spoilage microorganisms. Microorganisms come across several 

different stress conditions in, particularly, minimally processed foods and it is well known that 

they respond to these stresses by regulating gene expression and protein profiles. Stress 

responses can allow surviving more stringent conditions, augment resistance to consequent 

processing conditions, and/or increase virulence in pathogens (Chung et al., 2006). Thus, 

understanding the effects of stress on the physical tolerance of pathogens is important in order to 

evaluate and minimize the risk of food-borne illness (Chung et al., 2006).  

Throughout the 1990s and nowadays, food-associated pathogens are a leading cause of food-

borne diseases, which command a host of research and surveillance attention from governments 

and critical alertness from the food industry (Newell et al., 2010). In particular, enterohemorrhagic 

and enterotoxigenic strains of E. coli are widely recognized as very important causes of food-borne 

illness over the last two decades. Up to a decade ago, the sources of E. coli outbreaks were most 

often contaminated beef meat, but nowadays almost any source that could have been in contact 

with animal faeces is a potential risk, including vegetables, sprouts, fruits, meat products (such as 

dry fermented sausages), juices, unpasteurized apple cider and milk (both pasteurized and 
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unpasteurized) as well as faecally-contaminated drinking water and beverages (Newell et al., 

2010). Researchers are currently trying to find natural methods to reduce pathogens and at the 

same time to ensure the safety and quality of the products (Severino et al., 2015). 

The main aim of this work was to study the stress response to natural antimicrobials of the E. coli 

model strain K12 MG1655. The effects on whole-genome gene expression (the transcriptome) of 

sub-lethal concentrations of thyme EO and some of the major components of EOs such as 

carvacrol, citral and (E)-2-hexenal were studied in depth using DNA microarray technology. 

 

Material and Methods 

 

Natural antimicrobials 

Citral, (E)-2-hexenal, and carvacrol were purchased from Sigma-Aldrich (Milano, Italy). Thyme EO 

was obtained from Flora s.r.l. (Pisa, Italy). The natural antimicrobials were stored at 4 °C. The 

chemical structure of citral, (E)-2-hexenal, and carvacrol is reported in Figure 1. Thyme EO used in 

this work was previously characterized through GC/MS-SPME analyses (Siroli et al., 2015b), and 

the composition and the relative percentages of each compound are reported in Table 1. 

  

 

Figure 1: Structural formulae of the component of EOs used in this work. Structural formulae of the two isomers of citral ((geranial 

(A) and neral (B)), (E)-2-hexenal (C), carvacrol (D). 
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Table 1: GC/MS-SPME characterization of thyme EO, in the table are reported the main molecules detected and the relative peak 

area/100000 and relative % 

Thyme EO 

Molecule 

peak  

area/100000 area % 

α-pinene 641.6 4.8 

camphene 257.5 1.9 

β-pinene 84.3 0.6 

3-carene 29.3 0.2 

β-myrcene 357.6 2.7 

α-phellandrene 47.7 0.4 

α-terpinene 512.4 3.9 

Limonene 133.9 1.0 

β-thujene 143.4 1.1 

γ-terpinene 2035.6 15.3 

p-cymene 3745.8 28.2 

terpinolene 44.7 0.3 

cis-β-terpineol 32.8 0.2 

Linalol 270.6 2.0 

bornyl acetate 8.0 0.1 

thymol methyl ether 61.5 0.5 

caryophyllene 908.8 6.8 

Borneol 60.1 0.5 

δ-cadinene 23.7 0.2 

p-thymol 21.4 0.2 

Thymol 1545.7 11.6 

Carvacrol 2207.1 16.6 

Total 13290.7 99.1 

 

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

determination 

For the determination of the MIC and MBC values of (E)-2-hexenal, citral, carvacrol and thyme EO 

on the target microorganisms Escherichia coli K12 MG1655, 150 µL of Brain Heart Infusion (BHI, 

Oxoid Ltd. Basingstoke, United Kingdom), inoculated with the target microorganism at three 

different levels (2, 4 or 6 log CFU/mL) were added to 200 µL microtiter plate wells (Corning 

Incorporated, NY, USA). Fifty µL of the tested natural antimicrobials, properly diluted in BHI broth, 

and conveyed through 96% ethanol (VWR international, PROLABO, France) were added to each 

well to obtain the required concentration in the final volume (200 µL), and with a constant amount 

of ethanol (1% v/v in wells). A wide range of concentrations from 0 to 2000 mg/L with intervals of 
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100 mg/L was used preliminarily. Based on the first results, more confined ranges of 

concentrations with intervals of 25 mg/L were tested. Minimal inhibitory concentration (MIC) 

values, the lowest concentration of the compound preventing visible growth of the inoculated 

cells, were determined after 18 and 24h. Minimal bactericidal concentration (MBC) values, the 

lowest concentration of the compound that caused death of the inoculated cells, were determined 

after 24 h of incubation at 37o C with shaking. The MBCs were determined by spotting 10 µL of 

each well after 24 h onto BHI agar plates. 

 

Treatment of bacterial cultures with natural antimicrobial compounds and cDNA microarray 

analyses 

The concentrations employed were 200, 500, 60 and 125 mg/L for of (E)-2-hexenal, citral, 

carvacrol and thyme EO, respectively. Each compound was used at approximately half of the 

determined MIC values after 18h at an inoculum level of 2 log CFU/mL.  

Overnight grown cultures were diluted to about 6 log CFU/mL in 1.0 L flasks containing 800 ml of 

BHI broth and incubated at 37 oC. The growth rate was monitored by measuring the optical density 

at 600 nm (OD600) every 30 min using a spectrophotometer UV-1204 (Shimadzu, Kyoto, Japan), 

until an OD600 of 0.4 was reached. Then, the cultures were aliquoted into 50 ml tubes and 

supplemented with the selected concentration of each compound dissolved in 1% v/v of ethanol 

to allow the solubility in water solution. The experiments were repeated three times on different 

days, and for each experiment, three tubes for each condition were used. Bacterial cultures to 

which 1% v/v of ethanol was added served as controls. Treatments were performed for 1 h at 37 

°C. From each condition, the cells from two samples of 50 ml were harvested by centrifugation 

(6,000xg for 5 min in an eppendorf centrifuge (Eppendorf, Hamburg, Germany) at room 

temperature. The pellets were immediately frozen in liquid nitrogen prior to storage at -80 °C until 

the RNA extraction. The effects of the addition of the natural antimicrobials on the growth rate of 

the target microorganisms were also monitored after the treatment, by measuring the OD600 

every 30 min of one 50 mL culture for each condition. 

The RNA was extracted from the microbial pellet obtained from 50 mL following the methodology 

described by Kuipers et al., (2002).  Single-strand reverse transcription (amplification) and labeling 

of 25–50 µg of isolated total RNA with Cy3-dCTP or Cy5-dCTP was done with the Invitrogen 

FluoroScript cDNA labeling system. Ultimately, the E. coli K12 cDNAs were hybridized to 

commercial E. coli gene expression 8×15K microarray slides (Agilent Technologies, Palo Alto, CA, 
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USA). After washing, the slides were scanned by using an Agilent G2565CA microarray scanner 

(Agilent Technologies). Each treatment condition was compared to the control. A biological 

replicate of each comparison as well as a dye swap were performed. DNA microarray slide pictures 

were analyzed using ArrayPro 4.5 (Media Cybernetics Inc., Silver Spring, MD). The Limma R 

package (Sayings, 1999) was used to analyse the DNA microarray data using the 1% v/v ethanol 

control as the common reference. Fold changes were considered to be significantly changed when 

the Benjamini-Hochberg adjusted p-value is ≤ 0.01. To investigate the distribution of differentially 

expressed genes in relation to the stress applied, a Venn diagram was constructed by using the 

online tool venny (Oliveros, 2015). 

 

Statistic tools 

An in-depth analysis of the transcriptome data was performed with a variety of bioinformatics 

tools from the MolGen GENOME2D website (http://genome2d.molgenrug.nl). In order to compare 

the different treatments, the statistically relevant fold-change (FC) values were used.  

 

 

Results and Discussion 

 

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

evaluation.  

The MICs and MBCs of citral, (E)-2-hexenal, thyme EO or carvacrol against three density levels of 

the target microorganisms E. coli K12 are reported in Table 2. Differences in the MICs and MBCs 

were observed in relation to the substances and, in some cases, the inoculum level used. 

Otherwise, the effects of inoculation level on MIC and MBC values of EOs and their components 

were described previously (Lambert et al., 2001;Burt, 2004). Citral showed a low antimicrobial 

effectiveness against the target strain that was independent of the inoculation level. In fact, the 

MIC values were always higher than 2000 mg/L. Carvacrol showed the highest efficacy. The MIC 

and MBC values of carvacrol for E. coli K12 were not affected by the inoculation level showing MIC 

at 18 and 24h and MBC of 125 mg/L in all cases. This result is in agreement with other studies 

(Bagamboula et al., 2004;Klein et al., 2013). By contrast, the influence of the initial inoculum on 

MICs and MBCs was evident for (E)-2-hexenal and thyme EO. These molecules showed a good 

efficacy against E. coli, with MIC and MBC values ranging between 350-600 mg/L and 250-500 
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mg/L, respectively. The bacteriostatic effect of (E)-2-hexenal and thyme EO was evident at each 

inoculum level (2, 4, 6 log CFU/mL). In fact, the MIC values after 24h were always higher than 

those after 18h. The MIC at 18h and the MBC for (E)-2-hexenal decreased from 500 mg/L to 350 

mg/L and from 600 to 425 respectively, with inoculation levels lowered from 106 to 102 CFU/mL.  

For thyme EO, the MIC at18h and the MBC decreased from 375 mg/L to 250 mg/L and from 500 to 

300, respectively, with inoculation levels lowered from 106 to 102 CFU/mL.  

 

Table 2: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral, (E)-2-hexenal, carvacrol 

and thyme EO against E. coli K12.  

 

                  

cell concentration 6 log CFU/mL 4 log CFU/mL 2 log CFU/mL 

MIC/MBC 
MIC 18h MIC 24h MBC 24h MIC 18h MIC 24h MBC 24h MIC 18h MIC 24h MBC 24h 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Carvacrol 125 125 125 125 125 125 125 125 125 

(E)-2-hexenal 500 575 600 375 425 450 350 400 425 

Citral >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 

Thyme EO 375 475 500 300 375 425 250 275 300 

 

Transcriptional response of E. coli K12 treated with sub-lethal concentrations of natural 

antimicrobials 

Employing a whole-genome DNA microarray approach, the transcriptional response of E. coli to 

sub-lethal concentrations of the natural antimicrobials, studied in this work, was assessed. The 

concentrations used for (E)-2-hexenal, citral, carvacrol and thyme EO were 200, 500, 60 and 125 

mg/L, respectively. These concentrations corresponded to half of the respective MIC values, with 

the exception of that of citral. Cells in the mid-exponential phase of growth in BHI were exposed 

for 1 h to the antimicrobial substances. Since the antimicrobials were conveyed in 1% v/v ethanol, 

the common reference was a bacterial culture exposed for 1 h to 1% v/v ethanol. In order to verify 

the effects of the treatments on cell vitality, growth of the target microorganisms after the 

treatments was also monitored (Figure 2). The addition to E. coli of 1% v/v ethanol or 200 mg/L of 

(E)-2-hexenal did not affect the growth rate of the organism. On the contrary, carvacrol and, to a 

greater extent, thyme EO and citral strongly affected the maximum growth rate as well as the 

OD600 reached in stationary phase. 
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Figure 2: Effect of natural antimicrobials addition on the growth of E. coli. E. coli K12 growth in BHI broth at 37 °C is presented from 

the point at which the treatment with the indicated sub-lethal concentrations of natural antimicrobials was started. Control + 

ETh1%: E. coli to which 1% v/v ethanol was added. The arrows indicate the point at which cultures were collected for DNA 

microarray analyses. Growth was recorded as the change in OD600. 

 

DNA microarray analysis was done on RNA isolated from parallel cultures after 1 h of exposure to 

the various compounds. The results revealed clear differences in the numbers of genes being 

significantly up- or down-regulated in the target microorganism E. coli K12 (Table 3). The highest 

number of genes of which the expression was significantly affected (550) was caused by the 

addition of thyme EO while for the carvacrol, citral and (E)-2-hexenal the number of genes 

significantly up- or down-regulated was quite similar and ranged from 352 to 411. In all cases, 

most of the affected genes belonged to the functional categories of energy metabolism, 

purine/pyrimidine metabolism, fatty acid and phospholipid metabolism, and protein synthesis. 

 

Table 3: Number of significantly (p<0.01) up- or down regulated genes in E. coli K12 1655 

  Escherichia coli K12 

  Citral (E)-2-hexenal Carvacrol Thyme EO 

UP 360 240 261 477 

UNCHANGED 3798 3831 3857 3659 

DOWN 51 138 91 73 
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A Venn diagram was constructed to investigate the distribution of differentially expressed genes in 

relation to the stress applied (Figure 3) (Oliveros, 2015). This analysis showed that exposure of E. 

coli to the selected compounds led to a gene expression response that is partially similar for all 

antimicrobials used. In fact, 70 genes were significantly differentially expressed in all four 

conditions. Moreover, approximately 31% of the differentially expressed genes were common 

among at least three conditions. The response of E. coli to sub-lethal concentrations of thyme EO 

and citral was very similar. In fact, the percentage of differentially expressed genes common to 

both conditions was around 45. 

 

Figure 3: Distribution of differentially expressed genes in antimicrobial-treated E. coli K12 MG1655. The Venn diagram (Kestler et al., 

2005) reports the numbers of unique and common differentially expressed genes. 

The most significantly (p-value lower than 0.01) up- or down-regulated genes are reported in Table 

4 and were further scrutinized. It is well known that one of the main targets of EOs is the 

cytoplasmic membrane (Burt, 2004;Nazzaro et al., 2013).  
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Table 4: Selected genes up- or down regulated in E. coli K12 after treatment with citral (500 mg/L), (E)-2-hexenal (200 mg/L), 

carvacrol (60 mg/L) and thyme EO (125 mg/L) (p<0.01) 

  

 

Fold 

Change     description 

Gene Carvacrol 

Thyme 

EO Citral (E)-2-hexenal   

Ribosome           

b3321 (rpsJ) 2.52 2.90 2.67 1.63 30S ribosomal subunit protein S10 [b3321] 

b3311 (rpsQ) 3.02 2.84 2.64 1.56 30S ribosomal subunit protein S17 [b3311] 

b3230 (rpsl) 2.26 2.49 2.65 1.44 30S ribosomal subunit protein S9 [b3230] 

b1717 (rpml) 2.61 2.55 2.68  * 50S ribosomal subunit protein A [b1717] 

b3231 (rplM) 3.05 7.35 2.78  * 50S ribosomal subunit protein L13 [b3231] 

b3186 (rplU) 2.66 3.50 3.43 1.69 50S ribosomal subunit protein L21 [b3186] 

b3185 (rpmA) 2.27 2.75 2.24 *  50S ribosomal subunit protein L27 [b3185] 

b3312 (rpmC) 2.13 3.13 2.45 1.42 50S ribosomal subunit protein L29 [b3312] 

b3320 (rplC) 2.19 2.54 2.31 1.45 50S ribosomal subunit protein L3 [b3320] 

b1089 (rpmF) 2.71 2.33 2.63 *  50S ribosomal subunit protein L32 [b1089] 

b3319 (rplD) 2.39 2.84 1.92 *  50S ribosomal subunit protein L4, regulates expression of S10 operon [b3319] 

    

Glycerophospholipid metabolism       

b3426 (glpD) -1.18 *  *  -2.89 sn-glycerol-3-phosphate dehydrogenase [b3426] 

b2243 (glpC) -1.60 -1.66  * -3.34 sn-glycerol-3-phosphate dehydrogenase [b2243] 

b2242 (glpB) -1.28 *  *  -1.41 sn-glycerol-3-phosphate dehydrogenase [b2242] 

     

Fatty acid biosynthesis         

b0180 (fabZ) 1.57 1.61 *  *  (3R)-hydroxymyristol acyl carrier protein dehydratase [b0180] 

b1091 (fabH) 1.18 1.21 *  *  3-oxoacyl- [b1091] 

b1092 (fabD) 1.24 1.39 1.33 *  malonyl-CoA- [b1092] 

b1093 (fabG) 1.18 1.19 *  *  3-oxoacyl- [b1093] 

b1095 (fabF) 1.14 1.17 1.15 *  3-oxoacyl- [b1095] 

b1288 (fabI) 1.49 1.38 1.41 1.39 enoyl- [b1288] 

b2316 (accD) 1.21 1.32 1.31 *  acetylCoA carboxylase, carboxytransferase component, beta subunit [b2316] 

b3255 (accB) *  1.47  * *  acetylCoA carboxylase, BCCP subunit; carrier of biotin [b3255] 

b3256 (accC) 1.32 1.47 1.32 1.28 acetyl CoA carboxylase, biotin carboxylase subunit [b3256] 

     

Energetic metabolism         

b1651 (gloA) *  1.72  * 2.87 lactoylglutathione lyase [b1651] 

b2579 (yfiD) 1.57 1.56 1.44 2.58 putative formate acetyltransferase [b2579] 

b0356 (frmA) *  *  2.01 3.57 alcohol dehydrogenase class III; formaldehyde dehydrogenase, glutathione-dependent [b0356] 

b1800 (yeaU) *  *  *  3.08 putative tartrate dehydrogenase [b1800] 

   

Purine, pyrimidine metabolism and transcription     

b3011 (yqhD) *  *  5.13 8.36 putative oxidoreductase [b3011] 

b4238 (nrdD)  * *  *  2.82 anaerobic ribonucleoside-triphosphate reductase [b4238] 

Hypothetical proteins       

 b1112 (bhsA) *   * *  5.51 orf, hypothetical protein [b1112] 

b1654 (grxD) *  *  2.13 2.53 orf, hypothetical protein [b1654] 

b3238 (yhcN) 1.73  * 2.41 7.04 orf, hypothetical protein [b3238] 
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b3914 *  4.29 3.82 *  orf, hypothetical protein [b3914] 

 

Heat shock, acid shock, protease anddetoxification and protection 

b1597 (asr) 2.20 5.02 2.10 *  acid shock protein [b1597] 

b0606 (ahpF) 1.69 2.80 2.03 1.49 alkyl hydroperoxide reductase, F52a subunit; detoxification of hydroperoxides [b0606] 

b3686 (ibpB) *  7.15 

10.7

2 *  heat shock protein [b3686] 

b3687 (ibpA) *  2.35 3.43 *  heat shock protein [b3687] 

b1305 (pspB) *  2.92 2.19 *  phage shock protein [b1305] 

b1307 (pspD) *  2.57 1.63 *  phage shock protein [b1307] 

b1304 (pspA) *  4.10 2.39 *  phage shock protein, inner membrane protein [b1304] 

b1531 (marA) *  2.07 2.76 3.80 multiple antibiotic resistance; transcriptional activator of defense systems [b1531] 

     

Outer and inner cell 

membrane         

b3035 (tolC)  * *  5.96 *  

outer membrane channel; specific tolerance to colicin E1; segregation of daughter chromosomes 

[b3035] 

b0814 (ompX) 2.58 1.60 2.02 2.36 outer membrane protein X [b0814] 

Replication and repair         

b3179 (rrmJ) *  *  2.57 *  cell division protein [b3179] 

Other functions 

b0849 (grxA) *  2.85 *  *  glutaredoxin1 redox coenzyme for glutathione-dependent ribonucleotide reductase [b0849] 

b1743 (spy) *  *  2.60 *  periplasmic protein related to spheroblast formation [b1743] 

b1454 (yncG) *  *   * -4.19 putative transferase [b1454] 

* expression values were measured and there was no significant change 

 

As previously described by Siroli et al., (2015a), carvacrol, thyme EO and citral led to an increase in 

the level of unsaturation as well as of trans-isomers in E. coli membrane fatty acids. Unsaturated 

fatty acids (UFA) have been reported to play a crucial role in the response of bacteria to different 

stresses, including low or high temperatures, oxidative, acid, ethanol or salt stress, or the stress 

evoked by high pressure (Tabanelli et al., 2014). Moreover, the effect of EOs and their components 

on the modulation of the synthesis of cyclic fatty acids in Gram-negative bacteria is well reported 

(Zhang and Rock, 2008;Siroli et al., 2015a). The increase in the length of fatty acids is another 

important membrane modification that might increase survival in adverse environments e.g., with 

a low pH or containing antimicrobial compounds (Royce et al., 2015). In the present work, an up 

regulation of the genes involved directly in the biosynthesis of UFAs and the other fatty acids 

involved in the Gram-negative bacteria stress response was observed but with a fold-change 

ranging between 1.14 and 1.61, which is most probably due to the relatively short time of 

exposure (1 h) to the investigated compounds. In fact, up-regulation of the genes fabZ, fabH, fabD, 

fabG, fabF, fabI, accB, accC, accD was evidenced for all the tested antimicrobials. The E. coli 

accBCD genes specify the acetyl-carboxylase complex that activates acetyl coenzyme A (acetyl-
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CoA) into malonyl-CoA, which represent the first step of fatty acid biosynthesis (My et al., 2015). 

The fab genes encode enzymes responsible for a series of condensation, reduction, and 

dehydration reactions, followed by elongation (My et al., 2013). These changes were accompanied 

by a down-regulation, in the presence of carvacrol and (E)-2-hexenal, of glpC and glpD, which are 

involved in glycerophospholipid metabolism. GlpC is the membrane-associated subunit of the 

heterotrimeric glycerol-3-phosphate dehydrogenase complex. Under anaerobic conditions this 

respiratory enzyme converts glycerol-3-phosphate to dihydroxyacetone phosphate (DHAP) using 

fumarate as the terminal electron acceptor (Varga and Weiner). GlpD is an aerobic glycerol 3-

phosphate dehydrogenase catalyzing the oxidation of glycerol-3-phosphate to dihydroxyacetone 

phosphate (Austin and Larson, 1991).  A response of E. coli K12 to the stresses applied here 

involves the over-expression of all the so-called phage shock genes (pspA, pspB and pspD) in 

particular in the presence of thyme EO and citral. The phage shock protein (Psp) stress response 

system in Gram-negative bacteria is responsible for repairing damage to the inner membrane of 

the cell (Kobayashi et al., 2007) and maintenance of the proton-motive force across the inner 

membrane (Darwin, 2007;Jovanovic et al., 2010). It is well reported that the Psp stress response is 

related to a block in protein export and fatty acid/phospholipid biosynthesis, exposure to organic 

solvents, extreme heat or osmotic shock, and exposure to high pH (Darwin, 2007;Jovanovic et al., 

2010). PspA acts as an effector of Psp and is thought to prevent proton loss under conditions in 

which the psp operon is induced, but the precise mechanism is unknown (Kobayashi et al., 

2007;Jovanovic et al., 2010;Huvet et al., 2011). Moreover, overexpression of pspB and pspC could 

prevent cytoplasmic membrane permeability caused by the passage of molecules through the 

mislocalized multimeric secretin channel (Horstman and Darwin, 2012). Secretins of Gram-

negative bacteria are membrane proteins that form multiple systems associated to the secretion 

of specific proteins to the extracellular space and in assembly of fiber structures on the cell surface 

(Korotkov et al., 2011). The heat shock genes ibpA and ibpB, which codify for chaperones that 

protect cells from denaturation of protein induced by heat and oxidative stresses, (Goeser et al., 

2015) are overexpressed in case of addition to E. coli of thyme EO and citral. According to Dodd et 

al., (1997) any stress condition (also chemicals) results in oxidative stress as a result of an 

imbalance between anabolism and catabolism. Of note, controversy exists as to oxidative stress 

being a mechanism of action of EO components. Khan et al., (2011) showed that treating Candida 

albicans with sub-lethal concentrations of three phenylpropanoid components of EOs (eugenol, 

methyl eugenol and estragole) caused oxidative stress, as demonstrated by the formation of 
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membrane lesions resulting from free radical cascade-mediated lipid peroxidation. In fact, they 

observed a significant increase (ranging between 1.69 to 3.27-fold) in catalase activity in cells 

treated with these antimicrobials. This rise in catalase activity is indicative for increased peroxide 

formation by phenylpropanoids. Chueca et al., (2014)on the other hand, suggest that the oxidative 

stress observed in E. coli after treatment with (+)-limonene, a component of citrus EOs, only takes 

place under specific conditions of drug concentration and a certain physiological state of the cells. 

In fact, they suggest that the mechanism of inactivation by (+)- limonene is mediated by ROS 

(superoxide and hydrogen peroxide) in exponentially growing cells, but not in cells in the 

stationary phase of growth. Considering the overexpression of ibpA and ibpB observed in this 

study we propose that oxidative stress plays a key role in the action mechanisms of thyme EO and 

citral against E. coli.  (Kitagawa et al., 2000)have demonstrated that bacteria overproducing IbpA 

and IbpB proteins developed resistance to superoxide stress; moreover IbpA/B repressed the 

inactivation of selected enzymes by hydrogen peroxide and potassium superoxide in vitro 

(Kitagawa et al., 2002). 

The natural antimicrobials also significantly affected genes involved in energy metabolism. In 

particular, an up-regulation was seen of the frmA gene in the presence of citral and (E)-2-hexenal 

and of yfiD for all three antimicrobials. As frmA encodes a glutathione-dependent formaldehyde 

dehydrogenase and the enzyme is part of aldehyde detoxification pathways (Gonzalez et al., 

2006;Mills et al., 2009), its up-regulation is a probable attempt of the cell to inactivate the added 

aldehydes citral and (E)-2-hexenal. Previous reports have shown that several microorganisms can 

detoxify citral and (E)-2-hexenal by transforming them into alcohols (Siroli et al., 2015a). 

Keating et al., (2014) studied the effects in E. coli of aromatic compounds from ammonia pre-

treated lignocellulose and showed that expression of frmA increased in the presence of high levels 

of aromatic aldehydes and acetaldehyde while frmA transcript levels decreased again as the 

aldehydes were inactivated. It was hypothesized that the FrmAB system, for which formaldehyde 

is reported to be the only substrate, may in fact also act on acetaldehyde and other aldehydes.  

The gene yfiD specifies a glycyl radical protein that can form a hetero-oligomeric complex with a C-

terminally truncated form of pyruvate formate-lyase that mimics the oxygen-fragmented enzyme. 

After activation, this complex has pyruvate-formate lyase activity (Wagner et al., 2001). It has 

been reported that YfiD is a member of the FNR (fumarate and nitrate reduction regulator) 

regulon in E. coli. FNR is an oxygen sensor functioning mainly to activate the expression of genes 

required during anaerobic growth (Wyborn et al., 2002). Picone et al. (2013) observed a shift from 
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respiration to fermentation upon exposure of E. coli to carvacrol. Inhibition of respiration together 

with K+ leakage, upon exposure of E. coli to sub-lethal concentrations of tea tree EO, has already 

been described (Cox et al., 1998). 

As reported earlier, treatment with (E)-2-hexenal, thyme EO and carvacrol affects E. coli glycerol 

metabolism. In the present study, we observe a repression of the genes glpC and glpD upon 

treatment of the cells with (E)-2-hexenal, thyme EO and carvacrol. The glpC and glpD genes are 

related to glycerol-3-phosphate (G3P) metabolism via G3P dehydrogenase. The glpD gene encodes 

aerobic glycerol 3-phosphate dehydrogenase, a respiratory enzyme, and its down-regulation 

suggests that a shift occurs from respiration to fermentation when the cells are faced with (E)-2-

hexenal, thyme EO and carvacrol. 

The ompX gene, encoding a small outer-membrane (OM) protein forming an eight-stranded 

antiparallel β-barrel (Dupont et al., 2007), was up-regulated upon treatment of the cells with all 

tested compounds (Table 4). OmpX plays a key role in the down-regulation of porins in the OM of 

E. coli in response to environmental stresses that induce its overproduction (Dupont et al., 2007). 

Helander et al., (1998) have shown the effect of EOs on the OM permeability in Gram-negative 

bacteria: the monoterpene components of EOs such as carvacrol and thymol caused disintegration 

of the OM and release of OM-associated material. 

An increase in expression of ribosomal subunit genes (rps, rpm and rpl) was evident after all three 

chemical stresses applied here. Several authors have reported up- or down-regulation of these 

genes under various stress conditions. A decrease in the expression of ribosomal subunit genes 

has been observed after an exposure of E.coli and Salmonella enterica to 30 min to triclosan, a 

member of the bisphenol biocide family that exhibits a broad spectrum of activity against many 

Gram-negative and Gram-positive bacteria. Down-regulation of ribosomal protein genes (rpl and 

rps) also occurred in Campylobacter jejuni upon a 15-min exposure to osmotic stress, coinciding 

with a temporary growth arrest, while the same genes returned to steady-state or greater 

expression levels with the resumption of growth (Cameron et al., 2012). 

The results of the present work clearly show that the addition of sub-lethal concentrations of the 

natural antimicrobials employed here affects global gene expression in E. coli. The affected genes 

are mainly those involved in fatty acid biosynthesis, energy metabolism and protection against 

oxidative stress. These data add to previous literature studies showing that the cytoplasmic 

membrane of E. coli is, the major cellular target of EOs and their components. In addition, the shift 
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from respiration to fermentative growth, with a consequent drastic reduction of energy 

availability for the cell, is clearly demonstrated by the down-regulation of glpD. 

 

Conclusions 

 

The data contribute to the understanding in detail the mechanisms of actions of the natural 

antimicrobials tested. In fact, the use of new antimicrobials in food processing against pathogenic 

species is subordinate to the comprehension of their activities. However, further studies including 

real-time PCR analyses on the genes resulted significantly up/down regulated must be performed 

to validate the microarray results obtained in this work.  
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Proteomic adaptation of Listeria monocytogenes Scott A 

to natural antimicrobial compounds 

 

Introduction 

 

Listeria monocytogenes, the etiologic agent of listeriosis, is one of the major serious food-borne 

illnesses worldwide (Swaminathan and Gerner-Smidt, 2007;Huang et al., 2014). Listeriosis is rare 

but causes lethal consequences greater than the cases of Clostridium botulinum. Listeriosis 

produces death for the 20-30% of patients showing the highest percentage in elderly, pregnant 

women, children or immune-compromised subjects (Forsyth et al., 1998;Mead et al., 1999;Orsi et 

al., 2011). L. monocytogenes is saprophytic species showing very high survival aptitudes in food 

ecosystems including raw, cooked and processed fruits and vegetables (Hadjilouka et al., 2015), 

meat (Liu et al., 2014;Gouveia et al., 2016), milk (Sadeghi et al., 2016) and fish (Rocourt et al., 

2003). L. monocytogenes is able to growth in different niches with a strong ability to resist against 

environmental and technological stresses such as high/low temperatures and modified 

atmospheres (Gandhi and Chikindas, 2007;O’Byrne and Karatzas, 2008;Dutta et al., 

2013;NicAogáin and O’Byrne, 2016). Within food chain, L. monocytogenes is able to adapt and 

survive to different stress conditions applied in food processing and storage (Gomes Neto et al., 

2015). Consequently, L. monocytogenes constitutes a major risk to consumers and it causes also 

strong economic losses (Cabrita et al., 2015). European Commission, (2005) required that the 

levels of L. monocytogenes must not exceed 100 CFU/g, for the products not particularly favorable 

for the growth of this pathogenic species and not directed to infants. In minimally processed fruits 

and vegetables, the use of chemicals (e.g., ozone, H2O2, organic acids, calcium-based solutions and 

peroxyacetic acids) as disinfectants is not sufficient to statistical decrease the survival L. 

monocytogenes strains (Soliva-Fortuny and Martıń-Belloso, 2003;Siroli et al., 2015). Based on 

consumer concern of chemical synthetic additives (Sivakumar and Bautista-Baños, 2014), one of 

the emerging strategies purposed to decrease the survival L. monocytogenes in food products is 

the use of natural antimicrobial compounds alone or in combination with other mild technologies 

(Kamdem et al., 2011;Ngang et al., 2014). Plants and plant products such as essential oils (EOs) 



104 
 

produced by lipoxygenase pathway, play a key role in plant defense against microbial proliferation. 

Today many EOs are generally recognized as safe (GRAS) and used to improve the sensory quality 

and shelf-life of fruits, vegetables, meat and dairy foods (Belletti et al., 2004;Burt, 2004;Belletti et 

al., 2010). The antimicrobial properties of EOs were mainly related to C10- and C15-terpenes with 

aromatic rings and phenolic-hydroxylic group forming hydrogen bonds with active sites of target 

enzymes (Picone et al., 2013). In addition, other EOs compounds such as alcohols, aldehydes and 

esters have antimicrobial effects. EOs differently affected bacterial and fungal viability depending 

to their composition and structural configuration as well as to the possible synergistic interactions 

among the components (Picone et al., 2013;Patrignani et al., 2015). Interestingly, some EOs have a 

wide spectrum of actions against pathogens including L. monocytogenes (Oliveira et al., 

2013;Patrignani et al., 2015). Some EOs from rosemary, thyme and oregano such as citral (a 

mixture of monoterpene aldehydes composed by geranial and neral), carvacrol, thymol, hexanal 

and trans-2-hexenal seems to be good candidate as natural antimicrobials since they have 

inhibitory effects against bacteria and fungi in foods (Ivanovic et al., 2012;Patrignani et al., 2015). 

Compared to other common antimicrobial compounds and human pathogens, there are few 

information about the effect of natural antimicrobials to decrease the formation of biofilm, cell 

survival and environmental adaptation of L. monocytogens (Ahmad and Beg, 2001;Mahesh and 

Satish, 2008;Helke et al., 2017;Tracanna et al., 2017;Van Vuuren and Holl, 2017). Despite recent 

progress in discovering details of L. monocytogens genome, the mechanisms of cellular adaptation 

against natural antimicrobial compounds remain largely unclear (NicAogáin and O’Byrne, 

2016;Van Vuuren and Holl, 2017). Studies on stress adaptations of L. monocytogenes to natural 

antimicrobial compounds are crucial to highlight the relationship between stress and virulence 

and to optimize the protocols for food production (Chaturongakul et al., 2008;Bowman et al., 

2010;He et al., 2015).  

Proteomic approaches liking genome and transcriptome to potential biological functions could 

highlight the molecular mechanisms of stress adaptations of L. monocytogenes to natural 

antimicrobial compounds (Guevara et al., 2015). Accordingly, this study aimed at investigating the 

proteomic adaptation of L. monocytogenes Scott A cells during exposure to natural antimicrobials 

(ethanol, citral, carvacrol, (E)-2-hexenal and thyme EO), used at sublethal concentrations to avoid 

their negative impact of food sensory properties. In fact, L. monocytogenes middle exponential 

phase cells were phase cells were exposed for an hour to 1/5, 1/3 and 1/2of the MIC values of the 
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antimicrobials considered and the proteomes analyzed by bi-dimensional acrylamide gel 

electrophoresis (2-DE) followed for the spot identification  by MALDI TOF MS/MS approach. 

 

Materials and Methods 

 

Bacterial strains and culture conditions 

L. monocytogenes Scott A was stored at −80 °C for long-term preservation. To acclimatize the 

strain to the experimental conditions, one mL of the culture strain was inoculated to nine mL of 

Brain Heart Infusion broth (BHI) (Thermo-fisher, Milano, Italy) and incubated for 24 h at 37 °C. 

After the growth, cells were propagated at 37 °C for 24 h in BHI broth using 1% of inoculum. 

 

Antimicrobial treatment conditions  

Cells of L. monocytogenes Scott A, grown in BHI broth for 24 h at 37 °C, were inoculated (1% v/v) in 

1000 mL of fresh BHI broth at a final density of 4 log CFU/mL. Cells were cultivated at the optimum 

growth temperature (30 °C) until they reached the mid-exponential phase of growth (OD600 of ca. 

0.4). Cells were harvested by centrifugation at 9,000 × g for 10 min at 30°C and resuspended in 

1000 mL of fresh BHI broth alone (untreated cells, control) or added of antimicrobial compounds 

(treated cells). Antimicrobial treatments were performed using ethanol (final concentrations in 

BHI broth of 1% v/v) alone or added of citral (final concentrations in BHI broth: 85 and 125 mg/L), 

carvacrol (20, 35 or 50 mg/L), (E)-2-hexenal (150, 250 or 400 mg/L) and thyme essential oil (40, 70 

or 100 mg/L). Citral (a mix of the two isomer of the same monoterpene aldehyde: geranial and 

neral), carvacrol, and (E)-2-hexenal were purchased from Sigma-Aldrich (Milano, Italy) while thyme 

essential oil (EO) was obtained from Flora s.r.l. (Pisa, Italy). After incubation at 37 °C for 1 h, 

control and treated cells were harvested by centrifugation at 6000 rpm at 4 °C for 10 min and used 

for total viable cell count or stored at -80 °C for protein extractions. 

 

Measurement of antimicrobial tolerance 

Harvested cells were showed in fresh BHI broth,  harvested by centrifugation at 9000 rpm at 4 °C 

for 5 min and immediately resuspended in sterile physiological solution for plate count.  Cell 

numbers were determined by plating on BHI agar medium. Numbers of C.F.U. were determined 

after 24 h incubation at 37 °C. The number of surviving micro-organisms was calculated as a 
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percentage of the cell number at time zero. The tolerance factor (TF) corresponded to the ratio of 

the survival of treated cells to that of control cells. 

 

Protein extraction and 2-DE analysis  

Exponential-phase cells harvested from BHI broth, were washed in Tris-HCl 50 mM pH 7.5 and 

proteins extracts were produced as described by De Angelis et al., (2001). The concentration of 

protein of the cell extracts was determined by the method of Bradford (1976). The same amount 

(60 µg for analytical runs or 200 µg for preparative runs for protein identification) of total protein 

was used for each electrophoretic run. Two-DE was carried out essentially as described by 

(Hochstrasser et al., 1988;Boguth et al., 2000), using a Pharmacia 2-D-Electro Focusing (EF) system 

(GE Healthcare). Gels were stained using Brilliant Blue G-Colloidal Concentrate (Sigma) or an MS-

compatible silver method. The protein maps were scanned with LabScan software on 

ImageScanner (GE Healthcare) and analyzed with the ImageMaster 2D Platinum v.6.0 computer 

software (GE Healthcare). Three gels from three independent experiments were analyzed and spot 

intensities were normalized as reported by Bini et al., (1997). In particular, the spot quantification 

for each gel was calculated as relative volume (% VOL), which corresponded to the volume of each 

spot divided by the total volume over the whole image (De Angelis et al., 2001).  

 

Protein identification 

In-gel tryptic digestion was performed. Gel pieces were washed two times with 50% (v:v) aqueous 

acetonitrile containing 25 mM ammonium bicarbonate, then once with acetonitrile and dried in a 

vacuum concentrator for 20 min. Sequencing-grade, modified porcine trypsin (Promega) was 

dissolved in the 50 mM acetic acid supplied by the manufacturer, then diluted 5-fold with 25 mM 

ammonium bicarbonate to give a final trypsin concentration of 0.02 µg/µL.  Gel pieces were 

rehydrated by adding 10 µL of trypsin solution, and after 10 min enough 25 mM ammonium 

bicarbonate solution was added to cover the gel pieces.  Digests were incubated overnight at 37oC. 

A 1 µL aliquot of each peptide mixture was applied to a ground steel MALDI target plate, followed 

immediately by an equal volume of a freshly-prepared 5 mg/mL solution of 4-hydroxy-α-cyano-

cinnamic acid (Sigma) in 50% aqueous (v:v) acetonitrile containing 0.1% , trifluoroacetic acid (v:v). 

Positive-ion MALDI mass spectra were obtained using a Bruker ultraflex III in reflectron mode, 

equipped with a Nd:YAG smart beam laser.  MS spectra were acquired over a range of 800-4000 

m/z.  Final mass spectra were externally calibrated against an adjacent spot containing 6 peptides 
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(des-Arg1-Bradykinin, 904.681; Angiotensin I, 1296.685; Glu1-Fibrinopeptide B, 1750.677; ACTH (1-

17 clip), 2093.086; ACTH (18-39 clip), 2465.198; ACTH (7-38 clip), 3657.929.). Monoisotopic masses 

were obtained using a SNAP averagine algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 

7.7583) and a S/N threshold of 2.  

For each spot the ten strongest precursors, with a S/N greater than 30, were selected for MS/MS 

fragmentation. Fragmentation was performed in LIFT mode without the introduction of a collision 

gas. The default calibration was used for MS/MS spectra, which were baseline-subtracted and 

smoothed (Savitsky-Golay, width 0.15 m/z, cycles 4); monoisotopic peak detection used a SNAP 

averagine algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 7.7583) with a minimum S/N of 6.  

Bruker flexAnalysis software (version 3.3) was used to perform spectral processing and peak list 

generation. 

Tandem mass spectral data were submitted to database searching using a locally-running copy of 

the Mascot program (Matrix Science Ltd., version 2.5.1), through the Bruker ProteinScape 

interface (version 2.1).  Search criteria specified: Enzyme, Trypsin; Fixed modifications, 

Carbamidomethyl (C); Variable modifications, Oxidation (M) and Deamidated (NQ); Peptide 

tolerance, 100 ppm; MS/MS tolerance, 0.5 Da; Instrument, MALDI-TOF-TOF. Results were filtered 

to accept only peptides with an expect score of 0.05 or lower.  

 

Statistical analyses and bioinformatics 

All experiments were carried out in triplicate and data were subjected to a one-way ANOVA (SAS, 

1985), and pair-comparison of treatment mean values was achieved by Tukey’s procedure at p < 

0.05 using the statistical software Statistica for Windows (Statistica 6.0 per Windows 1998). 

Principal component analysis by statistical software Statistica for Windows and PermutmatrixEN 

software were applied to analyze the proteome profiles (De Angelis et al., 2008;De Angelis et al., 

2015). To study changes in metabolic enzymes related to adaptation at different antimicrobial 

products, all identified proteins were mapped to Kyoto Encyclopedia of Genes and Genomes 

pathways using both the enter gene ID and/or EC number functions 

(www.genome.jp/kegg/pathway.html) (Bove et al., 2012). The comprehensive symbolic systems 

biology Pathway Tools (PT) software version 19.0 and the relative encompassed MetaCyc 

multiorganism database, were used to reconstruct metabolic pathways. The sample differences 

were normalized at reaction, pathway and mega-pathway hierarchical levels. custom scripts and 

http://www.genome.jp/kegg/pathway.html
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manually checking steps allowed us to improve the functional characterization considering EC 

numbers, KEGG codes, and multiple sub-units taking part of the same whole enzyme. In order to 

trace enzymes in our datasets, we used the REST-style KEGG API to link KEGG and MetaCyc 

pathways to EC numbers. 

 

Results 

 

Antimicrobial stress resistance 

After the mild-exponential phase of growth was reached, cells were treated with sub-lethal doses 

of the antimicrobial compounds (ethanol, citral, carvacrol, (E)-2-hexenal and thyme essential oil). 

In details, ethanol was used at 1% v/v alone and also used for convey the other antimicrobial 

compounds. Citral was used at concentration levels corresponding to 1/3 and 1/2 of the MIC 

value. Carvacrol, (E)-2-hexenal and thyme essential oil were used at levels corresponding to the 

1/5, 1/3, 1/2 of the MIC. According to MIC value, cell survival of L. monocytogenes Scott A was not 

affected by the exposure to the natural antimicrobials (Figure 1). The only exception was observed 

for cells treated with ethanol (1% v/v) and thyme EO (100 mg/L) showing a decrease of cell loads 

from 8.53 ± 0.36 to 7.20 ± 0.22 log CFU/mL, with a tolerance factor of 0.85, P=0.04. 4 

 

Figure 1: Cell density of Listeria monocytogenes Scott A untreated and treated for 1 h at 37°C with antimicrobial compounds.  

 

 



109 
 

Proteomic profile 

Compared to control cells grown under optimal conditions,  L. monocytogens Scott A treated for 1 

h with antimicrobial compounds showed the increase or decrease (≥ or ≤ of 2 fold, P<0.05) of the 

levels of the synthesis of 223 protein spots (Figure 1-2 and Table 1).  

In details, ethanol stressed cells increased the level of 87 protein spots compared to the untreated 

samples (Figure 1-3 and Table 1). On the contrary, the relative amount of other 17 protein spots 

was the highest in control cells. The presence of other antimicrobial compounds together with 

ethanol further modify the proteomic profile of L. monocytogens Scott A (Figure 1-2 and Figure 4 -

7Figure ).  The highest number of induced protein spots were found for cells treated with thyme 

essential oil at 70 (130 spots) and 100 (120 spots) mg/L and, especially, for carvacrol at 35 mg/L 

(161 spots). Within citral, carvacrol, (E)-2-hexenal and thyme essential oil exposures, the higher 

protein induction was found in cells exposed to doses corresponding to 1/3 of the MIC. On the 

contrary, the number of under-synthetized protein spots were the highest using concentrations of 

antimicrobial products corresponding to 1/5 (E-2-hexenal and thyme essential oil) and/or 1/2 

(citral and carvacrol) of the MIC values. Proteins showing different relative amounts were analyzed 

by Principal Component Analysis (PCA). As shown in the 3-D plot (Figure 8), the proteome profiles 

differed among the treatments.  

All proteins (223 spots), whose relative abundance was up- or down-regulated, were analyzed by 

MALDI-MS and MS/MS using a Bruker ultraflex III TOF/TOF. Except for hypothetical or unknown 

proteins, the identified proteins were arranged by functional categories according to the KEGG 

database. They are mainly involved in the following functional categories: i) cell morphology and 

motility; ii) ribosomal and regulation system proteins; iii) carbohydrate transport and metabolism 

and energy production; iv) nucleotide and nitrogen metabolism; v) cofactor and vitamin 

metabolism; and vi) stress response. Except for hypothetical or unknown proteins, the similarity 

profiles of identified proteins between samples was analyzed by PermutMatrixEN software (Figure 

9). Samples were grouped in three different clusters. Cluster 1 showed two sub-clusters, which 

grouped control samples and cells treated with ethanol (1A), and (E)-2-hexenal at different 

concentrations (150, 250 and 400 mg/L) (1B). Clusters 2 and 3 grouped samples belonging to cells 

treated with thyme essential oil at different concentrations  (70 and 100 mg/L) and citral (at 85 or 

125 mg/L), respectively. The identified proteins were described in detail in the following 

paragraphs. 
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Figure 1: Number of protein spots showing increased and decreased (≥ or ≤ of 2 fold, P<0.05) levels of synthesis when Listeria 

monocytogenes Scott A cells were treated for 1 h at 37°C with antimicrobial compounds. 
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Figure 2: Two-dimensional electrophoresis analysis of intracellular proteins synthesized by Listeria monocytogenes Scott A cells 

grown on BHI broth until the middle exponential phase of growth (OD= 0.4, λ=600 nm) was reached (untreated cells). The numbered 

circles refer to proteins with decreased or increased amount during treatment with antimicrobial compounds. Spot designation 

corresponds to that of the proteins in Table 2.  
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Figure 3: Two-dimensional electrophoresis analysis of intracellular proteins synthesized by Listeria monocytogenes Scott A cells 

grown on BHI broth until the middle exponential phase of growth (OD= 0.4, λ=600 nm) was reached and treated for one hour to 

ethanol (1% v/v). The numbered circles refer to proteins with decreased or increased amount compared to un-treated cells and cells 

treated with other antimicrobial compounds. Spot designation corresponds to that of the proteins in Table 2. 
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Figure 4: Two-dimensional 

electrophoresis analysis of 

intracellular proteins synthesized 

by Listeria monocytogenes Scott 

A cells grown on BHI broth until 

the middle exponential phase of 

growth (OD= 0.4, λ=600 nm) was 

reached and treated for one hour 

to ethanol (1% v/v) and citral at 

85 mg/mL (panel A) or 125 mg/L 

(panel B). The numbered circles 

refer to proteins with decreased 

or increased amount compared 

to un-treated cells. Spot 

designation corresponds to that 

of the proteins in Table 2. 
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Figure 5: Two-dimensional 

electrophoresis analysis of 

intracellular proteins synthesized 

by Listeria monocytogenes Scott A 

cells grown on BHI broth until the 

middle exponential phase of 

growth (OD= 0.4, λ=600 nm) was 

reached and treated for one hour 

to ethanol (1% v/v) and carvacrol 

at 20 mg/mL (panel A), 35 mg/L 

(panel B) or 50 mg/L (panel C). The 

numbered circles refer to proteins 

with decreased or increased 

amount compared to un-treated 

cells. Spot designation corresponds 

to that of the proteins in Table 2. 
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Figure 6: Two-dimensional 

electrophoresis analysis of 

intracellular proteins synthesized by 

Listeria monocytogenes Scott A cells 

grown on BHI broth until the middle 

exponential phase of growth (OD= 

0.4, λ=600 nm) was reached and 

treated for one hour to ethanol (1% 

v/v) and (E)-2-hexenal at 150 mg/mL 

(panel A), 250 mg/L (panel B) or 400 

mg/L (panel C). The numbered 

circles refer to proteins with 

decreased or increased amount 

compared to un-treated cells. Spot 

designation corresponds to that of 

the proteins in Table 2. 
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Figure 7: Two-dimensional 

electrophoresis analysis of intracellular 

proteins synthesized by Listeria 

monocytogenes Scott A cells grown on 

BHI broth until the middle exponential 

phase of growth (OD= 0.4, λ=600 nm) 

was reached and treated for one hour 

to ethanol (1% v/v) and Thyme EO at 40 

mg/mL (panel A), 70 mg/L (panel B) or 

100 mg/L (panel C). The numbered 

circles refer to proteins with decreased 

or increased amount compared to un-

treated cells. Spot designation 

corresponds to that of the proteins in 

Table 2. 
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Figure 8: Principal component analysis loading plot of the first three components of  the proteins showing different relative amounts 

of Listeria monocytogenes Scott A in relation to the stress condition applied. 
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Figure 9: Sample clusterization on the base of the proteins identified and differentially expressed. Three cluster were identified: 

Cluster 1 formed by control samples with or without ethanol supplementation (1a) and samples treated with sublethal 

concentrations of (E)-2-hexenal (2b); Cluster 2 formed by samples treated with thyme EO (70-100 mg/L); Cluster 3 formed by 

samples treated with citral (85-125 mg/L). 
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Table 1: Protein spots and standardized relative abundance found in Listeria monocytogenes Scott A cells grown on BHI broth until the middle exponential phase of growth (OD= 0.4, λ=600 nm) 

was reached. Cells were further incubated for 1 h at 37°C in fresh medium alone (untreated, C)  or added of ethanol (1% v/v, EtOH) and  antimicrobial compounds. The antimicrobial compounds 

were used: citral at 85 (C85) and 125 (C125)mg/L; carvacrol at 20 (CA20), 35 (CA35) or 50 (CA50); (E)-2-hexenal at 150 (ESE1), 250 (ESE2) or 400 (ESE4) mg/L; and Thyme EO at 40 (OT40), 70 (OT70) 

or 100 (OT100) mg/L. Only spots showing an increased or decreased ( or  of 2-fold, p <0.05) level of synthesis in L. monocytogenes Scott A during at least one treatment were reported. 

Spot number C EtOH C85 C125 CA20 CA35 CA50 ESE150 ESE250 ESE400 OT40 OT70 OT100 

1 -0.856 0.869 -0.657 -0.446 -0.846 0.444 -0.581 1.514 -0.876 0.616 0.395 -1.076 0.846 

2 -0.856 -1.121 -0.841 -0.933 1.250 0.154 1.874 -0.835 -0.876 -0.798 1.844 0.929 0.846 

3 -0.856 -0.458 -0.288 -0.446 -0.247 -0.718 0.120 -0.835 -0.876 -0.798 1.119 -0.217 0.846 

4 -0.856 0.073 -0.288 -0.446 0.651 0.735 1.172 -0.194 -0.876 -0.192 0.395 -0.790 0.604 

5 -0.856 0.603 -0.288 -0.770 -0.846 0.735 -0.230 -0.621 -0.323 -0.596 0.395 -0.790 -0.125 

7 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.581 -0.621 1.152 -0.596 -0.692 -0.217 0.361 

8 -0.376 0.869 1.557 1.178 0.352 0.154 0.471 2.368 1.889 2.232 1.844 0.356 0.846 

12 -0.856 -1.121 0.819 0.529 1.849 -0.718 -0.756 -0.835 -0.876 -0.798 -0.148 -0.933 0.846 

13 -0.856 1.399 1.188 0.853 0.651 0.154 1.172 -0.194 0.414 -0.192 -0.330 -0.217 -0.125 

15 -0.856 -0.989 -0.841 -0.933 -0.995 0.735 1.523 -0.835 -0.876 -0.798 -0.692 -1.076 0.604 

16 -0.856 -0.989 -0.841 -0.933 -0.995 0.735 0.822 -0.835 -0.876 -0.798 0.395 -0.217 0.846 

17 -0.856 1.134 -0.841 -0.933 1.549 0.735 2.225 -0.835 -0.876 -0.798 2.206 1.215 0.604 

20 -0.856 -1.121 -0.841 -0.933 1.849 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

21 -0.856 -1.121 -0.841 -0.933 1.849 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

22 -0.856 -1.121 -0.657 2.152 0.352 -0.427 -0.756 -0.835 0.783 -0.798 0.757 0.069 -0.368 

23 -0.696 -0.723 0.450 0.204 -0.546 0.735 -0.581 -0.621 -0.323 -0.192 -0.330 -0.790 -0.611 

24 -0.696 -0.458 1.926 1.503 -0.546 0.735 0.822 -0.621 -0.323 -0.596 0.757 0.069 -0.368 

25 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

26 -0.856 -1.121 -0.841 0.529 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

27 -0.856 0.073 0.819 -0.933 1.849 0.735 -0.756 -0.835 -0.876 -0.798 0.757 1.502 0.846 

28 1.544 1.399 1.926 1.503 1.849 0.735 -0.756 1.941 1.889 2.232 2.568 1.502 0.846 

29 0.584 1.399 0.450 0.529 1.849 0.735 0.822 0.660 0.414 0.616 2.206 1.215 0.604 

30 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 
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31 -0.856 0.073 0.819 0.529 0.352 0.444 -0.756 -0.835 0.783 1.020 0.757 -1.048 0.846 

32 -0.696 1.399 1.188 1.503 0.352 0.444 0.471 1.514 0.414 1.424 1.119 0.069 0.846 

33 -0.696 0.869 -0.288 1.178 0.352 0.444 0.822 1.087 1.152 1.020 0.757 -0.790 0.846 

34 -0.856 -0.989 -0.657 -0.933 -0.995 0.444 0.120 -0.621 -0.692 -0.596 0.033 0.069 0.846 

35 1.864 1.399 1.004 1.827 1.549 0.735 2.225 -0.621 -0.876 2.232 -0.692 -0.790 -0.854 

36 -0.856 -0.591 -0.841 -0.933 0.352 0.735 -0.756 -0.835 -0.139 -0.798 0.757 -0.790 0.846 

37 -0.696 1.399 1.557 1.178 0.352 0.735 -0.581 -0.194 1.520 -0.192 1.119 0.069 0.846 

38 -0.856 -1.121 0.819 2.152 -0.995 0.735 -0.756 -0.621 -0.876 -0.798 0.757 0.069 0.846 

39 -0.856 -1.121 -0.841 0.529 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 0.069 0.846 

40 -0.856 -1.121 -0.841 -0.446 -0.995 -0.427 -0.230 -0.835 -0.876 -0.798 -0.909 1.502 0.846 

41 -0.856 -0.989 -0.841 -0.933 0.352 0.154 -0.756 -0.835 -0.876 -0.798 -0.873 0.069 0.846 

42 -0.856 -0.723 -0.841 -0.933 -0.546 0.735 -0.756 -0.835 -0.876 -0.798 0.395 1.215 0.604 

43 -0.856 0.073 -0.657 0.529 0.352 0.735 -0.581 -0.835 -0.876 -0.798 -0.873 0.069 -0.368 

44 -0.856 -1.121 -0.841 -0.933 0.352 0.735 -0.756 -0.835 -0.876 -0.798 0.757 -1.220 -1.461 

45 -0.696 -1.121 -0.657 1.827 -0.995 0.735 -0.756 1.087 -0.876 1.020 1.844 0.929 0.846 

46 -0.216 0.073 0.819 0.529 1.250 0.154 -0.756 0.019 1.889 -0.798 0.757 0.069 0.846 

47 -0.376 -0.193 -0.103 0.204 0.052 0.735 -0.055 0.660 -0.692 -0.596 0.395 0.069 0.846 

49 -0.856 -1.121 -0.288 0.204 0.352 -1.589 -0.756 -0.835 -0.323 -0.798 -0.330 -0.933 0.846 

50 -0.376 1.399 2.295 1.827 1.549 0.735 -0.756 0.660 1.889 0.616 1.844 0.929 0.846 

53 -0.856 -0.989 -0.841 -0.933 -0.546 -1.589 -0.230 -0.194 -0.876 -0.192 0.395 0.069 0.846 

54 0.424 1.399 1.926 1.503 0.651 0.154 1.172 1.514 1.152 1.424 1.119 0.929 0.604 

55 -0.856 -1.121 -0.841 -0.933 1.849 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 0.846 

56 -0.856 -1.121 0.819 0.529 0.352 -0.718 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

57 -0.376 -1.121 1.188 0.853 0.651 -1.734 1.172 1.514 1.152 -0.192 -0.330 0.356 0.846 

58 -0.696 -0.193 -0.288 -0.446 0.052 -0.427 -0.756 -0.621 -0.692 -0.596 -0.330 -0.790 -1.583 

59 -0.376 0.073 2.664 2.152 0.352 -0.718 -0.230 -0.194 0.783 -0.192 -0.330 0.069 0.846 

60 -0.856 0.073 0.819 0.529 0.352 0.154 -0.756 -0.835 -0.139 1.020 -0.873 0.929 0.846 

61 -0.856 -0.723 0.819 -0.446 -0.995 -1.298 -0.756 -0.835 -0.323 -0.798 -0.873 -0.504 0.846 
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62 -0.376 -0.458 0.819 2.152 -0.995 0.735 -0.756 -0.835 0.783 -0.192 -0.330 1.502 0.846 

64 -0.856 -1.121 -0.841 -0.933 1.849 0.735 2.575 -0.835 -0.876 -0.798 -0.873 1.502 0.361 

66 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.361 

67 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 0.361 

68 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

71 0.584 1.399 0.819 2.152 0.352 0.735 -0.756 0.019 -0.139 0.010 0.757 0.069 0.846 

72 -0.696 0.073 2.664 1.503 -0.247 -0.718 -0.581 -0.194 0.783 -0.596 0.033 0.069 -0.368 

73 -0.696 1.399 0.819 0.529 -0.247 0.735 1.523 1.941 1.520 -0.192 0.033 1.502 0.846 

74 -0.696 1.399 -0.288 0.529 -0.546 -0.718 0.120 -0.194 0.783 0.212 0.033 1.502 0.846 

76 0.264 1.399 2.664 2.152 0.052 0.735 -0.756 -0.835 1.889 0.616 -0.873 -0.217 0.846 

77 -0.376 0.073 -0.288 -0.121 -0.995 -0.718 -0.581 -0.194 0.783 -0.596 -0.692 -0.217 0.846 

78 -0.856 -1.121 0.819 0.529 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 -0.125 

79 -0.856 -1.121 0.819 0.529 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 0.069 0.846 

80 -0.856 -1.121 -0.841 -0.933 -0.546 -1.008 -0.756 -0.194 -0.876 -0.798 -0.873 -0.933 0.846 

81 -0.856 -1.121 -0.841 -0.933 0.052 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 -0.611 

82 -0.856 -1.121 -0.841 -0.933 0.352 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

83 0.584 0.073 0.819 0.529 0.352 0.735 -0.055 0.019 0.783 1.020 0.757 0.929 0.361 

84 0.584 0.073 0.081 0.529 0.352 0.735 0.822 1.087 0.783 0.010 0.757 0.929 0.361 

85 0.584 0.073 0.819 0.529 0.352 0.735 0.822 1.087 0.783 1.020 1.844 1.444 0.846 

86 -0.856 -0.989 -0.841 0.529 -0.995 0.735 -0.756 1.087 0.783 1.020 0.757 0.069 0.846 

87 0.264 -0.193 -0.841 -0.933 -0.995 0.735 0.471 0.660 0.414 0.616 -0.873 0.929 -0.611 

88 -0.056 1.399 -0.288 -0.121 0.651 -1.298 -0.581 -0.621 0.045 1.020 -0.692 0.929 0.846 

89 -0.376 1.399 -0.288 -0.446 -0.546 -1.298 -0.230 -0.194 -0.692 -0.596 -0.692 -0.217 0.846 

90 -0.696 0.869 -0.288 -0.770 -0.546 -1.298 -0.756 -0.621 -0.323 -0.596 -0.692 -0.790 0.846 

91 -0.856 -1.121 -0.841 -0.933 0.052 -1.008 -0.756 -0.835 -0.876 -0.798 -0.873 0.356 0.846 

92 -0.856 -1.121 -0.841 -0.933 0.052 -1.008 -0.756 -0.835 -0.876 -0.798 -0.873 0.356 0.846 

94 -0.376 -0.458 -0.472 0.204 0.052 0.735 -0.756 -0.194 0.414 -0.596 -0.330 0.069 -0.854 

95 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.692 -0.798 -0.873 -1.048 -1.461 
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96 -0.856 1.399 2.664 1.178 -0.995 -2.024 2.575 1.941 -0.876 -0.798 -0.873 -1.220 -1.461 

97 2.184 1.399 2.664 2.152 1.849 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 0.846 

98 -0.056 1.399 0.081 0.204 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 0.356 0.846 

99 2.184 0.603 -0.288 -0.446 -0.546 -0.137 -0.756 -0.194 0.783 -0.192 -0.330 1.502 0.846 

100 2.184 -1.254 -1.026 -1.095 -1.145 -2.170 -0.932 -1.048 -1.061 -1.000 -1.054 -1.363 -1.583 

101 0.264 0.869 0.450 0.853 0.651 -1.008 -0.230 -0.194 0.414 -0.192 -0.330 0.929 0.846 

102 -0.856 -0.723 -0.841 -0.933 -0.995 -0.427 -0.756 -0.194 -0.876 -0.192 0.395 -0.933 0.846 

103 0.264 1.399 -0.103 0.529 0.052 0.735 0.120 1.087 0.414 1.828 2.568 1.502 0.846 

104 -0.856 -0.723 -0.620 -0.446 -0.995 -0.427 -0.756 -0.194 -0.876 -0.192 0.395 -0.217 0.846 

105 -0.376 -0.193 0.450 0.204 -0.546 -0.137 0.471 -0.194 0.414 1.828 0.757 0.069 0.846 

106 0.584 0.869 1.742 1.503 1.250 0.444 1.523 1.941 1.520 1.828 1.119 1.358 0.846 

107 0.584 0.073 -0.841 1.503 0.352 0.735 0.822 0.019 -0.139 0.010 1.844 0.069 -0.368 

108 0.584 0.073 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

109 0.584 0.073 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

110 0.584 0.073 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

111 -0.216 -0.591 -0.841 -0.933 0.352 0.735 -0.581 1.087 -0.139 0.010 -0.873 0.929 -0.611 

112 -0.696 -0.989 -0.472 0.529 -0.546 0.735 -0.230 -0.621 0.783 -0.596 -0.692 -0.790 0.846 

113 0.584 0.073 0.819 0.529 0.352 -0.718 0.822 1.087 0.783 1.020 0.757 1.502 0.846 

115 0.584 0.073 1.926 0.529 0.352 0.735 0.822 -0.835 1.889 1.020 -0.873 -1.220 -1.340 

116 0.584 0.073 -0.288 -0.446 0.352 0.154 0.822 1.087 -0.876 1.020 -0.873 1.502 -0.368 

117 -0.856 -0.591 -0.103 0.204 -0.995 -0.718 -0.756 0.019 -0.139 0.010 -0.873 1.502 -0.368 

118 0.584 0.073 0.819 2.152 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -0.368 

119 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

120 -0.376 1.399 0.450 1.503 0.052 0.735 -0.230 -0.621 0.414 0.616 0.395 -0.217 -0.611 

121 0.584 0.869 0.819 0.529 0.352 0.735 -0.756 0.019 0.783 0.010 -0.148 0.069 0.846 

122 0.584 0.073 1.926 1.503 1.250 0.735 0.822 1.087 0.783 1.020 0.757 -0.532 0.846 

124 1.544 0.869 1.926 1.503 1.250 0.154 1.874 2.368 1.889 1.828 1.844 0.929 0.846 

125 -0.856 -1.121 -0.841 2.152 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 
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126 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

127 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

128 -0.856 1.399 -0.841 -0.933 -0.995 0.735 0.822 -0.835 0.783 -0.798 0.757 0.069 -1.461 

129 1.544 1.399 -0.841 1.503 -0.995 0.735 -0.581 -0.835 -0.692 -0.798 -0.692 -1.220 -1.461 

130 1.544 1.399 0.450 0.204 1.250 0.154 0.471 0.660 0.414 0.616 0.395 0.929 0.846 

131 1.544 1.399 1.926 1.503 1.849 0.154 0.471 0.660 1.889 2.232 1.844 0.929 0.846 

132 -0.856 -0.591 -0.841 -0.933 -0.397 0.154 0.822 2.368 -0.139 1.020 -0.873 -0.933 0.846 

133 0.584 0.073 -0.103 -0.283 0.352 0.735 -0.055 0.019 -0.139 0.010 0.757 1.072 0.846 

134 -0.216 0.073 -0.103 -0.283 -0.397 0.735 -0.055 0.019 -0.139 0.010 -0.148 1.072 0.846 

135 -0.216 0.073 -0.103 -0.283 -0.397 0.735 -0.055 0.019 -0.139 0.010 -0.148 0.069 0.846 

136 -0.856 -1.121 -0.103 0.529 0.352 0.735 -0.756 0.019 -0.876 0.010 -0.873 -1.076 0.846 

137 -0.216 0.073 -0.103 -0.933 -0.397 0.735 -0.756 0.019 0.783 -0.798 -0.148 0.929 0.361 

138 -0.856 0.338 -0.841 0.853 -0.995 0.154 -0.756 -0.194 -0.876 -0.798 -0.330 -0.933 0.846 

139 2.184 0.869 -0.103 0.529 -0.397 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

140 -0.216 -1.121 -0.841 -0.933 1.849 -1.734 2.575 0.019 0.783 -0.798 -0.148 1.502 -1.461 

141 0.584 1.399 -0.103 -0.283 0.352 0.735 0.822 1.087 -0.139 2.232 1.844 1.272 0.846 

142 0.584 0.869 0.266 0.529 0.352 0.735 -0.055 0.019 -0.139 1.020 0.757 -0.647 -0.368 

143 0.584 1.399 0.819 0.529 0.352 0.735 1.874 1.087 1.889 1.020 0.757 0.069 0.361 

144 0.584 1.399 0.819 0.529 0.352 0.154 -0.055 0.019 0.783 1.020 1.844 0.069 0.361 

145 0.584 1.399 -0.103 -0.283 0.352 0.154 -0.756 0.019 -0.139 0.010 -0.148 0.069 0.361 

146 0.584 1.399 2.664 0.529 -0.546 0.735 0.822 1.941 0.783 -0.192 -0.330 -0.790 -0.368 

147 0.584 1.399 -0.841 -0.933 -0.995 -0.718 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -0.368 

148 -0.216 0.073 -0.841 -0.933 -0.995 0.735 0.822 1.087 -0.876 0.010 -0.148 0.069 -0.368 

150 0.584 1.399 0.192 0.529 -0.995 -1.444 -0.055 1.087 -0.139 0.010 -0.148 0.069 0.846 

151 0.584 1.399 0.081 0.529 -0.995 -1.444 -0.055 1.087 -0.139 0.010 -0.148 0.069 0.846 

152 0.584 1.399 0.302 0.529 -0.995 -1.444 -0.055 1.087 -0.139 0.010 -0.148 0.069 0.846 

153 0.584 -1.121 0.819 -0.933 0.352 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

154 -0.696 1.399 -0.288 2.152 1.849 0.735 0.822 -0.835 -0.692 -0.798 0.757 0.069 0.846 
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155 2.184 1.399 1.742 2.152 0.352 0.735 0.822 1.087 0.783 1.020 0.757 1.502 0.846 

156 -0.856 0.073 -0.657 0.529 -0.846 0.735 0.822 1.087 0.783 1.020 0.757 0.069 0.846 

157 1.224 0.073 1.557 1.178 1.849 0.735 1.523 1.941 0.783 1.020 0.757 1.502 0.118 

158 -0.856 1.399 -0.472 2.152 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

159 -0.856 -0.989 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

161 -0.216 0.073 -0.472 -0.608 -0.995 -0.718 -0.756 0.019 -0.139 0.010 -0.148 0.069 0.846 

162 0.584 0.869 -0.841 -0.933 -0.995 -2.024 2.575 -0.835 -0.876 2.232 1.844 -1.220 -1.461 

164 -0.696 1.399 -0.288 -0.283 -0.696 -0.718 0.822 0.019 -0.876 -0.798 -0.873 -0.647 -0.976 

165 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

166 -0.856 0.073 -0.841 -0.933 -0.995 -0.718 -0.756 1.087 0.783 -0.798 -0.873 0.069 0.846 

167 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

170 -0.856 0.073 -0.657 0.529 1.849 -2.024 0.822 -0.835 0.783 -0.798 -0.873 1.502 -1.461 

172 0.584 0.073 0.819 0.529 -0.995 0.735 2.575 -0.835 0.783 1.020 0.757 1.502 0.846 

173 0.584 -1.121 0.819 0.529 0.352 0.735 2.575 -0.835 0.783 1.020 0.757 1.502 0.846 

174 -0.856 -1.121 -0.841 -0.933 0.352 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

175 -0.856 0.073 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

176 1.224 0.603 0.819 0.529 0.352 0.735 0.822 1.087 0.783 1.020 0.757 0.069 0.846 

177 1.224 0.603 1.557 1.178 0.950 0.735 1.523 1.941 1.520 1.828 1.481 0.642 0.846 

178 0.584 0.603 0.819 1.178 0.950 0.735 0.822 1.087 0.783 1.020 1.481 1.502 0.846 

180 2.184 1.399 2.664 2.152 1.849 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

181 0.264 0.869 -0.657 -0.770 0.052 -1.008 2.575 0.660 0.414 0.616 -0.330 1.502 0.846 

182 2.184 -1.121 -0.841 -0.446 -0.995 0.154 -0.756 -0.835 -0.323 -0.192 -0.330 -1.220 -1.461 

183 -0.856 -1.121 -0.841 -0.933 -0.995 -0.718 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

184 -0.216 1.399 0.819 0.529 1.849 0.735 -0.055 1.087 0.783 1.020 0.757 -0.017 0.846 

185 1.064 1.399 1.926 1.503 1.250 0.735 0.471 2.368 1.889 2.232 1.844 1.215 0.846 

186 -0.856 0.073 -0.841 -0.933 0.352 0.735 0.822 1.087 0.783 1.020 0.757 0.069 -0.368 

188 -0.216 0.869 0.819 0.529 1.849 0.735 0.822 1.087 0.783 1.020 0.757 0.098 0.846 

189 -0.856 -1.121 -0.841 -0.933 0.352 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 0.069 -0.368 



128 
 

191 2.184 -1.121 -0.841 -0.933 -0.995 0.735 2.575 -0.835 2.627 -0.798 -0.873 -1.220 -1.461 

192 -0.376 -0.723 -0.288 -0.446 -0.546 -1.298 -0.756 -0.621 -0.692 -0.192 -0.330 0.012 0.846 

194 2.184 1.399 -0.288 -0.446 1.849 0.735 0.822 1.087 2.258 2.636 2.206 1.502 -1.461 

195 2.184 1.134 -0.288 -0.121 1.849 0.735 0.822 1.087 1.889 2.636 2.206 1.502 -1.461 

196 0.584 0.073 -0.841 -0.770 1.849 0.735 -0.756 -0.835 -0.876 1.020 -0.873 0.069 -1.461 

197 1.544 1.399 -0.288 0.204 1.250 0.154 1.874 2.368 1.889 1.424 1.119 0.929 0.846 

198 1.544 0.869 0.635 1.503 1.250 -1.008 -0.756 2.368 1.889 2.232 1.844 -1.220 0.846 

199 0.584 -1.121 0.819 0.529 0.352 0.735 -0.756 1.087 0.783 1.020 0.757 1.502 0.846 

200 1.544 0.869 0.635 0.204 1.250 0.735 -0.756 0.660 -0.876 0.616 0.395 0.929 -1.461 

202 0.264 0.869 0.819 0.204 1.250 0.735 0.471 2.368 0.783 0.616 0.395 0.069 -0.854 

203 2.184 -1.121 -0.841 -0.933 1.849 -2.024 2.575 -0.835 2.627 -0.798 -0.873 -1.220 -1.461 

204 1.544 1.399 0.450 0.204 1.250 0.154 2.575 0.660 1.152 1.424 0.395 0.929 0.361 

205 0.584 0.073 0.819 0.529 1.849 -1.444 -0.055 0.019 -0.139 0.010 -0.148 -0.647 -0.733 

206 1.544 0.869 0.635 1.503 1.250 0.735 1.874 1.087 1.889 1.020 0.757 0.929 0.361 

207 0.584 1.399 0.819 -0.933 0.352 0.735 0.822 1.087 0.783 -0.798 -0.873 -1.220 -0.368 

208 0.584 1.399 0.819 -0.933 0.352 0.735 0.822 1.087 0.783 -0.798 -0.873 1.502 0.846 

209 0.584 0.073 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 0.069 -1.340 

210 0.584 0.073 -0.841 -0.933 0.352 0.735 0.822 1.087 0.783 -0.798 0.757 0.069 -1.340 

211 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

212 0.264 0.869 -0.841 -0.770 -0.247 0.735 -0.756 -0.621 -0.876 -0.596 -0.692 -0.504 -1.218 

213 1.544 0.869 0.450 0.204 1.250 0.154 0.471 -0.194 -0.323 2.232 1.844 1.502 0.846 

214 0.584 0.073 0.081 0.204 0.352 -0.718 0.822 1.087 0.783 1.020 0.757 1.502 0.846 

215 -0.856 1.399 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

216 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

217 0.584 0.073 -0.841 -0.933 -0.846 0.735 -0.055 0.019 -0.139 -0.798 -0.873 0.929 0.361 

218 0.584 -1.121 2.664 -0.933 0.352 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

219 0.584 0.073 0.819 0.529 0.352 0.154 0.822 1.087 0.783 1.020 0.757 1.358 0.846 

220 2.184 0.869 0.450 -0.933 -0.995 -2.024 2.575 0.660 0.414 0.616 -0.873 -1.220 0.846 
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223 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

225 0.584 1.134 0.081 0.529 0.352 -0.718 0.822 1.087 1.889 1.020 0.757 0.069 0.846 

226 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

227 -0.856 1.399 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 1.502 -1.461 

228 -0.376 0.073 -0.841 -0.608 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.076 -0.854 

231 0.584 -1.121 -0.841 -0.933 0.352 0.735 0.822 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

232 -0.696 -1.121 -0.657 -0.933 -0.995 -2.024 -0.756 2.368 1.889 -0.798 2.206 1.502 -1.340 

233 1.544 0.073 -0.103 -0.283 1.849 -0.718 -0.581 0.019 -0.139 1.020 -0.148 0.929 -1.461 

234 -0.856 -1.121 -0.841 -0.933 -0.995 -0.718 -0.055 0.019 -0.876 -0.798 -0.692 -1.076 0.846 

235 2.184 1.399 1.926 1.503 1.849 -0.718 1.874 2.368 1.889 2.232 1.844 0.929 0.846 

236 2.184 1.399 2.664 2.152 1.849 -2.024 2.575 3.222 2.627 3.041 2.568 1.502 0.846 

237 2.184 0.073 0.819 0.529 0.352 0.735 -0.756 1.087 0.783 1.020 0.757 -1.220 0.846 

238 2.184 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

239 2.184 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

240 -0.856 1.399 -0.841 -0.933 -0.397 -2.024 -0.756 -0.835 -0.876 -0.798 0.757 -1.220 -1.461 

243 -0.856 -1.121 -0.103 -0.933 -0.995 -0.718 -0.756 0.019 -0.876 -0.798 -0.873 1.502 -1.461 

247 0.584 1.399 -0.103 -0.121 0.352 -0.718 -0.055 1.087 1.889 1.020 -0.148 0.069 -0.368 

248 -0.856 -1.121 -0.841 -0.933 0.352 0.735 0.822 1.087 0.783 1.020 2.568 0.069 0.846 

252 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 2.627 3.041 -0.873 -1.220 -1.461 

253 0.584 -1.121 0.081 0.529 1.849 -0.718 -0.756 1.087 -0.876 1.020 2.568 0.757 0.846 

254 2.184 0.073 -0.841 -0.933 -0.995 0.735 0.822 1.087 0.783 -0.798 -0.873 0.069 -1.461 

255 2.184 -0.193 -0.841 -0.933 1.849 -2.170 -0.756 0.660 -0.323 0.616 -0.330 0.356 -1.583 

257 -0.856 -0.193 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

258 -0.856 -1.121 -0.841 -0.933 -0.995 0.735 -0.756 -0.835 -0.876 -0.798 -0.873 -1.220 -1.461 

A ot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.876 0.846 

Bot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

Cot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.076 0.846 

Dot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.675 0.846 
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Eot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.991 0.846 

Fot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.647 0.846 

H 0t100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -0.933 0.846 

I ot100 -0.856 -1.121 -0.841 -0.933 -0.995 -2.024 -0.756 -0.835 -0.876 -0.798 -0.873 -1.076 0.846 

 

 

Table 2: Identified proteins synthesized by Listeria monocytogenes Scott A cells grown on BHI broth until the middle exponential phase of growth (OD= 0.4, λ=600 nm) was reached. Only spots 

showing an increased or decreased ( or  of 2-fold, p <0.05) level of synthesis in L. monocytogenes Scott A during at least one antimicrobial treatments were reported. 

Spot Protein Microrganism MR PI SCORE COVERAGE (%) Peptides 

1 Trigger Factor L. monocytogenes 47824 4.50 498 28 7(7) 

2 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 387 10 7(7) 

3 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 640 11 8(8) 

4 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 633 11 8(8) 

5 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 491 8 6(6) 

7 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 609 10 8(8) 

8 Molecular Chaperone Dnak L. monocytogenes 66092 4.57 623 12 6(6) 

12 Transketolase L. monocytogenes 71831 5.11 393 10 6(6) 

13 Transketolase L. monocytogenes 71854 5.11 384 8 5(5) 

15 Formate Acetyltransferase L. monocytogenes HCC23 84046 5.49 661 16 9(9) 

16 Formate Acetyltransferase L. monocytogenes HCC23 84046 5.49 585 14 8(8) 

17 Formate Acetyltransferase L. monocytogenes HCC23 84046 5.49 638 16 9(9) 

20 Phosphoglucomutase L. monocytogenes 64232 5.03 222 8 4(4) 

21 Chaperone Protein Groel L. monocytogenes str. 1/2a F6854 47082 4.64 779 22 7(7) 

22 Pyruvate Kinase L. monocytogenes serotype 4b str. H7858 59821 5.38 812 19 8(8) 

23 Pyruvate Kinase L. monocytogenes serotype 4b str. H7858 59821 5.38 826 19 8(8) 

24 Pyruvate Kinase L. monocytogenes serotype 4b str. H7858 59821 5.38 808 21 8(8) 

25 Multispecies: Fe-S Cluster Assembly Protein Sufb L. monocytogenes 52711 4.87 366 12 5(5) 

26 Multispecies: Fe-S Cluster Assembly Protein Sufb L. monocytogenes 52711 4.87 299 9 6(6) 
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27 Gmp Synthase L. monocytogenes L99 58238 5.02 700 20 9(9) 

28 Trehalose-6-Phosphate Hydrolase L. monocytogenes 62040 4.86 534 14 6(6) 

29 Trehalose-6-Phosphate Hydrolase L. monocytogenes 63746 5.02 698 18 7(7) 

30 Trehalose-6-Phosphate Hydrolase L. monocytogenes 62040 4.86 397 11 5(5) 

31 Acetolactate Synthase L. monocytogenes serotype 4b str. LL195 61991 5.47 511 14 7(7) 

32 Acetolactate Synthase L. monocytogenes serotype 4b str. LL195 61991 5.47 530 15 8(8) 

33 Acetolactate Synthase L. monocytogenes serotype 4b str. LL195 61991 5.47 596 17 9(9) 

34 Ctp Synthase L. monocytogenes serotype 4b str. LL195 62694 5.46 393 12 7(7) 

35 Invasion Associated Protein P60, Partial L. monocytogenes 47381 9.15 758 25 9(9) 

36 3-Bisphosphoglycerate-Independent Phosphoglycerate Mutase L. monocytogenes 56063 5.10 434 11 4(4) 

37 2,3-Bisphosphoglycerate-Independent Phosphoglycerate Mutase L. monocytogenes 56130 5.18 574 18 8(8) 

38 Formate--Tetrahydrofolate Ligase L. monocytogenes 07PF0776 59945 5.28 366 9 4(4) 

39 Heme Abc Transporter Atp-Binding Protein L. monocytogenes 56649 5.78 362 11 5(5) 

40 Heme Abc Transporter Atp-Binding Protein L. monocytogenes 56649 5.78 424 12 6(6) 

41 Inosine-5'-Monophosphate Dehydrogenase L. monocytogenes serotype 4b str. LL195 55258 7.18 486 15 6(6) 

42 Inosine-5'-Monophosphate Dehydrogenase L. monocytogenes serotype 4b str. LL195 55258 7.18 440 14 6(6) 

43 Hypothetical Protein Lm5578_1722 L. monocytogenes 08-5578 49331 6.10 449 18 7(7) 

 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 41 1 1(1) 

44 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 132 2 2(2) 

45 Cell Division Protein Ftsz L. monocytogenes serotype 4b str. LL195 43612 4.88 405 14 6(6) 

46 Dipeptidase, Putative Subfamily L. monocytogenes str. 1/2a F6854 27710 5.50 504 25 6(6) 

47 Putative Dipeptidase Ytjp L. monocytogenes serotype 4b str. LL195 53330 4.95 753 19 8(8) 

49 Multispecies: Dihydrolipoamide Dehydrogenase L. monocytogenes 49571 5.24 377 12 4(4) 

50 Multispecies: Dihydrolipoamide Dehydrogenase L. monocytogenes 49571 5.24 479 15 6(6) 

53 30s Ribosomal Protein S1 L. monocytogenes 41317 4.50 791 29 9(9) 

54 Atp Synthase F1 L. monocytogenes J2818 52408 4.80 1191 36 10(10) 

55 Phosphoglucosamine Mutase L. monocytogenes 48600 4.72 449 16 7(7) 

 Cell Division Protein Ftsz L. monocytogenes serotype 4b str. LL195 43612 4.88 192 9 3(3) 

56 Glutamyl-Trna(Gln) Amidotransferase Subunit A L. monocytogenes serotype 4b str. LL195 53586 5.03 281 7 3(3) 

57 Glutamyl-Trna(Gln) Amidotransferase Subunit A L. monocytogenes 52434 4.92 327 9 4(4) 

 Dnak L. monocytogenes 66164 4.57 143 4 2(2) 
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58 6-Phosphogluconate Dehydrogenase, Decarboxylating L. monocytogenes str. 4b H7858 51107 5.10 431 16 6(6) 

 Glutamate Decarboxylase L. monocytogenes FSL F2-208 46398 5.13 165 5 2(2) 

59 Aspartyl/Glutamyl-Trna(Asn/Gln) Amidotransferase Subunit B L. monocytogenes FSL F2-208 53287 5.42 394 12 5(5) 

60 Atp Synthase Subunit Alpha 2 L. monocytogenes serotype 4b str. LL195 55447 5.34 625 15 6(6) 

61 Aspartyl/Glutamyl-Trna(Asn/Gln) Amidotransferase Subunit B L. monocytogenes FSL F2-208 53287 5.42 444 12 5(5) 

 Atp Synthase Subunit Alpha 2 L. monocytogenes FSL F2-208 25547 6.36 196 12 2(2) 

62 Atp Synthase Subunit Alpha 2 L. monocytogenes serotype 4b str. LL195 55447 5.34 693 15 7(7) 

 Glucose-6-Phosphate 1-Dehydrogenase L. monocytogenes 56221 5.24 198 5 3(3) 

64 Gid Protein L. monocytogenes J2818 40314 5.25 97 6 3(3) 

 Glycine Cleavage System P Protein, Subunit 2 L. monocytogenes serotype 4b str. F2365 53562 5.61 88 2 1(1) 

 Atp Synthase Subunit Alpha 2 L. monocytogenes FSL F2-208 25547 6.36 79 5 1(1) 

66 Isochorismate Synthase L. monocytogenes 51763 5.61 164 9 4(4) 

 Glutathione-Disulfide Reductase L. monocytogenes FSL F2-208 49277 5.66 52 3 1(1) 

67 Glutathione-Disulfide Reductase L. monocytogenes FSL F2-208 49277 5.66 79 7 2(2) 

68 Alcohol Acetaldehyde Dehydrogenase L. monocytogenes 95036 6.58 36 1 1(1) 

71 Carnitine Transport Atp-Binding Protein Opuca L. monocytogenes serotype 4b str. LL195 51456 5.94 132 8 3(3) 

72 Beta-Ketoacyl-Acyl-Carrier-Protein Synthase Ii L. monocytogenes FSL F2-208 18913 5.17 40 6 1(1) 

73 Hypothetical Protein Lmosa_4530 L. monocytogenes str. Scott A 47451 5.44 296 16 4(4) 

 Tellurite Resistance Protein Tela L. monocytogenes 45464 5.32 54 5 2(2) 

74 Hypothetical Protein Lmosa_4530 L. monocytogenes str. Scott A 47451 5.44 110 7 2(2) 

76 Fes Assembly Protein Sufd L. monocytogenes serotype 4b str. F2365 47587 5.61 59 5 2(2) 

77 Fes Assembly Protein Sufd L. monocytogenes serotype 4b str. F2365 47587 5.61 40 2 1(1) 

78 Pyridine Nucleotide-Disulfide Oxidoreductase Family Protein L. monocytogenes FSL F2-208 48588 5.39 54 3 1(1) 

79 Udp-N-Acetylmuramate--Alanine Ligase L. monocytogenes FSL F2-208 42673 5.55 73 5 2(2) 

80 Aldehyde-Alcohol Dehydrogenase L. monocytogenes str. 1/2a F6854 68004 6.31 171 7 4(4) 

81 Pantothenate Metabolism Flavoprotein Homolog L. monocytogenes 43426 6.10 31 2 1(1) 

82 Sugar Abc Transporter Substrate-Binding Protein L. monocytogenes 46603 4.60 267 15 5(5) 

83 Glutamate-1-Semialdehyde 2,1-Aminomutase L. monocytogenes 46658 5.47 65 1 1(1) 

85 Acetate Kinase L. monocytogenes str. 1/2a F6854 44794 5.33 241 15 5(5) 

86 Serine Hydroxymethyltransferase L. monocytogenes serotype 4b str. LL195 47287 5.76 72 3 1(1) 

88 Dna Polymerase Iii, Beta Subunit L. monocytogenes FSL F2-208 28610 5.00 75 9 2(2) 
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89 Branched-Chain Alpha-Keto Acid Dehydrogenase Complex Subunit E1 Alpha L. monocytogenes 36603 4.96 66 4 1(1) 

92 Peptidase L. monocytogenes FSL R2-503 40757 5.07 30 4 1(1) 

94 Peptidase L. monocytogenes FSL R2-503 40757 5.07 46 2 1(1) 

96 Glutamate-1-Semialdehyde 2,1-Aminomutase L. monocytogenes 46658 5.47 97 6 3(3) 

97 Aspartate Aminotransferase L. monocytogenes FSL J2-071 24034 5.21 114 13 2(2) 

100 Conserved Hypothetical Protein L. monocytogenes FSL J2-071 36334 6.23 159 8 3(3) 

101 N-Acetylglucosamine-6-Phosphate Deacetylase L. monocytogenes FSL F2-208 41619 5.43 98 3 1(1) 

102 Sugar Abc Transporter Atp-Binding Protein L. monocytogenes 41179 5.82 223 10 4(4) 

103 Multiple Sugar-Binding Transport Atp-Binding Protein Msmk L. monocytogenes FSL F2-208 34636 5.97 216 9 3(3) 

104 Pyruvate Dehydrogenase Complex, E1 Component, Pyruvate Dehydrogenase Alpha Subunit L. monocytogenes str. 4b H7858 36682 5.65 162 11 4(4) 

105 Pyruvate Dehydrogenase Complex, E1 Component, Pyruvate Dehydrogenase Alpha Subunit L. monocytogenes str. 4b H7858 36682 5.65 132 11 3(3) 

106 Pyruvate Dehydrogenase Complex, E1 Component, Pyruvate Dehydrogenase Alpha Subunit L. monocytogenes str. 4b H7858 36682 5.65 192 11 4(4) 

107 Nadph Dehydrogenase L. monocytogenes serotype 4b str. LL195 38368 8.30 140 10 3(3) 

108 Multispecies: Glyceraldehyde-3-Phosphate Dehydrogenase L. monocyotogenes 36421 5.12 131 15 3(3) 

109 Cell Shape Determining Protein Mreb L. monocytogenes FSL R2-503 36988 5.23 158 10 3(3) 

110 Gap, Partial L. innocua 22226 5.25 98 8 1(1) 

111 Aspartate-Semialdehyde Dehydrogenase L. monocytogenes FSL R2-503 25748 6.34 42 5 1(1) 

112 Glutamyl Aminopeptidase L. monocytogenes FSL F2-208 38709 5.69 289 12 3(3) 

113 Phosphate Acetyltransferase L. monocytogenes 15308 6.85 47 7 1(1) 

115 Bifunctional Protein Fold L. monocytogenes 31002 5.44 54 5 1(1) 

116 Conserved Hypothetical Protein L. monocytogenes serotype 1/2a str. F6854 36925 5.36 111 7 2(2) 

117 Glutamyl Aminopeptidase L. monocytogenes FSL F2-208 38709 5.69 174 8 2(2) 

118 Fructokinase L. monocytogenes FSL F2-208 31579 5.65 161 12 3(3) 

120 Flagellin L. monocytogenes 30409 4.91 134 9 2(2) 

121 Oxidoreductase, Aldo/Keto Reductase Family L. monocytogenes str. 4b H7858 31717 4.87 86 8 2(2) 

 Nad+ Synthetase L. monocytogenes FSL F2-208 30626 5.00 68 4 1(1) 

122 Oxidoreductase, Aldo/Keto Reductase Family L. monocytogenes str. 4b H7858 31717 4.87 203 16 4(4) 

124 6-Phosphofructokinase L. monocytogenes str. 4b H7858 27165 5.40 65 7 2(2) 

127 Utp-Glucose-1-Phosphate Uridylyltransferase L. monocytogenes F6900 37183 5.45 113 5 1(1) 

131 Gtp-Sensing Transcriptional Pleiotropic Repressor Cody L. monocytogenes FSL F2-208 28495 4.90 97 10 2(2) 

133 Gntr Family Transcriptional Regulator L. monocytogenes 28008 5.13 71 9 2(2) 
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134 Methionine Aminopeptidase, Type I L. monocytogenes FSL F2-208 22426 5.21 39 6 1(1) 

140 Multispecies: Nad Kinase 2 L. monocytogenes 30594 6.54 46 4 1(1) 

141 50s Ribosomal Protein L25 L. monocytogenes 22641 4.44 171 28 5(5) 

144 2,3,4,5-Tetrahydropyridine-2-Carboxylate N-Succinyltransferase, Putative L. monocytogenes str. 4b H7858 10942 5.74 50 12 1(1) 

145 Naphthoate Synthase L. monocytogenes HPB2262 27681 5.72 233 19 3(3) 

147 Coa-Binding Domain Protein L. monocytogenes str. 4b H7858 19366 5.56 32 12 1(1) 

150 Adenylate Kinase L. monocytogenes str. 4b H7858 23804 5.00 43 4 1(1) 

152 Adenylate Kinase L. monocytogenes str. 4b H7858 23804 5.00 88 13 2(2) 

154 2,3-Bisphosphoglycerate-Dependent Phosphoglycerate Mutase L. monocytogenes serotype 4b str. LL195 27629 5.62 85 6 1(1) 

156 Chain A, Crystal Structure Of 3-Oxoacyl-[Acyl-Carrier Protein] 

Reductase (Fabg) From Listeria monocytogenes In Complex With Nadp+ 

L. monocytogenes 29025 5.82 86 9 2(2) 

158 Transcriptional Regulatory Protein Degu L. monocytogenes FSL F2-208 14527 9.24 41 9 1(1) 

159 Ribosomal Protein S3 L. monocytogenes str. 1/2a F6854 17247 9.89 31 9 1(1) 

162 Phosphoglycerate Kinase/Triose-Phosphate Isomerase L. monocytogenes FSL N3-165 27608 4.78 80 3 1(1) 

165 Uracil Phosphoribosyltransferase L. monocytogenes FSL R2-561 16944 5.70 33 10 1(1) 

166 Abc Transporter, Atp-Binding Protein L. monocytogenes str. 4b H7858 12617 4.97 67 31 2(2) 

176 Ribosome-Recycling Factor L. monocytogenes 20743 5.25 40 12 1(1) 

178 Uracil Phosphoribosyltransferase L. monocytogenes FSL R2-561 16944 5.70 88 18 2(2) 

184 Sod L. monocytogenes 14658 4.95 34 12 1(1) 

185 Sod L. monocytogenes 14658 4.95 79 12 1(1) 

186 Short-Chain Dehydrogenase L. monocytogenes 20932 5.91 30 9 1(1) 

195 50s Ribosomal Protein L5 L. monocytogenes serotype 4b str. LL195 21249 9.17 84 13 2(2) 

197 Transcription Elongation Factor Grea L. monocytogenes str. 4b H7858 16570 4.58 67 15 2(2) 

202 Pts System Mannose-Specific Eiiab Component L. monocytogenes serotype 4b str. LL195 19655 9.33 50 17 2(2) 

204 Putative Universal Stress Protein L. monocytogenes FSL F2-208 17555 4.98 83 16 2(2) 

212 Multispecies: 30s Ribosomal Protein S8 L. monocytogenes 14635 9.48 71 19 2(2) 

213 Hypothetical Protein L. monocytogenes 11250 4.46 38 10 2(2) 

218 Ribosomal Protein L31 L. monocytogenes 9241 8.93 36 13 2(2) 

219 50s Ribosomal Protein L7/L12 L. monocytogenes 12462 4.54 47 10 2(2) 

231 Dna-Binding Protein Hu L. monocytogenes serotype 4b str. LL195 13590 9.10 32 12 2(2) 

233 Dna-Binding Protein Hu L. monocytogenes serotype 4b str. LL195 13590 9.10 90 22 2(2) 
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248 Purine Nucleoside Phosphorylase L. monocytogenes 25341 4.87 39 6 1(1) 

253 Groes L. monocytogenes 10042 4.60 31 15 2(2) 

B Multispecies: Enolase L. monocytogenes 46458 4.70 84 7 2(2) 

E Conserved Hypothetical Protein L. monocytogenes str. 4b H7858 11284 4.79 39 14 2(2) 

F 30s Ribosomal Protein S2 L. monocytogenes serotype 4b str. LL195 30581 6.28 38 3 1(1) 
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Cell morphology and motility related proteins  

FtsZ, an essential cell division protein that forms a contractile Z ring structure, was under-

synthetized in L. monocytogenes Scott A cells treated with ethanol compared to untreated cells. 

However, the treatments with ethanol and citral, carvacrol, (E)-2-hexenal or thyme EO differently 

affected the relative amount of FtsZ protein which showed the highest levels in citral (125 mg/L) 

and thyme (40 mg/L). Cell shape determining protein MreB decreased in treated cells, especially 

for thyme EO. Compared to untreated cells, L. monocytogenes Scott A increased (p<0.05) the level 

of flagellin A (FlaA) under sub-lethal level of ethanol. The addition of other antimicrobial 

compounds differently affected the inductive effect of ethanol on FlaA synthesis. FlaA remained 

similar (p>0.05) to the control when high concentrations of carvacrol or thymol were used.  

 

Synthesis of ribosomal and regulation system proteins 

Compared to control, cells treated with ethanol increased the level of 30S ribosomal S1, S3 and 

50S ribosomal L25. On the contrary, 50S ribosomal L31 decreased. Citral at 85 mg/L specifically 

induced the synthesis of L31 protein. Cells treated with ethanol and other antimicrobials further  

increased the levels of  S1 (except forcitral), 30S ribosomal S2 (only thyme EO) and S3 (carvacrol 35 

mg/L). Compared to ethanol alone, 30S ribosomal L5 and L25 decreased in citral and (E)-2-hexenal 

treated cells. The treatment of L. monocytogenes Scott A with carvacrol 35 mg/L specifically 

induced the level of 30S ribosomal protein S8. Ribosome recycling factor (Frr) was found at the 

highest level in cells treated with carvacrol (35 mg/L) or thyme EO at 100 mg/L.  

Compared to control, cells treated with ethanol increased the level of a peptydil-prolyl cis-trans 

isomerase (trigger factor, TF). The addition of the other antimicrobials to the medium leads a 

decrease of TF compared to cells treated by ethanol alone. The only exceptions were found for 

carvacrol (35 mg/L) or thyme EO at 100 mg/L.  

Compared to control, cells treated with ethanol and carvacrol (50 mg/L) or (E)-2-hexenal (150 

mg/L) showed lower relative abundances of GTP-sensing transcriptional pleiotropic repressor 

CodY. Transcription elongation factor GreA was found at the lowest levels in citral treated cells. 

Ethanol strongly induced the relative amount of transcriptional regulatory protein DegU compared 

to control L. monocytogenes Scott A cells. Compared to ethanol alone, the addition of other 

antimicrobials to the media resulted in a reduces level of DegU protein. The only exception was for 

citral at 125 mg/L. GntR family transcriptional regulator was found at the highest levels in cells 

treated with ethanol added of carvacrol (35 mg/L) or thyme EO at 100 mg/L. On the contrary, citral 
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and (E)-2-hexenal caused a decreased of the relative amount of GntR family transcriptional 

regulator compared to control cells.  

 

Carbohydrate transport and metabolism and energy production 

Proteins related to carbohydrate transport (sugar ABC transporter ATP-binding proteins; multiple 

sugar-binding transport ATP-binding protein MsmK; PTS system mannose-specific EIIAB 

component ManX) were over-synthesized in L. monocytogenes Scott A cells treated with ethanol 

(MsmK, ManX) and especially, in ethanol plus carvacrol (35 mg/L) or thyme EO at 100 mg/L 

(except for ManX). With few exceptions, carbohydrate transport proteins were down-synthesized 

in cells treated with ethanol plus citral or (E)-2-hexenal compared to ethanol alone. Proteins 

related to carbohydrate metabolism (3-bisphosphoglycerate-independent phosphoglycerate 

mutase, GpmA; glucose-6-phosphate isomerase, Pgi; phosphoglucosamine mutase, Pgm; pyruvate 

kinase, Pyk; Trehalose-6-phosphate hydrolase, TpiA; transketolase, TktB; formate 

acetyltransferase, PflB) were found over-synthesized in L. monocytogenes Scott A cells treated 

with ethanol (GpmA, Pgi) and especially, in ethanol plus carvacrol (35 mg/L) or thyme EO at 100 

mg/L. Compared to ethanol alone, Pyk were over-synthetized also in cells treated with ethanol 

plus citral.  

Compared to control, 6-phosphofructokinase (pfkA), enolase (Eno), glyceraldehyde-3-phosphate 

dehydrogenase (Gap) and fructokinase (CscK) resulted specifically over-synthesized in ethanol plus 

thyme EO at 100 mg/L (pfkA and Eno) and ethanol plus citral at 100 mg/L or ethanol plus carvacrol 

(35 mg/L) (Gap, CscK). With few exceptions, carbohydrate metabolism proteins were down-

synthesized in cells treated with ethanol plus (E)-2-hexenal compared to ethanol alone.  

Proteins related to energy production and conversion (acetate kinase, ) were found over-

synthesized in L. monocytogenes Scott A cells treated with ethanol plus carvacrol (35 mg/L) or 

thyme EO at 100 mg/L.  

Alcohol acetaldehyde dehydrogenase, also involved in heat shock protein binding interacting 

selectively and non-covalently with any protein synthesized or activated in response to heat shock, 

was induced in stressed cells  compared to control. The highest level of alcohol acetaldehyde 

dehydrogenase was found in cells treated with ethanol plus carvacrol at 35 mg/mL. 

Similarly, F-type H+-transporting ATPase subunit alpha (ATP synthase F1) [EC:3.6.3.14], involved in 

oxidative phosphorylation (ko00190) and also in environmental stress response,  was induced in 
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stressed cells  compared to control. The highest level of alcohol acetaldehyde dehydrogenase was 

found in cells treated with ethanol alone or plus Thyme EO at 100 mg/mL. 

 

Nucleotide and nitrogen metabolism 

GMP synthase [GuaA, EC:6.3.5.2], involved in purine metabolism (ko00230), was found at the 

highest levels in cells treated with ethanol alone and, especially, with ethanol plus carvacrol (at 20 

and 35 mg/L) or thyme EO (at 70 and 100 mg/L). Adenylate kinase [EC:2.7.4.3], involved in both 

purine and thiamine metabolism (ko00730) was specifically induced during cell treated with 

ethanol alone. The level of adenylate kinase decreased in all conditions compared to ethanol 

stressed cells. The only exception was for cells treated with ethanol plus thyme EO (100 mg/L). 

CTP synthase, related to pyrimidine metabolism (ko00240), was detected at the highest levels in 

cells treated with ethanol plus carvacrol (35 mg/L) and thyme EO (100 mg/L). Uracil 

phosphoribosyltransferase [Upp, EC:2.4.2.9], related to pyrimidine metabolism, was found at the 

highest levels in cells treated with ethanol alone and, especially, with ethanol plus carvacrol (at 20 

and 35 mg/L) or thyme EO (at 70 and 100 mg/L). Purine-nucleoside phosphorylase [PpnP, 

EC:2.4.2.1], involved in purine and pyrimidine metabolism, nicotinate and nicotinamide 

metabolism (ko00760), was induced during the cell treatment with ethanol plus carvacrol (maxum 

level at 35 mg/L), E)-2-hexenal and thyme EO (max at 40 and 100 mg/L). Compared to control, 

peptidase enzymes were found over-synthesized in L. monocytogenes Scott A cells treated with in 

ethanol plus carvacrol (20 and 35 mg/L) or thyme EO (70 and 100 mg/L). Compared to control, 

aspartate aminotransferase (Dat) was over-synthesized in ethanol plus carvacrol at 50 mg/L, (E)-2-

hexenal (all concentrations tested) or thyme EO at 40 and 70 mg/L. Enzymes involved in aminoacid 

transport and metabolism were also variously affected during cell treatments with ethanol alone 

or in combinations with the other antimicrobial compounds. 

 

Cofactors and vitamins metabolism 

Transketolase enzyme acting in the acyloin condensation reaction between C2 and C3 of pyruvate 

and glyceraldehyde 3-phosphate producing 1-deoxy-D-xylulose-5-phosphate (DXP) plays a key role 

in the thiamine metabolism (ko00730). It was induced during ethanol stress and remained at 

higher level in all treated cells compared to control. Formate-tetrahydrofolate ligase [EC:6.3.4.3], 
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involved in the tetrahydrofolate interconversion of one carbon pool by folate (ko00670), increased 

during cell treatments with ethanol plus citral (all concentrations), carvacrol (35 mg/L) and thyme 

EO (all concentrations) compared to control. Isochorismate synthase (MenF) and naphthoate 

synthase (MenB), involved in ubiquinone and other terpenoid-quinone biosynthesis (ko00130), 

were specifically induced during cell treatment with ethanol plus carvacrol (35 mg/L) and thyme 

EO at 70 and 100 mg/L (MenF) and ethanol alone (MenB).  

 

Stress response  

Compared to control, molecular chaperone DnaK increased in stressed cells showing the highest 

value during the treatment with  ethanol plus thyme EO at 100 mg/L. Cell treatment with ethanol 

plus thyme EO strongly increased GroES levels independently on the concentration of  thyme EO 

used. Compared to control, cell treatment with ethanol strongly increased superoxide dismutase 

(Sod). The level of Sod was retained at the maximum level in cells treated by ethanol plus 

carvacrol (35 mg/L) or thyme EO at 100 mg/L. Glutathione-disulfide reductase and oxidoreductase, 

aldo/keto reductase family were specifically induced during cell treatment with ethanol plus 

carvacrol (35 mg/L) or thyme EO at 70 and 100 mg/L. Bifunctional protein FolD 

(glutathionylspermidine amidase/synthetase [EC:3.5.1.78 6.3.1.8]) from glutathione metabolism 

(ko00480) was found at the highest level in cells treated with ethanol plus carvacrol (35 mg/L). FeS 

assembly proteins SufB and SufD related to post-translational modification, protein turnover, and 

chaperones, were induced in cells treated by ethanol alone (SufD) or ethanol added of carvacrol 

(35 mg/L) or thyme EO (100 mg/L).  Proteins (FabG and FabY) involved in both fatty acid 

biosynthetic process and membrane repair, were induced under ethanol stress and, especially in 

cells treated by ethanol plus citral (FabY) and ethanol plus carvacrol (35 mg/L) or  thyme EO (100 

mg/L) (FabG). 

 

Discussion 

 

Based on environmental conditions, bacteria modify cell morphology and protein synthesis to 

optimize growth, survival, and propagation (Woldemeskel and Goley, 2017). Sub-lethal level of 

ethanol stress reduced the cell division protein FtsZ while the relative amount of cell shape 

determining protein MreB was unaffected. In rod-shaped bacilli, MreB put out the cell length and 
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arrange elongation of the cell- wall whereas FtsZ, a tubulin-like protein, give the arrangement of 

the cell division septum and the resulting cell poles (Margolin, 2009). Both proteins were also 

involved in the synthesize the glycan strands of peptidoglycan (Uehara and Park, 2008). 

Interestingly, ethanol stress down-regulated the synthesis of FtsZ in other Gram positive bacteria 

(e.g., Lactobacillus plantarum) (van Bokhorst-van de Veen et al., 2011). Overall, the co-occurrence 

of ethanol and other antimicrobials increased FtsZ levels but decreased MreB protein supporting 

the hypothesis that plant essential oils (EOs) interacted with bacteria cell-wall proteins other than 

the cytoplasmic membrane (Zengin and Baysal, 2014). Guevara et al., (2015) showed that the level 

of MreB increased during moderate heat, carvacrol and thymol treatments. Previously, it was 

described that monoterpenes (e.g., citral, carvacrol and thymol) mainly affect the membrane 

structures increasing membrane fluidity and permeability, and leading disturbances in the 

respiration chain with and subsequently dissipation of the proton-motive force (Ultee et al., 

1999;Lambert et al., 2001;Bakkali et al., 2008;Somolinos et al., 2008;Hyldgaard et al., 2012) 

Nikbakht et al., (2014). However, further mechanisms involving cell-wall and cytoplasmic proteins 

could be involved during stress adaptation of L. monocytogenes to citral, carvacrol, (E)-2-hexenal 

or thyme EO.  

Previously, it was shown that L. monocytogenes strains regulate flagellar motility according to 

temperature (Raengpradub et al., 2008;Cordero et al., 2016) and salt (Durack et al., 2013) stresses. 

First, it was found that sub-lethal level of natural antimicrobials also affected the level of flagellin 

(FlaA) in dose-dependent manner. Except for (E)-2-hexenal, high concentrations of natural 

antimicrobials was not correlated with high level of FlaA. The decreased level of flagellar proteins 

could be related to an energy saving mechanism under critical stress conditions (low temperature, 

osmotic stress) (Shen and Higgins, 2006;Hingston et al., 2015). However, persistence and the 

ability to form biofilm were not decreased in mutant strains for some flagellar genes 

(Todhanakasem and Young, 2008). Overall, adaptation to different antimicrobials leads to 

modification of the amount of some ribosomal proteins involved in translation, ribosomal 

structure and biogenesis (30S ribosomal protein S1, S2, S3 and S8, 50S ribosomal protein L5, 

L7/L12, L25 and L31). Previously, L. monocytogenes cells decreased the level of S1 protein under 

triple stresses (low pH, high salinity and low temperature) (He et al., 2015). Guevara et al., (2015) 

showed that the level of L7/L12 increased during moderate heat, carvacrol and thymol 

treatments. L. monocytogenes cells increased the levels of some ribosomal proteins (S1, L25) in 

presence of ethanol alone. In Bacillus genus, L25 (Ctc) works as general stress protein, showing a 
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B-dependent promoter and it was induced during osmotic, heat, oxidative and starvation stresses 

(Hecker and Volker, 1998). In L. monocytogenes, the expression of Ctc is dependent by σB, an 

alternative factor encoded by sigB (Gardan et al., 2003;Cacace et al., 2010). The transcription of 

σB-dependent genes which encode for proteins related to transport, general stress response and 

metabolism, increased in L. monocytogenes under environmental stresses (Chan and Wiedmann, 

2008). Ctc protein was up-synthetized in L. monocytogenes  under osmotic stress (Gardan et al., 

2003) and cold adaptation (Cacace et al., 2010). Consequently, ethanol stressed cells could better 

survival during osmotic stress. On the contrary, L. monocytogenes  cells treated with sub-lethal 

dose of (E)-2-hexenal and, especially, citral inhibited the synthesis of Ctc which could cause a 

decrease survival under osmotic and cold stresses (Gardan et al., 2003;Cacace et al., 2010). 

L. monocytogenes cells treated with specific concentration of ethanol (1%) and carvacrol (35 mg/L) 

or thyme EO (100 mg/L) increased the level of ribosome recycling factor, which plays a key role in 

bacterial growth (Janosi et al., 1994). Trigger factor (TF), a ribosome-associated protein playing a 

kay role in protein synthesis and folding also cooperating with DnaK and GroEL chaperones 

(Kandror and Goldberg, 1997) was induced in L. monocytogenes cells under ethanol (this study) 

and cold stresses (Cacace et al., 2010). In Streptococcus suis, TF-deficient strain showed 

attenuated pathogenicity in  mouse peritonitis model (Wu et al., 2011). Interestingly, the use of 

plant antimicrobials (especially, citral and (E)-2-hexenal) seems to decreased the inductive effect 

of ethanol.  

Overall, ribosome is one cellular target for antibiotics and microbes pointed out a panel of 

adaptation responses to increase resistance (Wilson, 2014). Based on the number of ribosomal 

proteins, a ribosomal response to antimicrobial treatments with ethanol and citral, carvacrol or 

thyme EO in L. monocytogenes  SCOTT A can be also hypothesized.  

As found in sequenced genomes, L. monocytogenes has regulatory proteins which play an 

important role in the cell adaptation to different niches. First, this study showed that natural 

antimicrobials differently affected the level of synthesis of proteins involved in transcription (GTP-

sensing transcriptional pleiotropic repressor CodY, GntR family transcriptional regulator, 

transcription elongation factor GreA and transcriptional regulatory protein DegU). CodY is one of 

the major cellular global regulator, serving as a repressor and activator of metabolic and virulence 

genes in Gram positive bacteria. Recently, it was shown that CodY regulates carbon and nitrogen 

metabolisms, bacterial motility, stress related and virulence functions and metabolic adaptations 

in L. monocytogenes strains (Lobel and Herskovits, 2016). Interestingly, specific combinations of 
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ethanol and carvacrol or (E)-2-hexenal reduced the relative abundance of CodY. In addition, cells 

treated with ethanol and citral inhibited the synthesis of the transcription elongation factor GreA. 

L. monocytogenes strains increased the level of GreA under heat and antimicrobial adaptation (55 

°C, carvacrol 0.3 mM and thymol 0.3mM for 30 minutes) (Guevara et al., 2015), during treatment 

with lactic acid  (Omori et al., 2017). GreA is essential factor in the RNA polymerase elongation 

complex and protect proteins against aggregation. It was found that the over-expression of GreA 

increased the bacterial resistance to heat and oxidative stress (Li et al., 2012;Omori et al., 2017). 

Consequently, cells treated with ethanol and citral, showing the lowest level of GreA, could 

decrease the adaptability to heat and oxidative stress. Ethanol strongly increased the 

transcriptional regulatory protein DegU which play a role in motility, chemotaxis, biofilm 

formation and virulence of L. monocytogenes (Gueriri et al., 2008). Probably due to the 

modulation of DegU phosphorylation by acetyl phosphate, the inductive effect of ethanol was 

reduced adding carvacrol, (E)-2-hexenal and thyme EO.  

Overall, the use of ethanol alone and, especially, ethanol added of carvacrol at 35 mg/L or thyme 

EO at 100 mg/L strongly increased the relative amount of several proteins related to carbohydrate 

transport and metabolism. Some of them (PTS mannose transporter subunit IIAB, glyceraldehyde-

3-phosphate dehydrogenase, bisphosphoglycerate-independent phosphoglycerate mutase and 

triosephosphate isomerase) were also found over-synthetized in L. monocytogenes CECT 4031 

cells adapted at 55°C alone or in presence of EO  (55°C and carvacrol 0.3 mM and thymol 0.3 mM) 

for 30 min (Guevara et al., 2015). This study also showed that sub-lethal ethanol stress in L. 

monocytogenes  SCOTT A variously affected the level of synthesis of many proteins involved in 

energy production, nucleotide and nitrogen metabolism, cofactors and vitamins metabolism and 

stress response. If other natural antimicrobial compounds were added to ethanol containing 

medium, L. monocytogenes  SCOTT A adapt the proteome profile depending on the type and the 

specific concentrations of antimicrobials. Overall, carvacrol at 35 mg/L and thyme EO at 100 mg/L 

produced the highest induction in protein synthesis compared to citral and, especially, (E)-2-

hexenal. Over-synthesis of proteins involved in energy metabolism could be useful to compensate 

for partially impaired energy generation caused by antimicrobial treatments interacting with the 

bacterial cytoplasmic membrane. 

The sublethal concentrations of the natural antimicrobials used induced an over expression of the 

transporters, enzymes and cofactors involved in the less efficient energy generation mechanisms  

adopted by L. monocytogenes cells in response to the stress exposure and in the maintenance of  
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the cell oxidoreductive potential. Otherwise the shift toward less efficient, in terms of energy 

yield,  metabolic pathways due to the exposure to natural antimicrobials is widely documented in 

Gram positive and Gram negative bacteria. Picone et al., (2013) showed that the exposure to 

different concentrations of cavacrol induced in Escherichia coli 555 an intracellular accumulation 

of glucose and a shift from aerobic metabolism fermentation. In addition a wide literature showed 

that EOs and their bioactive compounds negatively affected the respiration chain and the 

generation of the proton-motive force in several spoilage and pathogenic microorganisms (Ultee 

et al., 1999;Lambert et al., 2001;Bakkali et al., 2008;Somolinos et al., 2008;Hyldgaard et al., 2012).  

In addition also Nilsson et al., (2013) highlithed a clear energy generation shift to fermentation 

processes in L. monocytogenes in response to adverse (alkalinisation) environmental conditions. 

Otherwise, it is known that bacterial metabolism is a complex systems of interconnected 

metabolic pathways, and the negative modulation on one pathway often lead to compensatory 

adjustments into others. However, the compensation mechanisms are directly dependent on the 

microorganism, the kind of stress applied and the exposure medium and time (Goh et al., 2002). 

Also Lungu et al., (2009) demonstrated that different stress sources can generate in L. 

monocytogenes the same general metabolic switch (from respiration to fermentation) through 

different coordinate changes in gene expression and protein expression, demonstrating its ability 

to differently modulate the energy generation pathway in response to different growth conditions. 

The stress proteins such as glutathione-disulfide reductase, induced in cells treated with carvacrol 

at 35 mg/L and thyme EO at 100 mg/L, plays a key role to maintain the low intracellular redox 

potential required to have proteins in their reduced form. 

 

Conclusions 

 

The findings presented in this works contribute to understand the mechanisms of action of natural 

antimicrobials and the strategies put in place by Listeria monocytogenes Scott A to survive after 

one hour exposure to sublethal concentration of citral, carvacriol, (E)-2-hexenal and thyme EO. 

The detailed knowledge of the effects of natural antimicrobials on the microbial cell physiology is 

mandatory for their exploitation in the food industries as alternatives to traditional preservatives  

in order to maximize their efficacy even when used at sublethal concentrations, due to their low 

sensory threshold, and in combination with other hurdles.  
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For these reasons their application, requires the identification of combined strategies able to 

counteract the microorganism defense strategies highlighted in this paper in order increase food 

safety.  
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Flow cytometric evaluation of Listeria monocytogenes 

Scott A and Escherichia coli K12 MG1655 cell membrane 

and esterase activity changes in response to natural 

antimicrobial exposure  

 

Introduction 

Consumer demand for minimally processed, and ready-to-eat foods with a reduced content of 

synthetic preservatives has stimulated the research of alternative preservation strategies. 

Essential oils (EOs) or their components represent one of the most promising natural feasible 

alternatives to improve food safety, shelf-life and quality. Recognized as safe from internationals 

food authority, they are traditionally used in food industry as flavor and taste enhancers 

(Newberne et al., 2000). Their antimicrobial activity and the wide action spectra against several 

pathogenic and spoilage microorganisms are well documented and several reviews are available 

(Burt, 2004;Hyldgaard et al., 2012;Tongnuanchan and Benjakul, 2014;Patel, 2015;Pandey et al., 

2017). A wide literature documents their application as natural preservatives also in different food 

matrices, such as meat (Fratianni et al., 2010;Barbosa et al., 2015;Radha krishnan et al., 2015), 

dairy products (Amatiste et al., 2014;Ehsani et al., 2016;Ben Jemaa et al., 2017), minimally 

processed fruits and vegetables (Patrignani et al., 2015;Siroli et al., 2015b;Siroli et al., 2015c) and 

beverages (Kiskó and Roller, 2005;Chueca et al., 2016). Among the natural antimicrobials, thyme 

EO, and some components of citrus and officinal Eos, such as citral, carvacrol, and (E)-2-hexenal, 

are very promising alternatives to traditional preservatives (Ivanovic et al., 2012). In fact, they are 

widely reported to be able to improve safety and shelf-life of several foods also when used at 

concentrations lower than their bactericidal ones and compatible with the product sensory 

properties (Zanini et al., 2014a;Zanini et al., 2014b;Silva-Angulo et al., 2015). In general cell wall, 

the cytoplasm membrane and membrane proteins have been considered the main targets of EOs 

and their components  (Burt, 2004). In fact, due their hydrophobic properties EOs and their 

components interfere with cell membrane integrity and functionality. Also the cytosol coagulation 

and the depletion of the microbial cell proton-motive force have been identified as action 

mechanisms of EOs (Burt, 2004;Hyldgaard et al., 2012;Patel, 2015). However, the EO action 
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mechanisms are reported to vary according the natural antimicrobial and its concentration, the 

target species or strain, the food matrix, the storage conditions, etc. (Valero and Francés, 

2006;Somolinos et al., 2008;Somolinos et al., 2010;Patrignani et al., 2013). In general, cell wall and 

membrane are the primary site of toxic action of terpenes like citral and carvacrol (Burt, 

2004;Hyldgaard et al., 2012). As reported by Somolinos et al., (2010) the exposure to different 

citral concentration cause on Escherichia coli BJ4 and BJ4L1 the cytoplasmic cell membrane 

disruption. A similar permeabilization effect was also observed on different Listeria 

monocytogenes strains. As reported by Zanini et al., (2014a) and Zanini et al., (2014b), the 

exposure to citral and carvacrol, even at sublethal concentrations,  increases the permeabilization 

of the cytoplasmic cell membrane and potentiates the  activity of various antibiotics. Aldehydes 

such as hexanal and 2-(E)-hexenal, antimicrobial produced by plants and vegetable tissues 

damaged by biotic or abiotic stresses throughout the lipoxygenase pathway to prevent and or 

inhibit the growth of plant pathogens (Lanciotti et al. 2004),  have been demonstrated to possess a 

noticeable activity against several yeast, mould, Gram-positive and gram-negative bacterial strains 

of food interest (Nakamura and Hatanaka, 2002;Trombetta et al., 2002;Zhang et al., 2017) both in 

model and real food systems (Lanciotti et al., 1999;Lanciotti et al., 2003;Siroli et al., 2014). As 

reported by Patrignani et al., (2008), (E)-2-hexenal acts as a surfactant and permeates by passive 

diffusion across the plasma membrane of many microorganisms. Reached the cytoplasm the α,β-

unsaturated aldehyde is able to reacts with different  nucleophilic groups (Kubo and Fujita, 

2001;Lanciotti et al., 2004). Moreover, (E)-2-hexenal may cause cytoplasm coagulation as the 

result of thiol containing enzyme inhibition (Aiemsaard et al., 2011).The antimicrobial properties 

of thyme essential depend on its chemical composition and the target microorganism  (Kim et al., 

1995;Nevas et al., 2004;Monika et al., 2011;Picone et al., 2013;Boskovic et al., 2015;Siroli et al., 

2015a;Siroli et al., 2015c;Swamy et al., 2016). Thyme essential oil is constituted by numerous 

different compounds but its antimicrobial activity is mainly attributed to carvacrol and thymol. 

Thymol is structurally similar to carvacrol and they share their cellular targets. Studies have shown 

that thymol interacts with cell membrane permeability, leading to depletion of  membrane 

potential, cellular uptake of ethidium bromide, and leakage of potassium ions, ATP, and 

carboxyfluorescein (Helander et al., 1998;Lambert et al., 2001;Xu et al., 2008). Although the 

literature on action mechanisms of citral, carvacrol, (E)-2-hexenal and thyme EO have been 

dramatically increased in the last years, the knowledge on their  mechanisms on Listeria 

monocytogenes and Escherichia coli is still fragmentary  since it is affected by several factors such 
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as concentration,  strains, cell physiological state, treatment conditions,  microbial interaction with 

exposure systems, etc.. In addition,  antimicrobial activity of EOs and their components are not 

attributable to a specific mechanism but to the actions towards several cell targets . Moreover, for 

EOs an holist approach should be considered,  since synergistic actions among components 

present also at very low concentrations greatly affects their antimicrobial activities (Caccioni et al., 

1997), and consequently the comprehension of their action mechanisms is more complex. In 

addition, heterogeneity in microbial population resistance to stresses  is reported to occur as a 

monomodal Gaussian with a narrow  or broad distribution, or as a multimodal distribution 

comprising subpopulations of similar or vastly different numbers of individuals (Dhar and 

McKinney, 2007). However, the literature on the behavior of L. monocytogenes and E. coli cell 

populations  exposed to natural antimicrobials is still scarce (Burt, 2004;Bakkali et al., 

2008;Hyldgaard et al., 2012). Flow cytometry represents a reliable and fast tool in food 

microbiology, for the measurements of the changes on physiological single cell properties. By the 

use of the appropriate fluorescents dyes is possible classify cells into three different categories: 

metabolically active, intact, or permeabilized cell mixtures (Hewitt and Nebe-Von-Caron, 

2004;Johnson et al., 2013). Most common fluorescent dyes used in flow cytometry are fluorescent 

immune-conjugates and probes for fluorescence in situ hybridization and nucleic acid stains. In 

addition, several probes able to measure the, membrane potential as well as cell enzymatic 

activity, viability, organelles, phagocytosis, development, and other  properties are available 

(Haugland, 1994). Various authors demonstrated the suitability of flow cytometry to study the 

microbial cell responses even after the exposure to sub-lethal stress conditions (Luscher et al., 

2004;Ananta et al., 2005;Berney et al., 2007;Mathys et al., 2007;Sunny-Roberts and Knorr, 

2008;Da Silveira and Abee, 2009;Mols et al., 2010;Fröhling et al., 2012;Tamburini et al., 

2013;Fröhling and Schlüter, 2015). In fact, this technique provides several information on the 

whole cell population and its changes during the exposure to stresses and the following recovery 

during storage. The comprehension of  behavior of the different population fractions after the 

exposure to natural antimicrobials is fundamental for their further application at industrial level as 

alternative to traditional preservatives also to avoid resistance phenomena. 

In this framework, the main aims of this research is to investigate on the potential of flow 

cytometry to study the changes of morphological and physiological properties of selected food-

borne pathogens, i.e. Listeria monocytogenes Scott A and Escherichia coli K12 MG1655, after one 

hour exposure to different sub-lethal and lethal concentrations of citral, carvacrol, (E)-2-hexenal 
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and thyme essential oil  in order to clarify their specific action mechanisms and the responses of 

the whole cell population. For this purpose different cell viability parameters, such as membrane 

integrity, esterase activity and cytoplasmic cell membrane potential were measured by flow 

cytometry.  

 

Material and methods 

 

Natural antimicrobials  

Essential oils used in these experiments were purchased from Sigma-Aldrich (Milano, Italy) Citral, 

carvacrol, and (E)-2-hexenal, while thyme essential oil (EO) was obtained from Flora s.r.l. (Pisa, 

Italy) Before the experiments, essential oils were proper diluted using absolute ethanol (Sigma-

Aldrich, Milano, Italy) to prepare 100X essential oils stock solutions for each concentration tested. 

 

Bacterial strains 

L. monocytogenes Scott A and Escherichia coli K12 MG1655 

Listeria monocytogenes Scott A and Escherichia coli K12 MG1655 were stored as glass bead 

cultures at −80 °C for long-term preservation. To acclimatize cultures to the experimental 

conditions, one glass bead of each strain was given to 5 ml of Brain Heart Infusion broth (BHI) 

(Thermo-fisher, Milano, Italy) and incubated for 24 h without shaking at 37 °C. After the growth, 

cells were sub-cultured at 37°C for 24 h in BHI broth. 

 

Exposure to natural antimicrobials 

In each assay, 250 mL of fresh BHI broth were inoculated with 2.5 mL of bacteria suspension 

(corresponding to the 1% of the final volume) to reach a 4 log CFU/mL concentration and 

incubated without stirring at 37°C. The growth was monitored by the optical density (OD) at λ=600 

nm. For L. monocytogenes Scott A the exposure was performed in the middle of the exponential 

growth phase while for E.coli k12 the exposure was performed in the stationary growth phase 

(OD=2, λ= 600 nm). For both microbial strains, 200 µL of natural antimicrobial hydro alcoholic 

stock solutions were added to 20 mL of liquid cultures in order to obtain the concentrations 
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reported in Table 1 and 2. Cultures were incubated for 1 h at 37°C.  Natural antimicrobials 

operative concentration were determined according to the minimal inhibitory and bactericidal 

concentrations (Siroli et al., 2015a). For both strains, the tested exposure regarded three sublethal 

concentration corresponding to the 1/5, 1/3, 1/2 of the MIC and biocide concentrations (MIC 

and/or MBC) depending on the microorganism tested. 

Table 1: Essential oils, their components, and relative concentrations, used for the treatments of L. monocytogenes Scott A. 

Natural antimicrobial Concentration tested (mg/L) 

Citral 50 mg/L1, 85 mg/L, 125 mg/L, 250 mg/L1 

Carvacrol 20 mg/L1, 35 mg/L, 50 mg/L, 100 mg/L1 

(E)-2-hexenal              150 mg/L1, 250 mg/L, 400 mg/L, 800 mg/L1 

Thyme essential oil 40 mg/L1, 70 mg/L, 100 mg/L, 200 mg/L1 

1MIC value tested for Listeria monocytogenes Scott A 

 

Table 2: Essential oils, their components, and relative concentrations, used for the treatments of Escherichia coli K12 MG1655 

Natural antimicrobial Concentration tested (mg/L) 

Citral 200 mg/L, 330 mg/L, 500 mg/L, 1000 mg/L1, 3000 mg/L2 

Carvacrol 25 mg/L, 40 mg/L, 60 mg/L, 120 mg/L1, 250 mg/L2 

(E)-2-hexenal              80 mg/L, 135 mg/L, 200 mg/L, 400 mg/L1, 425 mg/L2 

Thyme essential oil 50 mg/L, 86 mg/L, 125 mg/L, 250 mg/L1, 300 mg/L2 

1MIC value tested for Escherichia coli K12 MG1655;  2MBC value tested for Escherichia coli K12 MG1655 

 

After the exposure, L. monocytogenes and E.coli MG1655 the total viable cell count was 

immediately performed (see chapter below). Afterwards, bacterial cells were harvested by 

centrifugation at 3214 x g at 4 °C for 15 min, resuspended in 250 µl of phosphate buffered saline 

PBS (50 mM) and again centrifuged at 7000 x g and 4 °C for 5 min. For the subsequent staining 

procedures and flow cytometric analysis, L. monocytogenes pellets were resuspended in 100 µl (50 

mM) PBS, while E.coli samples were resuspended in 100 µL (50 mM) Tris buffer. For both 

microorganisms the final cell of each samples was about 109 cells/mL.  
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Total Viable Cell Count  

The viable cell count of bacteria after exposure to essential oils or their components was 

determined by plate count methods in duplicate. Samples were serially diluted in microtest plates 

(96er U-profile, Carl Roth GmbH & Co KG, Germany) using, as dilution solution, physiological saline 

buffer (9 g/L NaCl). 100 µl of each dilution was spread on BHI agar (Thermo-fisher, Milano, Italy) 

and the growth (colony forming units) was evaluated after 24 h at 37°C. 

 

Flow Cytometric Analysis 

All experiments were performed using a CyFlow ML flow cytometer (Sysmex Partec GmbH) 

equipped, among others, with a 50 mW blue solid state laser emitting at a wavelength of 488 nm. 

A photomultiplier with a band pass filter of 536 ± 20 nm was used for collect fluorescence data of 

thiazole orange (TO), carboxyfluorescein (cF), and green DiOC2(3), while the fluorescence of 

propidium iodide and red DiOC2(3) was recorded in the photomultiplier with a band pass filter of 

620 ± 11 nm. To correct the overlap of one dye’s emission into another dye’s detector 

fluorescence signal compensation was performed. Data obtained from each photomultiplier 

channels were collected as logarithmic signals and analyzed using the FloMax software 3.0 

(Sysmex Partec GmbH). For each sample, one hundred thousand events were measured at a flow 

rate of approximately 3000 events/sec. The density plots obtained by flow cytometric analyses 

were divided into four regions. Each region is associated with cells revealing different physiological 

or morphological properties. The average of the percentage values obtained from three density 

plots was calculated and illustrated as diagrams where the x-coordinate displays the treatment 

concentration and the y-coordinate the percentage of fluorescent cells. The different cell 

parameters investigated during this experimentation were: the cell membrane integrity (TO-PI 

stain), the cell membrane potential (DiOC2(3) stain)  and the cell membrane integrity and esterase 

activity (cF-PI stain) as indicator of the microbial population viability. Staining procedures were 

performed as described earlier by Fröhling and Schlüter (2015) with some adaptations to the 

bacteria strains used. 
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Membrane Integrity 

Cell membrane integrity, was evaluated after the treatments using a combination of thiazole 

orange (TO) and propidium iodide (PI) dyes (Sigma-Aldrich, Germany). Staining procedures were 

performed in dark with some differences depending on the microorganism tested. For L. 

monocytogenes, 20 µL of resuspended pellets were diluted in PBS (50 mM) to a cell concentration 

of approximately 106 cells/mL. 0.2 µM thiazole orange was added to the samples and incubated 

for 10 minutes at room temperature. After the incubation, 30 µM propidium iodide was added 

and samples were analyzed after 5 minutes. As described above, E. coli resuspended pellets were 

diluted in Tris buffer (50 mM) to a cell concentration of approximately 106 cells/mL. Thiazole 

orange was added with a final concentration of 2.5 µM and samples were incubated for 15 

minutes at room temperature. Propidium iodide straining was performed as described for Listeria 

monocytogenes samples. 

 

Esterase Activity and Membrane Permeabilization 

The cell esterase activity and the membrane integrity were evaluated after the exposure to natural 

antimicrobials using 5(6)-carboxyfluorescein diacetate mixed isomers (cFDA) (Sigma-Aldrich, 

Germany) and propidium iodide. 60 µL of concentrated L. monocytogenes samples were stained 

with an equal volume of cFDA (200 µM) stock solution to obtain a final cFDA concentration of 100 

µM, incubated at 37 °C in a water bath for 5 min and centrifuged at 7000 x g at 4 °C for 5 min. Cells 

pellets were diluted 1:1 in PBS (50 mM). PI staining procedure was performed as previously 

described. cFDA staining procedure for E. coli followed the protocol described for L. 

monocytogenes with some differences. Cells were incubated with 833 µM cFDA (5 mM, in Tris) at 

37 °C in a water bath for 45 min then centrifuged at 7000 x g at 4 °C for 5 min. Pellets were 

resuspended in 60 µL Tris (50 mM) and stained with 30 µM PI. Samples were analyzed after 10 

minutes of incubation. 

 

Membrane Potential 

The measure the membrane potential of bacteria cells was obtained using 3,3′ -

diethyloxacarbocyanine iodide [DiOC2(3)] provided by Sigma-Aldrich, Germany. The protocol 
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applied was in agreement with (Novo et al., 1999) and (Fröhling and Schlüter, 2015) with further 

modification. Listeria monocytogenes bacteria suspensions were diluted in 50 mM PBS containing 

10 mM D-Glucose and 30 µM DiOC2(3) and then incubated for 15 minutes at room temperature in 

the dark. Afterwards the suspension was centrifuged at 7000 × g and 4°C for 5 min and the pellet 

resuspended in 1 mL PBS (50 mM). Escherichia coli staining procedure required a different staining 

buffer due to the higher complexity of the outer and inner cell membrane. First, samples were 

suspended in 10 mM D-Glucose, 30 µM DiOC2(3) and EDTA (0.5 mM) Tris buffer (50 mM). After the 

centrifugation and the incubation time as previously described, E. coli samples were resuspended 

in 1 mL of Tris (50 mM). After the staining procedure samples were immediately analyzed to 

detect shifts in the cell membrane potential. The ratio of the mean red to the mean green 

DiOC2(3)- fluorescence channel value was calculated to investigate changes in the membrane 

potential. Due to the chosen cytometer settings the red/green DiOC2(3)-fluorescence ratio of 

depolarized cells was ≤1. It was assumed that the red/green ratio of untreated cells represents the 

relative membrane potential of intact cells (Novo et al., 1999). A reduction of the red/green ratio 

stands for the loss cell membrane potential. 

 

Statistical analysis 

Statistical analysis to evaluate significant differences between samples were performed using the 

R software (R Core Development Team, 2017). OneWay-ANOVA with Tukey test with a significance 

level of 0.05 were used. 

 

Results  

 

Treatment Effects on Total Viable Count Listeria monocytogenes Scott A 

The exposure of Listeria monocytogenes to the natural antimicrobials at different concentrations 

was performed, in all the experiments, at the reach of the middle of the exponential growth phase 

(OD= 0.4; λ=600 nm). In all the trials the cell loads before the treatments were about 8.8 log 

CFU/mL (Table 3-4).  After 1 h exposure the untreated controls and the samples exposed to 1% 

ethanol showed the same cell counts. Only the one hour exposure to carvacrol and thyme 
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essential oil, at the highest concentration tested, provoked a significant reduction of the total 

viable counts (Table 3-4). More specifically, the exposure to 100 mg/L of carvacrol, corresponding 

to the MIC value, reduced the viable cell load of one logarithmic cycle (7.59 log CFU/mL) (Table 

3B). Even more severe effect were observed after the exposure to thyme EO, reducing the viable 

counts to 7.45 log CFU/mL and 5.23 CFU/mL, after the exposure to 100 and 200 mg/L, respectively 

(Table 4D).  By contrast, 1 hour exposure to citral and (E)-2-hexenal had no significant effect on 

the Listeria cell loads (Table 3A-4C). 

Table 3: Total viable counts of Listeria monocytogenes Scott A after one hour exposure to different concentrations of Citral (A) and 

Carvacrol (B). 

 A 
log 

 
SD 

  
B 

log 

 
SD 

CFU/mL 

  

CFU/mL 

Colture before treatments 8.84 ± 0.33a 

  

Colture before treatments 8.62 ± 0.01a 

untreated control 8.79 ± 0.10a 

  

untreated control 8.81 ± 0.17a 

EtOH 1% 8.95 ± 0.23a 

  

EtOH 1% 8.7 ± 0.18a 

Citral 50 mg/L 8.86 ± 0.11a 

  

Carvacrol 20 mg/L 8.75 ± 0.23a 

Citral 85 mg/L 8.59 ± 0.10a 

  

Carvacrol 35 mg/L 8.79 ± 0.09a 

Citral 125 mg/L 8.88 ± 0.14a 

  

Carvacrol 50 mg/L 8.79 ± 0.16a 

Citral 250 mg/L (MIC) 8.69 ± 0.08a 

  

Carvacrol 100 mg/L (MIC) 7.59 ± 0.14b 

Different letters mean data significantly different (p<0.05). 

 

Table 4: Total viable counts  of Listeria monocytogenes Scott A after one hour exposure to  different concentrations of (E)-2-hexenal 

(C) and Thyme EO (D) 

 C 
log 

 
SD 

  
 D 

log 

 
SD 

CFU/mL 

  

CFU/mL 

Colture before treatments 9.16 ± 0.05a 

  

Colture before treatments 8.78 ± 0.16a 

untreated control 8.87 ± 0.22a 

  

untreated control 8.71 ± 0.17a 

EtOH 1% 8.99 ± 0.10a 

  

EtOH 1% 8.59 ± 0.14a 

(E)-2-Hexenal 150 mg/L 8.99 ± 0.23a 

  

Thyme EO 40 mg/L 8.72 ± 0.07a 

(E)-2-Hexenal 250 mg/L 9.13 ± 0.11a 

  

Thyme EO 70 mg/L 8.69 ± 0.28a 

(E)-2-Hexenal 400 mg/L 9.10 ± 0.09a 

  

Thyme EO 100 mg/L 7.45 ± 0.72b 

(E)-2-Hexenal 800 mg/L (MIC) 8.49 ± 0.10a 

  

Thyme EO 200 mg/L (MIC) 5.23 ± 0.15c 

Different letters mean data significantly different (p<0.05). 
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Treatment Effects on Total Viable Count Escherichia coli K12 MG1655 

Escherichia coli samples were exposed to essential oil or their bioactive compounds at the 

beginning of the stationary growth phase (OD= 2; λ=600 nm). The cell loads before the exposure 

to the natural antimicrobials ranged between 8.5 and 9.0 log CFU/mL (Table 5-6). Analogously to 

Listeria monocytogenes, no differences on the cell loads were highlighted between the untreated 

controls and the samples exposed to 1% EtOH  (Table 5-6). The highest effect on the E.coli growth 

was observed after the exposure to citral, also at lowest concentration tested (Table 5A). The 

exposure to 200 mg/L reduced the viable cell load to 7.22 log CFU/mL. Increasing concentrations 

reduced the total viable counts to values ranging between 6.60 and 6.12 CFU/mL. The exposure to 

the citral MBC concentration caused a reductions of cell loads under the detection limit (Table 5A). 

Also thyme EO and carvacrol treatments significantly decreased the total viable cell loads. A 

reduction of three logarithmic cycles were observed after the exposure to carvacrol MBC 

concentration (250 mg/L), while thyme essential oil MIC and MBC concentrations provoked cell 

load reductions of 6.52 and 5.59 log CFU/mL, respectively (Table 5B-6D). The (E)-2-hexenal 

exposure did not affect the Escherichia coli cell loads (Table 6C).  

Table 5: Total viable count of Escherichia coli K12 MG1655 after one hour exposure to different concentrations of  Citral (A) and 

Carvacrol (B). 

A 
log 

 
SD   B 

log 

 
SD 

CFU/mL 
 

CFU/mL 

Colture before treatment 8.5 ± 0.13a 
 

Culture before treatment 7.95 ± 0.12a 

untreated control 8.97 ± 0.24a 
 

untreated control 8.9 ± 0.16a 

EtOH 1% 8.96 ± 0.15a 
 

EtOH 1% 8.98 ± 0.21a 

Citral 200 mg/L 7.22 ± 0.20b 
 

Carvacrol 25 mg/L 8.65 ± 0.09a 

Citral 330 mg/L 6.6 ± 0.13c 
 

Carvacrol 40 mg/L 9.02 ± 0.11a 

 Citral 500 mg/L 6.28 ± 0.18c 
 

Carvacrol 60 mg/L 8.75 ± 0.25a 

Citral 1000 mg/L (MIC) 6.12 ± 0.20d 
 

Carvacrol 125 mg/L (MIC) 8.79 ± 0.22b 

Citral 3000 mg/L (MBC) -*   - 
 

Carvacrol 250 (MBC) 4.85 ± 0.47c 

*Detection limit 1 log CFU/mL 

Different letters mean data significantly different (p<0.05). 
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Table 6: Total viable count of Escherichia coli K12 MG1655 after one hour exposure to different concentrations of (E)-2-hexenal (C) 

and Thyme EO (D). 

C 
log 

 
SD 

  
 D 

log 

 
SD 

CFU/mL 

  

CFU/mL 

Colture before treatment 8.92 ± 0.06a 

  

Colture before treatment 8.74 ± 0.16a 

untreated control 8.88 ± 0.26a 

  

Untreated control 8.76 ± 0.24a 

EtOH 1% 9 ± 0.23a 

  

EtOH 1% 8.63 ± 0.22a 

(E)-2-Hexenal 80 mg/L 8.93 ± 0.20a 

  

Thyme EO 50 mg/L 8.53 ± 0.32a 

(E)-2-Hexenal 135 mg/L 8.78 ± 0.20a 

  

Thyme EO 85 mg/L 8.63 ± 0.35a 

(E)-2-Hexenal 200 mg/L 8.89 ± 0.22a 

  

Thyme EO 125 mg/L 8.86 ± 0.53a 

(E)-2-Hexenal 400 mg/L (MIC) 8.83 ± 0.09a 

  

Thyme EO 250 mg/L (MIC) 6.52 ± 0.04c 

(E)-2-Hexenal 425 mg/L (MBC) 8.64 ± 0.23a 

  

Thyme EO 300 mg/L (MBC) 5.59 ± 0.26d 

Different letters mean data significantly different (p<0.05). 

 

Treatment Effects on the membrane integrity of Listeria monocytogenes Scott A 

The exposure of Listeria monocytogenes Scott A to the different natural antimicrobial provoked an 

augment of the population fractions with cells having slightly damaged and damaged membranes. 

The distribution of stained cells varied according to different treatments and concentrations used. 

The percentage of L. monocytogenes Scott A stained only with Thiazole orange (TO), having intact 

cell membranes,  remained almost constant (above 80%) after the exposure to 1% ethanol in all 

the trials  performed (Figure 1). The different concentration of citral (Figure 1A) increased the 

percentages of cells with slightly damaged membranes. The magnitude of the damaging effect 

raised increasing the citral concentrations. In fact, at the highest concentration (250 mg/L) the 

60% of stained cells showed a slightly damaged membrane. A value of about 3% of permeabilized 

membrane cells was observed in all the conditions,  independently on the severity of chemical 

stress applied (citral concentration). A similar pattern was observed  for carvacrol (Figure 1B). All 

the concentrations tested induced a significant reduction of the population with intact cell 

membrane. In particular, while in the control samples the population with intact membrane was 

about 80%, in the samples exposed to 100 mg/L (MIC value) this value decreased to 25%. 

Simultaneously  the percentage of slightly membrane cells increased augmenting the carvacrol 

concentrations (from 12 to 50%). The exposure to the MIC carvacrol concentration also raised the 

percentage of permeabilized membrane cells up to 15% of all fluorescent cells. Compared to the 
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untreated control, the exposure to (E)-2-hexenal had no significant effect on the cell membrane 

integrity of Listeria monocytogenes Scott A (Figure 1C). Thyme essential oil had the highest effect 

on the cell membrane integrity compared to the other natural antimicrobials tested. The 

percentage of  slightly and permeabilized cells increased with the treatment concentrations, and 

the exposure to 200 mg/L of thyme EO  (MIC concentration) induced  a complete membrane 

permeabilization in over 90% of cell population (Figure 1D). Except for Thyme EO exposure, the 

percentage of unstained cells/cell fragments were lower than 3% independently on the 

antimicrobial and its concentrations. 

 

Figure 1: membrane integrity of Listeria monocytogenes Scott A after 1 h  exposure to different concentrations natural 

antimicrobials: Citral (A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). Grey bars represent cell fragments or unstained cells; 

Yellow bars intact cell membrane; orange bars slight cell membrane permeabilization; Blue bars (complete) cell membrane 

permeabilization. Different letters mean data significantly different (p<0.05). 
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Treatment effects on the esterase activity and membrane integrity of Listeria monocytogenes 

Scott A 

No effects on the esterase activity of Listeria monocytogenes were evidenced after the exposure 

to natural antimicrobials or their bioactive compounds. As showed in Figure2, the percentage of 

fluorescent cells with intact cell membranes and  esterase activity was constant between 

treatments and above the 80% with the only exception of thyme EO 200 mg/L exposure. The MIC 

thyme EO provoke a complete permeabilization of the cells. Only without a lack in the esterase 

activity (Figure 2D). 

 

Figure 2: esterase activity and membrane integrity of Listeria monocytogenes Scott A after the exposure to natural antimicrobials: 

Citral (A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). Grey bars represent cell fragments or unstained cells; Yellow bars intact 
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cell membranes and  esterase activity; orange bars cell membrane permeabilization but still esterase activity; Blue bars cell 

membrane permeabilization and no esterase activity. Different letters mean data significantly different (p<0.05). 

 

Treatment effects on the cell membrane potential of Listeria monocytogenes Scott A 

The measurement of relative membrane potential using 3,3'-Diethyloxacarbocyanine iodide 

DiOC2(3) showed no significant differences compared to the untreated cells of Listeria 

monocytogens  Scott A. In fact, red/green ratios were always lower than 1 independently on the 

treatments and concentrations used. These data showed that the natural antimicrobials and the 

concentrations used at our experimental conditions  were unable to significantly modify the 

membrane potential of L. monocytogenes Scott A (Figure 3). 

 

Figure 3: relative membrane potential of Listeria monocytogenes Scott A, expressed as red/green ratio of DiOC2(3)-fluorescence 

intensity, after the exposure to natural antimicrobials: Citral (A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). 

 

Treatment effects on the membrane integrity of Escherichia coli K12 MG1655 

In all the trials  performed, the percentage of E. coli stained only with TO (cells with intact cell 

membrane) remained almost constant (above 80%) after the exposure to 1% ethanol (Figure 4). 

Citral showed a significant effect on cell membrane integrity even at sublethal concentrations 
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(Figure 4A).  After the exposure to 200-300 mg/L of citral the percentages of slightly membrane 

damaged cells of were higher than 80%. No membrane intact cells were found after the exposure 

to the citral MIC and MBC values (Figure 4A). Minor impacts on Escherichia coli cell membrane 

integrity were evidenced after the exposure to carvacrol and (E)-2-hexenal, independently on their 

sub-lethal concentrations (Figure 4B-C). Only the exposure to carvacrol inhibent and bactericidal 

concentrations (120 – 250 mg/L) provoked the cell membrane permeabilization (Figure 4B). Thyme 

EO effect on the cell membrane was concentration dependent. The fluorescence signal of the 

intact cells decreased with the treatment concentration increase (80 – 20%), while the percentage 

of damaged membrane cells simultaneously increased (Figure 4D). 

 

Figure 4: membrane integrity of Escherichia coli K12 MG1655 after 1 h exposure to different concentrations of  natural 

antimicrobials: Citral (A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). Grey bars represent cell fragments or unstained cells; 
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Yellow bars intact  membrane cells; orange bars slight membrane permeabilized  cells ; Blue bars (complete) membrane 

permeabilized cells. Different letters mean data significantly different (p<0.05). 

 

Treatment effects on the esterase activity and membrane integrity of Escherichia coli K12 

MG1655 

The exposure to  citral induced on Escherichia coli, the cell membrane permeabilization without a 

loss of the esterase activity. The percentage of fluorescent cells with permeabilized cell 

membranes and esterase activity maintenance  was higher than 80% independently on the natural 

antimicrobial concentrations. Only the exposure to bactericidal concentrations (1000 and 3000 

mg/L) increased (10%) the amounts of the populations with permeabilized cell membrane without 

esterase activity (Figure 5A). Minor impacts on Escherichia coli cell membrane integrity and 

esterase activity were evidenced after the exposure of carvacrol and (E)-2-hexenal. Escherichia coli 

samples treated with the bactericidal concentrations (120 mg/L and 250 mg/L) of carvacrol 

showed a cell membrane permeabilization without a loss in the esterase activity (Figure 5B). The 

exposure to (E)-2-hexenal increased  the percentage of cell fragments or unstained cells, 

independently on the concentration used. They represented in all the conditions tested about 15% 

of the whole population (Figure 5C). Thyme EO effects on the cell membrane and esterase activity 

were related to the concentration tested. The fluorescence signal of the intact cells decreased 

with the exposure to the sublethal concentration tested (80– 30%) while the percentage of cell 

populations with damaged membrane and esterase activity raised (Figure 5D). A significant loss in 

the cell esterase activity was observed only after the exposure to 250 mg/L and 300 mg/L 

concentrations. 
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Figure 5: esterase activity and membrane integrity of Eschierichia coli k12 1655 after the exposure to natural antimicrobials: Citral 

(A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). Grey bars represent cell fragments or unstained cells; Yellow bars intact cell 

membranes and  esterase activity; orange bars cell membrane permeabilization but still esterase activity; blue bars cell membrane 

permeabilization and no esterase activity. Different letters mean data significantly different (p<0.05). 

 

Treatment effects on the cell membrane potential of Escherichia coli K12 MG1655 

The measurement of relative membrane potential using DiOC2(3) showed that the untreated 

E.coli cells had a red/green ratio of 1.69 before the exposure to citral (Figure 6A). The value was 

reduced below 1 independently on the concentration used, suggesting the capability of  citral to 

depolarize the cell membrane of E. coli. A membrane depolarization was also observed for the MIC 

and MBC values of thyme EO (Figure 6D). No cell membrane depolarization were observed after 

the exposure to carvacrol and (E)-2-hexenal (Figure 6B,C) but (E)-2-hexenal determined a 

concentration dependent reduction of the cell membrane potential.  
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Figure 6: Relative membrane potential of Escherichia coli K12 MG1655, expressed as red/green ratio of DiOC2(3)-fluorescence 

intensity, after the exposure to natural antimicrobials: Citral (A), Carvacrol (B), (2)-hexenal (C) and thyme EO (D). 

 

Discussion 

 

As described by many authors, essential oils and their bioactive compounds are characterized by 

an antimicrobial activity both in vitro and real food systems. Although their antimicrobial 

properties are well documented, only few and fragmented information are available about their 

mechanisms of action on Escherichia coli and Listeria monocytogenes (Lambert et al., 2001;Burt, 

2004;Bakkali et al., 2008;Xu et al., 2008;Hyldgaard et al., 2012;Picone et al., 2013). Moreover, the 

literature available reports on the cell targets of their lethal concentrations, that are not generally 

compatible with the sensory properties of foods (Gill and Holley, 2006;Paparella et al., 2008). Also 

the literature on the responses of the whole cell populations of these two pathogenic species to 

EO is still scarce (Xu et al., 2008).  However, cell wall, membrane and energetic pathways  are 

generally considered as the main EOs microbial cell targets (Burt, 2004;Bakkali et al., 
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2008;Hyldgaard et al., 2012). In this framework multiparametric flow cytometric analyses were 

performed in order to assess the effects of citral, carvacrol, (E)-2-hexenal and thyme EO on the 

whole microbial populations of the two target microorganisms considered. Consequently, their 

effects on  membrane integrity, esterase activity and cell membrane potential were investigated.  

Flow cytometry data of Listeria monocytogenes Scott A and Escherichia coli K12 MG1655 

populations, after 1 hour stress exposure reveled specific response patterns in relation to the 

natural antimicrobials and their concentrations. Concerning the membrane permeabilization, 

expect for the (E)-2-hexenal, the percentage of damaged cells raised with the antimicrobial 

concentration applied. The membrane integrity was analyzed using dye exclusion methods and 

thiazole orange (TO)  and the divalent propidium iodide (PI)  as probes.  In fact, TO is able  to pass 

thought lipidic bilayers and to stain both DNA or RNA while PI due to multiple charges can react 

with nucleic acids only when membrane is disrupted or  permeabilized membrane (Kim et al., 

2009;Díaz et al., 2010). Both the target strains showed an increased cell membrane 

permeabilization with the increase of the  citral, carvacrol and thyme EO concentrations. However, 

E. coli resulted more sensitive to all the natural antimicrobials. In fact, they induced more severe 

the membrane permeabilization and cell load reductions of E. coli compared to L. monocytogenes. 

The most effective on E. coli resulted citral. In fact, E. coli  showed the highest cell load reduction 

and membrane permeabilization after the exposure to citral. The higher sensitiveness of a Gram-

negative pathogenic species compared to a Gram-positive one makes  the natural antimicrobials 

used, and mainly citral, particularly interesting as as food preservative alternative to traditional 

ones. A wide literature shows as the Gram negative bacteria outer membrane, which acts as a 

barrier against macromolecules and hydrophobic substances,  increase their resistance to several 

antimicrobials including many EO (Nikaido and Vaara, 1985;Helander et al., 1997). However, also  

Somolinos et al., (2008) demonstrated that citral was more effective on E.coli J1 than L. 

monocytogenes NCTC11994 under different experimental conditions, and especially at pH 7. These 

authors, using florescence microscopy and propidium iodide as probe demonstrated that citral 

disrupted the E. coli outer cell envelope forming pores permitting the cytoplasm entrance of 

molecules of 660 Da. To destabilize the lipopolysaccharide layer of outer membrane, the use of 

several chelating agents, such as EDTA, citric acid  and other substances, and high pressure 

homogenization have been proposed (Cutter and Siragusa, 1995;Helander et al., 1997;Vannini et 

al., 2004;Patrignani et al., 2010). On the other hand some literature reports showed that citral, 6 

atoms aldehydes and some ketons,  having  low molecular masses and sufficiently hydrophilic to 
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pass, throughout porin proteins to the deeper parts of Gram-negative bacteria without any the 

destabilization of outer membrane (Helander et al., 1997;Lanciotti et al., 2003;Belletti et al., 

2004;Belletti et al., 2008). 

Also carvacrol and thyme EO reduced significantly E. coli  cell loads but only when used at MIC and 

MBC. Only these concentrations induced a significant membrane permeabilization of E. coli cells. 

These data are in agreement with those of Xu et al. (2008) obtained by flow cytometry on 

Escherichia coli AS1 90 exposed to 200 mg/L of carvacrol and thymol, the major constituent of 

thyme essential oil. These Authors showed  cell membrane permeabilization processes associated 

to significant  reductions of the cell loads (Xu et al., 2008). Also Gill and Holley (2006) using 

confocal laser scanning microscopy showed a clear membrane disruption of  E. coli O157:H7 after 

the 10 minutes exposure to eugenol and carvacrol, but when used concentrations able reduce its 

viability of about 8 log cycles. 

Also in Listeria monocytogenes Scott A a concentration dependent permeabilization process was 

evidenced after the exposure to citral, carvacrol and thyme EO. No literature is available on the 

effects of such antimicrobials on L. monocytogenes membrane permeabilization. However,  Ultee 

et al., (1999) showed in a Gram-positive bacterium, such as  Bacillus cereus, that carvacrol caused 

increased membrane permeability to  cations such as H+ and K+. Also no significant L. 

monocytogenes cell load reductions were highlighted for citral, independently on the 

concentration used. Also Somolinos et al., (2008) showed a scarce sensitiveness of L. 

monocytogenes ATCC19114 serotype 4a to citral.  

More effective compared to citral on L. monocytogenes were carvacrol and thyme EO. However, 

significant cell load reductions were observed only using the MIC of carvacrol and thyme EO 

concentrations. Friedman et al. (2002) described, using a microplate assay,  how carvacrol and 

thymol had the highest effect on the cell loads of Listeria monocytogenes RM2199 and RM2388 

compared to other 23 essential oil constituents.  

The effects of the natural antimicrobials on the esterase activity of L. monocytogenes and E. coli 

was measured because it is considered  as reliable way to evaluate the cell damages induced after 

several antimicrobial treatments (Díaz et al., 2010;Surowsky et al., 2014;Fröhling and Schlüter, 

2015;Hong et al., 2015;Combarros et al., 2016;Meng et al., 2016).  In fact,  Carboxyfluorescein 

diacetate (cFDA), the probe used to measure esterase activity,  is a lipophilic non-fluorescent 

compound  converted  in the cytoplasm into the fluorescent carboxyfluorescein (cF) by unspecific 
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esterases. According to several literature data only cells with integer membrane and  active 

intracellular enzymes remain fluorescent (Haugland, 1999;Hoefel et al., 2003;Fröhling and 

Schlüter, 2015;Reineke et al., 2015). However, the data obtained in our experimental conditions 

showed for both target strains that this enzymatic activity was not affected by the exposure to the 

antimicrobials used independently on their concentrations. This data seem in disagreement with 

literature showing that membrane permeabilization is generally associated to the losses of 

esterase activity (Hayouni et al., 2008;Paparella et al., 2008;Xu et al., 2008;Fröhling and Schlüter, 

2015).   A esterase activity decrease associated to membrane  permeabilization was observed also 

in L. monocytogenes and E. coli exposed to EOs or their components (Xu et al., 2008). However the 

literature data evidenced losses of esterase activity only when lethal antimicrobial concentrations 

were used. For example, Paparella et al., (2008) showed by flow cytometry analyses that L. 

monocytogenes ATCC19114 serotype 4a after one hour exposure to emulsified cinnamon, 

oregano, thyme essential oils, had significant reductions of  both esterase activity and cell loads 

(Paparella et al., 2008). However, these Authors tested the effects of emulsions having EO 

concentrations ranging between 0.02 and 0.5%. These concentrations are generally lethal 

concentrations for L. monocytogenes independently on the exposure conditions. However, they 

are not compatible with any usage in food systems due to the low sensory thresholds of the 

natural antimicrobials tested. In our experimental conditions, probably due to the use of 

concentrations significantly lower to those tested in literature, the amount of cFDA hydrolyzed 

into cF, after the exposure to natural antimicrobials considered,  remained constant independently 

on the cell membrane permeabilization degree and the microorganism considered. Also L. 

monocytogens membrane potential was not affected by the 1 h exposure to the natural 

antimicrobial considered. On the other hand, the membrane potential,  due to the different ion 

content inside and outside the cell and measured using lipophilic dyes such as the DiOC2(3), is 

considered as fundamental in numerous processes of the live cell physiology and it is strongly 

related to bacterial viability (Novo et al., 1999). In fact, according to the literature, only living cells 

are able to maintain membrane potential (Díaz et al., 2010). 

In our experimental conditions, also at MIC values, the antimicrobials tested didn’t affect L. 

monocytogenes membrane potentials compared to the control ones. However, also at MIC values 

of all the tested antimicrobials, L. monocytogenes cells showed only a slight or the absence of  

permeabilization of the membrane. By contrast, E. coli, endowed with a higher sensitiveness to 

almost all the antimicrobials considered compared to L. monocytogenes,  showed also cell 
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membrane depolarization, which levels depended on the antimicrobial used and its concentration. 

A complete depolarization (red/green ratio below 1) of E. coli membrane was observed for all the 

citral concentrations tested and thyme EO MIC and MBC values. Also (Kim and Kang, 2017) 

observed that cell membrane potential of E. coli O157:H7 was significantly reduced after exposure 

to citral and thymol combined with a ohomic heating treatments, both in model and real food 

systems.  

In our experimental conditions also (E)-2-hexenal exposure caused a reduction of the E. coli 

population relative membrane potential. On  the opposite no effect on E. coli  membrane potential 

was evidenced after carvacrol treatments. Different studies confirmed that Gram-negative 

bacteria, due the outer membranes, were characterized by a higher resistance to carvacrol 

(Kokoska et al., 2002;Okoh et al., 2010).  

The reduction of membrane potential after antibacterial treatments  is considered fundamental 

for pathogenic species since live but not culturable cells are reported to be still able to cause 

diseases (Fröhling and Schlüter, 2015). 

In general the  data obtained indicated that sublethal treatments had minor impacts on L. 

monocytogenes compared to E. coli. In fact,  all the antimicrobial tested induced only a slight cell 

membrane permeabilization (with the exception of (E)-2-hexenal) of L. monocytogenes, while only 

the exposure to carvacrol and thyme essential oil MIC values reduces the cultivability and 

significant cell loads reductions were observed. 

E. coli was more sensitive to all the antimicrobials considered not only in terms of cultivability but 

also in terms of membrane permeability and potential. However  also for this strains, the 

antimicrobial used were unable to cause irreversible damages. In fact,  the percentage of 

unstained cells of fragments remained constant and below the 3% independently on the strain,  

natural antimicrobial and the concentration used. As reported by (Booyens and Thantsha, 2014) 

during an antimicrobial treatment, the increase of unstained population is related to a severe cell 

lysis or to a decreased staining accuracy due conglomerates formation. In addition, the increase of 

the unstained fraction subpopulation is reported to be related with highly permeabilized or lysed 

cells unable to growth (Fröhling and Schlüter, 2015). 
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Conclusion 

 

The flow cytometry approach used allowed to understand the Listeria monocytogenes and  

Escherichia coli cell targets to sub-lethal concentrations of citral, carvacrol, (E)-2-hexenal and 

thyme EO. The data  showed that the membrane permeabilization  as a common action 

mechanism of the antimicrobials considered on both strains.  By contrast they showed that 

esterase activity was not affected independently on strain, antimicrobial and its concentration. 

The approach used revealed that some antimicrobials such as citral, carvacrol and thyme EO were 

more effective against the Gram negative strain used. These results are particularly important 

since Gram negative are more resistant to many antimicrobials.  However, the multiparameter 

data obtained showed that the natural antimicrobials and the concentrations used caused also on  

E. coli k12 1655, the most sensitive strain tested, reversible damages since the percentage of  cell 

fragments remained constants also when the MIC values were used and when the membrane was 

depolarized. These data suggests that the levels used of citral, carvacrol and thyme EO can be used 

as preservatives to control the growth of pathogens such as Listeria monocytogenes and 

Escherichia coli only in combinations with other hurdles. In fact, concentrations able to have lethal 

effects are incompatible with the food sensory features due to their low sensory threshold. 

Consequently, the detailed knowledge of the action mechanisms of natural antimicrobials 

considered in relation to the others hurdles applied is absolutely necessary for their 

implementation at industrial level as preservation strategies. The implementation processes 

should be also related to the food matrices and production processes. 
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Effects of the exposure to sub-lethal concentrations of 

citral, carvacrol, (E)-2-hexenal on membrane fatty acid 

composition of Listeria monocytogenes Scott A and 

Escherichia coli K12 MG 1655. 

 

Introduction 

 

Essential oils (EOs) and some of their components have proved to be a source of natural 

alternatives to improve food safety and shelf-life. Recognized as safe from different international 

food authorities, they are commonly used in food industry as flavor and teste enhancers 

(Newberne et al., 2000). For this reason the number of publications regarding their application as 

natural preservatives in different food matrices, such as meat, dairy products, minimally processed 

fruits and vegetables, and beverages is dramatically  increasing (Belletti et al., 2010;Siroli et al., 

2014;Siroli et al., 2015b;Siroli et al., 2015c). Since their antimicrobial activity is proved both in 

model and in real foods thyme EO, and some components of EOs like citral (a mixture of 

monoterpene aldehydes: geranial and neral), carvacrol, and (E)-2-hexenal are promising 

alternatives to traditional preservatives, (Ivanovic et al., 2012). Although the antimicrobial 

properties of EOs and their major components are well known, their mechanisms of action have 

not been fully understood (Lanciotti et al., 2004;Di Pasqua et al., 2006;Di Pasqua et al., 

2007;Picone et al., 2013;Nazzaro et al., 2017). The antibacterial activity of essential oil and their 

components is not attributable to one specific mechanism but to the action towards several 

specific cell targets (Burt, 2004;Lanciotti et al., 2004;Bakkali et al., 2008;Hyldgaard et al., 

2012;Patel, 2015). Some authors (Ultee et al., 1999;Lambert et al., 2001;Nazzaro et al., 2013) have 

proposed the cell wall, the cell  membrane, the cytosol coagulation and the depletion of the 

microbial cell proton motive force as main cellular targets of EOs. Due their hydrophobic 

properties, EOs and their components are reported to interfere with cell membrane integrity and 

functionality.  

Patrignani et al., (2008) showed that the presence of sub-lethal concentrations of hexenal and (E)-

2-hexenal in the growth media and in combination with high pressure homogenization treatments 
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were able to cause modifications of the volatile profiles and membrane fatty acid composition of 

various food-borne pathogens including some strains of L. monocytogenes and E.coli. Also Siroli et 

al. (2015a) demonstrated that the growth in the presence of citral, carvacrol, (E)-2-hexenal, 

thymol, thyme and oregano EOs induced significant modification of membrane fatty acid and 

volatile molecule profiles of Listeria monocytogenes and E.coli. 

When microbial cells are exposed to  sub-lethal stresses, their cell membrane are necessarily 

subjected to changes in fatty acid composition to face with the new environment (Wouters et al., 

2001). The modification of membrane fatty acid composition is fundamental for the cells in 

maintaining of the proper membrane fluidity when exposed to external stresses (Di Pasqua et al., 

2006;Tabanelli et al., 2014). The major adaptive response of the cells to keep the fluidity of their 

membranes at a  value compatible with their functionality, is known as homeo-viscous adaptation. 

This process allows to prevent the loss of the mechano-chemical properties of the lipid bilayer 

(Russell and Fukunaga, 1990). Homeo-viscous adaptation include alterations of saturation degree, 

carbon chain length, branching position, cis/ trans isomerization,  conversion of unsaturated fatty 

acids (UFAs) into cyclopropanes and in the protein membrane continent (Guerzoni et al., 

2001;Roller, 2003). However, the adaptation mechanisms depend on stress applied, species, 

strains, cell physiological state,  and conditions during the stress exposure (Cronan Jr and 

Gelmann, 1975;Fulco, 1983;Russell and Fukunaga, 1990). Many factors can influence the fatty acid 

content of the cell membranes and they include temperature and pH shifts, ethanol 

concentration, external osmolarity, the presence of substances able to affect the microbial 

growth, and transition to the stationary phase (Denich et al., 2003). Generally the reduction of the 

growth temperature increase the fatty acid unsaturation degree in different microorganisms  

(Suutari et al., 1990;Suutari and Laakso, 1994). In fact,  incorporation of unsaturated fatty acids in 

the cell membrane increase the cell membrane fluidity (Ingram, 1976). However, this adaptation 

has been regarded as response mechanisms common to many microorganisms exposed to several  

environmental stresses  (Keweloh and Heipieper, 1996).  In fact, the introduction of a double bond 

is reported to reduce the damage of oxygen reactive species generated by the unbalance between 

anabolic and catabolic pathways under stress conditions, since the desaturase of many 

microorganisms are oxygen dependent (Dodd et al., 1997;Chatterjee et al., 2000;Guerzoni et al., 

2001). 
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In fact, also natural antimicrobials such as citral, carvacrol, citral, carvacrol, (E)-2-hexenal, thymol, 

thyme and oregano EOs induced the increase of unsaturation level in many microbial species, 

including Listeria monocytogenes and Escherichia coli when grown in their presence at sublethal 

concentrations (Siroli et al., 2015a). 

Nowadays no information on the short time exposure to citral, carvacrol, (E)-2-hexenalof Listeria 

monocytogenes and Escherichia coli are available. These information are fundamental to 

understand the action mechanisms of such antimicrobial since it is well known that the gene over 

and down regulations by sublethal stress conditions  are significantly time dependent varying over 

time during the cell recovering and adaptation.  In fact, the understanding of short time response 

of pathogens can be fundamental to set up preservation strategies alternative to traditional ones 

not depleting the safety features of foods. 

 In this framework,  the main aim of this work was the study of the changes in cell membrane fatty 

acid composition of Listeria monocytogenes Scott A and Escherichia coli k12 MG 1655 after one 

hour exposure to sub-lethal concentrations of citral, carvacrol, (E)-2-hexenal and thyme essential 

oil.  This microorganisms were chosen as target ones due to their relevance as  food-borne 

pathogens (European Food Safety et al., 2015). In fact,  the exploitation of natural antimicrobials in 

foods has to be supported by a full comprehension of the short term adaptation of such 

pathogenic species  and the cell membrane is their primary target.  

 

Material and methods 

 

Essential oils 

 

Essential oils and their bioactive compound citral, carvacrol, and (E)-2-hexenal were purchased 

from Sigma-Aldrich (Milano, Italy), while thyme essential oil (EO) was obtained from Flora s.r.l. 

(Pisa, Italy) Before the experiments, essential oils were proper diluted using absolute ethanol 

(Sigma-Aldrich, Milano, Italy) to prepare 100X essential oils stock solutions. 
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Bacterial strain 

Listeria monocytogenes Scott A and Escherichia coli k12 MG 1655, belonged to the Department of 

Agricultural and Food Sciences of Bologna University, were stored as cryo-culture at -80 °C for 

long-term preservation. To acclimatize cultures to the experimental conditions, the strain was 

given to 5 ml of Brain Heart Infusion broth (BHI) (Thermo-fisher, Milano, Italy) and incubated for 

24 h without shaking at 37 °C. After the growth, cells were sub-cultured at 37°C for 24h in BHI 

broth. 

 

Exposure to natural antimicrobials 

 

The inoculation of Listeria monocytogenes Scott A and Escherichia coli K12 MG 1655 were 

performed in 500 mL flasks, containing 250 mL of BHI broth (Oxoid, Milano, Italy) with 2.5 mL (1% 

of the final volume) to reach a 4 log CFU/mL concentration and incubated without stirring at 37°C. 

Exposure to natural antimicrobials were performed for L. monocytogenes Scott A in the middle of 

the exponential growth phase (OD=0.4, λ= 600 nm) while for E.coli K12 MG1655 the exposure was 

performed in the stationary growth phase (OD=2, λ= 600 nm). The EOs or their components used 

were conveyed through ethanol used at 1% in the final solution (v/v) and the concentrations used 

corresponded to 1/2 of the minimal inhibition concentration (MIC) values as described by (Siroli et 

al., 2014;Siroli et al., 2015a). 250 µL of natural antimicrobial hydro-alcoholic stock solutions were 

added to 250 mL of liquid cultures in order to obtain the concentrations reported in Table 1 and 

Table 2. Cultures were incubated for 1 h at 37°C without stirring. 

 

Table 1: Essential oils, their components, and relative concentrations, used for the treatments of L. monocytogenes Scott A. 

Natural antimicrobial Concentration tested (mg/L) 

Citral 125 mg/L 

Carvacrol 50 mg/L 

(E)-2-hexenal              400 mg/L 

Thyme essential oil 100 mg/L 

 

Table 2: Essential oils, their components, and relative concentrations, used for the treatments of Escherichia coli k12 MG1655. 

Natural antimicrobial Concentration tested (mg/L) 

Citral 500 mg/L 

Carvacrol 60 mg/L 
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(E)-2-hexenal              200 mg/L 

Thyme essential oil 125 mg/L 

After the exposure, the total viable cell count for L. monocytogenes Scott A and E. coli K12 

MG1655, was immediately performed (see chapter below). Afterwards, bacterial cells were 

harvested by centrifugation at 8000 x for 10 min, washed using 250 mL of physiological saline 

solution (0.9% NaCl) again centrifuged g at 4° C for 10 min. 

Total Viable Cell Count 

The viable cell count of both bacteria after exposure to essential oils or their components was 

determined by plate count methods in duplicate. Samples were serially diluted in glass tubes using 

as dilution solution, physiological saline solution (9 % NaCl). 100 µl of each dilution was spread on 

BHI agar (Thermo-fisher, Milano, Italy) and the growth (colony forming units) was evaluated after 

24 h at 37°C. 

Lipids extraction and fatty acids analysis 

Lipid extraction and membrane fatty acid analyses were performed according to (Suutari et al., 

1990) while gas-chromatography analyses were performed according to (Patrignani et al., 

2008;Siroli et al., 2015a). FAs were identified by comparing their retention times and mass 

fragmentation profiles with those of the standards mix, BAME (Sigma–Aldrich, Milano, Italy). The 

data were expressed as a relative percentage of each FA compared to the total FA area. For each 

strain and each condition, three repetitions of three independent experiments were considered. 

 

Data analysis 

Principal component analysis (PCA) was performed using Statistica software (version 8.0; StatSoft., 

Tulsa, OK) to obtain a visual overview of FA composition of cell membranes in relation to the 

antimicrobials used. 
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Results 

 

Cell fatty acid changes induced by sublethal concentrations of citral, carvacrol, (E)-2-hexenal and 

thyme EO 

The one hour exposure to the tested molecules did not significantly affect the growth of L. 

monocytogenes Scott A and E. coli K12. In fact, no significant cell load reductions were observed 

after 1 hour of incubation at 37°C with ethanol, citral, carvacrol, 2-(E)-hexenal and thyme EO (data 

not shown). By contrast, these molecules affected both membrane associated and released fatty 

acids (FA) of the strains tested. The main fatty acids (FAs) detected in Listeria monocytogenes 

control cells and those exposed to sublethal concentrations of citral, carvacrol, (E)-2-hexenal and 

thyme EO were C10:0, C12:0, C13 ante, C13:0, C14:0 iso, C14:1 cis11, C14:0, C15 iso, C15 ante, 

C15:0, C16 iso, C16:1 trans 9, C16:1 cis 9, C17 iso, C17 ante, C17:0, C18 iso, C18:2 (cis,cis) 9-12, 

C18:1 trans 9, C18:0, C19:0 and C20:0. However, their relative abundances varied according to 

exposure conditions (i.e. the presence/absence of ethanol or natural antimicrobials). In fact, each 

exposure conditions determined significant quali-quantitative modifications in the membrane 

fatty acid profiles of L. monocytogenes. However, the fatty acids subjected to the major and 

significant changes in relation to the antimicrobial used are reported in Table 3. In general the 

exposure to the different sublethal concentrations of citral, carvacrol, (E)-2-hexenal and thyme EO 

induced, compared to the untreated controls, significant reductions of the of the unsaturation 

levels (UL) and chain length (CL) values. These reductions were mainly due to  significant increases 

of the relative percentages the C12:0, C14:0, C17:0 iso and C19:0 saturated FAs as well as, to a 

reduction of the C14:1 cis, C16:1 trans 9, C18:1 cis 9, C18:1 trans 9 unsaturated fatty acids (UFAs) 

levels. Also the cell exposed to ethanol without any other natural antimicrobials showed the same 

behavior, even if with less marked modifications compared to the others stress conditions. The 

highest reductions of UL and CL values were observed in the cell exposed to sublethal level  (½ MIC 

value) of thyme EO (Table 3). Moreover, the exposure to the natural antimicrobial considered 

induced also the reduction of the relative percentages of C15:0 ante of C15:0. The highest 

reductions of such FAs were observed after the exposure to 2-(E)-hexenal (Table 3).  

The data of the Listeria monocytogenes Scott A free fatty acids (FFAs) showed that, untreated 

samples, were mainly characterized by the branched FAs (BFAs) C15 iso and C15 ante, the 

saturated FAs C16:0, C18:0 and the unsaturated C18:1 cis 9, C18:1 trans 9 and C18:2 cis,cis 9-12 
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UFAs. The one hour exposure to ethanol significantly decreased the UL also of the released 

membrane FA, due the reduction the UFAs, such as C18:2 cis,cis 9-12, C18:1 cis 9, C18:1 trans 9, 

relative abundances, as well as the increase of  some saturated and branched FAs. In particular, a 

marked increase of C14:0, C16:0, C18:0, C15ante and C17ante relative abundances was observed.  

A similar pattern was observed after the exposure to carvacrol and thyme EO sublethal 

concentrations (50 – 100 mg/L). The exposure to carvacrol and thyme EOs caused the reduction of 

UFAs C18:2 cis,cis 9-12, while C16:0, C17ante and C18:0 relative percentages showed significant 

raises. Although the exposure to citral caused a significant reduction of C18:1 cis 9, C18:1 trans 9 

UFA levels, the reduction of the UL was lower compared to the other treatments due an increase 

of the relative percentage of C18:2 cis,cis 9-12. L. monocytogenes one hour exposure to (E)-2-

hexenal induced a reduction of both UL and CL values mainly due to the significant increase of the 

C12:0 level (Table 4).   
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Table 3: Total membrane fatty acid composition of L. monocytogenes Scott A in relation to the stress condition applied. 

Total fatty acids (%)                               

ULa CLb 

 

C12:0 
C14:1 

cis11  
C14:0 

C15 

ante 
C15:0 

C16:1 

trans 9 
C16:0 

C17 

iso 

C17 

ante 
C17:0 

C18:2  

(cis,cis) 

9-12 

C18:1  

cis 9 

C18:1  

trans9 
C18:0 C19:0 

Untreated  

control 
8.50 1.13 0.08 12.85 10.73 2.92 9.38 7.80 5.04 10.55 0.10 3.63 21.54 1.47 4.28 0.29 1629.72 

EtOH  

1% 
65.22 1.45 0.39 5.35 0.85 1.90 1.89 6.66 0.73 2.41 0.13 3.30 6.56 1.10 2.06 0.13 1367.38 

Citral  

125 mg/L 
62.64 0.12 0.80 1.68 2.23 0.10 1.38 16.39 0.19 1.65 0.28 1.27 2.90 0.35 8.03 0.05 1395.61 

Carvacrol  

50 mg/L 
47.22 0.13 0.18 1.06 0.00 0.53 1.18 20.27 0.39 1.89 0.13 1.76 3.87 0.86 20.50 0.07 1506.78 

(E)-2-Hexenal  

400 mg/L 
48.23 0.07 0.26 0.78 0.28 0.22 0.25 19.95 0.25 2.19 0.23 3.31 4.09 0.59 19.31 0.08 1502.12 

Thyme EO  

100 mg/L 
71.46 0.13 0.22 4.53 3.37 0.45 0.80 9.80 0.42 1.36 0.40 0.52 1.03 0.83 4.67 0.03 1336.73 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are means of three repetitions of three independent experiments. The coefficients 

of variability, expressed as the percentages ratios between the standard deviations and the mean values, ranged between 2% and 5%. 

a Unsaturation level calculated as [percentage monoenes + 2(percentage dienes) + 3(percentage trienes)]/100.0 

 b Mean chain length calculated as (FAP * C) (where FAP is the percentage of fatty acid and C the number of carbon atom 
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Table 4:  Free membrane fatty acid composition of L. monocytogenes Scott A in relation to the stress condition applied. 

Free Fatty Acids (%)                                 

U.La C.La 

 

C12:0 C14:0 
C15 

iso 

C15 

ante 
C15:0 

C16 

iso 

C16:1  

trans 9 

C16:1  

cis 9 
C16:0 

C17 

iso 

C17 

ante 
C17:0 

C18:2 

(cis,cis) 

9-12 

C18:1  

cis 9 

C18:1 

trans 9 
C18:0 

untreated 

control 
0.67 1.06 2.50 2.56 0.27 0.66 0.02 0.87 17.95 0.61 2.67 0.47 9.08 41.08 3.68 15.84 0.47 1732.95 

EtOH  

1% 
0.87 1.65 2.66 3.71 0.32 1.01 0.24 0.00 36.46 0.55 3.38 0.00 4.73 10.71 0.80 32.91 0.13 1688.76 

Citral  

125 mg/L 
1.38 1.47 1.64 2.57 0.48 0.00 0.14 0.37 32.63 0.44 2.03 0.27 14.36 14.27 1.19 26.75 0.17 1702.71 

Carvacrol  

50 mg/L 
1.93 1.46 2.18 2.88 0.51 0.00 0.30 0.00 37.27 0.74 3.68 0.41 3.24 7.39 0.00 38.00 0.08 1685.91 

(E)-2-hexenal  

400 mg/L 
23.04 1.41 1.00 1.10 0.35 0.36 0.13 0.34 28.82 0.34 1.74 0.33 4.81 7.33 0.81 28.09 0.09 1587.06 

Thyme EO  

100 mg/L 
0.93 1.70 2.05 2.19 0.92 1.60 0.16 0.41 33.94 2.73 6.17 0.45 6.29 10.63 1.05 30.64 0.12 1723.99 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are means of three repetitions of three independent experiments. The coefficients 

of variability, expressed as the percentages ratios between the standard deviations and the mean values, ranged between 2% and 5%. 

a Unsaturation level calculated as [percentage monoenes + 2(percentage dienes) + 3(percentage trienes)]/100.0 

 b Mean chain length calculated as (FAP * C) (where FAP is the percentage of fatty acid and C the number of carbon atom 
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The main fatty acids detected in Escherichia coli k12 MG1655 in the untreated control cells and 

those exposed to sublethal concentrations of citral, carvacrol, (E)-2-hexenal and thyme EO were 

C12:0, C12 cyc, C14:0, C15 iso, C15 ante, C15:0, C16 iso, C16:1 trans 9, C16:1 cis 9, C16:0, C17 iso, 

C17 ante, C17 cyc, C17:0, C18:2 (cis,cis) 9-12, C18:1 9cis, C18:1 9trans, C18:1 cis11, C18:0 and C19 

cyc. However, their levels varied according to exposure conditions (the presence/absence of 

ethanol or natural antimicrobials).The fatty acids subjected to significant changes in relation to the 

antimicrobial used are reported in Table 5. The main effect of the exposure to sublethal 

concentrations of citral, carvacrol, (E)-2-hexenal and thyme EO on the total cell membrane fatty 

acid composition of E. coli consisted into a reduction of the unsaturation level. This reduction was 

due to the decrease of specific unsaturated FAs in relation to the antimicrobial considered. In fact, 

the one hour exposure to 500 mg/L of citral caused the highest reduction of the UL value 

compared to the untreated control cells, and the UL reductions was due to a marked diminutions 

of the relative amount of the C18:1 9cis and C18:1 cis11 UFAs. The decrease of these UFAs was 

accompanied by the increase of levels of C16:0, C17 iso and C17 ante, C17 cyc and C19 cyc 

saturated, branched and cyclopropanic fatty acids. 

The UL reduction in cells exposed to carvacrol, (E)-2-hexenal and thyme EO was mainly due to 

reductions of C18:1 cis11 compared to the control cells. The exposure to carvacrol induced also a 

slight increase of unsaturated FAs such as C18:2 (cis,cis) 9-12 and C18:1 trans 9. The exposure to 

(E)-2-hexenal and thyme EO induced the increase of C18:1 cis and trans 9 isomers. However, these 

increases of UFAs were unable to counteract the dramatic decrease with respect to the control 

cells of C18:1 cis 11.  

The exposure to the natural antimicrobial considered significantly modified the mean chain length 

value (CL). The citral and carvacrol exposure induced, a slight reduction of the mean chain length, 

mainly due the increase of the C12:0 and C14:0 FA percentages. 

Carvacrol exposure provoked the highest relative augmentation of the short chain fatty acids, i.e. 

C12:0 and C14:0 (2.81% and 9.61% respectively). The exposure to (E)-2-hexenal and thyme EO 

induced a little increase of the CL value. As showed in Table 5, after the one hour exposure, the 

relative percentage of the C18:0 FA was dramatically increased in such conditions compared to the 

untreated control and to the other treatments. In addition, in all the condition tested, a significant 

increase of the cyclopropanic FA C17 cyc and C19 cyc cyclopropanic were observed (Table 5). 
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The free fatty acid released by E. coli K12 MG1655, after the exposure to natural antimicrobials is 

reported in Table 6. The main membrane FFAs detected in the control cells were C14:0, C16:0, 

C18:0, C17cyc, C19cyc, C18:2 cis,cis 9-12, C18:1 cis 9 and C18:1 trans 9. The one hour exposure to 

the natural antimicrobials tested induced a reduction of the unsaturation level and mean chain 

length values. The severity of the modification observed depended on the chemical characteristics 

of the natural antimicrobial applied. In fact, the highest effect on the Escherichia coli unsaturation 

level was observed after the one hour exposure to 500 mg/L of citral (Table 6). The exposure to 

such natural antimicrobial caused a consistent reduction of the free UFAs C18:2 cis,cis 9-12 and 

C18:1 cis 9, levels as well as, a significant increase of the C18:1 trans 9. Moreover, citral caused a 

the highest reduction of the mean chain length value, due the raise of the relative percentages of 

the C:12:0, C14:0, C16:0, C17 cyc , C19 cyc FAs.  

A similar trend was observed after the exposure to carvacrol, (E)-2-hexenal and thyme EO 

sublethal concentrations.  In fact, these natural antimicrobials increased the level of C:14, C:16, 

C17 cyc, C19 cyc and C18:1 trans 9 fatty acids as well as, a reduction of the C:18 long chain fatty 

acid. As described for citral, also a reduction of the UL values was recorded after the exposure to 

carvacrol, (E)-2-hexenal and thyme EO. The exposure to these natural antimicrobials reduced the 

C18:2 cis,cis 9-12, C18:1 cis 9 percentages, while the C18:1 trans 9 concentration raised (Table 6) . 
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Table 5: Total membrane fatty acid composition of Escherichia coli k12 MG1655 in relation to the stress condition applied. 

Total fatty acids (%)                                         

ULa CLb 

 

C12:0 C14:0 
C12 

cyc 

C15 

iso 

C15 

ante 
C15:0 

C16 

iso 

C16:1  

trans 9 

C16:1  

cis9  
C16:0 

C17 

iso 

C17 

ante 

C17 

cyc 
C17:0 

C18:2  

(cis,cis) 

9-12 

C18:1  

cis 9 

C18:1  

trans 9 

C18:1  

cis 11 
C18:0 

C19 

cyc 

untreated  

control 
0.33 4.02 2.59 0.15 0.21 0.47 0.08 0.30 0.00 37.39 2.11 2.32 3.60 2.85 1.27 4.63 0.30 37.38 0.00 1.43 0.45 1704.65 

EtOH  

1% 
1.80 4.36 3.80 0.00 0.00 0.00 0.00 0.00 0.00 49.34 2.34 2.32 0.00 2.89 0.00 3.48 0.00 0.00 29.66 0.00 0.03 1642.64 

Citral  

500 mg/L 
0.50 8.80 0.29 0.10 0.12 0.12 0.00 0.29 0.76 55.52 9.36 8.75 5.87 2.34 1.45 0.99 0.81 0.35 3.59 5.64 0.06 1726.82 

Carvacrol  

60 mg/L 
2.81 9.61 0.39 0.26 0.43 0.96 0.19 0.14 0.82 49.09 2.22 2.28 4.23 2.73 3.78 4.20 0.63 0.44 14.78 1.95 0.14 1662.44 

(E)-2-hexenal  

200 mg/L 
0.20 2.71 1.60 0.59 0.64 0.36 0.18 0.20 0.23 37.15 1.57 2.47 5.69 2.66 1.79 5.74 0.57 0.51 35.15 2.18 0.11 1727.17 

Thyme EO  

125 mg/L 
0.12 2.80 0.60 0.15 0.15 0.28 0.00 0.25 0.24 35.83 8.51 2.58 4.46 2.77 1.54 5.45 0.54 0.16 33.56 1.83 0.10 1726.38 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are means of three repetitions of three independent experiments. The coefficients 

of variability, expressed as the percentages ratios between the standard deviations and the mean values, ranged between 2% and 5%. 

a Unsaturation level calculated as [percentage monoenes + 2(percentage dienes) + 3(percentage trienes)]/100.0 

 b Mean chain length calculated as (FAP * C) (where FAP is the percentage of fatty acid and C the number of carbon atom 
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Table 6: Free membrane free fatty acid composition of Escherichia coli k12 MG1655 in relation to the stress condition applied. 

Free Fatty Acids (%)                               

ULa CLb 

  C12:0 C14:0 
C12 

cyc 

C15 

iso 

C15 

ante 

C16:1  

trans 9  

C16:1  

cis 9  
C16:0 

C17 

cyc 

C18:2  

(cis,cis) 

9-12 

C18:1  

cis 9 

C18:1  

trans 9 
C18:0 

C19 

cyc 
C20:0 

untreated  

control 
0.55 4.49 0.40 0.15 0.13 0.04 0.66 31.96 12.55 4.56 9.57 1.61 28.62 4.15 0.58 0.21 1702.91 

EtOH  

1% 
0.41 4.01 0.26 0.11 0.14 0.05 0.53 25.19 10.76 3.08 8.28 1.33 42.15 3.71 0.00 0.16 1720.68 

Citral  

500 mg/L 
2.74 7.85 0.11 0.08 0.06 0.10 1.17 41.58 16.64 2.04 3.56 4.46 12.63 6.64 0.34 0.13 1655.99 

Carvacrol  

60 mg/L 
0.56 6.31 0.26 0.11 0.10 0.10 0.89 29.91 18.17 3.42 7.88 2.61 22.08 7.08 0.51 0.18 1697.40 

(E)-2-hexenal  

200 mg/L 
0.76 6.72 0.18 0.09 0.09 0.10 0.84 32.61 19.61 3.03 6.76 3.46 17.84 7.59 0.35 0.17 1688.63 

Thyme EO  

125 mg/L 
3.02 8.64 0.14 0.08 0.07 0.12 1.05 34.28 17.67 2.39 5.46 3.49 15.43 7.30 0.87 0.15 1666.50 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are means of three repetitions of three independent experiments. The coefficients 

of variability, expressed as the percentages ratios between the standard deviations and the mean values, ranged between 2% and 5%. 

a Unsaturation level calculated as [percentage monoenes + 2(percentage dienes) + 3(percentage trienes)]/100.0 

 b Mean chain length calculated as (FAP * C) (where FAP is the percentage of fatty acid and C the number of carbon atom 
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Principal component analysis of the fatty acid data after one hour exposure of Listeria 

monocytogenes Scott A and Escherichia coli K12 MG1655 to natural antimicrobials. 

To better show the relationships between membrane fatty acid composition and chemical stress 

applied, a principal component analysis (PCA) of the total membrane fatty acid percentages 

detected was performed. 

Projection of the cases on the factor-plane (  1 x   2)
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Figure 1: Principal component analysis loading plot of the total membrane fatty acids composition of Listeria monocytogenes Scott 

A in relation to the stress condition applied. 

 

In Figure 1 the Principal Component Analysis (PCA) loading plots of Listeria monocytogenes Scott A  

cell membrane fatty acid profiles in relation to the natural antimicrobial tested are reported. All 

the samples of L. monocytogenes were mapped in the space spanned by the first two principal 

components PC1 versus PC2. PC1 accounted for 66.88% of the total variability, and PC2 for 

15.84%, respectively. As highlighted by the PCA the responses of L. monocytogenes Scott A to the 

different natural antimicrobials tested were related to the chemical compound tested and they 

Cluster 1 

Cluster 2 
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were significantly different compared to the untreated controls and samples only exposed to 1% 

ethanol. The analysis allowed to group the other cells of L. monocytogenes into two different and 

defined clusters: cluster 1 represented by samples treated with sublethal concentrations of  citral 

and thyme EO and cluster 2, including samples exposed to sublethal concentrations of carvacrol 

and (E)-2-hexenal (Figure 1). These two clusters were separated along the PCA2, accounting for 

the 15.84% of the total, variability. However, cluster 1 was very near along the PC1 to cells 

exposed exclusively to ethanol. By contrast, it was well separated by the untreated controls both 

along PC1 and PC2. The main positive effects on factor 1 were determined by C12:0, C14:0, C17 

iso, C18:2 (cis,cis) 9-12, and C19:0 while the negative effects observed were related to the 

unsaturated and branched fatty acids, such asC14:1 cis11, C15 ante, C16 trans 9, C16:0, C17 iso, 

C17 ante, C18:1 cis 9 and C18:1 trans 9. In addition, factor 2 was highly positively related to the 

short chain and branched FAs C12:0, C14:0 cis11, C14:0, C15 ante and to the UFAs C16:1 trans 9, 

C18:2 (cis,cis) 9-12 and negatively associated to the FAs C17 iso, C17 ante and C19:0 as well as, to 

the C18:1 cis and trans UFAs (Figure 2).  
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Figure 2: Principal component analysis factor coordinates for the two-first factors of the total membrane fatty acids composition of 

Listeria monocytogenes Scott A in relation to the stress condition applied. 

Also for Escherichia coli K12 MG1655 the Principal Component Analysis (PCA) showed that samples 

were grouped in relation to the treatment applied (Figure 3). As reported in in Figure 3 the PCA 
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loading plots of the total membrane fatty acids composition of E. coli samples exposed for one 

hour to natural antimicrobials, were mapped in the space described by the first two principal 

components PC1 versus PC2. PC1 accounted for 35.22% of the total variability, and PC2 for 

28.58%, respectively. Three different clusters were evident: cluster 1 formed by samples exposed 

to sublethal concentrations of carvacrol and (E)-2-hexenal; cluster 2 formed by samples exposed 

to sublethal concentrations of thyme EO and citral; cluster 3 grouped the control samples with or 

without the supplementation of ethanol (Figure 3). The three clusters were well separated both 

along the PC1 and PC2. The cluster 3, formed by the control samples, was clearly separated along 

the PC2 from the cluster 1 as well as separated along the PC1 from the cluster 2 (Figure 3). 

However, within the cluster 2, the samples treated exposed to citral were clearly separated along 

PC1 (explaining 35.22% of the total variability) from those exposed to thyme EO (Figure 3). In this 

case the projection of the variables on the factor plane for the PC1 and PC2 showed that C16:1 cis 

9, C16: trans 9 and C18:1 trans 9 unsaturated fatty acids and to the C17 iso, C17 ante, C17 cyc and 

C19 cyc (branched and cyclopropanic FAs) accounted for the main positive effects on the factor 1. 

By the contrast the main negative effect on the PC1 were related to the C12 cyc cyclopropanic FAs, 

C17:0 and to C18:0 saturated FAs, and to C18:1 cis 9. Moreover, factor 2 was positively related to 

the C15 iso, C15 ante and C16 iso branched FAs and to the C16 and C18 UFAs while, the negative 

effects were related to  C12 cyc, C19 cyc cyclopropanic fatty acids and to the C17 iso and anteiso 

branched fatty acids (data not showed). 



200 
 

Projection of the cases on the factor-plane (  1 x   2)
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Figure 3: : Principal component analysis loading plot of Escherichia coli K12 MG1655 cell membrane fatty acid profiles in relation to 

the stress condition applied. 

 

Discussion  

 

Microbial cells have adopted proficient defense systems in order to survive to a huge variety of 

physicochemical adverse conditions and to adapt to environmental stresses. One of these 

strategies is represented by the home-viscous adaptation, a mechanism that enable microbial cell 

to maintain the integrity, viscosity and functionality of the membrane. In the presence of stresses, 

microbial cells can respond by modulating the ratio of saturated to unsaturated FA, cis to trans 

unsaturation, branched to unbranched structure and type of branching and acyl chain length. The 

modulation mechanisms are different depending on the species, the strains and the physiological 

state of the cells (Lanciotti et al., 2003;Patrignani et al., 2008;Siroli et al., 2015a). Also a wide 

literature on the membrane fatty acid modulation of L. monocytogenes and E. coli in response to 

several physic-chemical stresses is available (Brown et al., 1997;Denich et al., 2003;Ku et al., 

Cluster 1 

Cluster 2 

Cluster 3 
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2007;Gianotti et al., 2008;Gianotti et al., 2009). However,  the data on the membrane adaptation 

mechanisms of these two pathogens to natural antimicrobial are scarce and they are generally 

recorded during the growth in their presence (Di Pasqua et al., 2006;Patrignani et al., 2008;Siroli et 

al., 2015a). However, it is well known that the adaptation mechanisms are the results of a 

sequence of microbial short term responses, with time dependent gene over and down 

regulations (Serrazanetti et al., 2015). However, the comprehension of the short term response of 

pathogenic species is fundamental to set up food preservation strategies based on the use of 

natural antimicrobials alternative to traditional ones, particularly when they are used at sub-lethal 

concentrations. The analyses of membrane associated and released FAs showed different short 

term adaptation mechanisms for  Listeria monocytogenes Scott A and Escherichia coli K12 

MG1655, in relation to the natural antimicrobial used. 

In our experimental conditions, the one hour exposure to sublethal concentrations (equal to ½ of 

the MIC value) of citral, carvacrol, (E)-2-hexenal and thyme EO reduced significantly the 

unsaturation level (UL) in both in Listeria monocytogenes Scott A and Escherichia coli K12 MG1655. 

The reduction of the UL was mainly related in E.coli to a severe reduction of the C18:1 cis11 UFA, 

while in L. monocytogenes the UL decrease  was related to the C14:1 cis11, C16:1 trans9, C18:1 

cis9, C18:1 trans9 UFAs levels. These data are apparently in disagreement with literature ones. In 

fact, a wide literature has shown a crucial role of unsaturated FAs in response to several different 

stresses, including low or high growth temperatures, high pressure homogenization as well as 

oxidative , acid ,  ethanol and salt addition stresses(Patrignani et al., 2008;Montanari et al., 

2010;Wu et al., 2012;Siroli et al., 2014;Tabanelli et al., 2014). An increase of UFA was observed 

also in many microbial species, including L. monocytogenes and E. coli when grown in the presence 

of EOs or their components (Di Pasqua et al., 2006;Patrignani et al., 2008;Siroli et al., 2015a). In 

fact, in a previous study of Di Pasqua et al., (2006) detected an increase of some UFAs and of the 

membrane fluidity in E. coli and Brochothrix thermosphacta grown in the presence of sub-lethal 

concentrations of thymol, limonene, carvacrol, eugenol and cinnamaldehyde.  Also Siroli et al., 

(2015a) highlighted an increase of the unsaturation level of L. monocytogenes and E. coli during 

the growth in the presence of sublethal concentrations of citral, carvacrol, thymol, oregano and 

thyme EOs. In addition, Patrignani et al., (2008) showed the increase of C18:1 trans 9 both in E. 

coli and S. enteritidis cells as a response to ethanol, hexanal and (E)-2-hexenal when supplemented 

in the growth media. The crucial role of unsaturated FAs in the microbial stress adaptation is 

attributed to their role in the reduction of oxidative stress, in its turn resulting from the unbalance 
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unbalance between anabolic and catabolic pathways under stress conditions, since the desaturase 

of many microorganisms are oxygen dependent and, consequently, reduce the O2 vapour pressure 

and its reactivity within cell membrane (Dodd et al., 1997;Chatterjee et al., 2000;Guerzoni et al., 

2001). The apparent disagreement of our data with the literature data can be explained on the 

basis of the general FA biosynthetic pathways of L. monocytogenes and E. coli (Figure 4). The  

synthesis of fatty acids is one of the most ubiquitous pathways in organisms and, independently 

on the specificities related to the species, in both species the biosynthesis of UFA relays on a 

previous production of saturated FAs. 

 

Figure 41: Fatty acids biosynthesis pathways in Listeria monocytogenes Scott A and Escherichia coli K12 MG1655 (Kanehisa et al., 

2017). 

In fact, the highly conserved fabA, fabB, fabF, fabG, fabZ and fabI genes, are involved in the 

unsaturated fatty acid synthesis of both the microorganisms considered (Feng and Cronan, 2009). 
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The short term exposure to the natural antimicrobials induced in both microorganisms a 

significant increase of short chain saturated FA, that are precursors of longer saturated or 

unsaturated FAs. The removal of the stress conditions surely prevented the further and significant 

biosynthesis of UFAs. In fact, a slight increase of the relative percentage of the C18:2 (cis,cis) 9-12 

was observes in both microorganisms and in all the short time stress exposures adopted. In 

addition the exposure of E. coli to (E)-2-hexenal and thyme EO slight increased the relative 

abundances also of C18:1 cis 9 and C18:1 trans 9. On the other hand Serrazanetti et al. (2015) 

clearly showed a significant time dependence of the regulation of the gene involved in UFA 

biosynthesis in Saccharomyces bayanus L951 after a very short stress exposure (cells exposed to 

high pressure homogenization at 80 MPa and for few milliseconds). This hypothesis is confirmed 

also by the data relative to UL values. In fact, L. monocytogenes showed a reduction, compared to 

the untreated cells, of the chain length values, in all the stress conditions tested, due the 

dramatically increase of the C12:0 and C14:0 fatty acid levels (precursors of longer saturated and 

unsaturated FA). The reduction of CL, with respect to the untreated controls, was observed also E. 

coli in all conditions, except those in which the biosynthesis of UFA was extremely precocious, i.e. 

during the exposure to (E)-2-hexenal and thyme EO. More specifically, in  E. coli exposure to citral 

and carvacrol sublethal concentrations, caused a reduction a of the CL value due reduction of the 

long chains C18 unsaturated and acylic FAs as well as, the augment of short and medium chains 

acylic fatty acids, C14 and C16. Differently E. coli exposure to (E)-2-hexenal and thyme EO, 

increased the mean chain length values increased due higher concentrations of FAs having 18 

carbon atoms, both saturated that unsaturated ones.  

The other modifications observed in membrane fatty acid profiles in relation to antimicrobial used 

were specific for each strain considered and they are mainly congruent with the maintenance of 

membrane proper fluidity and in agreement with literature (Patrignani et al., 2008;Gianotti et al., 

2009;Montanari et al., 2010;Siroli et al., 2015a). In particular, in L. monocytogenes a marked 

increase of C19:0 and C17: iso percentages, associated to marked reductions of C15ante and C17 

ante were observed after the exposure to antimicrobials used. Otherwise, in comparison to iso 

branched FA, anteiso FAs confer greater fluidizing properties as their structure disturb packing 

order to a greater extent (Heipieper et al., 1996;Gianotti et al., 2009;Montanari et al., 2010).The 

increase observed of C17 iso, together with the reduction of UL, contributed to counteract the 

fluidizing effect of the reduction of CL, observed in the cells exposed to the natural antimicrobials 

used. In E. coli to counteract the fluidity changes induced by the CL and UL modifications, the 
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relative percentages of cyclopropanic fatty acids (CFAs) were modulated. In particular, in the 

experimental conditions tested induced in E. coli a significative augment of the C17 cyc and C19 

cyc cyclopropanic FAs. As previously described by Siroli et al., (2015a), a slight increase of the C17 

cyc and C19 cyc relative percentages were observed in Escherichia coli 555 after the grown in 

presence of thyme EO. It is well documented in the literature that the modulation of the synthesis 

of CFA is one of the main responses of Gram-negative bacteria to adverse environmental 

conditions (Yuk and Marshall, 2004). Fatty acid cyclisation, was shown to be the one of the main 

response mechanism of E. coli to stress conditions such as the growth in acids environments 

(Gianotti et al., 2009). The literature data concerning the role of cyclic acid in the membrane 

fluidity are quite contrasting. In fact, some Authors attributed to the presence of a cyclopropane 

ring within membrane FA an increase of stability of the structural and dynamic properties of 

biological membrane and a decrease of fluidity  (Grogan and Cronan, 1997). On the contrary, other 

authors reported that cyclopropane fatty acids confer fluidity upon the cell membrane and assist 

in tolerance towards disturbance factors (Denich et al., 2003). In particular, Denich et al. (2003) 

showed as cyclic FA, analogously to branched FA, increase the fluidity of cytoplasmic membrane as 

they retain the ability to slide past each other as they cannot form crystalline structure. Our 

experimental data seem to confirm the fluidizing effect of cyclic FA. In fact, they counteracted the 

reduction of membrane fluidity due to the increase of CL and the decrease of UL in the cells 

exposed to hexenal and thyme EO. Moreover, they counteracted also the reduction of membrane 

fluidity due to the decrease of UL and increase of trans isomers in cells exposed to citral and 

carvacrol. In fact, unsaturated FA in the cis conformation do not pack as efficiently, due to their 

bent steric structure. Trans UFA with their long linear structure behave more like saturated FA that 

lie in a linear manner, taking up less volume and creating a more ordered membranes  

(Diefenbach et al., 1992). Moreover the increase of trans isomers in these conditions  can 

contribute to the resistance to these specific chemical stresses (citral and carvacrol exposure), 

since cis/trans isomerization of double  bonds analogously to cyclopropanation are both able to 

confer membrane chemical stability and protection against toxic molecules (including H+) (Härtig 

et al., 2005). Moreover, they share the immediacy of response (Grogan and Cronan, 1997;Cronan, 

2002;Ku et al., 2007).  

The free fatty acids profiles after the exposure to natural antimicrobials of Escherichia coli K12 

MG1655 confirmed the effects observed on the membrane fatty acids profiles. In fact, allthe stress 

exposures induced in the released FA profiles of E. coli K12 an increase of relative percentages of 
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the cyclopropanic FAs (C17 cyc and C19 cyc), the short and medium chains FAs (C12:0, C14:0 and 

C16:0) and a reduction of the free C18 UFAs with consequent reduction of both the UL and CL 

values. As described for the total membrane fatty acids the concentrations of the free 

cyclopropanic FAs C17 cyc and C19 cyc raised in all condition tested. 

Similar response patterns were observed for L. monocytogenes Scott A cells after the exposure to 

natural antimicrobials tested. The free fatty acids profiles of L. monocytogenes highlighted a 

reduction of the unsaturation levels mainly due to a significative reduction of both cis/trans of 

C18:1. Also the linoleic acid (C18:2 cis,cis 9-12) was significantly reduced except after the exposure 

to citral. The UFA level reduction of L. monocytogenes cells was also in this case associated with a 

significant increase of the C12:0, C14:0 and C16:0. The increase of these free FAs, associated with 

the reduction both membrane and free UFAs, is in agreement with a wide literature (Guerzoni et 

al., 2001;Patrignani et al., 2008;Gianotti et al., 2009;Montanari et al., 2010;Tabanelli et al., 

2014;Siroli et al., 2015a). In fact, their increase is attributed to the oxylipin synthesis during stress. 

Exposure in many microorganisms. In fact, short and medium chain FAs, within their esters and 

some saturated and unsaturated aldehydes, lactones, alcohols and furanones, belong to the 

oxylipin family and are considered as UFA oxidation products (Vannini et al., 2007;Montanari et 

al., 2013;Siroli et al., 2015a). The UFA oxidation and the production of oxylipin are ubiquitous 

defense mechanisms against the radical species of the oxygen (ROS). However, as already 

underlined, all stress conditions result in an oxidative stress for the cell due to an imbalance that 

occurs when the survival mechanisms are unable to deal adequately with the Reactive Oxygen 

Species (ROS) in the cells (Dodd et al., 1997). Free radicals can react with UFAs and initiate a lipid 

peroxidation producing peroxy fatty acids and hydroxy aldehydes. These molecules decrease the 

membrane fluidity causing a significant disruption of the membrane bounded proteins (Cabiscol 

Català et al., 2000;Guerzoni et al., 2001). The enzymatic cleavage of peroxy fatty acids and their 

conversion into oxylipin counteract their negative effect of the cell membrane reducing also 

reactivity of ROS (Montanari et al., 2013). 
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Conclusions 

 

In conclusion the findings of this work contribute to the comprehension of the membrane FAs 

modulation mechanisms of Listeria monocytogenes Scott A and Escherichia coli K12 MG1655 in 

relation to their exposure to sublethal concentrations of citral, carvacrol (E)-2-hexenal and thyme 

EO. However, a deeper investigation to clarify if the changes in released or associated membrane 

FAs are the consequences of or the trigger for stress-related gene expression is necessary. These 

information are necessary in order to avoid any kind of microbial resistance phenomena even if 

the natural antimicrobials are generally used at sublethal concentrations and in combination  with 

other non-thermal preservative strategies. Consequently, the detailed knowledge of the action 

mechanisms of natural antimicrobials considered in relation to the others hurdles applied is 

mandatory for their implementation at industrial level as innovative preservation strategies. The 

implementation processes should be also related to the food matrices and production processes. 
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Effects of (E)-2-Hexenal combined with High pressure 

Homogenization on apple juice safety and shelf-life   

 

Introduction 

 

Fruit juices are perceived by consumers as health-promoting foods due to their low sodium and 

lipid content as well as their high vitamin C, polyphenol and flavonoid concentration that 

contribute to their antioxidant properties (Patrignani et al., 2009). Unfortunately, these products 

are susceptible to alteration and have a limited shelf-life. Their spoilage is mainly determined by 

yeasts, responsible for fermented taste and carbon dioxide production, lactic acid bacteria, 

producing buttermilk off-flavours (diacetyl), and moulds that can contribute to the spoilage with 

their superficial growth (Tournas et al., 2006). Although fruit juices, due to their low pH, are generally 

considered as safe, the literature data  have reported that unpasteurized ones, contaminated with food-

borne pathogenic microorganisms like Listeria monocytogenes and Escherichia coli O157: H7, can be a 

vehicle of illness (Brinez et al., 2006; Briñez et al., 2006; Diels and Michiels, 2006; Patrignani et al., 2013).  

In order to achieve the safety and the desired shelf life of fruit and vegetable juices, heat 

treatment is the most used method due to its efficacy on the microbial inactivation (Tribst et al., 

2008). However, causing a depletion of the vitamin continent and the production of off-flavors, it 

has negative effects on the nutritional and organoleptic food properties (McDonald et al., 2000, 

Vachon et al., 2002; Pathanibul et al., 2009; Calligaris et al., 2012).  

The increased demand for healthy fresh juices without synthetic antimicrobials has stimulated the 

researchers to find alternative strategies to heat treatment, able to ensure safety and adequate 

shelf-life without detrimental effects on the product nutritional, chemico-physical and 

organoleptic characteristics. 

In this contest, essential oils (EOs) and their bioactive compounds represent an interesting option 

to synthetic antimicrobials. Most of them are generally recognized as safe (GRAS) (Newberne et 

al., 2000) and their antimicrobial activity is well known and documented in model and real systems 

(Burt, 2004; Bakkali et al., 2008; Hyldgaard et al., 2012; Patel, 2015; Hassoun and Çoban, 2017). 

The role of EOs and their constituents to improve the stability of drinks, fruit beverages, juices and 

ready-to-eat foods were previously reported in literature (Belletti et al., 2004; Ndagijimana et al., 
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2004; Belletti et al., 2007; Belletti et al., 2008; Belletti et al., 2010; Patrignani et al., 2013; 

Patrignani et al., 2015; Siroli et al., 2015a; Siroli et al., 2015b). 

Among natural antimicrobials, hexanal and (E)-2-hexenal are promising alternatives to synthetic 

antimicrobials for the fruit beverage safety. These six carbon atom unsaturated aldehydes 

characterized by fresh vegetable and fruit aroma have proved their antimicrobial activity both in 

model (Caccioni et al., 1997; Gardini et al., 1997) and real food systems such as salads (Lanciotti et 

al., 2003) Corbo et al., 2000 and fruit beverages (Belletti et al., 2008).  

Although antimicrobials properties of essential oils and their bioactive compounds are well 

documented their application in food industries is limited due their high volatility and low sensory 

threshold that could cause alterations to the organoleptic properties of food matrixes. For these 

reasons several authors have suggested their application in combination with other  non-thermal 

strategies to promote the microbial safety of foods. 

The non-thermal alternative technologies proposed for preservation of fruit juices include pulsed 

electric fields (Evrendilek et al., 1999; Somolinos et al., 2010), high hydrostatic pressure (Houška et 

al., 2006; Somolinos et al., 2008) and high pressure homogenization (HPH) (Lacroix et al., 2005; 

Brinez et al., 2006; Briñez et al., 2006; Diels and Michiels, 2006; Kumar et al., 2009; Pathanibul et 

al., 2009; Patrignani et al., 2009; 2010; Patrignani and Lanciotti, 2016). 

High Pressure Homogenization represents one of the most promising alternative to thermal 

treatments for food preservation. Different authors showed fruit juices can be considered as an 

interesting field of application of HPH in order to reduce the microbial cell load without loss of 

quality and freshness attributes (Patrignani et al., 2009; 2010; Donsì et al., 2011). In fact, different 

authors studied the ability of HPH to increase the safety and shelf-life of orange, carrot and apple 

juices (Lanciotti et al., 1994; Guerzoni et al., 1999; Kheadr et al., 2002; Wuytack et al., 2002; 

Vannini et al., 2004; Diels and Michiels, 2006; Bevilacqua et al., 2009; Patrignani et al., 2009; 2010; 

Patrignani et al., 2013; Ferragut et al., 2015). According to the literature data, HPH treatments also 

caused the inactivation of E.coli O157:H7 ATCC 35150, E. coli O58:H21 ATCC 10536,  E. coli 

O157:H7 CCUG 44857, Lactobacillus plantarum ATCC 14917, Leuconostoc mesenteroides ATCC 

23386 in deliberately inoculated in orange juices as well as of wild strains of Saccharomyces 

cerevisiae and Penicillium ssp. (Brinez et al., 2006; Briñez et al., 2006; Tahiri et al., 2006). As 

showed by Donsì et al., (2011) high pressure homogenization processes cause changes on 

different physical characteristics of the juices such as the average particle size of suspended solids  

and viscosity of the products. Moreover, functional compounds naturally present in fruits such as 
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flavonoids, as well as the attributes of freshness and texture are more preserved by homogenizing 

high pressure treatment than thermal treatment (Lacroix et al., 2005; Betoret et al., 2009). The 

literature data have also underlined that the inactivation potential of HPH can be increased when 

this technology is used in combination with other mild hurdles. For example, the HPH treatment, 

used  in combination with a mild pre-warming treatment of 50  C for 10 min showed good 

potential to increase the shelf-life of orange juices and to reduce its opalescence (Lacroix et al., 

2005). However, as previously reported, the consumers expectation are more focused on natural 

treatments alternative to thermal ones and able to maintain high juice functionalities. About this, 

some Authors have pointed out the combined use of HPH and natural antimicrobials, such as 

essential oils or their bioactive compounds, to increase safety and shelf life of fruit and veg juices 

(Bevilacqua et al., 2012; Patrignani et al., 2013). 

In this perspective, this part of my research evaluated the effects hexanal (70 mg/L) and 2-(E)-

hexenal (35 mg/L) in combination with repeated HPH treatments at 100 MPa and 200 MPa on 

different fruit juice spoilage agents and food-borne pathogens inoculated on apple centrifuged 

juices. The considered microorganisms were Listeria monocytogenes, Staphylococcus aureus, 

Escherichia coli, Lactobacillus plantarum and Saccharomyces cerevisiae. The data obtained were 

compared with those obtained using mild thermal treatments (55 °C from 3.3 to 25 minutes), for 

juice stabilization,  in presence of hexanal and 2-(E)-hexenal, at the same concentrations used for 

HPH and using the same food matrix and microorganisms. Moreover, the microbial recovery ability 

in the apple juices, in relation to the applied treatments, was evaluated during the juice storage in 

thermal abuse conditions  at 10°C. Also, the effects of the adopted treatments on the apple juice 

organoleptic properties were investigated. In particular, pH and color changes and  volatile 

molecular and organic acid profiles were evaluated over storage time. 

 

Material and methods 

 

Natural antimicrobials  

For all the assessed conditions, the apple juices were prepared by the centrifugation of Golden 

delicious apples supplemented with 2 g/L of citric acid (antioxidant factor) and added of hexanal 

and (E)-2-hexenal at concentrations of 70 mg/L and 35mg/L, respectively. The obtained apple juice 
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was inoculated with the target microbial species with a final cell loads of about 4 log CFU/mL. 

Samples after the inoculation were immediately treated with HPH or heat treatments. 

 

High pressure homogenization  (HPH) treatments 

The high pressure homogenization (HPH) treatments were achieved, using a continuous high 

pressure homogenizer PANDA (Gea, Parma, Italy), previously sanitized according to manufacturer 

suggestions. The inoculated batches were subjected to HPH treatments, performed at 100 MPa for 

2 and 3 cycles  and at 200 MPa for 3 cycles. The machine was supplied with a homogenizing PS 

type valve with a flow rate of 10 l/ h; the valve assembly includes a ball-type impact head made of 

ceramics, a stainless steel large inner diameter impact ring and a tungsten-carbide passage head. 

The inlet temperature of the treated apple juices was 4 °C and it increased of about 1.5 °C/ 10 

MPa. After each pass at 100 MPa and 200 MPa, apple juices were cooled by using a thermal 

exchanger (Niro Soavi, Parma, Italy). The maximum temperature reached by the samples did not 

exceed 40 °C. As control samples,  inoculated centrifuged apple juice were used subjected or not 

to the  natural antimicrobials supplementation and HPH treatments. 

Mild thermal treatments  

Inoculated apple juice, supplemented or not with hexanal and (E)-2-hexenal, were also thermally 

treated in water bath at 55 °C from 3.3 to 25 minutes.  In order to obtain a constant temperature 

of inactivation, 4 ml of inoculated apple juices were introduced in 5 mL sterile glass vials and its 

temperature was monitored using a thermocouple.   

 

Total Viable Cell Count  

The viable cell loads of the microorganisms used in these experiments, immediately after the 

application of the proposed treatments and during the product storage,  were determined in 

duplicate  by plate count sampling. Samples were serially diluted in glass tubes using, as dilution 

solution, physiological saline buffer (9 g/L NaCl). One hundred microliter of each dilution were 

spread or included in different selective culture media such as De Man, Rogosa and Sharpe agar 

(MRS) supplemented with cycloheximide (0.2% p/v) (Oxoid, Milano, italy) for Lb. plantarum; Violet 
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Reb Bile Agar supplemented with MUG (VRBA) (Oxoid, Milano, italy) for E. coli; Listeria Selective 

Agar (LSO) (Oxoid, Milano, italy) for L. monocytogenes; Braid Parker Agrar added with Egg yolk 

tellurite (50mL/L) (Oxoid, Milano, italy) for St. aureus and Yeast extract, Peptone and Dextrose 

Agar (YPD) (Oxoid, Milano, italy) for S. cerevisiae. The plates were then incubated at 37°C for 24-48 

h for bacteria and at 30°C for 48 h for S. cerevisiae. Cell loads were monitored up to the product 

spoilage  threshold was reached. 

 

Physico-chemical analyses 

The sample pH was measured in triplicate immediately after treatments and over the product 

storage by using a pH-meter Basic 20 (Crison Instruments, Barcelona, Spain).  

 

GC/MS/SPME volatile molecule profiles 

For each experimental condition, 5 mL of centrifuged apple juices were sterilely taken and placed 

in a 10-mL vial sealed with a PTFE/silicon septum. For each condition, three repetitions of three 

independent experiments were considered and the samples were stored at  -40 C until analyses. 

For the analysis and the gas-chromatographic conditions, the method reported by Patrignani et al., 

(2013) was used. 

 

Organic acid analysis 

The qualitative and quantitative amount of organic acids in the samples were evaluated by HPLC 

chromatography. Organic acids were extracted both from HPH and mild thermally treated 

samples, supplemented or not with antimicrobial compounds. From each condition tested, the 

extraction were performed on 5 mL of samples by adding 0.1N H2SO4 .Samples were subsequently 

vortexed for 1 minute, incubated at room temperature for 9 minutes, centrifuged at 4000 rpm for 

10 minutes and filtered using 0.2 µm filter membranes. For the analysis and the HPLC-

chromatographic conditions, the method reported by Tabanelli et al. (2016) was used. 

 

Colour analysis 

Colour was measured using a colour spectrophotometer mod. Colorflex  (Hunterlab, USA). Colour 

was measured using the CIELab scale and Illuminant D65. The instrument was calibrated with a 
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white tile (L* 98.03, a* _0.23, b* 2.05) before the measurements. Results were expressed as L*  

(ranging from 0 to 100),a* and b*. 

 

Results and discussion 

 

In this work the effects of different  high pressure homogenization (HPH) treatments at 100 MPa 

and 200 MPa and mild heat treatments were evaluated on the death kinetics and microbial 

growth ability of different food-borne pathogen and spoilage agents, deliberately inoculated in 

centrifuged apple juices as real food system. In my experiments, apple juice was considered a food 

model system due its high instability which lead to rapid a sediment formation and color changes.  

In addition, the effects of the hyperbaric and heat treatments were also evaluated in presence of 

natural antimicrobials conveyed in ethanol. As described by different authors (Corbo et al., 2009; 

Patrignani et al., 2013), the combined application of HPH and natural antimicrobials represent a 

reliable alternative to traditional thermal treatments for promote the foods safety and shelf-life. In 

this framework, the effect HPH treatments in combination with sublethal concentration  of 

hexanal and (E)-2-hexenal were evaluated on centrifuged apple juices inoculated with food-borne 

pathogens such as Listeria monocytogenes, Escherichia coli and Staphylococcus aureus and with 

the spoilage agents  Lactobacillus plantarum and Saccharomyces cerevisiae. In order to 

understand the effects of hyperbaric treatment, antimicrobial substances and ethanol used to 

convey the substances into the system, three different apple juice batches were considered: 

 

• centrifuged apple juice, inoculated with targeted microorganisms and treated at 0.1MPa, 

100 MPa, 100 MPa x 2 cycles, 100 MPa x 3 cycles and 200 MPa x 2 cycles; 

• centrifuged apple juice, inoculated with target microorganisms, added with ethanol (1% 

v/v) and treated at 0.1MPa, 100 MPa, 100 MPa x 2 cycles, 100 MPa x 3 cycles and 200 MPa 

x 2 cycles; 

• centrifuged apple, inoculated with target microorganisms, supplemented with hexanal (70 

ppm) and 2-(E)-hexenal (35 ppm) and treated at 0.1MPa, 100 MPa, 100 MPa x 2 cycles, 100 

MPa x3 cycles and 200 MPa x 2 cycles; 

 

Moreover, these data were compared with those obtained from inoculated juices treated by mild 

thermal  treatments.  
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Evaluation of colour (brightness) of apple juice samples treated with high homogenization 

pressures (HPH) with or without natural antimicrobials supplementation 

In Figure 1, the brightness values, determined during storage at 10 ° C of high-pressure 

homogenized apple juices, are reported. It is evident that, as the pressure increased, the 

brightness of the samples was enhanced.  The highest effect was observed after the 

homogenization at 200 MPa x 2 cycles in presence of hexanal. On the other hands, the positive 

effect of the high homogenization pressures and natural antimicrobials on the maintenance of the 

colour of fruit-based products is well known (Lanciotti et al., 1999; Corbo et al., 2000; Suárez-

Jacobo et al., 2012; Fernández-Sestelo et al., 2013). The increase of L* parameter can be 

attributed to the different properties of the reduced particles to reflect the light. Moreover, the 

reduction of the mean macromolecules of the system induced, in the treated samples, a delay in 

separation and sedimentation.  Moreover, also the detoxifying molecules such as hexanol, deriving 

from the enzymatic reduction of the hexanal, is proved to have an inhibiting effect on the 

polyphenoloxidase of the considered matrix.  

 

Figure 1: Evolution of brightness (L *) in apple centrifuged samples in relation to hyperbaric treatment and presence of hexanal and 

(E)-2-hexenal. 
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Effects of HPH and thermal treatments on Listeria monocytogenes, Escherichia coli, 

Staphylococcus aureus, Saccharomyces cerevisiae and  Lactobacillus plantarum inoculated in 

apple juices with or without supplementation of natural antimicrobials.  

Concerning the microbial inactivation obtained by high pressure homogenization treatments, the 

data showed that for all the microorganisms considered, with the exception of Escherichia coli,   

the effect of pressure was maximum when the juice were treated at 200 MPa for 2 repeated 

cycles.  On the other hand, E. coli death kinetic was strongly influenced by the pH of the system 

(Table 1). The combined effect of pressure and natural antimicrobials appears to be very effective 

on Listeria monocytogenes (Figure 2). The L. monocytogenes cell load after the homogenization 

treatment at 100 MPa repeated 3 times, were below the detection limit (Table 2). Also on 

Saccharomyces cerevisiae, the combined effect of the two hurdles  is evident (Figure 3 and Table 

3). Although the yeasts resistance to homogenization treatments is well known, data from the 

literature indicate a good inactivation after a combined treatment with natural antimicrobials and 

high pressures (Patrignani et al., 2013). The highest efficacy of the combined treatment can be can 

be attributed to the increase in the vapor pressure of antimicrobial molecules during the 

hyperbaric treatment. As reported by Lerici et al. (1996), the rise of the vapor pressure increases 

the affinity of  hexanal and (E)-2-hexenal with the lipidic cell membrane layers resulting in an 

augmented  antimicrobial activity. In addition, the hyperbaric treatments provoked severe damage 

to the extracellular cell structure. Lactobacillus plantarum  and Staphylococcus aureus (Figure 4-5) 

showed a higher resistance to  the HPH treatments and natural antimicrobials. Gram-positive 

bacteria, due to their cellular structure and the presence of the thickest cell wall, are more 

resistant compared to the Gram-negative bacteria to high pressure homogenization. (Lanciotti et 

al., 2004). By contrast, the presence of lipopolysaccharides in the outer cell membrane increases 

their resistance to antimicrobials used in food industry (Helander et al., 1997). On the other hand, 

some natural antimicrobials, including diacetyl, hexanal and 2-(E)-hexanal, have shown an 

interesting activity also against Gram negative bacteria (Lanciotti et al., 2003; Patrignani et al., 

2008). The effect of natural antimicrobials on target microorganisms is more evident during the 

storage of centrifuged apple samples in conditions of thermal abuse at 10 °C.  For all bacteria 

tested, after 2 days of storage, the death kinetics, also influenced by the low pH of the system, 

were accelerated in the presence of hexanal and 2- (E) -hexenal (Table 2,4,5). Saccharomyces 

cerevisiae, characterized by a higher acid residence and osmo-tolerance, showed a reduced 

growth in samples homogenized at 100 MPa and 100 MPa repeated 2 times in presence of the 
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tested  natural antimicrobials (Table 3). In samples treated with 100 MPa repeated 3 times and 

200 MPa repeated 2 times, the S. cerevisiae cell loads were below the detection limit after 22 

storage days at 10 °C (Table 3). The use of pressure, alone or in combination with ethanol, 

prevented the proliferation of Lactobacillus plantarum during storage at 10 °C over the period 

considered. The effects were more severe in presence of the natural antimicrobials. In presence of 

hexanal and 2- (E) -hexenal, after two day of storage, the L. plantarum cell loads were below the 

detention limits in the samples homogenized at 100 MPa for 3 times and 200 MPa repeated 2 

times (Table 4). 

 

Table 1: Death kinetics of Escherichia coli in relation to the pressure applied with or without the supplementation of natural 

antimicrobials. 

Escherichia coli 
 

  

Treatments 
Cell loads after 

treatments 
(log CFU/mL) 

Centrifuged+m.o   

0.1 MPa 3.5 ±0.15 

100 MPa -* 

100_(2) MPa - 

100_(3) MPa - 

200_(2) MPa - 

Centrifuged+m.o+ethanol   

0.1 MPa 3.5 ±0.25 

100 MPa - 

100_(2) MPa - 

100_(3) MPa - 

200_(2) MPa - 

Centrifuged+m.o+ethanol+hex+T2_hex   

0.1 MPa 3.5 ±0.17 

100 MPa - 

100_(2) MPa - 

100_(3) MPa - 

200_(2) MPa - 

-* below the detection limit 
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Figure 2: Death kinetics of Listeria monocytogenes in relation to the pressure applied with or without the supplementation of 

natural antimicrobials. 

Centrifuged_mo: centrifuged apple juice inoculated with L. monocytogenes and treated with HPH. 

Centrifuged_ethanol: centrifuged apple juice inoculated with L.monocytogens supplemented with ethanol (1% v/v) and treated with HPH. 

Centrifuged_hex_T2hex: centrifuged apple juice inoculated with L.monocytogens  supplemented with hexenal and (E)-2-hexenal (70-35 mg/L) and 

treated with HPH. 

Table 2: Evolution of the total viable cell counts (log CFU/ mL) of Listeria monocytogenes  inoculated ( 4 log CFU/mL) in apple 

centrifugated juices in relation to HPH treatments and the supplementation of natural antimicrobials. 

Listeria monocytogenes Cell loads after HPH treatments (log CFU/mL) 

  

Days of storage at 10 °C after the HPH treatments 

Treatments 
Cell loads after 

treatments 
1 2 5 8 12 14-22 

Centrifuged+m.o               

0.1 MPa 4.2 ±0.11 2.8 ±0.10  2.8 ±0.13 2.3  ±0.19 1.2 ±0.27 1.0 ±0.11 -* 

100 MPa 2.6 ±0.18 1.0 ±0.15 1.0 ±0.09 1.0 ±0.14 1.0 ±0.14 1.0 ±0.16 - 

100_(2) Mpa 2.2  ±0.14 1.0 ±0.25 1.0 ±0.17 1.0 ±0.19 1.0 ±0.15 - - 

100_(3) Mpa 1.8 ±0.22 1.2 ±0.10 1.1 ±0.08 1.0 ±0.20 1.0 ±0.15 - - 

200_(2) Mpa 1.7 ±0.21 1.3 ±0.12 1.3 ±0.14 1.0 ±0.25 1.0 ±0.10 - - 

Centrifuged+m.o+ethanol               

0.1 Mpa 4.2 ±0.24 2.7 ±0.07 2.7 ±0.22 2.0 ±0.23 1.0 ±0.15 0.9 ±0.13 - 

100 MPa 2.4 ±0.18 2.0 ±0.09 2.0 ±0.15 2.0 ±0.18 0.9 ±0.06 0.9 ±0.16 - 

100_(2) MPa 2.0 ±0.11 2.0 ±0.22 2.0 ±0.10 2.0 ±0.15 1.0 ±0.14 - - 

100_(3) MPa 1.9 ±0.07 1.7 ±0.12 1.7 ±0.12 1.1 ±0.15 - - - 

200_(2) MPa - - - - - - - 

Centrifuged+m.o+ethanol+hex+T2_hex               

0.1 MPa 4.2 ±0.10 1.9 ±0.17 1.9 ±0.29 - - - - 

100 MPa 2.2 ±0.12 - - - - - - 

100_(2) MPa 1.9 ±0.16 - - - - - - 

100_(3) MPa - - - - - - - 

200_(2) MPa - - - - - - - 

-* below the detection limit 
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Figure 3: Death kinetics of Saccharomyces cerevisiae in relation to the pressure applied with or without the supplementation of 

natural antimicrobials. 

Centrifuged_mo: centrifuged apple juice inoculated with S. cerevisiae and treated with HPH. 

Centrifuged_ethanol: centrifuged apple juice inoculated with S. cerevisiae supplemented with ethanol (1% v/v) and treated with HPH. 

Centrifuged_hex_T2hex: centrifuged apple juice inoculated with S. cerevisiae supplemented with hexenal and (E)-2-hexenal (70-35 mg/L) and treated 

with HPH. 

 

Table 3: Evolution of the total viable cell counts (log CFU/ mL) of Saccharomyces cerevisiae inoculated ( 4 log CFU/mL) in apple 

centrifugated juices in relation to HPH treatments and the supplementation of natural antimicrobials. 

Saccharomyces cerevisiae Cell loads after HPH treatments (log CFU/mL) 

  

Days of storage at 10 °C after the HPH treatments 

Treatments 
Cell loads after 

treatments 
1 6 12 14 22 

Centrifuged+m.o             

0.1 MPa 4.1 ±0.11 3.6 ±0.21 5.2  ±0.17 5.2 ±0.09 6.6 ±0.14 -a 

100 MPa 3.5 ±0.21 3.7 ±0.16 4.8  ±0.13 4.8 ±0.12 6.8 ±0.11 -a 

100_(2) MPa 2.6 ±0.12 3.0 ±0.11 ±0.14 4.4 ±0.16 6.7 ±0.19 -a 

100_(3) MPa 2.6 ±0.22 2.9  ±0.26 4.3 ±0.15 4.3 ±0.17 6.7 ±0.10 -a 

200_(2) MPa 1.7 ±0.09 2.0 ±0.25 4.5 ±0.22 0 ±0.21 6.7 ±0.22 -a 

Centrifuged+m.o+ethanol             

0.1 MPa 4.1 ±0.09 4.2 ±0.11 5.0 ±0.14 5.3 ±0.16 6.7 0.08 -a 

100 MPa 2.7 ± 0.12 4.1 ±0.23 4.0 ±0.12 4.0±0.27 5.9 ±0.11 6.5±0.09 

100_(2) MPa 2.3 ± 0.15  3.3 ± 0.16 4.0 ± 0.18 4.0 ± 0.12 5.9 ± 0.10 6.8 ± 0.11 

100_(3) MPa 2.2 ± 0.13 2.0 ± 0.17 3.9 ± 0.15 3.9±0.09 4.3 ± 0.19 6.1 ± 0.12 

200_(2) MPa 1.9 ± 0.20 2.0 ± 0.25 3.0 ± 0.22 3.0 ± 0.17 4.1 ± 0.21 6.2 ± 0.23 

Centrifuged+m.o+ethanol+hex+T2_hex             

0.1 MPa 4.1 ± 0.15 3.9 ± 0.10 2.0 ± 0.17 2.0± 0.15 1.5 ± 0.18 1.4 ± 0.17 

100 MPa 2.2 ± 0.11 3.6± 0.15 -b -b -b -b 

100_(2) MPa 1.7± 0.15 3.4 ± 0.12 -b -b -b -b 

100_(3) MPa 1.4 ± 0.10 3.4± 0.15 -b -b -b -b 

200_(2) MPa 1.4 ± 0.09 2.5 ± 0.22 -b -b -b -b 

-aSpoiling threshold reached 

-bBelow the detenction limit 
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Figure 4: Death kinetics of Lactobacillus plantarum in relation to the pressure applied with or without the supplementation of 

natural antimicrobials. 

Centrifuged_mo: centrifuged apple juice inoculated with Lb. plantarum and treated with HPH. 

Centrifuged_ethanol: centrifuged apple juice inoculated with Lb. plantarum supplemented with ethanol (1% v/v) and treated with 

HPH. 

Centrifuged_hex_T2hex: centrifuged apple juice inoculated with Lb. plantarum supplemented with hexenal and (E)-2-hexenal (70-35 

mg/L) and treated with HPH. 

Table 4: Evolution of the total viable cell counts (log CFU/ mL) of Lactobacillus plantarum inoculated ( 4 log CFU/mL) in apple 

centrifugated juices in relation to HPH treatments and the supplementation of natural antimicrobials. 

Lactobacillus plantarum Cell loads after HPH treatments (log CFU/mL) 

  

Days of storage at 10 °C after the HPH treatments 

Treatments 
Cell loads after 

treatments 
2 5 8 14 19 

Centrifuged+m.o             

0.1 MPa 3.2 ±0.18 2.0 ±0.29 2.0 ±0.18 2.1 ±0.21 2.3 ±0.24 -* 

100 MPa 2.9 ±0.10 1.3 ±0.09 1.7 ±0.12 2.0 ±0.14 1.9 ±0.15 - 

100_(2) MPa 2.9 ±0.21 2.0 ±0.22 1.3 ±0.15 1.8 ±0.19 1.9 ±0.18 - 

100_(3) MPa 2.0 ±0.13 1.5 ±0.15 1.3 ±0.17 1.8 ±0.11 1.9 ± 0.15 - 

200_(2) MPa 1.4 ±0.18 - - 0.7 ±0.12  1.3 ±0.13 - 

Centrifuged+m.o+ethanol             

0.1 MPa 3.2 ±0.24 1.9 ±0.19  1.9 ±0.21 2.3 ±0.22 2.6 ±18 - 

100 MPa 3.0 ±0.20 1.9 ±0.17 1.4 ±0.28 2.0 ±0.29 1.9 ± 0.15 1.1 ±0.13 

100_(2) MPa 2.8 ±0.14 1.2 ±0.11 1.1 ±0.17 2.0 ±0.18 2.1 ±0.19 0.9 ±0.16 

100_(3) MPa 2.1 ±0.15 1.1 ±0.16 1.0 ±0.15 2.0 ±0.13 1.9 ±0.12 - 

200_(2) MPa 1.7 ±0.09 - - 1.6 ±0.17 2.2 ±0.10 - 

Centrifuged+m.o+ethanol+hex+T2_hex             

0.1 MPa 3.2 ±0.10 1.8 ±0.17 1.4 ±0.13 1.5 ±0.19 0.9 ±0.11 - 

100 MPa 3.1 ±0.08 1.8 ±0.16 1.0 ±0.15 1.5 ±0.21 0.8 ±0.20 - 

100_(2) MPa 2.9 ±0.21 0.9 ±0.14 1.0 ±0.19 1.4 ±0.17 0.9 ±0.13 - 

100_(3) MPa 1.9 ±0.17 - - - - - 

200_(2) MPa 1.3 ±0.16 - - - - - 

-* below the detection limit 
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Figure 5: Death kinetics of Staphylococcus aureus  in relation to the pressure applied with or without the supplementation of natural 

antimicrobials 

Centrifuged_mo: centrifuged apple juice inoculated with S. aureus and treated with HPH. 

Centrifuged_ethanol: centrifuged apple juice inoculated with S. aureus supplemented with ethanol (1% v/v) and treated with HPH. 

Centrifuged_hex_T2hex: centrifuged apple juice inoculated with S. aureus supplemented with hexenal and (E)-2-hexenal (70-35 

mg/L) and treated with HPH. 

Table 5: Evolution of the total viable cell counts (log CFU/ mL) of Staphylococcus aureus  inoculated ( 4 log CFU/mL) in apple 

centrifugated juices in relation to HPH treatments and the supplementation of natural antimicrobials. 

Staphylococcus aureus Cell loads after HPH treatments (log CFU/mL) 

  

Days of storage at 10 °C after the HPH treatments 

Treatments 
Cell loads after 

treatments 
1 2 5 8 12 22 

Centrifuged+m.o             

0.1 MPa 4.2 ±0.12 3.5 ±0.16 3.5 ±0.15 2.5 ±0.14 1.6 ±0.15 -* 

100 MPa 3.9 ±0.15 3.3 ±0.16 3.4 ±0.17 2.4 ±0.18 1.7 ±0.12 - 

100_(2) MPa 3.8 ±0.19 3.2 ±0.13 3.0 ±0.14 2.3 ±0.21 1.5 ±0.11  - 

100_(3) MPa 3.7 ±0.14 3.0 ±0.16 2.9 ±0.12 2.4 ±0.21 1.5 ±0.13 - 

200_(2) MPa 2.8 ±0.10 2.3 ±0.11 2.2 ±0.10 1.8 ±0.15 1.0 ±0.16 - 

Centrifuged+m.o+ethanol             

0.1 MPa 4.2 ±0.09 3.6 ±0.18 3.6 ±0.12 2.7 ±0.13 1.9 ±0.17 - 

100 MPa 3.9 ±0.22 3.5 ±0.17 3.5 ±0.25 2.7 ±0.23 1.7 ±0.19 - 

100_(2) MPa 3.8 ±0.23 3.7 ±0.10 3.4 ±0.11 2.4 ±0.15 1.8 ±0.16 - 

100_(3) MPa 3.8 ±0.13 3.4 ±0.12 3.4 ±0.18 2.5 ±0.19 1.7 ±0.26 - 

200_(2) MPa 2.9 ±0.18 2.2 ±0.20 1.8 ±0.24 1.0 ±0.17 1.0 ±0.12 - 

Centrifuged+m.o+ethanol+hex+T2_hex             

0.1 MPa 4.2 ±0.18 3.3 ±0.16 3.0 ±0.27 1.5 ±00.28 - - 

100 MPa 3.8 ±0.12 3.1 ±0.11 2.6 ±0.21 1.0 ±0.09 - - 

100_(2) MPa 3.7 ±0.08 3.1 ±0.15 2.6 ±0.16 1.0 ±0.12 - - 

100_(3) MPa 3.6 ±0.13 3.0 ±0.12 2.4 ±0.11 - - - 

200_(2) MPa 2.8 ±0.16 2.3 ±0.15  1.1 ±0.29 - - - 

-* below the detection limit 
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Concerning the conventional thermal treatments, all the tested bacterial pathogenic species were 

extremely sensitive to the thermal treatments adopted described as instantaneous inactivation 

(Table 6), with the exception of S. aureus. On the other hands, the thermal resistance of this 

microorganism is well known, especially when heat treatments occur at low temperatures and the 

temperature rises slowly, in 1-2 min. In these conditions, heat stress response may occur resulting 

in the expression of heat shock proteins. However, the resistance of S. aureus to higher thermal 

treatment was also highlighted by Montanari et al., (2015) who found similar behaviours for some 

S. aureus strains heat treated at 80°C for 20 min. In our work, after 48 hours from the treatments 

and during the storage at 10 °C, all the bacteria considered decreases below the detention limits 

(Table 6). Saccharomyces cerevisiae SPA showed the highest resistance to the thermal inactivation 

(Table 7). Its thermal resistance is already documented in the literature (Belletti et al., 2008). The 

instant deactivation after the  thermal treatments at 55 ° C for 200 seconds, in presence of natural 

antimicrobials or ethanol, were comparable with those obtained by heat treatments at 55 °C for 

longer times without antimicrobials. (Table 7). On the other hand, the increase in temperature 

resulted in a significant increase of the hexanal and (E)-2-hexenal vapor pressure and 

consequently in an increase of their toxicity. Also the S. cerevisiae recovery during the storage was 

significantly influenced by the added natural antimicrobials. In fact, with the exception of the 

samples characterized by the presence of hexanal and (E)-2-hexenal and/or treated for 200 and 

360 seconds (6 minutes) at 55 ° C respectively, between 5th and 12th days of storage, spoilage 

processes were observed (Table 7). 

Table 6:  total viable cell counts (log CFU/ mL) of inoculated pathogenic bacteria ( 4 log CFU/mL) in apple centrifugated juices in 

relation to thermal treatments and the supplementation of natural antimicrobials. 

    Cell loads ( CFU/mL) 

Samples 
Thermal 

treatment 
L. monocytogenes E. coli Lb. plantarum S. aureus 

Centrifuged+m.o 12 min - 55 °C -* - - - 

Centrifuged+m.o+ethanol 200 sec - 55 °C 1.40 ±0.21 0.40 ±0.18 1.00 ±0.22 2.00 ±0.13 

Centrifuged+m.o+ethanol+hex+T2_hex 200 sec - 55 °C 1.20 ±0.13 
 

0.80 ±0.11 1.60 ±0.06 

Centrifuged+m.o 25 min - 55 °C - - - - 

Centrifuged+m.o+ethanol+hex+T2_hex 6 min - 55 °C 1.00 ±0.16 - - 1.40 ±0.10 

Centrifuged+m.o+ethanol 6 min - 55 °C 1.00 ±0.08 - 0.40 ±0.11 1.80 ±0.23 

* below the detection limit 

 

Table 7: Evolution of total viable cell counts (log CFU/ mL) of Saccharomyces cerevisiae inoculated at 4 log CFU/mL in apple 

centrifuged juices in relation to thermal treatments and the presence of natural antimicrobials. 
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 Cell loads log CFU/mL 

  

 

  

Days of storage at 10 °C after the thermal treatments 

Samples 
Thermal 

treatment 

 
Initial  

cell loads 

Cell loads  
after 

treatment 
5 12 15 

Centrifuged+m.o 12 min - 55 °C  5.50 ±0.12 3.90 ±0.14 5.40 ±0.12 7.60 ±0.13 -* 

Centrifuged+m.o+ethanol 200 sec - 55 °C  5.50 ±0.25 4.30 ±0.09 5.20 ±0.11 7.40 ±0.15 - 

Centrifuged+m.o+ethanol+hex+T2_hex 200 sec - 55 °C  5.40 ±0.14 4.20 ±0.19 3.50 ±0.12 3.50 ±0.23 3.9 ±0.16 

Centrifuged+m.o 25 min - 55 °C  5.40 ±0.21 3.50 ±0.06 4.70 ±0.16 7.40 ±0.13 - 

Centrifuged+m.o+ethanol+hex+T2_hex 6 min - 55 °C  5.50 ±0.12 4.20 ±0.13 3.10 ±0.10 3.70 ±0.14 4.2 ±0.18 

Centrifuged+m.o+ethanol 6 min - 55 °C  5.50 ±0.17 4.50 ±0.11 5.00 ±0.15 7.50 ±0.10 - 

-* Spoiling threshold reached 

 

Volatile molecule profile changes on centrifuged apple juices in relation to the inoculated 

microbial strain, the adopted inactivation treatment and the supplementation of natural 

antimicrobials 

 

Reached the Saccharomyces cerevisiae SPA spoilage threshold (6 log CFU/mL), the samples were 

analyzed by GC/MS-SPME, in order to underline potential spoilage markers in relation to the 

adopted treatment. The analysis allowed to detect 70 different molecules belonging to different 

chemical classes: alcohols, aldehydes, ketons, acids and esters. Regarding the HPH treatments, the 

principal component analysis (PCA) of the volatilome underlined a clear clusterization of the 

samples on the basis of the performed HPH treatments and the added natural antimicrobials 

(Figure 6). The projection of the different samples on the factorial plan, defined by the Principal 

Component 1 and 2 (PC1 and PC2), allowed to explain 50% of the variance observed and 

highlighted a distribution of the apple centrifuged samples in relation to the initial addition of 

hexanal and (E)-2-hexenal. Except for the untreated control samples inoculated with the target 

microorganisms, others samples clearly forms two defined clusters among the PC1 (Figure 6). The 

cluster 1included samples only homogenized with or without ethanol supplementation, while the 

cluster 2 represented samples treated with HPH in presence of hexanal or (E)-2-hexenal. These 

data are not surprising as the volatile profiles of the untreated control sample were due to the 

earlier development of spoilage inoculated microorganisms.  

The projection of the variables on the factor plane for the first two factors showed how the 

highest production of acetic acid (Figure 7b) and ethyl acetate (Figure 11 a and b) were associated 

to the untreated samples. By contrast, the different applied treatments induced a significant 

variation on the samples volatile molecular profiles. The HPH treatments in combination with 
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natural antimicrobials, reducing the microbial growth, delayed the accumulation of the volatile 

molecules associated with the microbial metabolisms. In addition, the homogenization processes, 

modifying the microstructure of the system, also modified the retention of volatile molecules and 

consequently their release into the head space. Finally, the addition of hexanal and 2-(E)-hexenal 

changed the system further. Although these molecules are, from an organoleptic point of view, 

compatible with apple juice, they significant affected the sensorial properties of samples and also 

they induced a specific response from the spoilage microorganisms and vegetable tissue with a 

strong effects on the volatiloma. As described for the samples subjected to hyperbaric treatments, 

the volatile molecular profiles of mild thermal treated samples were mainly influenced by the type 

of the inoculated microbial strains and by the added natural antimicrobials. Indeed, the addition of 

hexanal and (E)-2-hexenal underlined a clear clusteraization, as described by the principal 

component analysis (PCA), of the volatilome profiles. Samples added with natural antimicrobials, 

and characterized by a significant inhibition of the microbial growth, formed a well-defined and 

separated cluster along the PC1 component that explains 38% of the variance. On the other hand, 

the other samples (only thermal treated) were distributed in two separate clusters along PC2 

which explains 26% of the variance, on the base of their faster spoilage kinetics and the severity of 

the thermal treatment (Figure 12). 

 

1-0: apple juice treated at 0.1 MPa 
1-1000: apple juice treated at 100 MPa 
1-1000 x 2: apple juice treated at 100 MPa x 2 cycles 
1-1000 x 3: apple juice treated at 100 MPa x 3 cycles 
1-2000 x 2: apple juice treated at 200 MPa x 2 cycles 
2-0: apple juice added with ethanol and treated at 
0.1 MPa2-1000: apple juice added with ethanol and 
treated at 100 MPa 
2-1000 x 2: apple juice added with ethanol and 
treated at 100 MPa x 2 cycles 
2-1000 x 3: apple juice added with ethanol and 
treated at 100 MPa x 3 cycles 
2-2000 x 2: apple juice added with ethanol and 
treated at 200 MPa x 2 cycles 
3-0: apple juice added with natural antimicrobials 
and treated at 0.1 MPa 
3-1000: apple juice added with natural 
antimicrobials and treated at 100 MPa 
3-1000 x 2: apple juice added with natural 
antimicrobials and treated at 100 MPa x 2 cycles 
3-1000 x 3: apple juice added with natural 
antimicrobials and treated at 100 MPa x 3 cycles 
3-2000 x 2 apple juice added with natural 
antimicrobials and treated at 200 MPa x 2 cycles 

 

Figure 6: Principal component analysis loading plot of the volatile molecular profiles of centrifuged apple juices in relation to the 

microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 

 

 

Cluster 1 
Cluster 2 
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a         b 

             

*see figure 6 for the caption 

Figure 7 a and b: Principal component analysis loading plot of the organic acids profiles (SPME) of centrifuged apple juices in 

relation to the microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 

 

 

 

a              b 

               

*see figure 6 for the caption 

Figure 8 a and b: Principal component analysis loading plot of the aldehydes profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 
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a        b 

              
*see figure 6 for the caption 

Figure 9 a and b: Principal component analysis loading plot of the ketons profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 

 

 

 

 

a        b 

                   
*see figure 6 for the caption 

Figure 10 a and b: Principal component analysis loading plot of the alcohols profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 
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a        b 

                  

*see figure 6 for the caption 

Figure 11 a and b: Principal component analysis loading plot of the esters profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated, HPH treatment with or without natural antimicrobials supplementation. 

 

 

 

 

-12 min: centrifuged apple juice 
thermally treated at 55 ° C for 12 min. 

- 25 min: centrifuged apple juice 
thermally treated at 55 ° C for 25 min. 

- 6 min etanolo: apple centrifuged juice 
added with ethanol and thermally 
treated at 55 ° C for 6 min. 

- 200 sec etanolo: apple centrifuged 
juice added with ethanol and thermally 
treated at 55 ° C for 200 sec. 

- 200 sec etanolo Esa _T2 Ese: apple 
centrifuged juice added with ethanol 
and natural antimicrobials and 
thermally treated at 55 ° C for 200 sec. 

- 6 min etanolo _Esa _T2 Ese: apple 
centrifuged juice added with ethanol 
and natural antimicrobials and 
thermally treated at 55 ° C for 6 min. 

 

Figure 12: Principal component analysis loading plot of the volatile molecular profiles of centrifuged apple juices in relation to the 

microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 
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a        b      

      

*see figure 12 for the caption 

Figure 13 a and b: Principal component analysis loading plot of the organic acids profiles (SPME) of centrifuged apple juices in 

relation to the microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 
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*see figure 12 for the caption 

Figure 14 a and b: Principal component analysis loading plot of the aldehydes profiles (SPME) of centrifuged apple juices in relation 

to the microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 
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a        b     

      

*see figure 12 for the caption 

Figure 15 a and b: Principal component analysis loading plot of the ketons profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 

 

a           b       

         

*see figure 12 for the caption 

Figure 16 a and b: Principal component analysis loading plot of the alcohols profiles (SPME) of centrifuged apple juices in relation to 

the microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 
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a        b 

     

*see figure 12 for the caption 

Figure 17 a and b: Principal component analysis loading plot of the ester profiles (SPME) of centrifuged apple juices in relation to the 

microbial strain inoculated and mild heat treatments with or without natural antimicrobials supplementation. 

Effect of HPH, thermal treatments and natural antimicrobials on the content of organic acids in 

centrifuged apple juices. 

Table 8: Juice organic acid concentration  (mg/L) in relation to the applied treatment (hyperbaric or thermal) and the presence of 

natural antimicrobials. 

Treatments 
Citric 
acid 

Malic 
acid 

Ossalic 
acid 

Ascorbic  
acid 

  mg/L mg/L mg/L mg/L 

Centrifuged 0.1 MPa+m.o 1090.50 5189.70 208.89 8.00 

Centrifuged 100 MPa+m.o 822.13 4588.28 204.80 15.04 

Centrifuged 200MPa_2+m.o 887.38 4578.65 203.27 14.34 

Centrifuged 0.1 MPa+m.o + hex+T2hex 1073.34 5253.85 202.98 0.51 

Centrifuged 100 MPa+m.o + hex+T2hex 1122.42 5161.81 195.31 0.44 

Centrifuged 200MPa_2+m.o +hex+T2hex 1392.31 5526.58 190.96 0.50 

Centrifuged+m.o 12 min - 55 °C 1370.91 6232.45 184.34 0.29 

Centrifuged+m.o+ethanol 200 sec - 55 °C 1286.9 5986.82 194.97 -* 

Centrifuged+m.o+ethanol+hex+T2_hex 200 sec - 55 °C 1186.96 6351.96 203.97 - 

Centrifuged+m.o 25 min - 55 °C 1224.3 5782.35 258.05 - 

Centrifuged+m.o+ethanol+hex+T2_hex 6 min - 55 °C 1398.9 6367.14 224.1 - 

Centrifuged+m.o+ethanol 6 min - 55 °C 1258.34 6189.31 220.45 - 

-* below the detenction limit 

The results are means of three repetitions of three independent experiments. The coefficients of variability, expressed as the 

percentages ratios between the standard deviations and the mean values, ranged between 2% and 5%. 
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As highlighted in Table 8, the citric and malic acid concentrations decreased only in the samples 

inoculated with both spoilage and pathogenic microorganisms and only treated with HPH. These 

samples were characterized by faster microbial development and subsequently they quickly 

reached the spoilage threshold. On the other hand, the citric and the malic acids are characterized 

by a low microbiological stability due the metabolic activity of many spoilage agents such as yeast 

and lactic acid bacteria. However, in high-pressure treated samples, compared to the untreated 

control, the ascorbic acid content significantly raised. The higher ascorbic acid content recorded 

could be related to a reduced injury of the apple juice matrix and to a higher extraction as a 

consequence of the hyperbaric treatments (Suárez-Jacobo et al., 2012). Moreover, samples 

treated with HPH in combination with natural antimicrobials, showed an ascorbic acid content 

similar to that detected in thermally treated samples. Under these conditions, the oxidation of 

ascorbic acid, presumably, contributes significantly to maintaining the color in the apple 

centrifuged  samples. 

 

Conclusions 

The present research evidenced the potential of high pressure homogenization treatments to 

increase the safety and shelf-life of centrifuged apple juices. In particular, the natural 

antimicrobials  significantly increased the effectiveness of HPH and heat treatments applied, 

significantly increasing the apple juice shelf-life and safety even under conditions of thermal abuse 

(10 °C). In fact, they significantly factened the death kinetics of all the pathogenic species 

considered including Listeria monocytogenes Scott A and Escherichia coli K12 MG1655. Moreover, 

samples treated with a combination of HPH and natural antimicrobials showed enhanced texture 

properties and better color preservation. Furthermore, hexanal and (E)-2-hexenal, due their low 

sensorial threshold, directly influenced the volatile molecular profile of centrifuged apple juices 

contributing to an higher products diversification without any negative effect on their microbial 

safety. In fact, both the hyperbaric and thermal treatments in combination with natural 

antimicrobials, dramatically d the death kinetics of the pathogens species even when inoculated at 

significantly higher levels compared to those detected under real food process conditions. 

Moreover, the data obtained showed how the supplementation of natural antimicrobials 

represent a reliable alternative to reduce the severity of thermal treatments for the microbial 
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stabilization of the apple juices and, consequently, to reduce the damage to the different  thermo-

sensitive components of the apple juice matrixes. 
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General conclusions  

 

Consumer demand for minimally processed, and ready-to-eat foods with a reduced content of 

synthetic preservatives has stimulated the research of alternative preservation strategies. 

Essential oils (EOs) or their components represent one of the most promising natural feasible 

alternatives to improve food safety, shelf-life and quality. Although their antimicrobial properties 

are well documented few and fragmented are the information about their mechanisms of action, 

cellular targets and on the stress response strategies of microorganisms after the exposure to such 

compounds. In this framework, the main aim of the PhD project was to investigate on the effects 

of one hour exposure to sublethal concentrations of selected natural antimicrobials, such as citral, 

carvacrol, (E)-2-hexenal and thyme EO, on the food borne pathogens Listeria monocytogenes Scott 

A and Escherichia coli K12 MG1655. The action mechanisms of the natural antimicrobials and the 

cellular targets were studied through multiple approaches able to give information on cell 

morphological, physiological, tracriptome and proteome changes. In particular, the transcriptome 

of L. monocytogenes Scott A was studied  by RT-qPCR on a pool of gene representative of different 

metabolisms: energetic, ferric uptake, stress response, gene transcription, cell division, virulence, 

motility, while the proteome effects were determined by bi‐dimensional electrophoresis (2DE). By 

contrast, the transcriptome changes on Escherichia coli K12 MG1655 were evaluated using the 

microarray technology. In addition, for both the  microbial strains the effects on the membrane 

fatty acid profiles were studied using GC/MS approach while single cell responses to the one hour 

exposure to natural antimicrobials of the whole populations were studied by flow cytometry. 

Finally the antimicrobial effect of (E)-2-hexenal, in combination with high pressure 

homogenization or traditional thermal treatments was verified in a real food system, i.e. apple 

juice, deliberately inoculated with spoilage and pathogenic microorganisms including pathogens 

Listeria monocytogenes Scott A and Escherichia coli K12 MG1655.  

The results obtained allowed to define, for each strain and each antimicrobial used, the cell 

targets and the response mechanisms, respectively. The use of the different multi-parametric 

approaches provided useful information on citral, carvacrol, (E)-2-hexenal and thyme EO action 

mechanisms and their cell targets. Moreover, they allowed to elucidate the specific behavior and the 

response strategies used by  Listeria monocytogenes Scott A and  Escherichia coli K12 MG1655 to overcome 

the different stress conditions applied. In fact, the transcriptome analysis of L. monocytogenes Scott A 
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highlighted how citral and carvacrol induced an overexpression of genes involved in the stress 

response to adverse environmental conditions, i.e. cspL and bsh genes. (E)-2-hexenal and thyme 

EO created a clear unbalance in the energy metabolism determining a shift from respiration to 

fermentation, under-expressing pgm and pdhD involved in glycolysis. Moreover, these natural 

antimicrobials reduced the expression of the genes involved in the general stress response, in 

proteins synthesis and in DNA protection and repair after environmental shocks. 

The transcriptome changes on Escherichia coli K12 MG1655 showed that the sub-lethal 

concentrations of citral, carvacrol, (E)-2-hexenal and thyme essential oil affected mainly the 

expression of genes involved in fatty acid biosynthesis, energy metabolism and protection against 

oxidative stress.  

The proteomic data confirmed and deepened the effects evidenced by the transcriptome data. In 

fact, the sublethal concentrations of the natural antimicrobials used induced an over expression of 

the transporters, enzymes and cofactors involved in the less efficient energy generation 

mechanisms adopted by L. monocytogenes cells in response to the stress exposure and in the 

maintenance of  the cell oxidoreductive potential.  

In addition, natural antimicrobials tested caused the modulation of several proteins involved in the 

stress response, cell morphology, motility and protein synthesis of L. monocytogenes.  

Both proteomic and trascritomic approaches showed the cell cytoplasmic membrane and the 

outer structures as the main targets of the selected natural antimicrobials. Consistent to these 

results, the evaluation of the membrane fatty acid profiles after the one hour exposure clarified 

the short term adaptation of Listeria monocytogenes Scott A and Escherichia coli K12 MG1655 to 

the selected antimicrobials. Mainly the one hour exposure to sublethal stresses caused a reduction 

of the unsaturation and chain length levels due a significant reduction of C18 UFAs as well as, an 

increase of the short chain saturated FAs. This common modulation mechanism was associated 

with homeviscous adaptation processes which differed in relation to the strain and antimicrobial 

used. In particular, L. monocytogenes increased C19:0 and C17: iso percentages reducing C15ante 

and C17 ante percentages after the exposure to all the antimicrobials used to counteract the 

fluidizing effect of the CL reduction. By contrast, E. coli counteracted the fluidity changes induced 

by the CL and UL modifications, modulating the relative percentages of cyclopropanic fatty acids 

such as C17 cyc and C19 cyc FAs. Moreover, E. coli when exposed to citral and carvacrol 

counteracted the reduction of membrane fluidity also by the increase of trans isomers.  
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Since the microbial resistance to stresses is reported to occur as a monomodal Gaussian with a 

narrow or broad distribution, or as a multimodal distribution comprising subpopulations of similar 

or vastly different numbers of individuals, a flow cytometric approach was used to analyze the 

whole population responses to citral, carvacrol, (E)-2-hexenal and thyme EO of L. monocytogenes 

Scott A and E.coli K12 MG1655. 

The flow cytometry data reveled mainly  permeabilization processes on the cytoplasmic cell 

membrane. These effects were more severe on Escherichia coli. By contrast no effect on the 

intracellular esterase activity were observed for both the strains considered. These evidences 

suggested a reversible injuring process of the cell membranes  after the one hour exposure to the  

selected antimicrobials, used at different concentrations. 

The validation in apple juice allowed to understand the real potential of one of the antimicrobials, 

chosen on the basis of its sensory compatibility with the food matrix, to improve food safety and 

shelf life. The effect of (E)-2-hexenal, in combination with high pressure homogenization or 

traditional thermal treatments, was evaluated on the safety, shelf-life and quality on apple juices 

inoculated with different food borne pathogens, including L. monocytogenes Scott A and E.coli K12 

MG1655,  and spoilage agents. In particular, the combination of between the proposed 

treatments and the natural antimicrobial, applied at sublethal concentration, resulted in a 

significant shelf life increase of the apple juices even under conditions of thermal abuse (10 °C).  

Moreover, the natural antimicrobials dramatically increased the effectiveness of mild hyperbaric 

or thermal treatments accelerating the death kinetics of the pathogenic species considered even 

when inoculated at significantly higher levels compared to those detected under real food process 

conditions. Moreover, the data obtained showed how the supplementation of natural 

antimicrobials represent a reliable alternative to reduce the severity of thermal treatments for the 

microbial stabilization of the apple juices and, consequently, to reduce the damage to the 

different  thermo-sensitive components of the apple juice matrixes and to improve their sensory 

properties. The data obtained, elucidating the effects of natural antimicrobials on the microbial 

cell physiology and responses also in real systems and in combination with other hurdles, can 

fasten their exploitation at industrial level to increase the food safety, shelf-life, functionality and 

sensory properties. 


