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Abstract

Let m ≥ p ≥ 3 be positive integers. Given the fundamental group Γ of a
finite-volume complete hyperbolic p-manifold M , it is possible to associate to any
representation ρ : Γ → PO(m, 1) a numerical invariant called volume. This invari-
ant is bounded by the hyperbolic volume of M and satisfies a well-known rigidity
condition: if the volume of ρ is maximal, then ρ must be discrete and faithful. In
this dissertation we prove a generalization of this rigidity result by showing that if a
sequence of representations ρn : Γ→ PO(m, 1) satisfies limn→∞Vol(ρn) = Vol(M),
then there must exist a sequence of elements gn ∈ PO(m, 1) such that the repre-
sentations gn ◦ ρn ◦ g−1

n converge to a representation ρ∞ : Γ → PO(m, 1) which
preserves a totally geodesic copy of Hp in Hm and such that its Hp-component is
conjugated to the standard lattice embedding i : Γ → PO(p, 1) < PO(m, 1). We
call ridigity at infinity this property of the volume function. The rigidity at infinity
implies that if the representations ρn converge to an ideal point of the character
variety, then the sequence of volumes must stay away from the maximum.

Let Γ be a non-uniform lattice in PU(p, 1) (or PSp(p, 1)) without torsion. As-
suming m ≥ p ≥ 2, we introduce the volume function for representations ρ : Γ →
PU(m, 1) (or ρ : Γ→ PSp(m, 1), respectively) and we prove that rigidity at infinity
holds also for both the complex case and the quaternionic one.

Finally, if Γ is the fundamental group of a complete hyperbolic 3-manifold M
with toric cusps, we define the ω-Borel invariant βωn (ρω) associated to a representa-
tion ρω : Γ→ SL(n,Cω), where Cω is a field which can be constructed as a quotient
of a suitable subset of CN with the data of a non-principal ultrafilter ω on N and a
real divergent sequence λl such that λl ≥ 1.

Since a sequence of ω-bounded representations ρl into SL(n,C) determines a
representation ρω into SL(n,Cω), for n = 2 we study the relation between the
invariant βω2 (ρω) and the sequence of Borel invariants β2(ρl). In particular we
study the relation between the reducibility of the action induced on the asymptotic
cone Cω(H3, d/λl, O) by a representation ρω : Γ → SL(2,Cω) and the vanishing of
the invariant βω2 (ρω).
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Introduction

Let G be a Lie group. We say that Γ is a lattice if Γ is a discrete subgroup
of G such that µH(Γ\G) < ∞, where µH is the measure induced by the left Haar
measure on the quotient Γ\G. Assume that G admits X as Riemannian symmetric
space. Any lattice Γ without torsion acts freely and properly discontinuously on X
and hence the quotient M = Γ\X admits a natural structure of complete manifold
which is locally isometric to X. Moreover M has finite volume. If M is compact
we say that Γ is uniform, otherwise we refer to Γ as a non-uniform lattice.

Let Γ be a non-uniform lattice of G without torsion. The lattice Γ is said
strongly rigid if for any other lattice Γ′ of another Lie group G′, every isomorphism
ϕ : Γ→ Γ′ can be uniquely extended to an isomorphism Φ : G→ G′ of the ambient
Lie groups. The strong rigidity property has been widely studied so far, for instance
in [Mos68] and in [Pra73]. Mostow proved in [Mos73] that any irreducible lattice
in a connected semisimple Lie group G 6∼= PSL(2,R) with trivial center and no
compact factor is strongly rigid. If we restrict our attention to lattices of the same
Lie group G, Mostow strong rigidity theorem implies that if Γ and Γ′ are isomorphic
lattices there must exist an element g ∈ G such that gΓg−1 = Γ′.

If we assume Γ < PSO(p, 1) and we look at representations ρ : Γ→ PO(m, 1),
the previous result may be strengthened by introducing the notion of volume for
representations ρ : Γ→ PO(m, 1), where m ≥ p ≥ 3. When m = p = 3 the volume
can be thought of as the integral of the pullback of the volume form on H3 along any
pseudo-developing map D : H3 → H3, as written both in [Dun99] and in [Fra04].
Since the volume is independent of the choice of the pseudeveloping map D, when
D is a straight map this notion is a generalization of the volume of a solution for the
gluing equations associated to a triangulation of M , given for instance in [NZ85].
In the more general context of Γ < PSO(p, 1) another way to define the volume of
a representation ρ : Γ → PSO(p, 1) = Isom+(Hp) is based on the properties of the
bounded cohomology of the group Isom+(Hp). In [BBI13] the authors prove that
the volume class ωp is a generator of the cohomology group Hp

cb(Isom+(Hp)), hence,
starting from it, we can construct a class in Hp

b (Γ) by pulling back ωp along ρ∗b and
then evaluate this class with a relative fundamental class [N, ∂N ] ∈ Hp(N, ∂N)
via the Kronecker pairing. Here N is any compact core of M = Γ\Hp. For the
case p = 3, the equivalence between the two different definitions it is shown for
example in [Kim16]. To extend the notion of volume to the more general case of
representations into the whole group of the isometries PO(m, 1), where m ≥ p, the
approach of [FK06] is to consider the infimum all over the volumes Vol(D), where
D : Hp → Hm is a properly ending smooth ρ-equivariant map.

Since the volume is invariant under conjugation by an element of PO(m, 1), there

ix



x INTRODUCTION

exists a well-defined volume function on the character variety X(Γ, PO(m, 1)) which
is continuous with respect to the topology of the pointwise convergence. Moreover,
this function satisfies a well-known rigidity condition. As written in both [Fra04]
and [FK06], for any representation ρ we have Vol(ρ) ≤ Vol(M) and if equality holds
ρ preserves a totally geodesic copy of Hp and its Hp-component is conjugated to
the standard lattice embedding i : Γ→ PO(p, 1) < PO(m, 1). Beyond its intrinsic
interest, this result has important consequences for example in the study of the
AJ-conjecture for hyperbolic knot manifolds, as written in [LZ17].

So far we have described the notion and the properties of the volume function
for representations of non-uniform lattices. The same results are true for uniform
lattices, but for these ones the PO(m, 1)-character variety may be degenerate. For
instance, when Γ is a uniform lattice of PSO(3, 1), the hyperbolic component of the
character variety X(Γ, PO(3, 1)) is zero dimensional by [NZ85]. This reason leads
us to care only about the non-uniform case.

Inspired by the work of Thurston about the compactification of the Teichmüller
space for a closed surface of genus g exposed in [Th88] and generalizing the construc-
tions for algebraic curves appeared in [CS83], in [MS84] J. Morgan and P. Shalen
proposed a new way to compactify a generic algebraic variety V given a generating
set F for the algebra of regular functions C[V ]. This particular method applied
to the character variety X(Γ, SL(2,C)) allows to interpret the ideal points of the
compactification as projective length functions of isometric Γ-actions on real trees
which are constructed as Bass–Serre trees associated to SL(2,Kv), where Kv is a
suitable valued field (see [Ser80]). Lately Morgan extended the compactification to
the variety X(Γ, PO(m, 1)) in [Mor86], again by seeing the ideal points as projective
lenght functions of isometric Γ-actions on real trees. We call this compactification
the Morgan–Shalen compactification of X(Γ, PO(m, 1)). It seems quite natural to
ask if there exists a way to extend continuously the volume function to this com-
pactification and which are the possible values attained at any ideal point. For
instance, one could ask if it is possible to extend the ridigity of the volume function
also at ideal points.

One of the main goal of this dissertation is to prove the following

Theorem 1 Let Γ be a non-uniform lattice of PSO(p, 1) without torsion. As-
sume m ≥ p ≥ 3. Let ρn : Γ → PO(m, 1) be a sequence of representations such
that limn→∞Vol(ρn) = Vol(M). Then there must exist a sequence of elements
gn ∈ PO(m, 1) such that the sequence gn ◦ ρn ◦ g−1

n converges to a reducible repre-
sentation ρ∞ which preserves a totally geodesic copy of Hp and whose Hp-component
is conjugated to the standard lattice embedding i : Γ→ PO(p, 1) < PO(m, 1).

An important consequence of this theorem will be

Corollary 2 Let Γ be a non-uniform lattice of PSO(p, 1) without torsion. Assume
p ≥ 3. Suppose ρn : Γ→ PO(m, 1) is a sequence of representations with m ≥ p. If
the sequence is converging to any ideal point of the Morgan–Shalen compactification
of X(Γ, PO(m, 1)), then the sequence of volumes Vol(ρn) must be bounded from
above by Vol(M)− ε with ε > 0.

We are going to call rigidity at infinity the property of the volume function stated
in Theorem 1. The proof of this theorem will be based essentially on the so-called
BCG–natural map associated to a non-elementary representation ρ : Γ→ PO(m, 1),



xi

described in [BCG95], [BCG96] and [BCG99]. Given such a representation there
exists a map F : Hp → Hm which is equivariant with respect to ρ, smooth and
satisfies Jacp(F ) ≤ 1 for every x ∈ Hp, where Jacp(F ) is the p-Jacobian of the
map F . Moreover, the equality holds if and only if DxF is an isometry, and we will
exploit the fact that this claim can be made ε-accurate if Jacp(F ) > 1 − ε. These
properties make the natural map F a powerful tool in the study of volume rigidity
(see [BCS05] for this kind of applications).

However the construction of the BCG-natural map is much more general. Let Γ
be a non-uniform lattice of Gp without torsion, with either Gp = PU(p, 1) or Gp =
PSp(p, 1). We say that the lattice Γ is complex in the former case, quaternionic
in the latter. Given a representation of ρ : Γ → Gm, where Gm = PU(m, 1) if Γ
is complex or Gm = PSp(m, 1) if Γ is quaternionic, we can adapt the procedure
described by both [BCG99] and [Fra09] to obtain a natural map which satisfies the
same properties listed previously.

The will to extend the strong rigidity at infinity in this more general context leads
us to the introduction of the notion of volume for representations ρ : Γ→ Gm, with
m ≥ p. For uniform complex lattices the definition of volume for representations ρ :
Γ→ PU(m, 1) is given both by [BCG99] and by [BCG07], whereas for non-uniform
complex lattices we refer to [BI] and to [KM08]. Another interesting approach is
exposed in [KK12], where the authors use the pairing between bounded cohomology
and l1-Lipschitz homology to define the volume of a representation. However, here
we give a different version of it to adapt this notion to the non compact case, also
for quaternionic lattices. Thanks to this definition we get

Theorem 3 Let Γ be a non-uniform lattice of PU(p, 1) without torsion. As-
sume p ≥ 2. Let ρn : Γ → PU(m, 1) be a sequence of representations with
m ≥ p. If limn→∞Vol(ρn) = Vol(M), then there must exist a sequence of elements
gn ∈ PU(m, 1) such that the sequence gn◦ρn◦g−1

n converges to a reducible represen-
tation ρ∞ which preserves a totally geodesic copy of Hp

C and whose Hp
C-component

is conjugated to the standard lattice embedding i : Γ→ PU(p, 1) < PU(m, 1).

And in the same way

Theorem 4 Let Γ be a non-uniform lattice of PSp(p, 1) without torsion. As-
sume p ≥ 2. Let ρn : Γ → PSp(m, 1) be a sequence of representations with
m ≥ p. If limn→∞Vol(ρn) = Vol(M), then there must exist a sequence of elements
gn ∈ PSp(m, 1) such that the sequence gn◦ρn◦g−1

n converges to a reducible represen-
tation ρ∞ which preserves a totally geodesic copy of Hp

Q and whose Hp
Q-component

is conjugated to the standard lattice embedding i : Γ→ PSp(p, 1) < PSp(m, 1).

Let now Γ be again a non-uniform lattice in PSO(3, 1) without torsion. By
looking at representations ρ : Γ → PSL(n,C) it is possible to attach to every
equivalence class of such a representation a suitable invariant called Borel invariant.
Indeed, in [BBI] the authors prove that the Borel class β(n), already introduced
and studied into [Gon93], is a generator for the cohomology group H3

cb(PSL(n,C)).
Thus, given a representation ρ : Γ→ PSL(n,C), we can construct a class intoH3

b (Γ)
by pulling back β(n) along ρ∗b and then evaluate this new class on a fundamental
class [N, ∂N ] ∈ H3(N, ∂N), as done previously in the case of volume. Here N is still
any compact core of M = Γ\H3. When n = 2 this invariant is exactly the volume
of the representation. The Borel invariant of a representation ρ : Γ → SL(n,C)
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will be the Borel invariant of the induced representation into PSL(n,C). Moreover,
since this invariant remains unchanged under conjugation, as before we have a well-
defined function on the character variety X(Γ, SL(n,C)), called Borel function,
which is continuous with respect to the topology of the pointwise convergence.

In [Par12] Parreau extended the Morgan–Shalen interpretation of ideal points
to the more general case of X(Γ, SL(n,C)) by viewing an ideal point as a projective
vectorial length function relative to an isometric action, this time on a Euclidean
building of type An−1. The method suggested by [Par12] to obtain the Euclidean
building and its isometric Γ-action is based on asymptotic cones and it reminds the
ones already exposed both in [Bes88] and in [Pau88].

By following the same attitude assumed previously for the volume function, one
could naturally ask if it is possible to extend continuously the Borel function to
the ideal points of the Parreau compactification of X(Γ, SL(n,C)). Going further,
one could be interested in studying the possible values attained at ideal points and
trying to formulate a rigidity result, which would generalize [BBI, Theorem 1]. This
problem has already been conjectured in [Gui16, Conjecture 1].

In order to make a small step towards this direction we define a numerical
invariant, the ω-Borel invariant, associated to a representation ρω : Γ→ SL(n,Cω),
where Cω is a field obtained as a quotient of a suitable subset of CN by an equivalence
relation which depends on a non-principal ultrafilter ω on N and a real divergent
sequence λl with λl ≥ 1. The motivation of this definition relies on the interpretation
of the limit action of Γ on the Euclidean bulding of type An−1 as a representation
ρω : Γ→ SL(n,Cω), as proved in [Par12, Theorem 5.2].

The structure of the dissertation is the following. The first chapter is dedicated
to preliminary definitions. We start by recalling the notion of bounded cohomology
of locally compact groups. We describe the functorial approach to bounded coho-
mology and we exhibit an easy computation of some bounded cohomology groups,
e.g. for SL(2,C). Successively we describe the construction of the BCG-natural
map. Let Gp be a rank-one Lie group of non-compact type and denote by Xp the
symmetric space associated to Gp. Fix Γ a non-uniform lattice of Gp. Given the no-
tion of barycentre of a positive Borel measure on ∂∞X

p, we explain the construction
of the natural map F associated to a non-elementary representation ρ : Γ → Gm.
We introduce the definition of volume for representations ρ : Γ → Gm and we
compare it with the volume of the ε-natural maps F ε. These maps are smooth,
ρ-equivariant and converge to F with respect to the C1-topology (see [FK06]). We
conclude the chapter with a quick overview about the Parreau compactification of
the character variety X(Γ, SL(n,C)) of any finitely generated group Γ. We follow
[Par12] to describe the construction of the field Cω. It follows a brief exposition
about real trees and Euclidean buildings and how they can be associated to the
ideal points of the compactification cited above.

The second chapter is devoted to the proof of the main theorems. We start by fo-
cusing our attention to real hyperbolic lattices and we underline some consequences
of this result for the extendability of the volume function to the Morgan-Shalen
compactification of X(Γ, PO(m, 1)). Finally, we extend the rigidity theorem to the
complex case and the quaternionic case.

In the third chapter we give the definition of the ω-Borel cohomology class βω(n)
which will be an element of H3

b (SLδ(n,Cω)). We define the ω-Borel invariant βωn (ρω)
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for a representation ρω : Γ→ SL(n,Cω) and we describe some of its properties. In
particular we focus our attention on the case n = 2. We show that if a sequence
of representations ρl : Γ → SL(2,C) induces a representation ρω : Γ → SL(2,Cω)
which determines a reducible action on the asymptotic cone Cω(H3, d/λl, O) with
non-trivial length function, then it holds βω2 (ρω) = 0.

The fourth chapter links the degeneration of natural maps to the vanishing of
the invariant βω2 (ρω). Let ρl : Γ → SL(2,C) be a sequence of non-elementary
representations diverging to an ideal point. Let Fl : H3 → H3 be the sequence of
natural maps associated to ρl, and let Dl be their measurable extensions to the
boundary at infinity. If βl,x = (Dl)∗(µx) is converging to the sum of two Dirac
measures, we prove that βω2 (ρω) = 0, where ρω : Γ→ SL(2,C) is the representation
associated to the sequence ρl.

We conclude the dissertation with some remarks and a short list of open prob-
lems regarding all these themes.
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Chapter 1

Preliminary definitions

1.1 Continuous bounded cohomology

1.1.1 Definitions and topological interpretation

From now until the end of this section we denote by G a locally compact group.
Before giving the definition of the bounded cohomology groups of G we need to give
the following

Definition 1.1.1. A Banach G-module is a pair (π,E), where E is a Banach space
and π : G → Isom(E) is a representation which determines an action of G on E
via linear isometries. We say that a Banach G-module (π,E) is continuous if the
representation π is continuous, that is the action map θπ : G × E → E defined by
θπ(g, v) := π(g)v is continuous with respect to the product topology on G×E. The
maximal continuous submodule of E is defined as

CE := {v ∈ E| lim
g→e
||g.v − v||E = 0}.

The module CE is the largest submodule of E on which the action map is
continuous (to see that the condition above is equivalent to the notion of continuity
for Banach G-module, we refer to [Mon01, Lemma 1.1.1.]).

A morphism between two Banach G-modules is a linear map between two Ba-
nach G-modules. If the map is also G-equivariant we call it a G-morphism.

We will usually refer to a Banach G-module (π,E) by writing only E, omit-
ting the representation π. The Banach G-module of E-valued bounded continuous
functions on G in degree n is given by

Cncb(G,E) := Ccb(G
n+1, E) = {f : Gn+1 → E|f is continuous and ||f ||∞ <∞}

where the supremum norm is defined as

||f ||∞ := sup
g0,...,gn∈G

||f(g0, . . . , gn)||E

and Cncb(G,E) is endowed with the following G-module structure

(g.f)(g0, . . . , gn) := g.f(g−1g0, . . . , g
−1gn)

1



2 CHAPTER 1. PRELIMINARY DEFINITIONS

for every element g ∈ G and every function f ∈ Cncb(G,E) (here the notation g.f
stands for the action of the element g on f). We denote by δn the homogeneous
boundary operator of degree n, namely

δn : Cncb(G,E)→ Cn+1
cb (G,E), δnf(g0, . . . , gn+1) =

n+1∑
i=0

(−1)if(g0, . . . , ĝi, . . . gn+1),

where the notation ĝi indicates that the element gi has been omitted. There is a
natural embedding of E into C0

cb(G,E) given by the constant functions on G. This
allows us to consider the following chain complex of G-modules

0 // E // C0
cb(G,E)

δ0
// C1
cb(G,E)

δ1
// . . .

and thanks to the compatibility of δn with respect to the G-action, we can consider
the submodules of G-invariant vectors

0 // C0
cb(G,E)G

δ0
// C1
cb(G,E)G

δ1
// C2
cb(G,E)G

δ2
// . . .

Like in any other chain complex, we define the set of the nth-bounded continuous
cocycles as

Zncb(G,E)G := ker
(
δn : Cncb(G,E)G → Cn+1

cb (G,E)G
)

and the set of the nth-bounded continuous coboundaries

Bn
cb(G,E)G := im

(
δn−1 : Cn−1

cb (G,E)G → Cncb(G,E)G
)
, and B0

cb(G,E) := 0.

Definition 1.1.2. The continuous bounded cohomology in degree n of G with co-
efficients in E is the space

Hn
cb(G,E) =

Zncb(G,E)G

Bn
cb(G,E)G

,

with the quotient seminorm

||[f ]||∞ := inf ||f ||∞,

where the infimum is taken over all the possible representatives of [f ].

By dropping the condition of boundedness, we can repeat the same construction
above. More precisely, if we consider the G-module of continuous functions on G in
degree n with values in E, namely

Cnc (G,E) := Cc(G
n+1, E) = {f : Gn+1 → E|f is continuous}

and if we keep denoting by δn the homogeneous boundary operator introduced
before, we define the space of homogeneous nth-continuous cocycles

Znc (G,E)G := ker
(
δn : Cnc (G,E)G → Cn+1

c (G,E)G
)
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and the space of nth-continuous coboundaries

Bn
c (G,E)G := im

(
δn−1 : Cn−1

c (G,E)G → Cnc (G,E)G
)
, and B0

c (G,E) := 0.

Definition 1.1.3. The continuous cohomology in degree n of G with coefficients in
E is the space

Hn
c (G,E) =

Znc (G,E)G

Bn
c (G,E)G

.

For every n ≥ 0 there exists an obvious map Cncb(G,E) → Cnc (G,E) which
simply forgets the boundedness of any function in Cncb(G,E). This map is clearly
a G-morphism and commutes with the homogeneous boundary operator, hence it
induces a well-defined map

c : Hn
cb(G,E)→ Hn

c (G,E)

for every n ≥ 0.

Definition 1.1.4. The map

c : Hn
cb(G,E)→ Hn

c (G,E)

is called comparison map.

Any continuous morphism ϕ : G1 → G2 of locally compact groups determines
in a natural way a sequence of maps

ϕ∗ : Cncb(G2, E)→ Cncb(G1, E)

and

ϕ∗ : Cnc (G2, E)→ Cnc (G1, E)

defined in a natural way by considering the pullback of cocycles

ϕ∗(f)(g0, . . . , gn) := f(ϕ(g0), . . . , ϕ(gn)), gi ∈ G1,

where f ∈ Cncb(G2) or f ∈ Cnc (G2). Moreover, we have the following commutative
diagram

H•cb(G2, E)
ϕ∗ //

c

��

H•cb(G1, E)

c

��
H•c (G2, E)

ϕ∗ // H•c (G1, E).

The definitions given so far have a clear interpretation when G is the funda-
mental group of a CW–complex X, G is endowed with the discrete topology and
E = R considered as a trivial Banach G-module, where the norm is the standard
Euclidean one. Indeed, if X admits a contractible universal cover X̃, then X is an
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Eilenberg–MacLane space, that is X = K(G, 1). In particular, the homotopy type
of X depends only on G by Whitehead theorem. In this case it can be shown that

Hn
c (G,R) ∼= Hn(X,R).

In analogous way we can consider the notion of singular bounded cohomology
of X by restricting our attention only to bounded cochains. This leads to the
definition of the singular bounded cohomology groups Hn

b (X,R), firstly introduced
by Gromov in [Gro83]. It is still true that

Hn
cb(G,R) ∼= Hn

b (X,R),

but it can be shown even more. In fact, the bounded cohomology of G is canonically
isometric isomorphic to the bounded cohomology of any countable CW–complex X
such that π1(X) = G (see [Gro83] or [Iva87]).

1.1.2 Functorial approach to continuous bounded cohomology

The notion of continuous bounded cohomology for locally compact group can
be given by following the so-called functorial approach. In order to do this, we need
to introduce some machinery that we are going to use lately.

Definition 1.1.5. A complex (E•, ∂•) of Banach G-modules is a sequence

. . . // En−1 ∂
n−1
// En

∂n // En+1 ∂
n+1
// . . .

of Banach G-modules and G-morphisms such that ∂n+1 ◦ ∂n = 0 for every n ∈ Z.
A complex is said continuous if each En is a continuous Banach G-module. We
usually refer to the complex by considering only E• and omitting ∂•.

We denote by CE• the maximal continuous subcomplex of E• defined as

. . . // CEn−1 ∂
n−1
// CEn ∂n // CEn+1∂

n+1
// . . .

where ∂n is obtained by restricting the boundary operator of the complex E•.
A morphism α• : E• → F • of complexes of G-modules is a sequence of mor-

phisms αn : En → Fn such that the following diagram

. . . // En−1 ∂
n−1
//

αn−1

��

En
∂n //

αn

��

En+1 ∂
n+1
//

αn+1

��

. . .

. . . // Fn−1 ∂
n−1
// Fn

∂n // Fn+1 ∂
n+1
// . . .

commutes. If for each n ∈ Z the map αn is a G-morphism we call α• a G-morphism
of complexes.

Definition 1.1.6. Given any two morphisms of complexes α•, β• : E• → F •, a
homotopy h• from α• to β• is a sequence of morphisms hn : En → Fn−1 such that

hn+1 ◦ ∂n + ∂n−1 ◦ hn = βn − αn,
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for every n ∈ Z. The previous condition is equivalent to require the commutativity
of the following diagram

. . . // En−1 ∂n−1
//

βn−1

��

αn−1

��

En
∂n //

βn

��

αn

��

hn

}}

En+1 ∂n+1
//

βn+1

��

αn+1

��

hn+1

}}

. . .

. . . // Fn−1 ∂n−1
// Fn

∂n // Fn+1 ∂n+1
// . . .

A morphism of complexes α• : E• → F • is a homotopy equivalence if there exists
a morphism β• : F • → E• such that the composition α• ◦ β• is homotopic to the
identity idF whereas the composition β• ◦ α• is homotopic to idE .

A complex E• of Banach G-modules admits a contracting homotopy h• if there
exists a homotopy between the identity idE and the zero morphism of E•. More
precisely, there must exist a sequence of maps hn : En → En−1 such that

hn+1 ◦ ∂n + ∂n−1 ◦ hn = idEn

and ||hn|| ≤ 1 for all n ∈ Z. A complex E• is strong if its maximal continuous
subcomplex CE• admits a contracting homotopy.

Remark 1.1.7. Any definition which appears in Definition 1.1.6 can be strengthened
by adding the requirement of G-equivariance. For instance, a G-homotopy will be
homotopy where each hn is a G-morphism. The same will hold for G-homotopic
G-morphisms and so on.

Definition 1.1.8. The cohomology of the complex E• is the collection of Banach
G-modules defined as

Hn(E•) := ker(∂n)/im(∂n−1),

where each Hn(E•) is equipped with the quotient seminorm.

Definition 1.1.9. A morphism ϕ : E → F of Banach spaces is admissible if
there exists a morphism σ : F → E such that ||σ|| ≤ 1 and ϕ ◦ σ ◦ ϕ = σ.
A Banach G-module E is relatively injective if for every injective admissible G-
morphism i : F → H of continuous Banach G-modules and every G-morphism
α : F → E there is a G-morphism β : H → E satisfying β ◦ i = α and ||β|| ≤ ||α||.

Definition 1.1.10. Let E be a Banach G-module. A resolution of E is an exact
complex (E•, ∂•) of Banach G-modules such that E0 = E and En = 0 for every
n ≤ −1.

0 // E
∂0
// E1 ∂1

// E2 ∂2
// . . .

We say that (E•, ∂•) is a strong resolution if the complex (E•, ∂•) is strong.
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Definition 1.1.11. Let E be a G-module and let E• be a resolution of E which
admits a contracting homotopy. The complex of G-invariants is the complex

0 // (E0)G
∂0
// (E1)G

∂1
// (E2)G // . . .

where (Ei)G := {v ∈ Ei|g.v = v for every g ∈ G}.

After the introduction of all this machinery, we are now ready to use it in our
context to study the notion of continuous bounded cohomology of locally compact
groups. The key point is that we can compute the continuous bounded cohomology
of a locally compact group G with coefficients in E by using the cohomology of
G-invariants of any strong resolution of E by relatively injective G-modules. More
precisely, as shown in [Mon01, Theorem 7.2.1], it holds the following

Theorem 1.1.12 Let G be a locally compact group and let E be any Banach
G-module. Then, E admits a resolution by relatively injective Banach G-modules.
Moreover, for any strong resolution (E•, ∂•) by relatively injective Banach G-modules,
there exists an isomorphism of topological vector space

Hn((E•)G) ∼= Hn
cb(G,E)

for all n ≥ 0.

We should not be surprised that the augmentation of the complex (C•cb(G,E), δ•)
is a particular case of strong resolution of E by relatively injective Banach G-
modules. Hence the definition of continuous bounded cohomology of G with coeffi-
cients in E given in the previous section is nothing more that the cohomology of a
particular resolution of E by the relatively injective Banach G-modules of continu-
ous bounded functions.

It is worth noticing that the isomorphism written above is not a priori isometric.
Even if this fact may result disappointing, it is always true that the isomorphism
does not increase the norm. Moreover, there exist particular resolutions of E for
which the isomorphism is actually isometric. For instance, consider the following
resolution of E by relatively injective Banach G-modules. Let X be a locally com-
pact space on which G acts continuously and properly. Suppose that G\Xn+1 is
paracompact for every n ≥ 0. This happens for example when X is the symmetric
space associated to a Lie group G of non-compact type. Define the complex

0 // E
ε // C0

cb(X,E)
δ0
// C1
cb(X,E)

δ1
// . . .

where Cncb(X,E) is the set of continuous bounded function on (n+1)-tuples of points
in X and δn is the homogeneous boundary operator. This complex is a strong reso-
lution of E by relatively injective Banach G-modules. In particular the cohomology
of the G-invariants C•cb(X,E)G is isomorphic to the continuous bounded cohomol-
ogy of G. Moreover this isomorphism is isometric (see [Mon01, Theorem 7.4.5]).

Even if we have only a strong resolution of E without the condition of relative
injectivity of modules, it is possible to gain information about the bounded coho-
mology of G. If (E•, ∂•) is a strong resolution of E, by [BM02, Proposition 1.5.2],
there exists a canonical map
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cn : Hn((E•)G)→ Hn
cb(G,E)

for all n ≥ 0. For example, we are going now to construct a strong resolution of R,
seen as a trivial Banach G-modules, by studying suitable spaces on which G acts.
More precisely, let X be a measurable space on which G acts measurably, that is
the action map θ : G×X → X is measurable (G is equipped with the σ-algebra of
the Haar measurable sets). We set

B∞(Xn,R) := {f : Xn → R|f is measurable and sup
x∈Xn

|f(x)| <∞},

and we endow it with the structure of Banach G-module given by

(g.f)(x1, . . . , xn) := f(g−1.x1, . . . , g
−1.xn), ||f ||∞ = sup

x∈Xn
|f(x)|

for every g ∈ G and every f ∈ B∞(Xn,R). If δn : B∞(Xn,R)→ B∞(Xn+1,R) is the
standard homogeneous coboundary operator, for n ≥ 1 and δ0 : R → B∞(X,R) is
the inclusion given by constant functions, we get a cochain complex (B∞(X•,R), δ•).
We denote by B∞alt(X

n+1,R) the Banach G-submodule of alternating cochains, that
is the set of elements satisfying

f(xσ(0), . . . , xσ(n)) = sgn(σ)f(x0, . . . , xn),

for every permutation σ ∈ Sn+1.
In [BI02, Proposition 2.1] the authors prove that the complex (B∞(X•,R), δ•)

is a strong resolution of R. In particular it follows

Proposition 1.1.13 There exists a canonical map

c• : H•(B∞(X•+1,R)G)→ H•cb(G,R).

More precisely, every bounded measurable G-invariant cocycle f : Xn+1 → R
determines canonically a class cn[f ] ∈ Hn

cb(G,R). The same result holds for the
subcomplex (B∞alt(X

•,R), δ•) of alternating cochains.

1.1.3 Examples and computations

We are ready to exhibit some elementary examples of computation of continuous
bounded cohomology groups for a locally compact group G. We start giving the
following

Definition 1.1.14. Let G be a locally compact group. Let µ be the left Haar
measure on G and consider F(G) ⊂ L∞(G,µ) a closed subspace containing the
constant functions. A mean on F(G) is a continuous linear form m : F(G) → R
such that

1. m(f) ≥ 0 for every f ∈ F(G) which satisfies f ≥ 0,

2. m(1) = 1,
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where 1 denotes the constant function equal to 1. A mean on F(G) is G-invariant
if m(g.f) = m(f) for every f ∈ F(G) and every g ∈ G.

A locally compact group G is amenable if the space Cb(G,R) admits a G-
invariant mean.

Examples of amenable groups are compact groups and solvable groups. In par-
ticular, the Borel subgroups of a Lie group are amenable. The computation of the
continuous bounded cohomology of any amenable group is particularly easy. Indeed,
it holds the following

Proposition 1.1.15 Let G be an amenable topological group. Then

Hn
cb(G,R) = 0

for all integers n ≥ 1.

A proof of the previous proposition can be found in [Mon01].
For our purposes we are going to compute the continuous bounded cohomology

of the group SL(2,C) in degree 3. We will start by computing the continuous
cohomology in the same degree. When G is a Lie group there is a useful way to
compute its continuous cohomology by studying the G-invariant differential forms
on the associated symmetric space. More precisely, let G be a Lie group of non-
compact type and let K be the maximal compact subgroup of G. Denote by X the
symmetric space associated to G, that is X = G/K. Let Ωn(X) be the space of
n-th differential forms on X and let Ωn(X)G be the subspace of G-invariant forms.

Theorem 1.1.16 There exists a natural isomorphism of groups, called Van Est
isomorphism

iV E : Ωn(X)G → Hn
c (G,R)

for all n ≥ 0.

We will give a short description of the previous isomorphism by following [Dup76].
Given a (n + 1)-tuple of points (x0, . . . , xn) in X, we denote by τ(x0, . . . , xn) the
geodesic simplex whose vertices are the points {x0, . . . , xn} (recall that a geodesic
simplex is defined inductively on the number of vertices). Fix a point x ∈ X in the
corresponding symmetric space. If ω ∈ Ωn(X)G, at the cochains level the isomor-
phism iV E is given by

iV E(ω)(g0, . . . , gn) =

∫
τ(g0x,...,gnx)

ω.

A priori the map defined above may depend on the choice of the basepoint
x, but is can be proved that different choices of the basepoint lead to cohomol-
ogous cocycles. Hence, we get a well-defined element of Hn

c (G,R). This offers
us a way to compute the continuous cohomology of the group SL(2,C). Indeed,
since all the 3-forms of H3 which are invariant under the action of SL(2,C) are
parametrized by R, it is straightforward to prove that the continuous cohomology
group H3

cb(SL(2,C),R) is isomorphic to R. Moreover we can choose as preferred
generator the standard volume form on H3. Additionally, since there exists an up-
per bound on the volume of hyperbolic simplices, this class is actually bounded and
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it determines a non-trivial class in the group H3
cb(SL(2,C),R). The latter group

can be computed in several ways. For example, by studying the cohomology of the
G-invariant associated to the strong resolution of R given by relatively injective
Banach SL(2,C)-modules (L∞((∂∞H3)•), δ•) (see [Mon01, Theorem 7.5.3]). Here
L∞((∂∞H3)n) is the set of real bounded measurable functions on n-tuples of points
in ∂∞H3 endowed with its natural structure of Banach SL(2,C)-module and δn is
the homogeneous boundary operator. As consequence of [Blo00, Theorem 7.4.4],
the cohomology group H3

cb(SL(2,C),R) is one dimensional and it is generated by
the volume function. More precisely, we give the following

Definition 1.1.17. The Bloch–Wigner function is defined as

D2 : C \ {0, 1} → R, D2(z) := =(Li2(z)) + arg(1− z) log |z|

where Li2 is the dilogarithm function.

This function is continuous and it naturally extends on P1(C) by zero. It reaches
its maximum value at z = (1 + i

√
3)/2 and it corresponds to the hyperbolic volume

of a regular ideal hyperbolic tetrahedron. By post-composing D2 with the cross
ratio cr we get a map

Vol : P1(C)4 → R, Vol(x0, . . . , x3) := D2(cr(x0, . . . , x3))

which can be interpreted as the hyperbolic volume of the ideal tetrahedron whose
vertices are given by x0, . . . , x3. Thanks to the invariance of the cross ratio with
respect to the diagonal action of SL(2,C), it is clear that Vol is SL(2,C)-invariant.
Moreover it is measurable with respect to the standard spherical measure on P1(C)
since it is obtained by composition of measurable functions.

Proposition 1.1.18 The set of measurable functions f : P1(C)4 → R which are
invariant under the natural action of SL(2,C) and satisfy the cocycle condition
forms a one-dimensional real vector space generated by the volume function Vol.

From which we deduce

Proposition 1.1.19 The comparison map

c : H3
cb(SL(2,C),R)→ H3

c (SL(2,C),R)

is an isomorphism. Both groups are isomorphic to R and they are generated by the
volume class.

1.2 BCG-natural maps

For more details about the following definitions and constructions we strongly
recomend the reader to see [BCG95], [BCG99] and [Fra09]. Denote by Gp a Lie
group of rank-one and of non-compact type, namely Gp = PO(p, 1), PU(p, 1) or
PSp(p, 1) and let Γ be a discrete group such that Γ\G has finite Haar measure.
In this section we are going to recall the definition of the so-called natural map
associated to a non-elementary representation ρ : Γ → Gm. Before doing this we
need to recall the notion of barycentre of a positive Borel measure µ on ∂∞X

p,
where Xp is the symmetric space associated to the group Gp.
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1.2.1 Barycentre of positive Borel measure

We start by fixing some notation. Let Gp be either PO(p, 1), PU(p, 1) or
PSp(p, 1). Denote by gp = TeGp the tangent space to Gp at the neutral element.
If we endow gp with its natural structure of Lie algebra, we recall that gp admits
an involution Θ : gp → gp which allows us to decompose gp = l ⊕ p, where l and
p are the eigenspaces with respect to 1 and −1 of the involution Θ. Moreover p is
naturally identified to any tangent space of the symmetric space Xp associated to
Gp and since the restriction of the Killing form to p is positive definite, this induces
in a canonical way a Riemannian metric on Xp. If Gp = PO(p, 1) the associated
symmetric space Xp is the real hyperbolic space of order p, that is Hp

R (we will
refer to the real hyperbolic space by omitting the subscript R). In the same way,
if Gp = PU(p, 1) we identify Xp with the complex hyperbolic space of order p,
namely Hp

C. Finally if Gp = PSp(p, 1) the symmetric space Xp coincides with the
quaternionic hyperbolic space Hp

Q of order p. In the real case the sectional curvature
is constant and equal to −1, whereas in the other two cases the sectional curvature
of these spaces lies between −4 and −1. In particular, since Xp is always negatively
curved, we can talk about the visual boundary of Xp and we denote it by ∂∞X

p.
Suppose to fix a point x ∈ Xp as basepoint.

Definition 1.2.1. The Busemann function of Xp normalized at x, is the function

Bx : Xp × ∂∞Xp → R, Bx(y, θ) = lim
t→∞

d(y, c(t))− t,

where c is the geodesic ray starting at x = c(0) and ending at θ.

From now until the end of the section we are going to fix a point in Xp as
basepoint and we are going to denote it by O. Moreover, we will use the same letter
O to denote basepoints in symmetric spaces of different dimension. Let BP (x, θ) be
the Busemann function of Xp normalized at O. Recall that, if we fix θ ∈ ∂∞Xp, the
Busemann function becomes a convex function with respect to the variable x ∈ Xp.
Consider the function BP and let β be a positive probability measure on ∂∞X

p.
We define the map

ϕβ : Xp → R, ϕβ(y) :=

∫
∂∞Xp

BP (y, θ)dβ(θ).

Thanks to the convexity of the Busemann function BP the map ϕβ is stricly
convex, if we assume that β is not the sum of two Dirac measures. Additionally, if
the measure β does not contain any atom of mass greater than or equal to 1/2, the
following condition holds

lim
y→∂∞Xp

ϕβ(y) =∞.

This implies that ϕβ admits a unique minimum in Xp (see [BCG95, Appendix
A]). On the other hand, if β contains an atom of mass at least 1/2, then it is easy
to check that the minimum of ϕβ is −∞ and it is attained when y coincides with
the atom. In both cases it is worth noticing that the point at which ϕβ attains its
minimum does not depend on the choice of the basepoint O used to normalize the
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Busemann function, since a different choice of basepoint would have modified the
function ϕβ by an additive constant.

Definition 1.2.2. Let β be any positive probability measure on the visual boundary
∂∞X

p which is not the sum of two Dirac masses with the same weight. If β contains
an atom x of mass greater than or equal to 1/2 then we define its barycentre as

barB(β) = x,

otherwise we define it as the point

barB(β) = argmin(ϕβ).

The letter B wants to underline the dependence of the construction on the
Busemann functions. The barycentre of β will be a point in X

p
which satisfies the

following properties:

• it is continuous with respect to the weak-∗ topology on the set of probability
measures on ∂∞X

p, that is if βn → β in the weak-∗ topology (and no measure
is the sum of two atoms with equal weight) it holds

lim
n→∞

barB(βn) = barB(β)

• it is Gp-equivariant, indeed for every g ∈ Gp (if β is not the sum of two equal
atoms) we have

barB(g∗β) = g(barB(β)),

• when β does not contain any atom of weight greater than or equal to 1/2, it
is characterized by the following equation∫

∂∞Xp

dBP |(barB(β),y)(·)dβ(y) = 0. (1.1)

1.2.2 The BCG–natural map

As before Gp is a rank-one Lie group. We still denote by Xp the symmetric
space associated to the group Gp. Before starting, fix k = p if Gp = PO(p, 1),
k = 2p if Gp = PU(p, 1) and k = 4p if Gp = PSp(p, 1). The value k is simply the
real dimension of the symmetric space Xp associated to Gp.

Definition 1.2.3. A lattice Γ in a Lie group G is a discrete subgroup such that
µ̄H(Γ\G) < ∞ where µ̄H is the measure induced on the quotient Γ\G by the left
Haar measure.

Let Γ be a lattice of Gp. We say that Γ is real if Gp = PO(p, 1), complex if
Gp = PU(p, 1) or quaternionic if Gp = PSp(p, 1). If Γ is a lattice of Gp without
torsion, then the action via isometries of Γ on Xp is free and properly discontinuous.
In particular the quotient M = Γ\Xp admits a natural structure of Riemannian
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manifold which is locally isometric to Xp and has finite volume. We say that the
lattice Γ is uniform if M is compact, otherwise we refer to Γ as a non-uniform
lattice.

Definition 1.2.4. The critical exponent δ(Γ) associated to the group Γ is the
infimum over all the possible positive real numbers for which the Poincaré series
converges, that is

δ(Γ) := inf{s ∈ [0,∞]|
∑
γ∈Γ

e−sd(x,γx) <∞}

where x is any point of Xp. The definition does not depend on the choice of the
basepoint x used to compute δ(Γ).

When Γ is a non-uniform lattice of Gp, the critical exponent is always finite and
by [Alb97, Theorem 2] we have that δ(Γ) = k + d − 2. The number d is the real
dimension of the algebra on which the hyperbolic space Xp is defined. Thus d = 1
if Γ is real, d = 2 if Γ is complex and d = 4 if Γ is quaternionic. Moreover, we
remind that for s = δ(Γ) the series diverges by [Alb99, Proposition D], that is∑

γ∈Γ

e−δ(Γ)d(x,γx) = +∞.

and for this reason we may refer to Γ as a lattice of divergence type.

Definition 1.2.5. Let M1(Y ) be the set of positive probability measures on a
space Y . The family of Patterson-Sullivan measures associated to a non-uniform
lattice Γ is a family of measures {µx} ∈ M1(∂∞X

p), where x ∈ Xp, which satisfies
the following properties

• the family is Γ-equivariant, that is µγx = γ∗(µx) for every γ ∈ Γ and every
x ∈ Xp,

• For every x, y ∈ Xp it holds

dµx(θ) = e−δ(Γ)By(x,θ)dµy(θ)

where By(x, θ) is the Busemann function normalized at y.

Remark 1.2.6. The construction of the family of Patterson-Sullivan measures has
been generalized by [Alb97, Alb99] to any lattice of a Lie group G of non-compact
type. The support of the measures µx coincides with the Furstenberg boundary
∂FX of the symmetric space X, which can be thought of as the G-orbit of a regular
point ξ ∈ ∂∞X. Since we are considering rank-one Lie group and

codim∂∞X∂FX = rank(X)− 1

we have that ∂∞X = ∂FX in our context.
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Let {µx} be the family of Patterson-Sullivan measures associated to Γ and let
ρ : Γ → Gm be a non-elementary representation. Set µ = µO. Recall that the
action of Γ on (∂∞X

p × ∂∞Xp, µ× µ) is ergodic by [Nic89, Yue96, BM96, Rob00],
for instance. Hence by both [Fra09] and [BM96, Corollary 3.2] there exists a ρ-
equivariant measurable map

D : ∂∞X
p → ∂∞X

m

and two different maps of this type must agree on a full µ-measure set.
Consider the space ∂∞X

p×∂∞Xm, with projections πP and πM over its factors.
For any measure η ∈ M1(∂∞X

p × ∂∞Xm) which satisfies (πP )∗η = µ, there exists
a family of positive probability measures {αz}z∈∂∞Xm on ∂∞X

m such that

∫
∂∞Xp×∂∞Xm

ϕ(z, y)dη(z, y) =

∫
∂∞Xp

(∫
∂∞Xm

ϕ(z, y)dαz(y)
)
dµ(z)

for every ϕ ∈ C∞(∂∞X
p × ∂∞Xm). In this case we say that the measure η disin-

tegrates and we write

η = µ× {αz}.

For any η ∈M1(∂∞X
p × ∂∞Xm) as above we set

ηx = µx × {αz}

and we define

βx := (πM )∗(ηx).

This procedure determines a measure βx which lives inM1(∂∞X
m) for every x.

We want to emphasize that starting from a point x ∈ Xp we end up with a measure
βx ∈ M1(∂∞X

m). In our context, since the representation ρ : Γ → Gm is non-
elementary, we are allowed to define η via the measurable map D by setting αz :=
δD(z). In this way we can recognize βx as D∗(µx). Hence the construction above
is a generalization of the push-foward of measures and η is often called transport
measure.

Since we have a non-elementary representation, βx does not contain any atom
of mass greater than or equal to 1/2. Indeed it holds

Lemma 1.2.7 Let ρ : Γ → Gm be a non-elementary representation and let D :
∂∞X

p → ∂∞X
m be a ρ-equivariant measurable map. Then D(x) 6= D(y) for almost

every (x, y) ∈ ∂∞Xp × ∂∞Xp.

Proof. Define the set A := {(x, y) ∈ ∂∞Xp×∂∞Xp|D(x) = D(y)}. Since the map D
is ρ-equivariant, A is a Γ-invariant measurable subset of ∂∞X

p×∂∞Xp. Recall that
Γ acts ergodically on ∂∞X

p×∂∞Xp with respect to the measure µ×µ. In particular,
the set A must have either null measure or full measure. By contradiction, suppose
that A has full measure. This implies that for almost all x, the slice A(x) := {y ∈
∂∞X

p|D(x) = D(y)} has full measure in ∂∞X
p. The Gm-action preserves the class

of µ, in particular, for any γ ∈ Γ, if A(x) has full measure then so does γA(x). Since
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Γ is countable, this implies that for almost all x, the set AΓ(x) := ∩γ∈Γγ
−1A(x)

has full measure in ∂∞X
p. Fix now a point y ∈ AΓ(x). For any γ ∈ Γ we have

(x, γy) ∈ A. In particular1

D(y) = D(x) = D(γy) = ρ(γ)D(y)

for every γ ∈ Γ, but this would imply that ρ is elementary, which is a contradiction.

By the previous lemma, for all x ∈ Xp, we can define

F (x) := barB(βx)

and this point will lie in Xm. In this way we get a map F : Xp → Xm (see
Figure 1.1).

Figure 1.1: Construction of the natural map F .

Definition 1.2.8. The map F : Xp → Xm is called natural map for the represen-
tation ρ : Γ→ Gm.

Equation (1.1) becomes∫
∂∞Xm

dBM |(F (x),y)(·)dβx(y) = 0. (1.2)

and since βx = D∗(µx), it can be rewritten as∫
∂∞Xp

dBM |(F (x),D(z))(·)dµx(z) = 0. (1.3)

The natural map is smooth and satisfies the following properties:

• Recall that we denoted by k the real dimension of the symmetric space Xp.
Define the k-Jacobian of F as

Jack(F )(x) := max
u1,...,uk∈TxXp

||DxF (u1) ∧ . . . ∧DxF (uk)||Xm

1We use γ = id in the first equality and the last follows by equivariance of D.
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where {u1, . . . , uk} is an orthonormal frame of the tangent space TxX
p with

respect to the standard metric induced by gXp and the norm || · ||Xm is the
norm on TFn(x)X

m induced by gXm .2 We have Jack(F ) ≤ 1 and the equality
holds at x if and only if DxF : TxX

p → TF (x)X
m is an isometry.

• The map F is ρ-equivariant, that is F (γx) = ρ(γ)F (x).

• By differentiating (1.3), one gets that for all x ∈ Xp, u ∈ TxXp, v ∈ TF (x)X
m

it holds

∫
∂∞Xp

∇dBM |(F (x),D(z))(DxF (u), v)dµx(z) =

δ(Γ)

∫
∂∞Xp

dBM |(F (x),D(z))(v)dBP |(x,z)(u)dµx(z)

where ∇ is the Levi–Civita connection on Xm.

1.2.3 Volume of representations and ε-natural maps

Let Γ be a non-uniform lattice of Gp without torsion. If we denote by M = Γ\Xp

we obtain a complete manifold of finite volume which is locally symmetric Xp

and not compact. Moreover, as a consequence of Margulis lemma, it admits a
decomposition

M = N ∪
h⋃
i=1

Ci

where N is a compact core of finite volume and each Ci is a cuspidal neighborhood
which can be seen as Ni × (0,∞) where π1(Ni) is a discrete nilpotent parabolic
subgroup of Gp (see [BGS85] or [Bow95]).

Figure 1.2: Decomposition of the manifold M .

2Actually, since here we used the maximal dimension k to define it, the k-Jacobian does not
depend on the orthonormal frame used to compute it, since for two different orthonormal k-frames
we have u′1 ∧ . . . ∧ u′k = ±u1 ∧ . . . ∧ uk.
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As before, denote by k the real dimension of Xp. Let ρ : Γ → Gm be a repre-
sentation, with m ≥ p, and let D : Xp → Xm be a smooth ρ-equivariant map. By
following the definition of [FK06] we want to define the volume Vol(D). Let gXm be
the natural metric on Xm. The pullback of gXm along D defines in a natural way
a pseudo-metric on Xp, which can be possibly degenerate, and hence it defines a
natural k-form given by ω̃D =

√
|detD∗gXm |. We remark that, in general, ω̃D has

only C0-regularity. The equivariance of D with respect to ρ implies that the form
ω̃D is Γ-invariant and hence it determines a k-form on M . Denote this form by ωD.

Definition 1.2.9. Let ρ : Γ → Gm be a representation and let D : Xp → Xm be
any smooth ρ-equivariant map. The volume of D is defined as

Vol(D) :=

∫
M
ωD

We keep denoting by D : Xp → Xm a generic smooth ρ-equivariant map. For
each cuspidal neighborhood Ci = Ni× (0,∞), we know that π1(Ni) is parabolic, so
it fixes a unique point in ∂∞X

p. Suppose ci = Fix(π1Ni) and let r(t) be a geodesic
ray ending at ci. We say that D is a properly ending map if all the limit points of
D(r(t)) lie either in Fix(ρ(π1Ni)) or in a finite union of ρ(π1Ni)-invariant geodesics.

Definition 1.2.10. Given a representation ρ : Γ→ Gm, we define its volume as

Vol(ρ) := inf{Vol(D)| D is smooth, ρ-equivariant and properly ending}.

When ρ is non-elementary, a priori the BCG–natural map F : Xp → Xm as-
sociated to ρ is not a properly ending map, hence we cannot compare its volume
with the volume of representation ρ. However, by adapting the proofs contained
in [FK06], for any ε > 0 it is possible to construct a family of smooth functions
F ε : Xp → Xm that C1-converges to F as ε → 0 and such that F ε is a properly
ending map for every ε > 0.

Definition 1.2.11. For any ε > 0 there exists a map F ε : Xp → Xm called
ε-natural map associated to ρ which satisfies the following properties

• F ε is smooth and ρ-equivariant,

• at every point of Xp we have Jack(F
ε) ≤ 1 + ε,

• for every x ∈ Xp it holds limε→0 F
ε(x) = F (x) and limε→0DxF

ε = DxF ,

• F ε is a properly ending map.

Remark 1.2.12. The properly ending property of F ε is guaranteed by the fact that
π1(Ni) is parabolic and stabilizes each horosphere through the fixed point ci. We
want to underline that all the properties of F ε and F descends directly from the
properties of the Busemann functions. Moreover, since F ε is a properly ending map,
it holds trivially

Vol(ρ) ≤
∫
M

√
|det((F ε)∗gXm)|.

We are going to use the previous estimate lately.
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The following theorem states the rigidity of volume function.

Theorem 1.2.13 Let Γ be a non-uniform lattice in Gp without torsion and let
ρ : Γ→ Gm be a representation, where m ≥ p. Then Vol(ρ) ≤ Vol(M) and equality
holds if and only if the representation ρ is a discrete and faithful representation of
Γ into Gm. For real lattices we need to assume p ≥ 3, whereas for both complex and
quaternionic lattices we fix p ≥ 2.

For real lattices, the previous result corresponds to [FK06, Theorem 1.1], whereas
for complex lattices we refer either to [BI] or to [KK12]. The statement regarding
the quaternionic case can be considered as a different version of the rigidity result
exposed in [Cor92].

1.3 Compactification of character varieties

1.3.1 Introduction to R-trees and Euclidean buildings

This section is devoted to briefly recall some elementary definitions of the theory
about real trees and Euclidean buildings. For a more detailed description see [Chi01]
and [KL97].

Definition 1.3.1. A real tree (T , d) is a metric space which satisfies the following
properties:

• Any two points x, y ∈ T are the endpoints of a unique closed segment, i.e. of
an isometric embedding of a closed interval; we will denote this segment by
[x, y].

• If two segments have a common endpoint their intersection is a segment.

• If the intersection of two segments [x, y] ∩ [y, z] is the only point {y}, then
[x, y] ∪ [y, z] is exactly the segment [x, z].

An isometry of T is a bijection g : T → T such that d(gx, gy) = d(x, y) for
every pair of points x, y ∈ T .

It is possible to subdivide isometries of a real tree into two categories: elliptic
isometries and hyperbolic isometries. In order to do this, let g be a generic isometry
of T . Given a point x ∈ T , the intersection [x, gx] ∩ [gx, g2x] is still a segment
thanks to the properties of T . We denote this segment by [gy, gx], where y is a
suitable point in [x, gx]. We will classify g comparing the two distances d(y, x) and
d(x, gx). We are going to distinguish three cases. Suppose 2d(x, y) ≥ d(x, gx). If
2d(y, x) = d(x, gx), then y is the midpoint of [x, gx] and it is fixed by g. Otherwise
2d(x, y) > d(x, gx) and the segment [y, gy] is mapped to itself but g reverses the
order. Moreover g fixes the midpoint of the segment [x, gx].

Finally assume 2d(x, y) < d(x, gx). In this case y and gy are distinct, y lies in
the segment [x, gy] and gy lies in [y, gx], respectively. The closed segments [y, gy]
and [gy, g2y] intersect only at gy, so their union is exactly [y, g2y]. By applying
an inductive reasoning, we consider A :=

⋃
n∈Z[gny, gn+1y] which is an isometric

embedding of a line and we observe that g acts on A as a translation of length
d(y, gy).
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Definition 1.3.2. In the first two cases, that means 2d(x, y) ≥ d(x, gx), we say
that g is an elliptic isometry, otherwise we call g an hyperbolic isometry and we call
A the axis of g.

Figure 1.3: Elliptic isometry. Figure 1.4: Hyperbolic isometry.

Definition 1.3.3. Given an isometry g of T , the length of g is given by

l(g) := min
x∈T

d(x, gx).

We define the minimal locus associated to g as

Min(g) = {x ∈ T |l(g) = d(x, gx)}.

The minimum which appears in the definition above always exists since we
are studying real trees. For more general trees, called Λ-trees, we should have
substituted the minimum with an infimum (see [Chi01, Chapter 3]).

If g is an elliptic isometry the length is trivial and l(g) = 0. The minimal locus
of g coincide with the set of points fixed by g. If g is an hyperbolic isometry, the
length is strictly positive. In this case the minimal locus of g coincides with its axis.
However, in both cases, for any x ∈ T it holds

d(x, gx) = l(g) + 2d(x,Min(g)).

We are going now to analyze isometric actions of a finitely generated group Γ on
a real tree T . Recall that since T is a real tree, it is also a CAT (0)–space. Hence
it makes sense to refer to the boundary at infinity of T . In this particular case
the boundary ∂∞T can be seen as the limit of the inverse sistem π0(T \K) where
K ranges all over the possible closed and bounded sets of T . The elements of the
boundary ∂∞T are called ends.

Definition 1.3.4. Let Γ be a group acting on a real tree T . We say that the action
of Γ is reducible if one of the following holds

• every elements of Γ fixes a point x ∈ T ;

• there exists an end ε ∈ ∂∞T fixed by Γ;
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• there is an invariant line L for the action of Γ.

We call an action semisimple if it is irreducible or it fixes a point or it admits an
invariant line. We say that the action is minimal if any subtree T ′ ⊂ T stabilized
by Γ is equal to T .

Fix Γ a finitely generated group and suppose that Γ acts via isometries on a real
tree T . By applying the notion of length of an isometry to each element of Γ we
get the notion of length of an isometric action.

Definition 1.3.5. Let Γ be a finitely generated group which acts on a real tree T
by isometries. The length function of this action is given by

L : Γ→ R+, L(γ) := l(γ).

Remark 1.3.6. The length function L is a class function, that means it is invariant
under conjugation by elements of Γ.

A first application of the notion of length function is the possibility to recognize
isometric actions on T which admits a global fixed point. More precisely it holds

Proposition 1.3.7 Let Γ be a finitely generated group which acts isometrically on
a real tree T . The action admits a global fixed point if and only if the associated
translation length is trivial, that is L(γ) = 0 for every γ ∈ Γ.

A proof of the previous proposition can be found for instance in [Kap01, Corol-
lary 10.6].

Length functions are useful also to recognize reducible action. Indeed, we can
distinguish reducible actions into abelian actions, which satisfy

L(γ1γ2) ≤ L(γ1) + L(γ2)

for every γ1, γ2 ∈ Γ, and dihedral actions, for which the previous condition is satisfied
only by hyperbolic isometries. For abelian actions the inequality above implies that
for every γ1, γ2 ∈ Γ, their minimal loci intersect, that is

Min(γ1) ∩Min(γ2) 6= ∅.

The same happens also for dihedral actions if we restrict only to hyperbolic
isometries.

On the other hand, if we restrict our attention to irreducible actions, then we
are able to characterize them by studying their associated length functions. Recall
that every semi-simple action without a global fixed point admit a minimal subtree
(it is simply the union of the minimal loci associated to the hyperbolic elements of
Γ).

Proposition 1.3.8 Suppose to have two different semi-simple actions of Γ on two
trees T , T ′. If these actions have the same length functions, that is L(γ) = L′(γ) for
every γ ∈ Γ, then there is a Γ-equivariant isometry between their respective minimal
subtrees Tmin and T ′min.

See [CM87, Theorem 3.7] for a proof of the previous proposition.
A generalization of real trees is given by Euclidean buildings of type An. We are
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going to expose their definition and their properties following the work of [KL97].
Before doing this we recall that the symmetric group Sn+1 acts naturally on Rn+1

by permuting coordinates. If we denote by

Π := {(x0, . . . , xn) ∈ Rn+1|
n∑
i=0

xi = 0},

then Π is isomorphic to Rn and the action of Sn+1 will still permute coordinates.
We call the set

C := {(x0, . . . , xn) ∈ Π|x0 ≥ x1 ≥ . . . ≥ xn}

a closed Weyl chamber. Any other closed Weyl chamber in Π is obtained by the
action of Sn+1.

Definition 1.3.9. Endow Rn with the Euclidean metric. Let X be a metric space
and let A be a family of isometric embeddings of Rn into X called marked apart-
ments. We call apartments the family of images through the embeddings of A . We
call Weyl chambers of X the collection of images through the marked apartments of
A into X of the Weyl chambers of Rn. The set A defines a structure of Euclidean
building of type An if the following properties are satisfied

• The system A is invariant under precomposition of an element of Ŵn =
RnoSn+1 seen as a subgroup of Isom(Rn). More precisely, given an injection
i : Rn → X with i ∈ A and an element g ∈ Ŵn, it must hold i ◦ g ∈ A .

• Let i, i′ ∈ A . The set I = i−1(i′(Rn)) is a closed convex subset of Rn and
the restriction of (i′)−1 ◦ i to I coincides with the restriction of an element
g ∈ Ŵn.

• Given two points x, x′ ∈ X, there exists at least an apartment passing through
them.

• If C1 and C2 are two Weyl chambers of X, there exists an apartment A such
that the intersections A ∩ C1 and A ∩ C2 still contain Weyl chambers.

• If A1, A2 and A3 are apartments which intersect pairwise in half spaces, then
A1 ∩A2 ∩A3 6= ∅ (see Figure 1.5).

An automorphism of X is an isometry g : X → X which preserves the set A
of marked apartments. As done previously, we can distinguish different types of
isometries.

Definition 1.3.10. Let X be a Euclidean building and let g be an automorphism.
We define the translation length of g as

l(g) = inf
x∈X

dX(x, gx).

If the infimum is attained we distinguish two cases. When the length is equal
to zero, we say that g is an elliptic isometry, otherwise the translation length is
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Figure 1.5: Configuration not allowed in a Euclidean building.

strictly positive and we call g a hyperbolic isometry. If the infimum is not attained
we say that g is a parabolic isometry. The minimal locus associated to an isometry
g is defined as

Min(g) = {x ∈ X|l(g) = dX(x, gx)}.

Both for elliptic and hyperbolic isometries the minimal locus is not-empty,
whereas for parabolic ones is empty.

As in the case of real trees, isometric actions of a finitely generated group Γ on a
Euclidean building of type An admit the notion of translation length function asso-
ciated to them. However, there exists also a suitable generalization called vectorial
length function. We are going to describe briefly this concept. Let X be a complete
Euclidean building of type An. As before, we keep denoting by

C := {(x0, . . . , xn) ∈ Rn+1|
n∑
i=0

xi = 0, x0 ≥ x1 ≥ . . . ≥ xn}

the fundamental closed Weyl chamber. Since the action of the symmetric group is
transitive on the Weyl chambers of Rn, given a vector v ∈ Π we can always find a
vector Θ(v) such that Θ(v) ∈ C and σ(Θ(v)) = v, where σ is a suitable element of
the symmetric group Sn+1. We say that Θ(v) is the type of the vector v into C (see
Figure 1.6).

Now recall that given any pair of points x, y ∈ X, by the axioms we know that
there exists an apartment A containing both of them. Let i : Rn → X be the
embedding whose image is A.

Definition 1.3.11. Let x, y be two points in A. The vectorial type δ(x, y) of
the segment [x, y] is the type of the vector whose endpoints are the points a, b ∈
Rn such that i(a) = x and i(b) = y. Since the type of a segment is preserved
by automorphisms, this notion is independent of the choice of the apartment A
containing both x and y and hence it is well-defined.
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Figure 1.6: Type of a vector v.

The translation vector of an isometry g is the vectorial type of the segment
[x, gx] for any point x ∈ Min(g), that is

v(g) := δ(x, gx), x ∈ Min(g).

The definition of v(g) is independent of the choice of x ∈ Min(g). Given a
finitely generated group acting by automorphisms onX, the vectorial length function
associated to the action is defined as

VX : Γ→ C, VX(γ) := v(γ).

Euclidean buildings appear in several contexts, such as in the study of sequences
of metric spaces. For instance, a way to obtain them is via the asymptotic cone
construction. We are going to briefly recall this notion. We first introduce the
concept of ultrafilter.

Definition 1.3.12. An ultrafilter ω on a set X is a family of subsets of X which
satisfies:

• The empty set is not contained in ω, that is ∅ /∈ ω.

• If A ⊂ B and A ∈ ω, then B ∈ ω.

• Given a collection A1, . . . An such that Ai ∈ ω for every i = 1, . . . , n, then
A1 ∩ . . . ∩An ∈ ω.

• Given A1, . . . An such that A1 t . . . t An = X, there exists exactly one i0 ∈
{1, . . . , n} so that Ai0 ∈ ω.

An ultrafilter is principal and centered at x ∈ X if for every set A ∈ ω it holds
x ∈ A. Otherwise we say that the ultrafilter is non-principal.

The importance of ultrafilters relies on their power to force convergence of se-
quences of points in a topological space X by selecting a suitable limit point. For
the sake of clarity we first need to introduce the following
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Definition 1.3.13. Let X be a topological space and let (xk)k∈N be a sequence of
points in X. Fix an ultrafilter ω on the set of natural numbers N. We say that
the sequence ω-converges to x0 if for every open neighborhood U of x0 we have
{k ∈ N : xk ∈ U} ∈ ω.

A priori a sequence may admit no limit or several limits if the topology of
the space X does not have good properties. To guarantee the existence and the
uniqueness of the limit we need a compact Hausdorff space. Indeed, it holds

Proposition 1.3.14 Let X be a topological space which is compact and Hausdorff.
Then, for any ultrafilter ω on N and any sequence (xk)k∈N of points in X, there
exists a unique point x0 ∈ X such that

ω- lim
k→∞

xk = x0.

Another remarkable property of ultrafilters is the compatibility with continuous
functions between topological spaces.

Proposition 1.3.15 Let f : X → Y be a continuous function between two compact
Hausdorff spaces. Let ω be an ultrafilter on N. For any sequence (xk)k∈N of points
in X we have

ω- lim
k→∞

f(xk) = f(ω- lim
k→∞

xk).

We are now ready to define the asymptotic cone of a metric space. Let (X, d)
be a metric space. Fix an ultrafilter ω on N and a real divergent sequence (λk)k∈N
such that λk ≥ 1. Additionally, let (∗k)k∈N be a sequence of basepoints in X. We
consider

Cω(X, d/λk, ∗k) := {(xk) ∈ XN|∃C > 0, d(xk, ∗k) < Cλk}/ ∼ω
where two sequences (xk)k∈N and (x′k)k∈N are identified by the relation ∼ω if and
only if ω-limk→∞ d(xk, x

′
k)/λk = 0. If we denote by xω the equivalence class of the

sequence (xk)k∈N, we can endow the quotient space with a metric structure given
by

dω(xω, x
′
ω) = ω- lim

k→∞
d(xk, x

′
k)/λk

for every xω, x
′
ω ∈ Cω(X, d/λk, ∗k).

Definition 1.3.16. The metric space (Cω(X, d/λk, ∗k), dω) is the asymptotic cone
of the metric space (X, d) with respect to the ultrafilter ω, the scaling sequence
(λk)k∈N and the sequence of basepoints (∗k)k∈N.

Euclidean buildings appear as asymptotic cones of the symmetric spaces associ-
ated to SL(n,C), by virtue of the following construction. Let Xn be the symmetric
space of non-compact type associated to the group SL(n,C). Let (∗k)k∈N be a se-
quence of basepoints of Xn, let ω be a non-principal ultrafilter on N and let (λk)k∈N
be a real divergent sequence. Fix a maximal flat in Xn, which will be a copy of
Rn−1, the extended Weyl group Ŵn and the closed Weyl chamber previously intro-
duced. A sequence of embeddings ik : Rn−1 → Xn is ω-bounded if for every k ∈ N
it holds d(∗k, ik(0)) < Cλk. In this case we have a map



24 CHAPTER 1. PRELIMINARY DEFINITIONS

iω : Rn−1 → Cω(Xn, d/λk, ∗k), iω(v) = [ik(λkv)]

which is an isometric embedding of Rn−1. Denote by Aω the set of all the em-
beddings iω obtained in this way. As a consequence of [KL97, Theorem 5.2.1.] we
have

Theorem 1.3.17 Let Xn be the symmetric space associated to SL(n,C). For any
choice of the sequence (∗k)k∈N of basepoints, any diverging sequence (λk)k∈N and
any non-principal ultrafilter ω on N, the asymptotic cone Cω(Xn, d/λk, ∗k) with the
set of embeddings Aω is a complete Euclidean building of type An−1.

1.3.2 The field Cω

For more details regarding the definitions and the results contained in this sec-
tion we refer to [Par12, Section 3.3]. As in the previous section let ω be a non-
principal ultrafilter on N and let (λk)k∈N be a real sequence that diverges to infinity
and such that λk ≥ 1 for every k. We define

Cω = {(ak) ∈ CN|∃C > 0,∀k |ak|
1
λk < C}/ ∼ω

where (ak)k∈N ∼ω (bk)k∈N if and only if ω-limk→∞ |ak − bk|
1
λk = 0. It is easy to

verify that the operations of pointwise sum and pointwise multiplication defined
over CN are compatible with the equivalence relation ∼ω. Thus they define two
operations of sum and multiplication over Cω, which make Cω a field. There is a
natural field embedding of C into Cω given by the constant sequences.

If we denote by aω the equivalence class [(ak)] of the sequence (ak)k∈N, the
function

|aω|ω := ω- lim
k→∞

|ak|
1
λk

is an ultrametric absolute value on Cω, that is it satisfies

|aω + bω|ω ≤ max{|aω|ω, |bω|ω}

for every pair aω, bω ∈ Cω. It is worth noticing the elements of C different from 0,
seen as the subfield of constant sequences, have all norm equal to 1.

Definition 1.3.18. The ultrametric field (Cω, | · |ω) is called the asymptotic cone
of (C, | · |) with respect to the scaling sequence (λk)k∈N and the ultrafilter ω.

If we consider the distance induced by the absolute value | · |ω and we endow Cω
with the metric topology, we obtain a topological field which is complete (see [Par12,
Remark 3.10]), but it is not locally compact.

Proposition 1.3.19 The field Cω is not locally compact with respect to the metric
topology induced by the absolute value | · |ω.

Proof. Since Cω is a normed space, local compactness can be checked by verifying
the compactness of the unit closed ball. Hence, it suffices to show that the closed
ball
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B1(0) := {aω ∈ Cω||aω|ω ≤ 1}

is not compact. We are going to show that it is not sequentially compact. Consider
the sequence (n)n∈N where each element n has to be thought of as an element of Cω
thanks to the standard embedding given by constant sequences. Given two different
elements n and m it is clear that their distance in Cω is always equal to 1, indeed

|n−m|ω = ω- lim
k→∞

|n−m|
1
λk = 1.

Hence it cannot exist a subsequence of (n)n∈N which converges, as desired.

The construction exposed above can be repeated, rather than for a field, for
every m-dimensional normed vector space (V, || · ||) over C. More precisely, we
define

Vω := {(vk) ∈ V N|∃C > 0,∀k ||vk||
1
λk < C}/ ∼ω,

where (vk)k∈N and (uk)k∈N are equivalent if and only if ω-limk→∞ ||uk− vk||
1
λk = 0.

Let vω be the equivalence class determined by (vk)k∈N. It is possible to endow Vω
with a structure of m-dimensional Cω-vector space by considering the operations
induced by pointwise sum and by pointwise scalar multiplication. As before, we
have a well-defined norm || · ||ω given by

||vω||ω := ω- lim
k→∞

||vk||
1
λk .

Definition 1.3.20. The Cω-vector space (Vω, || · ||ω) is the asymptotic cone of the
vector space (V, ||·||) with respect to the scaling sequence (λk)k∈N and the ultrafilter
ω.

We now focus our attention on the set of complex square matrices of order n,
namely M(n,C). If we endow Cn with the standard Hermitian stucture, we can
choose as norm over M(n,C) the norm which comes from thinking of a matrix as
an operator between Hermitian spaces. Hence we can apply the construction above
to the normed vector space (M(n,C), || · ||). In this particular case we are able
to enrich the structure of M(n,C)ω by considering a multiplication. Indeed, the
classic multiplication rows-by-columns is compatible with ∼ω and hence it defines
a structure of Cω-algebra on M(n,C)ω.

Definition 1.3.21. The normed algebra (M(n,C)ω, || · ||ω) is called the asymptotic
cone of the algebra (M(n,C), || · ||) with respect to the scaling sequence (λk)k∈N
and the ultrafilter ω.

Definition 1.3.22. A sequence (gk) ∈ GL(n,C)N is ω-bounded if

∃C > 0 : ∀k ||gk||
1
λk , ||g−1

k ||
1
λk < C.

The previous condition implies that the sequence (gk)k∈N defines an element
of M(n,C)ω which admits a multiplicative inverse. We denote by GL(n,C)ω the
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set of all the invertible elements of M(n,C)ω. This is a group with respect to the
multiplication rows-by-columns. We denote by SL(n,C)ω the subgroup

SL(n,C)ω := {gω ∈ GL(n,C)ω|∃(gk)k∈N ∈ gω : ∀k det(gk) = 1}.

Since we can also consider the normed algebra (M(n,Cω), || · ||∞), where || · ||∞
is the standard supremum norm with respect to | · |ω, it is natural to ask whether
this algebra is isomorphic to M(n,C)ω as normed algebra. The answer is given
by [Par12, Corollary 3.18], which states that there is a natural isomorphism as
normed Cω-algebras between M(n,C)ω and M(n,Cω). Moreover this isomorphism
induces an isomorphism of groups between SL(n,C)ω and SL(n,Cω).

Remark 1.3.23. Let Xn be the symmetric space associated to SL(n,C). Fix a
point O of Xn as basepoint. Let (gk)k∈N be any representative of an element gω ∈
SL(n,C)ω. If for every k ∈ N there exists C > 0 such that ||gk||, ||g−1

k || < Cλk , then
it follows that d(gk(O), O) < Cλk for every k ∈ N. This allows to define a natural
action of SL(n,C)ω via automorphisms on the asymptotic cone Cω(Xn, d/λk, O),
which is well-defined by [Par12, Proposition 3.20].

We conclude this section by introducing the space P1(C)ω. Denote by O the
origin of the Poincaré disk model for H3. It should be clear that there exists a
natural surjection

π : P1(C)N → ∂∞Cω(H3, d/λk, O)

defined as it follows. Thinking of P1(C) as the boundary at infinity of H3, a sequence
of points (ξk) ∈ P1(C)N determines in a unique way a sequence of geodesic rays
(ck)k∈N starting from O and ending at (ξk)k∈N. These rays allows us to define a
geodesic ray cω : [0,∞) → Cω(H3, d/λk, O) given by cω(t) := [ck(λkt)]. Hence, we
can define π((ξk)k∈N) := cω(∞). The space P1(C)ω will be the quotient of P1(C)N

by the equivalence relation induced by the surjection π. In this way P1(C)ω is
clearly identified with boundary at infinity of Cω(H3, d/λk, O) and hence inherits
in a natural way an action of SL(2,C)ω given by [hk].[ξk] := [hk.ξk]. This action
is well-defined because the action of SL(2,C)ω on Cω(H3, d/λk, O) is well-defined
(see Remark 1.3.23). Moreover, it is possible to identify the space P1(C)ω with the
projective line P1(Cω). Since the absolute value | · |ω is ultrametric, the field Cω can
be endowed with a natural valuation vω defined by

vω : Cω → R, vω(aω) := − log |aω|ω.

In particular it makes sense to refer to the Bass–Serre tree ∆BS(SL(2,Cω))
associated to the group SL(2,Cω). We refer to [Ota15, Section 5] for a detailed
description of the construction of the tree ∆BS(SL(2,Cω)).

Proposition 1.3.24 There exists a natural isomorphism

Φ : Cω(H3, d/λk, O)→ ∆BS(SL(2,Cω))

which is isometric and equivariant with respect to the actions of SL(2,C)ω and
SL(2,Cω), respectively.
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For a proof of the previous proposition see [Par12, Proposition 3.21]. Recalling
that the boundary at infinity of ∆BS(SL(2,Cω)) coincides with P1(Cω), thanks to
Proposition 1.3.24 the space P1(C)ω can be indentified also with P1(Cω) and this
identification is compatible with the actions of SL(2,C)ω and SL(2,Cω), respec-
tively.

Remark 1.3.25. Let V be a n-dimensional vector space over Cω. Denote by || · || a
norm on V . A basis B = {v1

ω, . . . , v
n
ω} is adapted to the norm || · || if the following

holds

||
n∑
i=1

aiωv
i
ω|| = max

i=1,...,n
|aiω|ω||viω||, for every a1

ω, . . . , a
n
ω ∈ Cω.

A norm which admits an adapted basis is called adaptable. A good norm is
an adaptable norm which is ultrametric. The volume of a good norm is given by∏n
i=1 ||viω|| for any adapted basis B = {v1

ω, . . . , v
n
ω} (see [GI63]). The Goldman–

Iwahori space N 1(V ) is the space of all the possible good norms of volume 1. This
space has a natural structure of affine Euclidean building of type An−1, as proved
in [Par00]. Moreover, the group SL(n,Cω) acts isometrically on it by gω.||vω|| :=
||g−1

ω vω||, for every gω ∈ SL(n,Cω) and every vω ∈ V .
We keep denoting by Xn the symmetric space associated to SL(n,C) and we fix a

basepoint O ∈ Xn. In [Par12, Proposition 3.21] the author proves that there exists
an isometric isomorphism between the asymptotic cone Cω(Xn, d/λk, O) and the
Goldman–Iwahori space N 1(Cnω) and the isomorphism is equivariant with respect
to the actions of SL(n,C)ω and SL(n,Cω), respectively.

1.3.3 The Morgan–Shalen/Parreau compactification

Let Γ be a finitely generated group and let S = {γ1, . . . , γs} be a generating set.
The representation variety is the algebraic variety defined by

Hom(Γ, SL(n,C)) = {ρ : Γ→ SL(n,C)|ρ is a morphism of groups} ⊂ Csn
2
.

Definition 1.3.26. The character variety X(Γ, SL(n,C)) is the GIT -quotient of
the representation variety Hom(Γ, SL(n,C)) by the conjugation action of SL(n,C),
that is

X(Γ, SL(n,C)) = Spec(C[Hom(Γ, SL(n,C))]SL(n,C)),

where C[Hom(Γ, SL(n,C))] denotes the algebra of regular functions on Hom(Γ, SL(n,C)).

Given any affine algebraic variety V , J.W. Morgan and P.B. Shalen proposed
in [MS84] a new way to compactify V based on the choice of a finite or countable
family F of generating functions for the algebra of regular functions C[V ]. More
precisely, consider F as above. Set

P(RF+) = ([0,∞)F \ {0})/(0,∞)

where two distinct element (sf )f∈F and (tf )f∈F are identified if and only if there
exists α ∈ (0,∞) such that sf = αtf for every f ∈ F . We define the following map
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ϕF : V → P(RF+), ϕF (x) = [log(|f(x)|+ 2)]f∈F ,

whose image into P(RF+) is relatively compact by [MS84, Proposition I.3.1]. If we
denote by V + the one-point compactification of V , by considering the closure of the
image of the function

ΦF : V → V + × P(RF+), ΦF (x) = (x, ϕF (x)),

we obtain a compactification of V which depends only the choice of the generating
family F .

Definition 1.3.27. The F-compactification of the variety V is given by

V
F

= im(ΦF )
V +×P(RF+)

.

The set of F-ideal points of the compactification is defined as

BF (V ) := V
F \ V.

Now we focus our attention on V = X(Γ, SL(2,C)). Denote by ν(Γ) the set of
conjugacy classes of Γ and set C = {Trγ}γ∈ν(Γ). The regular function Trγ is defined
as

Trγ : X(Γ, SL(2,C))→ C, Trγ(ρ) := Tr(ρ(γ)).

Since C is a countable generating family for the algebra C[X(Γ, SL(2,C))], as
shown in [CS83], we can formulate the following

Definition 1.3.28. The Morgan–Shalen compactification of the character variety
X(Γ, SL(2,C)) is its C -compactification, that is

X(Γ, SL(2,C))
MS

:= X(Γ, SL(2,C))
C
.

The interest in studying the Morgan–Shalen compactification of the character
variety X(Γ, SL(2,C)) relies on the possibilty to interpret each ideal point of the
set BC (X(Γ, SL(2,C))) as an isometric Γ-action on a suitable real tree. More
precisely, let S = {γ1, . . . , γs} be a generating set for Γ. Given a representation
ρ : Γ→ SL(2,C), define the function

dρ : H3 → R, dρ(x) :=

√√√√ s∑
i=1

dH3(ρ(γi)x, x)2

and set

λ(ρ) := inf
x∈H3

dρ(x).

We call λ(ρ) the minimal displacement associated to ρ. The importance of the
minimal displacement is due to the following fact. Given a sequence of representa-
tions ρk : Γ → SL(2,C) define λk := λ(ρk). If λk → ∞, then the sequence ρk is
diverging in the character variety X(Γ, SL(2,C)).
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Theorem 1.3.29 Let Γ be a finitely generated group and suppose that a sequence
of representations ρk : Γ → SL(2,C) satisfies λk → ∞. Hence there exists a real
tree T on which Γ acts isometrically and such that

lim
k→∞

log(|Trγ(ρk)|+ 2)

λk
= LT (γ)

for every element γ ∈ Γ. Here LT is the length function associated to the action of
Γ on T . Moreover the action does not admit a global fixed point, that is the length
L is not identically zero.

If the previous equation holds for every γ ∈ Γ, we say that the sequence ρk con-
verges projectively to the action of Γ on T . This convergence can be interpreted as a
convergence of translation length functions. More precisely, given a representation
ρ : Γ→ SL(2,C), we define the translation length of an element γ ∈ Γ as

l(ρ(γ)) := inf
x∈H3

dH3(ρ(γ)x, x)

which allows us to define a function

Lρ : Γ→ R, Lρ(γ) := l(ρ(γ)).

The function Lρ is the translation length function associated to ρ. Since when
|Tr(ρ(γ))| ≥ 1 we have that

|2 log |Tr(ρ(γ))| − l(ρ(γ))| ≤ 2

we can substitute the limit which appears in Theorem 1.3.29 with the following
expression

lim
k→∞

Lρk(γ)

λk
= LT (γ).

Hence the projective convergence of a sequence ρk to an isometric action of Γ on
a real tree T can be reformulated as the projective convergence of the translation
length functions Lρk to the translation lenght function LT .

In [MS84] the tree T is obtained by following the Bass–Serre construction for
SL(2,Kv), where Kv is a valued field. Lately both [Bes88] and [Pau88] described
a more geometrich approach to get the tree T based on Gromov–Hausdorff conver-
gence. This procedure inspired Parreau to generalize the compactification to the
case of the character variety X(Γ, SL(n,C)) (see [Par12]). For this compactifica-
tion the ideal points will be interpreted as vectorial length function associated to
isometric actions of Γ on Euclidean buildings of type An−1.

In order to generalize the compactification of Morgan–Shalen to X(Γ, SL(n,C))
we first need to introduce the notion of vectorial length function associated to a
representation ρ : Γ→ SL(n,C). Recall the definition of the closed Weyl chamber

C := {(λ1, . . . , λn) ∈ Rn|
n∑
i=1

λi = 0, λ1 ≥ . . . ≥ λn}.

Additionally, thanks to the Iwasawa decomposition (see [Hel78, Chap. IX,Theorem
1.3]) every element g ∈ SL(n,C) can be written in a unique way as g = ehp where e
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is an element of SU(n), h is a diagonal matrix with determinant equal to 1 and posi-
tive real eigenvalues, and p is unipotent. We denote by h(g) the diagonal component
of the previous decomposition.

Definition 1.3.30. Given an element g ∈ SL(n,C) we define the Jordan projection
of g associated to C as

v(g) := (log(λ1(g)), . . . , log(λn(g))) ∈ C

where λi(g) are the eigenvalues of the hyperbolic component h(g) of g. Here we as-
sume λ1(g) ≥ λ2(g) ≥ . . . ≥ λn(g). The vectorial length function of a representation
ρ : Γ→ SL(n,C) is given by

Vρ : Γ→ C, Vρ(γ) := v(ρ(γ)).

The previous notion generalizes the notion of translation length function for
representations into SL(2,C) and it will be one of the fundamental tool to define
correctly the convergence of a sequence of representations to an ideal points of the
Parreau compactification of X(Γ, SL(n,C)). Define the function

V : X(Γ, SL(n,C))→ C
C
, V ([ρ]) := Vρ

where Vρ([γ]) = v(ρ(γ)). This function is well-defined since it is invariant by con-

jugation. Consider the space PCC
defined by

PCC
:= (C

C \ {0})/(0,∞)

where two elements vc∈C , wc∈C ∈ C
C

are identified if and only if there exists an
element α ∈ (0,∞) such that vc = αwc for every c ∈ C . If we set X0 := V −1(0), it
is possible to show that X0 is relatively compact. Moreover, the application

PV : X(Γ, SL(n,C)) \X0 → PCC

has relatively compact image at infinity, i.e. there exists a compact K containing
X0 such that PV (X(Γ, SL(n,C)) \K) is relatively compact (see [Par12, Theorem
5.2]). This induces a natural compactification of X(Γ, SL(n,C)) as follows. Define

ΦC : X(n, SL(n,C)) \X0 → X(Γ, SL(n,C))+ × PCC
, ΦC (x) = (x,PV (x)),

where X(Γ, SL(n,C))+ is the one-point compactification of X(Γ, SL(n,C)). Since
the image of PV is relatively compact at infinity, the closure of im(ΦC ) into the

product X(Γ, SL(n,C))+ × PCC
defines a compactification of X(Γ, SL(n,C)) \X0

and hence of X(Γ, SL(n,C)).

Definition 1.3.31. The compactification ofX(Γ, SL(n,C)) obtained above is called

Parreau compactification and we denote it by X(Γ, SL(n,C))
P

. The set of ideal
points of the compactification will be denoted by

BP (X(Γ, SL(n,C))) := X(Γ, SL(n,C))
P \X(Γ, SL(n,C))
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By applying the same ideas of [MS84] also to the Parreau compactification,
it is possible to interpret the ideal points as projective vectorial length functions
of isometric actions Γ on Euclidean buildings. Moreover the construction of the
building can be realized by taking the asymptotic cone of the symmetric space Xn

associated to SL(n,C).
More precisely, let ρ be a representation of Γ into SL(n,C). As before, for a

fixed generating set S = {γ1, . . . , γs} we define the function

dρ : Xn → R, dρ(x) :=

√√√√ n∑
i=1

dXn(ρ(γi)x, x)2

and

λ(ρ) := inf
x∈Xn

dρ(x)

is the minimal displacement associated to ρ. A sequence of representations ρk :
Γ → SL(n,C) diverging to an ideal point in the Parreau compactification will
satisty λk →∞. Fix a sequence of basepoints xk in Xn such that

dρk(xk) ≤ λk + 1/k.

Up to conjugating ρk we can suppose that for every k ∈ N the basepoints
xk = x0. In this setting we have

Theorem 1.3.32 Let ρk : Γ → SL(n,C) be a sequence of representations such
that λk →∞. Let [ ∈ BP (X(Γ, SL(n,C))) be the ideal point to which the sequence
ρk is converging.

• For any non-principal ultrafilter ω on N there exists an isometric action via
automorphisms of Γ on the asymptotic cone Cω(Xn, d/λk, x0).

• Since Cω(Xn, d/λk, x0) is isometrically isomorphic to the Goldman–Iwahori
space N 1(Cnω) of good norms with volume equal to 1, this action can be thought
of as a representation ρω : Γ→ SL(n,Cω).

• The class [ ∈ PCC
admits as representative the vectorial length function Vω

associated to ρω. Moreover the sequence of vectorial length functions Vρk pro-
jectively converges to Vω, that is for every γ ∈ Γ it holds

ω- lim
k→∞

Vρk(γ)

λk
= Vω(γ).
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Chapter 2

Volume and rigidity of
hyperbolic lattices

2.1 Volume rigidity for lattices in PO(3, 1)

In this chapter we are going to prove the rigidity at infinity for non-uniform
lattices in rank-one Lie groups of non-compact type. The following section is devoted
entirely to real lattices. Lately we will discuss complex and quaternionic lattices.

We are start working in H3. We fix the following setting.

• A group Γ < PSO(3, 1) so that M = Γ\H3 is a (non-compact) complete
hyperbolic manifold of finite volume.

• A base-point O ∈ H3 used to normalize the Busemann function B(x, θ), with
x ∈ H3 and θ ∈ ∂∞H3.

• The family {µx} of Patterson-Sullivan probability measures. Set µ = µO.

• A sequence of representations ρn : Γ→ PO(3, 1) such that limn→∞Vol(ρn) =
Vol(M).

Lemma 2.1.1 The condition limn→∞Vol(ρn) = Vol(M) implies that, up to pass-
ing to a subsequence, we can suppose that no ρn is elementary.

Proof. Elementary representations have zero volume and limn→∞Vol(ρn) = Vol(M),
which is stricly positive.

With an abuse of notation we still denote the subsequence of the previous lemma
by ρn. Since no ρn is elementary we can consider the sequence of ρn-equivariant
measurable maps Dn : ∂∞H3 → ∂∞H3 and the corresponding sequence of BCG–
natural maps Fn : H3 → H3.

Lemma 2.1.2 Up to conjugating ρn by a suitable element gn ∈ PO(3, 1), we can
suppose Fn(O) = O.

Proof. Conjugating ρn by g reflects in post-composing Fn with g. We can choose
gn such gn(Fn(O)) = O.

33
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The choice to fix the origin of H3 as the image of Fn(O) is made to avoid
pathological behaviours. For instance consider a sequence of loxodromic elements
gn ∈ PO(3, 1) which is divergent and define the representations ρn := gn ◦ i ◦ g−1

n ,
where i : Γ→ PO(3, 1) is the standard lattice embedding. Clearly this sequence of
representations satisfies limn→∞Vol(ρn) = Vol(M) since for every n ∈ N we have
Vol(ρn) = Vol(M). However, there does not exist any subsequence of ρn converging
to the holonomy of the manifold M .

Definition 2.1.3. For any n ∈ N and every x ∈ H3 we can define the following
quadratic forms on TFn(x)H3:

〈Kn|Fn(x)u, u〉 =

∫
∂∞H3

∇dB|(Fn(x),Dn(θ))(u, u)dµx(θ)

〈Hn|Fn(x)u, u〉 =

∫
∂∞H3

(dB|(Fn(x),Dn(θ))(u))2dµx(θ)

for any u ∈ TFn(x)H3. The notation 〈·, ·〉 stands for the scalar product on TFn(x)H3

induced by the hyperbolic metric on H3 .

For sake of simplicity we are going to drop the subscripts in Kn and Hn. Recall
that, since both the domain and the target have the same dimension, the 3-Jacobian
Jac3(Fn) coincides the modulus of the jacobian determinant det(DxFn). As stated
in [BCG96, Lemma 5.4], the following inequality holds for every x ∈ H3

| det(DxFn)| ≤
(

4

3

) 3
2 det(Hn)

1
2

det(Kn)
.

Lemma 2.1.4 Suppose limn→∞Vol(ρn) = Vol(M). Then we have that |det(DxFn)|
converges to 1 almost everywhere in H3 with respect to the measure induced by the
standard metric.

Proof. Denote by F εn : H3 → H3 the ε-natural maps introduced in Section 1.2.3.
Recall that we have the following estimate

Vol(ρn) ≤
∫
M
| det(DxF

ε
n)|dvolH3(x) = Vol(F εn)

and since |det(DxF
ε
n)| ≤ 1 + ε and limε→0DxF

ε
n = DxFn, by the theorem of domi-

nated convergence we get

Vol(ρn) ≤
∫
M
|det(DxFn)|dvolH3(x) ≤ Vol(M)

from which the statement follows.

If N is the set of zero measure outside of which |det(DxFn)| is converging,
for every x ∈ H3 \ N and fixed ε > 0 there must exist n0 = n0(ε, x) such that
|det(DxFn)| ≥ 1− ε for every n > n0. Thus it holds(

4

3

) 3
2 det(Hn)

1
2

det(Kn)
> 1− ε
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from which we can deduce

det(Hn)

(det(Kn))2
>

(
3

4

)3

(1− ε)2 >

(
3

4

)3

(1− 2ε).

Moreover, since H3 has costant sectional curvature equal to −1, we have Kn =
I − Hn (see [BCG95]). Here I stands for the identity on TFn(x)H3. Hence, by
substituting the expression of Kn in the previous inequality, we get

det(Hn)

(det(I −Hn))2
>

(
3

4

)3

(1− 2ε).

Consider now the set of positive definite symmetric matrices of order 3 with real
entries and trace equal to 1, namely

Sym+
1 (3,R) := {H ∈ Sym(3,R)|H > 0,Tr(H) = 1}.

Once we have fixed a basis of TFn(x)H3, we can identify Hn and Kn with the
matrices representing these bilinear forms with respect to the fixed basis. Under this
assumption, recall that Hn ∈ Sym+

1 (3,R) for every n ∈ N, as shown in [BCG96]. If
we define

ψ : Sym+
1 (3,R)→ R, ψ(H) =

det(H)

(det(I −H))2
,

we know that

ψ(H) ≤
(

3

4

)3

and the equality holds if and only if H = I/3 (see [BCG95, Appendix B]). It is
worth noticing that the space Sym+

1 (3,R) is not compact and a priori there could
exist a diverging sequence of elements Hn ∈ Sym+

1 (3,R) such that

lim
n→∞

ψ(Hn) =

(
3

4

)3

.

We are going to show that this is impossible.

Proposition 2.1.5 Suppose to have a sequence Hn ∈ Sym+
1 (3,R) such that

lim
n→∞

ψ(Hn) =

(
3

4

)3

.

Then the sequence Hn must converge to I/3.

Proof. We start by observing that the function ψ is invariant by conjugation for an
element g ∈ GL(3,R). Indeed, ψ(H) can be expressed as ψ(H) = pH(0)/(pH(1))2,
where pH is the characteristic polynomial of H. Hence the claim follows. In partic-
ular, we have an induced function

ψ̃ : O(3,R)\Sym+
1 (3,R)→ R, ψ̃(H̄) = ψ(H),
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where H̄ denotes the equivalence class of the matrix H and the orthogonal group
O(3,R) acts on Sym+

1 (3,R) by conjugation. We can think of the spaceO(3,R)\Sym+
1 (3,R)

as the interior ∆̊2 of the standard 2-simplex quotiented by the action of the sym-
metric group S3 which permutes the coordinate of an element (λ1, λ2, λ3) ∈ ∆̊2. An
explicit homeomorphism between the two spaces is given by

Λ : O(3,R)\Sym+
1 (3,R)→ S3\∆̊2, Λ(H̄) := [λ1(H), λ2(H), λ3(H)],

where λi(H) for i = 1, 2, 3 are the eigenvalues of H. By defining Ψ = ψ ◦ Λ−1, we
can express this function as

Ψ : S3\∆̊2 → R, Ψ([a, b, c]) =
abc

((1− a)(1− b)(1− c))2
.

We are going to think of Ψ as defined on ∆̊2 and we are going to estimate this
function on the boundary of ∆2. Since a+ b+ c = 1, with an abuse of notation we
will write

Ψ(a, b) =
ab(1− a− b)

((1− a)(1− b)(a+ b))2
,

identifying ∆̊2 with the interior of the triangle τ in R2 with vertices (0, 0), (1, 0)
and (0, 1). If a sequence of points is converging to a boundary point of ∆2, then
we have a sequence (an, bn) of points converging to a boundary point of τ . If the
limit point is not a vertex of τ then limn→∞Ψ(an, bn) = 0. For instance, suppose
limn→∞(an, bn) = (α, 0) with α 6= 0, 1. Hence

lim
n→∞

Ψ(an, bn) = lim
n→∞

anbn(1− an − bn)

((1− an)(1− bn)(an + bn))2
= 0

as claimed. For the other boundary points which are not vertices, the computation
is the same. The delicate points are given by the vertices (0, 0), (1, 0) and (0, 1).
On these points the function Ψ cannot be continuously extended. However we can
uniformly bound the possible limit values. Suppose to have a sequence (an, bn) such
that limn→∞(an, bn) = (0, 0). We have

Ψ(an, bn) =
anbn(1− an − bn)

((1− an)(1− bn)(an + bn))2
∼ anbn

(an + bn)2
≤ 1

4
,

where the symbol ∼ denotes that the sequence on the left has the same behaviour of
the sequence of the right in a neighborhood of (0, 0). Analogously, if limn→∞(an, bn) =
(1, 0) then

Ψ(an, bn) =
anbn(1− an − bn)

(1− an)(1− bn)(an + bn)
∼ bn

1− an

(
1− bn

1− an

)
≤ 1

4
.

and the same for limn→∞(an, bn) = (0, 1). The previous computation proves that
Ψ is uniformly bounded by 1/4 on the boundary of τ , hence on the boundary of
∆2. Equivalently ψ is bounded by 1/4 in a suitable neighborhood at infinity of
Sym+

1 (3,R), from which the statement follows.



2.1. VOLUME RIGIDITY FOR LATTICES IN PO(3, 1) 37

Remark 2.1.6. In the following picture we can find the plot of the graph of the
function Ψ. It is clear that the function converges to zero for a point of any edge of
the triangle τ which is not a vertex. Moreover the function can be bounded by 1/4 at
the vertices of τ , hence Ψ achieves its maximum only at the point (a, b) = (1/3, 1/3).

Figure 2.1: Graph of the function Ψ

We know that in our context we have(
3

4

)3

(1− 2ε) ≤ ψ(Hn) ≤
(

3

4

)3

for n ≥ n0. As a consequence of Proposition 2.1.5, the sequence Hn must converge
to I/3. Hence Hn converges to I/3 almost-everywhere on H3. We are going to prove
that this implies the uniform convergence of Hn to I/3 on compact sets. Before
doing this we recall these two lemmas which can be found in [BCG95, Section 7].

Lemma 2.1.7 Let x, x′ ∈ H3 be such that the maximum eigenvalue of Hn satisfies
λn ≤ 2/3 at every point of the geodesic joining x to x′. Then there exists a positive
constant C1 such that

d(Fn(x), Fn(x′)) ≤ C1d(x, x′).

Lemma 2.1.8 Let x, x′ ∈ H3. Let P be the parallel transport from Fn(x) to Fn(x′)
along the geodesic which joins the two points. Denote by Hn(x) the bilinear form
defined on TFn(x)H3. Then there exists a positive constant C2 such that

||Hn(x)−Hn(x′) ◦ P || ≤ C2(d(x, x′) + d(Fn(x), Fn(x′))).
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Proposition 2.1.9 Suppose the sequence Hn converges almost everywhere to I/3.
Thus it converges uniformly to I/3 on every compact set of H3.

Proof. We will follow the same proof of [BCG95, Lemma 7.5]. Without loss of
generality we may reduce ourselves to the case of a closed ball Br(O) around the
origin of the Poincaré model of H3. Since Hn is converging almost everywhere to
I/3 on H3, hence in particular on Br(O), by Egorov theorem, given a fixed η > 0
there will exist a compact set K and N ∈ N such that Vol(Br(O) \K) < η and

||Hn(x)− I/3|| < ε

for every n ≥ N and every x ∈ K. Moreover we can assume that the set Br(O) \K
is sufficiently small not to contain any ball of radius ε, for ε > 0. This assumption
implies that for every x ∈ Br(O) we must have d(x,K) < ε. Fix now ε, K and a
suitable value n ≥ N so that

||Hn(x)− I/3|| < ε

for every x ∈ K. As in Lemma 2.1.8 we will write Hn(x) to denote the bilinear
form Hn defined on TFn(x)H3. By contradiction, suppose the statement is false.

There must exist two points x′n ∈ Br(O) and xn ∈ K so that d(xn, x
′
n) < ε and

||Hn(x′n)− I/3|| > C3ε, where we can assume

1

3ε
≥ C3 ≥ C2(C1 + 1) + 1

and C1 and C2 are the constants introduced in the previous lemmas.
The continuity of the function x → Hn(x) implies the existence of a point x′′n

contained in the geodesic segment [xn, x
′
n] such that ||Hn(x′′n) − I/3|| = C3ε. This

implies that the maximum eigenvalue of Hn satisfies λn ≤ 2/3 at every point of the
geodesic segment [xn, x

′′
n]. By applying Lemma 2.1.7 and Lemma 2.1.8 we get that

||Hn(xn)−Hn(x′′n) ◦ P || ≤ C2(C1 + 1)ε,

where P is the parallel transport from Fn(xn) to Fn(x′′n) along the geodesic segment
joining them. Since ||Hn(xn)− I/3|| < ε we get a contradiction.

Thus, if we consider a closed ball Br(O) with r > 0, there exists n1 = n1(ε, r)
such that for n > n1 we have the following estimates

|2/3〈DxFn(v), u〉| − ε < |〈Kn ◦DxFn(v), u〉|, 〈Hnu, u〉
1
2 < ||u||/

√
3 + ε.

As a consequence of the Cauchy–Schwarz inequality, we can write

|〈Kn ◦DxFn(v), u〉| ≤ 2(〈Hn(u), u〉)
1
2 (

∫
∂∞H3

(dB|(x,θ)(v))2dµx(θ))
1
2 ,

for every v ∈ TxH3 and u ∈ TFn(x)H3. Hence by taking n > n1 we get
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|2/3〈DxFn(v), u〉| − ε ≤ 2(||u||/
√

3 + ε)(

∫
∂∞H3

(dB|(x,θ)(v))2dµx(θ))
1
2 .

Recall that ||dB||2 = 1. By considering on both sides the supremum on all the
vectors u of norm equal to 1 we get

||DxFn(v)|| <
√

3||v||+ 3ε(||v||+ 1/2)

Again, by taking the supremum on all the vectors ||v|| = 1 we get

||DxFn|| <
√

3 + 9/2ε

hence ||DxFn|| is uniformly bounded on Br(O) for any n > n1 and for any choice
of r > 0. We are now ready to prove Theorem 1 when m = p = 3, that is

Theorem 2.1.10 Let Γ be a non-uniform lattice of PSO(3, 1) without torsion.
Let ρn : Γ→ PO(3, 1) be a sequence of representations such that limn→∞Vol(ρn) =
Vol(M). Then there must exist a sequence of elements gn ∈ PO(3, 1) such that the
sequence gn ◦ ρn ◦ g−1

n converges to the standard lattice embedding i : Γ→ PO(3, 1).

Proof. Since we know that limn→∞Vol(ρn) = Vol(M), the previous computation
shows that ||DxFn|| must be eventually uniformly bounded on every compact set
of H3. Let x ∈ H3 be any point and let γ ∈ Γ. Let c be the geodesic joining x
to γx. Denote by L = d(x, γx) so that the interval [0, L] parametrizes the curve c.
Consider a closed ball Br(O) sufficiently large to contain in its interior both x and
γx. On this ball there must exist a constant C such that ||DxFn|| < C for n bigger
than a suitable value n0. Thus, it holds

d(Fn(x), Fn(γx)) ≤
∫ L

0
||Dc(t)Fn(ċ(t))||dt ≤

∫ L

0
||Dc(t)Fn||dt ≤ Cd(x, γx).

Recall that given an element g ∈ PO(3, 1) its translation length is defined
as LH3(g) := infy∈H3 d(gy, y). The previous estimate implies that the translation
length of the element ρn(γ) can be bounded by

LH3(ρn(γ)) ≤ d(ρn(γ)Fn(x), Fn(x)) ≤ Cd(γx, x)

and hence the sequence ρn is bounded in the character variety X(Γ, PO(3, 1)).
In particular, we can extract a subsequence of ρn which pointwise converges in
X(Γ, PO(3, 1)). Moreover, the choice made before to fix Fn(O) = O guarantees that
the subsequence must converge to a true representation ρ∞. 1 By the continuity of
the volume with respect to the pointwise convergence, we get

Vol(ρ∞) = lim
n→∞

Vol(ρn) = Vol(M).

By the rigidity of volume function we know that ρ∞ must be conjugated to i.
As a consequence any convergent subsequence of ρn converges to a representation
conjugated to i and the theorem is proved.

1Recall the example of the sequence gn ◦ i ◦ g−1
n , where (gn)n∈N is a divergent sequence of

loxodromic elements gn ∈ PO(3, 1) and i : Γ→ PO(3, 1) is the standard lattice embedding.
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2.2 Consequences and generalizations

In this section we are going to state some consequences of Theorem 2.1.10 re-
garding the Morgan–Shalen compactification of X(Γ, PO(3, 1)). We also discuss
generalizations of Theorem 2.1.10 to higher dimensional cases. We begin with the
proof of

Corollary 2.2.1 Suppose ρn : Γ→ PO(3, 1) is a sequence of representations con-
verging to any ideal point of the Morgan–Shalen compactification of X(Γ, PO(3, 1)).
Then the sequence of volumes Vol(ρn) must be bounded from above by Vol(M) − ε
with ε > 0.

Proof. If there did not exist such an ε, we should have Vol(ρn) → Vol(M), but
this contradicts Theorem 2.1.10. Indeed the sequence ρn should converge to a
representation conjugated to the standard lattice embedding i : Γ → PO(3, 1) and
it could not converge to an ideal point.

The previous result has a clear consequence in the study of the volume function

on the character variety X(Γ) = X(Γ, PO(3, 1)). Let X(Γ)
MS

be the Morgan–
Shalen compactification of the character variety X. The previous corollary can be
restated as follows

Corollary 2.2.2 Let Vol : X(Γ) → R be the volume function. Let N (i) be a
small neighborhood in X(Γ) of the class containing the standard lattice embedding i
with respect to the topology of the pointwise convergence. Suppose that there exists

a continuous extension Vol : X(Γ)
MS → R. Then we can bound uniformly the

restriction

Vol|
X(Γ)

MS\N (i)
< Vol(M)− ε

with a suitable value of ε > 0.

In particular, the previous corollary proves [Gui16, Conjecture 1] and hence [Gui16,
Theorem 1.2] for representations into PSL(2,C).

Now we prove a generalization of Theorem 2.1.10 when M is a p-manifold and
ρn takes values in PO(p, 1) (for p > 3).

More precisely, let Γ be the fundamental group of a complete hyperbolic p-
dimensional manifold M with finite volume. We show that, given a sequence of
representations ρn : Γ→ PO(p, 1) such that limn→∞Vol(ρn) = Vol(M), it is possi-
ble to find a sequence of elements gn ∈ PO(p, 1) such that the sequence gn ◦ρn ◦g−1

n

converges to the standard lattice embedding i : Γ→ PO(p, 1). The key point of the
proof in the case p = 3 is given by Proposition 2.1.5, which is still valid in dimension
bigger or equal than 4. Indeed, following what we have done before, consider the
space

Sym+
1 (p,R) := {H ∈ Sym(p,R)|H > 0,Tr(H) = 1}

of real symmetric matrices of order p with trace equal to 1 which are positive definite.
The function
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ψ : Sym+
1 (p,R)→ R, ψ(H) :=

det(H)

(det(H − I))2

induces a function ψ̃ on the quotient O(p,R)\Sym+
1 (p,R), where the orthogonal

group acts by conjugation. As in the case of p = 3, denote by ∆̊p−1 the interior
of the standard (p − 1)-simplex and consider the action of Sp by permutation of

coordinates. We can read the function ψ on the space Sp\∆̊p−1 by considering

Ψ(a1, . . . , ap) :=

p∏
i=1

ai
(1− ai)2

.

Indeed the space O(p,R)\Sym+
1 (p,R) is homeomorphic to the space Sp\∆̊p−1

and the homeomorphism is realized by sending the class of a symmetric matrix H to
the non-ordered p-tuple of its eigenvalues. We are now interested in extending the
function Ψ to the space Sp\∆p−1 and to do this we are going to consider the function

as defined on ∆̊p−1. Moreover, since
∑p

i=1 ai = 1, with an abuse of notation, we
are going to rewrite Ψ as

Ψ(a1, . . . , ap−1) =
a1 . . . ap−1(1−

∑p−1
i=1 ai)

(1− a1)2 . . . (1− ap−1)2(
∑p−1

i=1 ai)
2
.

At every point of the boundary ∂∆p−1 which is not a vertex, the function clearly
extends with zero. The same holds for the vertex (1, 0, . . . , 0) corresponding to the
(p− 1)-tuple (0, 0, . . . , 0). Indeed, near (0, 0, . . . , 0) we have

Ψ(a1, . . . , ap−1) ∼ a1 . . . ap−1

(
∑p−1

i=1 ai)
2
≤

(
∑p−1

i=1 ai)
p−3

(p− 1)p−1

where the symbol ∼ denotes that Ψ has the same behaviour of the expression on
the right. For p ≥ 4 the right-hand side is a function which converges to zero as
(a1, . . . , ap−1) → (0, . . . , 0). Moreover, since the function Ψ is invariant under the

action of Sp on ∆̊p−1 we have that its continuous extension must satisfy

Ψ(1, 0, . . . , 0) = Ψ(0, 1, . . . , 0) = Ψ(0, 0, . . . , 1)

and so the function can be extended to zero at any vertex. In particular given a
sequence of matrices Hn such that limn→∞ ψ(Hn) = (p/(p− 1)2)p we have that the
sequence Hn must converge to I/p, where I is the identity matrix of order p. From
the previous considerations and following the same strategy of the case p = 3, it is
straightforward to prove

Theorem 2.2.3 Let Γ be a non-uniform lattice of PSO(p, 1) without torsion. Let
ρn : Γ → PO(p, 1) be a sequence of representations such that limn→∞Vol(ρn) =
Vol(M). It is possible to find a sequence of elements gn ∈ PO(p, 1) such that the
sequence gn ◦ ρn ◦ g−1

n converges to the standard lattice embedding i : Γ→ PO(p, 1).

From which we deduce

Corollary 2.2.4 Suppose ρn : Γ→ PO(p, 1) is a sequence of representations con-
verging to any ideal point of the Morgan–Shalen compactification of X(Γ, PO(p, 1)).
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Then the sequence of volumes Vol(ρn) must be bounded from above by Vol(M) − ε
with ε > 0.

We conclude by discussing the generalization of Theorem 2.1.10 to the case
where M is a p-manifold and ρn takes values in PO(m, 1) (with m > p ≥ 3).

More precisely, let ρn : Γ→ PO(m, 1) be a sequence of representations such that
limn→∞Vol(ρn) = Vol(M). We show that there exists a sequence gn ∈ PO(m, 1)
such that the sequence gn◦ρn◦g−1

n converges to a representation ρ∞ which preserves
a totally geodesic copy of Hp and whose Hp-component is conjugated to the standard
lattice embedding i : Γ→ PO(p, 1) < PO(m, 1).

The proof in this general case follows the line of the case p = m but it needs
some additional care. We do not rewrite the whole proof but we only concentrate
on the subtleties which differ from the previous case.

Let Fn : Hp → Hm be the natural map associated to the representation ρn. We
are going to follow [BCG99] for the notation. Recall that BM denotes the Busemann
function relative to the hyperbolic space of dimension m centered at the origin O.
Similarly to what we have done before, for any n ∈ N and every x ∈ Hp we define
the following quadratic forms on TFn(x)Hm:

〈Kn|Fn(x)u, u〉 =

∫
∂∞Hp

∇dBM |(Fn(x),Dn(θ))(u, u)dµx(θ)

〈Hn|Fn(x)u, u〉 =

∫
∂∞Hp

(dBM |(Fn(x),Dn(θ))(u))2dµx(θ)

for any u ∈ TFn(x)Hm. Since the dimension m is bigger than p, we will need to
define another quadratic form, this time on TxHp. For any v ∈ TxHp, we define

〈H ′n|xv, v〉 =

∫
∂∞Hk

(dBP |(x,θ)(v))2dµx(θ).

For any quadratic form we are going to drop the subscript which refers to the
tangent space on which the form is defined. As a consequence of the Cauchy–
Schwarz inequality we get

〈Kn ◦DxFn(v), u〉 ≤ (p− 1)(〈Hn(u), u〉)
1
2 (〈H ′n(v), v〉)

1
2

for every v ∈ TxHp and every u ∈ TFn(x)Hm.
By applying the same strategy of the proof of Lemma 2.1.4, we get that the

condition limn→∞Vol(ρn) = Vol(M) implies that the p-Jacobian Jacp(Fn) of the
natural maps Fn converges to 1 almost everywhere with respect the measure induced
by the standard hyperbolic metric on Hp. Since

Jacp(Fn)(x) := max
u1,...,up∈TxHp

||DxFn(u1) ∧ . . . ∧DxFn(up)||gHm ,

let {u1, . . . , up} be the frame which realizes the maximum and denote by Ux the
subspace Ux := spanR{u1, . . . , up} of TxHp (in fact the subspace Ux coincides with
TxHp, but we prefer to mantain the same notation of [BCG99]). Set VFn(x) :=

DxFn(Ux). We denote by Kn(x)V , Hn(x)V and H ′n(x)U the restrictions of the forms
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Kn|Fn(x), Hn|Fn(x) and H ′n|x to the subspace VFn(x), VFn(x) and Ux, respectively. As
a consequence of the Cauchy–Schwarz inequality, as in [BCG99] it results

det(Kn(x)V )Jacp(Fn)(x)

≤ (p− 1)p(det(HV
n (x)))

1
2 (det(H ′Un (x)))

1
2

≤ p−
p
2 (p− 1)p(det(HV

n (x)))
1
2

and since KV
n (x) = I −HV

n (x) we get the estimate

JacpFn(x) ≤ (p− 1)p

p
p
2

(det(HV
n (x)))

1
2

det(I −HV
n (x))

.

In this way we can apply the same strategy followed for the case p = m and
hence it is straightforward to prove Theorem 1 and Corollary 2.

2.3 Volume for the figure eight knot

In this section we are going to describe some experimental tests which can
be considered as a numerical evidence of the validity of Corollary 2. From now
until the end of the section fix M = S3 \ 41, where 41 denotes the figure eight
knot. It is well-known that the complement of the knot 41 in the 3-sphere admits
a complete hyperbolic structure of finite volume. The value of the volume is given
by Vol(M) = 2.0299. The manifold M can be ideally triangulated with only two
ideal regular tetrahedra with faces identified with respect to the scheme reported in
Figure 2.2. The identifications have to respect the color and the orientation of each
edge. Hence, for instance, we need to flip the face labelled with A′ to reverse the
orientation along the red edge before identifying it with the face labelled with A.

Figure 2.2: Ideal triangulation of the manifold M .

We are now interested in the study of the volume near the ideal points of the
character variety X(M,PSL(2,C)). Since we are focusing our attention on a knot
manifold, we have H2(π1(M)) ∼= H2(M) = 0, hence all the possible representa-
tions into PSL(2,C) can be lifted to representations into SL(2,C). Indeed, the
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obstruction class to lift a generic representation ρ : π1(M) → PSL(2,C) nat-
urally lives in H2(π1(M)) by both [Cul86] and [GM93], which is trivial in our
context. This allows us to study the volume function of the character variety
X(M,SL(2,C)) := X(π1(M), SL(2,C)). We are going to compute an equation
of this variety. Consider the following presentation of Γ := π1(M)

Γ = 〈u, v|wv = uw,w = v−1uvu−1〉

which can be also rewritten as

Γ = 〈t, a, b|t−1at = ab, t−1bt = bab〉

where we set t = u−1, a = w and b = vu−1. Following the notation of the previous
chapter, given any word γ ∈ Γ, denote by Trγ the trace function

Trγ : X(M,SL(2,C))→ C, Trγ(ρ) = Tr(ρ(γ)).

If we now set

x = Tru = Trv, y = Truv, x1 = Tra, x2 = Trb

we get

x2 = Truv−1 = TruTrv−1 − Truv = x2 − y (2.1)

and in the same way

x1 = Truvu−1v−1 = 2x2 + y2 − x2y − 2. (2.2)

Observe that it holds

x2 = Trt−1bt = Trbab = Trabb = TrabTrb − Tra = x1x2 − x1.

or equivalently x1 +x2 = x1x2. Thus, by exploiting equations 2.1 and 2.2, we obtain

(x2 − y − 2)(2x2 + y2 − x2y − y − 1) = 0.

Hence, by considering the coordinates x = Tru, y = Truv we can write

X(M,SL(2,C)) = {(x, y) ∈ C2|(x2 − y − 2)(2x2 + y2 − x2y − y − 1) = 0}.2

In this way we immediately understand that the variety has two irreducible
components. The first one, given by equation x2 − y − 2 = 0 corresponds to the
classes of reducible representations. The second one instead contains the class of
the holonomy of the complete hyperbolic structure of M . For this reason we are
going to call this component the hyperbolic component. To determine the points of
intersections between the two components, we easily solve the following system

2Compare the equation we get for the character variety X(M,SL(2,C)) with the equation
obtained in [GM93, Section 6].
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{
x2 − y − 2 = 0

2x2 + y2 − x2y − y − 1 = 0

from which we get the points of coordinates (±
√

5, 3). Consider now the embedding
i0 : C2 → P2(C) given by i0(x, y) = [1 : x : y]. If we consider the projective closure
of the image of X(M,SL(2,C)) through the map i0, we get two ideal points. The
first point, of coordinates [0 : 1 : 0] is common to both the components. The second
point has coordinates [1 : 0 : 0] and is an ideal point of the hyperbolic component.

Figure 2.3: Character variety X(M,SL(2,C)) and ideal points.

We want now to study the hyperbolic volume function around the ideal points of
the hyperbolic component. Given the coordinate y0 of a point lying in the hyperbolic
component, we first need to determine a representation ρ0 which is a representative
of that point. The representation ρ0 will be completely determined by the image of
the generators u, v. Moreover, since it is an element of the hyperbolic component,
we can assume the irreducibility of ρ0 and hence we can fix as images

U := ρ0(u) =

(
s 1
0 s−1

)
, V := ρ0(v) =

(
t 0
r t−1

)
We solve the equation (2− y0)x2 + (y2

0 − y0 − 1) = 0 in order to determine the
possible values of x. If we choose a specific solution x0 of the previous equation, we
are able to find r, s, t by solving the following system
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s = t

x0 = s+ s−1

y0 = st+ r + (st)−1.

We are ready to compute the hyperbolic volume of the representation ρ0 obtained
by applying the following method. Recall that the Dirichlet domain of Γ in the
Poincarè model of H3 has 5 ideal points corresponding to the 5-tuple of points
0, 1, ζ3, ζ

2
3 ,∞ ∈ P1(C) on the Riemann sphere. Here ζ3 corresponds to the third

root of unity (1 + i
√

3)/2. If we fix 0 as our preferred point, the other 4 can be
obtained from 0 by acting with suitable elements of Γ. More precisely, it holds

(w−1u).0 = 1, (w−1).0 =∞, (v−1u).0 = ζ3, (v−1).0 = ζ2
3 .

Consider the peripheral group of M , that is the fundamental group of its unique
toric cusp. This group is generated by the meridian µ and the longitude λ of the
knot 41. Moreover, we have

µ = u−1, λ = uvu−1v−1u2v−1u−1vu−1

where we obtained the previous equations thanks to function peripheral curves(
) of the program SnapPy. SetM := ρ0(µ) and L := ρ0(λ). Notice that, since we are
interested in the study of a neighborhood of the ideal points, we can suppose thatM
is a hyperbolic matrix so that it admits two distinct fixed points on P1(C). Thanks
to the choice of the particular representative for (x0, y0) we can fix 0 ∈ P1(C) as
one of the two possible points fixed by M. If we define

z1 = ρ0(w−1u).0, z∞ = ρ0(w−1).0, zx = ρ0(v−1u).0, zxy = ρ0(v−1).0

we call this choice a decoration for ρ0. The decoration can be used to compute the
hyperbolic volume of ρ0. Indeed, if we denote by

[1 = cr(0, z1, z∞, zx), [2 = cr(0, zx, z∞, zxy)

the the hyperbolic volume Vol(ρ0) can be expressed as

Vol(ρ0) = D2([1) +D2([2),

where D2 is the Bloch–Wigner function introduced in the first chapter. We resume
all the necessary steps to compute Vol(ρ0) in Algorithm 1. Using this procedure
to compute the volume, we can analyze the behaviour of the function around ideal
points. Recall that the hyperbolic component has two ideal points of homogeneous
coordinates [1 : 0 : 0] and [0 : 1 : 0] in P2(C), respectively. By formally writing

x = ±

√
y2 − y − 1

2− y

we understand that the point of coordinates [1 : 0 : 0] is obtained when y → 2,
whereas the point [0 : 1 : 0] is obtained when y → ∞. Thus, if we choose any
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sequence (yn)n∈N converging either to 2 or to∞, we can first determine the sequence
(ρn)n∈N. This allows us to study the evolution of the decorations associated to
ρn and compute the associated volume Vol(ρn). In both cases, the experimental
results suggest that the volume function is decresing to zero as the sequence of
representations diverges to an ideal points. Indeed we conjecture that the volume
function on X(M,SL(2,C)) can be continuously extended by zero on the Morgan–
Shalen compactification (which is simply the desingularization at infinity of the
projective closure of X(M,SL(2,C))). In Figure 2.4 we report an example of the
evolution of a sequence of decorations as yn →∞.

Figure 2.4: Evolution of the decoration near the ideal point [0 : 1 : 0].

input : y0 ∈ C
output: ρ0 ∈ X(M,SL(2,C)),Vol(ρ0) ∈ R

1 Solve (2− y0)x2 + (y2
0 − y0 − 1) = 0

2 Choose a solution x0

3 Solve s+ s−1 = x0

4 Set t = s
5 Solve st+ r + (st)−1 = y0

6 Set

U =

(
s 1
0 s−1

)
, V =

(
t 0
r t−1

)
7 Set W = V −1UV U−1,X = V −1U ,Y = W−1U

8 Set z1 = Y12
Y22
, z∞ = (W−1)12

(W−1)22
, zx = X12

X22
, zxy = (Y −1)12

(Y −1)22

9 Compute the cross ratios

[1 = cr(0, z1, z∞, zx), [2 = cr(0, zx, z∞, zxy)

10 Compute the hyperbolic volume Vol(ρ0) = D2([1) +D2([2)
Algorithm 1: Hyperbolic volume of a point in X(M,SL(2,C)) given y0
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2.4 Rigidity for complex and quaternionic lattices

In this section we will extend the ridigity results previously obtained for real
lattices also to complex and quaternionic ones. We start by fixing the following
setting.

• A lattice Γ < Gp where Gp = PU(p, 1) or Gp = PSp(p, 1) so that Γ\Xp is
a (non-compact) complete manifold of finite volume. Recall that Xp is the
Riemannian symmetric space associated to Gp. Assume p ≥ 2.

• A base-point O ∈ Xp used to normalize the Busemann function BP (x, θ), with
x ∈ Xp and θ ∈ ∂∞Xp.

• The family {µx} of Patterson-Sullivan probability measures associated to Γ.
Set µ = µO.

• A sequence of representations ρn : Γ → Gm such that limn→∞Vol(ρn) =
Vol(M).

As before we easily see that the condition limn→∞Vol(ρn) = Vol(M) implies
that, up to passing to a subsequence, we can suppose that no ρn is elementary.
With an abuse of notation we still denote the subsequence of the previous lemma
by ρn. Since no ρn is elementary we can consider the sequence of ρn-equivariant
measurable maps Dn : ∂∞X

p → ∂∞X
m and the corresponding sequence of BCG–

natural maps Fn : Xp → Xm. Up to conjugating ρn by a suitable element gn ∈ Gm,
assume Fn(O) = O.

Definition 2.4.1. For any n ∈ N and every x ∈ Xp we can define the following
quadratic forms on TFn(x)X

m:

kn|Fn(x)(u, u) := 〈Kn|Fn(x)u, u〉 =

∫
∂∞Xp

∇dBM |(Fn(x),Dn(θ))(u, u)dµx(θ)

hn|Fn(x)(u, u) := 〈Hn|Fn(x)u, u〉 =

∫
∂∞Xp

(dBM |(Fn(x),Dn(θ))(u))2dµx(θ)

for any u ∈ TFn(x)X
m. The notation 〈·, ·〉 stands for the scalar product on TFn(x)X

m

induced by the natural metric on Xm. Since the order m is bigger than p, we will
need to define another quadratic form, this time on TxX

p. For any v ∈ TxXp, we
define

h′n|x(v, v) = 〈H ′n|xv, v〉 =

∫
∂∞Xp

(dBP |(x,θ)(v))2dµx(θ).

For any quadratic form we are going to drop the subscript which refers to the
tangent space on which the form is defined. Since

Jack(Fn)(x) := max
u1,...,uk∈TxXp

||DxFn(u1) ∧ . . . ∧DxFn(uk)||Xm ,
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let {u1, . . . , uk} be the frame which realizes the maximum and denote by Ux the
subspace Ux := spanR{u1, . . . , uk} of TxX

p (since we are working with k-tuples,
the subspace Ux coincides exactly with TxX

p, but we prefer to mantain the same
notation of [BCG99]). Set VFn(x) := DxFn(Ux). We denote by KV

n (x), HV
n (x)

and H
′U
n (x) the restrictions of the forms Kn|Fn(x), Hn|Fn(x) and H ′n|x to the sub-

space VFn(x), VFn(x) and Ux, respectively. As consequence of the Cauchy–Schwarz
inequality, as in [BCG99] it results

det(Kn(x)V )Jack(Fn)(x)

≤ (k + d− 2)k(det(HV
n (x)))

1
2 (det(H ′Un (x)))

1
2

≤ (k + d− 2)k(det(HV
n (x)))

1
2 (Tr(H ′Un (x))/k)

1
2

≤ k−
k
2 (k + d− 2)k(det(HV

n (x)))
1
2

Also in this case, the condition limn→∞Vol(ρn) = Vol(M) implies that Jack(Fn)→
1 almost-everywhere on Xp with respect to the measure induced by the standard
volume form. If N is the set of zero measure outside of which Jack(Fn) is converg-
ing, for every x ∈ Xp \ N and fixed ε > 0 there must exist n0 = n0(ε, x) such that
Jack(Fn) ≥ 1− ε for every n > n0. Thus it holds(

(k + d− 2)2

k

) k
2 det(HV

n )
1
2

det(KV
n )

> 1− ε

from which we can deduce

det(HV
n )

(det(KV
n ))2

>

(
k

(k + d− 2)2

)k
(1− ε)2 >

(
k

(k + d− 2)2

)k
(1− 2ε).

This time Xp has sectional curvature which varies between −4 and −1, hence we
can write KV

n = I−HV
n −

∑d−1
i=1 JiH

V
n Ji, where Ji(x) are orthogonal endomorphisms

used to define the complex or the quaternionic structure on TFn(x)X
m (see [BCG95]).

Recall that J2
i = −I at every point. Hence, by substituting the expression of Kn in

the previous inequality, we get

det(HV
n )

(det(I −HV
n −

∑d−1
i=1 JiH

V
n Ji))

2
>

(
k

(k + d− 2)2

)k
(1− 2ε).

As done previously, once we have fixed a basis of VFn(x), we can identify HV
n ,

KV
n and Ji with the matrices representing these endomorphisms with respect to the

fixed basis. Under this assumption, recall that Hn ∈ Sym+
1 (k,R) for every n ∈ N,

as shown in [BCG95]. If we define

ϕ : Sym+
1 (k,R)→ R, ϕ(H) :=

det(H)

(det(I −H −
∑d−1

i=1 JiHJi))
2
,

we know that

ϕ(H) ≤
(

k

(k + d− 2)2

)k
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and the equality holds if and only if H = I/k (see [BCG95, Appendix B]).

Proposition 2.4.2 Suppose to have a sequence Hn ∈ Sym+
1 (k,R) such that

lim
n→∞

ϕ(Hn) =

(
k

(k + d− 2)2

)k
.

Then the sequence Hn must converge to I/k.

Proof. We are not going to work directly on the function ϕ but we will use the
auxiliary function

ψ(H) :=
(k − 1)

2k(k−1)
k+d−2

(k + d− 2)2k

det(H)
k−d
k+d−2

det(I −H)
2(k−1)
k+d−2

.

By [BCG95, Lemme B.3], for every H ∈ Sym+
1 (k,R) we have that ϕ(H) ≤

ψ(H). Moreover both functions attain the same maximum value

max
H∈Sym+

1 (k,R)
ϕ = max

H∈Sym+
1 (k,R)

ψ =

(
k

(k + d− 2)2

)k
at H = I/k.

We are going to study the properties of the function ψ. We start by observing
that the function ψ is invariant by conjugation for an element g ∈ GL(k,R). Indeed,
ψ(H) can be expressed as

ψ(H) =
(k − 1)

2k(k−1)
k+d−2

(k + d− 2)2k

pH(0)
k−d
k+d−2

pH(1)
2(k−1)
k+d−2

,

where pH is the characteristic polynomial of H. Hence the claim follows. In partic-
ular, we have an induced function

ψ̃ : O(k,R)\Sym+
1 (k,R)→ R, ψ̃(H̄) = ψ(H),

where H̄ denotes the equivalence class of the matrix H and the orthogonal group
O(k,R) acts on Sym+

1 (k,R) by conjugation. As before, we can think of the space
O(k,R)\Sym+

1 (k,R) as the interior ∆̊k−1 of the standard (k−1)-simplex quotiented
by the action of the symmetric group Sk which permutes the coordinates of an
element (λ1, . . . , λk) ∈ ∆̊k−1. By defining Ψ = ψ◦Λ−1, we can express this function
as

Ψ : Sk\∆̊k−1 → R, Ψ([a1, . . . , ak]) =
(k − 1)

2k(k−1)
k+d−2

(k + d− 2)2k

k∏
i=1

(ai)
k−d
k+d−2

(1− ai)
2(k−1)
k+d−2

.

We are going to think of Ψ as defined on ∆̊k−1 and we are going to estimate this
function on the boundary of ∆k−1. Since

∑k
i=1 ai = 1, with an abuse of notation

we will write
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Ψ(a1, . . . , ak−1) =
(k − 1)

2k(k−1)
k+d−2

(k + d− 2)2k

(a1 . . . ak−1(1−
∑k−1

i=1 ai))
k−d
k+d−2

((1− a1) . . . (1− ak−1)(
∑k−1

i=1 ai))
2(k−1)
k+d−2

.

identifying ∆̊k−1 with the interior of the simplex τ in Rk−1 whose vertices are the
origin (0, 0, . . . , 0) and the vectors ei = (0, . . . , 0, 1, 0, . . . , 0) of the canonical basis,
for i = 1, . . . , k−1. If a sequence of points is converging to a boundary point of ∆k−1,

then we have a sequence {(a(n)
1 , . . . , a

(n)
k−1)}n∈N of points in τ converging to a bound-

ary point. If the limit point is not a vertex of τ then limn→∞Ψ(a
(n)
1 , . . . , a

(n)
k−1) = 0.

For instance, suppose

lim
n→∞

(a
(n)
1 , . . . , a

(n)
k−1) = (α, 0, . . . , 0)

with α 6= 0, 1. Hence

lim
n→∞

Ψ(a
(n)
1 , . . . , a

(n)
k−1) =

lim
n→∞

(k − 1)
2k(k−1)
k+d−2

(k + d− 2)2k

(a
(n)
1 . . . a

(n)
k−1(1−

∑k−1
i=1 a

(n)
i ))

k−d
k+d−2

((1− a(n)
1 ) . . . (1− a(n)

k−1)(
∑k−1

i=1 a
(n)
i ))

2(k−1)
k+d−2

= 0

as claimed. For the other boundary points which are not vertices, the computation
is the same. The delicate points are given by the vertices of τ . On these points the
function Ψ a priori cannot be continuously extended. Suppose to have a sequence

{(a(n)
1 , . . . , a

(n)
k−1)}n∈N such that limn→∞(a

(n)
1 , . . . , a

(n)
k−1) = (0, 0, . . . , 0). We have

Ψ(a
(n)
1 , . . . , a

(n)
k−1) =

(k − 1)
2k(k−1)
k+d−2

(k + d− 2)2k

(a
(n)
1 . . . a

(n)
k−1(1−

∑k−1
i=1 a

(n)
i ))

k−d
k+d−2

((1− a(n)
1 ) . . . (1− a(n)

k−1)(
∑k−1

i=1 a
(n)
i ))

2(k−1)
k+d−2

,

and since we are in a neighborhood of (0, 0, . . . , 0) the sequence Ψ(a
(n)
1 , . . . , a

(n)
k−1)

will have the same behaviour of the following sequence

Ψ(a
(n)
1 , . . . , a

(n)
k−1) ∼ (k − 1)

2k(k−1)
k+d−2

(k + d− 2)2k

(a
(n)
1 . . . a

(n)
k−1)

k−d
k+d−2

(
∑k−1

i=1 a
(n)
i )

2(k−1)
k+d−2

.

By looking carefully to the right-hand side of the inequality, we can estimate it
as follows

(k − 1)
2k(k−1)
k+d−2

(k + d− 2)2k

(a
(n)
1 . . . a

(n)
k−1)

k−d
k+d−2

(
∑k−1

i=1 a
(n)
i )

2(k−1)
k+d−2

≤ (k − 1)
2k(k−1)
k+d−2

(k + d− 2)2k

1

(
∑k−1

i=1 a
(n)
i )

2(k−1)
k+d−2

(
(
∑k−1

i=1 a
(n)
i )k−1

(k − 1)k−1

) k−d
k+d−2

=
(k − 1)

(k−1)(k+d)
k+d−2

(k + d− 2)2k
(

k−1∑
i=1

a
(n)
i )

(k−1)(k−d−2)
k+d−2 .
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The last term which appears in the inequality above depends on the exponent
k− d− 2. More precisely, by the assumption p ≥ 2 we already know that k ≥ d+ 2,
but we need to distinguish the case k = d + 2 from the case k > d + 2. Since we
assumed either Gp = PU(p, 1) or Gp = PSp(p, 1), we can have either d = 2 or
d = 4. Thus, if k = d + 2, we should have k = 4 or k = 6. The cases k = 6 is not
possible because the dimension of the tangent space of a quaternionic hyperbolic
space is a multiple of 4, so we are going to analyze only the case k = 4. When k = 4,
the space Xp becomes the complex hyperbolic space H2

C and we get the estimate

Ψ(0, . . . , 0) ≤ 3
9
2

48

which is stricly less then the maximum of Ψ. When k > d+ 2 the right-hand side of
the inequality becomes a function which is continuous at (0, . . . , 0) and it converges
to 0. Hence, in all the possible cases, we can bound Ψ(a1, . . . , ak−1) away from
its maximum in a suitable neighborhood of the boundary ∂∆k−1. Moreover, since
Ψ(a1, a2, . . . , ak) is a function which is invariant under the action of the group Sk,
we get

Ψ(1, 0, 0, . . . , 0) = Ψ(0, 1, 0, . . . , 0) = . . . = Ψ(0, 0, . . . , 0, 1),

and the claim follows because ϕ(H) ≤ ψ(H) for every H ∈ Sym+
1 (k,R).

We know that in our context we have(
k

(k + d− 2)2

)k
(1− 2ε) ≤ ϕ(HV

n ) ≤
(

k

(k + d− 2)2

)k
for n ≥ n0. As a consequence of Proposition 2.4.2, the sequence HV

n must converge
to I/k. Hence HV

n converges to I/k almost-everywhere on Xp. By following the
same proof of Proposition 2.1.9 we have

Proposition 2.4.3 Suppose the sequence HV
n converges almost everywhere to I/k.

Thus it converges uniformly to I/k on every compact set of Xp.

As a consequence of the Cauchy–Schwarz inequality, we can write

|kn(v,DxF (u))| ≤ (k + d− 2)hn(v, v)
1
2h′n(u, u)

1
2 ,

for every u ∈ TxXp and v ∈ TFn(x)X
m. Fix r > 0 and consider Br(O) as compact

set of Xp. By Proposition 2.4.3, we have that limn→∞H
V
n (x) = I/k for every x

uniformly on Br(O). This implies that

lim
n→∞

KV
n (x) =

k + d− 2

k
I, lim

n→∞
H
′U
n (x) =

1

k
I.

Hence by taking n > n1, u ∈ Ux and v = DxFn(u) we get

(k+d−2)/k||DxFn(u)||2Xm−ε ≤ (k+d−2)(||DxFn(u)||Xm/
√
k+ε)(||u||Xp/

√
k+ε).

By considering on both sides the supremum on all the vectors u of norm equal
to 1 we get
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||DxFn||2 < k(||DxFn||/
√
k + ε)(1/

√
k + ε)

hence ||DxFn|| is uniformly bounded on Br(O) for any n > n1 and for any choice
of r > 0. Hence, by following the same strategy of the proof of Theorem 1, it is
straightforward to prove both Theorem 3 and Theorem 4.
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Chapter 3

The ω-Borel invariant

3.1 The cocycle Volω

Fix an ultrafilter ω on N and a real divergent sequence (λl)l∈N. Recall that these
data allow us to construct the field Cω. This chapter is devoted to the introduction
of the ω-Borel invariant for representations ρω : Γ → SL(n,Cω), where Γ is a
non-uniform torsion free lattice of PSL(2,C).

From now until the end of the chapter we will consider the spaces P1(C)ω and
P1(Cω) identified, hence we will refer to any of these two as they were the same
space. The same will be done also for the groups SL(n,C)ω and SL(n,Cω). More-
over, to avoid a heavy notation we are going to refer to any sequence (xl)l∈N by
dropping the parenthesis every time that we are considering the sequence itself in-
stead of any of its single term.

In this section we are going to construct a generalization of the hyperbolic volume
function which will live on P1(Cω)4. This generalization will reveal the fundamental
tool to define the ω-Borel cocycle.

Before starting, we want to underline a delicate point. Since we want to exploit
the properties of the standard Borel cocycle, one could try to define the new func-
tion Volω simply by taking the ω-limit of the volumes, that is Volω(x0

ω, . . . , x
3
ω) =

ω-liml→∞Vol(x0
l , . . . , x

3
l ), where xil is any representative of xiω. Unfortunately this

definition is not correct. Indeed, if we suppose to have 3 points that coincide, say
x0
ω = x1

ω = x2
ω, different choices of representatives lead to different values of the

ω-limit of their volumes. Hence, we need to be careful.
Let P1(Cω)(4) be the space of 4-tuples of distinct points on P1(Cω). As in the

standard case, there is a natural cross ratio function

crω : P1(Cω)(4) → Cω \ {0, 1}, crω(x0
ω, x

1
ω, x

2
ω, x

3
ω) =

(x0
ω − x2

ω)(x1
ω − x3

ω)

(x0
ω − x3

ω)(x1
ω − x2

ω)
,

which is well defined by its purely algebraic nature. Every xiω may be considered in
Cω or equal to ∞. Recall the definition of the Bloch–Wigner function by

D2 : C→ R, D2(z) := =(Li2(z)) + arg(1− z) log |z|,
see Definition 1.1.17. By still denoting D2 its continuous extension on P1(C), we
can formulate the following

55
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Definition 3.1.1. The ω-Bloch–Wigner function is given by

Dω
2 : Cω ∪ {∞} → R, Dω

2 (xω) := ω- lim
l→∞

D2(xl) for xω ∈ Cω and Dω
2 (∞) := 0.

where xl is any representative of the equivalence class xω.

Lemma 3.1.2 If xl and yl are two sequences representing the same element in
Cω, then

ω- lim
l→∞

D2(xl) = ω- lim
l→∞

D2(yl).

Proof. Since P1(C) is compact and ω-liml→∞ |xl − yl|
1
λl = 0, both sequences xl

and yl will converge to the same limit in C ∪ {∞}. Denote by ξ this point. As a
consequence of Proposition 1.3.15 and by the continuity of D2 we have

ω- lim
l→∞

D2(xl) = D2(ω- lim
l→∞

xl) = D2(ξ) = D2(ω- lim
l→∞

yl) = ω- lim
l→∞

D2(yl),

as claimed.

The previous lemma guarantees that the definition of the ω-Bloch–Wigner func-
tion is correct since it does not depend on the choice of the representative of the
class xω.

Definition 3.1.3. The ω-volume function for a 4-tuple of points (x0
ω, x

1
ω, x

2
ω, x

3
ω) ∈

P1(Cω)4 is defined as

Volω(x0
ω, x

1
ω, x

2
ω, x

3
ω) =

{
Dω

2 (crω(x0
ω, x

1
ω, x

2
ω, x

3
ω)) if (x0

ω, x
1
ω, x

2
ω, x

3
ω) ∈ P1(Cω)(4),

0 otherwise.

Remark 3.1.4. Mantaining the notation of Chapter 1, we denote by Vol the compo-
sition D2 ◦ cr, where D2 is the standard Bloch–Wigner function and cr is the cross
ratio on P1(C). Fix a 4-tuple (x0

ω, . . . , x
3
ω) ∈ P1(Cω)4 of distinct points. Thanks to

the natural identification between P1(Cω) and P1(C)ω, we can think of each xiω as
the class of a sequence xil of points in P1(C). Now, it easy to see that

crω(x0
ω, . . . , x

3
ω) = [cr(x0

l , . . . , x
3
l )]

in Cω (if the xiω are all distinct, also the terms of the sequences xil are distinct
ω-almost every l ∈ N). By exploiting the previous identity, we can rewrite the
definition of Volω as follows

Volω(x0
ω, . . . , x

3
ω) = Dω

2 (crω(x0
ω, . . . , x

3
ω)) = ω- lim

l→∞
D2(cr(x0

l , . . . , x
3
l ))

= ω- lim
l→∞

Vol(x0
l , . . . , x

3
l ),
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and this is completely independent of the choice of representatives x0
l , . . . , x

3
l . Hence

Volω coincides with the ω-limit of the standard volumes Vol(x0
l , . . . , x

3
l ) on a 4-tuple

(x0
ω, . . . , x

3
ω) ∈ P1(Cω)(4), where xil is any representative for xiω. Even though we

have already underlined that this is not true on the whole space P1(Cω)4, we can
always choose a suitable representative for each xiω such that

Volω(x0
ω, . . . , x

3
ω) = ω- lim

l→∞
Vol(x0

l , . . . , x
3
l ).

Proposition 3.1.5 The function Volω is a bounded, alternating, GL(2,Cω)-invariant
cocycle.

Proof. Most of the properties we stated follow directly from the properties of the
standard volume function Vol. We start by showing the GL(2,Cω)-invariance. From
now until the end of the proof we are going to pick suitable representative sequences
for points in P1(Cω) such that

Volω(x0
ω, . . . , x

3
ω) = ω- lim

l→∞
Vol(x0

l , . . . , x
3
l ).

Let gω ∈ GL(2,Cω). We want to show that gω.Volω = Volω.

gω.Volω(x0
ω, x

1
ω, x

2
ω, x

3
ω) = Volω(g−1

ω .x0
ω, . . . , g

−1
ω .x3

ω) = ω- lim
l→∞

Vol(g−1
l .x0

l , . . . , g
−1
l .x3

l )

and thanks to the equivariance of the classic volume function we get

ω- lim
l→∞

Vol(g−1
l .x0

l , . . . , g
−1
l .x3

l ) = ω- lim
l→∞

Vol(x0
l , . . . , x

3
l ) = Volω(x0

ω, . . . , x
3
ω),

as required. The strategy to prove the alternating property and the cocycle property
of Volω is the same as above. Let σ ∈ S3. It holds

σ.Volω(x0
ω, x

1
ω, x

2
ω, x

3
ω) = Volω(xσ(0)

ω , xσ(1)
ω , xσ(2)

ω , xσ(3)
ω ) = ω- lim

l→∞
Vol(x

σ(0)
l , x

σ(1)
l , x

σ(2)
l , x

σ(3)
l )

= ω- lim
l→∞

sgn(σ)Vol(x0
l , x

1
l , x

2
l , x

3
l ) = sgn(σ)Volω(x0

ω, x
1
ω, x

2
ω, x

3
ω).

In an analogous way, we have

δVolω(x0
ω, . . . , x

4
ω) =

4∑
i=0

(−1)iVolω(x0
ω, . . . , x̂

i
ω, . . . , x

4
ω) =

4∑
i=0

(−1)iω- lim
l→∞

Vol(x0
l , . . . , x̂

i
l, . . . , x

4
l ) = ω- lim

l→∞

4∑
i=0

(−1)iVol(x0
l , . . . , x̂

i
l, . . . , x

4
l ) = 0.

Finally, the boundedness is obvious since the ω-Bloch–Wigner is nothing more
than the ω-limit of a sequence of real values all bounded by ν3 on P1(Cω)(4) and
it coincides with 0 on the complementary. Here ν3 is the volume of a regular ideal
hyperbolic tetrahedron in H3.
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3.2 The cocycle Bω
n

In order to define the ω-Borel invariant for a representation ρω : Γ→ SL(n,Cω),
we first need to define the ω-Borel cocycle. We are going to follow the same con-
struction exposed in [BBI, Section 3]. Let Sω

k (m) be the following space

Sω
k (m) := {(x0

ω, . . . , x
k
ω) ∈ (Cmω )k+1|〈x0

ω, . . . x
k
ω〉 = Cmω }/GL(m,Cω)

where GL(m,Cω) acts on (k + 1)-tuples of vectors by the diagonal action and
〈x0
ω, . . . x

k
ω〉 is the Cω-linear space generated by x0

ω, . . . , x
k
ω. It obvious that if k <

m − 1 the space defined above is empty. For every m-dimensional vector space V
over Cω and any (k+1)-tuple of spanning vectors (x0

ω, . . . , x
k
ω) ∈ V k+1, we choose an

isomorphism V → Cmω . Since any two different choices of isomorphisms are related
by an element gω ∈ GL(m,Cω), we get a well defined element of Sω

k (m) which will
be denoted by [V ; (x0

ω, . . . , x
k
ω)]. For

Sω
k :=

⊔
m≥0

Sω
k (m) = Sω

k (0) t . . . tSω
k (k + 1)

we have two different face maps ε
(k)
i , η

(k)
i : Sω

k → Sω
k−1 given by

ε
(k)
i [Cmω ; (x0

ω, . . . , x
k
ω)] := [〈x0

ω, . . . , x̂
i
ω, . . . , x

k
ω〉; (x0

ω, . . . , x̂
i
ω, . . . , x

k
ω)],

η
(k)
i [Cmω ; (x0

ω, . . . , x
k
ω)] := [Cmω /〈xiω〉; (x0

ω, . . . , x̂
i
ω, . . . , x

k
ω)].

As in [BBI], it is straightforward to prove

Lemma 3.2.1 For all 0 ≤ i < j ≤ k the maps introduced above satisfy the following
relations

ε
(k−1)
j ε

(k)
i = ε

(k−1)
i ε

(k)
j+1,

η
(k−1)
j η

(k)
i = η

(k−1)
i η

(k)
j+1,

η
(k−1)
j ε

(k)
i = ε

(k−1)
i η

(k)
j+1.

We now define the operator

Dk : Z[Sω
k ]→ Z[Sω

k−1], Dk(σ) :=

k∑
i=0

(−1)i(ε
(k)
i (σ)− η(k)

i (σ)),

where Z[Sω
k ] is the free abelian group generated by Sω

k and it is equal to 0 for

k ≤ −1. We still denote by ε
(k)
i and η

(k)
i the linear extensions of face maps to

Z[Sω
k ]. As a consequence of Lemma 3.2.1 we get the condition Dk−1 ◦Dk = 0. In

this way we have constructed a chain complex (Z[Sω
• ], D•). With the purpose of

dualizing this complex, we recall that we have a natural action of the symmetric
group Sk+1 on Sω

k , hence we can define

Ralt(S
ω
k ) := {f : Sω

k → R|f is alternating with respect to the Sk+1-action}
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and we can define D∗k as the dual of Dk ⊗ idR. The construction above produces a
cochain complex (Ralt(S

ω
• ), D∗•).

We are going now to define a cocycle living in Ralt(S
ω
3 ) which will be used to

construct the ω-Borel cocycle. Since the ω-volume function Volω introduced in the
previous section can be thought of as defined on (C2

ω \ {0})4, it is extendable to

Volω : Sω
3 → R

where we set Volω|Sω
3 (m) to be identically zero if m 6= 2 and

Volω[C2
ω; (v0

ω, . . . , v
3
ω)] :=

{
Volω(v0

ω, . . . , v
3
ω) if each viω 6= 0,

0 otherwise.

By the compatibilty of the ω-limit with respect to finite sums, it should be clear
that

Proposition 3.2.2 The function Volω ∈ Ralt(S
ω
3 ) is a cocycle, that is it holds

D∗4(Volω) = 0.

Since the proof of this proposition is the same as [BBI, Lemma 8, Lemma 9] we
omit it. In order to define the ω-Borel cocyle we are going to introduce the spaces
of affine flags in Cnω. A complete flag Fω in Cnω is a sequence of linear subspaces

F 0
ω ⊂ F 1

ω ⊂ . . . ⊂ Fnω

such that every F iω has dimension i as Cω-vector space. An affine flag (Fω, vω) is
a complete flag Fω together with an n-tuple of vectors vω = (v1

ω, . . . , v
n
ω) ∈ (Cnω)n

such that

F iω = Cωviω + F i−1
ω , i ≥ 1.

It is clear that the group GL(n,Cω) acts naturally on the space of flags F (n,Cω)
and on the space of affine flags Faff(n,Cω) of Cnω. Let Z[Faff(n,Cω)k+1] be the
abelian group generated by Faff(n,Cω)k+1 and let ∂k be the standard boundary

map induced by the face maps ε
(k)
i : Faff(n,Cω)k+1 → Faff(n,Cω)k consisting in

dropping the ith-component for 1 ≤ k ≤ n−1. Moreover set ∂0 : Z[Faff(n,Cω)]→ 0.
We are ready now to define

Tk : (Z[Faff(n,Cω)k], ∂k)→ (Z[Sω
k ], Dk)

which will enable us to construct a morphism between the dual of the complexes
above (more precisely on their alternating versions). Given a multi-index J ∈
{0, 1, . . . , n− 1}k+1, we start by defining

τJ : Faff(n,Cω)k+1 → Sω
k

as the function

τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)) :=

[
〈F j0+1

0,ω , . . . , F jk+1
k,ω 〉

〈F j00,ω, . . . , F
jk
k,ω〉

; (vj0+1
0,ω , . . . , vjk+1

k,ω )

]
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and finally

Tk((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)) :=
∑

J∈{0,...,n−1}k+1

τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)).

Lemma 3.2.3 For k ≥ 1 we it holds

• If k is odd, then Tk−1 ◦ ∂k −Dk ◦ Tk = 0.

• If k is even, then Tk−1◦∂k−Dk◦Tk = nk[0; (0, . . . , 0)] where nk[0; (0, . . . , 0)] ∈
Z[Sω

k−1(0)].

Proof. We still denote by ε
(k)
i and η

(k)
i the face maps of Lemma 3.2.1. For every

0 ≤ i ≤ k and every multi-index J ∈ {0, . . . , n−1}k+1 we have the following relations

(a) If ji ≤ n − 2 then η
(k)
i ◦ τJ = ε

(k)
i ◦ τJ+δi , where δi = (0, . . . , 0, 1, 0, . . . , 0) has

the only entry equal to one in the i-th position.

(b) If ji = n− 1 then η
(k)
i ◦ τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)) = [0; (0, . . . , 0)].

(c) If ji = 0 then ε
(k)
i ◦ τJ = TJ(i) ◦ ε

(k)
i , where J(i) ∈ {0, . . . , n − 1}k is obtained

from J by dropping ji.

We can now evaluate

DkTk((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)) =

k∑
i=0

(−1)i
(∑

J

ε
(k)
i τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω))

−
∑
J

η
(k)
i τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω))

)
.

We can now split the first inner sum into a first sum over all the possible multi-
indices J ∈ {0, . . . , n− 1}k+1 such that ji = 0 while the second sum will be over all
the possible J ∈ {0, . . . , n − 1}k+1 with ji ≥ 1. By exploiting relation (c) the first

contribution results equal to Tk−1 ◦ ε
(k)
i ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω)). By applying

relations (a) and (b), the second contribution together with the second inner sum
gives us back −nk[0; (0, . . . , 0)].

If we now recall that there exists a natural action of Sk+1 on Faff(n,Cω)k+1 and
dualize the complex considered so far, we get the cocomplex (Ralt(Faff(n,Cω)k+1), ∂∗k)
of alternating cochains (∂∗k is the dual of ∂k ⊗ idR). By denoting T ∗k the dual map
of Tk ⊗ idR, by Lemma 3.2.3 that T ∗k is a morphism a complexes taking values in
(Ralt(Faff(n,Cω)k+1))GL(n,Cω).

Definition 3.2.4. We define the ω-Borel function of degree n as

Bω
n ((F0,ω, v0,ω), . . . , (F3,ω, v3,ω)) := T ∗3 (Volω) =

=
∑

J∈{0,...,n−1}4
Volω

[
〈F j0+1

0,ω , . . . , F j3+1
3,ω 〉

〈F j00,ω, . . . , F
j3
3,ω〉

; (vj0+1
0,ω , . . . , vj3+1

3,ω )

]
.
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Using the same approach of [BBI] it is straghtfoward to prove that

Proposition 3.2.5 The function Bω
n is a bounded, alternating, strict GL(n,Cω)-

invariant cocycle on the space Faff(n,Cω)4 of 4-tuples of affine flags which naturally
descends to the space F (n,Cω)4 of 4-tuples of flags. Moreover, for every 4-tuple of
flags (F0,ω, . . . , F3,ω) ∈ F (n,Cω)4 we have the following bound

|Bω
n (F0,ω, . . . , F3,ω)| ≤ n(n2 − 1)

6
ν3.

We want now to use Proposition 1.1.13 in order to obtain the desired cohomology
class. Before doing this we need to underline a delicate point in the discussion. By
Proposition 1.3.19 the field Cω is not locally compact with respect to the topology
induced by the ultrametric absolute value. In particular the group SL(n,Cω) cannot
be locally compact with respect to the topology inherited by M(n,Cω) seen as Cn2

ω .
Hence it is meaningless to refer to the Haar measure or to the Haar σ-algebra
for SL(n,Cω). In order to overcome these difficulties, we are going to consider
SLδ(n,Cω), that is the group SL(n,Cω) endowed with the discrete topology. The
same for GLδ(n,Cω). Moreover, in order to apply correctly Proposition 1.1.13, we
are going to consider the discrete σ-algebra on both Sω

k and F (n,Cω).
Recall that Sω

k (m) is a space on which the symmetric group Sk+1 acts naturally.
Let B∞alt(S

ω
k ) be the Banach space of bounded alternating Borel functions on Sω

k .
The restriction of D∗k gives us back a complex of Banach spaces (B∞alt(S

ω
• ), D∗•).

By restricting the map T ∗k to the subcomplexes of bounded Borel functions and by
applying Proposition 1.1.13 to (B∞alt(F (n,Cω)•+1), ∂•), we get a map

Skω(n) : Hk(B∞alt(S
ω
• ))→ Hk

b (GLδ(n,Cω)).

Definition 3.2.6. With the notation above, we define the ω-Borel cohomology class
of degree n as

βω(n) := S3
ω(n)(Volω) = c3[Bω

n ],

where c3 : H3(B∞alt(F (n,Cω)•+1))GL(n,Cω) → H3
b (GLδ(n,Cω)) is the canonical map

of Proposition 1.1.13.

Remark 3.2.7. For every k ∈ N the groups Hk
b (SLδ(n,Cω)) and Hk

b (GLδ(n,Cω))
are isomorphic. Hence we can think of βω(n) as an element of both H3

b (SLδ(n,Cω))
and H3

b (GLδ(n,Cω)).
In fact, we have the following commutative diagram

1 // C×ω // GL(n,Cω) // PGL(n,Cω) //

∼=
��

1

1 // µn

OO

// SL(n,Cω)

OO

// PSL(n,Cω) // 1

where C×ω is the group of invertible elements of Cω and µn is the group of the n-th
roots of unity. By functoriality of bounded cohomology and since both C×ω and
µn are amenable groups, we conclude that Hk

b (GLδ(n,Cω)) ∼= Hk
b (SLδ(n,Cω)), as

claimed.
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3.3 The ω-Borel invariant for a representation ρω

Let Γ be the fundamental group of a complete hyperbolic 3-manifold M with
toric cusps. Recall that M can be decomposed as M = N ∪

⋃h
i=1Ci, where N is any

compact core of M and for i = 1, . . . , h the component Ci is a cuspidal neighborhood
diffeomorphic to Ti × (0,∞), where Ti is a torus whose fundamental group corre-
sponds to a suitable abelian parabolic subgroup of PSL(2,C) (see Section 1.2.3).
Our aim is to define a numerical invariant associated to any representation ρω : Γ→
SL(n,Cω). We start by fixing the notation. Let i : (M,∅) → (M,M \ N) be the
natural inclusion map. Since the fundamental group of the boundary ∂N is abelian,
hence amenable, it can be proved that the maps i∗b : Hk

b (M,M \N)→ Hk
b (M) in-

duced at the level of bounded cohomology groups are isometric isomorphisms for
k ≥ 2 (see [BBF14]). Moreover, it holds Hk

b (M,M \N) ∼= Hk
b (N, ∂N) by homotopy

invariance of bounded cohomology. If we denote by c the canonical comparison map
c : Hk

b (N, ∂N)→ Hk(N, ∂N), we can consider the composition

H3
b (SLδ(n,Cω))

(ρω)∗b // H3
b (Γ) ∼= H3

b (M)
(i∗b )−1

// H3
b (N, ∂N)

c // H3(N, ∂N),

where the isomorphism that appears in this composition holds since M is aspherical.
By choosing a fundamental class [N, ∂N ] for H3(N, ∂N) we are ready to give

the following

Definition 3.3.1. The ω-Borel invariant associated to a representation ρω : Γ→ SL(n,Cω)
is given by

βωn (ρω) := 〈(c ◦ (i∗b)
−1 ◦ (ρω)∗b)β

ω(n), [N, ∂N ]〉,

where the brackets 〈·, ·〉 indicate the Kronecker pairing.

Remark 3.3.2. The previous definition is indipendent of the choice of the compact
core N . Moreover, it can be easily extended to any lattice of PSL(2,C).

We are going to generalize some of the classic results valid for the standard Borel
invariant. The proofs are identical to the ones exposed in [BBI]. Before starting,
we recall the existence of natural transfer maps

H•b (Γ)
transΓ// H•cb(PSL(2,C)) H•(N, ∂N)

τDR // H•c (PSL(2,C)),

where H•c (PSL(2,C)) denotes the continuous cohomology groups of PSL(2,C).
The transfer maps are defined as it follows. Let Vk be the set Cb((H3)k+1,R)

of real bounded continuous functions on (k + 1)-tuples of points of H3. With the
standard homogeneous boundary operators and the structure of Banach PSL(2,C)-
module given by

(g.f)(x0, . . . , xn) := f(g−1x0, . . . , g−1xn), ||f ||∞ = sup
x0,...,xn∈H3

|f(x0, . . . , xn)|
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for every f ∈ Cb((H3)n+1,R) and g ∈ PSL(2,C), we get a complex V• = Cb((H3)•+1)
of Banach PSL(2,C)-modules. Recall that this complex allows us to compute the
continuous bounded cohomology of PSL(2,C), indeed it holds

Hk(V
PSL(2,C)
• ) ∼= Hk

cb(PSL(2,C))

for every k ≥ 0. Moreover, by substituting PSL(2,C) with Γ, we have in an
analogous way that

Hk(V Γ
• ) ∼= Hk

b (Γ)

for every k ≥ 0. The previous considerations allow us to define the map

transΓ : V Γ
k → V

PSL(2,C)
k , transΓ(c)(x0, . . . , xn) :=

∫
Γ\PSL(2,C)

c(ḡx0, . . . , ḡxn)dµ(ḡ),

where c is any Γ-invariant element of Vk and µ is any invariant probability mea-
sure on Γ\PSL(2,C). Here ḡ stands for the equivalence class of g into Γ\PSL(2,C).

Since transΓ(c) is PSL(2,C)-equivariant and transΓ commutes with the cobound-
ary operator, we get a well-defined map

transΓ : H•b (Γ)→ H•cb(PSL(2,C)).

We now pass to the description of the map τDR. If π : H3 → M = Γ\H3 is the
natural covering projection, we set U := π−1(M \N). Recall that the relative coho-
mology group Hk(N, ∂N) is isomorphic to the cohomology group Hk(Ω•(H3, U)Γ)
of the Γ-invariant differential forms on H3 which vanish on U . Since, by Theo-
rem 1.1.16 we have that Hk

c (PSL(2,C),R) ∼= Ωk(H3)PSL(2,C), we define

τDR : Ωk(H3, U)Γ → Ωk(H3)PSL(2,C), τDR(α) :=

∫
Γ\PSL(2,C)

ḡ∗αdµ(ḡ),

where µ and ḡ are the same as before. The map τDR commutes with the coboundary
operators inducing a map

τDR : Hk(N, ∂N) ∼= Hk(Ω•(H3, U)Γ)→ Hk(Ω•(H3)PSL(2,C)) ∼= Hk
c (PSL(2,C)).

For a more detailed description of the above maps we suggest to the reader to
check [BBI13, Section 3.2].

Proposition 3.3.3 For k ≥ 2 the diagram

Hk(B∞alt(S
ω
• ))

Skω(n+1)//

Skω(n) ))

Hk
b (GLδ(n+ 1,Cω))

��
Hk
b (GLδ(n,Cω))

commutes. The vertical arrow is induced by the left corner injection GL(n,Cω) →
GL(n+ 1,Cω). In particular we have that βω(n+ 1) restricts to βω(n).
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Proof. Let in : Cnω → Cn+1
ω be the injection in(x1

ω, . . . , x
n
ω) := (x1

ω, . . . , x
n
ω, 0). By

an abuse of notation we define

in : Faff(n,Cω)→ Faff(n+ 1,Cω)

as in((Fω, vω)) = (F̃ω, ṽω) where for 0 ≤ j ≤ n we have F̃ jω = in(F jω), ṽjω = in(vjω) and
ṽn+1
ω = en+1. If we set J ∈ {0, . . . n}k+1 and I = {i : 0 ≤ i ≤ k such that ji = n},

it is easy to verify that if I = ∅ this implies J ∈ {0, . . . , n− 1}k+1 and

τJ(in(F0,ω, v0,ω), . . . , in(Fk,ω, vk,ω)) = τJ((F0,ω, v0,ω), . . . , (Fk,ω, vk,ω))

while if I 6= ∅, then

τJ(in(F0,ω, v0,ω), . . . , in(Fk,ω, vk,ω)) = [Cω; (δI0 , . . . , δ
I
k)],

where δIi = [en+1] if i ∈ I and 0 otherwise. The previous considerations imply that
in induces a commutative diagram of complexes

B∞alt(S
ω
k )

T ∗k //

T ∗k ))

B∞alt(Faff(n+ 1,Cω)k+1)

i∗n
��

B∞alt(Faff(n,Cω)k+1)

and since the map i∗n implements the restriction in bounded cohomology, the com-
mutativity of the diagram which appears in the statement follows. In particular, by
focusing our attention on the case of k = 3 we get

i∗n(Bω
n+1) = i∗n ◦ T ∗3 (Volω) = T ∗3 (Volω) = Bω

n

as claimed.

Proposition 3.3.4 For any representation ρω : Γ→ SL(n,Cω) the composition

H3
b (SLδ(n,Cω)) // H3

b (Γ)
transΓ// H3

cb(PSL(2,C))

maps βω(n) to βωn (ρω)
Vol(M)β(2). In particular, it holds the following bound

|βωn (ρω)| ≤ n(n2 − 1)

6
Vol(M),

as in the classic case.

Proof. Recall that we have the following commutative diagram
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H3
b (SLδ(n,Cω))

(ρω)∗b
��

H3
b (Γ)

∼=
��

transΓ

))
H3
b (N, ∂N)

c
��

H3
cb(PSL(2,C))

c
��

H3(N, ∂N)
τDR // H3

c (PSL(2,C)).

Since H3
cb(PSL(2,C)) ∼= R as a consequence of Proposition 1.1.19, there exists

a suitable λ ∈ R such that

transΓ ◦ (ρω)∗b(β
ω(n)) = λβ(2).

Hence by composing both sides with the comparison map c, we obtain

c ◦ transΓ ◦ (ρω)∗b(β
ω(n)) = c(λβ(2)) = λ(cβ(2)) = λβ(2).

If we pick up ωN,∂N ∈ H3(N, ∂N) such that its evaluation on the fundamental
class [N, ∂N ] gives us back Vol(M), we have that τDR(ωN,∂N ) = β(2). In particular

τDR(c ◦ (i∗b)
−1 ◦ (ρω)∗b(β

ω(n))) = λτDR(ωN,∂N )

and by injectivity of the map τDR in top degree we get

(c ◦ (i∗b)
−1 ◦ (ρω)∗b)(β

ω(n)) = λωN,∂N .

If we evaluate both sides on the fundamental class, we obtain

βωn (ρω) = 〈(c ◦ (i∗b)
−1 ◦ (ρω)∗b)(β

ω(n)), [N, ∂N ]〉 = 〈λωN,∂N , [N, ∂N ]〉 = λVol(M).

At the same time it holds

|λ| =
||transΓ ◦ (ρω)∗bβ

ω(n)||
||β(2)||

≤ n(n2 − 1)

6
,

from which it follows

|βωn (ρω)| ≤ n(n2 − 1)

6
Vol(M),

as claimed.

Recall that there is a natural inclusion of fields of C into Cω given by con-
stant sequences. In particular we have natural embeddings of Cm into Cmω and of
SL(n,C) into SL(n,Cω). Since every representation ρ : Γ → SL(n,C) determines
a representation ρ̂ into SL(n,Cω) by composing it with the previous embedding, it
is quite natural to ask which is the relation between βωn (ρ̂) and βn(ρ). We have the
following
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Proposition 3.3.5 Let ρ : Γ → SL(n,C) be a representation. If we denote by
ρ̂ : Γ → SL(n,Cω) the representation obtained by composing ρ with the natural
embedding of SL(n,C) into SL(n,Cω), we have

βωn (ρ̂) = βn(ρ).

Proof. We are going to prove that the cohomology class βω(n) restricts naturally
to the class β(n). Let j : SL(n,C) → SL(n,Cω) be the natural embedding. By
endowing both spaces with the discrete topology, we have a continuous morphism
of groups that induces a map

j∗b : H3
b (SLδ(n,Cω))→ H3

b (SLδ(n,C)).

We want to prove that j∗b (βω(n)) = β(n). From this it will follow

βωn (ρ̂) = 〈(c ◦ (i∗b)
−1 ◦ ρ̂∗b)βω(n), [N, ∂N ]〉 = 〈(c ◦ (i∗b)

−1 ◦ (j ◦ ρ)∗b)β
ω(n), [N, ∂N ]〉

= 〈(c ◦ (i∗b)
−1 ◦ ρ∗b ◦ j∗b )βω(n), [N, ∂N ]〉 = 〈(c ◦ (i∗b)

−1 ◦ ρ∗b)β(n), [N, ∂N ]〉 = βn(ρ).

Similarly to what we have done for the field Cω, we define the configuration
space

Sk(m) := {(x0, . . . , xk) ∈ (Cm)k+1|〈x0, . . . , xk〉 = Cm}/GL(m,C).

for every k ≥ m−1. This family of spaces is exactly the family introduced by [BBI].
There exists a natural family of maps given by

ĵk(m) : Sk(m)→ Sω
k (m), ĵk(m)[Cm; (v0, . . . , vk)] := [Cmω ; (v0, . . . , vk)],

where each vector vi which appears on the right-hand side of the equation is thought
of as an element of Cmω . This function is well-defined because v0, . . . , vk are genera-
tors also for Cmω as a Cω-vector space and the identifications induced via conjugation
by GL(m,C) are respected. By denoting

ĵk := ĵk(0) t ĵk(1) t . . . t ĵk(k + 1),

we get the following commutative diagram

H3(B∞alt(S
ω
• ))

S3
ω(n)//

H3(ĵ∗•)
��

H3
b (SLδ(n,Cω))

j∗b
��

H3(B∞alt(S•))
S3(n)// H3

b (SLδ(n,C)),

where ĵ∗• are the maps induced by ĵ• on the Borel cochains. We will prove that
Vol = Volω ◦ ĵ3, that is H3(ĵ∗•)[Volω] = [Vol]. Let m ∈ {0, . . . , 4}. It is clear
that Vol = Volω ◦ ĵ3(m) for m 6= 2 because both sides are equal to zero. Let us
now consider [C2; (v0, . . . , v3)] ∈ S3(2). If any of these vectors is 0 both functions
evaluated on the 4-tuple give us back 0. Hence, we can suppose that each vi is
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different from 0. If the vectors v0, . . . , v3 are in general position into C2, they still
remain in general position into C2

ω. Thus

Volω ◦ ĵ3(2)[C2; (v0, . . . , v3)] = Volω[C2
ω; (v0, . . . , v3)] = ω- lim

l→∞
Vol(v0, . . . , v3)

= Vol(v0, . . . , v3) = Vol[C2; (v0, . . . , v3)].

In the same way if (v0, . . . , v3) are not in general position into C2, they will not
be in general position in C2

ω either, so both Volω ◦ ĵ3(2) and Vol will evaluate to be
zero, as desired.

We want now to express βωn (ρω) in terms of boundary maps. Recall that we can
decompose M = N ∪

⋃h
i=1Ci, where N is the compact core we fixed before and

each Ci is a cuspidal neighborhood, for i = 1, . . . , h. Since the fundamental group
Hi = π1(Ci) is an abelian parabolic subgroup of PSL(2,C), it has a unique fixed
point ξi in P1(C). We define the set

C (Γ) :=

h⋃
i=1

Γ.ξi.

Definition 3.3.6. If Γ = π1(M) as above, given a representation ρω : Γ →
SL(n,Cω), a decoration for ρω is a map

ϕω : C (Γ)→ F (n,Cω)

that is equivariant with respect to ρω.

Recall now that the cocycle Bω
n is a strict cocycle, as in the standard case. Hence

the class (c ◦ (i∗b)
−1 ◦ (ρω)∗b)β

ω(n) can be represented in H3
b (Γ) by ϕ∗ω(Bω

n ), where
ϕω is a decoration for ρω (we refer to [BI02, Corollary 2.7] for this result about the
pullback of strict cocycles along boundary maps).

Let N be a fixed compact core of M . In order to realize the corresponding
cocycle in H3

b (N, ∂N), we identify the universal cover Ñ of N with H3 minus a set
of Γ-equivariant horoballs, each one centered at an element ξ ∈ C (Γ). We define a
map p : Ñ → C (Γ) in two steps. We first send each horospherical section to the
corresponding element. Then, for the interior of Ñ , we map a fundamental domain
to a chosen ξ0 ∈ C (Γ) and we extend equivariantly. In this way, any bounded
Γ-invariant cocycle c : C (Γ) → R determines a relative cocycle on (N, ∂N) as it
follows

{σ : ∆3 → Ñ} 7→ c(p(σ(e0)), . . . , p(σ(e3))).

If τ is a relative triangulation of (N, ∂N) and τ̃ is the lifted triangulation of a
fundamental domain in (Ñ , ∂Ñ), the ω-Borel invariant βωn (ρω) can be computed by
the following formula

βωn (ρω) =
∑
σ̃∈τ̃

Bω
n (ϕω(p(σ̃(e0))), ϕω(p(σ̃(e1))), ϕω(p(σ̃(e2))), ϕω(p(σ̃(e3))))

where σ̃ is a lifted copy of the simplex σ ∈ τ .
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3.4 The case n = 2 and properties of the invariant βω2 (ρω)

In this section we are going to focus our attention on the case of representations
into SL(2,Cω). Suppose to have a sequence of representations ρl : Γ → SL(2,C)
that determines a representation ρω : Γ→ SL(2,Cω). A sequence of decorations ϕl
for ρl produces in a natural way a decoration ϕω. Indeed it suffices to compose the
standard projection π : P1(C)N → P1(Cω) with the map

∏
ϕl : P1(C) → P1(C)N.

We say that a decoration is non-degenerate if for every ξ0, . . . , ξ3 ∈ C (Γ) such that
ξi 6= ξj for i 6= j, we have that the 4-tuple (ϕω(ξ0), . . . , ϕω(ξ3)) contains at least 3
distinct points. If the decoration ϕω is non-degenerate we have

βω2 (ρω) =
∑
σ̃∈τ̃

Bω
2 (ϕω(p(σ̃(e0))), ϕω(p(σ̃(e1))), ϕω(p(σ̃(e2))), ϕω(p(σ̃(e3)))) =

= ω- lim
l→∞

∑
σ̃∈τ̃

B2(ϕl(p(σ̃(e0))), ϕl(p(σ̃(e1))), ϕl(p(σ̃(e2))), ϕl(p(σ̃(e3))))

= ω- lim
l→∞

β2(ρl),

where the last equality is obtained by applying Corollary 2.7 of [BI02] to express
the Borel invariant β2(ρl) in terms of the boundary maps ϕl. The second equality
exploits the non-degenerancy of the decoration ϕω, which allows us to pass from the
evaluation of the ω-Borel cocycle on ϕω to the ω-limit of evaluations of the standard
Borel cocycle on ϕl. Hence we get

Proposition 3.4.1 Let ρl : Γ → SL(2,C) be a sequence of representations with
decorations ϕl. Let ρω : Γ → SL(2,Cω) be the representation associated to the
sequence ρl. If the decoration ϕω produced by the sequence ϕl is non-degenerate, we
have

βω2 (ρω) = ω- lim
l→∞

β2(ρl).

Corollary 3.4.2 Let ρl : Γ → SL(2,C) be a sequence of representations with
decorations ϕl. Let ρω : Γ → SL(2,Cω) be the representation associated to the
sequence ρl. Suppose βω2 (ρω) = Vol(M). If the decoration ϕω produced by the
sequence ϕl is non-degenerate, there must exist a sequence gl ∈ SL(2,C) and a
representation ρ∞ : Γ→ SL(2,C) such that

ω- lim
l→∞

glρl(γ)g−1
l = ρ∞(γ).

Proof. Thanks to the assumption of non-degenerancy, by applying Proposition 3.4.1
we desume that ω-liml→∞ β2(ρl) = Vol(M). The statement now follows directly by
Theorem 1.

Assume that a sequence of representations ρl : Γ→ SL(2,C) diverges to a ideal
point of the character variety X(Γ, SL(2,C)) and let ρω : Γ → SL(2,Cω) be the
representation associated to the sequence. Recall that the identification between
SL(2,Cω) and SL(2,C)ω implies that the representation ρω produces in a natural
way an isometric action of Γ on the asymptotic cone Cω(H3, d/λl, O). We are going
to restrict our attention to reducible actions with non-trivial length function.
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Proposition 3.4.3 Let ρl : Γ → SL(2,C) be a sequence of representations and
suppose it determines a representation ρω : Γ → SL(2,Cω) such that the isometric
action induced by ρω on Cω(H3, d/λl, O) has non-trivial length function. If the
action is reducible then βω2 (ρω) = 0.

Proof. Since the length function associated to the action induced by ρω is non-
trivial then the action does not admit a global fixed point. Moreover, since the
action is reducible, it must admit either a fixed end or an invariant line. Suppose
that there exists an end fixed by Γ. By Proposition 1.3.24 the asymptotic cone
Cω(H3, d/λl, O) is naturally identified with the Bass–Serre tree ∆BS(SL(2,Cω))
associated to SL(2,Cω). Hence, there must exist an end of ∆BS(SL(2,Cω)) fixed
by the representation ρω. Thus the image ρω(Γ) is a subgroup of a suitable Borel
subgroup Nω of SL(2,Cω) and hence it is solvable, so amenable by [Zim84, Corollary
4.1.7]. This implies that the map (ρω)∗b = 0 from which we conclude βω2 (ρω) = 0.

Suppose now that the action of Γ admits an invariant line. This time the image
ρω(Γ) will be isomorphic to a subgroup of Isom(R). Being Isom(R) the semidirect
group of the two amenable groups Z/2Z and R, it will be amenable by [Zim84,
Proposition 4.1.6]. As before we will have (ρω)∗b = 0, hence βω2 (ρω) = 0.

Remark 3.4.4. Another way to prove Proposition 3.4.3 is by using decorations.
Indeed, if the action determined by ρω admits a fixed end εω ∈ ∂∞∆BS(SL(2,Cω))
and since the boundary at infinity can be identified with P1(Cω), then the map
ϕω(ξ) = εω for ξ ∈ C (Γ) is a decoration and trivially it results βω2 (ρω) = 0.

In the same way if the action admits an invariant line Lω, we denote by ε1
ω and

ε2
ω the ends of the line Lω. For every ξ ∈ C (Γ) we can choose either ε1

ω or ε2
ω as the

image of ξ for the decoration ϕω. This implies that every possible choice produces
a decoration for ρω such that it results βω2 (ρω) = 0.

Let S = {γ1, . . . , γs} be a generating set for the group Γ. Recall that if a
sequence of representations ρl : Γ → SL(2,C) diverges in the character variety
X(Γ, SL(2,C)) to an ideal point of the Morgan–Shalen compactification, then the
real sequence

λl := inf
x∈H3

√√√√ s∑
i=1

d(ρl(γi)x, x)

is positive and divergent. As written in Theorem 1.3.32, for any non-principal
ultrafilter ω on N, by fixing (λl)l∈N as scaling sequence, we are able to construct in
a natural way a representation ρω : Γ→ SL(2,Cω) via the representations ρl.

Corollary 3.4.5 Let ρl : Γ→ SL(2,C) be a sequence of representations diverging
to an ideal point of the Morgan–Shalen compactification of the character variety
X(Γ, SL(2,C)). Let ρω : Γ → SL(2,Cω) be the natural representation determined
by the sequence (ρl)l∈N. If the representation is reducible, then βω2 (ρω) = 0.

Proof. It follows directly from Proposition 3.4.3 by obsverving that the ρω has
non-trivial length function since it is associated to a diverging sequence of repre-
sentations.
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Chapter 4

Natural maps and abelian
length functions

4.1 Sequences of natural maps

We ended the previous chapter by stating that if a sequence of representations
ρl : Γ → SL(2,C) diverges to an ideal point of the character variety and it de-
termines a reducible action via ρω then βω2 (ρω) must vanish. In this chapter we
are going to expose a criterion to get a reducible action based on the study of the
sequence of boundary maps associated to the representations. Before starting we
need to fix the following setting

• A group Γ < PSL(2,C) so that Γ\H3 is a complete hyperbolic manifold of
finite volume.

• A base-point O ∈ H3 used to normalize the Busemann function B(x, θ), with
x ∈ H3 and θ ∈ ∂∞H3.

• The family {µx} of Patterson-Sullivan probability measures. Set µ = µO.

• A sequence of non-elementary representations ρl : Γ → SL(2,C). Let ρ̄l be
the induced representations into PSL(2,C).

• A non-principal ultrafilter ω on N.

• The sequence of measurable boundary maps Dl : ∂∞H3 → ∂∞H3.

• The resulting sequence of BCG–natural maps Fl : H3 → H3.

We first study the relation between the convergence of the natural map Fl and
the convergence of the representations ρl in the character variety. We start recalling
the notion of quasi-constant map.

Definition 4.1.1. A quasi-constant map ab : ∂∞H3 → ∂∞H3 is defined as

ab(x) :=

{
a if x 6= b,

b if x = b.

71
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The same definition can be given in term of H3
rather than ∂∞H3. The group

SL(2,C) admits a natural compactification whose ideal points are given by quasi-
constant maps. Indeed any sequence of elements gl ∈ SL(2,C) converges up to the
choice of a subsequence either to an element g∞ ∈ SL(2,C) or to a quasi-constant
map ab, with a, b ∈ ∂∞H3 (see [Kap01, Section 3.6]).

Proposition 4.1.2 Let ρl : Γ → SL(2,C) be a sequence of representations. Sup-
pose that the sequence of natural maps Fl associated to ρl converges pointwise to
a map F : H3 → H3 . Then the sequence of representations ρl converges to a
representations ρ∞, up to passing to a subsequence.

Proof. Let S = {γ1, . . . , γs} be a finite set of generators for the group Γ. It suffices
to show that the limit of the sequence ρl(γi) admits a subsequence converging to an
element gi ∈ SL(2,C), for i = 1, . . . , s.

By contradiction, suppose that ρl(γi) converges to a quasi-constant map ab, with

a, b ∈ ∂∞H3. This means that, if we endow H3
with the euclidean metric, for every

compact set K ⊂ H3 \ {b} we have a uniform convergence liml→∞ ρl(γi)(z) = a for
every z ∈ K. Moreover, since the natural maps Fl converges pointwise to a map
F , for every ε > 0 and every x ∈ H3 there must exist a suitable l0 ∈ N such that
d(Fl(x), F (x)) < ε for every l > l0.

Denote by Bε(F (x)) the hyperbolic closed ball of radius ε around F (x). Fix this

ball as compact set and consider a small neighborhood U of a in H3
. The uniform

convergence on Bε(F (x)) of the sequence ρl(γi) to a implies that there exists l1 ∈ N
such that ρl(γi)(Bε(F (x))) ⊂ U for every l > l1.

As a consequence the sequence ρl(γi)F (x) will eventually lie in U and hence the
sequence ρl(γi)Fl(x) = Fl(γix) will eventually lie in U because

d(ρl(γi)F (x), ρl(γi)Fl(x)) = d(F (x), Fl(x))

and the right-hand side is less than ε, if l > max{l0, l1}. In particular the limit of
the sequence Fl(γix), that is F (γix), must lie in U , but this is a contradiction by
the arbitrary choice of U and the claim is proved.

The previous proposition suggests that if a sequence ρl : Γ → SL(2,C) is di-
verging to an ideal point of the character variety, then the sequence of natural maps
cannot converge pointwise to a map F : H3 → H3. We are going to study more
accurately this phenomenon. We keep adopting the setting fixed at the beginning
of the chapter. Recall that up to conjugating ρl by a suitable element gl ∈ SL(2,C),
we can suppose Fl(O) = O.

Let δp be the Dirac measure concentrated on p.

Definition 4.1.3. For any l ∈ N and every z ∈ ∂∞H3 we set

αl,z = δDl(z) and ηl = µ× {αl,z}

Both {αl,z} and ηl are probability measures.

Given a point x ∈ H3 we have ηl,x := µx×{αl,z}. Let π1 and π2 be the projections
respectively on the first and on the second factor of the product ∂∞H3 × ∂∞H3.
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Definition 4.1.4. For any l ∈ N and x ∈ H3 we set

βl,x = (Dl)∗(µx) = (π2)∗(ηl,x).

In particular we will have Fl(x) = barB(βl,x).

Lemma 4.1.5 The sequence ηl ω-converges to a positive probability measure η∞
in the weak-∗ topology. Moreover, there exists a family {α∞,z}z∈∂∞H3 of probability
measures such that η∞ disintegrates as

η∞ = µ× {α∞,z}.

Proof. The weak-∗ limit exists by a compactness argument. Indeed, since ∂∞H3 ×
∂∞H3 is compact the set of probability measures is compact and Hausdorff with
respect to the weak-∗ topology. Hence by Proposition 1.3.14 the ω-limit exists and
it is unique. Since (π1)∗(ηl) = µ, by weak-∗ continuity of the pushfoward we deduce
that (π1)∗(η∞) = µ. Therefore, we can apply the theorem of disintegration of
measures (see [AFP00, Theorem 2.28]).

Hence, there exists a family {α∞,z} of positive probability measures such that
η∞ = µ× {α∞,z}.

Lemma 4.1.6 For any x the measure ηl,x has ω-weak-∗ limit η∞,x. Moreover,
η∞,x disintegrates as

η∞,x = µx × {α∞,z}.

Proof. We know that dµx(z) = e−2B(x,z)dµ(z) and µ = µO, whence

dηl,x(θ, z) = e−2B(x,z)dηl(θ, z)

where the factor e−2B(x,z) does not depend on l. From Lemma 4.1.5 we deduce that

ω- lim
l→∞

ηl,x = e−2B(x,z)η∞

in the weak-∗ topology.

This implies

η∞,x = e−2B(x,z)η∞ = e−2B(x,z)(µ×{α∞,z}) = (e−2B(x,z)µ)×{α∞,z} = µx×{α∞,z}

and the claim is proved.

Lemma 4.1.7 For any x the measure βl,x ω-weakly-∗ converges to a probability
measure β∞,x = (π2)∗(η∞,x). Moreover, the density class of β∞,x does not depend
on x.

Proof. Since the pushfoward is weak-∗ continuous, by Proposition 1.3.15 we have
that

ω- lim
l→∞

(π2)∗(ηl,x) = (π2)∗(η∞,x)



74 CHAPTER 4. NATURAL MAPS AND ABELIAN LENGTH FUNCTIONS

which proves the first claim. Now, let ϕ be a smooth positive function such that∫
∂∞H3 ϕ(θ)dβ∞,x(θ) = 0. We have

0 =

∫
∂∞H3

ϕ(θ)dβ∞,x(θ) =

∫
∂∞H3×∂∞H3

ϕ(θ)dη∞,x(θ, z) = ω- lim
l→∞

∫
∂∞H3

(∫
∂∞H3

ϕ(θ)dαl,z(θ)

)
dµx(z)

= ω- lim
l→∞

∫
∂∞H3

(∫
∂∞H3

ϕ(θ)dαl,z(θ)

)
e−2B(x,z)dµO(z) =

∫
∂∞H3×∂∞H3

ϕ(θ)e−2B(x,z)dη∞,O(z)

and since e−2B(x,z) is stricly positive and η∞,O is a positive measure, this implies∫
∂∞H3×∂∞H3

ϕdη∞,O = 0

whence
∫
∂∞H3 ϕβ∞,O = 0. The same argument show that if

∫
∂∞H3 ϕdβ∞,O = 0

then
∫
∂∞H3 ϕdβ∞,x = 0. In conclusion, for every x the measure β∞,x is in the same

density class of β∞,O.

The previous proposition gives us an important point to investigate. Indeed, if
a sequence ρl diverges to an ideal point of the character variety X(Γ, SL(2,C)) in
the Morgan–Shalen compactification, then the limit measure β∞,O must contain an
atom of mass at least 1/2, otherwise there will exist a limit map F which would be
the pointwise limit of the maps Fl by the properties of the barycentre.

4.2 Abelian limit actions

In the previous section we have discovered that if the sequence of representations
ρl : Γ → SL(2,C) is diverging to an ideal then the measures β∞,x have an atom
of mass greater than or equal to 1/2. In this section we are going to prove that if
the measures β∞,x have as support two points, then the action on the asymptotic
cone Cω(H3, d/λl, O) must be abelian. We will mantain the same notation of the
previous section.

Since the representations ρl are diverging to an ideal point, if Γ is generated by
S = {γ1, . . . , γs}, the sequence of minimal displacements

λl = inf
x∈H3

√√√√ s∑
i=1

d(ρl(γi)x, x)2

is diverging. Hence, the hypothesis allow us to define a representation ρω : Γ →
SL(2,Cω). By Proposition 1.3.24 the previous representation realizes an isometric
action of Γ on the asymptotic cone Cω(H3, d/λl, O).

Assume the support of the measure β∞,O is a set of two points, say

supp(β∞,O) = {p, q}.

By Lemma 4.1.7, for every γ ∈ Γ we desume β∞,γO = {p, q}.
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Lemma 4.2.1 Given γ ∈ Γ, suppose that

β∞,O = P1δp +Q1δq, β∞,γ−1O = P2δp +Q2δq, β∞,γO = P3δp +Q3δq

where Pi, Qi ∈ R, Pi + Qi = 1 and Pi, Qi > 0. If the sequence ρl(γ) diverges to
a quasi-constant map xy then {x, y} = {p, q}. Otherwise, if the sequence ρl(γ) is
bounded, then it admits a subsequence converging to an element g ∈ SL(2,C) such
that g({p, q}) = {p, q}.

Proof. Assume ρl(γ) diverges to a quasi-constant map xy. We will prove the first
part of the statement by contradiction. We start supposing that {x, y}∩{p, q} = ∅.
Given a δ > 0, let Bδ(p) and Bδ(q) be two balls of radius δ with respect to the
standard round metric on ∂∞H3. Consider in the same way two balls of radius δ
around x and y, namely Bδ(x) and Bδ(y). Since βl,O

∗
⇀ β∞,O and x /∈ {p, q}, there

exists l0 = l0(δ, ε) such that for each l > l0 it holds βl,O(Bδ(x)) < ε. The same
argument applied to the sequence βl,γO tells us that exists l1 = l1(δ, ε) such that for
every l > l1 we have βl,γ−1O(Bδ(p)) ≥ P2− ε. We recall that the family of measures
{βl,x} is equivariant with respect the representation ρl, that is

ρl(γ)∗(βl,O) = βl,γO,

hence, for this reason, we will have

βl,γ−1O(Bδ(p)) = βl,O(ρl(γ)(Bδ(p))) and βl,γ−1O(Bδ(q)) = βl,O(ρl(γ)(Bδ(q))).

Since ρl(γ) → xy and p /∈ {x, y}, there exists a suitable integer l2 such that
for l > l2 the ball Bδ(p) is contained in the ball Bδ(x). Hence, by taking l >
max{l0, l1, l2} we get

P2 − ε < βl,γ−1O(Bδ(p)) = βl,O(ρl(γ)(Bδ(p))) ≤ βl,O(Bδ(x)) < ε

leading us to a contradiction. Hence {x, y}∩ {p, q} 6= ∅. Without loss of generality
we can suppose that x = p. By applying the same argument to ρn(γ)−1, which
diverges to yx, we get y = q, as claimed.

If the sequence ρl(γ) is bounded and converges to g ∈ SL(2,C), the equivariance
of the measures βl,O implies

g∗(β∞,O) = β∞,γO.

from which the second part of the statement follows.

Lemma 4.2.2 Let gl ∈ SL(2,C) be a sequence of elements diverging to xy, with
x 6= y. Then the elements gl are eventually loxodromic and if we denote by Fix(gl) =
{xl, yl} the set of points fixed by gl, up to relabelling the points xl and yl, we have
xl → x and yl → y.
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Proof. For δ > 0 we fix neighborhoods Bδ(x) and Bδ(y) of x and y, respectively.
The sequence gl → xy, thus there exists l0 = l0(δ) such that for each l > l0 we have
that gl(∂∞H3 \ Bδ(y)) ⊆ Bδ(x). In particular, we can suppose gl(Bδ(x)) ⊆ Bδ(x)
thanks to the assumption x 6= y. By the Brower fixed point theorem, gl admits
a fixed point in Bδ(x), which we denote by xl. By noticing that g−1

l → yx, the
previous reasoning applied to g−1

l shows that there is a point yl ∈ Bδ(y) fixed by
g−1
l , hence by gl. Since we can consider δ small enough so that Bδ(x) and Bδ(y) do

not intersect, we know that xl 6= yl. To sum up, we have found two sequences xl,
yl of points fixed by gl, such that

∀δ > 0, ∃l0 : xl ∈ Bδ(x), yl ∈ Bδ(y), ∀l > l0,

and the statement is proved.

Proposition 4.2.3 If supp(β∞,O) = {p, q}, then it holds

dω(Oω,Min(ρω(γ))) = 0,

that is the basepoint Oω = [O]ω lies in the minimal locus Min(ρω(γ)) for every
γ ∈ Γ.

Proof. We first need to show that there exists a positive constant C such

d(ρl(γ)O,O) < Cλl

where λl is the sequence of the minimal displacements fixed at the beginning of
this section. We need to do this because the point O does not coincide with the
point minimally displaced by ρl. If the sequence of ρl(γ) is bounded we are done.
Otherwise, the sequence ρl(γ) is diverging to a quasi-constant map. Hence, by
Lemma 4.2.2 they are eventually loxodromic. Thus we can write

d(ρl(γ)O,O) = LH3(ρl(γ)) + 2d(O,Min(ρl(γ))).

By the choice of the sequence λl we already know that LH3(ρl(γ)) < C0λl, where
C0 is a suitable constant. Indeed, we know that there exists a sequence xl of points
in H3 such that

dρl(xl) =

√√√√ s∑
i=1

d(ρl(γi)xl, xl) ≤ λl + 1/l.

Hence, by an easy computation, it follows

LH3(ρl(γ)) = inf
x∈H3

d(ρl(γ)x, x) ≤ d(ρl(γ)xl, xl) ≤ ||γ||Sdρl(xl) ≤ C0λl

as claimed. We are going to prove that d(O,Min(ρl(γ))) is a bounded sequence.
Let p0 be the orthogonal projection of O on the geodesic determined by {p, q}.

We denote by pl the orthogonal projection of p0 on the geodesic whose endpoints
are {xl, yl} = Fix(ρl(γ)).
By Lemma 4.2.1, if the sequence ρl(γ) is diverging we have that ω-liml→∞ρl(γ) = pq
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either ω-liml→∞ρl(γ) = qp. We claim that ω-liml→∞pl = p0. Let δ be a positive
real number. Since ω-liml→∞xl = p and ω-liml→∞yl = q, we know that the set

{l : ∠p0(xl, yl) ≥ π − ε} ∈ ω

for a suitable choice of ε > 0, by the continuity of the angle function ∠p0(·, ·). This
guarantees that

{l : d(p0,Min(ρl(γ))) = d(p0, pl) < δ} ∈ ω.

By the arbitrary choice of δ we get ω-liml→∞d(p0, pl) = 0, that is ω-liml→∞pl =
p0, as desired. It must hold

ω- lim
l→∞

d(O, pl)

λl
= 0

because ω-liml→∞pl = p0 and the distance d(O, p0) is bounded.

Figure 4.1: The sequence (pl)l∈N ω-converges to p0.

From the estimate

d(O,Min(ρl(γ))) ≤ d(O, pl)

we argue that there exists a positive constant C such that

d(ρl(γ)O,O) < Cλl

for every γ ∈ Γ. Thus we have a well-defined isometric action of Γ on Cω(H3, d/λl, O).

The previous computation proves that the point Oω lies in Min(ρω(γ)) for every
element ρω(γ). The claim is clear if ρl(γ) is bounded in SL(2,C). Indeed since the
sequence d(ρl(γ)O,O) is bounded we have that

dω(ρω(γ)Oω, Oω) = ω- lim
l→∞

d(ρl(γ)O,O)

λl
= 0

and so the isometry ρω has translation length equal to zero and the point Oω is
fixed, that is Oω ∈ Min(ρω(γ)).
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Otherwise, considering the same notation as above, the sequence pl defines a
point pω in Cω(H3, d/λl, O) and dω(Oω, pω) = 0. Moreover pω lies on Min(ρω(γ)),
indeed

dω(pω, ρω(γ)pω) = ω- lim
l→∞

d(pl, ρl(γ)pl)

λl
= ω- lim

l→∞

LH3(ρl(γ))

λl
= Lω(ρω(γ))

and this implies that Oω ∈ Min(ρω(γ)). We denoted by LH3 and by Lω the trans-
lation length functions on H3 and on Cω(H3, d/λl, O), respectively. Hence, we have
shown for every γ ∈ Γ the isometry ρω(γ) of the asymptotic cone has minimal locus
passing through the basepoint Oω.

By summarizing what we have shown so far, we get the following

Proposition 4.2.4 Let Γ a non-uniform lattice of PSL(2,C) without torsion and
let ω be a non-principal ultrafilter on N. Let ρl : Γ → SL(2,C) be a diverging
sequence of non-elementary representations. Denote by Dl : ∂∞H3 → ∂∞H3 the
unique measurable map associated to ρl. If β∞,O = ω- liml→∞(Dl)∗(µx) is supported
on two points, then the representation ρω : Γ→ SL(2,Cω) associated to the sequence
(ρl)l∈N determines an abelian action on Cω(H3, d/λl, O).



Chapter 5

Open problems and final
remarks

We want to conclude this dissertation with some remarks and a list of open
problems related to the notions exposed so far. We start with some comments
about the proof of the main rigidity theorems, that is Theorem 1, Theorem 3 and
Theorem 4. A key point to show the rigidity at infinity of the volume function for
representations of lattices in rank-one Lie groups is given by the sharpness of the
estimate of the Jacobian of natural maps.

In both [CF03a] and [CF03b] the authors generalize the construction of natural
maps to lattices in Lie groups of any rank by still obtaining an estimate on the
Jacobian. The estimate is sharp for lattices in products of rank-one Lie groups, but
this fails dramatically for Lie groups which cannot be written as products of rank-
one Lie groups. A sharp estimate would be a fundamental ingredient to solve the
minimal entropy rigidity conjecture, which is still an open problem (see [BCG96,
Question 5]). However, the sharpness for lattices in products of rank one Lie groups
suggests us that it should be possible to extend the strong rigidity at infinity at
least in this more general context.

In the same way, it would be nice to have a rigidity result for the ω-Borel
invariant in order to generalize [BBI, Theorem 1]. Given a non-uniform torsion free
lattice Γ of PSL(2,C) and a representation ρω : Γ → SL(2,Cω), Corollary 3.4.2
gives us a result of weak rigidity for βω2 (ρω). Indeed we need to assume the non-
degenerancy of the decoration ϕω associated to ρω to apply correctly Theorem 1
and conclude. The main difficulty in dropping the non-degenerancy hypothesis
relies on the fact that a priori we do not know if the condition βω2 (ρω) = Vol(M)
implies automatically that βω2 (ρω) = ω- liml→∞ β2(ρl). The problem is even more
complicated if we move to representations ρ : Γ → SL(n,Cω). Indeed we do not
know which conditions we have to assume about ρω in order to get βωn (ρω) =
ω- liml→∞ βn(ρl). Finally, another interesting aspect would be the possibility to
relate the vanishing of βωn (ρω) with information about the action induced on the
asymptotic cone Cω(Xn, d/λl, O), similarly to what we have done for real trees (see
Proposition 3.4.3).
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